NATIONAL TECHNICAL UNIVERSITY OF ATHENS
School of Mechanical Engineering

Department of Mechanical Design and Control Systems
Control Systems Lab

Diploma Thesis

Firmware design for microcontrollers on EtherCAT network for quadruped robot
motion control

Stamatios Athiniotis

Supervising Professor: E.G. Papadopoulos

ATHENS 2018

2/147

Abstract

Modern motion control requires large data and resources from different devices, sensors and libraries, which
must be recognizable and within reach, to be viable. EtherCAT is the fastest industrial Ethernet technology
setting new standards for real-time performance and topology flexibility. When using an EtherCAT
infrastructure for motion control, all hardware accessories and necessary motors - cables are easily
connected to the system with minimum wiring compared to traditional methods. Thus, reducing clutter within
the working area, the possibility of an accident that may be caused by loose cables and other loose fittings
within the room decreases, making motion control far more manageable. Motion control solutions based on
the EtherCAT framework are purpose-built for enhanced performance and come with immense advantages
since machine automation becomes more cost effective with much better turn-around times and outputs.

In this thesis, the development of an EtherCAT network of microcontrollers is introduced, describing the
configuration process of a slave and all the implementation prerequisites. For the purpose of implementing
EtherCAT technology, TwinCAT XAE (Visual Studio) is exploited to realize the master node in a Windows
Operating System (OS). On the other hand, to materialize the slave nodes of the network, the LaunchXL —
F28379D launchpad by Texas Instruments is used as the host Micro Controller Unit (MCU) along with
FB1111-0141 by Beckhoff as the EtherCAT Slave Controller (ESC). The provided software (available for
download) which is thoroughly explained within the second chapter, is fully operational and contains all
required EtherCAT stack to implement an analogous network. It is assembled in such a way that no specific
User Application is coded, therefore users may define the functionality of each node according to their needs.

Subsequently, in the third chapter, the motion control via EtherCAT of Laelaps Il quadruped robot is
explained along with a description of its leg architecture and electrical system details. Each slave connected
to the robot’'s network (EtherCAT Control Tower Assembly) controls the motion of one leg, including the hip
and knee motors, using elliptical shaped trajectories for its End Effector. Furthermore, the TwinCAT Scope
View Tool is adumbrated enabling the data logging of EtherCAT variables for their post processing in Matlab.

Finally, in the fourth chapter, the experimental validation of the exploited decentralized control theory of
Laelaps Il is appended, illustrating the response of all four legs in a fundamental test. The experimental
process is described and a table containing all used parameters is provided before presenting the resulting
figures of each joint. The overall procedure proves that the running stack is judiciously assembled, fully
functional and prudent to be tested in higher velocities of the robot in the future.

3/147

4/147

MepiAnyn

O ouyxpovog éAeyxog Kivnong atraitei peyaAa dedouéva Kal TTOpoug atrd OIAPOPETIKEG TUCKEUESG, aioBNTHPES
Kal BIBAIOBAKEG, o1 oTToiol TTPETTEI va gival avayvwpioigol Kai diaBéaiyol TTpoKeIgévou va gival Biwalyol. To
EtherCAT eivai n taxutepn Blopnxavikh texvoloyia Ethernet mou B£Tel véa TTPOTUTTA yIA TAV ETTIKOIVWVIQ O€
TPayuaTiké xpovo kai Tnv guehiia Tng TommoAoyiag. Otav xpnoiyotroicital To EtherCAT yia éAeyxo kivnong,
6Aa Ta €€apTApOTa UAIKOU KOl Ol aTrapaitnTol KIvNTAPES - KoOAwdia guvdéovtal €UKOAa oTo oUOTNPA ME
eNAXIOTN KoAwdiwan og aUykpIion HE TIG TTapadoalakég peBddoug. ‘ETol peiwvovtag Tnv akataoTagia péaa
oTnNV TTEPIOXA €pyaciag, PEIWVETal N mOaveTNTA €VOG ATUXNMOTOG TTOU MTTOPEi va TTPokANnBei atmmd xaAapd
KaAwdia Kal GAAa xaAapd e€apTAUATa PECA OTO XWPO E€PYOCTIaG, KAVOVTAG Tov EAeyXOo Kivnong TTOAU TTio
euxpnoto kai dlaxelpioo. O1 AUoeig eAéyxou kivioewv PBaoiopéveg oto TAaiolo EtherCAT civai
KOTAOKEUOOWEVEG e OKOTTO TN BeATtiwon TG amodoong kai SlaBEéTouv TEPAOTIA TTAEOVEKTHMATA, KOBWG N
QUTOMATOTTOINCN TOU CGUCTAUATOG KaBioTaTtal 1o atmmodoTikr amd TTAEUPAG KOOTOUG e TTOAU KOAUTEPOUG
XPOVOUG eKTEAEONG.

21NV Tapouca epyagia Trapoudidletal n avamTuén evog OikTUou EtherCAT amd MIKPOEAEYKTEG,
TepIypagovTag Tn diadikagia dlauopewaong evog slave kal OAeg TG TrpoUtroBéaelg ulotroinong. MNa tnv
Tpayudtwaon TG TeXvoAoyiag EtherCAT, 1o mpoypauua TwinCAT XAE (Visual Studio) xpnoiyotroigital yia
TNV UAoTroinan Tou master k6uPou ae Aeitoupyikd cuotnua Windows (OS). Ao tnv dAAn TTAgupd, yia Tnv
uhotroinon Twv slave kOuPwv Tou OIKTUOU, N TAaKETa LaunchXL-F28379D amd tnv Texas Instruments
XPNOIMOTTOIEITAl WG O PIKPOEAEYKTAG TTOU «@IAOEEVEI» TO ouoTnua, padi ye To FB1111-0141 amd tnv Beckhoff
mTou dladpaparTifel To poAo Tou EtherCAT Slave Controller (ESC). To TTpoo@epduevo AOYIOUIKO, TO OTTOI0
avaAvetal S1eC0dIKA OTO BeUTEPO KEPAAAIO TNG epyaciag, eival TTARPWG AEITOUPYIKG Kal TTePIEXEl OAOV TOV
amrapaitnto EtherCAT kwdika yia Tnv uAoTtroinon evog avaAoyou OikTUou. ‘Exel TTpoypauuaTioTei e T€TOI0
TPOTTO WOTE Ol XPNOTEG va UTTOPoUV va opiouv Tn Asitoupyia Tou K&Be kOuBou slave avaloya e TIG AVAYKES
TOUG.

2710 TPITO KEQAAAIO, ETTEENYEITAI O €AEYXOG Kivhong péow Tou EtherCAT Tou TeTpdmmodou poutrdT Laelaps
I, yadi pe pia TepIypa®n TG apXITEKTOVIKAG TOU TTOdI0U KAl TWV AETITOUEPEIWY TOU NAEKTPIKOU OUGCTHHATOG.
KdaBe k6ppog slave rou cuvdéeTal pye 1o dikTuo Tou poutréT (EtherCAT Control Tower Assembly) eAéyxel Tnv
Kivnan €vog odIoU, CUUTTEPIAGUBAVOUEVWY TWV KIVNTAPWY I0XIOU KAl YOVATOU, XPNOIUOTTOIWVTAG EAAEITTTIKG
OIaUOPPWHEVEG TPOXIEG yia TO TTEANA Tou (TZA). EmimmAfov, epiypagetal To epyaieio TwinCAT Scope View
TTOU ETTITPETTEI TNV KATAYPAQN Kal atrodrikeuon Twv YetaBAntwy EtherCAT yia Tnv peTayevéaTepn emecepyaaia
Toug otn Matlab.

TéNOG, OTO TETOPTO KEPAAQIO TTAPOUCIACETAI N TTEIPANATIKY ETMIKUPWON TNG Bewpiog ATTOKEVIPWHEVOU
eAéyxou Tou Laelaps Il, TTou arreikoviCel TNV AtTOKPIon Kal TwV TEOOAPWY TTOdIWV O¢ £va BePeNIBES TTEipapa.
H meipaparikn diadikagia TePIyPAPETAI KAl TTAPEXETAI £VAG TTIVAKAG TTOU TTEPIEXEI OAEG TIG XPNOIUOTTIOIOUUEVEG
TTAPAPETPOUG TOU TTEIPAPATOG TTPIV TTOPOUGCIACGTOUV Ol ATTOKPIoEIS Twv apBpwoewv. H cuvoAikh diadikagia
atrodeIkvUel OTI O XPNOIKJOTTIOIOUUEVOS KWOIKAG €ival €UOTOXA TTPOYPAUHATIONEVOG, TTAAPWG AEITOUPYIKOG Kal

IKAVOG yia va BOKIPAoTEl o€ uWNASTEPES TAXUTNTEG TOU POUTTOT OTO PEAAOV.

5/147

6/147

Acknowledgements

I would like to thank my supervisor Professor E. Papadopoulos for his guidance, his advice and work
ethic which inspired and motivated me throughout the elaboration of this thesis and significantly contributed to
its quality.

Furthermore, | would like to thank the PhD candidates of the CSL lab and good friends of mine K.
Machairas, K. Koutsoukis and T. Mastrogeorgiou for introducing me to the fascinating world of robotics and of
course for their incessant and valuable assistance in the last three years that | have been a member of the
CSL — EP laboratory. | would also like to personally thank and acknowledge the work of Aristotelis
Papatheodorou for selecting EtherCAT components and introducing the team to EtherCAT technology,
George Bolanakis for his Software and Hardware support and John Valvis for the leg design and the treadmill
support mechanism.

Finally, | would like to thank all those people who supported and encouraged me throughout all my
undergraduate years and made all this possible: my family, my friends (MB), classmates and professors.

71147

8/147

Dedicated to my Family,
Alex, Anthony
and Sam

9/147

10/147

Table of Contents

Y 0 ES3 1 T S PP PPPPPPPPPPP 3
[F=0o 1, 111 o PP 5
F o Lo XV L= Ko L= g =T a1 PRSP 7
LI L1 1S3) B @ Y] 4= | SRR 11
LIS OF FIQUIES ..ttt 14
IS} A 1= 1 o] =N 20
R 011 o o U] o] o P 22
S R Y/ [111 VZ= Ui [o] [TP PP TP OPPTPPPTPN 22

1.2 LIEEIATUIE FEVIEWeeiiiieeii e e e ettt e sttt et e e e s et te e e e e e s s sts e e eeeaeeesanteteneeeeeeessansntaneeeaeeeas 22

1.3 THESIS OULINE ...ttt e e e e e e s ettt e e e e e e s et e e e e e e e e s sansntaeeeeaeeeas 26

2 EtherCAT Communication and Implementationccccccvvvviiiiiiiiiie 28
2.1 EtherCAT TECHNOIOQYuuuuuiiiuniiii s 28
211 a1 10T [0 ox 1T o ISP EPP SRR 28

2.1.2 PRYSICAI LAYET ... eeiieieeiee ettt ettt e e sttt e e et e e s ate e e e sn bt e e e enteeee s anneeeeaneneeeane 28

2.13 (DY N |G I =T PRSPPI 31

214 APPHCALION LAYET ...ttt e ettt e e e e 35

2.2 EtherCAT SYNCHIONIZALION........uuuiiiiii s 37
221 SYNCNIONIZALION OVEIVIEWeiiiiiiiiiiiie ettt e e et e e e e e e aibb e e e e e e e aneeeeeas 37

2.2.2 Fre@ RUN MOGE ..ottt e et e e e e e sttt e e e e e s et e e e aeeeaas 38

223 SM-SYNCAIONOUS MOUE ...ttt e e e s 39

224 DC-SYNCHIONOUS MOGE........eiiiiiiiiieiie ettt e e e e e 40

2.3 Process Data HANAINGocuueiiiiiiiiiiiie e e s 43

2.4 EtherCAT APPLICAtION GUIAEcooveiiiiiiiiie ittt nnaneee s 45
241 EtherCAT COde StrUCLUIE OVEIVIEWcceiiuiiiiiieeeeeiiiiieieaa e e e sttt eeae e e seeaaaeeeaeeassnsaeeeeeaaaean 45

242 Hardware and Software ReqUIrEMENESuueiiiiiiiiiiiiiiee e 46

243 EtherCAT Application SOIULION GUIAEc.uuviiiiiiiiiiiieiicee e 52

3 Motion Control of Laelaps Il via EtherCAT ... 69
3.1 Laelaps Il robot description and motion planningcccccevriiieiii e 69
311 Leg design and MOotion PIANNINGeeeiiiiiiiiii e 70

3.1.2 ElECITICAI SYSTEIM ...ttt et e ettt et e e e s e e e e et e e e e 73

3.2 Motion Control of Laelaps via EtherCAT Solution GUIdEccccvvviiiieeeee i 75

4 Laelaps [LOCOMOtION EXPEIIMENTS . oouuuiiii i e e e e e e e e e e e eenees 96
4.1 Trotting EXPEHIMENT L...o.eeiiiiiiiiii ettt ettt st sttt e sttt e e e et e e s e st e e e e nbee e e e nnnees 96

5 Conclusion and FULUIE WOTKciieeeiiieeeiie et e e e e e e e 105
Lo 00 o o T 11] o] o SRR 105

5.2 FUIUIE WOTK ..ttt ettt e e oo ettt e e e e e s e e bbb et e e e e e e e e annbbneeeaaeeeaannnes 105

] =T =] o] = PSSR 107
B APPENAIX A 109
6.1 Download and Install Code Composer Studio, C2000ware & ControlSuite 109

11/147

6.2 Download and Install Slave Stack Code TOO!coovvueiiiiiiieeeee e 110

6.3 Generate Slave Stack Code for C28x architecture microcontrollerscccccevvvveeennnnen. 110
6.4 Download and Install TWINCAT 3 SOftWAIEcccueiiiiiiiiiiiiie e 115
6.5 Import CCS project into Code COmMPOSEr StUAIOcuvveereeeriiiiiiiieeree e s e e e e e 118
6.6 Define and Select Target Configurationcceeeiiiciiiieiiee e 120
6.7 Add and remove EtherCAT Input and Output variablescccoccviiiiiiiiniiieeeee e, 122
6.8 TWINCAT IN RUN MOUEooiiiiiiiiiiiiiiie ettt ettt e e s et e e e st e e e e nbee e e e nneeas 130
6.9 Add Watch EXpression in CCS DeDUQ.......coouiiiiiiiiii e 133
6.10 Laelaps Il Motors and gearN@adS.ocvuviiiiiie e ccceee e e e 134
6.11 Matlab PIV controller SIMUIALION.ooiiiiiiii e 134
F Y o7 o1=T o 1l = TP SRPPPPPRTRN 136
7.1 Matlab Leg MOEelliNG COUEcooiiiiiieiiiiiee ittt 136
7.2 Matlab POSt ProCeSS COUE.......c..uuiiiiiiieiiiite ettt e e 137
7.3 Matlab PIV Controller SIMUIALIONcooiiiiiiiiii e 145

12/147

13/147

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2-21.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.
Figure 2-26.
Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-31.
Figure 2-32.
Figure 2-33.

Boston Dynamics legged robots: (a) Handle (b) SpotMini (c) Atlas (d) BigDog.............. 23
State of the Art legged robots: (a) ANYmal (b) Hermes (c) Cheetah (d) Inu. 23
(a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by NexCom. .25
Shadow Dexterous Hand by Shadow Rob Company.cccccceveeviiiiereeenniiiciiiieeeeeeee s 26
(a) Talos biped robot by PAL Robotics and (b) HyQ2Max quadruped robot by IIT. 26
EtEIrCAT TOPOIOGY. .eeiiiiiiiiieitiiee ettt ettt e e e e s e e s annneeas 28
A typical EtherCAT NEIWOIK........oi et e e e et e e e e e e e e 30
EtherCAT topology With BranChes.c..uvvvriie e 30

EtherCAT Frame Structure with EtherCAT Datagrams (a) directly in the data field of
the Ethernet frame (b) within the data section of a datagram, by means of the User

Datagram ProtoCOI (UDP)........uuuiiiiiiiiie ittt e e s 33
EtherCAT Datagram (or DLPDU) StrUCIUre.cccoeee i 33
EtherCAT Application Layer State Machine.cccoo oo, 36
EtherCAT APPlCAtION LEVEL.......coiiiiiiiiiiiie et 37
EtherCAT process data @XChaNQE.ocuueiiiiiiiiiiiiiie et 37
EtherCAT SYNChronization.ccoooiiiiiii e 38
Slave in Free RUN MOE. ..ot 38
EtherCAT network in Free RUN MOE.coviiiiiiiiiiiiiieee e 39
Slave in SM SYNChronOUS MOGE.cooiiiiiiiiiiii et 39
EtherCAT network in SM Synchronous MOde.cccooieiiiiie i, 40
Slave in DC Synchronous MOde.coooviiiiiiiii e 41
EtherCAT network in DC Synchronous MOde.cooiiiiiiiiiiiiiiiice e 42
EtherCAT Shift tIMeS. .. .eiiii e e e e s e e e e e e e e 42
EtherCAT timMe SHIftS......coii i 43
EtherCAT Process Data handling. ..o, 43
Process data handling generic fuNCHONS.oiiiiiiii i 44
Free Run mode process data handling and SEQUENCE.cceeviiiiiiiiiiiiieenieee e 44
SM Synchronous mode process data handling and sequence.ccccccccvvveveveveeeeenen., 44
DC Synchronous mode process data handling and sequence.ccccoeeeeeeeeeeeeeeee, 45
EtherCAT Slave ArChiteCIUIE.coiiiiiiiiiiiie e e e e e 46
(gL 07 AN Y (o] 1 1= Yo (U= P 46
EtherCAT SIave MCU.....coooiiiiieiie ettt e e e e e e e a7
EtherCAT Slave CONLrOIEr.eeiiiiiiie e 48
Overview Of FBL1111-0141 fEAUIMES. ...cvieeiiiicieiieeee e e e e irieieeee e e e s e snteeeeeeeeesssnnnreneeeeeaeeeannns 48
FB1111-0141 Library (a) Device (b) PACKage.ccueieiiiiiieiiiiiee e 50
Delfino Launchpad Library (a) Device (b) Package.ccoooouviiiiiiiiiiiiiiiiiicece e 50
Schematic of EtherCAT Slave PCB. ...t 50
(a) Top View and (b) Bottom View of EtherCAT Slave PCB.cccccccoeviviiviiiireee e 51
EtherCAT Application slave assembly. ... 51
CCS With IMPOItEA PrOJECT. ..cee ettt e e e e e ereeea e e e e aas 52

14/147

Figure 2-34.
Figure 2-35.
Figure 2-36.
Figure 2-37.
Figure 2-38.
Figure 2-39.
Figure 2-40.
Figure 2-41.
Figure 2-42.
Figure 2-43.
Figure 2-44.
Figure 2-45.
Figure 2-46.
Figure 2-47.
Figure 2-48.
Figure 2-49.
Figure 2-50.
Figure 2-51.
Figure 2-52.
Figure 2-53.
Figure 2-54.
Figure 2-55.
Figure 2-56.
Figure 2-57.
Figure 2-58.
Figure 2-59.
Figure 2-60.
Figure 2-61.
Figure 2-62.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.

BasiC SSC eXECULION SITUCTUIE.eveiieiiieeesiiee e 53
APPL_GenerateMapping() TUNCLION.ooiieiiiiiiiiicee e sraee e 54
APPL_InputMapping() fFUNCLION. ... e 55
APPL_OutputMapping() FUNCHON.ocuiiiiiiiee e 55
APPL_Application() FUNCHION.ccci it e e e e e e e e s s snaanaeeee s 56
Select Build CONfIgUIatioN.eeieiiiiiieiiiie et 57
Build and DebUQg CCS PIOJECL.ccuviiieiiieie ettt ettt 57
CPU SEIBCHION.vii ettt e e n e e nnn e nnn e snneenneas 58
LT @I T B T= o1 T V1Y, TaTo [0 1 PRSP 58
EtherCAT ASSEMDIY. ..oiiiiiiie et e e as 59
TWINCAT NEW PIOJECL. ...eeeiitiiieiiitiiee ettt e et e e et e e s st e e s aabb e e e s anbr e e e e anbreeeeannee 59
TwinCAT EtherCAT Application Project.uuveveviviiiiiiiiiieeieeeeee et 59
IR [OF AN IS o) [0 1 e o I =04 o] [0 (= S PP 60
EtherCAT Master realization.cooiiiiiiiiiiie e e 60
Reload DeVviCe DESCIIPLIONS.oiiiiiiiieiiiiee ettt e e s snneeas 61
Definitions of TWINCAT DULIONS.vviiiiiiiiieiiieee e 61
TWINCAT SCaAN TOF SIAVES.oeiiiiiiiiee e 62
Update EEPROM Of ESC'S MEMIOIY. ...ciuuiiieiiiiieeiiiieeesiiieeeaiieee et esnineeeesenneeessnneeeas 62
XML SEIECHION. ...teiiieie ettt e e et e et e e e s s st e e e e e e s s sntebaeeeaaeeesantnnaeeeaaeeeannns 63
ReMOVE EtNEICAT SIAVE. ...cooiiiiii ettt 63
EtherCAT Application in TWINCAT . ..o 64
EtherCAT Slave's State MacChine.cccuuviiiiiiie e 64
ONling Write Of BIUE_LED.......couuiiiiiiiiiie ittt 65
SyncManager/Sync0/SYNcl MOdE. ... 65
DC Sync mode of EtherCAT Application.coooeieie e, 66
Timers and Flags t0 WALCH.c.eiiiiiiii e 66
EtherCAT Application frame disintegrated.occoeviiiiiiiiiniii e 67
EtherCAT frame deSCrPtioN.ccoooe oo 67
Example of EtherCAT network with 4 configured slaves.cccccceeeiie e, 68
(= 1= 1= T o PO PP PUPPRTT 69
(= 1= 1= T o0 | PSPPSR PU PP 70
Actual and virtual links of Laelaps 11 180S.oooiiiiiiiii e 70
[T o 1 o 1[0 o [= 1 TP ETTTP 71
LEO'S WOTKSPACE. ... ittt ettt ekt e s bbbt e e s bt e e nbn e e s snneeeas 72
Visualization of legs motion in Matlab.cccoiiiii 73
Electrical System Of LAIaPS.ueviiiiiiiiiiiiieee et 74
EtherCAT Control Tower ASSEmMDBIY. ... 74
EtherCAT Control Tower Assembly on Laelaps Il ..., 75
APPL_GenerateMapping() fFUNCHION.ooiiiiiiiiiiiiei e 77
APPL_InputMapping() FUNCHON.cooiiiiii e 78
APPL_OutputMapping() FUNCHON.oocuiiiiiiiiee e 79
APPL_Application() fFUNCHON. ...t e e e e e e 80

15/147

Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 4-1.

Figure 4-2.
Figure 4-3.
Figure 4-4.

Figure 4-5.
Figure 4-6.
Figure 4-7.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.

DCL_runPID_C1() block diagram...........cc.uuuiieieeiiiiiiiiiieee e ceseeee e e e ee e e e 81
EPWML_ISI() TUNCHION. ..ottt es 82
EPWM2_ISI() TUNCHION. ..ottt 83
Position & Rotational Speed calCulation..............ooociiiiiire s 85
Modified linker command file to enable DCL funCtions.cccccoviiiiieiiiieie i 86
EtherCAT Control Tower ASSembly WIred.coiiiiiiiiiiieiiiee e 87
XML SEIECHION. ..teiiieee ettt ettt e e e s e ettt e e e e e e s e enbb e e eeeaeeesanntabaeeeaaaeeaann 88
Add SCOPE MEASUIEIMENL. ...eiiiie i it it e e e e e st e e e e s e s e e e e e e s s stnb e e e e e e e e sssrnrareeeaeeeaanns 89
PN o N o I O =] PRSPPI 90
Add Global Variable List.cooiii e 90
Global Variable LiSt.ueeiiiiiiiiiiiieeee ettt e e e e e e eeeaeeeeanns 91
L L (o 2 1) 1 PSR SOUPP 91
121011 (o I STo] 0] 1o o F TP PP P TP TRPP 92
LIiNKiNG PLC VANADIES.eiiiiiiiiii ettt 92
SEAM PLC tASK. ©eiiiieiiiiiiiiiiii ettt e e e e e e st e et e e e s e st e e e e e e e s snnnbanaeeeaeeeeaann 93
Adding variables t0 the SCOPE VIEW.uuuiiiuiiiiiiiiiiiiiiiiinieieieieieinininreeerernrennn.. 93
TWINCAT SCOPE RECOIU. ..coeiiiiiiiiiiiieeeeeieee ettt ettt 93
Save and EXPOrt RECOIMAING.uuuiiaiiiiiieiiiiii ettt 94
Reset button to initialize 189S POISE.civiiiii i 94
Laelaps Il on treadmill ready to perform experiments. ..., 95
Laelaps' State MacChine.ccoooi oo 95
Desired elliptical trajectory of all legs toe (red) along with their actual response (black)

w.r.t coordinate systems located in the hip joints of the legs.ccccooiiiiie 98
Desired response of knee angles (red) and actual response of knee joint (black). 99
Desired response of hip angles (red) and actual response of hip joint (black). 100
PWM commands of each leg’s knee motor (black) and the respective predefined PWM

L ES R (=T) RO TP PP PUPRP 101
PWM commands of each leg’s hip motor (black) and the respective predefined PWM

L ES I (=T) R PSP PP PTPPP 102
Velocity estimation of each leg’s knee joint (black) and the respective predefined

MOtor speed IMItS (FEA). ...cco e 103
Velocity estimation of each leg’s hip joint (black) and the respective predefined motor

SPEEA lIMILS (FEA). ..eeeeiiiiee ettt et e et e e et e e e e snbaeeeeans 104
Code Composer Studio INStallation.coooiiiiiiiii e 109
Control Suite INSEAIALION.oiiie e e 109
C2000WAre INSTAIALION.coeieiiiiiie et e e e e e e e e e e e e e 109
53] O 1o To] o 111 o o > Vo A OSSR 110
ST O 1o To I 1153 7= 1= 4o o O PRER 110
ControlSuite EtherCAT Demo TOOL.cooiiiiiiiiiieie et 111
SSC TOOI Create NEW PrOJECT.eeeiiiieie ettt e e e e e eea e e e e eae 111
Importing ESI description file.eoiiiiiiii e 111
Slave Stack Code - NEeW PrOjJeCt.cueviiiiiiii et 112
SSC Tool Configuration OPLIONS.cieeiiiiiiiiiiie e ee e e e e 112
Importing project CoONfiIrMEatioN.uuiiiiiii e 113

16/147

Figure 6-12.
Figure 6-13.
Figure 6-14.
Figure 6-15.
Figure 6-16.
Figure 6-17.
Figure 6-18.
Figure 6-19.
Figure 6-20.
Figure 6-21.
Figure 6-22.
Figure 6-23.
Figure 6-24.
Figure 6-25.
Figure 6-26.
Figure 6-27.
Figure 6-28.
Figure 6-29.
Figure 6-30.
Figure 6-31.
Figure 6-32.
Figure 6-33.
Figure 6-34.
Figure 6-35.
Figure 6-36.
Figure 6-37.
Figure 6-38.
Figure 6-39.
Figure 6-40.
Figure 6-41.
Figure 6-42.
Figure 6-43.
Figure 6-44.
Figure 6-45.
Figure 6-46.
Figure 6-47.
Figure 6-48.
Figure 6-49.
Figure 6-50.
Figure 6-51.
Figure 6-52.
Figure 6-53.

SSC Tool slave iINfOrMAatION.oiiiiiiie e 113
Create NEW SIaVe FIlES.ooo i e e e e 114
Create EtherCAT stack and Xml file. ..o 114
EtherCAT ProjeCt filS. ...cciei i e e e 114
LT @S o] (0] [=Tox f 1 =T APPSR 115
TWINCAT 3 DOWNIOad SChEME. ... 115
TWINCAT 3 INSLAIALION......eeeiiiiie e e e e eeeae s 116
TeSwitchRUNtime INSLAllAtioN.oooiiiiiiiiie e 116
TCSWItChRUNEIME ACHVALION. ..eiiiiiiiii ittt bree e sbaeee e 116
TWINCAT VerifiCatiON. ... e e e eaeees 117
Real Time Ethernet Adapter INStallation.coooiiiiiiiiie e 117
Code Composer Studio starting Page.ccoovvvvviiiiiiiieeeeeeeeeeeeee e 118
CCS IMPOIt PrOJECL. e 118
CCS project IMpPort SEIECLION.ccoiiiiie et 119
CCS Drowse and iMPOIT.ccooiiiiieiiiiie et e e 119
Project imported CCS WINUOW.coooe it 120
Select View Target Configuration.ccccoov i 120
New Target CoNfiQUIALION.uiiiiiiieiiie e 120
Name Target ConfigUIatioN.cocueiieiiiiie e 121
Select CoNNECtioN ANd DEVICE.eiiiiiiiiiiiiieii et e e e e 121
Link cCXMIfile t0 PrOJECT. ... 122
Add initialization definition of new variables.ccccccooiii 122
Update pOULPULSIZE VAIUE..........eiiiiiiiie ittt e 123
Update APPL_OutputMapping() function with new variables.cccee oo, 123
New variables object address definition. ..., 124
Update SyncManager aSSIGNIMENL.cocuuiieiiuiiieiiiie ettt s e e 124
Object record definition of "AdditioNS".coooiiiiii e 125
Update of ApplicatioNODBDIC[]. ...cooieie e 125
DT1603 DataType definition. ..o 126
DT1C12 and DT1C12ARR DataType definition.cccoocveiiiniiiiiiieeeee e 126
DT7030 DataType definition.coueiioiiiiie e 127
Object definition Of #X1B03.cceeiiiiieie e a e e e 128
Updated Object definition Of #XLCL2.uuuiiiiiiiiiiiiiiieee e 128
Object definition Of #XT03B0.iuiiiiiiiiee e 129
Update Sync Manager OULPUL SIZE.coiviiieiiiiiie et 129
RxPdo definition Of #X1603.........coiiiieiiiiiiiii e 130
Slave device iN DC SYNC MOUE.coiiiiiiiiiieii et e e 130
Select minimum EtherCAT CYCle tIMe.ouuiiiiiii e 131
Create 1/0 Task with Image and Define cycle time. ..o 131
Create cyclic OUtPUL Variable.ooii e 131
Link software to hardware variable. ... 132
Activate Configuration and switch to Run Mode.ccccvviviiee i 132

17/147

Figure 6-54.
Figure 6-55.
Figure 6-56.
Figure 6-57.
Figure 6-58.
Figure 6-59.

ENtEr SECUNLY COUE. .uuviiiieiiiiiiiiiie e e e e e e e s e e e e e s e st r e e e e e e s e ennreees 132

Add EXPreSSION Tab. ..oo.uieiiiiiiiieeiie ettt 133
AT NEW EXPIESSION. ...utiiiieiitiite ettt ettt e ettt ekt e st e e e st b e e e e s anbe e e e s anbb e e e s anbreeeeannneeas 133
Select variable t0 INSPECT.........ii i e e e e e 134
Block diagram of one actuated degree of freedom of Laelaps Il leg.......cccccceeeevinnneen. 134
Block diagram of the Matlab PIV cONtroller. ... 135

18/147

19/147

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 4-1.

[0T O] a1 a1 Tox 1 o o TR TSP PRURPP 49
EtherCAT Application Process Data INterface.cccoovieieiiiiiiciniiiee e 54
Generic fuNCtions eXECULION tIME.uiiiiiiiiiie it 66
EtherCAT frame COMPONENTS.eiiieiiiiiiiiiie e e e st e e e e e s e er e e e e e s st e e e e e e s ennnenees 67
EtherCAT Laelaps Motion Control Output variables.cccoeiiiiiiiiiiiiec e, 76
EtherCAT Laelaps Motion Control Input variables.cccoiiiiiiiiic e, 77
Benchmark parameters in Laelaps [l eXperiment.........cccceevviciiieeeee e vcciiieieee e 84
Velocity CalCUlatioN FANGE.uuiiiiee e s e e e e s s e e e e s e s snraaaeeeees 86
Trotting EXPEIMENT Looiiiiiiieiiiiiee ettt 97

20/147

21/147

1 Introduction

1.1 Motivation

The purpose of this thesis is to replace the centralized control scheme exploited in Laelaps | quadruped robot
of the CLS — EP laboratory (Figure 3-1) with an advanced decentralized scheme using microcontrollers
connected via a state of the art communication protocol, to be used in the next version of the robot, Laelaps .
The main reasons which led to this endeavor were that the former architecture (centralized) consisted of a
high-cost, hard to replace or to extend, heavy and bulky central control tower (PCle/104) with 4 interface
control card layers to handle all communications. This scheme reached low control loop frequencies and it
was burdened with the whole computational payload of the robot employing a non-real-time Linux-ROS
(Robot Operating System) implementation; one computer was responsible for controlling the eight motorized
joints of Laelaps (two for each leg, knee and hip). Consequently, programming this computational system was
unduly demanding, and particularly strenuous to make modifications. Most importantly, in case of any
hardware dysfunctionality or damage, the whole system of Laelaps would be disabled, since the really high
cost did not allow easy procurance of spare parts.

To overcome these limitations, in this thesis, a new, low-cost, efficient and powerful real-time architecture
was designed and implemented for Laelaps Il, the new version of this quadruped robot (Figure 3-2). An
important question that arose — debatable amongst most engineers nowadays — concerned the protocol that
should be used to connect the microcontrollers destined to control Laelaps IlI; Fieldbus or Industrial Ethernet.
After a meticulous validation of those options, it was decided that the most suitable and convenient protocol to
employ was an Industrial Ethernet solution, and particularly EtherCAT (Ethernet for Control Automation
Technology).

1.2 Literature review

Legged Robot Applications

Legged robots have the potential to become a new generation of rough terrain vehicles that are capable of
autonomous, semi-autonomous, or remotely-controlled operations in challenging terrains where wheeled and
tracked vehicles reach their limits. In the future, legged vehicles will assist or replace humans in dangerous
and dirty tasks. Quadruped robots are expected to operate in highly dynamic, unstructured outdoor areas
where they will navigate inside challenging environments, such as collapsed buildings, disaster (natural and
man-made) sites, forests, mountain farms, and construction sites. Their tasks will range from providing sensor
streams to the remote operator (e.g., cameras, LIDAR, infrared, and radiation levels) to carrying heavy
payloads such as tools or building materials. Some of the State of the Art legged robots include Handle (a),
SpotMini (b), Atlas (c) and BigDog (d) shown in Figure 1-1, designed and manufactured by Boston Dynamics
[17].

22/147

Figure 1-1. Boston Dynamics legged robots: (a) Handle (b) SpotMini (c) Atlas (d) BigDog.

ANYmal robot (a) from the Institute of Robotics and Intelligent Systems of ETH Zurich university [18] ,
MIT’s Hermes (b) and Cheetah (c) robots by the Biomimetic Robotics Lab [19] and Upenn’s Inu (d) robot by
KOD*LAB [20] are also characteristic examples of legged robots developed within universities, as illustrated in
Figure 1-2.

Figure 1-2. State of the Art legged robots: (a) ANYmal (b) Hermes (c) Cheetah (d) Inu.

23/147

Fieldbus and Industrial Ethernet

The first step in industrial automation for connecting multiple computational units was parallel wiring, where all
participants were wired individually. However, the number of subscribers increased with the increasing degree
of automation, which led to a high wiring expenditure. Now, parallel wiring has been widely replaced by
cheaper and faster fieldbus systems and the Ethernet-based communication networks.

The Fieldbus systems [47] created in the 1980s are nowadays indispensable within industry. As a fixed
component of complex machinery and installations, they are primarily used in manufacturing automation.
However, the fieldbus is also used in process and building automation, as well as in automotive engineering.

Sensors and actuators (so-called “field devices”) as well as motors, switches, drives, or lamps are
connected with programmable logic controllers (PLCs)/master and process controllers with the help of wire-
bound and serial fieldbuses. As such, the fieldbus supports the rapid exchange of data between individual
system components even over great distances. Even strong external loads cannot influence the robust digital
signal transmission system. As the fieldbus communicates only via a cable, it has been possible to decrease
the wiring considerably in comparison to parallel wiring.

A fieldbus functions in the so-called master-slave operation. While the master is in charge of control of
the processes, the slave stations work the individual partial tasks. Fieldbuses differ according to their topology
(star, line, tree or ring), their transmission medium, and — depending on the type — different transmission
protocols (message-oriented procedure or summation frame procedure). The individual fieldbuses also differ
in regard to the reachable cable length, the max. number of data bytes per telegram and the function scope.
As such, additional functions such as the alarm handling, diagnosis, and lateral traffic between individual bus
participants are not possible for each fieldbus. The most widespread examples of fieldbus technology are:

» Interbus: with transmission rates of up to 2 Mbps is characterised by especially high transmission
security and a short, constant cycle time. It is divided into subsystems and consists of the remote bus,
the installation remote bus and the local bus arranged in a ring topology. As the names already suggest,
the remote bus serves to connect up to 254 subscribers which are located at large distances from each
other. On the other hand, the local bus connects subscribers that are located close to each other to the
system.
= Profibus: is used in manufacturing engineering and automation. It has an unlimited number of
subscribers and data transmission rates between 9.6 kbps and 500 kbps. It has a hierarchical structure
with the sensors/actuators levels, field levels and the process level. In master-slave operation, the token
passing access procedure is used. Here, slaves may only access the profibus upon the master’s request.
» Foundation H1: is a bi-directional communications protocol (31.25 kbit/s) used for communications
among field devices and to the control system. It utilizes either twisted pair, or fiber media to
communicate between multiple nodes (devices) and the controller. The controller requires only one
communication point to communicate with up to 32 nodes, this is a significant improvement over the
standard 4-20 mA communication method which requires a separate connection point for each
communication device on the controller system

On the contrary, Industrial Ethernet [48] is without a doubt very well established in automation
technology, although traditional fieldbus technology still has a long way to go before reaching retirement.

Since modern machines and systems must perform increasingly complex tasks, data networks are growing

24/147

ever larger. This is where real-time capable Ethernet networks come into play, because they provide a
consistent flow of data from the control level down to the field level.

Today, Industrial Ethernet is being promoted with several different proprietary designs [49] . More than
20 different protocols compete in various segments of this rapidly growing market, each offering adaptations
to meet different real-time and cost challenges, such as:

e Profinet is the open industrial Ethernet standard promoted by Profibus International (PI). This group
claims that more than 2 million Profinet devices are currently installed in plant environments; more
Profinet than Profibus engineers were certified in 2012.

e EtherCAT (Ethernet for Control Automation Technology) originally developed by Beckhoff, provides
real-time performance and supports various topologies with twisted pair and fiber optic media.

o EtherNet/IP (IP for “industrial protocol”) is supported by Rockwell Automation-affiliated organizations,
ControlNet International (Cl) and Open DeviceNet Vendors Association (ODVA).

e Modbus-TCP allows the widely used Modbus protocol to be carried over standard Ethernet networks
on TCP/IP.

o Ethernet Powerlink combines CANopen and offers deterministic real-time operation.

For application in Laelaps Il quadruped, EtherCAT was selected as the technology mostly used in
robotics nowadays, because of its high performance in terms of bandwidth and speed, its high determinism,
its convenient slave-synchronization capabilities and the reduced equipment costs. In addition, in EtherCAT
there is no need to set device addresses, and also its diagnostic capabilities make the process of finding the
sources of malfunctions and troubleshooting substantially easier.

EtherCAT in robotic applications

EtherCAT technology in robot applications has become increasingly popular in the last decade worldwide
mainly due to its low cycle time, reduced wiring and modularity. Herein, some characteristic examples in
different robotic application fields are presented.

In the industrial manufacturing sector, KUKA Robotics [21] has developed a modular EtherCAT controller
(KR C4 Controller - Figure 1-3 (a)) to control the developed industrial robotic arms of the company in several
different tailor-made automation solutions. NexCom [22] has developed a wide range of EtherCAT based
robotic solutions such as MiniBOT Robot (Figure 1-3 (b)) for educational purposes too, offering a broad

selection of master controllers, robot arms, drives and motors, 1/Os, industrial cameras etc.

(@) (b)
Figure 1-3. (a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by NexCom.

25/147

In the haptic — soft robotics and manipulation field, Shadow Robot Company [23] exploited EtherCAT
technology to develop a truly anthropomorphic hand, Shadow Dexterous Hand (Figure 1-4), with 20 actuated
degrees of freedom, absolute position and force sensors, and ultra sensitive touch sensors on the fingertips,
providing unigue capabilities for problems that require high precision.

Figure 1-4. Shadow Dexterous Hand by Shadow Rob Company.

In the field of legged robotics, PAL Robotics [24] has designed TALOS (Figure 1-5 (a)), a fully electrical
humanoid biped robot that uses torque control in all its joints and EtherCAT to tackle complex industrial tasks
with 6 Kg payload capability in each arm. Similarly, the Department of Advanced Robotics of the Italian Istitute
of Technology (IIT) [25] has exploited EtherCAT to design and build HyQ2Max quadruped robot (Figure 1-5
(b)) which mimics the robustness and versatility of animals in challenging terrains.

. "

(@) (b)
Figure 1-5. (a) Talos biped robot by PAL Robotics and (b) HyQ2Max quadruped robot by IIT.

1.3 Thesis Outline

Along with the first introductory chapter, where the motivation of this work and the literature review is
presented, the thesis is structured in five chapters.

In the second chapter, a brief description of EtherCAT techonology is presented along with the three
synchronization solutions that can be configured. Then, the process data handling is explained, followed by a
detailed solution reference guide describing the configuration procedure of an EtherCAT network of

microcontroller units (MCUSs) with a user defined application.

26/147

In the third chapter, a short description of Laelaps Il quadruped is introduced, followed by an extensive
solution reference guide explaining the implementation process of Laelaps Il control architecture. The
firmware developed for the slaves is described and the most significant points of interest are mentioned,
providing the ability to future users to manipulate and expand the application according to their needs.

In the fourth chapter, an experimental validation of the robot is presented containing the results of
locomotion experiments executed with Laelaps Il using a PC running TwinCAT XAE as the EtherCAT master
node. A description of the testing procedure is entailed along with a table containing the definition of all
parameters used in the experiments.

In the last chapter, the conclusions of the thesis are summarized and future work is suggested.

27/147

2 EtherCAT Communication and Implementation

2.1 EtherCAT Technology

2.1.1 Introduction

Ethernet for Control Automation Technology or EtherCAT [26] is a high performance Ethernet Based fieldbus
system. The main reason for its development was the adoption of Ethernet in automation applications, where
short cycle times and low communication jitters are required [4] .

EtherCAT is based on a master-slave approach and relies on a ring topology at the physical level. Only
one master is allowed in the network, and this is suitable, for instance, to connect a control unit (e.g., a
programmable logic controller [PLC]) to decentralized peripherals (sensors, actuators, drives, microcontrollers
etc.). By using suitable gateways, EtherCAT can interoperate with both conventional Transmission Control
Protocol (TCP)/Internet Protocol (IP)-based networks (intranets) and other realtime Ethernet (RTE) solutions,
such as EtherNet/IP and PROFINET.

The master node is in complete control of the traffic exchanged over the EtherCAT network. In particular,
it is the only device that can take the initiative in the communication; hence, it is responsible for initiating all
data exchanges with the slaves. Each slave processes the received frame (patch of information in a specific
format) in order to extract from and insert data into it (Figure 2-1). Then, the frame is forwarded to the next

slave in the ring.

R

Logical Process image

Ethernet Datagram 1... n Ethenet Datagram 2 Ethernet Datagram n

Figure 2-1. EtherCAT Topology.

2.1.2 Physical Layer

Unlike Ethernet switches and bridges, slaves do not manage frames according to a conventional store-and-

forward approach, which implies receiving the frame, decoding the related protocol control information, and

28/147

sending the message out. Every frame, instead, is processed on-the-fly by the slave data link layer therefore
achieveing higher cycle frame speed. In order to ensure high performance, frame processing and relaying
take place at the same time so that these operations have to be carried out in hardware. This explains why
specialized components are used for slaves, which are known as EtherCAT Slave Controllers (ESCs).

Communication Support

The physical layer of EtherCAT relies on the proven fast Ethernet transmission technology, which enables
high data rates. Although the use of switches is not recommended to ensure real-time behavior, the EtherCAT
network architecture is quite flexible and can also stretch over wide areas.

Though EtherCAT is correctly listed among the industrial Ethernet solutions available today, it actually
supports two different types of physical layers, namely, Ethernet and EBUS. In our application that will be
described thoroughly later on, the Ethernet physical layer is used.

Ethernet relies on the conventional 100 Mb/s full-duplex Ethernet technology and it is typically used for
connecting the master to the network segment to which slaves are attached. Indeed, the entire EtherCAT
segment is seen by the master as a single, large Ethernet device which concurrently receives and sends
Ethernet frames by exploiting full-duplex transmissions. However, this device does not consist of a single
Ethernet controller but includes a (possibly very large) number of EtherCAT slaves connected so as to form a
ring topology. The transmission medium, in this case, consists of a Cat 5 twisted pair (either shielded or
unshielded, depending on the amount of electromagnetic interference) although higher category cables are
also allowed. Both classic RJ45 (8P8C) and circular M12 D-code connectors can be used.

EBUS can be used only as a backplane bus and is not intended for wire connections. EBUS, in fact, was
mainly conceived to interconnect modules in modular devices. Unlike other fieldbuses that enable a modular
design for devices, the sequence of logical bits that EtherCAT transmits over EBUS is exactly the same as for
Ethernet. This means that switching from Ethernet to EBUS (and vice versa) can be done quickly, efficiently,
and inexpensively (in practice, only transceivers have to be replaced). It is an inexpensive physical layer that
features reduced pass-through delays inside the slaves.Typically, frames experience delays on the order of
120 + 500 ns when propagating through EBUS interfaces, whereas longer latencies (about 1 pus) are
introduced by Ethernet interfaces.

Network Topology

The star topology, commonly used for switched Ethernet networks implies significant cabling and
infrastructure costs; hence, line or tree topologies, which are commonly used in EtherCAT applications, are
usually preferable in factory and automation networks.

Typically, slave devices in EtherCAT segments are connected in linear structures and exploit a daisy
chain wiring scheme (Figure 2-2). Every slave is provided with (at least) two Ethernet ports, to connect
downstream and upstream devices. The last slave in the segment performs a loopback function and returns
the frame in the opposite direction to the master without any additional wiring. The master is the headend of
the structure and requires one Ethernet port only. Each slave relays all frames it receives to the next device in
the EtherCAT segment.

29/147

Up to 65535 EtherCAT Slave Units
Daisy Chain

I i

EtherCAT Up to Up to
Master Unit 100m 100m

Relay @ gy
Isolated l Isolated
Digital Inputs Digital Outputs

Switches, Buttons, etc. ECAT-2000 Alarms, Fans, Heater, etc.

Figure 2-2. A typical EtherCAT network.

Because of the daisy chain connection and loopback, all the slaves in the segment form an open ring
(line). The master transmits frames at one of the ends of this open ring and receives them at the other end,
after they have been processed by every slave. This means that on the whole the physical topology of an
EtherCAT network is actually a ring. Thanks to the full-duplex capabilities of Ethernet, which uses two pairs of
wires housed in the same cable to carry out communications in both directions simultaneously, the resulting
topology resembles, nevertheless, a physical line, as in most legacy fieldbuses. The reduction of wiring
complexity helps in making the network deployment easier and lowers the installation costs at the same time.
In principle, branches as shown in Figure 2-3 can be introduced anywhere in an EtherCAT segment, by using
devices equipped with three or more ports (EtherCAT couplers).

¥ ARERERRERAEEZZZE
{gEEEEEEEERRREEEE AL

S H B BB

Figure 2-3. EtherCAT topology with branches.

This kind of devices are provided, for example, with two Ethernet ports and one EBUS interface for direct
connection of input/output (I/0O) modules (also known as EtherCAT terminals) and can be used to enhance the
basic line structure setting arbitrarily complex tree networks topologies. It is worth noting that, in this case,
every slave device located at the end of a branch has to close the ring on its own using the loopback function.

The maximum number of addressable devices in EtherCAT is quite large, since 216 nodes for each
segment are allowed. The limit depends on the data link layer, and in particular on the address field, which is

encoded in 16 bits. In the same way, the maximum network extension is usually able to satisfy the

30/147

requirements of most real applications. The limitation, in this case, is mainly due to the maximum distance
allowed between any two adjacent nodes (i.e., the length of the cable), which in turn depends on the
underlying transmission support (up to 10 m for EBUS and up to 100 m for Ethernet connections). This means
that the whole network size is practically unlimited; in theory, up to 216 devices can be connected in daisy
chain using 100 m Ethernet cable segments.

Device Architecture

EtherCAT masters (EMs) rely on standard communication hardware (full-duplex Ethernet network interface
controllers) and dedicated software, with open-source solutions based on Linux-like operating systems also
available. On the contrary, purposely designed hardware components (ESCs-EtherCat Slave Controllers) are
indispencable for slave configuration.

In order to reduce the implementation costs, frame processing by ESCs occurs in one direction only,
which is known as the processing path. The reverse direction, known as forwarding path, is needed to
propagate frames in the ring back to master. From a logical point of view, ESCs exhibit an active behavior
only on the processing path (frame modifications on the forwarding path are not allowed), but at the physical
layer, they behave as repeaters in both directions. Consequently, they are able to regenerate electrical signals
so that network equipment like stand-alone repeaters is no longer necessary. This also reduces connection
costs and complexity in large installations. Most ESCs are internally equipped with two or more ports,
depending on device complexity. For example, the Beckhoff ET1100 is provided with four separate ports,
which can be individually configured to operate as either EBUS or MIl. Port 0 is the upstream port whereas
the others are used for downstream connections and to forward signals. Each port implements two functions,
called auto-forwarder and loopback. The auto-forwarder block performs frame checks, such as CRC error
detection at the physical level and manages the error count. It is also responsible for taking timestamps on
frame receptions, a mechanism which is needed, for instance, by the clock synchronization protocol. The
loopback function, instead, forwards frames to the next logical port if the related link is not available. In this
way, the ring is automatically closed in the case of faults affecting either devices or links.

2.1.3 Data Link Layer

The data link protocol of EtherCAT was designed to maximize the utilization of the Ethernet bandwidth and to
grant a very high communication efficiency. As mentioned earlier, the access mechanism of EtherCAT is
based on a master/slave approach, where the master node (typically the control unit, e.g., a PLC) sends
Ethernet frames to slave nodes. Slaves, in their turn, either extract data from the frame payload or insert
information by overwriting part(s) of the payload itself.

Frame Format

Messages sent over the network are standard Ethernet frames, with EtherCAT frames (also known as Type
12 frames) encapsulated in the data field (payload). Consequently, they include the conventional fields (Figure
2-4):

= preamble (8 bytes)

= destination and source MAC addresses (6 bytes each)

= EtherType (2 bytes, set to 0x88A4 to distinguish them from non-EtherCAT frames)

31/147

= frame check sequence (FCS, 32 bits)

» interframe gap
An EtherCAT frame, in turn, contains:

= A frame header (2 bytes)

= One or more EtherCAT datagrams, also known as Type 12 Data Link Protocol Data Units (DLPDU)

according to the data link layer standard specifications

In this way, the large data field made available by conventional Ethernet can be better exploited to
increase the communication efficiency. DLPDUs are packed together, one after the other, without
intermediate gaps. The payload of the Ethernet frame ends with the last DLPDU, unless its overall size is 63
octets or less. In this case, the frame is padded to 64 octets in length, as required by the Ethernet
specifications. The standard Ethernet CRC closes the frame and is used by each device (either master or
slave) to check the integrity of the message. Thanks to the EtherType field, EtherCAT can coexist, in theory,
with other Ethernet protocols.

Note 1: The octet is a unit of digital information in computing and telecommunications that consists of
eight bits. The term is often used when the term byte might be ambiguous, as the byte has historically been
used for storage units of a variety of sizes.

Note 2: A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks
and storage devices to detect accidental changes to raw data.

Each DLPDU corresponds to a separate EtherCAT command and consists of three sections: header,
data, and counter field. Commands are used to perform data exchanges: basically they are issued by the
master for reading or writing specific memory areas in the slave devices. Ethernet frames, and in particular
the DLPDUs they embed, are processed in sequence by the slaves. Each slave recognizes its commands of
interest and executes them while the frames are passing through. Because of the physical ring topology, a
frame is returned to the master after being processed by all the slaves. This procedure exploits the full-duplex
mode of Ethernet, which means that the two communication directions can work independently. Several
DLPDUs can be embedded in the same Ethernet frame, each one addressing different devices and/or
memory areas. As shown in Figure 2-4, DLPDUs are transported either

(a) directly in the data field of the Ethernet frame (used in our application) or
(b) within the data section of a datagram, by means of the User Datagram Protocol (UDP).

The first variant (a) is limited to a single subnetwork, since Ethernet frames are not relayed by routers.
Usually, this is not a limitation for machine control applications. Direct Ethernet encapsulation is by far the
most widespread EtherCAT solution at the shop floor of factory automation systems. In theory, multiple
EtherCAT segments can be connected to a single master through one or more switches, and the MAC
address of the first node in each segment is used for addressing the segment itself. However, this approach
can affect the real-time properties of the communication.

On the one hand, the second variant (b), which relies on UDP and the IP, implies lightly larger overheads
(because of the IP and UDP headers) and is also limited by switches, which can easily add nondeterministic
characteristics to the communication [27] . On the other hand, this solution also enables IP routing; hence, it is
suitable for applications having loose timing requirements, such as in process automation. Any standard

UDP/IP implementation can be used in this case on the master side.

32/147

8B 6B 6B 2B 4B 12B

Destination Source Ether
Pre address address type Ethernet payload E@S) IFG
(DA) (SA) (ET)
()
20B 8B
Pre Ethernet header IP header UDP header| Ethernet payload FCS IFG
(b)
2B
EtherCAT EtherCAT EtherCAT EtherCAT EtherCAT
header datagram datagam datagram datagram
1 2 n

Figure 2-4. EtherCAT Frame Structure with EtherCAT Datagrams (a) directly in the data field of the
Ethernet frame (b) within the data section of a datagram, by means of the User Datagram Protocol
(UDP).

EtherCAT Datagram (or DLPDU) Format

As shown in Figure 2-5, each DLPDU (or EtherCAT Datagrams) consists of a number of fields. The initial
fields (up to IRQ included) can be assumed to belong to the header part, which has a fixed size (10 bytes).
The variable-sized data area is placed immediately after the header and includes the information to be
exchanged, often referred to as data link service data unit (DLSDU). The last field in the frame is the working
counter (WKC), used mainly for checking whether a command has been successfully executed by the

relevant slaves.

11b 1b 4b
EtherCAT EtherCAT EtherCAT
Length 0 1 datagram datagram datagram
1 - n
10B 2B
Working
D:I;?lr::n Data counter
(WC)
1B 1B 8B 11b 3b 1b 1b 2b
Cmd Idx Address Len R S M IRQ
16b 16b

Position I Offset «—— Position addressing

Address I Offset €— Node addressing

Logical address &€—— Logical addressing

Figure 2-5. EtherCAT Datagram (or DLPDU) structure.

The service command (1 byte) is encoded in the CMD parameter. Different types of command exist,
which can be used to carry out highly optimized read and write operations on slave devices [4] . Generally
speaking, they can be grouped according to the access type:

» Read (RD) is used by the master to read memory areas or registers from slave devices.

= Write (WR) is used by the master to write to memory areas or registers of slave devices.

33/147

= Read/Write (RW) is used by the master to carry out both a read and a write operation at the same
time; in this case, reading is performed by the slave before writing.

= Read/Multiple Write (RMW) is a quite peculiar service, where the addressed slave carries out a read
operation while all other slaves are performing a write action.

SyncManager

The ESC memory is used for exchanging data between the EM and the application running on the slave. The
master can access the memory through the network by using the data link layer services, whereas the local
application makes use of the process data interface (PDI) provided by the ESC. As a consequence, problems
may arise if concurrent accesses are carried out without any restriction. In particular, the consistency of data
is not guaranteed by the basic data link communication services, unless a mechanism like semaphores is
implemented in software for dealing with data exchanges in a coordinated way. Moreover, both the EM and
the application running in the slave have to poll the memory explicitly, in order to determine when it is no
longer used by the competing entity.

EtherCAT provides a mechanism for slave memory access control, which is based on SyncManagers,
and was designed bearing in mind concurrency issues. SyncManagers are implemented in hardware in the
ESC and enable consistent and secure data exchanges between the EM and the local application, together
with the interrupt generation to notify both sides of changes. SyncManagers are configured by the EM. The
communication direction can be selected, as well as the communication mode. Each SyncManager uses a
buffer in the local memory area for exchanging data and transparently controls all accesses to the buffer. The
buffer must be accessed beginning with the start address; otherwise, the access is denied. Once access to
the start location is granted, the whole buffer can be accessed, either as a whole or in a number of strokes.
Accessing the last location also concludes the whole operation. Buffer changes caused by the master are
accepted by the SyncManager only if the frame FCS is correct. This also means that such buffer changes
take effect immediately after the reception of the end of the frame.

SyncManagers support two communication modes:

1. Buffered mode: In this case, the interaction between the producer and the consumer of data is
uncorrelated, and each entity can access the buffer at any time. The consumer is always provided with the
newest data. In the case data are written into the buffer faster than they are read out, old data are simply
discarded. The buffered mode is typically used for cyclic process data. This mechanism is also known as 3-
buffer mode, because the SyncManager manages three buffers of identical size (denoted as 0, 1, and 2). One
buffer is allocated to the producer (for writing), another buffer to the consumer (for reading), and a third buffer
helps as intermediate storage. Reading or writing the last byte of the buffer results in an automatic buffer
exchange. It is worth noting that both the EM and the local application must always refer to buffer 0 when
accessing memory. It is up to the SyncManager redirecting accesses to the right buffer.

2. Mailbox mode: In this case, a handshake mechanism is implemented for data exchanges, which
prevents buffer overwriting and ensures that no data will be lost. Just one buffer is allocated for each mailbox;
moreover, reading and writing are enabled alternatively. The mechanism implemented by mailboxes is
straightforward. At first the producer writes to the mailbox buffer. When done, the SyncManager locks it for
writing and enables read access to the consumer. Only when the consumer has finished reading data out of

the buffer, the producer is granted write access again. At the same time, the mailbox turns to the locked state

34/147

for the consumer. The mailbox mode is typically used for application layer (AL) protocols, where the time
taken to exchange information typically is not very relevant.

2.1.4 Application Layer

The AL of EtherCAT implements a state machine, which describes the behavior of a device by means of its
states and events that trigger transitions between states. In particular, the state machine is responsible for
coordinating master and slave applications during the start-up and operational phases. Depending on the
current state, different functions are enabled in the EtherCAT slave. Different commands have to be sent to
the device in each state by the EM, in particular, during the boot sequence of the slave. Commands are
acknowledged by the local application after the involved operations have been completed. Unsolicited
changes of the local application state are also possible. Moreover, simpler devices, which do not include a
microcontroller, can be configured to follow the state machine logic through an emulation mechanism. In this
case, any state change has to be accepted and acknowledged.

The state machine is controlled and monitored using some registers included in the slave. The master
controls the state transitions by writing to the AL control register. In turn, the slave updates information about
its current state by writing in the AL status register, which is also used for error notification by means of
suitable error codes written in the register itself. As Figure 2-6 shows, an EtherCAT slave supports four basic
states and, possibly, one optional state:

= |nit: EtherCAT slaves enter this state at power-on. In this situation, the master initializes the

SyncManager channels for mailbox communications.

= Preoperational: Mailbox communications are enabled in the preoperational state, but process data

communications are not. The EM initializes the SyncManager channels for process data, the Fieldbus

Memory Management Unit (FMMUs) and the Process Data Objects (PDOs) mapping mechanism, if

supported.

= Safe operational: In this state, mailbox and process data communications are enabled, but the slave

outputs are kept in a safe state, while inputs are updated cyclically.

= QOperational: In this state, slaves can transfer data between the network and their I/O logic. Mailbox

and process data communications are completely enabled. The operational state is the normal working

condition for slaves after completing the bootstrap sequence.

= Bootstrap (optional): The bootstrap state is mainly aimed at downloading the device firmware. In the

bootstrap state, mailboxes are active but restricted to file access via EtherCAT services.

35/147

MBX_StartMailboxHandler()

- Init
—» MBX_StopMailboxHandler()
=p StartinputHandler()
StoplnputHandler() Pre-Operational

= StartOutputHandler()
StopOutputHandler()

Safe-Operational

Operational

Figure 2-6. EtherCAT Application Layer State Machine.

Application Protocols

An important characteristic of EtherCAT is its ability to support multiprotocol higher-level communications
using standardized mailboxes. This aspect is particularly appealing when options are offered for popular
solutions such as the following:

= CANopen over EtherCAT (CoE): This option offers a way to access a CANopen object dictionary (OD)

and to exchange CANopen messages according to event-driven mechanisms.

= Ethernet over EtherCAT (EoE): This option allows to tunneling standard Ethernet Frames in

EtherCAT.

= File access over EtherCAT (FoE): This option enables the download/upload of firmware and other

files.

= Servo drive profile over EtherCAT (SoE): This option is useful to grant access to the device profile of

SERCOS.

Supporting popular communication protocols helps in improving compatibility and efficiency of data
exchanges between new and old components in automation systems; to this purpose, EtherCAT makes use
of well-known and established technologies. For instance, the CoE protocol enables the adoption of the
complete CANopen profile family in EtherCAT networks. Besides this feature, the service data object (SDO)
transport protocol allows the transmission of objects of any size and is equivalent to its CANopen counterpart
so that it is possible to reuse existing protocol stacks. Data are organized in process data objects (PDOs),
which are transferred using the efficient support of EtherCAT. Moreover, an enhanced mode is defined that
overcomes the 8 byte limitation of CAN and enables the readability of the whole object list.

Another appealing feature an industrial Ethernet solution should provide is the support to standard IP-
based communication protocols (i.e., TCP/IP and UDP/IP) and all higher-level protocols that rely on them,
such as HTTP, FTP, SNMP, etc. To this purpose, the EoOE feature exploits a mechanism where Ethernet
datagrams are tunneled and reassembled in a device, before being relayed as complete Ethernet frames.
This procedure has no impact on the achievable cycle time, because the size of fragments can be optimized
according to the available bandwidth.

The FoE is an EtherCAT service that can be used to download a file from a client to a server or to upload

it in the opposite direction. The protocol is similar to the trivial file transfer protocol (TFTP), and both sides are

36/147

allowed to initiate a read or write request via the corresponding command. This service is typically used to
update the device firmware.

Finally, the Servo drive profile over EtherCAT (SoE) service enables the use of the SERCOS device
profile and is suitable for demanding applications that rely on popular drive technology.

2.2 EtherCAT Synchronization

2.2.1 Synchronization Overview

One of the most significant and crucial features of EtherCAT technology is the fact that it enables automatic
synchronization between the master and all the slaves connected to the network, providing a universal clock
that all components adhere to. Moreover, another facilitating feature of EtherCAT technology is its flexibility on
accounts that each slave can be configured to its own synchronization mode without being affected by the rest
slaves that are connected to the network. At application level, both the master and the slave device consist of
cyclically executed software code (Figure 2-7).

master
application

Q slave
application

Figure 2-7. EtherCAT Application Level.

The master and each slave application cyclically exchange process data in both directions in predefined
cycle times (Figure 2-8). These intervals can be really short as long as both the master and slave application
have enough time to execute their own stack.

/ Cyclic output data \

N

Figure 2-8. EtherCAT process data exchange.

Synchronizing master and slave applications basically means defining a time relationship between the

start time of the cyclic code handling process in master and slave alike as shown in Figure 2-9.

37/147

mste'.ﬂkppl cation

| Loagic . I Logic .

.- -

defined time relationship —|

Qve Application

/

Figure 2-9. EtherCAT Synchronization.

EtherCat defines three main time relationships of each slave application with respect to the master cycle

(Synchronization Modes):

= Free Run (no synchronization): process data handling in the slave is initiated by an internal event

having no defined time relation with the master cycle.

= SM-Synchronous (Sync Manager): process data handling in the slave is initiated by a hardware

interrupt event generated when the cyclic frame carrying the process data is received.

= DC-Synchronous (Distributed Clocks): process data handling in the slave is initiated by a hardware

interrupt event based on the Distributed Clocks and on the corresponding System Time.

2.2.2 Free Run Mode

In Free Run Mode (Figure 2-10), the process data handling in the slave is triggered by an internal event and

the communication scheme is described by the following characteristics and Figure 2-11:

= No defined relationship between cyclic frames and local application
= Time offset among different “Free Run” slaves is undefined

» Intended for I/O (input/Output) devices handling slow-varying signals

possible framejtter (~ps) due to EtherCAT Master mplermentation

e T
r -~ — . "
ECAT Frame 7w -~ 0+ ECAT Frame ,/;’1 ~/ ECAT Frame 4~
| !
I DC Syne [I O Sync | DG Sync
| — | o
awvanl | avant ! Evant
1]
I i
Slwe‘l'q'ak Sleve Task Sleye Task Slawve Task : Slave Task
I 1
(] | i
Local timer event | Local fimer event | Lul:al:IImEI event Local timer eveni 1] Local fimer event
- i ! H

Figure 2-10. Slave in Free Run mode.

38/147

EtherCAT frame
(itter: ~us)

D Sync evants
(jitter: ~ns)

Fres Run
[no synchronization)

L)

L, Master Cycle Time |

= e e

Slave 1 Cycle Time |

=
Prepare Prepars
Inputs Inputs

Slawe 2 Cycle Time

Slawe 3 Cycle Time

| Slave n Cycle Time |

- -

Figure 2-11. EtherCAT network in Free Run mode.

2.2.3 SM-Synchronous Mode

In SM Synchronous Mode (Figure 2-12), the process data handling in the slave is triggered by one interrupt
signal when the cyclic frames are received as shown in Figure 2-13. Hence, the master of the EtherCAT
network is obliged to provide a timer variable to each slave so that they can all be synchronized to a universal
clock. This requirement becomes a necessity in decentralized robotic applications where each slave must
obey a universal clock in order to produce smooth and continuous locomotions.

There are several possible causes of synchronizations inaccuracies if a network is configured in SM
Synchronous mode which may affect the efficiency of the synchronization:

= Cyclic frames are received by slaves with the same jitter which affects the master in sending them

= Even with no jitter, due to finite hardware propagation delays the last slaves will receive the cyclic

frames later with respect to the first ones

possible framejitter (-ps) due 1o EtherCAT Master implementation

—
¥ ECAT Frame 177 / \bc’ ECAT Frame 7 T ECAT Frame % EtherCAT frame
7 IZ 7 7, " £ (Jiter: ~ps)

I I

I 0C Syne OC Syne i DG Sync DC Sync events

! event event ! ' event {jter: ~ns)

I I

) Slava Task A-Slave Task i
* Synchronous with SM Event
S e (jitter: ~ps)
EM2/E event SM2/E event |

|
____________ .|

Figure 2-12. Slave in SM Synchronous mode.

39/147

Cycle Time N

Prepare
Inputs:

SM Ewvent
i z

5M Evert

Figure 2-13. EtherCAT network in SM Synchronous mode.

2.2.4 DC-Synchronous Mode

An important mechanism included in the EtherCAT specification is the distributed clocks (DC) synchronization
protocol, which enables all slave devices to share the same system time with high precision and accuracy.
Synchronization errors are typically well below 1 ps; in this way, all devices can be synchronized, and
consequently, distributed applications are synchronized as well (Figure 2-14). Possibly, the master can also
be synchronized, even though this option requires additional capabilities.

Main Features

The DC mechanism provides a number of features that are very useful for distributed control applications, the
most important being

= Synchronization of the slaves (and the master) clocks

= Generation of synchronous output signals (SyncSignals)

= Precise timestamping of input events (LatchSignals)

= Generation of synchronous interrupts

= Synchronous digital output updates

= Synchronous digital input sampling

DC is placed above the EtherCAT data link protocol, and its implementation is not mandatory. For this
reason, both DC-enabled and non-DC-enabled devices can quietly coexist in the same network. It is worth
noting that DC is not a general-purpose synchronization protocol, since it relies on specific features of

EtherCAT, such as its ring topology, on-the-fly datagram processing, and hardware timestamping capabilities.

DC Mechanism

The clock synchronization process consists of the following three main actions:

40/147

1. Propagation delay measurement: The master sends a synchronization DLPDU at certain time
intervals, and each slave stores the time of its local clock; after collecting all timestamps, the master,
which is aware of the network topology, computes the propagation delay for each segment.

2. Offset compensation: Because the local time of each device is a free-running counter, which typically
does not have the same value as the reference clock, the master computes the offset between the
reference and local clocks separately for each DC-enabled slave. Then, the offset is written to a
specific register of the slave, in order to compensate differences individually. At the end of this step,
all devices share the same absolute system time.

3. Drift compensation: After propagation delays have been measured and the offsets between clocks
compensated, the drift of every local clock is corrected through a time control loop (TCL). This
mechanism readjusts the local clock by regularly measuring its difference with the reference clock.

In DC Synchronous Mode, the process data handling in the slave is triggered by the hardware SYNC
events generated in the slave based on the DC System Time as shown in Figure 2-15. These interrupt
signals, the number of which may vary from one to three depending on the requirements of the application,
ensure that the Interrupt Service Routine (ISR) configured for each of these channels will be triggered
simultaneously in every slave connected to the network, therefore providing intrinsic synchronization among
the slave devices without any timer variable required. However, developers should be really cautious when
defining the cycle frame time owing to the fact that this interval should be wide enough to allow all ISRs to be
excuted by every slave. In any other case, recurrent lost frames might interfere with the internal
synchronization of the slave devices, causing errors in communication level.

The most significant advantages of DC Synchronous mode is that:

= Hardware SYNC events (interrupt signals) are generated within each slave automatically by the

EtherCAT Slave Controller who must be configured to operate in DC Synch mode (specified in the ENI

file)

» The triggering event in each slave is not affected by master jitter or propagation delays

possible framejitter (~ps) due o EtherCAT Masler implementation
Ry

\% ECAT Frame 7/ S ~%// ECAT Frame

(

|

|
Sy

| poes

|

| I

|

>

e

EtherCAT frame
(itter: ~ps)

7/, ECAT Frame 17, -

DC Sync events

(itter: ~ns)

=t Synchronous with DC SYNC
v Event
Sl Outouis | Gtter: ~ns)

Figure 2-14. Slave in DC Synchronous mode.

41/147

= : -

SM Event SYNC Event

]

Figure 2-15. EtherCAT network in DC Synchronous mode.

In SM and DC Synchronous mode, a certain shift is always needed between the master and slave
application times, in order to enable the communication partner to receive the data before its cycle begins
(Figure 2-16).

master | | Logic . | Logic .

slave rmgc 1 ruﬂ: 1

\ shift

Figure 2-16. EtherCAT shift times.

In SM-Synchronous mode, the shift is set by the synchronization mode itself (no parameter
configuration needed), as the slave application is directly triggered by the cyclic frame. On the other hand, in
DC-Synchronous mode, the shift between the SM interrupt and the master cycle is set by the master during
the start-up phase, and can be changed by users if needed. A proper setting of the time shift in DC-
Synchronous mode shall guarantee that the SYNC event within the slave is generated after the cyclic frame
delivering outputs was received by every slave and before the next cyclic frame collecting inputs is received
by the slave despite communication jitter, propagation delays and number of slaves (Figure 2-17). Admittedly,

there is not only one correct value, yet an entire interval of possible values for the time shifts.

42/147

= master Cycle Time)‘
E 5
T

Figure 2-17. EtherCAT time shifts.

An estimation of the minimum value for the SYNC Shift for Outputs can be obtained as algebraic sum of
the following contributions:
= Hardware delay introduced by the slaves internally:
o 1 us for every slave of the network with MIl Ports
o 3 s for every slave of the network with only EBUS Ports
= Hardware delay introduced by the cables which is 5,3 ns for every meter of the length of the copper
cables in the network

2.3 Process Data Handling

The EtherCAT slave process data communication can be separated in two main steps as depicted in Figure
2-18:
= Low level on-the-fly data exchange: The ESC reads/writes data from/to the EtherCAT frame and
stores/reads the data to the internal DPRAM.
= The slave application will do further data processing/calculation.

Slave PD stack Slave PD stack
Application Application
£ w9 % Wow Y e
g2 8|2 3 |8s A
- 88| ||s 88
= a = o
0 Mallbox 2 Mailbox
PDI abstraction layer PDI abstraction layer
0x220.10 =) SM2 | SM3 ex22010 -,; SM2 SM3
Register 'rmr.'. Reqister | DPRAM '
FMMUO FMMU 1 FMMUOQ FMMU 1

Figure 2-18. EtherCAT Process Data handling.

43/147

The process data handling in the SSC is managed in three functions of the generic stack as depicted in
Figure 2-19. Each of these functions triggers the corresponding application specific functions.
1. PDO_OutputMapping(): handles the data from the master to the slave
2. ECAT_Application(): contains the slave application written by the user
3. PDO_InputMapping(): handles the data from the slave to the master

Read -
Outputs Perform Logic
PDO_OutputMapping() ECAT_Application() PDO_InputMapping()

Figure 2-19. Process data handling generic functions.

The handling and sequence of the application for the different synchronization modes are described in
the following figures. As mentioned above, in Free Run Mode there is no synchronization and all three
functions are cyclically executed in turn as shown in Figure 2-20. All c files listed in the File collumn are part of
the generic EtherCAT slave stack.

Free Run
Function File
(Cyclically ;.
called) MainLoop() ecatappl.c
PDO_OutputMapping() ECAT_Application() PDO_InputMapping() ecatappl.c
HW_EscRead() APPL_InputMapping() ___hwe/

APPL_Application()

APPL_OQutputMapping() HW_EscWrite() ___applc

Figure 2-20. Free Run mode process data handling and sequence.

In SM Synchronous Mode, a hardware interrupt (IRQ — Interrupt Request) signal (triggered internally on
each slave every time a frame is received) triggers the PDI_Isr function which executes the three generic
functions in turn as shown Figure 2-21.

SM-Synchronous

Function File

(Hardware
interrupt) 9 PDI_lsr() ecatappl.c
PDO_OutputMapping() ECAT_Application() PDO_InputMapping() ecatappl.c

l

FIW_Esciead/en) APPL_Application()

APPL_InputMapping() _ _hwe/
APPL_OutputMapping()

HW_EscWritelsr() ___appl.c
Figure 2-21. SM Synchronous mode process data handling and sequence.

Finally, in DC Synchronous Mode, a hardware interrupt (IRQ — Interrupt Request) signal (triggered
internally on each slave every time a frame is received) triggers the SyncO_Isr function which executes the
three generic functions in turn as shown Figure 2-22. The aforementioned scheme is identical with SM

44/147

Synchronous Mode’s process data handling and sequence. However, in DC Synch mode, developers may
enable two extra interrupt signals (Al_ EVENT_ENABLED and SYNC1) and achieve the highest intrinsic
synchronization among the slaves owing to the fact that all three generic functions are executed
simultaneously in all slave devices.

DC-Synchronous

Function File

(Hardware
infstupt) 9 e ROLler) (omcl el Smet B ecatappl.c
PDO_OutputMapping() ECAT_Application() PDO_InputMapping() ecatappl.c

l

HW_EscReadlsr() s APPL_InputMapping() _ hwe/
APPL_OQutputMapping() REFL Appieaton)) HW_EscWritelsr() __appl.c
______ If AL_EVENT_ENABLED =1 ssmemssmsns [f SYNC1 is active

Figure 2-22. DC Synchronous mode process data handling and sequence.

2.4 EtherCAT Application Guide

In this section, the process of configuring an EtherCAT network of microcontrollers with a generic user’s
application will be thoroughly described. The master device (Personal Computer) will exchange a humber of
different dummy variables with all connected slave devices (MCUs) in DC Synchronous mode which
guarantees the most efficient synchronization. This extensive approach will cover all aspects of EtherCAT
architecture, both from master and slave side, providing all the necessary information to build a user defined
EtherCAT application quickly and efficiently.

In addition, all the hardware and software components that constitute the application will be described,
explaining the main reasons for selecting them, portray the main idea of the running stack, explain the
process of adding/removing I/O variables to/from the network and most significantly how to assemble a User
Application. These key features form the most essential characteristics of EtherCAT technology when
designing a custom application.

2.4.1 EtherCAT Code Structure Overview

A microcontroller in each slave is responsible for the entire application layer. As adumbrated by Figure 2-23,
the EtherCAT slave stack consists of three main parts:
= PDI and Hardware abstraction which is hardware specific and needs to be implemented according to
the platform/PDI. In our application, SPI (Serial Peripheral Interface) plays this role which is the means of
communication between the MCU and the EtherCAT Slave Controller.
= Generic EtherCAT stack that corresponds to all those functionalities which are not hardware and
application specific for a slave, such us the full EtherCAT state machine, mailbox communication and
generic process data exchange.

= User application which implements the slave specific functions such as motor control.

45/147

Application User
€.g. CiA402 Drive Profile Application

77777777777777 Application function set ======c=========|

L Ll ffLw || w N
BT g IS g 3 Process Generic
State data EtherCAT stack
Machine Mailbox
——————————————— Hardware function set e
PDI and hardware abstraction Hardware
access
Mailbox Process data EtherCAT S
H er lave
S pegister "™ ESC address space (DPRAM) Controller (extract)

Figure 2-23. EtherCAT Slave Architecture.

2.4.2 Hardware and Software Requirements

The basic EtherCAT system configuration is shown in Figure 2-24. The EtherCAT master uses a standard
Ethernet port and network configuration information stored in the EtherCAT Network Information file (ENI).
The ENI is created based on EtherCAT Slave Information files (ESI) which are provided by the vendors for
every device. Slaves are connected via Ethernet cables and different topology types are possible for
EtherCAT networks although, as previously mentioned, the most efficient one is the physical line or ring

topology which exploits the minimum wiring scheme.

EtherCAT EtherCAT Network EtherCAT H EtherCAT Slave
Master Information File (ENI) Configuration Tool H Infarmation Files (ESI)
: g' ‘ x ml i ? | [n
H S g i .7
.. * e A n

pe e Individual |
or dig. /0 Interface COHW/SW

Device Application / Application Layer +

PDI

v = 1
EtherCAT EtherCAT Slave I’ EEPROM
= LED{s) Controller ot .

ESC / Data Link Layer

L

Network Interface / Ph\fSIC.aILa','er

v

Magnetic

PHY

)
I
-
Magnetic
S

Figure 2-24. EtherCAT Architecture.

As shown in Figure 2-24, an EtherCAT network requires several physical components realizing the
Physical Layer, the ESC/Data Link Layer and the Application Layer. In our application some of the

components were purchased while others were designed and built in-house in order to meet our needs and

specifications.

46/147

EtherCAT Master Requirements

TwinCAT 3 Engineering software tool running in Windows 10 (through Visual Studio) on a personal computer
(PC) will materialize the EtherCAT Master (EM) device of our network. In fact, this is the only software
requirement needed to implement an EM and configure all different kinds of slaves, writing their EEPROM
accordingly. Developers should follow the steps described in Download and Install TwinCAT 3 Software to
download and install the application on their computer.

The only hardware requirement for an EtherCAT master is a standard Network Interface Controller (NIC,
100 MBit/s Full duplex). TwinCAT Runtime will be able to download the required drivers and switch to RUN
Mode only if the PC has compatible network adapters for Real Time Ethernet communication (find all
compatible devices as specified by Beckhoff in [28]). Moreover, 100 Mb/s full-duplex Ethernet cable (Cat 5
twisted pair or higher, shielded or unshielded depending on the electromagnetic interference) must be used to

guarantee proper cyclic communication.

EtherCAT Slave Requirements

As far as the slave device is concerned, three hardware components are used, namely:

= an EtherCAT Slave Controller (ESC) which handles the EtherCAT protocol in real-time by processing

the EtherCAT frames on the fly and providing the interface for data exchange between a master and a

slave — responsible for the realization of the Physical and Data Link Layers,

= a host Microcontroller Unit (MCU) realizing the Application Layer including the Hardware Access, the

Generic EtherCAT stack and User Application structures as adumbrated by Figure 2-23, and

= a custom printed circuit board connecting these two devices.

In this application, the C2000 Delfino MCU F28379D LaunchPad Development Kit by Texas Instruments
(TI), Figure 2-25, was selected as the host microcontroller of all EtherCAT slaves. The most significant
advantages are that it is a low cost, powerful MCU (featuring a TMS320F28379D Dual Core Microprocessor),
suitable for motion control of several motors. Also importantly, it is very well documented for using it in
EtherCAT applications, since it is similar to the TMDSECATCNCD379D hardware kit used in the respective
TI's EtherCAT Solution Reference Guide (reference).

Figure 2-25. EtherCAT Slave MCU.

471147

As mentioned above, in order to implement EtherCAT communication, developers must design or
purchase an EtherCAT Slave Controller. In our case, the FB1111-0141 (SPI) ESC by Beckhoff (Figure 2-26),
was selected as a highly flexible ESC that can communicate with the MCU via Serial Peripheral Interface
(SPI) protocol and operate in DC Synchronous mode triggered by three external interrupt signals. An overview
of the features of the selected ESC is shown in Figure 2-27.

Figure 2-26. EtherCAT Slave Controller.

Port1_ Port0_
. e

1 P Rumber

ET1100

n n PDI Configuration Area

LA L LR L RN Bl LR BN] L
.--.. S8 BOBES SBDBEEEE B L .

PDI Configuration
3 Area

PDI Connector

Figure 2-27. Overview of FB1111-0141 features.

To connect together the MCU and the ESC, it is imperative to build an intermediate board connecting the
desired 1/Os of these two devices. The desired wiring scheme is adumbrated in Table 2-1. The host MCU pins
were selected for SPI-A configuration, however users can select whichever SPI port is more convenient when
designing their own application. Note that when designing the PCB, all GND pins should be wired together to
avoid jittering or external interference.

48/147

Table 2-1. Pin Connection.

FB1111-0141 (SPI) LauncXL F28379D
Pin No Property GPIO PinNo Property
1 Ground (GND) - GND Ground
29 SPI_D_IN (MOSI) 58 15 SPIA: Slave In-Master Out
31 SPI_D_OUT (MISO) 59 14 SPIA: Slave Out-Master In
38 SPI_CLK 60 7 SPIA: Clock
22 SPI_SEL 61 19 SPIA: Slave Select Pin
16 EEPROM_LOADED 124 13 Indicates Loaded EEPROM
26 SPI_INT (IRQ) 125 12 Interrupt IRQ
42 SYNCO / LATCHO 19 3 SYNC 0 Interrupt signal
43 SYNC1/LATCH1 18 4 SYNC 1 Interrupt signal
47, 49 Ve (BV supply) - 5V Power Supply

To connect the pins described in Table 2-1, a custom PCB was designed in Autodesk Eagle, such that it
can be mounted at the bottom of the host MCU (Delfino) in order to free the top plane for a second PCB
handling the control-related peripherals (this is extensively described in the following chapter).

Firstly, the packages of the Delfino Launchpad and the FB1111-0141 ESC were drawn; Figure 2-28
shows the designed Device (a) and Package (b) of the ESC, while Figure 2-29 shows the Device (a) and
Package (b) of the Delfino Launchpad. It is worth mentioning that it was not necessary to design the whole
Delfino Launchpad library due to the fact that only the upper part pins (1-40) were exploited by our application.

et
s GPIE] GNDL [-¢5° < .
e GPI4] GPIS] 27"
E GPO[E] GPO[] |24
g GPO] GPO[S) L5 00
Rf GHD2 GRIE |20 00
. GPILL GRIZ] |—Lie 00
B GPO[3] GRIE |L¥He 00
R EEPROM_LOADED GPO[Z] |—2%5° 88
Rf GRIFLL] GRO[L] ﬁ° 00
o GPI[F] GMDZ |19e 00
kg SPI_SEL GrofE |2k 00
By GPO[LY GroRo |-2¥%e 00
kg SPI_INT GPIE |23 00
o GHD4 GPI[L] % 08
o GPO[L3] SPLD N |20 23
By GPO[15] spl_O_OUT g ° 00
“F GPILI] GPRI[LZ) B ° o0
o GPIILS] GRILY] [09
= SPI_CLK GHDS :3”‘8'0 00
0P NCZ ncL [oo
kg SYRMCO)LATCHED hes 88
i M4 SYNCILPLATCHIL] [— =) 00
of GMDE MNCS — N o0
e :
By NCT oPo 257° oo

G5l 2 ¢

FE1111-0141

(a) (b)

49/147

Figure 2-28. FB1111-0141 Library (a) Device (b) Package.

il i
LaunchPad XL - TMS320F28379D

11 13 14 12
s I 21 ey S IET T e @)
e S E Il 14 N s
S 23 it e I 1% N N
e 4 EER RE: BN 17 p=i° D
e 25 |50 e Bl 16 |<5° -
"> 6 26 |E° "t s 15 f .
e i 27 it T 34 14 p=9° e
e I I HE= Ik 13 =it
e 2o pEyT o a2 12 st
e 10 EI RS B 1 °

(@) (b)

Figure 2-29. Delfino Launchpad Library (a) Device (b) Package.

Secondly, a schematic was drawn to properly connect the desired input and output pins of the
aforementioned Devices based on Table 2-1 as shown in Figure 2-30. It is obvious that all Ground pins were
connected to GND in order to meet Beeckhoff's specifications regarding the FB1111-0141 ESC.

LaunchPad XL - TMS320F28379D
-2 1 Gpig GNDL |+
4_ GPI4] GPI[E] 3 :I_ J1 13 14 12 J—_|_
5 5 GND GND
-2 crop 6RO |2 i 21 s
-5 1 Grow GPOE — -z 22 3w 19
ﬁ GHD2 GPIE] % 5 = L B 15 =
2= 1 Gei GPIZ] 4 24 |— GMND — 37 17
GND__14 1 coo PRSI B 5 5 — a6 15
I% EEPROM_LOADED GPO[Z] % — & % |- — 35 15
2 opimy orofl] L — 7 7 — 3 1
281 G GND3 — = g - — 13
gi SPI_SEL GPOE] % GlND — 9 ey - R Sy —
£ srony T 1w w | N -
2 s GFIg (52
J_T GHD4 GPI[LH 0
S5 32 cona SPLD N 123
2 crons) SPILO_OUT [
2] ceny GRIL2 (22
21 oring) GRILY] |2
SPI_CLK GNDS
21 ez [N =R
F] 4 GHD
22 stncoATCHD e
LSS) SYNCILYLATCHIL]
25 1 Guos [N
L] veclsy i
[END % 3.3¥_0UT VCC2[5Y] %T
32 L ey sPo@ 2L
US1
FB1111-0141

Figure 2-30. Schematic of EtherCAT Slave PCB.

The third and final step was to design the actual board; Figure 2-31 (a) depicts the Top View of the PCB,
whilst Figure 2-31 (b) adumbrates the Bottom View as illustrated by Eagle Software Tool. Developers my
download all the necessary Eagle files from [50] to reproduce or upgrade the design.

50/147

(@) (b)
Figure 2-31. (a) Top View and (b) Bottom View of EtherCAT Slave PCB.

Figure 2-32 depicts the final EtherCAT slave assembly with all the aforementioned components.

(b)

Figure 2-32. EtherCAT Application slave assembly.

As far as the software requirements of the EtherCAT slave are concerned, Code Composer Studio (CCS)
was selected to program the slave devices. CCS is an Integrated Development Environment (IDE) to develop
applications for Texas Instruments (T1) embedded processors. In addition, for the selected MCU, TI provides
highly useful software, namely the ControlSuite and the C2000ware packages, which entail numerous
examples. Developers should follow the steps described in Download and Install Code Composer Studio,
C2000ware & ControlSuite to download and install these tools on their computer.

Moreover, as specified above, a Configuration Tool is heeded to generate a network description, the so
called EtherCAT Network Information file (ENI, XML file based on a pre-defined file schema). This is based on
the information provided by the EtherCAT Slave Information files (ESI, device description in XML format)
and/or the online information provided by the slaves in their EEPROM and their object dictionaries. The ENI
file describes the network topology, the initialization commands for each device and the commands which
have to be sent cyclically. The ENI file is provided to the master, which sends commands according to this file.

This software tool is provided by the EtherCAT Technology Group (ETG), namely Slave Stack Code Tool
(SSC Tool) and only ETG members with a valid Vendor ID can download and exploit its features. Members of
the Control Systems Lab — Evangelos Papadopoulos (CSL-EP) may contact Professor E. Papadopoulos to
retrieve the CSL-EP credentials in order to download and install the SSC Tool. Future developers should take

51/147

https://en.wikipedia.org/wiki/Texas_Instruments

into account that all the necessary stack of this application - tutorial has already been generated using the
SSC Tool.

However, in case it is required to execute the entire procedure from scratch, one should download the
SSC Tool as described in Download and Install Slave Stack Code Tool and emulate the actions described in
Generate Slave Stack Code for C28x architecture microcontrollers. In any other case of exploiting the already
generated stack projects, SSC Tool is totally unnecessary.

2.4.3 EtherCAT Application Solution Guide

Importing the Project

After installing all the necessary software components and gathering all the necessary hardware components
(mentioned above), developers are in position of implementing EtherCAT communication in a few easy steps.
The instructions below describe the process of configuring one EtherCAT slave in the network at the
beginning and how it can be accomplished-extended for more slaves later.

1. Navigate to the following link [29] and download EtherCAT Application repository which includes a CCS
project and an xml ENI file.

2. Import the EtherCAT Application CCS project into Code Composer Studio by following the instructions of
Import CCS project into Code Composer Studio

3. Specify and Link the desired Target Configuration of the development by following the instructions of Define
and Select Target Configuration. This procedure is of utmost importance on accounts that the binary program
that will be downloaded to your launchpad must be generated for the specific MCU of your application.

4. The Project Explorer window and EtherCAT_Application project tree should now look like Figure 2-33.
Highlighted is the name of the project and the selected Build Configuration
(_1_LAUNCHXL_F2837xD_SPIA_RAM).

9 workspace_v7 - CCS Edit - EtherCAT_Application/SP|_EtherCAT_slave_stack/EtherCAT_Application.c - Code Composer Studio

File Edit View MNavigate Project Run Scripts Window Help

S et | ot (B
[Project Explorer 5% 5% ¥ = O [g EtherCAT Application.c 52 [§) F2837+D_usDelay.asm =g
+ |25 EtherCAT_Application [Active -_1_LAUNCHXL_F2837xD_SPIA_RAM] 52/ ~

4 Binaries

@l Includes

(= _1_LAUNCHXL_F2837xD_SPIA_RAM
(= 2 LAUNCHXL_F28379D_SPIA_FLASH
= hal

(= SP|_EtherCAT slave_stack

B2 emd

4 LAUNCHXL_F28379D.ccxm [Active]

rief This is the main function

id main(void)

/* initialize the Hardware and the EtherCAT Slave Controller */
HW_Init();
MainInit();

bRunapplication = TRUE;
do

MainLoop();

} while (bRunApplication == TRUE);

<[m

< >
< [>

£ Memory Allocation [£] Problems) Advice 52 =0
B Console 52 % EEE MB~f~= 0 3itens
EtherCAT_Application Description M Resource Path Locati

C28xx_CPUL: GEL Output: ~ i Optimization Advice (3 items)
Memory Map Initialization Complete
C28xx_CPUL: I erase/program (£/P) operation is being done on one

< m > < m >

[EtherCAT_Application

Figure 2-33. CCS with imported project.

52/147

Project Overview

The project files are separated into two main folders:

= SPI|_EtherCAT_slave_stack which contains all the files that realize the Generic EtherCAT Stack Layer

and the User Application (see EtherCAT Code Structure Overview).

= hal which contains all the necessary files that initialize and configure the MCU’s functionalities (ex

clocks, GPIO’s,ctimers, communication protocols etc) and materialize the PDI and Hardware Abstraction

Layer (SPI functions to communicate with the ESC).

Expanding these two folders in the Project Explorer tree, developers can locate all these files and
manipulate them in order to cover the needs of their application. The Slave Stack Code execution consists of
an initialization phase (executed only once) and a cyclic phase (executed continuously without interruptions)
as shown in Figure 2-34 where the MainLoop() function contains the main cycle of the Slave’s firmware, which
always runs when the slave is properly configured. The main(void) function of the project where the
aforementioned stack is executed can be located in SPI_EtherCAT_slave_stack > EtherCAT_Application.c.
This is the most significant .c file of EtherCAT’s stack due to the fact that it also contains the three process

data handling generic functions which define the nature of the project (see Process Data Handling).

void main(void)

r 1
o HW_Init();
Initialization -
only once
(only) MainInit();
L bRunApplication = TRUE;
do
Main Loop { .
(cyclic) - MainLoop();
} while (bRunApplication == TRUE); Interrupts (if enabled)

} MainLoop()

Figure 2-34. Basic SSC execution structure.

The matching between the process data handling generic functions and our project’s is:

= PDO_OutputMapping() — APPL_OutputMapping()

= ECAT_Application() — APPL_Application()

= PDO_InputMapping() — Appl_InputMapping()
In Table 2-2, developers can monitor the Input and Output variables of our project as handled by EtherCAT
communication. Each variable has a specific type (ex BOOL, INT), belongs to a Record (general address)
containing more variables of identical or different type [5] and a uniqgue name within the Record. Output
variables are those who are controlled and determined by the master node during the execution of the stack
and their Index always begin with 0x70, while Input variables are designated by each slave their Index always
begins with 0x60.

53/147

Table 2-2.

EtherCAT Application Process Data Interface.

The most crucial and interesting functions implemented in EtherCAT_Application.c are:

= APPL_GenerateMapping(): which sends the Input and Output process data size in bytes as calculated
from Table 2-2 by the sum of all configured variables. As shown in Figure 2-35, these sizes for our
application is 22 bytes for the Input variables and 24 for the Output variables. No additional steps are

required by the developers for this function.

= L R =&

onon

[o R I v

.|

[]

| SR L T T N O S I ™ O T I S R U U I

el

@(ALSTATUSCODE_MNOERROR), NOERROR_INMWORK
pointer to save the input process data length
pointer to save the output process data length

Index Ir?(ljJ:x TD;; Name Index Ir?éj:x Data Type Name
0x7000 Record Buttons 0x6010 Record INnputlINT32
0x01 BOOL Buttonl 0x01 | INT32 ININT32Varl
0x02 BOOL Button2 0x6012 Record INputUINT16
0x03 BOOL Button3 0x01 | UINT16 INnUINT16Varl
0x04 BOOL Button4 0x6014 Record INput2INT32
0x05 BOOL Blue LED 0x01 | INT32 ININT32Var2
0x06 BOOL Red_LED 0x6020 Record INputINT16
0x07 BOOL Button7 0x01 INT16 ININT16Varl
0x08 BOOL Button8 0x02 INT16 ININT16Var2
0x09 INT8 Sync 0x6030 Record Input3INT32
0x7010 Record OutputlINT32 0x01 INT32 ININT32Var3
0x01 | INT32 OutINT32Varl 0x02 INT32 ININT32Var4d
0x7012 Record OutputUINT16
0x01 | UINT16 | OutUINT16Varl
0x7014 Record Output2INT32
0x01 | INT32 OutINT32Var2
0x7020 Record OutputINT16
0x01 INT16 OutINT16Varl
0x02 INT16 OutINT16Var2
0x03 INT16 OutINT16Var3
0x04 INT16 OutINT16Var4
0x05 INT16 OutINT16Var5
0x06 INT16 OutINT16Var6

I pInputSize

paranm pOutputsize

brief This function sends the process data sizes

INT16 APPL_GenerateMapping(UINT16 *pInputSize,UINT16 *pOutputSize)

*pInputsize = 22;
*pOutputsSize = 24;

return ALSTATUSCODE_NOERROR;

Figure 2-35. APPL_GenerateMapping() function.

= APPL_InputMapping(): which copies the Input variables from the local memory of the slave (Delfino
MCU) to the ESC memory in order to send them to the Master device (Figure 2-36). No additional steps

are required by the developers for this function.

54/147

phata pointer to input process data

This function copies the inputs from the local memo

oid APPL_InputMapping(UINT16* pData)

Vi
{

1
2
3

uintlé_t *pTmpData = (uintlé_t *)pData;

i

memcpy(pTmpData, &InputlINT320x6818.InINT32Varl,SIZEOF(InputlINT32@x6018.InINT32Varl));
pTmpData += 2;

memcpy(pTmpData, &InputUINT16@x6812.InUINT16Varl,SIZEOF(InputUINT168x6812. InUINT16Varl));
pTmpData ++;

memcpy(pTmpData, &Input2INT320x6814.InINT32Var2,SIZEOF(Input2INT328x6014. InINT32Var2));
pTmpData += 2;

memcpy(pTmpData, &InputINT16@x6828.InINT16Varl,SIZEOF (InputINT168x6028.InINT16Varl));
pTmpData ++;

memcpy(pTmpData, &InputINT16@x6828.InINT16Var2,SIZEOF (InputINT168x6028.InINT16Var2));
pTmpData ++;

memcpy (pTmpData, &Input3INT320x683@.InINT32Var3,SIZEOF(Input3INT328x603@.InINT32Var3));
pTmpData += 2;

memcpy(pTmpData, &Input3INT320x683@.InINT32Vard,SIZEOF(Input3INT328x6030.InINT32Vard));

@

LR = @ W0 oca

s

@ oo

[T Y FYR FYR YRR BTSN WYRL FYRR YRR SYRE N O O O N O R

o

Ba B2 R ORI ORI B3 RI PRI BRI BRI RD BRI R ORI ORI PRI R ORI BRI PRI R

B
=

Figure 2-36. APPL_InputMapping() function.

= APPL_OutputMapping(): which copies the Output variables from the ESC memory to the local memory
of the Delfino MCU slave to update their values within the application. No additional steps are required by
the developers for this function.

243 \param phata pointer to output process data
2

245 \brief This function copies the outputs

246 ETETETEET PR / /

247 void APPL_OutputMapping(UINT16* pData)

248 {

249 uintlé_t *pTmpData = (uintl6_t *)pData;// allow byte processing
258 uintle_t data = @;

251

252 /* RxPDOD */

253 data = (*(volatile uintlé_t *)pTmpData);

254 (Buttons@x7@ee.Buttonl) = data & @xi;

255 data = data »>» 1;

256 (Buttons@x7@ea.Button2) = data & @xil;

257 data = data »>» 1;

258 (Buttons@x7@ea.Button3) = data & @xil;

259 data = data »>» 1;

260 (Buttons@x7@ea.Buttond) = data & @xi;

261 data = data »>» 1;

262 (Buttons@x7@ea.Blue_LED) = data & @xl;

263 data = data »>» 1;

264 (Buttons@x7eee.Red_LED) = data & @xl;

265 data = data »>» 1;

266 (Buttons@x7@ea.Button?) = data & @xil;

267 data = data »>» 1;

268 (Buttons@x7@ea.Buttond) = data & @xi;

269 data = data »>» 1;

27@ (Buttons@x7@ea.Sync) = data & @xFF;

271 pTmpData++;

272

273 memcpy (&0utputlINT328x7018.0utINT32Varl, pTmpData, SIZEOF (OutputlINT320x7818.0utINT32Varl));
274 pTmpData += 2;

275 memcpy (&0utputUINT16@x7812. QutUINT16Varl, pTmpData, SIZEOF (OutputUINT16@x7812. QutUINTLGEVarl));

pTmpData ++;
memcpy (&0utput2INT328x7014.0utINT32Var2, pTmphata, SIZEOF (Output2INT320x7014.0utINT32Var2));
pTmpData += 2;

279

280 memcpy (&0utputINT168x7828.0utINT16Varl, pTmpData, SIZEOF (OutputINT168x7820.0utINT1EVarl));
281 pTmpData ++;

282 memcpy (&0utputINT168x7828.0utINT16Var2, pTmphata, SIZEOF (OutputINT168x7820.0utINTLIEVar2));
283 pTmpData ++;

284 memcpy (&0utputINT168x7028.0utINT16Var3, pTmpData, SIZEOF (OutputINT16@8x7828.0utINT16Var3));
285 pTmpData ++;

286 memcpy (&0utputINT168x7828.0utINT16Vard, pTmpData, SIZEOF (OutputINT168x7820. OutINTLIEVard));
287 pTmpData ++;

288 memcpy (&0utputINT168x7828.0utINT16Vars, pTmpData, SIZEOF (OutputINT168x7828.0utINTLIEVars));
289 pTmpData ++;

298 memcpy (&0utputINT168x7828.0utINT16Vars, pTmphata, SIZEOF (OutputINT168x7820. OutINTLEVare));
201}

2582

293 //

Figure 2-37. APPL_OutputMapping() function.

55/147

= APPL_Application(): which contains the User Application. Within this function, developers are free to
decide what they desire to do with the predefined Input and Output variables of EtherCAT Application
project as long as they are cautious not to mix variables of different types. The circled lines of Figure
2-38, as stated by the comment as well, will flash the build in LEDs of Delfino MCU through Blue LED
and Red_LED variables. Users may follow the comments to configure their own application handling the

process data.

203 LTI E I Edd i i it i Eiiddddidifdidiidididdifdidiiiiiiddifditiiiiiiififiitiiid

brief This function will be called from the synchropisaticn ISR or from the MainLoop
f no synchronization is supported executing the User Application

JEFLEIFEFFERTEFEEEI I T FEEF A 0 R EFEERd i R 7 ad i i iz iiliiitty

3 void. j\‘PPL_Appl:ica‘t‘ion (void)

{ ¢

therCAT Output Variables (Outputs FROM the master)

* Uncomment, the following lines and use the Output variables of the master as you desire in your application.

* For example -> inf Flag = Buttons@x7@e@.Buttonl;

h this line in your code, the value of "Flag" variable will be determined by EtherCAT Master's output wvariable "Buttonl"

=g]

W WL R
DH O e O 0

Buttons@x7@88.Buttonl;
Buttons@x7eee.Button2;
Buttons@x7888.Button3;
Buttons@x7008.Buttond;
Buttons@x7868.Button?;
Buttons@x700e.Buttond;

= QutputlINT32ex7@18.0utINT32Varl;
OutputUINT16@x7812. UINT16Varl;
// = Output2INT32ex7014.0utINT32Var2;

= OutputINT16@x7828.0utINT16Varl;
OutputINT168x7828.0utINT16Var2;
OutputINT166x7826.0utINT16Vars;
OutputINT168x7828.0utINT16Vars;
OutputINT168x7828.0utINT16Vars;
// = OutputINT16@x7@20.0utINT1EVars;

'/ Elash the built in LEDs of the Delfino microcoptroller by manipulating the "Blue LED™ and "Red LED" EtherCAT variables using TwinCAT
GPIO WritePin(31, !Buttons@x768@.Blue_LED); // Turn on/off blue LED (GPIO31) depending on output of Blue_LED for debug purpose
GPIO WritePin(34, !Buttonsex7e@@.Red LED); // Turn on/off red LED (GPIO31) depending on output of Red LED for debug purpose

therCAT Input Variables (Inputs TO the master)

ncomment the following lines and use the Input variables to the master as you desire in your application.

or example -» InputINT16@x682@.InINT16Varl = QutputINT16@x7828.0utINTlEVarl + OutputINT16@x7628.0utINT16Var2;

3 With this line in your code, the value of "InputINT16@x6@2@.InINT16Varl” EtherCAT input variable will be determined

332 * the sum of "OutputINT168x7@28.0utINT16Varl” and "OutputINT16@x7828.0utINT16Var2™ EtherCAT output variables using TwinCAT

A/ InputlINT328x6818. InINT32Varl = ;
//InputUINTL6@x6012. INUINT16Varl = ;
A fInput2INT32@x6014.InINT32Var2 = ;

[T)

SRV CRERy R |

A/ InputINT16@x6026. InINT16Varl = ;
//InputINT166x6@28. InINT16Var2 = ;

//Input3INT320x6030.InINT32Vard = ;
//Input3INT32@x6030.ININT32Var3 = ;

WL WL L L WL W L L

BATLIELELERLEEEREE LI EEE LI EE BT L LI LRI R LR LEE R LT R LTI EIA IR LA IR EiEdiLitiieiies
Figure 2-38. APPL_Application() function.

Although the procedure of adding or removing EtherCAT variables is both painstaking and time
consuming, if developers decide that they want to proceed accordingly, they should follow the instructions of
Add and remove EtherCAT Input and Output variables.

Configuring the Project

1. Select the desired Build Configuration of the imported project. EtherCAT_Application project contains two
separate Build Configurations one for RAM and one for Flash. These two projects are identical as far as
functionality is concerned. However, Build Configuration number 1 is intended for RAM which means that the
Delfino MCU will execute the downloaded project only until it is powered-off. On the other hand, Build
Configuration number 2 is intended for FLASH which means that the project will be saved in Flash memory
and the MCU will “remember” it even after rebooting. In general, RAM configuration is intended for testing

purposes, while FLASH configuration when a project is properly functioning. In order to choose the desired

56/147

Build Configuration, right click on the project’s name, click Build Configurations > Set active and the desired

configuration as depicted in Figure 2-39.

¥ workspace v7 - CCS Edit - Code Composer Studio

Ele Edit View Navigate Project Run Seripts Window Help

o~ Bik Qi e GO ok reces] | | [@] %
[Project Explorer 37 BEg Y= 0O =0
« [EtherCAT Appiication [Active - 1 LAUNCHXL F2837xD_SPIA RA
3 Binaries New >
¥ B includes o in Local Termina
(B CtifcesvTitools/compiler/ti-cgt-2000_16.12.05TS/include Showin Local Terminal ’
@c :_support/F283 7xD_cor Add Files.
Bc -_support/F283 TD_head [| Copy Ctrl+C
2 EtherCAT Application/hal o o
& EtherCAT_Application/SP|_EtherCAT slave stack -
(& _1_LAUNCHXL_F28370_SPIA_RAM % | Delete brt
(& _2_LAUNCHAXL_F28379D_SPIA_FLASH FEEEE 2
@ hal Source >
2 SPI_EtherCAT slave.stack —
2 cmd
% LAUNCHXL F283730.coml Rename.. f2
Import >
3 Export
Show Build Settings.
Build Project
Clean Project
Rebuid Project
Refresh £
Close Project
e Mol § Advice =0
© Consale 51 45 BHEEA 22 Make Targets >
CDT Build CAT_Application] Index > * Resource I
T S }
Debug As N > [/] 11LAUNCHXL_F2837<D_SPIA_RAM (C2000 EtherCAT slave software running from RAM on Delfino LAUNCHXL-F28379D using SPIA with F81111-0141) I
Restorefrom Locol History.. T |2 2LLAUNCHXI_F28379_SPLA_FLASH (C2000 EtherCAT slave software rumning from FLASH on Delfino LAUNCHXL-F2E379D using SPIA with FE1111-0141) |
Team > Clean Al
Compare With > Build Selected 5
(5 EtherCAT Application Properties AltsEnter

Figure 2-39. Select Build Configuration.

2. Connect the launchpad to the PC using the microUSB cable and Build the project. If no error occurs, then

download the project into the launchpad by clicking the Debug button as shown in Figure 2-40. Take into

consideration the fact that if the Delfino MCU

is powered through the USB port, jumpers JP1, JP2 and JP3

must all be mounted.

$ workspace_v7 - CCS Edit - Code Composer Studio

File Edit View MNavigate Project Run Scripts Window Help
Debug

Yeladele]

L - & - L EE D
[Project Explorer 53 BE = 0O
« |l EtherCAT_Application [Active - _1_LAUNCHXL_F2837xD_SPIA_RAM]
ﬁb Binaries
« [l Includes

(= CftifcesvT/tools/compiler/ti-cgt-c2000_16.12.0.5TS/include
(= C#tif controlSUITE/device_support/F2837xD/v200/F2837«0_common/include
(= Cftif controlSUITE device_support/F2837xD/v200/F28374D_headers/include
[EtherCAT_Application/hal
@ EtherCAT_Application/SPI_EtherCAT slave_stack

(= _1_LAUNCHXL_F2237xD_SPIA_RAM

(= _2_LAUNCHXL_F22379D_SPIA_FLASH

(= hal

(= SPI_EtherCAT slave_stack

2% emd

[%y LAUNCHXL_F28379D.ccxml

Bl Console 52
CODT Build Console [EtherCAT_Application]

= Memory Allocation [:_ Problem

&ﬁ '—E;EEI:ER M E~T = 8 3items

s

1

Advice

*=%% Build oT conTiguration _1_LAUNCHKL_FZ83/%0_SPLA_RAM for project
EtherCAT_Application ****

OtV eesv7\ wtils\\bin\\gmake" -k all
gmake: Nothing to be done for "all’.

#*%* Build Finished ****

= EtherCAT Application

Figure 2-40. Build and Debug CCS Project.

57/147

A

Description
> i Optimization Advice (3 iterns)

3. The launchpad consists of two cores, thus select CPU1 and click OK from the pop up window as illustrated
in Figure 2-41.

] Launching Debug Session

The project EtherCAT_FB1111-0141 is compatible with multiple CPUs in the target configuration.

Please select the CPUs to load the program on:

Texas Instruments XDS100v2 USB Debug Probe_0/C28x_CPU1
[7] Texas Instruments ¥D5100v2 USB Debug Probe_0/C28xx CPU2

Select Al | | Deselect Al
[] Create a debug group for selected cores
Make the group synchronous
® QK ‘ | Cancel

Figure 2-41. CPU selection.

4. Code Composer Studio will then automatically turn into CCS Debug mode. When the project is downloaded
(obviously, downloading the Flash project lasts a lot longer than RAM) click the Resume button as
adumbrated in Figure 2-42 and the slave side is now up and running. The Terminate button will not stop the
execution of the program in the MCU vyet it will only end the debug session. For the time being DO NOT
Terminate the debug session to make sure that the slave is properly running in DC mode.

% workspace_v7 - CCS Debug - EtherCAT_Application/SPI_EtherCAT_slave_stack/EtherCAT_Application.c - Cade Composer Studio

File Edit View Project Tools Run Scripts Window Help

im-poieBiEk s e B Ece - PR S in & 02 H o o] | | =]
45 Debug 3¢ Resume Terminate T = B (0 Variables |67 Expressions 2 | lil} Registers 9 Breakpoints 5B & & i =0
&% EtherCAT_Application [Cade Composer Studio - Device Debugging] Expression Type Value Address

« o Texas Instruments XDS100v2 USE Debug Probe_0/C28x CPUT (Suspended - SW Breakpaint) 4 Add new sxpression

= main() at EtherCAT_Application.c:360 0xD0AgSF

= _args_main(at args_main.c:81 Ox00ATAD

= cint00) at boot28.asm:261 0xD09DD6 (_c_int00 does not contain frame information)
@ Texas Instruments XDS100v2 USB Debug Probe_0/CPU1_CLAT (Disconnected : Unknown)
o Texas Instruments XDS100v2 USE Debug Probe_0/C28o CPU2 (Disconnected : Unknown)
48 Texas Instruments XDS100v2 USB Debug Probe_0/CPU2_CLAT (Disconnected : Unknown)

[£] EtherCAT Application.c 57 [§] F2837D_usDelay.asm =g
HU_Init(); ~
MainInit();

bRunApplication = TRUE;
do

MainLoop(};

} while (bRunApplication == TRUE);

& Console 57 EEEE MB~>= 0O [Poblems 3 v =7
EtherCAT Application Oitems
C280¢_CPUL: GEL Output: | Description - Resource Path

Memory Map Initialization Complete
€28x¢_CPUL: If erase/program (E/P) operation is being done ¢

v
< n > < n >

Figure 2-42. CCS Debug window.

5. Connect the IN port of the FB1111-0141 ESC, using a suitable Ethernet cable (see EtherCAT Master
Requirements) with the PC as illustrated in Figure 2-43 and start TwWinCAT XAE (VS 2013).

58/147

Figure 2-43. EtherCAT Assembly.
6. Select File > New > Project as shown in Figure 2-44.

¢ start Page - Microsoft Visual Studio

Figure 2-44. TwinCAT new project.

7. From the TwinCAT Projects tab select TwinCAT XAE Project (XML format), name the project (ex

EtherCAT Application) and click OK as illustrated in Figure 2-45.

FILE | EDIT VIEW DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
New Y8 Project Crl+ Shift+ N
Open | ‘@ websit. Shift+ Alt+ N lql:“ |
Close D File.. G Start Page = %
Close Solution
Save Selected ltems Ctrl+s
Save Selected Items As...
¥ Saveall Ctrl+Shift+5 2013 Shell
Export Template.. (Integrated)
Page Setup...
Print.. Curl+p
Recent Projects and Solutions > Start
BBt £ New Project...

Open Project...

Recent
TwinCAT Project2
TwinCAT Project

- | © okners | 1 owarnings |

Description >

MNew Project

b Recent

4 Installed —
E TwinCAT XAE Project (XML format)

4 Templates
PowerShell
TypeScript

b Other Project Types
b TwinCAT Measuremeg
TwinCAT PLC

NET Framework45 -] Sort by: | Default -] &

TwinCAT Projects

Search Installed Templates (Ctrl+E) P~

Type: TwinCAT Projects

TwinCAT XAE System Manager
Configuration

Solution name: EtherCAT Application

Samples
v Online
Click here to go online and find templates.
Name: EtherCAT Application
Location: C:\Users\stam'\Decuments\Visual Studic 20T Browse..

Create directory for solution

Figure 2-45. TwinCAT EtherCAT Application project.

59/147

8. From the Solution Explorer window expand the 1/O element, right click on Devices and select Add New Item

(Figure 2-46).

B¢ EtherCAT Application - Microsoft Visual Studio ¥ | Quick Launch (Ctri~Q) P

FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

i@ -m-e 0 | | | b attach.. - |Release -| [TwincaT RT 64y

|B2R@| @ [wa> . | \ \ | <
Solution Explorer
& o-a| &=

Search Solution Explorer (Ctrl+;)

137 Solution EtherCAT Application’ (1 project)
4 il EtherCAT Application
b [l SvSTEM
MOTION
PLC
5 SAFETY

xogioo) sio|dxy anas (R

Add New ftem.. Ins
Add Existing ltem... Shift+Alt+A
Export EAP Config File
¥ Scan
Paste
Paste with Links

Error List

Y- 0 Errors 0 Warnings 0Messages | Clear

Description ~

Solution Explorer WEEWEN

Figure 2-46. TwinCAT Solution Explorer.

|G ImsnaecED-.

Search Error List

Column Project

9. Select EtherCAT Master and click OK (Figure 2-47). This way, your PC is now configured as an EtherCAT

Master device.

Insert Device

Type: === EtheiCAT ~ ok
R E therCAT Maste
. == EtheiCAT Slove
== EtherCAT Automation Protocol [Metwark, ariables)
5| EtherCAT sutomation Protocol via ELEE0T, EtherCaT
== EtherCAT Simulation
+- ¥ Etheret
&8 Profibus DP _
+- 855 Profinet =
+-<if CANopen
+-m2x DeviceNet Target Type
+::— Ethertet/IP ® PC orly
+-fff SERCOS interface .
#1110 Beckhoff Lightbus @ CLeiy
+-~F 1158 (O BX only
+-EAC BAChet —
2% Beckhoff Hardware v L
T HOFF

Narne: |Device 1

Figure 2-47. EtherCAT Master realization.

10. Navigate to the location of the downloaded folder from Bitbucket, copy EtherCAT Application (SPI).xml
file and paste it at the following location C:\TwinCAT\3.1\Config\lo\EtherCAT owing to the fact that in order to
be recognized by the TwinCAT development environment, ESI descriptions of slave devices shall be saved in

the default directory.

11. In Visual Studio, select TWINCAT > EtherCAT Devices > Reload Device Descriptions (Figure 2-48) on
accounts that if the content of the TwinCAT default folder is changed (new files are added, old files are

deleted, files overwritten, content of one or more files is changed), the ESI database must be reloaded in

order to make the changes available.

60/147

) EtherCAT Application - Microsoft Visual Studic X' | Quick Launch (Ctrl+Q) Pl 8 x
FILE EDIT VIEW PROJECT BUILD DEBUG | TWINCAT | TWINSAFE PLC TOOLS SCOPE WINDOW HELP

|d@-o-2 W % 0| E Activate Configuration - L] -|
‘BB 2R E| @ [<Loak E% Restart TwinCAT System | | |
¥ Restart TwinCAT (Config Mode)

Reload Devices

REePECHD-.

Solution Explorer
@ o-a| &=
Search Solution Explorer (Ctrl+;)

% Scan
Toggle Free Run State
[Solution 'EtherCAT Application’ (1 project)
4 1] EtherCAT Application .
b (@ svsTEM . Show Sub ltems
MOTION Security Management...
PLC
[SAFETY
[ed c++
170 Show Realtime Ethernet Compatible Devices...
4 “F Devices File Handling
4 3 Device 1 (EtherCAT)
=T image

Show Online Data

¥oqjoo) 12101y 1aniag g

B2 Access Bus Coupler/IP Link Register...
Update Firmware/EEPROM

Selected Item

8 jmage-Info EtherCAT Devices

Update Device Descriptions (via ETG Website)...
2 SyncUnits About TwinCAT Reload Device Descriptions.

3 Inputs
b [Outputs
b [@ InfoData Manage User Defined Blacklist...

Manage User Defined Whitelist...
&% Mappings
Error List

Y- 0 Errors 0 Warnings 0 Messages Clear Search Error List

Description ™ Column Project

Solution Explorer [(aEER]

Figure 2-48. Reload Device Descriptions.

12. The definitions of the TwinCAT buttons can be viewed in Figure 2-49. These functionalities will be
exploited extensively in the following steps.

W EtherCAT Application - Microsoft Visual Studic
FILE EDIT VIEW PROJECT BUILD DEBUG | TWINCAT | TWINSAFE PLC TOOLS SCOPE WIND

. - | iB-og-2 e | X ol | - Activate Configuration

S PR E' E # :+;L @ A Restart TwinCAT System

Solution Explorer Restart TwinCAT (Config Mode)
& o-a &=

Search Solution Explorer (Ctrl+;)

Reload Devices
Scan

Toggle Free Run State

fa] Solution EtherCATAFpllcatlun (1 project) Show Online Data
4 Ha EtherCAT Application
b ﬂ SYSTEM i Show Sub ltems
MOTION Security Management...
PLC RES R .
| SAFETY Access Bus Coupler/IP Link Register...
el C++ Update Firrmware/EEPROM]

Figure 2-49. Definitions of TwinCAT buttons.

13. Click once on the Device 1 (EtherCAT) item of the Solution Explorer tree and the Scan button (Figure
2-49) will instantly become clickable. Select the Scan feature (automatic scan for slave devices) and select No
in the pop up window asking whether to Activate Free Run. A slave (TwinCAT defines slave devices as
Boxes) must be now visible on the Solution Explorer tree within the Device 1 (EtherCAT) master device with

the last configuration that was written on the ESC’s EEPROM as shown in Figure 2-50.

61/147

ud EtherCAT Application - Microsoft Visual Studio ¥ | Quick Launch (Ctrl+Q) Pl B x
FLE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC JOOLS SCOPE WINDOW HELP

o (B-o-LEE|XF0]2-C - p At - [Release | [TwinCAT RT (xé4) B R rRnse D,
BB2 @™] \ \ \ o0 .

Solution Explorer
@ o-a| &=
Search Solution Explorer (Ctrl+;)

7 Solution 'EtherCAT Application’ (1 project)
4 gl EtherCAT Application
b @l SYSTEM
MOTION
[pLc
(5] SAFETY
[c++
/0
4 % Devices
4 5 Device 1 (EtherCAT)
*8 Image

xoqoo] ssiojdiy anias [EEEHEEE

*8 Image-Info
2 SyncUnits
Inputs
T Outputs
@ InfoData
Box 1 (Laelaps Trajectory Planning Control v3 (SPD)
Input mapping 1
PWM Commands
Velocity Feedback
I Buttons process data mapping T - 0 Errors 0 Warnings OMessages | Clear Search Error List
B Output mapping 1 Description ¥
B Control Gains
B Trajectory Parameters
3 WeState
& InfoData
&7 Mappings

Configuration
Error List

Column Project

Solution Explorer [[ArTE]

Figure 2-50. TwinCAT scan for slaves.

14. In order to write the EEPROM of the ESC with our project’s description file (xml) so that it matches with
the configuration of the Delfino MCU, double click on Device 1 (EtherCAT), select the Online tab of the
emerged window, right click on Box 1 item and choose EEPROM Update.(Figure 2-51).

D& EtherCAT Application - Microsoft Visual Studio ¥ | Quick Launch (Ctrl+Q) P - & x
FILE EDIT VIEW PROJCT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
-olw-m-e I Il I B ST S [Release -] [TwinCAT AT (x64) - A JRrmEecED- .
BB2A@ @0 o |5 | | | 199 . -

Solution Explorer ‘Gl EtherCAT Application & X
A o-a &=

Search Solution Explorer (Ctrl+:)

General | Adapter | EtherCAT| Onine |CoE - Onime |

SUOIIEIION

. I] No Addr Name
a1 Solution EtherCAT Application’ (1 project) 1001 Box 1 (Laelaps Trajectory Plannin_ PREQE. 0
4 1 EtherCAT Application Request TMIT' state
b [l SYSTEM
Request 'PREOP" state
Request 'SAFEOP' state
Request 'OP' state
Request 'BOOTSTRAP' state

Clear "ERROR’ state

— Device 1 (EtherCAT) EEPROM Update.
ol pdate...

e
*% Image-Info Firmware Update...

2 syncUnits Actual State: PREOP Courter Advanced Settings...

Inputs

Frames / sec
& InfoData [CearcRC | [ClearFrames | | Lost Frames Export...

Tl Box1 (Laelaps Trajectory Planning Control v3 (SPI)} TwReEros U

3 Input mapping 1
PWM Commands
Velocity Feedback

Error List

b

3

b [Buttons process data mapping Y- 0 Errors 0 Warnings 0Messages | Clear Search Error List
b [Output mapping 1
3

b

3

Description + Column Project

W Control Gains
W Trajectory Parameters
B WcState
b @ InfoData
&7, Mappings

Solution Explorer [faEai]

Figure 2-51. Update EEPROM of ESC's memory.

15. Select EtherCAT Application (SPI) (11110141 /1) and click OK (Figure 2-52). The Number 11110141 is
the Product Code and 1 is the Revision Number of the XMl file.

62/147

Available EEPROM Descriptions: [Show Hidden Devices oK

+-- 4 Beckhoff Automation GmbH & Co. KG
E|. Mational Technical University of Athens
El-T1 Tl C28w Slave Devices
[A E therCAT Application (SPI) (11110741 /1)
Tl Laelaps Trajectory Planning Cantral w3 (SPI) (11110141 /8]

Erowse

Figure 2-52. XML selection.

16. Now the slave’s EEPROM memory is correctly configured, yet TwinCAT cannot automatically recognize
this transition. In order to do so, on the Solution Explorer window, right click on Box 1, select Remove and
then OK (Figure 2-53).

B¢ EtherCAT Application - Microsoft Visual Studio ¥ | Quick Launch (Cirl+Q) P - 8 x
FIE EDIT VIEW PROECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
[B-o-ue s gaal?-C-|»aud. - [Release - | TwinCAT AT (64) A Al JRsmEeED- .

=R

L PRI rrre—

Solution Explorer RIFRYY ctherCAT Application = %

@ o-a| &= General | FherCAT | NG | Progess Nata | Startun | CaF - Onine | Online |

[l scaich Salution Explorer (Ctrl+;) B Add New ltem.. Ins
‘]

7 Selution 'EtherCAT Application’ (1 project) Insert New [tem...
4] EtherCAT Application Insert Existing [tem...
b |@ SYSTEM Remove]
MOTION
PLC Save Box 1 (Laelaps Trajectory Planning Control v3 (SPI]) As.
SAFETY Copy
e - Cut
4 Vo
4, Devices
= Paste with Links
4 5 Device T (EtherCAD Create symbols
£ Image Independent Project File
3 Image-Info

Paste

2 SyncUnits Disable
Inputs Change to Compatible Type... Microsoft Visual Sv.+dio
@ Outputs Add to HotConnect group
2 nfeData 5 = P S TR “Box 1 (Laelaps Tra)2sgry Planning Contral v3 (SR}’ and all its
Box 1 (Leelaps Trajctory Plenning Control 3 (SP1) 1, contents willbe remoReqfrom ‘EtherCAT Application.
Input mapping |
PWM Commands
Velocity Feedback
I Buttons process data mapping

3

4 Error List
>

>

b [Output mapping 1 Description ¥
>

>

>

>

Y - | € 0krors | ¢ 0Wamings 0Messages | Clear

@ Contrel Gains
W Trajectory Parameters

B WcState
I InfeData
&% Mappings

Solution Explorer FEEEJNEN

This item does not support previewing

Figure 2-53. Remove EtherCAT slave.

17. Scan the network again as indicated above and monitor Box 1 with the desired configuration and
EtherCAT variables (Table 2-2) by expanding the respective tree items as illustrated in Figure 2-54. One can
also rename the slave by clicking on the Box 1 and altering the Name item of the General tab (ex EtherCAT
Application Slave Device). The application is how completed and ready to use. One can test the project in
Free Run Mode (no synchronization) to ensure that everything is executed as intended and try the DC

Synchronous mode later on.

63/147

bﬂ EtherCAT Application - Microsoft Visual Studio X | Quick Launch (Ctrl+Q) P - B x
FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

#1 InINT32Var1
#1 InUINT16Var1

w BB E® [-l | | | | - -
Solution Explorer - X

;:“ gt o-a| &= General |EiherCAT | DC | Process Data | Starup | CoE - Criine [Onine |

[EWll Scarch Solution Explorer (Ctrl+;) P~

E] i Name: [P ErercAT Foslcston 5P] w[]

i 4 [l Box 1 (EtherCAT Application (SP) B

g 4 1) Input mapping 1 Objectid: [0xD3020001]

Type: [EthercAT Appication (5PI) |

InINT32Var2 Comment
4 L InputiNTis
% InINTIVar]
InINTIVor2
4 InpusaINTZ2
IINT32Vor3 [Disabled Create symbols
InINT32Vard

4 [Buttons process data mapping
- Butten
&+ Button2
¢ Button3
¢ Buttond
¢ Blue_LED
B¢ Red_LED
& Button? Name Online
&/ Buttond
& Sync
4 T Output mapping 1
B OutiNT32Varl X . -
B OutUINT16var! Description File Line Column | Project
B/ OutiNT32Var2
4 T OutputiNTIS
B OutiNTI6Varl
B+ OutiNT16Var2

Type Size >Addr In/Out UserID Linkedto -~

Y - | © 0krors 0 Warnings OMessages | Clear Search Error List P~

Solution Explorer RaEERVUENY

Figure 2-54. EtherCAT Application in TwinCAT.

18. Activate Free Run Mode by clicking Toggle Free Run State button (Figure 2-49) and ensure that the
slave device has swiched to Operation State by checking the RUN LED of the FB1111-0141 ESC (must be
ON) and the Current State of the Online tab (Figure 2-55) which must be OP (Operational).

D EtherCAT Application - Microsoft Visual Stuio ¥ | Quick Launch (Ctrl~Q) e R
FILE EDIT VIEW PROJECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
e NG = T I I I |

Solution Explorer
@ o -al &=
Search Solution Explorer (Ctrl+;)

General | EerCAT | DC__ | Process Data | Startup | GoE ~Grine] Orine |

State Machine
Tl Solution 'EtherCAT Application’ (1 project) it [Bootstap |
4] EtherCAT Application

b @l sysTEm Pre0p [SafeOp |

lear Emor

suonEdLNoN

Cument State:

oP

woqiesy ssojdig 1aniag

4 " Devices Port B Mo Camer / Closed

4 = Device 1 (EtherCAT)
+B
Image
*é Image-Info No Carrer / Closed

No Caier / Closed

2 SyncUnits
Inputs File Access over EtherCAT

MW Outputs Dowrload.. Upload.

) InfoData

EtherCAT Application Slave Device

3 Input mapping 1

3 InputiNT16 Mame Online Type Sze »Addr InfOut UserlD Linkedto

Figure 2-55. EtherCAT Slave's State Machine.

»

Testing the Project

EtherCAT Application is now running in Free Run Mode and users are now in position of Online Writing
the Output variables which are being sent to the Slave Device and inspect the Input variables that originate
from the slave device depending on the User Application that they have coded. The only predefined feature of
the project is the blue and red LEDs of the Delfino MCU that are linked to the Blue_LED and Red_LED output
variables of the Buttons record.

In order to execute an Online Write and turn ON the blue LED for example, expand the project tree of
EtherCAT Application Slave Device, click on the Blue_LED boolean variable of the Buttons output record,
select Write on the Online tab, type 1 in the Dec field and select OK (Figure 2-56). The exact same process
can be followed to determine the value of any other variable from the Output variables list.

64/147

D) EtherCAT Application - Microsoft Visual Studio
FILE EDIT VIEW PROJCT BUILD DEBUG

"Elqc

TWINCAT

@@ o]oE

TWINSAFE PLC TOOLS SCOPE WINDOW HELP

Solution Explorer
@ o-a|F =
Search Solution Explorer (Ctrl+;)
PLC
(] SAFETY
fd c++
1]
4 2 Devices
4 =% Device 1 (EtherCAT)
*8 Image

Riojdi ARG

.

*B |mage-Info
2 SyncUnits
Inputs
W Outputs
& InfoData
TI Box 1 (EtherCAT Application (SPI))
3 Input mapping 1
InputINT16
Input3INT32
B Buttons
> Button]
B Button?
[E- Button3
5 Buttond
+ Blue LED
- Red_LED
& Button?
& Buttond
& Sync
b B Output mapping 1
W OutputINT16
3 WeState
Solution Explorer [ELEA]

A v Yo

3
b
Pl

BIERYY EtherCAT Application + X

Variable | Fags | Online

N | Quick Launch (Ctrl+Q)

SUOIEINON

Value: 0

New Value: Force...

Release

Comment:

Bool

Binary

Bit Size:

[] =1

[0t | [Cancel |

L 1

o]
|1

Error List

Y - | € 0Enors 0 Wamnings

Description +

0Messages | Clear Search Error List

File Line Column Project

Figure 2-56. Online Write of Blue_LED.

Obviously, Input variables cannot be determined by the master since they are configured by the

application running in the slave device. However, users may inspect the value of input variables by navigating

to the Online tab of the desired one as depicted in Figure 2-56 for the Blue_LED output variable.

Project in DC — Sync mode

EtherCAT Application project is configured to exploit all three interrupt channels (physical signals) for

synchronization (PDI_IRQ, SYNCO and SYNC1) when operating in DC-synchronous mode and more

specifically the SyncManager/Sync0/Syncl mode adumbrated in Figure 2-57.

SM2 Event SyncO Syncl 5M2 Event SyncO
i » Cycle Tima {0x1€32.2/0x1C33 3) P _
HH - I I -
i P
P b
I"D'L:.I_DutpulMappiri,g“ ECAT_Application() F'DD_I’lputFn"appi’lg'fIE E
F SERTE | N
. ITEET o - = HE
LI L] L]

i f “I N

i HE

¥ | R

O Outputs valid Inputs latch +
| I]

Calc and CI:IFII,' Delay Time Dielay Tirme Calc and Copy
Time [0x1C32.5) [O1C33.9) Time

(Ox1C32.6) (0x1C33.6)

Figure 2-57. SyncManager/Sync0/Syncl Mode.

The output process data mapping is triggered by the SM2 event, the ECAT_Application is trigerred by
Sync0 and the input latch by SYNC1 (Figure 2-58). In EtherCAT Application we have specified all the Delay

Times to be zero in order to minimize the execution time of the slave’s project and achieve higher cycle times.

65/147

Sm2 Syncl Synci

(shift of Input Latch via hardware)

___________ =+ Delay [CalctCopy
Time Inputs
0x1C33:090 Ox1C33:06
Cyclic sw:Jcti
Application ¥

event

alc+Copy | Wait Delay
Outputs = Syncl Time
Ox1C32:06 event| Dx1C32:09

Figure 2-58. DC Sync mode of EtherCAT Application.

In order to force the slave to operate in DC — Sync mode and achieve the ultimate synchronization, follow
the instructions of TwinCAT in Run Mode. Timers and flags have been placed within the stack to make sure
that the slave is Operating in DC mode and calculate the execution time of each of the aforementioned
EtherCAT functions that determiningly define the minimum cycle time of the frame. Follow the instructions of
Add Watch Expression in CCS Debug to add the variables of Figure 2-59.

64" Expressions 2 |(x)= Variables if Registers @g Breakpoints

Expression Type
()= PDI_lsr_Output int
)= timer_PDI_lsr_Output unsigned long

()= SYNCO_lsr_Appl int
(9= timer_SYMNCO_|sr_Appl unsigned long
(9= SYNC1_lsr_Input int

(= tirmer_SYMC1_lsr_Input unsigned long

Figure 2-59. Timers and Flags to watch.

If all integer type variables are 1, then the slave is properly functioning in DC mode and the values of the
unsigned long type variables (timer_) indicate the required execution time in micro seconds listed in Table 2-3.

Table 2-3. Generic functions execution time.

EtherCAT slave stack function Execution time (us)

PDO_OutputMapping 67
ECAT_Application 1
PDO_InputMapping 17
Minimum Cycle Time 85

The minimum cycle time of our application with the given process data exchange is the sum of the
execution times of the above three functions. The configured cycle time in TwinCAT must exceed this value to
switch in Operational mode. However, taking into consideration that we covet to achieve the fastest
communication, we shouldn’t diverge from the minimum cycle time to a great extend but test multiple cycle
times close to this value until the slave becomes operational with no lost frames.

Another interesting thing to consider regarding EtherCAT when deciding on the frame cycle time is the
time needed by the master to transmit a frame on the network or more explicitly the time the network card

needs (running at 100Mbit/s) in order to physically transmit the corresponding frame on the cable, in every

66/147

cycle. This feature can be calculated directly from TwinCAT and displayed by the Size/Duration column of
EtherCAT tab (Figure 2-60). The five predefined Datagrams of the project, depending on the selected

synchronization mode and EtherCAT’s addressing, are also highlighted in the same figure.

09 E2nercAT Appicaion - Microso Vi S v

Pla & x
FAE DT VEW PROECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
‘o B-ortud Xd - G o[B Atk + Relesse =] [TwinCAT AT (58]]| 28 [1ng cortra msmseRD-.
wad R gL <Local> -Js
g
it | e ENSCAT Jpriee o -crine
»
etk 152 168 15021 Advancad Saing.
Expuet Conbuesion e
S e Aesgrmert
Topciony
Fame Cmd Adk o W | Smol k) Uk Sue/Dusbonfel Mas
b oP om0 4 vm
o AW socmomosio 4 v
b R0 owcom 1 o
& mamion Mo v oomcom 2 3 defads 0200
e | T [T 111/ 1050 0
saFETY sa
Wc--
s @uo
42 Deices |
o
: Humber Bax Nome Address Type InSie OutSiee E-Bus (m.
N n Boud (BerCAT Applica. 1001 EherCAT Appicati. 20 240
b
herCAT Application (5P1)
mapping 1

Figure 2-60. EtherCAT Application frame disintegrated.

In our project, this transmition time can be disintegrated into the components described in Figure 2-61
and Table 2-4.

* add 1-32 padding bytes if Ethernet frame is less than 64

Fthamet Hl Ethernet Data l FCS I

: 14 Byte 2 Byte 44*-1498 Byte 4 Byte

kthernet Hr Len | 0 | 14-!-0 EtherCAT Datagrams I FCS |

| 17";4ElherCAT Datagram | 2040 | l nt" EtherCAT Datagrarr; |
10 Byte max. 1486 Byte g

I Datag. Header | Data I WK(&-‘

------------------ WKC = Working Counter

/ 8 Bit 8 Bit 32 Bit 1Bit 2 1 .1-.--1“|"‘16‘B‘t
M

cmd | x| Address | Jen [R[C[R

irculating Datagram? More EtherCAT Datagrams?

Figure 2-61. EtherCAT frame description.

Table 2-4. EtherCAT frame components.

Frame Component Bytes Description
Ethernet Header 14 fixed
EtherCAT Header 2 fixed
Datagram Headers 10*5=50 10*number of Datagrams
Datagram Data 4+4+1+24+2=35 Sum of bytes
Datagram WKCs 2*5=10 2*number of Datagrams
Ethernet FCS 4 fixed
Intergap + Preamble+SOF 12+7+1=20 fixed
Total 135 1080 bits (@100Mb/s) = 10.8 us

67/147

Since the total time needed by the master (10.8 ps) is almost eight times less than the minimum
execution time of slave (85 us), the frame cycle time principally depends on the latter. Taking the above into
consideration, the minimum frame cycle time that enabled the slave device to successfully switch to
Operational Mode for the given configuration and process data without having any lost frames at all was 200
Ms. In lower cycle times, a considerable number of frames were lost during the communication and the
robustness of the the project was doubtful. However, we need to take into consideration the fact that only
integer multiples of Twincat's base unit (50 ps) were allowed to be tested for frame cycle time. In your
application, this cycle time might be even greater owing to the fact that the execution time of the
ECAT_Application will increase.

The procedure described above can easily be extended to the desired number of slaves by simply
downloading the same project to all Delfino MCU as already specified, connecting the slaves following the
wiring scheme of Figure 2-24 and scanning the new EtherCAT network. Subsequently, emulate the steps of
TwinCAT in Run Mode to configure all slaves to operate in DC — Sync mode (to achieve ultimate
synchronization among the slave devices and test your application in realtime. This process is also explained
in the next chapter where four EtherCAT slaves are connected to the network yet an example of TwinCAT

window with four configured slaves can ve viewed in Figure 2-62.

B Laclaps Trajectory Planning Control - Microsoft Visual Studio ¥ | QuickLaunch (Ctr+Q) Pl- B x
FILE EDIT VIEW PROJCT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
‘w8 B2 RE W [stocalr o untitedt E \ \ | \ SR .
p PN L2claps Trsjectory Planning Control # [T SAIeY Inputs MAIN ~
@A o-a| &= General | Adapter | EherCAT | Online | CoE -Oriine |
Search Solution Explorer (Ctrl+;) P-
- No Addr Name State cRC
2 R
b @l svsTEM T 1001 Slave 1
MOT‘ON T2 1002 Save2
“ PLC T3 1003 Slave 3
4 @_H_{mﬂad‘ TIa 1004 Siave &
b 2] Untitled1 Praject
4 O] Untitled! Instance
b1 PlcTaskInputs
b PlcTssk Outputs
(8 saFeTY
Ces
& anawvTics
i Bvo
4 %L Devices Actual State Counter Cyclic Queued
4 == Device 1 (EtherCAT) Send Frames .
| [Fre0p | [Sefe0p
2" Image [Efe] Frames / sec +
28 Image-info Clear CRC Lost Frames .
b2 SyncUnits Tw/R Erors /
b Inputs
b B Qutputs _ > >—
-t
b Tl Slavel . ; 5 7
Do Y - | ko | 4 541 Warnings | @ 45 Messages | Clear Search Error List P-
ave
b Tl Slave3 Description ~ File Line Column Project -
WD 80 IWINLAT Masurement (1 /:26:33, /50): Lreated SCope “Scope ¥ | SCope Y1 Project v 0
b Tl Slaved Project”
Slav ject!
4 &l Mappings @ 585 TwinCAT Measurement’ (1 80): Created Chart "Fore Left Leg" Scope YT Project 0 0
%, Task 1 - Device 1 (EtherCAT) 1 insidle Scope "Scope YT Project”

Figure 2-62. Example of EtherCAT network with 4 configured slaves.

68/147

3 Motion Control of Laelaps Il via EtherCAT

As stated in previous chapters, the purpose of moving towards the EtherCAT technology is to implement a
decentralized control architecture on Laelaps Il quadruped robot [30] where each slave device controls the
motion of one leg. This chapter presents the firmware running in Laelaps Il motion control MCUs and the
configuration procedure of the EtherCAT master to handle all four slave devices and save the necessary data
for post processing using TwinCAT’s Scope View tool.

The main focus is on designing a network of MCUs responsible for motion planning, control and
synchronization of the legs using trajectories at the toes and an indirect force control based on [31] . The
motion parameters are handled by the EtherCAT Master communicating with four Delfino MCUs, leading the
robot to several walking and running gaits. Finally, a detailed guide is given for building from scratch all the

required software and hardware components used in this chapter.

3.1 Laelaps Il robot description and motion planning

In [32] and [33] one may find all available details of Laelaps | (Figure 3-1) as far as mechanical and electrical
design, functionalities and programming scheme are concerned. Moreover, the experimental validation of the
centralized motion control theory is presented and conclusions are drawn for this initial architecture.

Figure 3-1. Laelaps I.

Laelaps Il (Figure 3-2) has certain improvements that distinguish it from its previous version Laelaps |
regarding both mechanical and electrical properties. This chapter presents the main features of the robot that
intersect with motion control; more specifically the leg design, the actuator-related characteristics and the

power supply systems.

69/147

Figure 3-2. Laelaps Il.

Laelaps Il, compared to the first quadruped, has several enhacements including:
= New leg design, fibraticed with lightweight carbon fiber tubes and custom alluminium parts
= Replacement of the PCle/104 tower, which was used as the central control unit of all motors with four
identical EtherCAT Slave towers with each controlling the motion of one leg based on parameters
designated by an EtherCAT Master (decentralized control)
= Upgraded driver extension boards to deal with issues encountered in the former design
= Reallocation of the front parts of the body so that all fours legs are symmetrically distributed
Most of the electrical upgrades are thoroughly described in [5] and readers are encouraged to refer to its

fourth chapter for more details.

3.1.1 Leg design and motion planning

Although each leg clearly consists of three links (Figure 3-3), due to the fact that the attached spring is highly
stiff, we consent that it comprises of two links (upper actual, lower virtual).

actual link

stiff spring
N virtual link
"4

Figure 3-3. Actual and virtual links of Laelaps Il legs.

Figure 3-4 illustrates the motion planning and control parameters of the leg which will be used in our

project.

70/147

Figure 3-4. Leg model.

Forward Kinematics

Xe =l sin@, +1,siné,

(3-1)
ye =1, cosé, +1,cosé,
Inverse Kinematics
Using the law of cosines:
p=0,-6,
Xg’ +Ye =12 +17 =211, cos(z — @) =17 +13 + 211, cosp
2 2 2 2
cosgp =2 Ve () (3-2)
211,
sing = —J1—cos? ¢
@ = atan 2(sin ¢, cos @)
Finally,
T .
6, = 5 atan2(yg,X:)+atan2(l;sing,l, +1,cosp) (3-3)

6, =6, —atan 2(sinp,cos @)

Leg’s Workspace

The maximum effective length of the leg (knee joint at end-stop) is given by,

71/147

Ly . =1 +1, =250+ 350 = 600mm (3-4)

eff ,max

The minimum effective length of the leg (knee joint at end-stop) is given by,

Ly i =%+ 1,2 =+/250? + 350 =430.1163mm (3-5)

eff ,min

Figure 3-5. Leg's workspace.

Trajectory Planning

The firmware of each slave is specifically configured to enable each leg to move along (semi)elliptical
trajectories with all the parameters controlled by the master, along the lines of [31] . Hence, all slaves
exclusively handle the calculation payload for the motion control of each leg. The EtherCAT Master just
determines a list of necessary parameters for the desired elliptical trajectory which are listed in the
TrajectoryParameters Record of Table 3-1. The elliptical shape is defined by (3-6) w.r.t. point 0 (hip axis)
defined in Figure 3-4, and must always be within the limits of the leg’s workspace. Therefore, the current
project running in all slave devices is programmed in such way that it forbids any leg to move outside its
predefined workspace, yet it will stay at the last acceptable (xwaj,Yyra)) point until a new allowed one is passed

to the Inverse Kinematics code implementation.

XTFﬁj = Xtraj,cntr + acos(a)trajt + (0)

: (3-6)
ytraj = ytraj,cntr + bSIn(a)"ajt + (0)

To model the impedance of the treadmill’s floor, a flattening parameters has been added on the y axis
amplitude (b), altering the shape of the elliptical trajectory as shown in Figure 3-6.For more information

regarding the aforementioned leg design, motion planning and control, refer to [34] .

Visualization in Matlab

For testing purposes and evaluation, a Matlab script was written to visualize the leg motion. This helps in
Laelaps experiments in order to accurately define the elliptical parameters for each slave and avoid errors
regarding motion planning. Snapshots from the execution of the code are illustrated in Figure 3-6. Developers
may find and use this testing tool at [35] and Matlab Leg Modelling Code.

72/147

Configuration of leg

-0.1

oh
01
@ 02
x
@©
> 03
v
+ 04 /
05t EZ
06 —
07
-0.3 -0.2 -0.1 0 0.1 0.2
X axis --> +
Configuration of leg
-0.1 ; : }
or]
01F
@ 02f
% \
8 p
> 03 /
!
v /
+ 041
05
06 —e
07
0.3 0.2 0.1 0 0.1 0.2
X axis --> +

+ <--y axis

+ <--y axis

Figure 3-6. Visualization of legs motion in Matlab.

3.1.2 Electrical system

-0.1

Configuration of leg

01

0.2

03r

0.4

0.5

0.6 [

0.7
-0.3

X axis --> +

Configuration of leg

0.1

02

0.3

04

0.5

0.6 -

0.7
-0.3

L
-0.2

-0.1 0 0.1 02
X axis --> +

As mentioned above, the electrical system of Laelaps is exhaustively described in Chapter 4 of [5] . Therefore
in this thesis, the approach is EtherCAT slave oriented and towards preparing Laelaps Il for experiments.

However, a fundamental overview of the electrical scheme is included to understand the general concept.

The main electrical components are:

= The High Power Distribution board which provides high power to all drivers.

= The Logic Power supply system with voltage regulators (5V) supplying all EtherCAT towers.

= 8 motor driver boards (amplifiers) (along with their designated extension boards mounted on top)

configured for current control. Four of the drivers are connected to brushed motors which drive the knee

of each leg and the rest are connected to brushless motors which control the hip motion.

= 4 EtherCAT Control Tower Assembly slaves connected to the motor drivers and the encoders of each

leg.

It is worth mentioning that due to the mounting of the motors onto the body, each set of EtherCAT tower

and connected drivers controls the leg of the other side (left — right). For example, the indicated EtherCAT

Control Tower Assembly and Drivers with Extension Boards of Figure 3-7 control the motion of the Fore Right

Leg and NOT the Fore Left Leg which is visible in the same figure. This detail is of utmost importance when

downloading a project to the Delfino boards since users must not confuse the Build Configuration with the side

of Laelaps legs.

73/147

-

% M
o cr. o

/

3 3
therCAT TDI;IEI’ Assembly
” €

- 7 .,

; G
T QLA
"' '~’~‘

Figure 3-7. Electrical System of Laelaps.

EtherCAT Tower Assembly

As specified above, each leg of Laelaps is being controlled by one EtherCAT Control Tower Assembly which
plays the role of an EtherCAT slave in the configured network. Hence, four identical assemblies needed to be
constructed to control Laelaps Il. Figure 3-8 shows the final version of the EtherCAT Control Tower Assembly
that was used throughout the trotting experiments. Except for the components described in EtherCAT Slave
Requirements and illustrated in Figure 2-32, the assembly also includes:
= a TMS320F28379D Extension board interfacing with all necessary peripherals (ePWM, eQEP etc.) for
two motors presented in section 4.4.3 of [5]
= a voltage regulator (DC - DC converter, Step — Down 5V 2A USB [36]) supplying the logic power to
the whole assembly
= a plexiglass supporting base for mounting purposes on the Laelaps body

TMS320F28379D Extension Board

A s

micro USB

Voltage Regulator

Plexiglass Supporting Base

Figure 3-8. EtherCAT Control Tower Assembly.

74/147

Figure 3-9 shows the entire EtherCAT Control Tower Assembly mounted on Laelaps Il robot. All four
slave devices are connected to the EtherCAT network as shown in Figure 2-24 starting from the Hind Right
Leg and ending with the Fore Right Leg.

Figure 3-9. EtherCAT Control Tower Assembly on Laelaps II.

3.2 Motion Control of Laelaps via EtherCAT Solution Guide

This section describes the configuration process of the complete EtherCAT network. Developers are strongly
advised to go through and emulate the instructions of EtherCAT Application Solution Guide before moving to
this chapter to make sure that they have fully comprehended EtherCAT technology and its implementation

process.

Importing the Project

1. Navigate to the following link [35] and download EtherCAT Laelaps Motion Control repository including a
CCS project and an xml ENI file.

2. Import the EtherCAT Laelaps Motion Control CCS project into Code Composer Studio by following the
instructions of Import CCS project into Code Composer Studio.

3. Specify and Link the desired Target Configuration of the development by following the instructions of Define

and Select Target Configuration.

Firmware Structure

The project files are again separated into two main folders:
= SPI_EtherCAT_slave_stack which contains all the files that realize the Generic EtherCAT Stack Layer
and the User Application (identical code structure with EtherCAT Application Solution Guide but different

EtherCAT variables and control application).

75/147

= hal which contains all the necessary files that initialize and configure the MCU functionalities and

control peripherals (ePWM, eQEP, DCL control, GPIO’s etc) and materialize the PDI and Hardware

Abstraction Layer (SPI functions to communicate with the ESC).

The main motor control features annexed in this project are thoroughly described in Chapter 5 of [5]
including detailed information regarding the initialization and configuration procedure. This work will illustrate
the modifications that needed to be implemented in order to enable extra functionalities required in this
project, reduce the execution time and configure the control application.

In Table 3-1, developers can monitor the Output variables of the project as handled by the EtherCAT

communication.

Table 3-1. EtherCAT Laelaps Motion Control Output variables.
Index Sub Index Data Type Name Comments
0x7000 Record Buttons
0x01 BOOL State_Machine State Machine variable
0x02 BOOL Initialize_clock not used
0x03 BOOL Initialize_angles not used
0x04 BOOL Inverse_Kinematics not used
0x05 BOOL Blue_LED light Blue LED
0x06 BOOL Red_LED light Red LED
0x07 BOOL Buttonl not used
0x08 BOOL Button2 not used
0x09 INT8 Transition_time Time for smooth transition functions [s]
0x7010 Record Desired_x_value
0x01 ‘ INT32 Desired_x_value Not read by SPI (for future use)
0x7012 Record TargetMode
0x01 ‘ UINT16 FilterBandwidth First order lag filter frequency [HZz]
0x7014 Record Desired_y value
0x01 ‘ INT32 Desired_y value Not read by SPI (for future use)
0x7020 Record ControlGains PIV Gains
0x01 INT16 Kpl100_knee Proportional gain of knee motor / 100
0x02 INT16 Kd1000_knee Velocity gain of knee motor / 1000
0x03 INT16 Kil100_knee Integral gain of knee motor / 100
0x04 INT16 Kp100_hip Proportional gain of hip motor / 100
0x05 INT16 Kd1000_hip Velocity gain of hip motor / 1000
0x06 INT16 Ki100_hip Integral gain of hip motor / 100
0x7030 Record TrajectoryParameters Elliptical trajectory parameters
0x01 INT16 x_cntr_traj1000 x centre of the ellipsis [mm]
0x02 INT16 y_cntr_traj1000 y centre of the ellipsis [mm]
0x03 INT16 a_ellipse100 Amplitude of x axis[cm]
0x04 INT16 b_ellipse100 Amplitude of y axis[cm]
0x05 INT16 traj_freql00 Trajectory’s frequency [Hz] / 100
0x06 INT16 phase_deg Trajectory’s initial phase of [deg]
0x07 INT16 FlatnessParam100 Flatness parameter of y axis / 100

76/147

In order to reduce the EtherCAT frame payload, most of the variables are configured for their minimum
unit values (ex highest practical precision required for the (x,y) center of the planning ellipsis w.r.t pint 0 —hip
axis- is milimeters) in order to avoid using REAL type variables (64 bit). For example, for an Online Write of
the output variable Kp100_knee with the value 10, it will be divided by 100 (as specified by Table 3-1) and
translated into 0.1 for the Proportional gain of the knee motor within the stack. In Table 3-2, developers can

monitor the Input variables of the project as handled by the EtherCAT communication.

Table 3-2. EtherCAT Laelaps Motion Control Input variables.

Index Sub Index Data Type Name Comments
0x6010 Record hip_angle
0x01 INT16 hip_angle Rotational angle of hip [deg] * 100
0x02 INT16 Desired_hip_angle Desired rotation angle of hip [deg] * 100
0x6012 Record FeedbackTime
0x01 UINT16 Time Time variable from slave device [sec]
0x6014 Record knee_angle
0x01 INT16 knee_angle Rotational angle of knee [deg] * 100
0x02 INT16 Desired_knee_angle | Desired rotation angle of knee [deg] * 100
0x6020 Record Commands
0x01 INT16 PWM10000_knee Output of PIV control for knee [%] * 100
0x02 INT16 PWM10000_hip Output of PIV control for hip [%] * 100
0x6030 Record Velocity
0x01 INT32 velocity _kneel000 Rotational speed of knee [rad/s] * 1000
0x02 INT32 velocity _hip1000 Rotational speed of hip [rad/s] * 1000

The most significant functions implemented in EtherCAT_Laelaps_Motion_Control.c are:
= APPL_GenerateMapping(): sends the Input and Output size of the process data interface - Figure

3-10.
25
25
252 \return B (ALSTATUSCODE_NOERROR), MOERROR_INWORK
253 \param pInputSize pointer to save the input process data length
254 \param pOutputSize pointer to save the output process data length
255
256)
2577
258
259
260 *pInputSize = 22;
261 *pOutputSize = 38;
262 return ALSTATUSCODE_NOERROR;
263 }
264
2

Figure 3-10. APPL_GenerateMapping() function.

= APPL_InputMapping(): copies the Input variables from the local memory of the slave (Delfino MCU) to
the ESC memory - Figure 3-11.

77/147

=] PR AR AR AR

267 pData pointer to input process data

2638

269 \brief This functiecn copies the Input variables from the local memory to the ESC memory

27 FEETEEFEFETEE T AT T EF i i i i i i fdiii i fiiidddfiiidfddiiiidddfiiiddidfiiidfiddfiiidfidiiiiss

271 woid APPL_InputMapping(UINT16* pData)

272 {

273 uintle_t *pTmpData = (uintls_t *)pData;

274 /* TxPDO 1*/

275 memcpy (pTmpData, &hip angle®x6@1@.hip_angle,SIZEOF(hip_angle@xe@1@.hip_angle));

276 pTmpData ++;

277 memcpy (pTmpData, &hip_angle@x6@18.Desired_hip_angle,SIZEOF(hip_angle@x6@1@.Desired_hip_angle));
278 pTmpData ++;

279 memcpy (pTmpData, &FeedbackTime@x6812.Time,SIZEOF(FeedbackTime@x6@12.Time));

288 pTmpData ++;

281 memcpy (pTmpData, &knee_angle@x68l4.knee_angle,SIZEOF(knee_angle@x6@l4.knee_angle));

282 pTmpData ++;

283 memcpy (pTmpData, &knee_angle@x6@14.Desired_knee_angle,SIZEQF (knee_angle@x6@814.Desired_knee_angle));
284 pTmpData ++;

285 memcpy (pTmpData, &Commands@x6828.PWM1eRER_knee,SIZEOF (Commands@x6828. PLM1EBBR_knee));

286 pTmpData ++;

287 memcpy (pTmpData, &Commandse@x6@28.PWM1eaes_hip,SIZEOF (Commands@x6@2@.PWMlaead_hip));

288 pTmpData ++;

289 memcpy (pTmpData, &Velocity@xs@3@.velocity kneel®®d,SIZEOF(Velocity®x6@38.velocity kneeldsa));
298 pTmpData += 2;

291 memcpy (pTmpData, &Velocity@x683@.velocity hipleee,SIZEOF(Velocity®x6838.velocity kneelBea));
202 }

293

e N N N N N NN NN NN NNy

Figure 3-11. APPL_InputMapping() function.

= APPL_OutputMapping(): copies the Output variables from the ESC memory to the local memory of the
Delfino MCU slave to update their values within the application - Figure 3-12. It is worth mentioning that
Desired_x_value and Desired_y_value output variables purposely remained in the EtherCAT frame and
were not removed for future developers who want to quickly add two more 32bit variables (or even four
16bit variables with minor modifications). Yet, in order to reduce the execution time of
APPL_OutputMapping() function and consequently EtherCAT’s cycle time, these two variables are not
being updated within the stack. The only necessary alteration to enable these variables is to uncomment

and comment the indicated parts of the function.

78/147

;

296 \param pData pointer to output process data

297

298 \brief This function will copies the outputs from the ESC memory to the local memory

299

S

501 void APPL_OutputMapping(UINT16* pData)

302 {

303 uintlé_t *pTmpData = (uintl6_t *)pData;// allow byte processing

304 uintle_t data = @;

385

386 /* RxPDO */

307 data = (*(volatile uintl6_t *)pTmpData);

308 (Buttons@x78@8.5tate_Machine) = data & &x1;

389 data = data »>> 1;

310 (Buttons@x7@@8.Initialize clock) = data & @xl;

311 data = data >> 1;

312 (Buttons@x7eee.Initialize_angles) = data & @xl;

313 data = data >> 1;

314 (Buttons@x7@ee.Inverse_Kinematics) = data & @xl;

315 data = data »>»> 1;

316 (Buttons@x78@8.6lue_LED) = data & @x1;

317 data = data »>> 1;

318 (Buttons@x7@@8.Red_LED) = data & @xl;

319 data = data >> 1;

328 (Buttons@x7@ee.Buttonl) = data & @xl;

321 data = data >» 1;

322 (Buttons@x7@@@.Button2) = data & @xl;

323 data = data »>> 1;

324 (Buttons@x78@8.Transition_time) = data & 8xFF;

325

326 /* Uncomment the following lines if you want to read Desired_x value and Desired_y_value
327 //pTmpData++;

328 /fmemcpy (&Desired_x_walue@x7@1@.Desired_x_value,pTmpData,SIZEOF (Desired_x_value@x7@18.Desired_x_value));
329 pTmplata += 2;

338 //memepy (&TargetMode®x7812. FilterBandwidth, pTmpData, SIZEQF (TargetModedx7012.FilterBandwidth)) ;
331 //pTmpData ++;

332 //memcpy (BDesired_y_value®x7@14.Desired_y_value,pTmpData,SIZEOF (Desired_y_ value@x7@14.Desired_y_value));
333 //pTmpData += 2;*/

334

335 /* Comment the 3 lines bellow if you want to read Desired_x_value and Desired_y_value */
336 pTmpData += 3; //Don't read Desired_x_walue to reduce execution time

337 memcpy(&TargetMode®x7812. FilterBandwidth,pTmpData,SIZEOF (TargetModedx7812.FilterBandwidth));
338 pTmpData += 3; //Don’'t read Desired_y walue to reduce execution time

339

340 memcpy { &ControlGains@x7828.Kplea_knee,pTmpData,SIZEOF (ControlGains@x7826.Kplad_knee));
341 pTmpData ++;

342 memcpy (&ControlGains@x7828.Kd1888_knee,pTmpData, SIZEOF (ControlGains@x76208.Kd1eea_knee));

pTmpData ++;

memcpy (&ControlGains@x7e20.K118e_knee,pTmpData,SIZEOF(ControlGains@x7@2@.K1i18e_knee));
pTmpData ++;

memcpy (&ControlGains@x7@28.Kplee_hip,pTmpData, SIZECF(ControlGainsex7@28.Kplea_hip));
pTmpData ++;

memcpy (&ControlGains@x7826.Kd1ee8_hip,pTmpData,SIZEOF (ControlGains@x7026.Kd16ee_hip));
pTmpData ++;

memcpy (&ControlGains@x7e28.Ki1ee_hip,pTmpData,SIZEOF(ControlGains@x7e28.Kilea_hip));
pTmplata ++;

memcpy(&TrajectoryParameters@x7830.x_cntr_trajleea,pTmpData, SIZEOF (TrajectoryParameters@x7@30.x_cntr_trajlees));
pTmpData ++;

memcpy(&TrajectoryParameters@x7@3@.y_cntr_trajleea,pTmpData, SIZEOF(TrajectoryParameters@x7@30.y_cntr_trajleee));
pTmpData ++;

memcpy(&TrajectoryParameters@x7@3@.a_ellipsel@d, pTmpData, SIZEOF (TrajectoryParameters@x7@3@.a_esllipselel));
pTmpData ++;

memcpy(&TrajectoryParameters@x7838.b_ellipsel88, pTmpData, SIZEQOF (TrajectoryParameters@x7838.b_ellipseldd));
pTmpData ++;

memcpy(&TrajectoryParameters@x7830.traj_freql®ed, pTmpData, SIZEOF (TrajectoryParameters@x7@30.traj_freqlea));
pTmpData ++;

memcpy(&TrajectoryParameters@x7@3@.phase_deg, pTmpData, SIZEOF (TrajectoryParameters@x7@3@.phase_deg));

pTmpData ++;

memcpy(&TrajectoryParameters@x7@3@.FlatnessParamlee, pTmphata, SIZEOF (TrajectoryParameters@x7@3@.FlatnessParamlea)) ;

Figure 3-12. APPL_OutputMapping() function.

= APPL_Application(): contains the User - Control Application. This function materializes the trajectory
planning control which is initiated every time the State_Machine EtherCAT output variable is set to 1 and
is terminated when it is set to O (the time variable starts and resets accordingly), the inverse kinematics
algorithm if the desired end effector position is within the workspace of the leg and most importantly,

updates all EtherCAT variables that are exploited within the stack (Figure 3-13).

79/147

368 /AL EILITEEET LD ER IR R TR LA IR IR EA TR LTI IR TR AT R I EEIi0EEE T

369 /**
378 \brief This function will callad frum the synchrenisatien ISR
371 or from the mainleogp if no synchronisation is supported executing the control application

372 “/’//f/’/ff’/fff’/f/’/f///f//ff’/fff’/f/’/ff’//f//ff’/fff’/f/’/ff’//ff’/ff’/ff/’/f/’/ff’//f//f//ff//f//ff’//
=73 woid APPL_Application(void)

374 {

375

376 // State indicates Configuration State (8) or Operational State (1)

377 State_Machine = Buttons@x7@@8.State_Machine;

378 if (Buttons@x788@.Transition_time)

379 Transition_time = (float)Buttons@x7eed.Transition_time; //Update the transition time of the smoothing variables

380

381 //Retrieve the cycle time for the time variable

382 unsigned long cycleTime = sSyncManOutPar.u325yncBCycleTime;

383 float dt = cycleTime/1000000000.0T; //Calculate the di [s] depending on EtherCAT cycle time. Used in time variable t [s]

384

385 GPIO_WritePin(31, !Buttonsex7e@6.Blue LED); // Turn on/off blue LED (GPI031) depending on cutput of Blue_LED for debug purpose
386 GPIO WritePin(34, !Buttons@x788@.Red_LED); // Turn on/off red LED (GPIO31) depending on output of Red_LED for debug purpose

387

388 //Rotational angles of the leg to the Master

389 hip angle@x6@1@.hip_angle = (int)hip_anglele@; //send hip angle [deg] to Master (max value that can be measured +- 327 degrees)
396 knee_angle@x6014.knee_angle = (int)knee_anglel@@d; //Send knee angle [deg] to Master (max value that can be measured +- 327 degrees)
391

392 //Rotational speed of the leg to the Master

393 Velocity®x6830.velocity kneel®d® = velocity kneel®®@; //Send rotational speed of knee angle [rad/s] to Master
394 VelocityBx683@.velocity hipleee = velocity_hipleee; //Send rotational speed of hip angle [rad/s] to Master
395

396 /fOutputs of PID controllers to motors sent to the Master

397 Commands@x682@. PWM1eeee_knee = commandl; //Send output of PID controller for knee motor to Master

398 Commands@x6020 . PWM18888_hip = command2; //Send cutput of PID controller for hip motor to Master

399

400 if (TargetMode®x7@12.FilterBandwidth)

481 FilterBandwidth = TargetMode@x7812.FilterBandwidth;
482

483 /* State Machine dependent */
484 if (State_Machine){ //Cperaticnal State

485 //start clock if State Machine is 1

406 t =t + dt; //time variable in seconds

487 float angle = traj_vel * t + phase; //calculate angle of the ellipsis

408 if (fmodf(angle,2.8f*pi) < pi)

409 b_ellipse_flat = flatParam * b_ellipse; //simulate the ground

410 else

411 b_ellipse_flat = b_ellipse;

412 x_value = x_traj_cntr + a_ellipse * cosf(angle); //End Effector’s x axis value

413 y_value = y_traj_cntr + b_ellipse_flat * sinf(angle); //End Effector’s x axis value

414

415 if (sqrt{x_value*x_value+y_value*y value) > rmin && sqrt(x_value*x_value+y value*y_value) < rmax){ //if (x,y) within the workspace
416 /{ Inverse Kinematics calculations (included math.h for the mathematical functions)

417 float c_invk = (y_value*y wvalue + x_walue*x value - 11*11 - 12*12)/(2*11*12);

418 float s_invk = -sqrif(l-c_invk*c_invk);

419 float knee_angle = - atan2f(y_value,x_value) + atan2f(ll * s_invk, 12 + 11 * c_invk) + pi/2;

420 float hip_angle = knee_angle - atan2f(s_invk, c_invk)};

421 #ifdef RIGHT_LEG //Right leg configuration

422 Desired_hip_angle=-hip angle/(2.@f*pi); //normalized value for PID controller (like: (hip_angle*18@/pi)/36@))
423 Desired_knee_angle=-knee_angle/(2.8f*pi); //normalized value for PID controller (like: (hip_angle*18e/pi)/36@))
424 #elif LEFT_LEG //Left leg configuration

425 Desired_hip_angle=hip_angle/(2.8f*pi); //normalized value for PID controller (like: (hip_angle*186/pi)/36@))
426 Desired_knee_angle=knee_angle/(2.8f*pi}); //normalized value for PID controller (like: (hip_angle*18@/pi)/36@))
427 #endif

428

429 }else{ // Configuration State

438 t=0.8f; //Reset clock if State_machine is 0O

431 3}

432

433 //send the time to Master

434 FeedbackTime@x6@12.Time = (unsigned int)(t*1@@.@f); //For debug purposes to secure proper EtherCAT implementation

435

436 //Desired rotational angle of the leg to the Master
437 hip_angle@x6@16.Desired_hip_angle = (int)(Desired_hip angle * 360.8f * 188.8f); //Send Desired hip angle to Master

438 knee_angle@x6@14.Desired_knee_angle = (int)(Desired_knee_angle * 36@.0f * 1@@.@f); //Send Desired knee angle to Master
439

440 // Update Control Gains using the Smooth Transition Functions (CalculateAdder and Updatevalue)

441 if (ControlGains@x7@28.Kpled_knee != Kp_knee_old)

442 Kp_knee_adder = CalculateAdder(ControlGains@x7@26.Kplee_knee/16@.8f,Kp_knee,Transition_time,dt);

443 Kp_knee = UpdateValue(Kp_knee,ControlGains@x7820.Kkplee knee/108.0f,Kp knee adder);

. if (ControlGains@x782@.Kd10ee_knee != Kd_knee_old)

445 Kd_knee_adder = CalculateAdder(ControlGainsex7@28.Kd1eee_knee/l@@8.af,Kd knee,Transition_time,dt);
445 Kd_knee = UpdateValue(Kd_knee,ControlGainséx7@2@.Kdlese_knee/le8e.af,Kd_knee_adder);

447 if (ControlGains@x7@2@.Kpled_hip != Kp_hip_old)

443 Kp_hip_adder = CalculateAdder(ControlGains@x7@28.Kple@_hip/16@.ef,Kp_hip,Transition_time,dt);

449 Kp_hip = UpdateValue{Kp_hip,ControlGainse@x782@.Kple@_hip/10@.ef,Kp_hip_adder);
458 if (ControlGains@x7@2@.Kd1eee_hip !'= Kd_hip old)

451 Kd_hip_adder = CalculateAdder(ControlGains@x7e2@.Kd1eeé_hip/1@ee.8f,Kd_hip,Transition_time,dt);

452 Kd_hip = UpdateValue(kd_hip,ControlGainsex7e2@.Kd1leea_hip/leee.ef,kd_hip_adder);

453

454 // Update Parameters of Ellipsis using the Smooth Transition Functions (CalculateAdder and UpdateValue)

455 x_traj_cntr = TrajectoryParameters@x7@30.x_cntr_trajleee/leee.ef;

456 y_traj_ecntr = TrajectoryParameters@x7@38.y cntr_trajleee/lees.af;

457 if (TrajectoryParametersex7638.a_ellipsel@@ != a_ellipse old)

458 a_ellipse_adder = CalculateAdder(TrajectoryParameters@x7@3@.a_ellipselee/100.ef,a_ellipse,Transition_time,dt);
459 a_ellipse = UpdateValue(a_ellipse,TrajectoryParameters@x7@38.a_ellipsel@d/106.0f,a_ellipse_adder);

468 if (TrajectoryParameters@x7@30.b_ellipsel@@ != b_ellipse_old)

461 b_ellipse_adder = CalculateAdder(TrajectoryParameters@x783@.b_ellipsel@e/10@.ef,b_ellipse,Transition_time,dt);
462 b_ellipse = UpdateValue(b_ellipse,TrajectoryParametersex7638.b_ellipselea/1808.67,b ellipse adder);

463 if (TrajectoryParametersex7630.traj_freqlee > @)

464 traj_freq = TrajectoryParameters@x7830.traj_freqlee/1e8.ef; //trajectory frequency

465 traj_vel = traj_freq*2.ef*pi; // rotational speed = 2*pi*f
466 phase = ((float)TrajectoryParameters@x783@.phase_deg)*pi/180.0f;

467 flatParam = TrajectoryParameters@x7@3@.FlatnessParamlee/188.ef; // flatness of the toe trajectory in stance phase
4638
469 //save old parameters to compare with the new values

478 Kp_knee_old = ControlGains@x782@.Kpled_knee;
471 Kd_knee_old = ControlGains@x702@.Kd1888_knee;

472 Kp_hip_old = ControlGains@x7@2@.Kplee_hip;

473 Kd_hip_old = ControlGains@x7@2@.Kd1eee hip;

474 a_ellipse old = TrajectoryParameters@x783@.a_ellipsels@;
475 b_ellipse_old = TrajectoryParameterseéx783e.b_ellipselee;
476}

ATBSLIILEETEFEE TR EE DT TSR F R TS F R F RS F T F LT Eii i

Figure 3-13. APPL_Application() function.

80/147

All EtherCAT variables that affect the control output of the PIV controller are updated using a function
that makes this transition smoother (linear with time) and minimizes the possibility of sharp leg movements.
Note that the transition time of these functions is also handled in real time by EtherCAT (Transition_time
output variable) and that there is a predefined symbol (RIGHT _LEG — LEFT_LEG) to determine whether the
project is built for a right or a left Laelaps leg shown in Figure 3-13.

PIV Motor Controller

In our application, C2000 Digital Control Library [11] is exploited to implement the desired controller.
Extending the initial attempt described in Chapter 5 of [5] we have configured two linear PIV controllers
(Proportional - Velocity — Integral), one for each joint of every leg. The function which realizes this controller is
called DCL_runPID_C1(), it is coded in assembly and it's block diagram is the one depicted in Figure 3-14. It
is worth mentioning that the controller function includes a digital low-pass filter to avoid amplification of
unwanted high frequency noise. The filter is a simple first order lag filter with differentiator, converted into
discrete form using the Tustin transform. Hence, the velocity estimation is executed within this function and it
is not supplied externally. For more information, refer to page 14 of [11] .

nik) C

— () % O ; Dr :‘//l;“ —= L)
T. e (1] - O—
Lo L) \ (_\L
[B } e ik

R L. v
ky @% Al ’——[}j\

Figure 3-14. DCL_runPID_C1() block diagram.

In case users desire to realize a linear PID (Proportional - Derivative — Integral) controller
(DCL_runPID_C4() function) instead of the already defined PIV, they should comment out lines 932 of Figure
3-15 and 1021 of Figure 3-16 and uncomment lines 931 and 1020 respectively. Developers who desire to
realize the above PIV controller in a Matlab simulation for testing purposes, can refer to Matlab PIV controller
simulation.

The control-related part of the firmware is realized in etherCAT_slave_c28x_hal.c (under hal folder).
The most important functions — interrupt service routines (ISRs) configured are:

= Epwml_isr(): realizes the PIV controller for the knee motor (brushed) - Figure 3-15.

81/147

887 // ISR to handle EPWML ISR
888 // prdTick - EPWM1 Interrupts once every 3 QCLK counts (one period)

590 interrupt void epwml_isr(void)

891 {

892 if (intlent == 2) //l@khz control loop frequency

893 {

894 EALLOW;

895 // Control Motor 1 Knee (Brushed)

896 // 1st Encoder Read (28@@ counts per revolution)

897 // Read raw values of eQEPs

898 qep_posspeed.calc(fqep_posspeed);

899

Ll //Read raw position eQEP1

981 if ((unsigned long int) qep_posspeed.raw_posl > pos_init)

982 raw_posl = (unsigned long int) gep_posspeed.raw_posl - pos_init;

9@3 else

984 raw_posl = -(pos_init - (unsigned long int) gep_posspeed.raw_posl);

985

986 //Calculate rotational Speed of knee

a7 velocity kneel@®@ = (long)(gep_posspeed.Speed_pri*leea.af);

988

989 //Translate raw value to normalized angle (gear ratio for knee added)

91e float ngwnial = (raw_posl * g.ef * 26.ef)/(2eee.ef * 343.ef * 48.ef); //normalized knee angle
911 knee_anglel®® = ngwnial * 36@.8T*16@.@f; //knee angle for the EtherCAT Master
912

913 float ftc = 1.8f/(FilterBandwidth*2.@f*pi); // fic = filter time constant

914

915 // Update gains for PID Control of knee

916 pidl.Kp=Kp_knee;

917 pidl.Kd=Kd_knee;

918 pidl.Ki=Ki_knee;

919 if (!pidl.Ki)

928 pidl.i1e=8.6f; //if I want to remove Ki term, the control output must clear the integral path
921

922 //First order lag filter with differentiator coefficients

923 pidl.cl=2.@f/(T+2.8f*ftc);

924 pidl.c2=(T-2.@F*ftc)/(T+2.8F*Ftc);

925

926 //Max and min values of knee's PWM command

927 pidl.Umax=Umax_knee; //max

928 pidl.Umin=-Umax_knee;

929

938 //Run PID controller

931 //ukl = DCL_runPID_C4(&pidl, Desired_knee_angle, ngwnial, lk1); //PID controller
932 ukl = DCL_runPID_C1{&pidl, Desired_knee_angle, ngwnial, 1lk1); //PIV controller
933 commandl=(int) (ukl*1e088.07);

934

935 // set direction of knee motor

936 if (ukl »= @.ef)

937 GPIO_WritePin(DIR1_GPIO, @);

938 else

939 {

248 GPIO_WritePin(DIR1_GPIO, 1);

941 ukl = -ukl;

942 1

943

944 // Update PWM duty cycle only when Operational mode(State_Machine=1)

945 if (State_Machine) //Operaticnal mode

946 EPwmlRegs.CMPA.bit.CMPA = (1.8f - ukl) * 5P;

947 else //Configuration mode

948 EPwmlRegs.CMPA.bit.CMPA = 5P;

944

958 // Reset interrupt counter

951 intlent = 8;

952

953 //Uncomment the following lines to enable reading the values of the 3rd encoder
954 e
955 1 // 3rd Encoder Read

956 /I // Read raw values of eQEPs

957 1 qep_posspeed.calc(f&qep, posspesd);

958 1

959 1 //Read raw position eQEP3

968 1 if ((unsigned long int) qep_posspeed.raw_pos3 > pos_init)

961 1 raw_pos3 = (unsigned long int) qep_posspeed.raw_pos3 - pos_init;
962 I else

963 I raw_pos3 = -(pos_init - (unsigned long int) gep_posspeed.raw_pos3);
964 =
965 1

966 intlent++;

967

968 EDIS;

969 // Clear INT flag for this timer

a7e EPwmlRegs.ETCLR.bit.INT = 1;

971 1

a72 // Acknowledge this _ interrupt to receive more __ interrupts from group 3

a73 1

974 PieCtrlRegs.PIEACK.all = PIEACK GROUP3;

975}

Figure 3-15. Epwm1_isr() function.

82/147

= Epwm2_isr(): realizes the PIV controller for the hip motor (brushless) - Figure 3-16.

982
983
984
985
986
987
988
989
99@
991
992
993
994
995
996

ISR to handle W12 ISR
prdTick - EPWM2 Interrupts once every 3 QCLK counts (ocne period)

980 interrupt void epwm2_isr({void)
981 {

if (int2ent == 2) //1@khz control loop frequency
EALLOW;
// Control Motor 2 Hip (Brushless)

'/ 2nd Encoder Read (28@@ counts per revolution)
// Read raw wvalues of eQEPs
gqep_posspeed.calc(&qep_posspeed);
if ((wnsigned lonmg int) qep_posspeed.raw_pos2 > pos_init)
raw_pos2 = (unsigned long int) gep_posspeed.raw_pos2 - pos_init;
else
raw_pos2 = -(pos_init - (unsigned long int) gqep_posspeed.raw_pos2);

//Calculate rotational Speed of hip (gear ration for hip added)
velocity_hipleee = (long)(gep_posspeed.Speed_pr2*leea.af);

//Translate raw value to normalized angle
float ngwnia2 = (raw_pos2 * 12.@f * 26.ef)/(2eee.ef * 37.ef * a8.@f);//normalized knee angle
hip_anglel®® = ngwnia2 * 36@.@f*1e@.ef; //hip angle for the EtherCAT Master

float fte=1.ef/(FilterBandwidth*2.@f*pi); // fic = filter time constant

// Update gains for PID Control of hip
pid2.Kp=Kp_hip;
pid2.Kd=Kd_hip;
pid2.Ki=Ki_hip;

if (!pid2.Ki)
pid2.i1@=0.8f; //if I want to remove Ki term, the control output must clear the integral path

//First order lag filter with differentiater coefficients
pid2.cl=2.0f/(T+2.0f*ftc);
pid2.c2=(T-2.ef*ftc)/(T+2.ef*ftc);

//Max and min values of hip's PWM command
pid2.Umax=Umax_hip;
pid2.Umin=-Umax_hip;

// Run PID controller

//uk2 = DCL_runPID_C4(&pid2, rk2, ngwnia2, 1lk2); //PID Contrcller

uk2 = DCL_runPID_C1(&pid2, Desired_hip_angle, ngwnia2, 1k2); //PIV Controller
command2={int) (uk2*1ee80.8T);

// set direction of hip motor
if (uk2 >= 8.8f)

GPIO_WritePin(DIR2_GPIO, @);
else

GPIO WritePin(DIRZ_GPIO, 1);
uk2 = -uk2;
}

// Update PWM duty cycle only when Operaticonal mede(State_Machine=1)
if (State_Machine) //Operational mode

EPwm2Regs.CMPA.bit.CMPA = (1.8 - uk2) * SP;
else //Configuration mode

EPwm2Regs.CMPA.bit.CMPA = 5P;

// Reset interrupt counter
intZent = @;

int2cnt++;

EDIS;

// Clear INT flag for this timer
EPwm2Regs.ETCLR.bit.INT = 1;
.". .".

// Acknowledge this _ interrupt to receive more _ interrupts from group 3
|’.|’.

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

Figure 3-16. Epwm?2_isr() function.

All variables responsible for the PIV controller are handled via EtherCAT, therefore developers can alter

all parameters in real time. The only control parameters that are predefined and users must download the

firmware again to all slaves in order to modify them are the maximum allowed values of PWM signals to both

83/147

motors, namely Umax_knee (38,25%) and Umax_hip (41,17%). Their definition is located at the global
variable declaration section of etherCAT_slave c28x_hal.c based, on each motor's maximum allowed
continuous current. Refer to Laelaps Il motors and gearheads for more information regarding the selected
motors and gearheads.

Rotational Speed Calculation

Estimating the rotational speed of each joint is crucial in this application to ensure that a motor does not
exceed the maximum allowable speed limit. For this purpose, a custom function was created to calculate the
velocity of both joints using the eQEP Edge Capture Unit — Low Speed Calculation feature (refer to
TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse (eQEP) Module) because the encountered
rotational velocities are relatively low. This approximation is based on (3-7) where on every unit position event
(X reaches the predefined humber of quadrature edges [UPPS]) the capture timer [QCTMR] value is latched
into the capture period register [QCPRD] and then [QCTMR} is reset. Then, the velocity is converted from
[counts/time_register] to [rad/s] using the SpeedScaler as shown in Figure 3-17.

X

V=0t

(3-7)

In Table 3-3 you can observe a characteristic example of parameters used in a leg of Laelaps Il
experiment to gain a general idea of the values that were exploited. In later chapter, a more specific
description of the parameters used in every leg will be presented.

Table 3-3. Benchmark parameters in Laelaps Il experiment.

Parameters Leg Value
X centre Ocm
y centre 59.5cm
a ellipse 3cm
Trajectory Paramaters b ellipse 4 cm
Frequency 0.8 Hz
Phase [deg] 180
Flatness 0
Kp_knee 40
Control Gains of Knee Kd_knee 0.03
Ki_knee 0
Kp_hip 40
Control Gains of Hip Kd_hip 0.03
Ki_hip 0
PWM max values Knee 38.25%
Hip 41.17%
Filter Bandwidth Frequency 20 Hz
Loop Frequency of EtherCAT 2.5 kHz

84/147

124 //

125 // POSSPEED Calc - Perform the position calculations

126 //

127 void POSSPEED _Calc(POSSPEED *p)

128 {
129
130
131
132
133
134
135
138
137
138
133
148
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
287
288
289
218 }

unsigned int templ,temp2;

//Read raw value of position and sawve in gwnia variable
p-»raw_posl = EQeplRegs.QPOSCNT;
p-»raw_pos2 = EQep2Regs.QPOSCNT;
p-»raw_pos3 = EQep3Regs.QPOSCNT;

p->DirectionQepl = EQeplRegs.QEPSTS.bit.QDF; // Motor direction:
p->DirectionQep2 = EQep2Regs.QEPSTS.bit.QDF; // Motor direction:

8=CCW/reverse, 1=CW/forward
8=CCW/reverse, 1=CW/forward

KK
// Low-speed computation using QEP capture counter for eQEPL
H
if(EQeplRegs.QEPSTS.bit . UPEVNT == 1) // Unit pesition event
if(EQeplRegs.QEPSTS.bit.COEF == 1) // Capture overflow, saturate the result
templ = @xFFFF;
EQeplRegs.QEPSTS.bit.COEF = 1; // Clear overflow error flag
else // No Capture overflow
1
templ = EQeplRegs.QCPRD; // templ = t2-tl
if(EQeplRegs.QEPSTS.bit.CDEF == 1) // Direction change, make velocity @
p->Speed_prl = @.@f;
EQeplRegs.QEPSTS.bit.CDEF = 1; // Clear direction error flag
else
{
f7
// p-»Speed_pr = p-rSpeedScaler/templ
ff
p-»Speed_prl = p-»Speedscaler/((float)templ); //speed in rad/sec
}
/"
// Convert p-»Speed_prl depending on direction
i
if(p->rDirectionQepl == @) // Reverse direction = negative
1
p-»speed_prl = - p-rSpeed_pril;
EQeplRegs.QEPSTS.bit.UPEVNT = 1; // Clear Unit position event flag
}
H
// Low-speed computation using QEP capture counter for eQEP2
H
if(EQep2Regs.QEPSTS.bit.UPEVNT == 1) // Unit position event

if(EQep2Regs.QEPSTS.bit.COEF == 1) // Capture overflow, saturate the result

temp2 = @xFFFF;

EQep2Regs.QEPSTS.bit.COEF = 1; // Clear overflow error flag
}
else // No Capture overflow
1
temp2 = EQep2Regs.QCPRD; // temp2 = t2-tl1
if(EQep2Regs.QEPSTS.bit.CDEF == 1) // Direction change, make velocity @
p->Speed_pr2 = @.8f;
EQep2Regs.QEPSTS.bit.CDEF = 1; // Clear direction error flag
¥
else
1
1
// p->Speed_pr = p->SpeedScaler/templ
1
p->5peed_pr2 = p->SpeedScaler/((float)temp2); //speed in rad/sec
L
Iy

// Convert p-»Speed_pr2 depending on direction
Iy

if(p->»DirectionQep2 == @) // Reverse direction = negative

1
p->Speed_pr2 = - p->Speed_pr2;

EQep2Regs.QEPSTS.bit.UPEVNT = 1; // Clear Unit position event flag

Figure 3-17. Position & Rotational Speed calculation.

85/147

The above configuration allows measuring the range of rotational velocities described in Table 3-4, which
means that velocities outside the illustrated range will either be regarded as 0 (if they are below the minimum
value) or as the maximum value (if they are above the limit). In both hip and knee columns, the speed
calculations are after the gearhead and pulley transmition of the leg, illustrating the actual values of the joints.

Table 3-4. Velocity calculation range.

Calculated Velocity [rad/s] Hip joint [rad/s] Knee joint [rad/s]
Max value 19634.95 248.06 200.36
Min value 0.2996 0.0038 0.0031

Configuring the Project

1. Select the desired Build Configuration of the imported project. EtherCAT_Laelaps_Motion_Control project
contains four separate Build Configurations, two for each leg side (RAM and FLASH) namely:

» Left _Leg FLASH_LAUNCHXLF2837D_SPIA

= Left Leg RAM_LAUNCHXLF2837D_SPIA

= Right Leg FLASH_LAUNCHXLF2837D_SPIA

= Right Leg RAM_LAUNCHXLF2837D_SPIA

Note that in order to be able to use the DCL library in Flash configuration, we had to altered the relative
linker command file which allocated the memory of the MCU (2837x_FLASH_Ink_cpul.cmd under cmd folder)
and add the highlighted snippet at the end of the file as shown in Figure 3-18.

& workspace_v7 - CCS Edit - EtherCAT_Laelaps_Motion_Control/cmd/2837x_FLASH_Ink_cpul.cmd - Code Composer Studio

File Edit View MNovigate Project Run Scripts Window Help

o BIR R BE S C D [qudcacees]| 9| [B]%
[Project Explorer 13 E g ¥ = O |[fEtherCAT Lasl.. (€] EtherCAT Lael... [€) EtherCAT Lael... (] etherCAT sla... [g) POSSPEED.C (] POSSPEED.H [# 2837 FLASHL. 82 | = O | 5
{2 EtherCAT Application 55 /= Allocate uninitalized data sections: */ X2
~ i EtherCAT_Laelaps Motion_Control [Active - Right_Leg RAI | 66 .stack D> RAMML PAGE = 1 =
4 Binaries 67 .ebss : >> RAMLSS | RAMGS1_2 3 PAGE = 1 |
@l Includes f:‘i esysmem : > RAMGS® PAGE = 1
@& hal 78 /* Initalized sections go in Flash */
(= Left_Leg FLASH_LAUNCHXL_F26375D_SPIA 1 .econst : >> FLASHF | FLASHG | FLASHH PAGE = 8, ALIGN(4)
(= Left_Leg RAM_LAUNCHXL_F28379D_SPIA 72 .switch : > FLASHE PAGE = @, ALIGN(4)
> Right_Leg_FLASH_LAUNCHXL_F28379D_SPIA 73
4 .reset @ > RESET, PAGE = @, TYPE = DSECT /* not used, */

(= Right_Leg_RAM_LAUNCHXL_F28379D_SPIA

76 #ifdef _TI_COMPILER_VERSION_
#1f _TI_COMPILER VERSION_ >= 15089600
TI.ramfunc : {} LOAD = FLASHD,

RUN = RAMLS@ | RAMLSL | RAMLS2 |RAMLSZ,
LOAD_START(_RamfuncsLoadStart),
LOAD_SIZE(_Ramfuncsioadsize),
LOAD_END(_RanfuncsLoadEnd),
RUN_START (_RamfuncsRunstart),
RUN_STZE(_RamfuncsRunSize),
RUN_END(_RamfuncsRun€nd),
PAGE = @, ALIGN(4)

GRUSESe®

a6
87 #else
88 ramfuncs : LOAD = FLASHD,
89 RUN = RAMLSG | RAMLS1 | RAMLS2 |RAMLS3,
1) LOAD_START(_RamfuncsloadStart),
a1 LOAD_SIZE(_RamfuncsLoadSize),
< m > 92 LOAD_END (_RamfuncsLoadEnd) ,
93 RUN_START(_RamfuncsRunStart), =
B Console 52 =0 94 RUN_STZE(_RamfuncsRunSize),
95 RUN_END(_RamfuncsRungnd),
& @ HEE =B M BrH | g PAGE = gf ALIGN(4))
CDT Build Console [EtherCAT Laclaps_Motion_Control] 97 wendif

~ 95 #endi
"€:\\ti\\cesv7\ \utils\\bin\\gmake” -k all 29 Inclfuncs : {} LOAD=FLASHD, RUN=RAMD@, TABLE(BINIT) I
gmake: Nothing to be done for 'all’. o | binit : {} > FLASHD

*** Build Finished ****

Writable Smart Insert 64:9

Figure 3-18. Modified linker command file to enable DCL functions.

2. Make sure that JP1, JP2 and JP3 jumpers are removed (as shown in Figure 3-8) because the microUSB
port cannot supply enough current for the EtherCAT Control Tower Assembly which requires around 0.6
Ampers and external power supply is needed.

3. Turn on the Logic Power supply (>5 V, for example 10 V) connected to all EtherCAT Control Tower
Assemblies of Laelaps and turn on the desired ones by pressing the Enable button of the voltage regulators
indicated in Figure 3-8. If you have disassembled an EtherCAT Control Tower Assembly from Laelaps Il for

86/147

testing reasons, because all available assemblies are mounted on the robot, you should connect the Voltage
Regulator to the Logic Power Supply and press the Enable button as shown in Figure 3-19.

4. Connect the desired launchpad to the PC using the microUSB cable and Build the project. If no error
occurs, then download the project into the launchpad by clicking the Debug button as shown in Figure 2-40.

5. The launchpad consists of two cores, thus you need to select CPU1 and click OK from the pop up window
as illustrated in Figure 2-41.

6. The Code Composer Studio will then automatically turn into CCS Debug mode. When the project is
downloaded (obviously, downloading the Flash project lasts a lot longer than RAM) click the Resume button
as adumbrated in Figure 2-42 and the slave side is now up and running.

7. Repeat steps 7 — 9 for every slave in the network only if the first slave of the robot (Hind Right Leg’s) is
tested and properly working. Moreover, do not forget that RAM build configurations are only available until
power off, so if you want to download a project to all slaves, FLASH configuration is necessary.

8. Connect the IN port of the first slave’s FB1111-0141 ESC, using a suitable Ethernet cable (see EtherCAT
Master Requirements) with the PC as illustrated in Figure 3-19 and start TwinCAT XAE (VS 2013). Since we
are only configuring the EEPROM of one slave at a time, make sure that the OUT port of the slave is not
connected to any other slave.

Figure 3-19. EtherCAT Control Tower Assembly wired.

9. Select File > New > Project as shown in Figure 2-44.

10. From the TwinCAT Projects tab select TwinCAT XAE Project (XML format), name the project (ex
EtherCAT Initialization) and click OK as illustrated in Figure 2-45.

11. From the Solution Explorer window expand the I/O element, right click on Devices and select Add New
Item (Figure 2-46).

12. Select EtherCAT Master and click OK (Figure 2-47). This way, your PC is now configured as an
EtherCAT Master device.

87/147

13. Navigate to the location of the downloaded folder from Bitbucket, copy the EtherCAT Laelaps Motion
Control v4 (SPI).xml file and paste it at the following location C:\TwinCAT\3.1\Config\lo\EtherCAT

14. In Visual Studio, select TWINCAT > EtherCAT Devices > Reload Device Descriptions (Figure 2-48)

15. Click once on the Device 1 (EtherCAT) item of the Solution Explorer tree and the Scan button (Figure
2-49) will instantly become clickable. Select the Scan feature (automatic scan for slave devices) and select No
in the pop up window asking whether to Activate Free Run. A slave (TwinCAT defines slave devices as
Boxes) must be now visible on the Solution Explorer tree within the Device 1 (EtherCAT) master device with
the last configuration that was written on the ESC’s EEPROM as shown in Figure 2-50.

16. In order to write the EEPROM of the ESC with our project’s description file (xml) so that it matches with
the configuration of the Delfino MCU, double click on Device 1 (EtherCAT), select the Online tab of the
emerged window, right click on Box 1 item and choose EEPROM Update (Figure 2-51).

17. Select EtherCAT Laelaps Motion Control v4 (SPI).xml (11110141 /4) and click OK (Figure 3-20).

Write EEPROM

Available EEPROM D escriptions: [[]5how Hidden Devices ok,
#5228 Beckholl Automation GmbH & Co. KG
=-- 4 National Technical University of &thens

=TI TIC28xx Slave Devices
TI EtherCAT Application (SPI
EtherCAT Laslaps Motion Cor

Browse...

Figure 3-20. XML selection.

18. Now our slave’s EEPROM memory is correctly configured, yet TwinCAT cannot automatically recognize
this transition. In order to do so, on the Solution Explorer window, right click on Box 1, select Remove and
then OK (Figure 2-53).

19. Scan the network again as indicated above and monitor Box 1 with the desired configuration and
EtherCAT variables (Table 3-1,Table 3-2).

20. Activate Free Run Mode by clicking Toggle Free Run State button (Figure 2-49) and ensure that the
slave device has swiched to Operation State by checking the RUN LED of the FB1111-0141 ESC (must be
ON) and the Current State of the Online tab (Figure 2-55) which must be OP (Operational).

21. Check that the application is properly running by executing an Online Write of Blue_LED and Red_LED
and inspect the build in LEDs of the launchpad.

22. In order to force the slave to operate in DC — Sync mode and achieve the ultimate synchronization,

follow the instructions of TwinCAT in Run Mode.

88/147

23. Follow the instructions of Add Watch Expression in CCS Debug to add the variables of Figure 2-59. If all
integer type variables are 1, then the slave is properly functioning in DC mode and the values of the unsigned
long type variables (timer_) indicate the required execution time in micro seconds.

24. Now that you have checked the whole project, repeat steps 18 — 26 for every other EtherCAT Tower
Assembly of Laelaps, by connecting the IN port, one at a time, ensuring that all slaves solely turn into
Operational State (in DC mode). Once you have completed this procedure, all slaves of the network are
properly configured and we are now at the final phase of the solution guide.

25. Make sure that all Laelaps’ slaves are physically connected to the network, create a new project
(Laelaps Control) adding an EtherCAT Master device and Scan the network. All Boxes must me visible on the
Solution Explorer window.

26. Force all slaves to operate in DC — Sync one by one as described in TwinCAT in Run Mode. Specify the
EtherCAT cycle time at 400 micro seconds.

TwinCAT Scope View Configuration

1. Add TwinCAT Scope View in order to be able to save all EtherCAT variables during the experiments. Right
click on Solution ‘Laelaps Control’ > Add > New Project and select Scope YT Project from the TwinCAT
Measurement tab (Laelaps Control Measurement) as shown in Figure 3-21.

¢ Laclaps Control - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

@ 8B @ [wocar -| - | | | |

Solution Explorer v R X

G| e-a s~ General |G Debugger
ch Soluti » p-
|

= TwinCAT System Manager
|5 & Build Solution Ctl-Shift+B V31 (Buid 4209
b @l sysTEM Rebuild Solution
MOTION sotch Bt TwinCAT CPP Server
@ eic -
i@ sareTy Configuration Manager.
Cos B New Solution Explorer View Copyright BECKHOFF ©2011-2017
=
% v [s |
4 % Device (thercAT) | @ Save Laclaps Control s
% image _J Send Laclaps Control by E-Mail...
=9 Image-Inf 3 -
aste CtlaV
b2 SyncUnits
> 0 inputs i Rename O Newitem Ins
b @ Outputs @ Open Folder in File Explorer ‘0 Bsting tem. Shift-AltsA
b @ InfoData 5 broperies s New Solution Folder
4TI BOK 1 (EtNErCAT Latli rmururs womror

Add New Project

Input mapping 1
%1 hip_angle

b Recent [INET Framework 45~ Sortby: [Default BEE Search Installed Templates (CtrleE) P -

4 Installed
E Empty Measurement Project TwinCAT Measurement Type: TwinCAT Mea:
Powershell = Createsa nt Scope Project that
] includes 2 Scope Instance with a Chart and
Typescript [@l| scope Array BarProject TwinCAT Measurement i e
+ [TWinCAT Messurement]

cope YT Project TwinCAT Mezsurement

TwinCAT PLC
TwinCAT Projects

Scope YT NC Project TWinCAT Measurement

© Online RUll Scope VT Project with Reporting TWinCAT Measurement
Scope XY Project TwinCAT Measurement
@\ Scope XY Project with Reporting TwinCAT Measurement
E Bode Plot TwinCAT Measurement

Click here to go online and find templates.

Name: [Laclaps Control Measurement.

Location: [Studio 20134 Iaps Control -] [Browse.. |

Figure 3-21. Add Scope Measurement.

2. Add a PLC task to be able to use the Scope View. Right click on PLC > Add New Item > Standard PLC
Project (LaelapsControl) as indicated in Figure 3-22. If no PLC task is created, TwinCAT will not be able to

plot and save the values of the desired EtherCAT variables.

89/147

¢ Laclaps Control - Microsoft Visual Studio

FILE EDT VIEW PROJCT BULD DEBUG TWINCAT TWINSAFE PLC

AL RN O | P r—

Solution Explorer -
@ o-al &=

Search Solution Explorer (Ctrl+3)

57 Solution 'Laclaps Control' (2 projects)
4] Laelaps Control
b svsTEM

43 Add Existing ltem... Shift+Alt+A
Paste
Paste with Links

Ctrl+V

Hide PLC Configuration

b 2 SyncUnits Add New ltem - Laelaps Control
b0 Inputs
b [Outputs 4 Installed Sortby: [Default -] Search Installed Templates (Ctrl+E) P~
b @ InfoData
4 Tl Box1 (EtherCA] EiqIempit BT Standard PLC Project Plc Templates | Type: Pl Templates
b 10 Input map Creates a new TwinCAT PLC project
b) PWM Com Empty PLC Project Plc Termplates containing 5 task and 2 program.
3 Velocity Fes
4 [y Buttons pre
- State_M|
&~ Initializeg
- Initializg
B Inverse |
- Blue LEl
- Red_LEQ
- Button]
[+ Button.
Solution Explorer [
Click here to go online and find templates.
Location: |C\Users\stam\Doc Studio 2013\Projects\Laelaps Cantrol\Laelaps Control\, -] [Browse.. |
—

Figure 3-22. Add PLC Task.

3. Create a Global Variable list of all input variables that you want to save during the experiment. Right Click
on EtherCAT Laelaps Project > Add > Global Variable List, name it (Inputs) and click Open as shown in
Figure 3-23.

M Laelaps Control - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

| B2 . @| W | |<Loca|> '| |LaelapsContro| M| & Pou..

B Solution Explorer 1 X @ POU for implicit checks...

o & o-a| - DUT..

-g_: Search Solution Explorer (Ctrl+;)

; 3] Sclution ‘Laelaps Control' (2 projects) R.EfE!E.ﬂCE.d Task...

Bl 4 Ll Laclaps Control Visualization...

b a SYSTEM Visualization Manager...

Recipe Manager...
Image Pool...
Interface...

g 24 LaelapsControl Project

o EEE L EER B

[] External Types Login Parameter List...
b [:3] References I::I Build Text List...
4 DUTs . .
Rebuild Class Diagram...
£3 GVLs .
b [POUs Check all objects Existing [tem... Shift+Alt+A
3 VIsUs Clean New Folder
b g5 PlcTask (PlcTask) Add » | L3 Existing Folder Content...
02 LaelapsCentrol Instanc,
SAFETY Export to ZIP
@ Ces Import fram ZIP
4 110 g8 Export PLCopenXML...
“ EE_W:‘CB_ e e @ Import PLCopenXML...

Figure 3-23. Add Global Variable List.

4. Make sure that you add all necessary variables by following the format shown in Figure 3-24 where all

required inputs to the master are being scoped and saved making sure that they have the right variable type.

90/147

Inputs = > [LNEN

INT;

E HR_Desired knee_

7 HR_EWM_hip AT®I®: INT;
8 HR_FWM_knee ATHI®: INT;
E HR_velocity knee AT®I®: DINT;
10 HR_velocity hip AT®I®: DINT;

| : INT;
HL_Desired hip angle AT®I

INT;
HL Desired knee_angle AT®#I*: INT;
HL_FWM_hip AT#I*: INT;
HL_FWM_knee AT®I': INT;

HL velocity_knee ATHI®: DINT;
HL_welocity hip AT®I®: DINT;
HL time ATYI®: UINT;
FL_hip_angle AT#I*: INT;
FL_knee_angle AT#I*: INT;

FL Desired hip_angle ATHI®:

INT;
FL Desired knee_angle AT#I*: INT;
EL_EWM hip ATH
EL_EWM knee ATHIC:

FL_velocity_knee AT®I®: DINT;
FL_velocity_hip AT#I*: DINT;]

FR_Desired knee_angle AT#I*: INT;
FR_EWM_hip AT#I®: INT;
FR_EWM_knee AT®I*: INT;
FR_welocity knee ATHI*: DINT;

a7 FR_velocity hip AT®I*: DINT;

ag FR_time ATHI*: UINT;

29 END_VAR

Figure 3-24. Global Variable List.

5. In the POUS > MAIN (PRG), create a list of all variables that you want to handle simultaneously in all
slaves. This process MUST be done at least for the State_Machine variable, so that the clocks in all four
slaves are initiated at the exact same time. Moreover, due to the fact that all four slaves have identical
configuration, the output list of Figure 3-25 was created containing all shown variables.

B Laclaps Control - Microsoft Visual Studio X | Quick Launch (Cirl+Q) Pl &
FILE EDIT VIEW PROJCT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

BB @ ®: <o -] = |Laelapscontrol - |

Selution Explorer Laelaps Control
@l o-a|s=
Search Solution Explorer (Ctrl+;) Control_State Machine AT$Q* : BOOL:
4 i Laclaps Control : Control Blue_LEDs AT3Q' : BOOL:
2 svstem 5 Control Red_LEDs AT3Q' : BOOL;
o L ¢ = sllipse ATEQ : INT:
cense b_ellipse AT s
b @ Real-Time —=LE P
- 8 traj_freq ATEQ : INT;
5 3 FilterSandwidth ATEQ* :
?E outes Hploo ATEQ* : INT;
2ln Type System HAL00O ATSQ4 : INT;
] T<COM Objects Transition_Time ATSQY : ¢
MOTION END VAR
PLC -
{05 LaelapsContral

b [External Types

b [References
3 DUTs

4 [GVLs

i MAIN (PRG)
1 VIsUs
b Gh PlcTask (PlcTask) Error List
L2 LaelapsControl Instance T .| OE 0Warmings | @ 3 Messages | Clear Search Error List
ﬁéﬁiﬁv Description v File Column Project
+ Evo @3 TwinCAT Measurement’ (02:01:11.940): Crested Scope "Scope YT Scope VT Project 0
4 Devices Froject
. @ 2 TwinCAT Measurement' (02:01:11.933): Crested Chart "Chart” inside Scope VT Project 0
4 —P:wceT(EtherCAﬂ Scope "Scope YT Project”
= Image) 1 "TwinCAT Measurement' (02:01:11.920): Created Axis "Axis” inside Scope VT Project 0
2 |mage-Info Chart "Chart"
Solution Explorer NUEERTE

Figure 3-25. MAIN (PRG) list.

6. Build the solution and expand the LaelapsControl Instance to inspect all PLC variables.

91/147

w Laelaps Control - Microsoft Visual Studio

SCOPE WINDOW HELP

FLE EDIT VIEW PROJECT | BUILD | DEBUG TWINCAT TWINSAFE PLC TOOLS
iw B B2 @ @& suidsoluton

Ctri+Shift+B }| | |

Solution Explorer
@& o-a| &
Search Solution Explorer (Ctrl+;
¥ Type System
[&] TcCOM Objects
MOTION
PLC
4 @ LaelapsControl

Rebuild Selution

Clean Solution

Build LaelapsControl
Rebuild LaelapsControl
Clean Selection

Batch Build...
Configuration Manager...

Check all objects [LaelapsControl]

Inputs* MAIN* & X Sc

1 PROGRAM MRIN
= z VAR

3 Control_State
4 Control_Blue_
5 Control Red L
€ a_sllipse AT:
7 b_ellipse AT:
8 traj_freq AT:
5 FilterBandwid

Figure 3-26. Build Solution.

7. Link all Input and Output variables of the list to the analogous EtherCAT variables by clicking twice on each
PLC variable, selecting Linked to and choosing the desired from the list of all compatible variables (as far as
type is concerned) as shown in Figure 3-27. Note that in order to link one output PLC variable to multiple
EtherCAT output variables, select all desired EtherCAT variables from the pop up window holding Ctrl button.
Now, all linked output variables of the project are handled by the PlcTask Outputs and Online Writes can only
be executed through this list. Do not forget to link the State Machine Plc output variable with ALL
State_Machine EtherCAT variables of all slaves to accomplish a synchronous initiation of the trajectories’ time

variables.

D¢ Lselaps Trajectory Planning Control - Microsoft Visual Studio

[N

FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

882 6@ v -] < [untivedt

- \ \

Solution Explorer
@ eo-a &=
Search Selution Explorer (Ctrl+;)

[3 DUTs
4 [GVLs
B Inputs

4 [POUs

] MaIN (PRG)
(3 VISUs
5 PlcTask (PIcTask)
213 Untitled1.tmc
4 Of} Untitled1 Instance

41 PlcTask Inputs

3 InputsHR_hip_angle

Inputs.HR_knee angle
Inputs.HR_Desired_hip_angle
Inputs.HR Desired knee_angle
Inputs.HR_PWM _hip
Inputs.HR_PWM knee
Inputs.HR velocity_knee
Inputs.HR velacity_hip
Inputs.HR_time
Inputs.HL_hip_angle
Inputs.HL_knee_angle
Inputs.HL_Desired_hip_angle
Inputs.HL Desired_knee_angle
Inputs.HL_PWM_hip
Inputs.HL_PWM _knee
Inputs.HL time
Inputs.HL velocity_knee
Inputs.HL_velocity_hip
Inputs.FL_hi
Solution Explorer [h)

-

4 G g Sy 5 5 5 5 5

ip_angle

Figure 3-27. Linking PLC variables.

8. Activate Configuration and Restart TwWinCAT System to update the

KplOO ATSQ* :

B L:clcps Trajectory Planning Control + X Inputs MAIN

Variable |Fags | Online

P~
Name: [inputs HR_tip_angle]

-
Type: [T |
Group. [PreTask nputs | See [20]
Address: 512822 @7D374) | UseriD [|
]

Comment:

[Attach Variable Inputs.HR_hip_angle (Input)

ADS Info: Port: 350, 1Grp: (x&502000, I¢
Symbol Info: [Port: 851, “Inputs HR_hip_and
Full Name: [TIPC* Untitled 1" UntitledT Insf|

Total Notifications: 0

Show Vaiiahles

Seach | [%]
a nused
=i 10 o A1 O Used and unused
o evices
[Exclude disabled
-5 Deviee 1 (EtherCAT)
evice 1 [EtherCAT) Bl Daes

-2 Synclnits

52 <dstald [V Exclude same Image
B2t Task [®] Show Taoltips
Lo Stae > 1B 16240, UINT (20) [] St by Address
L% SlaveCount > 1B 16260, UINT [20]
FmOState > 1B 1520.0, UINT [20] Bl [Shon Varebe Types
#1 FrlwcState > 1B 1522.0, LINT [2.0] [Matching Type
FmOinputToggle > 1B 1624.0, UINT [2.0] [Vl Matching Size
SlaveCourt > 1B 1530.0 UINT [20] [& Types
Devitate > B 15340, LINT 20 Arrap Mode
- ChangeCount > B 1536.0, LINT [2]
% Devld > IB15380, UINT [20] Oftsets
% DigSlaveCount > 1B 1546.0, UINT [20] [Continuaus
5174 Hind Aight Lea (] Show Dislog
el o= > B 71.0,INT (20]
1 State > B 1548.0, UINT [20] Variable Name / Comment
= Adshdd (17 [Hand over
-1 pait > 1B 1556.0, WORD [20] 20 Take over

=73 Hind Left Leg
1 State > |B 1565.0,LINT [2.0] v

Cancel oK.

9. Login and Start the PLC task as indicated in Figure 3-28

92/147

project with the linked variables.

B¢ Laclaps Trajectory Planning Control - Microsoft Visual Studio Login Start ¥ Quick Launch (Ctrl+Q)

FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS S(DPE\ wwnw(HELP

B B2 8| @i <o -] =% [Untitledt B

Solution Explorer
@ o-a| & - .

Search Solution Explorer (Ctrl+) p-

VAR GLOEAL
HR_hip_angle AT®#I*: INT;
HR_knee_angle AT#I%: INT,

b [Exenal Types
b [l References
[£3 DUTs

[GVLs

HR_EWM hip ATSI*: INT;
HR_FWM_knee ATSI®: INT;
HR_velociwy knee ATSI*: DINT;

HR_velociry hip AT#I': DINT;
HR_time ATSI®: UINT:
HL hip_angle AT®#I*: INT;
HL_knee_angle AT®I®: INT;
HL Desired hip_angle AT#I®: INT;
HL Desized knee_angle ATSI®: INT;

[POUs
5] MAIN (PRG)
73 VIsUs

Figure 3-28. Start PLC task.

10. Navigate to Laelaps Control Measurement of the Solution Explorer and right click on Axis > Target
Browser and select all desired variables from the Global Variable List (Inputs) that you want to monitor and

save during the experiment (Figure 3-29).

B4 Lacleps Control - Microsoft Visual Studio.

FLE EDIT VEW PROECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

B B2 @ @[-] < [LaclapsControl g | |

Solution Explorer -3 x il
@ o-a|s= Chart

Search Solution Explorer (Ctrl+) o - | Stat: 00:00:00| End: 00:00:00

Desired_hip_sngle N B

Time
#1 knee_angle 0.5

#1 Desired_knee_angle

b1 PWM Commands

13 Velocity Feedback 0,3.

4 Tl Buttons process d
B State_Machin

1 L Target Browser 0,2

B> Initislize_clock | £ Cursor Window
B Initialize_angles F1 Trigger Window \ [e = =
G T B I — ADS Ente -
- Blue LED - { Ports Tl . Name Type Size Category Comment Subitems Unit Context-Mask Index-Group Index-Offset Attributes (=
: :i‘:(;:? A [(. W oescopwinwp | {5 Constents 0 Struct 9 0 0 0 none
: _Br’ua::i:i”me Apply Defauits [350: PicTask 0 Struct 36) 0 0 none
b I Output mapping 1 .J Send Project By E-Mail _ {%§| FL_Desired_hip_angle INT 2 Primitiv [] 0 F020 7D3A4 none
[; :;;”::Lii:;ma 2 ;:‘E:M':;';‘t‘zmm” (i FL.Desired_knee_angle INT 2 Primitiv 0 0 F020 D346 none
b T WState Change Index Group.. @ FL_hip_angle INT 2 Primitiv 0 0 F020 7380 none
) e o Copy | FL knee angle INT 2 Primitiv 0 0 F020 70382 none
x EZZE @l FLPWM_hip INT 2 Primitiv 0 0 F020 7D3A8 nene
—— Tl FLPWM knee INT 2 Primitiv 0 0 F020 70388 none
@ FL_time UM 2 Primithv 0 0 F020 70384 none
@ FL_velocity_hip DIN 4 Primitiv 0 0 F020 7D380 nene
) FLvelocity_knee DIN 4 Primitiv 0 0 F020 7D3AC none
il FR Desired_hip_angle INT 2 Primitiv 0 0 F020 7D3EA none
{fjl FRDesired_knee_angle INT 2 Primitiv 0 0 F020 7D3BC none
@ FR_hip_angle INT 2 Primitiv 0 0 F020 70388 none
] FRknee angle INT 2 Primitiv 0 0 F020 70382 nene
@l FRPWM_hip INT 2 Primitiv 0 0 F020 7D3BE none
il FRPWM_knes INT 2 Primitiv 0 0 F020 7D3C0 none
@ FR time ub 2 Primitiv 0 0 F020 7ac2 nene
) FR_velocity_hip DIN 4 Primitiv 0 0 F020 7D3c8 none
2 FRvelocity_knee DIN 4 Primitiv 0 0 F020 7D3C4 nene
@l HL_Desired_hip_angle INT 2 Primitiv 0 0 F020 7D38E none
-
4« 3

Figure 3-29. Adding variables to the Scope View.

11. To start and stop recording, use the Record and Stop Record buttons shown in Figure 3-30.

HELP Record giop Record

Scope YT Project +

).00:00 | Pes: 00:00:00 | Time: 00:00:00 | Date: DATE

T Jooe@reXae

Figure 3-30. TwinCAT Scope Record.

93/147

12. After the completion of a recording, in order to save it in csv format and post process it in Matlab, click
Scope > Export to CSV (Figure 3-31).

m Laelaps Centrol - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS I SCOPE I WINDOW HELP

g | ‘ n 3 @l |5 | ‘<LD(H|> " ;5;5 |Laalap;(nntrnl -| & Target Browser
n A Wind
% Solution Explorer * o x l t;!'. ursar iindow
fil Trigger Window
o @ o-a| s - =
=1 Apply Defaults
Il Search Solution Explorer (Ctrl+:) o~ PRY
o J Send Project By E-Mail...
-
=y - _[;eslred_hlp_ang\e &2 Clear Error List
=] ime
g #| knee_angle Change Ads Symbol...
] Desired_knee_angle Change Index Group...
3 PWM Commands &r'l New Empty Channel
3 Velocity Feedback 5
4 W Buttons process data mapping 04 Copy Crl+C
- State_Machine Paste Ctrl+V
B+ Initialize_clock X Delete Del
B+ Initialize_angles E =
& Inverse_Kinematics Apore o
- Blue_LED Export to Binary
- Red LED Export to DAT
- Button’ Export to TDMS
&+ Button2 J 5
B~ Transition_time Visible
[Output mapping 1 v Enabled
I [Control Gains Trmrzlimrs b
E ; Iaf:ttuw Parameters E Local Scope Server...
cotate
b @ InfoData Graphic Library 3
ﬁ'J Mappings ﬁ Optiens...
=L . ..

Figure 3-31. Save and Export Recording.

Leg Initialization and Execution

13. Initialize all legs by manually placing them in the position depicted in Figure 3-3 and press the Reset
button (shown in Figure 3-32) of every Delfino Launchpad.

Figure 3-32. Reset button to initialize legs poise.

Laelaps is now completely ready to perform any kind of experiment and test all its features. The final step
would be to check that all wires, drivers and extension boards are properly mounted on the quadruped robot
and that the State Machine PLC variable (connected to all slaves’ State_Machine EtherCAT variables) is set
to Configurational State (0) before enabling the High Voltage Power Supply. Figure 3-33 illustrates the

experimental setup of Laelaps Il on the treadmill, ready to perform the desired task.

94/147

Figure 3-33. Laelaps Il on treadmill ready to perform experiments.

The State Machine diagram of Laelaps is illustrated in Figure 3-34. Entering suitable parameters to all
EtherCAT output variables and switching into Operational State (1) will force Laelaps to execute the desired

movement.

Operational State Time variable of the trajectory Configurational State
planning starts

v T~

State Machine = 1 State Machine =0

Output PWM signals of
knee and hip motors are
disabled, regardless to

the control command

Output PWM signals of
knee and hip motors are
enabled, depending on

control command

ey |

Time variable of the
trajectory planning
resets

Figure 3-34. Laelaps' State Machine.

The following chapter includes several tables of suitable Control and Trajectory parameters along with all
the necessary electrical and communication data. Users are encouraged to use parameter values close to the

values given therein.

95/147

4 Laelaps Il Locomotion Experiments

This chapter includes results from trotting experiments with Laelaps Il in a low frequency with the developed
control scheme. Numerous experiments were carried out successfully but this chapter only presents an
indicative ones. Employing the firmware described in Motion Control of Laelaps via EtherCAT Solution Guide
and running TwWinCAT in a PC as the EtherCAT master, successfully led to Laelaps Il first steps. Although
there are several kinds of quadruped movements, the first series of experiments focused on trotting, one of
the simplest symmetrical gaits.

In this first series of experiments, a desired elliptical trajectory is defined for the toe of each leg through
EtherCAT (Twincat Runtime) along with the control gains and parameters of the system. Data are logged
using TwinCAT Scope View and plotted using a custom made Matlab script [35] (also refer to Matlab Post
Process Code). As indicated above, the PIV (Proportional — Integral — Velocity) controller is implemented in
each slave, thus the master does not affect the control process but simply supplies each slave with the
necessary parameters via EtherCAT.

For each experiment a table thoroughly describing the parameters used is given and six, in total, figures
are presented, illustrating:

= The desired elliptical trajectory of all legs toe (red) along with their actual response (black) w.r.t

coordinate systems located in the hip joints of the legs.

» The desired response of both knee and hip angles (red) of evry leg with their respective actual

response of each knee and hip joint (black).

= The PWM commands of each leg’'s knee and hip motor (black) which is the output of the PIV

controllers with their respective predefined PWM limits (red). As mentioned above, these values
represent the continuous current limits of both motors. Refer to PIV Motor Controller for more
information regarding the selected limits.

» The velocity estimation of each leg’s knee and hip joint (black) and the respective predefined motor

speed limits (red).

4.1 Trotting Experiment 1

In this experiment [51] Laelaps is initially in a standing position with all four legs configured with the
parameters shown in Table 4-1, except for the trajectory parameters, a ellipse and b ellipse; their values are
set to O at the beginning, therefore the elliptical trajectory is just a point. After the recording begins, b ellipse
parameter — which corresponds to the clearance from the ground — is increased to 4 cm linearly with time
(depending on the Transition Time variable which was set to three seconds throughout the experiment) to all
slaves simultaneously, and similarly a ellipse variable - which corresponds to the step length - is linearly
increased to 5 cm. Laelaps starts trotting slowly and accelerates to reach a constant forward velocity. After
several steps, the parameters are again changed to their initial values (first a ellipse and then b ellipse),
Laelaps decelerates and eventually stops walking and remains still. The recording is terminated and all data

are saved and post processed in Matlab.

96/147

Table 4-1. Trotting Experiment 1

Parameters FL Leg FRLeg | HLLeg | HR Leg
X centre 0cm 0cm Ocm Ocm
y centre 59.9cm | 59.9cm | 59.8 cm | 59.8 cm
a ellipse 5cm 5cm 5cm 5cm
Trajectory Paramaters b ellipse 4 cm 4 cm 4 cm 4 cm
Frequency 1Hz 1Hz 1Hz 1Hz
Phase [deg] 180 0 0 180
Flatness 0 0 0 0
Kp_knee 80 80 80 80
Control Gains of Knee Kd_knee 0.05 0.05 0.05 0.05
Ki_knee 0 0 0 0
Kp_hip 80 80 80 80
Control Gains of Hip Kd_hip 0.05 0.05 0.05 0.05
Ki_hip 0 0 0 0
PWM max values Knee 38.25% | 38.25% | 38.25% | 38.25%
Hip 41.17% | 41.17% | 41.17% | 41.17%
Control Loop Frequency 10 kHz 10kHz | 10kHz | 10 kHz
Filter Bandwidth Frequency 20 Hz 20 Hz 20 Hz 20 Hz
Loop Frequency of EtherCAT 2.5 kHz
Voltage Supply (System) 40.34V
Max Value of Current (System) 50.11 A

During the steady state phase of the experiment, where both the a ellipse and b ellipse parameters have
reached their final value, the toe (End Effector) of every leg performs a specific path trying to converge with
the desired elliptical trajectory. The desired elliptical path —trajectory of each leg’s toe (red) along with the
actual response of every leg (black) in their workspace, with respect to the coordinate systems located in the
hip joints of the legs (0 -Figure 3-4), are shown in Figure 4-1. This figure clarifies the fact that steady state
errors in the hip and knee joints are adjourned as errors to the positioning of the toe. It is worth mentioning
that due to the ground and the low values of the Control Gains, the desired elliptical orbits are not closely

tracked in the permanent state and a better regulation of these gains is required, especially for the hind legs.

97/147

FR End Effector in Steady State

FL End Effector in Steady State

0.5 0.54
. desired _

0.55 Ry 0.55 /;f’ﬂ_ ™
n 056 actual \ w 0.55 | / \
1] (11]
= 0.57 = 0.57 /
W W
+ . 5 + 5 5z |IIII \Illl

— i LN

0.& — 0.6

006 004 002 0 002 004 006 006 D04 D02 4 002 004 006
¥ oaxis —= + X oaxis —= +
HR End Effector in Steady State HL End Effector in Steady State
054 2.54 . — .
r

w 05 w05
= =
m L]
= 0UET = 0.57
W W
+ s + s

noES I]

0E 0.6

006 004 002 0 002 004 006 006 D04 D02 4 002 004 006
K oaxis = + X axnis —= +
Figure 4-1. Desired elliptical trajectory of all legs toe (red) along with their actual response (black)

w.r.t coordinate systems located in the hip joints of the legs.

Figure 4-2 displays the desired value of each leg’s knee joint angle (red) and the actual — real response
of every respective knee joint (black) throughout the experiment. Both the transition and the steady state
phase are illustrated. The unit measurement of all values is degrees and as one may observe in these figures,
the desired values are closely tracked by all legs, yet there is plenty of room for improvement which can be

achieved by a judicious regulation of the control gains for the knee motors.

98/147

o0 Response of FR Knee Angle
I T

-10 -

Angle [deg]

-30
25

10

-10 -

Angle [deg]

-20 -

-30

-20 -

Angle [deg]

-30

25

-10 -

-20 =

Angle [deg]

-30 | | | |

Time [s]
Figure 4-2. Desired response of knee angles (red) and actual response of knee joint (black).

On the other hand, Figure 4-3 describes the desired value of each leg’s hip joint angle (red) and the
actual — real response of every respective hip joint (black) throughout the experiment. Both the transition and
the steady state phase are illustrated. The unit measurement of all values is degrees and as one may observe
in these figures, the desired values are closely tracked by all legs, yet there is plenty of room for improvement
(even more than the knee motors) which can be achieved by a proper regulation of the control gains for the
hip motors. Since identical control gain values were used for both motors (brushed and brushless) it is totally
understandable why these two joints don’'t have an identical response as far as errors are concerned.
Moreover, we should take into consideration that the hip joint performs a wider movement which is another

reason why the resulting erros are larger compared to the knee joints.

99/147

Response of FR Hip Angle

30 :

T,

10 L L \ |
0 5 10 15 20 25

Response of FL Hip Angle

20

o

1

o

Angle [deg]

§§ 'JJJJJUJJ\\\\\,¢UUUUUVV

Angle [deg]
N
o
|

25

40

30 -

20

Angle [deg]

0 5 10 15 20 25
Time [s]

Figure 4-3. Desired response of hip angles (red) and actual response of hip joint (black).

Figure 4-4 depicts the PWM commands [%] of each leg’s knee motor (black) with its respective
predefined limit (red). These commands are the output of the knee’s PIV controller exploited in our application
(PV actually because the Integral Proportional gain is 0) and are directly translated in torque commands since
a current control architecture is implemented. As one may observe, the commands in both hind legs are
always within the limit range, hence there is no reason in modifying them. Accordingly, in the two fore legs,
although the limits are reached several times, due to the fact that it hapened only for short intervals, no extra
action is needed.

100/147

PWM Command of FR Knee

B
=

[
=
T
1

ra

=]
T
|

10 15 20 25
PWM Command of FL Knee

PWM Command [%]
=
1

.

=1
=
o

40 T

PWM Command [%]
=
T
1

0 5 10 15 20 25

PWM Command of HR Knee
40 ; y T T

PWM Command [%]
=
T
1

0 5 10 15 20 25
PWM Command of HL Knee

PWM Command [%]
=
T
|

s
o

Time [s]
Figure 4-4. PWM commands of each leg’s knee motor (black) and the respective predefined PWM
limits (red).

Similarly, Figure 4-5 depicts the PWM commands [%] of each leg’s hip motor (black) with its respective
predefined limit (red). These commands are the output of the hip’s PIV controller, this time, exploited in our
application (PV actually because the Integral Proportional gain is 0) and are directly translated in torque
commands since a current control architecture is implemented. As one may observe, hip PWM limits are

recurrently reached, especially in the hind legs, thus an increase of the allowed range should be considered.

101/147

PWM Command of FR Hip
T T

= 50 : .
=
=
]
=
£ 0 i
=]
O
=
E 1 1 1 1
50
0 5 10 15 20 25

PWM Command of FL Hip
T T

m |

I I I I
10 156 20 25

PWM Command of HR Hip
T T

5]
s’

PWM Command [%]
=
T

i
o
=

=

=]

5]
s’

I I I I
10 156 20 25

PWM Command of HL Hip
T T

PWM Command [%]
=
T
|

i
o
=

=

=]

5]
s’

-

| | | |
10 15 20 25
Time [s]

PWM Command [%]
=
T

i
o
=

=

=]

Figure 4-5. PWM commands of each leg’s hip motor (black) and the respective predefined PWM
limits (red).

Figure 4-6 adumbrates the velocity estimation of each legs knee joint using the modified eQEP peripheral
as described in Rotational Speed (black) and the respective motor speed limits (red) as specified by the
manufacturer (refer to Laelaps Il motors and gearheads). As anyone can observe from the following figure,
the velocities of every knee motor are always within the allowed range. Therefore, there is no concern
regarding the velocities scheme that would stimulate a reduce in knee PWM limits.

102/147

Response of FR Knee Velocity

AIAIIAAAAAAAA A A A A

10 15 20 25
Response of FL Knee Velocity

—_
=]
1

=]
T

i
)]
T

Velocity [rad/s]
o

L

=
=
w

=
o
1

o
T

Velocity [rad/s]
i

i
(4]
T

-10
0 5 10 15 20 25
Response of HR Knee Velocity
10
'
T 5F
o
o
=]
@ 5f
p
10 1 1 | | |
0 5 10 15 20 25
Response of HL Knee Velocity
10
W
T 5F
@
> 0 e p M MANAAAANAAANAAANANNA A A
o
=]
T 5F
=
-0 1 1 1 1 |
0 5 10 15 20 25

Time [s]
Figure 4-6. Velocity estimation of each leg’s knee joint (black) and the respective predefined motor
speed limits (red).

Analogously, Figure 4-7 illustrates the velocity estimation of each legs hip joint using the modified eQEP
peripheral as described in Rotational Speed (black) and the respective motor speed limits (red) as specified
by the manufacturer (refer to Laelaps Il motors and gearheads). Once again, as anyone can understand, the
velocities of every hip motor are always within the allowed range, thus there is no need to consider reducing
hip PWM limits.

103/147

Response of FR Hip Velocity

=
L]
1

o
T

\elocity [rad/s]
=

A
10 1 1 | |]
0 5 10 15 20 25
Response of FL Hip Velocity
10

o
T

Velocity [rad/s]
=

5
10 1 1 | |]
0 5 10 15 20 25
Response of HR Hip Velocity
10

4]
T

Velocity [rad/s]
=

5
10 | | 1 1 I
0 5 10 15 20 25
Response of HL Hip Velocity
10

4]
T

Velocity [rad/s]
=

i
(4]
T

L

o
=}
5]

10 15 20 25
Time [s]

Figure 4-7. Velocity estimation of each leg’s hip joint (black) and the respective predefined motor
speed limits (red).

104/147

5 Conclusion and Future Work

5.1 Conclusion

EtherCAT communication protocol proved highly efficient and useful throughout the experimental validation,
even without a dedicated real time EtherCAT Master node but with the TwinCAT XAE software in a Windows
Operating System instead. Depending on the data payload which is intimately connected with the size of the
EtherCAT frame, this technology can reach really low cycle times and guarantee proper communication
between a master and several slaves exploiting only a few really affordable devices (MCUs and ESCs). The
total purchasing cost of all the required components for the new control architecture is almost 10% of the
previous version enabling the procurance of several spare parts. As the promising results showed, the new
decentralized architecture will certainly enable Laelaps Il to perfom higher frequency motions and reach its
maximum velocity using the current firmware, with only minor upgrades on its mechanical system.

Moreover, using the reference guide of EtherCAT Application Guide, developers may implement
EtherCAT communication for other platforms and applications at CSL—EP laboratory. The initial and ultimate
purpose of switching towards EtherCAT was to build a low-cost, powerful module that could be mounted to
several projects at CSL—EP lab for motion control. The experimental validation of Laelaps Il illustrated that the
developed EtherCAT Control Tower Assembly (Figure 3-8) is totally functional and can play the
aforementioned role for several robots and autonomous devices to come. Its portable design is both easy to
assemble and mount, while the firmware structure is easy to comprehend and modify to cater to any needs
that emerge.

In a nutshell, | personally believe that switching towards EtherCAT technology was undoubtedly a
judicious and wise choice due to its several alleviating functionalities, especially in the motion control area. Its
synchronization capabilities along with its portable and extensible architecture are ultimately soothing and
flexible to cater to any application. Although it is a bit tricky to gain an overall grasp of the communication
protocol and requires considerable time to confidently make custom alterations without causing erros, |
sincerely reckon that it is unquestionably the most suitable layer to implement a decentralized motion control
theory on robotic applications. EtherCAT’s outstanding performance and efficiency have proven highly
beneficial to our experimental validation and | am sanguine that it will remain this way for future projects to
come at the CSL-EP laboratory of NTUA.

5.2 Future Work

Although the current implementation of motion control via EtherCAT on Laelaps Il has been tested and has
been proven to be fully functional in both software and hardware level, several aspects can be improved in the
future to achieve greater robustness.

First of all, a key reason for selecting dual core MCUs (Figure 2-25) was to exploit each core in a different
task to efficiently distribute the overall computational effort. In the current application, the firmware (Control &
EtherCAT) runs on the first CPU (Central Programming Unit) of the platform, while the second one is

completely idle. In the future, this second CPU can be used either to execute one of the basic applications of

105/147

the project (EtherCAT communication or Motor Control), or just the ISR (Interrupt Service Routine) of the
second motor to reduce the payload on the first core (or vice versa).

Another important feature, which is already in progess, is the replacement of the TwinCAT XAE software
(running on a Windows Operating System through Visual Studio) as the EtherCAT Master, with a dedicated
embedded real time computer running Linux-ROS.

Moreover, a useful feature would be to automatically initialize the knee and hip angles of the legs and
skip the current manual process. This functionality could be implemented by enabling the already assembled
ADC code (initialization and execution of the peripheral) within the firmware, and after mounting the already
selected and purchased RLS absolute encoders to the mechanism.

Finally, an important task would be to design a case for the EtherCAT Control Tower Assembly not only
for protecting it, but also for greater stability, support, robustness and portability of the module so that it can be
safely and easily exploited in other robots too.

106/147

References

[1] N. Liu, Z. Liu, T. Zhang, L. Cui and H. Li, “EtherCAT Based Robot Modular Joint Controller”, Proceeding
of the 2015 International Conference on Information and Automation (IEEE °15), Lijiang, China, August
2015.

[2] E. Papadopoulos and J. Poulakakis, “Planning and Model-Based Control for Mobile Manipulators,”
Proceedings of the 2000 International Conference on Intelligent Robots and Systems (IROS ‘00),
Takamatsu, Japan, October 30 - November 5 2000, pp. 245-250.

[3] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, “Robotics: Modelling, Planning and Control”, Springer,
2009.

[4] R. Zurawski, “Industrial Communication Technology Handbook, Second Edition”, CRC Press, September
19, 2017.

[5] G. Bolanakis, “Design and Implementation of a Quadruped Robot Electronic System”, Athens, Greece,
2018.

[6] Beckhoff, New Automation Technology, “Application Note ET9300 (EtherCAT Slave Stack Code)”.

[7] Beckhoff, New Automation Technology, “EtherCAT Synchronization in TwinCAT”.

[8] EtherCAT Technology Group (ETG), “How to set up a Network Configuration”.

[9] Texas Instruments, “TMDSECATCNCD379D EtherCAT Solution Reference Guide”, September 2017.

[10] Texas Instruments, “EtherCAT® Interface for High-Performance C2000™ MCU”, August 2017.

[11] Texas Instruments, “C2000 Digital Control Library”, November 2017.

[12] Texas Instruments, "TMS320x2833%, 2823x Enhanced Quadrature Encoder Pulse (eQEP) Module”,
December 2008.

[13] http://www.iebmedia.com/index.php?id=5794&parentid=63&themeid=255&showdetail=true

[14] http://www.electronicdesign.com/embedded/industrial-automation-relies-ethernet

[15] https://www.icpdas-usa.com/ecat

[16] http://www.processindustryforum.com/article/fieldbus-vs-ethernet

[17] https://www.bostondynamics.com/

[18] http://www.rsl.ethz.ch/robots-media/anymal.html

[19] http://biomimetics.mit.edu/

[20] https://kodlab.seas.upenn.edu/

[21] https://www.kuka.com/

[22] http://www.nexcom.com/

[23] https://www.shadowrobot.com/

[24] https://pal-robotics.com

[25] https:/iwww.iit.it/

[26] https://www.ethercat.org

[27] https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrzZW1hY2hhaXJhc3xne
D02NzA5YTRIMDMzN2Q1MTQw

[28] https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemmanager/reference/ethercat/ht

ml/ethercat_supnetworkcontroller.htm&id

107/147

http://www.iebmedia.com/index.php?id=5794&parentid=63&themeid=255&showdetail=true
http://www.electronicdesign.com/embedded/industrial-automation-relies-ethernet
https://www.icpdas-usa.com/ecat
http://www.processindustryforum.com/article/fieldbus-vs-ethernet

[29] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/EtherCAT%20Application/

[30] http://nereus.mech.ntua.gr/legged/?page_id=161

[31] https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrZW1hY2hhaxXJhc3xne
Do1MDE5NjVkMDgOMTdiNjRm

[32] http://nereus.mech.ntua.gr/laelaps/

[33] http://dspace.lib.ntua.gr/handle/123456789/44986

[34] http://nereus.mech.ntua.gr/laelaps-wiki/index.php/Legged-topics

[35] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/Matlab/

[36] https://grobotronics.com/dc-dc-step-down-5v-2a.htmi

[37] https://bitbucket.org/csl_legged/delfino-projects-
ethercat/src/master/EtherCAT%20Laelaps%20Motion%20Control/

[38] https://www.maxonmotor.com

[39] https://www.maxonmotor.com/medias/sys_master/root/8825424609310/17-EN-221.pdf

[40] https://www.maxonmotor.com/medias/sys_master/root/8825548144670/17-EN-350-351.pdf

[41] https://www.maxonmotor.com/medias/sys_master/root/8825409470494/17-EN-133.pdf

[42] http://processors.wiki.ti.com/index.php/Download_CCS

[43] http://www.ti.com/tool/CONTROLSUITE

[44] http://www.ti.com/tool/C2000WARE

[45] https://www.ethercat.org/en/products/54FA3235E29643BC805BDD807DF199DE.htm

[46] http://www.beckhoff.com

[47] https://www.kunbus.com/fieldbus-basics.html

[48] https://www.pc-control.net/pdf/012014/interview/pcc_0114_industrial-ethernet_e.pdf

[49] https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-
industrial-ethernet

[50] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/EtherCat%20SLave%20PCB/

[51] https://www.youtube.com/watch?v=If9bs2z-UYw

108/147

http://nereus.mech.ntua.gr/legged/?page_id=161
https://www.ethercat.org/en/products/54FA3235E29643BC805BDD807DF199DE.htm

6 Appendix A

6.1 Download and Install Code Composer Studio, C2000ware & ControlSuite

Visit the following website [42] and download the latest version of Code Composer Studio for your OS (Figure
6-1). During the installation process, when you are asked about which device descriptions you want to install,
make sure that you add the C2000 series device descriptions because you will not be able to do so after the
installation is completed and you would have to uninstall and reinstall CCS again.

Download the latest CCS

Download Installers (Offline installer is recommended for slow
7.3.0.00019 and unreliable connections)

Offline Installeré?

Windows X
Online Installerd?
Offline Installeré?
Mac OS X
Online Installerd?
. Offline Installerg?
Linux 64bit

Online Installerd?

Figure 6-1. Code Composer Studio Installation.

In addition, visit TI's website using the following link [43] and download the latest version (Figure 6-2) of
Control Suite (which includes several useful applications for different microcontrollers, enabling a variety of
features and controlling of peripherals).

Part Number Buy from Texas Instruments or Alert Me Status Current Version
Third Party Version Date
Free - ACTIVE v3.47 29-SEP-
CONTROLSUITE- Alert Me S01e
o Download |
Offline {ZIP) (Bt
nstaller
Free - ACTIVE v3.47 29-SEP-
CONTROLSUITE: Alartiveg 017

Figure 6-2. Control Suite Installation.

Finally, visit TI’s website using the following link [44] and download the latest version of C2000ware
(Figure 6-3) which includes several useful applications for C2000 architecture microcontrollers, enabling a
variety of features and controlling of peripherals for different development launchpads.

C2000Ware for C2000 MCUs

(ACTIVE) C2000WARE

B Description & Features m Technical Documents E Support & Training Order Now

Order Now

Part Number Buy from Texas Instruments or Third Party AlertMe Status CurrentVersion Version Date

Figure 6-3. C2000ware Installation.

109/147

6.2 Download and Install Slave Stack Code Tool

In order to download SSC Tool:

1. Navigate to EtherCAT Technology Group’s website and download SSC Tool from [45] as shown in Figure

6-4.

MEMBER AREA

Search =b

EtherCAT Slave Stack Code (SSC) ET9300 I L. R
The EtherCAT Slave Stack Code (SSC) is an example source code in ANSI C supporting both the

uC and the SPI interface. The code serves as a development base for implementation of EtherCAT

in devices with own processor. (A S Contoter

Features

— EtherCAT handling in the controller
— Handling of the EtherCAT State Machine (ESM)

— Distributed Clocks (DC)
— Mailbox handling

— Protocol handling for:
Beckhoff Automation GmbH & Co.

Company

— CoE (CAN application protocol over EtherCAT) Ke
— FoE (File Access over EtherCAT) @

— EOE (Ethernet over EtherCAT) =

— SoE (Servo Drive Profile over EtherCAT) Further Information

— AoE (ADS over EtherCAT) [Z EtherCAT Slave Design Q

— Sample applications for all variants
— Sample implementation of CiA402 Drive Profile according to ETG.6010 Specification

The “Object Dictionary Tool" (OD-Tool) has been integrated into the SSC OD configuration tooling
supporting a consistent definition of offline and online object dictionary.

— Description of object dictionary using a spreadsheet file
— Generation of file for online object dictionary
— Generation of offline object dictionary to include into the slave's ESI file

The Slave Stack Code can be requested for free via the following link: I
{7 SSC Download

Figure 6-4. SSC Tool Download.

2. Login to the Member Area and insert the EtherCAT Vendor ID using the credentials of CSL-EP to initiate

the downloading of the application.

3. Add your personal information to request the Slave Stack Code download link provided by email afterwards

and Register.
4. Run EtherCAT Slave Stack Code Tool.exe file as administrator as shown in Figure 6-5.

"L EtherCAT Slave Design Quick Guide_V1i2. 2 77:32mp Adobe Acrobat D.. 122 KB
EtherCAT Slave Stack Code Tool.exe 2/3/2018 2:01 uy Ewaouovi 21,098 KB
"L EtherCAT 55C License V1.1.pdf Avorypa
= ReleaseMotes.pdf G Extéhzon we SuoysploThe
g SlaveFiles.zip AvtipeTiomon mpoBAnpaTwY cupBoTéTnTag
Extéhzon pe emelzpyooTh ypapIkuy >

Kapipitowpo ot Evapin

Figure 6-5. SSC Tool Installation.

6.3 Generate Slave Stack Code for C28x architecture microcontrollers

This section adumbrates the procedure of generating the necessary stack that must be downloaded to a C28x

architecture microcontroller to implement an EtherCAT network. The four prerequisites of this process is to
have downloaded and installed SSC Tool, Code Composer Studio, Control Suite and C2000ware to your PC

as described in Download and Install Code Composer Studio, C2000ware & ControlSuite and Download and

Install Slave Stack Code Tool. In order to generate the EtherCAT stack:

1. Navigate to the folder where you downloaded ControlSuite,
controlSUITE\development_kits\TMDSECATCND379D_Vx folder and execute (as
EtherCAT_Slave_Demo_Code_v01 00 00 00 setup.exe file as shown in Figure 6-6.

110/147

point to
administrator)

€ - v

» Autdgoumohoywotig > OS(C) » ti » controlSUITE » development_kits » TMDSECATCND379D_V1.00

a
Ovopa
3 Tpryopn Tpaafaan
HWDevpkg

S5CToolC28xPatch
TMDSECATCNCD379D_EchoBack_Demo
TMDSECATCMCD379D_EtherCAT Solution_Ref
TMDSECATCNCD379D_PDI_HAL_API

@ EtherCAT_Slave_Demo_Cade_v1_00_00_00_setup.exe

] license_infe.doc

2] readmena

|J release_notes.bit

=2 SPRUIF9.pdf

ControlSuite EtherCAT Demo Tool.

@ OneDrive
E Autéc o umohoyioty

=¥ Aiktuo

Figure 6-6.

Hupzpopnvia tpom... Tomog Méyzfog

Déxehog apyeitav
Dékehog apyeiwy

Déxehog apyeitav

Déxzhog apysita

Avorypa

W) Eictiheon we Swoxapiotic

Avnpsrimon mpofAnpéTwy cupBaToTTag
Eictéhean pie emelepyacT ypopueciy >
Kappitowpea oty Evapln

2. Open SSC tool and create a new project. The dialog box of Figure 6-7 appears.

‘ {5 Slave Stack Code Tool

Slave Sefings

Slave Stack Code Tool | New Project

©) Default

Custom | EL8800| 2Axis CiA402 Sample

Default SlaveStackCode configuration
|All setsngs are available.

Import

OK

Figure 6-7. SSC Tool Create new project.

3. Click Import, point to the C28xx_Config.xml, located in the

completion of 1 as shown in Figure 6-8.

SSCToolC28xPatch folder created after

| <« controlSUITE » development kits » TMDSECATCND379D_ V1.0 » S5CToolC28xPatch v C}| | Avadnnon: SSCToolC28xPatch 2 |
Niog, pakehog B== ~ [0
Ovopa : Hupzpopnvio tpom.. | Tumog MéyeBog
files 6/2/2018 10:17 pp Déxehog opyzivov
| |:| C28xx_Configxml 22/9/2017 2:46 pp XML Document 134 KB

Ovopa apyziow: | C28x0_Configxml

v| |SSC Tool configuration file (*.x v|

Figure 6-8. Importing ESI description file.

‘ Avotypa |‘ Arxupo |

Figure 6-9 shows the pop up window when the C28xx_Config.xml is imported for the first time by the SSC

Tool.

111/147

{0 Siave Stack Code Tool

Stave Setings

Ti 16PDhon”

TI C280xMCU. The o
U and he ESC s ET1100 and e PDI s ASYNC16. This config includes an echo back.

Impont oK

Figure 6-9. Slave Stack Code - New Project.

4. When the user selects the drop-down menu, the options shown in Figure 6-10 are provided.

[l Slave Stack Code Tool B X

ool Help

Slave Sefings

Slave Stack Code Tool | New Project [X

Defaut

@ Custom [TiC2800
oo T axa: EL3800 223
Vandos Te: e ELso00)

nnnnnn 000 an
NOTE: Tis T

T1 G2Bix Samy
TI G280 Samy
T G2 Samy

{ASYNC16 PDI) on TMDSECATCNCD3 73D kit <Texas insliyments Incarporated> v |

orziac

ole aps
son) with

nET1100¢ Escmswc 6 DDum TMOSECATCNCSTS

ih £T1100 ESC(SP1 PDI) on TMDSECATCNCD373D kil <

(Create a SSC Tool
|ASYNCIE. This conbg inclu

impart oK | l

Figure 6-10. SSC Tool Configuration Options.

Four different options are available for C28x architecture microcontrollers created by Texas Instruments as
follows:
=Option 1 generates EtherCAT slave stack code and EtherCAT EchoBack (sends and receives the
same variables through EtherCAT network to test the communication) sample application code for
ASYNC16 Process Data Interface (PDI) which depicts the communication protocol that is being used
between the EtherCAT Slave Controller and the C2000 Delfino MCU to exchange data.
=Option 2 generates EtherCAT slave stack code and EtherCAT EchoBack sample application code for
SPI PDI.
= Options 3 and 4 generate EtherCAT slave stack code for ASYNC16 and SPI PDI, without any default
EchoBack sample application.
Note: Among SPI and ASYNC16 PDIs, there is no difference between the EtherCAT slave stack code and
application code. Only the device name and product code differ, so both SPI and ASYNC16 slave nodes can
be differentiated when they are both in the same network. For the EchoBack slave node profiles, the ESI files
generated for SPI and ASYNC16 PDIs are also the same except for the device name and product code.
5. Choose an option (preferably one with a sample application), then click OK and click Yes, as shown in
Figure 6-11.

112/147

Slave Stack Code Tool l=/=2] %]

Eile Project Tool Help

Slave Project Navigation

Slave Settings

Slave Stack Code Tool | New Project @

(©) Default

@) Custom | TI C28xx Sample (inclu

Vendor: Texas Ir
\Version: 0.0.0.1
NOTE: This configuration is not provid
/Automation GmbH.

5 s | & v|

Slave Stack Code Tool

Incorporatg

) R . . by the license from Beckhoff
External files need to be added to activate the configuration.

Do you want to proceed?

NOTE:
These files are not covered by the license from Beckhoff
Automation GmbH.

Create a SSC Tool Configuration for th
IASYNC16. This config includes an ech

is ET1100 and the PDlis

Figure 6-11. Importing project confirmation.

6. Now the C28xx configuration should be imported. Inspect the slave information as shown in Figure 6-12.

EtherCAT Slave* - Slave Stack Code Tool =@ %

oject Tool Help

Project Navigation Slave Settings

Name Value

VENDOR_ID 0x0000059D

(=) EtherCAT Slave
Slavelnformation

Description

DEVICE_NAME_LEN
DEVICE_HW_VERSION

029
CC_1_3_DC_REVB

DEVICE_HW_VERSION_LEN OxE
DEVICE_SW_VERSION SSC_5_11_C28_2_0_09
DEVICE_SW_VERSION_LEN 0x13

Generic Define: VENDOR_ID

Hardware VENDOR_NAME Texas Instruments Incorporated
Object 0x1018 SI1 (Vendor ID)

EtherCAT State Machine PRODUCT_CODE 0x10001101 An unique EtherCAT Vendor ID is required. Please find
Synchronisation REVISION_NUMBER 0x00000001 all valid Vendor IDs listed at

Eﬁ Application SERIAL_NUMBER 0x00003017 mmemercamrg_[en[ve;ndor id I\sthml._
= ProcessData If your company is not listed. please assign an ID for free
Mailbox DEVICE_PROFILE_TYPE 0x00001389 at www ethercat org/memberarea/vendor id.asp
Compiler DEVICE_NAME TMDSECATCNCD379D EtherCAT slave (ASYNC16)

Conflicts
© Info A Waming @ Error

Load code defines finished

Figure 6-12. SSC Tool slave information.

7. Save the SSC Project in the following folder C:\working
8. Select Project — Create new Slave Files as shown Figure 6-13.

113/147

"8 TMDSECATCNCD379D-EchoBack - Siave Stack Code T
File | Project | Tool Help
@ Project Update tings
= TMC Find Setting Ctri+F rsion 51
3 M‘\[’:\hmon 1330

Hardware

e e File name Description Version
Synchronisation] TMDSECATCNCDI - TMDSECATCNCD379D-EchoBack! TMDSECATCNCD379D-EchoBack! 10011 i
Application & TMDSECATCNCD3 1001 |=
ProcessData TMDSECATCNCD3. -
Mailbox
f aoeapplc AoE ADS over EtherCAT 5N
aoeapplh 51
applinterface h EcatAppl EtherCAT application sn
bootmode.c ESM EtherCAT State Machine 420
bootmode h sn
cia402appl.c CiAd02app! CiA402 Sample Application 511
ciad02applh 51
coeapplc CoE CAN Application Profile over EtherCAT 51
coeapplh 51
diagc Diagnosis Object sn -

ReloadFile | [Remove File | [AddFie(s)
Conficts
@info 4 Waring @ Error

Hardware imer functons/marcos need 1o be defined See SSC Application Note for further information.

|

Figure 6-13. Create new Slave Files.

9. Input the Source Folder (C:\working\Src) and ESI File path (C:\working\TMDSECATCNCD379D EtherCAT
slave (SPI).xml), or check where it is already defined and click Start as shown in Figure 6-14.

Create new Slave Files

Project Fle [Co\warking\TMDSECATCNCD379D EherCAT save (SFlesp |
Sourcs Folder [C:\working\Src | [change |
ESl File [C:\working\TMDSECATCNCD379D EinerCAT slave (SPi)ml | [change |
D Ci\working g
Progress

Figure 6-14. Create EtherCAT stack and xml file.

10. The slave node source files must be created. Click OK and then close the pop up window.
11. Inspect the directory in which the files were created. It must be identical with Figure 6-15.

Owopa “ Hpepopnvic tpom.. Tumeg Méyefog
Sre 13/10/2017 1113 pp. - Dékshog apysiny

B TMDSECATCNCD3T79D EtherCAT slave (SPI).esp 13/10/2017 11:08 pp Apyzio ESP 431 KB

=] TMDSECATCNCDI79D EtherCAT slave (SP1)aml 13/10/2017 11:13 ppe "Eyypoaepo XML 86 KB

Figure 6-15. EtherCAT project files.

The Src folder must contain all the slave stack files and the default sample Echoback application that were
generated by the tool. The esp is the slave stack project file for the slave stack tool. Users can open this file in
the SSC tool and edit the project as needed and regenerate the files. The xml is the generated ESI file which
must be updated with the EtherCAT master in the network to which this slave node will be connected.

114/147

12. Users must copy all the generated stack files wunder the Src folder to the
TMDSECATCNCD379D_EtherCAT_Solution_Ref CCs project located in

\controlSUITE\development_kits\TMDSECATCND379D_VX\TMDSECATCNCD379D_EtherCAT_Solution_Ref
folder as shown in Figure 6-16.

ASYNC16_EtherCAT_Slave_stack
cmd
hal

SPI_EtherCAT_slave_stack

ccsproject

Lcproject

.gitignore

project

expressions_window_inputsQuputs.txt
TMDSECATCNCD379D_EtherCAT_SolnRef_manifest.txt

Figure 6-16. CCS project tree.

a. |If the slave stack sources were generated from the SSC tool for ASYNC16 PDI, then they must be
copied to the ASYNC16_EtherCAT_Slave_stack folder.
b. If they were generated from the SSC tool for SPI PDI, then they must be copied to the
SP|_EtherCAT_slave_stack folder.
13. The project is now ready to be imported into Code Composer Studio. For more information regarding the
aforementioned procedure see SPRUIG9.pdf (TMDSECATCNCD379D EtherCAT Solution Reference Guide)
file located in \controlSUITE\development_kits\TMDSECATCND379D_ Vx.

6.4 Download and Install TwinCAT 3 Software
In order to download and install TwinCAT, visit Beckhoff's official website at [46] and navigate to
Download—Software—»TwinCAT 3—TE1xxx | Engineering.

1. Select TwinCAT 3.1 — eXtended Automation Engineering (XAE) as shown in Figure 6-17 and press Start
Download either as a guest or create an account in Beckhoff.

TwinCAT-3-Download — Engineering

Earlier TwinCAT 3 versions are available upon inquiry with the b Support department

Product Version Description
I3 TwinCAT 3.1 — eXtended Automation 3.1.402220 TwinCAT Engineering contains the
Engineering (XAE) engineering environment of the

TwinCAT 3 control software:

— integration into Visual Studio®
2010/2012/2013/2015 (if available)

— support for the native Visual
Studio® interfaces (e.g.
connection to source code
management systems)

—IEC 61131-3 (IL, FB, LD, AS, ST)
and CFC editors

— compiler for the [EC 61131-2
languages

— integrated system manager for the
configuration of the target system

— instancing and parameterisation of
TwinCAT modules

— integrated TwinCAT C++ debugger

- integrated user interface for the
parameterisation of modules
generated by Matlab®Simulink®

- ifintegrated into Visual Studio®,
instancing of NET projects in the
same solution (e.g. for HMI)

Figure 6-17. TwinCAT 3 Download scheme.

Note: Always check whether the latest version of Windows Operating Systems downloaded in your
personal computer is compatible with the latest version of TwinCAT which you are about to download

115/147

https://www.beckhoff.com/forms/twincat3/warenkorb.aspx?lg=en&title=TC31-Full-Setup.3.1.4022.20&version=3.1.4022.20

because | have encountered several errors and disfunctinalities if that was the case. In the majority of cases,
a warning message will emerge by Beckhoff before the downloas is initiated indicating that there is an
incompatibility between Windows and TwinCAT.

2. Run the downloaded executable file as administrator as shown in Figure 6-18.

Avoryua

TC31-Full-S& B -
31402220 ' Exviheon we Sioxzipiotic

Avniperiomion TpofAnpéTuy oupBatéTniag
Exréhean pe emzkzpyooTh ypogIKio >
Kappitotopa oty Evapkn

Figure 6-18. TwinCAT 3 Installation

Note: Although the TwinCAT 3.1 XAE is integrated in the Microsoft Visual Studio development
environment, a previous installation of the latter software is not necessary since in case no Visual Studio
installation is available on your PC, the TwWinCAT 3.1 setup will install the Visual Studio shell as well.

3. Navigate to the installation folder of TwinCAT and run the TcSwitchRuntime.exe file as administrator

located in C:\TwinCAT\TcSwitchRuntime folder as shown in Figure 6-19

Internal 28/12/2017
(&l TeswitchRuntime exe 10710,
Avorynax

) Extihzon we SoyEpIoTAC
Ao R o P
Excréhean pie enckepyoao ypagixiov >
Kapgitawpa ary Evapén

Figure 6-19. TcSwitchRuntime Installation.

4. Verify that the TcSwitchRuntime is active. The “Deactivate” button should be showing as illustrated in
Figure 6-20. If this button indicates “Activate”, click that button to start the TcSwitchRuntime.

¥ TeswitchRuntime
Version 1,20
TwinCAT 3.1 Build 4022.4 is active
| ¥]
Savelog || Clear Log

Figure 6-20. TcSwitchRuntime Activation.

5. Locate and start TwinCAT XAE (VS 2013) application and verify that TwinCAT is running under Visual
Studio. “TwinCAT” and “PLC” options should both appear in the main toolbar as shown in Figure 6-21. If the
aforementioned menu items are not shown, then the TcSwitchRuntime is not running properly. Go back to

step 4 and restart (Deactivate—Activate) the TcSwitchRuntime.

116/147

D Start Page - Microsoft Visual Studio

FILE EDIT VIEW DEBUG [TWINCAT] TWINSAFE TOOLS SCOPE WINDOW HELP

|B-o-a P [9 - -] » atach.. -
| | \ =l)]
& [Solution Explorer MLl stert Page = X
g
4) 2013 Shell
& (Integrated)
Start

Open Project

Figure 6-21. TwinCAT Verification.

6. Verify that a Realtime Ethernet Adapter is installed. Select TwinCAT—Show Realtime Ethernet Compatible
Devices as shown in Figure 6-22. If no Real Time adapter is installed, select one from the list of Compatible

devices and click “Install”, then exit this popup window.

DE TwinCAT Project - Microsoft Visual Studio

FILE EDIT VIEW PROJECT BULD DEBUG | TWINCAT | TWINSAFE PLC TOOLS SCOPE WINDOW
o B-o-2dE| Y 7 Activate Configuration

w B2 6 ®i > Restart TwinCAT System

- Solution Explorer

@ o-a|s =

Restart TwinCAT (Config Mode)

2% - |

Reload Devices

Toggle Free Run State

chS plorer (Ctrl+ ®
53] Solution ‘TwinCAT Project!’ (1 project) @) Show Oniine Data
Ml 4« i TwinCAT Project1 .
bl SYSTEM . Show Sub Items
[moTion & Security Management...
@ e
:;im #8 Access Bus Coupler/IP Link Register...
s Update Firmware/EEPROM »
> Evo | Show Realtime Ethernet Compatible Devices...
Installation of TwinCAT RT-Ethernet Adapters

File Handiing 3
EtherCAT Devices , Ethemet Adepters: T
About TwinCAT 7 Instaled and ready o use devices(iealime capabl) —_—
157 Installed and ready to use devicesfor demo use oniy) nscal
¥ Compatible devices

-9 Incompatble devices

7 Ethemet 2. Apole Mobile Device Ethemet
Ethemet - Realtek PLle FE Family Controller
(5 WiFi - IntelR) Dual Band Wieless-AC 3160
{5 Disabled devices
Disable

I~ Show Bindings

Figure 6-22. Real Time Ethernet Adapter Installation.

If a network card is listed under “Incompatible devices”, this does not mean that it cannot be used to test
the EtherCAT communication. It only means that this card will provide only weak real-time capabilities and will
never switch to RUN mode (proper EtherCAT communication). On the contrary, it will only enable the FREE
RUN mode which is regarded as an intermediate state that does not allow the renowned EtherCAT
synchronization. For most of the testing purposes this is sufficient, therefore the driver can be installed.
However, in our application, we will be using the DC Synchronous mode (we will elaborate in the following
chapters), hence it is imperative to download adapters for compatible devices. Refer to EtherCAT Master
Requirements in order to find out which networks cards are compatible with real time EtherCAT

communication.
If the installation was successfully completed, the network card will be moved under the “Installed and

ready to use devices” list:
= Compatible devices — Installed and ready to use devices (realtime capable)

117/147

= Incompatible devices — Installed and ready to use devices (for demo use only)

6.5 Import CCS project into Code Composer Studio

In order to Import a project in CCS and be able to download it into the desired microcontroller:
1. Start Code Composer Studio. The pop up window must look like Figure 6-23.

9 workspace 7 - CCS Edit - Code Composer Studio
File Edit View MNavigate Project Run Scripts Window Help

D S— sl | B

[Project Bxplorer 52 BE =0 =g
B Console 2 = B8
o ofE FEER mE-m- = Memory Allocation [£] Problems (' Advice 2 =g
CDT Build Console [EtherCAT_Application] 0 tems
Description M Resource Path Location
.
Figure 6-23. Code Composer Studio starting page.
2. Select File > Import as shown in Figure 6-24.
File | Edit View Navigate Project Run Seripts Window Help
New AltShift+N > | o : @:‘ %
Open File...
[} Open Projects from File System... =g
Close Ctrl+W
Close All Ctrl+Shift+W
Save Ctrl+§
Save As
Save All Ctrl+Shift+5
Revert
Move...
Rename. F2
2| Refresh F3
Convert Line Delimiters To >
Print... Ctrl+P
Switch Workspace >
Restart
B Import...
g Export..
Properties Alt+Enter
Exit
B Console 52 = B
o oG deEs re - = Memory Allocation [2] Problems) Advice 2 = @
CDT Build Console [EtherCAT_A, Ditems
Description M Resource Path Location

Figure 6-24. CCS Import project.

3. From the pop up window select CCS Projects and then click Next as shown in Figure 6-25.

118/147

Select

E\A 7
Imports existing CCS Eclipse projects into workspace.
Select an import wizard:
type filter text
[} File System A~

[T] Preferences
[Projects from Folder or Archive
s o= CfC++
v (= Code Composer Studic
lag, Build Variables
] Legacy CCSv3.3 Projects
» [Energia
y (= Git
5 = Install
» [= Remote Systems
» [= Run/Debug
3 (= Team —

@ < Back Next > Enen

Figure 6-25. CCS project import selection.

4. Browse to the directory of the desired CCS project that you intend to import, click OK and then Finish as
depicted in Figure 6-26.

% Import CCS Eclipse Projects % Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CCS Eclipse projects.

Select CCS Projects to Import
Select a directory to search for exsting CC3 Edlipse projects.

L
La

® Select sgarch-directory: || I Erowse. e — @ Select search-directory: | G:\Deffino Projects - EtherCat\EtherCAT App| | Browse.. |

O Select archive file: Browse.. O Select archive file Browse..

Select root directory of the projects to import

Discovered projects: Discovered projects:

> | Desired Angles Control ~ [@1E3 EtherCAT Application [G:\Delfino Projects - EtherCaf\EtherCA| [Select All

Desired Angles Control Multiple Variables
EtherCAT Application Desclect All
EtherCAT_Application

launches

Select All
Deselect All

settings

5[] _1_LAUNCHXL_F2837D_SpIA_RAM

5 || _2_LAUNCHXL_F28379D_SP¥g |
emd

hal

S9LEIEACAT dove stack LS E—— ;
5 || Initiel Projects
[¥] Automatically import referenced projects found in same search-directory . v v [v] Automatically import referenced projects found in same search-directory
[Copy projects into workspace \ [¥] Copy projects inte workspace
@ikehog: ‘ EtherCAT_Appicaton \ |
Open Resource Explorer to browse a wide selection of example projects... N Open Resource Explorer to browse a wide selection of eample projects...
Aoupyia véou parihou [upo

® T e][b ® ™

Figure 6-26. CCS browse and import.

5. If no error arises during this process, the project will show up on the Project Explorer (left hand side) of
CCS window as illustrated in Figure 6-27 and developers may expand the tree to observe its main
components.

119/147

CC5 it - Code o
Bl Edt Ve Nawgate Pioject Bun Scigts Mindow Help
e BikviPidpis o Gar

ity Praject Expiorer 21 2% "= 8

L EtherCAT Application [Active - _1_LAUNCHXL_FZ837xD_SPIA RAM]

£ Memory Allocation. (£] Problems =1) Advice =0
5 Console 2 Lo FAFal#E-8-" 0 ot
COT Build Console [EtherCAT_Application] Description - Resource

Figure 6-27. Project imported CCS window.

6.6 Define and Select Target Configuration

In order to define a target Configuration:
1. Select View > Target Configuration as depicted in Figure 6-28.

i Bun Soripts Mindow Help

r
]
a &

@ Resource Explorer Clssic

£ | Goace Sippets
@ Getng Stated
3 App Cantr
G Composer™

1
0
o
0

& Project Exgieer TaD_headeryinchste
([problems A shilt=0, X
| @ consote Areshneq

E| 0 advice

3
¥

Memry Broveer

T

Weda LK IEE

AeshifteQL ¥

Ashite0, B

Terminal
Scrgting Consale

Trget Condiguations.

Outline Alt-Sh#i-0, 0
e

2 Memoy Alccation (8] Prebems 13§ Adrice =@
o 2 s age LR ; .
EOTEUME = Memary Allocation Pecriplio S—
W Optimize asiatane
.. Anesneteg @

Figure 6-28. Select View Target Configuration.

2. Select New Target Configuration from the Target Configurations window.

6t - Code C usio
[" st Broect Bun Scrghs Wndow Help
- DiR-Qitrise oG we [Euance):| &) [@%
orer ag v=ao = O | % Torget Configurations ¢ .
a1 LAV 24510 5P AN G~ -
s/ compiler/i-cgt-<2000.16.120STS/ 53 Prowcs]
: F8, & Uses Defined
@c 7
(B EtherCAT Appbcstionmel
{5 EtherCAT Apphcstion/SP1 EtherCAT siave stack
2 1 LAUNCHXL_F28370_SPIA RAM
LAUNCHXL_F83750_SPIA_FLASH
& SPLERRrCAY siave stack
£ Memory Allocation [%] Protiem: 0 B
D Console (%) 28 | M@ riv=0 Otems
COT Buid Console [EtherCAT Appication] Descrpton

Figure 6-29. New Target Configuration.

3. Name the Target Configuration after the MCU being used and click Finish.

120/147

% New Target Configuration

Target Configuration

Create a new Target Configuration file,

File name: | LAUNCHXL_F28379D

Use shared location

Location: | C:/Users/stam/ti/CCSTargetConfigurations

File System... | | Workspace...

@)

Finish | ‘ Cancel

Figure 6-30. Name Target Configuration.

4. Select Texas Instruments XDS100v2 USB Debug Probe at the Connection tab, select TMS320F28379D at
the Board or Device tab and click Save as shown in Figure 6-31.

5 workspace_v7 - CCS Edit - C:\Users\stam\ti\CCSTargetConfigurations\L AUNCHXL_F28379D.ccem - Code Composer Studio

File Edit View MNavigate Project Run Scripts Window Help

vl RiBIR-iRitsrigd~ it vy
[Project Explorer 52 ES% ¥ = O | B *LAUNCHXL F28379D.caml 53
v (& Et:ar(AT,npph:mn Basic

> ¥ Binaries

~ [l Includes General Setup

> (2 G/tifcesvT/tools/ compiler/ti-cgt-c2000_16.12.0.51
> (£ C/tifcontrolSUITE /device_support/F2837xD/v200/

This section describes the general configuration about the target.

)| | [l

= O [Target Configurations &3 =0
(] B X & B
e filter text
Advanced Setup o
= Projects
g User Defined

-) v g g :
© (B ColifcontiolSUME/device support/F28IDvo0y CoMecten | Tesas Instruments XDS10042 USB Debug Probe Target Configuration: lists th &) LAUNCHXL_F28378D coaml
= EtherCAT_Application/hal Board or Device [TMS320F26379D
5 EtherCAT_Application/SPI_EtherCAT slave_stack Save G
5 (& _1_LAUNCHXL F2837xD_SPIA_RAM =
> (= _2 LAUNCHXL F28379D_SPIA_FLASH B =
> (= hal
5 (= SPI_EtherCAT slave_stack Test Connection
> @6 cmd To test a connection, all chan,
configuration file contains
Test Connection
Alternate Communication
Uart Communication v
~
To enable host side (i.e. PC) ¢
communication over UART, t
implementation. Please chec|
K3 T > . target spplication leverages T
o enable Uart Monitor module.
B Console 52 =} R . P — ~
- < w >
¢[8 @EER M BO S
CDT Build Console [EtherCAT 4 ﬂ ance ‘ "”'CE|
“| £ Memory Allocation [£] Problems 52) Advice v =0
0 items
Description - Resource
<) <]

Figure 6-31. Select Connection and Device.

5. Close the LAUNCXL_F28379D.ccxml window after saving is completed.
In order now to link this configuration to your project:

6. At the Target Configurations window (right hand side) expand the User Defined directory, right click on
LAUNCHXL_F28379D.ccxml and select Link File To Project > [Project you want] (ex EtherCAT_Application)

as shown in Figure 6-32.

121/147

% workspace_v7 - CCS Edit - Code Composer Studio
File Edit View MNavigate Project Run Scripts Window Help

——— eresl)| m| @
[Project Bxplorer 52 = a = B | [Target Configurations 52 &R £ B2=0
BE& v type fiter text
viE ErE = Projects
¥ Binaries
e ~ (= User Defined
[Inclu % LAUNCHXL_F28379D.coml
@2 sv7/tools/compiler/ti-cc
B ntrolSUTE/device_supp [% | New Target Configuration
i) ntrolSUITE/device_supp Import Target Configuration

{2 EtherCAT Application/hal % | Delete Delete
{5 EtherCAT Application/SP|_Ether

Re 2
(= _1_LAUNCHXL F2837«D_SPIA RAM e
(& _2_LAUNCHXL_F28379D_SPIA_FLAS. & Refresh 3
= hal ¥ Launch Selected Configuration
SPI_EtherCAT slave stack
? and o Set as Default
Link File To Project ’ EtherCAT Application
Properties Alt+Enter RemoteSystemsTempFiles
< w >
& Console 33 = a

S 4[5 meER e
CDT Build Console [EtherCAT_Application]

*| = Memory Allocation [Z] Problems 33) Advice =0
0Oitems
= 3

v [«] >

Figure 6-32. Link ccxml file to Project.

7. Close Target Configurations window.

6.7 Add and remove EtherCAT Input and Output variables

In this section we will describe the process of adding a Record of two output variables (16bit signed integers)
in an EtherCAT slave device and how to configure these additions in both the ESC memory and the Delfino
MCU [5] . The name of the Record will be Additions (0x7030) and the two variables will be named Outl and
Out2. In general, the address of all output variables begins with 0x70 and all input variables with 0x60. The
procedure of adding input variables or removing a variable from the slave is identical and will not be
separately explained. For the purpose of this section, we will use EtherCAT Application project which is
described in EtherCAT Application Guide.

1. Download and import EtherCAT Application project to Code Composer Studio.

2. Open EtherCAT Application.c file. In the PDO_ResetOutputs() function add the indicated initialization part
of Figure 6-33. If we were to add input variables, this step would be skipped.

55 \brief This function resets the outputs

BT I LTI T I T LI LTI 2T I I I T T I T It I 1T LTI LT
57

58 void PDO_Resetoutputs(void)

59{

58 Buttons@x7ee@.Buttonl = Oxo;
51 Buttons@x70ee.Button2 = Oxe;
62 Buttons@x7@88.8utton3 = Ox8;
63 Buttons@x7eee.5uttond = Ox8;
64 Buttons@x7e@.Blus LED = 0x@;

65 Buttons@x7@0@.Red_LED = 0x0;
66 Buttons@x7eee.Button? = @x@;

67 Buttons@x76e8.Buttond = 8xB;

68 Buttons@x76e@.5ync = @x@;

69

70 OutputlINT326x7010.0utINT32Varl = 0x@;
71 OutputUINT168x7612.0utUINT16Varl = 8x8;
72 Output2INT328x7614.0utINT32Var2 = @xe;
3

74 OutputINT166x7020.0utINT16Varl = 0x@;
75 OutputINT168x7820.0utINT16Var2 = 8x8;

76 OutputINT168%7828.0utINT1EVars = Bx@;
77 OutputINT16@x7828.0utINT16Vard = Bx8;
OutputINT168x7820.0utINT16Var5 = Ox@;
OutputINT16€x7020.0utINT16Vare = 0x@;

Additions@x783@.0utl = 8x8;
Additionsex7e3e.0ut2 = exe;

Figure 6-33. Add initialization definition of new variables.

122/147

3. Update the *pOutputSize pointer within the APPL_GeneratingMapping() function as shown in Figure 6-34.
Since we added two, 16bit output varialbes which equals to four extra bites, the new value of *pOutputSize
pointer will become 28 (24 (before) + 4 (extra bytes)) whereas the *plnputSize value will remain the same.

UINT16 APPL_GenerateMapping(UINTLlE *pInputSize,UINT16 *pOutputsize)

n .
*pOutputsSize = 28;
= = I

!

_NOERROR;

Figure 6-34. Update pOutputSize value.

4. Update APPL_OutputMapping() function with the definiotions of the new variables. If we had new input
variables as well, we would update APPL_InputMapping() function as well accordingly.

249 void APPL_OutputMapping(UINT16* pData)

256 {

251 uintlé_t *pTmpData = (uintl6_t *)pData;// allow byte processing
252 uintlé_t data = @;

253

254 /* RxPDO */

255 data = (*(volatile uintlé_t *)pTmpData);
256 (Buttons@x78@8.Buttonl) = data & @xl;
257 data = data »»> 1;

258 (Buttons@x7@@@.Button2) = data & @xl;
259 data = data »> 1;

260 (Buttons@x78@8.Button3) = data & @xl;

data = data »»> 1;
(Buttons@x70@e.Buttond) = data & @xl;
data = data »> 1;
(Buttons@x78@8.Blue_LED) = data & B8x1;
data = data »»> 1;
(Buttons@x70@@.Red_LED) = data & @xl;
data = data »> 1;
(Buttons@x78@8.Button?) = data & @xl;
data = data »>> 1;
(Buttons@x70@@.Buttond) = data & @xl;
data = data »> 1;

(Buttonsex70e8.5ync) = data & @xFF;
pTmpData+t+;

"l

"l

1

|

memcpy (20utputlINT328x7018.0utINT32Varl, pTmpData, SIZEOF (OutputlINT328x7018.0utINT32Varl));
pTmphata += 2;

memcpy (&0utputUINT168x7812. QutUINT16Varl, pTmphata, SIZEOF (OutputUINT16@x7812. OUtUINT16EVarl));
pTmphata ++;

memcpy (&0utput2INT328x7014. CutINT32Var2, pTmpData, SIZEOF (Output2INT328x7014.0utINT32Var2));
pTmphata += 2;

-1 =1 =l

pa}

PR Y- R R R Y R]

memcpy (20utputINT16@x782@.0utINT16Varl, pTmpData, SIZEOF (OutputINT16@x7828.0utINT16Varl));
pTmpData ++;
memcpy (&0utputINT168x7828.0utINT16Var2, pTmpData, SIZEOF (OutputINT16@x7828.0utINTL1EVar2));
pTmpData ++;
memcpy (&0utputINT16@x7828.0utINT16Var3, pTmpData, SIZEOF (OutputINT16@x7828.0utINT16Var3));
pTmpData ++;
memcpy (20utputINT1668x7828.0utINT16Vard, pTmpData, SIZEOF (OutputINT168x7820.0utINT1EVard)) ;
pTmpData ++;
memcpy (&0utputINT16@x7828.0utINT16Vars, pTmpData, SIZEOF (OutputINT16@x7828.0utINT16Vars));
pTmpData ++;
memcpy (20utputINT1668x7820.0utINT16Vare, pTmpData, SIZEOF (OutputINT168x7820.0utINT16Vare)) ;

pTmpData ++;
memcpy (&Additions@x7@38.0utl, pTmpData,SIZEOF (Additions@x70368.0utl));
pTmpData ++;
memcpy (&Additions@x7838.0ut2, pTmplata, SIZEOF (Additions@x7@3@.0ut2));

P RS RS R R R R R R R B3 B3 B3 Ra RJ ORI BRI R RD BRI BRI RJ ORI RI R BRI ORI RDORJ ORI R BRI R R R R RS

0L LW W0 W0 W WD WD W COCO 0D D oo B0 0000 COCO

[I R A R = e R R]

}
Figure 6-35. Update APPL_OutputMapping() function with new variables.

5. Open EtherCAT_ApplicationObjects.h file and append the object address definition of the new variables
under Object 0x1602 : OutputINT16 shown in Figure 6-36. Note that this object is only and address reference
project and does not describe the nature of the variables. This is the reason why in lines 239 and 240, the
variable’s type has been declared as an unsigned 32 bit variable. Moreover, the object addressing for output
variables starts with 0x16 and for input variables with 0x1A and because we are adding 0x7030 output record,
the object address definition is 0x1603.

123/147

221/

222 % Object ex16@3 : Additions
223 /
224 J**

225 * \addtegroup @x1663 @x1683 | Additions

226 * @f

227 * \brief Object 8x1683 (Additions) definition
228 %/

229 #ifdef _OBID_

238 /**

231 * \brief Object entry descriptions<br»

232 %

233 * subIndex B<br»
234 * SubIndex 1 - Reference to @x7@3e.1

235 * SubIndex 2 - Reference to @x7@3@.2

236 */

237 OBICONST TSDOINFOENTRYDESC OBIMEM asEntryDescex16@3[] = {

235 { DEFTYPE_UNSIGNEDS , @x3 , ACCESS_READ },

239 { DEFTYPE_UNSIGNED32 , ©x2@ , ACCESS_READ }, /* Subindexl - Reference to @x7838.1 */
24 { DEFTYPE_UNSIGNED32 , @x20 , ACCESS READ }}; /* Subindex2 - Reference to @x7038.2 */
241

242 f**

243 * \brief Object/Entry names

244 =/

245 0BICONST UCHAR OBJMEM aName@x16@83[] = “"Additions\8ea8"

246 "SubIndex 801\808"

247 "SubTndex B@82\88@\377";

248 #endif //#ifdef _0BID_

249

250 #ifndef _TMDSECATCNCD3I79_D_ECHO_BACK_OBJECTS_H_

251 /*

252°*
253 %/
254 typedef struct OBI_STRUCT_PACKED_START {

255 UINT16 uléSubIndex@;

256 UINT32 S5I1; /* Subindexl - Reference to @x7808.1 */
_257UINT32 S5I2; /* Subindex2 - Reference to 8x7880.2 */
258 } 0BI_STRUCT PACKED END

259 TOBJ16@83;

266 #endif //#ifpdef _TMDSECATCNCD379_

\brief Object structure

_ECHO_BACK_|

261

262 /*=*

263 * \brief Object variable

264 */

265 PROTO TOBJ16@3 Additionsexl6@3

266 #if defined(_TMDSECATCHNCD379_D_ECHO_BACK_) && (_TMDSECATCNCD379_D_ECHO_BACK_ == 1)
267 ={2,0x70300110,0x70300210}

268 #endif

269 ;

278 /*

271
Figure 6-36. New variables object address definition.
6. Update Object 0x1C12 : SyncManager 2 assignment as indicated in , with the new variable additions. Note

that if we were to add input variables, then we would have to update Object 0x1C13 : SyncManager 3

definition.

430/
431 * Object 8x1C12 : SyncManager 2 assignment

432 /
433
434
435 *
436 *
437 %/
432 gifdef _0BID_

439 ==

44@ * \brief Entry descriptions

441 *

442 * subindex @

443 * Subindex 1 - n (the same entry description is used)

4aa=/

445 0BICONST TSDOINFOENTRYDESC OBIMEM asEntryDesc@x1C12[] = {
446 { DEFTYPE_UNSIGNED8 , @x8 , ACCESS_READ },

447 { DEFTYPE_UNSIGNED16 , @x1@ , ACCESS READ }};

443

449 /**

45@ * \brief Object name definition

451 * For Subindex 1 to n the syntax "Subindex XXX' is used

addtogroup @x1C12 @x1C12 | SyncManager 2 assignment
8

rief Object @x1C12 (SyncManager 2 assignment) definition

452 %/

453 OBICONST UCHAR OBIMEM aName®x1C12[] = “"SyncManager 2 assignment\@ee\377";
454 #endif //#ifdef _0BID_

455

456 #ifndef _TMDSECATCNCD379 D _ECHO_BACK_OBJECTS H_

457 /

458 * \brief Object structure

459 %

460 typedef struct OBJ_STRUCT_PACKED_START {

461 UINT1S £5uh \brief Subindex @ */
464UINT16 aEntries[4 \brief Subindex 1 - 4 */
463 } OBJ_STRUCT_PACKED_END

464 TOBJ1C12;
465 #endif //#ifndef _TMDSECATCNCD379_D_ECHO_BACK_OBIECTS_H_

466

467

468 rief Object variable

469 %/

478 PROTO TOBJIC1Z sRxPDOassign

471 3 i) BACK_) && (_TMDSECATCNCD379_D_ECHO BACK_ == 1)
472 =14, {@x1680, 0x1681,8x1662,8x1683} }

473 #endit

Figure 6-37. Update SyncManager assignment.

124/147

7. Insert the Additions object record definition of Figure 6-38 under the Object 0x7020 : OutputINT16.

1062 /
1863 * Object @x7838 : Additions
lesd 7
1865 /**
" \addtogroup Bx7838 8x783@ | Additions

@

\brief Object ex7e2e (Additions) definition

1069 */

1070 #ifdef _0BID_

1071 /*=

1872 * \brief Object entry descriptions<bry
1073*

1674 * SubIndex 8

1875 * SubIndex 1 - Outl<br:

1676 * SubIndex 2 - Out2

1877 */

1878 0BJICONST TSDOINFOENTRYDESC 0BIMEM asEntryDescex7a3e[] = {

1079 { DEFTYPE_UNSIGNEDS , @x8 , ACCESS_READ },

1@s@ { DEFTYPE_INTEGER16 , @x1@ , ACCESS_READWRITE | 0BJACCESS_RXPDOMAPPING ‘ OBJACCESS_SETTINGS }, /* Subindexl - Outl */
1681 { DEFTYPE_INTEGER16 , @x18 , ACCESS READWRITE | OBJACCESS RXPDOMAPPING | OBJACCESS SETTINGS }}; /* Subindex2 - Out2 */
le82 /**

1883 * \brief Object/Entry names

1834 */

1085 0BJCONST UCHAR OBIMEM aName@x7838[] = “"Additions\@ee"

1836 "0ut1\608™

1887 "0ut2\eee\377";

1088 #endif //#ifdef _0BID_

1889

1090 #ifndef _TMDSECATCNCD379_D_ECHO BACK OBJECTS H_
1091 /**

1892 * \brief Object structure

1893 */

94 typedef struct OBJ_STRUCT_PACKED_START {
95 UINT16 uléSubIndex@®;

96 INT16 Outl; /* Subindexl - Outl */
97 INT16 Qut2; /* Subindex2 - Out2 */
93 } 0BI_STRUCT_PACKED END

1899 TOBJ783@;

1108 #endif //#ifndef _TMDSECATCNCD379_D_|

CHO_BACK_OBJIECTS_H_

1101

1182 /**

11@3 * \brief Object variable

11e4 =/

1165 PROTO TOBI7@838 Additions@x783@

1106 #if defined(_TMDSECATCNCD379_D_ECHO_BACK_) &8 (_TMDSECATCNCD379_D_ECHO_BACK_ == 1)

1187 ={2,8x0000, 0x2000 }
1108 #endif

1109 ;

1118 /** @y*/

Figure 6-38. Object record definition of "Additions".

8. Update ApplicationObjDic[] with the definitions of the new variables (Figure 6-39).

#ifdef _OBID_
0BIECT OBIJMEM ApplicationObjbic[] - {
object ex160e */

NULL , NULL , ©x1666 , {DEFTYPE_PDOMAPPING , 9 | (OBICODE_REC << 8)} , asEntryDescox1660 , , &ButtonsPr Dat i , NULL , NULL , @x0000 },
Object @x1601 */
{NULL , NULL , @x1681 , {DEFTYPE_PDOMAPPING , 3 | (OBICODE_REC << 8)} , asEntryDe N » 80utp i NULL , NULL , 6x8000 },

Object @x1682 */
2 (OBICODE REC <<)} , asEntryDescex1602 , aNameox16@2 , &0utputINTL6@x1602, NULL , NULL , 0x000 },
/= Object ox1665 =/
{NULL , NULL , @x1683 , {DEFTYPE_PDOMAPPING , 2 | (OBJCODE REC << 8)} , asEntryDesc@x1683 , aName@x1603 , 8Additions@x1683, NULL , NULL , @x8800 },

, {DEFTYPE_PDOMAPPING , 3

(OBICODE_REC << 8)} , asEntryDesc@x1ABl , aName@x1A@1 , &TnputMappinglexiA@l, NULL , NULL , @x@eee },

, {DEFTYPE_PDOMAPPING , 2

(OBICODE_REC << 8)} , asEntryDescox1A82 , aNamedx1A02 , RInputINT166x1A62, NULL , NULL , ©xB008 },

. {DEFTYPE_PDOMAPPING , 2

(OBICODE_REC << 8)} , asEntryDesc@x1A83 , aName@x1A@3 , &Input3INT320x1283, NULL , NULL , @x@eee },
» {DEFTYPE_UNSIGNED16 E (OBICODE_ARR << 8)} , asEntryDesc@x1Cl2 , aName@x1C12 , &sRxPDOassign, NULL , NULL , exoeee },
. {DEFTYPE_UNSIGNED16 , 3 | (OBICODE_ARR << 8)} , asEntryDescBx1C13 , aName@x1C13 , &sTxPDOassign, NULL , NULL , @x08@e },

» {DEFTYPE_RECORD , 1

(0BICODE_REC << 8)} , asEntryDesc@x6@1@ , aName@x6@18 , &InputlINT32@x6@1@, NULL , NULL , @x@eee },

, {DEFTYPE_RECORD , 1

(0BICODE_REC << 8)} , asEntryDescox6612 , alamedx6012 , &InputUINT16@x6612, NULL , NULL , @xB080 },

» {DEFTYPE_RECORD , 1

(0BICODE_REC << 8)} , asEntryDesc@x6@14 , aName@x6@14 , &Input2INT32@x6@14, NULL , NULL , @x@eee },

, {DEFTYPE_RECORD , 2

(0BICODE_REC << 8)} , asEntryDescOx6020 , alame@x6020 , &InputINT160x6020, NULL , NULL , @x0000 },

. {DEFTYPE_RECORD , 2

(0BICODE_REC << B)} , asEntryDescox6@38 , aNamedx6838 , &Input3INT328x6838, NULL , NULL , 8xBBG0 },

» {DEFTYPE_RECORD , 9

(0BICODE_REC << 8)} , asEntryDesc@x7000 , aName@x7@00 , RButtonsex7ee, NULL , NULL , 0xe00e },

, {DEFTYPE_RECORD , 1

(0BICODE_REC << 8)} , asEntryDescOx7610 , aNamedx7016 , ROutputlINT320x7618, NULL , NULL , Ox8008 },

» {DEFTYPE_RECORD , 1

(0BICODE_REC << 8)} , asEntryDesc@i[J)12 , aName@x7812 , &0utputUINT16@x7812, NULL , NULL , @x@eee },

» {DEFTYPE_RECORD , 1

(OBICODE_REC << 8)} , asEntryDesc@x7014 , alame@x7014 , ROutput2INT32ex7014, NULL , NULL , @xeoee },

{DEETYPE_RECORD . G | (QRICONE_REC 2 AOutpUETNTIAAX7626. NULL NI

xBopD),

NULL , NULL , @x7838 , {DEFTYPE RECORD , 2 | (OBJCODE_REC << 8)} , asEntryDesc@x783@ , aName@x7@38 , 8Additionsex7e3p, WULL , NULL , @x@0e@
NULL,NOLL, @xFFrF, ©}, NULL, NOLL, NULL, NULLY;
endif //#ifdef

Figure 6-39. Update of ApplicationObjDic|[].

9. Now that we have completed the configuration of the new variables in the Dlefino MCU, we need to update
the xml file (ENI description file) which will be used to write the EEPROM memory of our ESC. In order to do
so, open EtherCAT Application (SPI).xml and insert the definition shown in Figure 6-40 in the DataType
section under DT1602.

125/147

<DataType>
<Name>DT16@3</Name>
<BitSize>B8@</BitSize>
<SubItem>
<SubIdx>@8</SubIdx>
<Name>SubIndex @@@</MName>
<Type>USINT</Type>
«<BitSize»B«/BitSize>»
<BitOffs»@</BitOffs>
<Flags>
<Access»ro</Access>
<Category»o</Category>
</Flags>
</SubItem>
<SubItem>»
<SubIdx>1</SubIdx>
<Name>SubIndex 881</Name>
<Type>UDINT</Type>
<BitSize»32</BitSize>
<BitOffs>16</BitOffs>
<Flags>
<Access»ro</Access>
</Flags>
<!--Reference to @x7830.1-->
</SubItem>
<SubItem>»
<SubIdx>2</SubIdx>
<Name>SubIndex B82</Name>
<Type>UDINT</Type>
<BitSize>32«</BitSize>
<BitOffs>48</Bit0ffs>
<Flags>
<Access>ro<fhccess>
</Flags>
<!--Reference to @x7830.2-->
</SubItem>
</DataType>

Figure 6-40. DT1603 DataType definition.

10. Update the definitions of DT1C12 and DT1C12ARR DataTypes (SyncManager 2) as shown in Figure
6-41.

<DataType>
<Name>DT1C12ARR</Name>
<BaseType>UINT</BaseType>
<Bitsizefsa}/Bitsize>
<ArrayInfo>
<LBound>»1</LBound>
<Elements JElements>
</ArrayInfo»
</DataType>
<DataType>
<Name>DT1C12</Name>
<Bitsizefse}/Bitsize>
<SubItem>
<SubTdx>8</Subldx>
<Name>SubIndex @8@</Name>
<Type>USINT</Type>
<BitSize»8</BitSize>»
<BitOffs»B</Bit0ffs>»
<Flags>
<Access»ro</Access>
<Category>o</Category>»
</Flags>
</SubItem>
<SubItem>
<Name>Elements</MName>
<Type>DT1C12ARR</Type>
<BitSizef6a} /BitSize>
«BitOffs»1l6</BitOffs>
<Flags>
<Access»ro</Access>
</Flags>
</SubItem>
</DataType>»

Figure 6-41. DT1C12 and DT1C12ARR DataType definition.

11. Insert the DataType definition of Figure 6-42 under the DataType definition of DT7020.

126/147

<Flags>»
<hccess»ru</Access>
<Category>m</Category>
<PdoMapping>r</PdoMapping>
<Setting»l</Setting>
</Flags>
<!--Ki Gain of hip Motor--»
</SubItem>»
</DataType>
<DataType>
<Name»DT7838</Name>»
<BitSize»48</BitSize>
<SubItem>
<SubIdx»B</Subldx>
<Names>SubIndex 888</Name:>
<Type>USINT</Type>
<BitSize»8</BitSize>»
<BitOffs»0</BitOffs>
<Flags>
<Access»ro</Access>
<Category>m</Category>
</Flags>
</SubItem:
<SubItem>
<Subldxs1</Subldx>
<Mame>0utl</Name>
<Type>INT</Type>
<BitSize»16</BitSize>
<BitOffs»16</Bit0Offs>
<Flags>
<Accessyru</Accessy
<Category>m</Category>
<PdoMapping>r</PdoMapping>
<Setting»1</Setting>
</Flags>
<!--Output variable 1-->
</SubItem:
<SubItem>
<SubIdx»2</SubIdx>
<Mame»0ut2</Name>
<Type>INT</Type>
<BitSize»16</BitSize>
<BitOffs»32</Bit0Offs>
<Flags>
<Accessyru</Accessy
<Category:m</Category>
<PdoMapping>r</PdoMapping>
<Setting»1</Setting>
</Flags>
<!--Output variable 2-->
</SubIltem:
</DataType>
</DataTypes>
<Objectsy|
<Object>
<Index>#x1880</Index>
<Name>Device type</Name:>
<Type>UDINT</Type>

Figure 6-42. DT7030 DataType definition.

12. Insert the Object definition of Figure 6-43 under the Object definition of #x1602.

127/147

<DefaultData»10062070</DefaultData>
<! --Reference to Bx70208.6-->
</Info>»
</SubItem>
</Info>»
</0bject>
<0Object>
<Index»>#x1683</Index>
<Names>Additions</Name>
<Type>DT16@3</Type>
<BitSize»48</BitSize>
<Info>
<SubItem>
<Name>SubIndex 808</Name>
<Info>
<DefaultData>B8</DefaultData>
</Info>»
</SubItem>
<SubItem>
<Name>SubIndex 801</Name>
<Info>
<DefaultData»10013670</DefaultData>
<l --Reference to Bx7@308.1-->
</Info>»
</SubItem>
<SubItem>
<Name>SubIndex 802</Name>
<Info>
<DefaultData»10023670</DefaultData>
<! --Reference to Bx7838.2-->
</Info>»
</SubItem>
</Info>»
</0Object>
<Ubject>
<Index»>#x1A81</Index:>
<Name>Input mapping 1</Name>

Figure 6-43. Object definition of #x1603.

13. Update the Object definition of Sync Manager 2 as shown in Figure 6-44.

<Object>
<Index>#x1C12</Index>
<Name>SyncManager 2 assignment</Name>
<Type>DT1C12</Type>
<Bitsize{8e}/BitSizes
<Info>
<SubItem>
<Name>SubIndex 008</Name>
<Info»
<DefaultData»02</DefaultData>
<fInfo>
<fSubItem>
<SubItem>
<Name>SubIndex 801</Namex>
<Info>
<DefaultData»@016</DefaultData>
</Info>
<fSubItem>
<SubItem>
<Name>SubIndex 882</Name>
<Info>»
<DefaultData»B8116</DefaultData>
<fInfo>
<fSubItem>
<SubItem>
<Name>SubIndex @83</Namex>
<Info»
<DefaultData»@216</DefaultData>
<fInfo>
</SubItem>
<SubItem>
<Name>SubIndex @04</Name>
<Info>
<DefaultData>8316</DefaultData>
<fInfo>
</SubItem>
</Info»
</Objects|

Figure 6-44. Updated Object definition of #x1C12.

14. Insert the Object definition of #x7030 under the Object definition of #x7020 as shown in Figure 6-45

128/147

<! --QutINT16Var6--»
</Info>
</SubItem>
</Info>
</0Object>
<Object>
<Index>#x7030</Index>
<Name:xAdditions</Name:>
<Type>DT7828</Type>
<BitSize»48</BitSize>»
<«Info>
<SubItem>
<MName»SubIndex B88</Name>
<Info>»
<DefaultData»B8«/DefaultData>
</Info>
</SubItem:
<SubItem>
<Mame>0utl</Name>
<Info>
<DefaultData>0886</DefaultData>
<!--0utl variable--»
</Info>
</SubItem>
<SubItem>
<MName»0Qut2</Name>
<Info>
<DefaultData>B008< /DefaultDatas
<1 --Qut2 variable--»
</Info>
</SubItem:
</Info>
</Object>
</Ubjects>
¢/Dictionary>

Figure 6-45. Object definition of #x7030.
15. Update the Output size of the Sync Manager as indicated in Figure 6-46.

</0Objects>
</Dictionary>
</Profile>»
<Fmmu>Outputs</Fmmu>
<Fmmu>Inputs</Fmmu>
<Fmmu>MBoxState</Fmmu:>
<5m MinSize="34" MaxS5ize="128" Default5ize="128" StartAddress="#x1888" ControlByte="#x26" Enable="1">MBoxOut</Sm>
<5m MinSize="34" MaxSize="128" Default5ize="128" StartAddress="#x1088" ControlByte="#x22" Enable="1">MBoxIn</Sm>
<5m StartAddress="#x1108" ControlByte="#x64" DefaultSize="|28| Enable="1">0utputs</Sm>
<5m StartAddress="#x1408" ControlByte="#x28" Default5ize="22" Enable="1">Inputs</Sm>
<RxPdo Mandatory="true" Fixed="true" Sm="2">
<Index>#x1600</Index>
<Name>Buttons</Name>
<Entry>
<Index>#x7000</Index>

Figure 6-46. Update Sync Manager Output size.

16. Finally, insert the RxPdo definition of #x1603 as shown in Figure 6-47 under RxPdo definition of #x1602.

129/147

<Name»0OutINT16Vare< /Name>
<DataType>INT</DataType>
</Entry>
/BxPdo

<RxPdo Mandatory="true" Fixed="true" Sm="2">

<Index»#x1683</Index>

<Name>Additions</Name>

<Entry>
<Index»#x7030</Index>
<SubIndex:>1</SubIndex:
<Bitlen»16</BitlLen>
<Name»Qutl</Name>»
<DataType>INT</DataType>

</Entry>

<Entry>
<Index>#x7830</Index>
<SubIndex»2</SubIndex>
<Bitlen»16</BitlLen>
<Name»0ut2</Name>»
<DataType>INT</DataType>

</Entry>

</RxPdo>

<TxPdo ﬁandatory=“true” Fixed="true"” Sm="3">

<Index»#x1AB1</Index:>

<Name>Input mapping 1</Name>

<Entry>
<Index>#x6010</Index>

Figure 6-47. RxPdo definition of #x1603.

6.8 TwinCAT in Run Mode

When one or more slave devices need to work in either SM or DC-Synchronous mode, and in any case when

the communication must be tested under hard real-time conditions, Free Run is not suitable. In such cases,

the slave must be configured to operate in either SM or DC Sync in predefined cycle times mode and TwiCAT

must switch into Run Mode in order to corroborate this scheme.To implement this functionality:

1. Configure the slave device(s) to operate in DC Sync Mode as depicted in Figure 6-48

D¢ EtherCAT Application - Microsoft Visual Studio

¥ | Quick Launch (Ctrl+Q) Pl o 8 x

FILE EDIT VEW PROJECT BULD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

o I RN | T
Solution Explorer
@ o-a &=
Search Solution Explorer (Ctrl+;)
[E 110 Idle Task
B Tasks
5Fz Routes
25 Type System
[] TcCOM Objects
MOTION
pLC
[SAFETY
[o
170
4 ¥ Devices
4 = Device 1 (EtherCAT)
*® Image
*® Image-Info
2 SyncUnits
Inputs

»
>
b W Outputs
> InfoData
4TI Box 1 (EtherCAT Application (5PI)
P Input mapping 1
InputiNT16

3
13 Input3INT32
b W Buttons
b @ Output mzpping 1
b OutputlNTi6
b WcState

& InfoData
&% Mappings

Solution Explorer [[FESIIT]

BRIl EtherCAT Application = X

| General | EtherCAT | DC |Process Data | Startup | CoE - Oniine [Gnline |

Operation Mode: SW-Synchron v
SWSynchron
DC-Synchron

Online Size »Addr In/Out UserD Linkedto

Error List
Y - | @ 0kmors 0 Warnings 0Messages | Clear Search Error List

Description Column Project

Figure 6-48. Slave device in DC Sync Mode.

2. Select the minimum allowed cycle time of EtherCAT cycle time by changing the Base Time of TwinCAT to

the minimum allowed value of 50 microseconds as shown in Figure 6-49.

130/147

N EtherCAT Application - Microsoft Visual Studic ¥ | Quick Launch (Ctrl+Q) P - B x

VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

A err— .

|8 2

@ o-a| &=
Search Solution Explorer (Ctrl+;)

3] Solution 'EtherCAT Application’ (1 project)
4 il EtherCAT Application Available CPUs (WindowsI5: S Read from Target
a [svsTEM
£ License [eru [rr-cpu | BeseTime | cPU Limit [Lotency Warning]
4
o 0 [Default Toe v|20% | (none) |
Sz Routes (nane)

Tms
i
23 Type System i
[Z] T<COM Objects 334
MOTION 250 us
PLC [Object [rr-ceu 200 s [€ycle Time (ms) | Cyele Ticks [Priority A
SAFETY 1/0 Idle Task Default (0) v|125us 1ms 1 11
[o 100 ps.
L 83315
« Fwo Bt
4 % Devices 714 ps

4 = Device 1 (EtherCAT) 66.6 s
% image 625 ps
2% Image-Info
b 2 SyncUnits
b H Ianis

Figure 6-49. Select minimum EtherCAT cycle time.

3. Create a new real-time 1/0 Task and then define the Cycle Ticks (cycle time) of your application by

specifying the integer multiple of TwinCAT’s Base unit (50 micro seconds) as illustrated in Figure 6-50.

B inercal appcaton - Miossoh Vol St €] EtherCAT Applicatian - Microsoft Visual Studio
MO0 W AOKCT WAD DG TWNCAT TRS KC TO0
B2 = % e -]

FLE EDIT VIEW PROJCT BULD DEBUG TWINCAT TWINSAFE PLC JOOLS SCOPE WINDOW HELP

B a2 e @i e

@ o-8|F -
n Explares (Cuil p- .
[P yw——— ey :
ion Eshe plcation proj -
4 5l EtherCAT Applcation] futo st Otectid, [202010028
[futo Prorey Managemert Cotme.
e (] Dusable
EES [ClCreate symbols
L Include extemal symbals
Tmage] Semmste input upete:
Inputs .
W Output: [Extem syme

s Routes (] Wering by excseding

B2 Type System Message bax @

TeCOM Objects = losting poirt exceptions
& MoTion Waichdog Creies b= []Watchdog stack
&
| sareTY
B Camment

4 Evo

4 ¥ Devic ‘

4 7 Device 1 (EtherCAT)

Figure 6-50. Create I/0O Task with Image and Define cycle time.

4. Create one cyclic Input or Output variable (for the I/O Task) for every slave on the network that you want to
operate in DC mode with a datatype matching the datatype of a process data variable in the EtherCAT
network. In this case one (because there is only one slave in the network) output bollean variable was created

to match one of the output boolean variables of the slave. Right click on the Outputs item and follow the steps
described in Figure 6-51.

D EtherCAT Application - Microsoft Visual Studio. ¥ | Quick Launch (Ctri+Q) Pla B x
FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP

wHE B2 6 @ [<Loak g

Solution Explorer RIEET EtherCAT Application + X

m| °- —‘u‘ b= Online >Addr In/Out UserlD Linkedto
i)
157 Solution EtherCAT Application’ (1 project)
4 g EtherCAT Application

4 (@ svstEm

Search Solution Explorer (Ctrl+

1 License
b @ Real-Time
4 [B Tasks

P R
Lnputs. Stataddess Byt [0 A o [
- (] Show All
5 Routes ‘O AddNew ftem.. Ins
22 TypeSystem Recalc Addresses Data Type
[TcCOM Objects
=] moTioN

> Size Nane Spac ~
BT 01
BiTe 1
pLC BaoL
SAFETY BYTE
o E_AXB000_P_01275_ActiveF eedbackAndhemory
PR=1 SINT
4 % Devices TeloiMatifos
4 7 Device 1 (EtherCAT) USINT
2% Image DFV2_TIMESTANFSTATUS
2% Image-info ¥ - | DoEnof L [M
2 syncnits
Inputs Description
W Outputs
@ InfoData

Jarch Error List

olumn | Project

Seaich Type | [CreatshnayType | [Create Sting Typs |

TI Box 1 (EtherCAT Application (SP1))
b Input mapping 1
b inp
Solution Explorer [[SERTEN

This item does not suppert previewing

Figure 6-51. Create cyclic Output variable.

131/147

5. Create a link between the software variable in the I/O Task and the hardware variable in the EtherCAT
process data by clicking on the created Output Task variable Var 1 and navigating to the Variable Tab. Click

Linked to... button and select any of the Buttons from the list (Figure 6-52).

> @ATLLBITEY
3 @712 8T)
] T<COM Objects e 4713 81T [
& vamon CLED 5 XA BT 01]

22 Type Systern

> QTLTATE

Figure 6-52. Link software to hardware variable.

6. Activate Configuration and start TwWinCAT in Run Mode (Figure 2-49) as illustrated in Figure 6-53. The
command “Activate Configuration” shall be applied every time one or more parameters are changed in the
configuration and the changes need to be applied.

@‘EDH‘?;EYV P‘R?.JE(T;

wEBBEL G Wi

Solution Explorer
@ o a|#

Microsoft Visuai Stucio [N =)

‘, -) Activate Configuration
& (©1d Configurations will be overwritten!)

|

Microsoft isual Studio [=)

‘0‘ Restart TwinCAT System in Run Mode

Figure 6-53. Activate Configuration and switch to Run Mode.

TwinCAT 3.1 provides a 7-day trial period for Run Mode, which can be extended for an arbitrary number
of times. In order to extend the trial license for other 7-days, it will be sufficient to copy the 5-charater code

which will show-up when trying to activate the configuration.

Enter Security Code A M

Flease twpe the following 5 characters: ok

oXWE2

Figure 6-54. Enter Security Code.

The slave (or slaves) are now In Operational DC — Sync mode if ho erros occur in the error list.

132/147

6.9

Add Watch Expression in CCS Debug

When being in Debug Mode, Code Composer Studio provides the ability to inspect only global variables in the

Expresions window. In this way, developers may debug their stack without much effort. In order to add a

variable in the Epressions Window and monitor its value through execution time:

1. Select View > Expressions if the Expressions tab window is not already visible in CCS Debug mode(Figure

6-55).

% workspace_v7 - CC5 Debug - EtherCAT Application/SP|_EtherCAT slave stack/EtherCAT_Application.c - Code Composer Studio

File Edit | View | Project Tools Run Scripts Window Hel
v
45 Debug

v & Eth
@
£
£
2

Resource Explorer

Resource Explorer Classic

Getting Started

in
CCS App Center igging]

PUT (Running)
GUI Composer™ » |LA1 (Disconnected : Unknown)
PU2 (Disconnected : Unknown)

Preject Expl
o LA1 (Disconnected : Unknown)

Problems Alt+Shift+Q, X
Console Alt+Shift+Q, C

Advice

FODEFBER €O

Debug

Memory Browser

4] EtherC

[£) EtherCAT_Application.h

Registers

Expressions
Variables

HEE

Alt+Shift+Q, V.
Slave Controller */

= Disassembly
@ Breskpoints
Modules

=
& Terminal
@

AlteShiftsQ, B

Scripting Console

Target Configurations

Outline Alt+Shift+0, O

Stack Usage
<

Memory Allocation
& Consol Optimizer Assistant v = O [f problems 33

EtherCATA Other. Alt+Shift+0, Q

Figure 6-55. Add Expression Tab.

(E‘) DS @ i G

0errors, 3 warnings, 0 others

Koo i@t [QuickAcces] || 55| B [F]
#0|rict|® v =18

Location

()= Variables 7 | Hif Registers @g Breakpaints
Name Type Value

v =5

2. Enable the Continuous Refresh feature, click on Add new expression and type the name of the variable you

desire (Figure 6-56).

(% workspace_v7 - CCS Debug - EtherCAT_Application/s

File Edit View Project Tools Run Scripts Window Help
0o IR0 @ R

35 Debug 52

+ ¥ EtherCAT_Application [Code Composer Studio - Device Debugging]
4 Texas Instruments XDS100v2 USB Debug Probe_0/C280 CPUT (Running)
& Texas Instruments XDS100,2 USB Debug Probe_0/CPU1_CLAT (Disconnected : Unknown)
' Texas Instruments XDS100v2 USB Debug Probe_0/C280 CPU2 (Disconnected : Unknown)
& Texas Instruments XDS100,2 USB Debug Probe_0/CPU2_CLAT (Disconnected : Unknown)

herCAT Application.c 52 [§] EtherCAT ApplicationObjectsh 6] EtherCAT_Application.h

AU A S UAUYLL + LA 20T
/ FInput2INT320x6614 . InINT32Va:

//InputINT166x6820., ININT16Varl =
/ /InputINT166x6820. ININT16Var2 = ;

/Input3INT320x6032. InINT32Va:
/ /Input3INT320x6032. InINT32Var3

\brief This is the main function

B Console 31 % B E
EtherCAT Application

C28xx_CPUl: GEL Output:

Memory Map Initialization Complete
C28xx_CPUL: If erase/program (E/P) operation is being done ¢

MmBE-pi-=18

[#) Problems 53

~ | Description

T >

Figure 6-56. Add new expression.

U E-IETRS R OR E E e

rCAT slave stack/EtherCAT_Application.c - Code Compeser Studio

|- iRi A Continuous Refresh |k Accsss] || 8| B[]

0 errors, 3 wamings, 0 others

& Wamnings (3 items)

¥ = B |6 Expressions }Igllih\fanahles 1 Registers @g Breakpoints s E| = B et & - =8
Expression Type Value Address
o Add new expression

=
~

>
=g

- Resource Path
[0 >

3. CCS will provide a list of the variables with relevant names and you are free to choose from the list. In this

example, we wanted to inspect the type and value of the global variable timer_PDI_Isr_Output (Figure 6-57).

133/147

6 Expressions 5 (4= Variables 1{){ Registers O Breskpaints EE o %X et =18
Expression Type Value Address

TIMERD_ISR
TIMERT_ISR
TIMER2_ISR
imer_PD|_lsr_Output
timer_SYNCO_Is_Appl

timer_SYNCO_lsr_Input \
timer_SYNC1_lsr_Input P
CpuTimerd @ Expressions 5% | (0= Variables [{l} Registers 9 Breakpoints % E| & 3& ict|é == 0
CpuTimerORegs Ex Type Value Address

pression
CpuTimer! - timer_PD|_lsr_Output unsigned long 0x0000AD12@Data

CpuTimeriRegs v &= Add new expression

Figure 6-57. Select variable to inspect.

6.10 Laelaps Il motors and gearheads
Laelaps Il uses different combinations of motors and gearheads to drive its knee and hip joints, yet, in both

cases, a pulley with a specific gear ration (48/26) is mounted to reduce the rotational speed of the motor even
more and increase the output torque. All motors and gearheads are purchased from Maxon Motors [38] .

Hip motor — gearhead

For the hip joint of Laelaps Il, EC 45, @45 mm, brushless motor, 250 Watt [39] is used (Part No 136209) along
with the Planetary Gearhead GP 52 C 752 mm, 4-30 Nm [40] with a gear ratio of 343/8 (Part No 223089).
Hence the total reduction ratio of the hip joint (gearhead and pulley combined) is 1029/13 = 79,15.

Knee motor — gearhead
For the knee joint of Laelaps Il, RE 50, #50 mm, Graphite Brushes motor, 200 Watt [41] is used (Part No

370356) along with the Planetary Gearhead GP 52 C #52 mm, 4-30 Nm [40] with a gear ratio of 637/12 (Part
No 223090). Hence the total reduction ratio of the hip joint (gearhead and pulley combined) is 98.

6.11 Matlab PIV controller simulation

The block diagram for one actuated degree of freedom of Laelaps Il leg (either hip or knee motor) is shown in
Figure 6-58. Within our actual CCS project downloaded in all four LaunchXL-F28379D launchpads of the
quadruped robot, the implemented PIV (Proportional — Integral - Velocity) controller is structured in such a
way that the reference points (r«) and measured feedback values (y«) are normalized.

ry ;f “E e u i T Output
{ S * Control 1 Drive ‘ = Actuator + Robot ‘ T .

Normalized angle v,

Sensor

F'

Figure 6-58. Block diagram of one actuated degree of freedom of Laelaps Il leg.

A Matlab function has been assembled to match the aforementioned configuration, taking into account
the mechanical limitations of the robot. The functionality of the simulating controller is identical to the one

running in each leg of Laelaps Il and can be located at PIV_controller.m file. A small initialization script is also

134/147

appended (ControlTesting.m file) to indicate all required global variables and specify the proper function call.
The block diagram of the Matlab PIV controller is displayed in Figure 6-59.

¥

rk e T Qutput
Control Robot >

angle yg

Figure 6-59. Block diagram of the Matlab PIV controller.

All motor driver boards (amplifiers) mounted on Laelaps I, have a maximum output current of 12 [A]
which corresponds to 100% PWM signal. Following the data sheets of both types of motors (refer to Laelaps Il
motors and gearheads) and assuming negligible power losses, the knee motor (brushed) has a maximum
torque output (after the gearhead) of 45 [Nm] and considering the pulley gear ratio, this torque can reach
83,077 [Nm]. On the other hand, the hip motor (brushless) has a maximum torque output (after the gearhead)
of 28 [Nm] which can reach 51,692 [Nm] after the pulley transmition. This is the reason why these specific
torque saturation values are exploited within the script. However, developers must also consider the fact that
the couplers, mounted after the gearheads and before the pulley gear ration, have a torque limit of 30 [Nm] to
avoid slipping which obviously affects the brushed motor.

In a nutshell, the PIV controller simulation function receives the reference and feedback values of both
knee and hip motors and using the predefined control gains (Kp, Ky, Ki) calculates the torque outputs which
will then be passed to the dynamic model of the robot. The PWM limits and torque saturation values are taken
into account before calculating the final control signals each time the function is executed. All calculations are
based on [11] .

135/147

7 Appendix B

7.1 Matlab Leg Modelling Code

clc
clear all

o

Forward & Inverse Kinematics

Connecting leg angle to legs edge coordinates relative to Body Frame
Knee Configuration (-1: forward, +1: backward)

Left/Right leg indicator (1: left leg, -1: right legq)

Ellipse semi axes: a_ellipse, b ellipse

o o° o° o°

o

o

Trajectory Planning
Parameters
xdes=zeros (10000,1) ;
ydes=zeros (10000,1) ;

o

x traj cntr=0.0; % Parameter [m] (x centre of trajectory)

y_traj cntr=0.590; % Parameter [m] (y centre of trajectory)

a ellipse=0.03; % Parameter [m] (a amplitude of elliptical shape)
b ellipse=0.05; % Parameter [m] (b amplitude of elliptical shape)
traj freg=1; % Parameter [Hz] (frequency of elliptical motion)
phase=0; % Parameter [rad] (initial phase)

param = 0; % Parameter (flatness of the toe to model ground)
% % Move toes alogn elliptical (or semielliptical) trajectories

y ellipse cntr = y traj cntr;

x ellipse cntr = x traj cntr;

traj vel = traj freg*2*pi;

£=0;

iteration number = 10000;

for l=l:iteration number

t=t+0.01;

angle = traj vel * t + phase*pi/180;

if mod(angle,2*pi)<pi
b ellipse filtered

param * b ellipse;

else
b ellipse filtered = b ellipse;
end
xdes (1) = x ellipse cntr + a ellipse * cos(angle);
ydes (1) = y ellipse cntr + b ellipse filtered * sin(angle);
end
figure

plot (xdes, ydes)
axis([-0.3 0.3 -0.1 0.71)
ylabel ('+ <-- vy axis', 'fontsize',14)
xlabel ('x axis —--> +','fontsize',14)
title('Planning of Trajectory', 'fontsize', 14)
set (gca, 'Ydir', 'reverse')

% Leg Parameters

1 = 0.25;

2 = 0.35;

136/147

knee configuration = -1;

for l1=l:iteration number

x value=xdes (1) ;

y_value=ydes (1) ;

% Inverse Kinematics

c _invk = (y_value”2 + x value”2 - 1172 - 1272)/(2*11*12);
s_invk = knee configuration*sgrt(l-c_invk"2);

kl invk = 12 + 11 * c_invk;

k2 invk = 11 * s invk;

knee angle = - atan2(y value,x value) + atan2 (k2 invk, k1l invk) + pi/2;
hip angle = knee angle - atan2(s_invk, c_invk);

angles deg=[hip angle*180/pi knee angle*180/pil;

% Forward Kinematics

x1=11*sin (hip angle);

yl=1l1l*cos (hip_angle);

xE=11*sin (hip angle)+12*sin(knee_angle);

yE=11*cos (hip_angle)+1l2*cos (knee angle);

x(1:3)=[0 x1 xE];

y(1:3)=[0 vyl yEI;

—~ e~~~

hold on

hl = plot(x,y,'r-0")
ylabel ('+ <-- vy axis', 'fontsize',14)
xlabel ('x axis --> +','fontsize',14)
title('Configuration of leg', 'fontsize',14)
set (gca, 'Ydir', 'reverse')

pause (0.001)

delete (hl)

end

7.2 Matlab Post Process Code

clc

o\°

Post Processing Laelaps csv files

Scanning the file and using Laelaps' characteristics

we plotted the results of each experiment. This code can be used
with minor alterations on the name of the scanned file and its format
Note: tightfig.m file must also be copied to this folder

o° 0P o° oe

o\°
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

clc

clear all

fileID = fopen('Laelaps Trajectory Planning - Trotting 11 -
Kp45.0Kd0.03Ki0.0Filter20.csv','r'");

formatSpec = '$f $d $f $d $f 3d 3f 3d Sf 3d Ff %d Ff %d $f $d Sf S$d SE
f %d %f %d $f $d $Sf $d $f $d Sf 3d Sf 3d 3f 3d Sf %d $f %d $f $d S$f %d
sd $f %d 3f %d 3f %d 3f d 3f $d Ff Sd £ 3d Sf 3d $f 3d $f 3d Sf 3d';

sizeA = [72 Inf];
A = fscanf(filelID, formatSpec,sizeld);
fclose (filelID);

Hip PWM Limit = 41.17;
Knee PWM Limit = 38.25;

Hip max velocity = 75.83*2*pi/60; %rad/s in 60 V
Knee max velocity = 55.5*2*pi/60; %rad/s in 60 V

i knee=(8%26)/(343*48);

137/147

i hip=(12%26)/(637*48);

% Initializations

t=zeros (1l,length(a));

% Hind Right Leg

HR knee angle deg=zeros(1l, length (A
HR hip angle deg=zeros (1, length (A)
HR velocity hip=zeros(1l,length(A))
HR velocity knee=zeros (1, length (A)
HR uk hip=zeros(l,length(A));

HR uk knee=zeros(1l,length(A));

HR Desired hip angle=zeros (1, length(A));
HR Desired knee angle=zeros(l,length(A));
HR time=zeros (1, length(A));

)7

I

)
)

);

% Hind Left Leg
HL knee angle deg=zeros (1, length (

A));
HL hip angle deg=zeros(1l,length(A))

))

)

HL velocity hip=zeros(l,length (A
HL_velocity_knee=zeros(l,length(A
HL uk hip=zeros(l,length(A));

HL uk knee=zeros(l,length(A));

HL Desired hip angle=zeros(l,length(A));
HL_Desired_knee_angle=zeros(l,length(A));
HL time=zeros (1, length(A));

)7

% Fore Right Leg

FR knee angle deg=zeros(1l,length(A));
FR hip angle deg=zeros(l,length(A));
FR velocity hip=zeros(l,length(A));
FR_velocity_knee:zeros(l,length(A));
FR step command hip=zeros (1, length(A4));
FR step command knee=zeros(1l,length(A));
FR uk hip=zeros (1, length(A));

FR uk knee=zeros(1l,length(Ad));

FR Desired hip angle=zeros(l,length(A));
FR_Desired_knee_angle:zeros(1,length(A));
FR time=zeros (1, length(A));

% Fore Left Leg

FL knee angle deg=zeros (1, length(

A));
FL hip angle deg=zeros(l,length(A)

))

)

)
)
FL velocity hip=zeros(1l,length (A
FL velocity knee=zeros(1l,length (A
FL uk hip=zeros (l,length(A));
FL uk knee=zeros(1l,length(Ad));
FL Desired hip angle=zeros(1l,length(a));
FL Desired knee angle=zeros(l,length(Ad));
FL time=zeros (1, length(A));
j=1;
for i=1l:length (A)
t(i)=A(1,1)/1000;
HR hip angle deg(i)= -A(2,1)/100;
HR knee angle deg(i)= -A(4,1)/100;
HR Desired hip angle(i)=-A(6,1)/100;
HR Desired knee angle(i)=-A(8,1)/100;
HR uk hip(i)=A(10,1)/100;
HR uk knee(i)=A(12,1i)/100;
HR velocity hip(i)=-A(14,1i)*i hip/1000;
HR velocity knee(i)=-A(16,1)*i knee/1000;

)7

138/147

HR time (i)=A(18,1)/100;

HL hip angle deg(i)= 20 i)/100;
HL_knee_angle_deg(i) 22 i) /100;

HL Desired hip angle (i) 24 i) /100;
HL Desired knee angle (i) (26,1)/100;
HL uk_hip (i)=A 28 i) /100

HL uk knee(i)=A(30,1)/100;
HL_velocity_hlp(i)=A(32,1i)*i hip/1000;

HL_velocity knee (1)=A(34,1)*i knee/1000;
HL time (i1)=A(36,1)/100;

FR hip angle deg(i)= 38 i)/100;

FR _knee angle deg(i)= 40 i)/100;
FR_Desired_hip_angle() (42,1)/100;
FR_Desired_knee_angle(') A(44,1)/100;

FR uk hip(1)=A(46,1)/100;

FR uk knee(i)=A(48,1)/100;

FR velocity hip(i)=-A(50,1i)*i hip/1000;
FR_velocity_knee(i)=—A(52,i)*i_knee/lOOO;

FR time(i)=A(54,1)/100;

(56,1)/100;

A(58,1)/100;

(60 i)/100;
(62,1)/100;

FL hip angle deg(i)=A
FL knee angle deg(i)=
FL Desired hip angle(i)=A
FL Desired knee angle(i)=
FL_uk_hip(i)=A 64 i)/100;
FL uk knee(i)=A(66,1)/100;

FL_velocity_hlp(i)=A(68,1i)*i hip/1000;
FL_velocity knee (1)=A(70,1i)*i knee/1000;
FL time(i)=A(72,1)/100;

if (i>30000 && 1<35000)

[HR_x(J),
HR y(Jj)]=ForwardKinematics (HR hip angle deg (i)
[HR x desired(j),

HR y desired(j)]=ForwardKinematics (HR Desired hip
i)):

[HL x(3),
HL y(j)]=ForwardKinematics (HL hip angle deg (i), HL

[HL x desired(j),

HL y desired(j)]=ForwardKinematics (HL Desired hip
i));
[FR_x(J),
FR y(j)]=ForwardKinematics (FR hip angle deg(i),FR_
[FR x desired(J),
FR y desired(])]=ForwardKinematics (FR Desired hip
i));
[FL_X(j) ’
FL y(j)]=ForwardKinematics(FL hip angle deg(i),FL
[FL x desired(J),
FL y desired(j)]=ForwardKinematics (FL Desired hip
i));
J=3+1;
end
end

$End Effector of Laelaps II Legs
figure
set(gcf, 'Position'

[100 50 900 8007,

139/147

,HR

_knee angle deg (i

knee_angle_deg(i));

angle (i) ,HR Desired knee angle(

));

angle (i) ,HL Desired knee angle(

knee angle deg(i));

angle (i) ,FR Desired knee angle(

knee angle deg(i));

angle (i) ,FL Desired knee angle(

'color','w');

subplot (2,2,1)

plot (FR x,FR vy, 'k',FR x desired,FR y desired, 'r'")
grid on
ylabel ('+ <-- vy axis','fontsize',14)
xlabel ('x axis --> +','fontsize',14)

title('FR End Effector in Steady State', 'fontsize', 14)
set (gca, 'Ydir', 'reverse')

subplot(2,2,2)

plot (FL x,FL vy, 'k',FL x desired,FL y desired, 'r'")

grid on
ylabel ('+ <-- vy axis', 'fontsize',14)
xlabel ('x axis --> +','fontsize',14)

title('FL End Effector in Steady State', 'fontsize',1l4)
set (gca, 'Ydir', 'reverse')
subplot (2,2, 3)

plot (HR x,HR y, 'k',HR x desired,HR y desired, 'r')
grid on
ylabel ('+ <-- vy axis', 'fontsize',14)
xlabel ('x axis --> +','fontsize',14)

title('HR End Effector in Steady State', 'fontsize', 14)
set (gca, 'Ydir', 'reverse')

subplot (2,2,4)

plot (HL x,HL y,'k',HL x desired,HL y desired, 'r'")

grid on
ylabel ('+ <-- vy axis', 'fontsize',14)
xlabel ('x axis --> +','fontsize',14)

title('HL End Effector in Steady State', 'fontsize', 14)
set (gca, 'Ydir', 'reverse')
tightfig;

%Responce of knee angles

figure

set (gcf, 'Position', [100 50 900 800], 'color','w");
subplot(4,1,1)

plot (t,FR _knee angle deg, 'k',t,FR Desired knee angle, 'r')
grid on
ylabel ("Angle [deg]"')
title ('Response of FR Knee Angle', 'fontsize',13)
subplot(4,1,2)
plot (t,FL knee angle deg, 'k',t,FL Desired knee angle,'r')
grid on
ylabel ("Angle [deg]"')
title ('Response of FL Knee Angle', 'fontsize',13)
subplot (4,1, 3)
plot (t,HR knee angle deg, 'k',t,HR Desired knee angle, 'r')
grid on
ylabel ("Angle [deg]"')
title ('Response of HR Knee Angle', 'fontsize',13)
subplot(4,1,4)
plot (t,HL knee angle deg, 'k',t,HL Desired knee angle,'r')

grid on

ylabel ("Angle [deg]"')

xlabel ('Time [s]'")

title ('Response of HL Knee Angle', 'fontsize',13)
tightfig;

%Responce of hip angles

figure

set (gcf, 'Position', [100 50 900 800], 'color','w');
subplot(4,1,1)

plot (t,FR hip angle deg, 'k',t,FR Desired hip angle,'r'")

140/147

grid on

ylabel ('Angle [deg]')

title('Response of FR Hip Angle', 'fontsize',13)
subplot (4,1,2)
plot (t,FL hip angle deg, 'k',t,FL Desired hip angle,'r'")

grid on

ylabel ('Angle [deg]')

title('Response of FL Hip Angle', 'fontsize',13)
subplot (4,1, 3)
plot (t,HR hip angle deg, 'k',t,HR Desired hip angle, 'r'")

grid on

ylabel ('Angle [deg]')

title('Response of HR Hip Angle', 'fontsize',13)
subplot (4,1,4)
plot (t,HL hip angle deg, 'k',t,HL Desired hip angle,'r'")

grid on

ylabel ('Angle [deg]')

xlabel ('Time [s]'")

title('Response of HL Hip Angle', 'fontsize',13)
tightfig;

$PWM Commands of Knee motors
figure
set (gcf, 'Position', [100 50 900 800], 'color','w'");
subplot(4,1,1)
plot (t,FR uk knee, 'k', 'LineWidth',0.1)
hold on
plot (t,Knee PWM Limit*ones(length(t),1l),'r', 'LineWwidth',0.1);
plot (t,-Knee PWM Limit*ones(length(t),1l),'r"', 'LineWidth',0.1);
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of FR Knee', 'fontsize',13)
subplot(4,1,2)
plot (t,FL uk knee, 'k', 'LineWidth',0.1)
hold on
plot (t,Knee PWM Limit*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,-Knee PWM Limit*ones(length(t),1),'r', 'LineWidth',0.1);
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of FL Knee', 'fontsize',13)
subplot (4,1, 3)
plot (t,HR uk knee, 'k', 'LineWidth',0.1)
hold on
plot (t,Knee PWM Limit*ones(length(t),1),'r'
plot (t,-Knee PWM Limit*ones(length(t),1),'r
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of HR Knee', 'fontsize',13)
subplot(4,1,4)
plot (t,HL uk knee, 'k','LineWidth',0.1)
hold on
plot (t,Knee PWM Limit*ones(length(t),1),'r', 'LineWwidth',0.1);
plot (t,-Knee PWM Limit*ones(length(t),1l),'r"', 'LineWidth',0.1);
grid on
ylabel ('PWM Command [%]")
xlabel ('Time [s]'")
title ('PWM Command of HL Knee', 'fontsize',13)
tightfig;

'LineWidth',0.1);
, 'LineWidth',0.1);

-~

$PWM Commands of Hip motors
figure

141/147

set (gcf, 'Position', [100 50 900 800], 'color','w");
subplot(4,1,1)
plot (t,FR uk hip, 'k', 'LineWidth',0.1)
hold on
plot (t,Hip PWM Limit*ones(length(t),1l),'r', 'LineWidth',0.1);
plot (t,-Hip PWM Limit*ones(length(t),1l),'r', 'LineWwidth',0.1);
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of FR Hip', 'fontsize',13)
subplot (4,1,2)
plot (t,FL uk hip, 'k', 'LineWidth',0.1)
hold on
plot (t,Hip PWM Limit*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,-Hip PWM Limit*ones(length(t),1),'r', 'LineWwidth',0.1);
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of FL Hip', 'fontsize',13)
subplot (4,1, 3)
plot (t,HR uk hip, 'k', 'LineWidth',0.1)
hold on
plot (t,Hip PWM Limit*ones(length(t),1l),'r', 'LineWidth',0.1);
plot (t,-Hip PWM Limit*ones(length(t),1l),'r', 'LineWwidth',0.1);
grid on
ylabel ('PWM Command [%]")
title ('PWM Command of HR Hip', 'fontsize',13)
subplot (4,1, 4)
plot (t,HL uk hip, 'k', 'LineWidth',0.1)
hold on
plot (t,Hip PWM Limit*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,-Hip PWM Limit*ones(length(t),1l),'r', 'LineWwidth',0.1);
grid on
ylabel ('PWM Command [%]")
xlabel ('Time [s]'")
title ('PWM Command of HL Hip', 'fontsize',13)
tightfig;

%Velocity of Knee motors
figure
set (gcf, 'Position', [100 50 900 800], 'color','w");
subplot(4,1,1)
hold on
plot (t,Knee max velocity*ones (length(t),1),'r', 'Linewidth',0.1);
plot (t,-Knee max velocity*ones(length(t),1),'r', 'LineWwidth',0.1);
plot (t,FR velocity knee, 'k'")

grid on

ylabel ('Velocity [rad/s]")

title ('Response of FR Knee Velocity', 'fontsize',13)
subplot(4,1,2)
hold on
plot (t,Knee max velocity*ones (length(t),1),'r', 'LineWidth',0.1);
plot (t,-Knee max velocity*ones(length(t),1),'r', 'LineWwidth',0.1);
plot (t,FL velocity knee, 'k'")

grid on

ylabel ('Velocity [rad/s]")

title ('Response of FL Knee Velocity', 'fontsize',13)
subplot (4,1, 3)
hold on
plot (t,Knee max velocity*ones (length(t),1),'r', 'LinewWidth',0.1);
plot (t,-Knee max velocity*ones(length(t),1),'r', 'Linewidth',0.1);
plot (t,HR velocity knee, 'k')

grid on

142/147

ylabel ('Velocity [rad/s]")

title ('Response of HR Knee Velocity', 'fontsize',13)
subplot (4,1,4)
hold on
plot (t,Knee max velocity*ones (length(t),1),'r', 'LineWwidth',0.1);
plot (t,-Knee max velocity*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,HL velocity knee, 'k')

grid on

ylabel ('Velocity [rad/s]")

xlabel ('Time [s]'")

title ('Response of HL Knee Velocity', 'fontsize',13)
tightfig;

%Velocity of Hip motors
figure
set (gcf, 'Position', [100 50 900 800], 'color','w');
subplot(4,1,1)
hold on
plot (t,Hip max velocity*ones(length(t),1),'r', 'LineWwidth',0.1);
plot (t,-Hip max velocity*ones (length(t),1),'r', 'Linewidth',0.1);
plot (t,FR velocity hip, 'k")

grid on

ylabel ('Velocity [rad/s]")

title('Response of FR Hip Velocity', 'fontsize',13)
subplot(4,1,2)
hold on
plot (t,Hip max velocity*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,-Hip max velocity*ones (length(t),1),'r', 'Linewidth',0.1);
plot (t,FL velocity hip, 'k")

grid on

ylabel ('Velocity [rad/s]")

title ('Response of FL Hip Velocity', 'fontsize',13)
subplot (4,1, 3)
hold on
plot (t,Hip max velocity*ones(length(t),1),'r', 'LineWidth',0.1);
plot (t,-Hip max velocity*ones (length(t),1),'r', 'Linewidth',0.1);
plot (t,HR velocity hip, 'k")

grid on

ylabel ('Velocity [rad/s]")

title ('Response of HR Hip Velocity', 'fontsize',13)
subplot(4,1,4)
hold on
plot (t,Hip max velocity*ones(length(t),1),'r', 'LineWwidth',0.1);
plot (t,-Hip max velocity*ones (length(t),1),'r', 'LinewWidth',0.1);
plot (t,HL velocity hip, 'k")

grid on

ylabel ('Velocity [rad/s]")

xlabel ('Time [s]'")

title ('Response of HL Hip Velocity', 'fontsize',13)
tightfig;

tightfig.m file

function hfig = tightfig(hfig)

tightfig: Alters a figure so that it has the minimum size necessary to
enclose all axes in the figure without excess space around them.

Note that tightfig will expand the figure to completely encompass all
axes 1f necessary. If any 3D axes are present which have been zoomed,
tightfig will produce an error, as these cannot easily be dealt with.
hfig - handle to figure, if not supplied, the current figure will be used
instead.

d° P od° o° o° o°

o\

143/147

if nargin ==
hfig = gcf;
end
There can be an issue with tightfig when the user has been modifying
the contnts manually, the code below is an attempt to resolve this,
% but it has not yet been satisfactorily fixed
origwindowstyle = get(hfig, 'WindowStyle');
set (hfig, 'WindowStyle', 'normal');
1 point is 0.3528 mm for future use
get all the axes handles note this will also fetch legends and
colorbars as well
hax = findall (hfig, 'type', 'axes');
% get the original axes units, so we can change and reset these again
% later
origaxunits = get (hax, 'Units');
% change the axes units to cm
set (hax, 'Units', 'centimeters');
% get various position parameters of the axes
if numel (hax) > 1
fsize = cell2mat (get (hax, 'FontSize'));
ti = cell2mat (get (hax, 'TightInset'));
pos = cell2mat (get (hax, 'Position'));
else

o

o\°
o oe

o\°

o\

oe

o

fsize

ti = get
pos = ge

end

% ensure very tiny border so outer box always appears

ti(ti < 0.1) = 0.15;

% we will check if any 3d axes are zoomed, to do this we will check if

% they are not being viewed in any of the 2d directions

views2d = [0,90; 0,0; 90,01;

for 1 = 1:numel (hax)
set (hax (i), 'LooselInset', ti(i,:));

set (hax (i), 'LooselInset', [0,0,0,0]);

get the current viewing angle of the axes

az,el] = view(hax (1))

determine if the axes are zoomed

iszoomed = strcmp (get (hax (i), 'CameraViewAngleMode'), 'manual');

% test if we are viewing in 2d mode or a 3d view

is2d = all (bsxfun(@eq, [az,el], views2d), 2);

= get (hax, 'FontSize');
(hax, 'TightInset');
t (hax, 'Position');

oe

% — o°

if iszoomed && ~any(is2d)
error ('TIGHTFIG:haszoomed3d', 'Cannot make figures containing zoomed
3D axes tight.'")
end

end

% we will move all the axes down and to the left by the amount

% necessary to just show the bottom and leftmost axes and labels etc.
moveleft = min(pos(:,1) - ti(:,1));

movedown = min(pos(:,2) - ti(:,2));

% we will also alter the height and width of the figure to just

% encompass the topmost and rightmost axes and lables

figwidth = max(pos(:,1) + pos(:,3) + ti(:,3) - moveleft);
figheight = max(pos(:,2) + pos(:,4) + ti(:,4) - movedown);
% move all the axes
for 1 = 1:numel (hax)
set (hax (i), 'Position', [pos(i,1:2) - [moveleft,movedown], pos(i,3:4)]);
end

144/147

origfigunits = get (hfig, 'Units');
set (hfig, 'Units', 'centimeters');
% change the size of the figure

figpos = get (hfig, 'Position');

set (hfig, 'Position', [figpos(l), figpos(2), figwidth, figheight]):;
% change the size of the paper

set (hfig, 'PaperUnits', 'centimeters');

set (hfig, 'PaperSize', [figwidth, figheight]);

set (hfig, 'PaperPositionMode', 'manual');

set (hfig, 'PaperPosition', [0 0 figwidth figheight]);

% reset to original units for axes and figure
if ~iscell (origaxunits)

origaxunits = {origaxunits};
end
for 1 = 1:numel (hax)

set (hax (i), 'Units', origaxunits{i});
end

set (hfig, 'Units', origfigunits);
set (hfig, 'WindowStyle', origwindowstyle);

o\°

end

ForwardKinematics.m

function [x,y] = ForwardKinematics(hip angle deg, knee angle deg)
SUNTITLED Forward Kinematics of Laelaps II
x (+) right, y (+) down
Forward Kinematics
Leg Parameters
11 = 0.25;
12 = 0.35;
hip angle rad=hip angle deg*pi/180;
knee angle rad=knee angle deg*pi/180;
x=11*sin (hip angle rad)+12*sin(knee angle rad);
y=1l1l*cos (hip angle rad)+l2*cos(knee angle rad);
end

o° o

o\°

7.3 Matlab PIV Controller Simulation

ControlTesting.m file

clear global; clear all; clc;

global d2 knee d3 _knee 110 knee il4 knee

global d2 hip d3 hip 110 hip 114 hip

global cl c2

global hip control torque sat knee control torque sat
global Umax knee Umin knee Umax hip Umin hip

d2 knee = 0;
d3 knee 0
110 _knee
il4 knee =
d2 hip = 0;
d3 hip = 0;
i10_hip = 0;
il14 hip = 0
T=1/10000;

FilterBandwidth = 20;

’

Il
o O~

’

’

145/147

ftc = 1/ (2*pi*FilterBandwidth) ;
cl = 2/ (T+2*ftc);

c2 = (T-2*ftc)/(T+2*ftc);
hip control torque sat = 83.077;
knee control torque sat = 51.692;

Umax_ knee=0.3825;
Umin knee=-0.3825;
Umax hip=0.4117;

Umin hip=-0.4117;

[knee cntrl torque, hip cntrl torque] = PIV controller(0,pi/6,1,0,-pi/8,1);

PIV_controller.m file

function [knee cntrl torque, hip cntrl torque] = PIV controller (
th knee rad,th knee des rad,lk knee,th hip rad,th hip des rad,lk hip)
$PIV_controller function for simulations

% This functions implements the PIV controller used in
%$Laelaps experiments

global d2 knee d3 knee 110 knee il4 knee

global d2 hip d3 hip 110 hip 114 hip

global cl c2

global Umax knee Umin knee Umax hip Umin hip

global hip control torque sat knee control torque sat

% Knee Control Gains
Kr knee = 1;

Kp knee = 40;

Kd knee = 0.01;

Ki knee = 0;

o)

% Hip Control Gains

Kr hip = 1;
Kp hip = 40;
Kd hip = 0.01;
Ki hip = 0;

[

% Normalized Values to match with real Controller
th knee des = th knee des rad/ (2*pi);

th knee = th knee rad/(2*pi);

th hip des = th hip des rad/ (2*pi);

th hip = th hip rad/(2*pi);

% PIV Controller for Knee
v5 knee = Kr knee * th knee des - th knee;
v8 knee = Ki knee * Kp knee * 1i1l4 knee * (th knee des - th knee) + 110 knee;
110 _knee = v8 knee;
vl knee = Kd knee * cl * th knee;
v4 knee = vl knee - d2 knee - d3 knee;
d2 knee = vl knee;
d3 knee = v4 knee * c2;
v9 knee = Kp knee * (v5 knee - v4 knee) + v8 knee;
if (v9 _knee > Umax knee)
v10 knee = Umax_ knee;
elseif (v9 knee < Umin knee)
v10 knee = Umin knee;
else
v10 knee = v9 knee;
end

146/147

if (v10_knee == v9 knee)
v12 knee = 1;
else
v12 knee = 0;
end
il4 knee = v12 knee * lk knee;

knee cntrl torque = v10 _knee * knee control torque sat;

% PIV Controller for Hip
v5 hip = Kr _hip * th hip des - th hip;
v8 hip = Ki hip * Kp hip * il4 hip * (th hip des - th hip)
110 _hip = v8 hip;
vl hip = Kd _hip * ¢l * th hip;
v4 hip = vl hip - d2 hip - d3 _hip;
d2 hip = vl hip;
d3 hip = v4 hip * c2;
v9 hip = Kp hip * (v5 _hip - v4 hip)
if (v9 hip > Umax hip)

v10 hip = Umax hip;
elseif (v9 hip < Umin hip)

v10 hip = Umin hip;
else

v10 hip =
end
if

+ v8 hip;

v9 hip;

(v10_hip == v9 hip)
vl2 hip = 1;
else

v1l2 hip = 0;
end
il4 hip = v12 hip * lk hip;
hip cntrl torque = v10 hip * hip control torque sat;
end

147/147

+ 110 hip;

