

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

School of Mechanical Engineering

Department of Mechanical Design and Control Systems

Control Systems Lab

Diploma Thesis

Firmware design for microcontrollers on EtherCAT network for quadruped robot
motion control

Stamatios Athiniotis

Supervising Professor: E.G. Papadopoulos

ATHENS 2018

2/147

3/147

Abstract

Modern motion control requires large data and resources from different devices, sensors and libraries, which

must be recognizable and within reach, to be viable. EtherCAT is the fastest industrial Ethernet technology

setting new standards for real-time performance and topology flexibility. When using an EtherCAT

infrastructure for motion control, all hardware accessories and necessary motors - cables are easily

connected to the system with minimum wiring compared to traditional methods. Thus, reducing clutter within

the working area, the possibility of an accident that may be caused by loose cables and other loose fittings

within the room decreases, making motion control far more manageable. Motion control solutions based on

the EtherCAT framework are purpose-built for enhanced performance and come with immense advantages

since machine automation becomes more cost effective with much better turn-around times and outputs.

In this thesis, the development of an EtherCAT network of microcontrollers is introduced, describing the

configuration process of a slave and all the implementation prerequisites. For the purpose of implementing

EtherCAT technology, TwinCAT XAE (Visual Studio) is exploited to realize the master node in a Windows

Operating System (OS). On the other hand, to materialize the slave nodes of the network, the LaunchXL –

F28379D launchpad by Texas Instruments is used as the host Micro Controller Unit (MCU) along with

FB1111-0141 by Beckhoff as the EtherCAT Slave Controller (ESC). The provided software (available for

download) which is thoroughly explained within the second chapter, is fully operational and contains all

required EtherCAT stack to implement an analogous network. It is assembled in such a way that no specific

User Application is coded, therefore users may define the functionality of each node according to their needs.

Subsequently, in the third chapter, the motion control via EtherCAT of Laelaps II quadruped robot is

explained along with a description of its leg architecture and electrical system details. Each slave connected

to the robot’s network (EtherCAT Control Tower Assembly) controls the motion of one leg, including the hip

and knee motors, using elliptical shaped trajectories for its End Effector. Furthermore, the TwinCAT Scope

View Tool is adumbrated enabling the data logging of EtherCAT variables for their post processing in Matlab.

Finally, in the fourth chapter, the experimental validation of the exploited decentralized control theory of

Laelaps II is appended, illustrating the response of all four legs in a fundamental test. The experimental

process is described and a table containing all used parameters is provided before presenting the resulting

figures of each joint. The overall procedure proves that the running stack is judiciously assembled, fully

functional and prudent to be tested in higher velocities of the robot in the future.

4/147

5/147

Περίληψη

Ο σύγχρονος έλεγχος κίνησης απαιτεί μεγάλα δεδομένα και πόρους από διαφορετικές συσκευές, αισθητήρες

και βιβλιοθήκες, οι οποίοι πρέπει να είναι αναγνωρίσιμοι και διαθέσιμοι προκειμένου να είναι βιώσιμοι. Το

EtherCAT είναι η ταχύτερη βιομηχανική τεχνολογία Ethernet που θέτει νέα πρότυπα για την επικοινωνία σε

πραγματικό χρόνο και την ευελιξία της τοπολογίας. Όταν χρησιμοποιείται το EtherCAT για έλεγχο κίνησης,

όλα τα εξαρτήματα υλικού και οι απαραίτητοι κινητήρες - καλώδια συνδέονται εύκολα στο σύστημα με

ελάχιστη καλωδίωση σε σύγκριση με τις παραδοσιακές μεθόδους. Έτσι μειώνοντας την ακαταστασία μέσα

στην περιοχή εργασίας, μειώνεται η πιθανότητα ενός ατυχήματος που μπορεί να προκληθεί από χαλαρά

καλώδια και άλλα χαλαρά εξαρτήματα μέσα στο χώρο εργασίας, κάνοντας τον έλεγχο κίνησης πολύ πιο

εύχρηστο και διαχειρίσιμο. Οι λύσεις ελέγχου κινήσεων βασισμένες στο πλαίσιο EtherCAT είναι

κατασκευασμένες με σκοπό τη βελτίωση της απόδοσης και διαθέτουν τεράστια πλεονεκτήματα, καθώς η

αυτοματοποίηση του συστήματος καθίσταται πιο αποδοτική από πλευράς κόστους με πολύ καλύτερους

χρόνους εκτέλεσης.

Στην παρούσα εργασία παρουσιάζεται η ανάπτυξη ενός δικτύου EtherCAT από μικροελεγκτές,

περιγράφοντας τη διαδικασία διαμόρφωσης ενός slave και όλες τις προϋποθέσεις υλοποίησης. Για την

πραγμάτωση της τεχνολογίας EtherCAT, το πρόγραμμα TwinCAT XAE (Visual Studio) χρησιμοποιείται για

την υλοποίηση του master κόμβου σε λειτουργικό σύστημα Windows (OS). Από την άλλη πλευρά, για την

υλοποίηση των slave κόμβων του δικτύου, η πλακέτα LaunchXL-F28379D από την Texas Instruments

χρησιμοποιείται ως o μικροελεγκτής που «φιλοξενεί» το σύστημα, μαζί με το FB1111-0141 από την Beckhoff

που διαδραματίζει το ρόλο του EtherCAT Slave Controller (ESC). Το προσφερόμενο λογισμικό, το οποίο

αναλύεται διεξοδικά στο δεύτερο κεφάλαιο της εργασίας, είναι πλήρως λειτουργικό και περιέχει όλον τον

απαραίτητο EtherCAT κώδικα για την υλοποίηση ενός ανάλογου δικτύου. Έχει προγραμματιστεί με τέτοιο

τρόπο ώστε οι χρήστες να μπορούν να ορίζουν τη λειτουργία του κάθε κόμβου slave ανάλογα με τις ανάγκες

τους.

Στο τρίτο κεφάλαιο, επεξηγείται ο έλεγχος κίνησης μέσω του EtherCAT του τετράποδου ρομπότ Laelaps

II, μαζί με μια περιγραφή της αρχιτεκτονικής του ποδιού και των λεπτομερειών του ηλεκτρικού συστήματος.

Κάθε κόμβος slave που συνδέεται με το δίκτυο του ρομπότ (EtherCAT Control Tower Assembly) ελέγχει την

κίνηση ενός ποδιού, συμπεριλαμβανομένων των κινητήρων ισχίου και γονάτου, χρησιμοποιώντας ελλειπτικά

διαμορφωμένες τροχιές για το πέλμα του (ΤΣΔ). Επιπλέον, περιγράφεται το εργαλείο TwinCAT Scope View

που επιτρέπει την καταγραφή και αποθήκευση των μεταβλητών EtherCAT για την μεταγενέστερη επεξεργασία

τους στη Matlab.

Τέλος, στο τέταρτο κεφάλαιο παρουσιάζεται η πειραματική επικύρωση της θεωρίας αποκεντρωμένου

ελέγχου του Laelaps II, που απεικονίζει την απόκριση και των τεσσάρων ποδιών σε ένα θεμελιώδες πείραμα.

Η πειραματική διαδικασία περιγράφεται και παρέχεται ένας πίνακας που περιέχει όλες τις χρησιμοποιούμενες

παραμέτρους του πειράματος πριν παρουσιάστουν οι αποκρίσεις των αρθρώσεων. Η συνολική διαδικασία

αποδεικνύει ότι ο χρησιμοποιούμενος κώδικας είναι εύστοχα προγραμματισμένος, πλήρως λειτουργικός και

ικανός για να δοκιμαστεί σε υψηλότερες ταχύτητες του ρομπότ στο μέλλον.

6/147

7/147

Acknowledgements

I would like to thank my supervisor Professor E. Papadopoulos for his guidance, his advice and work

ethic which inspired and motivated me throughout the elaboration of this thesis and significantly contributed to

its quality.

Furthermore, I would like to thank the PhD candidates of the CSL lab and good friends of mine K.

Machairas, K. Koutsoukis and T. Mastrogeorgiou for introducing me to the fascinating world of robotics and of

course for their incessant and valuable assistance in the last three years that I have been a member of the

CSL – EP laboratory. I would also like to personally thank and acknowledge the work of Aristotelis

Papatheodorou for selecting EtherCAT components and introducing the team to EtherCAT technology,

George Bolanakis for his Software and Hardware support and John Valvis for the leg design and the treadmill

support mechanism.

Finally, I would like to thank all those people who supported and encouraged me throughout all my

undergraduate years and made all this possible: my family, my friends (MB), classmates and professors.

8/147

9/147

Dedicated to my Family,
Alex, Anthony

and Sam

10/147

11/147

Table of Contents

Abstract .. 3

Περίληψη .. 5

Acknowledgements ... 7

Table of Contents .. 11

List of Figures .. 14

List of Tables ... 20

1 Introduction .. 22

1.1 Motivation .. 22

1.2 Literature review .. 22

1.3 Thesis Outline ... 26

2 EtherCAT Communication and Implementation .. 28

2.1 EtherCAT Technology ... 28

2.1.1 Introduction .. 28

2.1.2 Physical Layer.. 28

2.1.3 Data Link Layer .. 31

2.1.4 Application Layer ... 35

2.2 EtherCAT Synchronization .. 37

2.2.1 Synchronization Overview ... 37

2.2.2 Free Run Mode .. 38

2.2.3 SM-Synchronous Mode ... 39

2.2.4 DC-Synchronous Mode .. 40

2.3 Process Data Handling ... 43

2.4 EtherCAT Application Guide ... 45

2.4.1 EtherCAT Code Structure Overview .. 45

2.4.2 Hardware and Software Requirements .. 46

2.4.3 EtherCAT Application Solution Guide .. 52

3 Motion Control of Laelaps II via EtherCAT ... 69

3.1 Laelaps II robot description and motion planning ... 69

3.1.1 Leg design and motion planning .. 70

3.1.2 Electrical system .. 73

3.2 Motion Control of Laelaps via EtherCAT Solution Guide .. 75

4 Laelaps II Locomotion Experiments ... 96

4.1 Trotting Experiment 1 .. 96

5 Conclusion and Future Work .. 105

5.1 Conclusion ... 105

5.2 Future Work ... 105

References ... 107

6 Appendix A ... 109

6.1 Download and Install Code Composer Studio, C2000ware & ControlSuite 109

12/147

6.2 Download and Install Slave Stack Code Tool ... 110

6.3 Generate Slave Stack Code for C28x architecture microcontrollers 110

6.4 Download and Install TwinCAT 3 Software ... 115

6.5 Import CCS project into Code Composer Studio .. 118

6.6 Define and Select Target Configuration .. 120

6.7 Add and remove EtherCAT Input and Output variables ... 122

6.8 TwinCAT in Run Mode .. 130

6.9 Add Watch Expression in CCS Debug .. 133

6.10 Laelaps II motors and gearheads .. 134

6.11 Matlab PIV controller simulation .. 134

7 Appendix B ... 136

7.1 Matlab Leg Modelling Code .. 136

7.2 Matlab Post Process Code .. 137

7.3 Matlab PIV Controller Simulation .. 145

13/147

14/147

List of Figures

Figure 1-1. Boston Dynamics legged robots: (a) Handle (b) SpotMini (c) Atlas (d) BigDog. 23

Figure 1-2. State of the Art legged robots: (a) ANYmal (b) Hermes (c) Cheetah (d) Inu. 23

Figure 1-3. (a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by NexCom. . 25

Figure 1-4. Shadow Dexterous Hand by Shadow Rob Company. ... 26

Figure 1-5. (a) Talos biped robot by PAL Robotics and (b) HyQ2Max quadruped robot by IIT. 26

Figure 2-1. EtherCAT Topology. ... 28

Figure 2-2. A typical EtherCAT network.. 30

Figure 2-3. EtherCAT topology with branches. ... 30

Figure 2-4. EtherCAT Frame Structure with EtherCAT Datagrams (a) directly in the data field of
the Ethernet frame (b) within the data section of a datagram, by means of the User
Datagram Protocol (UDP)... 33

Figure 2-5. EtherCAT Datagram (or DLPDU) structure. ... 33

Figure 2-6. EtherCAT Application Layer State Machine. .. 36

Figure 2-7. EtherCAT Application Level.. 37

Figure 2-8. EtherCAT process data exchange. .. 37

Figure 2-9. EtherCAT Synchronization. .. 38

Figure 2-10. Slave in Free Run mode. .. 38

Figure 2-11. EtherCAT network in Free Run mode. ... 39

Figure 2-12. Slave in SM Synchronous mode. ... 39

Figure 2-13. EtherCAT network in SM Synchronous mode. ... 40

Figure 2-14. Slave in DC Synchronous mode. ... 41

Figure 2-15. EtherCAT network in DC Synchronous mode. ... 42

Figure 2-16. EtherCAT shift times. .. 42

Figure 2-17. EtherCAT time shifts. .. 43

Figure 2-18. EtherCAT Process Data handling. ... 43

Figure 2-19. Process data handling generic functions. ... 44

Figure 2-20. Free Run mode process data handling and sequence. ... 44

Figure 2-21. SM Synchronous mode process data handling and sequence. 44

Figure 2-22. DC Synchronous mode process data handling and sequence. 45

Figure 2-23. EtherCAT Slave Architecture. .. 46

Figure 2-24. EtherCAT Architecture. ... 46

Figure 2-25. EtherCAT Slave MCU. .. 47

Figure 2-26. EtherCAT Slave Controller. .. 48

Figure 2-27. Overview of FB1111-0141 features. ... 48

Figure 2-28. FB1111-0141 Library (a) Device (b) Package. ... 50

Figure 2-29. Delfino Launchpad Library (a) Device (b) Package. .. 50

Figure 2-30. Schematic of EtherCAT Slave PCB. .. 50

Figure 2-31. (a) Top View and (b) Bottom View of EtherCAT Slave PCB. ... 51

Figure 2-32. EtherCAT Application slave assembly. .. 51

Figure 2-33. CCS with imported project. ... 52

15/147

Figure 2-34. Basic SSC execution structure. .. 53

Figure 2-35. APPL_GenerateMapping() function. .. 54

Figure 2-36. APPL_InputMapping() function. ... 55

Figure 2-37. APPL_OutputMapping() function. ... 55

Figure 2-38. APPL_Application() function. .. 56

Figure 2-39. Select Build Configuration. ... 57

Figure 2-40. Build and Debug CCS Project. ... 57

Figure 2-41. CPU selection. .. 58

Figure 2-42. CCS Debug window. .. 58

Figure 2-43. EtherCAT Assembly. .. 59

Figure 2-44. TwinCAT new project. .. 59

Figure 2-45. TwinCAT EtherCAT Application project. .. 59

Figure 2-46. TwinCAT Solution Explorer. ... 60

Figure 2-47. EtherCAT Master realization. ... 60

Figure 2-48. Reload Device Descriptions. .. 61

Figure 2-49. Definitions of TwinCAT buttons. ... 61

Figure 2-50. TwinCAT scan for slaves. ... 62

Figure 2-51. Update EEPROM of ESC's memory. ... 62

Figure 2-52. XML selection. .. 63

Figure 2-53. Remove EtherCAT slave. ... 63

Figure 2-54. EtherCAT Application in TwinCAT. .. 64

Figure 2-55. EtherCAT Slave's State Machine. .. 64

Figure 2-56. Online Write of Blue_LED... 65

Figure 2-57. SyncManager/Sync0/Sync1 Mode. .. 65

Figure 2-58. DC Sync mode of EtherCAT Application. ... 66

Figure 2-59. Timers and Flags to watch. .. 66

Figure 2-60. EtherCAT Application frame disintegrated. .. 67

Figure 2-61. EtherCAT frame description. .. 67

Figure 2-62. Example of EtherCAT network with 4 configured slaves. .. 68

Figure 3-1. Laelaps I. .. 69

Figure 3-2. Laelaps II. ... 70

Figure 3-3. Actual and virtual links of Laelaps II legs. .. 70

Figure 3-4. Leg model. .. 71

Figure 3-5. Leg's workspace. .. 72

Figure 3-6. Visualization of legs motion in Matlab. ... 73

Figure 3-7. Electrical System of Laelaps. ... 74

Figure 3-8. EtherCAT Control Tower Assembly. .. 74

Figure 3-9. EtherCAT Control Tower Assembly on Laelaps II. ... 75

Figure 3-10. APPL_GenerateMapping() function. .. 77

Figure 3-11. APPL_InputMapping() function. ... 78

Figure 3-12. APPL_OutputMapping() function. ... 79

Figure 3-13. APPL_Application() function. .. 80

16/147

Figure 3-14. DCL_runPID_C1() block diagram. .. 81

Figure 3-15. Epwm1_isr() function. ... 82

Figure 3-16. Epwm2_isr() function. ... 83

Figure 3-17. Position & Rotational Speed calculation. .. 85

Figure 3-18. Modified linker command file to enable DCL functions. ... 86

Figure 3-19. EtherCAT Control Tower Assembly wired. ... 87

Figure 3-20. XML selection. .. 88

Figure 3-21. Add Scope Measurement. .. 89

Figure 3-22. Add PLC Task. ... 90

Figure 3-23. Add Global Variable List. .. 90

Figure 3-24. Global Variable List. ... 91

Figure 3-25. MAIN (PRG) list. ... 91

Figure 3-26. Build Solution. ... 92

Figure 3-27. Linking PLC variables. .. 92

Figure 3-28. Start PLC task. ... 93

Figure 3-29. Adding variables to the Scope View. .. 93

Figure 3-30. TwinCAT Scope Record. .. 93

Figure 3-31. Save and Export Recording.. 94

Figure 3-32. Reset button to initialize legs poise. ... 94

Figure 3-33. Laelaps II on treadmill ready to perform experiments. ... 95

Figure 3-34. Laelaps' State Machine. ... 95

Figure 4-1. Desired elliptical trajectory of all legs toe (red) along with their actual response (black)
w.r.t coordinate systems located in the hip joints of the legs. .. 98

Figure 4-2. Desired response of knee angles (red) and actual response of knee joint (black). 99

Figure 4-3. Desired response of hip angles (red) and actual response of hip joint (black). 100

Figure 4-4. PWM commands of each leg’s knee motor (black) and the respective predefined PWM
limits (red). .. 101

Figure 4-5. PWM commands of each leg’s hip motor (black) and the respective predefined PWM
limits (red). .. 102

Figure 4-6. Velocity estimation of each leg’s knee joint (black) and the respective predefined
motor speed limits (red). ... 103

Figure 4-7. Velocity estimation of each leg’s hip joint (black) and the respective predefined motor
speed limits (red). ... 104

Figure 6-1. Code Composer Studio Installation. ... 109

Figure 6-2. Control Suite Installation... 109

Figure 6-3. C2000ware Installation. .. 109

Figure 6-4. SSC Tool Download. .. 110

Figure 6-5. SSC Tool Installation. ... 110

Figure 6-6. ControlSuite EtherCAT Demo Tool. ... 111

Figure 6-7. SSC Tool Create new project. .. 111

Figure 6-8. Importing ESI description file. ... 111

Figure 6-9. Slave Stack Code - New Project. ... 112

Figure 6-10. SSC Tool Configuration Options. ... 112

Figure 6-11. Importing project confirmation. ... 113

17/147

Figure 6-12. SSC Tool slave information. ... 113

Figure 6-13. Create new Slave Files. .. 114

Figure 6-14. Create EtherCAT stack and xml file. .. 114

Figure 6-15. EtherCAT project files. .. 114

Figure 6-16. CCS project tree. .. 115

Figure 6-17. TwinCAT 3 Download scheme. .. 115

Figure 6-18. TwinCAT 3 Installation .. 116

Figure 6-19. TcSwitchRuntime Installation. .. 116

Figure 6-20. TcSwitchRuntime Activation. .. 116

Figure 6-21. TwinCAT Verification. ... 117

Figure 6-22. Real Time Ethernet Adapter Installation. .. 117

Figure 6-23. Code Composer Studio starting page. ... 118

Figure 6-24. CCS Import project. .. 118

Figure 6-25. CCS project import selection. ... 119

Figure 6-26. CCS browse and import. .. 119

Figure 6-27. Project imported CCS window. ... 120

Figure 6-28. Select View Target Configuration. .. 120

Figure 6-29. New Target Configuration... 120

Figure 6-30. Name Target Configuration. ... 121

Figure 6-31. Select Connection and Device. .. 121

Figure 6-32. Link ccxml file to Project. .. 122

Figure 6-33. Add initialization definition of new variables. .. 122

Figure 6-34. Update pOutputSize value.. 123

Figure 6-35. Update APPL_OutputMapping() function with new variables. 123

Figure 6-36. New variables object address definition. .. 124

Figure 6-37. Update SyncManager assignment. .. 124

Figure 6-38. Object record definition of "Additions". ... 125

Figure 6-39. Update of ApplicationObjDic[]. ... 125

Figure 6-40. DT1603 DataType definition. .. 126

Figure 6-41. DT1C12 and DT1C12ARR DataType definition. .. 126

Figure 6-42. DT7030 DataType definition. .. 127

Figure 6-43. Object definition of #x1603. .. 128

Figure 6-44. Updated Object definition of #x1C12. ... 128

Figure 6-45. Object definition of #x7030. .. 129

Figure 6-46. Update Sync Manager Output size. ... 129

Figure 6-47. RxPdo definition of #x1603... 130

Figure 6-48. Slave device in DC Sync Mode. ... 130

Figure 6-49. Select minimum EtherCAT cycle time. ... 131

Figure 6-50. Create I/O Task with Image and Define cycle time. ... 131

Figure 6-51. Create cyclic Output variable. .. 131

Figure 6-52. Link software to hardware variable. .. 132

Figure 6-53. Activate Configuration and switch to Run Mode. ... 132

18/147

Figure 6-54. Enter Security Code. .. 132

Figure 6-55. Add Expression Tab. .. 133

Figure 6-56. Add new expression. .. 133

Figure 6-57. Select variable to inspect.. 134

Figure 6-58. Block diagram of one actuated degree of freedom of Laelaps II leg. 134

Figure 6-59. Block diagram of the Matlab PIV controller. ... 135

19/147

20/147

List of Tables

Table 2-1. Pin Connection. .. 49

Table 2-2. EtherCAT Application Process Data Interface. .. 54

Table 2-3. Generic functions execution time. .. 66

Table 2-4. EtherCAT frame components. .. 67

Table 3-1. EtherCAT Laelaps Motion Control Output variables. ... 76

Table 3-2. EtherCAT Laelaps Motion Control Input variables. .. 77

Table 3-3. Benchmark parameters in Laelaps II experiment. .. 84

Table 3-4. Velocity calculation range. .. 86

Table 4-1. Trotting Experiment 1 ... 97

21/147

Equation Chapter (Next) Section 1

22/147

1 Introduction

1.1 Motivation

The purpose of this thesis is to replace the centralized control scheme exploited in Laelaps I quadruped robot

of the CLS – EP laboratory (Figure 3-1) with an advanced decentralized scheme using microcontrollers

connected via a state of the art communication protocol, to be used in the next version of the robot, Laelaps II.

The main reasons which led to this endeavor were that the former architecture (centralized) consisted of a

high-cost, hard to replace or to extend, heavy and bulky central control tower (PCIe/104) with 4 interface

control card layers to handle all communications. This scheme reached low control loop frequencies and it

was burdened with the whole computational payload of the robot employing a non-real-time Linux-ROS

(Robot Operating System) implementation; one computer was responsible for controlling the eight motorized

joints of Laelaps (two for each leg, knee and hip). Consequently, programming this computational system was

unduly demanding, and particularly strenuous to make modifications. Most importantly, in case of any

hardware dysfunctionality or damage, the whole system of Laelaps would be disabled, since the really high

cost did not allow easy procurance of spare parts.

To overcome these limitations, in this thesis, a new, low-cost, efficient and powerful real-time architecture

was designed and implemented for Laelaps II, the new version of this quadruped robot (Figure 3-2). An

important question that arose – debatable amongst most engineers nowadays – concerned the protocol that

should be used to connect the microcontrollers destined to control Laelaps II; Fieldbus or Industrial Ethernet.

After a meticulous validation of those options, it was decided that the most suitable and convenient protocol to

employ was an Industrial Ethernet solution, and particularly EtherCAT (Ethernet for Control Automation

Technology).

1.2 Literature review

Legged Robot Applications

Legged robots have the potential to become a new generation of rough terrain vehicles that are capable of

autonomous, semi-autonomous, or remotely-controlled operations in challenging terrains where wheeled and

tracked vehicles reach their limits. In the future, legged vehicles will assist or replace humans in dangerous

and dirty tasks. Quadruped robots are expected to operate in highly dynamic, unstructured outdoor areas

where they will navigate inside challenging environments, such as collapsed buildings, disaster (natural and

man-made) sites, forests, mountain farms, and construction sites. Their tasks will range from providing sensor

streams to the remote operator (e.g., cameras, LIDAR, infrared, and radiation levels) to carrying heavy

payloads such as tools or building materials. Some of the State of the Art legged robots include Handle (a),

SpotMini (b), Atlas (c) and BigDog (d) shown in Figure 1-1, designed and manufactured by Boston Dynamics

[17] .

23/147

(a) (b)

(c) (d)

Figure 1-1. Boston Dynamics legged robots: (a) Handle (b) SpotMini (c) Atlas (d) BigDog.

ANYmal robot (a) from the Institute of Robotics and Intelligent Systems of ETH Zurich university [18] ,

MIT’s Hermes (b) and Cheetah (c) robots by the Biomimetic Robotics Lab [19] and Upenn’s Inu (d) robot by

KOD*LAB [20] are also characteristic examples of legged robots developed within universities, as illustrated in

Figure 1-2.

(a) (b)

(c) (d)

Figure 1-2. State of the Art legged robots: (a) ANYmal (b) Hermes (c) Cheetah (d) Inu.

24/147

Fieldbus and Industrial Ethernet

The first step in industrial automation for connecting multiple computational units was parallel wiring, where all

participants were wired individually. However, the number of subscribers increased with the increasing degree

of automation, which led to a high wiring expenditure. Now, parallel wiring has been widely replaced by

cheaper and faster fieldbus systems and the Ethernet-based communication networks.

The Fieldbus systems [47] created in the 1980s are nowadays indispensable within industry. As a fixed

component of complex machinery and installations, they are primarily used in manufacturing automation.

However, the fieldbus is also used in process and building automation, as well as in automotive engineering.

Sensors and actuators (so-called “field devices”) as well as motors, switches, drives, or lamps are

connected with programmable logic controllers (PLCs)/master and process controllers with the help of wire-

bound and serial fieldbuses. As such, the fieldbus supports the rapid exchange of data between individual

system components even over great distances. Even strong external loads cannot influence the robust digital

signal transmission system. As the fieldbus communicates only via a cable, it has been possible to decrease

the wiring considerably in comparison to parallel wiring.

A fieldbus functions in the so-called master-slave operation. While the master is in charge of control of

the processes, the slave stations work the individual partial tasks. Fieldbuses differ according to their topology

(star, line, tree or ring), their transmission medium, and – depending on the type – different transmission

protocols (message-oriented procedure or summation frame procedure). The individual fieldbuses also differ

in regard to the reachable cable length, the max. number of data bytes per telegram and the function scope.

As such, additional functions such as the alarm handling, diagnosis, and lateral traffic between individual bus

participants are not possible for each fieldbus. The most widespread examples of fieldbus technology are:

 Interbus: with transmission rates of up to 2 Mbps is characterised by especially high transmission

security and a short, constant cycle time. It is divided into subsystems and consists of the remote bus,

the installation remote bus and the local bus arranged in a ring topology. As the names already suggest,

the remote bus serves to connect up to 254 subscribers which are located at large distances from each

other. On the other hand, the local bus connects subscribers that are located close to each other to the

system.

 Profibus: is used in manufacturing engineering and automation. It has an unlimited number of

subscribers and data transmission rates between 9.6 kbps and 500 kbps. It has a hierarchical structure

with the sensors/actuators levels, field levels and the process level. In master-slave operation, the token

passing access procedure is used. Here, slaves may only access the profibus upon the master’s request.

 Foundation H1: is a bi-directional communications protocol (31.25 kbit/s) used for communications

among field devices and to the control system. It utilizes either twisted pair, or fiber media to

communicate between multiple nodes (devices) and the controller. The controller requires only one

communication point to communicate with up to 32 nodes, this is a significant improvement over the

standard 4-20 mA communication method which requires a separate connection point for each

communication device on the controller system

On the contrary, Industrial Ethernet [48] is without a doubt very well established in automation

technology, although traditional fieldbus technology still has a long way to go before reaching retirement.

Since modern machines and systems must perform increasingly complex tasks, data networks are growing

25/147

ever larger. This is where real-time capable Ethernet networks come into play, because they provide a

consistent flow of data from the control level down to the field level.

Today, Industrial Ethernet is being promoted with several different proprietary designs [49] . More than

20 different protocols compete in various segments of this rapidly growing market, each offering adaptations

to meet different real-time and cost challenges, such as:

 Profinet is the open industrial Ethernet standard promoted by Profibus International (PI). This group

claims that more than 2 million Profinet devices are currently installed in plant environments; more

Profinet than Profibus engineers were certified in 2012.

 EtherCAT (Ethernet for Control Automation Technology) originally developed by Beckhoff, provides

real-time performance and supports various topologies with twisted pair and fiber optic media.

 EtherNet/IP (IP for “industrial protocol”) is supported by Rockwell Automation-affiliated organizations,

ControlNet International (CI) and Open DeviceNet Vendors Association (ODVA).

 Modbus-TCP allows the widely used Modbus protocol to be carried over standard Ethernet networks

on TCP/IP.

 Ethernet Powerlink combines CANopen and offers deterministic real-time operation.

For application in Laelaps II quadruped, EtherCAT was selected as the technology mostly used in

robotics nowadays, because of its high performance in terms of bandwidth and speed, its high determinism,

its convenient slave-synchronization capabilities and the reduced equipment costs. In addition, in EtherCAT

there is no need to set device addresses, and also its diagnostic capabilities make the process of finding the

sources of malfunctions and troubleshooting substantially easier.

EtherCAT in robotic applications

EtherCAT technology in robot applications has become increasingly popular in the last decade worldwide

mainly due to its low cycle time, reduced wiring and modularity. Herein, some characteristic examples in

different robotic application fields are presented.

In the industrial manufacturing sector, KUKA Robotics [21] has developed a modular EtherCAT controller

(KR C4 Controller - Figure 1-3 (a)) to control the developed industrial robotic arms of the company in several

different tailor-made automation solutions. NexCom [22] has developed a wide range of EtherCAT based

robotic solutions such as MiniBOT Robot (Figure 1-3 (b)) for educational purposes too, offering a broad

selection of master controllers, robot arms, drives and motors, I/Os, industrial cameras etc.

(a) (b)

Figure 1-3. (a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by NexCom.

26/147

In the haptic – soft robotics and manipulation field, Shadow Robot Company [23] exploited EtherCAT

technology to develop a truly anthropomorphic hand, Shadow Dexterous Hand (Figure 1-4), with 20 actuated

degrees of freedom, absolute position and force sensors, and ultra sensitive touch sensors on the fingertips,

providing unique capabilities for problems that require high precision.

Figure 1-4. Shadow Dexterous Hand by Shadow Rob Company.

In the field of legged robotics, PAL Robotics [24] has designed TALOS (Figure 1-5 (a)), a fully electrical

humanoid biped robot that uses torque control in all its joints and EtherCAT to tackle complex industrial tasks

with 6 Kg payload capability in each arm. Similarly, the Department of Advanced Robotics of the Italian Istitute

of Technology (IIT) [25] has exploited EtherCAT to design and build HyQ2Max quadruped robot (Figure 1-5

(b)) which mimics the robustness and versatility of animals in challenging terrains.

(a) (b)

Figure 1-5. (a) Talos biped robot by PAL Robotics and (b) HyQ2Max quadruped robot by IIT.

1.3 Thesis Outline

Along with the first introductory chapter, where the motivation of this work and the literature review is

presented, the thesis is structured in five chapters.

In the second chapter, a brief description of EtherCAT techonology is presented along with the three

synchronization solutions that can be configured. Then, the process data handling is explained, followed by a

detailed solution reference guide describing the configuration procedure of an EtherCAT network of

microcontroller units (MCUs) with a user defined application.

27/147

In the third chapter, a short description of Laelaps II quadruped is introduced, followed by an extensive

solution reference guide explaining the implementation process of Laelaps II control architecture. The

firmware developed for the slaves is described and the most significant points of interest are mentioned,

providing the ability to future users to manipulate and expand the application according to their needs.

In the fourth chapter, an experimental validation of the robot is presented containing the results of

locomotion experiments executed with Laelaps II using a PC running TwinCAT XAE as the EtherCAT master

node. A description of the testing procedure is entailed along with a table containing the definition of all

parameters used in the experiments.

In the last chapter, the conclusions of the thesis are summarized and future work is suggested.

Equation Chapter (Next) Section 1

28/147

2 EtherCAT Communication and Implementation

2.1 EtherCAT Technology

2.1.1 Introduction

Ethernet for Control Automation Technology or EtherCAT [26] is a high performance Ethernet Based fieldbus

system. The main reason for its development was the adoption of Ethernet in automation applications, where

short cycle times and low communication jitters are required [4] .

EtherCAT is based on a master-slave approach and relies on a ring topology at the physical level. Only

one master is allowed in the network, and this is suitable, for instance, to connect a control unit (e.g., a

programmable logic controller [PLC]) to decentralized peripherals (sensors, actuators, drives, microcontrollers

etc.). By using suitable gateways, EtherCAT can interoperate with both conventional Transmission Control

Protocol (TCP)/Internet Protocol (IP)-based networks (intranets) and other realtime Ethernet (RTE) solutions,

such as EtherNet/IP and PROFINET.

The master node is in complete control of the traffic exchanged over the EtherCAT network. In particular,

it is the only device that can take the initiative in the communication; hence, it is responsible for initiating all

data exchanges with the slaves. Each slave processes the received frame (patch of information in a specific

format) in order to extract from and insert data into it (Figure 2-1). Then, the frame is forwarded to the next

slave in the ring.

Figure 2-1. EtherCAT Topology.

2.1.2 Physical Layer

Unlike Ethernet switches and bridges, slaves do not manage frames according to a conventional store-and-

forward approach, which implies receiving the frame, decoding the related protocol control information, and

29/147

sending the message out. Every frame, instead, is processed on-the-fly by the slave data link layer therefore

achieveing higher cycle frame speed. In order to ensure high performance, frame processing and relaying

take place at the same time so that these operations have to be carried out in hardware. This explains why

specialized components are used for slaves, which are known as EtherCAT Slave Controllers (ESCs).

Communication Support

The physical layer of EtherCAT relies on the proven fast Ethernet transmission technology, which enables

high data rates. Although the use of switches is not recommended to ensure real-time behavior, the EtherCAT

network architecture is quite flexible and can also stretch over wide areas.

Though EtherCAT is correctly listed among the industrial Ethernet solutions available today, it actually

supports two different types of physical layers, namely, Ethernet and EBUS. In our application that will be

described thoroughly later on, the Ethernet physical layer is used.

Ethernet relies on the conventional 100 Mb/s full-duplex Ethernet technology and it is typically used for

connecting the master to the network segment to which slaves are attached. Indeed, the entire EtherCAT

segment is seen by the master as a single, large Ethernet device which concurrently receives and sends

Ethernet frames by exploiting full-duplex transmissions. However, this device does not consist of a single

Ethernet controller but includes a (possibly very large) number of EtherCAT slaves connected so as to form a

ring topology. The transmission medium, in this case, consists of a Cat 5 twisted pair (either shielded or

unshielded, depending on the amount of electromagnetic interference) although higher category cables are

also allowed. Both classic RJ45 (8P8C) and circular M12 D-code connectors can be used.

EBUS can be used only as a backplane bus and is not intended for wire connections. EBUS, in fact, was

mainly conceived to interconnect modules in modular devices. Unlike other fieldbuses that enable a modular

design for devices, the sequence of logical bits that EtherCAT transmits over EBUS is exactly the same as for

Ethernet. This means that switching from Ethernet to EBUS (and vice versa) can be done quickly, efficiently,

and inexpensively (in practice, only transceivers have to be replaced). It is an inexpensive physical layer that

features reduced pass-through delays inside the slaves.Typically, frames experience delays on the order of

120 ÷ 500 ns when propagating through EBUS interfaces, whereas longer latencies (about 1 μs) are

introduced by Ethernet interfaces.

Network Topology

The star topology, commonly used for switched Ethernet networks implies significant cabling and

infrastructure costs; hence, line or tree topologies, which are commonly used in EtherCAT applications, are

usually preferable in factory and automation networks.

Typically, slave devices in EtherCAT segments are connected in linear structures and exploit a daisy

chain wiring scheme (Figure 2-2). Every slave is provided with (at least) two Ethernet ports, to connect

downstream and upstream devices. The last slave in the segment performs a loopback function and returns

the frame in the opposite direction to the master without any additional wiring. The master is the headend of

the structure and requires one Ethernet port only. Each slave relays all frames it receives to the next device in

the EtherCAT segment.

30/147

Figure 2-2. A typical EtherCAT network.

Because of the daisy chain connection and loopback, all the slaves in the segment form an open ring

(line). The master transmits frames at one of the ends of this open ring and receives them at the other end,

after they have been processed by every slave. This means that on the whole the physical topology of an

EtherCAT network is actually a ring. Thanks to the full-duplex capabilities of Ethernet, which uses two pairs of

wires housed in the same cable to carry out communications in both directions simultaneously, the resulting

topology resembles, nevertheless, a physical line, as in most legacy fieldbuses. The reduction of wiring

complexity helps in making the network deployment easier and lowers the installation costs at the same time.

In principle, branches as shown in Figure 2-3 can be introduced anywhere in an EtherCAT segment, by using

devices equipped with three or more ports (EtherCAT couplers).

Figure 2-3. EtherCAT topology with branches.

This kind of devices are provided, for example, with two Ethernet ports and one EBUS interface for direct

connection of input/output (I/O) modules (also known as EtherCAT terminals) and can be used to enhance the

basic line structure setting arbitrarily complex tree networks topologies. It is worth noting that, in this case,

every slave device located at the end of a branch has to close the ring on its own using the loopback function.

The maximum number of addressable devices in EtherCAT is quite large, since 216 nodes for each

segment are allowed. The limit depends on the data link layer, and in particular on the address field, which is

encoded in 16 bits. In the same way, the maximum network extension is usually able to satisfy the

31/147

requirements of most real applications. The limitation, in this case, is mainly due to the maximum distance

allowed between any two adjacent nodes (i.e., the length of the cable), which in turn depends on the

underlying transmission support (up to 10 m for EBUS and up to 100 m for Ethernet connections). This means

that the whole network size is practically unlimited; in theory, up to 216 devices can be connected in daisy

chain using 100 m Ethernet cable segments.

Device Architecture

EtherCAT masters (EMs) rely on standard communication hardware (full-duplex Ethernet network interface

controllers) and dedicated software, with open-source solutions based on Linux-like operating systems also

available. On the contrary, purposely designed hardware components (ESCs-EtherCat Slave Controllers) are

indispencable for slave configuration.

In order to reduce the implementation costs, frame processing by ESCs occurs in one direction only,

which is known as the processing path. The reverse direction, known as forwarding path, is needed to

propagate frames in the ring back to master. From a logical point of view, ESCs exhibit an active behavior

only on the processing path (frame modifications on the forwarding path are not allowed), but at the physical

layer, they behave as repeaters in both directions. Consequently, they are able to regenerate electrical signals

so that network equipment like stand-alone repeaters is no longer necessary. This also reduces connection

costs and complexity in large installations. Most ESCs are internally equipped with two or more ports,

depending on device complexity. For example, the Beckhoff ET1100 is provided with four separate ports,

which can be individually configured to operate as either EBUS or MII. Port 0 is the upstream port whereas

the others are used for downstream connections and to forward signals. Each port implements two functions,

called auto-forwarder and loopback. The auto-forwarder block performs frame checks, such as CRC error

detection at the physical level and manages the error count. It is also responsible for taking timestamps on

frame receptions, a mechanism which is needed, for instance, by the clock synchronization protocol. The

loopback function, instead, forwards frames to the next logical port if the related link is not available. In this

way, the ring is automatically closed in the case of faults affecting either devices or links.

2.1.3 Data Link Layer

The data link protocol of EtherCAT was designed to maximize the utilization of the Ethernet bandwidth and to

grant a very high communication efficiency. As mentioned earlier, the access mechanism of EtherCAT is

based on a master/slave approach, where the master node (typically the control unit, e.g., a PLC) sends

Ethernet frames to slave nodes. Slaves, in their turn, either extract data from the frame payload or insert

information by overwriting part(s) of the payload itself.

Frame Format

Messages sent over the network are standard Ethernet frames, with EtherCAT frames (also known as Type

12 frames) encapsulated in the data field (payload). Consequently, they include the conventional fields (Figure

2-4):

 preamble (8 bytes)

 destination and source MAC addresses (6 bytes each)

 EtherType (2 bytes, set to 0x88A4 to distinguish them from non-EtherCAT frames)

32/147

 frame check sequence (FCS, 32 bits)

 interframe gap

An EtherCAT frame, in turn, contains:

 A frame header (2 bytes)

 One or more EtherCAT datagrams, also known as Type 12 Data Link Protocol Data Units (DLPDU)

according to the data link layer standard specifications

In this way, the large data field made available by conventional Ethernet can be better exploited to

increase the communication efficiency. DLPDUs are packed together, one after the other, without

intermediate gaps. The payload of the Ethernet frame ends with the last DLPDU, unless its overall size is 63

octets or less. In this case, the frame is padded to 64 octets in length, as required by the Ethernet

specifications. The standard Ethernet CRC closes the frame and is used by each device (either master or

slave) to check the integrity of the message. Thanks to the EtherType field, EtherCAT can coexist, in theory,

with other Ethernet protocols.

Note 1: The octet is a unit of digital information in computing and telecommunications that consists of

eight bits. The term is often used when the term byte might be ambiguous, as the byte has historically been

used for storage units of a variety of sizes.

Note 2: A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks

and storage devices to detect accidental changes to raw data.

Each DLPDU corresponds to a separate EtherCAT command and consists of three sections: header,

data, and counter field. Commands are used to perform data exchanges: basically they are issued by the

master for reading or writing specific memory areas in the slave devices. Ethernet frames, and in particular

the DLPDUs they embed, are processed in sequence by the slaves. Each slave recognizes its commands of

interest and executes them while the frames are passing through. Because of the physical ring topology, a

frame is returned to the master after being processed by all the slaves. This procedure exploits the full-duplex

mode of Ethernet, which means that the two communication directions can work independently. Several

DLPDUs can be embedded in the same Ethernet frame, each one addressing different devices and/or

memory areas. As shown in Figure 2-4, DLPDUs are transported either

(a) directly in the data field of the Ethernet frame (used in our application) or

(b) within the data section of a datagram, by means of the User Datagram Protocol (UDP).

The first variant (a) is limited to a single subnetwork, since Ethernet frames are not relayed by routers.

Usually, this is not a limitation for machine control applications. Direct Ethernet encapsulation is by far the

most widespread EtherCAT solution at the shop floor of factory automation systems. In theory, multiple

EtherCAT segments can be connected to a single master through one or more switches, and the MAC

address of the first node in each segment is used for addressing the segment itself. However, this approach

can affect the real-time properties of the communication.

On the one hand, the second variant (b), which relies on UDP and the IP, implies lightly larger overheads

(because of the IP and UDP headers) and is also limited by switches, which can easily add nondeterministic

characteristics to the communication [27] . On the other hand, this solution also enables IP routing; hence, it is

suitable for applications having loose timing requirements, such as in process automation. Any standard

UDP/IP implementation can be used in this case on the master side.

33/147

Figure 2-4. EtherCAT Frame Structure with EtherCAT Datagrams (a) directly in the data field of the
Ethernet frame (b) within the data section of a datagram, by means of the User Datagram Protocol
(UDP).

EtherCAT Datagram (or DLPDU) Format

As shown in Figure 2-5, each DLPDU (or EtherCAT Datagrams) consists of a number of fields. The initial

fields (up to IRQ included) can be assumed to belong to the header part, which has a fixed size (10 bytes).

The variable-sized data area is placed immediately after the header and includes the information to be

exchanged, often referred to as data link service data unit (DLSDU). The last field in the frame is the working

counter (WKC), used mainly for checking whether a command has been successfully executed by the

relevant slaves.

Figure 2-5. EtherCAT Datagram (or DLPDU) structure.

The service command (1 byte) is encoded in the CMD parameter. Different types of command exist,

which can be used to carry out highly optimized read and write operations on slave devices [4] . Generally

speaking, they can be grouped according to the access type:

 Read (RD) is used by the master to read memory areas or registers from slave devices.

 Write (WR) is used by the master to write to memory areas or registers of slave devices.

34/147

 Read/Write (RW) is used by the master to carry out both a read and a write operation at the same

time; in this case, reading is performed by the slave before writing.

 Read/Multiple Write (RMW) is a quite peculiar service, where the addressed slave carries out a read

operation while all other slaves are performing a write action.

SyncManager

The ESC memory is used for exchanging data between the EM and the application running on the slave. The

master can access the memory through the network by using the data link layer services, whereas the local

application makes use of the process data interface (PDI) provided by the ESC. As a consequence, problems

may arise if concurrent accesses are carried out without any restriction. In particular, the consistency of data

is not guaranteed by the basic data link communication services, unless a mechanism like semaphores is

implemented in software for dealing with data exchanges in a coordinated way. Moreover, both the EM and

the application running in the slave have to poll the memory explicitly, in order to determine when it is no

longer used by the competing entity.

EtherCAT provides a mechanism for slave memory access control, which is based on SyncManagers,

and was designed bearing in mind concurrency issues. SyncManagers are implemented in hardware in the

ESC and enable consistent and secure data exchanges between the EM and the local application, together

with the interrupt generation to notify both sides of changes. SyncManagers are configured by the EM. The

communication direction can be selected, as well as the communication mode. Each SyncManager uses a

buffer in the local memory area for exchanging data and transparently controls all accesses to the buffer. The

buffer must be accessed beginning with the start address; otherwise, the access is denied. Once access to

the start location is granted, the whole buffer can be accessed, either as a whole or in a number of strokes.

Accessing the last location also concludes the whole operation. Buffer changes caused by the master are

accepted by the SyncManager only if the frame FCS is correct. This also means that such buffer changes

take effect immediately after the reception of the end of the frame.

SyncManagers support two communication modes:

1. Buffered mode: In this case, the interaction between the producer and the consumer of data is

uncorrelated, and each entity can access the buffer at any time. The consumer is always provided with the

newest data. In the case data are written into the buffer faster than they are read out, old data are simply

discarded. The buffered mode is typically used for cyclic process data. This mechanism is also known as 3-

buffer mode, because the SyncManager manages three buffers of identical size (denoted as 0, 1, and 2). One

buffer is allocated to the producer (for writing), another buffer to the consumer (for reading), and a third buffer

helps as intermediate storage. Reading or writing the last byte of the buffer results in an automatic buffer

exchange. It is worth noting that both the EM and the local application must always refer to buffer 0 when

accessing memory. It is up to the SyncManager redirecting accesses to the right buffer.

2. Mailbox mode: In this case, a handshake mechanism is implemented for data exchanges, which

prevents buffer overwriting and ensures that no data will be lost. Just one buffer is allocated for each mailbox;

moreover, reading and writing are enabled alternatively. The mechanism implemented by mailboxes is

straightforward. At first the producer writes to the mailbox buffer. When done, the SyncManager locks it for

writing and enables read access to the consumer. Only when the consumer has finished reading data out of

the buffer, the producer is granted write access again. At the same time, the mailbox turns to the locked state

35/147

for the consumer. The mailbox mode is typically used for application layer (AL) protocols, where the time

taken to exchange information typically is not very relevant.

2.1.4 Application Layer

The AL of EtherCAT implements a state machine, which describes the behavior of a device by means of its

states and events that trigger transitions between states. In particular, the state machine is responsible for

coordinating master and slave applications during the start-up and operational phases. Depending on the

current state, different functions are enabled in the EtherCAT slave. Different commands have to be sent to

the device in each state by the EM, in particular, during the boot sequence of the slave. Commands are

acknowledged by the local application after the involved operations have been completed. Unsolicited

changes of the local application state are also possible. Moreover, simpler devices, which do not include a

microcontroller, can be configured to follow the state machine logic through an emulation mechanism. In this

case, any state change has to be accepted and acknowledged.

The state machine is controlled and monitored using some registers included in the slave. The master

controls the state transitions by writing to the AL control register. In turn, the slave updates information about

its current state by writing in the AL status register, which is also used for error notification by means of

suitable error codes written in the register itself. As Figure 2-6 shows, an EtherCAT slave supports four basic

states and, possibly, one optional state:

 Init: EtherCAT slaves enter this state at power-on. In this situation, the master initializes the

SyncManager channels for mailbox communications.

 Preoperational: Mailbox communications are enabled in the preoperational state, but process data

communications are not. The EM initializes the SyncManager channels for process data, the Fieldbus

Memory Management Unit (FMMUs) and the Process Data Objects (PDOs) mapping mechanism, if

supported.

 Safe operational: In this state, mailbox and process data communications are enabled, but the slave

outputs are kept in a safe state, while inputs are updated cyclically.

 Operational: In this state, slaves can transfer data between the network and their I/O logic. Mailbox

and process data communications are completely enabled. The operational state is the normal working

condition for slaves after completing the bootstrap sequence.

 Bootstrap (optional): The bootstrap state is mainly aimed at downloading the device firmware. In the

bootstrap state, mailboxes are active but restricted to file access via EtherCAT services.

36/147

Figure 2-6. EtherCAT Application Layer State Machine.

Application Protocols

An important characteristic of EtherCAT is its ability to support multiprotocol higher-level communications

using standardized mailboxes. This aspect is particularly appealing when options are offered for popular

solutions such as the following:

 CANopen over EtherCAT (CoE): This option offers a way to access a CANopen object dictionary (OD)

and to exchange CANopen messages according to event-driven mechanisms.

 Ethernet over EtherCAT (EoE): This option allows to tunneling standard Ethernet Frames in

EtherCAT.

 File access over EtherCAT (FoE): This option enables the download/upload of firmware and other

files.

 Servo drive profile over EtherCAT (SoE): This option is useful to grant access to the device profile of

SERCOS.

Supporting popular communication protocols helps in improving compatibility and efficiency of data

exchanges between new and old components in automation systems; to this purpose, EtherCAT makes use

of well-known and established technologies. For instance, the CoE protocol enables the adoption of the

complete CANopen profile family in EtherCAT networks. Besides this feature, the service data object (SDO)

transport protocol allows the transmission of objects of any size and is equivalent to its CANopen counterpart

so that it is possible to reuse existing protocol stacks. Data are organized in process data objects (PDOs),

which are transferred using the efficient support of EtherCAT. Moreover, an enhanced mode is defined that

overcomes the 8 byte limitation of CAN and enables the readability of the whole object list.

Another appealing feature an industrial Ethernet solution should provide is the support to standard IP-

based communication protocols (i.e., TCP/IP and UDP/IP) and all higher-level protocols that rely on them,

such as HTTP, FTP, SNMP, etc. To this purpose, the EoE feature exploits a mechanism where Ethernet

datagrams are tunneled and reassembled in a device, before being relayed as complete Ethernet frames.

This procedure has no impact on the achievable cycle time, because the size of fragments can be optimized

according to the available bandwidth.

The FoE is an EtherCAT service that can be used to download a file from a client to a server or to upload

it in the opposite direction. The protocol is similar to the trivial file transfer protocol (TFTP), and both sides are

37/147

allowed to initiate a read or write request via the corresponding command. This service is typically used to

update the device firmware.

Finally, the Servo drive profile over EtherCAT (SoE) service enables the use of the SERCOS device

profile and is suitable for demanding applications that rely on popular drive technology.

2.2 EtherCAT Synchronization

2.2.1 Synchronization Overview

One of the most significant and crucial features of EtherCAT technology is the fact that it enables automatic

synchronization between the master and all the slaves connected to the network, providing a universal clock

that all components adhere to. Moreover, another facilitating feature of EtherCAT technology is its flexibility on

accounts that each slave can be configured to its own synchronization mode without being affected by the rest

slaves that are connected to the network. At application level, both the master and the slave device consist of

cyclically executed software code (Figure 2-7).

Figure 2-7. EtherCAT Application Level.

The master and each slave application cyclically exchange process data in both directions in predefined

cycle times (Figure 2-8). These intervals can be really short as long as both the master and slave application

have enough time to execute their own stack.

Figure 2-8. EtherCAT process data exchange.

Synchronizing master and slave applications basically means defining a time relationship between the

start time of the cyclic code handling process in master and slave alike as shown in Figure 2-9.

38/147

Figure 2-9. EtherCAT Synchronization.

EtherCat defines three main time relationships of each slave application with respect to the master cycle

(Synchronization Modes):

 Free Run (no synchronization): process data handling in the slave is initiated by an internal event

having no defined time relation with the master cycle.

 SM-Synchronous (Sync Manager): process data handling in the slave is initiated by a hardware

interrupt event generated when the cyclic frame carrying the process data is received.

 DC-Synchronous (Distributed Clocks): process data handling in the slave is initiated by a hardware

interrupt event based on the Distributed Clocks and on the corresponding System Time.

2.2.2 Free Run Mode

In Free Run Mode (Figure 2-10), the process data handling in the slave is triggered by an internal event and

the communication scheme is described by the following characteristics and Figure 2-11:

 No defined relationship between cyclic frames and local application

 Time offset among different “Free Run” slaves is undefined

 Intended for I/O (input/Output) devices handling slow-varying signals

Figure 2-10. Slave in Free Run mode.

39/147

Figure 2-11. EtherCAT network in Free Run mode.

2.2.3 SM-Synchronous Mode

In SM Synchronous Mode (Figure 2-12), the process data handling in the slave is triggered by one interrupt

signal when the cyclic frames are received as shown in Figure 2-13. Hence, the master of the EtherCAT

network is obliged to provide a timer variable to each slave so that they can all be synchronized to a universal

clock. This requirement becomes a necessity in decentralized robotic applications where each slave must

obey a universal clock in order to produce smooth and continuous locomotions.

There are several possible causes of synchronizations inaccuracies if a network is configured in SM

Synchronous mode which may affect the efficiency of the synchronization:

 Cyclic frames are received by slaves with the same jitter which affects the master in sending them

 Even with no jitter, due to finite hardware propagation delays the last slaves will receive the cyclic

frames later with respect to the first ones

Figure 2-12. Slave in SM Synchronous mode.

40/147

Figure 2-13. EtherCAT network in SM Synchronous mode.

2.2.4 DC-Synchronous Mode

An important mechanism included in the EtherCAT specification is the distributed clocks (DC) synchronization

protocol, which enables all slave devices to share the same system time with high precision and accuracy.

Synchronization errors are typically well below 1 μs; in this way, all devices can be synchronized, and

consequently, distributed applications are synchronized as well (Figure 2-14). Possibly, the master can also

be synchronized, even though this option requires additional capabilities.

Main Features

The DC mechanism provides a number of features that are very useful for distributed control applications, the

most important being

 Synchronization of the slaves (and the master) clocks

 Generation of synchronous output signals (SyncSignals)

 Precise timestamping of input events (LatchSignals)

 Generation of synchronous interrupts

 Synchronous digital output updates

 Synchronous digital input sampling

DC is placed above the EtherCAT data link protocol, and its implementation is not mandatory. For this

reason, both DC-enabled and non-DC-enabled devices can quietly coexist in the same network. It is worth

noting that DC is not a general-purpose synchronization protocol, since it relies on specific features of

EtherCAT, such as its ring topology, on-the-fly datagram processing, and hardware timestamping capabilities.

DC Mechanism

The clock synchronization process consists of the following three main actions:

41/147

1. Propagation delay measurement: The master sends a synchronization DLPDU at certain time

intervals, and each slave stores the time of its local clock; after collecting all timestamps, the master,

which is aware of the network topology, computes the propagation delay for each segment.

2. Offset compensation: Because the local time of each device is a free-running counter, which typically

does not have the same value as the reference clock, the master computes the offset between the

reference and local clocks separately for each DC-enabled slave. Then, the offset is written to a

specific register of the slave, in order to compensate differences individually. At the end of this step,

all devices share the same absolute system time.

3. Drift compensation: After propagation delays have been measured and the offsets between clocks

compensated, the drift of every local clock is corrected through a time control loop (TCL). This

mechanism readjusts the local clock by regularly measuring its difference with the reference clock.

In DC Synchronous Mode, the process data handling in the slave is triggered by the hardware SYNC

events generated in the slave based on the DC System Time as shown in Figure 2-15. These interrupt

signals, the number of which may vary from one to three depending on the requirements of the application,

ensure that the Interrupt Service Routine (ISR) configured for each of these channels will be triggered

simultaneously in every slave connected to the network, therefore providing intrinsic synchronization among

the slave devices without any timer variable required. However, developers should be really cautious when

defining the cycle frame time owing to the fact that this interval should be wide enough to allow all ISRs to be

excuted by every slave. In any other case, recurrent lost frames might interfere with the internal

synchronization of the slave devices, causing errors in communication level.

The most significant advantages of DC Synchronous mode is that:

 Hardware SYNC events (interrupt signals) are generated within each slave automatically by the

EtherCAT Slave Controller who must be configured to operate in DC Synch mode (specified in the ENI

file)

 The triggering event in each slave is not affected by master jitter or propagation delays

Figure 2-14. Slave in DC Synchronous mode.

42/147

Figure 2-15. EtherCAT network in DC Synchronous mode.

In SM and DC Synchronous mode, a certain shift is always needed between the master and slave

application times, in order to enable the communication partner to receive the data before its cycle begins

(Figure 2-16).

Figure 2-16. EtherCAT shift times.

In SM-Synchronous mode, the shift is set by the synchronization mode itself (no parameter

configuration needed), as the slave application is directly triggered by the cyclic frame. On the other hand, in

DC-Synchronous mode, the shift between the SM interrupt and the master cycle is set by the master during

the start-up phase, and can be changed by users if needed. A proper setting of the time shift in DC-

Synchronous mode shall guarantee that the SYNC event within the slave is generated after the cyclic frame

delivering outputs was received by every slave and before the next cyclic frame collecting inputs is received

by the slave despite communication jitter, propagation delays and number of slaves (Figure 2-17). Admittedly,

there is not only one correct value, yet an entire interval of possible values for the time shifts.

43/147

Figure 2-17. EtherCAT time shifts.

An estimation of the minimum value for the SYNC Shift for Outputs can be obtained as algebraic sum of

the following contributions:

 Hardware delay introduced by the slaves internally:

o 1 μs for every slave of the network with MII Ports

o 3 μs for every slave of the network with only EBUS Ports

 Hardware delay introduced by the cables which is 5,3 ns for every meter of the length of the copper

cables in the network

2.3 Process Data Handling

The EtherCAT slave process data communication can be separated in two main steps as depicted in Figure

2-18:

 Low level on-the-fly data exchange: The ESC reads/writes data from/to the EtherCAT frame and

stores/reads the data to the internal DPRAM.

 The slave application will do further data processing/calculation.

Figure 2-18. EtherCAT Process Data handling.

44/147

The process data handling in the SSC is managed in three functions of the generic stack as depicted in

Figure 2-19. Each of these functions triggers the corresponding application specific functions.

1. PDO_OutputMapping(): handles the data from the master to the slave

2. ECAT_Application(): contains the slave application written by the user

3. PDO_InputMapping(): handles the data from the slave to the master

Figure 2-19. Process data handling generic functions.

The handling and sequence of the application for the different synchronization modes are described in

the following figures. As mentioned above, in Free Run Mode there is no synchronization and all three

functions are cyclically executed in turn as shown in Figure 2-20. All c files listed in the File collumn are part of

the generic EtherCAT slave stack.

Figure 2-20. Free Run mode process data handling and sequence.

In SM Synchronous Mode, a hardware interrupt (IRQ – Interrupt Request) signal (triggered internally on

each slave every time a frame is received) triggers the PDI_Isr function which executes the three generic

functions in turn as shown Figure 2-21.

Figure 2-21. SM Synchronous mode process data handling and sequence.

Finally, in DC Synchronous Mode, a hardware interrupt (IRQ – Interrupt Request) signal (triggered

internally on each slave every time a frame is received) triggers the Sync0_Isr function which executes the

three generic functions in turn as shown Figure 2-22. The aforementioned scheme is identical with SM

45/147

Synchronous Mode’s process data handling and sequence. However, in DC Synch mode, developers may

enable two extra interrupt signals (Al_EVENT_ENABLED and SYNC1) and achieve the highest intrinsic

synchronization among the slaves owing to the fact that all three generic functions are executed

simultaneously in all slave devices.

Figure 2-22. DC Synchronous mode process data handling and sequence.

2.4 EtherCAT Application Guide

In this section, the process of configuring an EtherCAT network of microcontrollers with a generic user’s

application will be thoroughly described. The master device (Personal Computer) will exchange a number of

different dummy variables with all connected slave devices (MCUs) in DC Synchronous mode which

guarantees the most efficient synchronization. This extensive approach will cover all aspects of EtherCAT

architecture, both from master and slave side, providing all the necessary information to build a user defined

EtherCAT application quickly and efficiently.

In addition, all the hardware and software components that constitute the application will be described,

explaining the main reasons for selecting them, portray the main idea of the running stack, explain the

process of adding/removing I/O variables to/from the network and most significantly how to assemble a User

Application. These key features form the most essential characteristics of EtherCAT technology when

designing a custom application.

2.4.1 EtherCAT Code Structure Overview

A microcontroller in each slave is responsible for the entire application layer. As adumbrated by Figure 2-23,

the EtherCAT slave stack consists of three main parts:

 PDI and Hardware abstraction which is hardware specific and needs to be implemented according to

the platform/PDI. In our application, SPI (Serial Peripheral Interface) plays this role which is the means of

communication between the MCU and the EtherCAT Slave Controller.

 Generic EtherCAT stack that corresponds to all those functionalities which are not hardware and

application specific for a slave, such us the full EtherCAT state machine, mailbox communication and

generic process data exchange.

 User application which implements the slave specific functions such as motor control.

46/147

Figure 2-23. EtherCAT Slave Architecture.

2.4.2 Hardware and Software Requirements

The basic EtherCAT system configuration is shown in Figure 2-24. The EtherCAT master uses a standard

Ethernet port and network configuration information stored in the EtherCAT Network Information file (ENI).

The ENI is created based on EtherCAT Slave Information files (ESI) which are provided by the vendors for

every device. Slaves are connected via Ethernet cables and different topology types are possible for

EtherCAT networks although, as previously mentioned, the most efficient one is the physical line or ring

topology which exploits the minimum wiring scheme.

Figure 2-24. EtherCAT Architecture.

As shown in Figure 2-24, an EtherCAT network requires several physical components realizing the

Physical Layer, the ESC/Data Link Layer and the Application Layer. In our application some of the

components were purchased while others were designed and built in-house in order to meet our needs and

specifications.

47/147

EtherCAT Master Requirements

TwinCAT 3 Engineering software tool running in Windows 10 (through Visual Studio) on a personal computer

(PC) will materialize the EtherCAT Master (EM) device of our network. In fact, this is the only software

requirement needed to implement an EM and configure all different kinds of slaves, writing their EEPROM

accordingly. Developers should follow the steps described in Download and Install TwinCAT 3 Software to

download and install the application on their computer.

The only hardware requirement for an EtherCAT master is a standard Network Interface Controller (NIC,

100 MBit/s Full duplex). TwinCAT Runtime will be able to download the required drivers and switch to RUN

Mode only if the PC has compatible network adapters for Real Time Ethernet communication (find all

compatible devices as specified by Beckhoff in [28]). Moreover, 100 Mb/s full-duplex Ethernet cable (Cat 5

twisted pair or higher, shielded or unshielded depending on the electromagnetic interference) must be used to

guarantee proper cyclic communication.

EtherCAT Slave Requirements

As far as the slave device is concerned, three hardware components are used, namely:

 an EtherCAT Slave Controller (ESC) which handles the EtherCAT protocol in real-time by processing

the EtherCAT frames on the fly and providing the interface for data exchange between a master and a

slave – responsible for the realization of the Physical and Data Link Layers,

 a host Microcontroller Unit (MCU) realizing the Application Layer including the Hardware Access, the

Generic EtherCAT stack and User Application structures as adumbrated by Figure 2-23, and

 a custom printed circuit board connecting these two devices.

In this application, the C2000 Delfino MCU F28379D LaunchPad Development Kit by Texas Instruments

(TI), Figure 2-25, was selected as the host microcontroller of all EtherCAT slaves. The most significant

advantages are that it is a low cost, powerful MCU (featuring a TMS320F28379D Dual Core Microprocessor),

suitable for motion control of several motors. Also importantly, it is very well documented for using it in

EtherCAT applications, since it is similar to the TMDSECATCNCD379D hardware kit used in the respective

TI’s EtherCAT Solution Reference Guide (reference).

Figure 2-25. EtherCAT Slave MCU.

48/147

As mentioned above, in order to implement EtherCAT communication, developers must design or

purchase an EtherCAT Slave Controller. In our case, the FB1111-0141 (SPI) ESC by Beckhoff (Figure 2-26),

was selected as a highly flexible ESC that can communicate with the MCU via Serial Peripheral Interface

(SPI) protocol and operate in DC Synchronous mode triggered by three external interrupt signals. An overview

of the features of the selected ESC is shown in Figure 2-27.

Figure 2-26. EtherCAT Slave Controller.

Figure 2-27. Overview of FB1111-0141 features.

To connect together the MCU and the ESC, it is imperative to build an intermediate board connecting the

desired I/Os of these two devices. The desired wiring scheme is adumbrated in Table 2-1. The host MCU pins

were selected for SPI-A configuration, however users can select whichever SPI port is more convenient when

designing their own application. Note that when designing the PCB, all GND pins should be wired together to

avoid jittering or external interference.

49/147

Table 2-1. Pin Connection.

FB1111–0141 (SPI) LauncXL F28379D

Pin No Property GPIO Pin No Property

1 Ground (GND) - GND Ground

29 SPI_D_IN (MOSI) 58 15 SPIA: Slave In-Master Out

31 SPI_D_OUT (MISO)

59 14 SPIA: Slave Out-Master In

38 SPI_CLK 60 7 SPIA: Clock

22 SPI_SEL 61 19 SPIA: Slave Select Pin

16 EEPROM_LOADED 124 13 Indicates Loaded EEPROM

26 SPI_INT (IRQ) 125 12 Interrupt IRQ

42 SYNC0 / LATCH0 19 3 SYNC 0 Interrupt signal

43 SYNC1 / LATCH1 18 4 SYNC 1 Interrupt signal

47, 49 Vcc (5V supply) - 5 V Power Supply

To connect the pins described in Table 2-1, a custom PCB was designed in Autodesk Eagle, such that it

can be mounted at the bottom of the host MCU (Delfino) in order to free the top plane for a second PCB

handling the control-related peripherals (this is extensively described in the following chapter).

Firstly, the packages of the Delfino Launchpad and the FB1111-0141 ESC were drawn; Figure 2-28

shows the designed Device (a) and Package (b) of the ESC, while Figure 2-29 shows the Device (a) and

Package (b) of the Delfino Launchpad. It is worth mentioning that it was not necessary to design the whole

Delfino Launchpad library due to the fact that only the upper part pins (1-40) were exploited by our application.

(a) (b)

50/147

Figure 2-28. FB1111-0141 Library (a) Device (b) Package.

(a) (b)

Figure 2-29. Delfino Launchpad Library (a) Device (b) Package.

Secondly, a schematic was drawn to properly connect the desired input and output pins of the

aforementioned Devices based on Table 2-1 as shown in Figure 2-30. It is obvious that all Ground pins were

connected to GND in order to meet Beeckhoff’s specifications regarding the FB1111-0141 ESC.

Figure 2-30. Schematic of EtherCAT Slave PCB.

The third and final step was to design the actual board; Figure 2-31 (a) depicts the Top View of the PCB,

whilst Figure 2-31 (b) adumbrates the Bottom View as illustrated by Eagle Software Tool. Developers my

download all the necessary Eagle files from [50] to reproduce or upgrade the design.

51/147

(a) (b)

Figure 2-31. (a) Top View and (b) Bottom View of EtherCAT Slave PCB.

Figure 2-32 depicts the final EtherCAT slave assembly with all the aforementioned components.

(a) (b)

Figure 2-32. EtherCAT Application slave assembly.

As far as the software requirements of the EtherCAT slave are concerned, Code Composer Studio (CCS)

was selected to program the slave devices. CCS is an Integrated Development Environment (IDE) to develop

applications for Texas Instruments (TI) embedded processors. In addition, for the selected MCU, TI provides

highly useful software, namely the ControlSuite and the C2000ware packages, which entail numerous

examples. Developers should follow the steps described in Download and Install Code Composer Studio,

C2000ware & ControlSuite to download and install these tools on their computer.

Moreover, as specified above, a Configuration Tool is needed to generate a network description, the so

called EtherCAT Network Information file (ENI, XML file based on a pre-defined file schema). This is based on

the information provided by the EtherCAT Slave Information files (ESI, device description in XML format)

and/or the online information provided by the slaves in their EEPROM and their object dictionaries. The ENI

file describes the network topology, the initialization commands for each device and the commands which

have to be sent cyclically. The ENI file is provided to the master, which sends commands according to this file.

This software tool is provided by the EtherCAT Technology Group (ETG), namely Slave Stack Code Tool

(SSC Tool) and only ETG members with a valid Vendor ID can download and exploit its features. Members of

the Control Systems Lab – Evangelos Papadopoulos (CSL-EP) may contact Professor E. Papadopoulos to

retrieve the CSL-EP credentials in order to download and install the SSC Tool. Future developers should take

https://en.wikipedia.org/wiki/Texas_Instruments

52/147

into account that all the necessary stack of this application - tutorial has already been generated using the

SSC Tool.

However, in case it is required to execute the entire procedure from scratch, one should download the

SSC Tool as described in Download and Install Slave Stack Code Tool and emulate the actions described in

Generate Slave Stack Code for C28x architecture microcontrollers. In any other case of exploiting the already

generated stack projects, SSC Tool is totally unnecessary.

2.4.3 EtherCAT Application Solution Guide

Importing the Project

After installing all the necessary software components and gathering all the necessary hardware components

(mentioned above), developers are in position of implementing EtherCAT communication in a few easy steps.

The instructions below describe the process of configuring one EtherCAT slave in the network at the

beginning and how it can be accomplished-extended for more slaves later.

1. Navigate to the following link [29] and download EtherCAT Application repository which includes a CCS

project and an xml ENI file.

2. Import the EtherCAT Application CCS project into Code Composer Studio by following the instructions of

Import CCS project into Code Composer Studio

3. Specify and Link the desired Target Configuration of the development by following the instructions of Define

and Select Target Configuration. This procedure is of utmost importance on accounts that the binary program

that will be downloaded to your launchpad must be generated for the specific MCU of your application.

4. The Project Explorer window and EtherCAT_Application project tree should now look like Figure 2-33.

Highlighted is the name of the project and the selected Build Configuration

(_1_LAUNCHXL_F2837xD_SPIA_RAM).

Figure 2-33. CCS with imported project.

53/147

Project Overview

The project files are separated into two main folders:

 SPI_EtherCAT_slave_stack which contains all the files that realize the Generic EtherCAT Stack Layer

and the User Application (see EtherCAT Code Structure Overview).

 hal which contains all the necessary files that initialize and configure the MCU’s functionalities (ex

clocks, GPIO’s,ctimers, communication protocols etc) and materialize the PDI and Hardware Abstraction

Layer (SPI functions to communicate with the ESC).

Expanding these two folders in the Project Explorer tree, developers can locate all these files and

manipulate them in order to cover the needs of their application. The Slave Stack Code execution consists of

an initialization phase (executed only once) and a cyclic phase (executed continuously without interruptions)

as shown in Figure 2-34 where the MainLoop() function contains the main cycle of the Slave’s firmware, which

always runs when the slave is properly configured. The main(void) function of the project where the

aforementioned stack is executed can be located in SPI_EtherCAT_slave_stack > EtherCAT_Application.c.

This is the most significant .c file of EtherCAT’s stack due to the fact that it also contains the three process

data handling generic functions which define the nature of the project (see Process Data Handling).

Figure 2-34. Basic SSC execution structure.

The matching between the process data handling generic functions and our project’s is:

 PDO_OutputMapping() → APPL_OutputMapping()

 ECAT_Application() → APPL_Application()

 PDO_InputMapping() → Appl_InputMapping()

In Table 2-2, developers can monitor the Input and Output variables of our project as handled by EtherCAT

communication. Each variable has a specific type (ex BOOL, INT), belongs to a Record (general address)

containing more variables of identical or different type [5] and a unique name within the Record. Output

variables are those who are controlled and determined by the master node during the execution of the stack

and their Index always begin with 0x70, while Input variables are designated by each slave their Index always

begins with 0x60.

54/147

Table 2-2. EtherCAT Application Process Data Interface.

Index
Sub

Index
Data
Type

Name

Index
Sub

Index
Data Type Name

0x7000 Record Buttons

0x6010 Record Input1INT32

0x01 BOOL Button1

0x01 INT32 InINT32Var1

0x02 BOOL Button2

0x6012 Record InputUINT16

0x03 BOOL Button3

0x01 UINT16 InUINT16Var1

0x04 BOOL Button4

0x6014 Record Input2INT32

0x05 BOOL Blue_LED

0x01 INT32 InINT32Var2

0x06 BOOL Red_LED

0x6020 Record InputINT16

0x07 BOOL Button7

0x01 INT16 InINT16Var1

0x08 BOOL Button8

0x02 INT16 InINT16Var2

0x09 INT8 Sync

0x6030 Record Input3INT32

0x7010 Record Output1INT32

0x01 INT32 InINT32Var3

0x01 INT32 OutINT32Var1

 0x02 INT32 InINT32Var4

0x7012 Record OutputUINT16

0x01 UINT16 OutUINT16Var1

 0x7014 Record Output2INT32

0x01 INT32 OutINT32Var2

 0x7020 Record OutputINT16

0x01 INT16 OutINT16Var1

0x02 INT16 OutINT16Var2

0x03 INT16 OutINT16Var3

0x04 INT16 OutINT16Var4

0x05 INT16 OutINT16Var5

 0x06 INT16 OutINT16Var6

The most crucial and interesting functions implemented in EtherCAT_Application.c are:

 APPL_GenerateMapping(): which sends the Input and Output process data size in bytes as calculated

from Table 2-2 by the sum of all configured variables. As shown in Figure 2-35, these sizes for our

application is 22 bytes for the Input variables and 24 for the Output variables. No additional steps are

required by the developers for this function.

Figure 2-35. APPL_GenerateMapping() function.

 APPL_InputMapping(): which copies the Input variables from the local memory of the slave (Delfino

MCU) to the ESC memory in order to send them to the Master device (Figure 2-36). No additional steps

are required by the developers for this function.

55/147

Figure 2-36. APPL_InputMapping() function.

 APPL_OutputMapping(): which copies the Output variables from the ESC memory to the local memory

of the Delfino MCU slave to update their values within the application. No additional steps are required by

the developers for this function.

Figure 2-37. APPL_OutputMapping() function.

56/147

 APPL_Application(): which contains the User Application. Within this function, developers are free to

decide what they desire to do with the predefined Input and Output variables of EtherCAT Application

project as long as they are cautious not to mix variables of different types. The circled lines of Figure

2-38, as stated by the comment as well, will flash the build in LEDs of Delfino MCU through Blue_LED

and Red_LED variables. Users may follow the comments to configure their own application handling the

process data.

Figure 2-38. APPL_Application() function.

Although the procedure of adding or removing EtherCAT variables is both painstaking and time

consuming, if developers decide that they want to proceed accordingly, they should follow the instructions of

Add and remove EtherCAT Input and Output variables.

Configuring the Project

1. Select the desired Build Configuration of the imported project. EtherCAT_Application project contains two

separate Build Configurations one for RAM and one for Flash. These two projects are identical as far as

functionality is concerned. However, Build Configuration number 1 is intended for RAM which means that the

Delfino MCU will execute the downloaded project only until it is powered-off. On the other hand, Build

Configuration number 2 is intended for FLASH which means that the project will be saved in Flash memory

and the MCU will “remember” it even after rebooting. In general, RAM configuration is intended for testing

purposes, while FLASH configuration when a project is properly functioning. In order to choose the desired

57/147

Build Configuration, right click on the project’s name, click Build Configurations > Set active and the desired

configuration as depicted in Figure 2-39.

Figure 2-39. Select Build Configuration.

2. Connect the launchpad to the PC using the microUSB cable and Build the project. If no error occurs, then

download the project into the launchpad by clicking the Debug button as shown in Figure 2-40. Take into

consideration the fact that if the Delfino MCU is powered through the USB port, jumpers JP1, JP2 and JP3

must all be mounted.

Figure 2-40. Build and Debug CCS Project.

58/147

3. The launchpad consists of two cores, thus select CPU1 and click OK from the pop up window as illustrated

in Figure 2-41.

Figure 2-41. CPU selection.

4. Code Composer Studio will then automatically turn into CCS Debug mode. When the project is downloaded

(obviously, downloading the Flash project lasts a lot longer than RAM) click the Resume button as

adumbrated in Figure 2-42 and the slave side is now up and running. The Terminate button will not stop the

execution of the program in the MCU yet it will only end the debug session. For the time being DO NOT

Terminate the debug session to make sure that the slave is properly running in DC mode.

Figure 2-42. CCS Debug window.

5. Connect the IN port of the FB1111-0141 ESC, using a suitable Ethernet cable (see EtherCAT Master

Requirements) with the PC as illustrated in Figure 2-43 and start TwinCAT XAE (VS 2013).

59/147

Figure 2-43. EtherCAT Assembly.

6. Select File > New > Project as shown in Figure 2-44.

Figure 2-44. TwinCAT new project.

7. From the TwinCAT Projects tab select TwinCAT XAE Project (XML format), name the project (ex

EtherCAT Application) and click OK as illustrated in Figure 2-45.

Figure 2-45. TwinCAT EtherCAT Application project.

60/147

8. From the Solution Explorer window expand the I/O element, right click on Devices and select Add New Item

(Figure 2-46).

Figure 2-46. TwinCAT Solution Explorer.

9. Select EtherCAT Master and click OK (Figure 2-47). This way, your PC is now configured as an EtherCAT

Master device.

Figure 2-47. EtherCAT Master realization.

10. Navigate to the location of the downloaded folder from Bitbucket, copy EtherCAT Application (SPI).xml

file and paste it at the following location C:\TwinCAT\3.1\Config\Io\EtherCAT owing to the fact that in order to

be recognized by the TwinCAT development environment, ESI descriptions of slave devices shall be saved in

the default directory.

11. In Visual Studio, select TWINCAT > EtherCAT Devices > Reload Device Descriptions (Figure 2-48) on

accounts that if the content of the TwinCAT default folder is changed (new files are added, old files are

deleted, files overwritten, content of one or more files is changed), the ESI database must be reloaded in

order to make the changes available.

61/147

Figure 2-48. Reload Device Descriptions.

12. The definitions of the TwinCAT buttons can be viewed in Figure 2-49. These functionalities will be

exploited extensively in the following steps.

Figure 2-49. Definitions of TwinCAT buttons.

13. Click once on the Device 1 (EtherCAT) item of the Solution Explorer tree and the Scan button (Figure

2-49) will instantly become clickable. Select the Scan feature (automatic scan for slave devices) and select No

in the pop up window asking whether to Activate Free Run. A slave (TwinCAT defines slave devices as

Boxes) must be now visible on the Solution Explorer tree within the Device 1 (EtherCAT) master device with

the last configuration that was written on the ESC’s EEPROM as shown in Figure 2-50.

62/147

Figure 2-50. TwinCAT scan for slaves.

14. In order to write the EEPROM of the ESC with our project’s description file (xml) so that it matches with

the configuration of the Delfino MCU, double click on Device 1 (EtherCAT), select the Online tab of the

emerged window, right click on Box 1 item and choose EEPROM Update.(Figure 2-51).

Figure 2-51. Update EEPROM of ESC's memory.

15. Select EtherCAT Application (SPI) (11110141 /1) and click OK (Figure 2-52). The Number 11110141 is

the Product Code and 1 is the Revision Number of the XMl file.

63/147

Figure 2-52. XML selection.

16. Now the slave’s EEPROM memory is correctly configured, yet TwinCAT cannot automatically recognize

this transition. In order to do so, on the Solution Explorer window, right click on Box 1, select Remove and

then OK (Figure 2-53).

Figure 2-53. Remove EtherCAT slave.

17. Scan the network again as indicated above and monitor Box 1 with the desired configuration and

EtherCAT variables (Table 2-2) by expanding the respective tree items as illustrated in Figure 2-54. One can

also rename the slave by clicking on the Box 1 and altering the Name item of the General tab (ex EtherCAT

Application Slave Device). The application is now completed and ready to use. One can test the project in

Free Run Mode (no synchronization) to ensure that everything is executed as intended and try the DC

Synchronous mode later on.

64/147

Figure 2-54. EtherCAT Application in TwinCAT.

18. Activate Free Run Mode by clicking Toggle Free Run State button (Figure 2-49) and ensure that the

slave device has swiched to Operation State by checking the RUN LED of the FB1111-0141 ESC (must be

ON) and the Current State of the Online tab (Figure 2-55) which must be OP (Operational).

Figure 2-55. EtherCAT Slave's State Machine.

Testing the Project

EtherCAT Application is now running in Free Run Mode and users are now in position of Online Writing

the Output variables which are being sent to the Slave Device and inspect the Input variables that originate

from the slave device depending on the User Application that they have coded. The only predefined feature of

the project is the blue and red LEDs of the Delfino MCU that are linked to the Blue_LED and Red_LED output

variables of the Buttons record.

In order to execute an Online Write and turn ON the blue LED for example, expand the project tree of

EtherCAT Application Slave Device, click on the Blue_LED boolean variable of the Buttons output record,

select Write on the Online tab, type 1 in the Dec field and select OK (Figure 2-56). The exact same process

can be followed to determine the value of any other variable from the Output variables list.

65/147

Figure 2-56. Online Write of Blue_LED.

Obviously, Input variables cannot be determined by the master since they are configured by the

application running in the slave device. However, users may inspect the value of input variables by navigating

to the Online tab of the desired one as depicted in Figure 2-56 for the Blue_LED output variable.

Project in DC – Sync mode

EtherCAT Application project is configured to exploit all three interrupt channels (physical signals) for

synchronization (PDI_IRQ, SYNC0 and SYNC1) when operating in DC-synchronous mode and more

specifically the SyncManager/Sync0/Sync1 mode adumbrated in Figure 2-57.

Figure 2-57. SyncManager/Sync0/Sync1 Mode.

The output process data mapping is triggered by the SM2 event, the ECAT_Application is trigerred by

Sync0 and the input latch by SYNC1 (Figure 2-58). In EtherCAT Application we have specified all the Delay

Times to be zero in order to minimize the execution time of the slave’s project and achieve higher cycle times.

66/147

Figure 2-58. DC Sync mode of EtherCAT Application.

In order to force the slave to operate in DC – Sync mode and achieve the ultimate synchronization, follow

the instructions of TwinCAT in Run Mode. Timers and flags have been placed within the stack to make sure

that the slave is Operating in DC mode and calculate the execution time of each of the aforementioned

EtherCAT functions that determiningly define the minimum cycle time of the frame. Follow the instructions of

Add Watch Expression in CCS Debug to add the variables of Figure 2-59.

Figure 2-59. Timers and Flags to watch.

If all integer type variables are 1, then the slave is properly functioning in DC mode and the values of the

unsigned long type variables (timer_) indicate the required execution time in micro seconds listed in Table 2-3.

Table 2-3. Generic functions execution time.

EtherCAT slave stack function Execution time (μs)

PDO_OutputMapping 67

ECAT_Application 1

PDO_InputMapping 17

Minimum Cycle Time 85

The minimum cycle time of our application with the given process data exchange is the sum of the

execution times of the above three functions. The configured cycle time in TwinCAT must exceed this value to

switch in Operational mode. However, taking into consideration that we covet to achieve the fastest

communication, we shouldn’t diverge from the minimum cycle time to a great extend but test multiple cycle

times close to this value until the slave becomes operational with no lost frames.

Another interesting thing to consider regarding EtherCAT when deciding on the frame cycle time is the

time needed by the master to transmit a frame on the network or more explicitly the time the network card

needs (running at 100Mbit/s) in order to physically transmit the corresponding frame on the cable, in every

67/147

cycle. This feature can be calculated directly from TwinCAT and displayed by the Size/Duration column of

EtherCAT tab (Figure 2-60). The five predefined Datagrams of the project, depending on the selected

synchronization mode and EtherCAT’s addressing, are also highlighted in the same figure.

Figure 2-60. EtherCAT Application frame disintegrated.

In our project, this transmition time can be disintegrated into the components described in Figure 2-61

and Table 2-4.

Figure 2-61. EtherCAT frame description.

Table 2-4. EtherCAT frame components.

Frame Component Bytes Description

Ethernet Header 14 fixed

EtherCAT Header 2 fixed

Datagram Headers 10 * 5 = 50 10*number of Datagrams

Datagram Data 4+4+1+24+2=35 Sum of bytes

Datagram WKCs 2 * 5 = 10 2*number of Datagrams

Ethernet FCS 4 fixed

Intergap + Preamble+SOF 12+7+1=20 fixed

Total 135 1080 bits (@100Mb/s) = 10.8 μs

68/147

Since the total time needed by the master (10.8 μs) is almost eight times less than the minimum

execution time of slave (85 us), the frame cycle time principally depends on the latter. Taking the above into

consideration, the minimum frame cycle time that enabled the slave device to successfully switch to

Operational Mode for the given configuration and process data without having any lost frames at all was 200

μs. In lower cycle times, a considerable number of frames were lost during the communication and the

robustness of the the project was doubtful. However, we need to take into consideration the fact that only

integer multiples of Twincat’s base unit (50 μs) were allowed to be tested for frame cycle time. In your

application, this cycle time might be even greater owing to the fact that the execution time of the

ECAT_Application will increase.

The procedure described above can easily be extended to the desired number of slaves by simply

downloading the same project to all Delfino MCU as already specified, connecting the slaves following the

wiring scheme of Figure 2-24 and scanning the new EtherCAT network. Subsequently, emulate the steps of

TwinCAT in Run Mode to configure all slaves to operate in DC – Sync mode (to achieve ultimate

synchronization among the slave devices and test your application in realtime. This process is also explained

in the next chapter where four EtherCAT slaves are connected to the network yet an example of TwinCAT

window with four configured slaves can ve viewed in Figure 2-62.

Figure 2-62. Example of EtherCAT network with 4 configured slaves.

Equation Chapter (Next) Section 1

69/147

3 Motion Control of Laelaps II via EtherCAT

As stated in previous chapters, the purpose of moving towards the EtherCAT technology is to implement a

decentralized control architecture on Laelaps II quadruped robot [30] where each slave device controls the

motion of one leg. This chapter presents the firmware running in Laelaps II motion control MCUs and the

configuration procedure of the EtherCAT master to handle all four slave devices and save the necessary data

for post processing using TwinCAT’s Scope View tool.

The main focus is on designing a network of MCUs responsible for motion planning, control and

synchronization of the legs using trajectories at the toes and an indirect force control based on [31] . The

motion parameters are handled by the EtherCAT Master communicating with four Delfino MCUs, leading the

robot to several walking and running gaits. Finally, a detailed guide is given for building from scratch all the

required software and hardware components used in this chapter.

3.1 Laelaps II robot description and motion planning

In [32] and [33] one may find all available details of Laelaps I (Figure 3-1) as far as mechanical and electrical

design, functionalities and programming scheme are concerned. Moreover, the experimental validation of the

centralized motion control theory is presented and conclusions are drawn for this initial architecture.

Figure 3-1. Laelaps I.

Laelaps II (Figure 3-2) has certain improvements that distinguish it from its previous version Laelaps I

regarding both mechanical and electrical properties. This chapter presents the main features of the robot that

intersect with motion control; more specifically the leg design, the actuator-related characteristics and the

power supply systems.

70/147

Figure 3-2. Laelaps II.

Laelaps II, compared to the first quadruped, has several enhacements including:

 New leg design, fibraticed with lightweight carbon fiber tubes and custom alluminium parts

 Replacement of the PCIe/104 tower, which was used as the central control unit of all motors with four

identical EtherCAT Slave towers with each controlling the motion of one leg based on parameters

designated by an EtherCAT Master (decentralized control)

 Upgraded driver extension boards to deal with issues encountered in the former design

 Reallocation of the front parts of the body so that all fours legs are symmetrically distributed

Most of the electrical upgrades are thoroughly described in [5] and readers are encouraged to refer to its

fourth chapter for more details.

3.1.1 Leg design and motion planning

Although each leg clearly consists of three links (Figure 3-3), due to the fact that the attached spring is highly

stiff, we consent that it comprises of two links (upper actual, lower virtual).

Figure 3-3. Actual and virtual links of Laelaps II legs.

Figure 3-4 illustrates the motion planning and control parameters of the leg which will be used in our

project.

71/147

Figure 3-4. Leg model.

Forward Kinematics

1 1 2 2

1 1 2 2

sin sin

cos cos

E

E

x l l

y l l

 (3-1)

Inverse Kinematics

Using the law of cosines:

2 1

2 2 2 2 2 2

1 2 1 2 1 2 1 2

2 2 2 2

1 2

1 2

2

2 cos() 2 cos

()
cos

2

sin 1 cos

tan 2(sin ,cos)

E E

E E

x y l l l l l l l l

x y l

l l

a

 (3-2)

Finally,

2 1 2 1

1 2

tan 2(,) tan 2(sin , cos)
2

tan 2(sin ,cos)

E Ea y x a l l l

a

 (3-3)

Leg’s Workspace

The maximum effective length of the leg (knee joint at end-stop) is given by,

72/147

 ,max 1 2 250 350 600effl l l mm (3-4)

The minimum effective length of the leg (knee joint at end-stop) is given by,

2 2 2 2

,min 1 2 250 350 430.1163effl l l mm (3-5)

Figure 3-5. Leg's workspace.

Trajectory Planning

The firmware of each slave is specifically configured to enable each leg to move along (semi)elliptical

trajectories with all the parameters controlled by the master, along the lines of [31] . Hence, all slaves

exclusively handle the calculation payload for the motion control of each leg. The EtherCAT Master just

determines a list of necessary parameters for the desired elliptical trajectory which are listed in the

TrajectoryParameters Record of Table 3-1. The elliptical shape is defined by (3-6) w.r.t. point 0 (hip axis)

defined in Figure 3-4, and must always be within the limits of the leg’s workspace. Therefore, the current

project running in all slave devices is programmed in such way that it forbids any leg to move outside its

predefined workspace, yet it will stay at the last acceptable (xtraj,ytraj) point until a new allowed one is passed

to the Inverse Kinematics code implementation.

,

,

cos()

sin()

traj traj cntr traj

traj traj cntr traj

x x a t

y y b t

 (3-6)

To model the impedance of the treadmill’s floor, a flattening parameters has been added on the y axis

amplitude (b), altering the shape of the elliptical trajectory as shown in Figure 3-6.For more information

regarding the aforementioned leg design, motion planning and control, refer to [34] .

Visualization in Matlab

For testing purposes and evaluation, a Matlab script was written to visualize the leg motion. This helps in

Laelaps experiments in order to accurately define the elliptical parameters for each slave and avoid errors

regarding motion planning. Snapshots from the execution of the code are illustrated in Figure 3-6. Developers

may find and use this testing tool at [35] and Matlab Leg Modelling Code.

73/147

Figure 3-6. Visualization of legs motion in Matlab.

3.1.2 Electrical system

As mentioned above, the electrical system of Laelaps is exhaustively described in Chapter 4 of [5] . Therefore

in this thesis, the approach is EtherCAT slave oriented and towards preparing Laelaps II for experiments.

However, a fundamental overview of the electrical scheme is included to understand the general concept.

The main electrical components are:

 The High Power Distribution board which provides high power to all drivers.

 The Logic Power supply system with voltage regulators (5V) supplying all EtherCAT towers.

 8 motor driver boards (amplifiers) (along with their designated extension boards mounted on top)

configured for current control. Four of the drivers are connected to brushed motors which drive the knee

of each leg and the rest are connected to brushless motors which control the hip motion.

 4 EtherCAT Control Tower Assembly slaves connected to the motor drivers and the encoders of each

leg.

It is worth mentioning that due to the mounting of the motors onto the body, each set of EtherCAT tower

and connected drivers controls the leg of the other side (left → right). For example, the indicated EtherCAT

Control Tower Assembly and Drivers with Extension Boards of Figure 3-7 control the motion of the Fore Right

Leg and NOT the Fore Left Leg which is visible in the same figure. This detail is of utmost importance when

downloading a project to the Delfino boards since users must not confuse the Build Configuration with the side

of Laelaps legs.

74/147

Figure 3-7. Electrical System of Laelaps.

EtherCAT Tower Assembly

As specified above, each leg of Laelaps is being controlled by one EtherCAT Control Tower Assembly which

plays the role of an EtherCAT slave in the configured network. Hence, four identical assemblies needed to be

constructed to control Laelaps II. Figure 3-8 shows the final version of the EtherCAT Control Tower Assembly

that was used throughout the trotting experiments. Except for the components described in EtherCAT Slave

Requirements and illustrated in Figure 2-32, the assembly also includes:

 a TMS320F28379D Extension board interfacing with all necessary peripherals (ePWM, eQEP etc.) for

two motors presented in section 4.4.3 of [5]

 a voltage regulator (DC - DC converter, Step – Down 5V 2A USB [36]) supplying the logic power to

the whole assembly

 a plexiglass supporting base for mounting purposes on the Laelaps body

Figure 3-8. EtherCAT Control Tower Assembly.

75/147

Figure 3-9 shows the entire EtherCAT Control Tower Assembly mounted on Laelaps II robot. All four

slave devices are connected to the EtherCAT network as shown in Figure 2-24 starting from the Hind Right

Leg and ending with the Fore Right Leg.

Figure 3-9. EtherCAT Control Tower Assembly on Laelaps II.

3.2 Motion Control of Laelaps via EtherCAT Solution Guide

This section describes the configuration process of the complete EtherCAT network. Developers are strongly

advised to go through and emulate the instructions of EtherCAT Application Solution Guide before moving to

this chapter to make sure that they have fully comprehended EtherCAT technology and its implementation

process.

Importing the Project

1. Navigate to the following link [35] and download EtherCAT Laelaps Motion Control repository including a

CCS project and an xml ENI file.

2. Import the EtherCAT Laelaps Motion Control CCS project into Code Composer Studio by following the

instructions of Import CCS project into Code Composer Studio.

3. Specify and Link the desired Target Configuration of the development by following the instructions of Define

and Select Target Configuration.

Firmware Structure

The project files are again separated into two main folders:

 SPI_EtherCAT_slave_stack which contains all the files that realize the Generic EtherCAT Stack Layer

and the User Application (identical code structure with EtherCAT Application Solution Guide but different

EtherCAT variables and control application).

76/147

 hal which contains all the necessary files that initialize and configure the MCU functionalities and

control peripherals (ePWM, eQEP, DCL control, GPIO’s etc) and materialize the PDI and Hardware

Abstraction Layer (SPI functions to communicate with the ESC).

The main motor control features annexed in this project are thoroughly described in Chapter 5 of [5]

including detailed information regarding the initialization and configuration procedure. This work will illustrate

the modifications that needed to be implemented in order to enable extra functionalities required in this

project, reduce the execution time and configure the control application.

In Table 3-1, developers can monitor the Output variables of the project as handled by the EtherCAT

communication.

Table 3-1. EtherCAT Laelaps Motion Control Output variables.

Index Sub Index Data Type Name Comments

0x7000 Record Buttons

0x01 BOOL State_Machine State Machine variable

0x02 BOOL Initialize_clock not used

0x03 BOOL Initialize_angles not used

0x04 BOOL Inverse_Kinematics not used

0x05 BOOL Blue_LED light Blue LED

0x06 BOOL Red_LED light Red LED

0x07 BOOL Button1 not used

0x08 BOOL Button2 not used

0x09 INT8 Transition_time Time for smooth transition functions [s]

0x7010 Record Desired_x_value

0x01 INT32 Desired_x_value Not read by SPI (for future use)

0x7012 Record TargetMode

0x01 UINT16 FilterBandwidth First order lag filter frequency [Hz]

0x7014 Record Desired_y_value

0x01 INT32 Desired_y_value Not read by SPI (for future use)

0x7020 Record ControlGains PIV Gains

0x01 INT16 Kp100_knee Proportional gain of knee motor / 100

0x02 INT16 Kd1000_knee Velocity gain of knee motor / 1000

0x03 INT16 Ki100_knee Integral gain of knee motor / 100

0x04 INT16 Kp100_hip Proportional gain of hip motor / 100

0x05 INT16 Kd1000_hip Velocity gain of hip motor / 1000

0x06 INT16 Ki100_hip Integral gain of hip motor / 100

0x7030 Record TrajectoryParameters Elliptical trajectory parameters

0x01 INT16 x_cntr_traj1000 x centre of the ellipsis [mm]

0x02 INT16 y_cntr_traj1000 y centre of the ellipsis [mm]

0x03 INT16 a_ellipse100 Amplitude of x axis[cm]

0x04 INT16 b_ellipse100 Amplitude of y axis[cm]

0x05 INT16 traj_freq100 Trajectory’s frequency [Hz] / 100

0x06 INT16 phase_deg Trajectory’s initial phase of [deg]

0x07 INT16 FlatnessParam100 Flatness parameter of y axis / 100

77/147

In order to reduce the EtherCAT frame payload, most of the variables are configured for their minimum

unit values (ex highest practical precision required for the (x,y) center of the planning ellipsis w.r.t pint 0 –hip

axis- is milimeters) in order to avoid using REAL type variables (64 bit). For example, for an Online Write of

the output variable Kp100_knee with the value 10, it will be divided by 100 (as specified by Table 3-1) and

translated into 0.1 for the Proportional gain of the knee motor within the stack. In Table 3-2, developers can

monitor the Input variables of the project as handled by the EtherCAT communication.

Table 3-2. EtherCAT Laelaps Motion Control Input variables.

Index Sub Index Data Type Name Comments

0x6010 Record hip_angle

0x01 INT16 hip_angle Rotational angle of hip [deg] * 100

0x02 INT16 Desired_hip_angle Desired rotation angle of hip [deg] * 100

0x6012 Record FeedbackTime

0x01 UINT16 Time Time variable from slave device [sec]

0x6014 Record knee_angle

0x01 INT16 knee_angle Rotational angle of knee [deg] * 100

0x02 INT16 Desired_knee_angle Desired rotation angle of knee [deg] * 100

0x6020 Record Commands

0x01 INT16 PWM10000_knee Output of PIV control for knee [%] * 100

0x02 INT16 PWM10000_hip Output of PIV control for hip [%] * 100

0x6030 Record Velocity

0x01 INT32 velocity_knee1000 Rotational speed of knee [rad/s] * 1000

0x02 INT32 velocity_hip1000 Rotational speed of hip [rad/s] * 1000

The most significant functions implemented in EtherCAT_Laelaps_Motion_Control.c are:

 APPL_GenerateMapping(): sends the Input and Output size of the process data interface - Figure

3-10.

Figure 3-10. APPL_GenerateMapping() function.

 APPL_InputMapping(): copies the Input variables from the local memory of the slave (Delfino MCU) to

the ESC memory - Figure 3-11.

78/147

Figure 3-11. APPL_InputMapping() function.

 APPL_OutputMapping(): copies the Output variables from the ESC memory to the local memory of the

Delfino MCU slave to update their values within the application - Figure 3-12. It is worth mentioning that

Desired_x_value and Desired_y_value output variables purposely remained in the EtherCAT frame and

were not removed for future developers who want to quickly add two more 32bit variables (or even four

16bit variables with minor modifications). Yet, in order to reduce the execution time of

APPL_OutputMapping() function and consequently EtherCAT’s cycle time, these two variables are not

being updated within the stack. The only necessary alteration to enable these variables is to uncomment

and comment the indicated parts of the function.

79/147

Figure 3-12. APPL_OutputMapping() function.

 APPL_Application(): contains the User - Control Application. This function materializes the trajectory

planning control which is initiated every time the State_Machine EtherCAT output variable is set to 1 and

is terminated when it is set to 0 (the time variable starts and resets accordingly), the inverse kinematics

algorithm if the desired end effector position is within the workspace of the leg and most importantly,

updates all EtherCAT variables that are exploited within the stack (Figure 3-13).

80/147

Figure 3-13. APPL_Application() function.

81/147

All EtherCAT variables that affect the control output of the PIV controller are updated using a function

that makes this transition smoother (linear with time) and minimizes the possibility of sharp leg movements.

Note that the transition time of these functions is also handled in real time by EtherCAT (Transition_time

output variable) and that there is a predefined symbol (RIGHT_LEG – LEFT_LEG) to determine whether the

project is built for a right or a left Laelaps leg shown in Figure 3-13.

PIV Motor Controller

In our application, C2000 Digital Control Library [11] is exploited to implement the desired controller.

Extending the initial attempt described in Chapter 5 of [5] we have configured two linear PIV controllers

(Proportional - Velocity – Integral), one for each joint of every leg. The function which realizes this controller is

called DCL_runPID_C1(), it is coded in assembly and it’s block diagram is the one depicted in Figure 3-14. It

is worth mentioning that the controller function includes a digital low-pass filter to avoid amplification of

unwanted high frequency noise. The filter is a simple first order lag filter with differentiator, converted into

discrete form using the Tustin transform. Hence, the velocity estimation is executed within this function and it

is not supplied externally. For more information, refer to page 14 of [11] .

Figure 3-14. DCL_runPID_C1() block diagram.

In case users desire to realize a linear PID (Proportional - Derivative – Integral) controller

(DCL_runPID_C4() function) instead of the already defined PIV, they should comment out lines 932 of Figure

3-15 and 1021 of Figure 3-16 and uncomment lines 931 and 1020 respectively. Developers who desire to

realize the above PIV controller in a Matlab simulation for testing purposes, can refer to Matlab PIV controller

simulation.

The control-related part of the firmware is realized in etherCAT_slave_c28x_hal.c (under hal folder).

The most important functions – interrupt service routines (ISRs) configured are:

 Epwm1_isr(): realizes the PIV controller for the knee motor (brushed) - Figure 3-15.

82/147

Figure 3-15. Epwm1_isr() function.

83/147

 Epwm2_isr(): realizes the PIV controller for the hip motor (brushless) - Figure 3-16.

Figure 3-16. Epwm2_isr() function.

All variables responsible for the PIV controller are handled via EtherCAT, therefore developers can alter

all parameters in real time. The only control parameters that are predefined and users must download the

firmware again to all slaves in order to modify them are the maximum allowed values of PWM signals to both

84/147

motors, namely Umax_knee (38,25%) and Umax_hip (41,17%). Their definition is located at the global

variable declaration section of etherCAT_slave_c28x_hal.c based, on each motor’s maximum allowed

continuous current. Refer to Laelaps II motors and gearheads for more information regarding the selected

motors and gearheads.

Rotational Speed Calculation

Estimating the rotational speed of each joint is crucial in this application to ensure that a motor does not

exceed the maximum allowable speed limit. For this purpose, a custom function was created to calculate the

velocity of both joints using the eQEP Edge Capture Unit – Low Speed Calculation feature (refer to

TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse (eQEP) Module) because the encountered

rotational velocities are relatively low. This approximation is based on (3-7) where on every unit position event

(X reaches the predefined number of quadrature edges [UPPS]) the capture timer [QCTMR] value is latched

into the capture period register [QCPRD] and then [QCTMR} is reset. Then, the velocity is converted from

[counts/time_register] to [rad/s] using the SpeedScaler as shown in Figure 3-17.

 ()
() (1)

X
v k

t k t k

 (3-7)

In Table 3-3 you can observe a characteristic example of parameters used in a leg of Laelaps II

experiment to gain a general idea of the values that were exploited. In later chapter, a more specific

description of the parameters used in every leg will be presented.

Table 3-3. Benchmark parameters in Laelaps II experiment.

Parameters Leg Value

Trajectory Paramaters

x centre 0 cm

y centre 59.5 cm

a ellipse 3 cm

b ellipse 4 cm

Frequency 0.8 Hz

Phase [deg] 180

Flatness 0

Control Gains of Knee

Kp_knee 40

Kd_knee 0.03

Ki_knee 0

Control Gains of Hip

Kp_hip 40

Kd_hip 0.03

Ki_hip 0

PWM max values
Knee 38.25%

Hip 41.17%

Filter Bandwidth Frequency 20 Hz

Loop Frequency of EtherCAT 2.5 kHz

85/147

Figure 3-17. Position & Rotational Speed calculation.

86/147

The above configuration allows measuring the range of rotational velocities described in Table 3-4, which

means that velocities outside the illustrated range will either be regarded as 0 (if they are below the minimum

value) or as the maximum value (if they are above the limit). In both hip and knee columns, the speed

calculations are after the gearhead and pulley transmition of the leg, illustrating the actual values of the joints.

Table 3-4. Velocity calculation range.

 Calculated Velocity [rad/s] Hip joint [rad/s] Knee joint [rad/s]

Max value 19634.95 248.06 200.36

Min value 0.2996 0.0038 0.0031

Configuring the Project

1. Select the desired Build Configuration of the imported project. EtherCAT_Laelaps_Motion_Control project

contains four separate Build Configurations, two for each leg side (RAM and FLASH) namely:

 Left _Leg_FLASH_LAUNCHXLF2837D_SPIA

 Left_Leg_RAM_LAUNCHXLF2837D_SPIA

 Right_Leg_FLASH_LAUNCHXLF2837D_SPIA

 Right_Leg_RAM_LAUNCHXLF2837D_SPIA

Note that in order to be able to use the DCL library in Flash configuration, we had to altered the relative

linker command file which allocated the memory of the MCU (2837x_FLASH_lnk_cpu1.cmd under cmd folder)

and add the highlighted snippet at the end of the file as shown in Figure 3-18.

Figure 3-18. Modified linker command file to enable DCL functions.

2. Make sure that JP1, JP2 and JP3 jumpers are removed (as shown in Figure 3-8) because the microUSB

port cannot supply enough current for the EtherCAT Control Tower Assembly which requires around 0.6

Ampers and external power supply is needed.

3. Turn on the Logic Power supply (>5 V, for example 10 V) connected to all EtherCAT Control Tower

Assemblies of Laelaps and turn on the desired ones by pressing the Enable button of the voltage regulators

indicated in Figure 3-8. If you have disassembled an EtherCAT Control Tower Assembly from Laelaps II for

87/147

testing reasons, because all available assemblies are mounted on the robot, you should connect the Voltage

Regulator to the Logic Power Supply and press the Enable button as shown in Figure 3-19.

4. Connect the desired launchpad to the PC using the microUSB cable and Build the project. If no error

occurs, then download the project into the launchpad by clicking the Debug button as shown in Figure 2-40.

5. The launchpad consists of two cores, thus you need to select CPU1 and click OK from the pop up window

as illustrated in Figure 2-41.

6. The Code Composer Studio will then automatically turn into CCS Debug mode. When the project is

downloaded (obviously, downloading the Flash project lasts a lot longer than RAM) click the Resume button

as adumbrated in Figure 2-42 and the slave side is now up and running.

7. Repeat steps 7 → 9 for every slave in the network only if the first slave of the robot (Hind Right Leg’s) is

tested and properly working. Moreover, do not forget that RAM build configurations are only available until

power off, so if you want to download a project to all slaves, FLASH configuration is necessary.

8. Connect the IN port of the first slave’s FB1111-0141 ESC, using a suitable Ethernet cable (see EtherCAT

Master Requirements) with the PC as illustrated in Figure 3-19 and start TwinCAT XAE (VS 2013). Since we

are only configuring the EEPROM of one slave at a time, make sure that the OUT port of the slave is not

connected to any other slave.

Figure 3-19. EtherCAT Control Tower Assembly wired.

9. Select File > New > Project as shown in Figure 2-44.

10. From the TwinCAT Projects tab select TwinCAT XAE Project (XML format), name the project (ex

EtherCAT Initialization) and click OK as illustrated in Figure 2-45.

11. From the Solution Explorer window expand the I/O element, right click on Devices and select Add New

Item (Figure 2-46).

12. Select EtherCAT Master and click OK (Figure 2-47). This way, your PC is now configured as an

EtherCAT Master device.

88/147

13. Navigate to the location of the downloaded folder from Bitbucket, copy the EtherCAT Laelaps Motion

Control v4 (SPI).xml file and paste it at the following location C:\TwinCAT\3.1\Config\Io\EtherCAT

14. In Visual Studio, select TWINCAT > EtherCAT Devices > Reload Device Descriptions (Figure 2-48)

15. Click once on the Device 1 (EtherCAT) item of the Solution Explorer tree and the Scan button (Figure

2-49) will instantly become clickable. Select the Scan feature (automatic scan for slave devices) and select No

in the pop up window asking whether to Activate Free Run. A slave (TwinCAT defines slave devices as

Boxes) must be now visible on the Solution Explorer tree within the Device 1 (EtherCAT) master device with

the last configuration that was written on the ESC’s EEPROM as shown in Figure 2-50.

16. In order to write the EEPROM of the ESC with our project’s description file (xml) so that it matches with

the configuration of the Delfino MCU, double click on Device 1 (EtherCAT), select the Online tab of the

emerged window, right click on Box 1 item and choose EEPROM Update (Figure 2-51).

17. Select EtherCAT Laelaps Motion Control v4 (SPI).xml (11110141 /4) and click OK (Figure 3-20).

Figure 3-20. XML selection.

18. Now our slave’s EEPROM memory is correctly configured, yet TwinCAT cannot automatically recognize

this transition. In order to do so, on the Solution Explorer window, right click on Box 1, select Remove and

then OK (Figure 2-53).

19. Scan the network again as indicated above and monitor Box 1 with the desired configuration and

EtherCAT variables (Table 3-1,Table 3-2).

20. Activate Free Run Mode by clicking Toggle Free Run State button (Figure 2-49) and ensure that the

slave device has swiched to Operation State by checking the RUN LED of the FB1111-0141 ESC (must be

ON) and the Current State of the Online tab (Figure 2-55) which must be OP (Operational).

21. Check that the application is properly running by executing an Online Write of Blue_LED and Red_LED

and inspect the build in LEDs of the launchpad.

22. In order to force the slave to operate in DC – Sync mode and achieve the ultimate synchronization,

follow the instructions of TwinCAT in Run Mode.

89/147

23. Follow the instructions of Add Watch Expression in CCS Debug to add the variables of Figure 2-59. If all

integer type variables are 1, then the slave is properly functioning in DC mode and the values of the unsigned

long type variables (timer_) indicate the required execution time in micro seconds.

24. Now that you have checked the whole project, repeat steps 18 → 26 for every other EtherCAT Tower

Assembly of Laelaps, by connecting the IN port, one at a time, ensuring that all slaves solely turn into

Operational State (in DC mode). Once you have completed this procedure, all slaves of the network are

properly configured and we are now at the final phase of the solution guide.

25. Make sure that all Laelaps’ slaves are physically connected to the network, create a new project

(Laelaps Control) adding an EtherCAT Master device and Scan the network. All Boxes must me visible on the

Solution Explorer window.

26. Force all slaves to operate in DC – Sync one by one as described in TwinCAT in Run Mode. Specify the

EtherCAT cycle time at 400 micro seconds.

TwinCAT Scope View Configuration

1. Add TwinCAT Scope View in order to be able to save all EtherCAT variables during the experiments. Right

click on Solution ‘Laelaps Control’ > Add > New Project and select Scope YT Project from the TwinCAT

Measurement tab (Laelaps Control Measurement) as shown in Figure 3-21.

Figure 3-21. Add Scope Measurement.

2. Add a PLC task to be able to use the Scope View. Right click on PLC > Add New Item > Standard PLC

Project (LaelapsControl) as indicated in Figure 3-22. If no PLC task is created, TwinCAT will not be able to

plot and save the values of the desired EtherCAT variables.

90/147

Figure 3-22. Add PLC Task.

3. Create a Global Variable list of all input variables that you want to save during the experiment. Right Click

on EtherCAT Laelaps Project > Add > Global Variable List, name it (Inputs) and click Open as shown in

Figure 3-23.

Figure 3-23. Add Global Variable List.

4. Make sure that you add all necessary variables by following the format shown in Figure 3-24 where all

required inputs to the master are being scoped and saved making sure that they have the right variable type.

91/147

Figure 3-24. Global Variable List.

5. In the POUS > MAIN (PRG), create a list of all variables that you want to handle simultaneously in all

slaves. This process MUST be done at least for the State_Machine variable, so that the clocks in all four

slaves are initiated at the exact same time. Moreover, due to the fact that all four slaves have identical

configuration, the output list of Figure 3-25 was created containing all shown variables.

Figure 3-25. MAIN (PRG) list.

6. Build the solution and expand the LaelapsControl Instance to inspect all PLC variables.

92/147

Figure 3-26. Build Solution.

7. Link all Input and Output variables of the list to the analogous EtherCAT variables by clicking twice on each

PLC variable, selecting Linked to and choosing the desired from the list of all compatible variables (as far as

type is concerned) as shown in Figure 3-27. Note that in order to link one output PLC variable to multiple

EtherCAT output variables, select all desired EtherCAT variables from the pop up window holding Ctrl button.

Now, all linked output variables of the project are handled by the PlcTask Outputs and Online Writes can only

be executed through this list. Do not forget to link the State Machine Plc output variable with ALL

State_Machine EtherCAT variables of all slaves to accomplish a synchronous initiation of the trajectories’ time

variables.

Figure 3-27. Linking PLC variables.

8. Activate Configuration and Restart TwinCAT System to update the project with the linked variables.

9. Login and Start the PLC task as indicated in Figure 3-28

93/147

Figure 3-28. Start PLC task.

10. Navigate to Laelaps Control Measurement of the Solution Explorer and right click on Axis > Target

Browser and select all desired variables from the Global Variable List (Inputs) that you want to monitor and

save during the experiment (Figure 3-29).

Figure 3-29. Adding variables to the Scope View.

11. To start and stop recording, use the Record and Stop Record buttons shown in Figure 3-30.

Figure 3-30. TwinCAT Scope Record.

94/147

12. After the completion of a recording, in order to save it in csv format and post process it in Matlab, click

Scope > Export to CSV (Figure 3-31).

Figure 3-31. Save and Export Recording.

Leg Initialization and Execution

13. Initialize all legs by manually placing them in the position depicted in Figure 3-3 and press the Reset

button (shown in Figure 3-32) of every Delfino Launchpad.

Figure 3-32. Reset button to initialize legs poise.

Laelaps is now completely ready to perform any kind of experiment and test all its features. The final step

would be to check that all wires, drivers and extension boards are properly mounted on the quadruped robot

and that the State Machine PLC variable (connected to all slaves’ State_Machine EtherCAT variables) is set

to Configurational State (0) before enabling the High Voltage Power Supply. Figure 3-33 illustrates the

experimental setup of Laelaps II on the treadmill, ready to perform the desired task.

95/147

Figure 3-33. Laelaps II on treadmill ready to perform experiments.

The State Machine diagram of Laelaps is illustrated in Figure 3-34. Entering suitable parameters to all

EtherCAT output variables and switching into Operational State (1) will force Laelaps to execute the desired

movement.

Figure 3-34. Laelaps' State Machine.

The following chapter includes several tables of suitable Control and Trajectory parameters along with all

the necessary electrical and communication data. Users are encouraged to use parameter values close to the

values given therein.

96/147

4 Laelaps II Locomotion Experiments

This chapter includes results from trotting experiments with Laelaps II in a low frequency with the developed

control scheme. Numerous experiments were carried out successfully but this chapter only presents an

indicative ones. Employing the firmware described in Motion Control of Laelaps via EtherCAT Solution Guide

and running TwinCAT in a PC as the EtherCAT master, successfully led to Laelaps II first steps. Although

there are several kinds of quadruped movements, the first series of experiments focused on trotting, one of

the simplest symmetrical gaits.

In this first series of experiments, a desired elliptical trajectory is defined for the toe of each leg through

EtherCAT (Twincat Runtime) along with the control gains and parameters of the system. Data are logged

using TwinCAT Scope View and plotted using a custom made Matlab script [35] (also refer to Matlab Post

Process Code). As indicated above, the PIV (Proportional – Integral – Velocity) controller is implemented in

each slave, thus the master does not affect the control process but simply supplies each slave with the

necessary parameters via EtherCAT.

For each experiment a table thoroughly describing the parameters used is given and six, in total, figures

are presented, illustrating:

 The desired elliptical trajectory of all legs toe (red) along with their actual response (black) w.r.t

coordinate systems located in the hip joints of the legs.

 The desired response of both knee and hip angles (red) of evry leg with their respective actual

response of each knee and hip joint (black).

 The PWM commands of each leg’s knee and hip motor (black) which is the output of the PIV

controllers with their respective predefined PWM limits (red). As mentioned above, these values

represent the continuous current limits of both motors. Refer to PIV Motor Controller for more

information regarding the selected limits.

 The velocity estimation of each leg’s knee and hip joint (black) and the respective predefined motor

speed limits (red).

4.1 Trotting Experiment 1

In this experiment [51] Laelaps is initially in a standing position with all four legs configured with the

parameters shown in Table 4-1, except for the trajectory parameters, a ellipse and b ellipse; their values are

set to 0 at the beginning, therefore the elliptical trajectory is just a point. After the recording begins, b ellipse

parameter – which corresponds to the clearance from the ground – is increased to 4 cm linearly with time

(depending on the Transition Time variable which was set to three seconds throughout the experiment) to all

slaves simultaneously, and similarly a ellipse variable - which corresponds to the step length - is linearly

increased to 5 cm. Laelaps starts trotting slowly and accelerates to reach a constant forward velocity. After

several steps, the parameters are again changed to their initial values (first a ellipse and then b ellipse),

Laelaps decelerates and eventually stops walking and remains still. The recording is terminated and all data

are saved and post processed in Matlab.

97/147

Table 4-1. Trotting Experiment 1

Parameters FL Leg FR Leg HL Leg HR Leg

Trajectory Paramaters

x centre 0 cm 0 cm 0 cm 0 cm

y centre 59.9 cm 59.9 cm 59.8 cm 59.8 cm

a ellipse 5 cm 5 cm 5 cm 5 cm

b ellipse 4 cm 4 cm 4 cm 4 cm

Frequency 1 Hz 1 Hz 1 Hz 1 Hz

Phase [deg] 180 0 0 180

Flatness 0 0 0 0

Control Gains of Knee

Kp_knee 80 80 80 80

Kd_knee 0.05 0.05 0.05 0.05

Ki_knee 0 0 0 0

Control Gains of Hip

Kp_hip 80 80 80 80

Kd_hip 0.05 0.05 0.05 0.05

Ki_hip 0 0 0 0

PWM max values
Knee 38.25% 38.25% 38.25% 38.25%

Hip 41.17% 41.17% 41.17% 41.17%

Control Loop Frequency 10 kHz 10 kHz 10 kHz 10 kHz

Filter Bandwidth Frequency 20 Hz 20 Hz 20 Hz 20 Hz

Loop Frequency of EtherCAT 2.5 kHz

Voltage Supply (System) 40.34 V

Max Value of Current (System) 50.11 A

During the steady state phase of the experiment, where both the a ellipse and b ellipse parameters have

reached their final value, the toe (End Effector) of every leg performs a specific path trying to converge with

the desired elliptical trajectory. The desired elliptical path –trajectory of each leg’s toe (red) along with the

actual response of every leg (black) in their workspace, with respect to the coordinate systems located in the

hip joints of the legs (0 -Figure 3-4), are shown in Figure 4-1. This figure clarifies the fact that steady state

errors in the hip and knee joints are adjourned as errors to the positioning of the toe. It is worth mentioning

that due to the ground and the low values of the Control Gains, the desired elliptical orbits are not closely

tracked in the permanent state and a better regulation of these gains is required, especially for the hind legs.

98/147

Figure 4-1. Desired elliptical trajectory of all legs toe (red) along with their actual response (black)
w.r.t coordinate systems located in the hip joints of the legs.

Figure 4-2 displays the desired value of each leg’s knee joint angle (red) and the actual – real response

of every respective knee joint (black) throughout the experiment. Both the transition and the steady state

phase are illustrated. The unit measurement of all values is degrees and as one may observe in these figures,

the desired values are closely tracked by all legs, yet there is plenty of room for improvement which can be

achieved by a judicious regulation of the control gains for the knee motors.

99/147

Figure 4-2. Desired response of knee angles (red) and actual response of knee joint (black).

On the other hand, Figure 4-3 describes the desired value of each leg’s hip joint angle (red) and the

actual – real response of every respective hip joint (black) throughout the experiment. Both the transition and

the steady state phase are illustrated. The unit measurement of all values is degrees and as one may observe

in these figures, the desired values are closely tracked by all legs, yet there is plenty of room for improvement

(even more than the knee motors) which can be achieved by a proper regulation of the control gains for the

hip motors. Since identical control gain values were used for both motors (brushed and brushless) it is totally

understandable why these two joints don’t have an identical response as far as errors are concerned.

Moreover, we should take into consideration that the hip joint performs a wider movement which is another

reason why the resulting erros are larger compared to the knee joints.

100/147

Figure 4-3. Desired response of hip angles (red) and actual response of hip joint (black).

Figure 4-4 depicts the PWM commands [%] of each leg’s knee motor (black) with its respective

predefined limit (red). These commands are the output of the knee’s PIV controller exploited in our application

(PV actually because the Integral Proportional gain is 0) and are directly translated in torque commands since

a current control architecture is implemented. As one may observe, the commands in both hind legs are

always within the limit range, hence there is no reason in modifying them. Accordingly, in the two fore legs,

although the limits are reached several times, due to the fact that it hapened only for short intervals, no extra

action is needed.

101/147

Figure 4-4. PWM commands of each leg’s knee motor (black) and the respective predefined PWM
limits (red).

Similarly, Figure 4-5 depicts the PWM commands [%] of each leg’s hip motor (black) with its respective

predefined limit (red). These commands are the output of the hip’s PIV controller, this time, exploited in our

application (PV actually because the Integral Proportional gain is 0) and are directly translated in torque

commands since a current control architecture is implemented. As one may observe, hip PWM limits are

recurrently reached, especially in the hind legs, thus an increase of the allowed range should be considered.

102/147

Figure 4-5. PWM commands of each leg’s hip motor (black) and the respective predefined PWM
limits (red).

Figure 4-6 adumbrates the velocity estimation of each legs knee joint using the modified eQEP peripheral

as described in Rotational Speed (black) and the respective motor speed limits (red) as specified by the

manufacturer (refer to Laelaps II motors and gearheads). As anyone can observe from the following figure,

the velocities of every knee motor are always within the allowed range. Therefore, there is no concern

regarding the velocities scheme that would stimulate a reduce in knee PWM limits.

103/147

Figure 4-6. Velocity estimation of each leg’s knee joint (black) and the respective predefined motor
speed limits (red).

Analogously, Figure 4-7 illustrates the velocity estimation of each legs hip joint using the modified eQEP

peripheral as described in Rotational Speed (black) and the respective motor speed limits (red) as specified

by the manufacturer (refer to Laelaps II motors and gearheads). Once again, as anyone can understand, the

velocities of every hip motor are always within the allowed range, thus there is no need to consider reducing

hip PWM limits.

104/147

Figure 4-7. Velocity estimation of each leg’s hip joint (black) and the respective predefined motor
speed limits (red).

105/147

5 Conclusion and Future Work

5.1 Conclusion

EtherCAT communication protocol proved highly efficient and useful throughout the experimental validation,

even without a dedicated real time EtherCAT Master node but with the TwinCAT XAE software in a Windows

Operating System instead. Depending on the data payload which is intimately connected with the size of the

EtherCAT frame, this technology can reach really low cycle times and guarantee proper communication

between a master and several slaves exploiting only a few really affordable devices (MCUs and ESCs). The

total purchasing cost of all the required components for the new control architecture is almost 10% of the

previous version enabling the procurance of several spare parts. As the promising results showed, the new

decentralized architecture will certainly enable Laelaps II to perfom higher frequency motions and reach its

maximum velocity using the current firmware, with only minor upgrades on its mechanical system.

Moreover, using the reference guide of EtherCAT Application Guide, developers may implement

EtherCAT communication for other platforms and applications at CSL–EP laboratory. The initial and ultimate

purpose of switching towards EtherCAT was to build a low-cost, powerful module that could be mounted to

several projects at CSL–EP lab for motion control. The experimental validation of Laelaps II illustrated that the

developed EtherCAT Control Tower Assembly (Figure 3-8) is totally functional and can play the

aforementioned role for several robots and autonomous devices to come. Its portable design is both easy to

assemble and mount, while the firmware structure is easy to comprehend and modify to cater to any needs

that emerge.

In a nutshell, I personally believe that switching towards EtherCAT technology was undoubtedly a

judicious and wise choice due to its several alleviating functionalities, especially in the motion control area. Its

synchronization capabilities along with its portable and extensible architecture are ultimately soothing and

flexible to cater to any application. Although it is a bit tricky to gain an overall grasp of the communication

protocol and requires considerable time to confidently make custom alterations without causing erros, I

sincerely reckon that it is unquestionably the most suitable layer to implement a decentralized motion control

theory on robotic applications. EtherCAT’s outstanding performance and efficiency have proven highly

beneficial to our experimental validation and I am sanguine that it will remain this way for future projects to

come at the CSL-EP laboratory of NTUA.

5.2 Future Work

Although the current implementation of motion control via EtherCAT on Laelaps II has been tested and has

been proven to be fully functional in both software and hardware level, several aspects can be improved in the

future to achieve greater robustness.

First of all, a key reason for selecting dual core MCUs (Figure 2-25) was to exploit each core in a different

task to efficiently distribute the overall computational effort. In the current application, the firmware (Control &

EtherCAT) runs on the first CPU (Central Programming Unit) of the platform, while the second one is

completely idle. In the future, this second CPU can be used either to execute one of the basic applications of

106/147

the project (EtherCAT communication or Motor Control), or just the ISR (Interrupt Service Routine) of the

second motor to reduce the payload on the first core (or vice versa).

Another important feature, which is already in progess, is the replacement of the TwinCAT XAE software

(running on a Windows Operating System through Visual Studio) as the EtherCAT Master, with a dedicated

embedded real time computer running Linux-ROS.

Moreover, a useful feature would be to automatically initialize the knee and hip angles of the legs and

skip the current manual process. This functionality could be implemented by enabling the already assembled

ADC code (initialization and execution of the peripheral) within the firmware, and after mounting the already

selected and purchased RLS absolute encoders to the mechanism.

Finally, an important task would be to design a case for the EtherCAT Control Tower Assembly not only

for protecting it, but also for greater stability, support, robustness and portability of the module so that it can be

safely and easily exploited in other robots too.

107/147

References

[1] N. Liu, Z. Liu, T. Zhang, L. Cui and H. Li, “EtherCAT Based Robot Modular Joint Controller”, Proceeding

of the 2015 International Conference on Information and Automation (IEEE ’15), Lijiang, China, August

2015.

[2] E. Papadopoulos and J. Poulakakis, “Planning and Model-Based Control for Mobile Manipulators,”

Proceedings of the 2000 International Conference on Intelligent Robots and Systems (IROS ‘00),

Takamatsu, Japan, October 30 - November 5 2000, pp. 245-250.

[3] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, “Robotics: Modelling, Planning and Control”, Springer,

2009.

[4] R. Zurawski, “Industrial Communication Technology Handbook, Second Edition”, CRC Press, September

19, 2017.

[5] G. Bolanakis, “Design and Implementation of a Quadruped Robot Electronic System”, Athens, Greece,

2018.

[6] Beckhoff, New Automation Technology, “Application Note ET9300 (EtherCAT Slave Stack Code)”.

[7] Beckhoff, New Automation Technology, “EtherCAT Synchronization in TwinCAT”.

[8] EtherCAT Technology Group (ETG), “How to set up a Network Configuration”.

[9] Texas Instruments, “TMDSECATCNCD379D EtherCAT Solution Reference Guide”, September 2017.

[10] Texas Instruments, “EtherCAT® Interface for High-Performance C2000™ MCU”, August 2017.

[11] Texas Instruments, “C2000 Digital Control Library”, November 2017.

[12] Texas Instruments, ”TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse (eQEP) Module”,

December 2008.

[13] http://www.iebmedia.com/index.php?id=5794&parentid=63&themeid=255&showdetail=true

[14] http://www.electronicdesign.com/embedded/industrial-automation-relies-ethernet

[15] https://www.icpdas-usa.com/ecat

[16] http://www.processindustryforum.com/article/fieldbus-vs-ethernet

[17] https://www.bostondynamics.com/

[18] http://www.rsl.ethz.ch/robots-media/anymal.html

[19] http://biomimetics.mit.edu/

[20] https://kodlab.seas.upenn.edu/

[21] https://www.kuka.com/

[22] http://www.nexcom.com/

[23] https://www.shadowrobot.com/

[24] https://pal-robotics.com

[25] https://www.iit.it/

[26] https://www.ethercat.org

[27] https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrZW1hY2hhaXJhc3xne

Do2NzA5YTRiMDMzN2Q1MTQw

[28] https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemmanager/reference/ethercat/ht

ml/ethercat_supnetworkcontroller.htm&id

http://www.iebmedia.com/index.php?id=5794&parentid=63&themeid=255&showdetail=true
http://www.electronicdesign.com/embedded/industrial-automation-relies-ethernet
https://www.icpdas-usa.com/ecat
http://www.processindustryforum.com/article/fieldbus-vs-ethernet

108/147

[29] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/EtherCAT%20Application/

[30] http://nereus.mech.ntua.gr/legged/?page_id=161

[31] https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrZW1hY2hhaXJhc3xne

Do1MDE5NjVkMDg0MTdiNjRm

[32] http://nereus.mech.ntua.gr/laelaps/

[33] http://dspace.lib.ntua.gr/handle/123456789/44986

[34] http://nereus.mech.ntua.gr/laelaps-wiki/index.php/Legged-topics

[35] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/Matlab/

[36] https://grobotronics.com/dc-dc-step-down-5v-2a.html

[37] https://bitbucket.org/csl_legged/delfino-projects-

ethercat/src/master/EtherCAT%20Laelaps%20Motion%20Control/

[38] https://www.maxonmotor.com

[39] https://www.maxonmotor.com/medias/sys_master/root/8825424609310/17-EN-221.pdf

[40] https://www.maxonmotor.com/medias/sys_master/root/8825548144670/17-EN-350-351.pdf

[41] https://www.maxonmotor.com/medias/sys_master/root/8825409470494/17-EN-133.pdf

[42] http://processors.wiki.ti.com/index.php/Download_CCS

[43] http://www.ti.com/tool/CONTROLSUITE

[44] http://www.ti.com/tool/C2000WARE

[45] https://www.ethercat.org/en/products/54FA3235E29643BC805BDD807DF199DE.htm

[46] http://www.beckhoff.com

[47] https://www.kunbus.com/fieldbus-basics.html

[48] https://www.pc-control.net/pdf/012014/interview/pcc_0114_industrial-ethernet_e.pdf

[49] https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-

industrial-ethernet

[50] https://bitbucket.org/csl_legged/delfino-projects-ethercat/src/master/EtherCat%20SLave%20PCB/

[51] https://www.youtube.com/watch?v=If9bs2z-UYw

http://nereus.mech.ntua.gr/legged/?page_id=161
https://www.ethercat.org/en/products/54FA3235E29643BC805BDD807DF199DE.htm

109/147

6 Appendix A

6.1 Download and Install Code Composer Studio, C2000ware & ControlSuite

Visit the following website [42] and download the latest version of Code Composer Studio for your OS (Figure

6-1). During the installation process, when you are asked about which device descriptions you want to install,

make sure that you add the C2000 series device descriptions because you will not be able to do so after the

installation is completed and you would have to uninstall and reinstall CCS again.

Figure 6-1. Code Composer Studio Installation.

In addition, visit TI’s website using the following link [43] and download the latest version (Figure 6-2) of

Control Suite (which includes several useful applications for different microcontrollers, enabling a variety of

features and controlling of peripherals).

Figure 6-2. Control Suite Installation.

Finally, visit TI’s website using the following link [44] and download the latest version of C2000ware

(Figure 6-3) which includes several useful applications for C2000 architecture microcontrollers, enabling a

variety of features and controlling of peripherals for different development launchpads.

Figure 6-3. C2000ware Installation.

110/147

6.2 Download and Install Slave Stack Code Tool

In order to download SSC Tool:

1. Navigate to EtherCAT Technology Group’s website and download SSC Tool from [45] as shown in Figure

6-4.

Figure 6-4. SSC Tool Download.

2. Login to the Member Area and insert the EtherCAT Vendor ID using the credentials of CSL-EP to initiate

the downloading of the application.

3. Add your personal information to request the Slave Stack Code download link provided by email afterwards

and Register.

4. Run EtherCAT Slave Stack Code Tool.exe file as administrator as shown in Figure 6-5.

Figure 6-5. SSC Tool Installation.

6.3 Generate Slave Stack Code for C28x architecture microcontrollers

This section adumbrates the procedure of generating the necessary stack that must be downloaded to a C28x

architecture microcontroller to implement an EtherCAT network. The four prerequisites of this process is to

have downloaded and installed SSC Tool, Code Composer Studio, Control Suite and C2000ware to your PC

as described in Download and Install Code Composer Studio, C2000ware & ControlSuite and Download and

Install Slave Stack Code Tool. In order to generate the EtherCAT stack:

1. Navigate to the folder where you downloaded ControlSuite, point to

controlSUITE\development_kits\TMDSECATCND379D_Vx folder and execute (as administrator)

EtherCAT_Slave_Demo_Code_v01_00_00_00_setup.exe file as shown in Figure 6-6.

111/147

Figure 6-6. ControlSuite EtherCAT Demo Tool.

2. Open SSC tool and create a new project. The dialog box of Figure 6-7 appears.

Figure 6-7. SSC Tool Create new project.

3. Click Import, point to the C28xx_Config.xml, located in the SSCToolC28xPatch folder created after

completion of 1 as shown in Figure 6-8.

Figure 6-8. Importing ESI description file.

Figure 6-9 shows the pop up window when the C28xx_Config.xml is imported for the first time by the SSC

Tool.

112/147

Figure 6-9. Slave Stack Code - New Project.

4. When the user selects the drop-down menu, the options shown in Figure 6-10 are provided.

Figure 6-10. SSC Tool Configuration Options.

Four different options are available for C28x architecture microcontrollers created by Texas Instruments as

follows:

 Option 1 generates EtherCAT slave stack code and EtherCAT EchoBack (sends and receives the

same variables through EtherCAT network to test the communication) sample application code for

ASYNC16 Process Data Interface (PDI) which depicts the communication protocol that is being used

between the EtherCAT Slave Controller and the C2000 Delfino MCU to exchange data.

 Option 2 generates EtherCAT slave stack code and EtherCAT EchoBack sample application code for

SPI PDI.

 Options 3 and 4 generate EtherCAT slave stack code for ASYNC16 and SPI PDI, without any default

EchoBack sample application.

Note: Among SPI and ASYNC16 PDIs, there is no difference between the EtherCAT slave stack code and

application code. Only the device name and product code differ, so both SPI and ASYNC16 slave nodes can

be differentiated when they are both in the same network. For the EchoBack slave node profiles, the ESI files

generated for SPI and ASYNC16 PDIs are also the same except for the device name and product code.

5. Choose an option (preferably one with a sample application), then click OK and click Yes, as shown in

Figure 6-11.

113/147

Figure 6-11. Importing project confirmation.

6. Now the C28xx configuration should be imported. Inspect the slave information as shown in Figure 6-12.

Figure 6-12. SSC Tool slave information.

7. Save the SSC Project in the following folder C:\working

8. Select Project → Create new Slave Files as shown Figure 6-13.

114/147

Figure 6-13. Create new Slave Files.

9. Input the Source Folder (C:\working\Src) and ESI File path (C:\working\TMDSECATCNCD379D EtherCAT

slave (SPI).xml), or check where it is already defined and click Start as shown in Figure 6-14.

Figure 6-14. Create EtherCAT stack and xml file.

10. The slave node source files must be created. Click OK and then close the pop up window.

11. Inspect the directory in which the files were created. It must be identical with Figure 6-15.

Figure 6-15. EtherCAT project files.

The Src folder must contain all the slave stack files and the default sample Echoback application that were

generated by the tool. The esp is the slave stack project file for the slave stack tool. Users can open this file in

the SSC tool and edit the project as needed and regenerate the files. The xml is the generated ESI file which

must be updated with the EtherCAT master in the network to which this slave node will be connected.

115/147

12. Users must copy all the generated stack files under the Src folder to the

TMDSECATCNCD379D_EtherCAT_Solution_Ref CCS project located in

\controlSUITE\development_kits\TMDSECATCND379D_Vx\TMDSECATCNCD379D_EtherCAT_Solution_Ref

folder as shown in Figure 6-16.

Figure 6-16. CCS project tree.

a. If the slave stack sources were generated from the SSC tool for ASYNC16 PDI, then they must be

copied to the ASYNC16_EtherCAT_Slave_stack folder.

b. If they were generated from the SSC tool for SPI PDI, then they must be copied to the

SPI_EtherCAT_slave_stack folder.

13. The project is now ready to be imported into Code Composer Studio. For more information regarding the

aforementioned procedure see SPRUIG9.pdf (TMDSECATCNCD379D EtherCAT Solution Reference Guide)

file located in \controlSUITE\development_kits\TMDSECATCND379D_Vx.

6.4 Download and Install TwinCAT 3 Software

In order to download and install TwinCAT, visit Beckhoff’s official website at [46] and navigate to

Download→Software→TwinCAT 3→TE1xxx | Engineering.

1. Select TwinCAT 3.1 – eXtended Automation Engineering (XAE) as shown in Figure 6-17 and press Start

Download either as a guest or create an account in Beckhoff.

Figure 6-17. TwinCAT 3 Download scheme.

Note: Always check whether the latest version of Windows Operating Systems downloaded in your

personal computer is compatible with the latest version of TwinCAT which you are about to download

https://www.beckhoff.com/forms/twincat3/warenkorb.aspx?lg=en&title=TC31-Full-Setup.3.1.4022.20&version=3.1.4022.20

116/147

because I have encountered several errors and disfunctinalities if that was the case. In the majority of cases,

a warning message will emerge by Beckhoff before the downloas is initiated indicating that there is an

incompatibility between Windows and TwinCAT.

2. Run the downloaded executable file as administrator as shown in Figure 6-18.

Figure 6-18. TwinCAT 3 Installation

Note: Although the TwinCAT 3.1 XAE is integrated in the Microsoft Visual Studio development

environment, a previous installation of the latter software is not necessary since in case no Visual Studio

installation is available on your PC, the TwinCAT 3.1 setup will install the Visual Studio shell as well.

3. Navigate to the installation folder of TwinCAT and run the TcSwitchRuntime.exe file as administrator

located in C:\TwinCAT\TcSwitchRuntime folder as shown in Figure 6-19

Figure 6-19. TcSwitchRuntime Installation.

4. Verify that the TcSwitchRuntime is active. The “Deactivate” button should be showing as illustrated in

Figure 6-20. If this button indicates “Activate”, click that button to start the TcSwitchRuntime.

Figure 6-20. TcSwitchRuntime Activation.

5. Locate and start TwinCAT XAE (VS 2013) application and verify that TwinCAT is running under Visual

Studio. “TwinCAT” and “PLC” options should both appear in the main toolbar as shown in Figure 6-21. If the

aforementioned menu items are not shown, then the TcSwitchRuntime is not running properly. Go back to

step 4 and restart (Deactivate→Activate) the TcSwitchRuntime.

117/147

Figure 6-21. TwinCAT Verification.

6. Verify that a Realtime Ethernet Adapter is installed. Select TwinCAT→Show Realtime Ethernet Compatible

Devices as shown in Figure 6-22. If no Real Time adapter is installed, select one from the list of Compatible

devices and click “Install”, then exit this popup window.

Figure 6-22. Real Time Ethernet Adapter Installation.

Ιf a network card is listed under “Incompatible devices”, this does not mean that it cannot be used to test

the EtherCAT communication. It only means that this card will provide only weak real-time capabilities and will

never switch to RUN mode (proper EtherCAT communication). On the contrary, it will only enable the FREE

RUN mode which is regarded as an intermediate state that does not allow the renowned EtherCAT

synchronization. For most of the testing purposes this is sufficient, therefore the driver can be installed.

However, in our application, we will be using the DC Synchronous mode (we will elaborate in the following

chapters), hence it is imperative to download adapters for compatible devices. Refer to EtherCAT Master

Requirements in order to find out which networks cards are compatible with real time EtherCAT

communication.

If the installation was successfully completed, the network card will be moved under the “Installed and

ready to use devices” list:

 Compatible devices → Installed and ready to use devices (realtime capable)

118/147

 Incompatible devices → Installed and ready to use devices (for demo use only)

6.5 Import CCS project into Code Composer Studio

In order to Import a project in CCS and be able to download it into the desired microcontroller:

1. Start Code Composer Studio. The pop up window must look like Figure 6-23.

Figure 6-23. Code Composer Studio starting page.

2. Select File > Import as shown in Figure 6-24.

Figure 6-24. CCS Import project.

3. From the pop up window select CCS Projects and then click Next as shown in Figure 6-25.

119/147

Figure 6-25. CCS project import selection.

4. Browse to the directory of the desired CCS project that you intend to import, click OK and then Finish as

depicted in Figure 6-26.

Figure 6-26. CCS browse and import.

5. If no error arises during this process, the project will show up on the Project Explorer (left hand side) of

CCS window as illustrated in Figure 6-27 and developers may expand the tree to observe its main

components.

120/147

Figure 6-27. Project imported CCS window.

6.6 Define and Select Target Configuration

In order to define a target Configuration:

1. Select View > Target Configuration as depicted in Figure 6-28.

Figure 6-28. Select View Target Configuration.

2. Select New Target Configuration from the Target Configurations window.

Figure 6-29. New Target Configuration.

3. Name the Target Configuration after the MCU being used and click Finish.

121/147

Figure 6-30. Name Target Configuration.

4. Select Texas Instruments XDS100v2 USB Debug Probe at the Connection tab, select TMS320F28379D at

the Board or Device tab and click Save as shown in Figure 6-31.

Figure 6-31. Select Connection and Device.

5. Close the LAUNCXL_F28379D.ccxml window after saving is completed.

In order now to link this configuration to your project:

6. At the Target Configurations window (right hand side) expand the User Defined directory, right click on

LAUNCHXL_F28379D.ccxml and select Link File To Project > [Project you want] (ex EtherCAT_Application)

as shown in Figure 6-32.

122/147

Figure 6-32. Link ccxml file to Project.

7. Close Target Configurations window.

6.7 Add and remove EtherCAT Input and Output variables

In this section we will describe the process of adding a Record of two output variables (16bit signed integers)

in an EtherCAT slave device and how to configure these additions in both the ESC memory and the Delfino

MCU [5] . The name of the Record will be Additions (0x7030) and the two variables will be named Out1 and

Out2. In general, the address of all output variables begins with 0x70 and all input variables with 0x60. The

procedure of adding input variables or removing a variable from the slave is identical and will not be

separately explained. For the purpose of this section, we will use EtherCAT Application project which is

described in EtherCAT Application Guide.

1. Download and import EtherCAT Application project to Code Composer Studio.

2. Open EtherCAT Application.c file. In the PDO_ResetOutputs() function add the indicated initialization part

of Figure 6-33. If we were to add input variables, this step would be skipped.

Figure 6-33. Add initialization definition of new variables.

123/147

3. Update the *pOutputSize pointer within the APPL_GeneratingMapping() function as shown in Figure 6-34.

Since we added two, 16bit output varialbes which equals to four extra bites, the new value of *pOutputSize

pointer will become 28 (24 (before) + 4 (extra bytes)) whereas the *pInputSize value will remain the same.

Figure 6-34. Update pOutputSize value.

4. Update APPL_OutputMapping() function with the definiotions of the new variables. If we had new input

variables as well, we would update APPL_InputMapping() function as well accordingly.

Figure 6-35. Update APPL_OutputMapping() function with new variables.

5. Open EtherCAT_ApplicationObjects.h file and append the object address definition of the new variables

under Object 0x1602 : OutputINT16 shown in Figure 6-36. Note that this object is only and address reference

project and does not describe the nature of the variables. This is the reason why in lines 239 and 240, the

variable’s type has been declared as an unsigned 32 bit variable. Moreover, the object addressing for output

variables starts with 0x16 and for input variables with 0x1A and because we are adding 0x7030 output record,

the object address definition is 0x1603.

124/147

Figure 6-36. New variables object address definition.

6. Update Object 0x1C12 : SyncManager 2 assignment as indicated in , with the new variable additions. Note

that if we were to add input variables, then we would have to update Object 0x1C13 : SyncManager 3

definition.

Figure 6-37. Update SyncManager assignment.

125/147

7. Insert the Additions object record definition of Figure 6-38 under the Object 0x7020 : OutputINT16.

Figure 6-38. Object record definition of "Additions".

8. Update ApplicationObjDic[] with the definitions of the new variables (Figure 6-39).

Figure 6-39. Update of ApplicationObjDic[].

9. Now that we have completed the configuration of the new variables in the Dlefino MCU, we need to update

the xml file (ENI description file) which will be used to write the EEPROM memory of our ESC. In order to do

so, open EtherCAT Application (SPI).xml and insert the definition shown in Figure 6-40 in the DataType

section under DT1602.

126/147

Figure 6-40. DT1603 DataType definition.

10. Update the definitions of DT1C12 and DT1C12ARR DataTypes (SyncManager 2) as shown in Figure

6-41.

Figure 6-41. DT1C12 and DT1C12ARR DataType definition.

11. Insert the DataType definition of Figure 6-42 under the DataType definition of DT7020.

127/147

Figure 6-42. DT7030 DataType definition.

12. Insert the Object definition of Figure 6-43 under the Object definition of #x1602.

128/147

Figure 6-43. Object definition of #x1603.

13. Update the Object definition of Sync Manager 2 as shown in Figure 6-44.

Figure 6-44. Updated Object definition of #x1C12.

14. Insert the Object definition of #x7030 under the Object definition of #x7020 as shown in Figure 6-45

129/147

Figure 6-45. Object definition of #x7030.

15. Update the Output size of the Sync Manager as indicated in Figure 6-46.

Figure 6-46. Update Sync Manager Output size.

16. Finally, insert the RxPdo definition of #x1603 as shown in Figure 6-47 under RxPdo definition of #x1602.

130/147

Figure 6-47. RxPdo definition of #x1603.

6.8 TwinCAT in Run Mode

When one or more slave devices need to work in either SM or DC-Synchronous mode, and in any case when

the communication must be tested under hard real-time conditions, Free Run is not suitable. In such cases,

the slave must be configured to operate in either SM or DC Sync in predefined cycle times mode and TwiCAT

must switch into Run Mode in order to corroborate this scheme.To implement this functionality:

1. Configure the slave device(s) to operate in DC Sync Mode as depicted in Figure 6-48

Figure 6-48. Slave device in DC Sync Mode.

2. Select the minimum allowed cycle time of EtherCAT cycle time by changing the Base Time of TwinCAT to

the minimum allowed value of 50 microseconds as shown in Figure 6-49.

131/147

Figure 6-49. Select minimum EtherCAT cycle time.

3. Create a new real-time I/O Task and then define the Cycle Ticks (cycle time) of your application by

specifying the integer multiple of TwinCAT’s Base unit (50 micro seconds) as illustrated in Figure 6-50.

Figure 6-50. Create I/O Task with Image and Define cycle time.

4. Create one cyclic Input or Output variable (for the I/O Task) for every slave on the network that you want to

operate in DC mode with a datatype matching the datatype of a process data variable in the EtherCAT

network. In this case one (because there is only one slave in the network) output bollean variable was created

to match one of the output boolean variables of the slave. Right click on the Outputs item and follow the steps

described in Figure 6-51.

Figure 6-51. Create cyclic Output variable.

132/147

5. Create a link between the software variable in the I/O Task and the hardware variable in the EtherCAT

process data by clicking on the created Output Task variable Var 1 and navigating to the Variable Tab. Click

Linked to… button and select any of the Buttons from the list (Figure 6-52).

Figure 6-52. Link software to hardware variable.

6. Activate Configuration and start TwinCAT in Run Mode (Figure 2-49) as illustrated in Figure 6-53. The

command “Activate Configuration” shall be applied every time one or more parameters are changed in the

configuration and the changes need to be applied.

Figure 6-53. Activate Configuration and switch to Run Mode.

TwinCAT 3.1 provides a 7-day trial period for Run Mode, which can be extended for an arbitrary number

of times. In order to extend the trial license for other 7-days, it will be sufficient to copy the 5-charater code

which will show-up when trying to activate the configuration.

Figure 6-54. Enter Security Code.

The slave (or slaves) are now In Operational DC – Sync mode if no erros occur in the error list.

133/147

6.9 Add Watch Expression in CCS Debug

When being in Debug Mode, Code Composer Studio provides the ability to inspect only global variables in the

Expresions window. In this way, developers may debug their stack without much effort. In order to add a

variable in the Epressions Window and monitor its value through execution time:

1. Select View > Expressions if the Expressions tab window is not already visible in CCS Debug mode(Figure

6-55).

Figure 6-55. Add Expression Tab.

2. Enable the Continuous Refresh feature, click on Add new expression and type the name of the variable you

desire (Figure 6-56).

Figure 6-56. Add new expression.

3. CCS will provide a list of the variables with relevant names and you are free to choose from the list. In this

example, we wanted to inspect the type and value of the global variable timer_PDI_Isr_Output (Figure 6-57).

134/147

Figure 6-57. Select variable to inspect.

6.10 Laelaps II motors and gearheads

Laelaps II uses different combinations of motors and gearheads to drive its knee and hip joints, yet, in both

cases, a pulley with a specific gear ration (48/26) is mounted to reduce the rotational speed of the motor even

more and increase the output torque. All motors and gearheads are purchased from Maxon Motors [38] .

Hip motor – gearhead

For the hip joint of Laelaps II, EC 45, ∅45 mm, brushless motor, 250 Watt [39] is used (Part No 136209) along

with the Planetary Gearhead GP 52 C ∅52 mm, 4–30 Nm [40] with a gear ratio of 343/8 (Part No 223089).

Hence the total reduction ratio of the hip joint (gearhead and pulley combined) is 1029/13 ≈ 79,15.

Knee motor – gearhead

For the knee joint of Laelaps II, RE 50, ∅50 mm, Graphite Brushes motor, 200 Watt [41] is used (Part No

370356) along with the Planetary Gearhead GP 52 C ∅52 mm, 4–30 Nm [40] with a gear ratio of 637/12 (Part

No 223090). Hence the total reduction ratio of the hip joint (gearhead and pulley combined) is 98.

6.11 Matlab PIV controller simulation

The block diagram for one actuated degree of freedom of Laelaps II leg (either hip or knee motor) is shown in

Figure 6-58. Within our actual CCS project downloaded in all four LaunchXL-F28379D launchpads of the

quadruped robot, the implemented PIV (Proportional – Integral - Velocity) controller is structured in such a

way that the reference points (rk) and measured feedback values (yk) are normalized.

Figure 6-58. Block diagram of one actuated degree of freedom of Laelaps II leg.

A Matlab function has been assembled to match the aforementioned configuration, taking into account

the mechanical limitations of the robot. The functionality of the simulating controller is identical to the one

running in each leg of Laelaps II and can be located at PIV_controller.m file. A small initialization script is also

135/147

appended (ControlTesting.m file) to indicate all required global variables and specify the proper function call.

The block diagram of the Matlab PIV controller is displayed in Figure 6-59.

Figure 6-59. Block diagram of the Matlab PIV controller.

All motor driver boards (amplifiers) mounted on Laelaps II, have a maximum output current of 12 [A]

which corresponds to 100% PWM signal. Following the data sheets of both types of motors (refer to Laelaps II

motors and gearheads) and assuming negligible power losses, the knee motor (brushed) has a maximum

torque output (after the gearhead) of 45 [Nm] and considering the pulley gear ratio, this torque can reach

83,077 [Nm]. On the other hand, the hip motor (brushless) has a maximum torque output (after the gearhead)

of 28 [Nm] which can reach 51,692 [Nm] after the pulley transmition. This is the reason why these specific

torque saturation values are exploited within the script. However, developers must also consider the fact that

the couplers, mounted after the gearheads and before the pulley gear ration, have a torque limit of 30 [Nm] to

avoid slipping which obviously affects the brushed motor.

In a nutshell, the PIV controller simulation function receives the reference and feedback values of both

knee and hip motors and using the predefined control gains (Kp, Kv, Ki) calculates the torque outputs which

will then be passed to the dynamic model of the robot. The PWM limits and torque saturation values are taken

into account before calculating the final control signals each time the function is executed. All calculations are

based on [11] .

136/147

7 Appendix B

7.1 Matlab Leg Modelling Code

clc
clear all
% -- %
% Forward & Inverse Kinematics
% Connecting leg angle to legs edge coordinates relative to Body Frame
% Knee Configuration (-1: forward, +1: backward)
% Left/Right leg indicator (1: left leg, -1: right leg)
% Ellipse semi axes: a_ellipse, b_ellipse
% -- %

% Trajectory Planning
% Parameters
xdes=zeros(10000,1);
ydes=zeros(10000,1);

x_traj_cntr=0.0; % Parameter [m] (x centre of trajectory)
y_traj_cntr=0.590; % Parameter [m] (y centre of trajectory)
a_ellipse=0.03; % Parameter [m] (a amplitude of elliptical shape)
b_ellipse=0.05; % Parameter [m] (b amplitude of elliptical shape)
traj_freq=1; % Parameter [Hz] (frequency of elliptical motion)
phase=0; % Parameter [rad] (initial phase)
param = 0; % Parameter (flatness of the toe to model ground)

% % -- %
% % Move toes alogn elliptical (or semielliptical) trajectories
% % -- %

y_ellipse_cntr = y_traj_cntr;
x_ellipse_cntr = x_traj_cntr;
traj_vel = traj_freq*2*pi;
t=0;
iteration_number = 10000;
for l=1:iteration_number
t=t+0.01;
angle = traj_vel * t + phase*pi/180;
if mod(angle,2*pi)<pi
 b_ellipse_filtered = param * b_ellipse;
else
 b_ellipse_filtered = b_ellipse;
end
xdes(l) = x_ellipse_cntr + a_ellipse * cos(angle);
ydes(l) = y_ellipse_cntr + b_ellipse_filtered * sin(angle);
end
figure
plot(xdes,ydes)
 axis([-0.3 0.3 -0.1 0.7])
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('Planning of Trajectory','fontsize',14)
 set(gca,'Ydir','reverse')
% Leg Parameters
l1 = 0.25;
l2 = 0.35;

137/147

knee_configuration = -1;
for l=1:iteration_number
x_value=xdes(l);
y_value=ydes(l);
% Inverse Kinematics
c_invk = (y_value^2 + x_value^2 - l1^2 - l2^2)/(2*l1*l2);
s_invk = knee_configuration*sqrt(1-c_invk^2);
k1_invk = l2 + l1 * c_invk;
k2_invk = l1 * s_invk;
knee_angle = - atan2(y_value,x_value) + atan2(k2_invk, k1_invk) + pi/2;
hip_angle = knee_angle - atan2(s_invk, c_invk);
angles_deg=[hip_angle*180/pi knee_angle*180/pi];

% Forward Kinematics
x1=l1*sin(hip_angle);
y1=l1*cos(hip_angle);
xE=l1*sin(hip_angle)+l2*sin(knee_angle);
yE=l1*cos(hip_angle)+l2*cos(knee_angle);
x(1:3)=[0 x1 xE];
y(1:3)=[0 y1 yE];

hold on
h1 = plot(x,y,'r-o')
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('Configuration of leg','fontsize',14)
 set(gca,'Ydir','reverse')
pause(0.001)
delete(h1)
end

7.2 Matlab Post Process Code

clc
clear all
% -- %
% Post Processing Laelaps csv files
% Scanning the file and using Laelaps' characteristics
% we plotted the results of each experiment. This code can be used
% with minor alterations on the name of the scanned file and its format
% Note: tightfig.m file must also be copied to this folder
% -- %
clc
clear all
fileID = fopen('Laelaps Trajectory Planning - Trotting 11 -

Kp45.0Kd0.03Ki0.0Filter20.csv','r');
formatSpec = '%f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d

%f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f

%d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d %f %d';
sizeA = [72 Inf];
A = fscanf(fileID,formatSpec,sizeA);
fclose(fileID);

Hip_PWM_Limit = 41.17;
Knee_PWM_Limit = 38.25;

Hip_max_velocity = 75.83*2*pi/60; %rad/s in 60 V
Knee_max_velocity = 55.5*2*pi/60; %rad/s in 60 V

i_knee=(8*26)/(343*48);

138/147

i_hip=(12*26)/(637*48);

% Initializations
t=zeros(1,length(A));
% Hind Right Leg
HR_knee_angle_deg=zeros(1,length(A));
HR_hip_angle_deg=zeros(1,length(A));
HR_velocity_hip=zeros(1,length(A));
HR_velocity_knee=zeros(1,length(A));
HR_uk_hip=zeros(1,length(A));
HR_uk_knee=zeros(1,length(A));
HR_Desired_hip_angle=zeros(1,length(A));
HR_Desired_knee_angle=zeros(1,length(A));
HR_time=zeros(1,length(A));

% Hind Left Leg
HL_knee_angle_deg=zeros(1,length(A));
HL_hip_angle_deg=zeros(1,length(A));
HL_velocity_hip=zeros(1,length(A));
HL_velocity_knee=zeros(1,length(A));
HL_uk_hip=zeros(1,length(A));
HL_uk_knee=zeros(1,length(A));
HL_Desired_hip_angle=zeros(1,length(A));
HL_Desired_knee_angle=zeros(1,length(A));
HL_time=zeros(1,length(A));

% Fore Right Leg
FR_knee_angle_deg=zeros(1,length(A));
FR_hip_angle_deg=zeros(1,length(A));
FR_velocity_hip=zeros(1,length(A));
FR_velocity_knee=zeros(1,length(A));
FR_step_command_hip=zeros(1,length(A));
FR_step_command_knee=zeros(1,length(A));
FR_uk_hip=zeros(1,length(A));
FR_uk_knee=zeros(1,length(A));
FR_Desired_hip_angle=zeros(1,length(A));
FR_Desired_knee_angle=zeros(1,length(A));
FR_time=zeros(1,length(A));

% Fore Left Leg
FL_knee_angle_deg=zeros(1,length(A));
FL_hip_angle_deg=zeros(1,length(A));
FL_velocity_hip=zeros(1,length(A));
FL_velocity_knee=zeros(1,length(A));
FL_uk_hip=zeros(1,length(A));
FL_uk_knee=zeros(1,length(A));
FL_Desired_hip_angle=zeros(1,length(A));
FL_Desired_knee_angle=zeros(1,length(A));
FL_time=zeros(1,length(A));
j=1;
for i=1:length(A)
 t(i)=A(1,i)/1000;
 HR_hip_angle_deg(i)= -A(2,i)/100;
 HR_knee_angle_deg(i)= -A(4,i)/100;
 HR_Desired_hip_angle(i)=-A(6,i)/100;
 HR_Desired_knee_angle(i)=-A(8,i)/100;
 HR_uk_hip(i)=A(10,i)/100;
 HR_uk_knee(i)=A(12,i)/100;
 HR_velocity_hip(i)=-A(14,i)*i_hip/1000;
 HR_velocity_knee(i)=-A(16,i)*i_knee/1000;

139/147

 HR_time(i)=A(18,i)/100;

 HL_hip_angle_deg(i)= A(20,i)/100;
 HL_knee_angle_deg(i)= A(22,i)/100;
 HL_Desired_hip_angle(i)=A(24,i)/100;
 HL_Desired_knee_angle(i)=A(26,i)/100;
 HL_uk_hip(i)=A(28,i)/100;
 HL_uk_knee(i)=A(30,i)/100;
 HL_velocity_hip(i)=A(32,i)*i_hip/1000;
 HL_velocity_knee(i)=A(34,i)*i_knee/1000;
 HL_time(i)=A(36,i)/100;

 FR_hip_angle_deg(i)= -A(38,i)/100;
 FR_knee_angle_deg(i)= -A(40,i)/100;
 FR_Desired_hip_angle(i)=-A(42,i)/100;
 FR_Desired_knee_angle(i)=-A(44,i)/100;
 FR_uk_hip(i)=A(46,i)/100;
 FR_uk_knee(i)=A(48,i)/100;
 FR_velocity_hip(i)=-A(50,i)*i_hip/1000;
 FR_velocity_knee(i)=-A(52,i)*i_knee/1000;
 FR_time(i)=A(54,i)/100;

 FL_hip_angle_deg(i)=A(56,i)/100;
 FL_knee_angle_deg(i)=A(58,i)/100;
 FL_Desired_hip_angle(i)=A(60,i)/100;
 FL_Desired_knee_angle(i)=A(62,i)/100;
 FL_uk_hip(i)=A(64,i)/100;
 FL_uk_knee(i)=A(66,i)/100;
 FL_velocity_hip(i)=A(68,i)*i_hip/1000;
 FL_velocity_knee(i)=A(70,i)*i_knee/1000;
 FL_time(i)=A(72,i)/100;

 if (i>30000 && i<35000)
 [HR_x(j),

HR_y(j)]=ForwardKinematics(HR_hip_angle_deg(i),HR_knee_angle_deg(i));
 [HR_x_desired(j),

HR_y_desired(j)]=ForwardKinematics(HR_Desired_hip_angle(i),HR_Desired_knee_angle(

i));
 [HL_x(j),

HL_y(j)]=ForwardKinematics(HL_hip_angle_deg(i),HL_knee_angle_deg(i));
 [HL_x_desired(j),

HL_y_desired(j)]=ForwardKinematics(HL_Desired_hip_angle(i),HL_Desired_knee_angle(

i));
 [FR_x(j),

FR_y(j)]=ForwardKinematics(FR_hip_angle_deg(i),FR_knee_angle_deg(i));
 [FR_x_desired(j),

FR_y_desired(j)]=ForwardKinematics(FR_Desired_hip_angle(i),FR_Desired_knee_angle(

i));
 [FL_x(j),

FL_y(j)]=ForwardKinematics(FL_hip_angle_deg(i),FL_knee_angle_deg(i));
 [FL_x_desired(j),

FL_y_desired(j)]=ForwardKinematics(FL_Desired_hip_angle(i),FL_Desired_knee_angle(

i));
 j=j+1;
 end
end

%End Effector of Laelaps II Legs
figure
set(gcf, 'Position', [100 50 900 800],'color','w');

140/147

subplot(2,2,1)
plot(FR_x,FR_y,'k',FR_x_desired,FR_y_desired,'r')
 grid on
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('FR End Effector in Steady State','fontsize',14)
 set(gca,'Ydir','reverse')
subplot(2,2,2)
plot(FL_x,FL_y,'k',FL_x_desired,FL_y_desired,'r')
 grid on
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('FL End Effector in Steady State','fontsize',14)
 set(gca,'Ydir','reverse')
subplot(2,2,3)
plot(HR_x,HR_y,'k',HR_x_desired,HR_y_desired,'r')
 grid on
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('HR End Effector in Steady State','fontsize',14)
 set(gca,'Ydir','reverse')
subplot(2,2,4)
plot(HL_x,HL_y,'k',HL_x_desired,HL_y_desired,'r')
 grid on
 ylabel('+ <-- y axis','fontsize',14)
 xlabel('x axis --> +','fontsize',14)
 title('HL End Effector in Steady State','fontsize',14)
 set(gca,'Ydir','reverse')
tightfig;

%Responce of knee angles
figure
set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
plot(t,FR_knee_angle_deg,'k',t,FR_Desired_knee_angle,'r')
 grid on
 ylabel('Angle [deg]')
 title('Response of FR Knee Angle','fontsize',13)
subplot(4,1,2)
plot(t,FL_knee_angle_deg,'k',t,FL_Desired_knee_angle,'r')
 grid on
 ylabel('Angle [deg]')
 title('Response of FL Knee Angle','fontsize',13)
subplot(4,1,3)
plot(t,HR_knee_angle_deg,'k',t,HR_Desired_knee_angle,'r')
 grid on
 ylabel('Angle [deg]')
 title('Response of HR Knee Angle','fontsize',13)
subplot(4,1,4)
plot(t,HL_knee_angle_deg,'k',t,HL_Desired_knee_angle,'r')
 grid on
 ylabel('Angle [deg]')
 xlabel('Time [s]')
 title('Response of HL Knee Angle','fontsize',13)
tightfig;

%Responce of hip angles
figure
set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
plot(t,FR_hip_angle_deg,'k',t,FR_Desired_hip_angle,'r')

141/147

 grid on
 ylabel('Angle [deg]')
 title('Response of FR Hip Angle','fontsize',13)
subplot(4,1,2)
plot(t,FL_hip_angle_deg,'k',t,FL_Desired_hip_angle,'r')
 grid on
 ylabel('Angle [deg]')
 title('Response of FL Hip Angle','fontsize',13)
subplot(4,1,3)
plot(t,HR_hip_angle_deg,'k',t,HR_Desired_hip_angle,'r')
 grid on
 ylabel('Angle [deg]')
 title('Response of HR Hip Angle','fontsize',13)
subplot(4,1,4)
plot(t,HL_hip_angle_deg,'k',t,HL_Desired_hip_angle,'r')
 grid on
 ylabel('Angle [deg]')
 xlabel('Time [s]')
 title('Response of HL Hip Angle','fontsize',13)
tightfig;

%PWM Commands of Knee motors
figure
set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
plot(t,FR_uk_knee,'k','LineWidth',0.1)
hold on
plot(t,Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of FR Knee','fontsize',13)
subplot(4,1,2)
plot(t,FL_uk_knee,'k','LineWidth',0.1)
hold on
plot(t,Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of FL Knee','fontsize',13)
subplot(4,1,3)
plot(t,HR_uk_knee,'k','LineWidth',0.1)
hold on
plot(t,Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of HR Knee','fontsize',13)
subplot(4,1,4)
plot(t,HL_uk_knee,'k','LineWidth',0.1)
hold on
plot(t,Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 xlabel('Time [s]')
 title('PWM Command of HL Knee','fontsize',13)
tightfig;

%PWM Commands of Hip motors
figure

142/147

set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
plot(t,FR_uk_hip,'k','LineWidth',0.1)
hold on
plot(t,Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of FR Hip','fontsize',13)
subplot(4,1,2)
plot(t,FL_uk_hip,'k','LineWidth',0.1)
hold on
plot(t,Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of FL Hip','fontsize',13)
subplot(4,1,3)
plot(t,HR_uk_hip,'k','LineWidth',0.1)
hold on
plot(t,Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 title('PWM Command of HR Hip','fontsize',13)
subplot(4,1,4)
plot(t,HL_uk_hip,'k','LineWidth',0.1)
hold on
plot(t,Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_PWM_Limit*ones(length(t),1),'r','LineWidth',0.1);
 grid on
 ylabel('PWM Command [%]')
 xlabel('Time [s]')
 title('PWM Command of HL Hip','fontsize',13)
tightfig;

%Velocity of Knee motors
figure
set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
hold on
plot(t,Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,FR_velocity_knee,'k')
 grid on
 ylabel('Velocity [rad/s]')
 title('Response of FR Knee Velocity','fontsize',13)
subplot(4,1,2)
hold on
plot(t,Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,FL_velocity_knee,'k')
 grid on
 ylabel('Velocity [rad/s]')
 title('Response of FL Knee Velocity','fontsize',13)
subplot(4,1,3)
hold on
plot(t,Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,HR_velocity_knee,'k')
 grid on

143/147

 ylabel('Velocity [rad/s]')
 title('Response of HR Knee Velocity','fontsize',13)
subplot(4,1,4)
hold on
plot(t,Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Knee_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,HL_velocity_knee,'k')
 grid on
 ylabel('Velocity [rad/s]')
 xlabel('Time [s]')
 title('Response of HL Knee Velocity','fontsize',13)
tightfig;

%Velocity of Hip motors
figure
set(gcf, 'Position', [100 50 900 800],'color','w');
subplot(4,1,1)
hold on
plot(t,Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,FR_velocity_hip,'k')
 grid on
 ylabel('Velocity [rad/s]')
 title('Response of FR Hip Velocity','fontsize',13)
subplot(4,1,2)
hold on
plot(t,Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,FL_velocity_hip,'k')
 grid on
 ylabel('Velocity [rad/s]')
 title('Response of FL Hip Velocity','fontsize',13)
subplot(4,1,3)
hold on
plot(t,Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,HR_velocity_hip,'k')
 grid on
 ylabel('Velocity [rad/s]')
 title('Response of HR Hip Velocity','fontsize',13)
subplot(4,1,4)
hold on
plot(t,Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,-Hip_max_velocity*ones(length(t),1),'r','LineWidth',0.1);
plot(t,HL_velocity_hip,'k')
 grid on
 ylabel('Velocity [rad/s]')
 xlabel('Time [s]')
 title('Response of HL Hip Velocity','fontsize',13)
tightfig;

 tightfig.m file

function hfig = tightfig(hfig)
% tightfig: Alters a figure so that it has the minimum size necessary to
% enclose all axes in the figure without excess space around them.
% Note that tightfig will expand the figure to completely encompass all
% axes if necessary. If any 3D axes are present which have been zoomed,
% tightfig will produce an error, as these cannot easily be dealt with.
% hfig - handle to figure, if not supplied, the current figure will be used
% instead.

144/147

 if nargin == 0
 hfig = gcf;
 end
 % There can be an issue with tightfig when the user has been modifying
 % the contnts manually, the code below is an attempt to resolve this,
 % but it has not yet been satisfactorily fixed
% origwindowstyle = get(hfig, 'WindowStyle');
 set(hfig, 'WindowStyle', 'normal');
 % 1 point is 0.3528 mm for future use
 % get all the axes handles note this will also fetch legends and
 % colorbars as well
 hax = findall(hfig, 'type', 'axes');
 % get the original axes units, so we can change and reset these again
 % later
 origaxunits = get(hax, 'Units');
 % change the axes units to cm
 set(hax, 'Units', 'centimeters');
 % get various position parameters of the axes
 if numel(hax) > 1
% fsize = cell2mat(get(hax, 'FontSize'));
 ti = cell2mat(get(hax,'TightInset'));
 pos = cell2mat(get(hax, 'Position'));
 else
% fsize = get(hax, 'FontSize');
 ti = get(hax,'TightInset');
 pos = get(hax, 'Position');
 end
 % ensure very tiny border so outer box always appears
 ti(ti < 0.1) = 0.15;
 % we will check if any 3d axes are zoomed, to do this we will check if
 % they are not being viewed in any of the 2d directions
 views2d = [0,90; 0,0; 90,0];
 for i = 1:numel(hax)
 set(hax(i), 'LooseInset', ti(i,:));
% set(hax(i), 'LooseInset', [0,0,0,0]);
 % get the current viewing angle of the axes
 [az,el] = view(hax(i));
 % determine if the axes are zoomed
 iszoomed = strcmp(get(hax(i), 'CameraViewAngleMode'), 'manual');
 % test if we are viewing in 2d mode or a 3d view
 is2d = all(bsxfun(@eq, [az,el], views2d), 2);

 if iszoomed && ~any(is2d)
 error('TIGHTFIG:haszoomed3d', 'Cannot make figures containing zoomed

3D axes tight.')
 end

 end
 % we will move all the axes down and to the left by the amount
 % necessary to just show the bottom and leftmost axes and labels etc.
 moveleft = min(pos(:,1) - ti(:,1));
 movedown = min(pos(:,2) - ti(:,2));
 % we will also alter the height and width of the figure to just
 % encompass the topmost and rightmost axes and lables
 figwidth = max(pos(:,1) + pos(:,3) + ti(:,3) - moveleft);
 figheight = max(pos(:,2) + pos(:,4) + ti(:,4) - movedown);
 % move all the axes
 for i = 1:numel(hax)
 set(hax(i), 'Position', [pos(i,1:2) - [moveleft,movedown], pos(i,3:4)]);

 end

145/147

 origfigunits = get(hfig, 'Units');
 set(hfig, 'Units', 'centimeters');
 % change the size of the figure
 figpos = get(hfig, 'Position');
 set(hfig, 'Position', [figpos(1), figpos(2), figwidth, figheight]);
 % change the size of the paper
 set(hfig, 'PaperUnits','centimeters');
 set(hfig, 'PaperSize', [figwidth, figheight]);
 set(hfig, 'PaperPositionMode', 'manual');
 set(hfig, 'PaperPosition',[0 0 figwidth figheight]);
 % reset to original units for axes and figure
 if ~iscell(origaxunits)
 origaxunits = {origaxunits};
 end
 for i = 1:numel(hax)
 set(hax(i), 'Units', origaxunits{i});
 end
 set(hfig, 'Units', origfigunits);
% set(hfig, 'WindowStyle', origwindowstyle);
end

ForwardKinematics.m

function [x,y] = ForwardKinematics(hip_angle_deg,knee_angle_deg)
%UNTITLED Forward Kinematics of Laelaps II
% x (+) right, y (+) down
% Forward Kinematics
% Leg Parameters
l1 = 0.25;
l2 = 0.35;
hip_angle_rad=hip_angle_deg*pi/180;
knee_angle_rad=knee_angle_deg*pi/180;
x=l1*sin(hip_angle_rad)+l2*sin(knee_angle_rad);
y=l1*cos(hip_angle_rad)+l2*cos(knee_angle_rad);
end

7.3 Matlab PIV Controller Simulation

ControlTesting.m file

%---%
% Global variables
%---%
clear global; clear all; clc;
global d2_knee d3_knee i10_knee i14_knee
global d2_hip d3_hip i10_hip i14_hip
global c1 c2
global hip_control_torque_sat knee_control_torque_sat
global Umax_knee Umin_knee Umax_hip Umin_hip

d2_knee = 0;
d3_knee = 0;
i10_knee = 0;
i14_knee = 0;
d2_hip = 0;
d3_hip = 0;
i10_hip = 0;
i14_hip = 0;
T=1/10000;
FilterBandwidth = 20;

146/147

ftc = 1/(2*pi*FilterBandwidth);
c1 = 2/(T+2*ftc);
c2 = (T-2*ftc)/(T+2*ftc);
hip_control_torque_sat = 83.077;
knee_control_torque_sat = 51.692;
Umax_knee=0.3825;
Umin_knee=-0.3825;
Umax_hip=0.4117;
Umin_hip=-0.4117;

[knee_cntrl_torque, hip_cntrl_torque] = PIV_controller(0,pi/6,1,0,-pi/8,1);

PIV_controller.m file

function [knee_cntrl_torque, hip_cntrl_torque] = PIV_controller(

th_knee_rad,th_knee_des_rad,lk_knee,th_hip_rad,th_hip_des_rad,lk_hip)
%PIV_controller function for simulations
% This functions implements the PIV controller used in
%Laelaps experiments

global d2_knee d3_knee i10_knee i14_knee
global d2_hip d3_hip i10_hip i14_hip
global c1 c2
global Umax_knee Umin_knee Umax_hip Umin_hip
global hip_control_torque_sat knee_control_torque_sat

% Knee Control Gains
Kr_knee = 1;
Kp_knee = 40;
Kd_knee = 0.01;
Ki_knee = 0;

% Hip Control Gains
Kr_hip = 1;
Kp_hip = 40;
Kd_hip = 0.01;
Ki_hip = 0;

% Normalized Values to match with real Controller
th_knee_des = th_knee_des_rad/(2*pi);
th_knee = th_knee_rad/(2*pi);
th_hip_des = th_hip_des_rad/(2*pi);
th_hip = th_hip_rad/(2*pi);

% PIV Controller for Knee
v5_knee = Kr_knee * th_knee_des - th_knee;
v8_knee = Ki_knee * Kp_knee * i14_knee * (th_knee_des - th_knee) + i10_knee;
i10_knee = v8_knee;
v1_knee = Kd_knee * c1 * th_knee;
v4_knee = v1_knee - d2_knee - d3_knee;
d2_knee = v1_knee;
d3_knee = v4_knee * c2;
v9_knee = Kp_knee * (v5_knee - v4_knee) + v8_knee;
if (v9_knee > Umax_knee)
 v10_knee = Umax_knee;
elseif (v9_knee < Umin_knee)
 v10_knee = Umin_knee;
else
 v10_knee = v9_knee;
end

147/147

if (v10_knee == v9_knee)
 v12_knee = 1;
else
 v12_knee = 0;
end
i14_knee = v12_knee * lk_knee;
knee_cntrl_torque = v10_knee * knee_control_torque_sat;

% PIV Controller for Hip
v5_hip = Kr_hip * th_hip_des - th_hip;
v8_hip = Ki_hip * Kp_hip * i14_hip * (th_hip_des - th_hip) + i10_hip;
i10_hip = v8_hip;
v1_hip = Kd_hip * c1 * th_hip;
v4_hip = v1_hip - d2_hip - d3_hip;
d2_hip = v1_hip;
d3_hip = v4_hip * c2;
v9_hip = Kp_hip * (v5_hip - v4_hip) + v8_hip;
if (v9_hip > Umax_hip)
 v10_hip = Umax_hip;
elseif (v9_hip < Umin_hip)
 v10_hip = Umin_hip;
else
 v10_hip = v9_hip;
end
if (v10_hip == v9_hip)
 v12_hip = 1;
else
 v12_hip = 0;
end
i14_hip = v12_hip * lk_hip;
hip_cntrl_torque = v10_hip * hip_control_torque_sat;
end

