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Περίληψη

Στην παρούσα εργασία, μελετάμε ένα πρόβλημα το οποίο ανήκει στην τομή της περιοχών

τών άμεσων αλγορίθμων και της άμεσης μάθησης με το όνομα ΄Αμεση Κυρτή Βελτιστοποίηση

(ΑΚΒ) με κόστη μετάβασης (ή αλλιώς, Ομαλή ΄Αμεση Κυρτή Βελτιστοποίηση). Αυτή είναι

μια εκδοχή ενός προβλήματος ΄Αμεσης Κυρτής Βελτιστοποίησης οπού ο παίκτης, εκτός απο

το αντικειμενικό κόστος, πληρώνει ένα κόστος λόγω αλλαγής των αποφασεών του μεταξύ

συνεχόμενων γύρων, όπως και στο πρόβλημα των Μετρικών Συστημάτων Εργασίας. Αρ-

χικά, αφού εισάγουμε τον αναγνώστη σε βασικά στοιχεία των άμεσων αλγορίθμων και της

κυρτής βελτιστοποίησης, παρουσιάζουμε τα πεδία της άμεσης μάθησης και της άμεσης κυρ-

τής βελτιστοποίησης που αποτελούν τις βάσεις του κύριου προβλήματος. Για το πρόβλημα

της ΑΚΒ με κόστη μετάβασης, στοχεύουμε στον σχεδιασμό ανταγωνιστικών αλγορίθμων.

Πιο συγκεκριμένα, εστιάζουμε στην περίπτωση όπου το κόστος μετάβασης είναι νόρμα. Για

γενικές κυρτές συναρτήσεις, η βέλτιστη τιμή του ανταγωνιστικού λόγου που μπορούμε να

επιτύχουμε εξαρτάται απο την διάσταση την εισόδου. Ως εκ τούτου, για να επιτύχουμε ένα

σταθερό ανταγωνιστικό λόγο θα πρέπει να εξετάσουμε ειδικές περιπτώσεις κυρτών συναρ-

τήσεων. Για αυτόν τον σκοπό, αναλύουμε έναν άμεσο αλγόριθμο που παίρνει μια απόφαση η

οποία ισορροπεί το αντικειμενικό κόστος και το κόστος μετάβασης σε κάθε γύρο. Επιπλέον,

εξετάζουμε την ειδική περίπτωση όταν η αντικειμενική συνάρτηση είναι γραμμική, το σύνολο

αποφάσεων περιγράφεται απο περιορισμούς κάλυψης και η συνάρτηση μετάβασης είναι η 𝑙1

νόρμα. Τέλος, αναφέρουμε ανοικτά προβλήματα στην εν λόγω ερευνητική περιοχή.

Λέξεις-Κλειδιά: ΄Αμεσοι αλγόριθμοι, Κυρτή βελτιστοποίηση, ΄Αμεση μάθηση, Ανταγω-

νιστική ανάλυση, Συναρτήσεις μετάβασης



Abstract

We study a problem which is of interest to both the algorithmic and the online learn-

ing community, named Online Convex Optimization with Switching Cost (or Smoothed

Online Convex Optimization). This is a version of an online convex optimization (OCO)

problem where the learner, apart from the objective cost, suffers a loss for changing her

decisions between successive rounds, similarly to Metrical Task Systems. Initially, after

introducing the reader to basic concepts in online algorithms and convex optimization,

we perform a review on the field of online learning and online convex optimization which

serves as the basis of our main problem. For OCO with switching cost, we are mainly

interested in the design of competitive algorithms. In particular, we are focused on

the case where the switching cost is a norm. For general convex functions, the optimal

competitive ratio depends on the dimension of the instance, thus we need to constrain

ourselves in certain types of convex objectives in order to achieve a constant compet-

itive ratio. For this purpose, we analyze an algorithm that makes a decision which

balances the objective and the switching cost. Moreover, we discuss the special case of

linear objectives when the decision set is composed of linear covering constraints and

the switching cost function is the 𝑙1 norm. Finally, we mention open problems in this

research area.

Keywords: Online algorithms, Convex optimization, Online learning, Competitive

analysis, Switching cost functions



Contents

Introduction 1

1 Online Computation 5

1.1 Competitive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Ski Rental Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 A Deterministic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 A Randomized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The Potential Function Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Metrical Task Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Convex Optimization 13

2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Duality and Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Online learning & Online Convex Optimization 26

3.1 The Experts problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 The Weighted Majority Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

3.2 A Unifying model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Online Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Competing against a dynamic comparator . . . . . . . . . . . . . . . . . . . . . . 37

4 Online Convex Optimization with Switching Cost 42

4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 The unidimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 A memoryless algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents

4.2.2 An algorithm with memory . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Minimizing Competitive Ratio . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Covering constraints with 𝑙1 switching cost . . . . . . . . . . . . . . . . . . . . . 57

4.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures

1.1 Configurations for the online algorithm and OPT, Here we have 𝑣 = 3

(the asterisks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Examples of a convex and a non-convex set . . . . . . . . . . . . . . . . . 14

2.2 Examples of a non-convex and a convex function . . . . . . . . . . . . . . 15

2.3 Illustration of theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Illustration of theorem 2.8. Observe the inner product of −∇𝑓(𝑥) and

𝑦 − 𝑥 for some 𝑦 ∈ 𝑋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Illustration of the Gradient Descent algorithm . . . . . . . . . . . . . . . . 21

2.6 projection onto a convex set . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Illustration of Algorithm 1 for 𝑓𝑡(𝑢𝑡) = 0 and 𝐻𝑡 > 𝐻*
𝑡 . . . . . . . . . . . 48

4.2 Geometric explanation of the above statement. Here we have 𝐻𝑡(𝑥𝑡1) =

𝐻𝑡(𝑥𝑡2) but 𝑀𝑡(𝑥𝑡1) > 𝑀𝑡(𝑥𝑡2) . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Relation between 𝑥𝑡, 𝑥𝑡−1, 𝑥
*
𝑡 when 𝐻𝑡 > 𝐻*

𝑡 . . . . . . . . . . . . . . . . . 57



Introduction

In this thesis, we study the problem of Online Convex Optimization (OCO) with

Switching Cost. This is a problem that is highly correlated with a typical problem in

the area of online convex optimization but also shares elements with problems that arise

from the community of online algorithms, such as the Metrical Task Systems (MTS).

In this online problem, given a convex subset of R𝑛, a player receives in each round

a convex function 𝑓𝑡(𝑥) and makes a decision, a point 𝑥𝑡 ∈ 𝑋. Now, apart from the

cost of this objective function 𝑓𝑡(𝑥𝑡) the player suffers a cost for changing her decision

between successive rounds ‖𝑥𝑡 − 𝑥𝑡−1‖. Of course, the goal of the player is to minimize

the total sum of her objective and switching costs. The setting resembles an online

convex optimization problem where also in each round a convex function is revealed but

the problem also is a not too restrictive special case of the very general online problem

of MTS. In MTS, the euclidean space R𝑛 is replaced by any metrical space, and the

functions arriving online are arbitrary (possibly non-convex) functions.

Concerning MTS, a lot of research is pursued over the past decades for finite met-

ric spaces. In [14] the authors showed that the lower bound on the competitive ratio

for any deterministic algorithm over any 𝑛-point metric is 2𝑛 − 1. They designed an

algorithm, the Work-function algorithm which achieves exactly this competitive ratio.

Randomization significantly improves the results. The best known lower bound for any

algorithm is Ω( log𝑛
log2 log𝑛

) and the algorithm presented in [25] achieves a competitive ratio

of 𝑂(log2 𝑛 log log𝑛). For the uniform metric (all the states are the same distance from

each other), in [14] it was proven that the lower bound for any algorithm is 𝐻𝑛, the

𝑛th harmonic number. Subsequently, in [1] the authors provide a log 𝑛 + 𝑂(log log 𝑛)

algorithm based on entropic regularization, which shares the same idea with the one

we’ll discuss for the continuous case in later chapters.

Moreover, MTS is shown to be connected to the experts problem in online learning,

which we’ll discuss in chapter 3. Several efforts are made to provide algorithms for both

problems simultaneously. The authors in [12] initiated this direction by providing an an-

alytic framework that connects online learning and metrical task systems. More recently,

in [19] the authors employed a primal-dual technique to develop an algorithm that, for

1



Introduction 2

the first time, provided a unified approach for algorithm design across competitive ratio

and regret in the MTS setting, over a discrete action space.

Although the MTS problem is heavily studied for many years and researchers continue

to do so, the special case of OCO with switching cost has received attention only in

recent years. Until very recently, there were results only for the unidimensional case of

the problem. It was the first time in [35] that a 3-competitive algorithm was developed

for the 1d case. Subsequently, in [8] a simpler 3-competitive algorithm was given along

with a 2-competitive algorithm that utilizes past information, in contrast with the other

ones. The first step towards the development of algorithms for higher dimensions can be

found in [4] where the authors study the problem of Convex Body Chasing (first appeared

in [26]), which is connected to OCO with switching costs. Using this connection, they

provide a constant competitive ratio algorithm for the problem in 2 dimensions and

show that any algorithm attains a competitive ratio of
√
𝑑 when the switching cost is

the 𝑙2 norm. Recently, in [24] the authors restrict the class of objective functions the

adversary may bring in order to break through the
√
𝑑 lower bound and they provide a

constant competitive ratio algorithm for 𝑙2 switching cost in any dimension. This work

also is the first one to generalize this result to other switching costs, such as 𝑙𝑝 norms

and more generalized norms (such as the Mahalanobis Distance) utilizing ideas from the

Mirror Descent algorithm.

Furthermore, there is substantial work for the problem of OCO with Switching Cost

when in time 𝑡 the algorithm does not know only the function 𝑓𝑡 as we mentioned earlier

but also the functions 𝑓𝑡, 𝑓𝑡+1, ..., 𝑓𝑡+𝑊 and hence, intuitively, the problem becomes

substantially easier. In [23] the dependence of competitive ratio on 𝑊 is studied and the

conclusion that a constant competitive ratio can be achieved when future cost functions

are known is drawn. Moreover, in [38] an algorithm with a competitive ratio of 1+𝑂( 1
𝑊 )

is developed.

The problem has find numerous applications during the past years that are modeled

as online convex optimization problems in areas such as learning, control and networks

where the aim is to minimize a convex function in each round and maintain a stable

solution, a solution that doesn’t change much throughout time. For instance, in right-

sizing power-proportional data centers [36], [39]. In these applications, the data center

consists of a homogenous collection of servers that are speed scalable and that they may

powered down. In a data center, there are typically sufficiently many servers so that the

problem can be reasonably be modeled a continuous one. The load on the data center

changes through time and in each round there is a specific number of servers that should

be operational and the operation cost is given by a convex function. However, there is a

fixed cost (energy, for instance) for powering a server either on or off which is modeled as

a switching cost. Of course, the load in each round arrives in an online fashion and the
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designer aims at constructing an algorithm that performs well against the best offline

strategy. Other fields of application include management of electrical vehicle charging

[33], video streaming [32] and power generation planning [7].

Other related work, apart from the work on finite metric spaces for the problem

of MTS which we discuss briefly in the next chapter and which can be considered the

”discrete” counterpart on the research of online convex optimization with switching cost

there is other work at other related problems of discrete nature which are special cases

of MTS. However, utilizing algorithms for MTS for these problems does not lead to

good bounds and thus an approach that takes into consideration the exact nature of

the problem is employed. In [27] the authors analyze the online multistage matroid

maintanance problem. A well known example of this is when one aims to maintain a

minimum spanning tree (MST) in a graph where the weights of the edges are chosen

arbitrary in each round and there is a switching cost for changing an edge. To encounter

the online problem, the authors firstly solve an Online Linear Optimization problem

with a specific type of constraints in order to maintain feasible fractional MST solution

and then they provide an integer solution through rounding.

Moreover, there are other problems that lie in the intersection of convex optimization

and online algorithms. Independently in [6] and [20], the respective authors provide a

competitive algorithm for a convex optimization problem where the covering costraints

arrive in an online fashion (i.e the rows of 𝐴 of the equation (𝐴𝑥 = 𝑏) arrive online).

In Chapter 1, we introduce the reader to basic elements of Online Computation that

are related to our main problem. We explain how things work in an online setting

through the ski-rental problem which is a special case of OCO with switching cost, we

discuss briefly the MTS problem and we introduce through an example the reader to

the potential function method which is heavily employed in proofs that are related to

OCO with switching cost.

In Chapter 2, we discuss elements of Convex optimization including basic facts about

convex sets and functions. Moreover, we discuss Duality and KKT conditions, which

are powerful tools in the analysis of online algorithms. Finally, we rigorously analyze

the Gradient Descent algorithm which is the basis for many algorithms that are found

in the context of Online Convex Optimization.

In Chapter 3, we start by introducing the reader to the area of online learning through

the well-known experts problem which serves as the motivation of developing the frame-

work of online convex optimization. The OCO model can be used to model many online

learning problems. Through the regret metric, we firstly discuss how the algorithm of

online gradient descent performs in the case where the player competes against a static

strategy. In the final paragraph, we analyze again an online gradient descent algorithm
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which performs well against a dynamic strategy, the type of strategy which we’ll en-

counter in the following chapter.

In Chapter 4, we delve into the problem of Online Convex Optimization with Switch-

ing Cost. After defining the problem and discussing some of its aspects, we start with

the study of the problem in 1 dimension where we analyze an optimal 3-competitive al-

gorithm which has a simple idea: Balance between the function’s cost and the switching

cost in time 𝑡. For higher dimensions, we prove a lower bound which shows that every

algorithm when the switching cost is the 𝑙2 norm is Ω(
√
𝑑) competitive. For this reason,

we perform a beyond worst case analysis utilizing functions that grow at least linearly

away from the minimizer to prove a constant competitive ratio using the same idea of

”Balance”. Moreover, we discuss a special case of OCO with switching cost, the case of

linear objectives with covering constraints and 𝑙1 switching cost which has found numer-

ous applications in online combinatorial optimization in recent years. Finally, we state

some open problems related to OCO with switching cost that we believe are interesting

research directions for the future.



Chapter 1

Online Computation

The problems which are of interest to us in this thesis need to be solved in an online

fashion. Its counterpart, the offline setting, the traditional setting in the analysis and

design of algorithms, assumes that complete information of the problem is known to

the designer from the beginning. Unlike this setting, in online computation, one aims

at designing algorithms where the input is revealed piece-by-piece. The algorithm has

to respond immediately when new information arrives without the knowledge of future

information. Furthermore, when a decision is taken, it cannot be revoked.

In the offline setting, the goal is to design algorithms that provide an optimal solution,

for instance, one that minimizes (or maximizes) a certain objective. We evaluate an

algorithm based on how close its solution is to an optimal solution. For example, an 𝛼-

approximation algorithm, with 𝛼 > 1, for a NP-hard minimization problem is defined as

a polynomial-time algorithm that for every instance of the problem, provides a solution

that its value is within a factor of 𝛼 of the value of an optimal solution.

Now, a natural question arises: How to evaluate the performance of an online algo-

rithm? A standard measure is the competitive ratio which compares the performance of

an online algorithm to an optimal offline solution. The field of competitive analysis aims

at designing this kind of algorithms. For an extensive analysis of online computation,

algorithms and competitive analysis we refer the reader to [13] which is from where this

chapter is based.

1.1 Competitive Analysis

We proceed with the definition of an 𝑐-competitive algorithm which is similar to the

one for approximation algorithms.

Definition 1.1. Let 𝑐 ≥ 1 be a real number. An online algorithm is said to be 𝑐-

competitive if for each instance of a minimization problem I, for any sequence of inputs,

5
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it outputs a solution of cost at most 𝑐 · OPT(I ) + 𝛼 where OPT(I ) is the value of an

optimal offline solution and 𝑎 is constant. For 𝑎 ≤ 0 we say that the algorithm is strictly

𝑐-competitive.

The infinum over all 𝑐 such that the algorithm is 𝑐-competitive is called the competitive

ratio of the algorithm. The definition of competitiveness is similar for maximization

problems. We should note at this point that the competitive ratio isn’t the only metric

we will use to evaluate the performance of an online algorithm. Unlike the competitive

ratio which originates from the algorithmic community, in the learning community, the

Regret metric is employed. In subsequent chapters, we will comment on the differences

between the two metrics.

An important concept in the field of competitive analysis is the adversary. The online

problem can be seen as a game between the player, the one that designs the online

algorithm (In the future, we’ll constantly use the term player to describe the online

algorithm), and an adversary which aims at constructing the worst possible input for the

algorithm, in order to maximize its cost. A 𝑐-competitive algorithm produces a solution

with cost no more that 𝑐 times the optimal offline cost for every sequence of inputs

the adversary provides. An adversary that knows the online algorithm, the probability

distribution used by the online algorithm to make its random decisions but does not

know the random choices, is called an oblivious adversary. This kind of adversary is the

one we’ll consider throughout this thesis.

1.2 The Ski Rental Problem

One of the most elementary problems in the field of online algorithms is the Ski

Rental Problem. In this paragraph, we’ll discuss the problem and analyze an optimal

deterministic and an optimal randomized algorithm. The reason we choose this partic-

ular problem is twofold; First, we gently introduce the reader to the nature of online

computation. Second, the ski rental problem is strongly connected to the problem of

Online Convex Optimization with switching cost. In fact, the ski rental problem is a

special case of the 1-dimensional case of the latter problem. In Chapter 4, we’ll prove

this reduction. This fact will be proven useful in order to provide lower bounds for our

main problem.

The ski rental problem is as follows: Suppose you’re going skiing in Mount Parnassus

but you haven’t yet decided how many days you’ll stay. In fact, you will decide the

number of skiing days at the very last day. You’re faced with a question of whether to

buy skis for 𝐵e (𝐵 ≥ 1) or to rent skis at the cost of 1e per day. Of course, your goal
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is to minimize the amount of money you’ll spend. Let’s define the number of days you’ll

eventually stay as 𝑛.

1.2.1 A Deterministic Algorithm

Due to the simplicity of the problem, all possible deterministic online algorithms can

be described just by a integer 𝑗 which is the day that you’ll buy skis. If 𝑗 > 𝑛, you never

buy skis. Let’s define as 𝐴𝐿𝐺𝑗 the deterministic algorithm that buys skis at the start

of day 𝑗.

Theorem 1.2. 𝐴𝐿𝐺𝐵 has a competitive ratio of (2− 1
𝐵 ) for the ski rental problem.

Proof. We consider two cases:

∙ If 𝑛 ≤ 𝐵 − 1, the algorithm has cost 𝑛 while the optimal offline cost is 𝑛

∙ If 𝑛 ≥ 𝐵, the algorithm pays (𝐵 − 1) +𝐵 = 2𝐵 − 1 while the optimal offline cost

is 𝐵

Thus, in either case, the competitive ratio of is 𝐴𝐿𝐺𝐵 is max{𝑛
𝑛 ,

2𝐵−1
𝐵 } = 2− 1

𝐵

Is this the better we can do? The answer is negative. In fact,

Theorem 1.3. Every deterministic online algorithm for the ski rental problem cannot

attain a competitive ratio less than 2− 1
𝐵 .

Proof. The intuition behind the proof is that the algorithm has to buy skis at some

point in time. If it doesn’t, the skiing days may go on indefinitely, and the competitive

ratio is unbounded. In case the algorithm buys at day 𝑗, then the adversary chooses to

terminate the skiing days at day 𝑗. The cost of the optimal offline solution is 𝑚𝑖𝑛{𝑗, 𝐵}.

∙ If 𝑗 ≤ 𝐵, then the competitive ratio is 𝑗−1+𝐵
𝑗 = 1 + 𝐵−1

𝑗 ≥ 1 + 𝐵−1
𝐵 = 2− 1

𝐵

∙ If 𝑗 ≥ 𝐵 then the competitive ratio is 𝑗−1+𝐵
𝐵 ≥ 2𝐵−1

𝐵 = 2− 1
𝐵

Thus, the competitive ratio is at least 2− 1
𝐵 .

The analysis for deterministic algorithms is complete in the classical sense. But

what about a randomized algorithm? Can randomization be proven useful against an

oblivious adversary?



Chapter 1. Online Computation 8

1.2.2 A Randomized Algorithm

The ski rental is an example of an online problem where randomization improves the

competitive ratio that an online algorithm can attain. Intuitively, since the worst case

input for the online algorithm is based on the round the player buys and there is not

a case that is bad for every possible deterministic algorithm, with the adversary not

knowing for sure the time the player buys, the competitive ratio should be improved

with a randomized algorithm. The definition of competitiveness easily extends to online

randomized algorithms. Instead of using the cost of the online algorithm, we simply

consider the expected value of its cost.

The proposed algorithm works as follows: Before the skiing days begin, the player

chooses to buy skis after skiing for 0 ≤ 𝑗 ≤ 𝐵 − 1 days where 𝑗 is sampled from a

probability distribution. Intuitively, the probability density function has support the

set {0, ..., 𝐵− 1} otherwise for large values of 𝑗 the algorithm would have an unbounded

competitive ratio. We describe the algorithm below:

Algorithm 2: RandSki

1: Input: 𝐵 > 1, the cost of buying skis

2: Let 𝜌 = 𝐵
𝐵−1 .

3: Sample according to the distribution 𝑃 [𝑗 = 𝑥] = 𝛼𝜌𝑥, 𝑥 ∈ {0, 1, ..., 𝐵 − 1}
4: Output: 𝑗 + 1, the day you’ll buy skis

where 𝛼 = 𝜌−1
𝜌𝐵−1

is a scaling factor in order to have a valid probability density

function.

Theorem 1.4. The competitive ratio of RandSki is 𝑒
𝑒−1 .

Proof. Because 𝑗 ≤ 𝐵−1, meaning that at the start of day 𝐵 you will have bought skis,

notice that the case (𝑛 > 𝐵) is equivalent to (𝑛 = 𝐵) (The optimal offline cost is 𝐵 in

both cases). For a specific day 𝑗 and number of skiing days 𝑛, the cost of the algorithm

is 𝑗 +𝐵 if 0 ≤ 𝑗 ≤ 𝑛− 1 and 𝑛 if 𝑛 ≤ 𝑗 ≤ 𝐵. Thus, the expected value of the cost is:

𝐸[𝑐𝑜𝑠𝑡] =

𝑛−1∑︁
𝑗=0

𝛼𝜌𝑗(𝑗 +𝐵) +

𝐵−1∑︁
𝑗=𝑛

𝛼𝜌𝑗𝑛 =

𝛼
𝑛−1∑︁
𝑗=0

𝑗𝜌𝑗 + 𝛼𝐵
𝑛−1∑︁
𝑗=0

𝜌𝑗 + 𝛼𝑛
𝐵−1∑︁
𝑗=𝑛

𝛼𝜌𝑗 =

𝛼
(𝑛− 1)𝜌𝑛+1 − 𝑛𝜌𝑛 + 𝜌

(𝜌− 1)2
+ 𝛼𝐵

𝜌𝐵 − 1

𝜌− 1
+ 𝛼𝑛

𝜌𝐵 − 𝜌𝑛

𝜌− 1
=

𝛼

(𝜌− 1)2
((𝑛− 1)𝜌𝑛+1 − 𝑛𝜌𝑛 + 𝜌+ 𝜌𝑛+1 − 𝜌+ 𝑛(𝜌− 1)(𝜌𝐵 − 𝜌𝑛)) =
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𝛼

(𝜌− 1)2
((𝜌− 1)𝑛𝜌𝐵) =

𝛼

𝜌− 1
𝑛𝜌𝐵 =

𝜌𝐵

𝜌𝐵 − 1
𝑛

Since 𝑛 ≤ 𝐵, the optimal offline cost is 𝑛. Hence the competitive ratio is bounded

above by the value 𝜌𝐵

𝜌𝐵−1
= 1+ 1

𝜌𝐵−1
. Notice that 𝜌𝐵 = ( 𝐵

𝐵−1)
𝐵 is an increasing sequence

which converges to 𝑒. Thus, the competitive ratio of the algorithm is 𝑒
𝑒−1 ≈ 1.58 and is

attained as 𝐵 → ∞.

The randomized algorithm performs better than the deterministic we analyzed earlier

for 𝐵 ≥ 3. Furthermore, 𝑒
𝑒−1 is the optimal competitive ratio that any online algorithm

can attain for the problem. However, we’ll omit the proof of the lower bound.

1.3 The Potential Function Method

We’ll now discuss one of the most powerful tools for analyzing online algorithms and

proving competitiveness results. The Potential Function Method will be extensively used

in the analysis of the OCO problem with switching cost in Chapter 4. The method is

based on a function, the potential, Φ which maps the current configuration (the state)

of the player and the adversary in round 𝑖 to a non-negative number and it shows how

close are the two configurations. The bigger the potential, the bigger the difference. Let

Φ𝑖 be the potential on round 𝑖. We define the amortized cost 𝑎𝑖 as:

𝛼𝑖 = 𝑐𝑖 +Φ𝑖 − Φ𝑖−1

Where 𝑐𝑖 is the cost of the online algorithm in round 𝑖. To prove that an online algorithm

is 𝑐-competitive, we could bound the cost in round 𝑖 by 𝑐 · OPT(𝑖) where OPT(𝑖) is the

cost of the optimal offline algorithm in round 𝑖, for every round. However, that does

not always work since the cost of the player in round 𝑖 may be higher or lower than 𝑐

· OPT(𝑖), but the total cost is bounded above 𝑐 · OPT(𝑖). That’s where the amortized

cost comes into play; Notice that:

𝑛∑︁
𝑖=1

𝑐𝑖 =
𝑛∑︁

𝑖=1

𝑎𝑖 +Φ0 − Φ𝑛 ≤
𝑛∑︁

𝑖=1

𝑎𝑖 +Φ0

Usually, Φ0 = 0 since the player and the adversary start with the same configuration.

Hence, if we were able to show that for every round 𝑖 that 𝑎𝑖 ≤ 𝑐 · OPT(𝑖) then the

online algorithm is 𝑐-competitive.
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To make things more clear, we’ll analyze an online algorithm for the list accessing

problem using the potential function method. The problem is defined as follows: Suppose

you are given a list 𝐿 with 𝑚 elements. Requests for the list elements arrive online and

the cost of answering the request is the position of the element in the list. Hence for

an element is position 𝑘, the cost of the algorithm is 𝑘. In order to minimize the cost,

there are two rules for reorganizing the list:

∙ After the request of element 𝑥, the element can be moved to any chosen position

closer to the front at no cost.

∙ We can also change the position of adjacent elements at unit cost.

Now consider the following algorithm (MTF - move to the front): After the request

of element 𝑖, the element is move to the front of the list at no cost.

Theorem 1.5. The competitive ratio of MTF is 2− 1
𝑚 .

Figure 1.1: Configurations for the online algorithm and OPT, Here we have 𝑣 = 3
(the asterisks)

Proof. We’ll define the potential function as the number of pairs (𝑎, 𝑏) such that element

𝑎 is before 𝑏 in the state of the online algorithm while 𝑏 is before 𝑎 in the state of the

optimal offline algorithm (OPT). In round 𝑖, a request for element 𝑥 arrives. Let 𝑣 be

the number of elements which are in front of 𝑥 in the online state and after 𝑥 in OPT

and let the position of 𝑥 to be 𝑘, 𝑗 in the online state and in OPT respectively. The

online algorithm moves the element to the front of the list. Thus, the increase in the

potential is at most (𝑗 − 1)− 𝑣 because (𝑗 − 1) new pairs can be created at most and 𝑣

pairs are removed. Moreover, OPT, can increase the potential at most by 𝑝− 𝑓 where 𝑝

is the paid exchanges and 𝑓 the free exchanges to the front. That’s because every paid

exchange can increase the potential by 1 and any free decreases the number of inversions

since the element 𝑥 is already in front in the online state. Thus:

𝑎𝑖 = 𝑐𝑖 +Φ𝑖 +Φ𝑖 − 1

≤ 𝑘 + 𝑗 − 1− 𝑣 + 𝑝− 𝑓

≤ 𝑗 + 𝑝+ 𝑘 − 𝑣 − 1
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Now notice that 𝑘 − 𝑣 ≤ 𝑗 and thus:

𝑎𝑖 ≤ 𝑗 + 𝑝+ (𝑗 − 1) ≤ 2(𝑗 + 𝑝)− 1 = 2𝑂𝑃𝑇 (𝑖)− 1

Summing up for all rounds 𝑖 = 1, ..., 𝑇 and noticing that 𝑂𝑃𝑇 ≤ 𝑚𝑇 (The highest cost

possible in a round is 𝑚 and is attained when the element is placed in the end of the

list) we get that:

𝑇∑︁
𝑖=1

𝑐𝑖 ≤
𝑇∑︁
𝑖=1

𝑎𝑖 ≤ 2𝑂𝑃𝑇 − 𝑇 ≤ 2𝑂𝑃𝑇 − 𝑂𝑃𝑇

𝑚
= (2− 1

𝑚
)𝑂𝑃𝑇

1.4 Metrical Task Systems

The problem of Metrical Task Systems (MTS) is one of the most well known problems

in the field of online algorithms and it generalizes many problems like paging and OCO

with switching cost. Consider a server which has to process a sequence of tasks that

arrive in an online fashion. The server can be in one of a finite states and the cost of

processing a task depends on the state of the server. When there is a state change, a

cost is incurred. The problem of MTS is develop algorithms that choose to which state

the server should migrate in order to minimize the total cost. We refer the reader to

[14] for a more elaborate discussion on metrical task systems.

In particular, a metrical task system is defined as a pair (𝑀,𝑅) where 𝑀 = (𝑋, 𝑑) is

a metric space and 𝑅 is a set of allowable tasks. Recall the definition of a metric space:

Definition 1.6. A metric space is an ordered pair 𝑀 = (𝑋, 𝑑) where 𝑋 is a set and

𝑑 : 𝑋 ×𝑋 → R≥0 is a metric on 𝑋. Thus for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 it satisfies:

𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

A well known example of an infinite metric space is the 𝑚-dimensional Euclidean

space (R𝑚, ‖·‖) where ‖·‖ is the euclidean norm. For an example of a finite metric space

consider a weighted undirected graph 𝐺(𝑉,𝐸) with a weight function 𝑤 : 𝐸 → R>0.

The set of points in the metric are the vertices of the graph. Now notice that we can

use as distance between two points, the shortest path between the two vertices which

satisfies all the requirements in order to be a metric.



Chapter 1. Online Computation 12

A task is a function 𝜏 : 𝑋 → R∪{∞}. The value 𝜏(𝑥), 𝑥 ∈ 𝑋 is the cost of processing

the task 𝜏 in state 𝑥. Whenever the state is changed from 𝑥 to 𝑦 a cost of 𝑑(𝑥, 𝑦) is

incurred. Hence, the goal is to minimize the total cost:

𝑇∑︁
𝑖=1

𝜏𝑖(𝑥𝑖) +
𝑇∑︁
𝑖=1

𝑑(𝑥𝑖−1, 𝑥𝑖)

where the first sum represents the total processing (or service) cost and the second

represents the total transaction (or switching) costs.

A simple example of a MTS problem is the following: Consider you have an ice

cream shop where you sell two ice cream flavours: chocolate and vanilla. Your ice cream

machine has two modes (𝐶, 𝑉 ) for producing the two flavors. Changing between the two

modes has a cost of 1. The machine produces the ice cream which corresponds at its

state at low cost but you can also manually make one for a higher cost. In particular, in

mode 𝑉 , the cost of vanilla is 1 and the cost of chocolate is 2 while at mode 𝐶 the cost

of chocolate is 1 and the cost of vanilla is 2. Requests for ice cream come in an online

fashion. How should you choose when to change the state of the machine in order to

minimize the cost? This problem can be formulated as a MTS of two states 𝐶, 𝑉 with

distance of 1 and possible task functions 𝜏𝐶 = (1, 2) for states 𝐶, 𝑉 respectively and

𝜏𝑉 = (2, 1) for states 𝐶, 𝑉 respectively.



Chapter 2

Convex Optimization

Mathematical Optimization (or Mathematical programming) is the problem of select-

ing the best (optimal) element from a set 𝑆 (usually R𝑛) that minimizes (or maximizes)

a certain function. More formally, a mathematical minimization problem can be formu-

lated as follows:

minimize
𝑥

𝑓0(𝑥)

subject to 𝑔𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚.

The set 𝑋 = {𝑥 ∈ R𝑛 : 𝑔𝑖(𝑥) ≤ 𝑏𝑖, ∀𝑖 ∈ [𝑚]} is called the feasible set of solutions

(or constraints) and a point 𝑥 ∈ 𝑋 is called a feasible point. A point 𝑥 /∈ 𝑋 is called

infeasible. For a minimization problem, a vector 𝑥* for which 𝑓(𝑥*) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝑋 is

the global minimum of 𝑓 . Now, a natural question arises: Is there always an optimal

solution to such a problem ? The answer is no. The following theorem of Weirstrass

states the sufficient conditions in order for an optimal solution to exist and throughout

this thesis we’ll only encounter problems where these conditions hold.

Theorem 2.1. Let 𝑓 : R𝑛 → R be a continuous function and 𝑋 ⊂ R𝑛 be a nonempty,

bounded and closed set. Then, the optimization problem min 𝑓(𝑥) : 𝑥 ∈ 𝑋 has an

optimal solution

The purpose of the field of mathematical programming is to design algorithms that

find the optimal solution to such a problem efficiently. In the general case, this is ex-

tremely hard whereas in special cases like linear programming (𝑓, 𝑔 affine), an optimal

solution can be found efficiently. In this chapter, we introduce the reader to a special

case of mathematical programming when the objective is a convex function and the

feasible set is convex named convex optimization (or programming). As we’ll see, these

restrictions allow us to design efficient algorithms. One of the reasons the area of con-

vex optimization has received great attention the past decades is because a very large

13
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number of problems, from many distinct areas, can be formulated as convex programs.

For instance in Machine Learning, fundamental problems like SVM, regression, logistic

regression, LASSO and matrix completion can be formulated like convex programs. For

an extensive analysis on theory, applications and algorithms of convex optimization we

refer the reader to the excellent book of S. Boyd and L. Vandenberghe [15]. Moreover,

a great survey that focuses on algorithms is [16]. The ideas we discuss in this chapter

are drawn from these two books.

2.1 Basic concepts

We’ll now proceed with the definitions of a convex set and a convex function.

Definition 2.2. A set 𝑋 ⊂ R𝑛 is called a convex set if for any two points in 𝑋 it

contains their line. This means for every 𝑥, 𝑦 ∈ 𝑋 and any 𝜆 ∈ [0, 1] we have that

𝜆𝑥+ (1− 𝜆)𝑦 ∈ 𝑋.

Figure 2.1: Examples of a convex and a non-convex set

Examples of convex sets are:

∙ The complete space R𝑛

∙ The solution set of a system of linear equations 𝑥 : 𝐴𝑥 = 𝑏, 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚

∙ Hyperplanes {𝑥 : 𝑐⊤𝑥 = 𝑏} and halfspaces {𝑥 : 𝑐⊤𝑥 ≤ 𝑏}

∙ The p-norm ball (𝑝 ≥ 1) {𝑥 : ‖𝑥‖ ≤ 𝑎} for any 𝑎 ≥ 0.

∙ The sublevel set of a convex function 𝑓 : {𝑥 : 𝑓(𝑥) ≤ 𝑔} for some 𝑔 ∈ R.

An important feature of convex sets is the following:

Theorem 2.3. The intersection of two convex sets is a convex set.

Proof. Let 𝐴,𝐵 be convex sets. Take 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐵 and let 𝑧 lie on the line segment

between 𝑥, 𝑦. Then 𝑧 ∈ 𝐴 since 𝐴 is convex and similarly, 𝑧 ∈ 𝐵 because 𝐵 is convex.

Therefore, 𝑧 ∈ 𝐴 ∩𝐵.
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By induction, we can generalize this theorem for any finite number of convex sets.

But why is this important? Because when formulating a convex optimization problem,

if we desire to add one more constraint (a convex set) to the feasible set then the feasible

set remains convex.

Definition 2.4. For a convex set 𝑋 ⊆ R𝑛, we say that a function 𝑓 : 𝑋 → R𝑛 is a

convex function on 𝑋 if for any two points 𝑥, 𝑦 ∈ 𝑋 and any 𝜆 ∈ [0, 1] we have that:

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦)

Figure 2.2: Examples of a non-convex and a convex function

Geometrically speaking, the line segment between (𝑥, 𝑓(𝑥)) to (𝑦, 𝑓(𝑦)) must be above

the graph of 𝑓 in order for 𝑓 to be convex.

Examples of convex functions are:

∙ The affine function 𝑓(𝑥) = 𝑐⊤𝑥+ 𝑏

∙ Any p-norm (𝑝 ≥ 1) 𝑓(𝑥) = ‖𝑥‖

∙ For a positive definite matrix 𝐴, the quadratic function 𝑓(𝑥) = 𝑥⊤𝐴𝑥+ 𝑐⊤𝑥+ 𝑑

∙
∑︀𝑛

𝑖=1 𝑓𝑖(𝑥) and max𝑖{𝑓𝑖(𝑥)} where 𝑓𝑖(𝑥) ∀𝑖 are convex functions. Thus, convexity

is preserved under sum and pointwise maximum.

An extremely important property that convex functions demonstrate and actually

that is the main reason of algorithmic success of convex optimization is that they exhibit

a local to global phenomenon. This means that if one has local information on a convex

function then can arrive at conclusions about global properties of the function. This is

demonstrated by the two following theorems:

Theorem 2.5. Let 𝑓 : 𝑋 → R𝑛 be a differentiable function and 𝑋 be a convex subset

of R𝑛. Then, 𝑓 is convex if and only ∀𝑥, 𝑦 ∈ 𝑋 it holds:

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥)
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What does this theorem mean? It means that if we have the value of 𝑓 at a point

𝑥 and the respective gradient (both are local information), then we can come up with

a global lower bound for 𝑓 : The affine function 𝑔(𝑦) = 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) which is

also the first order approximation of 𝑓 around x.

Figure 2.3: Illustration of theorem 2.5

Theorem 2.6. If 𝑥 is a local minimum of a convex function 𝑓 , then 𝑥 is a global

minimum.

Proof. Assume 𝑥 isn’t a global minimum of 𝑓 and let 𝑦 be a point for which 𝑓(𝑦) < 𝑓(𝑥).

Now consider the vector 𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦 for some 𝜆 ∈ (0, 1). From the definition of

convexity for 𝑓 we have:

𝑓(𝑧) = 𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦) < 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑥) = 𝑓(𝑥)

Since 𝑧 is an arbitrary convex combination of 𝑥, 𝑦, it can be as close to 𝑥 as possible.

Thus 𝑥 isn’t be a local minimum, a contradiction.

This again means that if one has local information, has found a point 𝑥 which is

a local minimum is ensured that in fact is a global minimum. This does not hold in

general for nonconvex optimization problems for which the usual methods converge only

to local minima, and not global (for instance, the training of neural networks).

Theorem 2.7. Consider a convex and diffentiable function 𝑓 defined in a set 𝑋. Then

any point 𝑥 ∈ 𝑋 that satisfies ∇𝑓(𝑥) = 0 is a global minimum of 𝑓 .

The proof comes straightforward from theorem 2.5. The reverse does not always hold

(consider for example 𝑓(𝑥) = 𝑥2, 𝑋 = [1, 2]), but it holds when 𝑋 = R𝑛. Hence, for

unconstrained optimization of differentiable convex functions, a necessary and sufficient

condition for global optimality is∇𝑓(𝑥) = 0. For constrained optimization, the following

theorem states the necessary and sufficient condition for optimality:

Theorem 2.8. Let 𝑓 : 𝑋 → R be a convex function and 𝑋 a closed, convex set on

which 𝑓 is differentiable. Then 𝑥 is optimal if and only if ∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) ≥ 0 ∀𝑦 ∈ 𝑋
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Proof. If 𝑥 satisfies the inequality, the from theorem 2.5 we get that is indeed an optimal

solution. For the other way round, consider that the inequality does not hold, thus there

exists a vector 𝑦 such that ∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) < 0. Now consider ℎ(𝑡) = 𝑓(𝑥+ 𝑡(𝑦 − 𝑥)) for

which ℎ′(0) = ∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) < 0, thus in the direction of 𝑦 there exist some vector 𝑧

for which 𝑓(𝑧) < 𝑓(𝑥), a contradiction since 𝑥 is optimal.

Figure 2.4: Illustration of theorem 2.8. Observe the inner product of −∇𝑓(𝑥) and
𝑦 − 𝑥 for some 𝑦 ∈ 𝑋

2.2 Duality and Optimality Conditions

Now, we’ll introduce the reader to an important concept in convex optimization (and

in general, mathematical optimization): Duality, and in particular Lagrange Duality. In

the algorithmic community, duality is extensively employed in order to design approx-

imation algorithms. In particular, methods like Primal-Dual analysis or Dual fitting

which mainly utilize linear programming duality can be used to design algorithm for

combinatorial problems including the Set Cover, Uncapacitated Facility Location and

the 𝑘-median problem. Concerning online algorithms, duality also is employed to design

competitive algorithms. For instance, the 𝑒
𝑒−1 -competitive ratio for the ski-rental prob-

lem we discussed in Chapter 1 can be achieved with an approach based on duality. An

interesting read on the use of duality for competitive analysis is [21]. The algorithmic

success of duality is partially because through the dual problem we’ll define below, it

provides lower bounds for the optimization problem in hand. As we’ll see in chapter 4,

we’ll analyze an algorithm for a linear covering problem with switching costs where the

proof will be heavily based on duality and the lower bound it provides us. In addition,

in this paragraph, we’ll discuss the optimality conditions for an optimization problem

(Karush-Kuhn-Tucker conditions) which are closely related to duality and we’ll find

them useful in later topics.

To understand the concept of duality first we have to start with the definition of the

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 of an optimization problem:
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Definition 2.9. Given the optimization problem, which from now on we’ll refer to as

the primal optimization problem:

minimize
𝑥

𝑓(𝑥)

subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, . . . ,𝑚.

ℎ𝑗(𝑥) = 0, 𝑗 = 1, . . . , 𝑝.

The Lagrangian associated with the optimization problem is:

𝐿(𝑥, 𝜆, 𝑣) = 𝑓(𝑥) +
𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖(𝑥) +

𝑝∑︁
𝑗=1

𝑣𝑗ℎ𝑗(𝑥)

The variables 𝜆𝑖, 𝑖 ∈ [𝑚] and 𝑢𝑗 , 𝑗 ∈ [𝑝] are called Lagrange multipliers.

Now we are ready to define the dual problem. The objective of the dual problem is

the Lagrangian Dual defined as:

Definition 2.10. Given the Lagrangian 𝐿(𝑥, 𝜆, 𝑢) of some optimization problem over

domain 𝑋, the Lagrangian Dual is the function:

𝐹 (𝜆, 𝑣) = inf
𝑥∈𝑋

𝐿(𝑥, 𝜆, 𝑢) = inf
𝑥∈𝑋

(𝑓(𝑥) +
𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖(𝑥) +

𝑝∑︁
𝑗=1

𝑣𝑗ℎ𝑗(𝑥))

Notice that the Lagrangian dual is always a concave function (a function 𝑓 is concave

when −𝑓 is convex). The Lagrangian dual function is the pointwise minimum of affine

functions, since for every 𝑥 we get an affine function in variables 𝜆, 𝑢. It is easy to

verify that the pointwise minimum of affine functions(and in general concave functions)

is a concave function. The maximization of a concave function over a convex set is

equivalent to a convex optimization problem since for a concave function 𝑔 it holds:

𝑎𝑟𝑔max𝑥{𝑔(𝑥)} = 𝑎𝑟𝑔min𝑥{−𝑔(𝑥)} (if such an 𝑥 exists). Hence, even if the primal

problem is not convex, the dual problem that we’ll define below is always convex.

Definition 2.11. The Dual optimization problem of the primal is:

maximize
𝑥

𝐹 (𝜆, 𝑣)

subject to 𝜆 ≥ 0

Now, we’ll use the above to derive the dual of a linear program. A linear program is

a problem that may have the form:

minimize
𝑥

𝑐𝑇𝑥

subject to 𝐴𝑥 ≥ 𝑏
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Where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚. The Lagrangian function is: 𝐿(𝑥, 𝜆) = 𝑐𝑇𝑥+ 𝜆𝑇 (𝑏− 𝐴𝑥) =

(𝑐𝑇 − 𝜆𝑇𝐴)𝑥+ 𝜆𝑇 𝑏. Hence, the Lagrangian dual is:

𝐹 (𝜆) = inf
𝑥
𝐿(𝑥, 𝜆) =

⎧⎨⎩𝑏𝑇𝜆, if −𝐴𝑇𝜆+ 𝑐 = 0

−∞, otherwise

That’s because an affine function (𝑎𝑇𝑥, 𝑎 ̸= 0) is unbounded in R𝑛. Thus the dual

problem becomes:

maximize
𝑥

𝑏𝑇𝜆

subject to 𝐴𝑇𝜆 = 𝑐

𝜆 ≥ 0

Which is also a linear program. As we previously said, the dual problem provides a

lower bound to the optimal value of the primal problem. That is named weak duality.

Theorem 2.12 (Weak Duality). Let 𝑝* be the value of the optimal solution for the

primal problem, and 𝑑* be the value of the optimal solution for the dual problem. Then

it holds: 𝑑* ≤ 𝑝*.

Proof. Let 𝑋 denote the feasible region of the primal problem. Now recall the definition

of the primal problem. We had 𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ [𝑚] and ℎ𝑖(𝑥) = 0, 𝑗 ∈ [𝑝]. Since 𝜆𝑖 are

nonnegative, we have that:

𝑓(𝑥) +

𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖(𝑥) +

𝑝∑︁
𝑖=1

𝑢𝑖ℎ𝑖(𝑥) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝑋

Since this holds for all 𝜆, 𝑢, it holds also for the optimal values 𝜆*, 𝑢*. Thus:

𝑑* = inf
𝑥∈𝑋

𝐿(𝑥, 𝜆*, 𝑢*) ≤ inf
𝑥∈𝑋

𝑓(𝑥) ≤ 𝑝*

A natural question arises: When does 𝑝* = 𝑑* (which we refer to as strong duality),

the optimal value of the primal solution is equal to the optimal value of the dual solution?

This is determined by the Slater’s Condition which is a sufficient condition to ensure

strong duality. Slater’s condition always holds for linear programming, except when

both primal and dual problems are unfeasible (i.e 𝑝* = +∞ and 𝑑* = −∞). In general,

this is not true for an optimization problem (even a convex one).

Definition 2.13 (Slater’s condition). For a primal optimization problem, we say that it

respects Slater’s condition if the objective function 𝑓 is convex, the constraint functions
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𝑔𝑖, 𝑖 ∈ [𝑚] are convex, the constraint functions ℎ𝑗 , 𝑗 ∈ [𝑝] are affine, and there exists a

point 𝑥̄ in the interior of the region, i.e 𝑔𝑖(𝑥̄) < 0, ∀𝑖 ∈ [𝑚], and ℎ𝑗(𝑥̄) = 0, ∀𝑗 ∈ [𝑝]

A careful reader should have observed by now that the equality constraints ℎ𝑖 should

always be affine functions in order to have a convex problem. Otherwise the constraint

ℎ(𝑥) = 0 is equivalent to ℎ(𝑥) ≥ 0∧ ℎ(𝑥) ≤ 0. If ℎ is not an affine function, at least one

these constraints is described by a nonconvex set.

Now we’ll state the optimality conditions (Karush-Kuhn-Tucker) we mentioned ear-

lier, which we’ll find extremely useful is later chapters:

Definition 2.14. The Karush-Kuhn-Tucker conditions for the pair of the primal and

dual problem are:

0 = ∇𝑓(𝑥) +
𝑚∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖(𝑥) +

𝑝∑︁
𝑗=1

𝑢𝑗∇ℎ𝑗(𝑥)

𝑢𝑖ℎ𝑖(𝑥) = 0, ∀𝑖 ∈ [𝑚]

𝑔𝑖(𝑥) ≤ 0, ∀𝑖 ∈ [𝑚], ℎ𝑗(𝑥) = 0, ∀𝑗 ∈ [𝑝]

𝜆𝑖 ≥ 0, ∀𝑖 ∈ [𝑚]

Which are, in order, the stationarity condition, complementary slackness conditions,

primal feasibility and dual feasibility. We should note that for any optimization problem,

these conditions are sufficient for optimality for the primal and the dual problem. If

𝑥*, 𝜆*, 𝑢* satisfy the KKT conditions then these are in fact the optimal solutions for the

primal-dual pair. The necessity does not always hold. Only if strong duality holds, then

the optimal solutions satisfy the KKT conditions. Thus, under strong duality, KKT

conditions are necessary and sufficient for optimality of the primal-dual pair.

2.3 Gradient Descent

We’ll now proceed and describe the most simple algorithm for convex optimization

(and in general, optimization). Gradient descent is a first-order algorithm which means

that uses only gradient information in order to find an optimal solution. In contrast,

second-order methods (like Newton’s Method) exploit the curvature of the objective

function by using the Hessian (the square matrix of second-order derivatives of a scalar-

valued function). Moreover, Gradient descent is an iterative method meaning that the

optimization procedure proceeds in iterations, each one improving the objective value.

The rule for updating is the following:

𝑥𝑡 = 𝑥𝑡−1 − 𝜂𝑡∇𝑓(𝑥𝑡−1)
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Where 𝜂 is the step size (or learning rate) at time 𝑡 which is chosen based properties of

the objective function and perhaps on which is iteration the algorithm is on. The idea is

to take a step from the previous point designated by the negative gradient of the function

in that point. In that way, we make a step towards a direction that the function has a

smaller value. A question at this point is how to evaluate such an algorithm? Usually,

an input to the gradient descent algorithm is a desired accuracy of 𝜖 in the solution it

provides. Suppose 𝑥* is the value that minimizes the objective and 𝑥𝑡 is the algorithm’s

value in iteration 𝑡. Then we’d like to minimize the number of iterations (𝑡) in order to

have (or having a high convergence ratio):

𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ 𝜖

An algorithm is evaluated based on the number of iterations needed in order to provide

an accuracy of 𝜖. 𝑇 = 𝑂(𝑔(𝜖)) (ignoring other constants). We’ll see shortly that if

the objective function has some useful properties the convergence ratio is significantly

improved. Now let’s state the algorithm more formally for the case of constrained

optimization:

Algorithm 1: Gradient Descent

1: Input: function 𝑓 , number of iterations 𝑇 , Feasible set 𝑋, initial point 𝑥1 ∈ 𝑋,

sequence of step sizes {𝜂𝑡}
2: for 𝑡 = 1 : 𝑇 do

3: Let 𝑦𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡), 𝑥𝑡+1 = Π𝑋(𝑦𝑡+1)

4: end for

5: return 𝑥𝑇+1

Figure 2.5: Illustration of the Gradient Descent algorithm

Since the point 𝑦𝑡+1 may lie outside of the feasible set we need to project back to the

feasible set. The step 𝑥𝑡+1 = Π𝑋(𝑦𝑡+1) does exactly that. The algorithms we’ll discuss

throughout this thesis will contain as a step a projection onto a convex set. First, we
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have to say that the projection of a point 𝑥 onto a convex set 𝑋 is given by:

Π𝑋(𝑦) = 𝑎𝑟𝑔min
𝑥∈𝑋

‖𝑥− 𝑦‖

and it can be shown that the above problem has a unique solution. Using theorem 2.8

we get that for 𝑥 ∈ 𝑋 and 𝑦 ∈ R𝑛.

(Π𝑋(𝑦)− 𝑥)𝑇 (Π𝑋(𝑦)− 𝑦) ≤ 0

and by using law of cosines we get:

‖Π𝑋(𝑦)− 𝑥‖2 + ‖𝑦 −Π𝑋(𝑦)‖2 ≤ ‖𝑦 − 𝑥‖2

Which implies,

‖Π𝑋(𝑦)− 𝑥‖ ≤ ‖𝑦 − 𝑥‖

Figure 2.6: projection onto a convex set

Now, let’s discuss some properties of the objective function and the constraint set

that are useful in the analysis of Gradient Descent. Also, we’ll find them extremely

useful in later chapters.

Definition 2.15. The diameter of a convex set 𝑋 is given by:

𝑚𝑎𝑥𝑥,𝑦∈𝑋 ‖𝑥− 𝑦‖

In general, the diameter will affect negatively the convergence ratio, since for largest

sets, it will take longer to find the minimizer.

Definition 2.16. We say that a function is Lipschitz continuous with parameter 𝐺 if:

|𝑓(𝑥)− 𝑓(𝑦)| ≤ 𝐺 ‖𝑥− 𝑦‖ , ∀𝑥, 𝑦 ∈ 𝑋
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which equivalent to a bounded gradient ‖∇𝑓(𝑥)‖ ≤ 𝐺. Low values of 𝐺 means that the

function isn’t changing at a high rate. Thus the values of points near to the minimizer

will be closer to the optimal value and the convergence ratio will be higher.

Definition 2.17. We say that a function is 𝛼-strongly convex if:

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) +
𝛼

2
‖𝑦 − 𝑥‖2 , ∀𝑥, 𝑦 ∈ 𝑋

which means that the function 𝑓 grows at least quadratically. Similarly,

Definition 2.18. We say that a function is 𝛽-smooth if:

𝑓(𝑦) ≤ 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) +
𝛽

2
‖𝑦 − 𝑥‖2 , ∀𝑥, 𝑦 ∈ 𝑋

which means that the function 𝑓 grows at most quadratically. This condition is

equivalent to a Lipschitz condition of the gradient:

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ ‖𝑥− 𝑦‖ , ∀𝑥, 𝑦 ∈ 𝑋

Finally, we’ll define the condition number of a function 𝑓 which is a decisive paramenter

in the convergence ratio of gradient descent: First we have to say that for an 𝛼-strongly

convex and 𝛽- smooth twice differentiable function the follow holds:

𝛼𝐼 ⪯ ∇2𝑓(𝑥) ⪯ 𝛽𝐼

where we denote 𝐴 ⪯ 𝐵 if 𝐵 − 𝐴 is a positive semidefinite matrix. Moreover, this is

equivalent to all the eigenvalues of the hessian matrix to lie in the interval [𝛼, 𝛽]. The

condition number of 𝑓 is now:

𝛾 =
𝛼

𝛽
≤ 1

The condition number shows how ”spherical” are the sublevel sets of the convex function.

If 𝛾 = 1 we get spherical subsets and thus at any point, the gradient will point towards

the minimizer and thus the convergence ratio of gradient descent is higher. This does

not happen for small values of 𝛾 where the sublevel sets are ellipsoidal and the gradient

points to a location far from the minimizer.

First, let’s see how gradient descent performs for a general case:

Theorem 2.19. For 𝐺-Lipschitz convex functions and diameter of the feasible set equal

to 𝐷, it holds:

𝑓(
1

𝑇

𝑇∑︁
𝑡=1

𝑥𝑡)− 𝑓(𝑥*) ≤ 𝐷𝐺√
𝑇
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There is no need to provide the proof for this theorem. We’ll derive it as a special case

of Online Gradient Descent in the next chapter. Thus one needs 𝑂( 1
𝜖2
) iterations in order

to achieve an error of 𝜖. We’ll see now that the number of iterations is exponentially

lower in the case we have a 𝛾-well conditioned function.

Theorem 2.20. For constrained minimization of 𝛾-well conditioned functions and 𝜂𝑡 =
1
𝛽 , it holds:

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤ ((𝑓(𝑥1)− 𝑓(𝑥*))𝑒−
𝛾
4
𝑡

Proof. By strong convexity, we have for any pair 𝑥, 𝑥𝑡 ∈ 𝑋:

∇𝑓(𝑥𝑡)
𝑇 (𝑥− 𝑥𝑡) ≤ 𝑓(𝑥)− 𝑓(𝑥𝑡)−

𝛼

2
‖𝑥− 𝑥𝑡‖2

Because ‖𝑥‖2 = 𝑥𝑇𝑥, observe that:

𝑥𝑡+1 = Π𝑋(𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡)) = 𝑎𝑟𝑔min
𝑥∈𝑋

{‖𝑥− (𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡))‖2} =

𝑎𝑟𝑔min
𝑥∈𝑋

{‖𝑥− 𝑥𝑡‖2 + 2𝜂𝑡(𝑥− 𝑥𝑡)
𝑇∇𝑓(𝑥𝑡) + 𝜂2𝑡∇2𝑓(𝑥𝑡)} =

𝑎𝑟𝑔min
𝑥∈𝑋

{∇𝑓(𝑥𝑡)
𝑇 (𝑥− 𝑥𝑡) +

𝛽

2
‖𝑥− 𝑥𝑡‖2}

Hence, by smoothness of 𝑓 , we have:

𝑓(𝑥𝑡+1)− 𝑓(𝑥𝑡) ≤ ∇𝑓(𝑥𝑡+1)
𝑇 (𝑥− 𝑥𝑡) +

𝛽

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 =

= min
𝑥∈𝑋

{∇𝑓(𝑥)𝑇 (𝑥− 𝑥𝑡) +
𝛽

2
‖𝑥− 𝑥𝑡‖2}

Let ℎ𝑡 = 𝑓(𝑥𝑡)− 𝑓(𝑥*), the error at time 𝑡. By using strong convexity we get:

ℎ𝑡+1 − ℎ𝑡 ≤ min
𝑥∈𝑋

{𝑓(𝑥)− 𝑓(𝑥𝑡) +
𝛽 − 𝛼

2
‖𝑥− 𝑥𝑡‖2}

Let’s take a look intuitively what we’ve achieved at this point just by using the powerful

assumptions of strong convexity and smoothness. For 𝛼 close to 𝛽 we get easily that

ℎ𝑡+1 ≤ 0, and thus convergence is achieved. This means that for 𝛾 = 1 even 1 iteration

suffices for optimality (Now the reader can also understand why we chose this specific

learning rate). Observe now that for 𝛾 close to one the minimization leads to a point

that is close to 𝑥*. That agrees with the intuitively explanation we gave for 𝛾 above. As

we previously said, 𝑓 is bounded above and below from quadratic functions. Closer the

quadratic functions are to each other (a.k.a closer 𝑎 is to 𝑏), the above minimum will

provide us as close as to −ℎ𝑡, which is our aim for fast convergence.

Obviously, by minimizing over a subset of 𝑋, the minimum cannot get any bigger.

Let’s consider as a subset, the set of convex combinations of 𝑥𝑡 and 𝑥* which is a line.
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Intuitively, the minimizer should be a point close to the set of convex combinations

of 𝑥* and 𝑥𝑡 since those two points minimize each of the functions in the sum (In one

dimension, the minimizer will always lie in this subset). Even though with this relaxation

the analysis will not be optimal, it suffices to show that an exponential convergence ratio

is achieved. Therefore for any 𝜆 ∈ [0, 1]

ℎ𝑡+1 − ℎ𝑡 ≤ min
[𝑥𝑡,𝑥*]

{𝑓(𝑥)− 𝑓(𝑥𝑡) +
𝛽 − 𝛼

2
‖𝑥− 𝑥𝑡‖2} ≤

𝑓((1− 𝜆)𝑥𝑡 + 𝜆𝑥*)− 𝑓(𝑥𝑡) +
𝛽 − 𝛼

2
𝜆2 ‖𝑥− 𝑥𝑡‖2 ≤

≤ −𝜆ℎ𝑡 +
𝛽 − 𝛼

2
𝜆2 ‖𝑥− 𝑥𝑡‖2

Now, we have by strong convexity and Theorem 2.8:

ℎ𝑡 = 𝑓(𝑥𝑡)− 𝑓(𝑥*) ≥ ∇𝑓(𝑥*)𝑇 (𝑥𝑡 − 𝑥*) +
𝛼

2
‖𝑥* − 𝑥𝑡‖2 ≥

𝛼

2
‖𝑥* − 𝑥𝑡‖2

Finally, we get:

ℎ𝑡+1 − ℎ𝑡 ≤ (−𝜆+
𝛽 − 𝛼

𝛼
𝜆2)ℎ𝑡

We ask for a value of 𝑘 such that −𝜆2 𝛽−𝛼
𝑎 +𝜆+𝑘 > 0, ∀𝜆. We easily choose 𝑘 = − 𝛼

4(𝛽−𝛼) .

Thus,

ℎ𝑡+1 ≤ ℎ𝑡(1−
𝛼

4(𝛽 − 𝛼)
) ≤ ℎ𝑡(1−

𝛼

4𝛽
) ≤ ℎ1(1−

𝛼

4𝛽
)𝑡 ≤ ℎ1𝑒

− 𝛾
4
𝑡

And the proof is complete.

Thus the 𝛾-well condition on 𝑓 improves substantially the number of iterations to

𝑂(log(1𝜖 )). A careful reader at this point has observed that even though the projected

gradient descent is an algorithm for optimization, it contains a step of projection onto a

convex set, which in the general case is an optimization problem!. We didn’t built from

scratch an algorithm that solves an optimization problem. An interested reader can

see [16] for non black-box optimization algorithms like the Ellipsoid Method or Interior

Point Methods. We discussed gradient descent to see how the algorithm manages to

solve an optimization problem and in order to introduce the reader more gently to online

gradient descent in the next chapter where its natural to assume that the designer has

a non black-box optimization solver at her disposition. However, we should note that

there are specific cases, like the euclidean ball, where the calculation is straightforward

as well as other sets such as the probability simplex which we see in many applications

in online learning: {𝑥 ∈ R𝑛 : 𝑥 ≥ 0,
∑︀𝑛

𝑖=1 𝑥𝑖 = 1} where the projection can be calculated

analytically in time complexity 𝑂(𝑛 log 𝑛) without the use of an optimization procedure.



Chapter 3

Online learning & Online Convex

Optimization

In the previous chapter, we discussed convex optimization in an offline setting. Now,

we’ll discuss in an online setting which defines the area of Online Convex Optimization

(OCO). OCO is strongly related to the area of online learning as well as the main

problem of this thesis, OCO with switching cost. In fact, many online learning problems

can be formulated as OCO problems. We start by introducing the reader to the area of

online learning through the experts problem, one of the fundamental problems of this

area. For an extensive survey on online learning and online convex optimization we refer

the reader to [22],[28],[41]. This Chapter is mostly based on the first Chapters of [28].

3.1 The Experts problem

Let’s consider the following online scenario: Each day for 𝑇 days you you receive

a certain question which has two possible answers(𝐴 and 𝐵), without knowing the

questions of the future days. However, you have to give your answer before the question

if revealed. After your answer in each day, if you chose the right answer then you don’t

get penalized. Otherwise you suffer a loss. Fortunately, to help you make your decisions

there is a team of 𝑁 experts who each of them recommends one of these answers. The

question is how to choose a good strategy for such a problem. To be more precise,

how to exploit the information the experts give in each round. This is a typical online

decision-making scenario where there are external sources that help the player to make

choices. For instance, the question may be the choice of buying or not a certain stock

and the experts to be a team of brokers.

Recall now the notion of the adversary from chapter 1: The adversary will construct

the worst possible input sequence for the player including the decisions of the experts

26
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as well as which of the questions will be asked in each round. At first, it may seem that

the adversary has too much power and the player has no possible good strategy, but as

we’ll see shortly if we define an appropriate and fair benchmark we can design efficient

online algorithms. But let’s start with a benchmark that it’s unfair to the player which

is to minimize the number of mistakes the player does (relatively to 𝑇 ). Actually, there

is a trivial strategy to obtain 𝑇
2 mistakes which is also the optimal for any randomized

algorithm.

To obtain 𝑇
2 mistakes, we simply choose one of these choices based on a fair coin flip.

Recall that the adversary we consider does not know the random number generator the

player uses. Such a benchmark is not fair in a sense that it doesn’t take into consideration

how poignant is the advice of the experts. That’s because, in two different instances,

if in the first, the experts make random predictions based on a coin flip and in another

the experts are right almost every time it doesn’t make sense to evaluate both players

based on the number of their respective mistakes.

A meaningful approach is to compete against the best expert, the one that makes the

fewest mistakes. Let’s denote as 𝑚𝑡(𝑖) a binary function which indicates if the expert 𝑖

makes a wrong prediction in day 𝑡 and as 𝑚𝑡 similarly if the player makes a mistake at

day 𝑡. Our goal is to minimize the average between the mistakes the player makes and

the number of mistakes of the best expert. That’s equivalent to minimizing the average

Regret of the player which we’ll constantly use as a performance metric throughout this

chapter. Intuitively, it means that at the end, looking back at the experts predictions,

you don’t want to regret not having picked to follow one of the experts all the time. The

purpose of the algorithms in online learning is to find as fast as possible such an expert.

1

𝑇
(

𝑇∑︁
𝑡=1

𝑚𝑡 −min
𝑖∈𝑁

𝑇∑︁
𝑡=1

𝑚𝑡(𝑖))

Now we’ll discuss an efficient algorithm in order to minimize the average Regret, named

the weighted majority algorithm.

3.1.1 The Weighted Majority Algorithm

Before stating the algorithm in a general setting, let’s consider a simple case in order

to gain intuition on the problem. Suppose there is an expert that makes no mistakes.

Your strategy is simple: Take a majority vote, which means to make the choice the

majority of the experts predict. Of course, after you realize an expert made a mistake,

you don’t take his opinion in consideration anymore. Based on this strategy, how many

mistakes will you do you find the unerring one? Notice, that each time the player makes

a mistake, half of the experts are discarded because otherwise the player would be right.
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Therefore, the player makes 𝑂(log 𝑛) mistakes until she finds the best expert and the

average regret goes to zero as 𝑇 → ∞.

Now, in the general case, there won’t be an unerring expert and thus the above

algorithm won’t work. In the above case, the trust of the player to an expert is binary.

Either she listens to her or not. Let’s generalize this concept and make the trust (or

weight) to be a function 𝑤𝑡 in the interval [0, 1]. The idea stays the same: sum up

the trust of the experts that prediction an action and take the action which has the

highest trust. When an expert makes a mistake now, the player will reduce her trust by

a factor of 1− 𝜖. Let’s describe the algorithm formally. Let the two choices be 𝐴,𝐵 and

𝑆𝑡(𝐴)(𝑆𝑡(𝐵)) the set of the experts whose opinion is 𝐴(𝐵) in round 𝑡.

Algorithm 1: Deterministic Weighted Majority Algorithm

1: Initialize: 𝑤1(𝑖) = 1, ∀𝑖 ∈ [𝑛]

2: for 𝑡 = 1 : 𝑇 do

3: if
∑︀

𝑖∈𝑆𝑡(𝐴)𝑤𝑡(𝑖) ≥
∑︀

𝑖∈𝑆𝑡(𝐵)𝑤𝑡(𝑖) then

4: choose 𝐴, otherwise choose 𝐵

5: end if

6: for expert 𝑖 which made a mistake in round 𝑡

7: 𝑤𝑡+1(𝑖) = (1− 𝜖)𝑤𝑡(𝑖)

8: end for

9: end for

Theorem 3.1. Let 𝑀𝑇 and 𝑀𝑇 (𝑖) be the total number of mistakes the algorithm and

the 𝑖 expert make until step 𝑇 , respectively. Then, for any 𝑖 ∈ [𝑛]:

𝑀𝑇 < 2(1 + 𝜖)𝑀𝑇 (𝑖) + 2
log 𝑛

𝜖

Proof. We’ll analyze the algorithm using a potential 𝜑𝑡 =
∑︀𝑛

𝑖=1𝑤𝑡(𝑖) which simply sums

up the total weight of all the experts in round 𝑡. Since the weights can only be decreased

it holds: 𝜑𝑡 ≤ 𝜑𝑡+1. At every round 𝑡 that we made a mistake (say we chose 𝐴 and 𝐵

appeared), at least half of the weight corresponded to experts that chose 𝐴 and is equal

to
∑︀

𝑖∈𝑆𝑡(𝐴)𝑤𝑡(𝑖) ≥ 𝜑𝑡

2 . Hence,

𝜑𝑡+1 ≤
∑︁

𝑖∈𝑆𝑡(𝐴)

(1− 𝜖)𝑤𝑡(𝑖) +
∑︁

𝑖∈𝑆𝑡(𝑏)

𝑤𝑡(𝑖) ≤
1

2
𝜑𝑡(𝑖)(1− 𝜖) +

1

2
𝜑𝑡(𝑖) = (1− 𝜖

2
)𝜑𝑡

By induction we get:

𝜑𝑇 = 𝜑1(1−
𝜖

2
)𝑀𝑇 = 𝑛(1− 𝜖

2
)𝑀𝑇
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Moreover, for every expert 𝑖 it holds (recall that the weight 𝑤𝑡(𝑖) is decreased by a factor

of (1− 𝜖) every time the expert 𝑖 makes a mistake):

𝜑𝑇 =
𝑛∑︁

𝑖=1

𝑤𝑇 (𝑖) > 𝑤𝑇 (𝑖) = (1− 𝜖)𝑀𝑇 (𝑖)

The above two inequalities give us:

(1− 𝜖)𝑀𝑇 (𝑖) < 𝑛(1− 𝜖

2
)𝑀𝑇 ⇒ 𝑀𝑇 (𝑖) log(1− 𝜖) < log 𝑛+ 𝑙𝑜𝑔(1− 𝜖

2
)𝑀𝑇

Finally, applying the inequalities −𝑥− 𝑥2 < 𝑙𝑜𝑔(1− 𝑥) < −𝑥 for 𝑥 ∈ (0, 12) which derive

from the Taylor expansion of 𝑙𝑜𝑔(1− 𝑥) we get:

−𝑀𝑇 (𝑖)(𝜖+ 𝜖2) ≤ log 𝑛−𝑀𝑇
𝜖

2
⇒ 𝑀𝑇 < 2(1 + 𝜖)𝑀𝑇 (𝑖) + 2

log 𝑛

𝜖

This result implies that when 𝑇 >> 𝑛, the number of mistakes the algorithm makes

is approximately twice the number of mistakes of the best expert. Actually, if 𝐿 ≤ 𝑇
2 ,

no algorithm can improve substantially these results.

Theorem 3.2. Suppose the number of mistakes the best expert makes is 𝐿 ≤ 𝑇
2 . Then,

in the worst case, no deterministic algorithm can make fewer than 2𝐿 mistakes.

Proof. Assume an instance with two experts: 𝐴,𝐵 which always predict 𝐴,𝐵 respec-

tively. For any given decision of the algorithm, the adversary chooses the opposite

decision (that’s possible, since the algorithm is deterministic). Hence, the total number

of mistakes the algorithm makes is 𝑇 . The best of the two experts makes ≤ 𝑇
2 mistakes

since in each round at least one of them is right.

Now, a natural questions arises: Can randomization be proven useful in such a set-

ting? The answer is yes. We’ll now discuss a randomized version of the WM algorithm.

The only difference from the deterministic is instead of adding the weights of experts

when comparing the sums in order to make our decision, we now choose to follow one

expert basec on the weight. The probability of choosing expert 𝑖 in round 𝑡 is now:

𝑝𝑡(𝑖) =
𝑤𝑡(𝑖)∑︀𝑛

𝑗=1 𝑤𝑡(𝑗)
. The algorithm is described below:
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Algorithm 2: Randomized Weighted Majority Algorithm

1: Initialize: 𝑤1(𝑖) = 1, ∀𝑖 ∈ [𝑛]

2: for 𝑡 = 1 : 𝑇 do

3: Select advice of expert 𝑖 with probability 𝑝𝑡(𝑖) =
𝑤𝑡(𝑖)∑︀𝑛

𝑗=1 𝑤𝑡(𝑗)

4: for for each expert 𝑖 that made a mistake in round 𝑡 do:

5: 𝑤𝑡+1(𝑖) = (1− 𝜖)𝑤𝑡(𝑖)

6: end for

7: end for

Theorem 3.3. Let 𝑚𝑇 ,𝑚𝑇 (𝑖) denote the total number of total mistakes of the player

and the expert 𝑖. Then for every expert 𝑖:

E[𝑚𝑡] < (1 + 𝜖)𝑚𝑇 (𝑖) +
log 𝑛

𝜖

Thus randomization improves the bound by a factor of two. The proof of the above

theorem shares the same idea with the one of the deterministic case and we won’t include

it at this point.

So far, we’ve assumed that the loss of the experts is binary. Either expert 𝑖 makes a

mistake or not. Let’s generalize this concept and assume that the loss of the experts is a

number 𝑐 ∈ [0, 1]. Now consider the same strategy as the above randomized algorithm.

Choosing the expert 𝑖 with probability 𝑝𝑡(𝑖). Then, the expected loss of the algorithm

in round 𝑡 is
∑︀𝑛

𝑖=1 𝑐𝑡(𝑖)𝑝𝑡(𝑖) = 𝑐𝑇𝑡 𝑝𝑡. This leads us to the hedge algorithm which we

analyze below:

Algorithm 3: Hedge Algorithm

1: Initialize: 𝑤1(𝑖) = 1, ∀𝑖 ∈ [𝑛]

2: for 𝑡 = 1 : 𝑇 do

3: Select advice of expert 𝑖 with probability 𝑥𝑡(𝑖) =
𝑤𝑡(𝑖)∑︀𝑛

𝑗=1 𝑤𝑡(𝑗)

4: Suffer loss 𝑐𝑇𝑡 𝑥𝑡

5: Update weights 𝑤𝑡+1(𝑖) = 𝑤𝑡(𝑖)𝑒
−𝜖𝑐𝑡(𝑖)

6: end for

Theorem 3.4. Let 𝑐2𝑡 denote the 𝑛-dimensional vector of pointwise square losses (i.e

𝑐2(𝑖) = 𝑐(𝑖)2). Then, the hedge algorithm satisfies for every expert 𝑖:

𝑇∑︁
𝑡=1

𝑐𝑇𝑡 𝑥𝑡 ≤
𝑇∑︁
𝑡=1

𝑐𝑡(𝑖) + 𝜖
𝑇∑︁
𝑡=1

𝑐2𝑡𝑥𝑡 +
log 𝑛

𝜖
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Proof. Set Φ𝑡 =
∑︀𝑇

𝑡=1𝑤𝑡(𝑖), then:

Φ𝑡+1 =

𝑛∑︁
𝑖=1

𝑤𝑡(𝑖)𝑒
−𝜖𝑐𝑡(𝑖) = Φ𝑡

𝑛∑︁
𝑖=1

𝑥𝑡𝑒
−𝜖𝑐𝑡(𝑖)

Using the taylor approximation of 𝑒−𝑥: ∀𝑥 ≥ 0, 𝑒−𝑥 ≤ 1− 𝑥+ 𝑥2:

Φ𝑡+1 ≤ Φ𝑡

𝑛∑︁
𝑖=1

𝑥𝑡(1− 𝜖𝑐𝑡(𝑖) + 𝜖2𝑐𝑡(𝑖)) = Φ𝑡(1− 𝜖𝑐𝑇𝑡 𝑥𝑡 + 𝜖2(𝑐2𝑡 )
𝑇𝑥𝑡)

Finally, by using 1 + 𝑥 ≤ 𝑒𝑥

Φ𝑡+1 ≤ Φ𝑡𝑒
−𝜖𝑐𝑇𝑡 𝑥𝑡+𝜖2(𝑐2𝑡 )

𝑇 𝑥𝑡

Given that 𝑤𝑡(𝑖) is less than Φ𝑡 we get that:

𝑤𝑡(𝑖) ≤ Φ𝑡 ≤ 𝑛𝑒−𝜖𝑐𝑇𝑡 𝑥𝑡+𝜖2(𝑐2𝑡 )
𝑇 𝑥𝑡

Now, observe that:

𝑤𝑡(𝑖) = 𝑒−𝜖
∑︀𝑇

𝑡=1 𝑐𝑡(𝑖)

By taking logarithm of both sides:

−𝜖
𝑇∑︁
𝑖=1

𝑐𝑡(𝑖) ≤ log 𝑛− 𝜖
𝑇∑︁
𝑖=1

𝑐𝑇𝑡 𝑥𝑡 + 𝜖2(𝑐2𝑡 )
𝑇𝑥𝑡

and the theorem follows.

Now we have to choose an appropriate value of 𝜖 in order to minimize the regret.

Theorem 3.5. The hedge algorithm for 𝜖 =
√︁

log𝑛
𝑇 has the following regret:

𝑇∑︁
𝑖=1

𝑐𝑇𝑡 𝑥𝑡 − min
𝑗∈[𝑛]

𝑇∑︁
𝑗=1

𝑐𝑡(𝑗) ≤ 2
√︀
𝑇 log 𝑛

Proof. First observe that 𝑐2𝑡 ≤ 1 and thus (𝑐2𝑡 )
𝑇𝑥𝑡 ≤ 1. Hence, using the result of the

previous theorem for the best expert in hindsight 𝑖*:

𝑇∑︁
𝑖=1

𝑐𝑇𝑡 𝑥𝑡 −
𝑇∑︁
𝑡=1

𝑐𝑡(𝑖
*) ≤ 𝑇𝜖+

log 𝑛

𝜖
= 2

√︀
𝑇 log 𝑛

In the above scenario, in each round, the player receives a function 𝑓𝑡(𝑥𝑡) = 𝑐𝑇𝑡 𝑥𝑡. She

has to choose a point from the probability simplex {𝑥 ∈ R𝑛 : 𝑥 ≥ 0,
∑︀𝑛

𝑖=1 𝑥𝑖 = 1} in order
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to minimize the regret. What about if the player received an arbitrary convex function

𝑓𝑡(𝑥) and has to choose a point from an arbitrary convex set 𝑋 ? What algorithm

should she follow then? The area of online convex optimization aims at answering this

question.

3.2 A Unifying model

We now proceed and define more formally an online convex optimization problem

which generalizes the previous expert setting. The model is very general and can be

used to model problems from a broad range of areas. The OCO model can be expressed

by the following elements:

∙ At each round 𝑡 = 1, 2, ..., 𝑇 , the decision maker makes a decision, choosing a point

from a convex set 𝑥𝑡 ∈ 𝑋 ⊆ R𝑛

∙ After the decision, the adversary reveals a convex function 𝑓𝑡(𝑥), 𝑡 ∈ [𝑇 ] and the

player suffers a loss of 𝑓𝑡(𝑥𝑡).

∙ The goal of the decision maker is to minimize the regret. That is, in every round,

to choose a strategy 𝑥𝑡 in order to minimize:

Regret =

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥)

An algorithm that guarantees a sublinear in T (𝑜(𝑇 )) regret, is called a no-regret al-

gorithm. OCO algorithms aim at finding the best fixed decision in hindsight 𝑥* which

minimizes the sum of the functions 𝑓𝑡, 𝑡 ∈ [𝑇 ]. The model accepts also the following

interpretation: Initially, the adversary chooses a function 𝑓 and breaks it in parts 𝑓𝑡

so that the follow holds:
∑︀𝑇

𝑡=1 𝑓𝑡(𝑥) = 𝑓(𝑥). It breaks it in the worst way possible in

order for the player to make the most iterations (rounds) in order to converge to the

best decision in hindsight.

Apart from the experts problem, there are other problems that can be modeled as

OCO problems.

∙ Online Spam Detection: In online spam detection, we observe emails 𝑤1, 𝑤2..., 𝑤𝑇

and need to classify them as spam / not spam at every period 𝑡 ∈ [𝑇 ]. We can

model each email 𝑤𝑡 as a bag of words over dictionary of size 𝑑: there are 𝑑 words

in our language and each email is a vector over {0, 1}𝑛 s.t. each index 𝑗 receives a

value of 1 if the word 𝑗 ∈ [𝑑] is in the email and 0 otherwise. At every step 𝑡, our

goal is to create a classifier which is a vector 𝑥𝑡 ∈ R𝑑 s.t. 𝑥𝑇𝑡 𝑤𝑡 ≥ 0 if the email
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is not spam and 𝑥𝑇𝑡 𝑤𝑡 if it is spam. At every stage, after classifying the email

we observe whether our classifier 𝑥𝑡 made a mistake. One natural cost function

is to assign cost 1 on each iteration we make a mistake. Another natural notion

is to have a cost function that measures the square loss: (𝑦 − 𝑦))2 where 𝑦 is the

prediction made with our classifier at time step 𝑡 (1 if not spam, −1 if spam) and

𝑦 is the true label.

∙ Online Recommendation Systems: Recommendation Systems are often mod-

eled as matrix completion problems. We assume we have some sparse 0,1 matrix,

where the rows are the people the columns are media items. For example, for a

service like Netflix, the entry 𝑀𝑖𝑗 takes value 1 if person 𝑖 enjoyed movie 𝑗. In

the online setting, at each iteration, a matrix 𝑀𝑡 ∈ {0, 1}𝑛×𝑚 is revealed, and the

adversary chooses a user/movie pair together with the real preference. The goal

is to use existing matrix and make an educated guess that minimizes the square

loss.

3.2.1 Online Gradient Descent

Although the OCO problem may seem general and hard in its nature, there exist a

very simple algorithm that guarantees the best regret possible! The algorithm is Online

Gradient Descent,a straightforward generalization of the offline version we discussed in

the previous chapter. It appeared in [45] which laid the foundations for the area of

Online Convex Optimization. Let’s state the algorithm formally:

Algorithm 4: Online Gradient Descent

1: Input: number of iterations 𝑇 , Feasible set 𝑋, initial point 𝑥1 ∈ 𝑋, sequence of

step sizes {𝜂𝑡}
2: for 𝑡 = 1 : 𝑇 do

3: Choose 𝑥𝑡 and suffer loss 𝑓𝑡(𝑥𝑡)

4: Perform gradient step: 𝑦𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡)

5: Project onto 𝑋: 𝑥𝑡+1 = Π𝑋(𝑦𝑡+1)

6: end for

The algorithm may seem strange at first sight. In round 𝑡 we make a gradient step

based on the gradient of 𝑓𝑡 at point 𝑥𝑡 in order to suffer a lower loss at the next function

𝑓𝑡+1. But the functions 𝑓𝑡 and 𝑓𝑡+1 may be completely different! We try to minimize a

function 𝑓𝑡+1 based on the gradient of 𝑓𝑡 which seems entirely irrational. The gradient

step may make things even worse and we suffer an even bigger loss compared to the case

we wouldn’t move at all. However, it’s not irrational, it makes perfect sense. Remember

that we don’t try to converge to the minimizer of the function 𝑓𝑡 but at a point 𝑥* which
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minimizes the sum of the functions. The point 𝑥* is correlated with the minimizers

of each function separately and intuitively, we’d expect to lie somewhere between the

minimizers (for instance consider 𝑓1(𝑥) = (𝑥− 1)2 and 𝑓2(𝑥) = (𝑥− 2)2, making a step

based on the gradient of 𝑓1 gets us closer to 𝑥 = 3
2). Therefore when we make the

gradient step we get closer to the point 𝑥* and as time progresses we converge to the

point 𝑥*. When we’are closer to the point, the regret is increasing at a low rate, which is

the whole point! In fact gradient descent, is a no-regret algorithm and achieves a regret

of 𝑂(
√
𝑇 ). As time progresses, the increase of regret in each step decreases.

Theorem 3.6. Assume that at every round, the step size is 𝜂𝑡 =
𝐷

𝐺
√
𝑇

where 𝐷 is the

diameter of the convex set and 𝐺 is a bound on the gradient ‖∇𝑓(𝑥)‖ ≤ 𝐺, ∀𝑥 ∈ 𝑋.

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥) ≤
3

2
𝐺𝐷

√
𝑇

Proof. Let 𝑥* = 𝑎𝑟𝑔min𝑥∈𝑋
∑︀𝑇

𝑡=1 𝑓𝑡(𝑥). We start by bounding the regret at time 𝑡

using the convexity of function 𝑓𝑡 which as we discussed is found useful when we’d like

to bound the values between two points of the functions.

𝑓𝑡(𝑥𝑡)− 𝑓𝑡(𝑥
*) ≤ ∇𝑓𝑡(𝑥𝑡)

𝑇 (𝑥𝑡 − 𝑥*)

At this point, if we’d aimed for a regret of 𝐷𝐺𝑇 , our job would be over. Because of

the Cauchy-Shwartz inequality 𝑓𝑡(𝑥𝑡)− 𝑓𝑡(𝑥
*) ≤ 𝐺𝐷. Summing up we’d get the result.

But as we intuitively described in the above paragraph we’d expect of the algorithm to

converge to 𝑥*, and thus ‖𝑥𝑡 − 𝑥*‖ is expected to be decreased as 𝑇 grows. For this

reason, we apply the gradient descent rule using the projection:

‖𝑥𝑡+1 − 𝑥*‖2 = ‖Π𝑥∈𝑋(𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡))− 𝑥*‖2 ≤ ‖𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡)− 𝑥*‖2

From the law of the parallelogram and the bound on the gradient of 𝑓 we get that:

‖𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡)− 𝑥*‖2 = ‖𝑥𝑡 − 𝑥*‖2 + 𝜂2𝑡 ‖∇𝑓(𝑥𝑡)‖ − 2𝜂𝑡∇𝑓(𝑥𝑡)
𝑇 (𝑥𝑡 − 𝑥*)

≤ ‖𝑥𝑡 − 𝑥*‖2 + 𝜂2𝑡𝐺
2 − 2𝜂𝑡∇𝑓(𝑥𝑡)(𝑥𝑡 − 𝑥*)

Putting the above together, we get:

‖𝑥𝑡+1 − 𝑥*‖2 ≤ ‖𝑥𝑡 − 𝑥*‖2 + 𝜂2𝑡𝐺
2 − 2𝜂𝑡∇𝑓(𝑥𝑡)

𝑇 (𝑥𝑡 − 𝑥*) ⇒

2∇𝑓𝑡(𝑥𝑡)
𝑇 (𝑥𝑡 − 𝑥*) ≤ ‖𝑥𝑡 − 𝑥*‖2 − ‖𝑥𝑡+1 − 𝑥*‖2

𝜂𝑡
+ 𝜂𝑡𝐺

2

At this point, recall the gradient step 𝜂 = 𝐷
𝐺
√
𝑡
. For such a value of 𝜂𝑡 we can easily

see that the above inequality bounds the total regret by the factor of 𝐷𝐺
√
𝑇 by simple
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calculations. Summing up over all the rounds and applying the above inequalities we

get:

2
𝑇∑︁
𝑡=1

(𝑓𝑡(𝑥𝑡)− 𝑓𝑡(𝑥
*))

≤ 2
𝑇∑︁
𝑡=1

∇𝑓𝑡(𝑥𝑡)
𝑇 (𝑥𝑡 − 𝑥*)

≤
𝑇∑︁
𝑡=1

(
‖𝑥𝑡 − 𝑥*‖2 − ‖𝑥𝑡+1 − 𝑥*‖2

𝜂𝑡
+ 𝜂𝑡𝐺

2)

=
𝑇∑︁
𝑡=1

(
‖𝑥𝑡 − 𝑥*‖2 − ‖𝑥𝑡+1 − 𝑥*‖2

𝜂𝑡
) +𝐺2

𝑇∑︁
𝑡=1

𝜂𝑡

≤
𝑇∑︁
𝑡=1

(‖𝑥𝑡 − 𝑥*‖2 ( 1
𝜂𝑡

− 1

𝜂𝑡−1
)) +𝐺2

𝑇∑︁
𝑡=1

𝜂𝑡

≤ 𝐷2
𝑇∑︁
𝑡=1

(
1

𝜂𝑡
− 1

𝜂𝑡−1
) +𝐺2

𝑇∑︁
𝑡=1

𝜂𝑡

≤ 𝐷2 1

𝜂𝑇
+𝐺2

𝑇∑︁
𝑡=1

𝜂𝑡

≤ 3𝐷𝐺
√
𝑇

In the last inequality we used the fact that:
∑︀𝑇

𝑡=1
1√
𝑡
≤ 2

√
𝑇

Notice that, in the case that all the functions 𝑓𝑡 are the same function 𝑓 we get

Theorem 2.19:

𝑓(
1

𝑇

𝑇∑︁
𝑡=1

𝑥𝑡)− 𝑓(𝑥*) ≤ 1

𝑇
(

𝑇∑︁
𝑡=1

𝑓(𝑥𝑡)−
𝑇∑︁
𝑡=1

𝑓(𝑥*)) ≤ 𝐷𝐺√
𝑇

where the first inequality is due to the convexity of 𝑓 .

In the case that functions 𝑓𝑡 is general convex functions and they don’t have any

particular property like strong convexity or smoothness, the above regret is the best

that any algorithm can attain for an online convex optimization problem. For instance,

having functions that are 𝛼-strongly convex, online gradient descent can attain a regret

of 𝐺2

2𝛼 (1 + log 𝑇 ) which improves upon the 𝑂(
√
𝑇 ). For more details, see [28], Theorem

3.3.

Theorem 3.7. The bound Ω(𝐷𝐺
√
𝑇 ) is a tight bound for any algorithm for online

convex optimization.

Proof. We consider the following setting: The feasible set of solutions is the hypercube

𝐾 with vertices 𝑥 = {±1}𝑛. The function 𝑓𝑡 in each round comes from a family of
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functions 𝑓𝑢(𝑥) = 𝑢𝑇𝑥 where 𝑢 is a random vector and each of its coordinates is 1 with

probability 1
2 and −1 otherwise. Thus, there are 2𝑛 possible linear cost functions. Now

observe that the diameter of the feasible set:

𝐷 ≤

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

22 = 2
√
𝑛

And for the bound of the gradient of the functions it holds:

𝐺 ≤

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

12 =
√
𝑛

Thus 𝑛 = 𝐷𝐺. Now notice that it doesn’t matter what choice the player makes in each

round; Her expected loss in every round will always be zero since E𝑢[𝑓𝑢(𝑥)] = 0. For the

adversary we’ll show that there exist an instance for which his cost is less that −𝑐𝑛
√
𝑇

for some constant 𝑐.

E[min
𝑥∈𝐾

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥)] = E[min
𝑥∈𝐾

𝑛∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑣𝑡(𝑖)𝑥(𝑖)] = 𝑛E[−|
𝑇∑︁
𝑡=1

𝑣𝑡(1)|]

Although we won’t get into details we can prove that E[|
∑︀𝑇

𝑡=1 𝑣𝑡(1)|] = Ω(
√
𝑇 ) and thus

the expected loss of the adversary is bounded above by −𝑐𝑛
√
𝑇 . By the expectation

argument, there will be an instance for which the adversary will attain a loss smaller

than −𝑐𝑛
√
𝑇 . That implies a lower bound of Ω(𝐷𝐺

√
𝑇 ).

At this point we believe is very important to enstablish a connection between the

hedge algorithm and Online Gradient Descent. Although these algorithms may seem

entirely different, they share the same idea. Recall that the hedge algorithm has a

regret bound of 𝑂(
√
𝑇 log 𝑛). If we apply the gradient descent rule to the same problem

we’ll achieve a regret of 𝑂(
√
𝑛𝑇 ) since the diameter of the probability simplex is

√
2

and the 𝑙2-norm of the costs is bounded by
√
𝑛. Hence, the hedge algorithm is better.

Now, recall that the gradient step is given also by the formula:

𝑥𝑡+1 = 𝑎𝑟𝑔min
𝑥∈𝑋

{∇𝑓𝑡(𝑥𝑡)
𝑇𝑥+

1

2𝜂𝑡

⃦⃦
𝑥− 𝑥2𝑡

⃦⃦
}

Thus gradient descent can be equivalently be seen by minimizing the first-order Taylor

approximation of 𝑓𝑡 around 𝑥𝑡 plus a regularization term
⃦⃦
𝑥− 𝑥2𝑡

⃦⃦
which keeps 𝑥𝑡+1 close

to 𝑥𝑡. If we are able to change the regularization and impose a different one, the method

of mirror descent (online in our case) arises. In general, such a regularization term is

called Bregman Divergence. We won’t delve into the technicalities of mirror descent. An

interested reader can see [16] for a mathematically rigorous analysis of mirror descent.
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Actually, apart from Gradient Descent which is Mirror Descent when the regularizer

is 𝑙22, the hedge algorithm is a special case when the regularizer is the relative entropy

function which is widely used in learning problems when one maintains a distribution

over a set of elements, in this case, the experts. Therefore, when we use as a regularizer,

the relative entropy, the update rule becomes (where Δ𝑛 is the probability simplex):

𝑥𝑡+1 = 𝑎𝑟𝑔 min
𝑥∈Δ𝑛

𝜖𝑐𝑇𝑥+
𝑛∑︁

𝑖=1

𝑥(𝑖) log(
𝑥(𝑖)

𝑥𝑡(𝑖)
)−

𝑛∑︁
𝑖=1

𝑥(𝑖) +
𝑛∑︁

𝑖=1

𝑥𝑡(𝑖)

Now using the KKT conditions we get:

𝜖𝑐𝑖(𝑡) + log(𝑥𝑡+1(𝑖))− 𝑙𝑜𝑔(𝑥𝑡(𝑖))− 𝜇𝑖 − 𝜆 = 0 ⇒ 𝑥𝑡+1(𝑖) = 𝑥𝑡(𝑖)𝑒
𝜇𝑖+𝜆𝑒−𝜖𝑐𝑡(𝑖)

Since we start with the uniform distribution it will always hold that 𝑥𝑡 > 0. This means

that 𝜇 = 0 from the complementary slackness condition. Now for the value of 𝜆, observe:

𝑛∑︁
𝑖=1

𝑥𝑡+1(𝑖) = 1 ⇒
𝑛∑︁

𝑖=1

𝑥𝑡(𝑖)𝑒
𝜆𝑒−𝜖𝑐𝑡(𝑖) = 1 ⇒

𝑒𝜆 =
1∑︀𝑛

𝑖=1 𝑥𝑡(𝑖)𝑒
−𝜖𝑐𝑡(𝑖)

Finally, the update rule is the same as of the Hedge Algorithm:

𝑥𝑡+1(𝑖) =
𝑥𝑡(𝑖)𝑒

−𝜖𝑐𝑡(𝑖)∑︀𝑛
𝑗=1 𝑥𝑡(𝑗)𝑒

−𝜖𝑐𝑡(𝑗)

3.3 Competing against a dynamic comparator

So far, we’ve assumed that the player aims at finding the best fixed strategy in

hindsight, 𝑥*, which minimizes the sum
∑︀𝑇

𝑡=1 𝑓𝑡(𝑥). That is, that the player is competing

against a static strategy. Now, we’ll discuss a much more difficult problem for the player.

Suppose the player aims at minimizing:

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥
*
𝑡 )

which from now on, we’ll call it Dynamic Regret. In other words, the player has

to compete the optimal dynamic strategy which consists of the series of minimizers

𝑥*1, 𝑥
*
2, ..., 𝑥

*
𝑇 , 𝑥*𝑡 = 𝑎𝑟𝑔min𝑥∈𝑋 𝑓𝑡(𝑥) of each function the adversary presents in each

round. Now we have a tracking problem which is to follow the path of these minimizers

instead of converging to a single point. It is straightforward, that the regret we acquired

in the static case cannot be attained in this scenario. Recall that the gradient step we
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made in the static case brought us closer to the optimal static decision 𝑥*, but now, if

the functions 𝑓𝑡 and 𝑓𝑡+1 are uncorrelated the gradient step makes no sense at all.

In order to provide a meaningful benchmark for this kind of problem we have to make

strong assumptions on the functions 𝑓𝑡. Without such assumptions, which enstablish

a correlation between functions in successive rounds, there is no strategy by the player

that it makes sense and the dynamic regret cannot be bounded (The player simply plays

blindly). Several measures of variation between the functions have been considered so

far. For instance,

𝑉𝑇 =
𝑇∑︁
𝑡=1

sup
𝑥∈𝑋

|𝑓𝑡(𝑥)− 𝑓𝑡−1(𝑥)|

measures the maximum variation of consecutive functions 𝑓𝑡−1, 𝑓𝑡. Such an assumption

was considered in [11] to provide an expected dynamic regret of 𝑂(𝑇
2
3 (1 + 𝑉𝑇 )

1
3 ) for

convex functions and 𝑂(
√︀

𝑇 (1 + 𝑉𝑇 )) when strong convexity is considered. In this

paragraph, we’ll design an algorithm that provides a dynamic regret bound according

to the following measure:

𝐿𝑇 =
𝑇∑︁
𝑡=1

⃦⃦
𝑥*𝑡 − 𝑥*𝑡−1

⃦⃦
which measures the distance of the minimizers of successive functions. A relatively small

value of 𝐿𝑇 means that the minimizers are close from each other. Thus, a gradient step

makes sense in this scenario. In round 𝑡, knowing that the minimizer of 𝑓𝑡 is close to

𝑓𝑡−1 is invaluable knowledge to the player. We’ll show that online gradient descent with

an extra step, provides a dynamic regret of 𝑂(1 + 𝐿𝑇 ) (ignoring other constants) when

the functions 𝑓𝑡 are strongly convex and smooth. The algorithm is described below and

it was first analyzed in [40].

Algorithm 5: Online Gradient Descent (dynamic case)

1: Input: number of iterations 𝑇 , feasible set 𝑋, initial point 𝑥1 ∈ 𝑋, stepsize 𝛾,

constant ℎ ∈ (0, 1]

2: for 𝑡 = 1 : 𝑇 do

3: Choose 𝑥𝑡 and suffer loss 𝑓𝑡(𝑥𝑡)

4: Perform gradient step: 𝑦𝑡+1 = 𝑥𝑡 − 1
𝛾∇𝑓(𝑥𝑡)

5: Project onto 𝑋: 𝑥̂𝑡+1 = Π𝑋(𝑦𝑡+1)

6: 𝑥𝑡+1 = (1− ℎ)𝑥𝑡 + ℎ𝑥𝑡

7: end for

Notice that the step size is constant now, in contrast with the static case, and does not

decrease as a function of 𝑡 since now we don’t have a problem of convergence but rather

a problem of tracking. The player now wants its play 𝑥𝑡 to be close to the minimizer

𝑥*𝑡 . We’ll make the following assumptions for every 𝑡 = 1, 2, ..., 𝑇 :
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∙ 𝑓𝑡 are 𝜇-strongly convex

∙ 𝑓𝑡 are 𝐿-smooth. Recall that is equivalent to the Lipschitz assumption on the

gradient: ‖∇𝑓𝑡(𝑥)−∇𝑓𝑡(𝑦)‖ , 𝑥, 𝑦 ∈ 𝑋

∙ 𝑓𝑡 are 𝐺-Lipschitz. This is equivalent to the norm of the gradient be bounded by

𝐺: ‖∇𝑓𝑡(𝑥)‖ ≤ 𝐺.

The proof, although highly technical, has a very simple idea: If we’d able to bound the

value ‖𝑥𝑡 − 𝑥*𝑡 ‖ by 𝑂(1 + 𝐿𝑡) our job is over since the functions are Lipschitz. We start

by showing that ‖𝑥𝑡+1 − 𝑥*𝑡 ‖ ≤ 𝜌 ‖𝑥𝑡 − 𝑥*𝑡 ‖ for some 𝜌 > 0, which we’d expect to hold

since in time 𝑡 the algorithm makes a step towards the minimizer of 𝑓𝑡 and thus can be

seen as part of the proof for the offline version of gradient descent we discussed in the

previous chapter. From there the desired bound is straightforward through the triangle

inequality. Hence, in order to prove the main theorem, we start with the follow lemma

which utilizes the powerful assumption that the function is well-conditioned.

Lemma 3.8. If the step size 𝛾 ≥ 𝐿, for the decisions 𝑥𝑡, 𝑡 ∈ [𝑇 ] of the player (Algorithm

5) and the minimizers of the functions 𝑥*𝑡 , 𝑡 ∈ [𝑇 ] it holds:

‖𝑥𝑡+1 − 𝑥*𝑡 ‖ ≤ 𝜌 ‖𝑥𝑡 − 𝑥*𝑡 ‖

where 0 ≤ 𝜌 =
√︁
1− ℎ𝜇

𝛾 < 1 is a non-negative constant strictly smaller than 1.

Proof. In round 𝑡, by strong convexity of 𝑓𝑡, ∀𝑥 ∈ 𝑋:

𝑓𝑡(𝑥)−
𝜇

2
‖𝑥− 𝑥𝑡‖2 ≥ 𝑓𝑡(𝑥𝑡) +∇𝑓𝑥(𝑥𝑡)

𝑇 (𝑥− 𝑥𝑡) ⇒

𝑓𝑡(𝑥)−
𝜇

2
‖𝑥− 𝑥𝑡‖2 ≥ 𝑓𝑡(𝑥𝑡) +∇𝑓𝑡(𝑥𝑡)

𝑇 (𝑥𝑡 − 𝑥𝑡) +∇𝑓𝑡(𝑥𝑡)
𝑇 (𝑥− 𝑥̂)

Now recall theorem 2.8 and that the gradient step is given also by:

𝑥𝑡 = 𝑎𝑟𝑔min
𝑥∈𝑋

{∇𝑓𝑡(𝑥𝑡)
𝑇 (𝑥− 𝑥𝑡) +

𝛾

2
‖𝑥− 𝑥𝑡‖2}

Hence, we get:

𝑓𝑡(𝑥𝑡)−
𝜇

2
‖𝑥− 𝑥𝑡‖2 ≥ 𝑓𝑡(𝑥𝑡) +∇𝑓𝑡(𝑥𝑡)

𝑇 (𝑥𝑡 − 𝑥𝑡) + 𝛾(𝑥𝑡 − 𝑥𝑡)
𝑇 (𝑥− 𝑥𝑡)

By the smoothness of 𝑓𝑡 and the fact that 𝛾 ≥ 𝐿:

𝑓𝑡(𝑥𝑡) ≤ 𝑓𝑡(𝑥𝑡) +∇𝑓𝑡(𝑥𝑡)
𝑇 (𝑥𝑡 − 𝑥𝑡) +

𝛾

2
‖𝑥𝑡 − 𝑥𝑡‖



Chapter 3. Online learning & Online Convex Optimization 40

Combining the two above inequalities:

𝑓𝑡(𝑥)−
𝜇

2
‖𝑥− 𝑥𝑡‖2 ≥ 𝑓𝑡(𝑥𝑡)−

𝛾

2
‖𝑥𝑡 − 𝑥𝑡‖+ 𝛾(𝑥𝑡 − 𝑥𝑡)

𝑇 (𝑥− 𝑥𝑡) ⇒

𝑓𝑡(𝑥)−
𝜇

2
‖𝑥− 𝑥𝑡‖2 ≥ −𝛾

2
‖𝑥𝑡 − 𝑥𝑡‖+ 𝛾(𝑥𝑡 − 𝑥𝑡)

𝑇 (𝑥− 𝑥𝑡)

By setting 𝑥 = 𝑥*𝑡 :

0 ≥ 𝑓𝑡(𝑥
*
𝑡 )− 𝑓𝑡(𝑥𝑡) ≥

𝜇

2
‖𝑥*𝑡 − 𝑥𝑡‖2 +

𝛾

2
‖𝑥𝑡 − 𝑥𝑡‖2 + 𝛾(𝑥𝑡 − 𝑥𝑡)

𝑇 (𝑥*𝑡 − 𝑥𝑡) ⇒

(𝑥𝑡 − 𝑥𝑡)
𝑇 (𝑥𝑡 − 𝑥*𝑡 ) ≥

1

2
‖𝑥𝑡 − 𝑥𝑡‖2 +

𝜇

2𝛾
‖𝑥*𝑡 − 𝑥𝑡‖2

Now recall algorithm 4:

‖𝑥𝑡+1 − 𝑥*𝑡 ‖
2 = ‖𝑥𝑡 − 𝑥*𝑡 ‖

2 + ℎ2 ‖𝑥𝑡 − 𝑥𝑡‖2 − 2ℎ(𝑥𝑡 − 𝑥*𝑡 )
𝑇 (𝑥𝑡 − 𝑥𝑡)

By substitution of the inner product:

‖𝑥𝑡+1 − 𝑥*𝑡 ‖
2 ≤ (1− ℎ𝜇

𝛾
) ‖𝑥𝑡 − 𝑥*𝑡 ‖

2 + ℎ(ℎ− 1) ‖𝑥𝑡 − 𝑥𝑡‖2 ⇒

‖𝑥𝑡+1 − 𝑥*𝑡 ‖
2 ≤ (1− ℎ𝜇

𝛾
) ‖𝑥𝑡 − 𝑥*𝑡 ‖

2

And the lemma follows.

Now if we’re able to bound
∑︀𝑇

𝑡=1 ‖𝑥𝑡 − 𝑥*𝑡 ‖, we’re almost done:

Lemma 3.9. Consider the diameter of the set 𝑋 to be equal to 𝐷. If the step size 𝛾 ≥ 𝐿

and for the decisions 𝑥𝑡, 𝑡 ∈ [𝑇 ] of the player (Algorithm 4) and the minimizers of the

functions 𝑥*𝑡 , 𝑡 ∈ [𝑇 ] it holds:

𝑇∑︁
𝑡=1

‖𝑥𝑡 − 𝑥*𝑡 ‖ ≤ 𝐷

1− 𝜌
𝐿𝑇 +

1

1− 𝜌

Proof. By using the triangle inequality:

𝑇∑︁
𝑡=1

‖𝑥𝑡 − 𝑥*𝑡 ‖ ≤ ‖𝑥1 − 𝑥*1‖+
𝑇∑︁
𝑡=2

⃦⃦
𝑥𝑡 − 𝑥*𝑡−1

⃦⃦
+

𝑇∑︁
𝑡=2

⃦⃦
𝑥*𝑡 − 𝑥*𝑡−1

⃦⃦
Now, due to lemma 3.8:

𝑇∑︁
𝑡=1

‖𝑥𝑡 − 𝑥*𝑡 ‖ ≤ ‖𝑥1 − 𝑥*1‖+ 𝜌

𝑇∑︁
𝑡=1

‖𝑥𝑡 − 𝑥*𝑡 ‖+
𝑇∑︁
𝑡=2

⃦⃦
𝑥*𝑡 − 𝑥*𝑡−1

⃦⃦
By regrouping, the lemma follows.
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Now, we’re ready to state the main theorem:

Theorem 3.10. Algorithm 4 achieves a dynamic regret of:

Regret ≤ 𝐺𝐷

1− 𝜌
𝐿𝑇 +

𝐺

1− 𝜌

The theorem follows trivially from lemma 3.9 by using the Lipschitz condition of

𝑓𝑡, 𝑡 = 1, 2, ..., 𝑇 .



Chapter 4

Online Convex Optimization with

Switching Cost

4.1 Definition

In this chapter, we focus on the main problem of this thesis: Online Convex Op-

timization (OCO) with switching cost. We’ll see how the problem relates to both the

OCO model and a typical problem studied the community of online algorithms, such as

those we discussed in Chapter 1. In order to define the problem, we’ll start by comparing

it with the OCO model we discussed in the previous chapter. The differences between

the two are the following:

∙ Lookahead: First, in the OCO model, the player in round 𝑡 started by stating

her decision 𝑥𝑡 and then suffering a loss 𝑓𝑡(𝑥𝑡). This is typical for a learning

(or prediction) problem. In this case we say that the player has 0-lookahead.

However, in the case of OCO with switching cost the reverse happens. First the

player observes a function 𝑓𝑡(𝑥𝑡) and then plays her decision 𝑥𝑡. We now say that

the player has 1-lookahead. This is typical in the field of online algorithms.

∙ Switching between actions: It’s clear that OCO under 1-lookahead is a trivial

problem. Although OCO with switching cost is easier in a sense that the player

knows the function 𝑓𝑡 before taking any action, now there is also a switching cost

between the decision 𝑥𝑡−1, 𝑥𝑡 which makes immediately the problem non-trivial.

A typical case of switching cost function we’ll discuss is the norm (for instance, the

euclidean norm, 𝑙2) of the difference of 𝑥𝑡−1 and 𝑥𝑡 i.e ‖𝑥𝑡 − 𝑥𝑡−1‖ which translates

in how much different are the actions of successive rounds. Notice now, that unlike

the OCO setting, the function the player receives in each round is not chosen

entirely by the adversary. The player receives the function 𝑓𝑡(𝑥𝑡) + ‖𝑥𝑡 − 𝑥𝑡−1‖.

42



Chapter 4. Online Convex Optimization with Switching Cost 43

The first term is chosen by the adversary while the second term is based on the

previous action of the player. Notice also that this function is convex as a sum of

convex functions.

∙ Benchmark: In the previous chapter we discussed OCO according to two bench-

marks: Static and Dynamic. The static case in OCO with switching cost is shown

to be no more challenging than OCO [3] and algorithms such as Online Gradient

Descent perform well in the case of OCO with switching cost. Our focus will be

on the dynamic case which is an active area of research. Apart from the dynamic

regret (or competitive difference), which bounds the difference between the cost

of the player and the optimal offline cost there is also the competitive ratio, the

benchmark used in the field of online algorithms, which bounds the ratio of these

costs. As the authors comment in [24] the techniques in order to achieve good

bounds in each of these benchmarks are different. We’ll most aim at designing

competitive algorithms. Observe that in order for an analysis based on competi-

tive ratio to make sense, the convex cost functions the adversary reveals have to

be non-negative. In addition, the authors of [3] perform an extensive study on

whether is possible for a single algorithm to achieve good static regret and com-

petitive ratio simultaneously. They give a negative answer which is demonstrated

by the following theorem:

Theorem 4.1. There is no online algorithm (randomized or deterministic) which

can achieve sublinear static regret and constant competitive ratio for an online

convex optimization problem with switching cost even when the cost functions are

linear.

and they design an algorithm for the unidimensional case (Randomly Biased

Greedy) which achieves simultaneously a competitive ratio of 𝑂(1+𝛾) while main-

taining a 𝑂(max{𝑇
𝛾 , 𝛾}) static regret.

With the above in mind, we’re ready to define the problem of OCO with switching

cost when the switching cost function is a norm. This easily extends to the case where

the switching cost function is a general convex function.

An instance of the problem consists of a fixed decision space, a convex set 𝑋 ∈ R𝑛

and a sequence of non-negative convex cost functions 𝑓𝑡(𝑥), 𝑡 ∈ [𝑇 ]. In round 𝑡, the

player observes the function 𝑓𝑡(𝑥) and chooses a point 𝑥𝑡 ∈ 𝑋 incurring a hitting (or

service) cost 𝑓𝑡(𝑥𝑡) and a switching cost ‖𝑥𝑡 − 𝑥𝑡−1‖. We assume that both the player

and the adversary start from the origin. The total cost of the player is:

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) + ‖𝑥𝑡 − 𝑥𝑡−1‖
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while the optimal cost is:

min
{𝑥𝑡}𝑇𝑡=1∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) + ‖𝑥𝑡 − 𝑥𝑡−1‖

We’ll denote the adversary’s decisions as {𝑥*𝑡 }𝑇𝑡=1. Notice that the offline problem is a

convex optimization problem and can be solved efficiently. Also, the problem can be

stated as an uncostrained problem when we consider the extension of function 𝑓𝑡 in R𝑛

which takes the value 𝑓𝑡(𝑥), 𝑥 ∈ 𝑋 and the value +∞, 𝑥 /∈ 𝑋. The epigraph of the

function is the same as of 𝑓𝑡 and thus convexity is preserved. We’ll find this fact useful

in the analysis of the algorithms that will follow.

The algorithm that comes naturally to someone’s mind for this problem is to pick

the decision 𝑥𝑡 that minimizes the sum of the hitting and switching cost at time 𝑡. In

first sight, it may seem that is the best the player can do, but as we’ll see soon it fails

miserably and we’ll explain why. More precisely:

𝑥𝑡 = 𝑎𝑟𝑔min
𝑥∈𝑋

𝑓𝑡(𝑥) + ‖𝑥− 𝑥𝑡−1‖

Consider now the following scenario in one dimension. The adversary reveals a function

of the form 𝑓𝑡(𝑥) =
𝑎
2 (𝑥 − 𝑐)2, 𝑎, 𝑐 > 0. The player starting from the origin will pick a

point 𝑥1 ∈ [0, 𝑐] that minimizes the sum:

𝑎

2
(𝑥− 𝑐)2 + 𝑥

Which is minimized at 𝑥 = 𝑐 − 1
𝑎 . Notice now that if 𝑐𝑎 = 1, the player stays at 0.

If the adversary reveals functions of this form indefinitely, the player will still continue

to stay at 0. That makes her extremely vulnerable to the adversary. After 𝑇 rounds,

if the player receives the indicator function of the 𝑐, which takes the value 0 at 𝑐 and

+∞ otherwise the player has to move necessarily to 𝑐. Thus the player has a a total

hitting cost of 𝑐𝑇 while the adversary simple moves to the first round, for a total cost of

𝑐. Therefore the competitive ratio of this algorithm is Ω(𝑇 ) and is due to the fact that

the use of such a criterion by the player may stuck her at one point.

Such a result shows us that we have to come up with an algorithm that always makes

a small step towards the minimizer of function 𝑓𝑡, no matter what. An interesting

idea, which will encounter in later paragraphs, is to consider a gradient based rule of

the function 𝑓𝑡, 𝑥𝑡 = 𝑥𝑡−1 − 1
𝛾𝑡
∇𝑓(𝑥𝑡−1). For the 1-d case, without loss of generality

if 𝑥𝑡−1 < 𝑥𝑚 the player will have to pick a point in the interval (𝑥𝑡−1, 𝑥𝑚]. Notice

now, that every possible algorithm for the unidimensional problem can be equilavently

described as a gradient descent rule with an appropriate choice of 𝛾𝑡. However, there
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is an algorithm that comes more intuitively for the problem than the gradient descent

rule. We pick a point 𝑥𝑡 in order to balance between the costs 𝑓𝑡(𝑥𝑡) and ‖𝑥𝑡 − 𝑥𝑡−1‖.
As we’ll see such an idea provides constant competitive ratio for the unidimensional case

as well as constant competitive ratio for higher dimensions when we add an assumption

for the functions 𝑓𝑡.

4.2 The unidimensional case

We start to delve into the problem by studying the unidimensional case where is

proved that we can achieve a constant competitive ratio. As we’ll see, the algorithm for

higher dimensions is based on the idea of the one we’ll discuss in this paragraph. More-

over, note that any 𝑙𝑝 norm in the real line reduces to the absolute value. Firstly, we’ll

prove that randomization provides no benefit for the design of a competitive algorithm

for OCO with switching cost.

Proposition 4.2. For an OCO problem with switching cost, if there is a c-competitive

randomized algorithm 𝑅 then there is also a c-competitive deterministic algorithm 𝐷.

Proof. The proof of the theorem is based on Jensen’s Inequality which states that for a

random variable 𝑋 and a convex function 𝑔 it holds:

𝑔[E[𝑋]] ≤ E[𝑔[𝑋]]

In the general case, a randomized algorithm 𝑅 maintains at time 𝑡 a probability distri-

bution over the the real line. Let 𝑥𝑡 be a random variable according to this distribution.

Then the expected cost of the randomized algorithm in round 𝑡 is:

E[𝑓𝑡(𝑥𝑡)] + E[|𝑥𝑡 − 𝑥𝑡−1|]

Now consider instead of sampling from the distribution we just take as a decision the

expected value of 𝑥𝑡, {E[𝑥𝑡]}. In this case, the respective cost of the now deterministic

algorithm is:

𝑓𝑡(E[𝑥𝑡]) + |E[𝑥𝑡]− E[𝑥𝑡−1]|

Since the objective is a convex function, by Jensen’s inequality, we conclude that in

round 𝑡, the deterministic algorithm has a lower or equal cost than the expected cost of

the randomized algorithm. Summing over all 𝑡 ∈ [𝑇 ] completes the proof.

An important concept in the design of algorithms for OCO with switching cost is the

notion of memory and has to do with what information in mind the player chooses a
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point 𝑥𝑡 in round 𝑡. Generally speaking, if the player just uses her current position 𝑥𝑡−1

and 𝑓𝑡(𝑥𝑡) in order to decide 𝑥𝑡 then the algorithm is memoryless. If her decision is based

on her previous states as well as the previous functions the adversary revealed then the

algorithm is with memory. For the unidimensional case, we’ll discuss 2 algorithms for

the two kinds of memory we mentioned. An algorithm that keeps memory can achieve a

tight competitive ratio of 2 while a memoryless algorithm can achieve a tight competitive

ratio of 3.

4.2.1 A memoryless algorithm

The algorithm that we’ll discuss now was developed in [8]. The idea of the memoryless

algorithm is the following: Without loss of generality suppose the player is at state 𝑥𝑡−1

and the adversary reveals a convex function 𝑓𝑡 with a minimizer at 𝑥𝑚 > 𝑥𝑡−1 (which

we’ll assume it always exists). Then the player moves to the direction of 𝑥𝑚 (to the right)

until |𝑥𝑡 − 𝑥𝑡−1| = 𝑓𝑡(𝑥)
2 (which can be performed using binary search) and balances the

hitting and the switching cost. Notice that if 𝑓𝑡(𝑥𝑚)
2 < |𝑥𝑚 − 𝑥𝑡−1| such an 𝑥𝑡 always

exists in the interval (𝑥𝑡−1, 𝑥𝑚). If 𝑓𝑡(𝑥𝑚)
2 ≥ |𝑥𝑚 − 𝑥𝑡−1|, the algorithm simply moves

to 𝑥𝑚. From now on we denote as 𝐻𝑡 = 𝑓𝑡(𝑥𝑡) and 𝑀𝑡 = |𝑥𝑡 − 𝑥𝑡−1| the hitting and

the moving cost of the algorithm respectively. Similarly for the adversary we denote as

𝐻*
𝑡 ,𝑀

*
𝑡 .

Algorithm 1: Memoryless algorithm

1: for 𝑡 = 1 : 𝑇 do

2: Let 𝑥𝑚 = 𝑎𝑟𝑔min 𝑓𝑡(𝑥)

3: Move in the direction of 𝑥𝑚 until we reach either a point 𝑥 such that 𝑀𝑡 =
𝐻𝑡
2

or 𝑥𝑚

4: Set 𝑥𝑡 as that point

5: end for

Theorem 4.3. Algorithm 1 is 3-competitive for 1-d OCO with switching cost

Proof. The proof is based on the potential function method we discussed in chapter

1. We consider the potential function Φ𝑡(𝑥𝑡, 𝑥
*
𝑡 ) = 3|𝑥𝑡 − 𝑥*𝑡 | with Φ0 = 0 since the

player and the adversary start from the origin. In order to prove that the algorithm is

3-competitive it suffices to show ∀𝑡 ∈ [𝑇 ]:

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡−1) ≤ 3(𝐻*

𝑡 +𝑀*
𝑡 )

Since while moving towards 𝑥𝑚 the hitting cost is decreased while the moving cost is

increased it always holds that: 𝑀𝑡 ≤ 𝐻𝑡
2 and the equality holds when 𝑥𝑡 ̸= 𝑥𝑚. First
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observe from the triangle inequality:

Φ(𝑥𝑡−1, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡−1) ≤ 3𝑀*

𝑡

Therefore it suffices to prove:

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) ≤ 3𝐻*

𝑡

In order to prove this, we consider two cases:

∙ 𝐻𝑡 ≤ 𝐻*
𝑡 . In this case we get:

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 )

𝑀𝑡≤𝐻𝑡
2

≤ 𝐻𝑡 +
𝐻𝑡

2
+ Φ(𝑥𝑡, 𝑥

*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 )

TI
≤ 3

2
𝐻*

𝑡 +Φ(𝑥𝑡, 𝑥𝑡−1) ≤
3

2
𝐻*

𝑡 +
3

2
𝐻*

𝑡 ≤ 3𝐻*
𝑡

∙ 𝐻𝑡 > 𝐻*
𝑡 . Consider 𝑥𝑡−1 < 𝑥𝑚 (the reverse case is similar). Since 𝐻𝑡 > 𝐻*

𝑡 we

can’t have 𝐻𝑡 = 𝑓𝑡(𝑥𝑚) and thus 𝑀𝑡 =
𝐻𝑡
2 . Observe that we must have 𝑥𝑡−1 < 𝑥𝑡

since the algorithm moves to the right and 𝑥𝑡 < 𝑥*𝑡 since 𝐻𝑡 > 𝐻*
𝑡 . Thus:

Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) = 3(𝑥*𝑡 − 𝑥𝑡 − 𝑥*𝑡 + 𝑥𝑡−1) = −3𝑀𝑡 ⇒

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) =

3

2
𝑀𝑡 − 3𝑀𝑡 < 0 ≤ 3𝐻*

𝑡

And the proof is complete.

As we previously commented, a competitive ratio of 3 is actually tight. We’ll now

discuss the proof of the lower bound. But first let’s discuss memorylessness again. Mem-

orylessness as we discussed previously is ill-defined. Because the state of the algorithm is

a real number with any accuracy (any number of bits), it’s possible to encode the mem-

ory of the previous rounds in the low order bits of the state. As the authors claimed in

[8] memorylessness is based on the following:

∙ Scale: Algorithm’s responses don’t depend on the scale of the line. For instance,

suppose for the case of a 2-piecewise linear function 𝑎|𝑥 − 𝑏| the algorithm that

operates in the interval [𝑥𝑡−1, 𝑏] moves to 𝑥𝑡−1+𝛾(𝑎)(𝑏−𝑥𝑡−1). If now the algorithm

had received the function 𝑎|𝑥− 𝑐|, 𝑐 ̸= 𝑏 under memorylessness the algorithm has

to move also to 𝑥𝑡−1+𝛾(𝑎)(𝑐−𝑥𝑡−1). Thus the decision depends only on the slope

of the function, 𝑎. As we’ll see the instance that gives the lower bound is composed

entirely of such functions.
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∙ Symmetry: Algorithm’s responses are bilaterally symmetric. If the player re-

ceives a function to her right will make the same decision (mirrored) as in the case

she receives it to her left.

Figure 4.1: Illustration of Algorithm 1 for 𝑓𝑡(𝑢𝑡) = 0 and 𝐻𝑡 > 𝐻*
𝑡

Theorem 4.4. Any memoryless algorithm for OCO with switching cost attains a com-

petitive ratio of at least 3.

Proof. Recall that the algorithm starts from the origin. The intuition of the proof is

the following: Given a function 𝜖|1 − 𝑥| at the first round. We are interested in the

case as 𝜖 → 0. If the player makes a small step towards 𝑥 = 1, the adversary continues

bringing copies of the same function indefinitely. Due to the invariant of memorylessness

we mentioned for 2-piecewise linear functions, the steps in the next interval [𝑥1, 1] will

be small as well. The player will make a long time to reach 𝑥 = 1, incurring a high total

hitting cost in the process, whereas the adversary simply moves to 𝑥 = 1 at the first

round. On the other hand, if the player made a relatively big step at the first round, then

the adversary reveals indefinitely functions of the form 𝜖|𝑥| making the optimal solution

to stay at 0 early from the beginning. The player not only paid a big distance step,

but continues to incurr hitting cost, while the adversary does not. Thus, we’ll consider

two cases which due to memorylessness will determine the behavior of the algorithm

throughout the analysis after the adversary reveals the function 𝜖|1− 𝑥|

∙ The player moves to a point 𝑥 ≤ 𝜖
2 . Then the adversary continues bringing copies

of the function 𝜖|1 − 𝑥| indefinitely. Notice now, due to the first property of

memorylessness if the algorithm in the future is at a point 𝑦 then moves necessarily

to the point 𝑦+ 𝑥(1− 𝑦). Thus if at round 𝑡 the hitting cost is 𝐻𝑡 = 𝜖(1− 𝑦) then
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𝐻𝑡+1 = 𝜖(1− 𝑦 − 𝑥(1− 𝑦)) = (1− 𝑥)𝐻𝑡. Thus the hitting cost is asymptotically:

+∞∑︁
𝑡=1

𝐻𝑡 ≥
+∞∑︁
𝑡=1

(1− 𝜖

2
)𝑡𝜖 =

𝜖

𝑥
− 𝜖 ≥ 2− 𝜖

For 𝜖 → 0 the hitting cost is 2 while the moving cost is asymptotically 1. That

makes the total cost equal to 3. The adversary simple moves at the first round at

𝑥 = 1 and his total cost is 1.

∙ The player moves to a point 𝑥 ≥ 𝜖
2 . Then the adversary reveals the function

𝜖|𝑥| indefinetely and the algorithm returns to the origin. Hence, the moving cost

is 2𝑥. For the hitting cost, recall the second property of memorylessness. For

𝑡 ≥ 2, if the algorithm’s position at 𝑡 − 1 is 𝑦 then at 𝑡 will be 𝑦(1 − 𝑥) and thus

𝐻𝑡 = (1− 𝑥)𝐻𝑡−1. Thus the total hitting cost is:

+∞∑︁
𝑡=1

𝐻𝑡 ≥ 𝜖(1− 𝑥) +

+∞∑︁
𝑡=2

𝜖𝑥(1− 𝑥)𝑡−1 = 2𝜖(1− 𝑥)

That makes the total cost of the player equal to 2𝑥+2𝜖(1− 𝑥) ≥ 2𝜖+ (2− 2𝜖) 𝜖2 =

3𝜖 − 3𝜖2. The optimal offline cost is 𝜖 and is attained when one never leaves the

origin. Thus the competitive ratio is at least 3− 2𝜖. As 𝜖 → 0 a competitive ratio

of 3 is attained asymptotically.

4.2.2 An algorithm with memory

We’ll proceed with the description of an algorithm for the unidimensional case that

in contrast with the one we mentioned, it utilizes memory. In fact, that’s the only

algorithm so far that has appeared for OCO with switching cost that utilizes information

from the previous rounds and it was presented in [8]. Algorithms that utilize memory

have appeared extensively in the online learning and OCO community, named follow

the leader. An interested reader can see [28], [41] for an elaborate discussion of these

algorithms.

The algorithm in each round maintains a probability distribution over the real line.

As we mentioned earlier, randomization provides no benefit at our setting. So the

response of the algorithm can be the expected value of the distribution at time 𝑡. The

algorithm utilizes memory through the distribution. The decision of the algorithm at

round 𝑡 is not based only on its place at time 𝑡 − 1 and the function 𝑓𝑡 but also at

the distribution the algorithm maintains at time 𝑡 − 1. The idea of the algorithm is to

pick carefully designated points [𝑥𝑙, 𝑥𝑟] where 𝑥𝑙 ≤ 𝑥𝑚 ≤ 𝑥𝑟 and to create a probability
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distribution with support the interval [𝑥𝑙, 𝑥𝑟]. We describe more formally the algorithm

below:

Algorithm 2: Algorithm with memory

1: for 𝑡 = 1 : 𝑇 do

2: Let 𝑥𝑚 = 𝑎𝑟𝑔min 𝑓𝑡(𝑥)

3: Pick point 𝑥𝑟 ≥ 𝑥𝑚 such that 1
2

∫︀ 𝑥𝑟

𝑥𝑚
𝑓 ′′(𝑦)𝑑𝑦 =

∫︀ +∞
𝑥𝑟

𝑝𝑡−1(𝑦)𝑑𝑦

4: Pick similarly 𝑥𝑙 ≤ 𝑥𝑚 such that 1
2

∫︀ 𝑥𝑚

𝑥𝑙
𝑓 ′′(𝑦)𝑑𝑦 =

∫︀ 𝑥𝑟

−∞ 𝑝𝑡−1(𝑦)

5: Update the pdf 𝑝𝑡(𝑥) = 𝑝𝑡−1(𝑥)+
1
2𝑓

′′(𝑥), 𝑥 ∈ [𝑥𝑘, 𝑥𝑟] and 𝑝𝑡(𝑥) = 0, otherwise

6: Choose E𝑥[𝑝𝑡(𝑥)]

7: end for

The authors in [8] show that the update rule indeed maintains a valid probability

distribution over the real line, and they prove that the algorithm is 2-competitive which

is tight for any algorithm for OCO with switching cost. The idea of the lower bound

comes from the ski-rental problem which is a special case of OCO with switching cost.

Consider a ski-rental problem where the cost of buying skis is 1 and the cost of renting

skis for 1 day is 𝜖. The ski-rental problem over 𝑇 days can be seen as an OCO with

switching cost problem where the player starts from the origin and the adversary reveals

the function 𝜖|1 − 𝑥| for 𝑇 days. For a determintic ski-rental algorithm if the player

chooses to rent, is equivalent to stay at the origin incurring a cost of 𝜖 and if the player

chooses to buy incurrs a cost of 1. Notice now, that any randomized algorithm for the

ski-rental problem where the player at time 𝑡 has bought skis with a probability 𝑝𝑡 is

equivalent to go to the point 𝑥𝑡 = 𝑝𝑡,∈ [0, 1]. Therefore, we immediately conclude that
𝑒

𝑒−1 is a lower bound for OCO with switching cost. However, the problem is strictly

harder. The authors in [8] provide a lower bound of 1.86 which is based on the idea we

discussed for the lower bound of the memoryless algorithm which is after some time,

based on the player’s position in [0, 1] to bring an infinite number of functions 𝜖|𝑥|.
However, in this case, the invariant the memorylessness force to the players doesn’t

appear and the authors prove that any algorithm is 1.86 competitive. They conjecture

that 2 is not also the optimal competitive ratio. Finally, in [5], that claim was disproved.

The authors provide a lower bound of 2 where also only functions of the form 𝜖|𝑥 − 1|
and 𝜖|𝑥| are considered in the instance.

4.3 Higher dimensions

So far, we’ve discussed the problem in 1 dimensions and we analyzed a 3-competitive

memoryless algorithm. In this paragraph we’ll prove that the same idea, which is to bal-

ance between the hitting and the switching cost at time 𝑡 provides a constant competitive
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ratio when the functions 𝑓𝑡 have a basic property.

But first we’ll prove a fundamental lower bound for OCO with switching cost which

shows that the competitive ratio for certain type of switching costs depends necessarily

on the dimension of the instance. That leads us to perform beyond worst case analysis

for the case of the competitive ratio and to consider a subset of convex functions. The

bound is based on another problem, Convex Body Chasing, one is given in an online

fashion a sequence of convex sets 𝑋1, 𝑋2, ..., 𝑋𝑇 . When a set 𝑋𝑡 arrives the player

must move to a point 𝑥 ∈ 𝑋. The total cost of the algorithm is the distance that the

player has traveled
∑︀𝑇

𝑡=1 𝑑(𝑥𝑡−1, 𝑥𝑡). In OCO with switching cost when the function 𝑓𝑡

is the indicator function of some convex set 𝑋𝑡 then OCO with switching cost reduces

to Convex Body Chasing.

Theorem 4.5. Any algorithm for OCO with switching cost in d dimensions attains a

competitive ratio of at least Ω(
√
𝑑) when the switching cost is the 𝑙2 norm.

Proof. The intuition behind the proof is that the adversary can bring a function 𝑓𝑡

which is minimized over a set 𝑋𝑡 and has a very large value outside 𝑋𝑡 rather than

being minimized at single point and creates an instance of series of functions {𝑓𝑡}𝑇𝑡=1

that all of them have different sets that are minimized, although they have a common

minimizer, the intersection of the sets. The adversary simply moves to that minimizer

in the first round whereas the player has to move to a point in 𝑋𝑡 where the function

is minimized. When the next function arrives the player has to move again. More

formally, for an instance of OCO with switching cost in 𝑑 dimensions the adversary

brings 𝑑 functions. The adversary creates the function 𝑓𝑡 based on the 𝑡-coordinate of

the place of the player in time 𝑡.

∙ If 𝑥𝑡 < 0, then the adversary brings the indicator function of the hyperplane 𝑥𝑡 = 1.

Thus the player has to pay a moving cost of at least 1.

∙ If 𝑥𝑡 ≥ 0, then the adversary brings the indicator function of the hyperplane

𝑥𝑡 = −1. Again, the player pays at least a cost of 1.

Thus, the cost of the player is at least 𝑑. However, these functions have a common

minimizer which the player cannot know beforehand. The adversary simply moves to

the intersection of these hyperplanes incurring a cost of
√
𝑑. That implies a lower bound

of
√
𝑑 on the competitive ratio.

The indicator function may seem like a non practical instance for OCO with switching

cost but even quadratic functions can be used to derive this lower bound. For instance

consider the function 𝑓𝑡(𝑥) =
1
𝜖 (𝑥𝑖 − 1)2 for 𝜖 → 0 which for 𝑥1 = 1 takes the value 0



Chapter 4. Online Convex Optimization with Switching Cost 52

whereas for 𝑥1 ̸= 1 takes a very large value. Moreover, notice that the lower bound is

different for different switching costs. For instance consider the 𝑙1 norm or the squared

euclidean distance. In these cases the proof leads to nowhere. Both the adversary and

the player pay a cost of 𝑑. On the other hand, for cases like 𝑙∞ = 𝑚𝑎𝑥𝑛𝑖=1|𝑥𝑖| the lower

bound is Ω(𝑑).

Concerning the 𝑙1 norm, it is easy to notice that under specific circumstances there is

an algorithm that is 3-competitive. For the uncostrained case, if the functions 𝑓𝑡(𝑥) have

the property that 𝑓𝑡(𝑥) =
∑︀𝑑

𝑖=1 𝑓𝑖𝑡(𝑥𝑖) then the problem reduces to the one dimensional

problem since the 𝑙1 norm also obeys this property.

4.3.1 Minimizing Competitive Ratio

The lower bound we discussed implies a competitive ratio which depends on the

dimension of the instance. In order to break this barrier we’ll consider convex functions

that obey a specific property. Recall that the lower bound was based on the fact that

the function may be minimized in a set rather than a single point. Due to this fact, we

could start our analysis by considering functions that have a unique minimizer. Such

functions are norms. Hence, we start by the definition of 𝛼-polyhedral functions.

Definition 4.6. A function 𝑓𝑡 defined in a set 𝑋 with minimizer 𝑢𝑡 is 𝛼-polyhedral with

respect to a norm ‖·‖ if ∀𝑥 ∈ 𝑋 𝑓𝑡(𝑥)− 𝑓𝑡(𝑢𝑡) ≥ 𝛼 ‖𝑥− 𝑢𝑡‖.

That means that the functions we consider are bounded below by a norm function, or

in other words, grow at least linearly away from the minimizer. It’s important to notice

that functions which obey this property for even 𝑥 that are 𝜖 close to the minimizer

‖𝑥− 𝑢𝑡‖ ≤ 𝜖 are still 𝛼-polyhedral. Without loss of generality consider 𝑢𝑡 = 0 and

𝑓𝑡(𝑢𝑡) = 0. From the definition of convexity we have that for any 𝜆 ∈ [0, 1] it holds:

𝑓(𝜆𝑥) ≤ 𝜆𝑓(𝑥). For every 𝑥 ∈ 𝑋 there exists a 𝜆 such that ‖𝜆𝑥‖ ≤ 𝜖. Thus 𝑓(𝑥) ≥
𝛼‖𝜆𝑥‖

𝜆 = 𝛼 ‖𝑥‖.

Now we’ll discuss how we can generalize using the memoryless algorithm we analyzed

for the 1 dimension in the previous paragraph. Recall that the algorithm begins a

movement from 𝑥𝑡−1 towards 𝑢𝑡 (the minimizer of 𝑓𝑡) until there is balance between the

hitting and the switching cost. However, we could interpret this procedure in another

way. Consider the set 𝑓𝑡(𝑥) ≤ 𝑙, 𝑙 ≥ 0 which is convex. Initially, we start with 𝑙 = 𝑓𝑡(𝑢𝑡)

and we project the point 𝑥𝑡−1 to this set. Thus 𝑥𝑡 = 𝑢𝑡. We start now by increasing 𝑙

until the balance is achieved. This is equivalent to the procedure in 1-dimension but it is

more formally stated and this idea can be applied to higher dimensions. The projection

step in 1 dimension is of course trivial but in higher dimensions, as we have commented

in past chapters, in the general case, is an optimization problem. Notice now, that in
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order to achieve a hitting cost of 𝑙 we could choose any point in the respective 𝑙 level set

of 𝑓 . However, the one that minimizes the switching cost, is the projection of point 𝑥𝑡−1

to the sublevel set. That’s why a procedure which would find a point in order to balance

the costs in the convex hull of 𝑥𝑡−1, 𝑢𝑡 or a simple gradient step won’t work well for a

general convex function. These methods don’t take into consideration the geometry of

the level sets of the function 𝑓𝑡.

Figure 4.2: Geometric explanation of the above statement. Here we have 𝐻𝑡(𝑥𝑡1) =
𝐻𝑡(𝑥𝑡2) but 𝑀𝑡(𝑥𝑡1) > 𝑀𝑡(𝑥𝑡2)

The algorithm for higher dimensions will project the point 𝑥𝑡−1 onto a subset level

set of 𝑓𝑡, {𝑥 : 𝑓𝑡(𝑥) ≤ 𝑙} for a designated choice of 𝑙 in order for the balance to be

achieved. Of course, the choice of 𝑙 is not given by a closed formula. In general, we

have to find 𝑙 such that ‖𝑥𝑡 − 𝑥𝑡−1‖ = 𝛽𝑓𝑡(𝑥𝑡). Or, if 𝑥(𝑙) is the projection of 𝑥𝑡−1

onto the 𝑙-sublevel set of 𝑓𝑡 then ‖𝑥(𝑙)− 𝑥𝑡−1‖ = 𝛽𝑙. Equivalently, to find a value of 𝜆

such that 𝑔(𝑙) = 𝛽𝑙 where 𝑔(𝑙) = ‖𝑥(𝑙)− 𝑥𝑡−1‖ is a function in 1 dimension and we’ll

prove it’s continuous. Thus, 𝑙 can be found using bisection. We describe the algorithm

below, which was appeared in [24]. Moreover, in this paper, they propose an algorithm

which balances between the norm of the gradient (instead of the objective cost) and the

switching cost that provides a dynamic regret proportional to
√
𝐿𝑇 . Recall from the

previous chapter that 𝐿𝑇 is the length of the trajectory of the points of the optimal

offline solution.
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Algorithm 3: Online Balanced Descent

1: for 𝑡 = 1 : 𝑇 do

2: Set 𝑢𝑡 = 𝑎𝑟𝑔min𝑥 𝑓𝑡(𝑥)

3: if ‖𝑢𝑡 − 𝑥𝑡−1‖ < 𝛽𝑓𝑡(𝑢𝑡)

4: Set 𝑥𝑡 = 𝑢𝑡

5: else

6: Let 𝑥(𝑙) = Π𝑋𝑙
𝑡
(𝑥𝑡−1), increase 𝑙 from 𝑓𝑡(𝑢𝑡) until ‖𝑥(𝑙)− 𝑥𝑡−1‖ = 𝛽𝑙

7: where 𝑋 𝑙
𝑡 is the 𝑙-sublevel set of 𝑓𝑡

8: Set 𝑥𝑡 = 𝑥(𝑙)

9: end for

In general, 𝛽 will be less that 1 and its exact value will be determined from the

analysis and will depend on the 𝛼 of the 𝛼-polyhedral function. Notice also, that if

‖𝑢𝑡 − 𝑥𝑡−1‖ < 𝛽𝑓𝑡(𝑢𝑡) there is not 𝑙 such that ‖𝑥(𝑙)− 𝑥𝑡−1‖ = 𝛽𝑙. In this case, the player

simply moves to the minimizer of 𝑓𝑡. Recall that this case was taken into consideration

on the algorithm for the unidimensional case. In the case that 𝑓𝑡(𝑢𝑡) = 0 such an 𝑙

will always exists. Moreover, notice that although this algorithm seems like solving an

uncostrained problem, the feasible set 𝑋 can be incorporated into the sublevel set of 𝑓𝑡

if we consider 𝑓𝑡 = 𝑓𝑡, 𝑥 ∈ 𝑋 and +∞, otherwise.

Although we mentioned that we can increase 𝑙 from 0 until ‖𝑥(𝑙)− 𝑥𝑡−1‖ = 𝛽𝑙, a

value of 𝑙 can be find more efficiently using bisection. The function 𝑔(𝑙) takes the value

0 for an 𝑙 such that 𝑔(𝑙) = 0 (consider simply a sublevel set for 𝑙 = 𝑓𝑡(𝑥𝑡−1)) and a value

greater or equal than 𝛽𝑙 for 𝑙 = 𝑓𝑡(𝑢𝑡). According to the following lemma, the function

𝑔(𝑙) is continuous and thus bisection can be employed.

Lemma 4.7. The function 𝑔(𝑙) = ‖𝑥(𝑙)− 𝑥𝑡−1‖ is continuous in 𝑙.

Proof. To show the above lemma, we start by showing that ℎ(𝑙) = 1
2 ‖𝑥(𝑙)− 𝑥𝑡−1‖2 is

continuous in 𝑙. Recall that 𝑥(𝑙) is the solution to the following optimization problem

(projection):

minimize
𝑥

1

2
‖𝑥− 𝑥𝑡−1‖2

subject to 𝑓𝑡(𝑥) ≤ 𝑙

A remark to be made at this point is that after taking KKT conditions for the above

problem one sees that:

𝑥𝑡 = 𝑥𝑡−1 − 𝜂𝑡∇𝑓𝑡(𝑥𝑡)

which is similar to a step of gradient descent but with the huge difference that instead

of computing the gradient at 𝑥𝑡−1 one has to compute it at 𝑥𝑡. That gives power to the

algorithm compared to a simple gradient descent, since gradient descent only limits the
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algorithm’s actions only to one direction. Notice also that when we have OLO (Online

linear optimization) with switching cost, for designated choice of gradient stepsize, the

two methods are equivalent.

In the above form is somewhat hard to prove the claim. Using duality (notice that

strong duality holds) we can equivalently write ℎ(𝑙) as a function. In particular,

ℎ(𝑙) = max
𝜆≥0

min
𝑥

{1
2
‖𝑥− 𝑥𝑡−1‖2 + 𝜆(𝑓𝑡(𝑥)− 𝑙)} =

min
𝑥

max
𝜆≥0

{1
2
‖𝑥− 𝑥𝑡−1‖2 + 𝜆(𝑓𝑡(𝑥)− 𝑙)}

Now, let 𝐻(𝑥, 𝜆, 𝑙) = min𝑥max𝜆≥0{1
2 ‖𝑥− 𝑥𝑡−1‖2 + 𝜆(𝑓𝑡(𝑥) − 𝑙)}. The equation of the

two forms follows from the minimax theorem since 𝐻(𝑥, 𝜆) is convex in 𝑥 for constant 𝜆

and affine (thus concave) in 𝜆 for constant 𝑥. Recall now that maximization preserves

convexity (for every 𝜆, we get a convex function in (𝑥, 𝑙)). Moreover, 𝐻(𝑥, 𝜆, 𝑙) is jointly

convex in (𝑥, 𝑙) and thus minimization over 𝑥 preserves convexity. Finally since ℎ(𝑙) is

convex, it must be continuous. Now for the continuity of 𝑔(𝑙), give a 𝜖 > 0 we can find

a 𝛿 > 0 such that |ℎ(𝑙)− ℎ(𝑙 + 𝛿)| < 𝜖2. Thus,

|𝑔(𝑙)− 𝑔(𝑙 + 𝛿)|
𝑇𝐼
≤ ‖𝑥(𝑙)− 𝑥(𝑙 + 𝛿)‖ =

√︁
‖𝑥(𝑙)− 𝑥(𝑙 + 𝛿)‖2

Now recall the cosine law for the projection step from Chapter 2:

|𝑔(𝑙)− 𝑔(𝑙 + 𝛿)| ≤
√︁

‖𝑥(𝑙 + 𝛿)− 𝑥𝑡−1‖2 − ‖𝑥(𝑙)− 𝑥𝑡−1‖2 =
√︀

|ℎ(𝑙)− ℎ(𝑙 + 𝛿)| < 𝜖

With the above in mind, we are ready to analyze Algorithm 3 for 𝛼-polyhedral

functions. Essentially the fact that the hitting costs must be expressed by 𝛼-polyhedral

functions restricts the use of the algorithm to functions 𝑓𝑡(𝑥) = 𝑔𝑡(𝑥) + ‖𝑥− 𝑢𝑡‖ where

𝑢𝑡 is the minimizer of 𝑔(𝑥) is a convex function which must be nonnegative.

Theorem 4.8. Algorithm 3 achieves a competitive ratio of 3 + 𝑂( 1𝛼) for 𝛼-polyhedral

function for the problem of OCO with switching cost.

Proof. The analysis is very similar to the one for the unidimensional case. We again

consider Φ(𝑥𝑡, 𝑥
*
𝑡 ) = 𝐶 ‖𝑥𝑡 − 𝑥*𝑡 ‖. As before, in order to enstablish a competitive ratio

of 𝐶, it suffices to show that:

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡−1) ≤ 𝐶(𝐻*

𝑡 +𝑀*
𝑡 )
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Taking into consideration the fact that:

Φ(𝑥𝑡−1, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡−1) ≤ 𝐶𝑀*

𝑡

Therefore it suffices to prove:

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) ≤ 𝐶𝐻*

𝑡

Recall that always 𝑀𝑡 ≤ 𝛽𝐻𝑡. Again consider two cases:

∙ 𝐻𝑡 ≤ 𝐻*
𝑡 . This is the case that remains easy. We have that

𝐻𝑡 +𝑀𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 )

𝑀𝑡≤𝛽𝐻𝑡

≤ 𝐻𝑡 + 𝛽𝐻𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 )

TI
≤ (1 + 𝛽)𝐻𝑡 +Φ(𝑥𝑡, 𝑥𝑡−1) ≤ (1 + 𝛽)𝐻𝑡 + 𝐶𝛽𝐻𝑡 ≤ (1 + 𝛽(𝐶 + 1))𝐻𝑡

Thus we search for a value of 𝛽 such that 1 + 𝛽(𝐶 + 1) ≤ 𝐶

∙ 𝐻𝑡 > 𝐻*
𝑡 . That’s the difficult case compared to the problem in one dimension.

Let’s recall what we have to prove and notice that in this case 𝑀𝑡 = 𝛽𝐻𝑡.

(1 + 𝛽)𝐻𝑡 +Φ(𝑥𝑡, 𝑥
*
𝑡 )− Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) ≤ 𝐶𝐻*

𝑡

In the unidimensional case we easily show that Φ(𝑥𝑡, 𝑥
*
𝑡 ) − Φ(𝑥𝑡−1, 𝑥

*
𝑡 ) = −𝐶𝑀𝑡

with an obvious observation. In higher dimensions this does not necassarily hold.

Although, in general, intuitively the difference should be nonpositive. Remember

that 𝑥𝑡 is the projection of 𝑥𝑡−1 to a 𝑙-sublevel set of 𝑓𝑡(𝑥). Because 𝑓𝑡(𝑥
*
𝑡 ) < 𝑓𝑡(𝑥𝑡),

𝑥*𝑡 must lie in the interior of this sublevel set. Thus the distance between 𝑥𝑡 and

𝑥*𝑡 is less than the distance between 𝑥𝑡−1, 𝑥
*
𝑡 because 𝑥𝑡, 𝑥

*
𝑡 , 𝑥𝑡−1 form an obtuse

triangle. We formulate this idea below. We’ll prove that for some 𝛾 > 0:

‖𝑥𝑡 − 𝑥*𝑡 ‖ − ‖𝑥*𝑡 − 𝑥𝑡−1‖ ≤ −𝛾 ‖𝑥𝑡 − 𝑥𝑡−1‖

First, we bound the term ‖𝑥𝑡 − 𝑥*𝑡 ‖ using the triangle inequality:

‖𝑥𝑡 − 𝑥*𝑡 ‖ ≤ ‖𝑥𝑡 − 𝑢𝑡‖+ ‖𝑥*𝑡 − 𝑢𝑡‖
𝛼−𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑎𝑙

≤ 1

𝛼
𝐻𝑡 +

1

𝛼
𝐻*

𝑡 ≤ 2

𝛼
𝐻𝑡 ≤

2

𝛼𝛽
𝑀𝑡

Let ‖𝑥𝑡 − 𝑥*𝑡 ‖ = 𝑟𝑀𝑡, 𝑟 ≤ 2
𝛼𝛽 . Now for the projection, recall that it holds:

‖𝑥𝑡 − 𝑥*𝑡 ‖
2 + ‖𝑥𝑡 − 𝑥𝑡−1‖2 ≤ ‖𝑥*𝑡 − 𝑥𝑡−1‖2 ⇒ ‖𝑥*𝑡 − 𝑥𝑡−1‖ ≥

√︀
1 + 𝑟2𝑀𝑡

⇒ ‖𝑥*𝑡 − 𝑥𝑡−1‖ − ‖𝑥𝑡 − 𝑥*𝑡 ‖ ≥ (
√︀

1 + 𝑟2 − 𝑟)𝑀𝑡 ≥ (

√︂
1 + (

2

𝛼𝛽
)2 − 2

𝛼𝛽
)𝑀𝑡
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because ℎ(𝑟) =
√
1 + 𝑟2−𝑟 is a strictly decreasing function which is always positive.

Hence we conclude 𝛾 =
√︁

1 + ( 2
𝛼𝛽 )

2 − 2
𝛼𝛽 > 0. Finally, using the above:

𝐻𝑡 +𝑀𝑡 + 𝐶(‖𝑥*𝑡 − 𝑥𝑡−1‖ − ‖𝑥𝑡 − 𝑥*𝑡 ‖) ≤ 𝐻𝑡 +𝑀𝑡 − 𝐶𝛾𝑀𝑡 = (1 + 𝛽(1− 𝐶𝛾))𝐻𝑡

Thus we search for a value of 𝛽 such that C is minimized and the two following hold:

1 + 𝛽(1− 𝐶𝛾) ≤ 0

1 + 𝛽(𝐶 + 1) ≤ 𝐶

After careful calculations, we conclude that 𝛽 = 1
2 + 1

𝛼+2 and 𝐶 = 3 + 8
𝛼 .

Figure 4.3: Relation between 𝑥𝑡, 𝑥𝑡−1, 𝑥
*
𝑡 when 𝐻𝑡 > 𝐻*

𝑡

The above analysis was for the case that the switching cost was the 𝑙2 norm. However,

recall that there is a equivalence between the norms. Therefore we can extend the above

result to other norms. For example, for 𝑙1 norm it holds:

1√
𝑑
‖𝑥‖1 ≤ ‖𝑥‖2 ≤ ‖𝑥‖1

Therefore the cost of the algorithm for 𝑙1 switching cost is at most
√
𝑑 times the cost of

the algorithm for the 𝑙2 case. Similarly, the offline optimal cost for the 𝑙1 norm is no less

than the optimal offline cost for the 𝑙2 norm. Therefore we conclude to a competitive

ratio of 𝑂(
√
𝑑(3 + 1

𝛼)) when the switching cost is 𝑙1.

4.4 Covering constraints with 𝑙1 switching cost

In this paragraph, we discuss a special case of OCO with switching cost. In particu-

lar, when the objective is a linear function, the switching cost is the (weighted) 𝑙1 norm

and the feasible set of solutions is expressed as linear covering constraints. To explain
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the motivation behind the development of such an algorithm we have to say first that in

combinatorial optimization, a standard procedure to design approximation algorithms

for 𝑁𝑃 -complete problems is to express them as integer programs, consider the linear

programming relaxation, trivially acquire a solution, since linear programs can be effi-

ciently solved and then round the solution to provide the result for the combinatorial

problem. That’s the case here as well for online combinatorial problems wthat involve a

switching cost between successive rounds. However, obtaining a good fractional solution

is not trivial in this case since it’s an OCO with switching cost problem.

In general, a lot of fundamental combinatorial problems can be expressed with cov-

ering constraints including the Set Cover problem and the Shortest Path problem. In

the Set Cover problem, one has a collection of sets 𝑆1, 𝑆2, ..., 𝑆𝑛, each one associated

with a cost 𝑐𝑖, 𝑖 ∈ [𝑛] and a number of elements 𝑒1, 𝑒2, ..., 𝑒𝑚. Each of the elements is

covered only by a subset of these sets. The goal is to find the Sets with the minimum

possible cost that cover all the elements. Subsequently, the online multistage Set Cover

problem is when one has the same sets in each round and the cost of each one, 𝑐𝑖,𝑡

changes between rounds. Moreover, different subset of elements are needed to covered

in each round and the player pays a cost when acquiring or removing a Set from her

disposal.

The algorithm which will analyze appeared in [18]. The authors provide a competitive

algorithm to solve the Set Cover problem with switching cost. They solve the convex

relaxation, which is our focus, and they provide a rounding algorithm for acquiring

integer solutions which we’ll omit from this paragraph. Let’s start by considering the

relaxation of the problem and its dual. The purpose of defining the dual is because

our analysis will be based on the lower bound the dual provides to the optimal offline

solution.

minimize
𝑦∈[𝑛]×[𝑇 ]

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑐𝑖,𝑡𝑦𝑖,𝑡 +

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑤𝑖𝑧𝑖,𝑡

subject to
∑︁
𝑖∈𝑆𝑗,𝑡

𝑦𝑖,𝑡 ≥ 1, ∀𝑡 ≥ 1 & 1 ≤ 𝑗 ≤ 𝑚𝑡

𝑧𝑖,𝑡 ≥ 𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1, ∀𝑡 ≥ 1 & 1 ≤ 𝑖 ≤ 𝑛

𝑧𝑖,𝑡, 𝑦𝑖,𝑡 ≥ 0, ∀𝑡 ≥ 1 & 1 ≤ 𝑖 ≤ 𝑛

Where 0 ≤ 𝑦𝑖,𝑡 ≤ 1 determines what percentage of the Set 𝑖 we acquire in time 𝑡. Notice

also, that without loss of generality, it suffices to pay only for increasing variables, since

in each round a distribution over the sets is maintained. We denote by 𝑆𝑗,𝑡 the sets

which can be used to cover element 𝑗 in round t. 𝑚𝑡 are the set of elements that must

be covered in time 𝑡. The solution to the above linear program, is the optimal offline
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solution for the problem. The dual problem is now:

maximize
𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑗=1

𝑎𝑗,𝑡

subject to 𝑏𝑖,𝑡 ≤ 𝑤𝑖, ∀𝑡 ≥ 1 & 1 ≤ 𝑖 ≤ 𝑛

𝑏𝑖,𝑡+1 − 𝑏𝑖,𝑡 ≤ 𝑐𝑖,𝑡 −
∑︁

𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡, ∀𝑡 ≥ 1 & 1 ≤ 𝑖 ≤ 𝑛

𝑎𝑗,𝑡, 𝑏𝑖,𝑡 ≥ 0, ∀𝑡 ≥ 1 & 𝑖, 𝑗

The algorithm that we’ll use to solve the problem in an online fashion shares ideas with

aforementioned algorithms. But first, let’s describe it.

Algorithm 4: Regularization Algorithm

1: parameters: 𝜖 > 0, 𝜂 = 𝑙𝑛(1 + 𝑛
𝜖 )

2: initialize: 𝑦0 = 0,

3: for 𝑡 = 1 : 𝑇 do

4: Observe the cost vector 𝑐𝑡 and let 𝑃𝑡 be the feasible set of solutions at time

𝑡, which are the covering constraints at time 𝑡.

5: Solve the following convex program to obtain 𝑦𝑡

6: 𝑦𝑡 = 𝑎𝑟𝑔min𝑥∈𝑃𝑡{𝑐𝑇𝑡 𝑥𝑡 + 1
𝜂

∑︀𝑛
𝑖=1𝑤𝑖((𝑥𝑖 +

𝜖
𝑛) ln(

𝑥𝑖+
𝜖
𝑛

𝑦𝑖,𝑡−1+
𝜖
𝑛
)− 𝑥𝑖)}

7: end for

Recall now the Hedge algorithm and Online Gradient Descent. We discussed their

connection in Chapter 3. The algorithm is a gradient descent based rule, where we

minimize the sum of the first-order Taylor approximation of the objective (here is the

objective itself, since the objective is linear) penalized by the relative entropy function.

The choice of this regularizer is not random. We saw that when we used relative entropy

instead of 𝑙22 as a regularizer in the hedge algorithm where one maintains a distribution

over a set of elements we obtained a significantly better regret. This is the case here

as well, since we maintain a distribution over the sets and the constraints in this case

generalize the constraints in the experts setting. Moreover, recall that the balanced de-

scent rule we discussed in the previous paragraph is essentially the same rule as gradient

descent when the objective is a linear function as it is in this case. We now state the

main theorem of this paragraph:

Theorem 4.9. For every 𝜖 > 0, Algorithm 4 provides a solution to the problem described

by the primal program that is 𝑂((1+ 𝜖) log(1+ 𝑘
𝜖 )) - competitive compared to the optimal

offline solution, the optimal solution of the primal program.

𝑘 is the maximal sparsity of the covering constraints: 𝑘 = max{|𝑆𝑗,𝑡| : 1 ≤ 𝑡 ≤
𝑇, 1 ≤ 𝑗 ≤ 𝑚𝑡}. In the worst case, 𝑘 = 𝑛 and for 𝜖 = 1 we get an algorithm that is
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𝑂(log 𝑛)-competitive where 𝑛 is the number of sets and of course the dimension of the

instance.

We’ll now prove the main theorem. The idea of the proof is the following: Firstly,

for each round 𝑡 we express the solution of Algorithm 4 using the Karush-Kuhn-Tucker

conditions. Using the optimal values given by these equations, we create a feasible dual

solution. In particular, each variable of the dual of the linear program is assigned to a

value from the optimal dual variables given by KKT. Then we show that the total hitting

cost of the algorithm and the total moving (switching) cost of the algorithm which are

expressed through the optimal primal variables given by the KKT can be bounded by

the value of the feasible dual solution. Because of duality, we have bounded the total

cost of the algorithm by the minimum value of the primal problem, which is the optimal

offline cost and the competitive analysis is complete.

Proof. We’ll start by stating the KKT conditions of the convex criterion of Algorithm

4 in time 𝑡. Let 𝑦𝑡 be the optimal primal solution.

∑︁
𝑖∈𝑆𝑗,𝑡

𝑦𝑖,𝑡 − 1 ≥ 0,∀1 ≤ 𝑗 ≤ 𝑚𝑡 (4.1)

𝑎𝑗,𝑡(
∑︁
𝑖∈𝑆𝑗,𝑡

𝑦𝑖,𝑡 − 1) = 0, ∀1 ≤ 𝑗 ≤ 𝑚𝑡 (4.2)

𝑐𝑖,𝑡 +
𝑤𝑖

𝜂
ln(

𝑦𝑖,𝑡 +
𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

)−
∑︁

𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛, (4.3)

𝑦𝑖,𝑡(𝑐𝑖,𝑡 +
𝑤𝑖

𝜂
ln(

𝑦𝑖,𝑡 +
𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

)−
∑︁

𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡) = 0, ∀1 ≤ 𝑖 ≤ 𝑛, (4.4)

Now, we assign values to the variables of the dual program. 𝑎𝑗,𝑡 is assigned to the same

of the KKT conditions, while 𝑏𝑖,𝑡+1 is assigned the value 𝑏𝑖,𝑡+1 = 𝑤𝑖
𝜂 ln(

1+ 𝜖
𝑛

𝑦𝑖,𝑡+
𝜖
𝑛
). We

now have to show that indeed these values are feasible. To this end we have ∀𝑡 from

inequality (4.3) that,

𝑏𝑖,𝑡+1 − 𝑏𝑖,𝑡 = −𝑤𝑖

𝜂
ln(

𝑦𝑖,𝑡 +
𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

) ≤ 𝑐𝑖,𝑡 −
∑︁

𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡

Moreover, 0 ≤ 𝑏𝑖,𝑡+1 = 𝑤𝑖
ln(1+𝑛

𝜖
) ln(

1+ 𝜖
𝑛

𝑦𝑖,𝑡+
𝜖
𝑛
) ≤ 𝑤𝑖 which follows since 0 ≤ 𝑦𝑖,𝑡 ≤ 1. Finally,

of course we have 𝑎𝑗,𝑡 ≥ 0 since 𝑎𝑗,𝑡 is a Lagrangian dual variable. We proceed with

bounding the hitting and the moving (switching) cost of the algorithm. Firstly, the
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moving cost at time 𝑡 is:

𝑀𝑡 = 𝜂
∑︁

𝑦𝑖,𝑡>𝑦𝑖,𝑡−1

𝑤𝑖

𝜂
(𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1) (4.5)

≤ 𝜂
∑︁

𝑦𝑖,𝑡>𝑦𝑖,𝑡−1

(𝑦𝑖,𝑡 +
𝜖

𝑛
)(
𝑤𝑖

𝜂
ln(

𝑦𝑖,𝑡 +
𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

)) (4.6)

= 𝜂
∑︁

𝑦𝑖,𝑡>𝑦𝑖,𝑡−1

(𝑦𝑖,𝑡 +
𝜖

𝑛
)(

∑︁
𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡 − 𝑐𝑖,𝑡) (4.7)

≤ 𝜂
𝑛∑︁

𝑖=1

(𝑦𝑖,𝑡 +
𝜖

𝑛
)

∑︁
𝑗|𝑖∈𝑆𝑗,𝑡

𝑎𝑗,𝑡 = 𝜂

𝑚𝑡∑︁
𝑡=1

𝑎𝑗,𝑡(
∑︁
𝑖∈𝑆𝑗,𝑡

𝑦𝑖,𝑡 +
𝜖

𝑛
|𝑆𝑗,𝑡|) (4.8)

≤ 𝜂(1 +
𝜖𝑘

𝑛
)

𝑚𝑡∑︁
𝑗=1

𝑎𝑗,𝑡 = (1 +
𝜖𝑘

𝑛
)𝐷 (4.9)

Summing up we get that the total moving cost is at most (1 + 𝜖𝑘
𝑛 )𝐷 where 𝐷 is the

value of the dual solution we created. Inequality (4.6) follows from the fact that 𝑎− 𝑏 ≤
𝑎 ln(𝑎𝑏 ), ∀𝑎, 𝑏 > 0. Equality (4.7) follows from condition (4.4) since 𝑦𝑖,𝑡 ≥ 𝑦𝑖,𝑡−1 implies

𝑦𝑖,𝑡 > 0. Inequality (4.8) follows since 𝑐𝑖,𝑡, 𝑦𝑖,𝑡, 𝑎𝑗,𝑡 are nonnegative. Finally, inequality

(4.9) follows from condition (4.2).

For the total service cost we have,

𝑆 =
𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑐𝑖,𝑡𝑦𝑖,𝑡 =
𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑗=1

𝑎𝑗,𝑡
∑︁
𝑖∈𝑆𝑗,𝑡

𝑦𝑖,𝑡 −
1

𝜂

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑤𝑖𝑦𝑖,𝑡 ln(
𝑦𝑖,𝑡 +

𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

) (4.10)

=
𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑗=1

𝑎𝑗,𝑡 −
1

𝜂

𝑛∑︁
𝑖=1

{
𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡 +
𝜖

𝑛
) ln(

𝑦𝑖,𝑡 +
𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

)− 𝜖

𝑛

𝑇∑︁
𝑡=1

ln(
𝑦𝑖,𝑡 +

𝜖
𝑛

𝑦𝑖,𝑡−1 +
𝜖
𝑛

)} (4.11)

≤ 𝐷 − 1

𝜂

𝑛∑︁
𝑖=1

𝑤𝑖{
𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡 +
𝜖

𝑛
)) ln(

∑︀𝑇
𝑡=1(𝑦𝑖,𝑡 +

𝜖
𝑛)∑︀𝑇

𝑡=1(𝑦𝑖,𝑡−1 +
𝜖
𝑛)

)− 𝜖

𝑛
ln(

𝑦𝑖,𝑇 + 𝜖
𝑛

𝑦𝑖,0 +
𝜖
𝑛

)} (4.12)

≤ 𝐷 (4.13)

Equality (4.10) follows from condition (4.4). Equality (4.11) follows from condition (4.2).

Inequality (4.12) follows by telescopic sum and the log-sum inequality. Inequality (4.13)

follows since 𝑦0 = 0 and thus:

𝜖

𝑛
ln(

𝑦𝑖,𝑇 + 𝜖
𝑛

𝑦𝑖,0 +
𝜖
𝑛

) = (𝑦𝑖,0 +
𝜖

𝑛
) ln(

𝑦𝑖,0 +
𝜖
𝑛

𝑦𝑖,𝑇 + 𝜖
𝑛

) ≥ 𝑦𝑖,0 − 𝑦𝑖,𝑇

and:

𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡 +
𝜖

𝑛
) ln(

∑︀𝑇
𝑡=1(𝑦𝑖,𝑡 +

𝜖
𝑛)∑︀𝑇

𝑡=1(𝑦𝑖,𝑡−1 +
𝜖
𝑛)

) ≥
𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡 +
𝜖

𝑛
)−

𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡−1 +
𝜖

𝑛
) = 𝑦𝑖,𝑇
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both because 𝑎 − 𝑏 ≤ 𝑎 ln(𝑎𝑏 ). Finally by choosing 𝜖′ = 𝜖𝑛
𝑘 one concludes that the total

cost of the algorithm is at most 1 + ((1 + 𝜖′) ln(1 + 𝑘
𝜖′ )) the value of 𝐷 and thus of the

optimal offline solution.

We provided the proof for the case of the covering constraints. If, in addition we

are give a fixed set of precedence constraints of the form 𝑥 ≤ 𝑦 we can still provide

the proof with some tweaks. These kind of constraints appear for example in facility

location problems. The above idea was used to solve the problem of online version of the

dynamic facility location problem ([2]) in [44] . Additionally, in [42] the authors provide

an algorithm for the combinatorial problem of Online Shortest Path with Switching Cost

using the regularization algorithm to provide a fractional solution.

4.5 Open problems

The study of OCO with switching cost is a relatively new research area and we

believe that plenty of challenges remain to be addressed. We did a beyond worst case

analysis using polyhedral functions to avoid the 𝑂(
√
𝑑) lower bound when the switching

cost is the 𝑙2 norm. However, it would be interesting to find out if the same idea, to

balance between the hitting and the switching cost can give us a 𝑂(
√
𝑑) competitive

ratio without further assumptions on the hitting cost functions. Moreover, an extremely

interesting case is the one of the 𝑙1 norm. For the 𝑙1 norm we don’t have a known lower

bound and perhaps a constant competitive ratio can be achieved for a class of convex

more general than 𝛼-polyhedral. Of course, notice that a constant competitive ratio for

the case of the 𝑙1 norm, due to norm equivalence, will lead to 𝑂(
√
𝑑) competitive ratio

for the 𝑙2 norm.

An intuitively more difficult problem is the one where the switching cost function

is not a norm and is a general convex function. Only very recently there has been

work towards this direction. In [34] the authors study the case when the switching cost

function is the squared euclidean norm. By making many assumptions including strong

convexity, smoothness, Lipschitz continuity and a bound on the diameter of the feasible

space (and of course a bound on the length of the optimal trajectory), they analyze and

provide an algorithm that minimizes dynamic regret. Using in addition bounds of the

form 𝑓𝑡(𝑥𝑡) ≥ 𝜖 for some 𝜖 > 0 through the dynamic regret analysis they conclude to

a competitive ratio of 1 + 𝑠
𝜖 where 𝑠 depends on the parameters of the aforementioned

assumptions. None of these assumptions were considered in the algorithms we previously

analyzed and as the authors strongly suggest in [24] the techniques to acquire good

competitive ratio bounds and dynamic regret bounds are different and that’s why in

their paper they provide two different algorithms for the two different metrics. We
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believe that future work on this area should be to find out how the rule of balance

performs in this case as well because of its success we saw in this chapter. We believe

that this kind of approach will significantly improve the competitive ratio the authors

provided in [34].
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Εισαγωγή

Στήν παρούσα εργασία, μελετάμε το πρόβλημα της ΄Αμεσης Κυρτής βελτιστοποίησης

(ΑΚΒ) με κόστη μετάβασης. Αυτό είναι ένα πρόβλημα που είναι συσχετισμένο με ενα τυπικό

πρόβλημα της περιοχής της ΑΚΒ αλλά επίσης είναι επηρεασμένο και απο ένα πρόβλημα που

θα συναντούσαμε στην περιοχή των άμεσων αλγορίθμων, όπως τα Μετρικά συστήματα

εργασίας. Σε αυτό το άμεσο πρόβλημα, δοσμένου ενός κυρτού υποσυνόλου του R𝑛
, ο

παίκτης σε κάθε γύρο δέχεται μια κυρτή συνάρτηση 𝑓𝑡(𝑥) και παίρνει μια απόφαση, ένα

σημείο 𝑥𝑡 ∈ 𝑋. Τώρα, εκτός απο το αντικειμενικό κόστος 𝑓𝑡(𝑥𝑡), ο παίκτης πληρώνει

και ένα κόστος λόγω της μεταβολής των αποφασεών του μεταξύ συνεχόμενων γύρων, το

κόστος μετάβασης, ‖𝑥𝑡 − 𝑥𝑡−1‖. Φυσικά, ο στόχος του παίκτη είναι να ελαχιστοποιήσει το
συνολικό αντικειμενικό και κόστος μετάβασης για όλους τους γύρους. Αυτή η σύνθεση

λοιπόν είναι κοντά στο πρόβλημα της ΑΚΒ όπου και εκεί σε κάθε γύρο εμφανίζεται μια

κυρτή συνάρτηση αλλά επίσης το πρόβλημα είναι μια όχι και τόσο εξιδεικευμένη περίπτωση

των Μετρικών συστημάων εργασίας (ΜΣΕ). Στα ΜΣΕ, ο χώρος R𝑛
αντικαθιστάται απο

έναν τυχαίο μετρικό χώρο (είτε συνεχή, είτε διακριτό) και οι συναρτήσεις που εμφανίζονται

σε κάθε γύρο είναι αυθαίρετες και όχι αναγκαία κυρτές.

0.1 ΄Αμεσοι Αλγόριθμοι

Τα προβλήματα που μας ενδιαφέρουν σε αυτή τη διατριβή πρέπει να λυθούν με άμεσο

τρόπο. Ο μή άμεσος τρόπος, η παραδοσιακή ρύθμιση στην ανάλυση και τον σχεδιασμό

αλγορίθμων, προϋποθέτει ότι η πλήρης πληροφορία του προβλήματος είναι γνωστή στον

σχεδιαστή από την αρχή. Σε αντίθεση με αυτή τη ρύθμιση, στούς άμεσους αλγορίθμους,

στοχεύουμε στο σχεδιασμό αλγορίθμων όπου η είσοδος αποκαλύπτεται κομμάτι-κομμάτι.

Ο αλγόριθμος πρέπει να ανταποκρίνεται αμέσως όταν φθάνουν νέες πληροφορίες χωρίς τη

γνώση των μελλοντικών πληροφοριών. Επιπλέον, όταν λαμβάνεται κάποια απόφαση, δεν

μπορεί να ανακληθεί.

Ορισμός 0.1. ΄Εστω 𝑐 ≥ 1 ένας πραγματικός αριθμός. ΄Ενας άμεσος αλγόριθμος λέγεται

ότι είναι 𝑐-ανταγωνιστικός αν για κάθε είσοδο ενός προβλήματος ελαχιστοποίησης Ι, για

κάθε ακολουθία εισόδων, εξάγει μια λύση κόστους το πολύ 𝑐 · 𝑂𝑃𝑇 (Ι ) + 𝛼 όπου 𝑂𝑃𝑇

1



Εισαγωγή 2

(Ι ) είναι το κόστος μιας βέλτιστης λύσης όταν όλη η πληροφορία είναι γνωστή απο την αρχή

και το 𝑎 είναι σταθερό. Για 𝑎 ≤ 0 λέμε ότι ο αλγόριθμος είναι αυστηρά 𝑐 -ανταγωνιστικός.

0.2 Κυρτή Βελτιστοποίηση

Για τους αλγορίθμους που θα αναλύσουμε, σε κάθε γύρο θα χρειαστεί να λύσουμε ένα

πρόβλημα κυρτής βελτιστοποίησης. ΄Ενα παράδειγμα προβλήματος κυρτής βελτιστοποίησης

είναι η προβολή ενός σημείου 𝑦 στον χώρο σε ένα κυρτό υποσύνολο του χώρου 𝑋. Δηλαδή

το σημείο του συνόλου που απέχει την μικρότερη απόσταση απο το δοσμένο σημείο 𝑦. Εν

γένει, ένα πρόβλημα κυρτής βελτιστοποίησης, έχει την εξής μορφή:

Ελαχιστοποίησε

𝑥∈R𝑛

𝑓0(𝑥)

Υπο περιορισμούς: 𝑔𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚.

΄Οπου η συνάρτησεις 𝑓0(𝑥) και 𝑔𝑖(𝑥), 𝑥 = 1, 2, ...,𝑚 είναι κυρτές. Ο πιο θεμελιώδης

αλγόριθμος για να λύσουμε τέτοιου είδους προβλήματα είναι η μέθοδος κλίσης.

Αλγόριθμος 1: Μέθοδος Κλίσης

1: Είσοδος: Κυρτή συνάρτηση 𝑓 , Αριθμός επαναλήψεων 𝑇 , Σύνολο αποφάσεων 𝑋,

Αρχικό σημείου 𝑥1 ∈ 𝑋, ακολουθία {𝜂𝑡}
2: Για 𝑡 = 1 : 𝑇 :

3: Λετ 𝑦𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡), 𝑥𝑡+1 = Π𝑋(𝑦𝑡+1)

4: Επέστρεψε 𝑥𝑇+1

Αυτή η μέθοδος μας υπόσχεται ένα φράγμα της τάξης του 𝑂( 1√
𝑇
) στο σφάλμα της λύσης

μετά απο 𝑇 γύρους.

Θεώρημα 0.2. Για 𝐺-𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 κυρτές συναρτήσεις και διάμετρο του συνόλου αποφάσε-

ων ίση με 𝐷, για τις αποφάσεις του Αλγορίθμου 1 ισχύει:

𝑓(
1

𝑇

𝑇∑︁
𝑡=1

𝑥𝑡)− 𝑓(𝑥*) ≤ 𝐷𝐺√
𝑇

΄Αμα η συναρτήση 𝑓 , πληροί επιπλέον προυποθέσεις (π.χ φράζεται απο κάτω και απο

πάνω απο τετραγωνικές συναρτήσεις) μπορούμε να μειώσουμε πάρα πολύ τον αριθμό των

επαναλήψεων ώστε να πάρουμε σφάλμα 𝜖 στην λύση. Συγκεκριμένα, απο 𝑂( 1
𝜖2
), όπως

παραπάνω, μπορούμε να επιτύχουμε αριθμό επαναλήψεων 𝑂(log 1
𝜖 )



Κεφάλαιο 1

΄Αμεση Κυρτή Βελτιστοποίηση

Σε αυτό το κεφάλαιο θα ορίσουμε το πρόβλημα της ΄Αμεσης Κυρτής Βελτιστοποίσης

(ΑΚΒ) το οποίο είναι άρρηκτα συνδεδεμένο τόσο με το πρόβλημα της ΑΚΒ με κόστη μετάβα-

σης, καθώς και με το πεδίο της άμεσης μάθησης. Πολλά προβλήματα άμεσης μάθηση (π.χ

άμεση ανίχνευση ανυπιθύμητης αλληλογραφίας) είναι ειδικές περιπτώσης ενός προβλήματος

ΑΚΒ.

∙ Σε κάθε γύρο 𝑡 = 1, 2, ..., 𝑇 , ο υπεύθυνος λήψης αποφάσεων αποφασίζει, επιλέγοντας

ένα σημείο από ένα κυρτό σύνολο 𝑥𝑡 ∈ 𝑋 ⊆ R𝑛

∙ Μετά την απόφαση, ο αντίπαλος αποκαλύπτει μια κυρτή συνάρτηση 𝑓𝑡(𝑥), 𝑡 ∈ [𝑇 ] και

ο παίκτης έχει απώλεια (η κόστος) 𝑓𝑡(𝑥𝑡).

∙ Ο στόχος του υπεύθυνου λήψης αποφάσεων είναι η ελαχιστοποίηση της λύπης (𝑅𝑒𝑔𝑟𝑒𝑡).

Δηλαδή, σε κάθε γύρο, να επιλέξει μια στρατηγική 𝑥𝑡 για να ελαχιστοποιήσει:

Λύπη =
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥)

΄Ενας αλγόριθμος που εγγυάται μια υπογραμμική ως προς το Τ (𝑜(𝑇 )) λύπη, ονομάζεται

αλγόριθμος μη-λύπης. Οι αλγόριθμοι ΑΚΒ στοχεύουν στην εξεύρεση της καλύτερης στα-

θερής απόφασης 𝑥* η οποία ελαχιστοποιεί το άθροισμα των συναρτήσεων 𝑓𝑡, 𝑡 ∈ [𝑇 ]. Το

μοντέλο δέχεται επίσης την ακόλουθη ερμηνεία: Αρχικά, ο αντίπαλος επιλέγει μία συνάρτη-

ση 𝑓 και την σπάει στα τμήματα 𝑓𝑡, έτσι ώστε να ισχύει το ακόλουθο:
∑︀𝑇

𝑡=1 𝑓𝑡(𝑥) = 𝑓 . Το

σπάει με τον χειρότερο δυνατό τρόπο ώστε ο παίκτης να κάνει τις περισσότερες επαναλήψεις

(γύρους), προκειμένου να συγκλίνει στην καλύτερη απόφαση εκ των υστέρων 𝑥*. Υπάρχει

ένας απλός αλγόριθμος που μας δίνει το καλύτερο δυνατό φράγμα στην Λύπη του παίκτη

όταν δεν υποθέτουμε κάτι περαιτέρω για την φύση των κυρτών συναρτήσεων σε κάθε γύρο.

3
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Αλγόριθμος 2: ΄Αμεση μέθοδος κλίσης

1: Είσοδος: Αριθμός επαναλήψεων 𝑇 , Σύνολο αποφάσεων 𝑋, Αρχικό σημείο 𝑥1 ∈ 𝑋,

Ακολουθία ρυθμών εκμάθησης {𝜂𝑡}
2: Για 𝑡 = 1 : 𝑇

3: Αποφάσισε 𝑥𝑡 και δέξου κόστος 𝑓𝑡(𝑥𝑡)

4: Κάνε βήμα: 𝑦𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡)

5: Πρόβαλε στο 𝑋: 𝑥𝑡+1 = Π𝑋(𝑦𝑡+1)

Θεώρημα 1.1. Ας υποθέσουμε ότι σε κάθε γύρο, το βήμα μάθησης δίνεται απο τον τύπο:

𝜂𝑡 =
𝐷

𝐺
√
𝑇
όπου 𝐷 είναι η διάμετρος του κυρτού συνόλου και 𝐺 είναι ένα φράγμα στην τιμή

της κλίσης των συναρτήσεων ‖∇𝑓(𝑥)‖ ≤ 𝐺, ∀𝑥 ∈ 𝑋. Τότε θα ισχύει:

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥) ≤
3

2
𝐺𝐷

√
𝑇

Επιπλέον, ενδιαφέρον παρουσιάζουν τα προβλήματα όπου ο παίκτης έχει να ανταγωνιστεί

μια δυναμική στρατηγική και όχι μια στατική 𝑥* όπως στην παραπάνω περίπτωση. Τώρα

δηλαδή, ο παίκτης πρέπει να ελαχιστοποιήσει:

Δυναμική Λύπη =
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)−
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥
*
𝑡 )

Το πρόβλημα αυτό, χωρίς περαιτέρω προυποθέσεις, δεν έχει νόημα διότι άμα οι συναρ-

τήσεις 𝑓𝑡 είναι ασυσχέτιστες μεταξύ τους, ο παίκτης παίζει τυφλά καθώς πρώτα αποφασίζει

την στρατηγική του 𝑥*𝑡 και έπειτα παρατηρεί την συνάρτηση 𝑓𝑡. Μπορούμε να θεωρήσουμε

την εξης ποσότητα (𝐿𝑇 ) η οποία μας επιτρέπει να εφαρμόσουμε μια συσχέτιση μεταξύ των

συναρτήσεων 𝑓𝑡.

𝐿𝑇 =

𝑇∑︁
𝑡=1

⃦⃦
𝑥*𝑡 − 𝑥*𝑡−1

⃦⃦
Η οποία μας δείχνει πόσο κοντά η μακριά είναι τα σημεία που ελαχιστοποιούνται οι

συναρτήσεις 𝑓𝑡. Μεγάλες τιμές αυτής της παραμέτρου σημαίνει ότι βρίσκονται μακριά, και

έτσι κάθε αλγόριθμος θα πρέπει αναγκαστικά να έχει μεγάλο κάτω φράγμα. Αν απο την

άλλη είναι μικρή, τότε γνωρίζουμε ότι μια στρατηγική που ελαχιστοποιεί την συνάρτηση 𝑓𝑡

θα είναι καλή ώστε να ελαχιστοποιήσει και την συνάρτηση 𝑓𝑡+1. Η μέθοδος της άμεσης

κλίσης μπορεί να επιτύχει το φράγμα 𝑂(1 + 𝐿𝑇 ) στην δυναμική λύπη του παίκτη όταν οι

συναρτήσεις 𝑓𝑡 έχουν 𝛾-καλή κατάσταση.



Κεφάλαιο 2

΄Αμεση Κυρτή Βελτιστοποίηση με

κόστη μετάβασης

Σε αυτό το κεφάλαιο θα εστιάσουμε στο πρόβλημα της ΄Αμεσης Κυρτής Βελτιστοποίησης

με κόστη μετάβασης. Θα ξεκινήσουμε με τον ορισμό του προβλήματος:

Του προβλήμα αποτελείται από ένα σταθερό χώρο απόφασης, ένα κυρτό σύνολο 𝑋 ∈ R𝑛

και μια ακολουθία μη αρνητικών κυρτών συναρτήσεων 𝑓𝑡(𝑥), 𝑡 ∈ [𝑇 ]. Στον γύρο 𝑡, ο

παίκτης παρατηρεί τη συνάρτηση 𝑓𝑡(𝑥) και επιλέγει ένα σημείο 𝑥𝑡 ∈ 𝑋 που επιφέρει ένα

κόστος υπηρεσίας 𝑓𝑡(𝑥𝑡) και ένα κόστος αλλαγής ‖𝑥𝑡 − 𝑥𝑡−1‖. Υποθέτουμε ότι τόσο ο
παίκτης όσο και ο αντίπαλος ξεκινούν από την αρχή των αξόνων. Το συνολικό κόστος του

παίκτη είναι:

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) + ‖𝑥𝑡 − 𝑥𝑡−1‖

ενώ το βέλτιστο κόστος είναι:

min
{𝑥𝑡}𝑇𝑡=1∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) + ‖𝑥𝑡 − 𝑥𝑡−1‖

Θα αναφέρουμε τις αποφάσεις του αντιπάλου ως {𝑥*𝑡 }𝑇𝑡=1. Παρατηρήστε ότι το πρόβλημα

με όλη την γνώση έως τον χρόνο 𝑇 είναι ένα κυρτό πρόβλημα βελτιστοποίησης και μπορεί

να λυθεί αποδοτικά. Επίσης, το πρόβλημα μπορεί να δηλωθεί ως ένα πρόβλημα που δεν έχει

περιορισμούς όταν εξετάζουμε την επέκταση της συνάρτησης 𝑓𝑡 στο R𝑛
που παίρνει την τιμή

𝑓𝑡(𝑥), 𝑥 ∈ 𝑋 και την τιμή +∞, 𝑥 /∈ 𝑋. Ο επιγράφος της συνάρτησης είναι ίδιος με εκείνος

της 𝑓𝑡 και έτσι διατηρείται η κυρτότητα. Αυτό το γεγονός θα είναι χρήσιμο στην ανάλυση

των αλγορίθμων που θα ακολουθήσουν.

Θα ξεκινήσουμε με έναν αλγόριθμο στην 1 διάσταση οποίος έχει σταθερό λόγο ανταγω-

νισμού ίσο με 3. Μάλιστα, αυτό ο λόγος ανταγωνισμού είναι και ο καλύτερος που μπορεί

5
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να επιτευχθεί. Η ιδέα του αλγορίθμου είναι να πάρει μια απόφαση 𝑥𝑡 έτσι ώστε να εξισορ-

ροπήσει το αντικειμενικό κόστος και το κόστος μετάβασης στον γύρο 𝑡. Σε αυτό το σημείο

να σημειωθεί ότι ένας αλγόριθμος που θα αποφάσιζε ώστε να ελαχιστοποιήσει το άθροισμα

των δύο κόστων στο γύρο 𝑇 έχει κάτω φράγμα ίσο με Ω(𝑇 ).

Αλγόριθμος 3: ΄Αμεση μέθοδος εξισορρόπησης στην 1 διάσταση

1: Για 𝑡 = 1 : 𝑇 :

2: ΄Εστω 𝑥𝑚 οτι ελαχιστοποιεί την 𝑓𝑡(𝑥)

3: Κινήσου πρός το 𝑥𝑚 μέχρι να φτάσεις σε ένα σημείο 𝑥 έτσι ώστε 𝑀𝑡 =
𝐻𝑡
2 η να

φτάσεις στο σημείο 𝑥𝑚

4: Αποφάσισε 𝑥𝑡

Σχήμα 2.1: Γεωμετρική αναπαράσταση του Αλγορίθμου 1 για 𝑓𝑡(𝑢𝑡) = 0

Θεώρημα 2.1. Ο Αλγόριθμος 3 είναι 3-ανταγωνιστικός για το πρόβλημα της ΑΚΒ με

κόστη μετάβασης στην 1 διάσταση.

Ενδιαφέρον φυσικά παρουσιάζει το πρόβλημα σε διάσταση μεγαλύτερη του 1. Παρολαυτά

σε αυτήν την περίπτωση δεν μπορούμε να επιτύχουμε ένα σταθερό λόγο ανταγωνισμού. Αυτό

μας το δίνει το παρακάτω θεώρημα:

Θεώρημα 2.2. Κάθε αλγόριθμος για το πρόβλημα της ΑΚΒ με κόστη μετάβασης έχει

ανταγωνιστικό λόγο Ω(
√
𝑑) όταν το κόστος μετάβασης είναι η 𝑙2 νόρμα.

Μέχρι και σήμερα, παραμένει ανοικτό πρόβλημα, αν μπορούμε να επιτύχουμε έναν λόγο

ανταγωνισμού 𝑂(
√
𝑑) στην γενική περίπτωση και εν γένει δεν υπάρχουν αποτελέσματα για

το πρόβλημα της ΑΚΒ με κόστη μετάβασης για γενικές κυρτές συναρτήσεις. Για αυτόν τον

λόγο, για να επιτύχουμε έναν σταθερό ανταγωνιστικό λόγο πρέπει να εστιάσουμε την προ-

σοχή μας σε μια συγκεκριμένη κλάση κυρτών συναρτήσεων. Το άνω κάτω φράγμα βασίζεται
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Σχήμα 2.2: Γεωμετρική απεικόνιση της αποτυχίας μεθόδων που δεν παίρνουν υπόψιν την
γεωμετρία της ισουψής της συνάρτησης 𝑓𝑡 στο 𝑥𝑡. ΄Εχουμε 𝐻𝑡(𝑥𝑡1) = 𝐻𝑡(𝑥𝑡2) αλλά

𝑀𝑡(𝑥𝑡1) > 𝑀𝑡(𝑥𝑡2)

σε συναρτήσεις που ελαχιστοποιούνται σε ένα κυρτό σύνολο 𝑋 (π.χ ένα υπερεπίπεδο) και

όχι ένα σημείο του χώρου. ΄Ετσι μπορούμε να θεωρήσουμε συναρτήσεις που αυξάνονται

τουλάχιστον γραμμικά πέρα απο το σημείο ελαχιστοποίησης, δηλαδή συναρτήσεις της μορ-

φής: 𝑓𝑡(𝑥) = 𝑔𝑡(𝑥)+ 𝑎 ‖𝑥− 𝑢𝑡‖ όπου 𝑔𝑡 μη αρνητική και έχει ελαχιστοποιητή το σημείο 𝑢𝑡.
Για τέτοιου είδους συναρτήσεις, μπορούμε να επιτύχουμε έναν σταθερό λόγο ανταγωνισμού,

που δεν εξαρτάται απο την διάσταση της εισόδου.

Ο αλγόριθμος που επιτυγχάνει έναν σταθερό λόγο ανταγωνισμού είναι φυσική επέκταση

του αλγορίθμου στην 1 διάσταση. Συγκεκριμένα στην 1 διάσταση ο αλγόριθμος μπορεί να

εκφραστεί ώς εξής: Θεωρούμε το σύνολο {𝑥 ∈ R𝑛 : 𝑓𝑡(𝑥) ≤ 𝑙} το οποίο είναι ένα διάστημα
στην 1 διάσταση. Αντι να μετακινηθούμε απο το 𝑥𝑡−1 έως το 𝑢𝑡 ώστε να επιτευχθεί η

ισορροπία, αυξάνουμε συνεχώς το 𝑙 απο 𝑓𝑡(𝑢𝑡) έως 𝑓𝑡(𝑥𝑡−1) και προβάλλουμε το σημείο

𝑥𝑡−1 στο διάστημα μέχρι να επιτευχθεί η ισορροπία. Οι δύο μέθοδοι είναι ισοδύναμες.

Αυτός ο αλγόριθμος γενικεύεται σε διαστάση μεγαλύτερη του 1 ώς εξής:

Αλγόριθμος 4: ΄Αμεση μέθοδος εξισορρόπησης

1: Για 𝑡 = 1 : 𝑇 :

2: ΄Εστω 𝑢𝑡 ότι ελαχιστοποιεί την 𝑓𝑡

3: Αν ‖𝑢𝑡 − 𝑥𝑡−1‖ < 𝛽𝑓𝑡(𝑢𝑡)

4: Θέσε 𝑥𝑡 = 𝑢𝑡

5: αλλιώς

6: Ας είναι 𝑥(𝑙) = Π𝑋𝑙
𝑡
(𝑥𝑡−1). Αύξησε 𝑙 από 𝑓𝑡(𝑢𝑡) μέχρι ‖𝑥(𝑙)− 𝑥𝑡−1‖ = 𝛽𝑙

7: όπου 𝑋 𝑙
𝑡 είναι το σύνολο {𝑥 ∈ R𝑛 : 𝑓𝑡(𝑥) ≤ 𝑙}

8: Αποφάσισε 𝑥𝑡 = 𝑥(𝑙)

Θεώρημα 2.3. Ο Αλγόριθμος 4 για 𝛽 = 1
2 + 1

𝛼+2 επιτυγχάνει ανταγωνιστικό λόγο 3 +

𝑂( 1𝛼) για 𝛼-πολυεδρικές συναρτήσεις για το πρόβλημα της ΑΚΒ με κόστη μετάβασης.
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