EONIKO METXOBIO I[TIOAYTEXNEIO
TMHMA HAEKTPOAOI'QON MHXANIKON KAT MHXANIKQON TIIOAOTTETON

TOMEAY TEXNOAOI'TAY [IAHPO®OPIKHY KAI YIIOAOT'TXTOQN
EPTAYTHPIO AOT'TKHY. KATI EIIIXTHMHY. TITIOAOT'TETOQN

AvTaywviotixol ANyoprdupol yia npofAfuata ‘Apeong Kuptrg
BeAtiotonoinong pue k601 petdBaong

AITAQMATIKH EPTAYTA

Mnvde Xdtlog

EnmpBrenwv: Anurtene Pwtdnme
Enixoupog Kodnyntrg E.M.IL

Adnva, Todhog 2018

EGNIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOT'QON MHXANIKOQN KATI MHXANIKOQN YIIOAOT'IXTOQN
TOMEAY TEXNOAOI'TAY IAHPO®OPIKHY KAI YIIOAOT'TXTOQN
EPTAYTHPIO AOT'TKHY. KAI EIIXTHMHY TIIOAOI'TETON

Aviaywviotixol Ahyoprdpol yia npofAruata ‘Aucong Kuptrc
Beltiotonoinong pue k601 petdBaong

AITAQMATIKH EPTAYTA

Mnvde Xdtlog

EnBAenwv: Anuftene Potdxng
Enixoupoc Kodnynthc E.M.IL

Evyxpldnxe and v teelr) eetaotnd emitpony| ot 16 Touiiou 2018.

Anuitene Potdnne Nubdhaog IMoaracndpou Apioteldne Hayouvptlic
Enixouvpoc Kadnynthc E.M.II. Avaminewtic Kadnynthc E.M.IT Avarinpwthc Kadnyntic E.M.IT .

Adva, Todhog 2018

Mnvég Xdatlog
Amhopotodyoc Hiextpohdyog Mnyovixog xan Mrnyovixde YTroroyotody E.M.IL

Copyright © Mnvdc Xdtlog, 2018.

Me empOraln movtog duxanopatoc. All rights reserved.

Anayopebetan 1 avtiypagy|, anodrxeuct) xan dlavour tng mopoloug epyaciag, €€ 0hoxApou
1 TWAUATOC AUTAS, Yo EUTopd oxond. Emtpénetal n ovatinwoT), anoixeust) xou SLovour)
YOt GXOTO U1} XEEOOCKOTUNO, EXTIUOEUTIXNC 1) EPELYNTIXTE PUONG, UTO TNV TEoUnoveoT) va
OVAPERETOL 1) TINYT) TEOEAEUGTC o VoL dlatneeiton To Toedy urvupa. EpwtApata mou ago-
eolV TN yeNon TNe €pyaciag Ylo XEEOOOXOTUIXO OXOTO TEETEL Vol AmeVYUVOVTOL TEOS TOV

CUYYPUPEA.

Ot amddeic xon Tt GUUTERIOUOTA TTOU TIEPLEYOVTAL GE QUTO TO EYYEUPO EXPEALOLY TOV GUY-
YoapEa xan OeV TEETEL Vo epunveudel 0Tl avTitpocnnedouy Tig emlonueg Véoeig Tou Edvixol

Meto6fiou Hohuteyvelov.

Euvyapiotieg

H napotoa dimhwpatiny epyoasio anotekel to onueio AENS Twv oToUdWY Uou, ETELT oo

6 yeovia, oty oyor) Hiextpohoywyv Mnyovixdv xou Mnyovixcdyv YTroroyiotwy tou EMIL

Apyixd o idehar vor euyoplo Tow tov emPBAénovia wou, xod. Anunten Pwntdxn, yio v
EUTGTOCUVY TOU HOUL €0elEE, TNV UTOOTHELEY TIOU UOU TORELYE XoTd TNV BIAEXELN EXTIOVT-
oNG NG OMAWUATIXS epYaoiag xodig ot TI¢ TOAVTIHES CUPBOUAEG TOU OYETIXG UE TOUG

UEALOVTIXOUC 0XaBNUAiXOUE HOL GTOYOUG.

Emmiéov toug gplhoug mou améxtnoo xatd TNy OLdpxelo Twv omoudwy pou. o tig gu-
XG0 Teg oTiyUEC Tou epdoope pall xodog xou Tig oulnthoelc pog tept Mordnuatixdy xou
Enotiung Trokoyio oy ot onoleg Ye winoay vo ayamion xaL Vo aoyohnie) TEPLOGOTERO

UE aUTd Tor BVO aVTIXEIUE VAL

Télog, toug yovelc pou, Kwvotavtivo xou T'ewpyia, yior tnv avidiotehy) toug aydmn oha
auTd T Ypovia. Xwplg T adldxonn uTooTNEEY| TOUC, To ToEWY Xeluevo dev Yo elye yoopTel

TOoTé.

ITepiindm

Yty nopodoa epyacta, UEAETAUE Vol TEOBANUO TO OO0 AVAXEL GTNY TOUY| TNG TEQLOY WV
TOV AUECLY ahyoplduwy xou TNne dueong udinong ue to évopa Aueon Kupth Behtiotonolnon
(AKB) pe xéotn petdfBaone (ahiodg, Opokr) ‘Apeon Kupth Bektiotonoinon). Autr eivou
ular exdoyn evoe npofriuatoc ‘Aueonc Kuptrc Behtiotonoinone onol o maixtng, extoc ano
TO AVTIXELIEVIXO XOOTOC, TANPOVEL £Val XOOTOG AOYW OANAYHAC TWY ATOPAUCEWY TOU UETAE)
CLVEYOUEVWY YUPWY, OTWE X 0To TROBANUL Twv Metpdv Xuotnudtov Epyaciag. Ag-
Y13, oo ELGAYOLUE TOV AVAYVOG T OF Pacind oToLYEld TwV JUECKHY ahyopliuwy xou TNng
xVpTr¢ BedTioTomoinomng, nopouctdlouye To TEdla TNE deoN PAINoNS Xou TNS AUESTS XUp-
¢ BertioTomoinong mou anoteroly Tig Bdoelc Tou xUplou TpofBAfuatoc. T'a To mEdBAnua
e AKB pe %601t petdBoong, oToyelouue GTOV GYEBIAOUO AVTUYWVIOTIXWY AAYOopilUwmY.
o ouyxexpuéva, eoTidloupe oty TERInTWaT 6ToL To x60TO¢ YeTdBaong etvan vopua. o
YEVIXES HUPTEC GUVORTNTELS, 1) BEATIOTN T TOU aVTOY VIO TIX0) AGYOU TOU UTOPOUUE Vol
emTOyoupE €C0PTATOL OO TNV BACTAGT TNV €10080L. (¢ EX TOUTOU, Yol VoL ETTOYOUNE EVal
oTodEPd AVTAYWVIGTIXO AOYO Yo TRETEL VoL EEETAGOVUE ELDIXEC TIEPLTTOGELS XUPTWY CUVAE-
Thoewyv. ot autdv 10V 6%0T6, AVaALOUUE EVaY GUEGO GAYOELIUO TOU TOPVEL Lol ATOPAoT 1)
oTola LOOPEOTEL TO AVTIXEWEVIXO XOGTOS Xl TO xOGTO¢ YETAPaong ot xde yipo. Emniéoy,
eZetdlouUE TNV WY TERIMTWON OTAV 1) AVTIXEWEVIXT| CUVEETNOT EVAL YROUULXT), TO GUVOAO
ATOPACEWY TEPLYPAPETAL ATO TEPLOPLOHOVS XFALPNS xou 1) cuvdpTNoY peTdPBoong etvar 1 I

vopua. Télog, avapépouue avoxtd TEOBAAUNTA OTNY €V AOY L EQELVNTIXY TEQLOYY).

A€Zeig-KAedid: ‘Auecol ahyopriuol, Kupth Bedtiotonoinor, ‘Aueon udinon, Avtayn-

VIO TIXT oVIAUGT), YuvapTroelS YetdBoong

Abstract

We study a problem which is of interest to both the algorithmic and the online learn-
ing community, named Online Convex Optimization with Switching Cost (or Smoothed
Online Convex Optimization). This is a version of an online convex optimization (OCO)
problem where the learner, apart from the objective cost, suffers a loss for changing her
decisions between successive rounds, similarly to Metrical Task Systems. Initially, after
introducing the reader to basic concepts in online algorithms and convex optimization,
we perform a review on the field of online learning and online convex optimization which
serves as the basis of our main problem. For OCO with switching cost, we are mainly
interested in the design of competitive algorithms. In particular, we are focused on
the case where the switching cost is a norm. For general convex functions, the optimal
competitive ratio depends on the dimension of the instance, thus we need to constrain
ourselves in certain types of convex objectives in order to achieve a constant compet-
itive ratio. For this purpose, we analyze an algorithm that makes a decision which
balances the objective and the switching cost. Moreover, we discuss the special case of
linear objectives when the decision set is composed of linear covering constraints and
the switching cost function is the [; norm. Finally, we mention open problems in this

research area.

Keywords: Online algorithms, Convex optimization, Online learning, Competitive

analysis, Switching cost functions

Contents

Introduction]

(1

Online Computation|

[1.1 Competitive Analysis|. e

I1.2.1 A Deterministic Algorithm|

[1.2.2 A Randomized Algorithm|

[1.4 Metrical Task Systems| oo oL

Convex Optimization|

2.1 Basic concepts|

2.2 Duality and Optimality Conditions|

Online learning & Online Convex Optimization|

3.1 The Experts problem|.,

8.1.1 The Weighted Majority Algorithm|

3.2 A Unifying model].

EI _Delnmonl - - « o v v oo e e e e e e e
d2 The unidimensional casel

4.2.1 A memoryless algorithm|

11

13

14

17

20

26

26

27

32

33

37

42

Contents

[4.2.2 An algorithm with memory|, 49
4.3 Higher dimensions| e 50
[4.3.1 Minimizing Competitive Ratio] 52
4.4 Covering constraints with [; switchingcost| 57

4.5 Open problems| 62

List of Figures

[1.1 Configurations for the online algorithm and OP'l', Here we have v = 3 |
(the asterisks)|. o 10

2.1 Examples of a convex and a non-convex set| 14
[2.2 Examples of a non-convex and a convex function| 15
2.3 TMustration of theorem 2.5, 16
[2.4 Tlustration of theorem 2.8. Observe the inner product of —V f(z) and |

| y—xtorsomey € X|. 17
[2.5 lllustration of the Gradient Descent algorithm|. 21
2.6 projection onto a convex set| 22
{4.1 Ilustration of Algorithm 1 for fy(u,) =0and H > H/{. 48
[4.2 Geometric explanation of the above statement. Here we have Hy(zy,) = |

| Hi(xy,) but Mi(zy) > Mi(x,)l « 0 o o oo oo e 53
.3 Relation between xy, 241,243 when Hy > H . o o v v v oo o oo oo 57

Introduction

In this thesis, we study the problem of Online Convex Optimization (OCO) with
Switching Cost. This is a problem that is highly correlated with a typical problem in
the area of online convex optimization but also shares elements with problems that arise
from the community of online algorithms, such as the Metrical Task Systems (MTS).
In this online problem, given a convex subset of R", a player receives in each round
a convex function f;(z) and makes a decision, a point z; € X. Now, apart from the
cost of this objective function f;(x;) the player suffers a cost for changing her decision
between successive rounds ||z; — x¢—1]|. Of course, the goal of the player is to minimize
the total sum of her objective and switching costs. The setting resembles an online
convex optimization problem where also in each round a convex function is revealed but
the problem also is a not too restrictive special case of the very general online problem
of MTS. In MTS, the euclidean space R™ is replaced by any metrical space, and the

functions arriving online are arbitrary (possibly non-convex) functions.

Concerning MTS, a lot of research is pursued over the past decades for finite met-
ric spaces. In [14] the authors showed that the lower bound on the competitive ratio
for any deterministic algorithm over any m-point metric is 2n — 1. They designed an
algorithm, the Work-function algorithm which achieves exactly this competitive ratio.

Randomization significantly improves the results. The best known lower bound for any

logn
log? logn

of O(log? nloglogn). For the uniform metric (all the states are the same distance from

algorithm is Q() and the algorithm presented in [25] achieves a competitive ratio
each other), in [I4] it was proven that the lower bound for any algorithm is H,, the
nth harmonic number. Subsequently, in [I] the authors provide a logn + O(loglogn)
algorithm based on entropic regularization, which shares the same idea with the one

we’ll discuss for the continuous case in later chapters.

Moreover, MTS is shown to be connected to the experts problem in online learning,
which we’ll discuss in chapter 3. Several efforts are made to provide algorithms for both
problems simultaneously. The authors in [I2] initiated this direction by providing an an-
alytic framework that connects online learning and metrical task systems. More recently,

in [19] the authors employed a primal-dual technique to develop an algorithm that, for

Introduction 2

the first time, provided a unified approach for algorithm design across competitive ratio

and regret in the MTS setting, over a discrete action space.

Although the MTS problem is heavily studied for many years and researchers continue
to do so, the special case of OCO with switching cost has received attention only in
recent years. Until very recently, there were results only for the unidimensional case of
the problem. It was the first time in [35] that a 3-competitive algorithm was developed
for the 1d case. Subsequently, in [8] a simpler 3-competitive algorithm was given along
with a 2-competitive algorithm that utilizes past information, in contrast with the other
ones. The first step towards the development of algorithms for higher dimensions can be
found in [4] where the authors study the problem of Convex Body Chasing (first appeared
in [26]), which is connected to OCO with switching costs. Using this connection, they
provide a constant competitive ratio algorithm for the problem in 2 dimensions and
show that any algorithm attains a competitive ratio of v/d when the switching cost is
the Iy norm. Recently, in [24] the authors restrict the class of objective functions the
adversary may bring in order to break through the v/d lower bound and they provide a
constant competitive ratio algorithm for [y switching cost in any dimension. This work
also is the first one to generalize this result to other switching costs, such as [, norms
and more generalized norms (such as the Mahalanobis Distance) utilizing ideas from the

Mirror Descent algorithm.

Furthermore, there is substantial work for the problem of OCO with Switching Cost
when in time ¢ the algorithm does not know only the function f; as we mentioned earlier
but also the functions fy, fit1, ..., fexw and hence, intuitively, the problem becomes
substantially easier. In [23] the dependence of competitive ratio on W is studied and the
conclusion that a constant competitive ratio can be achieved when future cost functions
are known is drawn. Moreover, in [38] an algorithm with a competitive ratio of 1+O(5t)

is developed.

The problem has find numerous applications during the past years that are modeled
as online convex optimization problems in areas such as learning, control and networks
where the aim is to minimize a convex function in each round and maintain a stable
solution, a solution that doesn’t change much throughout time. For instance, in right-
sizing power-proportional data centers [36], [39]. In these applications, the data center
consists of a homogenous collection of servers that are speed scalable and that they may
powered down. In a data center, there are typically sufficiently many servers so that the
problem can be reasonably be modeled a continuous one. The load on the data center
changes through time and in each round there is a specific number of servers that should
be operational and the operation cost is given by a convex function. However, there is a
fixed cost (energy, for instance) for powering a server either on or off which is modeled as

a switching cost. Of course, the load in each round arrives in an online fashion and the

Introduction 3

designer aims at constructing an algorithm that performs well against the best offline
strategy. Other fields of application include management of electrical vehicle charging

[33], video streaming [32] and power generation planning [7].

Other related work, apart from the work on finite metric spaces for the problem
of MTS which we discuss briefly in the next chapter and which can be considered the
”discrete” counterpart on the research of online convex optimization with switching cost
there is other work at other related problems of discrete nature which are special cases
of MTS. However, utilizing algorithms for MTS for these problems does not lead to
good bounds and thus an approach that takes into consideration the exact nature of
the problem is employed. In [27] the authors analyze the online multistage matroid
maintanance problem. A well known example of this is when one aims to maintain a
minimum spanning tree (MST) in a graph where the weights of the edges are chosen
arbitrary in each round and there is a switching cost for changing an edge. To encounter
the online problem, the authors firstly solve an Online Linear Optimization problem
with a specific type of constraints in order to maintain feasible fractional MST solution

and then they provide an integer solution through rounding.

Moreover, there are other problems that lie in the intersection of convex optimization
and online algorithms. Independently in [6] and [20], the respective authors provide a
competitive algorithm for a convex optimization problem where the covering costraints

arrive in an online fashion (i.e the rows of A of the equation (Azx = b) arrive online).

In Chapter 1, we introduce the reader to basic elements of Online Computation that
are related to our main problem. We explain how things work in an online setting
through the ski-rental problem which is a special case of OCO with switching cost, we
discuss briefly the MTS problem and we introduce through an example the reader to
the potential function method which is heavily employed in proofs that are related to

OCO with switching cost.

In Chapter 2, we discuss elements of Convex optimization including basic facts about
convex sets and functions. Moreover, we discuss Duality and KKT conditions, which
are powerful tools in the analysis of online algorithms. Finally, we rigorously analyze
the Gradient Descent algorithm which is the basis for many algorithms that are found

in the context of Online Convex Optimization.

In Chapter 3, we start by introducing the reader to the area of online learning through
the well-known experts problem which serves as the motivation of developing the frame-
work of online convex optimization. The OCO model can be used to model many online
learning problems. Through the regret metric, we firstly discuss how the algorithm of
online gradient descent performs in the case where the player competes against a static

strategy. In the final paragraph, we analyze again an online gradient descent algorithm

Introduction 4

which performs well against a dynamic strategy, the type of strategy which we’ll en-

counter in the following chapter.

In Chapter 4, we delve into the problem of Online Convex Optimization with Switch-
ing Cost. After defining the problem and discussing some of its aspects, we start with
the study of the problem in 1 dimension where we analyze an optimal 3-competitive al-
gorithm which has a simple idea: Balance between the function’s cost and the switching
cost in time ¢. For higher dimensions, we prove a lower bound which shows that every
algorithm when the switching cost is the Iy norm is Q(v/d) competitive. For this reason,
we perform a beyond worst case analysis utilizing functions that grow at least linearly
away from the minimizer to prove a constant competitive ratio using the same idea of
”Balance”. Moreover, we discuss a special case of OCO with switching cost, the case of
linear objectives with covering constraints and [y switching cost which has found numer-
ous applications in online combinatorial optimization in recent years. Finally, we state
some open problems related to OCO with switching cost that we believe are interesting

research directions for the future.

Chapter 1
Online Computation

The problems which are of interest to us in this thesis need to be solved in an online
fashion. Its counterpart, the offline setting, the traditional setting in the analysis and
design of algorithms, assumes that complete information of the problem is known to
the designer from the beginning. Unlike this setting, in online computation, one aims
at designing algorithms where the input is revealed piece-by-piece. The algorithm has
to respond immediately when new information arrives without the knowledge of future

information. Furthermore, when a decision is taken, it cannot be revoked.

In the offline setting, the goal is to design algorithms that provide an optimal solution,
for instance, one that minimizes (or maximizes) a certain objective. We evaluate an
algorithm based on how close its solution is to an optimal solution. For example, an a-
approximation algorithm, with > 1, for a NP-hard minimization problem is defined as
a polynomial-time algorithm that for every instance of the problem, provides a solution

that its value is within a factor of « of the value of an optimal solution.

Now, a natural question arises: How to evaluate the performance of an online algo-
rithm? A standard measure is the competitive ratio which compares the performance of
an online algorithm to an optimal offline solution. The field of competitive analysis aims
at designing this kind of algorithms. For an extensive analysis of online computation,
algorithms and competitive analysis we refer the reader to [I3] which is from where this

chapter is based.

1.1 Competitive Analysis

We proceed with the definition of an c-competitive algorithm which is similar to the

one for approximation algorithms.

Definition 1.1. Let ¢ > 1 be a real number. An online algorithm is said to be c¢-

competitive if for each instance of a minimization problem I, for any sequence of inputs,

5

Chapter 1. Online Computation 6

it outputs a solution of cost at most ¢ - OPT(/) + a where OPT([) is the value of an
optimal offline solution and a is constant. For a < 0 we say that the algorithm is strictly

c-competitive.

The infinum over all ¢ such that the algorithm is c-competitive is called the competitive
ratio of the algorithm. The definition of competitiveness is similar for maximization
problems. We should note at this point that the competitive ratio isn’t the only metric
we will use to evaluate the performance of an online algorithm. Unlike the competitive
ratio which originates from the algorithmic community, in the learning community, the
Regret metric is employed. In subsequent chapters, we will comment on the differences

between the two metrics.

An important concept in the field of competitive analysis is the adversary. The online
problem can be seen as a game between the player, the one that designs the online
algorithm (In the future, we’ll constantly use the term player to describe the online
algorithm), and an adversary which aims at constructing the worst possible input for the
algorithm, in order to maximize its cost. A c-competitive algorithm produces a solution
with cost no more that ¢ times the optimal offline cost for every sequence of inputs
the adversary provides. An adversary that knows the online algorithm, the probability
distribution used by the online algorithm to make its random decisions but does not
know the random choices, is called an oblivious adversary. This kind of adversary is the

one we’ll consider throughout this thesis.

1.2 The Ski Rental Problem

One of the most elementary problems in the field of online algorithms is the Ski
Rental Problem. In this paragraph, we’ll discuss the problem and analyze an optimal
deterministic and an optimal randomized algorithm. The reason we choose this partic-
ular problem is twofold; First, we gently introduce the reader to the nature of online
computation. Second, the ski rental problem is strongly connected to the problem of
Online Convex Optimization with switching cost. In fact, the ski rental problem is a
special case of the 1-dimensional case of the latter problem. In Chapter 4, we’ll prove
this reduction. This fact will be proven useful in order to provide lower bounds for our

main problem.

The ski rental problem is as follows: Suppose you’re going skiing in Mount Parnassus
but you haven’t yet decided how many days you’ll stay. In fact, you will decide the
number of skiing days at the very last day. You're faced with a question of whether to

buy skis for B€ (B > 1) or to rent skis at the cost of 1€ per day. Of course, your goal

Chapter 1. Online Computation 7

is to minimize the amount of money you’ll spend. Let’s define the number of days you’ll

eventually stay as n.

1.2.1 A Deterministic Algorithm

Due to the simplicity of the problem, all possible deterministic online algorithms can
be described just by a integer j which is the day that you’ll buy skis. If j > n, you never
buy skis. Let’s define as ALG; the deterministic algorithm that buys skis at the start
of day j.

Theorem 1.2. ALGp has a competitive ratio of (2 — %) for the ski rental problem.
Proof. We consider two cases:

o If n < B — 1, the algorithm has cost n while the optimal offline cost is n

e If n > B, the algorithm pays (B — 1) + B = 2B — 1 while the optimal offline cost
is B

Thus, in either case, the competitive ratio of is ALGp is max{, 23371} =2 % O

Is this the better we can do? The answer is negative. In fact,

Theorem 1.3. Fvery deterministic online algorithm for the ski rental problem cannot
1

attain a competitive ratio less than 2 — 5
Proof. The intuition behind the proof is that the algorithm has to buy skis at some
point in time. If it doesn’t, the skiing days may go on indefinitely, and the competitive
ratio is unbounded. In case the algorithm buys at day 7, then the adversary chooses to

terminate the skiing days at day j. The cost of the optimal offline solution is min{j, B}.

e If j < B, then the competitive ratio is # =1+ % > 1+ % =2- %
e If j > B then the competitive ratio is # > LB_l =2- %
Thus, the competitive ratio is at least 2 — %.]

The analysis for deterministic algorithms is complete in the classical sense. But
what about a randomized algorithm? Can randomization be proven useful against an

oblivious adversary?

Chapter 1. Online Computation 8

1.2.2 A Randomized Algorithm

The ski rental is an example of an online problem where randomization improves the
competitive ratio that an online algorithm can attain. Intuitively, since the worst case
input for the online algorithm is based on the round the player buys and there is not
a case that is bad for every possible deterministic algorithm, with the adversary not
knowing for sure the time the player buys, the competitive ratio should be improved
with a randomized algorithm. The definition of competitiveness easily extends to online
randomized algorithms. Instead of using the cost of the online algorithm, we simply

consider the expected value of its cost.

The proposed algorithm works as follows: Before the skiing days begin, the player
chooses to buy skis after skiing for 0 < j7 < B — 1 days where j is sampled from a
probability distribution. Intuitively, the probability density function has support the
set {0, ..., B—1} otherwise for large values of j the algorithm would have an unbounded

competitive ratio. We describe the algorithm below:

Algorithm 2: RandSki
1: Input: B > 1, the cost of buying skis

2: Let p= %.
3: Sample according to the distribution P[j = x| = ap®, z € {0,1,..., B — 1}
4: Output: j + 1, the day you’ll buy skis

_ p—1
where a = P T

is a scaling factor in order to have a valid probability density

function.

Theorem 1.4. The competitive ratio of RandSki is = .

Proof. Because j < B —1, meaning that at the start of day B you will have bought skis,
notice that the case (n > B) is equivalent to (n = B) (The optimal offline cost is B in
both cases). For a specific day j and number of skiing days n, the cost of the algorithm
isj+Bif0<j<n—1andnifn <j < B. Thus, the expected value of the cost is:

n—1 B-1
Elcost] = Zapj(j + B) + Z ap’n =
=0 j=n

n—1) n—1] B-1 '
aij]—i-ozBij—l—anZap]:
j=0 j=0 j=n
n—1 n+1_nn+ B—]. B __ n
()p_12p p+aBp_1+anp _f _
(p—1) p p

——((n=1p" —np" 4+ p+ p" = ptn(p—1)(p" - p")) =

(67

Chapter 1. Online Computation 9

Since n < B, the optimal offline cost is n. Hence the competitive ratio is bounded

bove by the value -4 = 1+ —L— Notice that p? = (£2-)5 is an i i
above Dy € value pB—l = pB—l’ otice at p— = B_1 1S an 1ncreasing sequence

which converges to e. Thus, the competitive ratio of the algorithm is %5 ~ 1.58 and is

attained as B — oo. O

The randomized algorithm performs better than the deterministic we analyzed earlier
for B > 3. Furthermore, -5 is the optimal competitive ratio that any online algorithm

can attain for the problem. However, we’ll omit the proof of the lower bound.

1.3 The Potential Function Method

We’ll now discuss one of the most powerful tools for analyzing online algorithms and
proving competitiveness results. The Potential Function Method will be extensively used
in the analysis of the OCO problem with switching cost in Chapter 4. The method is
based on a function, the potential, ® which maps the current configuration (the state)
of the player and the adversary in round 7 to a non-negative number and it shows how
close are the two configurations. The bigger the potential, the bigger the difference. Let

®; be the potential on round 7. We define the amortized cost a; as:
Q; = C; + (I)i — (I)i—l

Where ¢; is the cost of the online algorithm in round 7. To prove that an online algorithm
is c-competitive, we could bound the cost in round ¢ by ¢ - OPT(i) where OPT(7) is the
cost of the optimal offline algorithm in round ¢, for every round. However, that does
not always work since the cost of the player in round ¢ may be higher or lower than c
- OPT(7), but the total cost is bounded above ¢ - OPT(i). That’s where the amortized

cost comes into play; Notice that:

n n n
Zci:zari-@o—@nﬁzarFq’o
i=1 =1 i—1

Usually, ®¢ = 0 since the player and the adversary start with the same configuration.
Hence, if we were able to show that for every round i that a; < ¢ - OPT(i) then the

online algorithm is c-competitive.

Chapter 1. Online Computation 10

To make things more clear, we’ll analyze an online algorithm for the list accessing
problem using the potential function method. The problem is defined as follows: Suppose
you are given a list L with m elements. Requests for the list elements arrive online and
the cost of answering the request is the position of the element in the list. Hence for
an element is position k, the cost of the algorithm is k. In order to minimize the cost,

there are two rules for reorganizing the list:

o After the request of element x, the element can be moved to any chosen position

closer to the front at no cost.

e We can also change the position of adjacent elements at unit cost.

Now consider the following algorithm (MTF - move to the front): After the request

of element 7, the element is move to the front of the list at no cost.

Theorem 1.5. The competitive ratio of MTF is 2 — %

1 k m
o I T TR TTTTTT]
or [(TTTTTLIELI T T

FicUre 1.1: Configurations for the online algorithm and OPT, Here we have v = 3
(the asterisks)

Proof. We'll define the potential function as the number of pairs (a, b) such that element
a is before b in the state of the online algorithm while b is before a in the state of the
optimal offline algorithm (OPT). In round i, a request for element x arrives. Let v be
the number of elements which are in front of x in the online state and after x in OPT
and let the position of x to be k,j in the online state and in OPT respectively. The
online algorithm moves the element to the front of the list. Thus, the increase in the
potential is at most (j — 1) — v because (j — 1) new pairs can be created at most and v
pairs are removed. Moreover, OPT, can increase the potential at most by p — f where p
is the paid exchanges and f the free exchanges to the front. That’s because every paid
exchange can increase the potential by 1 and any free decreases the number of inversions

since the element x is already in front in the online state. Thus:

ai:ci-i-(I)i—l—(I)i—l
<k+j—-1l—-v+p—f
<j+p+k—v-—1

Chapter 1. Online Computation 11

Now notice that £ — v < j and thus:
a; <j+p+(—-1)<2(+p) —1=20PT(i)—-1

Summing up for all rounds ¢ = 1,...,T" and noticing that OPT < mT (The highest cost
possible in a round is m and is attained when the element is placed in the end of the
list) we get that:

T
OPT 1
¢ <Y a;<20PT ~T <20PT — ~—— = (2~ —)OPT
=1

N

m m
=1

1.4 Metrical Task Systems

The problem of Metrical Task Systems (MTS) is one of the most well known problems
in the field of online algorithms and it generalizes many problems like paging and OCO
with switching cost. Consider a server which has to process a sequence of tasks that
arrive in an online fashion. The server can be in one of a finite states and the cost of
processing a task depends on the state of the server. When there is a state change, a
cost is incurred. The problem of MTS is develop algorithms that choose to which state
the server should migrate in order to minimize the total cost. We refer the reader to

[14] for a more elaborate discussion on metrical task systems.

In particular, a metrical task system is defined as a pair (M, R) where M = (X, d) is

a metric space and R is a set of allowable tasks. Recall the definition of a metric space:

Definition 1.6. A metric space is an ordered pair M = (X, d) where X is a set and
d: X x X — R>g is a metric on X. Thus for every z,y, z € X it satisfies:

dlz,y) =0 < xz=y
d(l‘, y) = d(y> x)
d(z,z) < d(z,y) + d(y, 2)

A well known example of an infinite metric space is the m-dimensional Euclidean
space (R™,||-]|) where ||-]| is the euclidean norm. For an example of a finite metric space
consider a weighted undirected graph G(V, E) with a weight function w : E — Rs.
The set of points in the metric are the vertices of the graph. Now notice that we can
use as distance between two points, the shortest path between the two vertices which

satisfies all the requirements in order to be a metric.

Chapter 1. Online Computation 12

A task is a function 7 : X — RU{oc}. The value 7(z),x € X is the cost of processing
the task 7 in state x. Whenever the state is changed from z to y a cost of d(z,y) is

incurred. Hence, the goal is to minimize the total cost:

T
Ti(zi) + Z d(zi-1, ;)
i=1 i=1
where the first sum represents the total processing (or service) cost and the second

represents the total transaction (or switching) costs.

A simple example of a MTS problem is the following: Consider you have an ice
cream shop where you sell two ice cream flavours: chocolate and vanilla. Your ice cream
machine has two modes (C, V') for producing the two flavors. Changing between the two
modes has a cost of 1. The machine produces the ice cream which corresponds at its
state at low cost but you can also manually make one for a higher cost. In particular, in
mode V', the cost of vanilla is 1 and the cost of chocolate is 2 while at mode C' the cost
of chocolate is 1 and the cost of vanilla is 2. Requests for ice cream come in an online
fashion. How should you choose when to change the state of the machine in order to
minimize the cost? This problem can be formulated as a MTS of two states C, V with
distance of 1 and possible task functions 7¢ = (1,2) for states C,V respectively and
v = (2,1) for states C, V respectively.

Chapter 2

Convex Optimization

Mathematical Optimization (or Mathematical programming) is the problem of select-
ing the best (optimal) element from a set S (usually R™) that minimizes (or maximizes)
a certain function. More formally, a mathematical minimization problem can be formu-

lated as follows:

minimize fo(z)
x

subject to g;(x) < b, i=1,...,m.

The set X = {x € R" : g;(z) < b;, Vi € [m]} is called the feasible set of solutions
(or constraints) and a point z € X is called a feasible point. A point = ¢ X is called
infeasible. For a minimization problem, a vector x* for which f(z*) < f(x), Vo € X is
the global minimum of f. Now, a natural question arises: Is there always an optimal
solution to such a problem ? The answer is no. The following theorem of Weirstrass
states the sufficient conditions in order for an optimal solution to exist and throughout

this thesis we’ll only encounter problems where these conditions hold.

Theorem 2.1. Let f : R® = R be a continuous function and X C R"™ be a nonempty,
bounded and closed set. Then, the optimization problem min f(x) : = € X has an

optimal solution

The purpose of the field of mathematical programming is to design algorithms that
find the optimal solution to such a problem efficiently. In the general case, this is ex-
tremely hard whereas in special cases like linear programming (f, g affine), an optimal
solution can be found efficiently. In this chapter, we introduce the reader to a special
case of mathematical programming when the objective is a convex function and the
feasible set is convex named convex optimization (or programming). As we’ll see, these
restrictions allow us to design efficient algorithms. One of the reasons the area of con-

vex optimization has received great attention the past decades is because a very large

13

Chapter 2. Convex optimization 14

number of problems, from many distinct areas, can be formulated as convex programs.
For instance in Machine Learning, fundamental problems like SVM, regression, logistic
regression, LASSO and matrix completion can be formulated like convex programs. For
an extensive analysis on theory, applications and algorithms of convex optimization we
refer the reader to the excellent book of S. Boyd and L. Vandenberghe [I5]. Moreover,
a great survey that focuses on algorithms is [I6]. The ideas we discuss in this chapter

are drawn from these two books.

2.1 Basic concepts

We’ll now proceed with the definitions of a convex set and a convex function.

Definition 2.2. A set X C R" is called a convex set if for any two points in X it
contains their line. This means for every z,y € X and any A € [0,1] we have that
A+ (1- Ny e X.

FIGURE 2.1: Examples of a convex and a non-convex set

Examples of convex sets are:

The complete space R™

The solution set of a system of linear equations z : Az = b, A € R™*"™ and b € R™

Hyperplanes {z : ¢'z = b} and halfspaces {z : ¢’z < b}

The p-norm ball (p > 1) {z : ||z|| < a} for any a > 0.

The sublevel set of a convex function f: {x: f(z) < g} for some g € R.

An important feature of convex sets is the following;:
Theorem 2.3. The intersection of two convex sets is a convexr set.
Proof. Let A, B be convex sets. Take z,y € AN B and let z lie on the line segment

between x,y. Then z € A since A is convex and similarly, z € B because B is convex.
Therefore, z € AN B. O

Chapter 2. Convex optimization 15

By induction, we can generalize this theorem for any finite number of convex sets.
But why is this important? Because when formulating a convex optimization problem,
if we desire to add one more constraint (a convex set) to the feasible set then the feasible

set remains convex.

Definition 2.4. For a convex set X C R", we say that a function f : X — R” is a

convex function on X if for any two points z,y € X and any A € [0, 1] we have that:

fOz+ (1 =XNy) <Af(z)+ (1 =N F(y)

FIGURE 2.2: Examples of a non-convex and a convex function

Geometrically speaking, the line segment between (x, f(x)) to (y, f(y)) must be above

the graph of f in order for f to be convex.

Examples of convex functions are:

The affine function f(z) =c'x +b
e Any p-norm (p > 1) f(x) = ||

e For a positive definite matrix A, the quadratic function f(z) =z" Az +c¢'z +d

Yoy fi(z) and max;{ fi(x)} where f;(x) Vi are convex functions. Thus, convexity

is preserved under sum and pointwise maximum.

An extremely important property that convex functions demonstrate and actually
that is the main reason of algorithmic success of convex optimization is that they exhibit
a local to global phenomenon. This means that if one has local information on a convex
function then can arrive at conclusions about global properties of the function. This is

demonstrated by the two following theorems:

Theorem 2.5. Let f: X — R” be a differentiable function and X be a convex subset
of R™. Then, f is convex if and only Vx,y € X it holds:

fy) > f(@) + V()" (y - x)

Chapter 2. Convex optimization 16

What does this theorem mean? It means that if we have the value of f at a point
x and the respective gradient (both are local information), then we can come up with
a global lower bound for f: The affine function g(y) = f(x) + Vf(z)” (y — x) which is

also the first order approximation of f around x.

S@)
" @+ Vi@)

@)

FIGURE 2.3: Ilustration of theorem 2.5

Theorem 2.6. If x is a local minimum of a convex function f, then x is a global

minimum.

Proof. Assume z isn’t a global minimum of f and let y be a point for which f(y) < f(x).
Now consider the vector z = Az + (1 — A)y for some A\ € (0,1). From the definition of

convexity for f we have:

f(2) =z + (1 =XNy) <Af(2) + A =N f(y) <Af(@)+ (A=A f(2) = f(z)

Since z is an arbitrary convex combination of x,y, it can be as close to x as possible.

Thus « isn’t be a local minimum, a contradiction.]

This again means that if one has local information, has found a point x which is
a local minimum is ensured that in fact is a global minimum. This does not hold in
general for nonconvex optimization problems for which the usual methods converge only

to local minima, and not global (for instance, the training of neural networks).

Theorem 2.7. Consider a convex and diffentiable function f defined in a set X. Then
any point x € X that satisfies V f(x) =0 is a global minimum of f.

The proof comes straightforward from theorem 2.5. The reverse does not always hold
(consider for example f(x) = 22, X = [1,2]), but it holds when X = R". Hence, for
unconstrained optimization of differentiable convex functions, a necessary and sufficient
condition for global optimality is V f(z) = 0. For constrained optimization, the following

theorem states the necessary and sufficient condition for optimality:

Theorem 2.8. Let f : X — R be a convexr function and X a closed, convex set on
which f is differentiable. Then x is optimal if and only if Vf(x)T(y —2) >0Vy € X

Chapter 2. Convex optimization 17

Proof. If x satisfies the inequality, the from theorem 2.5 we get that is indeed an optimal
solution. For the other way round, consider that the inequality does not hold, thus there
exists a vector y such that V f(x)T(y —) < 0. Now consider h(t) = f(x +t(y — x)) for
which A/(0) = Vf(z)T(y — x) < 0, thus in the direction of y there exist some vector z

for which f(z) < f(z), a contradiction since z is optimal. O

Vo)

FIGURE 2.4: Illustration of theorem 2.8. Observe the inner product of —V f(x) and
y — x for some y € X

2.2 Duality and Optimality Conditions

Now, we’ll introduce the reader to an important concept in convex optimization (and
in general, mathematical optimization): Duality, and in particular Lagrange Duality. In
the algorithmic community, duality is extensively employed in order to design approx-
imation algorithms. In particular, methods like Primal-Dual analysis or Dual fitting
which mainly utilize linear programming duality can be used to design algorithm for
combinatorial problems including the Set Cover, Uncapacitated Facility Location and
the k-median problem. Concerning online algorithms, duality also is employed to design
competitive algorithms. For instance, the —=5-competitive ratio for the ski-rental prob-
lem we discussed in Chapter 1 can be achieved with an approach based on duality. An
interesting read on the use of duality for competitive analysis is [2I]. The algorithmic
success of duality is partially because through the dual problem we’ll define below, it
provides lower bounds for the optimization problem in hand. As we’ll see in chapter 4,
we’ll analyze an algorithm for a linear covering problem with switching costs where the
proof will be heavily based on duality and the lower bound it provides us. In addition,
in this paragraph, we’ll discuss the optimality conditions for an optimization problem
(Karush-Kuhn-Tucker conditions) which are closely related to duality and we’ll find

them useful in later topics.

To understand the concept of duality first we have to start with the definition of the

Lagrangian of an optimization problem:

Chapter 2. Convex optimization 18

Definition 2.9. Given the optimization problem, which from now on we’ll refer to as

the primal optimization problem:

minimize f(z)
xr

subject to ¢;(z) <0,i=1,...,m.

hj(l')zo,j:l,...,p.

The Lagrangian associated with the optimization problem is:
m p
L(z, A\ v) = f(z) +) Nigi(z) + Y _vihj(x)
i=1 j=1

The variables \;, i € [m] and u;, j € [p] are called Lagrange multipliers.

Now we are ready to define the dual problem. The objective of the dual problem is

the Lagrangian Dual defined as:

Definition 2.10. Given the Lagrangian L(x, A\,u) of some optimization problem over

domain X, the Lagrangian Dual is the function:

m P
F(\v) = inf L(z, A\ u) = inf (f(z) + ; igi(z) + ;vjhj(x))

Notice that the Lagrangian dual is always a concave function (a function f is concave
when — f is convex). The Lagrangian dual function is the pointwise minimum of affine
functions, since for every x we get an affine function in variables A, u. It is easy to
verify that the pointwise minimum of affine functions(and in general concave functions)
is a concave function. The maximization of a concave function over a convex set is
equivalent to a convex optimization problem since for a concave function ¢ it holds:
argmax;{g(z)} = argming{—g(z)} (if such an z exists). Hence, even if the primal

problem is not convex, the dual problem that we’ll define below is always convex.

Definition 2.11. The Dual optimization problem of the primal is:

maximize F(\,v)
x

subject to A >0

Now, we’ll use the above to derive the dual of a linear program. A linear program is
a problem that may have the form:

minimize ¢!z
X

subject to Ax >b

Chapter 2. Convex optimization 19

Where A € R™*" b € R™. The Lagrangian function is: L(x,\) = cTo + \'(b — Az) =
(c” = AT A)x + ATb. Hence, the Lagrangian dual is:

bIN, if — ATA+c=0
F(\) = inf L(z, \) =

—00, otherwise

That’s because an affine function (a’z, a # 0) is unbounded in R”. Thus the dual

problem becomes:

maximize b\
X
subject to ATA=¢

A>0

Which is also a linear program. As we previously said, the dual problem provides a

lower bound to the optimal value of the primal problem. That is named weak duality.

Theorem 2.12 (Weak Duality). Let p* be the value of the optimal solution for the
primal problem, and d* be the value of the optimal solution for the dual problem. Then
it holds: d* < p*.

Proof. Let X denote the feasible region of the primal problem. Now recall the definition
of the primal problem. We had g¢;(z) < 0, ¢ € [m] and h;(z) =0, j € [p]. Since \; are

nonnegative, we have that:
m p
F@) +> Xigi(z) + Y wihi(z) < f(z), Vo € X
i=1 i=1

Since this holds for all A, u, it holds also for the optimal values A*, u*. Thus:

*: : * * < : < >k
d" = inf L(z,\",u") < inf f(z) <p

O]

A natural question arises: When does p* = d* (which we refer to as strong duality),
the optimal value of the primal solution is equal to the optimal value of the dual solution?
This is determined by the Slater’s Condition which is a sufficient condition to ensure
strong duality. Slater’s condition always holds for linear programming, except when
both primal and dual problems are unfeasible (i.e p* = +o0o0 and d* = —oc0). In general,

this is not true for an optimization problem (even a convex one).

Definition 2.13 (Slater’s condition). For a primal optimization problem, we say that it

respects Slater’s condition if the objective function f is convex, the constraint functions

Chapter 2. Convex optimization 20

gi, © € [m] are convex, the constraint functions hj,j € [p| are affine, and there exists a

point Z in the interior of the region, i.e g;(z) < 0, Vi € [m], and h;(z) =0, Vj € [p]

A careful reader should have observed by now that the equality constraints h; should
always be affine functions in order to have a convex problem. Otherwise the constraint
h(z) = 0 is equivalent to h(z) > 0 A h(xz) < 0. If h is not an affine function, at least one

these constraints is described by a nonconvex set.

Now we’ll state the optimality conditions (Karush-Kuhn-Tucker) we mentioned ear-

lier, which we’ll find extremely useful is later chapters:

Definition 2.14. The Karush-Kuhn-Tucker conditions for the pair of the primal and

dual problem are:

m p
0=Vf()+> A\Vgi(z)+ Y u;Vhj(x)
i=1 j=1

u;hi(x) =0, Vi € [m)]
gi(z) <0, Vi e [m], hj(x) =0, Vj € [p]
A >0, Vie [m]

Which are, in order, the stationarity condition, complementary slackness conditions,
primal feasibility and dual feasibility. We should note that for any optimization problem,
these conditions are sufficient for optimality for the primal and the dual problem. If
¥, *, u* satisfy the KKT conditions then these are in fact the optimal solutions for the
primal-dual pair. The necessity does not always hold. Only if strong duality holds, then
the optimal solutions satisfy the KKT conditions. Thus, under strong duality, KKT

conditions are necessary and sufficient for optimality of the primal-dual pair.

2.3 Gradient Descent

We’'ll now proceed and describe the most simple algorithm for convex optimization
(and in general, optimization). Gradient descent is a first-order algorithm which means
that uses only gradient information in order to find an optimal solution. In contrast,
second-order methods (like Newton’s Method) exploit the curvature of the objective
function by using the Hessian (the square matrix of second-order derivatives of a scalar-
valued function). Moreover, Gradient descent is an iterative method meaning that the
optimization procedure proceeds in iterations, each one improving the objective value.

The rule for updating is the following:

Ty =1 — eV f(wi-1)

Chapter 2. Convex optimization 21

Where 7 is the step size (or learning rate) at time ¢ which is chosen based properties of
the objective function and perhaps on which is iteration the algorithm is on. The idea is
to take a step from the previous point designated by the negative gradient of the function
in that point. In that way, we make a step towards a direction that the function has a
smaller value. A question at this point is how to evaluate such an algorithm? Usually,
an input to the gradient descent algorithm is a desired accuracy of € in the solution it
provides. Suppose x* is the value that minimizes the objective and x; is the algorithm’s
value in iteration ¢. Then we’d like to minimize the number of iterations (¢) in order to

have (or having a high convergence ratio):

fla) = fa") <e

An algorithm is evaluated based on the number of iterations needed in order to provide
an accuracy of e. T = O(g(e)) (ignoring other constants). We’ll see shortly that if
the objective function has some useful properties the convergence ratio is significantly
improved. Now let’s state the algorithm more formally for the case of constrained

optimization:

Algorithm 1: Gradient Descent

1: Input: function f, number of iterations 7', Feasible set X, initial point x; € X,

sequence of step sizes {n;}
2: fort=1:T do

Let yir1 =20 — eV f(21), 2441 = Hx (yev1)
end for

5: return 7

Yt+1

rojection (3.3)

gradient step
(3.2)

FiGUrE 2.5: Illustration of the Gradient Descent algorithm

Since the point y;4+1 may lie outside of the feasible set we need to project back to the
feasible set. The step z4+1 = [Ix(yi+1) does exactly that. The algorithms we’ll discuss

throughout this thesis will contain as a step a projection onto a convex set. First, we

Chapter 2. Convex optimization 22

have to say that the projection of a point x onto a convex set X is given by:

II = in ||z —
x () argggg!!x yl|

and it can be shown that the above problem has a unique solution. Using theorem 2.8

we get that for x € X and y € R™.
(IMx (y) —)" (x (y) —y) <0
and by using law of cosines we get:
IMx (y) = =) + [ly = Tx ()] < lly — ||

Which implies,
IMLx (y) — || < [ly — ||

v
ol

r\:fl — Iy (y)|

lly — ||

FIGURE 2.6: projection onto a convex set

Now, let’s discuss some properties of the objective function and the constraint set
that are useful in the analysis of Gradient Descent. Also, we’ll find them extremely

useful in later chapters.
Definition 2.15. The diameter of a convex set X is given by:
maze yex |z =yl

In general, the diameter will affect negatively the convergence ratio, since for largest

sets, it will take longer to find the minimizer.

Definition 2.16. We say that a function is Lipschitz continuous with parameter G if:

[f(@) = fl <Gz —yll, Yo,yeX

Chapter 2. Convex optimization 23

which equivalent to a bounded gradient |V f(x)|| < G. Low values of G means that the
function isn’t changing at a high rate. Thus the values of points near to the minimizer

will be closer to the optimal value and the convergence ratio will be higher.

Definition 2.17. We say that a function is a-strongly convex if:

J) 2 F@) + Vi@ @y -a) + Sy —al*, VeyeX

which means that the function f grows at least quadratically. Similarly,

Definition 2.18. We say that a function is S-smooth if:

F) < F@)+VF@ @ -2)+ 5 ly—ol, vayeX

which means that the function f grows at most quadratically. This condition is

equivalent to a Lipschitz condition of the gradient:

IVi(@) = Vil <llz—yl, Ve,yeX

Finally, we’ll define the condition number of a function f which is a decisive paramenter
in the convergence ratio of gradient descent: First we have to say that for an a-strongly

convex and (- smooth twice differentiable function the follow holds:
al < VQf(ac) =< BI

where we denote A < B if B — A is a positive semidefinite matrix. Moreover, this is
equivalent to all the eigenvalues of the hessian matrix to lie in the interval [«, 5]. The
condition number of f is now:

«
y=5<1
B

The condition number shows how ”spherical” are the sublevel sets of the convex function.
If v = 1 we get spherical subsets and thus at any point, the gradient will point towards
the minimizer and thus the convergence ratio of gradient descent is higher. This does
not happen for small values of v where the sublevel sets are ellipsoidal and the gradient

points to a location far from the minimizer.

First, let’s see how gradient descent performs for a general case:

Theorem 2.19. For G-Lipschitz convex functions and diameter of the feasible set equal
to D, it holds:

1 T
FG= S a) - fla®) <
t=1

N
SI%

Chapter 2. Convex optimization 24

There is no need to provide the proof for this theorem. We’ll derive it as a special case
of Online Gradient Descent in the next chapter. Thus one needs O(e%) iterations in order
to achieve an error of e. We'll see now that the number of iterations is exponentially

lower in the case we have a y-well conditioned function.

Theorem 2.20. For constrained minimization of y-well conditioned functions and ny =

%, it holds:

Fae) = F@") < ((Fln) = fla®)e 1!
Proof. By strong convexity, we have for any pair x,z; € X:
!
Vi) (2 —2) < flz) — f(ag) — B} |z — a1
Because ||z||* = 27, observe that:
zip1 = lx(ze —mV f(z)) = arg gg(l{Hﬂ? — (w =V () *} =
arg min{||z — 2o+ 2me(x — 2) TV f (1) + 0f VP f ()} =
argmin{V f(a) (@ —) + 5 o)
Hence, by smoothness of f, we have:

Flae) = F(@0) < Vi) (@ —2) + 5 s — ol =

= min{ V()" (2~ w0) + 5 7 —)

Let hy = f(x) — f(x*), the error at time ¢t. By using strong convexity we get:

5_

« 2
Il —)

hiy1 —hy < gg)rg{f(w) — flxe) +

Let’s take a look intuitively what we’ve achieved at this point just by using the powerful
assumptions of strong convexity and smoothness. For « close to 5 we get easily that
hi+1 < 0, and thus convergence is achieved. This means that for v = 1 even 1 iteration
suffices for optimality (Now the reader can also understand why we chose this specific
learning rate). Observe now that for 7 close to one the minimization leads to a point
that is close to z*. That agrees with the intuitively explanation we gave for v above. As
we previously said, f is bounded above and below from quadratic functions. Closer the
quadratic functions are to each other (a.k.a closer a is to b), the above minimum will

provide us as close as to —hy, which is our aim for fast convergence.

Obviously, by minimizing over a subset of X, the minimum cannot get any bigger.

Let’s consider as a subset, the set of convex combinations of z; and x* which is a line.

Chapter 2. Convex optimization 25

Intuitively, the minimizer should be a point close to the set of convex combinations
of z* and x; since those two points minimize each of the functions in the sum (In one
dimension, the minimizer will always lie in this subset). Even though with this relaxation
the analysis will not be optimal, it suffices to show that an exponential convergence ratio

is achieved. Therefore for any A € [0, 1]

b —«

2
b —«a
2

< Ahe+ 5%%2 o — 242

lz — 2el|*} <

hiy1r —hy < min}{f(a:) — fwy) +

[z¢,x*

N lz —ae|* <

(1= XNy + ™) — f(zy) +

Now, we have by strong convexity and Theorem 2.8:
* *\T * « * 2 o * 2
he = flan) = fa*) 2 Vi) (@ - %) + Sl — il 2 5 e —

Finally, we get:

08—«

hip1 —he < (=X + - M)y
We ask for a value of k such that —)\Q/BTTO‘ +A+k > 0,VA. We easily choose k = —4(5°ia).
Thus,
! « o ~
< hy(1 — 1-— 1— —) < he 7t
hi1 < ha(4(5—@))_ht(4ﬁ)—h1(4ﬁ> < hjem 1
And the proof is complete. O

Thus the ~-well condition on f improves substantially the number of iterations to
O(log(%)). A careful reader at this point has observed that even though the projected
gradient descent is an algorithm for optimization, it contains a step of projection onto a
convex set, which in the general case is an optimization problem!. We didn’t built from
scratch an algorithm that solves an optimization problem. An interested reader can
see [16] for non black-box optimization algorithms like the Ellipsoid Method or Interior
Point Methods. We discussed gradient descent to see how the algorithm manages to
solve an optimization problem and in order to introduce the reader more gently to online
gradient descent in the next chapter where its natural to assume that the designer has
a non black-box optimization solver at her disposition. However, we should note that
there are specific cases, like the euclidean ball, where the calculation is straightforward
as well as other sets such as the probability simplex which we see in many applications
in online learning: {x € R : x >0, " , x; = 1} where the projection can be calculated

analytically in time complexity O(n logn) without the use of an optimization procedure.

Chapter 3

Online learning & Online Convex

Optimization

In the previous chapter, we discussed convex optimization in an offiine setting. Now,
we’ll discuss in an online setting which defines the area of Online Convex Optimization
(OCO). OCO is strongly related to the area of online learning as well as the main
problem of this thesis, OCO with switching cost. In fact, many online learning problems
can be formulated as OCO problems. We start by introducing the reader to the area of
online learning through the experts problem, one of the fundamental problems of this
area. For an extensive survey on online learning and online convex optimization we refer

the reader to [22],[28],[41]. This Chapter is mostly based on the first Chapters of [28§].

3.1 The Experts problem

Let’s consider the following online scenario: Each day for T' days you you receive
a certain question which has two possible answers(A and B), without knowing the
questions of the future days. However, you have to give your answer before the question
if revealed. After your answer in each day, if you chose the right answer then you don’t
get penalized. Otherwise you suffer a loss. Fortunately, to help you make your decisions
there is a team of N experts who each of them recommends one of these answers. The
question is how to choose a good strategy for such a problem. To be more precise,
how to exploit the information the experts give in each round. This is a typical online
decision-making scenario where there are external sources that help the player to make
choices. For instance, the question may be the choice of buying or not a certain stock

and the experts to be a team of brokers.

Recall now the notion of the adversary from chapter 1: The adversary will construct

the worst possible input sequence for the player including the decisions of the experts

26

Chapter 3. Online learning & Online Convexr Optimization 27

as well as which of the questions will be asked in each round. At first, it may seem that
the adversary has too much power and the player has no possible good strategy, but as
we’ll see shortly if we define an appropriate and fair benchmark we can design efficient
online algorithms. But let’s start with a benchmark that it’s unfair to the player which
is to minimize the number of mistakes the player does (relatively to T'). Actually, there
is a trivial strategy to obtain % mistakes which is also the optimal for any randomized

algorithm.

To obtain % mistakes, we simply choose one of these choices based on a fair coin flip.
Recall that the adversary we consider does not know the random number generator the
player uses. Such a benchmark is not fair in a sense that it doesn’t take into consideration
how poignant is the advice of the experts. That’s because, in two different instances,
if in the first, the experts make random predictions based on a coin flip and in another
the experts are right almost every time it doesn’t make sense to evaluate both players

based on the number of their respective mistakes.

A meaningful approach is to compete against the best expert, the one that makes the
fewest mistakes. Let’s denote as my(i) a binary function which indicates if the expert i
makes a wrong prediction in day ¢ and as m; similarly if the player makes a mistake at
day t. Our goal is to minimize the average between the mistakes the player makes and
the number of mistakes of the best expert. That’s equivalent to minimizing the average
Regret of the player which we’ll constantly use as a performance metric throughout this
chapter. Intuitively, it means that at the end, looking back at the experts predictions,
you don’t want to regret not having picked to follow one of the experts all the time. The

purpose of the algorithms in online learning is to find as fast as possible such an expert.

1 T T

Now we’ll discuss an efficient algorithm in order to minimize the average Regret, named

the weighted majority algorithm.

3.1.1 The Weighted Majority Algorithm

Before stating the algorithm in a general setting, let’s consider a simple case in order
to gain intuition on the problem. Suppose there is an expert that makes no mistakes.
Your strategy is simple: Take a majority vote, which means to make the choice the
majority of the experts predict. Of course, after you realize an expert made a mistake,
you don’t take his opinion in consideration anymore. Based on this strategy, how many
mistakes will you do you find the unerring one? Notice, that each time the player makes

a mistake, half of the experts are discarded because otherwise the player would be right.

Chapter 3. Online learning & Online Convexr Optimization 28

Therefore, the player makes O(logn) mistakes until she finds the best expert and the

average regret goes to zero as T — oo.

Now, in the general case, there won’t be an unerring expert and thus the above
algorithm won’t work. In the above case, the trust of the player to an expert is binary.
Either she listens to her or not. Let’s generalize this concept and make the trust (or
weight) to be a function w; in the interval [0,1]. The idea stays the same: sum up
the trust of the experts that prediction an action and take the action which has the
highest trust. When an expert makes a mistake now, the player will reduce her trust by
a factor of 1 —e. Let’s describe the algorithm formally. Let the two choices be A, B and
St(A)(S¢(B)) the set of the experts whose opinion is A(B) in round t.

Algorithm 1: Deterministic Weighted Majority Algorithm
1: Initialize: wy (i) =1, Vi € [n]
2: fort=1:T do

3: if > ies, () we() = Y ies,(p) we(i) then

4: choose A, otherwise choose B

5 end if

6 for expert ¢ which made a mistake in round ¢
7: wi41 (1) = (1 — e)wy (i)

8 end for

9: end for

Theorem 3.1. Let M and Mr(i) be the total number of mistakes the algorithm and
the i expert make until step T, respectively. Then, for any i € [n]:

logn

Mz < 2(1+ €)M (i) + 2=

Proof. We'll analyze the algorithm using a potential ¢; = > | w¢(i) which simply sums
up the total weight of all the experts in round ¢. Since the weights can only be decreased
it holds: ¢ < ¢ry1. At every round ¢ that we made a mistake (say we chose A and B
appeared), at least half of the weight corresponded to experts that chose A and is equal
to ZieSt(A) wy(i) > % Hence,

€

Grr1 < Y (L=ui(i)+ Y wli) < %@(i)(l —€) + %@(i) = (1-)¢t

i€S¢(A) 1€5¢(b)

By induction we get:

Chapter 3. Online learning & Online Convexr Optimization 29

Moreover, for every expert 7 it holds (recall that the weight wy () is decreased by a factor

of (1 — €) every time the expert i makes a mistake):
n .
or =Y wr(i) > wr(i) = (1 -)M
i=1
The above two inequalities give us:
(1— M) < p(1 - %)MT = My (i)log(1 — €) < logn + log(1 — %)MT

Finally, applying the inequalities —z — 22 < log(1 — x) < —x for = € (0, %) which derive

from the Taylor expansion of log(1 —) we get:

logn

—Mp(i)(e +€?) < logn — MTg = My < 2(1+ €)Mp(i) + 2
O

This result implies that when T >> n, the number of mistakes the algorithm makes
is approximately twice the number of mistakes of the best expert. Actually, if L < %,

no algorithm can improve substantially these results.

Theorem 3.2. Suppose the number of mistakes the best expert makes is L < % Then,

in the worst case, no deterministic algorithm can make fewer than 2L mistakes.

Proof. Assume an instance with two experts: A, B which always predict A, B respec-
tively. For any given decision of the algorithm, the adversary chooses the opposite
decision (that’s possible, since the algorithm is deterministic). Hence, the total number
of mistakes the algorithm makes is 7. The best of the two experts makes < % mistakes

since in each round at least one of them is right. O

Now, a natural questions arises: Can randomization be proven useful in such a set-
ting? The answer is yes. We’ll now discuss a randomized version of the WM algorithm.
The only difference from the deterministic is instead of adding the weights of experts
when comparing the sums in order to make our decision, we now choose to follow one
expert basec on the weight. The probability of choosing expert ¢ in round ¢ is now:

we (4)

pe(i) = S w) The algorithm is described below:

Chapter 3. Online learning & Online Convexr Optimization 30

Algorithm 2: Randomized Weighted Majority Algorithm
1: Initialize: wy(z) =1, Vi € [n]
2: fort=1:7T do

3: Select advice of expert i with probability p.(i) = 2227(12(])
4 for for each expert ¢ that made a mistake in round ¢ do:

5: wir1(i) = (1 — €)wy (i)

6 end for

7: end for

Theorem 3.3. Let mp, mp(i) denote the total number of total mistakes of the player

and the expert i. Then for every expert i:

E[mi] < (14 ¢)mp(i) + logn

Thus randomization improves the bound by a factor of two. The proof of the above
theorem shares the same idea with the one of the deterministic case and we won’t include

it at this point.

So far, we’ve assumed that the loss of the experts is binary. Either expert i makes a
mistake or not. Let’s generalize this concept and assume that the loss of the experts is a
number ¢ € [0, 1]. Now consider the same strategy as the above randomized algorithm.
Choosing the expert ¢ with probability p:(i). Then, the expected loss of the algorithm
in round ¢ is Y., ci(i)pi(i) = ¢l ps. This leads us to the hedge algorithm which we

analyze below:

Algorithm 3: Hedge Algorithm
. Initialize: wy (i) =1, Vi € [n]

[y

2: fort=1:T do

3 Select advice of expert ¢ with probability x(i) = ST)
4: Suffer loss ¢/ x;

5 Update weights wyy1 (i) = wy(i)e= ()

6: end for

Theorem 3.4. Let c¢? denote the n-dimensional vector of pointwise square losses (i.e

c2(i) = c(i)?). Then, the hedge algorithm satisfies for every expert i:

Zcfxt < th(i) + eZc%a:t + lofn

t=1 t=1 t=1

Chapter 3. Online learning & Online Convexr Optimization 31

Proof. Set ®; = Zthl wy (i), then:

Dy = Zwt e~) =, Zwte et (?)

=1

Using the taylor approximation of e™®: Vo >0, e™* < 1 — 2 + 2%

Dy < CIJtZ:Ct (1 — ece(i) + €2¢4(i)) = (1 — ecl zy + ()T xy)
i=1

Finally, by using 1 4+ x < €*
(Pt—‘rl < (I)tefectthJreQ(c?)Txt

Given that wy(7) is less than ®; we get that:

wi(i) < @y < memeck mFeE) o

Now, observe that:
wy (i) = e~ Xi=1 ()
By taking logarithm of both sides:

T

T
eth <logn—eth$t+e ()T
=1 i=1

and the theorem follows. O

Now we have to choose an appropriate value of € in order to minimize the regret.

log n

Theorem 3.5. The hedge algorithm for e = has the following regret:

T

thT:Ut—min ct(4) <24/Tlogn
— Jen i3

Proof. First observe that ¢ < 1 and thus (c?)"z; < 1. Hence, using the result of the

previous theorem for the best expert in hindsight ¢*:

T T
Zc;‘ract th)< Te —1—10g 2+/T logn
i=1 t=1

€

O]

In the above scenario, in each round, the player receives a function f;(z;) = ¢f z;. She

has to choose a point from the probability simplex {x € R" : 2 > 0, " , x; = 1} in order

Chapter 3. Online learning & Online Convexr Optimization 32

to minimize the regret. What about if the player received an arbitrary convex function
fi(x) and has to choose a point from an arbitrary convex set X 7 What algorithm
should she follow then? The area of online convex optimization aims at answering this

question.

3.2 A Unifying model

We now proceed and define more formally an online convex optimization problem
which generalizes the previous expert setting. The model is very general and can be
used to model problems from a broad range of areas. The OCO model can be expressed

by the following elements:

e At eachround t =1,2,...,T, the decision maker makes a decision, choosing a point

from a convex set z; € X C R"

e After the decision, the adversary reveals a convex function f;(z), ¢t € [T] and the

player suffers a loss of fi(x).

e The goal of the decision maker is to minimize the regret. That is, in every round,

to choose a strategy z; in order to minimize:
T T
Regret = T¢) — min x
g tzlft(t) xeX;ft()

An algorithm that guarantees a sublinear in T (o(T")) regret, is called a no-regret al-
gorithm. OCO algorithms aim at finding the best fixed decision in hindsight * which
minimizes the sum of the functions fi, ¢t € [T]. The model accepts also the following
interpretation: Initially, the adversary chooses a function f and breaks it in parts f;
so that the follow holds: Y7, fi(x) = f(z). It breaks it in the worst way possible in
order for the player to make the most iterations (rounds) in order to converge to the

best decision in hindsight.

Apart from the experts problem, there are other problems that can be modeled as
OCO problems.

e Online Spam Detection: In online spam detection, we observe emails wq, ws..., wr
and need to classify them as spam / not spam at every period ¢t € [T]. We can
model each email w; as a bag of words over dictionary of size d: there are d words
in our language and each email is a vector over {0,1}" s.t. each index j receives a
value of 1 if the word j € [d] is in the email and 0 otherwise. At every step ¢, our

goal is to create a classifier which is a vector x; € RY g.t. a:?wt > 0 if the email

Chapter 3. Online learning & Online Convexr Optimization 33

is not spam and zfw; if it is spam. At every stage, after classifying the email
we observe whether our classifier z; made a mistake. One natural cost function
is to assign cost 1 on each iteration we make a mistake. Another natural notion
is to have a cost function that measures the square loss: (§ — y))? where ¢ is the
prediction made with our classifier at time step ¢ (1 if not spam, —1 if spam) and

y is the true label.

e Online Recommendation Systems: Recommendation Systems are often mod-
eled as matrix completion problems. We assume we have some sparse 0,1 matrix,
where the rows are the people the columns are media items. For example, for a
service like Netflix, the entry M;; takes value 1 if person ¢ enjoyed movie j. In
the online setting, at each iteration, a matrix M; € {0,1}"*™ is revealed, and the
adversary chooses a user/movie pair together with the real preference. The goal
is to use existing matrix and make an educated guess that minimizes the square

loss.

3.2.1 Online Gradient Descent

Although the OCO problem may seem general and hard in its nature, there exist a
very simple algorithm that guarantees the best regret possible! The algorithm is Online
Gradient Descent,a straightforward generalization of the offline version we discussed in
the previous chapter. It appeared in [45] which laid the foundations for the area of

Online Convex Optimization. Let’s state the algorithm formally:

Algorithm 4: Online Gradient Descent

1: Input: number of iterations 7', Feasible set X, initial point x; € X, sequence of

step sizes {n:}
2: fort=1:Tdo

3: Choose z; and suffer loss f;(x)

4: Perform gradient step: yi41 = x4 — 'V f(24)
5: Project onto X: z441 = x (ye+1)

6: end for

The algorithm may seem strange at first sight. In round ¢ we make a gradient step
based on the gradient of f; at point x; in order to suffer a lower loss at the next function
ft+1. But the functions f; and fi11 may be completely different! We try to minimize a
function fiyq based on the gradient of f; which seems entirely irrational. The gradient
step may make things even worse and we suffer an even bigger loss compared to the case
we wouldn’t move at all. However, it’s not irrational, it makes perfect sense. Remember

that we don’t try to converge to the minimizer of the function f; but at a point z* which

Chapter 3. Online learning & Online Convexr Optimization 34

minimizes the sum of the functions. The point z* is correlated with the minimizers
of each function separately and intuitively, we’d expect to lie somewhere between the
minimizers (for instance consider fi(z) = (z — 1)? and fo(x) = (z — 2)?, making a step
based on the gradient of f; gets us closer to =z = %) Therefore when we make the
gradient step we get closer to the point «* and as time progresses we converge to the
point £*. When we’are closer to the point, the regret is increasing at a low rate, which is
the whole point! In fact gradient descent, is a no-regret algorithm and achieves a regret

of O(\/T) As time progresses, the increase of regret in each step decreases.

Theorem 3.6. Assume that at every round, the step size is 1y = GL\;T where D is the
diameter of the conver set and G is a bound on the gradient |V f(x)| < G, Vx € X.

T T
S fulen) ~ min >~ filw) < SGDVT
t=1 t=1

Proof. Let z* = argmingex ZtT:I fi(x). We start by bounding the regret at time t
using the convexity of function f; which as we discussed is found useful when we’d like

to bound the values between two points of the functions.

fe(@e) = fo(@®) < Vi) (2 — 2%)

At this point, if we’d aimed for a regret of DG, our job would be over. Because of
the Cauchy-Shwartz inequality fi(z:) — fi(z*) < GD. Summing up we’d get the result.
But as we intuitively described in the above paragraph we’d expect of the algorithm to
converge to x*, and thus ||x; — z*|| is expected to be decreased as T' grows. For this

reason, we apply the gradient descent rule using the projection:
o1 — a1 = |Maex (@ — eV £ (22)) — 2*|* < g — 0oV f(22) — 2|
From the law of the parallelogram and the bound on the gradient of f we get that:

e — eV (o) — 2*))* = o — 2*|> + 02 |V ()] — 206V f (@) (e — 2¥)
< lwe — 2*|)* + P G? — 200V f (w0) (24 — 2*)

Putting the above together, we get:

lzer — 2*|” < o — 2% + 97 G? — 200V f (1) (w0 — %) =

2 2
o Nz = 2" =z — 27|

2Vft($t)T(.It — x*) ~ T + ’I’]tG2

D
GVt
see that the above inequality bounds the total regret by the factor of DGV/T by simple

At this point, recall the gradient step n = For such a value of n; we can easily

Chapter 3. Online learning & Online Convexr Optimization 35

calculations. Summing up over all the rounds and applying the above inequalities we

get:
T
2> (filze) — fila™))
t=1
T
2vat l‘t — X)
t=1
= Nl — 2 * =z — 2
_ _ | —
<> = +mG?)
— u
Y R el LT el RS
=D)Gy m
=1 Nt =1
T 1
<Y (e —27)* (= +G*>
=1 Ur
Ty 1 T
<D?Y (- =)+ Gy m
= Tt Th-1 P
T
< D*— + G* Mt
nr ;
< 3DGVT
In the last inequality we used the fact that: Z =1 - < 2T O

Notice that, in the case that all the functions f; are the same function f we get
Theorem 2.19:

O fla ZT:f

t=1 t=1

’ﬂ\
S
I/\
SIR

1Y - 1) <

where the first inequality is due to the convexity of f.

In the case that functions f; is general convex functions and they don’t have any
particular property like strong convexity or smoothness, the above regret is the best
that any algorithm can attain for an online convex optimization problem. For instance,
having functions that are a-strongly convex, online gradient descent can attain a regret
of G ~ (14 log T") which improves upon the O(v/T). For more details, see [28], Theorem
3.3.

Theorem 3.7. The bound QDGVT) is a tight bound for any algorithm for online

convex optimization.

Proof. We consider the following setting: The feasible set of solutions is the hypercube

K with vertices = {#1}". The function f; in each round comes from a family of

Chapter 3. Online learning & Online Convexr Optimization 36

functions f,(z) = u?x where u is a random vector and each of its coordinates is 1 with

probability % and —1 otherwise. Thus, there are 2™ possible linear cost functions. Now

observe that the diameter of the feasible set:

Thus n = DG. Now notice that it doesn’t matter what choice the player makes in each
round; Her expected loss in every round will always be zero since E,[f,(x)] = 0. For the
adversary we’ll show that there exist an instance for which his cost is less that —eny/T

for some constant c.

T T

n
ggngt ;(g;;;vt = nE[| ;vt(l)l]

Although we won’t get into details we can prove that E[| S7_, v:(1)]] = Q(v/T) and thus

the expected loss of the adversary is bounded above by —eny/T. By the expectation

argument, there will be an instance for which the adversary will attain a loss smaller

than —cny/T. That implies a lower bound of Q(DG\/T). O

At this point we believe is very important to enstablish a connection between the
hedge algorithm and Online Gradient Descent. Although these algorithms may seem
entirely different, they share the same idea. Recall that the hedge algorithm has a
regret bound of O(y/T logn). If we apply the gradient descent rule to the same problem
we’ll achieve a regret of O(v/nT) since the diameter of the probability simplex is /2
and the lo-norm of the costs is bounded by /n. Hence, the hedge algorithm is better.

Now, recall that the gradient step is given also by the formula:
Tyl = arg min{Vft(:ct)T:c + 1 Hac — :U?H}
zeX 2n;

Thus gradient descent can be equivalently be seen by minimizing the first-order Taylor
approximation of f; around x; plus a regularization term Hm — 3 H which keeps x4 close
to ;. If we are able to change the regularization and impose a different one, the method
of mirror descent (online in our case) arises. In general, such a regularization term is
called Bregman Divergence. We won’t delve into the technicalities of mirror descent. An

interested reader can see [16] for a mathematically rigorous analysis of mirror descent.

Chapter 3. Online learning & Online Convexr Optimization 37

Actually, apart from Gradient Descent which is Mirror Descent when the regularizer
is 12, the hedge algorithm is a special case when the regularizer is the relative entropy
function which is widely used in learning problems when one maintains a distribution
over a set of elements, in this case, the experts. Therefore, when we use as a regularizer,

the relative entropy, the update rule becomes (where A,, is the probability simplex):

Tyr1 = arg ;IEHA%, ez + Z (1) log(x(i)) — Z x(i) + Z x4(1)

i=1 n(l)’ o i=1
Now using the KKT conditions we get:
eci(t) +log(zi11(i)) — log(z(i)) — i — A = 0 = 241 (i) = 24 (i)eliHAecc®

Since we start with the uniform distribution it will always hold that x; > 0. This means

that p = 0 from the complementary slackness condition. Now for the value of A, observe:

n n
Y (i) =1=) z(i)ete @ =1=
=1 i=1

A 1
e = -
Yo mi(i)emeer

Finally, the update rule is the same as of the Hedge Algorithm:

zy(i)e—ect(®)

T a(j)e)

T4 (1) = 5

3.3 Competing against a dynamic comparator

So far, we’ve assumed that the player aims at finding the best fixed strategy in
hindsight, z*, which minimizes the sum Z?:l fi(x). That is, that the player is competing
against a static strategy. Now, we’ll discuss a much more difficult problem for the player.

Suppose the player aims at minimizing:

T T
> filw) =Y fila)
t=1 t=1

which from now on, we’ll call it Dynamic Regret. In other words, the player has
to compete the optimal dynamic strategy which consists of the series of minimizers
x], 25, ..., xh, xf = argmingex fi(z) of each function the adversary presents in each
round. Now we have a tracking problem which is to follow the path of these minimizers
instead of converging to a single point. It is straightforward, that the regret we acquired

in the static case cannot be attained in this scenario. Recall that the gradient step we

Chapter 3. Online learning & Online Convexr Optimization 38

made in the static case brought us closer to the optimal static decision z*, but now, if

the functions f; and f;11 are uncorrelated the gradient step makes no sense at all.

In order to provide a meaningful benchmark for this kind of problem we have to make
strong assumptions on the functions f;. Without such assumptions, which enstablish
a correlation between functions in successive rounds, there is no strategy by the player
that it makes sense and the dynamic regret cannot be bounded (The player simply plays
blindly). Several measures of variation between the functions have been considered so

far. For instance,
T

Vp = sup|fi(x) = fi1(x)l

—1 zeX

measures the maximum variation of consecutive functions f;_1, f;. Such an assumption
was considered in [I1I] to provide an expected dynamic regret of O(T%(l + VT)%) for
convex functions and O(1/T(1+ Vr)) when strong convexity is considered. In this
paragraph, we’ll design an algorithm that provides a dynamic regret bound according

to the following measure:
T
Ly = Z [Er |
t=1

which measures the distance of the minimizers of successive functions. A relatively small
value of L means that the minimizers are close from each other. Thus, a gradient step
makes sense in this scenario. In round ¢, knowing that the minimizer of f; is close to
fit—1 is invaluable knowledge to the player. We’ll show that online gradient descent with
an extra step, provides a dynamic regret of O(1 + L) (ignoring other constants) when
the functions f; are strongly convex and smooth. The algorithm is described below and

it was first analyzed in [40)].

Algorithm 5: Online Gradient Descent (dynamic case)

1: Input: number of iterations 7', feasible set X, initial point z; € X, stepsize 7,
constant h € (0,1]
2: fort=1:T do

3: Choose z; and suffer loss fi(x)

4: Perform gradient step: y;11 = o1 — %Vf(xt)
5: Project onto X: #141 = x(yit1)

6: xi41 = (1 — h)xy + hay

7: end for

Notice that the step size is constant now, in contrast with the static case, and does not
decrease as a function of ¢ since now we don’t have a problem of convergence but rather
a problem of tracking. The player now wants its play z; to be close to the minimizer

xy. We’ll make the following assumptions for every ¢t = 1,2, ..., 7"

Chapter 3. Online learning & Online Convexr Optimization 39

e f; are u-strongly convex

e f; are L-smooth. Recall that is equivalent to the Lipschitz assumption on the
gradient: ||V fi(x) — Vii(y)ll, z,y e X

e f, are G-Lipschitz. This is equivalent to the norm of the gradient be bounded by
G: [Vfi(o)] <G.

The proof, although highly technical, has a very simple idea: If we’d able to bound the
value ||z — z¥|| by O(1 + L) our job is over since the functions are Lipschitz. We start
by showing that ||z;41 — 2} || < p|lay — 7| for some p > 0, which we’d expect to hold
since in time ¢ the algorithm makes a step towards the minimizer of f; and thus can be
seen as part of the proof for the offline version of gradient descent we discussed in the
previous chapter. From there the desired bound is straightforward through the triangle
inequality. Hence, in order to prove the main theorem, we start with the follow lemma

which utilizes the powerful assumption that the function is well-conditioned.

Lemma 3.8. If the step sizey > L, for the decisions x, t € [T] of the player (Algorithm
5) and the minimizers of the functions xf, t € [T] it holds:

[zee1 — 27l < pllae — 27|
where 0 < p=,/1— %“ < 1 is a non-negative constant strictly smaller than 1.
Proof. In round ¢, by strong convexity of f;, Vo € X:

ful@) = 5 o =il = fulae) + Valw) (@ —) =

fi(x) — g o — ael|” > filae) + V fr(z) " (@ —) + Vfila) " (@ — 2)
Now recall theorem 2.8 and that the gradient step is given also by:
£ = argmin{V fi(x)T(z — 20) + 2 o —]|}
reX 2
Hence, we get:
% 2 T/ A N\T R
fi(zy) — 5 |z —a¢||” > fe(ae) + Vife(ay) (80 — zp) +y(a — 24)" (2 — 24)
By the smoothness of f; and the fact that v > L:

Jue) < Jeae) + V folae) (@ =) + 3 |8 —

Chapter 3. Online learning & Online Convexr Optimization 40

Combining the two above inequalities:

ful@) = S lle =2l = fild) = 5 llé0 = o] + (@ —) (@ = d1) =

fula) = Sl = wdl* 2 =3 llée — i) + (@ - 207 (2 — @)

By setting x = zj:

0> fiw}) = filde) = & ot — ol + 2 N — a2+ (w0 — 80)7 (a7 —) =
1
AN\T * A 2 I * 2
(zt — 2¢)" (2 — 7)) > 3 |2 — 24" + % |z — 2]
Now recall algorithm 4:
zeer — 2712 = [lwe — 27 |” + B2 o — @¢)|> — 2h(ze — 27)7 (20 — 4)

By substitution of the inner product:

h
%112 I %112 A2
|ze+1 — 27| §(1—7) |ze — z¢]|” + h(h — 1) |lzg — 2" =

h
* (12 1% * (|2
@ — 27" < (1 - 7) |ze — 27|

And the lemma follows. O

. T
Now if we’re able to bound), ||x; — xf||, we're almost done:

Lemma 3.9. Consider the diameter of the set X to be equal to D. If the step size v > L
and for the decisions xy, t € [T of the player (Algorithm 4) and the minimizers of the
functions i, t € [T] it holds:

T

i} D 1
Sl < T Ly + —
—1 -p -p

Proof. By using the triangle inequality:

T T T
S e — 27l < s —]+ 30 e — iy ||+ 3 ok - iy
t=1 t=2 t=2

Now, due to lemma 3.8:

T T T
Do llze—afll < llw =2l +p) llwe — 2fll + Y [|loF — iy
t=1 t=1 t=2

By regrouping, the lemma follows. O

Chapter 3. Online learning & Online Convexr Optimization 41

Now, we're ready to state the main theorem:

Theorem 3.10. Algorithm 4 achieves a dynamic regret of:

GD G
Regret < L+
1—p 1—p

The theorem follows trivially from lemma 3.9 by using the Lipschitz condition of
ft, t=1,2..T.

Chapter 4

Online Convex Optimization with

Switching Cost

4.1 Definition

In this chapter, we focus on the main problem of this thesis: Online Convex Op-
timization (OCO) with switching cost. We’ll see how the problem relates to both the
OCO model and a typical problem studied the community of online algorithms, such as
those we discussed in Chapter 1. In order to define the problem, we’ll start by comparing
it with the OCO model we discussed in the previous chapter. The differences between

the two are the following;:

e Lookahead: First, in the OCO model, the player in round ¢ started by stating
her decision z; and then suffering a loss fi;(z;). This is typical for a learning
(or prediction) problem. In this case we say that the player has 0-lookahead.
However, in the case of OCO with switching cost the reverse happens. First the
player observes a function fi(x;) and then plays her decision z;. We now say that

the player has 1-lookahead. This is typical in the field of online algorithms.

e Switching between actions: It’s clear that OCO under 1-lookahead is a trivial
problem. Although OCO with switching cost is easier in a sense that the player
knows the function f; before taking any action, now there is also a switching cost
between the decision x;—1, x; which makes immediately the problem non-trivial.
A typical case of switching cost function we’ll discuss is the norm (for instance, the
euclidean norm, l2) of the difference of z;_1 and z; i.e ||z; — x;—1|| which translates
in how much different are the actions of successive rounds. Notice now, that unlike
the OCO setting, the function the player receives in each round is not chosen

entirely by the adversary. The player receives the function fi(x¢) + ||xy — z—1]|.

42

Chapter 4. Online Conver Optimization with Switching Cost 43

The first term is chosen by the adversary while the second term is based on the
previous action of the player. Notice also that this function is convex as a sum of

convex functions.

e Benchmark: In the previous chapter we discussed OCO according to two bench-
marks: Static and Dynamic. The static case in OCO with switching cost is shown
to be no more challenging than OCO [3] and algorithms such as Online Gradient
Descent, perform well in the case of OCO with switching cost. Our focus will be
on the dynamic case which is an active area of research. Apart from the dynamic
regret (or competitive difference), which bounds the difference between the cost
of the player and the optimal offline cost there is also the competitive ratio, the
benchmark used in the field of online algorithms, which bounds the ratio of these
costs. As the authors comment in [24] the techniques in order to achieve good
bounds in each of these benchmarks are different. We’ll most aim at designing
competitive algorithms. Observe that in order for an analysis based on competi-
tive ratio to make sense, the convex cost functions the adversary reveals have to
be non-negative. In addition, the authors of [3] perform an extensive study on
whether is possible for a single algorithm to achieve good static regret and com-
petitive ratio simultaneously. They give a negative answer which is demonstrated

by the following theorem:

Theorem 4.1. There is no online algorithm (randomized or deterministic) which
can achieve sublinear static regret and constant competitive ratio for an online
convex optimization problem with switching cost even when the cost functions are

linear.

and they design an algorithm for the unidimensional case (Randomly Biased
Greedy) which achieves simultaneously a competitive ratio of O(1++) while main-

taining a O(max{%, ~}) static regret.

With the above in mind, we’re ready to define the problem of OCO with switching
cost when the switching cost function is a norm. This easily extends to the case where

the switching cost function is a general convex function.

An instance of the problem consists of a fixed decision space, a convex set X € R"
and a sequence of non-negative convex cost functions fi(x), ¢t € [T]. In round ¢, the
player observes the function f;(z) and chooses a point z; € X incurring a hitting (or
service) cost fy(z¢) and a switching cost ||x; — z4—1]]. We assume that both the player

and the adversary start from the origin. The total cost of the player is:

T
D i) + o — x|
t=1

Chapter 4. Online Conver Optimization with Switching Cost 44

while the optimal cost is:

T

min th(fﬁt) + |zt — 2|

{:Et }?:1 GX =1

We'll denote the adversary’s decisions as {z}~_;. Notice that the offline problem is a
convex optimization problem and can be solved efficiently. Also, the problem can be
stated as an uncostrained problem when we consider the extension of function f; in R”
which takes the value fi(z), € X and the value +o00, © ¢ X. The epigraph of the
function is the same as of f; and thus convexity is preserved. We’ll find this fact useful

in the analysis of the algorithms that will follow.

The algorithm that comes naturally to someone’s mind for this problem is to pick
the decision x; that minimizes the sum of the hitting and switching cost at time ¢. In
first sight, it may seem that is the best the player can do, but as we’ll see soon it fails

miserably and we’ll explain why. More precisely:
z¢ = argmin fy(z) + |z — 1|

Consider now the following scenario in one dimension. The adversary reveals a function
of the form fi(z) = §(z — ¢)?, a,c > 0. The player starting from the origin will pick a

point x1 € [0, ¢] that minimizes the sum:

g(x—c)2—i—:z

Which is minimized at * = ¢ — é Notice now that if ca = 1, the player stays at 0.
If the adversary reveals functions of this form indefinitely, the player will still continue
to stay at 0. That makes her extremely vulnerable to the adversary. After T' rounds,
if the player receives the indicator function of the ¢, which takes the value 0 at ¢ and
400 otherwise the player has to move necessarily to ¢. Thus the player has a a total
hitting cost of ¢T" while the adversary simple moves to the first round, for a total cost of
c. Therefore the competitive ratio of this algorithm is Q(7") and is due to the fact that

the use of such a criterion by the player may stuck her at one point.

Such a result shows us that we have to come up with an algorithm that always makes
a small step towards the minimizer of function f;, no matter what. An interesting
idea, which will encounter in later paragraphs, is to consider a gradient based rule of
the function f;, x; = x4 1 — %V f(x4—1). For the 1-d case, without loss of generality
if ;-1 < x,, the player will have to pick a point in the interval (x4_1,,,]. Notice
now, that every possible algorithm for the unidimensional problem can be equilavently

described as a gradient descent rule with an appropriate choice of 7;. However, there

Chapter 4. Online Conver Optimization with Switching Cost 45

is an algorithm that comes more intuitively for the problem than the gradient descent
rule. We pick a point x; in order to balance between the costs fi(z;) and ||xy — x4—1]|.
As we’ll see such an idea provides constant competitive ratio for the unidimensional case
as well as constant competitive ratio for higher dimensions when we add an assumption

for the functions f;.

4.2 The unidimensional case

We start to delve into the problem by studying the unidimensional case where is
proved that we can achieve a constant competitive ratio. As we’ll see, the algorithm for
higher dimensions is based on the idea of the one we’ll discuss in this paragraph. More-
over, note that any [, norm in the real line reduces to the absolute value. Firstly, we’ll
prove that randomization provides no benefit for the design of a competitive algorithm

for OCO with switching cost.

Proposition 4.2. For an OCO problem with switching cost, if there is a c-competitive

randomized algorithm R then there is also a c-competitive deterministic algorithm D.

Proof. The proof of the theorem is based on Jensen’s Inequality which states that for a
random variable X and a convex function g it holds:

glE[X]] < E[g[X]]

In the general case, a randomized algorithm R maintains at time ¢ a probability distri-
bution over the the real line. Let z; be a random variable according to this distribution.

Then the expected cost of the randomized algorithm in round ¢ is:
Elfi(xe)] + [l — z-1]

Now consider instead of sampling from the distribution we just take as a decision the
expected value of x¢, {E[x¢]}. In this case, the respective cost of the now deterministic
algorithm is:

fe(Ela]) + |Efas] — Ela;]|

Since the objective is a convex function, by Jensen’s inequality, we conclude that in
round ¢, the deterministic algorithm has a lower or equal cost than the expected cost of

the randomized algorithm. Summing over all ¢ € [T'] completes the proof. O

An important concept in the design of algorithms for OCO with switching cost is the

notion of memory and has to do with what information in mind the player chooses a

Chapter 4. Online Conver Optimization with Switching Cost 46

point z; in round ¢. Generally speaking, if the player just uses her current position z;_1
and f;(z¢) in order to decide x; then the algorithm is memoryless. If her decision is based
on her previous states as well as the previous functions the adversary revealed then the
algorithm is with memory. For the unidimensional case, we’ll discuss 2 algorithms for
the two kinds of memory we mentioned. An algorithm that keeps memory can achieve a
tight competitive ratio of 2 while a memoryless algorithm can achieve a tight competitive

ratio of 3.

4.2.1 A memoryless algorithm

The algorithm that we’ll discuss now was developed in [§]. The idea of the memoryless
algorithm is the following: Without loss of generality suppose the player is at state x;—1
and the adversary reveals a convex function f; with a minimizer at z,, > x¢—1 (which

we’ll assume it always exists). Then the player moves to the direction of z,, (to the right)

(=) (

until |z, — z4-1] = ftT which can be performed using binary search) and balances the

hitting and the switching cost. Notice that if %’") < |xm — x4—1] such an x; always

exists in the interval (xy—1,xy,). If @ > |xm — x4—1], the algorithm simply moves

to Xy,. From now on we denote as Hy = fi(xy) and My = |z — x4—1| the hitting and

the moving cost of the algorithm respectively. Similarly for the adversary we denote as
Hf M.

Algorithm 1: Memoryless algorithm
1: fort=1:T do

2: Let z,, = argmin f(x)

3: Move in the direction of x,, until we reach either a point x such that M; = %
or Ty,

4: Set x; as that point

5: end for

Theorem 4.3. Algorithm 1 is 3-competitive for 1-d OCO with switching cost

Proof. The proof is based on the potential function method we discussed in chapter
1. We consider the potential function ®¢(z¢, x}) = 3|z — zf| with &g = 0 since the
player and the adversary start from the origin. In order to prove that the algorithm is

3-competitive it suffices to show V¢ € [T7]:
Hy + My + ®(xy, 27) — $(wy—1, 27_q) < 3(H + M)

Since while moving towards x,, the hitting cost is decreased while the moving cost is

increased it always holds that: M; < % and the equality holds when xz; # x,,. First

Chapter 4. Online Conver Optimization with Switching Cost 47

observe from the triangle inequality:
(i1, 2f) = P(w—1, 77 1) < 3MY
Therefore it suffices to prove:
Hy + M + ®(xy, x7) — P21, 27) < 3Hf
In order to prove this, we consider two cases:

e H; < H}. In this case we get:

M,< L

<
S H,
Hy+ My + (2, 07) = (e, 2f) <0 Hit o

+ Oy, 27) = (241, 27)

e H, > H}. Consider z;_1 < x,, (the reverse case is similar). Since H; > H; we
can’t have Hy = fi(zy,) and thus M; = % Observe that we must have z;_1 < x4

since the algorithm moves to the right and z; < zf since H; > H;". Thus:

O(xy,w7) — P(xp—1,2f) = 3(xy — 2 — 2} +2421) = —3M; =

3
Ht + Mt + (I)(g%t,l‘r) — Cb(xt_l,x;k) = th - 3Mt <0 < ?)L[gk

And the proof is complete. O

As we previously commented, a competitive ratio of 3 is actually tight. We’ll now
discuss the proof of the lower bound. But first let’s discuss memorylessness again. Mem-
orylessness as we discussed previously is ill-defined. Because the state of the algorithm is
a real number with any accuracy (any number of bits), it’s possible to encode the mem-
ory of the previous rounds in the low order bits of the state. As the authors claimed in

[8] memorylessness is based on the following:

e Scale: Algorithm’s responses don’t depend on the scale of the line. For instance,
suppose for the case of a 2-piecewise linear function a|z — b| the algorithm that
operates in the interval [z;_1, b] moves to z;—1+7v(a)(b—z¢—1). If now the algorithm
had received the function a|x — ¢|, ¢ # b under memorylessness the algorithm has
to move also to x¢—1 +7(a)(c—x—1). Thus the decision depends only on the slope
of the function, a. As we’ll see the instance that gives the lower bound is composed

entirely of such functions.

Chapter 4. Online Conver Optimization with Switching Cost 48

e Symmetry: Algorithm’s responses are bilaterally symmetric. If the player re-
ceives a function to her right will make the same decision (mirrored) as in the case

she receives it to her left.

FIGURE 4.1: Tllustration of Algorithm 1 for fi(u;) =0 and Hy > Hf

Theorem 4.4. Any memoryless algorithm for OCO with switching cost attains a com-

petitive ratio of at least 3.

Proof. Recall that the algorithm starts from the origin. The intuition of the proof is
the following: Given a function €|l — z| at the first round. We are interested in the
case as € — 0. If the player makes a small step towards « = 1, the adversary continues
bringing copies of the same function indefinitely. Due to the invariant of memorylessness
we mentioned for 2-piecewise linear functions, the steps in the next interval [z, 1] will
be small as well. The player will make a long time to reach x = 1, incurring a high total
hitting cost in the process, whereas the adversary simply moves to x = 1 at the first
round. On the other hand, if the player made a relatively big step at the first round, then
the adversary reveals indefinitely functions of the form e|z| making the optimal solution
to stay at O early from the beginning. The player not only paid a big distance step,
but continues to incurr hitting cost, while the adversary does not. Thus, we’ll consider
two cases which due to memorylessness will determine the behavior of the algorithm

throughout the analysis after the adversary reveals the function €|l — z|

e The player moves to a point x < 5. Then the adversary continues bringing copies
of the function €|l — z| indefinitely. Notice now, due to the first property of
memorylessness if the algorithm in the future is at a point y then moves necessarily

to the point y + x(1 —y). Thus if at round ¢ the hitting cost is Hy = €(1 — y) then

Chapter 4. Online Conver Optimization with Switching Cost 49

Hit1=€(l—y—x(1—y)) = (1 —x)H:. Thus the hitting cost is asymptotically:

H; > (1—*)756:5—622—6
x

For ¢ — 0 the hitting cost is 2 while the moving cost is asymptotically 1. That
makes the total cost equal to 3. The adversary simple moves at the first round at

x = 1 and his total cost is 1.

e The player moves to a point z > §. Then the adversary reveals the function

¢|z| indefinetely and the algorithm returns to the origin. Hence, the moving cost
is 2x. For the hitting cost, recall the second property of memorylessness. For
t > 2, if the algorithm’s position at t — 1 is y then at ¢ will be y(1 — z) and thus
H; = (1 — 2)H;_1. Thus the total hitting cost is:

+oo +oo
ZHt >e(l—z)+ Zew(l —2)"71 = 2¢(1 — 2)
t=1 t=2

That makes the total cost of the player equal to 2z + 2¢(1 —x) > 2e + (2 — 2¢)§ =
3e — 3¢2. The optimal offline cost is € and is attained when one never leaves the
origin. Thus the competitive ratio is at least 3 — 2¢. As € — 0 a competitive ratio

of 3 is attained asymptotically.

4.2.2 An algorithm with memory

We'll proceed with the description of an algorithm for the unidimensional case that
in contrast with the one we mentioned, it utilizes memory. In fact, that’s the only
algorithm so far that has appeared for OCO with switching cost that utilizes information
from the previous rounds and it was presented in [§]. Algorithms that utilize memory
have appeared extensively in the online learning and OCO community, named follow
the leader. An interested reader can see [2§8], [4I] for an elaborate discussion of these

algorithms.

The algorithm in each round maintains a probability distribution over the real line.
As we mentioned earlier, randomization provides no benefit at our setting. So the
response of the algorithm can be the expected value of the distribution at time ¢. The
algorithm utilizes memory through the distribution. The decision of the algorithm at
round ¢ is not based only on its place at time ¢ — 1 and the function f; but also at
the distribution the algorithm maintains at time ¢t — 1. The idea of the algorithm is to

pick carefully designated points [z, z,] where x; < x,,, < x, and to create a probability

Chapter 4. Online Conver Optimization with Switching Cost 50

distribution with support the interval [z;, z,]. We describe more formally the algorithm

below:

Algorithm 2: Algorithm with memory
1: fort=1:T do

2: Let x,, = argmin f;(x)

3: Pick point x, > z,, such that %f;;: " (y)dy = fxtoo pi—1(y)dy

4: Pick similarly z; < x,,, such that %f;;m)y = [*7 pi—1(y)

5 Update the pdf p(z) = pi—1(z)+3 f"(2), € [xx, 2,] and pi(z) = 0, otherwise
6: Choose E;[pi(z)]

7: end for

The authors in [§] show that the update rule indeed maintains a valid probability
distribution over the real line, and they prove that the algorithm is 2-competitive which
is tight for any algorithm for OCO with switching cost. The idea of the lower bound
comes from the ski-rental problem which is a special case of OCO with switching cost.
Consider a ski-rental problem where the cost of buying skis is 1 and the cost of renting
skis for 1 day is €. The ski-rental problem over T days can be seen as an OCO with
switching cost problem where the player starts from the origin and the adversary reveals
the function €|1 — x| for T days. For a determintic ski-rental algorithm if the player
chooses to rent, is equivalent to stay at the origin incurring a cost of € and if the player
chooses to buy incurrs a cost of 1. Notice now, that any randomized algorithm for the
ski-rental problem where the player at time ¢ has bought skis with a probability p; is
equivalent to go to the point x; = p, € [0,1]. Therefore, we immediately conclude that
57 is a lower bound for OCO with switching cost. However, the problem is strictly
harder. The authors in [8] provide a lower bound of 1.86 which is based on the idea we
discussed for the lower bound of the memoryless algorithm which is after some time,
based on the player’s position in [0, 1] to bring an infinite number of functions €|z|.
However, in this case, the invariant the memorylessness force to the players doesn’t
appear and the authors prove that any algorithm is 1.86 competitive. They conjecture
that 2 is not also the optimal competitive ratio. Finally, in [5], that claim was disproved.

The authors provide a lower bound of 2 where also only functions of the form €|z — 1|

and €|z| are considered in the instance.

4.3 Higher dimensions

So far, we’ve discussed the problem in 1 dimensions and we analyzed a 3-competitive
memoryless algorithm. In this paragraph we’ll prove that the same idea, which is to bal-

ance between the hitting and the switching cost at time ¢ provides a constant competitive

Chapter 4. Online Conver Optimization with Switching Cost 51

ratio when the functions f; have a basic property.

But first we’ll prove a fundamental lower bound for OCO with switching cost which
shows that the competitive ratio for certain type of switching costs depends necessarily
on the dimension of the instance. That leads us to perform beyond worst case analysis
for the case of the competitive ratio and to consider a subset of convex functions. The
bound is based on another problem, Convex Body Chasing, one is given in an online
fashion a sequence of convex sets Xp, Xs,..., X7. When a set X; arrives the player
must move to a point € X. The total cost of the algorithm is the distance that the
player has traveled Zle d(z¢—1,2¢). In OCO with switching cost when the function f;
is the indicator function of some convex set X; then OCO with switching cost reduces

to Convex Body Chasing.

Theorem 4.5. Any algorithm for OCO with switching cost in d dimensions attains a

competitive ratio of at least Q(\/&) when the switching cost is the lo norm.

Proof. The intuition behind the proof is that the adversary can bring a function f;
which is minimized over a set X; and has a very large value outside X; rather than
being minimized at single point and creates an instance of series of functions {f;}7_,
that all of them have different sets that are minimized, although they have a common
minimizer, the intersection of the sets. The adversary simply moves to that minimizer
in the first round whereas the player has to move to a point in X; where the function
is minimized. When the next function arrives the player has to move again. More
formally, for an instance of OCO with switching cost in d dimensions the adversary
brings d functions. The adversary creates the function f; based on the ¢-coordinate of

the place of the player in time ¢.

e If x; < 0, then the adversary brings the indicator function of the hyperplane z; = 1.
Thus the player has to pay a moving cost of at least 1.

e If ; > 0, then the adversary brings the indicator function of the hyperplane
x; = —1. Again, the player pays at least a cost of 1.

Thus, the cost of the player is at least d. However, these functions have a common
minimizer which the player cannot know beforehand. The adversary simply moves to
the intersection of these hyperplanes incurring a cost of v/d. That implies a lower bound

of v/d on the competitive ratio. OJ

The indicator function may seem like a non practical instance for OCO with switching

cost but even quadratic functions can be used to derive this lower bound. For instance
1

consider the function fi(z) = %(z; — 1)? for € — 0 which for 2y = 1 takes the value 0

Chapter 4. Online Conver Optimization with Switching Cost 52

whereas for x1 # 1 takes a very large value. Moreover, notice that the lower bound is
different for different switching costs. For instance consider the I3 norm or the squared
euclidean distance. In these cases the proof leads to nowhere. Both the adversary and
the player pay a cost of d. On the other hand, for cases like I = max}_;|z;| the lower
bound is Q(d).

Concerning the [; norm, it is easy to notice that under specific circumstances there is
an algorithm that is 3-competitive. For the uncostrained case, if the functions f;(z) have
the property that fi(z) = Zle fit(z;) then the problem reduces to the one dimensional

problem since the [; norm also obeys this property.

4.3.1 Minimizing Competitive Ratio

The lower bound we discussed implies a competitive ratio which depends on the
dimension of the instance. In order to break this barrier we’ll consider convex functions
that obey a specific property. Recall that the lower bound was based on the fact that
the function may be minimized in a set rather than a single point. Due to this fact, we
could start our analysis by considering functions that have a unique minimizer. Such

functions are norms. Hence, we start by the definition of a-polyhedral functions.

Definition 4.6. A function f; defined in a set X with minimizer u; is a-polyhedral with

respect to a norm ||-|| if Vo € X fi(x) — fr(ue) > al|lz — uel.

That means that the functions we consider are bounded below by a norm function, or
in other words, grow at least linearly away from the minimizer. It’s important to notice
that functions which obey this property for even x that are e close to the minimizer
|z — u|| < e are still a-polyhedral. Without loss of generality consider u; = 0 and
fi(ug) = 0. From the definition of convexity we have that for any A € [0,1] it holds:
f(Az) < Af(x). For every x € X there exists a A such that ||[\z| < e. Thus f(z) >

A
Bl = ajal).

Now we’ll discuss how we can generalize using the memoryless algorithm we analyzed
for the 1 dimension in the previous paragraph. Recall that the algorithm begins a
movement from x;_; towards u; (the minimizer of f;) until there is balance between the
hitting and the switching cost. However, we could interpret this procedure in another
way. Consider the set f;(z) <, I > 0 which is convex. Initially, we start with I = f;(u)
and we project the point z;_; to this set. Thus x; = u;. We start now by increasing [
until the balance is achieved. This is equivalent to the procedure in 1-dimension but it is
more formally stated and this idea can be applied to higher dimensions. The projection
step in 1 dimension is of course trivial but in higher dimensions, as we have commented

in past chapters, in the general case, is an optimization problem. Notice now, that in

Chapter 4. Online Conver Optimization with Switching Cost 53

order to achieve a hitting cost of [we could choose any point in the respective [level set
of f. However, the one that minimizes the switching cost, is the projection of point z;_1
to the sublevel set. That’s why a procedure which would find a point in order to balance
the costs in the convex hull of x;_1, u; or a simple gradient step won’t work well for a
general convex function. These methods don’t take into consideration the geometry of

the level sets of the function f;.

FIGURE 4.2: Geometric explanation of the above statement. Here we have Hy(xy,) =
Ht(a:tz) but Mt(xtl) > Mt(ittz)

The algorithm for higher dimensions will project the point x;_1 onto a subset level
set of fi, {x : fi(x) < I} for a designated choice of [in order for the balance to be
achieved. Of course, the choice of [is not given by a closed formula. In general, we
have to find [such that |z — x¢—1]| = Bfi(x). Or, if z(l) is the projection of x¢_;
onto the l-sublevel set of f; then ||z(l) — z4—1| = BI. Equivalently, to find a value of A
such that g(I) = Bl where g(I) = ||z(l) — z—1|| is a function in 1 dimension and we’ll
prove it’s continuous. Thus, [can be found using bisection. We describe the algorithm
below, which was appeared in [24]. Moreover, in this paper, they propose an algorithm
which balances between the norm of the gradient (instead of the objective cost) and the
switching cost that provides a dynamic regret proportional to /L. Recall from the
previous chapter that Lp is the length of the trajectory of the points of the optimal

offline solution.

Chapter 4. Online Conver Optimization with Switching Cost 54

Algorithm 3: Online Balanced Descent
1: fort=1:T do

2: Set uy = argming fi(x)

3 if [Juy — x| < Bfi(ue)

4: Set r; = uy

5 else

6 Let z(1) = 15% (x¢—1), increase [from f;(uy) until ||z(1) — x4—1]| = Bl
7: where X/ is the I-sublevel set of f;

8 Set z; = x(l)

9: end for

In general, § will be less that 1 and its exact value will be determined from the
analysis and will depend on the « of the a-polyhedral function. Notice also, that if
|lug — x4—1]] < Bfi(ug) there is not [such that ||z(l) — z¢—1|| = Bl. In this case, the player
simply moves to the minimizer of f;. Recall that this case was taken into consideration
on the algorithm for the unidimensional case. In the case that fi(u;) = 0 such an [
will always exists. Moreover, notice that although this algorithm seems like solving an
uncostrained problem, the feasible set X can be incorporated into the sublevel set of f;

if we consider f; = f;,x € X and +oo, otherwise.

Although we mentioned that we can increase [from 0 until ||z(l) — z—1| = B, a
value of [can be find more efficiently using bisection. The function g(l) takes the value
0 for an [such that g(I) = 0 (consider simply a sublevel set for | = f;(x;—1)) and a value
greater or equal than Sl for [= f;(u;). According to the following lemma, the function

g(l) is continuous and thus bisection can be employed.

Lemma 4.7. The function g(1) = ||z(l) — z¢—1|| is continuous in [.

Proof. To show the above lemma, we start by showing that h(l) = 3 [|z(l) — zi)% is

continuous in /. Recall that z(l) is the solution to the following optimization problem
(projection):

. 1 2
minimize - ||CU - xt—l”
x 2
subject to fi(x) <1

A remark to be made at this point is that after taking KKT conditions for the above
problem one sees that:

xy =241 — iV fe(xy)

which is similar to a step of gradient descent but with the huge difference that instead
of computing the gradient at x;_1 one has to compute it at x;. That gives power to the

algorithm compared to a simple gradient descent, since gradient descent only limits the

Chapter 4. Online Conver Optimization with Switching Cost 55

algorithm’s actions only to one direction. Notice also that when we have OLO (Online
linear optimization) with switching cost, for designated choice of gradient stepsize, the

two methods are equivalent.

In the above form is somewhat hard to prove the claim. Using duality (notice that

strong duality holds) we can equivalently write h(l) as a function. In particular,

h(l) = rilggrrgn{*!\w—mt P+ Afi(@) =D} =

minax {3 | = 11| + AUile) —)}
Now, let H(z, A, 1) = min, maxy>o{3 ||z — 21 ||> + M(fe(x) — 1)}. The equation of the
two forms follows from the minimax theorem since H(z, \) is convex in x for constant A
and affine (thus concave) in A for constant z. Recall now that maximization preserves
convexity (for every A\, we get a convex function in (x,1)). Moreover, H(x, A, 1) is jointly
convex in (z,!) and thus minimization over x preserves convexity. Finally since h(l) is

convex, it must be continuous. Now for the continuity of g(l), give a € > 0 we can find

a 6 > 0 such that |h(l) — h(l + &)| < €. Thus,

9) — 901+ 8)| < [la(t) — 21 + 8)]| = \/Hw(l) —a(l+9)]

Now recall the cosine law for the projection step from Chapter 2:

Ig(l)—g(l+5)lé\/Ilw(l+5)—mt71\l2—\lw() —@ial® = V(D) — (I +) < e
O

With the above in mind, we are ready to analyze Algorithm 3 for a-polyhedral
functions. Essentially the fact that the hitting costs must be expressed by a-polyhedral
functions restricts the use of the algorithm to functions fi(x) = g:(z) + ||z — u|| where

ug is the minimizer of g(x) is a convex function which must be nonnegative.

Theorem 4.8. Algorithm 3 achieves a competitive ratio of 3 + O(i) for a-polyhedral
function for the problem of OCO with switching cost.

Proof. The analysis is very similar to the one for the unidimensional case. We again
consider ®(z¢,z;) = C'||zy — x}||. As before, in order to enstablish a competitive ratio

of C, it suffices to show that:

Hy + My + @(x4, 27) — Q(wi-1,2(_1) < C(H{ + M)

Chapter 4. Online Conver Optimization with Switching Cost 56

Taking into consideration the fact that:
(w1, 27) — P(wr-1,274) < OM;
Therefore it suffices to prove:
H; + M + @ (v, x7) — ©(2—1,27) < CHf
Recall that always My < SH;. Again consider two cases:

e H; < H}. This is the case that remains easy. We have that
. o Me<pH: . .
Hy+ My + ®(ay, 27) — ®(we—1,27) < Hy+ BHe + (3, 27) — P(we-1, 77)

< (14 B)Hy + D(ar,011) < (1 + B)Hy + CBH, < (1 + B(C + 1)) H,

Thus we search for a value of 8 such that 1 + 3(C +1) < C

e H; > H;. That’s the difficult case compared to the problem in one dimension.

Let’s recall what we have to prove and notice that in this case M; = SH;.
(14 B)Hy + ®(z¢, x7) — P(a4—1,27) < CHf

In the unidimensional case we easily show that ®(x¢, z}) — ®(a4—1,27) = —CM,
with an obvious observation. In higher dimensions this does not necassarily hold.
Although, in general, intuitively the difference should be nonpositive. Remember
that x is the projection of z;_1 to a l-sublevel set of fi(z). Because fi(x}) < fi(xt),
xy must lie in the interior of this sublevel set. Thus the distance between z; and
x; is less than the distance between x;_1,x; because x, x}, z:—1 form an obtuse

triangle. We formulate this idea below. We’ll prove that for some v > 0:
lee = il = [lof = zeall < =7 [lze — 2]

First, we bound the term ||x; — x| using the triangle inequality:

a—polyhedral] 1 2 2
e —apll < llwe —well + [loy —wll < —Hi+ —Hy <—H; < —M;
« « « af

Let ||zt — zf|| = rMy, 7 < T2ﬁ Now for the projection, recall that it holds:

lze = |* + llwe — 2o |* < af = zeall” = llaf — zea]] 2 V1 +r2M,

% X 2 2
= ot = zeall = llee — 27ll = (VI+72 =)My > (1 + ()2 = —) M,

Chapter 4. Online Conver Optimization with Switching Cost 57

because h(r) = v/1 + r2—r is a strictly decreasing function which is always positive.
Hence we conclude v = /1 + (?25)2 - 072,8 > 0. Finally, using the above:

Hy+ My + C(llzg — wpa || = lloe — 2 l]) < Hy + My — CyMy = (1+ B(1 — C)) H,

Thus we search for a value of 8 such that C is minimized and the two following hold:

1+5(1-Cy) <0
1+8(C+1)<C

After careful calculations, we conclude that § = % + %—&—2 and C' =3+ %. O

FIGURE 4.3: Relation between xz;,x¢_1,z; when H, > H

The above analysis was for the case that the switching cost was the lo norm. However,
recall that there is a equivalence between the norms. Therefore we can extend the above

result to other norms. For example, for [; norm it holds:

=l < Nl <
— lzll; < |lzlls < ||=
\/;i 1 2 1
Therefore the cost of the algorithm for I; switching cost is at most v/d times the cost of
the algorithm for the ls case. Similarly, the offline optimal cost for the [; norm is no less

than the optimal offline cost for the ls norm. Therefore we conclude to a competitive
ratio of O(v/d(3 + 1)) when the switching cost is /;.

4.4 Covering constraints with /; switching cost

In this paragraph, we discuss a special case of OCO with switching cost. In particu-
lar, when the objective is a linear function, the switching cost is the (weighted) 1 norm

and the feasible set of solutions is expressed as linear covering constraints. To explain

Chapter 4. Online Conver Optimization with Switching Cost 58

the motivation behind the development of such an algorithm we have to say first that in
combinatorial optimization, a standard procedure to design approximation algorithms
for N P-complete problems is to express them as integer programs, consider the linear
programming relaxation, trivially acquire a solution, since linear programs can be effi-
ciently solved and then round the solution to provide the result for the combinatorial
problem. That’s the case here as well for online combinatorial problems wthat involve a
switching cost between successive rounds. However, obtaining a good fractional solution

is not trivial in this case since it’s an OCO with switching cost problem.

In general, a lot of fundamental combinatorial problems can be expressed with cov-
ering constraints including the Set Cover problem and the Shortest Path problem. In
the Set Cover problem, one has a collection of sets Si, 59, ...,5,, each one associated
with a cost ¢;, @ € [n] and a number of elements eq, €9, ..., €,,,. Each of the elements is
covered only by a subset of these sets. The goal is to find the Sets with the minimum
possible cost that cover all the elements. Subsequently, the online multistage Set Cover
problem is when one has the same sets in each round and the cost of each one, ¢;
changes between rounds. Moreover, different subset of elements are needed to covered
in each round and the player pays a cost when acquiring or removing a Set from her

disposal.

The algorithm which will analyze appeared in [18]. The authors provide a competitive
algorithm to solve the Set Cover problem with switching cost. They solve the convex
relaxation, which is our focus, and they provide a rounding algorithm for acquiring
integer solutions which we’ll omit from this paragraph. Let’s start by considering the
relaxation of the problem and its dual. The purpose of defining the dual is because
our analysis will be based on the lower bound the dual provides to the optimal offline

solution.

n

T T n
minimize E Ci,ty@t—i-g E W;iZit

yem]x[T] t=1 i=1 t=1 i=1
subject to Zyle, Vi>1&1<j<my
i€5; 4
Zit > Vit — Yig—1, VE>1 &1 <i<n
Zit,Yir >0, Vt>1&1<i<n

Where 0 < y;; < 1 determines what percentage of the Set ¢ we acquire in time ¢. Notice
also, that without loss of generality, it suffices to pay only for increasing variables, since
in each round a distribution over the sets is maintained. We denote by S;; the sets
which can be used to cover element j in round t. m; are the set of elements that must

be covered in time ¢t. The solution to the above linear program, is the optimal offline

Chapter 4. Online Conver Optimization with Switching Cost 59

solution for the problem. The dual problem is now:

T me
maximize Z Z ajt

t=1 j=1
subject to bit <w;, Vt>1&1<i<n

bitr1 —biy < cit — Z aje, Vt>1&1<i<n
jlieS;

ajt,bir >0, Vi > 1 & 4,5

The algorithm that we’ll use to solve the problem in an online fashion shares ideas with

aforementioned algorithms. But first, let’s describe it.

Algorithm 4: Regularization Algorithm

1: parameters: € >0, n=In(1+ %)

2: initialize: yg = 0,

3: fort=1:T do

4: Observe the cost vector ¢; and let P; be the feasible set of solutions at time

t, which are the covering constraints at time ¢.

5: Solve the following convex program to obtain y;

. i+£
6: Yy = arg mll’lxept {Cfxt —+ % Z?:l wz((-f@ + %) ln(#) — l’l)}
7: end for

Recall now the Hedge algorithm and Online Gradient Descent. We discussed their
connection in Chapter 3. The algorithm is a gradient descent based rule, where we
minimize the sum of the first-order Taylor approximation of the objective (here is the
objective itself, since the objective is linear) penalized by the relative entropy function.
The choice of this regularizer is not random. We saw that when we used relative entropy
instead of [2 as a regularizer in the hedge algorithm where one maintains a distribution
over a set of elements we obtained a significantly better regret. This is the case here
as well, since we maintain a distribution over the sets and the constraints in this case
generalize the constraints in the experts setting. Moreover, recall that the balanced de-
scent rule we discussed in the previous paragraph is essentially the same rule as gradient
descent when the objective is a linear function as it is in this case. We now state the

main theorem of this paragraph:

Theorem 4.9. For every e > 0, Algorithm 4 provides a solution to the problem described
by the primal program that is O((1+€)log(1+ %)) - competitive compared to the optimal

offline solution, the optimal solution of the primal program.

k is the maximal sparsity of the covering constraints: k& = max{|S;; : 1 < t <

T,1 < j < my}. In the worst case, k = n and for e = 1 we get an algorithm that is

Chapter 4. Online Conver Optimization with Switching Cost 60

O(log n)-competitive where n is the number of sets and of course the dimension of the

instance.

We’ll now prove the main theorem. The idea of the proof is the following: Firstly,
for each round t we express the solution of Algorithm 4 using the Karush-Kuhn-Tucker
conditions. Using the optimal values given by these equations, we create a feasible dual
solution. In particular, each variable of the dual of the linear program is assigned to a
value from the optimal dual variables given by KKT. Then we show that the total hitting
cost of the algorithm and the total moving (switching) cost of the algorithm which are
expressed through the optimal primal variables given by the KKT can be bounded by
the value of the feasible dual solution. Because of duality, we have bounded the total
cost of the algorithm by the minimum value of the primal problem, which is the optimal

offline cost and the competitive analysis is complete.

Proof. We'll start by stating the KKT conditions of the convex criterion of Algorithm

4 in time t. Let y; be the optimal primal solution.

>y —1=0V1<j<my (4.1)
1€S5; ¢
aj (D yig—1)=0,V1<j<my (4.2)
’L'GSjyt
o+ Uit) S s vigi<n, (4.3)
n Yit—1+ 5
jlieS;
w; Yig + 5 _
Yit(cip +— In(——"7) — Z aji) =0, V1 <i<n, (4.4)
n Yit—1 1 n jliess .,
J»

Now, we assign values to the variables of the dual program. a;; is assigned to the same

145
y’t+%). We

now have to show that indeed these values are feasible. To this end we have V¢ from

inequality (4.3) that,

of the KKT conditions, while b;;y; is assigned the value b; ;11 = w’ In(

w; Vit + <
byt — big = —— In(—22L T n) - Y g
7,0+ 7,0 n (th 1 + 7t
jlieS; ¢

1+
Yit +
of course we have a;; > 0 since a;; is a Lagrangian dual variable. We proceed with

Moreover, 0 < b; 141 = ln(i‘iﬂ) In(=) < w; which follows since 0 < y;; < 1. Finally,

bounding the hitting and the moving (switching) cost of the algorithm. Firstly, the

Chapter 4. Online Conver Optimization with Switching Cost 61

moving cost at time ¢ is:

W
My =mn Z J(yi,t — Yit—1) (4.5)
Yi,t >Yi,t—1 N
€, W5 Vit + <
=y Z (yit + =)(— In(———"22)) (4.6)
Yi t>Yito1 noomn Yig—1+ 5
=7 Z yzt+ Z aji — Clt (4.7)
Yi, t >Yit—1 jli€S; .
<772 Z/zt+ Z a]t—nZaJt Zythr—!S) (4.8)
j|1€SJt i€S; .,
ek ek
sald+ = (1+—)D 49
77("’”);(1]7,5 (+n) ()

Summing up we get that the total moving cost is at most (1 + %)D where D is the
value of the dual solution we created. Inequality (4.6) follows from the fact that a —b <
aln($), Va,b > 0. Equality (4.7) follows from condition (4.4) since y;+ > ;1 implies
yit > 0. Inequality (4.8) follows since ¢4, i, aj; are nonnegative. Finally, inequality

(4.9) follows from condition (4.2).

For the total service cost we have,

T n T my
Yit +
T 9 TIED 9) SITH SETRES 3) SIS e QUURt)
t=1 =1 t=1]:1 Z‘esjt t 1 i=1 ylt 1
T me c T .
Yig + € Yit + =
= aje =~) A yzt+ n(——"o) — =) (")} (4.11)
;; ; ; Yit-1+ 5 n; Yit—1+ 5

1 ¢ € S (s + €) €. YiT+ <
<SD-=> wi{) (s +-))In(ZZ=———") — —In(———2)} (412
n ZZ: ; n S (Yig—1 +) Yoty

<D (413

Equality (4.10) follows from condition (4.4). Equality (4.11) follows from condition (4.2).
Inequality (4.12) follows by telescopic sum and the log-sum inequality. Inequality (4.13)

follows since yy = 0 and thus:

¢ le—i_i € yzO'i‘*
I 0o+ —)In(Z——2) > yi0 — i
n (yz 0o+t n e) = (o n) (yz,T + ﬁ) = Yi0 — YiT

and:

T ZT (yt + T T
(A
Zyzt+ = Zyuﬁ— Zyzt 1+) =yir
=1 n Zt 1 (Yit— 1+ =1 t=1

Chapter 4. Online Conver Optimization with Switching Cost 62

en

both because a — b < aln($). Finally by choosing ¢ = ¢ one concludes that the total
cost of the algorithm is at most 1+ ((1 4 €)In(1 + 6—"“})) the value of D and thus of the

optimal offline solution. O

We provided the proof for the case of the covering constraints. If, in addition we
are give a fixed set of precedence constraints of the form x < y we can still provide
the proof with some tweaks. These kind of constraints appear for example in facility
location problems. The above idea was used to solve the problem of online version of the
dynamic facility location problem ([2]) in [44] . Additionally, in [42] the authors provide
an algorithm for the combinatorial problem of Online Shortest Path with Switching Cost

using the regularization algorithm to provide a fractional solution.

4.5 Open problems

The study of OCO with switching cost is a relatively new research area and we
believe that plenty of challenges remain to be addressed. We did a beyond worst case
analysis using polyhedral functions to avoid the O(v/d) lower bound when the switching
cost is the ls norm. However, it would be interesting to find out if the same idea, to
balance between the hitting and the switching cost can give us a O(v/d) competitive
ratio without further assumptions on the hitting cost functions. Moreover, an extremely
interesting case is the one of the /; norm. For the /; norm we don’t have a known lower
bound and perhaps a constant competitive ratio can be achieved for a class of convex
more general than a-polyhedral. Of course, notice that a constant competitive ratio for
the case of the ; norm, due to norm equivalence, will lead to O(v/d) competitive ratio

for the 5 norm.

An intuitively more difficult problem is the one where the switching cost function
is not a norm and is a general convex function. Only very recently there has been
work towards this direction. In [34] the authors study the case when the switching cost
function is the squared euclidean norm. By making many assumptions including strong
convexity, smoothness, Lipschitz continuity and a bound on the diameter of the feasible
space (and of course a bound on the length of the optimal trajectory), they analyze and
provide an algorithm that minimizes dynamic regret. Using in addition bounds of the
form fi;(z¢) > € for some € > 0 through the dynamic regret analysis they conclude to
a competitive ratio of 1 4 2 where s depends on the parameters of the aforementioned
assumptions. None of these assumptions were considered in the algorithms we previously
analyzed and as the authors strongly suggest in [24] the techniques to acquire good
competitive ratio bounds and dynamic regret bounds are different and that’s why in

their paper they provide two different algorithms for the two different metrics. We

Chapter 4. Online Conver Optimization with Switching Cost 63

believe that future work on this area should be to find out how the rule of balance
performs in this case as well because of its success we saw in this chapter. We believe
that this kind of approach will significantly improve the competitive ratio the authors

provided in [34].

Bibliography

[1]

Jacob Abernethy, Peter L. Bartlett, Niv Buchbinder, and Isabelle Stanton. A regu-
larization approach to metrical task systems. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 6331 LNAI, pages 270-284, 2010.

Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility loca-
tion via exponential clocks. ACM Trans. Algorithms, 13(2):21:1-21:20, 2017.

Lachlan L H Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam
Meyerson, Alan Roytman, and Adam Wierman. A Tale of Two Metrics: Simul-

taneous Bounds on Competitiveness and Regret. The 26th Annual Conference on
Learning Theory, 30:741-763, 2013.

Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior,
and Michele Scquizzato. Chasing convex bodies and functions. In LATIN 2016:
Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mezxico,
April 11-15, 2016, Proceedings, pages 68-81, 2016.

Antonios Antoniadis and Kevin Schewior. A tight lower bound for online convex
optimization with switching costs. International Workshop on Approzimation and
Online Algorithms, WAOA 2017: Approximation and Online Algorithms pp 164-
175.

Yossi Azar, Ilan Reuven Cohen, and Debmalya Panigrahi. Online covering with
convex objectives and applications. CoRR, abs/1412.3507, 2014.

Masoud Badiei, Na Li, and Adam Wierman. Online convex optimization with ramp
constraints. In 54th IEEE Conference on Decision and Control, CDC 2015, Osaka,
Japan, December 15-18, 2015, pages 6730-6736, 2015.

N.a Bansal, A.b Gupta, R.c Krishnaswamy, K.d Pruhs, K.e Schewior, and C.f
Stein. A 2-competitive algorithm for online convex optimization with switching
costs. Leibniz International Proceedings in Informatics, LIPIcs, 40:96-109, 2015.

65

Bibliography 66

[9]

[10]

[11]

[12]

Shai Ben-David and Shai Shalev-Shwartz. Understanding Machine Learning: From
Theory to Algorithms. 2014.

D. Bertsekas. Nonlinear Programming. 1999.

O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic optimization. Opera-
tions Research, no. 5, pp. 1227-1244, vol. 63, 2015.

Avrim Blum and Carl Burch. Online Learning and Metrical Task System prob-
lem.pdf. 1998.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis,
1998.

Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm
for metrical task system. Journal of the ACM, 39(4):745-763, 1992.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization, volume 25. 2010.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231-357, 2015.

Sébastien Bubeck, Michael B. Cohen, James R. Lee, Yin Tat Lee, and Aleksander
Madry. k-server via multiscale entropic regularization. CoRR, abs/1711.01085,
2017.

N.a Buchbinder, S.b Chen, and J.b Naor. Competitive analysis via regularization.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages
436-444, 2014.

Niv Buchbinder. Unified Algorithms for Online Learning and Competitive Analysis.
Colt, 23:1-18, 2012.

Niv Buchbinder, Shahar Chen, Anupam Gupta, Viswanath Nagarajan, Joseph, and
Naor. Online Packing and Covering Framework with Convex Objectives. pages 1—
33, 2014.

Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms

via a primal-dual approach, volume 3. 2007.
Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. 2006.

Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wier-
man. Using predictions in online optimization: Looking forward with an eye on the
past. In Proceedings of the 2016 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science, Antibes Juan-Les-Pins, France,
June 14-18, 2016, pages 193-206, 2016.

Bibliography 67

[24]

[26]

[27]

31]

33]

[34]

[35]

Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex op-
timization in high dimensions via online balanced descent. CoRR, abs/1803.10366,
2018.

Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems
and applications. SIAM J. Comput., 32(6):1403-1422, June 2003.

Joel Friedman and Nathan Linial. On convex body chasing. Discrete and Compu-
tational Geometry, page 9(3):293-321, Mar 1993.

Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage opti-
mization for matroids and matchings. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), 8572 LNCS(PART 1):563-575, 2014.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends®
in Optimization, 2(3-4):157-325, 2016.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for

online convex optimization. In Machine Learning, volume 69, pages 169-192, 2007.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridha-
ran. Online optimization : Competing with dynamic comparators. CoRR,

abs/1501.06225, 2015.

Lei Jiao, Antonia Maria Tulino, Jaime Llorca, Yue Jin, and Alessandra Sala.
Smoothed online resource allocation in multi-tier distributed cloud networks.
IEEE/ACM Trans. Netw., 25(4):2556-2570, August 2017.

Vinay Joseph and Gustavo de Veciana. Jointly optimizing multi-user rate adapta-
tion for video transport over wireless systems: Mean-fairness-variability tradeoffs.
In Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30,
2012, pages 567-575, 2012.

Seung-Jun Kim and Georgios B. Giannakis. Real-time electricity pricing for de-
mand response using online convex optimization. In IEFE PES Innovative Smart
Grid Technologies Conference, ISGT 2014, Washington, DC, USA, February 19-22,
2014, pages 1-5, 2014.

Y. Li, G. Qu, and N. Li. Online Optimization with Predictions and Switching Costs:
Fast Algorithms and the Fundamental Limit. ArXiv e-prints, January 2018.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dy-
namic right-sizing for power-proportional data centers. 2011 Proceedings IEEE
INFOCOM, pages 1098-1106, 2011.

Bibliography 68

[36]

[38]

Minghong Lin, Adam Wierman, Lachlan L.H. Andrew, and Eno Thereska. On-
line dynamic capacity provisioning in data centers. In 2011 49th Annual Aller-
ton Conference on Communication, Control, and Computing, Allerton 2011, pages
1159-1163, 2011.

Minghong Lin, Adam Wierman, Alan Roytman, Adam Meyerson, and Lachlan L.H.
Andrew. Online optimization with switching cost. ACM SIGMETRICS Perfor-
mance Fvaluation Review, 40(3):98, 2012.

Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan
L. H. Andrew. Greening geographical load balancing. IEEE/ACM Trans. Netw.,
23(2):657-671, 2015.

Tan Lu, Minghua Chen, and Lachlan L. H. Andrew. Simple and effective dynamic
provisioning for power-proportional data centers. IEEFE Trans. Parallel Distrib.
Syst., 24(6):1161-1171, 2013.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. On-
line Optimization in Dynamic Environments: Improved Regret Rates for Strongly
Convex Problems. 2016.

Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. Found.
Trends Mach. Learn., 4(2):107-194, 2012.

Isidoros Tziotis. Online shortest path with switching cost. UOA thesis, 2017.

Kai Wang, Minghong Lin, Florin Ciucu, Adam Wierman, and Chuang Lin. Charac-
terizing the impact of the workload on the value of dynamic resizing in data centers.
CoRR, abs/1207.6295, 2012.

Lydia Zakinthinou. Online facility location with switching costs. UOA thesis, 2017.

Martin Zinkevich. Online Convex Programming and Generalized Infinitesimal Gra-

dient Ascent. Machine Learning, 20(February):421-422, 2003.

ITepieybueva

0.1 "Agyecot AhyopWuoydo

0.2 Kuetn BeAtiotomolnor|

(I "Apeon Kuptr BeATtictonoinor

2 'Apeon Kuptrn BeAtictonoinomn pe xoctn petalacng|

Eicoaywyn

Ythv nopoloa epyooia, yeietdue to mpolinua tne ‘Aueonc Kupthc Beltiotonoinong
(AKB) pe x60tn petdBaonc. Auté eivor éva mpdBAnua mou eivat GUCYETIOUEVO UE EVA TUTLXO
neoAnua tng mepoyic e AKB odld entlong eivon ennpeacuévo xan ano éva tpdBinua Tou
Jo cuvavtolooue GTNY TEPLOY TWV dUECWY ohyopiduwy, omwe T MeTtpnd cuoThuoTa
gpyooiag. Xe autd To dueco mEOBANUA, BoouEVOU EVOS xUPTOL uToouvoiou Tou R™ o
TaixTne o€ xde yOpo BéyeTon wior xuptThH ouvdpTtnon fi(x) xou moalpver wo andgaon, éva
onuelo zy € X. Topo, extoéc ano 1o avuxewevind xéotog fi(z:), o maixtng TAnedveEL
xa €va XO0TOC AOY® NS METUBOAAC TWV ATOPACEDY TOU UETAE) CGUVEYOUEVLY YOPWY, TO
x6670¢ UeTdfaong, ||z — x4—1]]. Puoixd, o oTdyY0C TOU TUEX TN Efvon Vo EAXYIOTOTOLACEL TO
OUVOMXO AVTIXEWEVIXO XL x00TO¢ PeTdBaong yio 6houg Toug yOpoug. Auth 1 obvieon
homov eivon xovtd oto meolAnua e AKB émou xou exel oe xdde yOpo eugaviCeton wia
XLETY CLVAETNOY 0AAG eTtiong To TEOBANUN elvon Lot Oyt xon TOGO EEIBEXELPEVY TIERITTKOT
v Metpix@v ocuotnudwy epyaciac (MEE). Yta MXE, o yopoc R™ avtixadiotdron ano
évay tuyalo peTpd Ywpeo (elte ouveyy, elte Saxpltd) xou oL cuvapTioelc Tou eugaviloviat

oe xde YOpo elvon audaipeteg xan Oyl avoryxador xUETEC.

0.1 ’Apeocor AAyderduol

Ta mpofhAuata mou yag evolapépouy oe auth TN dlateyd] meénel vor Audolv ue dueco
teomo. O 1 duecog TpoTOG, 1N mapadoctoxt| pUOULoY OTNY AvdAUCT XAl TOV GYEOLACHUO
ohyoplduwy, Tpobnodétel 6T n TAeng TAnpogopio Tou TEOPAAUATOC Elval YVWOTY GTOV
oYEdoTH amd TNV apyr. Xe aviideon ye auth Tt pvdwon, otolg duecoug alyopliuoug,
0TOYEVOVUE GTO OYEDLOUO ahyoplduwy OToU 1) El0000C ATOXUAUTTETOL KOUUSATI-XOUUATL.
O alydpriupog meenel va avtamoxplveton auécng otay QUdvouy Véeg TANpopopieg Ywels T
YVOON TV PEAOVTIXWY TANRogoply. Emmiéov, 6tav AouBdveton xdmola andgouct), Oev

UTopEL Vo arvoxAnUet.

Oplopdg 0.1. Eotw ¢ > 1 évag npayuotindg aprdude. ‘Evag duscog alyodpriuog Aéyeto
OTL ebval c-ovToyWVIoTIXNGS av Yl xdde elcobo evog mpofiruatog elaylotomoinong I, yuo

x&de axohouvdia elob6dwv, e€dyel wa Aoon x6éotoug to okl ¢ - OPT (I) + o 6nouv OPT

1

Ewaywyn 2

(I) elvou t0 xboT0C pag BéATIoTNE Abong 6tay A 1 TAneoopla eivor YVwoTh ano Ty apyn

4 4 4 7 4 7. e ’
xan To a etvon otodepd. o a < 0 Mue 611 0 ahyopriuog elvon auoTNEd € -AVTOY WVIOTIXOG.

0.2 Kuptr BeAtiotonoinon

Mo Toug alyopituoug mou Yo avahbooupe, oe xdie yOpo Va yeelaotel va Aocouue éva
TpeoBAnua xupTthc Pertiotonoinong. Eva nopddetypa mpoBiruatoc xupthc Peltiotonolnong
elvor 1) TPoBOAY| eVOC oNueiou Y GTOV YWEo GE €val xUPTO LTOGUYOAD ToL YEou X . Anhadt
TO OTNUELD TOU GUVOAOU TOL ATEYEL TNV ULXPOTERT) ATOCTACT, Ao TO doouévo ornueio y. Ev

Yével, éva TeoBANUe xUeThg BeATioTonomong, €xel Ty eEAC Lop®n:

E)aytotonoinoe fo(z)
TER™

Tro neptoptopoie: gi(z) < b, i=1,...,m.

‘Onou 1 owvdptnoeic fo(z) xu gi(z), © = 1,2,...,m eivon xvptéc. O mo VYepehddne

ahyopriuog yio va Abcoupe t€tolou eidoug mpoPBAruata etvan 1 uédodog xhiong.

ANyoprdpog 1: Médodoc Kione
1: Eloodog: Kupth ouvdptnon f, Apludc emavoridewv T, YiOvoho amogdoewv X,

Apyxd onueiov z1 € X, oxohoudio {n;}
2: Twat=1:1T:
3: Aet yry1 = e — eV f(21), 21 = Ux (Ye41)
4: Enéovtpede o741

Avuti n uédodog yag utdoyETL Eval PEAYHN TNS TAENS TOU O(%) 070 G TNS Aoong

uetd aro 1" yOpouc.

Ocwpnua 0.2. I'a G-Lipschitz kuptés ouvaptrioes kal O1dUETPO TOU OUVOAOU anopdoe-

wv lon pe D, ya g anopdoes tov Alyopiduov 1 10yver:

T
1 DG
—) — (™) < —
‘Apo) ouvopthon f, TAnpol emmhéov npounodéoeic (m.y @pdleton amo xdTw xot ono
T8V OO TETPAYWVIXEC CUVOPTAOELS) UTOPOUUE VO HEWDWGOUPE Tépol TOAD Tov aptdud tewv
eMAVOAPEWY WOTE Vo TEPOLPE GQAAUA € OTNY AUOY. BDUYXEXQWEVA, OO O(E%), OTWS

ToEOméVe, PTopolue Vo emtthyoupe aptdud enavorfbewy O(log 1)

Kegpdiowo 1
‘Auecn Kuptry BeAtictonolnon

Ye autd 1o xepdiono Yo oploouue to TEOBANUa g Aueone Kuptrc Behtiotonolong
(AKB) 7o onolo eivon dppnpto ouvdedepévo t6o0 pe to npdfinuo e AKB ye x6otn petdBo-
ong, xaddeg xou pe to medio g dueone wdinone. Iohhd npoBhiuata dueone uddnon (m.x
Gueon aviyveuon avurdiuntne ahknhoypapioc) eivon e8XEC TEQITTWONG EVOC TEOBMAUATOC
AKB.

o Yexdle yipo t =1,2,..., T, o unebuvog Mg amogdoewy anogacilel, emiéyovtog

éva onuelo and éva xuptd alvoro x € X C R"

e Metd v andgoo, o avtinahog amoxahOTTEL Lot xUpth ouvdetnon fi(x), t € [T xa

o madxtne et anmiewa (n x60toc) fi(zt).

e O ot6y0¢ ToU UTEDDLVOL Mbne anodoewy elvon 1 ehaytotonoinon tne Aomng (Regret).

Anhady, oe xdde yOpo, var eMAEEEL Ulal GTEATN YY) Tf YioL VoL ENOLYLO TOTIOLY|OEL:
T T
Abmn = ; fe(ze) — 2%1)1(1; fr(z)

‘Evoc ahybdprduoc mou eyyvdrtan pia uoypouuix we npog o T (o(T")) Aomn, ovopdleton
ahyopripog un-Aumng. Ou adyoprduor AKB ctoyebouy otny e€elpeon tng xaAbTeEENS GTo-
Vepric andgaone x* 1 onola ehaytotonoel o ddpotoua twv cuvapthoewy fi, t € [T]. To
novtého déyeton enlong TV axdhovdn epunveio: Apyixd, o avtintalog emAéyel pio cuvdpETN-
on f xou TNV omdel ota TuAUaTa fi, €Tl OOTE v Loy Vel To axdlovdo: Z;le fi(z) = f. To
OTYEL UE TOV YELROTERPO BUVITO TEOTIO HOTE 0 TAUXTNG VAL XAVEL TIC TEPLOGOTERES EMAVORTPELS
(YOpouc), TpOXEWEVOU Vo GUYXAIVEL OTNY XOAOTERT ambPOOT EX TwV Vo TéEPWY x*. Trdpyet
évog amhog ahydprduog mou pog Bivel To xaAUTERo SuVaTo @edyuo oty AUt Tou maixT

OTaY OEV UTOVETOUNE XATL TEPAUTER YL TNV PUCT| TWV XUPTWY CUVIRTHOE®Y Ot xdie YUpo.

Kegdhawo 1. Aueon Kupt) BeAtiotomoinon 4

ANyoprOpog 2: Ayeon uédodog xhiong

1: Elcodog: Apiudg enavarfewy T, Livoro anogdoewv X, Apyixd onueio 1 € X,
Axohovdia puduodv exuddnone {n:}
2 Twot=1:T

3: Anogdoioe xp xan 8éEou x6oT0C fir ()
4: Kdve Bhuc: yip1 = 2 — iV f (1)
5: MpoPoke oto X: x4 = Hx (yi41)

Ocwpnua 1.1. Ag vroléoovue 6t o€ kdle yipo, to friua ndnong otvetar aro tov timo:
N = GL\;T omov D eivar n diduetpog tov kuyptol ouvddov kar G elvar éva gpdyua otny Tiun

g kAiong twr ouvvaptioewr |V f(z)|| < G, Yax € X. Tdre Oa wyler
T T 3
tz_; fe(@e) — ;Ig(l ; fr(z) < QGD\/T

Emumiéov, evilagépov mopouctdlouy To TeoBAAUITY OO 0 TaXTNE EXEL VoL AV TOY WVICTEL
Lol BUVOIXT] OTEUTNYXY Xt Oyt Uiot oToTiny| ¥ Omwe oTnv mapandve mepintwor. Topa

ONAadY|, 0 TUXTNG TEETEL VoL EAXYLOTOTOL|OEL:

T T

Avvopuxr) Abmn = Z fr(xy) — Z fe(xy)
t=1 t=1

To npdPAnua autd, ywelc Teputépw TEOLTOVETELS, BV €xEl VOTU BLOTL Ao Ol GUVOE-

Thoel fi elvon acuoyétioteg YeTadl Toug, o TalxTng ToUlel TUPAS xadodg Tpd T anogacilel

TNV OTEATNYIXY Tou T} xou €neita mopatneel Ty ouvdptnon fi. Mropolue va Yewprioouue

v e&ne noodta (L7) 1 onolo Yo ETTEETEL Vol EQUPUOCOUUE Lot GUOYETLON UETOEY TGV

GUVOPTACEWY fi.

T
Ly =) _|l=f =i
t=1

H omola pag delyver mé6co xovtd 1 poxpld elvon tor onueia mou ehayloTtonolodvTon ot
ouvapthoelc fr. Meydhec Tyég autic Tng mopouéTeou onualvel 6Tl BploxovTon poxpld, xou
€tol xdie ahyopripog Vo TEEMEL avaryXaoTixnd Vo €xel UEYGAO %dTw @edyua. Av amo tnv
GAAN elvon e, TOTE YVORILOUUE OTL Uiot OTEATNHYLXY) TOU EAXYLOTOTOIEL TNV GLVAETNOT fi
Yo ebvar xoA7) WOTE Vo ENUYIGTOTIOACEL Xt TNV cuvdptnon fiy1. H pédodog tne dueorng
xhong unopel va emitiyer 1o @pdyua O(1 + L) otny duvauixr) AT Tou TodxTn 6toy ot

CUVUPTACELC fi €YOUV Y-XOAT] XUTACTIUOT).

Kegpdiowo 2

‘Apeon Kuptn BeAtiotonolnon ue

XOCTN UETALPACNS

Y& autd 10 xePdhono VYa eoTidooupe oto TEdPAnua tng Aueong Kuptrc BeAtiotonoinong

ue %00t petdBaong. Oo Lextvicoupe YE TOV 0pLoU6 TOL TEOBAAUATOC:

Tou mpoffuo amoteheitar and €va oTadepd ywpo andpaong, Eva xupTd olvoro X € R™
xou Lo oxohoudion Un apynTIX@Y xLpTdY ouvapthoewy fi(z), t € [T]. Xtov yipo t, o
nofxtne mapotneel tn ouvdptnon fi(x) xou emhéyer éva onuelo z; € X mou emupépet éva
x60to¢ unnpeoioc fi(ze) xou éva x6otog oAayhc ||zr — z¢—1]|. Trodétouye 6Tt o0 O
TaixTng 600 xou 0 avtitahog Eextvolv and TV apy’ Twv afovwy. To cuvolxd x6cT0¢ ToU

mabxTn elvou:
T

> i) + |z =z

t=1

7 / / Ve
eve To BéATIoTO x60TOC Elvan:

T
min th(l’t) + |zt — 2|

{x¢ }tT:1 ex —1

Ou avapépoule TIC atowdoelc Tou avtindhou we {xf i ;. Hupatnefote 6T T0 TEOBANU
UE OAN TNV YVOOT €wg Tov Yeovo T eivon €va xupTd Tpolinua Behtiotomoinong xat Yropet
v hudel amodotixd. Enlong, to npdfinua uropel va dninmdel wg éva mpdBAnua mou dev €yel
Teploplopols 6tay e€eTdloVUE TNV EMEXTAOT TN cLVAETNoNS fi oTo R™ mou nafpvel Ty Ty
fi(z), v € X xou v tn +oo, z ¢ X. O emypdyog tne cuvdptnong eivar (Blog pe exetvog
e fr xou €tol Swotnpeiton 1 xupTéTNTA. AuTd TO YEYOVOS Dot Elval YENOIIO GTNY oVEAUGT)

Twv alyopiduwy Tou Yo axolovdrcouy.

Oa Eexwvioouye pe évay ahydprduo otny 1 didotoon omolog €xel otadepd AoYo avTayw-

’ 7 4 4 7 4 7. 4 7
viopoU (oo pe 3. Moo, autd 0 AOYOS avTayWVIoHOU Efval Xal 0 XUAUTEQOG TOU UTOPEEL

Kegdhawo 2. Aueon Kupt) BeAtiotonoinon e kéotn petdfaons 6

vo emiteuydel. H 18éa Tou akyopituou elvan var mdpel yior amdgoot ¢ €10l HOTE Vo €lo0op-
POTNOEL TO AVTIXEWEVIXO XOOTOC Xol TO XOOTOG UETAPaong oTov yUpo t. Ye autd to onucio
vo onpetwiel 6Tt Evag alyoprduog Tou Yo amo@dotle WOTE Vo EAXYLOTOTOMOEL To dipoloua

Y 800 x66TwY 010 Yipo T' éyel xdtw @pdypa ico ye Q(T).

ANyopripog 3: Ayeon pédodog e€looppdnnong otny 1 Sdotoon
1 Twet=1:T:

2: ‘Eotww x, ot ehoylotonoel ™y fi(x)
3: Kwhoou npdc 10)y, u€yer va @tdoelc ot €va onucto = €tol wote My = % 1 Vo
@pTdoelc 6T0 oNuEio Ty,

4: Arnogdowoe xy

]
]
I
I
I
I
I
I
I
I
I
I
1
I
é
X

YxHMA 2.1: Tenyetpind avoropdotoon tou Alyopiduou 1 yia fi(u,) =0

=

Ocwpenua 2.1. O Alydpi0uog 3 elvar 3-avtaywriotikés ya to mpéfAnua tns AKB e

kéotn petdfaons otny 1 didotaon.

Evoiagépov guond napouotdlet to npdfinua ot didotact yeyokitepn tou 1. IHapohautd
O€ QUTAHY TNV TERIMTOOT 6EV UTopoVUE VoL ETTOYOLUE Eva oTadepd AoYo avTaywviouol. Autd

HoG To Blvel To mopaxdte Vemprua:

Ocwpnua 2.2. Kdle akydpiduos ya to mpdpAnua tng AKB pe kéotn petdfaons éxel

avtayoriotiké Adyo Q(Vd) érav to kéoros pevdBaong efvar n ly véppua.

MéypL xan ofjuepa, TOPUUEVEL AVOIXTO TEOBANUA, AV UTOPOUUE VoL ETULTOYOLUE EVay AGYO
avioywviopot O(Vd) oty yevi Tepinteon xon eV YEVEL BeV UTEpYOUY amOTENEOUATY Yiol
70 TeéPBAnua g AKB ye x60tn petdBoong yio yevixée xuptég ouvaptioeic. I'io autédy Tov
AOYO, Ylol VO ETITUYOUPE €VOY GTAUERO AVTAYWOVIOTIXO AOYO TEETEL VAL EGTLIGOUNE TNV TEO-

COYY| MAC OF Lol GUYXEXPLIEVT XAAGT XURTWY cLvapTHcEwY. To dvw xdtw pedyua Bacileton

Kegdhawo 2. Aueon Kupt) BeAtiotonoinon e kéotn petdfaons 7

———

YXHMA 2.2: Tewyetpu aneixéviorn g amotuylag uedodwy mou dev talpvouv utody Ty
veopetplo e oovdric tne ouvdptnone fi oto x;. ‘Eyovue Hy(zy,) = Hi(x,) o\
My(ze,) > My(ze,)

o€ GUVAPTACELS TIOL ENAYLOTOTIOLOUVTAL GE €vol XUPTO cUvoho X (T.y évo unepeninedo) xat
oyt €va onueto Tou ywpou. ‘Etol unopolue vo Jewpricouye cuVAPTACES Tou AUEdvovToL
TOUNdYIoTOV Ypouuixd épa amto To onueio elaytoTonolnong, dNAadY CUVIPTACELS TNG Hop-
phc: fi(x) = gi(x) +a ||z — wi| dmou g un apvnTixd xa €YEL ENXYLG TOTONTH TO ONUELD Uy
o TéTolou €ldoug GUVIPTAOELS, UTOPOVUE Vo ETLTUYOUNE Evay 6Todepd AGYO avToy wVIGUOU,

ToL BeV e€0PTATAL ATO TNV BLACTACT TNE ELGOJOV.

O olyopriuog Tou ETTUYYAVEL Evay GTHdERO AOYO AVTAUYWVICUOD EfValL (QUOLXT] ETEXTACT)
Tou alyopiduou otny 1 Sdotaon. Yuyxexpwéva otny 1 didotaon o alyoprduog unopel va
exppaotel ¢ e€hg: Oewpolpe 1o olvoro {x € R™ : fi(x) <1} 10 omolo eivan éva Sidotnuoa
otnv 1 ddotaon. Avtl va petoxivnlolue ano 1o o1 €W TO Up WOTE Vo EMTEUYVEL 1)
ooppomio, auEdvoupe cuveywe to [ano fi(u) éwe fi(xi—1) xou mpoPdilovue to onueio
Ti—1 OTO OdoTnua U€ypet va emiteuyVel 1 wooppomio. Ot 600 pédodor elvar 10OBOVAUES.

Avutoc o ahyoprduog yevixeletan oe Blaotdon peyahiTepn Tou 1 ¢¢ e€hc:

ANyopripog 4: Apeon pédodog e€iooppdmnong
1: Tt =1:1"

‘Eotw uy ot ehayiotonoel tny f;
AV |lug = 21| < Bfe(ur)

Oféoe Ty = uy

Acelvau (1) = Iy (x4—1). AVEnoe land fi(u) wéxer ||z(l) — ze—1]] = Bl

2

3

4

5: AAALOC
6

7 6mou X} ebvor to olvoro {z € R™ : fy(z) <1}
8

Anogdoroe xp = x(1)

Ocwpnua 2.3. O Alydpifuos 4 ya B = % + O%FQ emTuyydrel avTaywvioTiké Adyo 3 +
O(%) ya a-rodvedpikés ouvaptioes ya to tpdpAnua tng AKB e kéotn petdfaorns.

Bibliography

[1]

Jacob Abernethy, Peter L. Bartlett, Niv Buchbinder, and Isabelle Stanton. A regu-
larization approach to metrical task systems. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 6331 LNAI, pages 270-284, 2010.

Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility loca-
tion via exponential clocks. ACM Trans. Algorithms, 13(2):21:1-21:20, 2017.

Lachlan L H Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam
Meyerson, Alan Roytman, and Adam Wierman. A Tale of Two Metrics: Simul-

taneous Bounds on Competitiveness and Regret. The 26th Annual Conference on
Learning Theory, 30:741-763, 2013.

Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior,
and Michele Scquizzato. Chasing convex bodies and functions. In LATIN 2016:
Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mezxico,
April 11-15, 2016, Proceedings, pages 68-81, 2016.

Antonios Antoniadis and Kevin Schewior. A tight lower bound for online convex
optimization with switching costs. International Workshop on Approzimation and
Online Algorithms, WAOA 2017: Approximation and Online Algorithms pp 164-
175.

Yossi Azar, Ilan Reuven Cohen, and Debmalya Panigrahi. Online covering with
convex objectives and applications. CoRR, abs/1412.3507, 2014.

Masoud Badiei, Na Li, and Adam Wierman. Online convex optimization with ramp
constraints. In 54th IEEE Conference on Decision and Control, CDC 2015, Osaka,
Japan, December 15-18, 2015, pages 6730-6736, 2015.

N.a Bansal, A.b Gupta, R.c Krishnaswamy, K.d Pruhs, K.e Schewior, and C.f
Stein. A 2-competitive algorithm for online convex optimization with switching
costs. Leibniz International Proceedings in Informatics, LIPIcs, 40:96-109, 2015.

BiBrioypagpia 10

[9]

[10]

[11]

[12]

Shai Ben-David and Shai Shalev-Shwartz. Understanding Machine Learning: From
Theory to Algorithms. 2014.

D. Bertsekas. Nonlinear Programming. 1999.

O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic optimization. Opera-
tions Research, no. 5, pp. 1227-1244, vol. 63, 2015.

Avrim Blum and Carl Burch. Online Learning and Metrical Task System prob-
lem.pdf. 1998.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis,
1998.

Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm
for metrical task system. Journal of the ACM, 39(4):745-763, 1992.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization, volume 25. 2010.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231-357, 2015.

Sébastien Bubeck, Michael B. Cohen, James R. Lee, Yin Tat Lee, and Aleksander
Madry. k-server via multiscale entropic regularization. CoRR, abs/1711.01085,
2017.

N.a Buchbinder, S.b Chen, and J.b Naor. Competitive analysis via regularization.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages
436-444, 2014.

Niv Buchbinder. Unified Algorithms for Online Learning and Competitive Analysis.
Colt, 23:1-18, 2012.

Niv Buchbinder, Shahar Chen, Anupam Gupta, Viswanath Nagarajan, Joseph, and
Naor. Online Packing and Covering Framework with Convex Objectives. pages 1—
33, 2014.

Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms

via a primal-dual approach, volume 3. 2007.
Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. 2006.

Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wier-
man. Using predictions in online optimization: Looking forward with an eye on the
past. In Proceedings of the 2016 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science, Antibes Juan-Les-Pins, France,
June 14-18, 2016, pages 193-206, 2016.

BiBrioypagpia 11

[24]

[26]

[27]

31]

33]

[34]

[35]

Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex op-
timization in high dimensions via online balanced descent. CoRR, abs/1803.10366,
2018.

Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems
and applications. SIAM J. Comput., 32(6):1403-1422, June 2003.

Joel Friedman and Nathan Linial. On convex body chasing. Discrete and Compu-
tational Geometry, page 9(3):293-321, Mar 1993.

Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage opti-
mization for matroids and matchings. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), 8572 LNCS(PART 1):563-575, 2014.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends®
in Optimization, 2(3-4):157-325, 2016.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for

online convex optimization. In Machine Learning, volume 69, pages 169-192, 2007.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridha-
ran. Online optimization : Competing with dynamic comparators. CoRR,

abs/1501.06225, 2015.

Lei Jiao, Antonia Maria Tulino, Jaime Llorca, Yue Jin, and Alessandra Sala.
Smoothed online resource allocation in multi-tier distributed cloud networks.
IEEE/ACM Trans. Netw., 25(4):2556-2570, August 2017.

Vinay Joseph and Gustavo de Veciana. Jointly optimizing multi-user rate adapta-
tion for video transport over wireless systems: Mean-fairness-variability tradeoffs.
In Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30,
2012, pages 567-575, 2012.

Seung-Jun Kim and Georgios B. Giannakis. Real-time electricity pricing for de-
mand response using online convex optimization. In IEFE PES Innovative Smart
Grid Technologies Conference, ISGT 2014, Washington, DC, USA, February 19-22,
2014, pages 1-5, 2014.

Y. Li, G. Qu, and N. Li. Online Optimization with Predictions and Switching Costs:
Fast Algorithms and the Fundamental Limit. ArXiv e-prints, January 2018.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dy-
namic right-sizing for power-proportional data centers. 2011 Proceedings IEEE
INFOCOM, pages 1098-1106, 2011.

BiBrioypagpia 19

[36]

[38]

Minghong Lin, Adam Wierman, Lachlan L.H. Andrew, and Eno Thereska. On-
line dynamic capacity provisioning in data centers. In 2011 49th Annual Aller-
ton Conference on Communication, Control, and Computing, Allerton 2011, pages
1159-1163, 2011.

Minghong Lin, Adam Wierman, Alan Roytman, Adam Meyerson, and Lachlan L.H.
Andrew. Online optimization with switching cost. ACM SIGMETRICS Perfor-
mance Fvaluation Review, 40(3):98, 2012.

Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan
L. H. Andrew. Greening geographical load balancing. IEEE/ACM Trans. Netw.,
23(2):657-671, 2015.

Tan Lu, Minghua Chen, and Lachlan L. H. Andrew. Simple and effective dynamic
provisioning for power-proportional data centers. IEEFE Trans. Parallel Distrib.
Syst., 24(6):1161-1171, 2013.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. On-
line Optimization in Dynamic Environments: Improved Regret Rates for Strongly
Convex Problems. 2016.

Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. Found.
Trends Mach. Learn., 4(2):107-194, 2012.

Isidoros Tziotis. Online shortest path with switching cost. UOA thesis, 2017.

Kai Wang, Minghong Lin, Florin Ciucu, Adam Wierman, and Chuang Lin. Charac-
terizing the impact of the workload on the value of dynamic resizing in data centers.
CoRR, abs/1207.6295, 2012.

Lydia Zakinthinou. Online facility location with switching costs. UOA thesis, 2017.

Martin Zinkevich. Online Convex Programming and Generalized Infinitesimal Gra-

dient Ascent. Machine Learning, 20(February):421-422, 2003.

	Introduction
	1 Online Computation
	1.1 Competitive Analysis
	1.2 The Ski Rental Problem
	1.2.1 A Deterministic Algorithm
	1.2.2 A Randomized Algorithm

	1.3 The Potential Function Method
	1.4 Metrical Task Systems

	2 Convex Optimization
	2.1 Basic concepts
	2.2 Duality and Optimality Conditions
	2.3 Gradient Descent

	3 Online learning & Online Convex Optimization
	3.1 The Experts problem
	3.1.1 The Weighted Majority Algorithm

	3.2 A Unifying model
	3.2.1 Online Gradient Descent

	3.3 Competing against a dynamic comparator

	4 Online Convex Optimization with Switching Cost
	4.1 Definition
	4.2 The unidimensional case
	4.2.1 A memoryless algorithm
	4.2.2 An algorithm with memory

	4.3 Higher dimensions
	4.3.1 Minimizing Competitive Ratio

	4.4 Covering constraints with l1 switching cost
	4.5 Open problems

	Εισαγωγή
	0.1 Άμεσοι Αλγόριθμοι
	0.2 Κυρτή Βελτιστοποίηση

	1 Άμεση Κυρτή Βελτιστοποίηση
	2 Άμεση Κυρτή Βελτιστοποίηση με κόστη μετάβασης

