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Abstract 

 

A complete thermodynamic analysis of mixtures consisting of molecules with complex chemical 

constitution can be a rather rigorous process. Kirkwood-Buff theory of solutions allows the 

estimation of thermodynamic properties which cannot be directly extracted from atomistic 

simulations, such as the Gibbs energy of mixing (ΔmixG). In this work, we perform molecular 

dynamics simulations of n-hexane/ethanol binary mixtures in the liquid state under two 

temperature-pressure conditions and at various mole fractions. Based on the recently published 

methodology of Galata et al. (A.A. Galata, S.D. Anogiannakis, D.N. Theodorou,  Thermodynamic 

Analysis of Lennard-Jones binary mixtures using Kirkwood-Buff theory, Fluid Phase Equilib.  470 

(2018) 25-27), we first calculate the Kirkwood-Buff (KB) integrals in the isothermal-isobaric, 

NpT, ensemble, identifing how system size affects their accurate estimation of KB. We, then, 

extract the activity coefficients, excess Gibbs energy, excess enthalpy, and excess entropy for the 

n-hexane/ethanol binary mixtures we simulate. We employ two approaches for quantifying 

composition fluctuations: one based on counting molecular centers of mass, and a second one 

based on counting molecular segments.  Results from the two approaches are practically 

indistinguishable. We compare our results against the predictions from vapor-liquid equilibria 

obtained in a previous simulation work using force field, as well as with experimental data, and 

find very good agreement.  

 

Κey Words: Kirkwood-Buff Theory, n-hexane/ethanol mixture, excess properties, pair 

distribution functions, activity coefficients 
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                                                       Chapter 1 

1. Thermodynamics of Mixing 

 

1.1   Kirkwood-Buff Theory 

 

      Kirkwood Buff (KB) theory (1951)1 is the most important theory of solutions. It was 

developed originally in the grand canonical ensemble. The key advantage is that through the 

calculation of the well-known KB integrals, one can derive thermodynamic properties. These KB 

integrals can be calculated from the above relation in the μVT ensemble 

                                                2

0

[ ( ) 1]4VT VT
ij ijG g r r dr  



  (1.1) 

where ( )VT
ijg r   is the pair distribution function defined in the open grand-canonical ensemble for 

two species i and j and r  is the Euclidean distance between molecules of these two species. Thus, 

the theory may be used to compute thermodynamic quantities based on our knowledge of the pair 

distribution function. Symbolically 

                                                            , / ,...ij T i iG x   
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 An alternative definition of KB integrals is based on particle number fluctuations inside a 

reference volume V  in the grand canonical ensemble. 2 To establish that definition, an open region 

of volume V is considered. That region is a part of an infinite size system. In the μVT representation 

selected, at a certain time instant, let volume V contain exactly Ν1, Ν2, ..., Νν molecules of the ν 

molecular species constituting the multi-component system. In this representations of molecules 

in space, the density of molecule type i in position 1r , (1)
1( )iv r , as well as density of  ordered pair 

of molecules of type i and j, (2)
1 2( , )ijv r r  (where molecule 1 is positioned on 1r  and molecule type 2 

is positioned on 2r ) is calculated from the following relations 

                                                (1)
1 1

1

( ) ( )
i

i

i

N

i k
k

v 


 r r r  (1.2) 

                              (1)
1 2 1 2

1 1

( , ) ( ) ( )
ji

i j

i j

NN

ij k l
k l

v  
 

  r r r r r r   for i jk l   (1.3) 

where 1( )
ik r r  is the three-dimensional Dirac delta function. Upon integration, these densities 

satisfy the following relations: 

                                                (1)
1 1( )i i

V

v dV N r   (1.4) 

                                     (2)
1 2 1 2( , )ij i j i ij

V V

v dV dV N N N    r r  (1.5) 

where ij  is Kronecker delta, which is equal to one for i j  and zero for i j .  The corresponding 

ensemble averaged number densities (1)
1( )i r  and (2)

1 2( )ij r ,r  are calculated as 
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                                                     (1) (1)
1( )i iv r  (1.6) 

                                                 (2) (2)
1 2( , )ij ijv r r  (1.7) 

These densities are calculated for all Ν1, Ν2, ..., Νν, and for the whole phase space, for every group 

of atoms, according to the probability density function, P, in the grand canonical (μVT ) emsembl, 

which is  

                                   
1...

1

B

exp
i i N N

i

N
P

k T








    
  

 
  

 H
  (1.8) 

where i  is the chemical potential of type i per molecule, 
1...N N

H the Hamiltonian of a group of 

molecules 1...N N , Bk  is Boltzmann’s constant, and   is the grand potential. In the distribution 

of equation (1.8), the grand partition function =exp[/(kBT)] plays the role of a normalizing 

constant. In a homogeneous system,  equals. The calculations of mean values of equations (1.6) 

and (1.7) generate the following relations for the integrals of average densities 

                                             (1)
1 1( )i i

V

dV N  r  (1.9) 

                                 (2)
1 2 1 2( , )ij i j ij i

V V

dV dV N N N    r r  (1.10) 

       (2) (1) (1)
1 2 1 2 1 2( , ) ( ) ( )ij i j i j i j ij i

V V

dV dV N N N N N             r r r r  (1.11) 
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For a fluid system, such as a liquid solution or a mixture of gases, average densities are obtained 

as 

                                                (1)
1( ) i

i

N

V
 r  (1.12) 

                                            (2) (2)
1 2( , ) ( )

ji
ij ij

NN
g r

V V
 r r  (1.13) 

                                                        2 1| |r  r -r   (1.14) 

where (2) ( )ijg r  is the pair distribution function between molecules of type i and j, which depends 

exclusively on the distance r of pair ij. Combining equations (1.9) - (1.14) we obtain  

                             (2)[ ( ) 1]
i j i j ij

ij
ii j

N N N N
g r dV V

NN N

 
   
 
 

   (1.15) 

where integral is extended on any relative coordinates of pair i and j.   

Any observed variations on the composition of a thermodynamically open system, of volume V, 

is directly correlated to thermodynamic parameters via the relations 

                                     ij
i j i j

A
N N N N

A
    (1.16) 

                                                             ijA A   (1.17) 

                                                             
B , ,

1

k j

i
ij

j T V N

A
k T N





 
    

 (1.18) 
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where 
ij

A  is the co-factor of ijA  in the determinant  A  of the matrix with elements Aij, i  is the 

chemical potential per molecules of type i, and Τ is the system temperature. Combining above 

relations leads to the final relation between the Kirkwood-Buff integral and the covariance in the 

numbers of particles within volume V. 

                    (2)[ ( ) 1]
i j i j ijVT

ij ij
ii j

N N N N
G g r dV V

NN N
  

    
 
 

  (1.19) 

     KB theory of solutions was initially developed to obtain thermodynamic properties from pair 

distribution functions. In most cases, pair distribution functions are not easily extracted either from 

analytical calculations, or from computer simulations. The inversion of KB theory was developed 

from Ben-Naim (1977),3 and it provided a methodology on calculating KB integrals from 

thermodynamic quantities. Symbolically the inversion theory may be written as 

                                                      
   , / ,...T i i ijx G   

 

where the quantities ijG  can be extracted from measurable thermodynamic quantities. In a strict 

sense, ijG are not molecular properties. However, they do convey information on the local mode 

of packing of various species. As such, the theory provides a powerful tool to probe local properties 

of the mixtures. Ever since the publication of the inversion of the KB theory, the number of papers 

published on subjects related to the theory has grown steadily and dramatically.  

1.2   Mixing properties 

 

     The thermodynamic properties of any pure substance are dictated by the intermolecular forces 

developed between the molecules of this substance. The same applies for the thermodynamic 
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properties of a mixture, but on a mixture, one has to calculate forces between molecules belonging 

to different components as well. 

 

1.2 .1  Perfect gases 

 

      In his attempt at simplifying the concept of chemical potential, G. N. Lewis initially considered 

chemical potential for a pure and perfect gas, and then he generalized his results for all ideal 

solutions.  For component i in an ideal gas mixture he extracted the following relation 

                                            0
B 0

ln i
i i

y p
k T

p
     (1.20) 

where p is the pressure, p0 a reference pressure usually taken as 1 bar, and yi is the mole fraction 

of component i in the ideal gas mixture.  Equation (1.20) indicates that, in an ideal gas mixture, 

the chemical potential i of component i relative to the chemical potential i
0 of component i in 

the pure ideal gas state at the reference pressure p0 and at a temperature equal to the temperature 

of the mixture  equals the product of Bk T times the natural logarithm of the partial pressure yip 

divided by the reference pressure.  Eq. (1.20) establishes that the change in chemical potential of 

component i in an ideal gas mixture during an isothermal process can be replaced by kBT times the 

corresponding change in the natural logarithm of the partial pressure of i.   
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     1.2.2  Ideal solutions 

 

      Ideal solutions are quite different from perfect gases, since the latter are not subject to any 

forces between molecules. In an ideal solution there are interactions between molecules of 

component 1 and component 2, although the average energy of 1-2 interactions is equal to the 

average energy of 1-1 and 2-2 interactions in the corresponding pure liquids at the same 

temperature and pressure. 

      Equation (1.20) can be applied only to perfect gaseous mixtures. In order to generalize it, Lewis 

defined a function for any component of any system undergoing an isothermal process that was 

named fugacity f  through the equation 

                                                 0
B 0

ln i
i i

i

f
k T

f
    (1.21) 

where either 0
i or 0

if  can be selected independently.  

    For a pure, perfect gas, fugacity is equal to pressure, while for a component i in a mixture of 

perfect gases, fugacity is equal to .iy p  Because of the fact that all systems tend to follow the 

behavior of perfect gas on low densities, the definition of that corrected pressure obeys the 

following rule  

for 0p   :  1i

i

f

y p
  

where iy  is mole fraction of component i. 
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 Thus, fugacity is a thermodynamic property with units of pressure that reexpresses the 

chemical potential.  It is generally a function of temperature, pressure and composition and can be 

defined for every component i in a mixture through a differential equation and a boundary 

condition: 

     B lnid k T d f    

     
0

lim 1i

p
i

f

y p
        

     The latter definition makes it clear that the definition of fugacity is independent of the choice 

of a standard state.   

      Lewis named the fraction 0
i if f  activity, ,a since it provides an indication of how “active” a 

substance is, compared to the standard state. In general, the concept of fugacity leads from pure 

thermodynamics to the theory of intermolecular interactions. More specifically, if one considers 

fugacity as a corrected pressure, then these corrections are attributed to the non-ideality of 

intermolecular forces. 

     The condition of thermodynamic equilibrium between two phases, V and L (equality of 

chemical potentials between the phases for all components) can be translated into:  

                                                        V L
i if f (1.22) 

In the applications considered in this thesis, V  will stand for the vapor phase and L for the liquid 

phase.  At low pressures, the fugacity V
if  of component i in the vapor phase under given pressure 

and temperature is proportional to the mole fraction ,iy  meaning  
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                                                      ,pureV V
i i if y f  (1.23) 

where ,pureV
if  is the fugacity of pure component i in the vapor phase, at the temperature and 

pressure of mixture. The exact same relation can be postulated for the liquid phase, where L
if  is 

assumed proportional to the liquid mole fraction ix  as described in the following relation 

                                                      ,pureL L
i i if x f  (1.24) 

where ,pureL
if  is the fugacity of pure component i in the liquid phase, at the temperature and 

pressure of mixture.  Equation (1.24), which is a generalization of Raoult’s law, is known as 

Lewis’s law or the Lewis and Randall rule.  A liquid mixture satisfying eq (1.24) for all 

components i and for all compositions is an ideal solution. 

    Combining equations (1.22), (1.23) and (1.24) Lewis’s law leads to  

                                                  ,pure ,pureV L
i i i iy f x f (1.25) 

For  a given temperature and low pressure, for a pure component i we know that ,pureV
if p . If the 

molar volume of pure liquid i is much smaller than the gaseous molar volume RT/p under the 

considered conditions, the pressure dependence of ,pureL
if  can be neglected and its value set equal 

to the fugacity of pure saturated liquid i at the mixture temperature.  From the vapor-liquid 

equilibrium condition of pure i at temperature T one then obtains  

                                                    ,pureL s
i if p  (1.26) 

where s
ip  is the saturated pressure of pure liquid i at the given temperature T. 
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     Using (1.25), one can derive Raoult’s law for an ideal solution at low pressure: 

                                                      s
i i ix p y p  (1.27) 

In order to replace the standard chemical potential 0 ,i we apply eq. (1.20) for a system forming 

an ideal gas mixture in the vapor phase and an ideal solution in the liquid phase, and we subtract 

the equation of the gas from the one for the liquid. In this way we obtain 

                                              id
,pure B lni i ik T x    (1.28) 

where with di
i we denote the chemical potential of I in an ideal solution. 

    An alternative way of describing ideal solutions is through activity coefficients. An ideal liquid 

solution is the one in which, under constant temperature and pressure, the activity for each 

component is proportional to mole fraction. The activity coefficient of a component i in a liquid 

solution is defined through the equation 

                                                0L
i i i if f x (1.29) 

where i  is the activity coefficient, 0
if  is the fugacity of i at a reference state, known as standard 

sate, and ix  is the mole fraction of i. In any composition, i  depends on the selection of the 

standard state. The value of i  has no particular meaning,17 unless the value of 0
if is initially 

defined. The activity coefficient is related to the activity according to relation 

                                                    i
i

i

a

x
   (1.30) 
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      For constant temperature and pressure we can write the following relation: 

                                                  L
i i if R x  (1.31) 

where iR  generally depends on temperature, pressure, and composition, but becomes independent 

of composition when xi is close to 1 or very small relative to 1.   When ix  is very small relative to 

1, then Henry’s law is obeyed. In this case, iR  is Henry’s constant Hi and it depends on 

temperature, pressure, and the mole fractions of the remaining components except i. When ix  is 

close to 1,  Lewis’s rule is obeyed and iR  is the fugacity of pure liquid i under the temperature and 

pressure of mixture. As seen from eq. (1.29), if 0
i if R , then 1.i   If the relation 0L

i i if x f  is 

obeyed for all components and for all compositions with 0
if  being the fugacity of pure liquid i at 

the temperature and pressure of the mixture, then the solution is an ideal one, obeying Lewis’s 

law.  At low pressures, this reduces to Raoult’s law, eq (1.29). 

     1.2.3  Real mixtures 

 

     Real binary mixtures consist of particles, for which interactions 1-1, 1-2, 2-2 are all different 

from one another. We now can adjust the expression (1.1) to take into account deviations from 

ideal behavior in real mixtures. Thus, in a real mixture the chemical potential is given by the 

following equation  

                                                 
0

B ln( )i i i ik T x     (1.32) 

Differentiation of the previous equation leads us to the following relation 
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, ,

B, , , ,

ln
1

j i n j i n

i i i
i

i iT P x T P x

x
x

x k T x

 

 

    
        

 (1.33) 

Once the derivative of chemical potential is calculated, a simple integration with respect to xi 

allows the estimation of activity coefficients. 

      For a real mixture at low pressure we can also extend Raoult’s law (1.27), using activity 

coefficients, to the following relation 

                                                        
s

i i i ix p y p   (1.34) 

1.3   Gibbs energy, enthalpy and entropy of mixing 

 

      In this section we consider the thermodynamics of mixing of liquids. First, we consider the 

simple case of liquids that mix to form an ideal solution. In this way, we identify the 

thermodynamic consequences of molecules of one species mingling randomly with molecules of 

the second species. The calculation provides a background for discussing the deviations from ideal 

behavior exhibited by real solutions 16. 

     The Gibbs energy of mixing for two liquids to form an ideal solution is calculated from relation 

                                        id
mix B 1 1 2 2( ln ln )G k T x x x x     (1.35) 

while entropy of mixing, multiplied by temperature, is given by 

                                      id
mix B 1 1 2 2( ln ln )T S k T x x x x     (1.36) 

and, since id id id
mix mix mixH G T S     , the ideal enthalpy of mixing is zero. In ideal solutions 

there are interactions between molecules, but the average energy of 1-2 interactions in the mixture 
is the same as the average energy of 1-1, 2-2 interactions in the pure liquids.  

     Real solutions are composed of particles of which 1-1, 1-2, 2-2 interactions are all different. 

Not only may there be enthalpy and volume changes when liquids mix, but there may also be an 

additional contribution to the entropy arising from the way in which molecules of one type might 
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cluster together or be surrounded preferentially by molecules of another type (local composition),  

instead of mingling randomly with the others.  

     The thermodynamic properties of real solutions are expressed in terms of excess functions.  An 

excess function is the difference between the observed thermodynamic function of mixing in the 

real solution and the corresponding function for an ideal solution of the same pressure, 

temperature, and composition. The Gibbs energy of mixing, for example, is defined as 

 

                                                  id
mix mix

EG G G     (1.37) 

 

 The enthalpy of mixing can be directly calculated by the following relation 

                                           mixture pure pure
mix 1 1 2 2H H x H x H     (1.38) 

where mixtureH  is the enthalpy of the mixture, pure
1H  and pure

2H  are the enthalpies of pure 

components. The entropy of mixing, mix S , and, more specifically, mixT S , can be  easily 

obtained by subtracting mixG  from mix H  

                                               mix mix mixT S H G      (1.39) 

Finally, one can easily transform these quantities to their corresponding molar quantities by 

multiplying them with the factor of A ,N  as mix m A mixG N G   , mix m A mix ,H N H    and

mix m A mix .T S N T S    

1.4   Excess properties 

 

      Deviations of the excess energies from zero indicate the extent to which the solutions are 

nonideal. The thermodynamic properties of real solutions are expressed in terms of the excess 
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functions, E ,X  i.e., differences between the observed thermodynamic function of mixing and the 

function of mixing for an ideal solution of the same temperature, pressure, and composition. The 

excess entropy, E ,S  for example, is defined as 

                                                    E id
mix mixS S S     (1.40) 

where id
mixS  is given by eq. (1.36). The excess enthalpy is equal to the observed enthalpy of 

mixing, because the ideal value is zero. Considering excess enthalpy EH  qualitatively, if E 0,H 

then mixing is endothermic and the solute-solvent interactions are more favorable than the solvent-

solvent and solute-solute interactions. If E 0,H   then the mixing is endothermic. The excess 

Gibbs energy EG  is given from the above relation 

                                                        E id
mix mixG G G    (1.41) 

     For the calculation of  EG  many methodologies have been developed and introduced over the 

years. One widely known, due to its simplicity, is the one originating in activity coefficients.  It 

will be presented in Chapter 5. Another one, presented in Appendix 2, allows the extraction of EG

from the derivative of chemical potential with respect to composition through an iterative shooting 

method. Finally the relation linking all three excess quantities is the following: 

                                                     E E ETS H G   (1.42) 
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                                                       Chapter 2 

2. Atomistic simulations 

 

2.1   Introduction 

 

      Computational simulations reproduce the behavior of a system using a mathematical model. 

Simulations are used in many different scientific fields, from physics and chemistry to psychology 

and the social sciences. Using simulations, the behavior of a complicated system, dependent on 

many variables, can be reproduced, and therefore analyzed to extract significant properties and 

data.  Computing simulations are, practically, programs executed for a short or long period of time. 

     Simulations link theory and experiment.  For complicated systems that are difficult to handle 

in a laboratory, simulation may play the role of experiment. This is a common strategy, especially 

in materials simulations, where many limitations might exist on the laboratory environment. A 

theoretical model can be directly compared to simulation results. In case a theory based on a model 

does not come to agreement with simulation results of the same model, one can conclude that the 

theory is not sufficient for describing the system. In modern scientific work, a new theory is almost 

always accompanied by a simulation verifying it. 

      Using simulations, one can link a microscopic state to the microscopic nature of a given 

material. Simulations can also play a predominant role in building and analyzing a material’s 
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structure, providing  valuable insight on molecular configurations, physical and chemical 

properties.  Inputs to the simulation are the geometry of molecules constituting the studied system, 

the force field assigned to describe interactions between atoms, and the macroscopic constraints 

applied on the system. 

      The main target of molecular simulations is the full thermodynamic analysis of a studied 

system. Although many thermodynamic properties can be easily extracted (density, enthalpy), 

molecular simulations do not provide a standard way for estimating “statistical” properties, such 

as entropy, chemical potential, or Gibbs energy of mixing. Various methodologies have been 

created and implemented over the years, in order to acquire such essential quantities. 

 By far the best known of these simulation techniques is the one proposed by B. Widom 4. Widom 

based the extraction of all statistical thermodynamic properties on inserting a test particle that 

doesn’t take part in system’s evolution. Following this method’s basic principles, certain particle 

deletion methods have been also proposed.5,6 Unfortunately, methods based on particle insertion 

and deletion are not readily applicable to mixtures consisted of complicated molecules, such as the 

ones studied on this thesis.  Randomly inserting large molecules will lead to overlaps with existing 

molecules, and consequently the energy change associated with the insertion will reach huge, 

practically infinite, values. For the exact same reason, insertion schemes are deficient under low 

temperature conditions as well.  KB theory not only does not suffer from the limitations mentioned, 

but also offers an effective way of calculating properties such as the Gibbs energy of mixing. 
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2.2   Molecular Dynamics algorithm 

 

      The two basic simulation methods developed in the 1950’s are Monte Carlo and Molecular 

Dynamics. The first one is a stochastic technique based on randomness, while the second one is 

based on calculation of quantities depending on time. In this thesis we have used the Molecular 

Dynamics technique, so we will elaborate on this only. 

      Molecular Dynamics (MD) is applicable in a wide range of scientific fields.  It is based on 

numerical integration of Newton’s equations of motion  

                                                        
2

2

d
({ })

d
i

i jm
t

 
r

rV  (2.1) 

where im  is  the mass of particle ,i ir  its position, and ({ })jrV  is the potential energy function, 

which depends only on the positions of all particles. 

      The key ingredient of MD simulations is the correct selection of  ({ })jrV ,  which is commonly 

described by the term “force field.” There are various strategies for force field development. On a 

small scale, detailed atomistic force fields are required to describe differences between atom types 

in the same environment.  

     The dynamical equations used in MD are not always Newton’s equations of motion. Newton’s 

equations maintain constant number of particles, volume and total energy, and as such lead to the 

microcanonical statistical ensemble, which in most cases is cumbersome to implemented, both in 

theory and in experiment. Equations of motion need to be altered so that they generate trajectories 

under constant temperature instead of constant energy, and/or  constant pressure instead of 
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constant volume. This corresponds to Legendre transformations from the original microcanonical 

to the canonical (NVT) or isothermal-isobaric (NpT) ensemble.  

     There are different approaches to the integration of equations of motion. The integration of 

these equations is usually implemented using the well-known Verlet algorithm. This algorithm 

uses positions, velocities and accelerations at time ,t  and positions from the previous step, 

( ),t tr  for the calculation of new positions ( ).t tr  Positions are expressed as 

                                       

2

2

1
(t ) ( ) ( ) ( ) ...

2
1

(t ) ( ) ( ) ( ) ...
2

t t t t t t

t t t t t t

  

  

    

    

r r u a

r r u a

 (2.2) 

where ( )tu  is velocity (first derivative of ( )tr ), and ( )ta is acceleration (second derivative of ( )tr

with respect to time). Adding equations (2.2) together we obtain 

                                            2(t ) 2 ( ) (t ) ( )t t t t t      r r r a   (2.3) 

The velocity at time t now can be expressed using the following relation 

                                                   
(t ) (t )

(t)= 
2

t t

t

 


  r r
u   (2.4) 

All Verlet algorithms have the advantage of providing an accuracy of Ο(δt4) on the positions and 

O(δt2) on the velocities  and maintain time inversion symmetry. 
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2.3   Computer Clusters 

 

      A cluster is a combination of inter-connected computers working collaboratively, so that they 

can be considered as one united system. A computer cluster assigns the execution of a specific task 

to a node, which is controlled and programmed from the software. 

      The separate computers are inter-linked with one another through Local Area Networks 

(LAN), while each node executes its own distinct submitted task. In most cases, all nodes consisted 

of approximately identical hardware and run the same operating system (os), although in limited 

cases clusters made out of different hardware and running different os may be built. 

      Through clusters one can achieve high performance (fast execution of submitted tasks) when 

in need of high cpu power. Moreover, clusters have by far lower cost in comparison with individual 

machines with the same specifications. Consequently, clusters are extensively used for simulations 

of complicated systems such as polymers, or mixtures consisting of molecules with complex 

chemical constitution. 

     In this thesis we have performed MD simulations on clusters constructed from Dell processors 

(model name: Intel(R) Xeon(R) CPU E5645, cpu frequency: 2400.095 MHz, cache size: 12288 

KB). More specifically, to conduct these simulations the clusters named Glass and Leonidas of the 

Computational Materials Science and Engineering Group (COMSE), have been used. Also, several 

simulations were carried out on the Dutch national e-infrastructure with the support of the URF 

Cooperative. In every simulation we have used nodes running on 16 cores processor, with 56GB 

of RAM. 
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                                                      Chapter 3 

3. Systems studied 

 

3.1   Simulation details 

 

      We have studied two sets of n-hexane/ethanol binary mixtures. The first set consists of 11 

binary mixtures with mole fractions  1 0,0.1,...,1x   ( 1 0x   corresponds to pure ethanol, and  

1 1x   corresponds to pure n-hexane) at T=298.15 K and p=1 atm, while the second one consists 

of 11 binary mixtures with the same mole fractions as the first set, at T=413.15 K and p=20 atm. 

The initial configurations for all mixtures were generated in cubic simulation boxes, under periodic 

boundary conditions, using the amorphous builder plug-in of the Materials and Process Simulation 

(MAPS) platform.7 Each one of these mixtures consists of N=10,000 molecules. The force field 

assigned to our simulations is TRaPPE-UA; it will be analyzed in Section (3.2). 

     In order to examine system size effects that might affect the calculation of KB integrals, we 

have also generated two additional sets at T=298.15 K and p=1 atm, and T=413.15 K and p=20 

atm, respectively. Each one of these mixtures consists of N=1,000 molecules. 

      For each mixture we performed MD simulations using the Large-Scale Atomic-Molecular 

Massively Parallel Simulator (LAMMPS) software8 in the NpT ensemble. The total simulation 

time for all systems was 40 ns, of which the first 20 ns were considered as the equilibration stage. 

The integration step was 1 fs for all simulations and the cutoff radius of the Lennard-Jones potential 
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was set equal to 2.33 max (where max is the maximum  of all interaction sites) for all pairs. 

Ewald summation for Coulomb interactions has been replaced by the Particle-Particle Particle-

Mesh Method (PPPM), as we found good agreement  between them, and processing time was 

significantly lower for the PPPM. Analytical tail corrections to the Lennard-Jones interactions 

were applied based on the assumption of a uniform distribution of pairs beyond the cutoff radius. 

    Perhaps the most characteristic property of this studied mixture is its azeotropic behavior. A 

maximum on a pressure-composition phase diagram, such as the one presented in Fig. 1, may 

occur when the unfavorable interactions between n-hexane and ethanol increase the vapor pressure 

of the mixture far above the ideal value. In such cases EG is positive (less favorable mixing than 

ideal), and there may be contributions to it from both enthalpy and entropy effects.  Other examples 

exhibiting such azeotropic behavior include dioxane/water and ethanol/water. 
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Fig. 1. Pressure composition diagrams for the binary mixtures of n-hexane/ethanol at T=298.15 K 

based on experimental data11 (top), and for T=413.15 K based on simulation results9 and 

experimental data10 (bottom) 

    Deviations from ideality are not always so strong as to lead to a maximum or minimum in phase 

diagram, but when they are there are important consequences for distillation. Under the pressure 

and temperature at which the maximum is observed, the vapor and liquid phase that are in 

equilibrium with each other  have the same composition.  The mixture is said to form an azeotrope. 

When the azeotropic composition has been reached, distillation cannot separate the two 

components because the condensate has the same composition as the azeotropic liquid. 

3.2   Force Field 

 

    The intramolecular and intermolecular interactions used in the description of a system are very 

important for the simulation performed. These interactions constitute the so-called force field. The 

total potential energy of the system, V , is calculated as a sum of bonded and non-bonded 

interactions. 

                                                  bonded non-bonded( )N  rV V V  (3.1) 

where Nr  is the vector of positions of all N atoms. 

    Interactions between atoms that are separated by more than three bonds, along a molecular 

chain, are described through a Lennard-Jones potential. Every united atom is represented by a 

spherical interaction center, the distance between centers i and j being denoted as ijr   



 
39 
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LJ ( ) 4 ij ij
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ij ij

r
r r

 

    
             

V   (3.2) 

where parameters   and   are given in Tables 1 and 2 of the Appendix 1. Parameters for pairs of 

unlike interaction sites are expressed in terms of parameters for pairs of like interaction sites using 

the Lorentz-Berthelot combining rules: 
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  (3.3) 

    Another non-bonded interaction is the Coulomb potential, which governs interactions between 

atomic charges, and is most commonly expressed as  

                                                    Coul
0

( )
4

i j
ij

ij

q q
U r

r
  (3.4) 

where iq  and jq are the charges on atoms i and j, respectively.  

    We also have three types of bonded interactions among the united atoms (pseudo-atoms) 

                                    bonded bond bend torsion( ) ( ) ( )l    V V V V  (3.5)                   

 

Fig. 2. Bonded interactions of (a) bond, (b) angle, and (c) dihedral angle 
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The bond stretching potential is considered  as a harmomic one with large force constant.  This 

implies high stiffness to the bonds, so that they cannot easily be stretched: 

                                                 2
bond b 0

1
( ) ( )

2
l k l l V  (3.6) 

where l is the bond length, 0l  the bond length in the equilibrium state, and bk  the harmonic 

oscillator force constant. We  also have a bond angle bending potential, involving angles formed 

between two consecutive bonds. This is, again, represented by a harmonic oscillator potential  

                                                  2
bend 0

1
( ) ( )

2
k   V   (3.7) 

where ( )   is the bond angle, and 0( )  is the bond angle in the equilibrium state, while θk  

is the harmonic oscillator constant. Finally, the torsional potential is very important when it comes 

to distinguish trans from gauche configurations. This potential depends on the dihedral angle 

formed by four successive atoms along a molecular chain, or, equivalently, by three successive 

bonds.  This is the dihedral angle between the plane defined by the first and second bonds and the 

plane defined by the second and third bonds.   

                                              -1
torsion n

1,5

( ) cos ( )n

n

A 


 V   (3.8) 

where φ is the torsional angle between two plains and n ,A  =1,2,...,5n  are the constants of the 

dihedral potential.  This torsion angle potential is in the multiharmonic style of Optimized 

Potentials for Liquid Simulations (OPLS).  The trans state corresponds to  .   Potential 

parameters are given in Table 3 of Appendix 1. 
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                                                       Chapter 4 

4. Methodology 

 

4.1   Extension to Isobaric-Isothermal Ensemble 

 

      Our methodology is based on Kirkwood-Buff (KB) theory of solutions. As we described in 

section (3.1), simulations were performed in NpT ensemble in cubic simulation boxes under 

periodic boundary conditions. The definition of KB integrals given in eq. (1.1) can be extended to 

the NpT ensemble12,13 using the relation 

                                                   2

0

[ ( ) 1]4
R

NpT NpT
ij ijG g r r dr    	 (4.1) 

where the upper limit of integration, R , delimits a region ( r R ) within which the mixture 

composition differs from the overall composition of the bulk material. 

   On the other hand, in order to calculate KB integrals using the particle fluctuations method (pfm), 

based on equation (1.19), we first superimpose a three dimensional grid on our cubic simulation 

boxes. The simulation box is partitioned into smaller cells of edge length celll   and volume cellV . 

The smaller cells, capable of exchanging mass amongst them, follow the grand canonical 

ensemble. We define the parameter 1/3
cell 0( / )V V   	, where 0V  is the minimum volume of the 

simulation box in the course of the NpT ensemble simulation. In the case of an NVT simulation, 

0V  would be the constant volume of the simulation box.  
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Fig. 3. Snapshot of equimolar n-hexane/ethanol binary mixture at 298.15K,T  1atmp  (a),  as 

well as at 413.15K,T  20atmp  (b). Cyan molecules represent n-hexane, while red molecules 

represent ethanol. 

   Then for each cell, k, we calculate the KB integrals , ( )ij kG   using equation (1.19). The average 

value over all cellsN  cells is 

                                                  
cells

,
1cells

1
( ) ( )

N

ij ij k
k

G G
N

 


    (4.2) 

for the current partitioning   of the simulation box. 

    To calculate KB integrals in the thermodynamic limit from small sized MD simulations, we 

used the recently published work by Cortes-Huerto et al. 13  They introduced corrections firstly for 

the extension from the μVT ensemble, where KB theory was originally developed, to the NpT 

ensemble and secondly for periodic boundary conditions of a finite model system such as the ones 
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we study here. They finally extracted the following expression, which connects ( )ijG    KB 

integrals with ijG , which is the limiting value of ijG  at V    

                                   3 4
1/3

0

( ) (1 ) ij ij
ij ij

i

G G
V

 
    


     (4.3) 

where ij   is a constant, which depends only on intensive thermodynamic system properties such 

as density and temperature, and i   is the number density of species i. 

4.2   Molecule and segment based methods 

 

      Having estimated ijG ,	one can proceed with the extraction of various thermodynamic 

properties applying the equations of KB theory. Ideal and real Lennard-Jones (LJ) binary mixtures 

have already been studied by Galata et al.14  In our work we study n-hexane/ethanol binary 

mixtures, and to calculate particle fluctuations within the cells of  the partitioned simulation box, 

we use two different methods.   

    In the molecule based method, we consider each molecule as a sphere (Fig. 4 (a), (b)) centered 

at its center of mass.  In this way a particular molecule, as it evolves in the course of the MD 

trajectory, is transformed into a single interaction point, namely the position of its center of mass. 

This allows the extraction of fluctuations in the number of molecules from the exchange of these 

interaction points among cells of the partitioned simulation box.  

    In the segment based method, we divide each and every molecule into segments centered on 

specific (united) atoms of the molecule.  Here a particular molecule is considered as a chain of 

segments, each segment representing a certain fraction of the molecule.  The fraction assigned to 
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each segment is proportional to the molar mass of the atoms it comprises.  As shown in Fig. 4 (c), 

(d), in this work each n-hexane molecule is viewed as an assemblage of six segments centered at 

the centers of its skeletal united atoms, whole each ethanol molecule is viewed as three segments, 

centered at the centers of its methyl group, its methylene group, and its oxygen atom.  The 

hydrogen of the alcoholic –OH group is part of the third segment.  The higher the molar mass  of 

a segment [represented by a shadow in Fig. 4(c,d)], the larger the fraction of its molecule that it 

represents and the larger the contribution to fluctuations from this segment.  

 

Fig. 4. Schematic presentation of molecule based method (a), (b), and segment based method (c), 

(d), used for calculating particle fluctuations 

In Fig. 5 we plot ( )ijG   versus   at T = 298.15 K, p=1 atm, and at T = 413.15 K, p=20 atm 

for a 10,000 molecule n-hexane/ethanol binary mixture of equimolar composition. We note that 

for lower   values a linear behavior appears. This behavior is similar to the one observed in the 

works of Cortes-Huerto13 and Galata et al. 14  In this linear regime we can fit a line whose slope, 

according to equation (5), is ijG . 
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Fig. 5. Plot of 11G , 22G , 12G  versus   for the equimolar n-hexane/ethanol binary mixture, at 

298.15K,T  1atmp  (a), as well as at 413.15K,T  20atmp  (b), from both molecule and 

segment based methods 
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                                                       Chapter 5 

5. Results and Discussion 

 

In this section we present and discuss the results of our study of n-hexane/ethanol binary 

mixtures, using the particle fluctuation method, as proposed by Cortes-Huerto et al.14 We post 

process our simulation trajectories using both the molecule and segment based methods outlined 

in Chapter 4 and we present pair distribution functions and KB integrals calculated from them as 

well as from the particle fluctuation method.  We then calculate several thermodynamic properties, 

namely the activity coefficients of the two components relative to the pure liquids at the 

temperature and pressure of the mixture, the excess Gibbs energy, the excess enthalpy and the 

excess entropy as functions of composition.  Note that in all figures error bars as obtained from 

averaging over multiple trajectories initiated at uncorrelated configurations, are very small, 

comparable to the size of the symbols, and therefore are omitted.  

5.1   Density 

 

      One very important quantity that can be directly extracted from molecular dynamics simulation 

is the density of mixture. In Fig. 6 we plot the mass density mass  versus the  n-hexane mole fraction 

1.x  Results are shown for both the 1,000 and 10,000 molecule n-hexane/ethanol binary mixtures, 

which we simulated at both T = 298.15 K, p=1 atm and T = 413.15 K, p=20 atm. As expected, the 

densities of the big systems overlap with those of the small ones, and are independent of system 
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size. As 1x  increases, the density decreases monotonically, due to the appearance of more and 

more hydrogen bonds between ethanol molecules, which decreases the volume of the systems. 

Experimental data at T = 298.15 K and p = 1 atm 15 are in perfect agreement with our estimates.  

 

Fig. 6. Mass density of mixtures versus mole fraction of n-hexane for the n-hexane/ethanol binary 

mixture, simulated with 1,000 and 10,000 molecules at 298.15K,T  1atm,p   and at 

413.15K,T  20atm,p   compared to experimental data at 298.15K,T  1atmp   15 

5.2   Pair distribution functions 

 

      KB integrals can be derived either from pair distribution functions, applying equation (4.1), or 

from particle fluctuations using the methodology by Cortes-Huerto et al., as described in the 

Methodology section. In order to calculate KB integrals using equation (4.1) we first need to 

calculate the pair distribution functions 11( )g r , 12 ( )g r  and 22 ( )g r . 

      In Fig. 7 we plot the three pair distribution functions between molecular centers of mass for 

mole fraction 1 0.5x   for both sets of conditions T=298.15 K, p=1 atm, and T=413.15 K, p=20 
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atm (calculated on 1,000 molecule systems, as pair distributions functions are not depended on 

system size). The distinguishably strong and sharp first peak (first neighbor) for 22 ( )g r  indicates 

that ethanol molecules tend to be in high proximity, since they form hydrogen bonds between 

them. Both 11( )g r and 12 ( )g r  exhibit much flatter first peaks at higher distance (one has to reach 

a distance of at least 5Å before the first neighbor of n-hexane appears). One can easily observe 

that 11( )g r  practically does not form a second peak at all. On the contrary, both 12 ( )g r  and 22 ( )g r  

form a second peak. This can be explained since in both 12 ( )g r  and 22 ( )g r  the first peak appears 

due to an ethanol molecule, while the second peak originates from the presence of a second ethanol 

hydrogen bonded to the initial one. For long distances 11( )g r , 22 ( )g r  and 12 ( )g r  tend to 1, which 

corresponds to the regime where there is no long-range order. 

 

Fig. 7. Pair distribution functions for equimolar  n-hexane/ethanol binary mixture versus distance 

r, for both 298.15K,T  1atm,p   and 413.15K,T  20atmp   

The numerical value of the pair distribution function 22 ( )g r  for T=413.15 K, p=20 atm is 

decreased in comparison to the one calculated for T=298.15 K, p=1 atm. This behavior can be 
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explained considering that, although hydrogen bonds are still formed in between ethanols at 

T=413.15 K, p=20 atm, as temperature increases, atoms tend to be way more active kinetically, 

and this inhibits the formation of strong intermolecular hydrogen bonds . The presence of a third 

peak in the T=298.15 K, p=1 atm system indicates that ethanol tends to form chains of hydrogen-

bonded molecules up to the third neighbor, something not observed at T=413.15 K, p=20 atm. 

5.3   Kirkwood-Buff integrals 

 

      Having calculated the pair distribution functions, we can easily estimate KB integrals 11( ),G R  

22 ( )G R  and 12 ( )G R  from equation (4.1). In Fig. 8 we plot with black solid lines 11G , 22G , 12G  

against the distance R  used as upper limit of integration for three different mole fractions 

1 0.1,0.5,0.9x  . For simplicity reasons we present results only for the T=413.15 K, p=20 atm 

system. 

      With red solid lines we plot the KB integrals for the smaller system, consisting of 1,000N   

molecules. We note that for the big system (N=10,000, black lines) KB integrals tend to a constant 

asymptotic value and are much better behaved than the ones from the small system. This significant 

distinction between the large and small systems clearly demonstrates how system size affects the 

KB integral calculation using pair distribution functions. For the small system (red lines) an 

asymptotic value is reached only for 11( )G R  when 1 0.9x    (excess of n-hexane), while 22 ( )G R

for 1 0.1x   (excess of ethanol) is also much better behaved than the rest of the pair distribution 

functions of the small system.  
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   With dashed black and red lines we denote the estimates of 11G , 22G , and 12G  for the big and 

small system, respectively, using the fluctuation analysis and extrapolation procedure described in 

the Methodology chapter. We note that for most mole fractions, the two estimations deviate from 

each other, indicating that the particle fluctuation method is sensitive to system size as well. At the 

same time, the particle fluctuation method provides an acceptable estimation of KB integrals, while 

pair distribution functions totally fail to even converge on a constant value, especially for small 

systems. This is precisely the reason we chose to study our systems using the particle fluctuation 

method. 

 

Fig. 8. KB integrals calculated from both pair distribution functions and particle fluctuations 

(calculated from molecule based method), for n-hexane/ethanol binary mixtures with n-hexane 

mole fractions 1 0.1,0.5,0.9,x   at T=413.15 K, p=20 atm. 
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   Moreover, 11( )G R , 22 ( )G R  and 12 ( )G R  for long distances R  in the big (10,000 molecule) 

systems tend to the 11G , 22G , and 12G  values, respectively, and thus the estimates of 11G , 22G , and 

12G  using the Cortes-Huerto et al.  particle fluctuation analysis - extrapolation methodology are 

validated. An even bigger system with 10,000N    molecules would improve the estimation of 

ijG , and consequently of the thermodynamic properties of mixing and of the excess properties of 

the mixture. 

 

5.4   Activity Coefficients 

 

      As already mentioned in section (1.3.2), activity coefficients are used in mixing 

thermodynamics to describe deviations from ideal mixtures. The derivative of the chemical 

potential on the r.h.s of eq. (1.33), the equation linking chemical potential to activity coefficient, 

can be calculated from the Kirkwood-Buff integrals using the following relation 
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where 1
1

N

V
 

 
 and 2

2

N

V
 

 
 are the number densities of components 1 and 2, respectively, V   

is the average volume of  the NpT simulation, and 1 2.      

   Note that, as we have already described in the methodology chapter, the KB integrals 11G  , 22G  

and 12G  are calculated for comparison by two methods, a molecule based method and a segment 

based method. Then, we can calculate activity coefficient of component 1, 1,  by numerical 
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integration of equation (1.33) under the boundary condition  1 1 1 1x    . The same procedure 

is followed for the second component (ethanol) and the calculation of activity coefficient 2 .  

    In Fig. 9 we plot with black solid lines and black rectangles the activity coefficients 1  and 2  

for the 1,000 molecule atomistic set of systems, as calculated using the molecule based method.  

Red solid lines and red circles depict activity coefficients again for the 1,000 molecule set of 

systems, as calculated using the segment based method.  With olive (circles) and magenta 

(rectangles) colored lines, we plot activity coefficients from the 10,000 molecule systems using 

the molecule and segment based method, respectively. We notice that, for the same number of 

molecules, either 1,000 or 10,000, the estimates of the activity coefficients from both molecule 

based and segment based methods are within the error bars of the simulation, which are 

commensurate with the plotting symbol size. This is for both T=298.15 K, p=1 atm, and T=413.15 

K, p=20 atm. 
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Fig. 9. Activity coefficients 1 , 2  plotted versus n-hexane mole fraction 1x , for n-hexane/ethanol 

binary mixtures, as calculated from molecule based and segment based methods, being compared 

to experimental data at T=298.15 K,  p=1 atm from Smith et al.11  (a), (b). Activity coefficients 1

, 2  as calculated from molecule based and segment based methods being compared to values 

extracted from Chen’s9  simulations using the same force field and to experimental data from Nhu 

et al.10 at T=413.15 K,  p=20 atm (c), (d) 

   In order to validate our methodology and study how system size affects our results, we also 

extract activity coefficients 1  and 2  from the phase diagram p( 1x , 1y ) calculated from the Monte 

Carlo simulations of Chen et al’s work,9 as well as from experimental works. On this basis, we 

plot with blue solid lines and triangles the results from Chen et al.’s simulation, which was based 
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on the force field we employ here, while with orange lines and triangles experimental data from 

Nhu et al.10  and Smith et al.11 are depicted.  

        We note that both methods present strong system size effects; results from  the 10,000 

molecule simulations are much closer to the ones of Chen et al.’s simulation results and to 

experimental data.  Any deviation between our simulation and Chen et al.’s simulation results 

could be explained considering that at pressure of 20 atm, fugacity coefficients for the pure liquid 

are not exactly equal to unity, and therefore the conversion of partial pressure to activity 

coefficients will suffer from small but considerable error in calculation. Both our simulation work 

and Chen et al.’s simulation results deviate from Nhu et al.s’ experimental data, which is already 

justified from the disparity of Chen et al.’s simulation to experimental data in Figure 1(b). In the 

limit of 1 1x   (infinite dilution of ethanol) 1 1  , while in the limit of 1 0x  (infinite dilution 

of n-hexane) 2 1  . For all compositions both 1 1   and 2 1  , indicating that the binary 

mixtures we study exhibit positive deviations from ideal solution behavior. The latter also indicates 

that n-hexane and ethanol molecules prefer to be surrounded by molecules of the same kind and 

thus their mixing is expected to be highly endothermic, as we will show in the next section. The 

main reason for this behavior is the formation of hydrogen bonds between ethanol molecules which 

amplify the attractive intermolecular same-species interactions.  

 

5.5   Excess Gibbs Energy, excess enthalpy, and excess entropy 

 

      In this section we calculate the excess thermodynamic properties: excess enthalpy ( EH ),  

excess Gibbs energy ( EG ), and excess entropy ( ES ) for the n-hexane-ethanol binary mixtures we 
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study. The excess enthalpy ( EH ) is directly extracted from the simulations. The excess Gibbs 

energy ( EG ) can be derived by two different methods. In the first we make use of  the following 

differential equation  

                        
2

mix 1
2
1 2 1 1 2 1 2 1 2 11 22 12, ,

1

( 2 )
B

T p T p

G k T

x x x x x G G G

 
      

     
               

 (5.3) 

under the boundary conditions mix (0) 0G    and mix (0) 1G  .  This is a second order boundary 

value problem.  We solve the differential equation numerically using an iterative shooting method 

that it is outlined in Appendix 2. From that we obtain mixG and then we easily derive EG  from 

(1.41). An alternative method for calculating EG  is through the activity coefficients, using the 

following relation  

                                                1 1 2 2( ln ln )E
BG k T x x     (5.4) 

   In Fig. 9 we plot the molar excess Gibbs energy E E
m AG N G  versus the n-hexane mole fraction 

1x , as derived using activity coefficients and the iterative shooting method for both sets of systems, 

at T=298.15 K, p=1 atm, and at T=413.15 K, p=20 atm. We present results from both 1,000 and 

10,000 molecule MD simulations, as post processed using the molecule and segment based 

method. We also display the same quantities extracted from Chen’s et al. 9 simulation results, and 

experimental data already mentioned in relation to activity coefficient figure. Note that symbols 

in Fig. 10 are the same as in Fig. 9. 
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Fig. 10. Molar excess Gibbs energy plotted versus n-hexane mole fraction 1x , in n-hexane/ethanol 

binary mixtures, as calculated from molecule and segment based methods, using (a) the activity 

coefficients method  based on eq. (5.3) and (b) the iterative shooting method based on eq. (5.2). 

Comparisons to experimental data collected at T=298.15 K,  p=1 atm11 are shown in parts (a) and 

(b) of the figure.  Molar excess Gibbs energy also plotted for T=413.15 K ad p=20 atm, as 

calculated using (c) the activity coefficients method and (d) the iterative shooting method.  In parts 

(c) and (d) comparisons are shown to Chen et al.’s9 results based on the same force field and to 

experimental data 10 collected at T=413.15 K,  p=20 atm. 

   As already shown on Fig. 9 there is a strong system size effect on both methods, since the 10,000 

molecule MD simulation results are much closer to experimental data at T=298.15 K, p=1 atm, 

and to Chen’s simulation results and to experimental data at T=413.15 K, p=20 atm, than the 1,000 

molecule MD simulation results. Positive deviations from ideal mixture behavior are once again 
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observed, as in the activity coefficient results, Figure 9.  The iterative shooting method forms a lot 

smoother curves than the ones derived using the activity coefficients method.  Results from the 

iterative shooting method are also closer to Chen et al.’s simulation. With either method, a 

maximum is detected in the excess Gibbs energy of mixing at almost the same composition  

1 0.5.x    Post processing the 10,000 molecule simulation results using the molecule based method 

and the iterative shooting method describes our system in a more accurate way.   

     We  now examine the excess molar Gibbs energy ( E
mG ), excess molar enthalpy ( E

mH ), and 

excess molar entropy ( E
mS ) derived from our post process analysis.  Since the iterative shooting 

method provides simulation estimates that are smoother and closer to experimental data, we will 

use E
mG  values based on this method for our analysis.  

    In Fig. 11 we plot with filled symbols the estimates from our MD simulations, while with open 

symbols we show results from various experimental and simulation works. Comparing simulation 

end experimental data for T=298.15 K, p=1 atm, for all three excess thermodynamic properties, 

we find very good agreement.  The excess molar enthalpy E
mH is positive, indicating that, as already 

anticipated in relation to the activity coefficients figure, the mixing process is highly endothermic. 

The excess molar entropy E
mS  at this temperature is negative, indicating that the entropy of mixing 

is lower than for an ideal solution. This can be explained, if one considers that chains of hydrogen 

bonded ethanol molecules are retained after mixing (see Figure 3a), leading to a rather ordered 

mixed state.  
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Fig. 11. Excess molar Gibbs energy, excess molar enthalpy, and excess molar entropy plotted 

versus n-hexane mole fraction 1x , for n-hexane/ethanol binary mixtures, and compared to 

experimental data at T=298.15 K,  p=1 atm 11 (top). Excess molar Gibbs energy, excess molar 

enthalpy, and excess molar entropy plotted against x1 and compared to Chen et al.’s simulation 9 

(results extracted from phase diagram p( 1x , 1y ) generated on that work) and to experimental data 

at T=413.15 K,  p=20 atm 10 (bottom). 

    On the contrary, one can easily observe that the E
mH is very significantly increased at T=413.15 

K, p=20 atm, forcing the excess molar entropy E
mS (and consequently E

mTS ) to turn into positive 

quantities. This very interesting and unexpected change in the excess entropy of mixing at high 

temperature can be explained if one considers two opposing mechanisms. First, a thermal mixing 

of small and big molecules leads to negative deviations from ideal solution behavior (positive 

excess entropy of mixing), as pointed out long ago by Flory. 18  Secondly, hydrogen bonding brings 
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about local composition effects that reduce the entropy in relation to the random mixing 

characteristic of an ideal solution (negative excess entropy of mixing).  The disparity in size 

between small ethanol molecules and big n-hexane molecules is moderate (see Figure 4).  At low 

temperatures [T=298.15 K, p=1 atm system], where hydrogen bonding is strong, the second 

mechanism described above (local composition effects due to hydrogen bonding) wins and the 

excess entropy is negative (Figure 11, top).  As temperature increases, hydrogen bonding gets less 

and less effective. Thus, at T=413.15 K, p=20 atm, hydrogen bonding in the mixture is weak and 

the second mechanism described above (disparity in size leading to nonrandom mixing) wins, 

leading to a positive excess entropy.  Unfortunately, experimental data on the enthalpy of mixing 

are not available in the literature at T=413.15 K and p=20 atm to test this simulation prediction, 

although excess Gibbs energies are available through measurements of activity coefficients.  It 

would be interesting to obtain enthalpy of mixing data experimentally and check if the predicted 

change in sign of E
mS  with rising temperature and pressure is actually observed. 
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Conclusions 

 

We have applied a general methodology to perform a full thermodynamic analysis of n-

hexane/ethanol binary mixtures. The methodology is based on Kirkwood-Buff theory of solutions 

originally developed in the grand canonical, μVT, ensemble and extended to the isothermal-

isobaric, NpT, ensemble as described in the work of Cortes-Huerto et al 13. First, we compared the 

mass density derived from MD simulations with experimental data to validate the force field 

selected, obtaining excellent agreement. 

   We calculated pair distribution functions, extracting valuable insight into the structure and 

interactions present in the studied mixtures.  Subsequently, KB integrals were calculated, using 

both particle fluctuation analysis and integration of the pair distribution functions.  These 

calculations showed that the particle fluctuation method provides a more accurate estimation of 

KB integrals, especially when model systems of  small size are used. A size of 10,000 molecules 

is deemed necessary for extracting reliable results via the KB approach.  For the analysis of 

fluctuations in the number of molecules within cells embedded in the simulated model systems we 

have developed both a molecule-based strategy, considering only molecular centers of mass, and 

a segment-based strategy, considering centers of molecular fragments as representative of 

fractional molecules.  Both strategies led to identical results, the segment-based strategy being 

more expensive computationally but subject to less statistical error.  We estimated activity 

coefficients ( 1  and 2 ), excess molar Gibbs energy ( EG ), and we found good agreement with 

experimental data and Chen et al.’s previous simulations using the same force field.  We also 
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calculated the excess molar enthalpy ( E
mH ), and excess molar entropy ( E

mS ) as functions of 

composition.  We showed that the excess Gibbs energy is positive (positive deviations from ideal 

solution behavior) and that the excess molar enthalpy is positive (endothermic mixing) under all 

conditions studied.  Experimental data for E
mG  and E

mH , where available, fully confirm our 

simulation predictions.  An interesting result from the simulations, which has not yet been explored 

experimentally, is that the excess entropy of mixing E
mS  switches from negative to positive as 

temperature and pressure rise from T=298.15 K and p=1 atm to T=413.15 K and p=20 atm.  This 

peculiar behavior could be explained by considering two opposing tendencies: (a) hydrogen 

bonding of ethanol molecules in the mixture, the resulting chains of hydrogen-bonded molecules 

causing the mixture molar entropy to be lower than would be the case for random mixing at the 

molecular level; (b) the size difference between ethanol and n-heptane, causing the molar entropy 

of mixing to be higher than for a mixture of molecules of identical sizes and interactions.  Based 

on our analysis, Kirkwood-Buff theory, and especially the extrapolation proposed by Cortes-

Huerto et al. 13 to deal with finite system size and cell size in the analysis of particle number 

fluctuations, provides an efficient and accurate methodology for a full thermodynamic analysis, 

even for mixtures consisting of molecules with complicated shapes and interactions. On this basis, 

polymer blends can also be analyzed using the proposed methodology. 
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Future Work 

In this thesis we have developed a general methodology for calculating thermodynamic properties 

of mixtures which consist of molecules with complex chemical constitution. Upcoming work could 

extend the current methodology to oligomeric blends. In such complex mixtures, classical 

molecule insertion or deletion schemes are not likely to succeed. Using Kirkwood-Buff theory, on 

the other hand, one can estimate the excess Gibbs energy, and consequently the Gibbs energy of 

mixing, in a most efficient and acceptable way, within a controllable margin of error.  The only 

prerequisite is that systems of sufficient size be simulated.  Using the methodology adopted on this 

thesis, KB integrals can be easily calculated from atomistic simulations of a real mixture simulated 

in the isothermal-isobaric ensemble. Through these KB integrals thermodynamic properties of 

mixing, and excess properties can be directly derived. 
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Appendix 1 

 

    Force field parameters of the molecular model TraPPE-UA, used in this thesis, are provided by 

Chen et al. 8 and listed in the following tables. 

 

Interaction site σ [ ] ε [kcal mol-1] q[e] 

CH2 3.95 0.0914 0.0 

CH3 3.75 0.195 0.0 

                       Table 1: Lennard – Jones potential parameters of TraPPE-UA for n-hexane 

Interaction site σ [ ] ε [kcal mol-1] q[e] 

CH2 3.95 0.0914 0.0 

CH3 3.75 0.195 0.265 

O 3.02 0.185 -0.7 

H 0.0 0.0 0.435 

                       Table 2: Lennard – Jones potential parameters of TraPPE-UA for ethanol 

 

 

 

Bond stretching parameters l0 [ ] kB [kcal mol-1	 ‐2 ] 

CHx – CHy 1.54 500.00 

CH2 – OH 

H – OH 

1.43 

0.945 

500.00 

500.00 

Angle bending parameters π – θ0 [deg] kθ [kcal mol-1deg‐2] 

CH3 – CH2 –  OH 109.5 50.077 

62 CHx – CH2 –  CHy 114.00 

CH2 – OH –  H 108.5 55.045 
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Dihedral parameters 

 

Α1 

[kcal mol-1] 

 

Α2 

[kcal mol-1] 

 

Α3 

[kcal mol-1] 

 

Α4 

[kcal mol-1] 

 

Α5 

[kcal mol-1] 

CHx–CH2–OH–H 0.674 0.703 0.115 -1.493 0.000 

CHx–CH2–CH2–CHy 2.006 4.011 0.271 -6.288 0.000 

Table 3: Bonded interaction parameters 

 

Appendix 2 

 

    In order to solve the differential equation (5.1) numerically, we use an iterative shooting method. 

In particular, beginning with an initial guess for the first derivative of the Gibbs energy of mixing 

(which actually represents the slope of our curve),  mix

1

0
G

x




, and knowing from the first 

boundary condition that  mix 0 0G  , we can obtain, using forward first order finite differences: 

 

     mix
mix mix

1

0.05 0 0.05 0
G

G G
x


   


    

 

Then, we can invoke the recursive relation 

 

       
2

2 mix
mix 1 1 mix 1 mix 12

1

2
G

G x h h x G x G x h
x

 
      


  

 

where 1 0.05h x     is the mole fraction ‘step’ of our simulations and extract the function 

 mix 1G x  for all   1 0, 1x  . If the estimated  mix 1G  is not close to zero (second boundary 

condition), within a given tolerance, a new corrected value for  mix

1

0
G

x




  is selected, via a 
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Newton-Raphson method, and the procedure is repeated. In Fig. 12 we show a flow diagram of 

the iterative shooting method we described above. 

 

 

 

Fig. 12. Flow diagram of the iterative shooting method we apply to numerically solve equation 
(5.1) 
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