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                           Abstract 

 

 
Floating structures, operating in a nearshore coastal environment of variable bathymetry, and 

their hydrodynamic behavior constitute an important subject in marine and offshore structure 

design and performance. The study of wave energy converters, exploiting the wave energy 

potential and converting it into electrical energy, is of particular interest in ocean and coastal 

engineering. In the present thesis a Boundary Element Method is presented and discussed, for 

treating problems concerning waves-floating body-seabed interactions in a variable bathymetry 

environment and arbitrary body geometry. As a result the hydrodynamic behavior of the body 

is calculated. Specifically, in Chapter 1 a state-of-the-art review concerning offshore and 

coastal floating structures and wave energy converters of the kind of point absorbers is 

presented. Also, a brief review of the boundary element method is given. In Chapter 2, an 

absorbing layer technique, in conjunction with a boundary element method is presented, and 

optimized in the case of two-dimensional wavemaker problem, for which an analytical solution 

is available (both for the flap-type and the piston-type wavemakers). Comparing the  numerical 

against the analytical solution useful conclusions are derived for the optimum selection of 

absorbing layer parameters. A similar procedure is followed in Chapter 3, where a 3D hybrid 

boundary element - absorbing layer method is presented, treating the problem of a floating 

cylinder, oscillating in finite depth. The method is based on 4-node quadrilateral elements and 

piecewise constant dipole distribution, and details concerning the integration formulae are 

provided in Appendix A. Again, in the case of vertical cylinder the  analytic solution is used to 

validate the numerical method  in constant depth. Then, in Chapter 4, the latter method is 

extended to the hydrodynamic analysis of floating body in variable bathymetry. The present 3D 

hybrid boundary element - absorbing layer method is used for the solution of the radiation 

problems (for all 6 dofs) and the  diffraction problem, which is formulated using the solution 

concerning the propagating wave over the variable bathymetry. The latter is obtained by 

application of the coupled-mode model by Athanassoulis & Belibassakis (1999), which is 

presented in Appendix B. The present thesis ends with conclusions and suggestions for future 

work. 
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Περίληψη 
 

 

 

 

 

Οη πιωηέο θαηαζθεπέο, πνπ ιεηηνπξγνύλ ζε έλα ζαιάζζην πεξηβάιινλ κε κεηαβιεηή 

βαζπκεηξία,  θαη ε πδξνδπλακηθή ζπκπεξηθνξά ηνπο απνηεινύλ έλα ζεκαληηθό ζέκα ζηνλ 

ζαιάζζην θαη ππεξάθηην ζρεδηαζκό. Η κειέηε ηωλ κεηαηξνπέωλ θπκαηηθήο ελέξγεηαο, πνπ 

αμηνπνηνύλ ηελ θπκαηηθή ελέξγεηα θαη ηελ κεηαηξέπνπλ ζε ειεθηξηθή, παξνπζηάδεη ηδηαίηεξν 

ελδηαθέξνλ γηα ηελ ωθεάληα θαη παξάθηηα κεραληθή. Σηελ παξνύζα δηπιωκαηηθή εξγαζία, 

παξνπζηάδεηαη θαη ζρνιηάδεηαη κία κέζνδνο ζπλνξηαθώλ ζηνηρείωλ, γηα ηελ αληηκεηώπηζε 

πξνβιεκάηωλ πνπ ζρεηίδνληαη κε ηελ αιιειεπίδξαζε ηωλ θπκάηωλ, ηνπ πιωηνύ ζώκαηνο θαη 

ηνπ ππζκέλα ζε πεξηβάιινλ κε γεληθή βαζπκεηξία γηα νπνηαδήπνηε γεωκεηξία ζώκαηνο. Σαλ 

απνηέιεζκα ππνινγίδεηαη ε πδξνδπλακηθή ζπκπεξηθνξά ηνπ ζώκαηνο. Σπγθεθξηκέλα, ζην 

πξώην θεθάιαην παξνπζηάδεηαη κία πεξηγξαθή ζρεηηθά κε ηηο παξάθηηεο θαη ηηο ππεξάθηηεο 

πιωηέο θαηαζθεπέο θαη κε ηνπο κεηαηξνπείο θπκαηηθήο ελέξγεηαο ηνπ ηύπνπ ζεκεηαθήο 

απνξξόθεζεο. Επίζεο, δίλεηαη κία ζύληνκε αλαζθόπεζε ηεο κεζόδνπ ζπλνξηαθώλ ζηνηρείωλ. 

Σην θεθάιαην 2, κία ηερληθή ζηξώκαηνο απνξξόθεζεο, ζε ζπλδπαζκό κε ηελ κέζνδν 

ζπλνξηαθώλ ζηνηρείωλ παξνπζηάδεηαη θαη βειηηζηνπνηείηαη ζηελ πεξίπηωζε ηνπ δηζδηάζηαηνπ 

πξνβιήκαηνο θπκαηηζηήξα, γηα ην νπνίν ππάξρεη αλαιπηηθή ιύζε( θαη γηα ηύπνπ flap θαη γηα 

ηνλ ηύπνπ piston θπκαηηζηήξα). Σπγθξίλνληαο ηελ αξηζκεηηθή κε ηελ αλαιπηηθή ιύζε 

παξάγνληαη ρξήζηκα ζπκπεξάζκαηα γηα ηνλ βέιηηζην ζπλδπαζκό παξακέηξωλ ηνπ ζηξώκαηνο 

απνξξόθεζεο. Μία παξόκνηα δηαδηθαζία αθνινπζείηαη ζην θεθάιαην 3, όπνπ παξνπζηάδεηαη 

κία ηξηζδηάζηαηε πβξηδηθή κέζνδνο ζπλνξηαθώλ ζηνηρείωλ κε ζηξώκα απνξξόθεζεο, 

αληηκεηωπίδνληαο ην πξόβιεκα πιωηνύ θπιίλδξνπ, ηαιαληεπόκελνπ ζε ζηαζεξό βάζνο. Η 

κέζνδνο βαζίδεηαη ζε ηεηξάθνκβα ζηξεβιά ζηνηρεία θαη ζε ζηαζεξή αλά ζηνηρείν θαηαλνκή 

δηπόιωλ, θαη ιεπηνκέξεηεο ζρεηηθά κε ηελ θόξκνπια νινθιήξωζεο παξέρνληαη ζην 

παξάξηεκα Α. Ξαλά, ζηελ πεξίπηωζε θαηαθόξπθνπ θπιίλδξνπ, ε αλαιπηηθή ιύζε 

ρξεζηκνπνηείηαη γηα λα πηζηνπνηήζνπκε ηελ αξηζκεηηθή κέζνδν ζε ζηαζεξό βάζνο. Έπεηηα, ζην 

θεθάιαην 4, ε ηειεπηαία κέζνδνο επεθηείλεηαη ζηελ πδξνδπλακηθή αλάιπζε πιωηνύ ζώκαηνο 

κε γεληθή βαζπκεηξία. Η παξνύζα ηξηζδηάζηαηε πβξηδηθή κέζνδνο ζπλνξηαθώλ ζηνηρείωλ κε 

ζηξώκα απνξξόθεζεο ρξεζηκνπνηείηαη γηα ηελ επίιπζε ηωλ πξνβιεκάηωλ αθηηλνβνιίαο θαη 

γηα ην πξόβιεκα πεξίζιαζεο, ην νπνίν κνληεινπνηείηαη ρξεζηκνπνηώληαο ηελ ιύζε ζρεηηθά κε 

ηνλ πξνζπίπηνληα θπκαηηζκό ζε γεληθή βαζπκεηξία. Η ηειεπηαία ιακβάλεηαη κε εθαξκνγή ηεο 

κεζόδνπ ζπδεπγκέλωλ κνξθώλ από Αζαλαζνύιεο θαη Μπειηκπαζάθεο (1999), ε νπνία 

παξνπζηάδεηαη ζην παξάξηεκα Β. Η παξνύζα εξγαζία θιείλεη κε ζπκπεξάζκαηα θαη πξνηάζεηο 

γηα κειινληηθή έξεπλα. 
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C h a p t e r   1  

INTRO D UCTIO N  

 

 

 

 

 

 

In the present introductory chapter, we begin with a brief review, concerning research on 

offshore and coastal structures, focusing especially on wave energy converters of the type of 

point absorbers operating in variable bathymetry regions and the boundary element method. 

Concerning the wave energy converters,  these systems, as we  have been  ideally suited for 

converting directly environmental (sea wave) energy to useful electrical energy via one 

generator. In the second part of this chapter we will present a brief historic review about the 

boundary element method, which is the basic method for solving the variable bathymetry 

problem in our thesis.  

 

 

1.1 Floating structures 

We will present a brief review concerning the types of the floating structures, beginning with 

the large-scale floating structures and closing with coastal wave energy devices. Firstly, we 

refer to large-scale floating structures and then to other water-exploiting devices. 

 

 

1.1.1 Types of Floating Structures 

Large-scale floating structures are broadly classified as either pontoons or semisubmersibles. 

Pontoons are essentially floating slabs that are characterised by their low depth-to-width ratios 

and are usually deployed  in a benign sea state condition such as in waters adjacent to the coast, 

inside a cove or a lagoon, or where breakwaters and other protective installations can be 

constructed to protect the structure from large waves and swells. In order to restrain lateral 

movements, they may be anchored to the sea bed through the use of mooring lines comprising 

chains, ropes, sinkers, anchors or tethers. Where greater restraint is necessary, the pier/quay 

wall method or the dolphin-frame guide mooring system may be adopted. Pontoons are 

generally cost effective with low manufacturing costs and are relatively easy to repair and 

maintain. The main components of a pontoon are the floating body, the mooring facility, the 

access bridge/gangway/ linkway or floating road and the breakwater. Semi-submersibles have a 
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structural form that is thicker than their pontoon counterparts and have been deployed in deep 

sea environments since as early as the 1970s. They are partly raised above the sea level using 

column tubes or watertight ballast structural compartments at the base to compensate for the 

effects of larger wave-lengths and -heights. Floating oil drilling platforms and semisubmersible 

type floating wind farms  are typical examples of this category of floating structures. While 

semi-submersibles are often towed, some models are hybrids between a pure static floating 

structure and a marine vessel with their own propulsion system for short-range transport. When 

deployed to the required location, these floating structures are then attached to the seabed using 

mooring cables or tethers. 

 

1.1.2  Floating Offshore Wind Turbine 

 

A floating wind turbine (Fig.1.1) is mounted on a floating structure that supports the pilar and 

the turbine to generate electricity in deep water or depths where bottom-mounted  towers are 

not feasible. Locating wind farms out at sea can  reduce visual pollution while providing better 

accommodation for fishing and shipping lanes. In addition, the wind is typically more 

consistent and  stronger over the sea, due to the absence of topographic features that disrupt 

wind flow.  More details can be found in Feasibility of Floating Platform Systems for Wind 

Turbines (Musial et al 2003). 

 

1.1.3  Floating Oil Storage Base 

 

The large floating oil reservoirs (Fig.1.2)  must continue to be safely moored to dolphins in the 

extreme wind and wave conditions at the site and remain safe and serviceable during 

earthquakes. Given that the construction of a floating oil storage base has been based on a 

completely new technology to moor huge oil reservoirs to dolphins by rubber fenders, the 

Ministry of Transport, Japan had to develop a new Design Standard for the Floating Oil 

Storage Base. The standard covers the construction, maintenance, repair and improvement of a 

floating oil storage facility comprising floating oil reservoirs, working dolphins, mooring 

dolphins, deepwater terminals, oil fences and ancillary facilities. A special design code was 

also developed for floating oil reservoirs that are moored to dolphins by the use of high 

performance large rubber fenders. Although this kind of rubber fender is commonly used at 

mooring dolphins of deep water terminals, it was the first attempt to use the material for 

permanent mooring even in extreme natural conditions. Several characteristics of rubber 

fenders shall be examined herein. 

https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Visual_pollution
https://en.wikipedia.org/wiki/Shipping_lane
https://en.wikipedia.org/wiki/Wind
http://www.osti.gov/bridge/servlets/purl/15005820-0aqZAv/native/15005820.pdf
http://www.osti.gov/bridge/servlets/purl/15005820-0aqZAv/native/15005820.pdf
http://www.osti.gov/bridge/servlets/purl/15005820-0aqZAv/native/15005820.pdf
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Figure 1.1: Floating Offshore Wind Turbine (http://www.sunwindenergy.com) 

 

 

 

Figure 1.2: Floating oil storage base. (http://eng.mortemor.com) 

 

 

1.1.4  Large Marine Concrete Structures. 

 

The Mega-Float project is a pontoon-type Very Large Floating Structure that was designed for 

deployment in protected waters such as in a large bay. It consists of a floating structure, a 

mooring system, and access infrastructure. While construction of a breakwater was 

contemplated, the existing breakwater around the site was found to be sufficient. Unlike 

conventional ships where the response is dominated by rigid-body motions, the response of the  
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Figure 1.3: Mega-float experimental models. A) Phase I model. B) Phase II model (http://oplat-

usa.com) 

 

Mega-Float is dominated by hydroelastic responses because of its thin mat-like configuration.  

Mega-Float is a pontoon-type VLFS which is cost-effective, competitive and suitable for 

development in protected waters such as in a large bay. It consists of a floating structure, a 

mooring system and access infrastructure. If necessary, breakwater construction is considered. 

The Mega-Float research project was performed in two phases (Isobe 1999). In Phase I (1995–

1997), the fundamental design(Fig.1.3(a)), construction and operational technologies were 

developed, while in Phase II (1998–2001), a corroborative study on the use of the Mega-Float  

(Fig.1.3(b)) as an airport was performed. VLFSs are so large in the horizontal plane that 

dynamical elastic deformations are dominant as compared to rigid motions under wave action. 

Interactions between hydrodynamic pressure and elastic deformation are therefore essential for 

their dynamic responses of VLFSs. Many kinds of numerical methods have been developed to 

perform the hydroelastic analysis of pontoon-type VLFSs. Takeoffs and landings of small 

aircrafts were successfully demonstrated in the Phase II experiment. 

 

1.1.5   Others 

 

1.1.5.1 Oscillatory Water Column (OWC)  

 

An Oscillating Water Column is a steel or concrete structure with a chamber presenting at least 

two openings, one in communication with the sea and the other with the atmosphere. Under the 

action of waves the free surface inside the chamber oscillates and displaces the air above the 

free surface. The air is thus forced to flow through a turbine. The turbine is usually a bi-

directional ‗wells‘ turbine, which makes use of airflow in both directions, on the compression 

and decompression of the air to extract the ocean power (ISSC (2006); EPRI (2005); AEA 

(2006); Al-Habaibeh (2009)). For an OWC an optimum power take-off 7 can be achieved if the 

wave periods are close to the natural period of the water column. Therefore the design must be 

tuned to the site-specific wave climate.  
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Figure 1.4: OWC: (a) the Limpet and (b) the Pico Power Plant (Sinha 2015). 

 

These devices too as in the case of overtopping devices can be floating or fixed to the shore. 

Fixed structures are located on the shoreline or near shore, standing on the sea bottom (with 

foundations like gravity based structures or fixed to the rocky cliff) while floating structure are 

placed offshore with a partially submerged chamber with air trapped above a column of water 

(EPRI (2005)). 

 

Shore line devices have the advantage of an easier installation and maintenance, and do not 

require deep-water moorings and long underwater electrical cables. However, less energetic 

wave climate at the shoreline is seen to be the main problem. Falcão (2010) suggested that this 

disadvantage can be partly compensated by natural wave energy concentration due to refraction 

and/or diffraction. 

 

 

OWC is one of the wave energy devices which have been studied extensively. The Limpet 

OWC (Fig. 1.4 (a)) is one that is working on this technology. This is a grid-connected, 

shoreline-based OWC, with a rated power of 500 kW. The Limpet used a unique construction 

method, where construction of the concrete column structure occurred behind a rock wall, 

which was then removed using explosives. Unfortunately, several complications arose due to 

the presence of debris near and underneath the structure, and the overall performance of the 

device was found to be highly dependent on the shape and depth of the seafloor around the 

device. The OWC drives a pair of Wells turbines, and provides around 22 kW of power (annual 

average), peaking near 150 kW. 
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Figure 1.5: Water particle trajectories on a slopping beach (Sinha 2015). 

 

Another WEC which is also classified as OWC is the Pico Power Plant. This is an OWC power 

plant rated at 400 kW, was installed on the shoreline of the island of Pico, in the Azores, 

Portugal. The plant (Fig. 1.4 (b)) uses a concrete structure, mounted on the seabed/shoreline, 

counting with Wells turbines used as power take-off. Built in 1995-1999, various problems 

caused to stop the operation of the device. Testing resumed again in 2005 and the plant was 

connected to the local power grid. Unfortunately, the presence of mechanical resonance in the 

structure prevented the plant from operating at optimum power levels, limiting 8 it to power 

production to 20-70 kW range. Other oscillating water columns are: The Wave Energy 

Conversion Actuator (WECA) the Osprey OWC, the Port Kembla, the Sakata OWC, the 

Mighty Whale, the Orecon MRC1000, the SPERBOY and the OE Buoy. 

 

 

 1.1.5.2 Oscillatory Wave Surge Converter (OWSC) 

 

According to AEA (2006) an OWSC is also a wave surge/focusing device, but extracts the 

energy that exists in waves caused by the movement of water particles within them. This 

principle is then applied for water depths less than the half of the wave length, where the 

particle trajectory has large displacement on the longitudinal direction (see Fig. 1.5). 

 

 One example of this type of technology is the OYSTER. The Oyster is a wave energy 

converter that interacts efficiently with the dominant surge forces encountered in the near shore 

wave climate at depths of 10 to 15 m. The Oyster concept consists of a large buoyant bottom-

hinged oscillator that completely penetrates the water column from the ocean surface to the 

seabed. The surging action of waves on the oscillator drives hydraulic pistons which pressurize 

fresh water causing it to be pumped to shore through high pressure pipelines. The onshore 

hydroelectric plant converts the hydraulic pressure into electrical power via a Pelton wheel, 
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which runs an electrical generator. The low pressure return-water passes back to the device in a 

closed loop via a second pipeline. Another device which operates as an OWSC is the 

WaveRoller. 

 

 1.1.5.3 Pressure Differential  

 

This is a submerged device typically located  nearshore and attached to the seabed. The motion 

of the waves causes the sea level to rise and fall above the device therefore, inducing a pressure 

differential in the device. The alternating pressure can then pump fluid through a system to 

generate useful energy (AEA (2006)). 

 

One example of this technology is the CETO. The CETO units are fully submerged and 

permanently anchored to the sea floor meaning that there is no visual impact as the units are 

out of sight. This also assists in making them safe from the extreme forces that can be present 

during storms. They are self-tuning to tide, sea state and wave pattern, making them able to 

perform in a wide variety of wave heights and in any direction. CETO units are manufactured 

from steel, rubber and hypalon materials, all proven for over 20 years in a marine-environment 

(Carnegie (2010)). Another device operating by the same principle is the WaveMaster 

(Powertech Labs Inc. (2009)).  

 

There are different kinds of WECs which cannot fit in the previous classifications of WECs. 

The anaconda is one of these devices. This is all-rubber WEC which operates in a completely 

new way. When the anaconda is operating, the wave squeezes the tube (at the bow) and starts a 

bulge running. But as it runs the wave runs after it, squeezing more and more, so the bulge gets 

bigger and bigger. The bulge runs in front of the wave where the slope of the water (pressure 

gradient) is highest. In effect the bulge is surfing on the front of the wave concentrating the 

wave power over a wide frontage, at the end of the tube, which can be used to drive a turbine to 

generate electricity (Anaconda (2010)). Other WECs are: the BioWave (BioWave (2010)), The 

Netherlands, WaveRotor (EcoFyes (2010)) and the TETRON (Carbon trust (2010)).  

 
 

1.2 Wave energy converters 

 

Renewable energy such as: solar and wind energy have been extensively studied during the last 

few years. However, one energy source which has remained relatively untapped to date is 

ocean wave energy. Ocean wave energy has several advantages over other forms of renewable 

energy since waves are more constant, more predictable and have higher energy densities 

enabling devices to extract more power from smaller volumes at reduced costs and lower visual 
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impact (Brekken (2009)).  Wave energy converters are devices as these that referred above, 

exploiting wave energy to generate electrical energy, operating in nearshore and coastal areas. 

WECs are studied below and many evidences about their classification are quoted.  

 

1.2.1 Classification According to Distance from Shoreline  

A classification according to distance from shoreline can be established as:  shoreline, near 

shore and offshore WECs according to CRES (2006). Shoreline WECs are fixed or embedded 

to the shoreline, having the advantage of easier installation and maintenance. In addition, 

shoreline devices do not require deep-water moorings or long lengths of underwater electrical  

 

cable. However, they would experience a much less powerful wave regime. Furthermore, the 

deployment of such schemes could be limited by the requirements for shoreline geology, tidal 

range, preservation of coastal scenery etc. The most advanced class of shoreline devices is the 

oscillating water column. Versions of these devices are: the Limpet, the European Pilot Plant 

on the island of Pico in the Azores and the Wavegen. 

 

Near shore WECs are deployed at moderate water depths around 20- 30 m, at distances up to 

around 500 m from the shore. They have nearly the same advantages as shoreline devices and 

at the same time are exposed to higher wave power levels (CRES (2006)). The example of near 

shore wave energy device is WaveRoller (WaveRoller (2010)). 

     

Another type is offshore WECs, which exploits more powerful wave regimes available in deep 

water with water depths deeper than 40 m before energy dissipation mechanisms have had a  

significant effect (CRES (2006)). In order to extract the maximum amount of energy from the 

waves, the devices need to be at or near the surface (i.e. floating), so they usually require 

flexible moorings and electrical transmission cables.  

     

Early overseas designs to harness ocean wave energy concentrated on small, modular devices, 

yielding high power output when deployed in arrays. In comparison to the previous multi-

megawatt designs, these small size devices were rated at a few tens of kilowatts each. More 

recent designs for offshore devices have also concentrated on small, modular devices. Some of 

the most promising ones are: the McCabe Wave Pump (CRES 2006) and the Pelamis.  

 

1.2.2 Classification According to Type of Technology  

Wave energy technology is rapidly growing and varies widely in application of conversion 

devices. Energy conversion devices can be divided in six principal groups: attenuators,  
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Figure 1.6: Attenuator-the Pelamis (Sinha 2015). 

 

 

Figure 1.7: Overtopping: the Wave Dragon (Kofoed et al. 2006). 

 

overtopping, oscillating water column (OWC), oscillating wave surge converters (OWSC), 

point absorbers and pressure differential devices. An Ocean wave energy converter which is a 

line absorber is called an attenuator if it is aligned parallel to the prevailing direction of wave 

propagation, which effectively rides the waves (Falnes (2007) and FEMP (2009)). When the 

attenuator rides the waves, differing heights of waves along the length of the device causes 

flexing where the segments connect. This flexing in the segments of the device produces forces 

and moments which are captured in the form of hydraulic pressure, which in turn is converted 

into energy. An advantage of the attenuator is that it has less area perpendicular to the waves, 

and hence it experiences lower forces (AEA (2006)).  

 

 One of the most known attenuator is the Pelamis. The Pelamis (Fig. 1.6) is a long and narrow 

(snakelike) semi-submerged structure which points into the waves. The Pelamis is composed of 

long cylindrical pontoons connected by three hinged joints. This device can exploit relative 

yaw and pitch motions between sections to capture ocean energy (Ringwood (2008)). Those 

motions are used to pressurize a hydraulic piston arrangement and then turn into a hydraulic 

turbine/generator to produce electricity (EPRI (2005);  Al Habaibeh et al. (2009)). Other 
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examples of WECs which are classified as attenuators can also be found in the literature, like 

the McCabe wave pump, the Ocean Wave Treader and the Wave Treader (GreenOceanEnergy 

(2010)) and the Waveberg (Waveberg (2010)). 

 

1.2.3 Overtopping  

 

Another option to convert wave energy is by capturing the water that is close to the wave crest. 

To achieve this principle, the overtopping devices are designed with long arms and a wall 

placed between them. Large arms channel the waves focusing them at the centre wall over 

which waves topple into a storage reservoir, which is at a level higher than the average free-

surface level of the surrounding sea. The reservoir creates a head of water and this potential 

energy is converted into electric energy by a conventional low-head hydraulic water turbine. 

Amongst many different types of water turbines, the lowhead ―Kaplan‖ turbine is the most 

common choice. 

 

The advantage of the overtopping principle is that turbine technology has already been in use in 

the hydropower industry for long time and is well understood (Powertech (2009)). However, 

the disadvantage is the strong non-linear hydrodynamics of overtopping devices and therefore 

the hydrodynamic problem of the overtopping principle cannot be addressed by linear water 

wave theory (Falcão (2010)). 

 

One of the novel technologies using this principle is the Wave Dragon . The Wave Dragon is 

an offshore converter developed in Denmark, whose slack moored floating structure consists of 

two wave reflectors focusing the incoming waves towards a doubly curved ramp, a set of low-

head hydraulic turbines (multiple modified Kaplan-Turbines) and a raised reservoir (Kofoed et 

al. (2006)). The low head hydraulic turbines convert this low-pressure head into electricity 

using direct-drive low-speed permanent magnet generators (EPRI (2005)).  

 

 Another device which harnesses ocean waves by overtopping waves is the WavePlane (Fig. 

1.8). This is a V-shaped construction anchored with the tip facing the incoming waves. In front, 

below the surface line, the wave plane is equipped with an artificial beach that makes the 

capture of the wave energy more efficient. The wave plane is symmetrical in its construction. 

The water from the waves is caught in different heights through an inlet divided into separate 

levels. Further the water is let into this inlet tangentially through the turbine pipe. Through this 

process it is sought to maintain as much of the water‘s kinetic energy as possible in 

consideration of the manageable volume. The kinetic energy is used to generate a rotating 

stream of water in the turbine pipe. At the end of the turbine pipe which is at the end of the two  
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Figure 1.8: Overtopping: the wave plane (WavePlane  2010). 

 

―legs in the V-shape‖ the turbine pipe bends back and downwards. It is able to bring the end of 

the drive train outside the turbine pipe. From the turbine the water is led back into the sea. By 

means of a gear box the turbine runs a generator, which is connected to the electrical grid 

(Wave energy centre (2010)). Other devices developed by this principle are: the Floating Wave 

Power Vessel (FWPV) (Powertech (2009)), the Tapered Channel Wave Power Device 

(TAPCHAN) (Powertech (2009)), the Seawave Slot-Cone Generator (SSG), the SSG offshore 

installation (Waveeenergy (2010)), and the WaveBlanket (Gatti (2010)).  

 

1.2.4 Point Absorbers  

 

Point absorber is a WEC oscillating with either one or more degrees of freedom. It can either 

move with respect to a fixed reference, or respect to a floating reference (Backer et al. (2007)). 

A point absorber which is a floating structure moves relative to its own components due to the  

wave action (e.g., a floating buoy inside a fixed cylinder) therefore, this relative motion is used 

to drive an electromechanical or hydraulic energy converter. 

 

  For a wave energy converter (WEC) device, to be a point absorber, the linear dimension has 

to be much smaller than the prevailing wave length. As general rule, to consider a WEC as a 

point absorber, its respective diameter should be preferably in the range of five to ten percent 

of prevailing wavelengths (Falnes and Lillebekken (2003)). Point absorbers devices, can be 

classified according to the degree of freedom from which they capture the ocean energy. A 

brief explanation of the respectively mode of capture are described below. 
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Figure 1.9 Point absorbers: (a) the Powerbuoy, (b) the Aquabuoy and (c) the AWS.  

(Sinha 2015). 

 

a)  Heaving systems  

Heaving point absorber are the ones that harness ocean wave energy based on heave motion 

while the remaining movements are restricted by the mooring system which is fixed to the 

ocean bottom. During the past years, heaving point absorbers have been studied and developed 

to capture ocean wave energy because of the simplicity in their hydrodynamic problem and 

similarity with the well-known buoys. Moreover, most of these devices are similar in nature 

with a difference in the PTO system.  

 

  An example of a point absorber device is the Powerbuoy, developed by Ocean Power 

Technologies (Fig. 1.9 (a)). The construction involves a floating structure with one component 

relatively immobile, and a second component with movement driven by wave motion (a 

floating buoy inside a fixed cylinder). The relative motion is used to drive electromechanical or 

hydraulic energy converters. A PowerBuoy demonstration unit rated at 40 kW was installed in  

 

2005 for testing offshore from Atlantic City, New Jersey, U.S. testing in the Pacific Ocean is 

also being conducted, with a unit installed in 2004 and 2005 off the coast of the Marine Corps 

Base in Oahu, Hawaii. 

 

  Another example is The AquaBuoy (Fig. 1.9 (b)) (Weinstein et al. (2004)) being developed by 

the AquaEnergy Group, Ltd. is a point absorber that is the third generation of two Swedish 

designs that utilize the wave energy to pressurize a fluid that is then used to drive a turbine 

generator. The vertical movement of the buoy drives a broad, neutrally buoyant disk acting as a 

water piston contained in a long tube beneath the buoy. The water piston motion in turn 

elongates and relaxes a hose containing seawater, and the change 10 in hose volume acts as a 

pump to pressurize the seawater. The AquaBuoy design has been tested using a full-scale  
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 Figure 1.10: Point Absorber: (a) The PS FrogMk5, (b) the Searev and (c) the nodding Duck. 

(Sinha 2015).  

 

prototype, and a 1 MW pilot offshore demonstration power plant is being developed offshore at 

Makah Bay, Washington.  

 

  Other point absorbers that have been tested at prototype scale include the Archimedes Wave 

Swing (AWS) (Fig. 1.9 (c)) (Prado (2008)). This device is quite different relative to the ones 

described above. The AWS is a submerged structure unlike the Aquabuoy and the Powerbuoy 

which are floating on the ocean surface. The technology of the AWS consists of an air-filled 

cylinder that moves up and down as waves pass over. This motion relative to a second cylinder 

fixed to the ocean floor is used to drive a linear electrical generator. A 2 MW capacity device 

has been tested offshore of Portugal (Gardner (2005)). Other point absorber devices are the 

Swedish heaving buoy, with linear electrical generator, the Norwegian heaving buoy and the 

IPS buoy (Edinburgh University).  

 

b) Pitching systems  

Pitching systems are other oscillating-body systems in which the energy conversion is based on 

relative rotation (mostly pitch) rather than translation. Examples of this point absorber type are: 

The PS FrogMk5 (McCabe (2006)) which consists of a large buoyant paddle with an integral 

ballasted handle hanging below it (Fig. 1.10 (a)). Waves act on the blade of the paddle and the 

ballast beneath provides the necessary reaction. When the WEC is pitching, power is extracted 

by partially resisting the sliding of a power-takeoff mass which moves in guides above sea 

level. 

 

Another example is the nodding Duck created by Stephen Salter, from the University of 

Edinburgh and the Searev (Babarit et al. (2005)) wave energy converter, developed at Ecole 

Centrale de Nantes, France, is a floating device enclosing a heavy horizontal-axis wheel 
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serving as an internal gravity reference (Fig. 1.10 (b)). The centre of gravity of the wheel being 

off-centred, this component behaves mechanically like a pendulum. The rotational motion of 

this pendular wheel relative to the hull activates a hydraulic PTO which, in turn, sets an 

electrical generator into motion. Major advantages of this arrangement are that: (a) 11 all the 

moving parts (mechanical, hydraulic, electrical components) are sheltered from the action of  

the sea inside a closed hull, and (b) the choice of a wheel working as a pendulum involves 

neither end-stops nor any security system limiting the stroke. 

 

1.3  Boundary Element Method 

 

Boundary element methods were developed through the effort to deal with problems of 

aerodynamics. The rapid evolution of computers and information technology in 1970 leads to 

the development of Finite Element Methods (FEM) and Boundary Element Methods (BEM). A 

synoptic description and comparison of the most popular methods for the numerical solution of 

Boundary Value Problems (BVP) follows.  Almost every physical phenomenon can be 

described using differential equations and proper boundary conditions. A BVP, only in very 

simple and not so interesting cases, can be solved analytically, i.e. solutions is possible to be 

found, that satisfy both the governing equation and the boundary conditions. Thus, two 

different philosophies begun from the same threshold, the approximate solution of BVPs. The 

Finite Element Method is based on the theory of Ritz (1909) and the basic idea was that the 

solution should satisfy exactly the boundary conditions and the effort is concentrated to the 

best, approximate, satisfaction of the differential equation. On the other hand, Boundary 

Element Method have been developed in the foundations of Trefftz's (1926) theory. In the latter 

case, differential equation is satisfied exactly and the boundary conditions are approximated 

with the minimum error. In FEM the domain is divided into elementary subdomains where the 

equation is satisfied. In that way the solution is not enforced to satisfy exactly both the 

differential equation and the boundary conditions. The unknown parameters of the solution, 

consist to its values at the intersection points (nodes) of the elementary subdomains, are 

evaluated under the demand of minimization of the error due the approximation of the 

differential equation. The achievement of that method is that the solution has the minimum 

divergence from the exact solution which satisfies the governing equation globally at the 

domain, however there are points in the domain where the equation is violated. On the 

contrary, BEM does not require a subdivision of the domain and an approximation of the 

solution of the differential equation. Solution is composed of fundamental 

solutions/singularities also known as Green functions, each of them satisfies the equation and 

through the appropriate representation theorem (based on Greens theorem, see e.g. Kress 1989) 

the total does too. The singularities are distributed on the boundaries where the boundary 
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conditions should be valid. The demand of boundary conditions' satisfaction with maximum 

accuracy leads to the solution of a Boundary Integral Equation (BIE). The boundary is divided 

in boundary elements where we can approximate the boundary conditions using e.g. a 

collocation scheme.  

Comparing the two numerical methods we can see that BEM seems to be superior at many 

points:  

• In BEM only a surface (or linear for 2D) and not space (or surface for 2D) integration is 

involved and thus the dimension of the problem is of one order lower in comparison with FEM 

and finally the number of unknowns is significantly smaller in the first case.  

 

• Another advantage is that the solutions in BEM satisfies a priory the differential equation (or 

almost everywhere, because we have to except the singularity points) and thus the method is 

able to encounter problems with infinite domain, which is practically impossible for FEM for 

obvious reasons.  

 

• Furthermore in BEM, spatial subdivision is not required, which is in many cases a difficult 

problem of numerical analysis (see Beer et all 2008 and Kress 1991)  

 

• Finally, as a result of the first advantage and the fact that usually in low order BEMs (panel 

methods) the required integral calculations can be evaluated analytically, the computational 

cost and the time of computation are significantly lower. This last advantage of BEMs indicate 

that they are ideal for 3D and strongly unsteady problems. 

 

However, BEM is not panacea and has some drawbacks. The requirement of simple 

fundamental solution is the most serious one. If the fundamental solution is not simple, the 

computational cost rises. Furthermore, the evaluation of singular integrals that appears in 

BEMs presents difficulties. However, extended study has been done concerning the 

singularities of fundamental functions which consists of integral kernels form boundary 

integral equations e.g. we mention Muskhelishvili (1953), Mikhlin (1965), Polyanin & 

Manzhirov (2008). Finally, we mention that the state of the art in computational methods is 

concentrating in the development of higher order BEM (see e.g. Cottrel et al, 2009, Lee and 

Kerwin, 2003, Belibassakis et al, 2013) as well as sophisticated hybrid BEM-FEM models. 

These models applies every method in the region that it works more efficient (e.g. concerning 

Computational Fluid Dynamics, CFD, in the thin boundary layer region FEM is applied for the 

solution of Direct Navier Stokes, DNS, and outside of the boundary layer, or when the 

unsteadiness is strong, BEM is applied, due to the great amount of calculations) in this way the 

advantages of both methods are exploited see e.g. Beer et al (2008).  
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C h a p t e r   2  

 

PML - BE M FOR THE  

2D WAVE MAKER PROBLEM 

 

 

 

 

2.  BEM for flapper wave maker (2D problem) 

 

The Boundary Element Method (BEM) is the most common method to solve boundary value 

problem for the Laplace equation, modelling irrotational flows, in conjunction with appropriate 

boundary conditions completing the formulation, as e.g., 

 

 1g  ,                Dirichlet boundary data 

  2g
n





,             Neumann boundary data 

  3g
n




  


,   Mixed type (Robin) boundary data 

see, e.g., Katz & Plotkin (1991), Beer et al (2008). In this chapter we shall study in more detail 

the linearized problem of a wavemaker, which has an analytical solution. The latter solution for 

a flap-type and a piston-type wavemaker will be used as a prototype in order to test the 

accuracy of a low-order BEM, which will be used in conjunction with an absorbing layer 

technique in order to truncate the computational domain and enforce the radiation condition. 

Subsequently the performance of the  absorbing layer controlling the accuracy of the BEM 

numerical scheme will be optimized by comparison to the analytical solution, and the 

conclusions will be used for the extension of the method to 3D (in subsequent chapter). 

 

 

2.1 Evaluation of the wave potential in semi infinite strip 

In this section we consider harmonic water wave propagation in a semi-infinite two-

dimensional strip of constant depth h, extending from a horizontal bottom surface to the free 

surface; see Fig.2.1. In the case of waves of small amplitude and slope the linearized problem 

is governed by the Laplace equation.    Introducing a Cartesian coordinate system with origin at 
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some point on the mean water level (z=0) the mathematical formulation consists of  the field 

equation 

 

 

Figure 2,1:  Linearized water waves propagating in a semi-infinite strip 

Figure 2.1 Wave potential in semi-infinite strip. Wavemaker problem. 
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the free surface boundary condition  

 

0 , 0z
z



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and the bottom boundary condition,                                                                                               
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                                                                                             (2.3) 

where  2 / g   is the frequency parameter,   is the angular frequency of the waves and g  

the acceleration of gravity. 

 

 

 

A representation of solutions of Eqs.(2.1)-(2.3) is obtained using separation of variables, which 

reformulates the problem to a system of ordinary differential equations.  The latter are used in 

conjunction with the boundary conditions leading to the solution(s). So we end up to an 
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equation that connects  the wave frequency ω with the wavenumber k, that is also dependent on 

the  depth h of the strip. The process of separation  of variables is  based on seeking solutions 

in the form    , ( )x z X x Z z   , which substituted in the Laplace equation gives us 

 
 

 

 

 
       2 2( ) 0 0 & 0n n

X x Z z
X x Z z X x k X x Z z k Z z

X x Z z

 
         

 

 
   ,              (2.4)

                           

 

 

The boundary conditions (2.2) and (2.3)  can only be satisfied from the function Z(z) and thus, 

we obtain the following Sturm Liouville problem for the vertical eigenvalues  
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   2 2

0 0tanh tan , 1n nk g k h and k g k h n                                       (2.6) 

 

Also, we obtain for   

 

       0 0exp , 0 exp , 0,n nX x ik x n and X x k x n                                            (2.7) 

 

Equation (2.6) is the generalized dispersion equation, and the specific equation for n=0  

provides a relation between frequency and  wavenumber. The roots of the dispersion equation 

are presented graphically in Figs. 2 and 3. From the latter results, we easily obtain that that 

/ , for .nk n h n   
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Figure 2.2: Graphical solution for the dispersion equation (  2

0 0tanh , 0k g k h n   ) 

 

 

Figure 2.3: Graphical solution for the dispersion equation (  2 tan , 1n nk g k h n    ) 

 

All above constitute a regular Sturm-Liouville system and the numbers nk  are known as 

eigenvalues of this system (Coddington & Levinson 1972).  The solution of the eigenvalue 

problem has some very interesting properties, which are listed below: 
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1. nk and n    

2. In every 
nk  corresponds only one linearly independent eigenfunction  nZ z  

3. The eigenfunctions are mutually orthogonal: 
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 
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
           

                     (2.8) 

4. The eigenfunctions form an orthonormal system  

 
 

,n

n n m nm

n

z z
Z z Z Z

z
                                                                                  (2.9) 

 where  nm  is Kroneckers delta. 

5. The eigenfunctions constitute base on the space  2 ,0L h  and  generalize the Fourier 

systems, which means that every function in the interval 0h z    is represented in 

the generaised Fourier series 
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6.  The completeness of the Sturm-Liouville systems permits the rpresentation of Dirac‘s 

delta function  i the form: 

      0 0

0

n n
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z z Z z Z z
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Using Eqs (2.5) and (2.7) we obtain the general representation of the  solutions for the potential 

in the semi-infinite strip, as follows  
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 2.13  

In the above equation the first part illustrates the right-propagating mode and the second the 

reflected mode, while the rest terms (n>0) are evanescent modes, which are exponentially 

decaying at infinity, x .  

The above equations are general representations in the right-semi infinite strip, and constitute 

solutions of the problem for every possible value of the coefficients  , 0,1,2,.....nA n  . In the 

next subsection these coefficients will be analytically calculated for the proble of flap-type and 

piston-type wavemekers, positioned and operating on the vertical boundary x=0 (without loss 

of generality) 
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Figure 2.4: Flap and Piston type wave makers 

 

2.2 Solution for a flap and a piston wave maker potential 

In Fig .2.4 the two types of wave makers  are sketched. The flap-type wavemaker rotates a flap 

about a pivot point at z d  and generates waves with  frequency ω which is  equal to the 

rotation  frequency. The piston-type wavemaker is oscillating  horizontally. The flap 

approximates better water waves in intermediate and deep water depth conditions and the 

piston type is better for waves in swallow water conditions.  

 

The flap-type wavemaker rotating around the pivot point at d  and, for small rotational 

amplitudes, generates horizontal flow velocities equal to   z d  , for z>-d. Below this point 

there is a rigid wall and thus, horizontal velocity is zero, for z<-d.  In the case of the piston-

type wavemaker, the horixontal flow velocity is constant all over the water column. 

 

Consequently, the boundary conditions at x a  are : 

 

For the flap type wave maker:              

  , 0i z d d z
x n

 


 
       

                                                                                 
 2.14  

0, h z d
x


    

                                                                                                          
 2.15  

 

 

 

0

 

 

  
0

i te     

Flap  Type Wave Maker 

(Intermediate and deep water)  

Piston Type Wave 

Maker 

(Shallow water) 

d
 

h
 

x a  

z h   



27 

 

For the piston type wave maker: 
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Subsequently,  exploiting the properties of vertical eigenfunctions (eigensolutions of the Sturm-

Liouville problem) the problem is analytically solved by determining the coefficients of the 

series (2.14),(2.15),(2.16) to satisfy the above boundary conditions, and the results are as 

follows 

 

Flap-type wave maker:      
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For the piston  type wave maker:   
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 2.22  

 

 

The above  analytical solutions for the potential of the flap-type and the piston-type wave 

maker are comparatively plotted in Fig.5 for a depth equal to 1m . The  frequency is selected 

equal to 2.3 / secrad , and thus theratio of wavelength to waterdepth is /h   0.15 

corresponding to intermediate water depth. 

 

According to Fig. 2.5, it seems that piston wave maker gives a greater value of potential for 

these parameters. It is an expected result, since piston wave maker oscillates moving one meter 

from its equilibration spot. Otherwise the flap-type wave maker oscillates rotating the flap 1 

rad from the pivot point.  Consequently, the piston type presents greater value of potential in 

comparison with the flap-type. Generally, the piston-type wave maker behaves better in  

swallow and intermediate water, while the flap-type operates better in deep water. 
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Figure 2.5: Flap-type and piston-type wave maker potential distribution on the free surface. 

 

 

Following the  Galvin(1964) simplified theory for plane wavemakers, we will end up that the 

piston type wavemaker is more appropriate in swallow water than the flap type wavemaker. In 

shallow water, a simple theory for the generation of waves by wavemakers was proposed by 

Galvin (1964), who reasoned that the water displaced by the wavemaker should be equal to the 

crest volume of the propagating wave form. For example, consider a piston wavemaker with a 

stroke S which is constant over a depth h. The volume of water displaced over a whole stroke is 

Sh (see Figure 2.6). The volume of water in a wave crest is  

 

  
/2

0
/ 2 sin /

L

H kxdx H k                                                                                                   (2.23) 

 

 Equating the two volumes 

 

These two relationships are shown as the straight dashed lines in Figure 2.7 
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Figure 2.6: Simplified shallow water piston-type wavemaker theory of Galvin 

 

 

Figure 2.7: Plane wavemaker theory. Wave height to stroke ratios versus relative depths. Piston 

and flap type wavemaker motions 

 

If we consider for the piston type wavemaker stroke S=X0=1  and for the flap-type wavemaker 

stroke S=θ0=1  then the equations for wave response height to stroke ratio  H/S   
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Deep  water:     
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FLAP TYPE    
 

In the special case of d=h for the flap type  
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                                                                                                              (2.26) 

in which the 2 /  factor represents the ratio of the shaded area to the area of the enclosing 

rectangle (i.e., an area factor). This equation can also be expressed  

piston

kh
S

 
 

 
                                                                                                                         

where H/S is the height-to-stroke ratio. 

 

 This relationship is valid in the shallow water region, /10kh  . For a flap wavemaker, 

hinged at the bottom, the volume of water displaced by the wavemaker would be less by a 

factor of 2.  

 

2flap

H kh

S

 
 

 
                                                                                                                          

 

Consequently, the piston type wave maker is more efficient than the flap type wave maker in 

swallow water. 
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2.3  2D Boundary Element Method 

In the semi infinity strip problem we have taken the analytic solution, but in more complicated 

problems we cannot take solutions like this. Consequently it is very important to find a method 

that would approximate the solution of a more complicate problem.  Boundary element method 

is that we need to solve difficult problems numerically. The state of art of this method  is to 

approximate the domain‘s boundary with panels (1
st
 order BEM) and to distribute fundamental 

solutions of Laplace equation on the center of each panel. Consequently, the whole boundary 

problem is converted to an integral equation, which is open to numerical solution. In the 2 D  

problem the Laplace‘s fundamental solution is   
11

| ln
2

G



 x y x y   and is referred as 

source function. This solution has the property to evaluate the equation  

 
   
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2
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x x


 
      

 

x y x y
x y x y x                                                 2.27  

where  1 2,y y D y  is a fixed point in domain D   and  

 1 2,x x D x   is the general field point in domain  D   and 

      1 1 2 2x y x y     x y  is the Dirac function which is defined by the equation  

        0,dx C    



     x x y y

                                                                          

 2.28  

 The method has many variations, one of these is based on the Green‘s second theorem  

 
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G
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  n n

                                                             

 2.29  

Using the Green‘s theorem we end up that  the potential in any point of the interior of the 

domain can be represented by  surface distribution of sources or sinks with the  following 

equation 

         | , :
D

G ds uknown source strength  


 x y x y y y

                                        

 2.30  

The velocity for any point of the interior of the domain is given by 

            | |x x

D D

G ds G ds  
 

 
     

 
 u y x y y y x y y ,                                   2.31  
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The gradient is get inside of the integral and is applied on  |G x y , because   y  is 

considered constant on each panel so it is independent of the space variable. All above are 

referred in the interior  problem. When we are moving on the boundary, one additional term is 

added in the velocity‘s equation. 

   
     |

2
x

D

G ds





  
y n x

u y x y y ,                                                                        2.32  

 n x  is the unit normal vector to the boundary D  directed into the exterior of D . The normal 

component of velocity is given from the scalar product of 

     
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u n x u x n x n x y x y y x

n
                       

 2.33  

 So, if we define the conditions as  0 ,g Dx x   for the Dirichlet problem and   ,ng Dx x   

for the Neumann problem, then the above equations become : 
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 2.34  
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 2.35  

 

In order to evaluate these integrals, we must approximate the geometry of boundary with 

another simpler geometry. Here we use a low-order BEM and we approximate the boundary 

with panels. The disadvantage of the low order in comparison with the high order BEM 

methods is that we need a large number of elements to find a solution with a great accuracy.  

Hence, we approximate, in figure 2.8, the boundary‘s geometry with a polygon, whose panels 

have the same length.   
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Figure 2.8: Approximation of the boundary in the case of low-order BEM by a polygon. 

 

Figure 2.9: Histogram with source and doublet distributions on each panel. 

As the number of panels increases, the polygon‘s  shape converges to the domain‘s boundary 

geometry and respectively  the numerical solution tends to the analytical. Evaluating the 

normal vector for each panel, makes possible to solve the integral equation.  The idea is to 

assume the source distribution constant in each panel, so that the approximate distribution is 

illustrated as an histogram (Figure 2.9) and verges on the actual form of sources. In our 

example, are used source and doublet distributions but there are vortex distributions, which are 

useful  to approximate vorticity problems.  The strength of sources will be evaluated, solving a 

linear system and as the number of panels is being increased, the distribution is converging to 

the real form. 

In any case the integrals above are hard to evaluate, even for simple forms of sources, even if 

the surface on which the sources are distributed is a straight line. Thus, we select a certain 

number N of points on the boundary, called nodes,  and connect the nodes with straight lines, 

creating the panels of the method. Now the equations can be written :  

 ,x yn n  
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Figure 2.10:   Panel local coordinate system 
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 2.36  

 

We insert local coordinate system for each panel (see Figure 2.10) to evaluate the integrals, as 

it is shown in Fig.2.10. We have to find the induced potential and velocity of a point P  with 

coordinates  2 3,x x  from  the source distribution of a panel  which is defined between the 

nodes A with general coordinates  2 3,x x   and B with  general coordinates  2 3,x x  .  The 

local system is consists of  ,  an axis parallel to the line   and  , an axis perpendicular to 

 . In his system, the nodes   and  have more simple coordinates like  ,0   for   and 

 ,0  for  . We assume that the potential and velocity are induced by the midpoint of panel 

  to the point P . Thus, the results that give us the induced units from a panel to a point are 

listed below: 
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Fig. 2.11  Induced potential and flow velocities from a linear element, as calculated using        

Eqs.(2.33)-(2.35). A colorbar is used to indicate the values of the potential. 

 

The final results are taken with a transformation to the general coordinates system with the 

equations below: 
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x x
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 2.42  

 

As an example the induced potential and flow velocities from a linear element    extending 

from A= (0,0) to B=(1,0) are shown in Fig. 2.11. 

On the basis of the above, we finally end up to a linear system of equations : 

1

, 1, ,
N

jk k j

k

A g j N


                                                                                                     (2.43) 

where jg  is the condition we apply to the boundary.  If    j jg P P , it is a Dirichlet 

condition. If   
 j

j

P
g P

n





  it is a Neumann condition. The jkA  denote the effect of the 

center of the k panel  to the center of the j panel . In order to solve this linear system, we 

have to reverse the equation and we take the source strength for each panel. Then, it is possible 

to evaluate  forces and moments which are exerted. 
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2.4 Numerical results concerning the flapping wave maker problem 

After this introduction in  BEM, we present an application of this method for the semi infinity 

strip problem in order to compare the analytic solution with the numerical. An algorithm has 

developed, to apply the BEM and to find the analytic and numerical solution.  

 

First, the domain is divided into 3 regions, as it is shown in Figure 2.12: 

1. The free surface, where the absorbing layer is applied.  1M  

2. The fixed and the moving part(d=0.3m) of the flapper.  2M  

3. The rigid bottom.  3M  

Then, are given the frequency and the depth as inputs and then  using the dispersion equation 

we find the wave length and the wave number. Subsequently, the geometry is created locating 

nodes on the boundary. We have 3 sections, one for the free surface , one for the flap wave 

maker and the wall and one for the bottom. Specifically, the number of nodes is increased in 

the region of flap wave maker, since  the flap is moving and we want better approximation. 

 

 

Figure 2.12: The semi infinity strip domain including the Flap wave maker. 

 

z=-h 

λ 

z=-d 

Η=2Α 

 2θ0 



38 

 

Furthermore, we follow the process, which referred above, finding the midpoint, the horizontal 

and vertical components of the unit normal vector and the angle between the local and the 

general coordinate system. Then, a matrix is created with the right states  jg P  of the 

conditions. A subroutine is called to evaluate the induced potential and velocity from 

i panel to j panel . Thus, a matrix is created with the left states of the conditions and the 

linear system is solved, giving the source strengths in each panel.   The linear system is 

presented below: 
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In addition the following boundary conditions hold on the wave maker 
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where                         
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and on the bottom surface 
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 2.48  

 

Then, another subroutine is called to evaluate the analytic solution in the same nodes  as in the 

numerical. Finally, the real and imagine parts of the exact and the approximates solution are 

plotted and we observe the difference between them.   
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2.4.1 Radiation Condition 

 

It is very important to define the radiation condition. This condition is referred to the wave 

behavior far from the stimulation field. Essentially, this condition illustrates the deadening of 

the wave as it fends off the stimulation point.  It cannot be formulated a priori as a physical 

restriction of the problem, but it is applied after a very careful preliminary analysis of the 

equations of the problem. Radiation condition forms the final analytical solution. For example, 

in the general solution of the semi infinity problem is showed up a term that is being increased 

exponentially, while the distance from the stimulation field is getting bigger. This does not 

make sense, so with the radiation condition this term is deleted. Thus, we cannot claim that 

radiation condition is a common condition.  Nevertheless, we can find  the radiation condition 

only in problems that we know the analytical solution or the semi-analytical. So, it is necessary 

to find a manner to approximate radiation condition in complicated problems, as we referred 

above.  One way to overcome this obstacle is the absorbing layer, which we used in the 

program, in order to evaluate the solution. An important task concerning the present scheme 

deals with the treatment of horizontally infinite domain and the implementation of appropriate 

radiation-type conditions at infinity. The present work is based on the truncation of the domain 

and on the use of Perfectly Matched Layer (PML) model, as e.g. described by Berenger (1994) 

and Turkel, Yefet (1998), optimized by Collino, Monk (1998); see also  Filippas, Belibassakis 

(2014). This deadening is generated by a term that is included to the free surface condition far 

from the wave‘s stimulation point. We can tell that is an imagine part of frequency, which 

reduces the solution to zero.     
2

22
0

0

1
1

n

n

n

x x
i c x x ic

g g


  



 
      

 
 

 .The 

effectiveness of the layer depends on the following dimensionless parameters:  

 Dimensionless Frequency,  
2 h

g





  

 Coefficient, 
nc

c





  

 The activation length(or activation distance per wave length),  
0

r
x



 
 
 

 

 The exponent, n  

 The number of panels per wave length,   
N


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2.4.2 Absorbing layer and optimization   

In order to optimize the absorbing layer, to approximate well the radiation condition, we have 

written a program, that compares the analytical solution with the approximate solution for 

various values of parameters. It takes 3 values for each parameter and are showed in the matrix 

below 

 Shallow Intermediate Deep 

  0.3193 0.7343 1.6922 

c  0,0089 7,4843 2100,6 

/r    3 4 4.5 

 n  2 3 4 

/N             10 20 30 

 

We run the program for the flap wave maker 243 times, in order to capture all the combinations 

and to find the conjuction that will approximate better the radiation condition. The program for 

the flapper is used as a subroutine, which accepts the parameters from the main program and 

finds the analytical and the numerical solution. Then, the solutions are abstracted and we check 

the potential for the nodes, which are before the region in which the absorbing layer is 

activated. So, we want the absorbing layer to effect as little as possible in the region, where it 

does not operate. The control  is fulfilled using a Chebyshev norm thus we find the biggest 

error for the potential  real and imagine part. The values of frequency are chosen to fluctuate 

1 5 / secrad , to cover the case of swallow , intermediate and deep water, as it is shown in 

Figure 2.13.  We do that because the absorbing layer behave differently in each case . The 

absorbing layer does not approximate very well the radiation condition in deep water and it 

displays errors with the analytic solution. Consequently, when we choose frequency equal to 5 

rad per second the error is greater than in the other cases. 
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Figure 2.13: Graphical swallow, intermediate and deep water lines. 

 

 After running the program for all the combinations we choose the combination with the 

minimum error and essentially we have found the parameters for the absorbing layer. Below 

are listed some charts, showing the comparison between the analytical  and the approximate 

solution for various values of parameters. Firstly, are plotted the solutions with bad 

approximations for the imagine part and great approximation for the real. Then are shown the 

best approximations for each value of the frequency.  

 

 

 

 

 

 

 

 tanh x  

Intermediate 

depth 
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Case : 0.3193 2100.6 4 / 3 / 30c n r          

 

Figure 2.14:Comparison of the analytic and approximate solution for the real and imaginary 

part. 

 

Case : 0.7343 0.2634 2 / 4 / 30c n r          

 

Figure 2.15:Comparison of the analytic and approximate solution for the real and imaginary 

part. 
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Case : 1.6922 0.0292 3 / 3 / 30c n r          

 

Figure 2.16:Comparison of the analytic and approximate solution for the real and imaginary 

part. 

 

Case : 0.3193 3.7422 2 / 3 / 30c n r          

 

Figure 2.17:Comparison of the analytic and approximate solution for the real and imaginary 

part. 



44 

 

Case : 0.7343 0.5269 2 / 4 / 30c n r          

 

Figure 2.18:Comparison of the analytic and approximate solution for the real and imaginary 

part. 

 

Case : 1.6922 0.2634 4 / 3 / 30c n r          

 

Figure 2.19: Comparison of the analytic and approximate solution for the real and imaginary 

part. 
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Furthermore, 9 diagrams are presented, in order to understand  how effects each variable to the 

absorbing layer and to find those combinations of variables, that give the minimum error. In 

them we see the error as a function of the exponent n  and the activation length /r  . The 

number of panels per wave length was held constant and equal to 30 because the solution is 

approximated better as the number of panels is increased. There are three diagrams for each 

value of frequency  and each diagram includes the solution for one of the three values of the 

coefficient.  

 

 

 

1.  1 / sec 0,01rad and coefficient    

 
Figure 2.20: Error presentation for various values of the parameters. 
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2.  1 / sec 0,015rad and coefficient    

 

Figure 2.21: Error presentation for various values of the parameters. 

 

3.  1 / sec 0,02rad and coefficient    

 

Figure 2.22: Error presentation for various values of the parameters 
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4. 2.3 / sec 0,01rad and coefficient    

 

Figure 2.23:Error presentation for various values of the parameters. 

 

5. 2.3 / sec 0,015rad and coefficient    

 

Figure 2.24:Error presentation for various values of the parameters. 
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6. 2.3 / sec 0,02rad and coefficient    

 

Figure 2.25:Error presentation for various values of the parameters. 

 

7. 5.3 / sec 0,01rad and coefficient    

 

Figure 2.26:Error presentation for various values of the paramaeters. 
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8. 5.3 / sec 0,015rad and coefficient    

 

Figure 2.27: Error presentation for various values of the parameters. 

 

9. 5.3 / sec 0,02rad and coefficient    

 

Figure 2.28:Error presentation for various values of the parameters. 
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These diagrams are presented in order to sort out which is the best combination for the 

absorbing layer. Hence, it will be used in the case of the 3d problem. At first glance, it is 

obvious that when the 2 / 3n and r    we have low error for low and intermediate 

frequencies , so the absorbing layer operates well for the specific combination, offering small 

error in relation with the analytic solution. On the other hand, the error is increased in the case 

of deep water . For high frequencies the parameter  / 4 4 . 5r    offer lower error than  

/ 3r   , in the same frequency. Generally, the absorbing layer substitutes well the radiation 

condition in low and intermediate frequencies, but in high frequencies is not strong enough to 

give the appropriate results.    

  

Based on the above analysis we can conclude that an optimal version of the modified frequency 

parameter in the PML region is given by the following form 

 

      
2

22

0 0

1
1

n nc
i c x x i x x

g g


   



 
      

                                                   

(2.49) 

 

 

where the coefficient   c   is exponentially dependent to the frequency, taking higher values 

for higher frequency. We  shall approximate this  dependence in the following form 

 

min

max

p

c c




 
   

 
                                                                                                             (2.50) 

 

 

with appropriate (selected) values for minc ,  max   and the exponent  p.  Specific values for the 

3D problem concerning the diffraction and radiation problem of a 3D floating body in general 

bathymetry regions will be provided in the next Chapters. 
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 C h a p t e r   3  

PML- BE M  FOR 3D CYLINDER  OVER  

FLAT BOTTOM  

 

  

 

Summary 

In this chapter, we first study the problem of a floating heaving circular cylinder in finite water 

depth and present the analytic solution. Subsequently, results concerning the added mass and 

damping coefficient and hydrodynamic forces are shown. In the next stage, a low-order 

Boundary Element Method  is presented, based on  an absorbing layer on the free surface, and 

applied to the hydrodynamic analysis of floating bodies over a flat horizontal bottom. 

Comparison of the results is presented against the analytical solution in the case of vertical 

cylinder, illustrating the convergence of the method, and the performance of absorbing layer 

technique. The latter, after validation and further optimization will be used in the next Chapter 

for the solution of the hydrodynamic problem of  3D bodies over general bathymetry region 

with different depths at infinity, where radiation conditions are not available. 

  

3.1  Analytic solution of a vertical cylinder in finite-depth water  

Due to the axi-symmetry of the geometry, both the dynamic equations and the radiation 

problem associated with the heaving motion, can be easily treated. This problem was studied 

extensively (see, e.g Young 1980, Calisal 1980, Bhatta et al 2011), since circular cylinders are 

common elements in floating offshore structures  or in coastal and  nearshore structures, used 

as breakwaters and port protection structures etc.  

 

We proceed to the mathematical formulation of the problem. We consider a vertical cylinder 

with diameter 2a and finite draft T  heaving-harmonically in water of depth h, as it is shown in 

Fig.3.1. The bottom clearance is d=h-T.   In the case of the symmetric heaving problem the 

cylinder response is independent of the incident wave angle,  so without loss of generality, we 

choose the wave‘s direction to be parallel to  the 1x - axis.  

In our case,  from hydrostatic balance the mass of the body is equal to 
2M     (ρ is 

water‘s density). Also, we consider that cylinder is upright and the center of gravity is located 

in the same vertical as the center of buoyancy.  
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Figure 3.1: Vertical oscillation of a vertical cylinder. 

 

 

So the involved added mass coefficients in heaving are  33M  ,  35 1 0M J   and the 

corresponding hydrostatic coefficients are 2

33C g   and 34 35 0C C  .  Also, because of 

the body symmetry the radiation potentials        1 2 4 5, , ,x x x x     related with the 

moves 1 2 4 5, , ,    (surge, sway, roll, pitch) are antisymmetric and their integration combined 

with the generalized normal vector corresponding component kn  to the  body surface Bx D , 

gives zero distribution. Consequently  

3 3 0, 1,2,4,5

B

l l B

D

n dS l


      .                                                                                    (3.1) 

Furthermore, the radiation potential  6  related with the move 6  (yaw) is equal to zero, 

 6 0x  , since  the generalized normal vector  corresponding component resets 6 0n  at the 

submerged part of the body surface. From the above, results that only the added mass and 

damping  matrix  data (see below 3.3), which take part to vertical oscillation equation and are 

exclusively connected with the heave motion  3 , remain zero. Consequently, in heaving 

cylinders the dynamic equilibrium  equation is simplified and takes the following form, 

           2

33 33 33 3 03 3di C X X              ,                                       (3.2) 

where  03X  and  3dX  are  the complex amplitude of the Froude-Krylov and diffraction 

3x
 

2a
 

1x
 

d
 

eD
 

3x T 
 

3x h 
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forces respectively. We recall that in case of existing other forces, they have to be added in the  

right part of the Eq. (3.2). Subsequently, we will present the application of the coupled mode 

method to define the potential   3 x
 

through which the added mass‘s and damping 

coefficients can be evaluated  by  

 
2

33 33 3 3 3 3

0 0

1
, ,

B

r a

B

D r

A n dS d r r x T dr
i





  




  

         
                                               

(3.3) 

For the production of the right part, the property that the radiation potential  3
 

is 

axisymmetric is used. Thus, 3 and so independent from the azimuthal  angle 

 1

2 1tan /x x 
 
and therefore ,  3 3 3,r x  ,where    

2 2

1 2r x x   is the distance on 

the horizontal plane from the cylinder axis of symmetry. It is noteworthy that the Froude-

Krylov forces are evaluated easily with direct integration of the incident wave potential over 

the submerged cylinder surface BD  

  
 

 0 3

0 0 12

0

cosh
exp

cosh

k x hgA
x ik x

k h

     ,  where  2

0 0tanhgk k h  ,                             (3.4) 

and A the wave elevation amplitude on the free surface. Taking into consideration that 3 0n 
 

on the vertical part of the wetted cylinder surface and 3 1n   on the cylinder bottom  3x T  ,  

in the present case Froude-Krylov  forces are given by the following equation,  

 
2

2 2

03 0 3 0 3

0 0

, ,

B

r a

B

D r

X A n dS A d r r x T dr





  


  

       
                                               

(3.5) 

and they are evaluated analytically below. 

The determination of the diffraction  potential    d x , through which the respective 

diffraction forces can be evaluated, 

 

 2

3 3

B

d d B

D

X A n dS


 
                                                                                                        

(3.6)  

presents some difficulties, due to the fact that the field is not axisymmetric and it depends on 

the three space dimensions.  Nevertheless, the coupled mode method can be applied and in this 

case and provides solution for the problem. The reader is referred to the related works of Black, 

Mei & Bray (1971) and Garret  (1971), where are presented details for the application of this 

method to the specific problem.  

It is known that the total hydrodynamic forces can be evaluated by the application of the 

Haskind-Newman  equations via  3 3,r x .  Also, the force amplitude can be evaluated by the  

damping coefficient 33B , which is based only on the radiation potential  3 3,r x . The 

application of these equations is useful, because it allows us to avoid the diffraction potential 
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determination, when we examine the cylinder responses and it will be presented in detail 

below.  

 

3.2 Evaluation of the cylinder radiation potential  3 x  

The coupled mode method, that  will be presented here for the solving of the radiation  problem 

for the cylinder vertical oscillation, constitutes a general method for solving and  simulating 

problems of wave propagation , which is used in many applications beyond the region of the 

hydrodynamics of a floating body , such as the free surface wave‘s propagation over a variable 

bathymetry, propagation and scattering of acoustic waves in the sea environment and also in 

more general problems of wave propagation.  

With the help of interfaces,  that are shown with dashed lines in Fig.3.1,  the total flow domain 

e iD D D   is separated in 2 regions, the interior domain  below the cylinder iD  and the 

exterior cylindrical domain eD . The interface in present case is the vertical cylindrical surface 

at      
2 2

1 2r x x a   , 3h x T    .  

Exterior domain:  The representation of the solution of the  radiation  problem in the exterior 

region eD  is provided by the general representation theorem (Athanassoulis & Belibassakis 

2012), taking into consideration  the appropriate behavior requirements of the field to the 

infinity   r   , which must have the form of outgoing waves that are also decaying as 

propagating to infinity due to the fact that the same energy is propagating through cylindrical 

surfaces that are constantly growing. In this case the field is axisymmetric and so independent 

by the azimuth angle.  Therefore, all of the terms including trigonometric functions except of 

the first  0m   zero, and we receive 

                 1

3 3 0 0 0 0 3 0 3

1

,
e e e

n n n

n

r x a H k r Z x a K k r Z x




    , r a  , 3h x T    ,                (3.7)    

where 

      1/2

0 3 0 3 0cosh /
e

Z x k x h N       and       1/2

3 3cos / , 1,2 ,
e

n n nZ x k x h N n     
         

(3.8) 

 

0
0

0

sinh1
1

2 2

k h
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k h

 
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 ,     

sinh1
1

2 2

n
n

n

k h
N

k h

 
  

 
,   1,2,3 ,n                                               (3.9) 

 

and the 0k , nk , 1,2 ,n    arising as solutions of the dispersive relation (see also Eq.2.6) 

 0 0tanhh k h k h   and  tanhn nh k h k h   ,      1,2n                                               (3.10) 
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In the last equation 
2 / g   is the problem frequency parameter. We remind here that the 

above representations are constructed with the application of the separation of variables method 

in Laplace equation in regions with horizontal boundaries and in the problem boundary 

conditions. The  complex coefficients  , 0,1,2na n   are the problem unknowns in the 

exterior region eD .  

Interior domain: The potential in the interior region iD  below of the cylinder, satisfies the 

Laplace equation  

2

3
3 2

3

1
0r

r r r x

   
     

   
,                                                                                          (3.11) 

where the field axisymmetric  property has been used  ( 3 0






), and in addition, the 

homogenous equation to the bottom, 

3

3
, 0x

n


  


,      3x h  ,                                                                                               (3.12) 

and the inhomogeneous equation on the bottom of the cylinder  

3, 3 1x n
n


  


,      3x T  ,                                                                                            (3.13) 

which constitutes the forcing condition of the problem. The general solution of the above 

problem is composed by a particular solution of the inhomogeneous problem,  3 3,r x , and 

the general solution of the  corresponding  homogenous problem,  3 3,r x , as follows 

     3 3 3 3 3 3, , , .NHr x r x r x                                                                                        (3.14) 

 

A simple form for the particular solution of the inhomogeneous problem is the following 

   
2

2

3 3 3

1
,

2 2

NH r
r x x h

d

 
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 
,                                                                                        (3.15) 

which, as it is easily noted, satisfies all the above equations. The general representation of the 

homogeneous problem  solution in the interior region iD  below of the cylinder, can be 

constructed  with the method of separation of variables in the region iD  and has the following 

form, 

     3 3 0 3

0

, cosH

n n n

n

r x b I r x 




  ,          ,n

n

d


  0,1,2,n                                       (3.16) 

Therefore, the general representation of the potential   3 3,r x , in the interior region iD is 

written as follows 

           
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2

3 3 3 0 3

0

1
,
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 
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 
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 
 , with 

     3 3cos
i

n nZ x x
       

(3.17) 
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where, the coefficients  , 0,1,2nb n   constitute the problem complex unknowns in iD . With 

the above representations (3.7) and (3.17) all requirements of the problem have been satisfied, 

except from  

 

1. The satisfaction of the boundary condition on vertical cylinder (wetted) surface  

 
, 0
e

r
n


  


,       r a ,     3 0T x   ,                                                                    (3.18) 

 

and 

 

2. The matching of the representations on the common interface, which requires the 

continuity of the potential and its first derivative: 

 

 
   
, ,

i e

r r    and  
   
, ,

i e

r r    ,   r a ,  3h x T     ,                                            (3.19) 

With the application of the coupled mode method, the property of the set of the eigenfunctions   

    3 , 0,1,2
e

nZ x n    and  
    3 , 0,1,2
i

nZ x n    to be an orthogonal basis  (which can be 

easily normalized) is exploited. Thus, the latter constitute a complete set of functions in the 

space of squared  integrable functions    3f x    defined in the intervals 3 0d x    and 

3h x T    ,  respectively. So,   Eqs. (3.18) and the first of Eqs. (3.19) that regard to the 

horizontal derivative can be equivalently satisfied with their  projection to the vertical basis  
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     

                                   

        
3

3

0

, 3 3 3, ; 0

x

e e

r n k

x T

r a x b Z x dx





    ,   0,1,2,k   ,               (3.20) 

and the second from Eqs. (3.19) , which regards the continuity of the field values on the 

interface from the projection to the vertical basis 
    3 , 0,1,2, :
i

kZ x k  
 

              
3

3

3 3 3 3, ; , ; 0

x T

i e i

n n k

x h

r a x a r a x b Z x dx





      , 0,1,2,k                      (3.21)  

Substituting Eqs. (3.7) and (3.17)  to the above equations and integrating with respect to 3x , 

(which is analytically obtained), leads to a system solving for the unknown coefficients  
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 , 0,1,2na n   and   , 0,1,2nb n   .  Coefficients  , 0,1,2nb n    are obtained from the 

solution of the linear system (see for details  Yeung 1980) 

0

, for 0,1,...n nj j n

j

b e b g n




   ,                                                                                   (3.22) 

 

'
0

nk jk k
nj j

k k k

C C R
e S

m R





  
   

  
 ,                                                                                                     (3.23) 

* *

'
0

nk k
n k n

k k k

C R
g A b

m R





 
  

 
 ,                                                                                                       (3.24) 

where km are solutions of the equations  

                                                                                                                       (3.25) 

 Where m represents m0 or imk for 1k   

     *

3 3 3 3

0

,

d
iNH

k kA r x Z x dx
r


 


,                                                                                           (3.26) 

   *

3 3 3 3

0

2
, cos

d

NH

n nb r x x dx
d

  ,                                                                                         (3.27) 

*

0

0,1,2n k nk k n

k

b R C A b n




                                                                                       (3.28) 

 * '

0

/k n nk n k k k

n

A S C b A m R




 
  
 
  ,                                                                                            (3.29) 
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   

 

1
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1
k k

k

H m r for k
R m r

K m r for k

 
 



,                                                                                       (3.30) 

And  the coupling integrals nkC  are defined by: 

   3 3 3

0

0,1,...2
cos

0,1,...

d

nk n k k

n
C x Z m x dx

kd





 ,                                                                       (3.31) 
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   

     
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The quantity nS occurring in Eq.(3. is defined by: 

   '

0 0/
2

n n n

n
S I a I a


  ,                                                                                                    (3.32) 

 

 

tanhm m v
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Practically, the infinite series, that are involved in the representations  (3.7) and (3.17) ,  are 

simplified keeping only the first K terms. Consequently, the above equations end up finally to a 

system of 2K equations with 2K unknowns, which can be solved numerically by known 

methods. The infinite series simplification combined with the fast convergence, introduce an 

error, that languishes quickly as K is increased.  It is noteworthy that the simplification of the 

infinite series combined with the orthogonal projections of the equations (3.18) and (3.19)  to 

the corresponding basis constitute an application of the general Galerkin method, in the case of 

the problem we study.  

 

After finding the coefficients of the series, the hydrodynamic coefficients can be evaluated by 

Eq. (3.3) , where obviously for the radiation potential applies that 

      3 3 3 3, , ;
i

nr x T r x T b      .                                                                                (3.33) 

 

3.3 Evaluation of the hydrodynamic coefficients 

Using the indefinite integral     0 1xI x dx xI x , the final result for the hydrodynamic 

coefficients, related with the cylinder  vertical oscillation results in non-dimensionalized form,  

as follows 

 33 33

33 33 3

/ 1 1ˆ ˆ 2
4 16

A i B d a
A iB

a a d a





  
     

 
                                                               (3.34) 

 

where, 

 
 2 10

1

1
2

n

n

n

I ab d
b

a n









    ,  1,2,n                                                                            (3.35)  

 

We quote below indicative results in Figs. 3.2 and 3.3.  

 

Especially, in Fig. 3.2. are presented the non-dimensionalized damping  and added mass 

coefficients for radius to water depth ratio / 0.5a h  and for several values of the bottom 

clearance to water depth ratio /d h 0.1, 0.25, 0.75, 0.9 and 0.99. Also, in fig. 3.2 are 

presented corresponding results for / 0.2a h  . The infinite series are deducted for the results, 

using  K=5  terms. As well it is noticed that from the presented method we can take estimation 

for many units and for the deep water  case.  Practically, is enough to set for the tested 

frequency, a finite depth, that will be much bigger than the maximum of α,Τ and 02 / k  . 

An other case of hydrodynamic coefficients evaluation, that we will work out later for the 

hydrodynamic forces and responses estimation is presented in Fig. 3.3 and 3.4. In this case the 
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cylinder radius is  0.35a m  and the draft  0.63T m and so the volume is 30.242m  . The 

water depth is 3h m  and therefore the ratios / 0.116a h   and / 0.79d h  . 

 

The results that regard the (non-dimensionalized) hydrodynamic coefficients for several values 

of the non-dimensionalized wave number 0 2 /k a a   are presented in this case in Fig.3.3. 

Respectively, in Fig.3.4 the hydrodynamic  coefficients are presented in the same as the 

previous case, for various values of the non-dimensionalized frequency /a g . Here we use 

a different normalization and we present the units  33 /A M and  332 /B M  , in order to show 

the importance of these units related to the cylinder‘s mass.  
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Figure  3.2: Non-dimensionalized hydrodynamic coefficients of a cylinder in vertical 

oscillation for  / 0.5a h  0.6 and / 0.2a h   0.3 and various values of the bottom clearance to 

water depth ratio /d h 0.1, 0.25, 0.75, 0.9 and 0.99. The results are presented for various 

values of the non-dimensionalized wave number 0 2 /k a a  . 

/ 0.1d h   
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/ 0.999d h   
0.1  0.75  
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/ 0.90d h   

0.75  
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Figure 3.3: Non-dimensionalized cylinder hydrodynamic coefficients for / 0.116a h  and 

/ 0.79d h  , for various values of the non dimensionalized wavenumber 0 2 /k a a  . 

 

Figure 3.4: Non-dimensionalized cylinder hydrodynamic coefficients for / 0.116a h  and 

/ 0.79d h  , for various values of the non dimensionalized frequency /a g . 
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3.4   Evaluation of the Froude-Krylov’s forces  03    in the vertical direction 

Substituting the results Eq. (3.4)  in the Eq. (3.5) and taking into consideration the below 

analytic expression of the function  1exp ikx  

     1 0

0

exp cos
m

m m

m

ikx e i J k r m




   ,                                                                           (3.36) 

with 1me  , for m=1 and , 2me   for 2,3,m   ,  we obtain 

                                                                                                                                              

   
2

2 0
03 02

00 0 0

cosh
cos

cosh

r a
m

m m

mr

g k d
X A d r e i J k r m dr

k h





  


 

 

                                        (3.37) 

 

From the sum‘s terms in the integrated part, because of the integration of ζ, only the term m=0 

has non zero contribution, and so  

   0 0 0
03 0 0 1 02

0 0 00

cosh cosh
2 2

cosh cosh

r a

r

k d k d k a
X gA r J k r dr gA J k a

k h k h k
 





                                    (3.38) 

 

where the indefinite integral was used     0 1xJ x dx xJ x . The final result is presented in a 

non-dimensionalized form, as follows 

 

 03 0
03 1 02

0 0

cosh2

cosh

X k d
X J k a

g a A k a k h 
 


                                                                                (3.39) 

 

From the equation above, we conclude that in our case the Froude-Krylov forces have zero 

phase difference concerning the incident‘s wave elevation in the  cylinder centre r=0, as a 

consequence of body‘s symmetry. Also, for very slow motion, to wit ω and 0 0k a   , these 

forces tend to the hydrostatic added force due to the wave‘s elevation 
03 1X 


, as it is 

naturally expected. In the end, for a very fast oscillation, to wit ω and 0k a  these forces 

tend to zero.  
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Figure 3.5: Amplitude and Phase of Cylinder hydrodynamic forces for / 0.116a h  and 

/ 0.79d h  , for various values of the non dimensionalized wavenumber 0 2 /k a a  . 

 

 

 

This is explained naturally due to the fact that  as the frequency increases, the wave length 

tends to zero, so the contribution of many wave lengths in the pressure forces on cylinder 

bottom are mutually reversed. Numerical results in cylinder case with / 0.116a h  and 

/ 0.79d h   are presented in Fig.3.5 , where  it is observed a good accordance with the above 

asymptotic behavior. 

 

3.5  Evaluation of total hydrodynamic forces  

According to previous Section results, the aggregate hydrodynamic force 

     3 03 3dX X X     can be evaluated by integration of the incident wave and radiation 

potential to the circular cylinder collateral surface *

RD  for quite big radius R , as follows 

 
3

*
3

0 2

2 23 0
3 0 3 3 3

0

, ,

R

x
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x hD

X A dS A dx d R R x
R R

 



   

 

 

  
       

  
    ,                (3.40) 

 

where  
*

3 0
3 0 3, ,

RD

E r R x
R R




  
    

  
. According to the previous Eq.  (3.36), the 

incident wave potential is written in the form 
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 
 

   0 3

0 3 02
00

cosh
, , cos

cosh

m

m m

m

k x hg
r R x e i J k R m

k h
 







                                        (3.41) 

After substitution of the radiation  potential  
   3 3,
e

r x in the exterior region eD  and taking 

into consideration that 

(i) The functions  0 nK k r
 
decay  exponentially in large distances and can be omitted for  

R   and 

(ii) The terms that include cosm , 1,2,3m    are zero during the ζ-integration   

the totalhydrodynamic force becomes 
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3
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 

       
   

   ,   (3.42) 

 

where we recall that 0
0

0

sinh1
1

2 2

k h
N

k h

 
  

 
. The vertical integral in the last equation is 

evaluated analytically as follows 

 

 3

3

20 1/2
0 3 0

31/2

0 0 0

cosh

cosh cosh

x

x h

k x h hN
dx

N k h k h





     .                                                                                (3.43) 

 

Furthermore, the part in the bracket of the r-integration is easily noted that it is equal to 

 

        0 0 0 1 0 0 0 1 0

2i
jk Y k R J k R J k R Y k R

R
   ,                                                                  (3.44) 

 

As it is calculated by the determinant Wronski of the functions  0 0J k R  and  0 0Y k R . With 

substitution all of the above results to equation (3.31) finally we take 

 

 

1/ 2

3 0 0
3 22

0

4

cosh/

X i a N
X

g a A k ha h  
 


  ,                                                                                (3.45) 

 

Where we recall that 0a  is the first coefficient of the exterior potential series 
   3 3,
e

r x , and 

so it depends on the problem‘s frequency and the non-dimensionalize 
2g a A   corresponds to 

the added hydrostatic forces due to the incident wave‘s amplitude  A . 
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In the case of vertical oscillating cylinder, the aggregate forces tend to the value of Froude-

Krylov‘s forces  for  and 0 0k a  , that is due to the diffraction  potential is negligible while 

the body moves very slow. Also, for the same reasons as in the Froude –Krylov  forces case , as 

the frequency increases and wave length tend to zero, the contribution of the pressure forces to 

the cylinder‘s bottom is reversed due to the big number of wave lengths and so  3 0X  , for 

0k a  . 

In addition to the Froude-Krylov  forces , that in the case of the vertical oscillating cylinder 

present zero phase difference  from the incident wave‘s elevation in cylinder‘s center 0r  (for 

every frequency‘s value), the aggregate forces present non-zero phase difference, which for 

low frequency tend to zero and for high frequency shows  asymptotic behavior: 

  3arg / 4X ka   ,                    for 0k a   

The application results of the final above equation in our example, for the case of the floating 

cylinder / 0.116a h   and / 0.79d h  , are presented, also, in fig. 3.5 , that we conclude full 

accordance with the above predictions for the asymptotic behavior. 

Finally, we recognize that the aggregate force amplitude can be evaluated alternatively via the 

problem Kochin function . The Kochin function is connected with the damping coefficients, 

that for the studied case we take 

 

 
 

2 0 33
3

0

2k B
H

D k h
  ,                                                                                                             (3.46) 

 

Where due to the axisymmetry, the Kochin function is independent from the azimuth angle 

  . Finally we take : 

 

    2

0 0 0 333

3 2

0

2 tanh 1 tanhk h k h k h B

g a A k a  

      


 .                                             (3.47) 

 

 

Numerical results for the case of the cylinder / 0.116a h   and / 0.79d h   are presented in 

fig.3.5 (with dashed line). We observe a quite well accordance  in our calculations, related with 

the aggregate hydrodynamic force amplitude from the application of the equations (3.34) and 

(3.37) . The little presented differences are due to the solution numerical approximation, 

keeping only a few terms( we recall that we have taken  5K  ), both of the predictions tend to 

coincide, as K  is increased. 
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  Figure 3.6: Response Amplitude Operator of Cylinder for / 0.116a h  and / 0.79d h  , for 

various values of the non dimensionalized wavenumber 0 2 /k a a  . 

 

 

 

Figure 3.7: Heave Response Amplitude Operator and Phase of Cylinder with / 0.116a h  and 

/ 0.79d h  , for various values of the non dimensionalized frequency /a g . 
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3.6   Evaluation of the response of the floating cylinder in vertical oscillation. 

 

Based on all previous, the complex measure of the response of the vertical oscillating cylinder 

is calculated with substitution of the various quantities to the equation (3.2), and in non-

dimensionalized form(related to the free surface‘s elevation  measure of the incident wave) is 
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
 

   
  .                                   (3.48) 

 

 

Numerical results for the case of the cylinder with / 0.116a h   and / 0.79d h   are presented 

in Fig.3.6 ,  for various values of the non-dimensionalized wavenumber 0 2 /k a a   and in 

Fig.3.7, respectively, for several values of the non-dimensionalized frequency /a g . In 

these figures is illustrated with dashed line the resonance location of the vertical oscillating 

cylinder.  

  

 

Specifically, in the above figures we observe that in low frequency the cylinder is oscillating 

hydrostatically, watching the wave vertical elevation, with the same phase 

  3 / 1, 0    , as it is physically expected. Otherwise, as the frequency is being 

increased  well above  from the resonance value, the cylinder  vertical oscillation is languishing 

continually and the phase difference between the move and the wave elevation is being 

increased continually.  
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3.7   3D – Boundary Element Method 

In this section  a 3D - Boundary Element Method is applied to evaluate the diffraction and 

radiation potentials   ,D x z  and   ,k x z , associated with the operation of a floating 

cylinder oscillating on the water‘s free surface, over a horizontal seabed. The latter BEM  is a 

low-order method, based on piecewise constant normal-dipole singularity distributions and 4-

node quadrilateral boundary elements ensuring continuity of the geometry approximation of the 

various part of the boundary, as described in detail in Appendix A.  In this section the BEM is 

applied in constant depth regions and the bottom boundary condition is satisfied by simple 

mirroring techniques, as described below. We use this version of the BEM, in order to test and 

optimize the absorbing layer method similarly as in the 2D problem examined in the previous 

chapter, which is used to replace the radiation condition. The optimum set up will be 

subsequently used in the next Chapter to study diffraction radiation problems by floating 

bodies in variable bathymetry regions. 

 

For this purpose it is very important to investigate the absorbing layer parameters, offering a 

good comparison between the BEM numerical solution and the analytic solution (which is 

available for flat bottom).  To start with, the description of the studied environment is presented 

in Figure 3.8. The diffraction and radiation potentials  have to be evaluated on the wetted 

surface of the floating body cD , the horizontal bottom surface D  and the free surface FD . 

In accordance with the present absorbing layer model, the free surface boundary condition is 

modified as follows, 

  0, Fr D
n

 


   


,                                                                                            (3.49) 

where 
2 / g   and the coefficient 1   everywhere on FD , except in the absorbing layer 

where it is given by, 
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,
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R R
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

 
     

 
 

      ,                                              (3.50) 

which is an extension of Eq.(2.41) in the present 3D problem. In the above equation (3.50)   

the local wavelength and aR   denotes the starting radius of the absorbing layer.  Using the 

piecewise constant singularity distribution in the 4-node boundary element, the potential and 

velocity fields are approximated by, 

 

       ,p p p p

p p

r F r r F r      U

                                                                    

(3.51) 

 



69 

 

 

Figure 3.8: Formulation of diffraction and radiation problems in flat bottom regions.  

 

where the summation ranges over all panels (all boundary elements in all parts of the boundary 

surfaces), and  p r and  p rU  denote induced potential and velocity from the p-th element 

with unit singularity distribution to the field point r , including contribution from each element 

and its mirror with respect to the bottom with appropriate strength in order  to automatically 

satisfy the bottom boundary condition 

 

0 , r D
n




 


.                                                                                                            (3.52) 

 

Furthermore, the body boundary conditions are presented below in discrete form using the 

present BEM approximation, as follows 

 
 

 

  , , 1

1

(diffraction) or ( radiation problem), 1,
M

p p pm d p l p

m

F n n l p M


   n U                  (3.53) 

 

Where       0,1 1 0,2 2 0,3 3,dn n n n            diffraction problem                                      (3.54) 
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And for the radiation problems (l=1,2,3,…,6): 
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Also, on the free surface the discrete boundary condition is 

 

 

 
2

1

1 1

0, 1, (3.56)
2

P
p

p p pm pm i

p i

F
F p M M

 

      n U

 

Where the parameter of the absorbing layer is 

 

 
 

2
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2
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(3.57)
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3.7.1  Meshing 

An important part of the present BEM implementation deals with the construction of the mesh 

on the various parts of the boundary. The discretization is accomplished by incorporating 

corresponding meshes on the floating body, that a cylindrical distribution of panels is applied 

too, but with a radius sharp decreasing , using a great exponent root, as it is shown in Figure 

3.9. 

 The free surface grid is based on cylindrical distribution of panels around the waterline of the 

floating cylinder.  An important feature of the present method  is the continuous junction of the 

various parts of the mesh, which, in conjunction with the quadrilateral  elements, ensures 

global continuity of the boundary. The following Figure 3.10 is presented below for the free 

surface. 

 

 

 

 

 

 



71 

 

 

Figure 3.9: Construction of the computational grid for a simple WEC. The mesh on the wetted 

surface of the body is 12 (in the vertical) X 88(in the azimuthal direction) elements. 

 

 

      

Figure 3.10: Construction of the cylindrical computational grid on the free surface and the body 

(top view). 
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Figure 3.11: Construction of the cylindrical computational grid for the free surface and the 

body (3D view). The position of the bottom is also shown, however, it is not involved in the 

computational mesh since the bottom boundary condition is satisfied by mirroring techniques. 

 

 Another type of meshing is used, which consists of two parts, the one close to the waterline of 

the floating unit and the far part; see Fig.3.12. The near mesh is based on cylindrical 

distribution of panels around the waterline of the floating cylinder that gradually deforms in 

order to end in a rectangular boundary. After the rectangular boundary, the inner mesh on the 

free surface, the mesh again deforms to become a cylindrical arrangement on the outer part, 

which is optimum for the numerical representation of the radiating behavior of the solution of 

the studied diffraction and multiple scattering problems.  

 

 

Figure 3.12: Construction of the rectangular computational grid for the free surface near body. 
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The bottom mesh is based on a cylindrical distribution in our case, where the bottom is flat. In 

the next chapter, the problem of variable bathymetry is faced and an appropriate meshing is 

required. In this chapter, bottom meshing is not needed, since a mirroring method is used to 

satisfy the bottom boundary condition. With this treatment we save significant computing time 

and to increase the number of the elements on the free surface, which enables the systematic 

study for the optimization of the absorbing layer parameters.  

 

3.7.2  Numerical results 

We consider a floating cylinder approximated using 6x88 or 12x88 elements to model its 

geometry, where the first number denotes elements along the depth direction and the second 

number azimuthally distributed elements. On the free surface a variable number of elements 

per wave length are used including the absorbing layer, which is large enough for numerical 

approximation. In our case, the free surface is extended for 5 wavelengths distance from the 

axis of the floating cylinder. As the number of elements is increased, a better approximation is 

achieved, for the absorbing layer characteristics determination. The meshing of the various 

parts of the problem is implemented in Matlab® , and subsequently the solver is a fortran code 

internally called  in order to evaluate the induced potential and velocity from the p-th element 

to the center of the m-th element serving as the collocation point(s). The numerical quadratures 

used to calculate the induced quantities over a quadrilateral element are presented in more 

detail in Appendix A.  

 

3.7.3  Absorbing layer 

In this chapter  the absorbing layer is again introduced, as it is described in Chapter 2, with 

some (minor) changes explained below. As it is known, absorbing layer is used to substitute the 

exact radiation conditions, which in more complicated problems are unknown. In our case, the 

analytic solution of the floating cylinder oscillating over a flat bottom is known and will be 

used to evaluate the absorbing layer performance. The main parameters of the absorbing layer 

are : 
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 The exponent, n  

 The number of panels per wave length,   
N


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The dimensional  frequency takes values corresponding to swallow, intermediate and deep 

water conditions, in order to optimize absorbing layer in the whole frequency range. The 

activation length  varies from half a wavelength to 2 wavelengths. The exponent can be n=2, 3 

or 4 and the number of panels per wavelength can be 10,15 or 20.  The general equation of the 

absorbing layer remains the same. 
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 


                                                   

(3.59) 

 

The main difference between Chapter 2 and Chapter 3 concerning the absorbing layer, is that in 

this part the dimensional  coefficient takes values according to the  wave frequency.  

5

max

0.01 4 /c rad s





 
   

 
                                                                                     (3.60) 

7

max

0.01 4 /c rad s





 
   

 
                                                                                    (3.61) 

 

This change is made, since this model  works better in 3D boundary element problems in 

relation with the method in Chapter 2.  

 

3.7.4   Discussion of numerical results  

In this Section, first an optimization of the absorbing layer characteristics is presented, by 

examining the difference between the analytical potential and the approximate solution on the 

free surface. After that results concerning the added mass, damping coefficient , Froude-Krylov 

and diffraction forces are presented and discussed, for two different cylinder geometries. In the 

beginning, we consider a cylinder of radius 0.2857m    and draft 1.5T a , in constant 

depth regions / 1/ 3.5a h  . The present BEM is used to calculate the potential using 

6 88 elements on CD  and 75 88 elements for whole part of the free surface FD  which 

includes the absorbing layer. In our case the number of elements varies from 10 to 20 elements 

per wave length and the free surface extends for 5  wave lengths from the cylinder axis. The 

total number of elements is 7128. A finer mesh of 9328 elements is also considered for 

comparison and illustration of convergence properties. As it is mentioned and above, the 

absorbing layer depends on various parameters. Giving different values for these parameters 

and comparing the analytic solution with the approximate, we lead in the best combination. The 

code gives as a result the Chebyshev norm of the difference between the analytic and 

approximate potential. These parameters are presented below: 



75 

 

 Dimensionless Frequency,  
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 The exponent, n  
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The PML is based on Eqs. (3.60) where  ωmax=8rad/s. 

In comparison with Chapter 2, the coefficient is changed and as a consequence the program 

runs 81 times to find the best combination. We choose this form of c, since it makes the 

approximation better. Below, some figures are presented, comparing the approximate (BEM) 

and the analytic potential on the free surface, in the case of heaving motion.  

 

 

Case:    1 / 2 / 3 / 20rad s n r        

 

Figure 3.13: Real and imaginary part of the analytic and approximate solution for ω=1 rad/s 
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Case:  2.3 / 3 / 3 / 20rad s n r        

 

Figure 3.14: Real and imaginary part of the analytic and approximate solution for ω=2.3 rad/s. 

 

 

Case:    5.3 / 2 / 3 / 15rad s n r        

 

 

Figure 3.15: Real and imaginary part of the analytic and approximate solution for ω=5.3 rad/s. 
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Figure 3.16: Error distribution of the analytic and approximate solution for case: 

1 / / 10rad s and N    

 

 

Figure 3.17: Error distribution of the analytic and approximate solution for case: 

1 / / 15rad s and N   . 
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Figure 3.18: Error distribution of the analytic and approximate solution for case: 

1 / / 20rad s and N   . 

 

Figure 3.19: Error distribution of the analytic and approximate solution for case: 

2.3 / / 10rad s and N   . 
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Figure 3.20: Error distribution of the analytic and approximate solution for case: 

2.3 / / 15rad s and N    

 

 

Figure 3.21: Error distribution of the analytic and approximate solution for case: 

2.3 / / 20rad s and N    
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Figure 3.22: Error distribution of the analytic and approximate solution for case: 

5.3 / / 10rad s and N    

 

 

Figure 3.23: Error distribution of the analytic and approximate solution for case: 

5.3 / / 15rad s and N    
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Figure 3.24: Error distribution of the analytic and approximate solution for case: 

5.3 / / 20rad s and N    

 

As it is seen, for all the frequencies and number of elements per wave length, the best 

performance is obtained by using  2 / 3n and r   . We observe that in high frequencies 

and consequently in deep water, that  in case of / 20   the error is increased in comparison 

with the case of / 15  .  Generally, the results follow the same pattern as the ones of 

Chapter 2, as the best combination is the same and in low and intermediate frequencies the 

increase in the number of elements offers smaller error. 

 

We consider now a single cylindrical body of radius 0.2857m  and draft 1.5T a , in 

constant depth regions / 1/ 3.5a h  . Choosing the best combination of parameters for the 

absorbing layer, we present in Fig.3.25 the added mass and damping coefficient in relation with 

the non-dimensional frequency  / g   , from BEM,  for the above floating cylinder and we 

compare them with the corresponding analytical results. This comparison is made for 2 meshes 

on the body. One mesh with 6 88  elements and one with 12 88  elements. This is made to 

have a better approximation to body geometry and also to  the body coefficients. Also, in 

Fig.3.26, the Froude-Krylov and diffraction forces are presented comparing BEM solution 

against analytical results.  
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Figure 3.25: Non-dimensionalized cylinder hydrodynamic coefficients for various values of 

non-dimensionalized frequency /a g . BEM results by using the 6x88 mesh on the body are 

shown by using circles, and by 12x88 by using stars. Analytic solution is indicated by using 

solid lines. 

 

 

Figure 3.26: Non-dimensionalized cylinder hydrodynamic Froude-Krylov and total forces for 

various values of non-dimensionalized wavenumber 0 2 /k a a  . BEM results by using the 

6x88 mesh on the body are shown by using circles, and analytic solution is indicated by using 

solid lines. 
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Figure 3.27: Non-dimensionalized cylinder hydrodynamic coefficients for various values of 

non-dimensionalized frequency /a g . BEM results by using the 6x88 mesh on the body are 

shown by using circles, and by 12x88 by using stars. Analytic solution is indicated by using 

solid lines.    

 

 

Now we consider another cylindrical body of radius / 0.167a h   and draft 1.8T a  in 

constant depth regions 1h m . Also, in this case we present the added mass and damping 

coefficient in relation with the non-dimensional frequency  / g  . Furthermore, we 

evaluate the Froude-Krylov and diffraction forces with regard to k a . 

The PML is based on Eqs (3.60) where  ωmax=8 rad/s. 
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Figure 3.28: Non-dimensionalized cylinder hydrodynamic Froude-Krylov and total forces for 

various values of non-dimensionalized wavenumber 0 2 /k a a  . BEM results by using the 

6x88 mesh on the body are shown by using circles, and analytic solution is indicated by using 

solid lines.  

 

Figure 3.28. Added mass and damping coefficients for floating cylinder of radius a=10m and 

draft d/a=1.5 in constant depth h/a=3.5. Responses in the case of freely floating cylindrical 

body against nondimensional frequency /a g , as modified by PTO modelled by damping 

constants BS /bm=5,10,20 (shown by dashed lines and indicated as 1,2,3, respectively). The 

corresponding output power is shown in the last subplot. 

FK 

total 
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The present BEM results are found in satisfactory agreement with various techniques to treat 

such problems in homogeneous environments based on eigenfunction expansions (e.g. Yeung 

1980). Furthermore, the WEC responses (both modulus and phase) of the heaving WEC are 

plotted in the top subplots of Fig.3.28, both for the freely floating body (shown by solid lines) 

and for three selected values for the PTO damping coefficient BS (shown by dashed lines). The 

indicative values considered correspond to 5,10,20 times a mean value of hydrodynamic 

damping  bm over frequency (estimated as 2 / 0.12m Rb m   , where the resonance frequency 

/ 0.7R a g  ) which are indicated by a number. In the last subplot of Fig.3.28  the output 

power of the WEC by the above PTO, normalized with respect to the incident wave powerflux 

defined as   2/ 0.5 gP C H a  and estimated by using 1eff  , is plotted. We observe in this 

figure the maximization of the output around the resonance which in the examined case is 

around the non-dimensional frequency / 0.7R a g  . Also, it is observed in this figure that 

higher values of PTO damping produce lower output powerlevels, however spread in wide 

frequency bands around the resonant frequency. 
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C h a p t e r   4  

PML - BE M FOR 3D FLOATING 

BODIES IN VARIABLE BATHYMETRY  

 

The interaction of free-surface gravity waves with floating bodies, in water of intermediate 

depth and in variable bathymetry regions, is an interesting problem finding important 

applications and can be treated by the above method. Specific examples concern the design and 

evaluation of performance of special-type ships and structures operating in nearshore and 

coastal waters; see, e.g., Mei (1983, Ch.7). Also, pontoon-type floating bodies of relatively 

small dimensions find applications as coastal protection devices (floating breakwaters) and are 

also frequently used as small boat marinas; see, e.g., Drimer et al (1992). In all these cases, the 

estimation of wave-induced loads and motions of the floating structure can be based on the 

solution of classical wave-body-seabed hydrodynamic interaction problems; see, e.g., 

Wehausen (1971). In this final Chapter, the developed Boundary Element method is applied to 

estimate the hydrodynamic behaviour of a body with arbitrary geometry, in a variable 

bathymetry region. The BEM is used, in conjunction with the best combination of parameters 

of the the absorbing layer, as it is studied before.   

 

 

 

 

 

 

 

 

Figure 4.1:Formulation of diffraction and radiation problems in variable bathymetry regions. 
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We consider here the hydrodynamic problem concerning the behavior of a generally-shaped 

body, 
BD , of characteristic radius a and draft d, operating in the nearshore environment, as 

shown in Fig. 4.1.  

An important part of the formulation deals with the calculation of the propagating water-wave 

field over the variable bathymetry region, without the presence of the body. For simplicity, the 

variable bathymetry region is considered between two infinite subregions of constant, but 

possibly different depths 1h h (region of incidence) and 
3h h  (region of transmission). In the 

middle subregion it is assumed that the depth h  exhibits an arbitrary variation. The wave field 

is excited by a harmonic incident wave of angular frequency ω, propagating with direction θ; 

see Fig.4.1. Under the assumptions that the free-surface elevation and the wave velocities are 

small, the wave potential is expressed as follows 

     , ; Re , ; exp
2

igH
z t z i t  



 
     

 
x x                   (4.1) 

where  1 2, ,x xx  and satisfies the linearised water wave equations; see, e.g., Mei (1983). In 

the above equation H  is the incident wave height, g is the acceleration due to gravity, 

2 / g   is the frequency parameter, and 1i   . The free surface elevation is then obtained 

in terms of the wave potential as follows, 

 
 , 01

;
z

t
g t


 

 


x
x .                      (4.2) 

Using standard floating-body hydrodynamic theory (e.g. Wehausen 1971), the complex 

potential can be decomposed as follows, 

       
22

, , , , ,P D Rz z z z
gH


     x x x x                              (4.3) 

   
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, ,R z z  


x x 


,          (4.4) 

where  ,P z x  is the normalized propagation wave potential in the variable bathymetry region 

in the absence of the body,  ,D z x  is the diffraction potential due to the presence fixed 

(motionless) body BD , that satisfies the boundary condition    , ,D Pz n z n     x x  

on the body, where  1 2 3, ,n n nn  the normal vector on the wetted surface of the body, 

directed outwards the fluid domain (inwards the body). Furthermore,  , ,z x  denotes the 

radiation potential in the non-uniform domain associated with the  -oscillatory motion of the 

body with complex amplitude  , satisfying  , z n n  x  , equal to the  -component of 
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generalized normal vector on the wetted surface of the body  (  
3

n


 r n 
 for 4,5,6 ). In 

the present work the field  ,P z x  will be calculated by means of the coupled-mode model 

developed by Athanassoulis & Belivassakis (1999), described in the next subsection and in 

more detail in Appendix B. 

 

In the case when the body is a simple heaving WEC only the vertical oscillation of the body is 

considered 
3  , which is one of the most power intensive modes concerning this type of 

wave energy systems. In the sequel we will concentrate on this simpler configuration, leaving 

the analysis of the more complex case to be examined in future work. For a  heaving WEC the 

hydrodynamic response is obtained by 

   
1

3 ,P DA X X


                                            (4.5) 

where P DX X  denote the exciting vertical force on each WEC due to propagating and 

diffraction field, respectively, and the coefficient A  is given by 

     2

33 33S SA M a i B b C c                                                            (4.6) 

where M is the body mass . The hydrodynamic coefficients (added mass and damping) of the 

above system Eq.(5) are calculated by the following integrals 

33 33 3 3
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 
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

                                            (4.7) 

of the heaving-radiation potential of the WEC on the wetted surface BD  of the WEC. 

Moreover, WLc gA  is the hydrostatic coefficient in heaving motion with WLA the waterline 

surface, and BS ,CS are characteristic constants of the Power Take Off (PTO) system. The 

components of the exciting (Froude-Krylov and diffraction) forces are calculated by the 

following integrals of the corresponding potentials, 
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on the wetted surface BD  of the WEC. The total power extracted by the WEC is obtained as 

   
22

3, eff SP B     ,                             (4.10) 

where eff  indicates the efficiency of the PTO (that could be a function of the frequency ω). 
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 Obviously the calculated performance depends on the frequency, direction and waveheight of 

the incident wave, as well as on the physical environment. 

4.1  The coupled-mode model 

In the case of waves in variable bathymetry region there is no analytic solution for the wave 

potential  ,P z x  associated with the propagation of water waves in the variable bathymetry 

region. The wave potential  ,P z x associated with the propagation of water waves in the 

variable bathymetry region, without the presence of the scatterer (floating body), can be 

conveniently calculated by means of the consistent coupled-mode model developed by 

Athanassoulis & Belibassakis (1999), as extended for three-dimensional environments by 

Belibassakis et al (2001). This model is based on an enhanced coupled mode method, which is 

described in detail in Appendix B. Generally, this model is based on the following enhanced 

local-mode representation:  

 

         1 1
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, ; ;P n n

n

z Z z Z z  
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 



 x x x x x                            (4.11) 

In the above expansion, the term    0 0 ;Z z x x  denotes the propagating mode of the 

generalised incident field. The remaining terms    ; ,n nZ z x x  1,2, ,n   are the 

corresponding evanescent modes, and the additional term    1 1 ;Z z x x  is a correction term, 

called the sloping-bottom mode, which properly accounts for the satisfaction of the Neumann 

bottom boundary condition on the non-horizontal parts of the bottom.  

 

The function  1 ;Z z x  is defined as the vertical structure of the sloping-bottom mode. This 

term is introduced in the series in order to consistently satisfy the Neumann boundary condition 

on the non-horizontal parts of the seabed. It becomes significant in the case of seabottom 

topographies with non-mildly sloped parts and has the effect of significant acceleration of the 

convergence of the local mode series; see Athanassouis & Belibassakis (1999). By following 

the procedure described in the latter work, the coupled-mode system of horizontal equations for 

the amplitudes of the incident wave field propagating over the variable bathymetry region is 

finally obtained, in the form 

           2

1

0,mn n mn n mn n

n

A B C  


     x x x x x x  1,0,1,....m   ,              (4.12) 
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where the coefficients , ,mn mn mnA B C  are defined in terms of the vertical modes  ;nZ z x . The 

coefficients are dependent on x  through  h x  and the corresponding expressions can be found 

in Table 1 of Appendix B. The system is supplemented by appropriate boundary conditions 

specifying the incident waves and treating reflection, transmission and radiation of waves. 

4.2 Bem for the diffraction and radiation problems 

The corresponding problems on the diffraction and radiation potentials    , and , ,D z z x x  

associated with the dynamics of the floating body, are treated, as in Chapter 3, by means of the 

same low-order Boundary Element Method, based on simple singularity distributions and 4-

node quadrilateral boundary elements (see, e.g. Beer et al 2008), ensuring continuity of the 

geometry approximation of the various parts of the boundary. The potential and velocity fields 

are again approximated by, 

       ,p p p p

p p

F F     r r r U r                             (4.13) 

where the summation ranges over all panels and  p r  and  pU r  denote induced potential 

and velocity from the p-th element with unit singularity distribution to the field point r (see, 

e.g., Katz & Plotkin 1996). We remark here that in the present case the bottom boundary is also 

included and discretized into elements along with the other parts of the boundary, i.e. the body 

wetted surface and the free surface. Again, in order to eliminate the infinite extent of the 

domain and treat the radiating behaviour of the diffraction and radiation fields at far distances 

from the bodies, the Chapter 3 absorbing layer technique is used, based on a matched layer all 

around the fore and side borders of the computational domain on the free surface, choosing the 

best parameters combination, as it is exported in Chapter 3. 

Thus, the diffraction and radiation potentials are represented by integral formulations with 

support only on the wetted surface of the floating body BD ,  the bottom surface D  and free 

surface FD ; see Fig.4.2. In accordance with the present absorbing layer model, the free 

surface boundary condition is modified as it is described in Chapter 3,  
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Figure 4.2. Formulation of diffraction and radiation problems in variable bathymetry regions. 

 

  0, Fr D
n

 


   


,                  (4.14) 

where 2 / g   and the coefficient 1   everywhere on FD , except in the absorbing layer  

where it is given by, 

 
 

2
2

2 2

1 21 ,

n

a

an

R R
ic R x x R

g


 



 
     

 
 

                (4.15) 

In the above equation ι is the local wavelength. Also the starting radius of the absorbing layer 

aR  . The discrete solution is then obtained using collocation method, by satisfying the 

boundary conditions at the centroid of each panel on the various parts of the boundaries. 

Induced potentials and velocities from each panel to any collocation point are calculated by 

numerical quadratures, treating the self-induced quantities semi-analytically, as it is shown in 

Appendix A. The body and bottom boundary conditions are presented below: 

0 , r D
n




 


                                                                                                                 (4.16) 

(diffraction) or ( radiation problem),d l Bn n l r D
n


  


                                          (4.17) 

                                          
 

With the appropriate formulation we conclude to the following linear system: 

  , , 1

1

(diffraction) or ( radiation problem), 1,
M

p p pm d p l p

m

F n n l p M


   n U                 (4.18) 

0,1 1 0,2 2 0,3 3Where , diffraction problem (4.19)dn n n n     
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And for the radiation problems (l=1,2,3,…,6): 

 

1

2

3

4 2 3

5 3 1

6 2 1

, Surge

, Sway

, Heave
(4.20)
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x
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l

n n

n n

n n
n

n zn yn

n xn zn

n xn yn
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



 

 
 

  


 

  

 

Also, on the free surface the discrete boundary condition is  

 

 

 
2

1

1 1

0, 1, (4.21)
2

P
p

p p pm pm i

p i

F
F p M M

 

      n U

 

Where the parameter of the absorbing layer is 

 

 

 
 

2
2

2
,

(4.22)
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

 
 

  
  

  
    

   



 

 

 

Finally, on the bottom surface the discrete boundary condition is 

 

 

 
2 3

1 1 1

0, 1,
2

M
p

p p pm i i

m i i

F
F n U p M M

  

     
                                                                  (4.23) 

 

 

1

2

3

M Body

M Free surface

M Bottom



 
 

 

 



93 

 

 

Figure 4.3. Construction of the computational grid for simple WEC 

 

 

4.2.1 Meshing 

An important part of the present BEM implementation deals with the construction of the mesh 

on the various parts of the boundary. That part is discussed in Chapter 3, but in this Chapter 

there is a variable bottom geometry, so we give details about the bottom meshing. The bottom 

follows cylindrical arrangement in meshing, as the free surface, and it is formulated with a 

lower number of elements, increasing the number of elements on the free surface. Body and 

free surface follow a similar arrangement in meshing. In case of the body, the cylindrical 

arrangement, is optimum for the numerical representation of the radiating behaviour of the 

solution of the studied diffraction and multiple scattering problems. More specifically in 

Fig.4.3  the mesh on the free surface around a single WEC is plotted. The discretization is 

accomplished by the incorporation corresponding meshes on each floating body and on the 

bottom variable bathymetry surface, as shown in Fig.4.3 . An important feature is the 

continuous junction of the various parts of the mesh, which, in conjunction with the 

quadrilateral elements, ensures global continuity of the geometry approximation of the 

boundary.  
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4.2.2 Absorbing layer 

As it is described in Chapter 3, the absorbing layer is used in this Chapter, with its best 

combination of parameters, giving results for the problem of an arbitrary geometry body, 

floating in a variable bathymetry region.. As it is known, absorbing layer is used to substitute 

the radiation condition, which in more complicated problems is unknown. In our case, radiation 

condition is unknown, so we trust the conclusion of Chapter 3. The main parameters of the 

absorbing layer are : 

 Dimensionless Frequency,  
2 h

g





  

 Coefficient, 
nc

c





  

 The activation length(or activation distance per wave length),  
0

r
x



 
 
 

 

 The exponent, n  

 The number of panels per wave length,   
N


 

 

In our case, we choose the activation length to be equal to 2 wave lengths. The exponent will 

be equal to 3 and the number of panels per wave length will be 15.  The general equation of the 

absorbing layer remains the same. 

 

 
 

2
2

2 2

1 21 ,

n

a

an

R R
ic R x x R

g


 



 
     

 
 


                                                       

(4.23) 

 

 

The dimensionalized coefficient gets values according to the  wave frequency.  

 

5

max

0.01 4 /c rad s





 
   

 
                                                                                         (4.24) 

7

max

0.01 4 /c rad s





 
   

 
                                                                                         (4.25) 
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4.2.3 Numerical results and discussion  

As an example, we consider a cylindrical body of radius a=1/3.5m and draft d/a=1.5, in 

constant depth regions h/a=3.5. The present BEM is used to calculate the responses using 6x88 

elements on BD , 75x88 elements on the free surface FD  and 26x88 elements on the bottom 

surface D , as shown in Fig.4.3. The total number of elements is 9416.  

 

First, we consider a variable bathymetry region of the form of smooth shoal characterized by 

continuously decreasing depth, from h1 = 1.5 to h3 = 0.5; see Fig.4.4.  The depth function, 

presenting monotonic variation along the x1-axis, is defined by 

     1 3 10.5 tanhmh x h h h x   ,         (17) 

where the mean depth is  1 30.5mh h h  , and the coefficient 5%  , and thus, the mean 

bottom slope is 0.08 and the max bottom slope is 0.03. The horizontal x-extent of the variable 

bathymetry region is 15. The solution corresponding to the propagating wavefield 
P  for waves 

of non-dimensional frequency / 1.44mh g   is shown in Fig. 4.4, as obtained by the present 

CMS, Eq.(B.13). Numerical results have been obtained by using 2
nd

-order finite difference 

scheme and discretizing the domain by using 201 points and keeping 5 totally modes in the 

expansion Eq.(B.10), which was found enough for numerical convergence.  The wave  field  

(real  and  imaginary parts) is shown in the Fig.4.4(a) in the case of normally incident waves, 

and in Fig.4.4(b) for 45deg obliquely incident waves, respectively, by using contours. Also, the 

wave field on the free surface which is proportional to the free surface elevation is shown in 

these figures by using solid lines. We clearly observe in this figure the consistent satisfaction of 

the bottom Neumann boundary condition by the fact that the equipotential lines become 

perpendicular to the bottom profile.  



96 

 

 

 

Figure 4.4. (a) Propagating field over a shoaling region, for normally incident waves of 

nondimensional frequency / 1.44h g  . (b) Same as before, but for 45deg obliquely 

incident waves.  

 

Next, we consider a single cylindrical body of radius a=1/3.5m and draft / 1.5d a  , floating in 

the center of the variable bathymetry domain of Fig.4,5. The present BEM is used to calculate 

the diffraction and radiation fields using the mesh shown in Fig.3(a) with total number of 

elements is 9416. The calculated diffraction and radiation fields at the non-dimensional 

frequency / 1.44mh g  , and / 0.77a g  , is shown in Fig.6.  
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Figure 4.5. Calculated diffraction/radiation fields from a single cylindrical floater (d/a=1.5) in 

the middle of the domain of Fig.4.4 for / 0.77a g  . Plots on the free surface of (a) 

diffraction field radiating potential, as calculated by the present BEM. 

 

 

Figure 4.6. Calculated diffraction/radiation fields from a single cylindrical floater (d/a=1.5) in 

the middle of the domain of Fig.4.4 for / 0.77a g  . Plots on the free surface of sway field 

radiating potential, as calculated by the present BEM. 
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Figure 4.7. Calculated diffraction/radiation fields from a single cylindrical floater (d/a=1.5) in 

the middle of the domain of Fig.4.4 for / 0.77a g  . Plots on the free surface of heave field 

radiating potential, as calculated by the present BEM. 

 

Figure 4.8. Calculated diffraction/radiation fields from a single cylindrical floater (d/a=1.5) in 

the middle of the domain of Fig.4.4 for / 0.77a g  . Plots on the free surface of  pitch field 

radiating potential, as calculated by the present BEM. 

 

The details of the diffraction/radiation fields are very well represented, and the effect of the 

absorbing  layer  of  thickness,  equal  to  two  wavelengths, is clearly illustrated by the 

damping of the waves reaching in the outward limit of the free surface mesh, without 

significant reflection. In this case the depth around the exterior boundary continuously varies 

from h=1.5, in the deeper water region, to h=0.5, in the shallow water region, and thus, 

application of Sommerfeld–type radiation condition could generate significant contamination 

of the numerical solution. 
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Figure 4.9.  Diffraction pattern for a body (like heaving WEC) for the 0deg incident wave 

conditions in the variable bathymetry region of Fig.4.4 (a). 

 

 

Figure 4.10. Diffraction pattern for a body (like heaving WEC) for the 45deg incident wave 

conditions in the variable bathymetry region of Fig.4.4 (b). 
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Conclusions and proposal for future work 

In this work a method for evaluating the hydrodynamic analysis of a floating body over a 

general bathymetry region is presented, calculating the wave power absorption by a single 

floating body like a WEC (point absorber) and providing useful conclusions about the 

application of wave energy devices in nearshore and coastal regions.   

The present approach is based on the coupled-mode model for the calculation of the wave field 

propagating over the variable bathymetry region, in conjunction with an optimized absorbing 

layer model, that treats the conditions at infinity (Radiation condition). The optimization of the 

absorbing layer is achieved comparing the analytic with the approximate solution, via a low-

order Boundary element method , firstly in  2D and then in 3D, providing us a strong tool to 

face the hydrodynamic analysis in variable bathymetry regions. Numerical results are presented 

and discussed concerning a simple body (heaving vertical cylinder) in a flat bottom region and 

in variable bottom region.  

Future work is planned towards the detailed study and optimization of the present BEM for 

WEC arrays extracting energy by combined oscillatory modes, and the development of hybrid 

techniques to numerically treat the high-frequency part of the spectrum supporting its 

application to optimal layout of WEC arrays. 
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A P P E N D I X  A  

QUADRILATERAL ELEMENTS 

 

 

 

The corresponding problems on the diffraction and radiation potentials   ,D x z  and  

 , , 1,2...6,k x z k    associated with floating WEC in variable bathymetry, are treated by 

means of a low-order Boundary Element Method (presented in Chap.3 and 4), based on simple 

singularity distributions and 4-node quadrilateral boundary elements. Except of the singularity 

distribution also a keypart of the above BEM is the discretization of the problem‘s boundary by 

menas of elements. These may be one-dimensional segments, when we treat 2D problems or 

two dimensional surface elements when treating 3D problems. In the latter case, the simplest 

element shapes are trianglular and rectanglular, defined by three or four nodes respectively. 

The first has rightly become most popular due to the ease with which the subdivision can be 

succeeded and its efficiency in the approximation of general boundary shapes. The rectangular 

shape places much greater constraints on these factors but has the advantage to model at  first 

order also curvature effects, in contrast with the triangular element which is usually flat. Both 

elements present the lowest possible forms of approximation and are of first-order  accuracy. 

The elements are separated in flat and curved elements. Curved boundary elements , as shown 

in Fig. A.1  help us to ensure continuity of the geometry approximation of the various parts of 

the boundary.  Also, there are elements with more nodes, giving more accuracy in our problem 

and much complication.   See details in  Ergatoudis et al (1967) 

An obvious improvement is the addition of a number of nodal points along the sides of such 

elements thus permitting a smaller number of variables to be used for solution of practical 

problems with a given degree of accuracy. An increase of available parameters associated with 

an element usually leads to improved accuracy of solution for a given number of parameters 

representing the whole assembly. It is possible thus to use fewer elements for the solution.  As 

such element have yet to be able to follow prescribed boundaries to a good degree of 

approximation curved shapes are desirable. This appendix describes the usefulness of the 

curved quadrilateral elements of low order for use in three-dimensional boundary value 

problems.  
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Figure  A.1: General  quadrilateral element with nodes placed along the sides. 

 

In our problem the geometry approximation of the various parts of the boundary is 

accomplished by using 4-node curved quadrilateral boundary elements (see Fig.A.2) ,  ensuring 

global continuity of the geometry approximation   of the various parts of the boundary, and 

avoiding generation of gaps between element sides. In contrast the constant strength, flat 

quadrilateral elements introduced by Hess & Smith (1967)  commonly used in potential  flow 

problems do not ensure global continuity of the boundary geometry; for more details  see Katz 

& Plotkin (1991, Chapter  10) 

 

In the present work the constant strength, 4-node curved boundary element is used for the 

approximation of the geometry of the boundary. This is also a low order approximation and 

does not increase the total number of unknowns (which are the discrete singularity strengths of 

the boundary elements). A significant benefit of the 4-node elements is that it help us to avoid 

inter-elemental discontinuity of geometry, and offers better potential approximation, which is a 

common feature in numerically treating 3D problems with low-order boundary elements.   

 

In addition, the present analysis is based on selecting the surface dipole as the main singularity 

distribution on the boundary. It is remarked here that the scheme based on using the 4-node 

curved boundary element and selecting  a constant strength dipole distribution as the surface 

singularity  has the following important properties: 
 

(1)  The induced potential and velocity from each element can be obtained analytically in all 

cases of not excessively twisted elements, which however covers most of the cases of interest 

concerning the examined applications in the present work and ensures a very fast calculation 

for large discretizations 
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(2) The self-induced potential and velocity, i.e the induced values from each element to its 

center (which is used for the collocation points) are very strong, and this guarantees the 

formation of  matrix coefficients that are diagonal dominant for all cases of boundary 

conditions (Dirichlet, Neumann,  mixed-type) which covers all types of boundary conditions 

encountered in the formulation of the present 3D free-surface problems. 
 

(3) Diagonal dominance of the matrix coefficients offers the possibility to use iterative methods 

(like Gauss Seidel, see e.g. Press et al 1996) for the solution of the discrete system, which is 

very important in cases of problems in large domains with variable boundaries (bottom surface, 

body(ies) wetted surface etc) with fine meshes that are required especially at higher 

frequencies. 

  

Definition of the 4-node quadrilateral element 

We consider intrinsic coordinates   , 
 
within the boundary element ranging from -1 to 1; 

see Fig.A2. Using the following formulas a transformation is set up from the rectangle 

 
2 21,1 IR   to the 3D surface patch  Ex , defined as follows: 

    
1

, ,
L

n n

n

N   


x x                                                                                                        (A.1) 

 

 

Figure A.2 : 4-node quadrilateral element in a) global and b) local coordinate system. 

 

where    , ,x y zx    are the Cartesian coordinates of a point with intrinsic coordinates  ,   

and       nx   are the coordinates of the element (corner) nodes 1,..4n  ,  numbered as shown in  

Figure A.2. Furthermore, the (polynomial) shape functions have the following form: 

   
1 1

1 1
2 2

n n nN                                                                                                           (A.2)   

It is nevertheless possible to use a more direct approach and write by inspection 
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     1

1
, 1 1

4
N                                                                                                            (A.3) 

     2

1
, 1 1

4
N                                                                                                           (A.4) 

     3

1
, 1 1

4
N                                                                                                            (A.5) 

     4

1
, 1 1

4
N                                                                                                            (A.6) 

 

As an example, the shape function  1 ,N    is shown in Fig. A.3. It describes a curved surface 

consisting of straight lines in the ,  directions. The surface, also called a hyper-surface, has 

been a widely used shape for concrete shells, because the formwork is simple to construct. 

 

Figure A.3:  4-node quadrilateral element  shape function  1 ,N    connected with node 1. 

 

In order to evaluate the integrals, it is important to calculate the elements centroid and the 

tangent vectors parallel to   and   direction. These are obtained as follows 

 0 1 2 3 4

1

4
C    x x x x                                                                                                         (A.7) 

 4

1

,i

i

i

N


 

 


 
 


x

e x                                                                                                       (A.8) 

 4

1

,i

i

i

N


 

 


 
 


x

e x                                                                               

                        (A.9)

 

Integration of a function   ,f  x  on the element  is then defined as follows 

    
1 1

1 1

4 , ,f dS f d d

 

 

      
 

  

    x                                                                     (A.10)   

where   

   e e                                                                                                                        (A.11) 
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is the metric tensor determinant  ( Jacobian of the transformation), and also 

 

   / /          n e e e e e e                                                                                  (A.12)
 

 

is the unit normal vector on the quadrilateral element. Using the above definitions we are able 

to calculate induced potential from a constant (normal) dipole distribution on the quadrilateral 

element as described below.
 

 

We assume that every quadrilateral element has constant doublet distribution μ. Using the 

doublet element which points in the z -direction  the velocity potential can be obtained by 

integrating the point elements: 

   0, , ;
S

x y z G x x dS   n                                                                                          (A.13) 

       
1/2

2 2 2

0 0 0 04 ;G x x y y z z       
 

x x                                                               (A.14)

 

In the special case when the 4 nodes of the quadrilateral element lie on the same plane the 

velocity potential can be obtained by the following integral: 

 

 
   

1/ 2
2 2 2

0 0

, ,
4

S

z dS
x y z

x x y y z






 

    
 

                                                                  (A.15) 

 

 

Evaluation of Induced Velocity over a quadrilateral boundary element 

 

From Katz & Plotkin (1991), we know that the three-dimensional constant –strength doublet 

element is equivalent to a constant-strength vortex ring that is placed at the panel edges; see 

Figure A.4.   The proof of the above theorem is repeated below from  Katz & Plotkins (1991, 

Chapter 10). 
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Figure  A.4 : Quadrilateral doublet element and its vortex ring equivalent. 

 

 

Proof of constant doublet panel  equivalence to vortex ring 

 

Consider the doublet panel of the above figure with constant strength  . The induced  

potential can be written as  

34 S

z dS

r




                                                                                                                       (A.16) 

where    
2 2 2

0 0r x x y y z     .  Moreover, the corresponding induced  velocity is  

3 3 3 3 5

0 0

1 3

4 4S S

z z z z
q dS i j k dS

r x r y r r r

 

 

    
          

    
                              (A.17) 

where we have used 

3 3 3 3

0 0

1 1 1 1
,

x r x r y r y r

   
   

   
                                                                                (A.18) 

Now, let C  represent the curve surrounding  the panel in  the above figure and consider a 

vortex filament of circulation  along C . The velocity due to the filament is obtained from the 

Biot-Savart law (Katz & Plotkin  1991), as follows 

34 C
q

r

 
 

dl r
                                                                                                                     (A.19) 

and for  0 0,dx dydl and  0 0, ,x x y y z  r we get 

   0 0 0 0 0 03 3C

z z
q i dy j dx k y y dx x x dy

r r

 
        

 
                                                   (A.20) 
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Furthermore, the Stokes theorem for the vector A


 is 

C S
dS   A dl n A                                                                                                       (A.21) 

Using the above theorem  with ˆn k   this becomes 

0 0

y x

C S

A A
dS

x y

 
   

  
 A dl                                                                                                (A.22) 

Using Stokes‘ theorem on the above velocity integral we get 

0 0

3 3 3 3

0 0 0 0

ˆˆ ˆ
4 S

z z x x y y
q i j k dS

x r y r x r y r

        
     

     
                                          (A.23) 

 

Once  the differentiation is performed, it is seen that the velocity of the filament is identical to 

the velocity of the doublet panel if    . We conclude this part by noticing that, as  shown by 

Hess (1972) , the above holds also true in the case of the twisted 4-node quadrilateral element. 

 

 

Evaluation of the induced velocity 

Therefore, the above formulas for the velocity potential and its derivatives are valid for twisted 

panels as well. In order to evaluate induced velocities, we make use of this theorem. Consider 

one side of the element and a point P  in the space as in the fig. A.5. 

 

Figure A.5 : Influence of a straight vortex  line segment to a point  P . 
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The velocity induced by such a vortex segment of circulation    states 

34
q

r

 
 

dl r
                                                                                                                      (A.24) 

If the vortex points from 1 to point 2, then the velocity at an arbitrary point P can be obtained 

by the equation below 

1 2 1 2
1,2 02

1 21 2
4

q r
r r

 
   

  

r r r r

r r
                                                                                               (A.25) 

For the numerical computation in a Cartesian system where the  , ,x y z values of the points 1,2 

and P are given, the velocity can be calculated by the following steps: 

1. Calculate  1 2r r : 

                                   1 2 1 2 1 2P P P Px
y y z z z z y y      r r                       (A.26)                     

                                   1 2 1 2 1 2P P P Py
x x z z z z x x       r r                     (A.27) 

                                   1 2 1 2 1 2P P P Pz
x x y y y y x x      r r                       (A.28)                         

Also, the absolute value of this vector product is 

      
2 2 2 2

1 2 1 2 1 2 1 2x y z
      r r r r r r r r                                                                   (A.29) 

2. Calculate the distances 1r , 2r : 

           
2 2 2

1 1 1 1P P Pr x x y y z z                                                                        (A.30)           

      
     

2 2 2

2 2 2 2P P Pr x x y y z z                                                                       (A.31)   

         

3. Check for singular conditions.(Since the vortex solution is singular when the point 

P lies on the vortex. Then a special treatment is needed in the vicinity of the vortex 

segment-which for numerical purposes is assumed to have a very small radius ) 

                        2

1 2 1 2in thecase when , ,r or r or  r r  

where is the vortex core size(which can be as small as the truncation error) 

                          then 0u w    

or else , ,u w  can be estimated by assuming solid body rotation or any other (more 

elaborate) vortex core model  

 

4. Calculate the inner-product: 

               0 1 2 1 1 2 1 1 2 1 1P P Px x x x y y y y z z z z         r r                      (A.32)     
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               0 2 2 1 2 2 1 2 2 1 2P P Px x x x y y y y z z z z         r r                     (A.33)  

 

5. The resulting velocity components are  

                                                         1 2 x
u K r r                                                   (A.34)        

                                                         1 2 y
K  r r                                                   (A.35)          

                                                         1 2 z
w K r r                                                   (A.36)                                             

where  

                                           0 1 0 2

2

1 21 24
K

r r

  
  

  

r r r r

r r
                                    (A.37)                  

 

This procedure must be done for each vortex segment at the edge of the 4-node element 

and  the calculated induced velocities from each segment  have to be summed, in order 

to obtain the induced velocity of the boundary element to every point in the domain. 

 

 

Evaluation of the induced potential from constant strength  4-node quadrilateral element 

 

Having completed the induced velocity calcuation, we follow Newman (1986),  for the 

evaluation of the induced potential from each 4-node quadrilateral boundary element at every 

point in the domain. In particular, we evaluate the potential, which is induced from a 

quadrilateral element with constant distribution of doublet  ( const  ) to an arbitrary field 

point  P  with coordinates  , ,x y z , as shown in Fig.A.6.  In order to find the induced potential, 

we   evaluate the following integral (note that the negative sign of Eq.A.6 may be considered 

absorbed in the value of μ)       

 
 

 34

P Q

Qn dS Q
r





 


  

x x
                                                                                          (A.38) 

where 

E :  Quadrilateral element‘s  area  

Qn :  normal vector at the center of the  element 

Px : The vector from the start of the axis to the field point P  

Qx :  The vector from each point Q E , which is an arbitrary point of the element 

In our case, we consider 1  . If we consider a sink at the field point P , with unit strength 

1   , then we observe that the sink flow is equal to U . 
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2

1

4
rU

r
 

       
3

1

4

Q P
U

r





 

x x

  
                                                                                (A.39) 

 

Now, if we consider a sink at point P and evaluate the sink flow rate through E , we observe 

that the integral is exactly the same as in our case, of the dipole constant distribution, i.e. 

 

   3

1
|

4

Q P

Q QQ E dS
r

 
 


   

x x
U n                                                                            

(A.40) 

 

However,  the sink flow rate through the element‘s area is equal to the flow rate through a 

sphere with unit radius 0 1r   and center the field point P , which is easily calculated to be 

 
 0

2

0
|

1

4 4 4Px x r

a a
U d r d 

  



   
                                                                  (A.41) 

 

where a  is the solid angle of the element.  In our case we separate the quadrilateral element in 

two three-node elements, as it is shown in fig.A.7  and we evaluate the solid angle by means of 

the corresponding angles of the  two tetrahedral  and then simply we sum the potentials.  

 

 

 

Figure A.6: Influenced of a curved quadrilateral element  to an arbitrary field point P . 
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
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Figure A.7 : Quadrilateral element separation in 2 three-node elements. 

 

 

Figure A.8: Solid angle of a tetrahedron. 

 

 

In particular, the solid angle for a tetrahedron is given by the following equation  

1 2 32a                                                                                                                   (A.42) 

where  1 2 3, ,    are shown in Figure A.8. 
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Consequently, the induced potential from a quadrilateral element with unit singularity 

distribution to a field point P  is given by the following equation 

1 2
1 2

4 4

a a

 
    

   
                                                                                                    (A.43) 

where 
1  is the solid angle for the first three-node element and 

2a  is the solid angle for the 

second three-node element. 

 

Examples 

Subsequently, some figures are quoted, showing the induced potential and velocity from a 

quadrilateral element with unit singularity distribution depending on the location of the field 

point P . 

 

In the first case, we consider a curved quadrilateral element presented in Fig.A.9 with 

coordinates  Q1=(-1,-1,-0.1), Q2=(1,-0.5,0.1), Q3=(2,-0.5,0.3), Q4=(-0.5,0.8,0), and the induced 

potential and velocity are evaluated to a field point at a line, normal to the element passing 

through the element center, as it is shown in Fig. A.9.  Then the induced potential and velocity 

as calculated by the present method are presented. Having obtained the induced potential along 

the line (passing through the center of the element in Fig.A.9 with direction the normal of the 

element) we are able to differentiate the potential alonmg the line ans estimate the induced 

velocity. Then, we are able to present a comparison between the potential‘s and velocity‘s 

methods as  shown in Fig. A.10. 

 

 

Figure A.9: Quadrilateral element and a line normal to the element, passing through its 

centroid. 
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Figure A.10: Comparison between velocity and potential methods. 

 

The blue line represents the potential‘s value along the line passing through the center of the 

element parametrized with respect to the physical distance from the center of the quadrilateral 

element, as calculated using (A.43). As it was expected the potential and the velocity are 

maximized  at the element‘s center.  We clearly observe the jump of the value of the induced 

potential (from +0.5 to -0.5) as we pass through the center of the element which is a well 

known property of surface doublet distributions. The red line represents the induced velocity, 

from Biot-Savart rule applied to the equivalent vortex ring.   The differentiated potential along 

the line calculated by using second-order finite differences is shown by using crosses. We see 

that the velocity‘s results are identical, verifying the correctness of our calculations.  

 

As a second example for the same element we consider induced potential and velocity along 

another  line which does not crosses the element and is  almost parallel to its surface; see Fig. 

A.11.  In this case we observe that there is no discontibuity of the potential distribution along 

the line as it ought since it does not cress the element. However the agreement between the 

velocity obtained by differentiating the induced potential and the calculation based on the 

vortex ring is again very good verifying the calculation scheme. The potential is maximized 

again in the nearest to the center field point, but it has lower value. 
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Figure A.11: Quadrilateral element and a line almost parallel to the element. 

 

 

Figure A.12: Comparison between velocity and potential methods. 

 



118 

 

 

 

A P P E N D I X  B  

THE COUPLED-MODE MODEL FOR 

PROPAGATION OF WATER WAVES IN 

VARIABLE BATHYMETRY REGIONS  

 

In Chapters 3 and 4 of this thesis a 3D hybrid boundary element – absorbing layer method is 

developed and studied  concerning the hydrodynamic analysis of floating bodies in constant-

depth and variable bathymetry regions, respectively. In both these cases, for the solution of the 

diffraction potential and the calculation of the Froude-Krylov and the diffraction forces, it is 

necessary to calculate the incident-propagating wave potential without the presence of the 

body. In the case of flat seabed the wave potential  is analytically known from the linearized 

theory (e.g.,  Dean & Dalrymple 1991), as follows 

   , ; Re ,
2

i tigH
x z t x z e 



 
   

 
 

where H is the waveheight, ω is the angular frequency, and the complex wave potential is given 

by 

   
  
 

0

0

0

cosh
, exp

cosh

k z h
x z ik x

k h





 

where the wavenumber k0  is obtained from the dispersion relation, Eq.(2.6), formulated at the 

depth h. However, in the case of variable bottom topography, as the water strip shown in 

Fig.B.1 joining two subregions of constant, but different depth, the wave potential is not known 

and must be calculated by suitable numerical method, as the coupled-mode model by 

Athanassoulis & Belibassakis (1999), which is described below.
 

 

Formulation of the problem      

The studied marine environment consists of a water layer  bounded above by the free surface  

and below by a rigid bottom  as is shown in fig. B.1.  
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Figure B.1: Domain decomposition and basic notation. 

 

 

 

It is assumed that the bottom slope exhibits an arbitrary one dimensional variation in a 

subdomain of finite length, i.e. the bathymetry is characterised by parallel, straight bottom 

contours lying between two regions of constant but different depth.  Before proceeding to the 

formulation of the problem we shall introduce some geometrical notation. A Cartesian 

coordinate system is introduced, with its origin at some point on the mean water level (in the 

variable bathymetry region), the z-axis pointing upwards and the y-axis being parallel to the 

bottom contours. The domain D D3  is represented by D D RD3   , where D  is the (two-

dimensional) intersection of D D3  by a vertical plane perpendicular to the bottom contours, and 

R   ( , )  is a copy of the real line. To make the notation clear we explicitly write the 

analytical definitions of both the three-dimensional liquid domain D D3  and the two-

dimensional vertical intersection D : 

 

      D x y z x y R h x zD3

2 0    , , : , , ,         D x z x R h x z    , : , 0 .          (B.1) 

 

The liquid domain D D3  is decomposed in three subdomains D D R iD

i i

3 1 2 3( ) ( ) , , , ,    

defined as follows: D D3

1( )
 is the constant-depth subdomain characterised by x a , D D3

3( )
 is the 

constant-depth subdomain characterised by x b , and D D3

2( )
 is the variable bathymetry 

1h  

3h  

  x  

  z  

 2
D  

 3
D  

 h x  

  n  

  x b  

   
   x;t  

 1D  

  Incident wave 

  x a  
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subdomain lying between D D3

1( )
 and D D3

3( )
. The analytic definitions of the corresponding two-

dimensional subdomains D ii( ) , , , , 1 2 3  are as follows: 

 

     D x z

x a h z i

a x b h x z i

x b h z i

i


   

     

    

































, :

,

, ,

, ,

1

3

0

0 2

0 3

 , for =1

 

for

for

                                                       (B.2) 

 

 

After introducing the geometrical notation we need, we are proceeding to the mathematical 

formulation of the wave problem.  The general representation of the wave potential   x z,  in 

the semi-infinite strips  D
1

 and  D
3

 (see, e.g.,  Miles 1967, Mei & Black 1969, Massel 1993): 

   
                         1 1 1 1 1 1 1

0 0 0 0

1

, exp e  xp exp  R n n n

n

x z A ik x A ik x Z z C Z z k x a




      

   1
,x z D                            (B.3) 

                         3 3 3 3 3 3 2
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The terms           1 1 1

0 0 0 0exp expRA ik x A ik x Z z   and 
      3 3

0 0expTA ik x Z z   in the series 

(B.3) and (B.4), respectively, are the propagating modes, while the remaining ones 

 n  12, ,  are the evanescent modes. In the expansions (B.3) and (B.4) the sets of numbers 

 i k k n ii

n

i

0 1 2 1 3( ) ( ), , , , , ,  , and the sets of vertical functions 

  Z z n in

i( ) , , , , , , 0 1 2 1 3 , are, respectively, the eigenvalues and the corresponding 

eigenfunctions of the following regular Sturm-Liouville problems obtained by separation of 

variables in the half-strips D ii( ) , , 1 3 . The eigenvalues  i k ki

n

i

0

( ) ( ),  are obtained as the roots 

of the dispersion relations 

      h k h k h ii

i

i

i

i  ( ) ( )tan , ,1 3 ,                          (B.6)           

 

and the eigenfunctions   Z z nn

i( ) , , , , 0 1 2  are given by 
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The following problem can be equivalently reformulated as a  transmission boundary value 

problem in the bounded subdomain D ( )2   and the function 
   
2

x z, , defined in  D
2

, satisfy 

the following system of equations, boundary and matching conditions: 

       2 2 2
0 , ,x z D ,                                                                    (B.8a) 
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After admitting a variational formulation in  this transmission problem and using an additional 

mode, the wave potential representation is enhanced. The variational formulation of the 

problem is stated as follows (see Athanassoulis & Belibassakis 1999): 
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Enhanced local-mode representation 

The wave potential 
   2

, z x associated with the propagation of water waves in the variable 

bathymetry region, without the presence of the scatterer (floating body), can be conveniently 

calculated by means of the consistent coupled-mode model.  This model is based on the 

following enhanced local-mode representation: 

 

           2

1 1

0

, ; ;n n

n

z Z z Z z  


 



 x x x x x .                                                          (B.10)

   

In the above expansion, the term    0 0 ;Z z x x  denotes the propagating mode of the 

generalised incident field. The remaining terms    ; ,n nZ z x x  1,2, ,n   are the 
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corresponding evanescent modes, and the additional term    1 1 ;Z z x x  is a correction term, 

called the sloping-bottom mode, which properly accounts for the satisfaction of the Neumann 

bottom boundary condition on the non-horizontal parts of the bottom. The function  ;nZ z x  

represents the vertical structure of the n -th mode. The function  n x  describes the horizontal 

pattern of the n -th mode and is called the complex amplitude of the n -th mode. The 

functions  ;nZ z x , 0,1,2...n  , are obtained as the eigenfunctions of local vertical Sturm-

Liouville problems formulated in the local vertical intervals    0h z  x ,  and are given by, 
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   (B.12a) 

In the above equations the eigenvalues     0 , nik kx x are obtained as the roots of the local 

dispersion relations, 

         0 0tanhh k h k h    x x x x x ,           tann nh k h k h     x x x x x . 1,2,...n    

   (B12b) 

The function  1 ;Z z x  is defined as the vertical structure of the sloping-bottom mode. This 

term is introduced in the series in order to consistently satisfy the Neumann boundary condition 

on the non-horizontal parts of the seabed. This satisfaction is  important for the problem, 

ensuring the conservation of energy. In this model the convenient form of  1 ;Z z x  , being 

based on the least degree polynomial satisfying conditions, that is chosen is the following: 
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By using the ;local=mode series expansion (B.10) in the variational equation (B.9), the 

coupled-mode system of horizontal equations for the amplitudes of the incident wave field 

propagating over the variable bathymetry region is finally obtained, 

           a b cmn n mn n mn n
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



   

1

0 , a b   x m, , , ,..101 ,              (B.13) 

 

where the coefficients , ,mn mn mna b c  of the coupled-mode system  are defined in terms of the 

vertical modes  ;nZ z x . The coefficients are dependent on x  through  h x  and the 

corresponding expressions can be found in the following table : 
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 CASE  I 

m  1 

n  1 0 1 2, , , , 

CASE  II 

m  0 1 2, , ,  

n  1 
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m  0 1 2, , ,  

n  0 1 2, , , 
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The above coupled-mode system in a x b  ,  is supplemented by the boundary conditions 

 

       1 1 0a a ,         1 1 0b b ,                                                    (B.14) 
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The coefficients A C A CR n T n, , ,( ) ( )1 3  are then obtained by the equations: 

 

      A a A i k a i k aR  0 0 0

1

0

1ex p ex p( ) ( ) ,   C an n

( )1   ,     n  12 3, , ,        (B.17)
 

   A b i k bT  0 0

3exp ( ) ,                      C bn n

( )3   ,     n  12 3, , , .                       (B.18)     

 

Solving the system and substituting the solution in the above equations, is easy to receive the 

coefficients for the semi-infinite strips, concluding for the wave field representation outside of 

the variable bottom topography. The system is supplemented by appropriate boundary 

conditions specifying the incident waves and treating reflection, transmission and radiation of 
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waves. It is worth mentioning here that if only the propagating mode (n=0) is retained in the 

expansion (11) the above CMS reduces to an one-equation model which is exactly the modified 

mild-slope equation derived by Massel (1993) and Chamberlain & Porter (1995). The obtained 

coupled-mode system of horizontal equations, being fully equivalent  to  any  other  complete 

linear model, presents a number of advantages as:  

 

 Only a few modes are sufficient to accurately calculate the wave field in the whole 

liquid domain. Thus, this method effectively treats the nonlocal character of the 

problem in the propagation space, identifying and retaining the most important 

couplings. 

 

  The enhanced coupled-mode system can be naturally simplified either to the extended 

mild-slope equation or to the modified one in subareas where the physical conditions 

permit it.  

 

  The present method provides high-quality  information concerning the pressure and the 

tangential velocity at the bottom, which is useful for the study of oscillating bottom 

boundary layer and wave-energy dissipation, as well as for sea-bed movement and 

sediment transport studies.  

 

 Because of the completeness of the representation of the velocity field, it can be utilised 

for the construction and the efficient numerical treatment of the corresponding Green‘s 

function, which is the main tool for studying wave-body interaction problems in 

variable bathymetry regions. 

 

 

 

 

Numerical results 

 

For simplicity  we consider here the case of a smooth underwater shoaling modeling a 

nearshore/coastal regions with different depths. This topography was also considered by 

Massel (1993) in order to demonstrate the effects of bottom slope and curvature on the solution 

obtained by his modified mild-slope equation. The particular environment is characterised by 

the following depth function 
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  (6.7) 

 

which models a smooth but steep underwater step where the depth varies  gradually from 5m to 

2m. The maximum slope of the above bottom profile is 
max 0.24s   and the mean slope 

mean 0.08s  . (A sketch of the bottom geometry is shown in the figures below). We first 

consider a longer wave propagating from deeper to shallower water of angular frequency 

1.54 / ( 4 )rad s T s   , implying that both ratios 
1 1 0.22h    and 

3 3 0.12h     fall well 

outside the limits of the deep or the shallow water theory. Results are plotted in Figs. 

B.2,B.3,B.4,B.5.  

 

A second example in the same environment is presented in Figs. B.6,B.7,B.8,B.9 and concerns 

shorter waves of  angular frequency 3.14 / ( 2 )rad s T s   , also implying that both ratios 

1 1 0.8h    practically corresponding to deep water conditions, and 
3 3 0.33h    which 

corresponds to intermediate depth to deep water. 

 

In  these figures the equipotential lines of the  wave field (real and imaginary part) in the 

variable bathymetry subdomain  are plotted, together with the calculated  free-surface 

elevation.  The results have been obtained by retaining  5 totally  modes which is enough for 

numerical convergence. The patterns shown  are quite reasonable and the equipotential lines  

intersect the bottom profile perpendicularly, as they ought. 
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Figure B.2: Incident waves  of period T=4sec propagating normally (ζ=0deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

horizontal plane. 

 

Figure B.3: Incident waves  of period T=4sec propagating normally (ζ=0deg)  to the smooth  

shoal. Real (upper subplot) and imaginary (lower subplot) part of the wave potential  on the the 

vertical plane 
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Figure B.4: Incident waves  of period T=4sec propagating normally (ζ=45deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

horizontal plane.  

 

Figure B.5: Incident waves  of period T=4sec propagating normally (ζ=45deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

vertical plane 
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Figure B.6: Incident waves  of period T=2sec propagating normally (ζ=0deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

horizontal plane.  

 

Figure B.7: Incident waves  of period T=2sec propagating normally (ζ=0deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

vertical plane. 
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Figure B.8: Incident waves  of period T=2sec propagating normally (ζ=45deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

horizontal plane.  

 

Figure B.9: Incident waves  of period T=2sec propagating normally (ζ=45deg)  to the smooth  

shoal. Real (left subplot) and imaginary (right subplot) part of the wave potential  on the 

vertical plane.  

 


