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ITepiAnyn

H Mnxavikn Mabnon €xet onuewwoel onpavtikny e§eAdn ta teAsvtaia xpovia. H
aAVAYVWPLON EKOVOG KaBloTaTal ONUAVTIKO OTOlKEl0 0 OA0 KOl TEPLOCOTEPES
EPUPLOYEG, ATIO LATPIKEG SLYVWOELG KAl UTOVOUN QUTOKIVITA HEXPL KAL OE PEYAAX
kévtpa Sedopévwy. Ta tedevtaia xpovia, state-of-the-art Zuvediktikd Nevpwvika
Alxtva Babudg Mabnong mov pmopovv va Kataypdouv TOAVTAOKA U1 YPOUIKE
XOPOAKTNPLOTIKA, £XOUV Sel€el TN SNPo@Ala TOUG € SLAPOPES EQAPUOYES TIPAY LATLKOV
XPOVOU, ETTUYXAVOVTAS aKpifela 0€ OAX T TECT KATAVONONG €KOVAS (Avayvwplon
Ewovag, Aviyvevon Ewovag kAT.). Qotdo0, auth 1 Suvatotnta EpYXETAL E TO KOOTOG
TV VYNA®V ATALTHOEWY VTTOAOYLOHWV Kol pviung. Ta vevpwvikd Siktua amattovv
SloekaTopupVpLO ApLBUNTIKEG TIPAEELG KL EKATOUUUPLA TIAPAUETPOVS, EXOVTAG ETGLTIOAV
VYPNAY UTTOAOYLOTIKT] TTOAUTIAOKO TN TAL.

[ToAAEG e@appoyEG VEUPWVIKWY SIKTOWV AVTITIPOOCWTEVOUV [LK VTTOAOYLOTIKN
TPOKANON Y& TOUG EMEEEPYAOTEG YEVIKNG Xp1ioNG. Amattovv AVoelg VIMANG amddoong
TOU EVOWUATWVOVTAL OF UTAPXOVTA OUCTNHATA WHE OUOTNPOVG TEPLOPLOHOVG
TPAYLATIKOU XPOVOU Kal LoyVoG. 'Eva TpwTo onpavTikd Bripa TG EMITAXVVOTG QUTWY
TWV EQAPUOYWV EIVAL LLX TIPOCAVATOALGUEVT TIPOG TO VALKO TIPOGEYYLON TIOV EMITPETEL
YPYOPES KL ATIOSOTIKEG AVOELS. LG ATIOTEAEG A, £XOVV VIOOETNOEL EMITAXVVTEG UALKOU
o€ MAATEOPUES VPNANG amdSoonG, OTwE 1) CUCTOLYIA ETITOTILA TIPOYPAUUATI{OUEVWV
mAWV (FPGASs), Yo ™ BeATiowon TG amdS00MG AUTWY TWV EQAPUOYWV.

Auvt) 1 Sumlwpatiky gpyacio Slepeuvd TIS SLUVATOTNTEG TNG ETLTAXVVONG TWV
VEUPWVIKWV SIKTOwV pe Bdon to FPGA, xpnowomolwvtag tn mAat@oppa Pablag
udbnong Caffe kot amodekviel ™y Bacluotnta TG W8€AG Ha TANPWS AELTOVPYIKNG
eQapUoyns o€ éva cvotnua Zynq System-on-Chip. To etepoyevég cvotnua CPU-FPGA
EXEL OXESLHOTEL YL TNV ETLTAXVVON TNG AVAYVWPLOTG EIKOVAG HETW® TNG TAATQOPUAG
Caffe, ypnowwomolWVTAG TOV EMTAYUVTH] VAIKOU, ETITUYXAVOVTAS ONUAVTIKA
QTOTEAECUATAL.

0 emtayvvmg FPGA Baciletal o pia ouvaptnomn mov ovopdletat GEMM (General
Matrix Multiply), n omola &lvat TO TO UTOAOYLOTIKA GCUUE@OPNTIKO HEPOG TWV
aAyopiBuwv avayvwplong eikovag otn mAat@oppa tov Caffe. Autdg o adydpBpog
TOAAATIAXGLAGHOU UE TIOAAATIAOVG EVOWUATWHEVOUG Bpdyoug emavainymg viobetel
SLaPopeg TEXVIKEG BEATIOTOTIOMONG TOGO OTO AOYLOULKO OGO KAl OTO LVALKO yla v
EAAYLOTOTIOWOEL TIG TIPOCPACEL TN UVIUN KOl VX TIAPAAANAOTION|0EL TIAT|PWSG TLG
aplOuntikés mpagels. O emtayvvtng FPGA €xel vAomombel pe XOvOeon Y{yPmAov
Emumédov oto mepfdArov avamtuing SDSoC ywx ) mAakéta Xilinx Zynq ZC702 kau
(PTAVEL TN HEYLOTN CLXVOTNTA POAOYLOV TIov Voot pifeTal N omola eivat 200MHz pe
xpnomn mopwv kovta oto 80%. H a&loddynomn tou emitayuvtr Selyvel OTLT eKTEAEOT] TNG
ouvvaptnong GEMM pmopel va emitayuvBel €éwg kat 380 @opég oe oxéomn e TNV AmAN
ekboxn oe ARM emelepyaoTr), eV TO TEAIKO GCUGTNUA UE TOV EVOWUATWUEVO ETLTAYXVVTH
umopel va av&noel Ty amoddoon Kol TNV EVEPYELAKN KATAVAAWOT TNG AVAYVWPLOTG
ewovag wg kat 10% pe Atyotepo and 0.4% pelwon oty akpifeia TpoPAeymg.

A€gerg KAewdud: pnyavikn pdbnon, ovvehiktikd vevpwvikd Siktva, DNN, avayvapion
ewkovag, Caffe, emtdyvvon vikov, FPGA, cUvBeon vmAov emimédov, Zyng SoC






Abstract

Machine Learning has achieved major breakthroughs in recent years. Image Recognition
is becoming a vital feature in ever more applications ranging from medical diagnostics and
autonomous vehicles to big data centers. In recent years, state-of-the-art Deep Convolutional
Neural Networks (DNNs) which can capture complex non-linear features have shown their
popularity in various real world applications achieving record-breaking accuracies in all
image understanding benchmarks (i.e. Image Recognition, Image Detection etc.). However,
this ability comes at the cost of high computational and memory requirements. DNNs require
billions of arithmetic operations and millions of parameters, thus they have a very high
computational complexity.

Many DNN applications represent a computational challenge for general purpose
processors. They demand high performance solutions that integrate into existing systems with
tight real-time and power constraints. A first important step of the acceleration of these
applications is a hardware-oriented approximation that enables fast and efficient solutions.
As a result, hardware accelerators on high performance platforms, such as Field
Programmable Gate Arrays (FPGAs), have been adopted to improve the performance of these
applications.

This master thesis explores the potential of FPGA-based acceleration of DNNs, using
Caffe Deep Learning Framework and demonstrates a fully functional proof-of-concept
implementation on a Zynq System-on-Chip. The heterogeneous CPU-FPGA system is
designed for the acceleration of image classification with Caffe framework by utilizing the
hardware accelerator achieving significant results.

The FPGA accelerator is based on a function called GEMM (General Matrix Multiply)
which is the most computational intensive part of the image classification algorithms in Caffe
framework. This nested-loop matrix multiplication algorithm adopts several optimization
techniques both in software and hardware to minimize the memory accesses and fully
parallelize the arithmetic operations. The FPGA accelerator has been synthesized using High-
Level Synthesis on SDSoC Development Environment for the Xilinx Zynq ZC702 board and
reaches its maximum supported clock frequency of 200MHz with a device utilization of ~80%.
The evaluation shows that the accelerator function can achieve up to 380 X speed-up over the
simple ARM SW version while the final system with the integrated accelerator can boost the
performance by 10% of the image classification with less than 0.4% accuracy drop while
maintaining substantial energy-efficiency.

Keywords: machine learning, convolutional neural networks, DNN, image recognition,
Caffe, hardware acceleration, FPGA, high-level synthesis, Zynq SoC
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Extetapévn Ilepidnyn

Elwcaywyn

H ovveme exBetikn avinon twv péowv evnuépwong, twv IoT kal Twv peydiwv
SeS0UEVWV ATTALTEL YEVIKA YPTYOPES TAXVTNTEG EMECEPYATLAG, EVW OL EQAPUOYES TIPETIEL
va SLatnpovv YaunAod KOOTOG EVEPYELXG Kal VX Slatnpovv HIkpO XpOvo avAaTTuEng.
[ToAAG cvoTipata VPnANS anddoons Bacilovtal o€ aAyOplOPOVS UNXAVIKNG HaBnong
(Machine Learning), 6Twg 1 ta§lvounomn ekovwy, oL avaAVoEL SESOUEVWVY K.ATL. TTOU
ATOULTOVVTAL IO EVOWUATWHUEVES KAL EQAPUOYESG LEYAAWY SESOUEVWV.

Ye autd 1o TEedio, Ta ZuveAikTikd Nevpwvikd Alktua Babiag MdaBnong 1 ota ayyAkd
Deep Convolutional Neural Networks (DNNs) €gouv amokTiioel onUavTiky €A Adyw
TOV OTL TIPOsPEPOLV afloAoyrn akpifela otnv TPOPAeYN Kat peydAn evedigia. Avtol ot
aAyOpLOUOL EUTIVEVOUEVOL ATIO TOV EYKEPAAO ATIOTEAOVVTAL ATIO TTOAAATIAG CTPWUATA
AVIXVEVTWV KAl TAELVOUNTWV TIPOTUTIWV KAL XPNCLUOTIOLOVV TEXVIKEG ATIO T1) UNXAVIKN
udbnom, oL 0Toleg TOUG EMITPETMOVV VA avTaywvifovtal Ty akpifela Twv avBpwmwv
OTAV TIPOKELTAL YL TIAPASELYUA YL AVAYVWPLOT ELKOVWV.

[TapoAo mov amatteital cofapdg UTOAOYLOHOG Yl TNV AVAAVON TWV HEYAAWV
TOCOTHTWV SeSOUEVWY, 1| XPNOT CUOTNUATWV VPNAWY EMIBO0EWYV QAIVETAL TTIOAAX
UTIOOXOUEVT), AAAG 1) TIpOKAN oM TNG pelwomng Tou VPMAOD EVEPYELAKOU KOGTOUG KL TWV
XPOvwyv emelepyaoiag mapapuével. ATO v GAAN TAELPAE, OL VAOTIOOELS A0 TETOLA
OLOTHHATA OTIWG 1 CVOTOLX(X ETLTOTMIA TPOYPAUUATI{OUEVWY TTUAWVY 1] GAALWG OTA
ayyAwd Field-programmable gate array (FPGA) €xouv 8L peydn mpoodo, kabwg oL véeg
AVASUVOUEVES TEXVIKEG AELOTIOLOVV TNV ApXLTEKTOVIKN TwV FPGAS ekpeTaAAevo eV TOUG
EMITOYVVTEG LVAkoOU vymAng amodoong (hardware accelerators) pe pkp& ko6oth
EVEPYELAG, SLATNPWVTAS TAPAAANAX TNV TPOCAPUOCTIKOTNTA TWV YPYOPWV
TPWTOTUTIWY. Mg TN XP1oN EMTAXVVTWV UAIKOU QUEAVETAL O GUVOALKOS puOUOg
EKTEAEONG TWV TPOYPAUUATWV AGYw TOU €EAPETIKA TAPAAANAOTOUOLLOV HAJLKOV
aplBpov mpdafewv mou ypeldlovtal ot aiyoplBupot Twv DNN kot emiong pELWVETAL 1)
KatavdAwon evepyelag. To Caffe, Eva pia miat@oppa Badiag pdbnong tov UC Berkley,
ExeL MO epappootel kat PeAtiotomomBel apyxlkd povo oe V0 SLAPOPETIKES
apxttektovikés ylia CPU kat GPU kat pmopel evkoAa va Stapop@wdel xwpls peyaies
AAAaY£G KOSIKA.

IV Tapovoa Epyacia TAPOUCLAOVLE:

e Mia tpomomompévn €kdoom tov Caffe ylax e0koAn peta@opd Tov otov emeéepyaotn
ARM (Zynq 7000) tov FPGA SoC.

e 'Evav emtayuvt) vAkoU oxedlaopévo oto TmeplfdAiov Xilinx SDSoC mou
eKHeETOAAEVETAL T TTAEoveKTHaTA Tovu FPGA kal sival kpiowog yux tov aiyoplBuo
aVAYVWPLONG ELKOVAG.

e 'Eva ovotua Baciopévo oe CPU-FPGA, e€alpeTikd £TEPOYEVEG TIPOYPAUUATIOUEVO
SoC mov vrtootnpilel To mepLBaArov Tov Caffe kal xpnoloTolel TOV ETLTAYVVTI) VALKOU,
ETILTUYXAVOVTAG OTUAVTIKY TaxVTNTA Kol amoSoTIKOTNTA LloxV0G 0€ GUYKPLOT| [E TOV
emeepyaotn) ARM Zyng.
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OewpnTiko YToLabpo

Mnyavien Mabnon H expddnon unxavov otn Bdon g eivat 1) TPAKTIKY THS XPT0NS
oAyoplBuwV yla TNV avaivon Sedopévwy, TNV EKUAON O aTtd AUTHV Kal, 0TI CUVEXELQ,
yla va yivel pa amdgaon 1 mpoBAsdm ywx katt otov koopo. Etol, avtl yua v mpo-
UTIAPXOVOQ POUTIVA TNG XELPOKIVNTNG TPOTOTOINONG TOU AOYLOHIKOU UE éva
OUYKEKPLUEVO OUVOAD OONYLWV YLX TNV EKTEAEOT HLAG OGUYKEKPLUEVNG €PYAOiAG, TO
UNXAVN LA «EKTINLSEVETA XPNOLLOTIOLOVTAG HEYAAX TTOOA SESOUEVWVY Kal aAyopiBpwv
IOV TOV S1vouv T SLVATOTNTA va HABEL TTWG va ekTeAEdeL TNV epyaoia. ‘Etol, o Bacikog
0TOX0G VAL VX YEVIKEVTEL KAL VO KAAVTEPEVOEL O TNV eumelpla tov. 'evikevon oe
aUTO TO TTAAICLO ElvaL 1] IKAVOTNTA HLXG UNXAVIG EKPABNONG va ekTeAEL Pe akpifela vEa
Tapadeltypata / epyacies a@ov €xel ekmaldevtel oe éva oet Sedopévwv. Ta
Tapadelypata ekmaidevong mpoépyxovTal amd KATOlX YEVIKA AyVwOoTr KOTOHVOUN
TOAVOTNTAG KL 0 EKTTALSEVOUEVOG TIPETIEL VX OLKOSOUTOEL EVA YEVIKO LOVTEAO OYETIKA
LLE QUTO TO XWPO TIOV TOU ETMITPETEL VA TIAPAYEL ETMAPKWS aKPLPelS TpoBAEPELS o€ VEESG
TEPLTTTWOELS.

Nevpwvika Aiktva Ta Zuvediktikd Nevpwvikd Aiktva (CNNs) eival éva €idog
HOVTEAOL MUMYAVIKNG UAOMONG TOU €xel UEYAAN TPakTIKN ofia oTOov TOuéA TNG
aVayvwpLons mpotUTwy. Alakpivovtal yl TNV UTEPOUYXPOVI] CUUTEPLPOPA TOUG
EMELSN UTTOPOVV VA SNULOVPYTICOVV QUTOUATA TOGO XAPAKTNPLOTIKE VPNAOY EMITESOV
000 Kal XaunAov emméSov. 'Eva cuveAIKTIKO VELPWVIKO SiKTUO elval EUTIVEVOUEVO ATTO
BoAoykég Siepyacieg otig omoleg To MPOTLUTO OUVEEONG UETAEY TWV VEUPWOVWV
EUTIVEETAL ATIO TNV 0PYAVWOT) TOU {WTLKOV OTTIKOU PAoLov. To Baoikd Sopkd ototyeio
OTO TEYVNTA VEVPWVIKA SiKTua €lval 0 VELPWVAG O OTOIOG AVTATIOKPIVETAL OF
epebiopata pOvo o€ Pl TTEPLOPLOUEVT] TEPLOXT] TOV OTITIKOU TESIOV, UE ATOTEAEOUA
moAAol pall va avTlapBAavovTal GUYKEKPLUEVA XOPAKTINPLOTIKA HIaG €kovag. To
TAPAKATW SLdypappa Seiyvel éva ox€SL0 evOg BLoAoyKoL VEVLPWVA (APLOTEPA) KL EVOG
KowvoU pabnpatikol povtédov (8e€Ld). Méow cuvaPewv oL 0TIOlEG EAEYXOUV TNV EVTOON
KaOe epebiopatog mapdyetal Eva TeEAKO epebilopa, To omolo elvatl To aBpolopua 6AwV
TV SEVOPLTWV GTOV VELPWVA.

Iy wy
*@® synapse
‘ . axon from a neuron
impulses carried W

toward cell body

branches
dendrite3<& K of axon
v
axon
axon__
nucIeUSﬁ_. terminals
;{;3%/ xmpulses carried

away from cell body
cell body

cell body

Ew;w; +b

f (Z w,z; + b)

output axon
activation
function

Ewova 1: BloAoyikog veupwvag (aplotepd) Kot To pabnuatiko Tou povteAd (5edid) [1].
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Agrtovpyila Nevpwvikwv AktOowv Babuag Mabnong 'Eva vevpwvikd Siktuo
onuovpyeitat Staocuvdeéovtag TOAAOUG TEXVNTOUG VELPWVEG. Ol VELPWVEG elval
Slatetaypévol o€ Eva KATEVOUVOUEVO OKUKALKO Ypd@nua o€ €va SIKTuo mpowbnomng
WOTE 0L ££0560L OPLOUEVWV VEVPWVWV UTTOPOVV VA YIVOUV ELCPOEG GE AAAOUG VEUPWVES.
Ta Bapn otV elcodo toug kabopilovv OGO GYETIKOL 1} OXL Elval 0TV Epyacia oV
ekTeAelTal YTdpyouv oTpwuaTa L6080V Kat €§080V KAl EMITAEOV KPLEG eTiTTESA TTOV
TIOAAEG POPEG ALEAVOUV TO PEYEDOG KAl TNV TTOAVTIAOKOTITA TOU SIKTUOU. AUTA UTtopEl
va teplapfavouy emimeda OTwG:

e Emimedo Zuvéli&ng (Convolution): TpooopOlWVEL TNV ATOKPLON €VOG
UEULOVWHEVOL €peB(OPATOG KAVOVTAG TNV TPAEN TNG OLVEALENG pHeTaly NG
EIKOVAG €l0080V Kal Twv Bapwv
SLapopwv @IATpwv.

e Emimedo Xuykévtpwong (Pooling):
TPOKeITAlL Yy [ Sadikaoia
SdetypatoAnPiag mov ouvoyilel

TIG €E060VG YELTOVIKWV YKPOUT ; . o\ utput layer
VEUPWVWV EVTOG VOGS TTapabupov et

(patch) pe gl avTImPooWMEVTIKY hidden layer 1 hidden layer 2

Tn.

Ewéva 2: Opydvwon evog veupwvikov SIKkTou
ne mToAAamAG emimeda [1].

e Emimedo Mn TIpappkotntog
(Non-Linearity): xapaktnplotiko
enimedo twv CNN mouv ouvBwg
EQPAPUOTEL Pl SLopOWTIKT Un Ypapikn ouvaptnon (my. ReLU,tanh(x), sigmoid).

o [IA\pwg Zuvdedepevo Emimedo (Fully Connected): ocuvdéel kabe vevpwva o€ Eva
OTPpWHA UE KAOE vevpwVa o€ éva dAA0 oTpwia aBpoilovTag Ta amoTEAEoUATH
Yl va TapeL Ty €§080 Tov.

Emiong ta vevpwvikd Siktua UmopolVv va eKTALSEVTOVV KAl Ol TAPAUETPOL TOUG
naBaivovtal katd T StapKela aUTHG TGS @aomG. To SikTuo pumopel va pabet kot va Bpet
Ta BéATIoTa Bdpn, kKaBopilovtag pa Aeltovpylor AMWAELAG KOl XPNOLULOTIOLWVTAS TOV
aAyoplBpo omioBiag tpo@odotnong (backpropagation) ywx v mpooapuoyn Twv
Bapwv. Metd Vv ekpdbnom, to Siktuo eival £€Tolpo va avayvwpiocet eikoves. O otdyog
elvaitn e€aywyn tov ovumepacpatos (inference), To omoio elvat 1 TeAkn €£0806 Yl TV
TPOLAEYN TNG lKOVAG Kol KABOPIZETAL KATOTILV PHETA ATIO TOV UTIOAOYLOUO OAWV TWV
evdldpeowv emméSwy (emimeda cLVEALENG, CUYKEVTPWOTG KTA.).

- 50 | o
ol o
Lo
o e
° Lo sunset Penset
A o o
° o
o ~o Paog
o o
o o
o o
[ o Peat
. . o o
convolution + max pooling vec | o \:
nonlinearity ‘ o

convolution + pooling layers fully connected layers  Nx binary classification

Ewéva 3: TIpdPAedm e1kOVAG HETA aTTO TOV UTTOAOYLOUO TG €6680V TOV VEUPWVLIKOV SikTVOUL [2].
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Apxttektovikny FPGA  Field-Programmable Gate Array (FPGA) 1 ota eAAnvika
OUOTOLYLA ETLTOTILA TIPOYPAUUATILOUEVWV TIVAWV ELval EvA OAOKANPWHUEVO KOKAWUA TO
omoio "mpoypappatifetal" kKAl SUOPPWVETAL AVOAOYWSG TNV KATACTHOT TOU
mpoAnpatog. H Stapdpewon tov FPGA kabopiletal yevikd Le TN Xp1OT KOG YADCGOOG
meptypa@ns VAwkov (HDL), mapopolag pe ekeivy Tou XpnolUoTOLElTAl Yl €va
0AOKANPwWHEVO KUKAwpa e&etSikevpévng e@apuoyns (ASIC) kat amookomel otnv
EKTEAEOT WLAG VTIOAOYLOTIKA £VTOVNG £pyaciag. To TTAEOVEKTNUA TOUG Elval OTL TTOAAES
@EOPEG  Elval  OMUAVTIKA  TAXUTEPA YL  OPLOUEVEG  EQAPUOYEG AOYw TG
TAPAAANAOTIO UG LUN G PUOTG TOVG.
Ye avtiBeon pe ToOUG

KOLVOUG ETEEEPYNOTESG, T

ovotipata FPGAs €xovuv  |[] ] ——
avefaptntovs  kOuPoug o g ﬂﬁﬁﬁﬁﬁﬁﬁ(
enegepyaciag (PEs) movu DL ELILr §

Elpy 5 (, ) , [ [ foonoooon s
avatifevtal o€ éva €L8IKO  PROGRAMMABLE s HOGHOO00 2 /O BLOCKS

, INTERCONNECT £ AOOHAOG00 g
TUNUHO TOU  TOLT Kol IROUOOanns

. , — LEapanaoni
LTIOPOUV VoL EPYOOTOVV E*—*D—Ej S o o 50 o o 0
autovoua Ywpic Kaula L EE]
o

GAAN emidpaom amd aAAx
Aoywka pmAok. Ta FPGAs LOGIC BLOCKS

amotelovvtat amd 2D

(M xoau 3D) ovotolieg Ewdva4: Ecwtepuai apyitektovikn evos FPGA [9]

AOYIK®WV UTIAOK Ol OTIOlEG

ouvvdéovtal HECW TPOYPAUUATI(OPEVWY SLOLVVOECEWY Yl TNV VLAOTONoN €VOG
aVASLAHOPEWOLHOV PN @AKoV KUKAWUATOG LE OKOTIO TNV EKTEAEOT] KAL EMITAXLVON
KATIOLKG CUYKEKPLUEVNG AelToVpYiag 1] TTpAEng.

3

Tuxva, Ta FPGAS eVOWUATWVOVTAL OE «ETEPOYEVI)» CUCTNHHATA SNAXST CUCTIHHATA TTOV
XPNOLOTOLOVV TEPLOCOTEPA ATO £va €L80G EMECEPYAOTWV Yl TNV €§LEEIKEVUEVT)
avtipetwmion  Swx@opwv  mpofAnudtwyv. T mapadetypa M olkoyévelx
Tpoypapuati{opevwy ocvotnuatwyv Zyng-7000 SoC tng Xilinx evowpatwvel v
TPOYPAUUATIOMOTNTA  TOU  AOYlLOpIkoU  &vog  emefepyaoty ARM  pe v
Tpoypappati{opevn texvoAoyia tov FPGA. [Tapadooiakd, ol TpoypaAUUATIOUOl TETOLWY
OUCTNUATWV Y(VOVTOV XPTOLLOTIOLWOVTAS Hld YAWood TeEpLypa®ns VALkoU (HDL) 6mwg
VHDL 1 Verilog aAA& twpa €xouvv Bpebel BeAtiotomompueves pebodoroyieg, Omwe n
ovvBeon vPmAov emmédov (HLS), ) omola kabBlotd v cUvBeon LALKOV EVKOAATEPT, UE
mAaT@Opueg 0w To SDSOC ¢ Xilinx. To epyaieio autod kaBLoTA TOV TPOYPAUUATIOUO
AOYLOHIKOU KAl VAIKOU TOAU Tilo €VUKOAO, TPOCEPEPOVTAS YL TNV oLvBeon VLALkOV
YAwooa mpoypappatiopol vymAoy emméSov (C, C++), EMTPEMOVIAG OTOUG
TIPOYPAUUATIOTEG VO EKUETHAAEVTOVV TA TTAEOVEKTI LT VALKOU XWPLG VoL EXOUV LEYAAN
TEXVOYVWOIA VALKOU.

Ta FPGAs kol oL €MITAXUVTEG VAIKOU, SLABETOUV ONUAVTIKA TAEOVEKTIUATA EVAVTL
A wv cvotnuatwyv (CPU, GPU) kabw¢ eivat eEapeTikd TapoaAANAOTTONGLUOL £XOVTAG
TAUTOXPOVA ILKPT] EVEPYELAKT KaTavdAwon. To pepidio ayopag twv FPGA otnv Siebvn
AYop& TWV VUTOAOYLOTIKWY OUCTNUATWY elval  aflOA0yo, UE EQAPUOYES OF
EVOWUATWUEVA CUCTIUATA 0G0 KAL GTO UTIOAOYLOTIKO VEQOG (cloud computing) Tov ywx
Tapddetypa tapexeL n vimpecia Amazon EC2.
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YAomoimon DNN o€ Zynqg SoC

Ta evowpatwpeva cvotnuata £(ovv cuVNOWS TOAD CUYKEKPLUEVEG ATIALTIOELS KOl
TEPLOPLOOVG OO0V APOPA TNV UTIOAOYLOTIKN LOXU KL EVEPYEL KAL TNV SLAYEIPLOT) TWV
TIEPLOPLOUEVWV TIOPWYV OE TPAYUATIKO XpOvo (Try. Tteploplopevn pvniun). Ta Zynq SoCs
elval Wavika yla v amoteleopuatikny vAomoinon tov DNN kabwg emitpémouvv T
Snuovpyla TTPOCAPHOCUEVWV KUKAWUATWY GTO VALKO, CUVTOVIOUEVA OKPLBWS UE TIG
avAaykes Tou aiyopiBupov. To amotéAdsopa elvat 1 kopuv@aia amdédoon ava watt mov
ouvxva Eemepva Ta evowpatwpéva cvotuata CPU kat GPU. Ze autn TV mapaypa@o
TAPOVOLAlOVE pla VEx HeB0S0 yla TNV eVkoAN Tpocappoyr evog DNN mov ektedeital
oto mepldArovtov Caffe oe éva ocvotnua pe Bdon to Zynq XpnOLLOTIOLWOVTAG TNV
mAakéta ZC702 ¢ Xilinx, 1 omola amoteAeital amo emeiepyaot) ARM 32 bit pe &vo
TIUPT)VEG.

1. To mpwTto Bua TTpoKeLPEVOL Va peTapepOel 0AdKkANpo To TepLBaArov Tov Caffe
oto Zynqg 7000 SoC ywx va tpg€el otov mupriva ARM 1tav va HeTayAwTTIoTOUV OL
amoaitovpeves eEaptnoels BiAtodnkns tov Caffe (3d party libraries) kot o
OLVEXELX OAOKANPM TO TEPLBAAAOV TOU KL PETEMELTA VA oLVOeBOUV OAeg oL
BBALoONKeS yia TNV 0pBN Aettovpyia tou (. OpenCV, Boost, OpenBlas, HDFS5,
LMDB, Glog kTA.). 'l auta Ta fripata xpnoomomoape Tov cross-compiler ARM
TOU OoLUTEPLEAN PO oTo TepBdArov SDSoC. Zuykekpluéva, XPELAOTNKE
XEWpokivTa va katefacovpe Ta apyela mpoédevong kabe BBAL0ONKNG OV
xpetdletal kat e§aptatal to Caffe kal 0T cLVEXELA VO TA EYKATAOTIOOVE v
mpog  éva  xpnowomowwvtag To ARM toolchain «arm-linux-gnueabihf,
kabopilovtag ™V KATAAANAN Slapdpewon yua kabe PifAodnkn kol
EEMEPVWVTAG APKETEG ETILTAOKEG OE OPLOUEVEG EYKATAOTACELS. Elval onpavtiko
VO TOVIOTEL OTL OTNV EYKATAOTAON KL 6VVSEDT) TV PIBALOONKWOV EMAEXTNKE N
vmootplén ya ta NEON instrinsics mov emitpeémouvy v eméktaon g SIMD
QPXLTEKTOVIKIG YLt AELTOVPYIEG TOAAATIAWY TIPAEEWY AAAG KaL 1) XP1ioM VIUATWY
(pthreads).

2. To 8evtepo Prua Nrav va Bpedel pia KATdAANAn apxitektovikny poviélov DNN
YLt VO XWPECEL OTNV TEPLOPLOUEVT] UVIHT TOV evowpatwpevou SoC. Ta v
uetayAwTtioon tov Caffe, n Stemapr) StatnpnOnke apetafAnT KoL To Hovo PHEPOG
Tov €mpeme va TpomomowmBel Ntav to Makefile. Metd amdé tnv emituxm
Kataokeun Twv Suvapikwv BiAodnkwv (dynamic libraries) ywa to Caffe, €ywve
n ovvdeon (linking) pvBuifovtag katdAAnAa to Makefile kat emAéyovtag avti
TOV TPO-UTIAPXWV UETAYAWTTIOTH g++, Ttov ARM cross-compiler ywx to
EVOWUATWUEVO CUOTN AL

3. TéAog, oL avotnpol meploplopol otnv xprion DNN o€ pikpd evowpatwpéva
cvoTnHatTa TEPLAUBAvouy TNV TEPLOPLOUEVT) ViU ™S ovokeung (on-chip
memory). I'ta auToV ToV AdYO0, TTIPOTIUNONKE 1 XP1ION OXETIKA UIKPWV LOVTEAWV
vevupwVvikwv Siktuwv (my. GoogleNet, SqueezeNet) ta omola €youv HIKPES
ATIALTIOELG KL TIHPAAANAQ TIPOGPEPOLVY ATTOSEKTN akpifeLa.
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Zxedlaonog Tov emitayvvtn VALKoL yla FPGA

OL ETLTAYVVTEG VALKOU XPTNCLUOTIOLOVVTAL YIX VA EKPOPTWOOVV CUYKEKPLUEVES EPYATIES
atd ) CPU, BeATiwvovtag TV TayKooUlo atd800T TOU CUCTHATOG KOL LELWVOVTAG TN
Suvaplkn xatavédwon eveépyelag. Ta FPGAs péoa amd v avadlapop@ooiun
QPXLTEKTOVIKNG TOUG, UTTOPOVV Vi avadel§ouv Tov TapaAAnALopo evOG CUYKEKPLUEVOU
UTIOAOYLOTIKA EVTATIKOU KWOKK 0TO VALKO. X QUTN TNV TAPAYPAPO XVAAVOUUE TOV
ETILTAXUVTN VAIKOU TIov eMAEEQE va avantuéape o ovvBeon vPmAov emmédov (C++)
xpnowomolwwvtag to Xilinx SDSoC yla Tov TPoypAUUATIONO TOU AOYLOUIKOU KL VALKOV,
EMSLWKOVTAG VA ETITAYVVOUVUE TNV EKTEAEOT] TOV OE OYEOMN UE ToV emegepyacty ARM
Tov Zynq SoC.

KaBoplopnog ocvvaptnong ywa emrrayvvon Ipokepévou va oploTel To péPog Tou
KWOLKA TIPOG ETLTAYVVOT], EKTEAECAUE apXIkA pla agloAdynon xpovou (profiling) oto
mepfdAiov touv Caffe yla Tov €vromONd TWV ONUEIWV GUUEOPNONG UVNUNG M
vmoAoylopov. Ao v Ewova 5 @aivovtal ta emimeda Tou VEVPWVIKOU SIKTUOU TIOU
maipvouv meplocoTeEPO Xpovo (convolution layers). H Ewova 2 Selyvel Tov TpoTO e TOV
omolo kavel ouveALEn to Caffe pe Ta Stkpopa @iAtpa.

relu

S Ewova 5: Profiling oto Caffe.
po;I.ing
‘OTtws @aivetal amod TV elkOVa, T eMTESA
6.9% ouvéAlEng oto Caffe (convolution layers)
fully connected mailpvouv mepimov to 75% Tou cuvolwkov
XpoOvou ektédeong tou Siktvou. OToTE 1
£€e0peOT TWV UTIOAOYLGUWV YLK ETIITAYUVOT
Ba evromiiotel o€ auTo TO EMiTESO.

normalization

convolution

4.7%

Image data

Ewéva 6: H ouvédEn oto Caffe [3].

Onwg Toaplotdver 1 ewkova, to Caffe
mpaypatomotel  ouvEAMEN  peTally  Twv
£1068WV KaL TwV QIATpwWV ToL SIKkTVOU Héoa
amd TPAEEES TOAAATAAGLAGHOY TILVAKWV.
Avtég yivovtal oto Caffe, péoa amdé v
ouvvaptmon GEMM  (General Matrix
Multiply) ou pdkeLTal yia tnv cuvdptnon
Twakwv C = aAB+BC kal extedeltal amd v
BBAL0ON KN BLAS otov ARM emetepyaat.
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BeAtioTOoMON OGN GUVAPTNONG YIX EMLTAXVVET AoV opioTnke 1) cuVEpPTHON TTOL B
emtayuvOel péoa amd to vVAko (GEMM), ) Stadikacia mpoxwpnoe ota emOpeva Brpata
IOV aLOpPOLV TNV 0pON Aettovpyia TG cuvaptnong GEMM oAAd kot tn BeAtiotomoinon
TNV CLUVAPTNONG OE AOYLOULKO KAl VALKO.

» Beltotomoinon  Aoyiouikov: O MOAAATAACLAGOHOG  TWV  TIVAKWV
TPAYLATOTONONKE PE TO «OTAGLUO» TOU TIVOKX O€ HIKPEG TTAPTIOEG KAL TOV
UTIOAOYLOMOG TWV EMUEPOVG UTTAOK TOU TIVOKX HE TNV TEAIKN TNV OGUVEVWON
QUTWV Yl TNV oploTikny €6o8o touv mivaka C. Autd Bonbnoe otn toyLTEPN
EMKOLVWVIA 0T UVNUN KABWEG Ta PTTAOK (POPTWVOVTAV GTNV YPNYOPT HUVIiun
cache touv emegepyaoty ARM (pedetOnke kot To KataAAnio péyebog pumAok).
ZUYKEKPLUEVQ, YL TOV OPLOPO TWV UTTAOK GE OUVEXT] UVNLT), XPT|OLLOTIOMCAUE
™V evtoAn to sds_alloc() avti yia malloc() (avtd elvat emiong pa amaitnon ywa
™MV €EA0@AALOT TNG YPNYOPNSG EMIKOWWVIAG HE TOUG TUPNVEG VALKOU TOU
oL{NTAUE 0TV EMOUEVT] TAPAYPAPO). ETmAE0V, i pikpr) BeATIoTOTOMOT IOV
KAvape NTav va avtiypdPovupe tn untpa B mpwv and v avtiotoym puntpa A.
AvTO TEAIKAE aTOKPUTITEL EVa LEPOG TN G CUVOALKN G KABUOTEPNOMG POPTIOV, POV
N pocBacn ™G AELTOVPYLKNG LOVASAG TOU A AVTIOTOLYEL PUOIKA OTN CELPA UE
TNV OTOlo (POPTWVETAL, EMTPEMOVTAG GTOV UTTOAOYLOUO va apxloel pHOALS To
TPWTO oTolyelo Tov A emotpeéPel amd T pvniun. TéAog, ywx 1 ypnyopn
AVTLYPa@Y] Kol €KKABApLon Twv UTAOK KA&Be @opd, XPNOYLOTIOWCAUE
Asttovpyleg memcpy() kot memset() avtiotolya, oL omoleg elval owg ot
TOXVUTEPEG AELITOVPYIEG YA TO XEPLOUO AUTWV TWV VTOAOYIOUWV UVIUNG OTO
AOYLOULIKO.

s B Ewodva 7: GEMM otov ene§epyaot.

OMw¢ mapovoldletat oty ekdéva 1
ovvapton GEMM, yivetat Siapeplopds
BLOCK SiZE ™m¢ TPAENG TOU  TOAAATAAGLAGUOV
TWVAKWY OF WKPOTEPOUG KL TEALK)
ouVEvwon HE TO GBPOLOUG TOUG OTO
TeAwo mivaka C. A&ilel va tovioBel 6TL 1
ouvapTnon VoG TN PLTEL Ka

SLLPOPETIKA/ aKAVOVIoTA HEYEDT
TWVAK®WY KaBws Ta VELPWVIKE Siktua
oto Caffe moAAég @opéc  amattovv

’ «TEplepyes» SLOTACEL TIWVAKWY  (TTX.
A=128x288 B=288x784).

sA

215 Ho0H

sA

25RO

AkoAovBel ) TAPAYPAPOG TTOV TIEPLYPAPEL TIG BEATIOTOTIOMCELG 0TO VALKO [4].
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'OTws ava@EPONKE, 1 0 UTTOAOYLOOG TOU TEALKOU TIIVOKX YIVETAL UE PIKPOTEPES TIPAEELG
UTIOTILVAK WYV Ol OTIOLEG KAl TEALKA £XOUV OAO TO VTIOAOYLOTIKO opTio mpagewv (MACC
operations). Xe auUTI] TNV TAPAYPAPO TEPLYPAPOVUE TIG KUPLOTEPEG TEYVIKES
BeAtiotomoimong tov GEMM o¢ emimedo LAKOV.

» Beltwotomoinon YAikov: I'a v kaBodrynon ¢ oVvBeong kat g xp1iong Tov

Xviii

VAIKOU ypnowpomomdnkay, péoa amd to SDSoC, OUYKEKPIUEVEG VTIPEKTIBES
(pragmas) mov kKaBodnyovV TOUug TOPOUG TOU VAIKOU KAl TNV AELToupyla TOUG.
‘Ocov a@opd ™ SLaoVVSEEDT) TOU EMITAXUVTN UE TO AOYIOMIKO ETIAEXTNKE
mpotumo AXI SIMPLE_DMA pe 60peg cvotipatog ACP yia ovdeon pe v kopla
uvnun péow tou StavAov AXI4 oto Zynq ZC702. [Ipootebnke emiong n odnyia
#pragma SDS data access_pattern (array: SEQUENTIAL) OTIS ETLUEPOVG
OLUVPTNOELS VALKOU IOV Tipoadiopilel ouvexeg (sequential) potifo mpocPaong
ue v dtemapn) (ap_fifo) yia ypriyopn petagopa dedopevwv. Emiong, emAeape
va amofnkevoovpe Ta SeSopéva TOU VAKOU O€ TPOCWPLVOUG TIVAKES
OPLOUEVOUG KOVTA OTOV UTIOAOYLOHO TWV TIPAEEWY, TIPOKELUEVOL VA LELWOOVE
000 TO SUVATOV TIEPLOGOTEPO TNV ETKOWVWVIX pviung. F'ia tnv kaBodiynomn tng
xpnong on-chip pviung (BRAM) xpnowomomoaue v odnyla #pragma HLS
RESOURCE variable = <array> core = RAM_2P_BRAMYlX TO LTIAOK TvaKkwyv A ko B.
TéAog, Yl ™MV TapaAANAOTIOINoN TG EKTEAEONG TOV MPALEWV EMAEEAUE TNV
TeXVIKN NG StaocwAnvwon (pipeline) tomoBetwvtag oe k&Be BpdX0 TOL KWSIKA
VAKOU ™V VTIpeKTiBa #pragma HLS pipeline II=1 @OV TPOCEEAUE VA UMV
EXYOLUE OAANAEEXAPTNOELS ATIOTEAECUATWY PETAEY TOUG. € CUVSLACHO PE QUTN
TNV TEXVLIKI], YIX VA ATTOSEGUEVCOVE TOV APLOUO TWV VTTOAOYLOTIKWOV HOVASWV
(PEs) mov ntav apylkd TEPLOPLOUEVEG OE EVA UTTAOK UVIUNG TIOU SECUEVOAYLE,
SlapeAioape LOOTOCK TOUG KATAXWPNTEG UVNUNG o€ TeplocoTeEpa BRAMS
EMITPETOVTAG TIEPLOCOTEPEG BUPEG MPOGBAONG KAl HOVASEG UTIOAOYLOHOU (TTYX.
DSPs). Autd éywe pe T xpnomn g odnylag #pragma HLS array_partition
variable=<array> block factor=<N> dim=<dim> HET& TNV SMAwoON TWV
VTOTVAKWV Sivovtag tpocoxn otig pubuioelg g vripektifag (my. block factor,
dim xtA).

i . l Ewdva 8: ApxLtektovikr VAtkov [5].
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'OTWG QAIVETAL TNV ELKOVA 1) APXLTEKTOVLKT) TOU

VAo touv FPGA oxeSidotnke wote va eivat
. v ovoToAkY. AnAadn, ta SeSopéva  @TAVOULV

Tautoxpova (avd KUKAO) OTIG  HOVASEG
PE [— PE PE [— : : , :
emegepyaociag  amd  OLAQOPETIKA  omnpela

KAVOVTAG TOUG EKAOTOTE UTIOAOYLOHOUG HE
¥ v SlaowAvwaon, KaTEXovTag pkp kabvotépnon

PE * PE PE netaopas (latency) kat ypryopn taxVtnta
eme€epyaoiag.




Kataokev] kat Aertovpyla Tov TEAkoU suoTNHAToG Metd ™) petagopda tou Caffe
otov ARM touv Zynq SoC kat to oxediaopud tov emrayvvty FPGA (GEMM) mou Ba
XPNOLOTOMBEL Yl TNV EMLTAXVVON TOU aAyOpLlOpov Taglvounong elkovag akoAovBein
EVOWUATWOT) Tov UE To TepLBaArov tov Caffe yiar tqv mANpn ektédeon tov oto FPGA
SoC. Aut 1 Swadikacia Ta €&N¢ ripata:

[TpokeléEVOU va VoW UATWOEL 0 EMITAYVVTHG VALKOU e To TepBaAiov tou Caffe kat va
to peta@épovpe oto FPGA SoC, empeme va 1o €fdyovpe wg kowvn/polpaldopsvn
BBA0ONKN avtl Yl binary e@appoyrn KoL 0T CUVEXELX VA TNV OCUVSECOUUE HE TO
mepBdArov tou Caffe. Méoa am6 to SDSoC Development Environment kata@épape ot
uévo va Snuiovpynoovpe T Suvaukn/kown BipAodnkn (dynamic library) tou
ETLTOYLVTY, 0AA& Kot TO bitstream padl pe v k&pta SD amod v omola Oa Eekivovoe
To oVoTNUA pag. H kown BiBAod1xkn Tav katdAAnAn yia ovvSeomn kat 1 Aertovpyia Tov
ETLTOYLVTY evowuatwOnke pe emituyia oto mAaiolo tov Caffe, emkowvwvwvtag pe to
VAWKO Tov FPGA 6tav xpelalotav. H Stadikacia mapovolaletal 6Ny TapaKAT®w EKOVA.

PS

Ewkova 9:
Framework Caffe Agttovpyla cuoTipatog.

Omwg  @aivetat oto oYU,
oAOKANPN N Sadikacia Eekvael

@ Shared Library

void my_gemm(int TA, int TB, int M,
int N, int K, float alpha, float *a,
int lda, float *B, int ldb,
float beta, float *C, int ldc)

Wrapper
Function

amé to Caffe 6mov o yprnotng
TPEXEL TNV EVTOAN] QVAyV@PLOTS
ELKOVOG OTOV EMEEEPYAOTH] KL
OTI| OUVEXEWN, KABe @opd ToL
XpelaleTal va yivel g kKAnom

GEMM, @optwvel TV ouvdptnon
Hag my_gemm, EKTEAMVTIAG TIG

'l mmult_accel || || madd_accel l

TPGEELS oTO VALKO Ko
ETIKOLVWVOVTAG HECW  TOU
Stavdov AXI DMA (stream).

AXI stream <

> PL
et b

void madd_accel(
float A[],
float B[],
float C[1)

void mmult_accel(
float A[],
float B[],
float C[],
float alpha)

Hardware
Kernels

TéAog, ) dSnuovpyla TG K&PTag SD Yo TNV EKKIVIIONG TOU CUGTIUATOG £YLVE PE EPYAAELX
SDK amd 1o mepifdAiov SDSoC. A@Onke vmoym to bitstream amd tov emitayvvTy
VAKOU KaBwG TpooTébnke oty elkova ekkiviiong. EmmA£ov, ylix 10 evowpatwpévo
oUOTNUA, TPOTIUNONKE TO eAa@pV AelToupylkod cvothua ¢ Xilinx Petalinux agol
Tapelxe OAEG TIG ATAPALTNTEG AELTOVPYIEG IOV £XEL VA AVTIOTOLXO ALTOUPYIKO Linux.
[la v pvBuon touv FPGA yuax Asttoupyla, EMAEXTNKE OEPLAKO TPWTOKOAAO
emkowvwviag pe to Desktop PC péow tng 6Vpag UART, emMKOWVWV®OVTAG UE TO
Aettovpyko péoa amo to mpdypappa TerraTerm.

XiX



AtloAoynon kat AmoteAéopata

Amt68oon Caffe otov gvowpatwpévo emeiepyaoctn

AglTovpyla TovG.

IV mapaypa@o outn
TEPLOPIOVLE TA ATTOTEAECUATA OE L TIEP IANYT) TWV TILO OTUAVTIKWV XOPAKTPLOTIKWYV
™G Asttovpylag tov mepidArovtog tou Caffe otov ARM CPU. Apyikd, mapéxoupe
apKeTEG ueTpnoels oto Caffe oxetikd pe ) Aettovpyia Tov (akpifeia mpoBAedmg, xpovog
EKTEAEONG K.ATL) KL OT] OCUVEXELX AQVOAVOUUE OPLOUEVA XOPAKTNPLOTIKA OPLOUEVWV
HLOVTEAWV VEVPWVIKWVY SIKTO®WV TIAPOUVCLATOVTAG TNV E0WTEPLKT] SOUN oW ATO TNV

GoogleNet SqueezeNet
—————————— Prediction for cat.jpg ------ --—-—---- Prediction for cat.jpg -----—-
0.5009 - ""n02123159 tiger cat" 0.2763 - '"n02123045 tabby, tabby cat"
0.2283 - '"'n02123045 tabby, tabby cat" 0.2673 - "n02123159 tiger cat”
0.1612 - "n02124075 Egyptian cat" 0.1766 - '"n02119789 kit fox
0.0283 - '""'n02127052 lynx, catamount™ 0.0827 - "n02124075 Egyptian cat"
0.0134 - ""n02123394 Persian cat" 0.0777 - '"n02085620 Chihuahua'
real 0om8.597s real Oml1.228s
user 0m9.860s user Om1.530s
sys Om1.430s sSys Om0.510s

Ewova 10: Avayvwplon eikovag péoa amd to Caffe otov ARM o Stapopetikd povtéAa.

BVLC CaffeNet
BVLC GoogleNet
SqueezeNet
CIFARI10

0 0,5 1

Forward Pass

1,5

Xpovot ektéleong pHovTédwy otov ARM

Backward Pass

Ewéova 11: ZOykplon xpovwv yia cupmepaocua (forward pass) kat ekuddnon (backward pass).

Ewéva 12: ZOykplon amdkplong e€66ov amd 1° oe 5° emimedo ouvéMEng oto povtédo tov CaffeNet
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Amd8oon emtayvvty oto FPGA Ity mapaypa@o &ekwvape pe tnv avdivon
AELTOVPYLAG TOU EMITAYUVTH] OXETIKA WE TNV KabBuoTtépnom, TV avaivon kivnong
dedopévwy, v xpnomn twv Sabécipwy MOpwv KAT. XT1 oLVEXELR, SIVOUUE AXPKETES
UETPNOELS YlX TOV EMITOYXUVTH] VAKOU OXETIKA UE TNV emitdyvvon amdé to ARM
xpnowomowwvtag éva mpoypappa C ++ ocav test-bench yia tov mpoodioplopd g
amdédoong.

[Mivakag 1: Katavoun mépwv emtayvvtny og ZC702 FPGA
Floating Point (aplotepa), Fixed Point (6e€1d)

Resource | Used Total | %Utilization Resource | Used Total | %Utilization
DSP 164 220 75,55 DSP 193 220 87,73
BRAM 128 140 91,43 BRAM 96 140 68,57
LUT 45557 | 53200 85,63 LUT 36681 | 53200 68,95
FF 24445 | 106400 22,97 FF 26683 | 106400 25,08

Mivakag 2: ZOvoym kabuotépnong atoug Bpdyous (kOkAoL poAoyLov).
Floating Point (aplotepa), Fixed Point (8€€1d)

Latency Iteration Initiation Interval Trip Pipelined
Loop Name min max Latency achieved | target Count
-Loop1 36875 36875 13 1 1 36864 yes
-Loop2 222143 | 222143 966 6 1 36864 yes
Latency Iteration | Initiation Interval Trip Pipelined
Loop Name min max Latency | achieved | target Count
-Loop1l 36870 36870 8 1 1 36864 yes
-Loop2 37254 37254 392 1 1 36864 yes

TéAog ya tv a&loAdynomn tou emTayuvt Eywvav Sla@opes SOKIUEG OGOV aPOopA TO
neyebog tov pmAok N Vv akpifeia otnv mpdén (my. Float/Fixed point). [lpwtevovoa
B¢omn kartelyxe n vAomoinon oe fixed point kaBwWG eAa)LOTOTOLOVOE TOV ATALTOVUEVO
aplOpo mopwv kal v kaBuotépnon emitvyyxavovtag pexpt kat 38 GFLOPs og emidoon
kernels VAoV pe poAdt 200MHz kot teAwkn emitayvvon ocuvvaptnons GEMM ota 380X.

Speed-up GEMM vs ARM SW- only

400
300
200

100

@ @

L

64 128 256 512 1024 2048

®— 32x32 float 64x64 float 96x96 float 192x192 half —e— 192x192 fixed

Ewéva 13: ZOykplon xpovou o€ SLa@opETIKEG UVAOTIOWOELS TNG cuvdptnons GEMM
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ATté8oom Caffe 6to FPGA SoC Metd TNV EVOWUATWOT TOU EMITAXVVTYH VALKOU TIOU
oxedlaoapue pe to mAaiolo Caffe, 0éAape va petpricovpe T ouvoAlkr amodoon tov Caffe
oto etepoyeveg CPU-FPGA SoC (ZC702) xaL va T0 OUYKPIVOUUE PE TNV VAOTOMmoN
apOuntkng akpifelag float kau fixed point otov emitayvvy (1 vAomoinon fixed elvat
mpocopolwpevn). 'ETol, oe autn T TapAypa@o HETPAUE TNV ATOS00N avVAyvV®WPLoNG
elkovag kat v akpifelx oto véo tpomomompevo mAaiolo tou Caffe oto FPGA mov
xpnowomotel tov emtayvvt] GEMM kat a&loAoyolpe v Katavaiwon oxvog Kot
EVEPYELAG TOU CUOTIHATOG LA,

Amnodoon Caffe ue FPGA

]
£ ’ ’ -—
4
0 It Il Il Il Il Il Il Il 'l
float fixed float | fixed float | fixed float | fixed
CIFARI0 CaffeNet GoogleNet SqueezeNet

W Forward Pass W Backward pass

Ewéva 14: ZOykplon xpovov ywa cupumépaocpa (forward pass) kat ekpadnon (backward pass)
Yy SLaPOpPETIKEG VAOTIOM|OELS TNG ouvapTnons GEMM og Sta@opeTikd povtéAa.

CIFAR10
accuracy

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

m Caffe (FPGA) W Caffe (Intel i3) m Caffe (baseline)

Ewkdva 15: Z0ykplon akpifelag mpoBredms o€ SL@opeTIKEG VAOTIOMOELS

Images/Watt

B ARM+FPGA ®WARM mIntel i3

Ewova 16: Am6doom evépyelag TEALKOV CUGTIHATOG OE SLAPOPES APYLTEKTOVIKES.
H vAomoinomn pe FPGA katavodwvet 3,905W kat 6Twg @aivetatl otn elkova €xet 7
POpEG KaAUTEPT evepyelak anddoon/Watt oe oxéon pe tov Intel i3 emegepyaotn
(Tpooopolwpévo pe viomoinon fixed point aplBuntiky axpifeia).
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ZUUTTEPAC LT

Ta Nevpwvika Aiktva Babiag Mabnong (DNNs) avtimpoowmebouvv éva KabBoAko
Hovtélo, to omolo umopel va aglomomBel yia va emAVCEL plar HEYAAN TOWKIALQ
mpofAnudtwyv. Xtov topéa autd, ta FPGAs pmopovv va BEATIWO0UV GNUAVTIKA TNV
amoS00T KoL TNV EVEPYELX QUTWV TWV EQAPUOYWV XPNOLUOTIOIWVTAG ETILTAXVVTES
vAwov (hardware accelerators). Qot6c0, TAaTEOpHES Y vAomoinon DNN, dnwg To
Caffe, 6ev vmootnpilouv emionua T €UKOAOSIAKPLTN XPNON TETOLWV CUCTNUATWV
ETILTAYLVOTG.

Avuto Tto €pyo mapovoidlel Eexkdabapa v avamtuén DNN oto Xilinx FPGA SoC
xpnowomowwvtag to TepdAiov tou Caffe tavtdypova pe T XpNoN EMTAXLVTWV
VALKOU Yl va EMLITUXEL KAAUTEPT amodooT). MetayAwTtioape TpwTta 0AGKANpO TO
mepBdArov tou Caffe kal 0Aeg TIg e€aptnoelg BAL0ONKWY Yl va ovAéPouy Kat va
TPEXOLV OTOV evowpatwpevo emegepyaotn) ARM pe ™ pébodo cross-compilation. X1n
OUVEXELN, HECW TNG TANPOUG aloAGYNoNG NG Aertoupyiag Tov TepPBaAAovTog,
Tpocdlopioape Ta oNUeldt UTTOAOYLOTIKNG CUHPOPNONG Yix va KaBopioovpe T owot
OLVAPTNOY EMLTAYVVOTG VALKOV 1 omola Ntav tedikd n ovvaptnon GEMM (General
Matrix Multiplication). £tn cuvéxela TeplypaPape TI§ oTPATNYIKEG BEATIOTOTIOMONG
0TO AOYLOUIKO 0AAG KOL GTOV ETLTAYUVTI VALKOU WOTE VA A§LOTTON|COVIE TOV HAlIKO
TAPAAANALOUO KoL TOUG SLaUA0VG eMKoVwViag thG pviuns tov FPGA. O emitayuvtng
FPGA ¢€xelL ouvvteBel pe XOvBeon YymAoy EmmédSov (C++) Xpnolomolnvtag To
mepBdArov avdmtuéng Xilinx SDSoC ywx to Xilinx Zynq ZC702 SoC kot @Tavel
eMITa)YLVON HEXPL Kat 380x pe TN péylotn ovxvotnta poAoylov twv 200MHz kat pe
xpnon mépwv oto ~80%. H a&LloAdynon kot n emaAnfevon tng ouvapTnong VALkoU o
ETTUYNG, TTAPAYOVTAG CWOTA ATIOTEAEOUATA YLIO SLAPOPETIKA HEYEDN KAl SLKOTACELG
TVAKwV. TEAOG, EVOWUATWOAUE TOV EMLTAXUVTH VAIKOU pe To TAaiowo Caffe kat to
€tpele pe emruyla oto etepoyevég ovotnua CPU-FPGA to omolo aflomotel tnv
apxttektovikn FPGA pe to emrtayuvt) vAkkoU mov oyedidoape. o TNV TEAKN
a&loAGYN 0T TOU GUGTNUATOG LETPTOALE TNV ATTOS00T TNG AVAYVDPLONG EIKOVWV KL TA
ATOTEAEOPATA E8EEAV OTL TO TPOTEWVOUEVO CUOTNUA UTOPEL VX UELWOEL TO XPOVO
avayvwplong pexpt kat 10% oe ovykplon pe tov emegepyaoty ARM kat emiong va
LELWOEL TNV KATAVAAWOT] EVEPYELXG ExovTag Alydtepo amo 0.4% pelwon akpifelag.

To ocvotmua Baociopévo oe CPU-FPGA pe vmootpiEn tov mepiBdArovtog Caffe €xel
ouvvappoAoynBel og Eva MANPWS AELTOVPYIKO cVOTHUA 0TV TAaT@Opua Xilinx Zyng-
7000 All Programmable SoC. Autd 10 0X£610 KaTASEIKVVEL CAPWS TN OKOTILUOTNTA
vAomoinong evowpatwpevwv DNN Baociopeva og FPGA. H tpéxovoa Avomn tapovaotdlel
NN Ul amoSoTIKN EKTEAEOT KL AELTOUPYIA TOU CUOTHUATOS aAUTOV KABWG €xouv
ETONUAVOEL APKETEG TEXVIKEG VLA ONUAVTIKA KEPST) 0TV ATtdS00T) KAl TNV KATAVAAWOT
EVEPYELQG.
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Introduction

1.1 Motivation

The continuing exponential increase of media, [oTs and big data in general requires faster and
faster processing speeds while the applications must maintain a low power cost and keep the
development time small. Many high performance systems rely on machine learning (ML)
algorithms such as image classification, data analytics etc. which are required for embedded
and big data applications as well. Hardware and device makers are in a mad dash to create or
acquire the perfect chip for performing deep learning training and inference.

In this field, Deep Convolutional Neural Networks (DNNs) have gained significant traction
due to the fact that they offer state-of-the-art accuracies and important flexibility. These
brain-inspired algorithms use techniques from machine learning which enables them to rival
the accuracy of humans when it comes to classification of images. Although a serious amount
of computation is needed to analyze the large amounts of data, the use of multicore systems
seems promising but the challenge of reducing the high energy cost and the processing times
remains. FPGA implementations on the other hand have seen great advancement as new
emerging techniques leverage the FPGA architecture taking advantage of the high
performance hardware accelerators with few power costs while keeping the adaptability of fast
prototyping. With the utilization of hardware accelerators the total throughput is increased
because of the highly parallelizable massive number of multiply-accumulate operations that
DNN algorithms need and also the energy consumption is decreased. Caffe, a deep learning
framework of UC Berkley, has already been implemented and optimized in two different
architectures for CPU and GPU only and can be easily configured without hard-coding.
In this paper we present:
e A modified version of Caffe to effortlessly port it into the ARM (Zynq 7000 based)
processor of FPGA.
e A hardware accelerator designed on Xilinx SDSoC Environment that exploits the
benefits of FPGA and is crucial for the image classification algorithm.
e A CPU-FPGA-based system, a highly heterogeneous all-programmable SoC that
supports the Caffe framework and utilizes the hardware accelerator achieving
significant speed and power efficiency compared to the ARM Zynq processor.



1.2 Chapter Organization

The thesis is organized as follows:

Chapter 2 provides background information on Machine Learning and Neural Networks,
architecture and design of FPGAs, and at the end gives an analysis of Caffe Deep Learning
framework. In the first section, a brief overview is given of Machine Learning concepts and
related applications in this field. Next, a detailed presentation of Neural Networks is provided
and then Deep Neural Networks are analyzed along with Image Recognition
implementations. Then, in the second section, we discuss the design and architecture of
FPGAs along with presenting design methods, such as High Level Synthesis, and their
purpose in creating hardware accelerators for boosting applications performance. Last, we
provide information of the operation of Caffe Deep Learning Framework.

Chapter 3 is dedicated on how we ported the whole Caffe framework in ARM CPU of the
Zynq SoC in order to run it on the embedded system. Detailed information is given on the
steps of this process in order to run Caffe with full support (image recognition, model
benchmarks etc.) on the ARM processor and optimize in order to overcome the embedded
system’s physical constraints.

Chapter 3 consists of the design and optimization schemes used for the FPGA hardware
accelerator that was used to accelerate the Caffe framework and specifically image recognition
in the embedded SoC. The optimization and design strategies included both software and
hardware techniques for maximum performance in throughput, parallelism and
communication.

Chapter 5 gives a detailed analysis and evaluation of Caffe running on the embedded CPU,
the designed hardware accelerator and last the results of the final heterogeneous CPU-FPGA
system that runs and accelerates image recognition on Caffe utilizing the hardware
accelerator. This chapter provides the appropriate testing and benchmark results of the
proposed system and the performance and hardware analysis of the FPGA accelerator.

Chapter 6 summarizes the important results obtained by this research and gives
suggestions on future work valuable to the reader.

N
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Chapter 1. Introduction



Background

2.1 Introduction to Machine Learning

Machine Learning at its most basic is the practice of using algorithms to parse data, learn from
it, and then make a determination or prediction about something in the world. So rather than
hand-coding software routines with a specific set of instructions to accomplish a particular
task, the machine is “trained” using large amounts of data and algorithms that give it the
ability to learn how to perform the task. Thus, the core objective is to generalize from its
experience and perform accurately on new, unseen examples/tasks after having experienced
a learning data set. The training examples come from some generally unknown probability
distribution and the learner has to build a general model about this space that enables it to
produce sufficiently accurate predictions in new cases.

Machine learning tasks are typically classified into two broad categories, depending on
whether there is a learning "signal” or "feedback" available to a learning system:

- Supervised learning: The computer is presented with example inputs and their desired
outputs, given by a "teacher”, and the goal is to learn a general rule that maps inputs
to outputs.

- Unsupervised learning: No labels are given to the learning algorithm, leaving it on its
own to find structure in its input. Unsupervised learning can be a goal in itself
(discovering hidden patterns in data) or a means towards an end (feature learning).

There are many approaches to machine learning tasks. Some of them include:

o Artificial neural network (ANN): a learning algorithm, usually called "neural
network" which is inspired by biological neural networks. They are usually
used to model complex relationships between inputs and outputs, to find
patterns in data, or capture the statistical structure in unknown distributions.

e Clustering: an analysis that assigns a set of observations into subsets (called
clusters) so that observations within the same cluster are similar according to
some predesignated criterion or criteria, while observations drawn from
different clusters are dissimilar.

e Genetic algorithm: a heuristic search that mimics the process of natural
selection, and uses methods such as mutation and crossover to generate new
genotype in the hope of finding good solutions to a given problem.



2.2 Introduction to Convolutional Neural Networks

A convolutional neural network is one type of machine learning model which has great
practical value in the field of pattern recognition. They are distinguished for their state-of-
the-art behavior because they can automatically create both high level and low level features.

2.2.1 Brain analogy

Convolutional neural networks (CNNs) were inspired by biological processes in which the
connectivity pattern between neurons is inspired by the organization of the animal visual
cortex. Individual cortical neurons respond to stimuli only in a restricted region of the visual
field known as the receptive field. The receptive fields of different neurons partially overlap
such that they cover the entire visual field. So, in a way it behaves similarly to the human brain,
that is to simulate its densely interconnected brain cells using digital neurons that trigger or
respond when they ‘sense’ certain features regardless of the feature position in the visual field.

Modeling of a neuron The basic building block in artificial neural networks is the neuron.
The diagram below shows a drawing of a biological neuron (left) and a common mathematical
model (right). Each neuron receives input signals from its dendrites and produces output
signals along its (single) axon. The axon eventually branches out and connects via synapses to
dendrites of other neurons. In the computational model of a neuron, the signals that travel
along the axons (e.g. x0) interact multiplicatively (e.g. w0x0) with the dendrites of the other
neuron based on the synaptic strength at that synapse (e.g. w0). The idea is that the synaptic
strengths (the weights w) are learnable and control the strength of influence of one neuron on
another. In the basic model, the dendrites carry the signal to the cell body where they all get
summed. If the final sum is above a certain threshold, the neuron can fire, sending a spike
along its axon. Based on this rate code interpretation, we model the firing rate of the neuron
with an activation function f, which represents the frequency of the spikes along the axon.
Historically, a common choice of activation function is the sigmoid function o, since it takes
a real-valued input (the signal strength after the sum) and squashes it to range between 0-1.
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axon from a neuron o
WoZo

impulses carried
toward cell body
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branches

dendrtesw of axon
axon
axon %
nucleus >termenals
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away from cell body

f (wa +b)

output axon

activation
function

cell body

Figure 2.1: A biological neuron (left) and its mathematic model (right) [1].
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Neural Network A neural network is formed by interconnecting many artificial neurons.
The neurons are arranged in a directed acyclic graph in a feed-forward network although some
architectures are using multilayer perceptrons in which the neurons are organized in layers.
In other words, the outputs of some neurons can become inputs to other neurons. Cycles are
not allowed since that would imply an infinite loop in the forward pass of a network. There
are input and output layers and additional hidden layers that many times increase network
size and complexity. As stated before, each neuron assigns a weighting to its input that is how
correct or incorrect it is relative to the task being performed. The final output is then
determined by the total of those weightings.
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hidden layer 1 hidden layer 2

Figure 2.2: The organization of multiple layers of neurons [1].

2.2.2  Operation of a multi-layer network

Layers Types Convolutional Neural Networks use many different interconnected layers, as
shown in the previous figure, specifically designed among other tasks to recognize or detect
2-dimensional image data. A Neural Network can have different layers performing unique
tasks aiming to give a specific output that is passed through the other layers.

Some of the fundamental layers found in many models are:

o Convolutional Layer applies a convolution operation to the input, passing the
result to the next layer. The convolution emulates the response of an individual
neuron to visual stimuli. Each convolutional neuron processes data only for its
receptive field. Convolutional layers take several feature maps as input and
using convolution with the filter weights k x k acquired from the training
process they produce feature maps as output. For filters larger than 1x 1,
border effects reduce the output dimensions. To avoid this effect, the input
image is typically padded with zeros on each side thus reducing the output
dimensions.

o Nonlinearity Layer apply a non-linear activation function to each input pixel.
The most popular activation function is the Rectified Linear Unit (ReLU) which
computes f(x) = max(0,x) and clips all negative elements to zero. Other

networks use sigmoidal functions such as f(x) =1/(1+e7*) or f(x) =
tanh(x).

Section 2.2. Introduction to Convolutional Neural Networks = 5



e Pooling Layer combines the outputs of neuron clusters at one layer into a single
neuron in the next layer by summarizing multiple input pixels into one output
pixel. For example, max pooling uses the maximum value from each of a
cluster of neurons at the prior layer. Another example is average pooling,
which uses the average value from each of a cluster of neurons at the prior
layer. They are usually applied to a patch of 2x2 or 3x3 input pixels, but can
also be applied as global pooling to the whole input image.

o Fully Connected Layer connects every neuron in one layer to every neuron in
another layer. Each output value of a Fully Connected layer looks at every value
in the input layer, multiplies them all by the corresponding weight it has for
that input index, and sums the results to get its output. They can be visualized
as one dimensional and perform the high level reasoning in the neural
network.

e Dropout Layer is a popular method to combat overfitting in large CNNs. These
layers randomly drop a selectable percentage of their connections during
training which prevents the network from learning very precise mappings and
forces some abstraction and redundancy to be built into the learned weights.

o Softmax Layer are often used in the final layer of a neural network-based
classifier. It converts the raw class scores z; into class probabilities P; according
to P; = e”i/ Y, e”k, which result in a vector P that sums up to 1.

Training of a Neural Network Neural networks can be trained and their parameters are
learned during this phase. The network can learn and find the optimal weights, by defining a
loss function and using the backpropagation algorithm to adapt weights. The most popular
approach is called supervised training and requires a set of labeled examples. The training
starts with small, maybe random, initial weights and each example is fed through the network
many times to produce better results (feed-forward pass). The network is considers to be
trained after reaching the target performance results on the training data. The
backpropagation algorithm works by calculating the loss from the current network output and
a ground truth and computing a weight update from it by passing the error backwards
through the network (backward-pass). The goal of the learning process is to minimize this loss
by updating training weights. The magnitude of these updates is determined by the so-called
learning rate.
Below is a basic optimization algorithm called Stochastic Gradient Descent that minimizes the
loss function. It consists in using a few examples to compute the gradient of the parameters
with respect to loss function:

Or41 =60 — 21~ VGtL(th(xi)JYi)
There is no proof of good convergence. However, this algorithm reaches good local minima
in practice, even when the parameters are randomly initialized. One of the reason could be
the stochastic property of this algorithm, allowing the latter to optimize different loss
functions and thus to get out of bad minima. The other reason could be that a lot of local
minima are almost as accurate as the global minima. Answers to this question are still under
active research.
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Image Classification After training, the neural network is built and is ready to recognize
images on new data through a process called inference. In this setting, the aim is to compute
the output of the network. Colors of the image are represented as RGB values (a combination
of red, green and blue ranging from 0 to 255). Computers could then extract the RGB value
of each pixel and put the result in an array for interpretation which will be fed throughout all
the layers of the network. Then the input image is scanned for features using small filters. This
feature extraction starts with the input image where each pixel represents the input for the
neurons grouped in features. The neurons in the feature maps are organized in 2-dimensional
grids.
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Figure 2.3: Left: [llustration of data inside a CNN Layer (left). The ch;, input feature maps are transformed into
chgye output feature maps by applying chy, x ch,,, filter kernels of size k x k.
Right: Illustration of a 2D convolution between 3x3 kernel and an input feature map by sliding the
kernel over the input pixels and performing MACC operations at each pixel position [6].

The input is followed by alternating layers of convolution, pooling and others. The process of
a CNN can involve numerous hidden layers besides convolutional and pooling which the data
is fed through. After passing all layers, the network produces a final result vector with a
possibility P; for each category of our model.
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Figure 2.4: The organization of multiple layers of neurons [2].
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2.2.3 Network Topologies

A lot of convolutional architectures have been developed from the 1990’s. In this section,
we make an inventory of the most known architectures. Each one represent a step further
for more advanced visual recognition.

LeNet This kind of architecture is one of the first successful applications of CNNs. It
was developed by Yann LeCun in the 1990’s and was used to read zip codes and digits. This
architecture, with regard to the modern ones, differs on many points. Thus, we will limit
ourselves on the most known, LeNet-5, and we will not delve into the details. In overall
this network was the origin of much of the recent architectures, and a true inspiration for
many people in the field.
LeNet-5 features can be summarized as:

e sequence of 3 layers: convolution, pooling, non-linearity

e inputs are normalized using mean and standard deviation to accelerate training

e sparse connection matrix between layers to avoid large computational cost

e hyperbolic tangent or sigmoid as non-linearity function,

e trainable average pooling as pooling function,

e fully connected layers as final classifier,

e mean squared error as loss function.
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C1: feature maps S4: 16@5%5
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30432 6@28x28

52: {. maps

= He |T— rrr
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C5:layer Fe:layer OUTPUT
120 84 ¥ 10

Gaussian
Full connection connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Figure 2.5: Architecture of LeNet-5, a convolutional neural network for digits recognition [7].

AlexNet It is one of the first work that popularized convolutional networks in computer
vision. AlexNet was submitted to the ImageNet ILSVRC challenge of 2012 and significantly
outperformed the other hand crafted models (accuracy top5 of 84% compared to the second
runner-up with 74%). This network, compared to LeNet, was deeper (60 millions of
parameters) and bigger (5 convolutional layers, 3 max pooling and 3 fully-connected
layers). It popularized:

e the ReLU as non-linearity function of choice

e the method of stacking convolutional layers plus non-linearity on top of each other

without being immediately followed by a pooling layer
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e the method of overlapping Max Pooling, avoiding the averaging effects of Average
Pooling.
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Figure 2.6: Architecture of AlexNet [8].

VggNet It was the runner-up architecture of ILSVRC2014 with almost 140 millions of
parameters. Its main contributions were to show that depth is a critical component for good
performance, to use much smaller 3x3 filters in each convolutional layers and also to combine
them as a sequence of convolutions. The great advantage of VggNet was the insight that
multiple 3x3 convolution in sequence can emulate the effect of larger receptive fields, for
examples 5x5 and 7x7. However, having so many weights, one forward pass requires nearly
16 billion MACC operations (multiply-accumulate operations).

GoogleNet GoogleNet or Inception was the winner architecture of ILSVRC2014. Its main
contribution was the development of an Inception Module that dramatically reduced the
number of parameters (40 millions). Also, it eliminated a large amount of parameters by
using average pooling instead of fully connected layers at the top of the convolutional layers.
Further versions of the GoogLeNet has been released. The most recent architecture available
is InceptionV3. Notably, it uses batch normalization.

ResNet It was the winner architecture of ILSVRC2015 with 152 layers. Its main
contribution was to use batch normalization and special skip connections for training deeper
architectures. ResNet with 1000 layers can be trained with those techniques. However, it has
been empirically found that ResNet usually operates on blocks of relatively low depth which
act in parallel, rather than serially flow the entire length of the network.

SqueezeNet It differs from the other CNN architectures in this list due to the fact that the
design was not record-breaking in accuracy. Instead, the authors developed a network with
an accuracy similar to AlexNet but with 50x less parameters. This parameter reduction has
been achieved by using fire modules, a reduce-expand micro-architecture comparable to
Inception modules, and careful balancing of the architecture. The 18-layer SqueezeNet uses
7x7, 3x3 and 1x1 convolutions, 3x3 max pooling, dropout and global average pooling, but
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neither fully connected, nor Batch Normalization layers. One forward pass requires only 860
million MACC operations and 1.24 million parameters are enough to achieve less than 19.7%
single-crop top-5 error.

Comparison of Topologies A common performance measure for deep CNNs is their
classification accuracy. Most researchers give their performance numbers in top-1 and top-5
measure. The top-1 error measure gives the percentages of images that were classified
incorrectly on the test set. Since the ImageNet data set has very fine-grained image classes
which are sometime even hard for humans to distinguish, most researchers prefer to use the
top-5 error measure. Hence, an image is considered as classified correctly if one of the top 5
predictions are correct. On the other hand, some research tend to focus on creating smaller
networks that can achieve good classification performance. In the table below, there can be
seen the tradeoff between accuracy and network size. For example VGG has a great accuracy
but it is also the largest network in terms of parameter size and MACC operations. On the
contrary, SqueezeNet which is a small network designed for mobile devices is not as accurate
but has a drastically reduced size.

Table 2.1: Comparison of different CNN Topologies for Image Classification on ImageNet

#conv. layers #MACCs #params #activations ImageNet

[millions] [millions] [millions] top-5 error
AlexNet 5 1140 62.4 24 19.7%
VGG-16 16 15470 138.3 29.0 8.1%
GoogleNet 22 1600 7.0 10.4 9.2%
ResNet-50 50 3870 25.6 46.9 7.0%
Inception v3 48 5710 23.8 32.6 5.6%
SqueezeNet 18 860 1.2 12.7 19.7%
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2.3 FPGAs

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured
by a customer or a designer after manufacturing - hence "field-programmable” and its
development started in the late 1980s. The FPGA configuration is generally specified using a
hardware description language (HDL), similar to that used for an application-specific
integrated circuit (ASIC) and they aim to perform a computational intensive task. Their
advantage lies in that they are sometimes significantly faster for some applications because of
their parallel nature and optimality in terms of the number of gates used for a certain process.

2.3.1 Introduction to FPGA

An FPGA is a semiconductor device and usually contains a large integrated circuit that can
be used to create custom logic functions and perform specific tasks as a digital circuit.
Reprogrammable silicon also has the same flexibility of software running on a processor-
based system, but it is not limited by the number of processing cores available. Unlike
processors, FPGAs are truly parallel in nature, so different processing operations do not have
to compete for the same resources. Each independent processing task is assigned to a
dedicated section of the chip, and can function autonomously without any influence from
other logic blocks. As a result, the performance of one part of the application is not affected
when you add more processing because the application logic is implemented in hardware
circuits rather than executing on top of an OS, drivers, and application software.

FPGA Architecture FPGAs consist of 2D array of configurable logic blocks (also 3D stacked
architectures have been introduced) which are connected via programmable interconnects to
implement a reconfigurable digital circuit and I/O blocks to allow the circuit to access the
outside world. FPGAs resource specifications often include the number of configurable logic

blocks, number of fixed function logic blocks such as multipliers, and size of memory
resources like embedded block RAM.
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Figure 2.7: The inside architecture of the FPGA [9].
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The basic structure components of the FPGA are described below:

""H"”

Configurable Logic Blocks (CLB): In general, a logic block consists of a few logical
cells (called ALM, LE, slice etc.). A typical cell consists of a 4-input LUT, a full adder
(FA) and a D-type flip-flop, as shown below. The Lookup Tables (LUT) are in this
figure split into two 3-input LUTs. In normal mode those are combined into a 4-input
LUT through the left mux. In arithmetic mode, their outputs are fed to the FA. The
selection of mode is programmed into the middle multiplexer. The output can be
either synchronous or asynchronous, depending on the programming of the mux to
the right, in the figure example. In practice, entire or parts of the FA are put as
functions into the LUTs in order to save space [10].

carry in clk

carry out clk

Figure 2.8: Simplified example illustration of a logic cell [10].

Programmable Interconnects: The interconnects can be thought of as a network of
wire bundles running vertically and horizontally between the logic slices. They provide
connections among logic blocks and I/O blocks to implement any user-defined circuit.
The routing interconnect of an FPGA consists of wires and programmable switches
that form the required connection. These programmable switches are configured
using the programmable technology.

External I/O Blocks: Since clock signals are normally routed via special-purpose
dedicated routing networks in commercial FPGAs, they and other signals are
separately managed. These blocks enable the FPGA to communicate with other parts
of the system and send/receive external signals.

Hard Blocks: Modern FPGA families expand upon the above capabilities to include
higher level functionality fixed into the silicon. Having these common functions
embedded into the silicon reduces the area required and gives those functions
increased speed compared to building them from primitives. Examples of these
include multipliers, generic Digital Signal Processor (DSP) blocks, embedded
processors, high speed I/O logic, embedded memories and even IP cores such as
Ethernet MAC:s etc. These cores exist alongside the programmable fabric, but they are
built out of transistors instead of LUTs so they have greater level performance and
power consumption while not consuming a significant amount of fabric resources,
leaving more of the fabric free for the application-specific logic [11].
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Comparison with other architectures FPGA-based products are basically very effective for
low to medium volume production as they are easy to program and debug, and have less cost
and faster time-to-market. All these major advantages of an FPGA come through their
reconfigurability which makes them general purpose and field programmable. But, the very
same reconfigurability is the major cause of its disadvantages; thus making it larger, slower
and more power consuming than ASICs [12]. In contrast to FPGAs, ASICs do not suffer any
area or timing overhead from configuration logic and generic interconnects, and therefore
typically result in the smallest, fastest and most energy-efficient systems. However, the
sophisticated fabrication processes for ASICs results in lengthy development cycles and very
high upfront costs, which demands a first-time-right design methodology and very extensive
design verification. Also the advantage of FPGA-based systems over traditional processor-
based systems such as desktop computers, smartphones, most embedded systems, and also
over GPUgs, is the availability of freely programmable general-purpose logic blocks. These can
be arranged into heavily specialized accelerators for very specific tasks, resulting in improved
processing speed, higher throughput and energy savings. This advantage comes at the price
of reduced agility and increased complexity during the development, where the designer
needs to carefully consider the available hardware resources and the efficient mapping of his
algorithm into the FPGA architecture. Furthermore, some algorithmic problems do not map
well onto the rigid block structures found on FPGAs [12] [6].
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Figure 2.9: A comparison between high-end GPUs and FPGAs [6].
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2.3.2 Introduction to High Level Synthesis

High-level synthesis (HLS) is a methodology that provides optimized hardware synthesis
from high-level programming language specifications such as C/C++ and System C. HLS tools
allow designers to use a software program to specify the target system functionality, enabling
them to exploit hardware advantages without building up hardware expertise.

Traditionally, FPGAs are programmed using a Hardware Description Language (HDL) such
as VHDL or Verilog. Most designs are described at Register Transfer Level (RTL), where the
programmer specifies the algorithm using a multitude of parallel processes which operate on
vectors of binary signals and simple integer data types derived from them. These processes
describe combinational logic, basic arithmetic operations as well as registers, and are driven
by the rising and falling edges of a clock signal. RTL descriptions are very close to the logic
gates and wires which are actually available in the underlying FPGA or ASIC technology, and
therefore the hardware that results from RTL synthesis can be closely controlled. However,
the process of breaking down a given algorithm into logic blocks, processes and finite state
machines on the register transfer level is very tedious and error-prone. Many design decisions
have to be made before writing any code, and later changes are quite difficult and costly. This
prevents iterative optimizations and demands a lot of intuition, experience and expert
knowledge from designers. Increasing the level of abstraction with HLS High-Level Synthesis
tries to lower this barrier by enabling designers to specify their algorithms in a high-level
programming language such as C, C++ or SystemC. Many implementation details are
abstracted away and handled by the HLS compiler, which converts the sequential software
description into a concurrent hardware description, usually at RTL level [6] [13].
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ngh Level Language

Assembly Language

Machine Language
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Figure 2.10: An illustration that shows the transition from High Level Language to Hardware.
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SDSoC Development Environment The SDSoC development environment is an HLS tool
that provides a familiar embedded C/C++/OpenCL application development experience
including an easy to use Eclipse IDE and a comprehensive design environment for
heterogeneous systems deployment [14]. SDSoC delivers system level profiling, automated
software acceleration in programmable logic, automated system connectivity generation, and
libraries to speed programming. It also enables end user and third party platform developers
to rapidly define, integrate, and verify system level solutions and enable their end customers
with a customized programming environment [15]. So in this way, designers can use loops,
arrays, structs, floats, arithmetic operations, function calls, and even object-oriented classes.
These are automatically converted into counters, memories, computation cores and
handshake protocols as well as accompanying state machines and schedules with the most
efficient way possible. The compilation can be influenced using scripted compiler directives
or embedded compiler pragmas, which are instruction directives interpreted directly by the
SDSoC compiler. Operations are by default scheduled to be executed concurrently and as
early as possible. Using the compiler pragmas, the designer can further influence the inference
of memories and interfaces, the parallelization of loops and tasks, the synthesis of
computation pipelines, etc.

Although such tools exists that make the development of specific applications much easier
and faster, there are still some difficulties on HLS synthesis tools. First, the results achieved
especially for large applications with complex module and control-flow hierarchy are not as
high as expected. Very often, the programming style of the source code has a severe impact
on the quality of the synthesized implementation. Also many existing HLS compilers impose
proprietary extensions or restrictions (e.g. exclusion of while loops) on the programming
model of the specifications that they accept as input, and various heuristics on the HLS
transformations that they utilize. At last, HLS tools have long learning curves meaning that
only experienced users can develop efficient code on these platforms.

Amazon AWS Cloud Amazon provides a web service for Cloud Computing which is the on-
demand delivery of compute power, database storage, applications, and other IT resources
through a cloud services platform via the internet with pay-as-you-go pricing [16].
Specifically, Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides
this web-scale cloud computing capability [17]. It provides with complete control of the
computing resources and lets users run on Amazon’s proven computing environment and
build or test their applications on a secure environment.

Amazon provides along with these cloud service specific platforms, such as the EC2 F1
which is a compute instance with field programmable gate arrays (FPGAs) that users can
program and test their custom hardware accelerations for their application [18]. F1 instances
are easy to program and come with everything that has to do with developing, simulating,
debugging and compiling the hardware acceleration code in High Level Synthesis.
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2.3.3 Heterogeneous Systems

Heterogeneous computing refers to systems that use more than one kind of processor or
cores. These systems gain performance or energy efficiency not just by adding the same type
of processors, but by adding dissimilar coprocessors, usually incorporating specialized
processing capabilities to handle particular tasks. Usually heterogeneity in the context of
computing refers to different instruction-set architectures (ISA), where the main processor
has one and other processors have another - usually a very different - architecture (maybe
more than one), not just a different microarchitecture [19].

Zynq-7000 SoC The Zynq-7000 All Programmable SoC family integrates the software
programmability of an ARM-based processor with the hardware programmability of an
FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP,
and mixed signal functionality on a single device. Consisting of dual-core Zynq-7000 devices,
the Zynq-7000 devices provide excellent performance-per-watt and maximum design
flexibility.
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Figure 2.11: Zynq 7000 SoC [20].
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Zynq 7000 Processing System (PS)

o Application Processing Unit (APU): At the basis, a dual-core ARM Cortex-A9
processor comprises the APU. As additional functionality to the main ARM processor,
the APU contains NEON engines that provide Single Instruction Multiple Data
(SIMD)' facilities to enable strategic acceleration of media and DSP type algorithms.
NEON instructions are an extension to the standard ARM instruction set, and can
either be used explicitly, or by ensuring that the C code follows an expected form and
thus allows NEON operations to be inferred by the compiler. In addition to NEON,
there are also extensions for the Floating Point Unit (FPU). These are referred to as
Floating Point Extensions, or sometimes VFP Extensions (Vector Floating Point) for
historical reasons. The unit provides hardware acceleration of floating point
operations in compliance with the IEEE 754 standard and supports single and double
precision formats, with some additional support for half-precision and integer
conversion [20].
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M ARM M ARM ARM Cortex-A9 processing core
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¥
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Figure 2.12: Simplified block diagram of Zynq 7000 APU [20].

e DS External Interfaces: The Zynq PS features a variety of interfaces, both between the
PS and PL, and between the PS and external components such as peripheral interfaces,
cache memory, memory interfaces, interconnect, and clock generation circuitry.
Information about each of these interfaces is presented in Table 2.2 [20].

!SIMD is where one instruction acts on multiple data items carrying out the same operation for all data.

Section 2.3. FPGAs = 17



Table 2.2: Comparison of different CNN Topologies for Image Classification on ImageNet

SPI Serial Peripheral Interface
I2C 12C bus
CAN Controller Area Network
UART Universal Asynchronous Receiver
Transmitter
GPIO General Purpose Input/Output
SD SD card memory interface
USB Universal Serial Bus
GigE Ethernet MAC peripheral

Zynq 7000 Programmable Logic (PL)

o Soft Blocks: The PL is predominantly composed of general purpose FPGA logic fabric,
which is composed of slices and Configurable Logic Blocks (CLBs), Lookup Tables
(LUT), Flip-flops (FF) and there are also Input/Output Blocks (IOBs) for interfacing.

e Hard Blocks: In addition to the general fabric, there are two special purpose
components: Block RAMs for dense memory requirements and DSP slices for high-
speed arithmetic. Both of these resources are integrated into the logic array in a
column arrangement, embedded into the fabric logic

DSP48E1

post-adder
/ logic unit

pre-adder

Figure 2.13: The DSP48E1 slice [20].
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2.4 Caffe Framework

Caffe is a deep learning framework distinguished for its expression, speed, and modularity. It
is developed by Berkeley AI Research (BAIR) and by community contributors. Caffe supports
many different types of deep learning architectures geared towards image classification and
image segmentation. It supports CNN, RCNN, LSTM and fully connected neural network
designs designed in a different APIs (C++, Python, Matlab) and it is widely used in large-scale
industrial applications such as vision, speech, and multimedia.

2.4.1 Anatomy of Caffe

Deep networks are compositional models that are naturally represented as a collection of
inter-connected layers that work on chunks of data. Caffe defines a net layer-by-layer in its
own model schema. The network defines the entire model bottom-to-top from input data to
loss. As data and derivatives flow through the network in the forward and backward passes
Caffe stores, communicates, and manipulates the information as blobs: the blob is the
standard array and unified memory interface for the framework. The layer comes next as the
foundation of both model and computation. The net follows as the collection and connection
of layers. The details of blob describe how information is stored and communicated in and
across layers and nets [21].

The Blob A Blob is a wrapper over the actual data being processed and passed along by Caffe,
and also under the hood provides synchronization capability between the CPU and the GPU.
Mathematically, a blob is an N-dimensional array stored in a C-contiguous fashion. Caffe
stores and communicates data using blobs. Blobs provide a unified memory interface holding
data; e.g., batches of images, model parameters, and derivatives for optimization. Blobs
conceal the computational and mental overhead of mixed CPU/GPU operation by
synchronizing from the CPU host to the GPU device as needed. Memory on the host and
device is allocated on demand (lazily) for efficient memory usage. The conventional blob
dimensions for batches of image data are number N x channel K x height H x width W. Blob
memory is row-major in layout, so the rightmost dimension changes fastest as seen in the
following equation. For example, in a 4D blob, the value at index (n, k, h, w) is physically
located at index ((n *K + k) *H + h) * W + w.2 Also there are two different ways to access

them: the constant way, which does not change the values, and the mutable way, which
changes the values [21].

2Number N is the batch size of the data. Batch processing achieves better throughput for communication and
device processing. For an ImageNet training batch of 256 images N = 256.
Channel K is the feature dimension e.g. for RGB images K = 3.
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Net connections and operation The layer is the essence of a model and the fundamental
unit of computation. The net is a set of layers connected in a computation graph - a directed
acyclic graph (DAG) to be exact. Layers convolve filters, pool, take inner products, apply
nonlinearities like rectified-linear and sigmoid and other elementwise transformations,
normalize, load data, and compute losses like softmax. Each layer type defines three critical
computations: setup, forward, and backward [21].

e Setup: initialize the layer and its connections once at model initialization.

e Forward: given input from bottom compute the output and send to the top.

e Backward: given the gradient computes the gradients with respect to the parameters

and to the inputs, which are in turn back-propagated to earlier layers.

Caffe does all the bookkeeping for any DAG of layers to ensure correctness of the forward and
backward passes. Also developing custom layers requires minimal effort by the
compositionality of the network and modularity of the code. A typical net begins with a data
layer that loads from disk and ends with a loss layer that computes the objective for a task
such as classification or reconstruction.

— fw ()
h(g(z)) | |

Figure 2.14: Caffe forward pass (left) and backward pass (right) on a simple logistic classifier [21].

Model format The models are defined in plaintext protocol buffer schema (prototxt) while
the learned models are serialized as binary protocol buffer (binaryproto) caffemodel files. The
model format is defined by the protobuf schema in caffe.proto. Cafte uses Google Protocol
Buffer for the following strengths: minimal-size binary strings when serialized, efficient
serialization, a human-readable text format compatible with the binary version, and efficient
interface implementations in multiple languages, most notably C++ and Python. This all
contributes to the flexibility and extensibility of modeling in Caftfe.
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2.4.2 Operation of the framework

As stated before, the forward and backward passes are the essential computations of a
network. The forward pass computes the output of a layer given the input for inference. In
forward, Caffe composes the computation of each layer to compute the “function”
represented by the model going from bottom to top layers. In contrary, the backward pass
computes the gradient given the loss for learning. In backward, Caffe reverse-composes the
gradient of every layer to compute the gradient of the whole model by automatic
differentiation. This is back-propagation and goes from top to bottom. The backward pass

. . . . 0 .
begins with the loss and computes the gradient with respect to the output % . The gradient

with respect to the rest of the model is computed layer-by-layer through the chain rule. Layers

with parameters, like the inner product layer, compute the gradient with respect to their
Ofw

ip
backward_{cpu,gpu}() methods to compute its steps according to the mode of computation.

during the backward step. Every layer type has forward_{cpu,gpu}() and

parameters

A layer may only implement CPU or GPU mode due to constraints or convenience [21].

Caffe framework include many different layers but the basic categories are the following:

» Data Layers: data enters Caffe through data layers. They lie at the bottom of nets. Data
can come from efficient databases (LevelDB or LMDB), directly from memory, or,
when efficiency is not critical, from files on disk in HDF5 or common image formats.
Common input preprocessing (mean subtraction, scaling, random cropping, and
mirroring) is available by specifying transformation parameters by some of the layers
[9].

» Vision Layers: vision layers (ex. convolution, pooling, crop etc.) usually take images
as input and produce other images as output, although they can take data of many
other types and dimensions. A typical “image” in the real-world may have one color
channel (c = 1), as in a grayscale image, or three color channels (¢ = 3) as in an RGB
(red, green, blue) image. But in this context, the distinguishing characteristic of an
image is its spatial structure: usually an image has some non-trivial height h > 1 and
width w > 1. This 2D geometry naturally lends itself to certain decisions about how
to process the input. In particular, most of the vision layers work by applying a
particular operation to some region of the input to produce a corresponding region of
the output. In contrast, other layers (with few exceptions) ignore the spatial structure
of the input, effectively treating it as “one big vector” with dimension ¢ - h - w [21].

» Activation Layers: in general, activation layers (ex. ReLU, Sigmoid, Bias etc.) are
element-wise operators, taking one bottom blob and producing one top blob of the
same size.

» Loss Layers: they drive learning by comparing an output to a target and assigning cost
to minimize. The loss itself is computed by the forward pass and the gradient is
computed by the backward pass.
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2.4.3 Caffe tools

Caffe has command line, Python, and MATLAB interfaces for day-to-day usage, interfacing
with research code, and rapid prototyping but in this work we are interested only with
Command Line and Python interfaces which we describe next [21].

Command Line Interface

Training The command line interface provides the caffe tool for model training, scoring,
and diagnostics. This tool is found under caffe/build/tools after compilation of this interface.
Caffe train and learns models from scratch, resumes learning from saved snapshots, and fine-
tunes models to new data and tasks. There are 4 steps in training a CNN using Caffe:

e Step 1 - Data preparation: In this step, we clean the images and store them in a format
that can be used by Caffe.

e Step 2 - Model definition: In this step, we choose a CNN architecture to deploy and we define
its parameters in a configuration file with extension .prototxt.

e Step 3 - Solver definition: The solver is responsible for model optimization. We define the
solver parameters in a configuration file with extension .prototxt.

e Step 4 - Model training: We train the model by executing one Caffe command from the
terminal. After training the model, we will get the trained model in a file with extension
.caffemodel or we can pause training and save snapshot in a .solverstate file.

After the training phase, the .caffemodel trained model is used to make predictions of new unseen data.

For example in order to train a network using LeNet network on 2" GPU we can run:
# caffe train -solver examples/mnist/lenet_solver.prototxt -gpu 2

Testing Caffe test scores models by running them in the test phase and reports the net output
as its score. The net architecture must be properly defined to output an accuracy measure or
loss as its output. The per-batch score is reported and then the grand average is reported last.

For example to score the learned LeNet model on the validation set as defined in the model architeture

lenet_train_test.prototxt we can run:
# caffe test -model examples/mnist/lenet_train_test._prototxt -weights
examples/mnist/lenet_iter_10000.caffemodel -gpu O -iterations 100

Benchmarking Caffe time benchmarks model execution layer-by-layer through timing and
synchronization. This is useful to check system performance and measure relative execution
times for models

For example in order to time a model architecture with the given weights on the first GPU for

10 iterations we can run the following command:

# caffe time -model examples/mnist/lenet_train_test._prototxt -weights
examples/mnist/lenet_iter_10000.caffemodel -gpu O -iterations 10

Diagnostics  Caffe device_query reports GPU details for reference and checking device
ordinals for running on a given device in multi-GPU machines.

For example to query the first device:
# caffe device_query -gpu O
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Python Interface

The Python interface pycaffe is the Caffe module and its scripts are in caffe/python folder after
the compilation of this interface. With this API we can import Caffe to load models, do
forward and backward computations, handle IO, visualize networks, and even instrument
model solving. All model data, derivatives, and parameters are exposed for reading and
writing [9]. Some basic facts of this interface are:

e caffe.Net which is the central interface for loading, configuring, and running
models. Also caffe.Classifier and caffe. Detector provide convenience interfaces for
common tasks.

e caffe.SGDSolver exposes the solving interface.

e caffe.io handles input / output with preprocessing and protocol buffers.

o caffe.draw visualizes network architectures.

e Caffe blobs are exposed as numpy ndarrays for ease-of-use and efficiency.

Also IPython notebooks are found in caffe/examples with many features.

Classification example

Caffe, at its core, is written in C++. It is possible to use the C++ API of Caffe to implement an
image classification application as well as Python code presented in one of the Notebook
examples. For example we can run a classification command using a simple C++ code that is
proposed in examples/cpp_classification folder. The C++ example is built automatically when
compiling Caffe as a classification.bin file.

We can first download a pre-trained CaffeNet model to use with the classification example,

from the Model Zoo? using the following script:
# _/scripts/download_model_binary.py models/bvilc_reference_caffenet

The ImageNet labels file, also known as the synset file, is also required in order to map a

prediction to the name of the class:
# ./data/Zilsvrcl2/get_ilsvrc_aux.sh

Using the files that were downloaded, we can classify the provided cat image

(examples/images/cat.jpg) using this command:

# _./build/examples/cpp_classification/classification_bin \
models/bvilc_reference_caffenet/deploy.prototxt \
models/bvic_reference caffenet/bvilc_reference caffenet.caffemodel \
data/ilsvrcl2/imagenet_mean.binaryproto \
data/ilsvrcl2/synset_words.txt \
examples/images/cat. jpg

?Model Zoo is a database with models that are learned and applied for problems ranging from simple regression,
to large-scale visual classification, to Siamese networks for image similarity, to speech and robotics applications.
They share a standard format for packaging in Caffe and are found in a central wiki page for sharing info Gists.
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Caffe in Embedded
SoC

3.1 Caffe in Zynq SoC

Embedded systems typically have very specific requirements and constraints such as limited
power and energy budgets, small physical sizes resulting in high reliability requirements and
hard real-time constraints [22]. This chapter gives a detailed information on how to port Caffe
framework on embedded SoCs and specifically on ARM CPU of Xilinx Zynq 7000 SoC family
with a presented novel scheme to easily migrate a DNN running in Caffe in the embedded
system [23]. The first step in order to port the whole Caffe framework into the Zynq 7000 SoC
to run on ARM (dual-core) was to cross-compile the required library dependencies of Caffe*
and then the whole framework and link all the libraries using the ARM cross compiler that
was included in the SDSoC Environment. The second step was to find a suitable DNN model
architecture to fit into the limited memory of the embedded SoC. For the building of the
framework, the interface was kept unchanged and the only part that had to be modified was
the Makefile configuration of Caffe source code.

3.1.1 Creating the boot image

A light Linux image was selected for boot while having all the necessary system software
needed for developing and configuring application. PetaLinux image which is created with
Xilinx Software Development Kit was appropriate for the embedded Linux system. PetaLinux
consists of three key elements: pre-configured binary bootable images, fully customizable
Linux for the Xilinx device, and PetaLinux SDK which includes tools and utilities to automate
complex tasks across configuration, build, and deployment.

! Caffe cannot run with the classic x64 libraries because we have a different architecture for the embedded system.
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3.1.2 Cross-compiling 3d party libraries for ARM

The cross compilation of the libraries we have done was manual, meaning we downloaded the
source files of each library (from github page) that Caffe needs and is dependent and then
cross compiled them one by one using the ARM toolchain "arm-linux-gnueabihf” of SDSoC
(defining the appropriate configuration each time and overcoming several complications in
some library installations) producing the header files and dynamic libraries at the end.

More specific, the Zynq SoC with the ARM processor supports NEON instrinsics so we set
the arm cross-compiler with the -mfpu=neon directive to enable them during the compilation
for all libraries in order to benefit from the SIMD architecture extension. Also, our ARM CPU
had hardware support for floating point operations so we configured the toolchain to enable
the calling Application Binary Interface (ABI)? to pass float variables across calls and thus use
the Vector Floating Point (VFP) registers with -mfloat-abi=hard compiler instruction. It’s
also worth mentioning that some libraries required to modify a configuration file to bootstrap
the code first before running the Makefile and install them while others required to control
the software compilation with CMake tool.* The header files and dynamic libraries were
installed in an appropriate build directory that we created for each library. Below we list the
compilation procedure of all the required libraries of Caffe.

Gflags The Gflags package contains a C++ library that implements command-line flags
processing. It includes built-in support for standard types such as string and the ability to
define flags in the source file in which they are used [24]. For the compilation we created the

following CMake file to use as a toolchain file for CMake with the following directives:
SET(CMAKE_SYSTEM_NAME Linux)

SET(CMAKE_C_COMPILER arm-lIinux-gnueabihf-gcc)

SET(CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++)

SET(CMAKE_FIND_ROOT_PATH /Zopt/Xilinx/SDx/2016.4/SDK/gnu/aarch32/1in/gcc-arm-1inux-
gnueabi/arm-linux-gnueabihf)

SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

SET(CMAKE_FIND_ROOT_PATH_MODE_ INCLUDE ONLY)

In the build folder then we run:

# cmake -DCMAKE_TOOLCHAIN_FILE=/home/jimakos/Desktop/gflags-
master/build/arm_make.cmake -DCMAKE_INSTALL_PREFIX=/home/jimakos/Desktop/gflags-
master/build -DBUILD_SHARED LIBS=ON ..

# make

# sudo make install

OpenBlas It is an optimized BLAS library that provides standard building blocks for

performing basic vector and matrix operations [25]. For the compilation we ran:

# make CC=arm-linux-gnueabihf-gcc HOSTCC=gcc ONLY_CBLAS=1 TARGET=ARMV7
# sudo make PREFIX=/home/jimakos/Desktop/openblas_libs/build/ install

*An ABI is an interface between two program modules that defines how data structures or computational
routines are accessed in machine code, which is a low-level, hardware-dependent format [26].

* CMake is an open-source, cross-platform family of tools designed to build, test and package software using
simple platform and compiler independent configuration files, and generate native makefiles [27].
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Glog This library contains a C++ implementation of the Google logging module [28]. First

we had to configure the Makefile appropriately before running the installation.

# ./autogen.sh

# ./configure CC=arm-linux-gnueabihf-gcc CXX=arm-linux-gnueabihf-g++ --host=arm-
linux-gnueabihf --prefix=/home/jimakos/Desktop/glog_libs/build/

# make

# make install

Boost Itis a set of libraries for the C++ programming language that provide support for tasks
and structures such as linear algebra, multithreading, image processing, regular expressions,

and unit testing etc. [29]. First, we had to bootstrap the code:
# ./bootstrap.sh

Then edit the configuration file “project-build.jam” to use the ARM toolchain by replacing the
line with “using gcc” by:

using gcc : arm : arm-linux-gnueabihf-g++ ;

Then in order to build and install the boost libraries we ran:

# ./bjam install toolset=gcc-arm --prefix=/home/jimakos/Desktop/boost/build/

Szip Itisa compression library [30] essential for some libraries of Caffe.

# ./configure CC=arm-linux-gnueabihf-gcc CXX=arm-linux-gnueabihf-g++ --host=arm-
linux-gnueabihf --prefix=/home/jimakos/Desktop/szip-master/build/

# make

# make install

LMDB 1t is a library that provides a high-performance embedded transactional database in
the form of a key-value store [31] and will be used for the training and validation datasets in
Caffe. We modified Makefile changing only the following directives:

CC = arm-linux-gnueabihf-gcc
AR = arm-linux-gnueabihf-ar
Prefix = =/home/jimakos/Desktop/Imdb-master/build/

Zlib It is a general purpose data compression library [32] that is essential for some libraries of

Caffe. For the compilation we configured the Makefile and continued with the installation.
# CC=arm-linux-gnueabihf-gcc ./configure --prefix=/home/jimakos/Desktop/zlib-
master/build/

# make

# make install

Protobuf Protocol Buffers (a.k.a., protobuf) are Google's language-neutral, platform-neutral,
extensible mechanism for serializing structured data [33]. Unfortunately, Protobuf libraries
don't support cross-compilation well. The major problem here was to figure out the right way
for protoc file to be built for the desktop machine, whereas the libraries needed to be built for
the ARM CPU. So we installed the desktop version first and then cross-compiled using the

x64 protoc bin file.

# _./configure --prefix=/home/jimakos/Desktop/protobuf/install/

# make

# make install

# make distclean

# _./configure --host=arm-linux --prefix=/home/jimakos/Desktop/protobuf/install/ARM
—--with-protoc=/home/jimakos/Desktop/protobuf/install/bin/protoc

# make

# make install
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Snappy It is a compression/decompression library that aims for very high speeds with
reasonable compression [34]. For the compilation we created the following CMake file to use

as a toolchain file for crmake command containing the following directives:
SET(CMAKE_SYSTEM_NAME Linux)

SET(CMAKE_C_COMPILER arm-lIinux-gnueabihf-gcc)

SET(CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++)

SET(CMAKE_FIND_ROOT_PATH /Zopt/Xilinx/SDx/2016.4/SDK/gnu/aarch32/1in/gcc-arm-1inux-
gnueabi/arm-linux-gnueabihf)

SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

SET(CMAKE_FIND_ROOT_PATH_MODE_L IBRARY ONLY)

SET(CMAKE_FIND_ROOT_PATH_MODE_ INCLUDE ONLY)

In the build folder then we run:

# cmake -DCMAKE_TOOLCHAIN_FILE=/home/jimakos/Desktop/snhappy-
master/build/arm_make.cmake -DCMAKE_INSTALL_PREFIX=/home/jimakos/Desktop/snappy-
master/build -DBUILD_SHARED LIBS=ON ..

# make

# sudo make install

LevelDB LevelDB is a fast key-value storage library written at Google that provides an
ordered mapping from string keys to string values [35]. We modified build_detect_platform

file adding the following directives just before “COMMON_FLAGS™:
CC = arm-linux-gnueabihf-gcc

CXX = arm-linux-gnueabihf-g++

TMPDIR = =/home/jimakos/Desktop/leveldb-master/temp/

Then link with the required snappy arm library that we compiled before because Caffe uses
LevelDB library with Snappy data compression. So we edit the following line:

PLATFORM_LIBS = ="-L/home/jimakos/Desktop/snappy-master/build/ -lsnappy”

Also we had to enter the full path of the include file “snappy.h” from our snappy build folder.

So we changed the include command at line 210 to:
#include “/home/jimakos/Desktop/snappy-master/snappy.h”

OpenCV This library is an Open Source Computer Vision Library (OpenCV) and has C++,
Python and Java interfaces supporting Windows, Linux, Mac OS, iOS and Android. OpenCV
was designed for computational efficiency with a strong focus on real-time applications taking
advantage of multi-core processing systems [36]. For the compilation, we created again the
following CMake file to use as a toolchain file for cmake command containing the following

directives:

SET(CMAKE_SYSTEM_NAME Linux)

SET(CMAKE_C_COMPILER arm-lIinux-gnueabihf-gcc)

SET(CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++)

SET(CMAKE_FIND_ROOT_PATH /Zopt/Xilinx/SDx/2016.4/SDK/gnu/aarch32/1in/gcc-arm-1inux-
gnueabi/arm-linux-gnueabihf)

SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

In the build folder then we run:

# cmake -DCMAKE_TOOLCHAIN_FILE=/home/jimakos/Desktop/opencv-
master/build/arm_make.cmake -DCMAKE_INSTALL_PREFIX=/home/jimakos/Desktop/opencv-
master/build -DBUILD_SHARED LIBS=ON ..

Also we run ccmake command and enable jpeg support to read jpeg files and tbb to enable

tbb threads and take advantage of multi-core ARM processor. Then we built with:

# make
# sudo make install
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HDF5 This package is a data model, library, and file format for storing and managing data.
It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and
for high volume and complex data [37].

There are two major problems with cross-compiling in HDF5. First, a macro in HDF5 tries to
compile and run a test program, but this does not work for cross-compiling because it builds
the program for the host system, and tries to run it on the build system. For example, HDF5
checks to see if the Fortran compiler supports the intrinsic function "SIZEOF" by running a
test program. Based on the result, a Makefile conditional is set to toggle which source file to
use when building H5test_kind. There are also many C++ compiler checks which can include
checking if large files are supported, checking if SZIP compression can encode, checking if
gettimeofday uses the timezone struct, and many more for checking conversion capabilities.
The second problem is the generation of H5Tinit.c and, to a lesser extent, H5libsettings.c
which are actually generated within make command, not by configure. The programs that
generate them are C programs which are compiled to run on the target platform, but they are
then run during make on the build platform, and thus fail (or, in some cases, simply produce
incorrect results). HDF5 would need to generate these source files during configure without
executing a machine-dependent program on the build system. Fortunately, we present a
method to resolve these issues.

First, as with other library compilations, we created the following CMake file to use as a

toolchain file for cmake command containing the following directives:

SET(CMAKE_SYSTEM_NAME Linux)

SET(CMAKE_C_COMPILER arm-linux-gnueabihf-gcc)

SET(CMAKE_CXX_COMPILER arm-1inux-gnueabihf-g++)

SET(CMAKE_FIND_ROOT_PATH /Zopt/Xilinx/SDx/2016.4/SDK/gnu/aarch32/1in/gcc-arm-linux-
gnueabi/arm-linux-gnueabihf)

SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

SET(CMAKE_FIND_ROOT_PATH_MODE_L IBRARY ONLY)

SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

Then the following CMake command was run a couple of times until the configuring is done
successfully. Also, Caffe uses HDF5 library demanding to be compiled with I/O external filters
specifically deflate and decode. So we include and link the appropriate external ARM libraries
zlib and szip that we previously compiled with the following options in cmake command in

order to enable their support:

cmake -DCMAKE_TOOLCHAIN_FILE=arm_make.cmake -
DCMAKE__INSTALL_PREFIX=/home/jimakos/Desktop/hdf5-1.10.1/build -
DBUILD_SHARED_LIBS=ON -DHDF5_ENABLE_Z_L1B_SUPPORT :BOOL=ON -
DZLI1B_INCLUDE_DIR:PATH="/home/jimakos/Desktop/zlib-master/build/include" -
DZLI1B_LIBRARY:FILEPATH=""/home/jimakos/Desktop/zlib-master/build/lib/libz._.so" -
DHDF5_ENABLE_SZI1P_SUPPORT :BOOL=ON -
DSZI1P_INCLUDE_DIR:PATH=""/home/jimakos/Desktop/szip-master/build/include" -
DSZIP_LIBRARY:FILEPATH=""/home/jimakos/Desktop/szip-master/build/lib/libsz._so" ..

After that, the make command was run a couple of times to ensure that all files are created
and we ignored the errors temporarily. Then we copy the files libhdf5.settings, H5detect and
Hb5make_libsettings to our Zynq SoC board with the ARM processor. In order to generate the

needed files we ran there the following commands on board:

# ./Hbmake_libsettings > ./tmp/H5lib_settings.c
# _./Hbdetect > _/tmp/H5T_init.c

Then all we had to do was transfer the two C files back to the desktop system from the
device system and successfully run the make command and finish the build.
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JPEG This package contains C software to implement JPEG* image encoding, decoding and

transcoding [38]. This set of library is required for Caffe to read and write JPEG image files.

# ./configure --host=arm-linux-gnueabihf CC=arm-linux-gnueabihf-gcc --
prefix=/home/jimakos/Desktop/jpeg-master/build/

# make

# make install

3.1.3 Cross-compiling Caffe for ARM

Caffe provides a clear modular Makefile in order to adapt it seamlessly in many platforms.
Though it does not officially support ARM compilation we provide a method to port it to the
ARM processor of Zynq SoC using arm cross-compiler toolchain.

The first step was to place all the cross-compiled libraries of Caffe to a new custom folder of
ours that will be linked during the build process and modify properly the configuration file of
Makefile. The Zynq SoC does not have any GPU card embedded so we uncommented the
directive CPU_ONLY := I in order to enable the build only for the CPU processor. On the
same principle we commented out the lines that had to do with settings for CUDA
architecture. Then we set BLAS choice as open to use the OpenBlas library which is generally
supported on ARM systems and set the include and library folders of BLAS to point on our
new custom folder which contained all the cross-compiled libraries for Caffe. Also we set the
include and library directories to point on that folder commenting out any other instruction
that pointed on the original x86 library folders (ex. /usr/local/lib/ or /ust/local/include/).

Furthermore, the modification of the Makefile had to be done. The appropriate directives
were set at the beginning of the file (line 9) to trigger the ARM toolchain. It is worth
mentioning that the rpath-link ¢ folder had to be set to point in our library folder to make it
the same path as the general libraries. This is used because some shared objects that we built,
have encoded a wrong path to some executable arguments and thus the correct shared objects
must be located at runtime. Lastly, any static linking directives were commented out and all

dynamic libraries were included and linked with the appropriate name. The directives follow:
TOOLCHAIN := arm-linux-gnueabihf-

CC := $(TOOLCHAIN)gcc

CXX = $(TOOLCHAIN)g++ -WI,-rpath-link=/home/jimakos/Desktop/third-party/lib/

AR := $(TOOLCHAIN)ar

LD := $(TOOLCHAIN)Id -WI,-rpath-link=/home/jimakos/Desktop/third-party/lib/
CXXFLAGS += -Wno-unused-local-typedefs -DSDS

>JPEG (pronounced "jay-peg") is a standardized compression method for full-color and gray-scale images.

S rpath designates the run-time search path hard-coded in an executable file or library. Dynamic linking loaders
use the rpath to find required libraries [39].
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3.2 DNN architectures for embedded SoC

The tight constraints on employing DNNs on small embedded systems can include the limited
on-chip memory of the device. FPGAs often have less than 10MB of on- chip memory. For
inference for example, a sufficiently small model could be stored directly on the FPGA
instead of being bottlenecked by memory band-width. In this section we try to find the
“right" DNN, the one that offers acceptable accuracy but operates in real-time within power
and energy constraints of its target embedded application.

3.2.1 Memory optimized networks

We tried to use small DNN architectures which will be more feasible to deploy on FPGAs
(Xilinx ZC702 board was used) and other hardware with limited memory.

» SqueezeNet is proposed as a small 18-layer DNN alternative which achieves AlexNet-
level accuracy on ImageNet with 50x fewer parameters. This parameter reduction has
been accomplished by using fire modules and careful balancing of the architecture.
One forward pass requires only 860 million MACC operations and 1.24 million
parameters are enough to achieve 80.3% top-5 accuracy [40].

» BVLC GoogleNet Model with its 50MB weights was suitable for Caffe in the embedded
system as well. This model is a replication of the model described in the GoogleNet
publication [41]. The differences are:

- not training with the relighting data-augmentation

- not training with the scale or aspect-ratio data-augmentation

- uses "xavier" to initialize the weights instead of "gaussian”

- quick_solver.prototxt uses a different learning rate decay policy than the

original solver.prototxt, that allows a much faster training

The bundled model is the iteration 2,400,000 snapshot (60 epochs) using
quick_solver.prototxt. This model obtains a top-1 accuracy 68.7% (31.3% error) and a
top-5 accuracy 88.9% (11.1% error) on the validation set, using just the center crop.

» Larger neural networks with more parameters such as BVLC Reference Caffenet or
VGG Net could not fully run on the device due to memory overhead. An error on the

terminal was thrown every time sending this message:

terminate called after throwing an instance of "std::bad_alloc*
what(): std::bad_alloc
*** Aborted

A way to get around this problem might was to build the linux image with an increased
rootfs” by changing options in 'Root filesystem type' inside petalinux configuration.

7 The root file system (rootfs) is the most basic component of Linux. A root file system contains everything
needed to support a full Linux system: all the applications, configurations, devices, data, and more [42].
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3.2.2  Accuracy optimized networks

In this section, we outline the design strategies for CNN architectures with few parameters in

order to maintain competitive accuracy.

> SqueezeNet employs specific strategies to achieve significant accuracy. It replaces 3x3

filters with 1x1 filters in the convolution layers as a 1x1 filter has 9X fewer parameters
than a 3x3 filter. Also downsample late in the network so that convolution layers have
large activation maps. In a convolutional network, if layers have large strides, then
most layers will have small activation maps. Conversely, if most layers in the network
have a stride of 1, and the strides greater than 1 are concentrated toward the end of
the network, then many layers in the network will have large activation maps. The idea
is that large activation maps (due to delayed downsampling) can lead to higher
classification accuracies [43].

GoogleNet architecture leverages the network accuracy with its approach. It was found
that a move from fully connected layers to average pooling improved the top-1
accuracy by about 0.6%, however the use of dropout remained essential even after
removing the fully connected layers [41].

3.2.3 Final Verdict

The most suitable network for our embedded system was the SqueezeNet v1.1. As described

in the previous sections, this DNN architecture offers many advantages to deploy in small

devices as for the speed and efficiency as well as the accuracy. To analyze the insides of the

network, we used Netscope CNN Analyzer, a web-based tool for visualizing and analyzing

convolutional neural network architectures taking as inputs Caffe's prototxt format files [44].
Although Caffe includes a python script “draw_net.py” which draws the network structure, it

doesn’t do any analysis, and excel tables tend to disintegrate after a short time.
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Figure 3.1: Visualization of the layer-level Network Graph (left), Analysis Summary Table (right) [6].
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FPGA Accelerator
Design

One of the main challenges for embedded system designers is to find a tradeoff between
performance and power consumption of an application. In order to reach this goal, hardware
accelerators have been used to offload specific tasks from the CPU, improving the global
performance of the system and reducing its dynamic power consumption. FPGAs take the
architectural approach even further by combining logic blocks and interconnects of
traditional FPGAs with embedded microprocessors known as System on a Chip (SoC). While
most software today is written so that instructions are executed in sequence, FPGAs have a
reconfigurable architecture which enables the parallelization of specific computational
intensive code in hardware. These algorithms are not controlled by instruction fetch' like
traditional processor’s and are usually repetitive and intensive.

In this section, we analyze the hardware accelerator that we developed in Xilinx SDSoC to run
on FPGA, aiming to accelerate and outperform the image classification performance on Caffe
framework when running on ARM CPU of the Zynq SoC. In order to define the function for
acceleration we first executed a profiling on Caffe framework to identify the memory or
computation bottlenecks. Then, Xilinx SDSoC Development Environment was used to
implement, validate and optimize the hardware function and integrate it with the whole Caffe
framework. The function is called GEMM (General Matrix Multiplication), a function similar
to BLAS SGEMM which is already used by Caffe and many DNN frameworks and is
responsible for the most workload within the layers of a network. This is the heart of the
DNNs which involves dense float matrix multiplications. The accelerated function was
implemented, tested for correctness and was optimized for the PL of the Xilinx ZC702 board
but can be modified with ease for other FPGAs The result was a CPU-FPGA-based system, a
highly heterogeneous all-programmable SoC that supports the Caffe framework and utilizes
the hardware accelerator achieving significant speed and power efficiency compared to the
ARM Zynq processor.

!Instruction fetch is a stage in a pipeline that loads the next instruction referred to by the program counter.
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4.1 Selecting function for acceleration

The challenge before designing the hardware accelerator is to find the code within the current
application that can be parallelized, and then how to parallelize that code so that it can be
executed on an array of computational elements configured in the FPGA fabric. One good
starting point is to first profile the code to find the computationally-intensive portions of the
code and then find ways to isolate the code so that it does not have many data dependencies.
Once this code is isolated, we must find ways to optimize the code so that it can be executed
on the resources available. Caffe rather than providing a layer abstraction, provides a lower-
level computational primitive, in order to simplify parallelization on high performance
systems. After profiling and careful analysis of the source code of the framework, we found
that the core algorithm responsible for most computations is the function GEMM. Next we
describe the steps taken before we arrive at this result.

Caffe profiling For Caffe profiling we will use caffe time command which benchmarks model
execution layer-by-layer through timing and synchronization. This is useful to check system
performance and measure relative execution times for models. Given the BVLC Reference
CaffeNet model for benchmarking we acquired the following results showing a large
computation overhead over the convolution layers of the networks and a significant overhead
to fully connected layers as well. Convolution is one of the most basic computations in a
network and as seen in Figure 4.1, it is in Caffe framework as well. Though the basic code of
the computation is not clear yet and we need to define a repetitive algorithm which can be
accelerated though the programmable logic of the FPGA.

relu

pooling
. normalization

fully connected

convolution

Figure 4.1: Execution time per layer category.
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Caffe’s convolution The implementation is not as obvious and while there are several ways
to implement it efficiently (ex. Winograd, FFT etc.), Caffe tries to provide a method for a
highly computer optimizable operation. The convolution layer treats its input as a two
dimensional image, with a number of channels for each pixel, much like a classical image with
width, height, and depth. The number of channels can be in hundreds inside the inner layers
of a network rather than just RGB which may be at the first layer only. The convolution
produces its output by taking a number of kernels of weights and applying them across the

image [45].
Input Image
Depth
Convolution Kernel
xDepth

Kernel
Size

Kernel

Size

Figure 4.2: Illustration of an input image and a single kernel [45].

Each kernel is another three-dimensional array of numbers, with the depth the same as the
input image, but with a much smaller width and height. To produce a result, a kernel is applied
to a grid of points across the input image. At each point where it’s applied, all of the
corresponding input values and weights are multiplied together, and then summed to produce
a single output value at that point. The kernel contains a pattern of weights and when the part
of the input image it applies on has a similar pattern it outputs a high value. When the input
doesn’t match the pattern, the result is a low number in that position [45].

Output

™ |

Figure 4.3: Output of a single kernel’s application on the input image [45].
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Convolution computation  Caffe’s strategy is to lower the convolutions into matrix
multiplications. The first step is to turn the input from an image, which is effectively a 3D
array, into a 2D array that we can treat like a matrix; this is known as im2col. This can be done
by reshaping the filter tensor F into a matrix F,, with dimensions K X CRS and gathering a
data matrix by duplicating the original input data into a matrix D,, with dimensions CRS X
N. The computation can then be performed with a matrix multiply to form an output matrix
0,, with dimension K X N .?

Image data Parameter Meaning
N Number of images
in mini-batch
D[0.0.:] D[01,:.] D[0.2,] C Number of input
N feature maps
Filter data €c=3 H Height of input
H=3 .
W - 3 image
g - 2 w Width of input
s=2 image
K Number of output
feature maps
' R Height of filter
kernel
F, o, S Width of filter
kernel
Figure 4.4: Convolution lowering to matrix multiplication [3]. Table 4.1: Convolutional parameters

As seen above, pixels that are included in overlapping kernel sites will be duplicated in the
matrix, which seems inefficient. Though this wastage is outweighed by the advantages though.

GEMM The matrix to matrix multiplication in Figure 4.4 is implemented in Caffe using a
function called GEMM (General Matrix Multiply) which is basically the simple matrix
equation C = aAB + BC where a,f scalars. That may include millions floating point
operations and there can be dozens of layers in a modern architecture that have GEMM calls,
so very often these networks need several billion FLOPs to calculate a single frame.
Fortunately, it turns out that large matrix to matrix multiplications are highly optimizable and
Caffe utilizes the commonly available, highly optimized BLAS (CUBLAS on NVidia GPUs)
libraries for dense matrix computation. Also modern architectures such as FPGAs benefit
from the very regular patterns of memory access outweighing the wasteful storage costs. Thus,
in the next sections we will analyze the hardware accelerator that was designed to perform the
GEMM function call and eventually outperform the BLAS GEMM call that Caffe uses by
default which runs on CPU.

? Convolution may involve some other parameters such as stride and padding which is filling the input volume

with zeros in such way that the convolution layer does not alter the spatial dimensions of the input.
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4.2  Software function implementation

We considered many approaches to accelerate the convolution of Caffe like using the FFT
(Fast Fourier Transform) based approach but it uses a significant amount of temporary
memory (for example filters must be padded to be the same size as the inputs). So the software
function that we implemented will behave similar to GEMM function which is the core of the
convolution algorithm as shown previously, aiming to give the same result as the BLAS level-
3 function SGEMM which will be replaced. GEMM has a straightforward implementation
with inputs two matrices and scalars and output one matrix, computing the matrix
equation C = aAB + BC. In this section, we will outline the motivation and reasoning
behind our design choices as for the software code of the function.

As stated in the previous sections, lowering convolutions to matrix multiplications can be
efficient, since matrix multiplication is highly optimized. Matrix multiplication is fast
because it has a high ratio of floating-point operations per byte of data transferred. This
ratio increases as the matrices get larger, meaning that matrix multiplication is less efficient
on small matrices. Accordingly, this approach to convolution is most effective when it creates
large matrices for multiplication. The sizes of the matrices in the equation depend on products
of the parameters to the convolution, not the parameters themselves. This means that
performance using this approach can be very consistent, since the algorithm does not care if
one of the parameters is small, as long as the product is large enough. For example, it is often
true that in early layers of a convolutional network, input channels are few but the width and
height of the filters are large, while at the end of the network the opposite happens. However,
the product which results the input matrices is usually fairly large for all layers, so
performance can be consistently good. The disadvantage of this approach is that forming
these matrices involves duplicating the input data up many times, which can require a
prohibitively large temporary allocation. To work around this, implementations sometimes
materialize matrices piece by piece, for example, by calling matrix multiplication iteratively
for each element of the mini-batch [3].

In this section, we describe the wrapper function and optimization techniques of GEMM at
software level.®> The basic approach is to use a block matrix multiplication where careful
analysis was made to define the block sizes. The result of our custom function was tested on
multiple inputs with irregular dimension matrices producing correct values.

® The wrapper function in our case is the routine function of GEMM whose main purpose is to call a second
subroutine which is the hardware kernel that will be discussed in the next section.
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42.1 Algorithm Design

As we discussed earlier, convolutions can be lowered into matrix multiplication. This
approach provides simplicity of implementation as well as consistency of performance across
the parameter space, although materializing the lowered matrix in memory can be costly. The
optimizations in the CPU code can be several depending on the use case of the GEMM
function.

Function declaration First the GEMM function besides the input matrices, dimensions and
scalars, it must accept the transpose values (0 or 1) for each array of whether to transpose the
matrices or not. This is needed depending on the major order type in which the arrays will be
stored and read. In a row-major order, the consecutive elements of a row reside next to each
other, whereas the same holds true for consecutive elements of a column in a column-major
order. This is important for performance when traversing an array because modern systems
process sequential data more efficiently than nonsequential data. Also, along with that the
leading dimensions lda, Idb and ldc of arrays A, B and C are given as declared in the calling
program. The definition of the function called my_gemm is shown below:

void my_gemm(int TA, int TB, int M, int N, int K, data_t alpha, data_t * A, int lda,
data_t * B, int 1ldb, data_t beta, data_t * C, int 1ldc)

Algorithm complexity Ideally, performance should be limited by the arithmetic throughput
of the processor. Indeed, for large square matrices where M=N=K, the number of math
operations in classical algorithm of a product of matrices is O(N*) while the amount of data
needed is O(N?), yielding a compute intensity on the order of N. However, taking advantage
of the theoretical compute intensity requires reusing every element O(N) times. The
algorithm must hold a relatively small working set in fast on-chip caches, which results in
good overall performance despite the fact that M, N, and K can grow.

Other approaches We considered using other algorithms with better complexities, such as
Strassen’s algorithm [46] which has a 0(n?8°7) complexity, would yield better performance
by replacing expensive multiplies with less expensive additions. While relatively limited on an
FPGA, multipliers are quite cheap when compared to the routing costs of complicated
multiplexinglogic needed to implement these algorithms.* So the GEMM function with the
classic matrix implementation was therefore chosen and we focused exclusively on
accelerating simple O(N?) algorithms.

*A multiplexer (or mux) is a device that selects one of several analog or digital input signals and forwards the
selected input into a single line.
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Implementation The proposed algorithm is a variation on normal matrix multiplication
where you divide the matrix into smaller sub-matrices and then calculate those matrices
individually. The advantage of this method is that values needed for the matrix calculation are
kept in the cache longer. Fixed sized submatrices of the input matrices A and B are
successively read into on-chip memory and are then used to compute a submatrix of the
output matrix C which is then stored in the appropriate location of C array. We compute on
tiles of A and B while fetching the next tiles of A and B from DDR memory into on-chip
caches and other memories. This technique hides the memory latency associated with the data
transfer, allowing the matrix multiplication computation to be limited mainly by the time it
takes to perform the arithmetic. Also padding with zeros is used for matrices whose
dimensions are not multiplies of the block sizes so the block outer values are filled with zeros.
The pseudocode of the algorithm is shown below:

Listing 1. GEMM function pseudocode

1. for (i = 0; i < Mtile; i+=Mtile) {

2 for (j = ©; j < Ntile; j+=Ntile) {

3 zero();

4 for (k = 0; k < Ktile; k+=Ktile) {
5. loadIntoFU(A, i, k);

6. loadIntoFU(B, k, j);

7. MulAccumulate();

8. }

9. store(C, i, j);

10. }

11. }

» The zero() pseudo-function is used to clear the C result block before the computation.

> The loadIntoFU() pseudo-functions just copy each time the blocks needed for
computation of array A and B from the external memory to fast CPU cache.

» The MulAccumulate() pseudo-function is the core computation of this algorithm as it is
the multiplication and addition of pair of blocks that computes the result block each time.
We discuss it in the next section how the implementation occured in hardware.

> The store() pseudo-function stores in the appropriate memory location the computed
block of C to the output array C.
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4.2.2 Software optimizations

First for the fast copying and clearing the blocks each time we used memcpy() and memset()
functions respectively which are probably the fastest functions for handling these memory
computations in software. Also, these need contiguous memory so we allocated the blocks
using sds_alloc() instead of malloc() (this is also a requirement for ensuring fast
communication with our hardware kernels which we discuss in the next section). Moreover,
one slight optimization we made was to copy the B matrix before the corresponding A matrix.
This ultimately hides part of the total load latency since the functional unit’s access of A
naturally matches the order in which it is loaded, allowing the computation to begin as soon
as the first element of A returns from memory. Lastly, we attempted to use 2 threads for the
parallelization of the copy functions copy_tile_A and copy_tile_B which copy the tiles each
time. Though, the performance benefit was minimal because of the multiple instantiation and
termination of the threads happening in the inner loop of our program.

The multiplication and addiction of the blocks are left for the mmult_accel() and madd_accel()
functions which perform all the MAC operations and were implemented in the PL of the
FPGA after validating them in software first. Our intention was to attempt to reduce the
number of sub-matrix loads by defining large blocks while at the same time they could fit in
the on-chip memory and be appropriate for the matrix operations used in the neural
networks. The best block size happened to be 192 x 192 for the ZC702 FPGA SoC. The
blocking technique is visualized in the following figure:

BLOCK_SZE B

BLOCK_SIZE

sA

A C

sA

JZETHIOM
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Figure 4.5: Visualization of blocked matrix multiplication [4].

With all these optimizations in mind, the full C++ software code of the GEMM wrapper
function was constructed and tested on ZC702 SoC and it is as follows:

£
|H||
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Listing 2. GEMM wrapper software function

w N R

o NV b

O

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

static data_t * A_tile, * B_tile, * C_tile, * R, * T;

void my_gemm(int TA, int TB, int M, int N, int K, data_t alpha, data_t * A, int 1lda,
data_t * B, int 1ldb, data_t beta, data_t * C, int 1ldc) {
int i, j, k, x, y, i_temp, j_temp;
A_tile = (data_t * ) sds_alloc(MB * KB * sizeof(data_t));
B_tile = (data_t * ) sds_alloc(KB * NB * sizeof(data_t));
C_tile = (data_t * ) sds_alloc(MB * NB * sizeof(data_t));
*
*

R = (data_t * ) sds_alloc(MB * NB * sizeof(data_t));

T = (data_t * ) sds_alloc(MB * NB * sizeof(data_t));

if (!A_tile || !B_tile || !'C_tile || !'T |] !R) {
fprintf(stderr, "Error buffer allocation\n")
exit(1);

}

// initialize the blocks with zeros
memset(A_tile, @, sizeof(data_t) * MB * KB);
memset(B_tile, @, sizeof(data_t) * KB * NB);
memset(C_tile, @, sizeof(data_t) * MB * NB);
memset (T, @, sizeof(data_t) * MB * NB);

for (i =0; 1 < M; i+=MB) {
for (j =0; j < N; j += NB) {
// initializes C_tile for computation
for (x = ©; x < MB; x++) {
for (y = ©; y < NB; y++) {
i temp = i + x;
j_temp = j +y;

if (i_temp < M && j_temp < N) C_tile[x * NB + y] = beta * C[i_temp

* 1dc + j_temp];

}

else C_tile[x * NB + y] = @; // padding with zeros

}

// C_tile computation
for (k = ©; k < K; k += KB) {

copy_tile B(TB, K, N, k, j, ldb, B); // loadIntoFU for tile B
copy_tile A(TA, M, K, i, k, 1lda, A, alpha); // loadIntoFU for tile A
mmult_accel(A_tile, B_tile, T, alpha); // tile multiplication
madd_accel(T, C_tile, R); // tile addition

memset(A_tile, @, sizeof(data_t) * MB * KB); // clear tile A
memset(B_tile, @, sizeof(data_t) * KB * NB); // clear tile B
memcpy(C_tile, R, sizeof(data_t) * MB * NB); // store tile R
}
// store C_tile to output array C
for (x = ©; x < MB; x++) {
for (y = @; y < NB; y++) {
i temp = i + x;
j_temp = j +y;
if (i_temp < M & j_temp < N) C[i_temp * 1ldc + j_temp] = C_tile[x
* NB + y];

}
}
sds_free(A_tile);
sds_free(B_tile);
sds_free(C_tile);
sds_free(R);
sds_free(T);
return;
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Listing 3. Software functions for copying tiles A and B

[y

// copy block A from DDR to cache
void copy_tile_ A(int TA, int M, int K, int i, int k, int 1da, data_t * A, data_t alpha
) A

N

3 int i_temp, j_temp, x, y;

4 if (TA == @) { // we don’t need transpose case for A

5. for (i_temp = ©; i_temp < MB && i + i_temp < M; ++i_temp) {

6. for (j_temp = ©; j_temp < KB & k + j_temp < K; ++j_temp) {
7 x =1 + i_temp;

8. y = k + j_temp;

9. A tile[i_temp * KB + j_temp] = A[x * 1lda + y];

12. }

13. }

14. // copy block B from DDR to cache

15. void copy_tile_B(int TB, int K, int N, int k, int j, int 1db, data_t * B) {
16.

17. int i_temp, j_temp, x, y;

18. if (TB == @) { // We don’t need transpose case for B

19. for (i_temp = ©; i_temp < KB & k + i_temp < K; ++i_temp) {
20. for (j_temp = ©; j_temp < NB & j + j_temp < N; ++j_temp) {
21. x = k + i_temp;

22. y = Jj + j_temp;

23. B_tile[i_temp * NB + j_temp] = B[x * 1ldb + y];

24. }

25. }

26. }

27. }
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4.3 Hardware function implementation

As described in the previous section it is necessary to split the problem into a number of
overlapping tiles and later stitch the results back together. On FPGAs and in ASICs as well,
matrix multiplications can be efficiently implemented with a systolic architecture. A suitable
systolic array consists of a regular grid of simple, locally-connected processing units. Each of
them performs one multiplication and one addition, before pushing the operands on to their
neighbors. Thanks to the locality of computation, communication and memory, these
architectures are very hardware-friendly [47]. Also, they are especially efficient for large
problem sizes and batched computation which is important for batched image inference.

The two functions mmult_accel and madd_accel in the GEMM wrapper were placed so that
they perform all the MAC operations of the matrix multiplication. The first is a simple matrix
multiplication of each pair of blocks including the use of the alpha scalar and the second one
is a block addition for the current result tile. Hence, they were synthesized in the
programmable fabric of the FPGA in order to achieve acceleration compared to running in
the ARM processor. The programs were written in high level C++ language that SDSoC
analyzed, optimized and translated to RTL code. The FPGA architecture increases the
computing speed by using the concept of parallel processing and pipelining into a single
concept. We propose a systolic algorithm that relies on data from different directions arriving
at cells in the array at regular intervals and being combined. By this pipelining processing it
may proceed concurrently with input and output and consequently overall execution time is
minimized [5]. The data must be stored on the fast BRAMs of the hardware which are near
the computation and are fetched in a streaming manner to the PE (processing elements) of
the systolic array. The theoretical 2- dimensional systolic architecture is visualized in the
following figure.

— PE [ PE PE —
— PE |—4 PE PE [—
— PE [ PE PE [

Figure 4.6: Systolic array architecture [47].
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4.3.1 Communication interface

In the SDSoC environment where we design our hardware accelerator, the system generation
process is controlled by structuring hardware functions and in order to balance
communication and computation we inserted certain pragmas into the source code to guide
the system compiler. The SDSoC compiler automatically chooses the best possible system port
to use for any data transfer, but allows to override this selection by using pragmas. Specific
pragmas select different data movers for the hardware function arguments and also control
the number of data elements that are transferred to/from the hardware function. All pragmas
related to the SDSoC environment are prefixed with #pragma SDS and were inserted into our
C++ source code, either immediately prior to function declarations or at a function call site
for optimization of a specific function call [48]. This project uses the AXI SIMPLE_DMA
interface with ACP (Accelerator Coherence Port) system ports to connect to the main
memory via the AXI4 bus in the Zynq ZC702. Initialization, status, and management registers
are accessed through an AXI4-Lite slave interface.’

Data access #pragma SDS data access_pattern(array:SEQUENTIAL) pragma was used to
specify the data access pattern in the hardware functions. SDSoC checks the value of this
pragma to determine the hardware interface to synthesize. The access pattern was set as
SEQUENTIAL and a streaming interface (ap_fifo) was generated. Otherwise, with RANDOM
access pattern, a BRAM interface would be generated where the accelerator would access data
from and could result in slower results. So after we guaranteeing in software level that the
array arguments are located in physically contiguous memory (using sds_alloc() instead of
malloc()), the most efficient data movers were used to fetch each matrix block in a fast
streaming manner. Also these arrays had to be one-dimensional which is the general rule in
simple DM As and the access pattern would be A[0], A[1], A[2], ..., A[1023] with all elements
accessed exactly once to minimize data input reads.

‘ CPU 0 Kot ‘ FIFO ‘Kernels
Stream

Figure 4.7: Sequential AXI Stream interface for hardware kernels.

AXI is a DMA (Direct Memory Access) IP that provides high-bandwidth direct memory access between
memory peripherals and
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When the software running on the ARM A9 processor “calls” our hardware kernels, it actually
calls an SDSoC environment generated stub function that calls underlying drivers to send data
from the processor memories to the hardware function and to get data back from the
hardware function to the processor memories over the system port ACP. This port allowed
the processor and our hardware kernels to access the same fast cache memory which was the
matrix blocks from GEMM wrapper, as shared memory [49].

Below is the header file of the GEMM wrapper function which includes all the necessary
declarations of functions and communication interfaces. SDSoC data access pattern is guided
through the pragmas that we inserted before the hardware function declarations.
#pragma SDS data access_pattern(A: SEQUENTIAL, B: SEQUENTIAL, C: SEQUENTIAL) was
used before mmult_accel and madd_accel hardware functions to enable the streaming FIFO
interfaces for all the three arrays A, B and C. These arrays are the tile blocks of the matrix
multiplication which are defined to a specific size because SDSoC needs to know the exact
array length during compilation in order to synthesize the appropriate number of DSPs, LUT's
etc. Also, the scalar alpha on mmult_accel requires very few hardware resource so it is
transferred by the AXI_LITE data mover. The code is as follows:

Listing 4. Header file of GEMM wrapper function

1. #define MB 64

2. #define KB 64

3. #define NB 64

4.

5. typedef float data_t; //type of precision used

6.

7. void my_gemm(int TA, int TB, int M, int N, int K, data_t alpha, data_t * A, int 1da,
data_t * B, int 1ldb, data_t beta, data_t * C, int ldc);

8.

9. #pragma SDS data access_pattern(A: SEQUENTIAL, B: SEQUENTIAL, C: SEQUENTIAL)

10. void mmult_accel(data_t A[MB * KB], data_t B[KB * NB], data_t C[MB * NB], data_t alpha
)

11.

12. #pragma SDS data access_pattern(A: SEQUENTIAL, B: SEQUENTIAL, C: SEQUENTIAL)

13. void madd_accel(data_t A[MB * NB], data_t B[MB * NB], data_t C[MB * NB]);
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4.3.2 Hardware optimizations

In order to achieve large throughput we had to enable a high degree of fine-grained parallelism
in application execution within the PL (Programmable Logic) fabric.®* Vivado HLS provides
through SDSoC specific pragmas that can be used to optimize the design: reduce latency,
improve throughput performance, and reduce area and device resource utilization of the
resulting RTL code. So the next step to the optimization methodology in hardware was to
place these pragmas directly to the source code for the kernels. Using SDSoC Area Estimation
we always checked the details of how many resources are required in the PL to implement the
hardware function and never exceeded 100% for any of the resources of the ZC702 FPGA
board.

Function inlining Similar to function inlining of software functions, it was beneficial to
inline the hardware functions. Function inlining replaces a function call by substituting a copy
of the function body after resolving the actual and formal arguments. After that, the inlined
function is dissolved and no longer appears as a separate level of hierarchy. We inserted the
directive #pragma HLS inline at the beginning of the body of the hardware function in order
to direct the Vivado HLS to inline the kernel. However, we did manual function inlining
without using the directive which allowed operations within our inlined function to be
optimized more effectively with surrounding operations.

Metrics optimization A common issue when our hardware functions are first compiled is
sometimes report files showed the latency and interval as a question mark “?” rather than as
numerical values. If the design has loops with variable loop bounds, the compiler cannot
determine the latency and uses the “?” to indicate this condition. To resolve this condition
many times we had to locate the lowest level loop which fails to report a numerical value and
use the directive #pragma HLS Loop_tripcount to apply an estimated tripcount. This allowed
values for latency and interval to be reported and allows implementations with different
optimizations to be compared [48].

Memory allocation The issue here is to use temporary arrays near the computation in
hardware in order to reduce the memory communication as much as possible. So we copied
the arrays in the hardware functions to temporary arrays which are implemented using the
efficient block RAM resources in the PL fabric. In order to guide the Xilinx tool to use the
BRAMs we used the directive #pragma HLS RESOURCE variable=<array> core=RAM 2P _BRAM
for the arrays A and B. This resulted in a small cost-efficient fast design. The disadvantage of
block RAM though is that, like other memories such as DDR or SRAM, they have a limited
number of data ports, typically a maximum of two, and also they have limited size.

®In fine-grained parallelism, the program is broken down to a large number of small tasks. These tasks are
assigned individually to many computing elements or processors [50].
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Loop Parallelization Loop pipelining and loop unrolling improve the hardware function's
performance by exploiting the parallelism between loop iterations. In sequential languages
such as C/C++, the operations in a loop are executed sequentially and the next iteration of the
loop can only begin when the last operation in the current loop iteration is complete. Loop
pipelining allows the operations in a loop to be implemented in a concurrent manner as
shown in the following figure.

Without Pipelining With Pipelining

Loop:for(i=1;1<3;i++) |
op_Read; RD
op_Compute; op_Write: CMP

Initiation Interval = 3 cycles Initiation Interval = 1 cycle

- -

| RD | CMP - RD | CMP - RD CMP

RD CMP
Latency = 3 cycles Latency = 3 cvcles
Loop Latency = 6 cycles Loop Latency = 4 cycles

Figure 4.8: The effect of loop pipelining in latency [48].

An important term for loop pipelining is called Initiation Interval (II), which is the number
of clock cycles between the start times of consecutive loop iterations. In the above figure, the
Initiation Interval (II) is one because there is only one clock cycle between the start times of
Consecutive loop iterations. To pipeline our loops, we put #pragma HLS pipeline II=1 atthe
beginning of every loop body to ensure Vivado HLS will try to pipeline the loop with
minimum Initiation Interval. We avoided data dependencies, as matrix multiplication for
example is by default highly parallelizable and thus constructed a highly parallel and pipelined
architecture with minimum latency that performed the MAC operations very efficiently. In
our 3-level loop of matrix multiplication kernel we could only pipeline the two outer loops
which were data independent so we placed the directive after second loop.

Furthermore, in the inner loop we tried to apply an adder tree of the related additions which
occur for each element in order to calculate each value of the output array. We used #pragma
HLS unroll factor=<K> directive to unroll the additions on the rows of array A and columns
of array B while playing with the unroll factor for optimal solution. Though, the results
showed increased resource allocation and the increase in concurrency was limited (about 4%).
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Function pipelining The next stage in creating a high-performance design is to pipeline the
functions. These technique optimize the parallelism between the functions where data flow
pipelining exploits the "coarse grain" parallelism at the level of functions. SDSoC chained
together our hardware functions because the data flow between them does not require
transferring arguments out of programmable logic and back to system memory so the first
function did not have to complete before starting the next function. The following example
tigure compares the latency with function data flow pipelining which the results are fetched
into the other functions as soon as they are ready.

void top (a,b,cd) {

func_A(ab,i1);
func_B(c,i1,i2);
func_C(i2,d);

return d;

}

- - -
8 cycles 3 cycles

I func_A | func_B _ I func_A func_A

| func_B ‘ func_B

8 cycles 5 cycles
(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

A
Y

Figure 4.9: The effect of function pipelining in latency [48].

We implemented this technique along with placing the two hardware functions one after
another. The output of the matrix multiplication function is the input to the matrix addiction
function. So, Vivado HLS automatically inserted channels between the functions either as
mutli-buffers or FIFOs and the data was directly fetched from the one function to the other
without having to be retrieved back to the processor.

Memory Bandwidth With the previous directives, Vivado HLS creates logic cells for the
memory allocated at the BRAM where we copied our arrays. This bottlenecks our acceleration
because data access is limited to only a few BRAM:s slices so DSPs are created only for the
specific memory ports resulting in limited number of DSPs cells. This issue can be solved by
inserting #pragma HLS array_partition variable=<array> block factor=<N> dim=<dim>
directive after the declaration of the temporary arrays. With this pragma, we partitioned the
temporary arrays into smaller equal blocks on individual registers allocating more BRAMs
enabling more access ports and so Vivado created more RTL resulting in improved
performance. The factor value for the number of the blocks was set as half the dimension of
each array enabling the dual port read of BRAMs and dim value was set to “2” for the array A
and “1” for the array B because we traverse them in rows and columns respectively.
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Resource allocation of operations In the hardware kernels we sometimes needed to insert
instance restrictions to limit or specify the type of resource allocation on specific variables in
the implemented kernel. Vivado HLS implements the operations in the code using hardware
cores. As we specified the BRAM type resource for the allocation of the arrays as mentioned
previously, we also had to guide Vivado HLS to implement some arithmetic operations using
specific cores. For example we used the directive #pragma HLS RESOURCE variable=<name>
core=FMul_fulldsp on our multiplier variable to ensure only DSPs will be allocated for the
multiplication operation. Also we used the directive #pragma HLS RESOURCE variable=<name>
core=FAddSub_fulldsp on our accumulator variable to ensure the same for the addition
operation. Thus, DSPs were mapped during the synthesis in order to achieve a highly efficient
and low latency architecture.

Other design techniques We generally avoided to use close to 100% resource utilization
because that could result in lower kernel clock speeds because the synchronization of the PL
would be harder due to complex design. Especially when using LUTs, placement and routing
can become very hard’, specifically if we needed to meet aggressive timing constraints. So we
preferred using DSPs and BRAMs as the latency was limited compared with the LUTs.
Furthermore, we attempted to load as larger matrices as we could on the BRAM memory of
the PL while maintaining a resource utilization below 100%. This resulted in greater
performance in GFLOPs because the communication overhead was covered by the large
computation of MAC operations. Of course, the ZC702 board could not fit enough logic to
tully parallelize the matrices but the performance improvement remained substancial even for
the array partitions we implemented. The two source files of the hardware kernels follow on
the next page.

7In a smaller FPGA, this percentage may be larger because possibly there is not that large routing distance in
smaller fabrics.
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Listing 5. Hardware kernel of block multiplication

1. void mmult_accel(data_t A[MB * KB], data_t B[KB * NB], data_t C[MB * NB], data_t alpha
) A

2o

3. data_t tA[MB][KB], tB[KB][NB], tC[MB][NB];

4.

5. #pragma HLS array_partition variable = tA block factor = 16 dim = 2

6. #pragma HLS array_partition variable = tB block factor = 16 dim =1

7. #pragma HLS RESOURCE variable = tA core = RAM_2P_BRAM

8. #pragma HLS RESOURCE variable = tB core = RAM_2P_BRAM

9.

10. for (int 1 = @; i < MB; i++) {

11. for (int j = 0; j < KB; j++) {

12. #pragma HLS PIPELINE

13. tA[i][j] = alpha * A[i * KB + j];

14. tB[i][j] = B[i * NB + j];

15. }

16. }

L7 5

18. for (int 1 = 9; i < MB; i++) {

19. for (int j = @; j < NB; j++) {

20. #pragma HLS PIPELINE

21. data_t result = 0;

22. for (int k = @; k < KB; k++) {

23. data_t term = tA[i][k] * tB[k][j];

24. result += term;

25. }

26. tC[i][j] = result;

27. }

28.

29. for (int 1 = 9; i < MB; i++) {

30. for (int j = 0; j < NB; j++) {

31. #pragma HLS PIPELINE

32. C[i * NB + j] = tC[i][]1;

33. }

34, }

35. }

Listing 6. Hardware kernel of block addition

void madd_accel(data_t A[MB * NB], data_t B[MB * NB], data_t C[MB * NB]) {
int i, j;
for (1 =0; i < MB; i++) {
for (j = ©; j < NB; j++) {
#pragma HLS PIPELINE
C[i * NB + j] = A[i * NB + j] + B[1 * NB + j];
}

VWoONOTUVEAWNEPR
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4.4 Integration with Caffe

After porting Caffe into Zynq SoC on ARM and designing the FPGA accelerator (GEMM)
that would be used to accelerate the image classification algorithm, we then had to integrate
the accelerator function into Caffe’s framework. This procedure, involves many steps before
running Caffe on board and actually using the FPGA kernel to speed-up image classification.
In order to integrate the hardware accelerator with the Caffe framework and port it into the
Zynq SoC we had to create it as a shared library instead of an application binary and then link
it with the rest of the Caffe framework. Through the SDSoC Development Environment we
were able not only to create the dynamic library but also the SD card and boot image that our
board would boot from. The shared library was suitable for linking and our accelerator
function was integrated into Caffe framework with success, communicating with the FPGA
kernels when needed. The process comprises some steps which are described on the next
sections.

44.1 Creating the booting system

Boot Image On this step we describe how we created the boot image that our board would
boot from. The creation of the boot image was done by SDK tools from SDSoC Environment.
In order to produce the specific file (boot.bin), SDSoC created the necessary files
automatically; FSBL (First Stage Boot Loader), U-Boot, ulmage, Rootfs and Device Tree Blob.
Though what components are part of the boot image and what not, cannot be answered in a
generic way. It heavily depends on the use-case and requirements. At a bare minimum, it must
contain an FSBL without being enough. Hence a common boot image consists of an FSBL and
U-Boot. In cases the FSBL also takes over programming the PL, a bitstream would be added
as well. In our case, the bitstream from out hardware accelerator was taken into account, with
a long process of place and route where the output bitstream was added to the boot image.
Also, higher level OS components can be processed by U-Boot from various sources. U-Boot
can load those images from flash, via Ethernet or assume they have been pre-loaded by other
means (e.g. JTAG or the FSBL). We used the JTAG method.

Prepare Boot Medium The next step of the process is the preparation of a medium as boot
device. This of course assumes a Linux system. Xilinx Software Development Kit can
automatically create an SD card with preinstalled Linux system, called PetaLinux, which is
appropriate for the embedded system that we created that needs a Linux image. We also
configured SDSoC to create a shared library instead of an application binary in order to link
with Caffe build. After, the creation of the SD card along with the boot image boot.bin and the
dynamic/shared library (.so file), we followed with the building of Caffe framework and
linking it with our library.
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4.4.2 Linking the hardware function with Caffe

After the creation of the boot files and the shared library of our accelerator, we then had to
link the library with Caffe so that Caffe could communicate with our function and the
function could communicate with the PL. The shared library was suitable for linking with the
ARM toolchain through the modified Makefile of the Caffe framework. We just added the
compiler flag —Igemm in order to link our shared library libgemm.so with the rest of the Caffe
framework and also added the appropriate header file for our accelerator function which is
listed below.

Listing 7. Header file of GEMM wrapper function needed for Caffe

typedef float data_t;

void my_gemm(int TA, int TB, int M, int N, int K, data_t alpha,
data_t * A, int 1da,
data_t * B, int 1db, data_t beta,
data_t * C, int 1ldc);

AUV A WN R

Then all we had to do was replace the GEMM function call that runs on CPU which is called
by BLAS with our GEMM wrapper function that is accelerated though the PL of the FPGA
and run the Makefile with the new linked shared library. Specifically we modified
caffe_cpu_gemm function which is found on math_functions.cpp file of Caffe source files. We
replaced cblas_sgemm function with our custom function my_gemm and did some other
modification which are shown below. Also, we took into account the matrix dimensions that
our accelerator performed well and excluded the other dimensions (i.e. very small or linear
dimensions).

Listing 8. GEMM replacement in Caffe source code

1. void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,
2. const int M, const int N, const int K,

3. const float alpha, const float * A,

4. const float * B, const float beta, float * C) {

Do

6. int 1lda = (TransA == CblasNoTrans) ? K : M;

7. int 1db = (TransB == CblasNoTrans) ? N : K;

8. int TA = (TransA == CblasNoTrans) ? @ : 1;

9. int TB = (TransB == CblasNoTrans) ? @ : 1;

10.

11. if (M >= 32 & N >= 32 & K >= 32 && TA == 0 && TB == 0)

12. my_gemm(TA, TB, M, N, K, alpha, A, lda, B, ldb, beta, C, N); //accelerated
13. else

14. cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, //default

15. A, lda, B, ldb, beta, C, N);

16. }
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4.5 Setting up and running the final system

In order to run the whole accelerated system on board we had to set up the FPGA board and
the PC which would be connected through UART. First, in order to boot our generated SD
card image, the boot pins of the board had to be configured accordingly, as shown in the image
below.

D ra VEARRRR R =
S

Ii].;

Figure 4.10: Switch setup for SD card boot mode on ZC702

Additionally on the Xilinx Development Board we used the USB UART port connected with
amini-B USB cable to connect the USB UART port on the board to our PC. The correct JTAG
mode had to be selected, according to the used interface. The JTAG mode is controlled by
switch SW4 on the zc706 (or SW10 on ZC702). The settings are listed in the following table.

Figure 4.11: Switch selection for Digilent USB JTAG connection
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Also, we had to install on the PC a terminal emulator which allows the access to FPGA
terminal and all its applications running via the USB cable. We used TeraTerm [51] which is
a terminal tool for connecting with remote or local hosts.

The settings for the serial connection may differ from board to board, but the following
settings surely work for Zynq platforms:

baud rate = 115200
data bits = 8

stop bits = 1

flow control = none
parity = none

The serial device depended on our operating system and cable connection. On our Linux PC
we found the serial devices in the /dev directory and precisely was ttyUSB4 serial device port.
After configuring the following settings on the TeraTerm terminal we successfully made a
connection and booted the board accessing all files in the SD card.

@ © () GtkTerm - /dev/ttyUSB4 115200-8-N-1

File Edit Log <Configuration Controlsignals WView

[dev/ttyUSB4 115200-8-N-1 DTR RTS

Figure 4.12: Communication with the FPGA board via TeraTerm terminal
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Operation of the final system The final point of this thesis work was to link the designed
hardware accelerator with the rest of the Caffe framework and run it on board. As shown in
Figure 4.13, the whole process starts from the Caffe framework where the user runs the
classification command on the host CPU of Zynq SoC. Then, whenever Caffe needs to make
a GEMM call, it does not load the previous BLAS GEMM call which would run on CPU but
instead it loads our new GEMM function (my_gemm). Next, whenever our function needs to
speed up MAC operations, it communicates through AXI stream with our kernels
(mmult_accel, madd_accel) passing each time the blocked matrices on the PL and sends back
the result blocks. So, we efficiently send back and forth information any time needed within
the PS and PL in a streaming manner. At the end, Caffe retrieves all the information from our
GEMM function which returns the entire calculated array (array C).

PS

Framework Caffe

Shared Library

void my_gemm(int TA, int TB, int M,
Wrapper int N, int K, float alpha, float *A,
Function int 1da, float *B, int 1db,

float beta, float *C, int 1ldc)

|| mmult_accel I l madd_accel I

AXI stream <

> PL

Figure 4.13: Visualization of the accelerator communicating with Caffe framework

e
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void mmult_accel(

Hardware float A[], float A[],
float B[], float B[],
Kernels float C[], float C[])

float alpha)

void madd_accel(
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Evaluation and

Results

The last three chapters gave a detailed information of porting Caffe into embedded SoCs, the
design of the GEMM hardware accelerator and the heterogeneous CPU-FPGA accelerated
system which supports Caffe framework. All of these components have been completed
successfully, and together constitute the fully operable system which can make image
classification run more efficiently on FPGA SoC. This chapter is concerned with an in-depth
evaluation of this system regarding different aspects. First, we take some metrics and make an
analysis of some neural network models with Caffe running solely on ARM CPU of the
embedded SoC (section 5.1). Then, we make a hardware analysis and assess the performance
of the designed hardware accelerator (section 5.2). The final section brings both components
together and investigates the overall system performance of the Caffe framework running on
CPU-FPGA SoC while proposing several other potential improvements (section 5.3).

5.1 Caffe on embedded CPU performance

In chapter 3, a detailed method has been described of how to port Caffe into ARM CPU of
Zynq SoC. Therefore, in this section we confine ourselves to a summary of the most important
characteristics of the operation of the framework in ARM CPU. To start with, section 5.1.1
gives several metrics on Caffe framework regarding its operation (accuracy, execution times,
etc.). Then in section 5.1.2 we analyze some characteristics of several neural network models
and present what lies behind the operation of the framework and the different layers.'

! For this task we used the python API of Caffe framework because it can visualize networks while all model data,

derivatives, and parameters are exposed for reading and writing.
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5.1.1 Caffe metrics on ARM

After successfully porting Caffe to run on ARM CPU of Zynq SoC we did several tests utilizing
the internal tools that Caffe provides, making the necessary tweaks when applicable in order
to give a comparison between different scenarios (i.e. different network models etc.)

Framework functionality The first step after porting Caffe into ARM was to test the
framework via the test binaries that are produced when running “make test” in Caffe directory.
These binaries assess each layer with different inputs and checks if the results are correct
which is essential for the proper operation of the whole framework. The results were correct
and all the tests passed except those that had to do with the gpu device which is irrelevant and
not used in the FPGA SoC. Some of the tests are presented below:

[==========] Running 1058 tests from 146 test cases.
[-———-—-—-—--- ] Global test environment set-up.
—————————— ] 3 tests from DummyDatalayerTest/0, where TypeParam = float
[ RUN ] DummyDatalLayerTest/0.TestOneTopConstant
OK ] DummyDatalLayerTest/0.TestOneTopConstant (3 ms)
[ RUN 1 DummyDatalLayerTest/0.TestTwoTopConstant
OK ] DummyDatalLayerTest/0.TestTwoTopConstant (0 ms)
[ RUN 1 DummyDatalayerTest/0.TestThreeTopConstantGaussianConstant
L OK ] DummyDatalayerTest/0.TestThreeTopConstantGaussianConstant (3 ms)
[-————-—-——-- ] 3 tests from DummyDatalLayerTest/0 (6 ms total)
[-——------- ] 3 tests from DummyDatalayerTest/1, where TypeParam = double
[ RUN 1 DummyDatalLayerTest/1._TestOneTopConstant
L OK ] DummyDatalLayerTest/1.TestOneTopConstant (1 ms)
[ RUN 1 DummyDatalayerTest/1.TestTwoTopConstant
L OK ] DummyDatalLayerTest/1.TestTwoTopConstant (0 ms)
[-——---—---- 1 2 tests from SoftmaxLayerTest/0, where TypeParam = caffe::CPUDevice<float>
[ RUN ] SoftmaxLayerTest/0.TestForward
OK ] SoftmaxLayerTest/0.TestForward (1 ms)
[ RUN ] SoftmaxLayerTest/0.TestGradient
L OK ] SoftmaxLayerTest/0.TestGradient (1967 ms)
[-———----——- 1 2 tests from SoftmaxLayerTest/0 (1968 ms total)
—————————— ] 11 tests from CropLayerTest/1, where TypeParam = caffe::CPUDevice<double>
[ RUN ] CropLayerTest/1.TestSetupShapeAll
L OK ] CropLayerTest/1.TestSetupShapeAll (1 ms)
[ RUN 1 CropLayerTest/1.TestSetupShapeDefault
L OK ] CropLayerTest/1.TestSetupShapeDefault (0 ms)
[ RUN 1 CropLayerTest/1.TestSetupShapeNegativelndexing
L OK ] CropLayerTest/1.TestSetupShapeNegativelndexing (0 ms)
[ RUN ] CropLayerTest/1.TestDimensionsCheck
L OK ] CropLayerTest/1.TestDimensionsCheck (0 ms)
[ RUN 1 CropLayerTest/1.TestCropAll

Figure 5.1: Partial output from Caffe framework testing on ARM for proper functionality.
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Image Classification Caffe provides an example C++ binary (classification.bin) for image
classification. In order to classify several images, we successfully imported some pretrained
models (caffemodels) on Caffe such BVLC GoogleNet and Squeezenet which are based on
ImageNet dataset and can classify 1000 categories. Moreover, we also used a small pretrained
model with 10 categories which is based on CIFAR10 dataset. The command we executed

each time had the following format :

-/classification.bin deploy.prototxt network.caffemodel
labels._txt image.jpg

mean_binaryproto

Some examples are presented below showing the execution times on different models:

GoogleNet
—————————— Prediction for cat.jpg ------ ---- Prediction for macaw_parot.jpg -----
0.5009 - '"n02123159 tiger cat" 0.9550 - '"'n01818515 macaw"
0.2283 - ''n02123045 tabby, tabby cat" 0.0444 - '"'n01843383 toucan"
0.1612 - ''n02124075 Egyptian cat" 0.0002 - ''n01843065 jacamar"
0.0283 - '"'n02127052 lynx, catamount" 0.0001 - '"n01608432 kite"
0.0134 - '""'n02123394 Persian cat" 0.0000 - ""n02606052 rock beauty"
real 0Om8.597s real 0m9.199s
user 0Om9.860s user Om10.050s
sys Om1.430s sys Om1.400s
SqueezeNet
-------- Prediction for cat.jpg -------- --—— Prediction for macaw_parot.jpg ----—-
0.2763 - "n02123045 tabby, tabby cat" 1.0000 - ""n01818515 macaw"
0.2673 - "n02123159 tiger cat” 0.0000 - '"'n01820546 lorikeet"
0.1766 - "n02119789 Kit fox 0.0000 - *'n01829413 hornbill"
0.0827 - "n02124075 Egyptian cat” 0.0000 - ''n01843383 toucan™
0.0777 - "n02085620 Chihuahua' 0.0000 - '"n01847000 drake"

Oml.228s real  0ml1.200s
user Om1.530s user 0ml.520s
sys Om0.510s sys 0mo0.430s

CIFARI10

——————— Prediction for truck.jpeg ------ ------- Prediction for plane.jpeg -------
0.9999 - "9 : truck" 0.9955 - "0 : airplane”
0.0000 - "1 : automobile" 0.0028 - "2 : bird"
0.0000 - "3 : cat™ 0.0009 - "3 : cat™
0.0000 - "6 : frog" 0.0007 - "4 : deer"
0.0000 - "8 : ship"” 0.0001 - "6 : frog"
real 0m0.262s real 0m0.264s
user 0m0.230s user 0m0.280s
sys Om0.160s sys Om0.110s

Figure 5.2: Image Classifications and execution times on different models on ARM.
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Inference-Learning Next, we wanted to evaluate only the inference time for the prediction
of an image and ignore the layer initializations. Caffe provides a time tool which benchmarks
model execution layer-by-layer through timing and synchronization. This is useful to check
system performance and measure relative execution times for models. In the next figures, a
partial example output for GoogleNet benchmark is shown in the first figure and the clean
inference comparison between different models is shown in the second figure. All models
were tested in batching of 10 except CIFAR10 which is on a different dataset and used smaller
images with no batching.

10403 14:25:38.469990 1081 layer_factory.hpp:77] Creating layer data
10403 14:25:38.470206 1081 net.cpp:84] Creating Layer data

10403 14:25:38.470293 1081 net.cpp:380] data -> data

10403 14:25:38.470571 1081 net.cpp:122] Setting up data

10403 14:25:38.470638 1081 net.cpp:129] Top shape: 10 3 224 224 (1505280)
10403 14:25:38.470896 1081 net.cpp:137] Memory required for data: 6021120

10403 14:26:55.500109 1088 net.cpp:255] Network initialization done.
10403 14:26:55.504595 1088 caffe.cpp:360] Performing Forward

10403 14:39:57.620750 1172 caffe.cpp:365] Initial loss: O

10403 14:39:57.621122 1172 caffe.cpp:366] Performing Backward

10403 14:39:57.621188 1172 caffe.cpp:374] *** Benchmark begins ***

10403 14:32:21.831459 1105 caffe.cpp:417] Average Forward pass: 28082.1 ms.
10403 14:32:21.831517 1105 caffe.cpp:419] Average Backward pass: 22741 ms.
10403 14:32:21.831573 1105 caffe.cpp:421] Average Forward-Backward: 51831.5 ms.
10403 14:32:21.831631 1105 caffe.cpp:423] Total Time: 103663 ms.

10403 14:32:21.831686 1105 caffe.cpp:424] *** Benchmark ends ***

Figure 5.3: Example partial output for BVLC GoogleNet benchmark. The top shape dimensions “10 3 224 224”

means it has a batch of 10 images, with 3 channels (RGB) and 224x224 image dimensions. The inference per

image is the “Average Forward pass” divided by the number of batches, so % =2,8s.

Model comparison on execution time

BVLC CaffeNet

R
B L Goog e N et
SqueezeNet e
CIUNSUIN
0 0,5 1 1,5 2 2,5 3

Forward Pass  m Backward Pass

Figure 5.4: Comparison in execution time (seconds) between different models for inference (forward pass) and
learning (backward pass) network computations on ARM.
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Accuracy on CPU Caffe runs in our embedded system which has limited memory. Due to

large memory size of ImageNet dataset we could not use it for our validation data in order to
evaluate the accuracy. So we used the much smaller CIFAR10 dataset (50000 32x32 images),
creating the Imdb files for training and testing first and then computing the image mean

binaryproto of the dataset. For measuring accuracy, Caffe provides a test tool that scores

models by running them in the test phase and reports the net output as its score. The net

architecture must be properly defined to output an accuracy measure or loss as its output. The

per-batch score is reported and then the grand average is reported last. Figure 5.4 shows the

partial output of creating the Imdb, image mean and then running the test Caffe tool to

measure the accuracy and loss.

Creating Imdb...

10306  13:48:48.762825 1019 db_Imdb.cpp:35] Opened Imdb  /mnt/caffe-

cpu/examples/cifarl0/cifarl0_train_Imdb

10306 13:48:48.764823 1019 convert_cifar_data.cpp:52] Writing Training data
10306 13:48:48.765002 1019 convert_cifar_data.cpp:55] Training Batch 1
10306 13:48:50.477787 1019 convert_cifar_data.cpp:55] Training Batch 2
10306 13:48:52.161989 1019 convert_cifar_data.cpp:55] Training Batch 3
10306 13:48:53.653244 1019 convert_cifar_data.cpp:55] Training Batch 4
10306 13:48:55.608544 1019 convert_cifar_data.cpp:55] Training Batch 5
10306 13:49:59.846719 1019 convert_cifar_data.cpp:73] Writing Testing data

10306 i3:49:59.847904 1019 db_Imdb.cpp:35] Opened Imdb /mnt/caffe-

cpu/examples/cifarl0/cifarl0_test_Imdb

Computing image mean...

10306 13:53:50.209133 1074 db_Imdb.cpp:35] Opened Imdb  /mnt/caffe-

cpu/examples/cifarl0/cifarl0_train_Imdb

10306 13:53:50.225416 1074 compute_image mean.cpp:70] Starting iteration
10306 13:53:51.304004 1074 compute_image_mean.cpp:95] Processed 10000 files.
10306 13:53:53.283586 1074 compute_image mean.cpp:95] Processed 20000 files.
10306 13:53:55.271657 1074 compute_image_mean.cpp:95] Processed 30000 files.
10306 13:53:56.383890 1074 compute_image mean.cpp:95] Processed 40000 files.
10306 13:53:57.580297 1074 compute_image_mean.cpp:95] Processed 50000 files.

10306 13:53:57.580576 1074 compute_image_mean.cpp:108] Write to /mnt/caffe-

cpu/examples/cifarl0/mean.binaryproto

10306 13:53:57.582489 1074 compute_image_mean.cpp:114] Number of channels: 3

10306 13:53:57.582587 1074 compute_image_mean.cpp:119] mean_value channel [0]:

125.307
10306 13:53:57.582872 1074 compute_image_mean.cpp:119] mean_value channel [1]:
122.95
10306 13:53:57.582953 1074 compute_image_mean.cpp:119] mean_value channel [2]:
113.865
#./caffe._bin test -model cifarlO_quick_train_test.prototxt -weights

cifarlO_quick_iter_5000.caffemodel

10306 13:55:38.627992 1116 caffe.cpp:313] Batch 48, accuracy = 0.5
10306 13:55:38.628142 1116 caffe.cpp:313] Batch 48, loss = 0.569972
10306 13:55:38.674666 1116 caffe.cpp:313] Batch 49, accuracy = 0.5
10306 13:55:38.674819 1116 caffe.cpp:313] Batch 49, loss = 0.840962
10306 13:55:38.674933 1116 caffe.cpp:318] Loss: 0.707087

10306 13:55:38.675132 1116 caffe.cpp:330] accuracy = 0.77

10306 13:55:38.675346 1116 caffe.cpp:330] loss = 0.707087 (* 1 = 0.707087 loss)

Figure 5.5: Preparing the CIFAR10 dataset and measuring accuracy on ARM. The model achieved ~71%
accuracy very close to the original baseline (75%).
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5.1.2 Neural Network Analysis

For this task we utilized the Caffe’s Python interface “pycaffe”. With the Caffe python module
we could load models, do forward and backward computations, handle IO, visualize networks,
and even instrument model solving. All model data, derivatives, and parameters are exposed
for reading and writing and that is essential to break into pieces every model. For this task we
used the IPython Jupyter Notebook found in Caffe source files which is browser based
interactive and scripting interpreter tool, great for visualizations and sharing collaborative
work. Next we present some visualizations and layer data for different network models
through the Jupyter Notebook.

Preparation of input After setting up python, numpy and matplotlib we loaded Caffe
module into the notebook. Next, we set up Caffe’s input preprocessing configuration for
reading images (configured in BGR format as opposed to RGB) and loaded the example image
of a cat.

In [61]: image = caffe.io.load image(caffe root + 'examples/images/cat.jpg')
transformed image = transformer.preprocess(‘'data', image)

plt.imshow(image)

Out[61]: <matplotlib.image.AxesImage at 0x7f85fa3a2ddo-

0

Figure 5.6: Image input in Caffe with IPython Notebook.

62 <= Chapter5. Evaluation and Results



Python Image Classification After configuring Caffe module and loading the input image,
we then fed it into the network and performed the forward pass to compute the probability
vector that will output the predicted class. As it is shown below the predicted class has the
number 281 of the 1000 ImageNet classes which corresponds to the label “tabby cat”. The
probability for this predicted class is ~31% but we output the top 5 predictions which are all

very similar to the input image.?

,Jtpuk_prnh.argnﬂrt[}l::

print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds]

probabilities and labels:
Out[10]: [(0.31243637, 'm02123045 tabby, tabby cat'),
(0.2379719, 'n02123159% tiger cat'),
(0.12387239, 'n02124075 Egyptian cat'),
(0.10075711, "n02119022 red fox, Vulpes wvulpes'},
(0.070957087, 'n02127052 lynx, catamount')]

+ We see that less confident predictions are sensible.

In [8] the net
wutpht = net.forward()
output_prob = output['prob'][0] # the output pr lit ~tor for the fir
print 'predicted class is:', output prob.argmax()
predicted class is: 281
» The net gives us a vector of probabilities; the most probable class was the 281st one. But is that correct? Let's check the
ImageNet labels...
In [9]: # load ImageNet labels
labels file = caffe root + 'data/ilsvrclZ2/synset words.txt'
if not os.path.exists(labels file):
E..fdaLafilsvrcl?;qeL_ilsvrc_aux.sh
labels = np.loadtxt(labels file, str, delimiter="\t')
print 'output label:', labels[output_prob.argmax()]
output label: n02123045 tabby, tabby cat
+ "Tabby cat” is correct! But let's also look at other top (but less confident predictions).
In [10]: # sort top five predictio

Figure 5.7: Image classification with IPython Notebook.

% The probability values for this image are produced from loading the BVLC Reference CaffeNet model weights

and differ from model to model.
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Examining Layer Parameters A net acts just a black box but through IPython Notebook we

can take examine some of the parameters and intermediate activations of a network structure.

First we read out the structure of the net in terms of parameter shapes. The parameters are

exposed as net.params in the python code. We need to index the resulting values with either

[0] for weights or [1] for biases. Also, the param shapes typically have the form
(output_channels, input_channels, filter_height, filter_width) (for the weights) and the one-
dimensional shape (output_channels) (for the biases).

BVLC CaffeNet

GoogleNet

convl (96, 3, 11, 11) (96)
conv2 (256, 48, 5, 5) (256)
conv3 (384, 256, 3, 3) (384)
convd (384, 192, 3, 3) (384)
convs (256, 192, 3, 3) (256)
fcé (4096, 9216) (4096)
fc7 (4096, 4096) (4096)
fc8 (1000, 4096) (1000)

convl/7x7_52 (64, 3, 7, 7) (64)
conv2/3x3_reduce (64, 64, 1, 1) (64)
conv2/3x3 (192, 64, 3, 3) (192)
inception_3a/1x1 (64, 192, 1, 1) (64)
inception_3a/3x3_reduce (96, 192, 1, 1) (96)
inception_3a/3x3 (128, 96, 3, 3) (128)
inception_3a/5x5 _reduce (16, 192, 1, 1) (16)
inception_3a/5x5 (32, 16, 5, 5) (32)
inception_3a/pool_proj (32, 192, 1, 1) (32)

inception_5b/5x5 reduce (48, 832, 1, 1) (48)
inception_5b/5x5 (128, 48, 5, 5) (128)
inception_5b/pool_proj (128, 832, 1, 1) (128)
loss3/classifier (1000, 1024) (1000)

SqueezeNet

CIFARI10

fire2/squeezelxl (16,

fire3d/squeezelxl (16,

fire4/squeezelxl (32,
fire4/expandlxl (128,
fire4/expand3x3 (128,
fireb5/squeezelxl (32,
fire5/expandixl (128,
fire5/expand3x3 (128,
fire6/squeezelxl (48,
fire6/expandix1l (192,
fire6/expand3x3 (192,
fire7/squeezelxl (48,
fire7/expand1ix1l (192,
fire7/expand3x3 (192,
fire8/squeezelxl (64,
fire8/expandlixl (256,
fire8/expand3x3 (256,
fire9/squeezelxl (64,
fire9/expandixl (256,
fire9/expand3x3 (256,
convl0 (1000, 512, 1,

convl (64, 3, 3, 3) (64)

64, 1, 1) (16)

fire2/expandixl (64, 16, 1, 1) (64)
fire2/expand3x3 (64, 16, 3, 3) (64)

128, 1, 1) (16)

fire3/expandixl (64, 16, 1, 1) (64)
fire3/expand3x3 (64, 16, 3, 3) (64)

128, 1, 1) (32)
32, 1, 1) (128)
32, 3, 3) (128)
256, 1, 1) (32)
32, 1, 1) (128)
32, 3, 3) (128)
256, 1, 1) (48)
48, 1, 1) (192)
48, 3, 3) (192)
384, 1, 1) (48)
48, 1, 1) (192)
48, 3, 3) (192)
384, 1, 1) (64)
64, 1, 1) (256)
64, 3, 3) (256)
512, 1, 1) (64)
64, 1, 1) (256)
64, 3, 3) (256)
1) (1000)

convl (32, 3, 5, 5) (32)
conv2 (32, 32, 5, 5) (32)
conv3d (64, 32, 5, 5) (64)
ipl (64, 1024) (64)

ip2 (10, 64) (10)

Useful information can be extracted from the
different model parameters. For example we
can see that in the first conv layer of each
network the output channels are the number
of model filters that are used for the first layer
(i.e. CaffeNet has 96). Also, the last layer
parameters that calculate the probability for
each label have 1000 output channels because
it is the number of ImageNet labels whereas on
the CIFAR10 dataset where we have 10 labels,
the channels are 10.

Figure 5.8: Comparison of weight and bias parameters in every layer between network models.
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Examining First Layer Filters

Caffe IPython Notebook example provides a method to

visualize the filters of a network layer in a grid of multiple small rectangular heatmaps that

contain each filter. In this task we visualized the learned filters on the first layer only and
compared them between different models. For example, it's worth mentioning that BVLC
CaffeNet initializes the filters in every layer with a Gaussian distribution. Also, the net

paramateres are exposed again as net.params in the code so we access the first convolution

layer with net.params["conv1®][0].data. These filters as seen below, express the low level

reasoning of the neural network as they try to find specific edges or textures in the image.
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Figure 5.9: Comparison of first layer filters between models.

CaffeNet (top-left), GoogleNet (top-right),
SqueezeNet (bottom-left), CIFAR10 (bottom-right)
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Examining Layer Outputs Now we analyze the output of the rectified responses of the filters
from the first convolution layer up to the fifth (showing only 36 in each layer). We used the
BVLC CaffeNet model with input the example image of a cat, as already shown previously.

lll@lll ENEENE

...-.u As seen at the output grids, in the
.-...- outputs of the filters of the first
convolution layer (I** grid), the model
...... responds to specific edges or textures
while at the very last convolution layer
-----. (5™ grid), the output of the filters
express the high reasoning of the model
.....- finding specific parts of the image (i.e.
...... ears or body of the cat, etc.).

Figure 5.10: Rectified Responses from the first to the fifth convolution layer on BVLC CaffeNet.
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5.2 Hardware Accelerator Performance

In this section we analyze the performance of our designed accelerator function GEMM and
the two hardware kernels (mmult_accel, madd_accel) on ZC702 FPGA. We start (section
5.2.1) with the kernel function analysis regarding latency, software tracing, data motion
analysis, resource utilization etc. Next (section 5.2.2), we give several metrics on the hardware
accelerator regarding speed-up from ARM and other architectures using a C++ test case
program as a test-bench to determine performance on different matrices.

5.2.1 Hardware Kernel Analysis

After selecting the two kernels mmult_accel and mmad_accel of our wrapper function GEMM
for hardware acceleration we ran the Estimate Performance from SDSoC Project Overview in
order to analyze the hardware functions. SDSoC Environment instead of synthesizing the
system to bitstream, it computes an estimate of the performance based on estimated latencies
for the hardware functions and data transfer time estimates for the callers of hardware
functions.

We generally tried to optimize the block sizes of the kernels to be multiples of the matrix
dimensions while being able to fit into the FPGA’s BRAMs. We found that 192 X 192 block
size is optimal in terms of resources and overall performance. Also, we implemented an 8-bit
fixed point implementation using ap_fixed datatype and achieved significant results in terms
of latency, acceleration and resource utilization. For the same block size, we could partition
the arrays much more due to fixed point numbers as the FPGA utilizes more efficiently the
resources with fixed point precision. Thus, we parallelized more the code and achieved
~6,5 X more GFLOPs on the kernels. Moreover, the latency was reduced to 15% and the
clock speed of the ZC702 FPGA was increased to the max frequency of 200MHz (instead of
100MHz in the float implementation). This is possible because the architecture fully
distributes the computation as well as all the required data onto the different computational
units. There are no dependencies between the individual computational units, even their
results are accumulated separately.

In this section we analyze in detail the hardware accelerator with float datatype that was used.

However, we also make a comparison in performance with the fixed point implementation in
many results of the analysis.
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Data Motion Analysis

Every transfer between the software program and our hardware

kernels requires a data mover, which consists of a hardware component that moves the data,

and an operating system-specific library function. The following tables list all the data movers

and various properties for each used in each kernel. As seen below, the declared size for the
float arrays is 192 X 192 x 4 = 36864 X 4, the system port used is the ACP and the DMA is the
AXI DMA_SIMPLE.

Table 5.1: Data Motion Network for hardware kernels (float datatype)

IP L Declared .
Accelerator | Argument Direction | _, Connection
Port Size(bytes)
madd_accel 1 | A A IN 36864*4 mmult_accel_1:C
B B IN 36864*4 ps7_S_AXI_ACP:AXIDMA_SIMPLE
C C OouT 368644 ps7_S_AXI_ACP:AXIDMA_SIMPLE
mmult_accel_1 | A A IN 36864%4 ps7_S_AXI_ACP:AXIDMA_SIMPLE
B B IN 368644 ps7_S_AXI_ACP:AXIDMA_SIMPLE
C C OouT 36864*4 madd_accel_1:A
alpha alpha | IN 4 ps7_M_AXI_GPO:AXILITE:0xC
Table 5.2: Accelerator Callsites (float datatype)
Datamover
IP Transfer Paged or Setup Transfer
Accelerator Callsite ) g' . Time(CPU
Port | Size(bytes) | Contiguous Time(CPU Jes)
cycles
cycles) 4
madd_accel 1 | my_gemm.cpp:97:5 | A 147456 contiguous
B 147456 contiguous 1123 246849
C 147456 contiguous 1123 246849
mmult_accel 1 | my_gemm.cpp:96:5 | A 147456 contiguous | 1123 246849
B 147456 contiguous 1123 246849
C 147456 contiguous
alpha | 4 paged 0 13
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Latency Analysis We will now analyze the latency in the mmult_accel kernel because it is

responsible for the most computations of the matrix multiplication and possesses the largest

portion of the execution time. The architecture that we implemented fully distributes the

computation as well as all the required data onto the different computational units without

having dependencies between the individual computational units. This resulted in low latency

on the inner loops of the kernel function while having low initiation interval on the pipelining.

The estimated clock speed (in ns) and the latency analysis are shown in the next figures

comparing the float and fixed point datatype implementation.

Table 5.3:

Summary of the clock timing (ns).
Floating Point (left), Fixed Point (right)

Clock | Target | Estimated | Uncertainty Clock | Target | Estimated | Uncertainty
ap_clk | 10.00 9.58 1.25 ap_clk | 5.00 5.09 0.63
Table 5.4: Summary of Latency (clock cycles).
Floating Point (left), Fixed Point (right)
Latency Interval Pipeline Latency Interval Pipeline
min max min max Type min max min max Type
259022 | 259022 | 259023 | 259023 none 74128 | 74128 | 74129 | 74129 none
Table 5.5: Summary of Loop Latency (clock cycles).
Floating Point (up), Fixed Point (down)
Latency Iteration Initiation Interval Trip Pipelined
Loop Name min max Latency achieved target Count
-Loopl 36875 36875 13 1 1 36864 yes
-Loop2 222143 222143 966 6 1 36864 yes
Latency Iteration Initiation Interval Trip Pipelined
Loop Name min max Latency achieved target Count
-Loopl 36870 36870 8 1 1 36864 yes
-Loop2 37254 | 37254 392 1 1 36864 yes
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Resource Utilization The performance estimation output shows a detailed resource
utilization on all the hardware functions used in the program. All the instances and modules
created as well as the memory banks, LUTs, etc. are clearly shown in the Utilization Estimate
report. Each expression (i.e. multiplication, addition, compare) in the report, shows the exact
resources needed to accomplish the operation. In the following table we summarize all the
resources of the FPGA fabric used for the hardware kernels comparing the float and fixed
point datatype implementation.

Table 5.6: Resource Utilization on ZC702 FPGA.
Floating Point (left), Fixed Point (right)

Resource | Used | Total | %Utilization Resource | Used | Total | %Utilization
DSP 164 220 75,55 DSP 193 220 87,73
BRAM 128 140 91,43 BRAM 96 140 68,57
LUT 45557 | 53200 85,63 LUT 36681 | 53200 68,95
FF 24445 | 106400 22,97 FF 26683 | 106400 25,08
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5.2.2 Hardware function Acceleration

In order to measure the acceleration of the GEMM function on ZC702 FPGA SoC we
constructed a C++ test bench that tests our custom function with multiple matrices with
different and irregular dimensions checking if the result is correct compared with the golden
version which is the plain simple GEMM function on CPU. Also, we wanted to compare our
function performance with the simple GEMM on ARM CPU and with BLAS GEMM which
is used in Caffe by default and is an optimized library for GEMM operations. The SDSoC
Environment provided a simple, source code annotation based time-stamping API
(sds_clock_counter()) that was used to measure application performance. With this API we
measured the exact time (in CPU cycles) that each function needed to operate by running the
application on target FPGA SoC and printing the actual run-time.

In this section we present the actual performance results when the application is running on
board comparing it with different implementations. Moreover, we provide a comparison of
the hardware accelerator performance with other architectures such as CPU or GPU.

Kernel Performance The most important part of the GEMM function is the two hardware
kernels (mmult_accel, madd_accel) that are responsible for the most computations (esp.
mmult_accel). So in the next figure we compare different kernel approaches (i.e. different
block sizes, different datatype etc.) and their performance (in GFLOPs). All the
implementations perform the maximum parallelization that is possible (as described in
Section 4.3) with the available resources. It’s worth mentioning that in the final approach of
the fixed point datatype we were able to push the clock to 200MHz without problems due to
the low latency of the fixed point implementation. Also, as seen in the figure, in this approach
we achieved almost half the maximum theoretical GFLOPs the ZC702 FPGA SoC can achieve.
This is because the board consists of 220 DSPs each capable of doing 2 MACCs per cycle so
on the maximum clock of 200MHz we have 220 -2 - 200 - 10° = 88 GFLOPs.

Throughput (GFLOPs)

32x32 float [
32x32 float (AdderTree) -
64x64 float [N
96x96 float |G
192x192 half [
1921192 fixed ooMr) |

0 5 10 15 20 25 30 35 40

Figure 5.11: Performance of hardware kernels on different approaches.
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Function Performance In order to have a general performance measurement of the function
GEMM, we used the C++ test-bench that we described previously. This is the top-level
function performance and it is crucial as it express the actual time our function produces the
output of the final matrix C of the GEMM operation. The first figure presents the acceleration
for different approaches on multiple matrix inputs while the second figure presents the
acceleration of GEMM on different architectures. All the speed-ups are calculated when
compared with the SW-only version of GEMM (naive) on ARM as a baseline.

Speed-up of GEMM vs ARM SW-only version
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®— 32x32 float —@— 64x64 float 96x96 float 192x192 half —e—192x192 fixed

Figure 5.12: Comparison of GEMM acceleration for different approaches on multiple matrix inputs.

Speed-up of GEMM vs ARM SW-only version
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—o— FPGA (fixed) —e—i3 3250 (SW) GeForce GTX 750 (BLAS)
—e— ARM (BLAS) i3 3250 (BLAS)

Figure 5.13: Comparison of GEMM acceleration for different architectures on multiple matrix inputs.
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5.3 Caffe in CPU-FPGA performance

After integrating the hardware accelerator that we designed with the Caffe framework, we
wanted to measure the overall performance of Caffe on the heterogeneous CPU-FPGA SoC
(ZC702 board) and compare it with the float and fixed point implementation of the hardware
accelerator (fixed point Caffe performance is an estimate based on kernel performance). So,
in this section we measure the classification performance and accuracy on the new modified
Caffe framework on the FPGA that utilizes our custom GEMM accelerator and we evaluate

the power and energy consumption of our system as well.

Inference-Learning Performance In order to have a performance measurement of the image
inference/learning, that is the time it takes for the model to perform a full forward/backward
pass, we used Caffe’s time tool. In the following figure, we present the network propagation
times for different implementations and models (the fixed approach is simulated).

Caffe performance with FPGA

4
@
T
g 2
) | e e ., A . . .y __J
float fixed float | fixed float | fixed float | fixed
CIFARI0 CaffeNet GoogleNet SqueezeNet

m Forward Pass W Backward pass

Figure 5.14: Comparison of execution time (s) in Forward/Backward Pass (Inference/Learning)
between different GEMM implementation on different models.

Accuracy Using Caffe’s test tool we were able to measure the accuracy on the FPGA-based
Caffe. In the following figure we present the accuracy using the small CIFAR10 validation set
between different implementations (we ran the whole data with 1000 iterations and batch 10).

CIFAR10

accuracy |

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Caffe (FPGA) m Caffe (Intel i3) M Caffe (baseline)

Figure 5.15: Prediction accuracy on CIFAR10 dataset between different implementations.
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Power consumption The energy consumption of the complete CPU-FPGA system running
Caffe has been evaluated using the Xilinx Power Estimator (XPE) for the ZC702 board. The
power measurements include all conversion losses, peripheral devices, as well as the system
fan. The system has not been optimized for low-power operation due to the advanced project
time, and a significant amount of energy is already consumed in the idle state.

All measurements regarding the ZC702 board’s power dissipation were considered with
caution. With all known improvements (better memory communication, fixed-point
arithmetic, ideal GEMM dimensions etc.) applied, the power efficiency could possibly be
boosted to a respectable improved point.

The average power consumption of the FPGA SoC (both the AP SoC and the DRAM) during
the Caffe forward passes (inference) is about 3.9 Watt. In this case, we can achieve up to 7x
better energy efficiency compared with an Intel i3 running at 3,5GHz due to the lower power
consumption.

Table 5.7: Power consumption on ZC702 @ 12V.

Devices Power dissipation (Watt)
Transceiver 0,0 W

170 0,674 W
PS+FPGA 3,020 W

Device Static 0,211 W
Oft-chip devices 0,0 W

Total 3,905 W

Images

The next figure presents the performance per Watt usage ( . /W) for 3 different

architectures and compares the energy efficiency between these approaches. The FPGA
implementation achieves 7x energy efficiency compared with the Intel i3 CPU (simulated
with fixed point arithmetic implementation).

0

Images/Watt

B ARM+FPGA m ARM Intel i3

Figure 5.16: Energy efficiency of the final system for different architectures (SqueezeNet model used).
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5.4 Caffe in AWS cloud performance

The Amazon Elastic Compute Cloud (Amazon EC2) provides machine learning practitioners
and researchers with the infrastructure and tools to accelerate deep learning in the cloud, at
any scale. With this service we were able to quickly launch Amazon EC2 instances, specifically
the FPGA instance (f1.2xlarge), and experiment with the pre-installed Caffe on the cloud
using the Machine Learning Development Stack from Xilinx. After creating the virtual server
and selecting the Amazon Machine Image (AMI), we specified the instance settings and
successfully launched and evaluated the FPGA-accelerated inference using the ready-to-run
included network models for Caffe. In this paragraph, we analyze the steps to configure and
launch these instances and finally evaluate the performance of Caffe on the cloud using this
Development Stack.

Instance settings In the following tables we present the most important instance settings in
order to successfully launch the Machine Learning Development Stack from Xilinx using the
f1.2xlarge FPGA instance. The basic services required for this Stack are the EBS volumes
and of course the EC2 instances.’

Table 5.7: Storage settings.

Volume Type Device Size (GB) Volume Type
Root /dev/sdal 70 gp2
ebs /dev/sdb 8 gp2

Table 5.8: Security Groups settings

Type Protocol Port Range Source

SSH TCP 22 0.0.0.0/0
HTTP TCP 88 0.0.0.0/0
Custom TCP rule TCP 8080 0.0.0.0/0
Custom TCP rule TCP 8888-8900 0.0.0.0/0
Custom TCP rule TCP 8998-8999 0.0.0.0/0

? Note the security groups have port 22 for SSH and if desired, open ports 8080, 8888-8900, and 8998-8999 for
web based demos through the Caffe web APIL.
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Connecting to the instance For connecting via ‘ssh’ we utilized for encryption an ‘ssh’
private key and made connection using the Public DNS in the EC2 dashboard.

jima @ /Do 5 "jimd6776 . pe
The authent /O . E® (18.233.
9I7FteBAbLFVVOTI

list of known hosts.

|17

1A
AMI Version: 18.83.19
Supported Frameworks: Caffe, MxNet, Tensorflow (beta)
Example Models:
Flow 2

Places36s

Caffe Perpetual Web Spimner
Deephetect R lebCam and URL Classifier
Pythen Batch
Python Mulitple Net Single FPGA
User Tutorials/Readme: http: i ¥e /Xilinx/ML-Development-Stack-From-Xilinx

Bazed on AWS FPGA Developer AMI: 1.3.3

[centos@ip-172-31-98-253 ~1% [

Figure 5.17: Successfully established connection on the AWS instance.

Caffe simulation First, we executed the 8/16 bit networks through Caffe with the included
GoogLeNet-vl, ResNet-50, Flowers-102 and Places-365 models. We navigated to
/home/centos/xfdnn_18_03_19/caffe/ and started the docker. The results of running the
network models on the FPGA are presented in the following figure. This is not the peak FPGA
performance because this includes loading the weights and instructions on the FPGA and this
version of Caffe does not have a multi-process pipeline to fully utilize the FPGA. *

Testing inference time per model (ms)

60
50
40
30
20

10

googlenet resnet flowers places

16b arithmetic 8b arithmetic

Figure 5.18: Inference time on different models using 8/16 bit precision using the AWS FPGA instance.

4 Note that the 8b support for flowers and places model was not supported in order to test it.
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Caffe web demo This demo on the GoogLeNet v1 8-bit network is meant to use ImageNet
ILSVRC2012 validation files in order to test the full performance of the framework. We
monitored the image classifications from our internet web based browser using the address
provided by the tutorial and the results are presented below. The maximum int8 images/s that
we achieved reached 160. For the input validation images we selected only a few instead of
inserting the whole ImageNet dataset which is very large and that’s why the accuracy measure
is not showing correctly.

XILINX  Machine Learning Application: Image Classification

soup bowl Shetland sheepdog

95% tiger cat 61% barrow 43% Persian cat

2% Egyptian cat 33% tricycle 16% lynx
0% tabby 1% moped 15% Arctic fox
0% kit fox 0% crash helmet 9% tiger cat

8% hare

0% shopping cart 8% hare

Realtime metrics
1 6 O Cora_3 - Road

C o/ Come_3 - Exec
/0

Core_3 - Write

Core_2 - Read

Net

Cone_2 - Exec

Care_2 - Write

Core_1 - Read

Cora_1 - Exec

Figure 5.19: Image classification performance on the web based Caffe demo using the AWS FPGA instance.
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Conclusion

Deep Neural Networks represent a universal model, which can empower specific applications
to solve a great variety of tasks. In this field, FPGAs can improve significantly the performance
and the energy of these applications by using hardware accelerators. However, DNN
frameworks such as Caffe do not officially support the transparent utilization of such
acceleration modules.

This work clearly presents an end-to-end DNN deployment on Xilinx FPGA SoC using Caffe
framework that utilizes hardware accelerators in order to achieve better performance and
efficiency. We first ported the whole Caffe framework and all its library dependencies to work
and run on the embedded ARM CPU with the cross-compilation method. Then, through full
profiling on the framework, we determined the computational bottlenecks in order to specify
the right function for hardware acceleration which was the GEMM function (General Matrix
Multiplication). Next we described the implementation and optimization strategies on
software and hardware of the accelerator so as to utilize the massive parallelism and high
bandwidth memory access patterns of the FPGA design. The FPGA accelerator has been
synthesized with High-Level Synthesis using Xilinx SDSoC Development Environment on the
Xilinx Zynq ZC702 SoC and reaches a 380x speed-up with the maximum clock frequency of
200MHz and device utilization of ~80%. The evaluation and validation of the hardware
function was successful producing correct results for different matrix sizes and dimensions.
Finally, we integrated the hardware accelerator with Caffe framework and ran it successfully
on the heterogeneous CPU-FPGA system which leverages the FPGA architecture with the
hardware accelerator that we designed. For the final system evaluation we measured the
performance of image classification and the results showed that the proposed system can
reduce inference time up to ~10% compared with the ARM CPU and also reduce the energy
consumption having less than 0.4% accuracy drop.

The CPU-FPGA based system with support of Caffe framework has been assembled into a
tully working proof-of-concept system on the Xilinx Zynq-7000 All Programmable platform.
This project clearly demonstrates the feasibility of FPGA-based embedded DNN
implementations. The current solution already exhibits a reasonable performance with a
number of techniques for substantial gains in throughput and power efficiency which have
been pointed out.
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XPE Quick Estimate - XC7Z020CLG400-11 X
XC77020CLG400-11 — Design Activity
Conditions I Typical, Ambient=25C j Clock Toggle Enable
Logic 100  MHz 125 % I 50 %
Environment I 250 LFM j
BRAM I 100] MHz 50 % I 25 %
WEiEge @ Nominal " Maximum
— Design Utiization —————————————————————— — Physical Interfaces

Numbe  Width Rate

o [ A | e[ [ 5 [
= [ AEE | | [ Al [ [«
o ] N R w—
DSP lm— ::I - wps In [ g out lg_ l_ Mb/s
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FPGA accelerator
Library

Listing 1. main_test.cpp

VCoONOOTUVTAWNER

41.

42.
43.
44,
45.

#include
#include
#include
#include
#include
#include
#include
#include

. //custom
. #include
. #include
. #include

<
<
<
<
<
<
<

iostream >
stdlib.h >
stdint.h >
math.h >

stdio.h >
getopt.h >
time.h >

"sds_lib.h"

and blas libraries header files
"gemm_accel.h"
"gemm_golden.h"
"/home/jimakos/Desktop/caffe_libs_hardf/openblas_libs/include/cblas.h"

. int NUM_TESTS = 1;

. #define PIPELINED 1
. #define USE_FIXED ©
. #define USE_BRAMS 1

. static int Mi, Ni, Ki;

. class perf_counter {

public: uint64_t tot, cnt, calls;
perf_counter(): tot(@), cnt(@), calls(e) {};
inline void reset() {
tot = cnt = calls = 0;

}

inline void start() {
cnt = sds_clock_counter();
calls++;

1

inline void stop() {
tot += (sds_clock_counter() - cnt);

118

inline uint64_t avg cpu_cycles() {
return (tot / calls);

<}

static void init_arrays(float * A, float * B, float * C_sw, float * C, float * C_blas)

¥
{
int temp;
for (int i 0; i < Mi;

for (int j = 0; j

A[i * Ki + 5]

<

i++) {
Ki; j++) {

rand() % 5;
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46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
lo1l.
102.
103.
104.
105.
106.
107.
108.
109.
1le.

84

if (A[1 * Ki + j] > 2) A[1i * Ki + j] = 0.01; //weights simulation
}
}
for (int i = 0; i < Ki; i++) {
for (int j = @; j < Ni; j++) {
B[i * Ni + j] = rand() % 2;
}
}

for (int 1 = 9; i < Mi; i++) {
for (int j = 0; j < Ni; j++) {
temp = rand() % 2;
C_sw[i * Ni + j] = temp;
C[i * Ni + j] = temp;
C_blas[i * Ni + j] = temp;

}
}
}
static int result_check(float * C, float * C_sw) {
int flag = 0;
for (int 1 = 0; 1 < M1 * Ni; i++) {
if (fabs(C_sw[i] - C[i]) » 1) { //good overall error for accuracy
printf("%f <> %f\n", (float) C_sw[i], (float) C[i]);
flag = 1;
}
}
return flag;
}

int mmult_test(float * A, float * B, float * C_sw, float * C, float * C_blas) {

std::cout << "Testing " << NUM_TESTS << " iterations of SGEMM..." << std::endl;

perf_counter hw_ctr, sw_ctr, sw_blas_ctr;

for (int i = ©; 1 < NUM_TESTS; i++) {
init_arrays(A, B, C_sw, C, C_blas);
sw_ctr.start();
gemm_golden(@, ©, Mi, Ni, Ki, 1.0, 0, A, B, C_sw);
sw_ctr.stop();
sw_blas_ctr.start();
cblas_sgemm (CblasRowMajor,CblasNoTrans, CblasNoTrans, Mi, Ni, Ki, 1.0, A,
B, Ni, @, C_blas, Ni);
sw_blas_ctr.stop();
hw_ctr.start();
my_gemm(@, ©, Mi, Ni, Ki, 1.0, A, Ki, B, Ni, @, C, Ni);
hw_ctr.stop();

if (result_check(C, C_sw)) return 1;
}

double flop = ((double) Mi) * Ni * Ki * NUM_TESTS;
double gflop = flop * 1le-9;

uint64_t sw_cycles = sw_ctr.avg_cpu_cycles();

uint64_t hw_cycles = hw_ctr.avg_cpu_cycles();

uint64_t sw_blas_cycles = sw_blas_ctr.avg_cpu_cycles();
double speedupl = (double) sw_cycles / (double) hw_cycles;
double speedup2 = (double) sw_blas_cycles / (double) hw_cycles;
double sw_sec = (double)((double) sw_cycles) / 667000000;
double hw_sec = (double)((double) hw_cycles) / 667000000;
double sw_blas_sec = (double)((double) sw_blas_cycles) / 667000000;
printf("SW %1f s, %1f GFlops\n", sw_sec, gflop / sw_sec);
printf("HW %1f s, %1f GFlops\n", hw_sec, gflop / hw_sec);
printf("Increase = %1f\n", (sw_sec - hw_sec) / sw_sec);
printf("RESULTS FOR INPUT: M=%d K=%d N=%d\n", Mi, Ki, Ni);
printf("BLOCK_MATRIX: M=%d K=%d N=%d\n", MB, KB, NB);
if (USE_FIXED) printf("USE_FIXED = 1\n");

<= Appendix B. FPGA accelerator Library

Ki,



111.
112.
113.
114.
115.
116.
117.
118.

119.

120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

int

else printf("USE_FIXED = @\n");
if (USE_BRAMS) printf("USE_BRAMS = 1\n");
else printf("USE_BRAMS = ©\n");
printf("

printf("SW seconds:
printf("HW seconds:

\n");
= %1f\n", sw_sec);
= %1f\n", sw_blas_sec);
printf("HW seconds: = %1f\n", hw_sec);
std::cout << "Average number of CPU cycles running GEMM in SW: " <<

sw_cycles << std::endl;

std::cout << "Average number of CPU cycles running GEMM in BLAS: " <<

sw_blas cycles << std::endl;

std::cout << "Average number of CPU cycles running GEMM in HW: " <<
hw_cycles << std::endl;
printf(" \n");
std::cout << "Speed up from SW: " << speedupl << std::endl;
std::cout << "Speed up from BLAS: " << speedup2 << std::endl;
return 0;
main(int argc, char * argv[]) {
int test_passed = 0;
float * A, * B, * C_sw, * C, * C_blas;
Mi = 2048;
Ki = 2048;
Ni = 2048;
A = (float * ) malloc(Mi * Ki * sizeof(float));
B = (float * ) malloc(Ki * Ni * sizeof(float));
C = (float * ) malloc(Mi * Ni * sizeof(float));
C_sw = (float * ) malloc(Mi * Ni * sizeof(float));
C_blas = (float * ) malloc(Mi * Ni * sizeof(float));
if ('A || !B || 'c || !'C_sw) {
if (A) free(A);
if (B) free(B);
if (C) free(C);
if (C_sw) free(C_sw);
if (C_blas) free(C_blas);
return 2;
}
test_passed = mmult_test(A, B, C_sw, C, C_blas);
std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
NUM_TESTS = 2;
Mi = 1024;
Ki = 1024;
Ni = 1024;
test_passed = mmult_test(A, B, C_sw, C, C_blas);
std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
Mi = 192; //
Ki = 1152; // sample googlenet calculation
Ni = 784; //
test_passed = mmult_test(A, B, C_sw, C, C_blas);
std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
free(A);
free(B);
free(C);

free(C_sw);
free(C_blas);
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175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
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Mi =64; //
Ki 147; // sample googlenet calculation
Ni = 12544; //

A = (float * ) malloc(Mi * Ki * sizeof(float));
B = (float * ) malloc(Ki * Ni * sizeof(float)); //re-malloc in order to
C = (float * ) malloc(Mi * Ni * sizeof(float)); // use bigger arrays

C_sw = (float * ) malloc(Mi * Ni * sizeof(float));
C_blas = (float * ) malloc(Mi * Ni * sizeof(float));
test_passed = mmult_test(A, B, C_sw, C, C_blas);

std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
free(A);

free(B);

free(C);

free(C_sw);

free(C_blas);

Mi = 192; //

Ki = 576; //sample googlenet calculation

Ni = 3136; //

A = (float * ) malloc(Mi * Ki * sizeof(float));

B = (float * ) malloc(Ki * Ni * sizeof(float));

C = (float * ) malloc(Mi * Ni * sizeof(float));

C_sw = (float * ) malloc(Mi * Ni * sizeof(float));

C_blas = (float * ) malloc(Mi * Ni * sizeof(float));

test_passed = mmult_test(A, B, C_sw, C, C_blas);

std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
free(A);

free(B);

free(C);

free(C_sw);

free(C_blas);

Mi = 64; //

Ki = 27; //sample squeezenet calculation

Ni = 12769; //

A = (float * ) malloc(Mi * Ki * sizeof(float));

B = (float * ) malloc(Ki * Ni * sizeof(float));

C = (float * ) malloc(Mi * Ni * sizeof(float));

C_sw = (float * ) malloc(Mi * Ni * sizeof(float));

C_blas = (float * ) malloc(Mi * Ni * sizeof(float));

test_passed = mmult_test(A, B, C_sw, C, C_blas);

std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
free(A);

free(B);

free(C);

free(C_sw);

free(C_blas);

Mi = 64; //

Ki = 144; // sample squeezenet calculation

Ni = 3136; //

A = (float * ) malloc(Mi * Ki * sizeof(float));

B = (float * ) malloc(Ki * Ni * sizeof(float));

C = (float * ) malloc(Mi * Ni * sizeof(float));

C_sw = (float * ) malloc(Mi * Ni * sizeof(float));

C_blas = (float * ) malloc(Mi * Ni * sizeof(float));

test_passed = mmult_test(A, B, C_sw, C, C_blas);

std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
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241.

242.
243.
244
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.

free(A);
free(B);
free(C);
free(C_sw);
free(C_blas);

Mi = 128; //

Ki = 288; // sample squeezenet calculation

Ni = 784; //

A = (float * ) malloc(Mi * Ki * sizeof(float));
B = (float * ) malloc(Ki * Ni * sizeof(float));
C = (float * ) malloc(Mi * Ni * sizeof(float));

C_sw = (float * ) malloc(Mi * Ni * sizeof(float));
C_blas = (float * ) malloc(Mi * Ni * sizeof(float));
test_passed = mmult_test(A, B, C_sw, C, C_blas);

259.

260.
261.
262.
263.
264.
265.
266.

std::cout << "TEST " << (test_passed ? "FAILED" : "PASSED") << std::endl;
printf(" \n");
printf(" \n");
free(A);

free(B);

free(C);

free(C_sw);
free(C_blas);
return (test_passed ? -1 : 9);

Listing 2. gemm_golden.cpp

uih wnNn R

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

#include "gemm_golden.h"

// Normal A(M,K) X Normal B(K,N)
void mmult_nn(int M, int N, int K, float alpha, float
R float * C, int 1ldc) {
int i, j, k;
float count;
for (i =0; i < M; ++1) {
for (3 =05 J < N; j++) {
count = 9;
for (k = 0; k < K; k++) {
count += alpha * A[i * 1lda + k] *
}

C[i * 1dc + j] += count;

}

// Normal A(M,K) X Transport B(N,K)
void mmult_nt(int M, int N, int K, float alpha, float
5 float * C, int 1dc) {
int i, j, k;
float count;
for (1 =0; i< M; ++1) {
for (j = @5 j < N; j++) {
count = 0;
for (k = @0; k < K; k++) {
count += alpha * A[i * 1da + k] *
}

C[i * 1ldc + j] += count;

* A, int 1lda, float * B, int 1db

B[k * 1db + j];

* A, int lda, float * B, int 1ldb

B[ * 1db + k];
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33.
34. // Transport A(K,M) X Normal B(K,N)
35. void mmult_tn(int M, int N, int K, float alpha, float * A, int 1lda, float * B, int 1ldb

, float * C, int 1ldc) {
36. int i, j, k;
37. float count;
38. for (1 =0; i< M; ++i) {
39. for (j = 0; j < N; j++) {
40. count = 0;
41. for (k = 0; k < K; k++) {
42. count += alpha * A[k * 1da + i] * B[k * 1ldb + j];
43, }
44. C[i * 1ldc + j] += count;
45, }
46. }
47. }

48.
49. // Transport A(K,M) X Transport B(N,K)
50. void mmult_tt(int M, int N, int K, float alpha, float * A, int 1lda, float * B, int 1ldb

, float * C, int 1ldc) {
51. int i, j, k;
52. float count;
53. for (1 =0; i < M; ++i) {
54. for (j = 0; j < N; j++) {
55. count = 0;
56. for (k = 0; k < K; k++) {
57. count += alpha * A[k * 1lda + i] * B[j * 1db + k];
58. }
59. C[i * 1dc + j] += count;
60. }
61. }
62. }

63.
64. void gemm_golden(int TA, int TB, int M, int N, int K, float alpha, float beta,
float * A, float * B, float * C) {

65. int 1da = (!TA) ? K : M;

66. int 1db = (!TB) ? N : K;

67. int 1dc = N;

68. int i, j;

69. for (1 =0; 1 < M; i++) {

70. for (j = 0; j < N; j++) {

71. C[i * 1dc + j] *= beta;

72.

73. } // choose transport flag

74. if (!TA && !TB) mmult_nn(M, N, K, alpha, A, 1lda, B, 1ldb, C, 1ldc);

75. else if (TA && !TB) mmult_tn(M, N, K, alpha, A, lda, B, 1ldb, C, 1ldc);
76. else if (!TA && TB) mmult_nt(M, N, K, alpha, A, 1lda, B, 1db, C, 1ldc);
77. else mmult_tt(M, N, K, alpha, A, 1lda, B, 1ldb, C, 1dc);

78. }

Listing 3. gemm_golden.h

1

2. #ifndef SRC_GEMM_GOLDEN H_
3. #define SRC_GEMM_GOLDEN H_
4.
5

void gemm_golden(int TA, int TB, int M, int N, int K, float alpha, float beta,
float * A, float * B, float * C);

N o

#endif /* SRC_GEMM_GOLDEN_H_ */
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Listing 4. my_gemm.cpp

VoONOOTUVTAWNEPR

41.
42.
43.
44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

#include < stdio.h >
#include < string.h >
#include < stdlib.h >
#include < iostream >
#include < stdint.h >

#include "sds_lib.h"
#include "gemm_accel.h"

. static data_t1 * A_tile, * B_tile, * C_tile, * R, * T;

. void copy_tile_A(int TA, int M, int K, int i, int k, int 1lda,

const float * A, data_t1 alpha) {
int i_temp, j_temp, x, y;
if (TA == 0) {
for (i_temp = 0; i_temp < MB && i + i_temp < M; ++i_temp) {
for (j_temp = 0; j_temp < KB & k + j_temp < K; ++j_temp) {
X =1 + i_temp;
y = k + j_temp;
A_tile[i_temp * KB + j_temp] = A[x * 1lda + y];
}
}

} //TODO TA == 1

-}

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

void copy_tile B(int TB, int K, int N, int k, int j, int 1db,
const float * B) {
int i_temp, j_temp, x, y;
if (TB == 0) {
for (i_temp = @; i_temp < KB & k + i_temp < K; ++i_temp) {
for (j_temp = ©; j_temp < NB & j + j_temp < N; ++j_temp) {
x = k + i_temp;
y = J + j_temp;
B_tile[i_temp * NB + j_temp] = B[x * 1ldb + y];
}
}
} //TODO TB ==
}

void my_gemm(int TA, int TB, int M, int N, int K, float alpha,
const float * A, int lda,
const float * B, int 1ldb, float beta,
float * C, int 1ldc) {

int i, j, k, x, y, i_temp, j_temp;

A_tile = (data_tl1l * ) sds_alloc(MB * KB * sizeof(data_t1));
B_tile = (data_tl1l * ) sds_alloc(KB * NB * sizeof(data_t1));
C_tile = (data_t1 * ) sds_alloc(MB * NB * sizeof(data_t1));
R = (data_t1 * ) sds_alloc(MB * NB * sizeof(data_t1));

T = (data_t1 * ) sds_alloc(MB * NB * sizeof(data_t1));
data_t1 a = alpha;

if (1A _tile || !B_tile || !C_tile || !T |] IR) {
fprintf(stderr, "Error buffer allocation\n");
exit(1);

}

memset(A_tile, @, sizeof(data_t1) * MB * KB);

memset(B_tile, @, sizeof(data_t1) * KB * NB);

memset(C_tile, @, sizeof(data_t1) * MB * NB);

memset (T, @, sizeof(data_tl1l) * MB * NB);
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62. for (1 =0; i < M; i += MB) {

63. for (j =0; j < N; j +=NB) { //set C_tile
64. memset(C_tile, @, sizeof(data_t1l) * MB * NB); //is beta not needed
65. /*for(x = ©; x < MB; x++) { //if beta needed
66. for(y = @; y < NB; y++) {

67. i temp = i+x;

68. j_temp = j+y;

69. if(i_temp < M && j_temp < N)

70. C_tile[x*NB+y] = beta*C[i_temp*ldc+j_temp];

71. else

72. C_tile[x*NB+y] = 0;

73. }

74. H*/

75. for (k = @; k < K; k += KB) { //compute C tile from A and B tiles
76. copy_tile B(TB, K, N, k, j, ldb, B);

77. copy_tile A(TA, M, K, i, k, 1lda, A, a);

78. mmult_accel(A_tile, B_tile, T, a);

79. madd_accel(T, C_tile, R);

80. memset(A_tile, @, sizeof(data_t1l) * MB * KB);

81. memset(B_tile, @, sizeof(data_tl) * KB * NB);

82. memcpy(C_tile, R, sizeof(data_tl) * MB * NB);

83. }

84. for (x = 9; x < MB; x++) { //copy C_tile back to main output of array C
85. for (y = 0; y < NB; y++) {

86. i temp = i + x;

87. j temp = j +vy;

88. if (i_temp < M && j_temp < N)

89. C[i_temp * 1dc + j_temp] = C_tile[x * NB + y];

90.

91. }

92. }

93. }

94. }

95. sds_free(A_tile);

96. sds_free(B_tile);

97. sds_free(C_tile);

98. sds_free(R);

99. sds_free(T);

100. return;

101. }

Listing 5. gemm_accel.h

#define MB 192

#define KB 192

#define NB 192

//#include <ap_fixed.h> //uncomment for fixed support

//#include <hls_half.h> //uncomment for half float support

typedef float data_t;

typedef float data_t1;

//typedef ap_fixed<16,15,AP_TRN,AP_SAT_SYM> data_t1; //uncomment for fixed support

P OUoONOOTUVTHA WNER

0. void my_gemm(int TA, int TB, int M, int N, int K, float alpha,
const float * A, int lda,
const float * B, int 1ldb, float beta,
float * C, int 1ldc);
11.
12. #pragma SDS data access_pattern(A: SEQUENTIAL, B: SEQUENTIAL, C: SEQUENTIAL)
13. void mmult_accel(data_t1 A[MB * KB], data_tl1l B[KB * NB], data_t1 C[MB * NB],
data_t1 alpha);
14.
15. #pragma SDS data access_pattern(A: SEQUENTIAL, B: SEQUENTIAL, C: SEQUENTIAL)
16. void madd_accel(data_t1l A[MB * NB], data_tl B[MB * NB], data_tl1 C[MB * NB]);
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Listing 6. mmult_accel.cpp

1. #include "gemm_accel.h"

2. void mmult_accel(data_t1 A[MB * KB], data_tl1l B[KB * NB], data_t1 C[MB * NB],
data_t1 alpha) {

3.

4, data_t1 tA[MB][KB], tB[KB][NB];

5.

6. #pragma HLS array_partition variable = tA block factor = 16 dim = 2

7. #pragma HLS array_partition variable = tB block factor = 16 dim = 1

8. #pragma HLS RESOURCE variable = tA core = RAM_2P_BRAM

9. #pragma HLS RESOURCE variable = tB core = RAM_2P_BRAM

10.

11. for (int 1 = @; i < MB; i++) {

12. for (int j = ©; j < KB; j++) {#

13. #pragma HLS PIPELINE

14. tA[i][j] = alpha * A[i * KB + j];

15. tB[i][j] = B[i * NB + j];

16.

17. }

18.

19. for (int 1 = @; i < MB; i++) {

20. for (int j = ©; j < NB; j++) {

21. #pragma HLS PIPELINE

22. data_t1 result = 0;

23. for (int k = 0; k < KB; k++) {

24, data_t1 term = tA[i][k] * tB[k][]];

25. #pragma HLS RESOURCE variable=term core=FMul_fulldsp

26. //#pragma HLS RESOURCE variable=term core=HMul_fulldsp
27. result += term;

28.

29. }
30. C[i * NB + j] =
31. }

32. }

33. }

result;

//half float DSP support

#pragma HLS RESOURCE variable=result core=FAddSub_fulldsp

Listing 7. madd_accel.cpp

#include < stdlib.h >
#include "gemm_accel.h"

int i, j;
for (1 =0; i < MB; i++) {
for (j = ©; j < NB; j++) {

1
2
3.
4. void madd_accel(data_t1 A[MB * NB], data_tl1l B[MB * NB], data_tl C[MB * NB]) {
5
6
7
8

. #pragma HLS PIPELINE
9. C[i * NB + j] = A[1 * NB + j] + B[1 * NB + j];
10. }
11. }

Listing 8. my_gemm.h

1.
2. typedef float data_t;
BE
4
const data_t * A, int 1da,

const data_t * B, int 1db, data_t beta,
data_t * C, int 1ldc);

Appendix B. FPGA accelerator Library =

void my_gemm(int TA, int TB, int M, int N, int K, data_t alpha,
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Listing 8. GEMM replacement in Caffe source code

17. void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,

18. const int M, const int N, const int K,

19. const float alpha, const float * A,

20. const float * B, const float beta, float * C) {

21.

22. int 1lda = (TransA == CblasNoTrans) ? K : M;

23. int 1db = (TransB == CblasNoTrans) ? N : K;

24, int TA = (TransA == CblasNoTrans) ? @ : 1;

25. int TB = (TransB == CblasNoTrans) ? @ : 1;

26.

27. if (M >= 32 & N >= 32 & K >= 32 && TA == 0 && TB == 0)

28. my_gemm(TA, TB, M, N, K, alpha, A, lda, B, ldb, beta, C, N); //accelerated
29. else

30. cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, //default
31. A, lda, B, 1ldb, beta, C, N);

32. }
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