
NATIONAL TECHNICAL UNIVERSITY OF
ATHENS

SCHOOL OF MECHANICAL ENGINEERS

MASTER OF SCIENCE
"AUTOMATION SYSTEMS"

Distributed Robust Synchronization

for Nonlinear Multi-agent Systems

with Prescribed Transient and

Steady State Performance Under

Switching Topologies

Giamarelos Nikolaos

Three-member Examination Committee

K.Kyriakopoulos (Supervisor) E. Papadopoulos G. Papalambrou

September 30, 2018

Abstract

In this thesis, we consider the synchronization control problem for uncertain

high-order nonlinear multi-agent systems in a leader-follower scheme, under di-

rected switching communication topology. A robust decentralized control proto-

col of minimal complexity is used that achieves prescribed, arbitrarily fast and

accurate synchronization of the following agents and the leader. The control

protocol is distributed in the sense that the control signal of each agent is calcu-

lated based solely on local relative state information from its neighborhood set.

Additionally, no information regarding the agents’ dynamic model is employed

in the design procedure. Moreover, provided that the switching communication

graphs are always connected and contrary to the relative works on multi-agent

systems under switching topology, the controller-imposed transient and steady

state performance bounds are fully decoupled from: i) the underlying switching

communication topology, ii) the control gains selection and iii) the agents’ model

uncertainties, and are solely prescribed by certain designer-specified performance

functions. Finally, simulation examples are included to illustrate and verify the

approach.

Index terms— Multi-agent systems, decentralized control, prescribed perfor-

mance, directed graph, switching topology, leader-follower

1

Περίληψη

Στην παρούσα διπλωµατική εργασία, εξετάζουµε το πρόβληµα ελέγχου συγχρονι-

σµού για αβέβαια µη γραµµικά συστήµατα πολαπλών πρακτόρων υψηλής τάξης

σε σχηµατισµό αρχηγού-ακόλουθου υπό κατευθυνόµενες εναλλασσόµενες τοπολο-

γίες επικοινωνίας. ΄Ενα εύρωστο αποκεντρωµένο πρωτόκολλο ελέγχου ελάχιστης

πολυπλοκότητας χρησιµοποιείται, το οποίο επιτυγχάνει προκαθορισµένο, αυθαίρε-

τα γρήγορο και ακριβή συγχρονισµό µεταξύ των ακόλουθων πρακτόρων και του

αρχηγού. Το πρωτόκολλο ελέγχου είναι διανεµηµένο υπό την έννοια ότι το σήµα ε-

λέγχου του κάθε πράκτορα υπολογίζεται αποκλειστικά και µόνο µε ϐάση την τοπική

πληροφορία σχετικής κατάστασης από το γειτονικό του σύνολο. Επιπλέον, καµία

πληροφορία σχετικά µε το δυναµικό µοντέλο των πρακτόρων δεν χρησιµοποιείται

κατά τη διαδικασία σχεδιασµού. Επιπλέον, δεδοµένου ότι οι εναλλασσόµενοι γράφοι

επικοινωνίας είναι πάντα συνεδεµένοι και σε αντίθεση µε σχετικές εργασίες σε συ-

στήµατα πολαπλών πρακτόρων υπό εναλλασσόµενη τοπολογία, τα επιβαλλόµενα από

τον ελεγκτή όρια απόδοσης µεταβατικής και σταθερής κατάστασης είναι πλήρως απο-

συζευγµένα από: i) την υποκείµενη εναλλασσόµενη τοπολογία επικοινωνίας, ii) την

επιλογή των κερδών ελέγχου και iii) τις αβεβαιότητες του µοντέλου των πρακτόρων,

και προκαθορίζονται µόνο από συγκεκριµένες συναρτήσεις απόδοσης που ορίζονται

από το σχεδιαστή. Τέλος, περιλαµβάνονται παραδείγµατα προσοµοίωσης που απει-

κονίζουν και επαληθεύουν την προσέγγιση.

Λέξεις Κλειδιά— Συστήµατα πολαπλών πρακτόρων, αποκεντρωµένος έλεγχος, προ-

καθορισµένη απόδοση, κατευθυνόµενος γράφος, εναλασσόµενη τοπολογία, αρχηγός-

ακόλουθος

2

Contents

1 Introduction 4

2 Preliminaries 7

2.1 Multi-agent Systems . 7

2.1.1 Leader follower scheme . 8

2.2 Graph Theory . 8

2.2.1 Graph . 8

2.2.2 Connectivity . 10

3 Problem Formulation 12

3.1 Dynamic Model . 12

3.2 Disagreement error . 13

3.3 Underlying Communication Topology 13

4 Main Results 15

4.1 Sufficient Conditions . 15

4.2 Distributed Control Protocol . 17

4.2.1 Design Philosophy . 18

4.2.2 Decentralization and structural complexity 19

4.2.3 Robust Prescribed Performance 19

4.2.4 Control Parameters selection 20

4.2.5 Increasing dimensionality . 20

5 Simulation Results 22

5.1 Second Order Multi-agent System (MAS) 22

5.2 Set of Switching Graphs . 23

5.3 Synchronization Example . 24

5.4 Comparative Simulation . 31

5.5 Discussion of Results . 34

6 Conclusions 35

References 40

A Appendix 41

A.1 MATLAB Code . 41

3

Chapter 1

Introduction

Multi-agent systems have recently emerged as an inexpensive and robust way

of addressing a wide variety of tasks ranging from exploration, surveillance, and

reconnaissance to cooperative construction and manipulation. The success of

these systems relies on efficient information exchange and coordination between

team members. More specifically, their intriguing feature consists on the fact

that each agent makes decisions solely on the basis of its local perception of the

environment, which has also been observed in many biological systems [1]. Thus,

a challenging task is to design the decentralized control approach for certain global

goals in the presence of limited information exchanges. In this direction, drawing

some enlightenments from biological observations, distributed cooperative control

of multi-agent systems has received considerable attention during the last two

decades (see the seminal works [2], [3], [4] and [5] for example). In particular, the

leader-follower scheme, according to which the following agents aim at reaching

a consensus with the leader’ s state, employing only locally available information,

has become very popular, since in the absence of any central control system

and without global coordinate information, following a leader is an accountable

motivation.

Although the majority of the works on distributed cooperative control under

switching topologies consider known and simple dynamic models, many practical

engineering systems exist that fail to satisfy that assumption and which more-

over are constantly subject to environmental disturbances. Thus, taking into

account the inherent model uncertainties when designing robust distributed con-

trol schemes is of paramount importance. The problem of distributed consensus

problem with external disturbances is investigated using H∞ control for general

linear dynamics under connected undirected graphs or strongly connected and

balanced digraphs in [6], for first order uncertain linear systems under directed

graphs containing a spanning tree in [7] and for discrete-time first order linear

dynamics where the switching topology is subject to a Markov chain in [8], for

second order linear systems under undirected and connected graphs in [9] and

for high-order linear systems under directed graphs containing a spanning tree

in [10]. L2 − L∞ control has also been employed for the distributed consensus of

high-order linear MAS under directed graphs containing a spanning tree in [11]

and for the containment control of a single integrator under directed and bal-

anced switching topologies modeled by a continuous-time Markov chain in [12],

both of them subject to external disturbances. Another popular way to deal with

4

CHAPTER 1. INTRODUCTION 1.0

disturbances is the Disturbance Observers-Based Control (DOBC). Such control

schemes are developed to estimate the disturbances for the tracking control of a

single integrator in [13] and for the consensus problem of second order linear dy-

namics under undirected and directed strongly connected graphs in [14] and [15]

respectively. This control strategy is also used for the consensus of high-order

nonlinear MAS in [16]. All the aformentioned techniques are leading to the in-

creasing desing complexity, owing to the interacting system dynamics as reflected

by the local intercourse specifications. Thus, the proposed protocol appears to be

more easy to derive and implement.

Many attempts have been made to address different multi-agent control prob-

lems for systems with unknown nonlinear dynamics and disturbances employing

neural networks to approximate the nonlinear functions. Specifically, in [17] for

high-order MAS under jointly connected or uniformly jointly quasi-strongly con-

nected respectively for undirected or directed graphs and in [18] for first order

heterogeneous non-affine pure-feedback MAS. Similarly, a distributed adaptive

neural controller for first order non-affine nonlinear dynamics is proposed in [19],

whereas the synchronization of nonlinear, non-identical high-order multi-agent

systems with external disturbances under switching directed strongly connected

and undirected connected graphs is investigated in [20] and [21] respectively.

Unfortunately, the aforementioned schemes as well as that in [22], where fuzzy

logic systems are utilized for the distributed containment control problem of first

order non-affine pure-feedback nonlinear MAS under directed graphs, inherently

introduce certain issues affecting closed loop stability and robustness.

Another important issue associated with decentralized cooperative control

schemes of multi-agent systems under model uncertainties, concerns the tran-

sient and steady state response of the closed loop system. As we know, transient

behavior (i.e., the convergence rate) is difficult to establish analytically as it is

affected heavily by the agents’ model dynamics and the status of the overall un-

derlying interaction topology, both of which are considered unknown. According

to the relative works to this direction, the transient time in [23] and the conver-

gence rate in [24] depend on the switching conditions and furthermore on the

agents’ dynamics in [25]. The upper bound of convergence time in [26] and the

lower bound of consensus speed in [27] are related to a protocol parameter and

communication topology. The convergence rate in [28] is adjusted by the feedback

gain matrix. As regards to nonlinear multi-agent systems, according to [29] the

upper bound of the transient time depends on Lipschitz constants and order and

control parameters. The compact set that the tracking errors in [17] converge to

is adjusted by a design parameter. From the distributed control schemes intro-

duced in [20] and [22] it appears that the synchronization or containment errors

respectively can be reduced at will by increasing the value of the control gain or by

choosing appropriate design parameters via trial-and-error. The same laborious

and time consuming procedure of intutive tunning have to be done in [18] where

the transient and steady state tracking errors can be made smaller by suitable

choice of design parameters. In contrast with these works, the transient and

steady state error perforance bounds imposed by the proposed controller are de-

termined by certain performance functions the parameters of which are specified

by the designer and don’ t involve the agents’ dynamics, the switching topology or

the control gains.

5

CHAPTER 1. INTRODUCTION 1.0

In [30], a generic class of high-order nonlinear multi-agent systems, under a

directed fixed communication protocol is considered. A robust, decentralized and

approximation-free synchronization control scheme is designed in the sense that

each agent utilizes only local relative state information from its neighborhood set

to calculate its own control signal. Many efforts have been made to investigate

how to achieve distributed synchronization in multi-agent systems under dynam-

ically changing environments. Motivated from [30], the design methodology and

the distributed protocol in it, are extended in this thesis, for the case of switching

communication topologies. The robust synchronization with prescribed transient

and steady state performance under switching topology is achieved provided that

all possible switching graphs are directed and connected over the switching in-

tervals. Compared wit the previous work, the main contributions of this thesis

summarized in the following three aspects. First, the robust synchronization for

uncertain high-order nonlinear multi-agent systems with external disturbances is

considered. However, no prior knowledge of model nonlinearities/disturbances is

employed and no approximation structures are used to acquire such knowledge.

Second, the proposed distributed protocol is of low complexity while very few cal-

culations are required to obtain the control signal. Third, the imposed transient

and steady state response bounds are solely pre-determined by certain designer-

specified performance functions and are fully decoupled from the agents’ dynamic

model, the underlying switching graph topologies and the control gains selection.

The rest of the thesis is organized as follows. In Chapter 2, we provide some

theoritical klowledge about multi-agent systems and graph theory. In Chapter 3,

we introduce the nonlinear dynamic model of the multi-agent system under con-

sideration and then we define the disagreement error of the states. Subsequently,

we define the synchronization control problem and give the conditions which the

switching communication topology of the system must respect. The distributed

control protocol that solves the robust synchronization problem with prescribed

performance under switching communication topology is designed in Chapter 4.

Chapter 5 presents the simulation results and their interpretation. Some conclu-

sions are drawn in Chapter 6 and we explain their significance. Finally, in the

Appendix the reader can find all the MATLAB codes used to export all the results

throughout this thesis accompanied by the necessary comments.

6

Chapter 2

Preliminaries

This chapter includes all the necessary knowledge about multi-agent systems

and graph theory (i.e. the way the agents are connected and communicate) that

will be needed in the following chapters.

2.1 Multi-agent Systems

A multi-agent system (MAS) is a computerized system composed of multiple

interacting intelligent agents. Multi-agent systems can solve problems that are

difficult or impossible for an individual agent or a monolithic system to solve. In-

telligence may include methodic, functional, procedural approaches, algorithmic

search or reinforcement learning. Despite considerable overlap, a multi-agent

system is not always the same as an agent-based model (ABM). The goal of an

ABM is to search for explanatory insight into the collective behavior of agents

(which don’t necessarily need to be "intelligent") obeying simple rules, typically in

natural systems, rather than in solving specific practical or engineering problems.

The terminology of ABM tends to be used more often in the sciences, and MAS

in engineering and technology. Applications where multi-agent systems research

may deliver an appropriate approach include online trading, disaster response

and social structure modelling. Typically multi-agent systems research refers to

software agents. However, the agents in a multi-agent system could equally well

be robots, humans or human teams. A multi-agent system may contain combined

human-agent teams. The agent is capable of indipendent action on behalf of its

user/owner, meaning that it can decide what to do to meet the goals for which it

was designed, without requiring commands at any time.

A multi-agent system is a society composed of many agents that interact by

exchanging messages over a network. In the general case each agent represents

different interests and to interact successfully the agents must negotiate, co-

operate and coordinate as people do in their societies.

Today, MAS technology is used for a wide range of control applications, such

as programming and design, diagnostics, status monitoring, distributed control,

system recovery, market simulation, network control and automation. In addi-

tion, this technology is spreading to a level where the first multi-agent systems are

transported from the laboratory to use, allowing the industry to gain experience

in the use of MAS and also to evaluate their effectiveness.

7

CHAPTER 2. PRELIMINARIES 2.2

2.1.1 Leader follower scheme

A system of multiple agents in leader-follower scheme consists of a leader,

who provides the appropriate information (the desired trajectory of the system for

example), and its followers, who update their states using local feedback. This

control strategy has a variety of applications including the formation, cooperative

control, synchronization, consensus, containment control of the network agents.

2.2 Graph Theory

In a multi-agent system, each agent must be able to interact (co-operate, ne-

gotiate, coordinate) with other agents to do the tasks we assign. The way agents

interact with each other is based on the theory of graphs.

Graph theory is a cognitive field of discrete mathematics, with applications in

computer science, engineering science, chemistry, sociology, and so on. Although

the origins of the theory were founded in the 18th century, it developed postwar

as a separate field of applied mathematics.

In greek terminology the term graph is also used for the graphic representation

of a function but they should not be confused. Among the various definitions that

are encountered, one relatively complete states that graph theory is the study

of graphs and their relationships. Mathematical computations on graphs are

implemented with specific algorithms. Several different physical or technological

structures can be modeled with graphs, such as e.g. computer networks, where

a network diagram is modeled as a simple, directed graph.

2.2.1 Graph

In mathematics, and more specifically in graph theory, a graph is a structure

amounting to a set of objects in which some pairs of the objects are in some sense

"related". The objects correspond to mathematical abstractions called vertices

(also called nodes or points) and each of the related pairs of vertices is called an

edge (also called an arc or line). Typically, a graph is depicted in diagrammatic

form as a set of dots for the vertices, joined by lines or curves for the edges.

Graphs are one of the objects of study in discrete mathematics.

Figure 2.1: A graph with 6 nodes

8

CHAPTER 2. PRELIMINARIES 2.2

Definition of graph

In one very common sense of the term, a graph is an ordered pair G = (V,E)
comprising a set V of vertices, nodes or points together with a set E of edges, arcs

or lines, which are 2-element subsets of V (i.e., an edge is associated with two

vertices, and the association takes the form of the unordered pair of the vertices).

The vertices belonging to an edge are called the ends or end vertices of the edge.

A vertex may exist in a graph and not belong to an edge. V and E are usually

taken to be finite, and many of the well-known results are not true (or are rather

different) for infinite graphs because many of the arguments fail in the infinite

case. Moreover, V is often assumed to be non-empty, but E is allowed to be the

empty set. The order of a graph is |V |, its number of vertices. The size of a graph

is |E|, its number of edges. The degree or valency of a vertex is the number of

edges that connect to it, where an edge that connects to the vertex at both ends

(a loop) is counted twice.

Finite graph

A finite graph is a graph in which the vertex set and the edge set are finite

sets. Otherwise, it is called an infinite graph. Most commonly in graph theory it

is implied that the graphs discussed are finite. If the graphs are infinite, that is

usually specifically stated.

Directed graph

A directed graph or digraph is a graph in which edges have orientations. It is

written as an ordered pair G = (V,E) with:

• V a set whose elements are called vertices, nodes, or points,

• E a set of ordered pairs of vertices, called arrows, directed edges, directed

arcs, or directed lines.

Figure 2.2: A directed graph

When an arrow (x, y) is considered to be directed from x to y, then y is called the

head and x is called the tail of the arrow.

A directed graph G is called symmetric if, for every arrow in G, the corre-

sponding inverted arrow also belongs to G. A symmetric loopless directed graph

G = (V,E) is equivalent to a simple undirected graph G′ = (V,A), where the

9

CHAPTER 2. PRELIMINARIES 2.2

pairs of inverse arrows in E correspond one-to-one with the edges in A; thus the

number of edges in G′ is |A| = |E|/2, that is half the number of arrows in G.

For a vertex, the number of head ends adjacent to a vertex is called the indegree
of the vertex and the number of tail ends adjacent to a vertex is its outdegree. Let

G = (V,E) and v ∈ V . The indegree of v is denoted deg−(v) and its outdegree is

denoted deg+(v). A vertex with deg−(v) = 0 is called a source, as it is the origin of

each of its outcoming arrows. Similarly, a vertex with deg+(v) = 0 is called a sink,

since it is the end of each of its incoming arrows. If a vertex is neither a source

nor a sink, it is called an internal. If for every vertex v ∈ V , deg+(v) = deg−(v),
the graph is called a balanced directed graph.

Undirected graph

An undirected graph is a graph in which edges have no orientation. The edge

(x, y) is identical to the edge (y, x). That is, they are not ordered pairs, but

unordered pairs - i.e., sets of two vertices (x, y) (or 2-multisets in the case of

loops). The maximum number of edges in an undirected graph without a loop is

n(n− 1)/2, where n is the number of vertices.

Figure 2.3: An undirected graph

2.2.2 Connectivity

In mathematics and computer science, connectivity is one of the basic concepts

of graph theory: it asks for the minimum number of elements (nodes or edges)

that need to be removed to disconnect the remaining nodes from each other. It is

closely related to the theory of network flow problems. The connectivity of a graph

is an important measure of its resilience as a network.

A graph is connected when there is a path between every pair of vertices. In a

connected graph, there are no unreachable vertices. A graph that is not connected

is disconnected. A graph G is said to be disconnected if there exist two nodes in

G such that no path in G has those nodes as endpoints. A graph with just one

vertex is connected. An edgeless graph with two or more vertices is disconnected.

In an undirected graph, an unordered pair of vertices (x, y) is called connected if

a path leads from x to y. Otherwise, the unordered pair is called disconnected. A

connected graph is an undirected graph in which every unordered pair of vertices

in the graph is connected. Otherwise, it is called a disconnected graph.

In a directed graph, an ordered pair of vertices (x, y) is called strongly connected
if a directed path leads from x to y. Otherwise, the ordered pair is called weakly
connected if an undirected path leads from x to y after replacing all of its directed

edges with undirected edges. Otherwise, the ordered pair is called disconnected. A

10

CHAPTER 2. PRELIMINARIES 2.2

Figure 2.4: This graph becomes disconnected when the dashed edge is removed

strongly connected graph is a directed graph in which every ordered pair of vertices

in the graph is strongly connected. Otherwise, it is called a weakly connected

graph if every ordered pair of vertices in the graph is weakly connected. Otherwise

it is called a disconnected graph.

A k-vertex-connected graph or k-edge-connected graph is a graph in which no

set of k − 1 vertices (respectively, edges) exists that, when removed, disconnects

the graph. A k-vertex-connected graph is often called simply a k-connected graph.

Communication Topology

A multi-agent system can be depicted by a labeled graph, where each node

represents an agent of the network. In order for the MAS to complete the task

assigned to it, its agents must communicate with each other and exchange infor-

mation. The communication topology that governs the graph dictates how this

information exchange takes place.

When the communication topology i.e., the way the agents of a MAS interact,

remains constant throughout the work being performed, then it is called a fixed
communication topology. In this case, the interaction between agents can be

modeled by a single graph wich indicates the flow of information from and to

them.

However, due to the needs of the work being performed, it may be necessary

to have more than one graph to describe the underlying communication topology.

This means that the interaction between agents is modeled by a finite set of

possible graphs that alternate with each other during the project. Then, unlike

the fixed one, this is called switching communication topology.

11

Chapter 3

Problem Formulation

In this chapter we will deal with the formulation of the problem, wich includes

the presentation of the dynamic model of the multi-agent system to be studied,

the definition of the control problem that we will try to solve as the main part of

this thesis and finally the assumptions concerning the underlying communication

topology in order to solve the problem.

3.1 Dynamic Model

Consider a multi-agent group comprised of a leader and N followers, with the

leading agent acting as an exosystem that generates a desired command/reference

trajectory for the multi-agent group. The followers, which have to be controlled,

obey an m-th order nonlinear dynamic model in canonical form, described as fol-

lows:

ẋi,j = xi,j+1, j = 1, ...m− 1

ẋi,m = fi(xi) + giui + di(t)
, i = 1, ..., N (3.1)

where xi = [xi,1, ..., xi,m]T ∈ Rm, i = 1, ..., N denote the state vector of each agent,

fi : Rm → R, i = 1, ..., N are unknown locally Lipschitz functions, gi ∈ R, i =
1, ..., N are unknown constant parameters, ui ∈ R, i = 1, ..., N are the control

inputs and di : R+ → R, i = 1, ..., N represent piecewise continuous and bounded

external disturbance terms. Apart from a sufficient controllability condition, i.e.,

the parameters gi, i = 1, ..., N are considered strictly positive or strictly negative,

no further assumption is made on the stability of the aformentioned open loop

nonlinear dynamics. Moreover, with no loss of generality, it is assumed that

gi > 0, i = 1, ..., N . Additionally, defining the j-th order state vector of the multi-

agent system as x̄j = [x1,j, ..., xN,j]
T ∈ RN

, the multi-agent dynamic model in

vector form is written as follows:

˙̄xj = x̄j+1, j = 1, ...m− 1

˙̄xm = F (x̄) +G(u) + d(t)
, i = 1, ..., N (3.2)

where x̄ = [x̄T1 , ..., x̄
T
m]T ∈ RmN

is the overall state vector with F (x̄) = [f1(x1), ...,
fN(xN)]T , G = diag([g1, ..., gN]), u = [u1, ...uN]T and d(t) = [d1(t), ..., dN(t)]T .

Furthermore, the state/command variables of the leading agent are given by

12

CHAPTER 3. PROBLEM FORMULATION 3.3

x0(t) := [x0(t), ẋ0(t), ..., x
m−1
0 (t)]T ∈ Rm

, where x0 : R+ → R and its derivatives up

to m-th order are assumed to be continuous and bounded.

3.2 Disagreement error

In the sequel, the robust synchronization control problem with prescribed per-

formance to be confronted in this work is formulated for the multi-agent system

3.2. More specifically, the target is to design a distributed control protocol, of low

computational complexity for all the following agents, considering relative state

feedback, unknown model nonlinearities and external disturbances, such that

the j-th order disagreement error vectors:

δ̄j(t) = x̄j(t)− x̄0,j(t) ∈ RN , j = 1, ...,m (3.3)

with x̄0,j(t) := [xj−10 (t), ..., xj−10 (t)]T ∈ RN , j = 1, ...,m are driven with a minimum

convergence rate within prescribed and arbitary small neighborhoods of the origin,

keeping all closed loop signals bounded.

3.3 Underlying Communication Topology

A set G of directed graphs (digraphs) Gσ(t) = (V,Eσ(t)) is used to model the

switching communication topologies among the followers, where σ(t) : [0,+∞]→
S is a piecewise constant switching signal with switching times t0, t1, ...tk∈Z, Gσ(t)

denotes the communication graph at time t and S is the index set associated with

the elements of G. G represents the set of all possible graphs Gσ(t)
with the N

agents, V = {υ1, ..., υN} denotes the set of vertices that represent the followers and

Eσ(t) ⊆ V×V denotes the set of edges at time t. The graph is assumed to be simple,

i.e., (υi, υi) /∈ Eσ(t)
(there exist no self loops). The adjacency matrix associated with

the digraph Gσ(t)
is denoted as Aσ(t) = [αi,j(t)] ∈ RN×N

with αi,j(t) ∈ {0, 1}, i, j =
1, ..., N . If αi,j(t) = 1 then the agent i obtains information regarding the state of

the j-th agent

(
i.e., (υi, υj) ∈ Eσ(t)

)
, whereas if αi,j(t) = 0 then there is no state-

information flow from agent j to agent i
(
i.e., (υi, υj) /∈ Eσ(t)

)
. The set of neighbors

of a vertex υi at time t is denoted by N
σ(t)
i = {υj : (υi, υj) ∈ Eσ(t)} and the degree

matrix is defined as Dσ(t) = diag([Di(t)]) ∈ RN×N
with Di(t) =

∑
j∈Nσ(t)

i
αi,j(t).

In this respect, the graph Laplacian Lσ(t) = Dσ(t) − Aσ(t) ∈ RN×N
. The state

information of the leader node (labeled υ0) is only provided to a subgroup of the

N agents. The access of the following agents to the leader’ s state at time t is

modeled by a diagonal matrix Bσ(t) = diag([b1(t), b2(t), ..., bN(t)]) ∈ RN×N
. If bi(t),

i ∈ {1, 2, ..., N} is equal to 1, then the i-th agent obtains state-information from

the leader node; otherwise bi(t), i ∈ {1, 2, ..., N} is equal to 0. The augmented

set Ḡ contains all possible augmented diagraphs defined as Ḡσ(t) = (V̄ , Ēσ(t)),
where V̄ = {υ0, υ1, ..., υN} and Ēσ(t) = Eσ(t) ∪ {(υi, υ0) : bi(t) = 1} ⊆ V̄ × V̄ while

N̄
σ(t)
i = {υj : (υi, υj) ∈ Ēσ(t)}, i = 1, ..., N denotes the augmented set of neighbors

at time t.
To solve the aforementioned multi-agent control problem in section 3.2 the

following assumption regarding the underlying communication graph topology is

required.

13

CHAPTER 3. PROBLEM FORMULATION 3.3

Assumption A1: Each augmented graph Ḡσ(t)
of set Ḡ always contains a span-

ning tree with the root being the leader node.

Figure 3.1: Two communication graphs at a specific time t that obey Assumption

A1 and satisfy either the condition of items 1 or 2 of Remark 1, but not both

simultaneously.

Remark 1: The following non-equivalent common graph topologies satisfy Assump-
tion A1:

1. The graph Gσ(t) contains a spanning tree and at least one root node can get
access to the leader node.

2. The augmented graph Ḡσ(t) has a hierarchical structure1.

Notice that in Fig. 3.1(a), the graph Ḡσ(t) does not have a hierarchical structure, i.e.,
the condition described in item 2 is not satisfied, although there exists a spanning
tree in Gσ(t) with its root getting access to the leader node. Similarly, in Fig. 3.1(b),
the graph Ḡσ(t) that has a hierarchical structure, has a disconnected Gσ(t) graph;
thus there is no spanning tree within Gσ(t). In addition, Assumption A1 dictates
that Lσ(t) +Bσ(t) is a nonsingular M -matrix2[32].

Finally, the following technical lemma regarding nonsingular M-matrices will

be employed to derive the main results of this thesis.

Lemma 1. ([33] in pp. 168) Consider a nonsingular M -matrix W ∈ RN×N . There
exists a diagonal positive definite matrix P = (diag(q̄))−1, with q̄ = W−1

1 and
1 := [1, ..., 1]T ∈ RN , such that PW +W TP is also positive definite.

1
The augmented graph Ḡσ(t) has a hierarchical structure when every node, except the one that

denotes the leader, is subordinated to a single node [31].

2
An M -matrix is a square matrix having its off-diagonal entries nonpositive and all principal

minors nonnegative.

14

Chapter 4

Main Results

In this chapter will be presented the main theoretical results of this thesis.

Specifically, the neighborhood errors are defined as well as the appropriate per-

formance functions that achieve the convergence at a minimum rate of the dis-

agreement errors in predetermined and arbitrarily small neighborhoods of the

origin. Then follows the design of the distributed control protocol that solves

the robust synchronization problem with prescribed performance under switch-

ing topologies, along with some theoretical remarks on it, such as the selection of

the control parameters and the increase of dimensionality.

4.1 Sufficient Conditions

Owing to considering distributed control protocols with relative state informa-

tion, the control law of each agent i ∈ {1, ..., N} will be based on its neighborhood

error feedback:

ei,j(t) =
∑

l∈Nσ(t)
i

αi,l(t)(xi,j − xl,j) + bi(t)(xi,j − xj−10) (4.1)

for j = 1, ...,m. Let us also define the j-th order neighborhood error vectors as

ēj(t) = [e1,j(t), ..., eN,j(t)]
T
, j = 1, ...,m which, employing the graph topology and

after some trivial algebraic manipulations, become:

ēj(t) = (Lσ(t) +Bσ(t))δ̄j(t), j = 1., ...,m (4.2)

where the disagreement error vectors δ̄j(t), j = 1, ...,m are defined in (3.3). Ap-

parently, the j-th order neighborhood errors ēj(t), j = 1, ...,m are expressed with

respect to the leader state via the corresponding j-th order disagreement error

variables δ̄j(t), j = 1, ...,m, which according to the problem statement are re-

quired to enter arbitrarily fast into arbitrarily small neighborhoods of the origin.

However, the disagreement variables δ̄j(t), j = 1, ..., N are global quantities and

thus cannot be measured distributively based on the local intercourse specifica-

tions, as they involve information directly from the leader. Nevertheless, utilizing

the nonsingularity of Lσ(t) +Bσ(t)
, owing to Assumption A1, (4.2) yields:

15

CHAPTER 4. MAIN RESULTS 4.1

∥∥δ̄j(t)∥∥ ≤ ‖ēj(t)‖
σmin(Lσ(t) +Bσ(t))

(4.3)

where σmin(Lσ(t) +Bσ(t)) denotes the minimum singular value of

(
Lσ(t) +Bσ(t)

)
.

Remark 2. It is concluded from (4.3) that the j-th order neighborhood errors
ēj(t) represent a valid metric of the synchronization quality that is described by
the disagreement errors δ̄j(t), j = 1, ...,m. In this respect, transient and steady
state bounds imposed on the neighborhood errors ēj(t), j = 1, ...,m can be directly
translated into actual performance bounds on the disagreement variables δ̄j(t),
j = 1, ...,m. However, σmin

(
Lσ(t) + Bσ(t)

)
is a global topology variable and thus

cannot be employed in distributed control schemes to impose explicit bounds on
δ̄j(t), j = 1, ...,m via (4.3). To alleviate this issue, the conservative lower bound

(N−1
N)

N−1
2

N2+N−1 ≤ σmin
(
Lσ(t) + Bσ(t)

)
[34], that depends solely on the number of agents

N and not on the graph topology can be utilized yielding:

∥∥δ̄j(t)∥∥ ≤ ‖ēj(t)‖
σmin(Lσ(t) +Bσ(t))

≤ N2 +N − 1(
N−1
N

)N−1
2

‖ēj(t)‖ . (4.4)

Alternatively, a distributed estimation algorithm (power iteration or spectral analy-
sis), similarly to [35], [36] for undirected or [37] for directed graphs, could be initially
applied to estimate σmin

(
Lσ(t) +Bσ(t)

)
.

To proceed, employing (3.2) and after some straightforward manipulations, the

m-th order neighborhood error dynamics is obtained as follows:

˙̄ej(t) = ēj+1(t), j = 1, ...m− 1

˙̄em = (Lσ(t) +Bσ(t))(F (x̄) +G(u) + d(t)− x̄0,m+1(t)).
(4.5)

To deal with the high order dynamics (4.5), certain time-varying surfaces over the

neighborhood error space Rm
are defined via the scalar equations si(ei,1, ..., ei,m) =

0, i = 1, ..., N , where:

si(ei,1, ..., ei,m) =

(
d

dt
+ λ

)m−1
ei,1 =

m−1∑
z=0

(
m− 1

z

)
λzei,m−z (4.6)

for i = 1, ..., N with λ being a strictly positive constant
1
. Notice that all si(ei,1, ...,

ei,m) = 0, i = 1, ..., N can be calculated distributively, since only local relative state

information from the neighborhood set is required (see (4.1) and (4.6)). Moreover,

(4.6) can be considered as a set of stable linear filters with si and ei,1, i = 1, ..., N

denoting their inputs and outputs respectively (i.e., ei,1(p) = si(p)
(p+λ)m−1 , i = 1, ..., N

in the Laplace formulation with p denoting the Laplace frequency variable). Hence,

the cooperative synchronization control problem (i.e., the problem of driving the

disagreement variables δ̄j(t), j = 1, ...,m close to the origin, or equivalently owing

1
Denoting the derivative operand

d
dt in (4.6) by q, a polynomial with respect to q is formed that

has m− 1 identical real roots at −λ and hence is Hurwitz.

16

CHAPTER 4. MAIN RESULTS 4.2

to (4.3) driving the neighborhood error vectors ēj(t), j = 1, ...,m close to the ori-

gin), can be reduced to the problem of driving si(ei,1, ..., ei,m), i = 1, ..., N to zero,

since the aforementioned stable linear filters have a unique equilibrium point

ei,j(t) = 0, i = 1, ..., N and j = 1, ...,m, in case of zero input. Furthermore,

bounds on si(ei,1, ..., ei,m; t), i = 1, ..., N can be directly translated into bounds

on the neighborhood errors ei,j(t), i = 1, ..., N and j = 1, ...,m and consequently

via (4.3) on the disagreement variables δ̄j(t), j = 1, ...,m. Hence, the scalars

si(ei,1, ..., ei,m), i = 1, ..., N represent valid performance metrics of the synchro-

nization control problem. Henceforth, with a slight abuse of notation, we shall

adopt s
σ(t)
i (t), i = 1, ..., N to denote the scalar error signals si(ei,1(t), ..., ei,m(t)),

i = 1, ..., N where σ(t) is the aforementioned switching signal.

Assuming that |sσ(t)i (t)| < ρ
σ(t)
i (t), i = 1, ..., N for all t ≥ tl0, where tl0, l = 1, ..., k

is l-th switching time, k is the number of switches and ρ
σ(t)
i (t) = (ρ

σ(t)
i0 −ρ∞)e−l

σ(t)t
+

ρ∞ are exponential performance functions, the following proposition dictates that

the appropriate selection of the design parameters λ, ρ∞, l
σ(t)

and ρ
σ(t)
i0 , i = 1, ..., N

guarantees the a priori specified exponential convergence of the disagreement

variables δ̄j(t), j = 1, ...,m arbitrarily close to the origin.

Proposition 1. Consider the metrics s
σ(t)
i (t), i = 1, ..., N as defined in (4.6)

and the performance functions ρ
σ(t)
i (t) = (ρ

σ(t)
i0 − ρ∞)e−l

σ(t)t + ρ∞, i = 1, ..., N

with 0 < lσ(t) < λ, ρ∞ > 0 and ρ
σ(t)
i0 ≡ ρ

σ(t)
i (0) > |sσ(t)i (0)|, i = 1, ..., N . If

|sσ(t)i (0)| < ρ
σ(t)
i (t),∀t ≥ tl0, i = 1, ..., N and l = 1, ..., k then the j-th order dis-

agreement variables δ̄j(t), j = 1, ...,m converge at least e−l
σ(t)t exponentially fast to

the corresponding sets:

∆̄
σ(t)
j =

{
δ ∈ RN : ‖δ‖ ≤ 2j−1ρ∞

√
N

σmin (Lσ(t) +Bσ(t))λm−j

}
for j = 1, ...,m. (4.7)

Proof. See the Appendix in [30].

�

Remark 3. Proposition 1 dictates that the size of the sets ∆̄
σ(t)
j , j = 1, ...,m where

all disagreement errors converge, is directly controlled by ρ∞ and λ. In fact, by re-
ducing ρ∞ and enlarging λ, the maximum allowable size of the disagreement errors
at steady state can be reduced at will, to the point of meeting the desired problem
specifications. In the same spirit, enlarging λ does not harm the convergence rate
of the disagreement errors, as in this way the admissible values of lσ(t) can be also
enlarged.

4.2 Distributed Control Protocol

The following theorem summarizes the main results of this thesis. It proposes

a distributed control protocol that solves the robust synchronization problem with

prescribed performance under switching topology for the considered high-order

multi-agent system class, by guaranteeing |sσ(t)i (t)| < ρ
σ(t)
i (t), i = 1, ..., N for all

t ≥ tl0, l = 1, ..., k. The solution is of low complexity and does not incorporate any

17

CHAPTER 4. MAIN RESULTS 4.2

information regarding either the multi-agent system nonlinearities, the external

disturbances or the underlying communication graph topology. In addition, no

approximating structures (i.e., neural networks, fuzzy systems, etc.) are utilized

to acquire such knowledge.

Theorem 1. Consider the multi-agent system (3.2) with switching communication
graph topology satisfying Assumption A1. Given the metrics s

σ(t)
i (t), i = 1, ..., N

defined in (4.6) and the exponential performance functions ρ
σ(t)
i (t) = (ρ

σ(t)
i0 −

ρ∞)e−l
σ(t)t + ρ∞, i = 1, ..., N appropriately selected to introduce the desired per-

formance bounds, with 0 < lσ(t), ρ∞ > 0 and ρ
σ(t)
i0 ≡ ρ

σ(t)
i (0) > |sσ(t)i (0)| ≥ 0, i =

1, ..., N ; the distributed control protocol:

u
σ(t)
i (s

σ(t)
i , t) = − ki

2ρ
σ(t)
i (t)

ln

1+
s
σ(t)
i

ρ
σ(t)
i

(t)

1−
s
σ(t)
i

ρ
σ(t)
i

(t)

(

1 +
s
σ(t)
i

ρ
σ(t)
i (t)

)(
1− s

σ(t)
i

ρ
σ(t)
i (t)

) , i = 1, ..., N (4.8)

with ki > 0, i = 1, ..., N solves the robust synchronization problem with prescribed
performance under switching topology.
Proof. See the Appendix in [30].

�

In the sequel, several remarks are presented that provide intuitive explanations

on the control design procedure and reveal its intriguing properties.

4.2.1 Design Philosophy

As stated in Proposition 1, a sufficient condition to guarantee prescribed

transient and steady state performance bounds on the disagreement variables

δ̄j(t), j = 1, ...,m is to enforce s
σ(t)
i (t), i = 1, ..., N to evolve strictly within the enve-

lope constructed with the aid of the exponential performance functions ρ
σ(t)
i (t) =

(ρ
σ(t)
i0 − ρ∞)e−l

σ(t)t + ρ∞, i = 1, ..., N . Stated otherwise, |sσ(t)i (t)| < ρ
σ(t)
i (t) for all

t ≥ tl0, i = 1, ..., N and l = 1, ..., k or equivalently −1 < ξ
σ(t)
si (t) ≡ s

σ(t)
i (t)

ρ
σ(t)
i (t)

< 1 for all

t ≥ tl0, i = 1, ..., N and l = 1, ..., k. Modulating ξ
σ(t)
si (t) via the logarithmic func-

tion
1
2
ln
(
1+?
1−?

)
, which actually stands for the inverse hyperbolic tangent function

tanh−1(?), and selecting ρ
σ(t)
i (0) > s

σ(t)
i (0), the signals ε

σ(t)
i (t) = 1

2
ln

(
1+ξ

σ(t)
si

(t)

1−ξσ(t)si
(t)

)
,

i = 1, ..., N are initially well defined. It is not difficult to verify that main-

taining the boundedness of ε
σ(t)
i (t), i = 1, ..., N is equivalent to guaranteeing

|sσ(t)i (t)| < ρ
σ(t)
i (t), i = 1, ..., N for all t ≥ tl0, l = 1, ..., k. Therefore, the prob-

lem at hand can be visualized as minimizing the quadratic and positive definite

objective function V
σ(t)
ε = 1

2
εT (ξ

σ(t)
s)Pε(ξ

σ(t)
s) within the feasible region defined via

|ξσ(t)si (t)| < 1, i = 1, ..., N for all t ≥ tl0, l = 1, ..., k. A careful inspection of the pro-

posed controller (4.8) reveals that it actually operates similarly to barrier functions

in constrained optimization, admitting high negative or positive values depend-

ing on whether s
σ(t)
i (t)→ ρ

σ(t)
i (t) or s

σ(t)
i (t)→ −ρσ(t)i (t) respectively; eventually not

18

CHAPTER 4. MAIN RESULTS 4.2

permitting s
σ(t)
i (t) from reaching the performance boundaries. In order for the con-

dition |sσ(t)i (t)| < ρ
σ(t)
i (t), i = 1, ..., N to apply for all t ≥ tl0, l = 1, ..., k to even when

the communication graph topology switches, we can change the values of lσ(t) and

ρ
σ(t)
i (0), i = 1, ..., N in each switching time as follows: for ρ

σ(t)
i (0), i = 1, ..., N we

can easily choose each time its value so that ρ
σ(t)
i (0) > |sσ(t)i (0)| ≥ 0, i = 1, ..., N .

The value of lσ(t) in each switching time is calculated by the solution of the equa-

tion ρ
σ(t)
i (tf − tl0) = (ρ

σ(t)
i (0) − ρ∞)e−l

σ(t)(tf−tl0) + ρ∞ = αρ∞ ⇒ ... ⇒ lσ(t) =

−
ln

(
(α−1)ρ∞

ρ
σ(t)
i

(0)−ρ∞

)
tf−tl0

, i = 1, ..., N , l = 1, ..., k, where α = 1 + ε (i.e., slightly greater than

1) and tf is the desired time in which the synchronization have to be ahieved.

4.2.2 Decentralization and structural complexity

The proposed control protocol for the generic class of multi-agent systems

considered herein, is decentralized in the sense that each agent utilizes only lo-

cal relative state information from its neighborhood set, expressed in a common

frame, to calculate its own control signal. Moreover, it does not incorporate any

prior knowledge of the model nonlinearities/disturbances or even of some cor-

responding upper/lower bounding functions, relaxing thus significantly the key

assumptions made in the related literature. Additionally, no approximating struc-

tures (i.e., neural networks, fuzzy systems, etc.) have been employed to acquire

such knowledge. Furthermore, no hard calculations (neither analytic nor nu-

merical) are required to produce the control signal, thus making its distributed

implementation straightforward. Therefore, the proposed synchronization proto-

col besides being decentralized, exhibits low structural complexity as well.

4.2.3 Robust Prescribed Performance

From the proof of Theorem 1 it can be deduced that the proposed control

scheme achieves synchronization with prescribed transient and steady state per-

formance under switching communication topology for the considered class of

high-order nonlinear multi-agent systems, without residing in the need of render-

ing the uniform bound of ‖ε(t)‖ (i.e., ε̄ in (30) in the Appendix of [30]) arbitrarily

small, by adopting extreme values of the control gains ki, i = 1, ..., N . More

specifically, (31) in the Appendix of [30] and consequently (32) in the Appendix

of [30], which encapsulates the prescribed performance notion, hold no matter

how large the finite bound ε̄ is. In the same spirit, large model uncertainties

can be compensated for, as they affect only the size of ε̄ through F̄ , leaving un-

altered the achieved stability properties. Hence, the performance bounds, which

are solely determined by the performance functions ρ
σ(t)
i (t), i = 1, ..., N becomes

isolated against model uncertainties, extending greatly the robustness of the pro-

posed control scheme. Furthermore, and contrary to the standard distributed

control schemes for switching graphs, whose convergence rate is dictated by the

connectivity level (i.e., the smallest singular value of Lσ(t) + Bσ(t)
), the transient

response of the proposed scheme is independent of the underlying topology as

long as Assumption A1 holds.

19

CHAPTER 4. MAIN RESULTS 4.2

4.2.4 Control Parameters selection

Unlike what is common practice in the related literature, the prescribed per-

formance bounds are explicitly and solely determined by appropriately selecting

the parameters lσ(t), ρ∞ of the performance functions ρ
σ(t)
i (t), i = 1, ..., N . In par-

ticular, the decreasing rate lσ(t) of ρ
σ(t)
i (t), i = 1, ..., N introduces directly a lower

bound on the speed of convergence of the disagreement variables δ̄j(t), j = 1, ...,m.

Furthermore, ρ∞ = limt→∞ ρ
σ(t)
i (t), i = 1, ..., N and λ > lσ(t) > 0 regulate via (4.7)

the maximum allowable error at steady state. In that respect, the attributes of

the performance functions ρ
σ(t)
i (t), i = 1, ..., N are selected a priori, in accordance

to the desired transient and steady state performance specifications, except from

lσ(t) that is calculated as described in section 4.2.1. Additionally, an extra condi-

tion concerning the initial value of the performance functions has to be satisfied

(i.e., ρ
σ(t)
i (0) > |sσ(t)i (0)|, i = 1, ..., N), which guarantees in Phase A of the proof in

the Appendix of [30] of the Theorem 1 that ξ(0) ∈ Ωξ. Nevertheless, it is stressed

that the initial value ρ
σ(t)
i (0), i = 1, ..., N of the performance functions does not

affect either their transient or their steady state properties, as mentioned earlier.

Moreover, since s
σ(t)
i (t), i = 1, ..., N depend solely on the neighborhood errors,

which are available to each member of the multi-agent group, the aforementioned

condition can be easily satisfied by selecting the initial value of the corresponding

performance function ρ
σ(t)
i0 = ρ

σ(t)
i (0) to be grater than s

σ(t)
i (0), i = 1, ..., N . It is

underlined however that the proposed controller does not guarantee: i) the quality

of the evolution of the error metrics s
σ(t)
i (t), i = 1, ..., N inside the performance

envelopes and consequently of the disagreement error variables and ii) the control

input characteristics (magnitude and slew rate). In this direction extensive simu-

lation studies have revealed that the selection of the control gains ki, i = 1, ..., N
can have positive influence.

4.2.5 Increasing dimensionality

In case of M-dimensional agent states, where xi,j ∈ RM
, ui ∈ RM

, fi : RmM →
RM

, gi ∈ RM×M
, di : R+ → RM

for i = 1, ..., N , j = 1, ...,m and x0 : R+ → RM
,

the robust synchronization control problem with prescribed performance under

switching communication topology can be solved following a similar design proce-

dure, under the controllability assumption that the input matrices gi, i = 1, ..., N
are diagonal and positive (or negative) definite. In the same direction, let us define

the neighborhood error feedback:

e
σ(t)
i,j (t) =

∑
l∈Nσ(t)

i

αil(t)(xi,j − xl,j) + bi(t)
(
xi,j − xi(j−1)0

)
∈ RM

(4.9)

for i = 1, ..., N and j = 1, ...,m as well as the errors:

s
σ(t)
i (e

σ(t)
i,1 , ..., e

σ(t)
i,m) = [s

σ(t)
i1 , ..., s

σ(t)
iM]T =

m−1∑
ζ=0

(
m− 1

ζ

)
λζe

σ(t)
i,m−ζ(t) ∈ RM

(4.10)

for i = 1, ..., N . Thus, adopting element-wise for each error component sik,

i = 1, ..., N and k = 1, ...,M the corresponding performance functions ρ
σ(t)
ik (t) =

20

CHAPTER 4. MAIN RESULTS 4.2

(ρ
σ(t)
ik0 − ρ∞)e−l

σ(t)t + ρ∞, i = 1, ..., N and k = 1, ...,M such that ρ
σ(t)
ik0 > |sσ(t)ik (0)|,

i = 1, ..., N and k = 1, ...,M with lσ(t), ρ∞ incorporating the desired transient and

steady state specifications as presented in Proposition 1, the following distributed

control scheme is designed:

u
σ(t)
i (si, t) = −

ki1
2ρi1(t)

ln

1+

s
σ(t)
i1

ρ
σ(t)
i1

(t)

1−
s
σ(t)
i1

ρ
σ(t)
i1

(t)

(
1+

s
σ(t)
i1

ρ
σ(t)
i1

(t)

)(
1−

s
σ(t)
i1

ρ
σ(t)
i1

(t)

)
.
.
.

kiM
2ρiM (t)

ln

1+

s
σ(t)
iM

ρ
σ(t)
iM

(t)

1−
s
σ(t)
iM

ρ
σ(t)
iM

(t)

(
1+

s
σ(t)
iM

ρ
σ(t)
iM

(t)

)(
1−

s
σ(t)
iM

ρ
σ(t)
iM

(t)

)

(4.11)

with kik > 0, i = 1, ..., N and k = 1, ...,M . Following the same line of proof as

in the 1-D case, it can be easily verified that the aforementioned control protocol

guarantees |sσ(t)ik (t)| < ρ
σ(t)
ik (t), ∀t ≥ tl0, i = 1, ..., N , k = 1, ...,M and l = 1, ..., k

as well as the boundedness of all closed loop signals, which consequently leads

to the solution of the robust synchronization control problem with prescribed

performance under switching communication topology for multidimensional agent

states.

21

Chapter 5

Simulation Results

This chapter presents some simulation results in order to demonstrate the

effectiveness of the proposed distributed synchronization prescribed performance

control (PPC) protocol under switching communication topology and points out its

intriguing performance properties. Initially, the multi-agent system to be studied

is defined, as well as the switching communication topology to which the system

is subjected. Synchronization application results are then follow to confirm and

visualize the correct operation of the proposed control protocol. In addition, a

comparative simulation was conduced with a linear control protocol, the results

of which demonstrate the advantages of the proposed controller. The chapter

ends with the discussion and interpretation of the results obtained from the sim-

ulations.

5.1 Second Order Multi-agent System (MAS)

A multi-agent system comprised of a group of N = 5 two degrees of freedom

agents is considered. The 2nd order dynamics of the agents are expressed in the

workspace variables pi = [xi, yi]
T ∈ R2

, i = 1, ..., 5, as follows:

p̈i = Fi(ṗi)ṗi + Giui + Di (5.1)

where ui = [uix, uiy]
T ∈ R2

, i = 1, ..., 5 denote the control inputs, Di = [dixsin(3t),
diycos(4t)]

T
, i = 1, ..., 5 represent external disturbances and

Fi(ṗi) =

[
−fixxẏi −fixy(ẋi + ẏi)
fixyẋi 0

]
,

Gi = diag([gix, giy]), i = 1, ..., 5

with fixx = 1, fixy = 2, fiyy = 1, gix = 1.2, giy = 0.3, dix = 0.1, diy = 0.1, i = 1, ..., 5.

As can be seen, the system is in canonical, controllable form as described in (3.2)

and is a sub-class of triangular systems. Furthermore, the command/reference

trajectory (leader node) is a smooth representation p0(t) := [xd(t), yd(t)]
T ∈ R2

of

the acronym CSL with constant linear velocity (i.e.,

√
ẋ2d(t) + ẏ2d(t) = const).

22

CHAPTER 5. SIMULATION RESULTS 5.2

5.2 Set of Switching Graphs

The underlying switching communication topology is described via a set of

strongly connected diagraphs Γ = {G1, G2, G3} with a finite natural number index

set I~ = {1, 2, 3} given in Fig. 5.1. The communication topology for the nonlinear

multi-agent system in (5.1) is switching as Gσ(t) : G1 → G2 → G1 → G3 → G2 →
G2 → G1 → G3 → G2 → G1 with the dwell time Td = π/5 = 0.6283s and the

number of switches k = 10.

Figure 5.1: The interaction topology set Γ.

The switching signal is given in Fig. 5.2. The digraphs G1, G2, G3 defined by the

following augmented neighboring sets:

N̄G1
1 = {0}, N̄G1

2 = {1}, N̄G1
3 = {2}, N̄G1

4 = {3}, N̄G1
5 = {4}

N̄G2
1 = {2}, N̄G2

2 = {0}, N̄G2
3 = {2}, N̄G2

4 = {3}, N̄G2
5 = {1}

N̄G3
1 = {0}, N̄G3

2 = {3}, N̄G3
3 = {0}, N̄G3

4 = {3}, N̄G3
5 = {1}

23

CHAPTER 5. SIMULATION RESULTS 5.3

Figure 5.2: Switching signal σ(t).

5.3 Synchronization Example

At this synchronization application, the command/reference trajectory of the

leader is the parameterized with respect to time ellipse xd = 3 cos(t), yd = 1.5 sin(t).
For the position and velocity disagreement variables pi − p0, ṗi − ṗ0, i = 1, ..., 5
respectively, steady state errors 0.025 and 0.15 respectively are requested. In

this direction, following section 4.2, the performance functions ρ
σ(t)
ik (t) = (ρ

σ(t)
ik0 −

ρ∞)e−l
σ(t)t + ρ∞, i = 1, ..., 5 and k ∈ {x, y} are selected with ρ

σ(t)
ik0 = 2|sσ(t)ik (0)|+ 0.2,

i = 1, ..., 5 and k ∈ {x, y}. Moreover, employing Proposition 1 and adopting (4.4),

the parameters λ, ρ∞ are chosen as λ = 3 and ρ∞ = 0.0081 such that the ultimate

bounding sets, defined in (4.7), where the disagreement errors converge, meet

the aforementioned steady state performance specifications. Finally, the control

parameters kik, i = 1, ..., 5 and k ∈ {x, y} are set to 0.5 to yield smooth state evo-

lution and reasonable control effort. It was observed that decreasing the control

gain values tends to intensify the oscillatory behavior of the agents states. The

phenomenon is significantly smoothed out when increasing those values, at the

expense of larger control action.

24

CHAPTER 5. SIMULATION RESULTS 5.3

(a) (b)

(c) (d)

(e)

Figure 5.3: Evolution of the error metrics sik, i = 1, ..., 5, k ∈ {x, y} (dashed lines)

along with the imposed performance bounds (solid lines).

Simulation results with the proposed PPC protocol under the switching com-

munication topology described above are illustrated in Figs. 5.3 - 5.11. More

specifically, Fig. 5.3 depict the evolution of the errors s
σ(t)
ik , i = 1, ..., 5 and

k ∈ {x, y} along with the imposed performance bounds by the selected func-

tions ρ
σ(t)
ik , i = 1, ..., 5 and k ∈ {x, y}. The trace of the agents in the workspace is

pictured in Fig. 5.4. The trace of each agent begins from the corresponding num-

bered cycle. The evolution of the state variables (position and velocity) for each

agent are provided in Figs. 5.5 - 5.9. Furthermore, the evolution of position and

velocity disagreement errors is given in Fig. 5.10. Finally, the required control

input signals are given in 5.11. In all these figures the curves associated with

the agents comprised of ten different colorful parts as many as the switching time

intervals. The corresponding MATLAB code that used for the simulation is in the

Appendix A1.

25

CHAPTER 5. SIMULATION RESULTS 5.3

Figure 5.4: Trace of the agents in the workspace (solid lines) along with the ellipse

(i.e., reference trajectory - dashed line).

Figure 5.5: Evolution of the position and velocity states (solid lines) of agent 1

along with the reference position and velocity (dashed lines).

26

CHAPTER 5. SIMULATION RESULTS 5.3

Figure 5.6: Evolution of the position and velocity states (solid lines) of agent 2

along with the reference position and velocity (dashed lines).

Figure 5.7: Evolution of the position and velocity states (solid lines) of agent 3

along with the reference position and velocity (dashed lines).

27

CHAPTER 5. SIMULATION RESULTS 5.3

Figure 5.8: Evolution of the position and velocity states (solid lines) of agent 4

along with the reference position and velocity (dashed lines).

Figure 5.9: Evolution of the position and velocity states (solid lines) of agent 5

along with the reference position and velocity (dashed lines).

28

CHAPTER 5. SIMULATION RESULTS 5.3

(a) (b)

(c) (d)

Figure 5.10: Evolution of the position and velocity diasagreement errors of the

agents.

29

CHAPTER 5. SIMULATION RESULTS 5.3

(a) (b)

(c) (d)

(e)

Figure 5.11: Required control input signal of the agents.

As it was predicted by the theoretical analysis, the synchronization control prob-

lem with prescribed performance under switching communication topology is

solved despite the presence of external disturbances, the lack of knowledge of

the agent’s dynamics and the switches in the interaction of the agents with the

leader. All the above figures were derived using the MATLAB code in the Appendix

A1.

30

CHAPTER 5. SIMULATION RESULTS 5.4

5.4 Comparative Simulation

In order to illustrate the advantages of the proposed controller, a comparative

simulation was conducted with a consensus protocol for a multi-agent system

with second-order dynamics [5]. The network system under consideration con-

sists of n agents. Each agent updates its current state based upon the information

received from its neighbors and the ith agent has the dynamics as follows:

ẋi = vi

v̇i = ui
(5.2)

where xi is the position state, vi is the speed state and ui is the control input. The

consensus problem is solved by the following distributed control protocol:

ui(t) = k1
∑
sj∈Ni

αij(xj(t)− xi(t)) + k2
∑
sj∈Ni

αij(vj(t)− vi(t)) (5.3)

where k1, k2 > 0 are feedback gains and αij > 0, i = 1, ..., n are the elements of the

adjacency matrix A = [αij]. As regards the communication and connectivity of

the agents, a directed network with switching topology Gσ(t)
that is kept strongly

connected and balanced is considered.

Figure 5.12: The interaction topology set Γ1.

For the purposes of the simulation the nonlinear multi agent system in (5.1)

had to be linearized as follows:

p̈i = Fi(ṗi)ṗi + Givi + Di (5.4)

31

CHAPTER 5. SIMULATION RESULTS 5.4

where vi = G
−1
i (−Fi(ṗi)ṗi+ui) and ui is the linear protocol in (5.3). The underlying

switching communication topology is described via a set of strongly connected

diagraphs Γ1 = {G1, G2, G3} with a finite natural number index set I~ = {1, 2, 3}
given in Fig. 5.12. The communication topology for the linear multi-agent system

in (5.4) is switching as Gσ(t) : G1 → G2 → G1 → G3 → G2 → G2 → G1 →
G3 → G2 → G1 with the dwell time Td = π/5 = 0.6283s and the number of

switches k = 10. The feedback gains k1 and k2 are set to 5 to achieve consensus

in the desired time. Figs. 5.13 - 5.14 depict the evolution of the position and

velocity states of the agents with no disturbances (i.e., dix = diy = 0) and with

disturbances and slightly modified dynamics respectively (i.e.,dix = diy = 1 and

the parameters fixx, fixy, fiyy, gix, giy, i = 1, ..., 5 were perturbed by 25% from their

nominal values). The corresponding MATLAB code that used for the simulation is

in the Appendix A1.

Figure 5.13: Evolution of the position and velocity states of the network with no

disturbances with protocol in [5].

Figure 5.14: Evolution of the position and velocity states of the network with

distrurbances and perturbed dynamics with protocol in [5].

The above figures were derived using the MATLAB code in the Appendix A1.

32

CHAPTER 5. SIMULATION RESULTS 5.5

The respective simulation results of the system in (5.1) with the PPC protocol

are given in Figs 5.15 - 5.16. The underlying switching communication topology

Γ, the switching order Gσ(t)
, the dwell time Td, the number of switches k and

the values of the control parameters ρ
σ(t)
ik0 , λ, ρ∞ kik, i = 1, ..., 5 and k ∈ {x, y}

are remain the same as in the above synchronization example. In order for the

consensus to be achieved a slight modification had to be made in the disagreement

error. More specifically, the new error is as follows:

δ̄j(t) = x̄j(t)− s0,j ∈ RN , j = 1, ...,m (5.5)

with s0,j := 1
N

∑N
i=1 x̄j(0), j = 1, ...,m (i.e., s0,j, j = 1, ...,m is the average of the

initial values of the states).

Figure 5.15: Evolution of the position and velocity states of the network with no

disturbances with PPC protocol.

Figure 5.16: Evolution of the position and velocity states of the network with

distrurbances and perturbed dynamics with PPC protocol.

33

CHAPTER 5. SIMULATION RESULTS 5.5

5.5 Discussion of Results

As can be seen from the above simulation results, the proposed distributed

communication protocol works well. More specifically, Fig. 5.4 shows that the

robust synchronization of the agents with the leader is achieved at the desired

time. Furthermore, Fig. 5.3 confirm that |sσ(t)i (t)| < ρ
σ(t)
i (t), ∀t ≥ tl0, i = 1, ..., 5

and l = 1, ..., k that is, that Proposition 1 is valid and therefore the control pro-

tocol of Theorem 1 solves the robust synchronization problem with prescribed

performance under switching communication topology. Obviously, the consid-

ered switching graphs for the above application is consistent with Assumption

A1. From Figs 5.5 - 5.9 we find that the position and velocity states of all agents

converge with the reference position and velocity respectively at the prescribed

time. Fig. 5.10 shows that the requested steady state errors are achieved and

the prescribed transient and steady state performance is verified. In addition,

we see that the control inputs of the agents in Fig 5.11 have the expected form

(sinusoidal or co-sinusoidal). Finally, from Figs. 5.13 - 5.16 we can see that the

consensus with the PPC protocol is maintained by the addition of disturbances

and the slight change of dynamics while with the linear protocol in [5] not. This

demonstrates the robustness of the proposed distributed controller.

34

Chapter 6

Conclusions

A distributed control protocol for uncertain nonlinear multi-agent systems in a

leader-follower scheme, that achieves and maintains arbitrarily fast and accurate

synchronization with the leader state under switching communication topology,

was proposed. The developed scheme exhibits the following important charac-

teristics. First, it is decentralized in the sense that the control signal of each

agent is calculated on the basis of local relative state information from its neigh-

borhood set, expressed in a common frame. Moreover, its complexity proves

to be considerably low. Very few and simple calculations are required to out-

put the control signal. Additionally, no prior knowledge of the agents’ dynamic

model is required and no approximating structures are employed to acquire such

knowledge. Furthermore, the achieved prescribed transient and steady state per-

formance, that is independent of the underlying graph topology and is explicitly

imposed by designer-specified performance functions, simplifies significantly the

control gains selection.

As a next step it would be the extension of the present work in the general case

of random and arbitary large but finite number of communication switches. Our

expectations for future work also focus on the collision avoidance and connectivity

maintenance problems as well as the case where the agents do not share informa-

tion expressed in a common frame, within a similar framework (i.e., robustness,

prescribed transient and steady state performance), which would significantly

increase its applicability in mobile multi-agent systems.

35

Acknowledgements

I would like to thank the Professor of School of Mechanical Engineering - NTUA,

Mr. Kyriakopoulos K., who as my supervisor direct me wisely in my choice of sub-

ject and gave me the opportunity to elaborate this thesis. Equally important for

me was the excellent collaboration with the Post - Doc Associate, Mr. Bechlioulis

Ch. who, in a methodical way, helped me acquire a lot of knowledge about this

subject of study and eventually to successfully complete this work. I would also

like to thank my family for supporting me both mentally and financially through-

out my studies, as well as my friends and fellow students who have always offered

me help and cooperation.

36

References

[1] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, ‘‘Effective leader-

ship and decision-making in animal groups on the move,’’ Nature, vol. 433,

no. 7025, pp. 513–516, 2005.

[2] J. A. Fax and R. M. Murray, ‘‘Information flow and cooperative control of

vehicle formations,’’ IEEE Transactions on Automatic Control, vol. 49, no. 9,

pp. 1465–1476, 2004.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, ‘‘Coordination of groups of mobile

autonomous agents using nearest neighbor rules,’’ IEEE Transactions on Au-
tomatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] R. Olfati-Saber and R. M. Murray, ‘‘Consensus problems in networks of

agents with switching topology and time-delays,’’ IEEE Transactions on Auto-
matic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[5] P. Lin, Y. Jia, J. Du, and S. Yuan, ‘‘Distributed control of multi-agent systems

with second-order agent dynamics and delay-dependent communications,’’

Asian Journal of Control, vol. 10, no. 2, pp. 254–259, 2008.

[6] G. Wen, G. Hu, W. Yu, and G. Chen, ‘‘Distributed H∞ consensus of higher

order multiagent systems with switching topologies,’’ IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 61, no. 5, pp. 359–363, 2014.

[7] P. Lin, Y. Jia, and L. Li, ‘‘Distributed robustH∞ consensus control in directed

networks of agents with time-delay,’’ Systems and Control Letters, vol. 57,

no. 8, pp. 643–653, 2008.

[8] Y. Liu and Y. Jia, ‘‘Consensus problem of high-order multi-agent systems

with external disturbances: AnH∞ analysis approach,’’ International Journal
of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1579–1593, 2010.

[9] C.-X. Zhang and H. Lin, ‘‘Agreement coordination for second-order multi-

agent systems with disturbances,’’ Chinese Physics B, vol. 17, no. 12,

pp. 4458–4465, 2008.

[10] H. Zhang, R. Yang, H. Yan, and F. Yang, ‘‘H∞ consensus of event-based

multi-agent systems with switching topology,’’ Information Sciences, vol. 370-

371, pp. 623–635, 2016.

[11] Y. Cui and Y. Jia, ‘‘Robust L2 − L∞ consensus control for uncertain high-

order multi-agent systems with time-delay,’’ International Journal of Systems
Science, vol. 45, no. 3, pp. 427–438, 2014.

37

REFERENCES 6.0

[12] X. Mu, B. Zheng, and K. Liu, ‘‘L2 − L∞ containment control of multi-agent

systems with markovian switching topologies and non-uniform time-varying

delays,’’ IET Control Theory and Applications, vol. 8, no. 10, pp. 863–872,

2014.

[13] H.-Y. Yang, H.-L. Zou, H.-X. Liu, F. Liu, M. Zhao, and F. Han, ‘‘Consen-

sus tracking of multiagent systems with time-varying reference state and

exogenous disturbances,’’ Mathematical Problems in Engineering, vol. 2014,

no. 213862, 2014.

[14] H. Yang, Z. Zhang, and S. Zhang, ‘‘Consensus of second-order multi-agent

systems with exogenous disturbances,’’ International Journal of Robust and
Nonlinear Control, vol. 21, no. 9, pp. 945–956, 2011.

[15] H.-Y. Y. andL. Guo and H.-L. Zou, ‘‘Robust consensus of multi-agent sys-

tems with time-delays and exogenous disturbances,’’ International Journal of
Control, Automation and Systems, vol. 10, no. 4, pp. 797–805, 2012.

[16] H.-Y. Yang, Z.-X. Zhang, and S. Zhang, ‘‘Consensus of mobile multiple agent

systems with disturbance observer-based control,’’ Kongzhi Lilun Yu Yingy-
ong/Control Theory and Applications, vol. 27, no. 12, pp. 1787–1792, 2010.

[17] M. Rezaei, M. Kabiri, and M. Menhaj, ‘‘Adaptive consensus for high-order

unknown nonlinear multi-agent systems with unknown control directions

and switching topologies,’’ Information Sciences, vol. 459, pp. 224–237, 2018.

[18] Y. Yang, D. Yue, and C. Dou, ‘‘Distributed adaptive output consensus control

of a class of heterogeneous multi-agent systems under switching directed

topologies,’’ Information Sciences, vol. 345, pp. 294–312, 2016.

[19] M. Shahvali and K. Shojaei, ‘‘Distributed adaptive neural control of nonlinear

multi-agent systems with unknown control directions,’’ Nonlinear Dynamics,

vol. 83, no. 4, pp. 2213–2228, 2016.

[20] S. Su and Z. Lin, ‘‘A multiple lyapunov function approach to distributed

synchronization control of multi-agent systems with switching directed com-

munication topologies and unknown nonlinearities,’’ IEEE Transactions on
Control of Network Systems, vol. 5, no. 1, pp. 23–33, 2018.

[21] S. Su, Z. Lin, and A. Garcia, ‘‘Distributed synchronization control of multia-

gent systems with unknown nonlinearities,’’ IEEE Transactions on Cybernet-
ics, vol. 46, no. 1, pp. 325–338, 2016.

[22] W. Wang, D. Wang, and Z. Peng, ‘‘Distributed containment control for uncer-

tain nonlinear multi-agent systems in non-affine pure-feedback form under

switching topologies,’’ Neurocomputing, vol. 152, pp. 1–10, 2015.

[23] M. Franceschelli, A. Giua, A. Pisano, and E. Usai, ‘‘Finite-time consensus for

switching network topologies with disturbances,’’ Nonlinear Analysis: Hybrid
Systems, vol. 10, no. 1, pp. 83–93, 2013.

38

REFERENCES 6.0

[24] X. Li, C. Lei, L. Dong, and S.-K. Nguang, ‘‘Guaranteed convergence control

for consensus of mobile sensor networks with dynamical topologies,’’ Inter-
national Journal of Distributed Sensor Networks, vol. 12, no. 11, 2016.

[25] J. Qin and C. Yu, ‘‘Exponential consensus of general linear multi-agent sys-

tems under directed dynamic topology,’’ Automatica, vol. 50, no. 9, pp. 2327–

2333, 2014.

[26] X. Wang, J. Li, J. Xing, R. Wang, L. Xie, and X. Zhang, ‘‘A novel finite-time

average consensus protocol for multi-agent systems with switching topol-

ogy,’’ Transactions of the Institute of Measurement and Control, vol. 40, no. 2,

pp. 606–614, 2018.

[27] D. Nguyen, ‘‘Distributed consensus design for a class of uncertain linear

multi-agent systems under unbalanced randomly switching directed topolo-

gies,’’ Mathematical Problems in Engineering, vol. 2018, no. 8081264, 2018.

[28] B. Cui, C. Zhao, T. Ma, and C. Feng, ‘‘Leader-following consensus of non-

linear multi-agent systems with switching topologies and unreliable commu-

nications,’’ Neural Computing and Applications, vol. 27, no. 4, pp. 909–915,

2016.

[29] J. Davila and A. Pisano, ‘‘Fixed-time consensus for a class of nonlinear uncer-

tain multi-agent systems,’’ Proceedings of the American Control Conference,

vol. 2016, no. 7525493, pp. 3728–3733, 2016.

[30] C. P. Bechlioulis and G. A. Rovithakis, ‘‘Decentralized robust synchroniza-

tion of unknown high order nonlinear multi-agent systems with prescribed

transient and steady state performance,’’ IEEE Transactions on Automatic
Control, vol. 62, no. 1, pp. 123–134, 2017.

[31] H. Du, S. Li, and C. Qian, ‘‘Finite-time attitude tracking control of spacecraft

with application to attitude synchronization,’’ IEEE Transactions on Auto-
matic Control, vol. 56, no. 11, pp. 2711–2717, 2011.

[32] P. N. Shivakumar and K. H. Chew, ‘‘A sufficient condition for nonvanishing

of determinants,’’ Proceedings of the American Mathematical Society, vol. 43,

no. 1, pp. 63–66, 1974.

[33] Z. Qu, TCooperative Control of Dynamical Systems: Applications to Au-
tonomous Vehicles. New York, USA: Springer, 2009.

[34] Y. P. Hong and C. T. Pan, ‘‘A lower bound for the smallest singular value,’’

Linear Algebra and its Applications, vol. 172, pp. 27–32, 1992.

[35] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and

R. Sukthankar, ‘‘Decentralized estimation and control of graph connectivity

for mobile sensor networks,’’ Automatica, vol. 46, no. 2, pp. 390–396, 2010.

[36] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, ‘‘Decentralized esti-

mation of laplacian eigenvalues in multi-agent systems,’’ Automatica, vol. 49,

no. 4, pp. 1031–1036, 2013.

39

REFERENCES 6.0

[37] L. Sabattini, C. Secchi, and N. Chopra, ‘‘Decentralized estimation and control

for preserving the strong connectivity of directed graphs,’’ IEEE Transactions
on Cybernetics, 2014. article in Press, DOI:10.1109/TCYB.2014.2369572.

40

Appendix A

Appendix

A.1 MATLAB Code

Main m-file for system simulation - Synchronization with PPC:

1 p1=[0.30;0.20;0;0;0.4;0.3;0;0;0.1;0.1;0;0;0.5;0.6;0;0;0.8;0.2;0;0];
2 % initial values of state variables
3 options=odeset(’reltol’,1e-6,’abstol’,1e-9);
4 ts=zeros([21 10]);
5 sol=zeros([21 200]);
6 s=zeros([21 100]);
7 r=zeros([21 100]);
8 gp=zeros([21 100]);
9 gv=zeros([21 100]);

10 for i=0:20:180; % 10 iterations, one for each switching topology
11 t1=(i/20)*pi/5:0.05*pi/5:((i+20)/20)*pi/5;
12 % the switching time intervals
13 tstart=t1(1); % switching times
14 [l,r0]=calc_r0_l(p1,tstart); % calculation of parameters r0
15 % and l for each agent
16 save(’t_r0_l.mat’,’l’,’r0’,’tstart’);
17 ls1=@mal1;
18 [ts1,sol1]=ode15s(ls1,t1,p1,options);
19 % solve the system with ode15s
20 [s1,r1,gp1,gv1]=calc_all(ts1,sol1,l,r0,tstart);
21 % calculation of the values of error signals ’s1’,
22 % performance functions ’r1’
23 % and neighborhood errors ’gp1’ and ’gv1’
24 p1=sol1(21,:)’;
25 ts(:,(i/20)+1)=ts1; % save the simulation time
26 sol(:,(i+1:i+20))=sol1;
27 % save the values of the solutions of the states
28 s(:,(i/2+1:i/2+10))=s1.’;
29 % save the values of the error signals
30 r(:,(i/2+1:i/2+10))=r1.’;
31 % save the values of the performance functions

41

APPENDIX A. APPENDIX A.1

32 gp(:,(i/2+1:i/2+10))=gp1.’; % save the values of the
33 gv(:,(i/2+1:i/2+10))=gv1.’; % neighborhood errors
34 end
35

36

Calculation of parameters ρ
σ(t)
i,k (0) and l

σ(t)
i,k , i = 1, ..., 5, k ∈ {x, y}:

1 function [l,r0]=calc_r0_l(pstart,tstart)
2 if tstart<pi/5; % the adjancy matix
3 Astart=[0 0 0 0 0; % is different at each
4 1 0 0 0 0; % switching time
5 0 1 0 0 0;
6 0 0 1 0 0;
7 0 0 0 1 0];
8 elseif tstart<2*pi/5;
9 Astart=[0 1 0 0 0;

10 0 0 0 0 0;
11 0 1 0 0 0;
12 0 0 1 0 0;
13 1 0 0 0 0];
14 elseif tstart<3*pi/5;
15 Astart=[0 0 0 0 0;
16 1 0 0 0 0;
17 0 1 0 0 0;
18 0 0 1 0 0;
19 0 0 0 1 0];
20 elseif tstart<4*pi/5;
21 Astart=[0 0 0 0 0;
22 0 0 1 0 0;
23 0 0 0 0 0;
24 0 0 1 0 0;
25 1 0 0 0 0];
26 elseif tstart<5*pi/5;
27 Astart=[0 1 0 0 0;
28 0 0 0 0 0;
29 0 1 0 0 0;
30 0 0 1 0 0;
31 1 0 0 0 0];
32 elseif tstart<6*pi/5;
33 Astart=[0 1 0 0 0;
34 0 0 0 0 0;
35 0 1 0 0 0;
36 0 0 1 0 0;
37 1 0 0 0 0];
38 elseif tstart<7*pi/5;
39 Astart=[0 0 0 0 0;

42

APPENDIX A. APPENDIX A.1

40 1 0 0 0 0;
41 0 1 0 0 0;
42 0 0 1 0 0;
43 0 0 0 1 0];
44 elseif tstart<8*pi/5;
45 Astart=[0 0 0 0 0;
46 0 0 1 0 0;
47 0 0 0 0 0;
48 0 0 1 0 0;
49 1 0 0 0 0];
50 elseif tstart<9*pi/5;
51 Astart=[0 1 0 0 0;
52 0 0 0 0 0;
53 0 1 0 0 0;
54 0 0 1 0 0;
55 1 0 0 0 0];
56 %{
57 elseif tstart<10*pi/5;
58 Astart=[0 0 0 0 0;
59 1 0 0 0 0;
60 0 1 0 0 0;
61 0 0 1 0 0;
62 0 0 0 1 0];
63 elseif tstart<11*pi/5; % the adjancy matix
64 Astart=[0 0 0 0 0;
65 0 0 1 0 0;
66 0 0 0 0 0;
67 0 0 1 0 0;
68 1 0 0 0 0];
69 elseif tstart<12*pi/5;
70 Astart=[0 1 0 0 0;
71 0 0 0 0 0;
72 0 1 0 0 0;
73 0 0 1 0 0;
74 1 0 0 0 0];
75 elseif tstart<13*pi/5;
76 Astart=[0 0 0 0 0;
77 1 0 0 0 0;
78 0 1 0 0 0;
79 0 0 1 0 0;
80 0 0 0 1 0];
81 elseif tstart<14*pi/5; % the adjancy matix
82 Astart=[0 0 0 0 0;
83 0 0 1 0 0;
84 0 0 0 0 0;
85 0 0 1 0 0;
86 1 0 0 0 0];
87 elseif tstart<15*pi/5;

43

APPENDIX A. APPENDIX A.1

88 Astart=[0 1 0 0 0;
89 0 0 0 0 0;
90 0 1 0 0 0;
91 0 0 1 0 0;
92 1 0 0 0 0];
93 elseif tstart<16*pi/5;
94 Astart=[0 0 0 0 0;
95 1 0 0 0 0;
96 0 1 0 0 0;
97 0 0 1 0 0;
98 0 0 0 1 0];
99 elseif tstart<17*pi/5;

100 Astart=[0 0 0 0 0;
101 1 0 0 0 0;
102 0 1 0 0 0;
103 0 0 1 0 0;
104 0 0 0 1 0];
105 elseif tstart<18*pi/5; % the adjancy matix
106 Astart=[0 0 0 0 0;
107 0 0 1 0 0;
108 0 0 0 0 0;
109 0 0 1 0 0;
110 1 0 0 0 0];
111 elseif tstart<19*pi/5;
112 Astart=[0 1 0 0 0;
113 0 0 0 0 0;
114 0 1 0 0 0;
115 0 0 1 0 0;
116 1 0 0 0 0];
117 %}
118 else
119 Astart=[0 0 0 0 0;
120 1 0 0 0 0;
121 0 1 0 0 0;
122 0 0 1 0 0;
123 0 0 0 1 0];
124

125 end
126 %%%%%%%%%%%%%%%%%
127 diagarraystart=zeros([5 1]);
128 for i=1:5;
129 for k=1:5;
130 diagarraystart(i)=diagarraystart(i)+Astart(i,k);
131 end
132 end
133 Dstart=diag(diagarraystart);
134 %%%%%%%%%%%%%%%%%%%%%%%
135 Lstart=Dstart-Astart;

44

APPENDIX A. APPENDIX A.1

136 %%%%%%%%%%%%%%%%%%%%
137 Bstart=zeros([5 5]);
138 for i=1:5;
139 if Dstart(i,i)==0;
140 Bstart(i,i)=1;
141 end
142 end
143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
144 LBstart=Lstart+Bstart;
145 if tstart==0;
146 dposx1=[pstart(1)-3*cos(tstart);pstart(5)-3*cos(tstart);pstart(9)
147 -3*cos(tstart);pstart(13)-3*cos(tstart);pstart(17)-3*cos(tstart)];
148 dposy1=[pstart(2)-1.5*sin(tstart);pstart(6)-1.5*sin(tstart);pstart(10)
149 -1.5*sin(tstart);pstart(14)-1.5*sin(tstart);pstart(18)-1.5*sin(tstart)];
150 dvelx1=[pstart(3)+3*sin(tstart);pstart(7)+3*sin(tstart);pstart(11)
151 +3*sin(tstart);pstart(15)+3*sin(tstart);pstart(19)+3*sin(tstart)];
152 dvely1=[pstart(4)-1.5*cos(tstart);pstart(8)-1.5*cos(tstart);pstart(12)
153 -1.5*cos(tstart);pstart(16)-1.5*cos(tstart);pstart(20)-1.5*cos(tstart)];
154 %dposx1=[pstart(1)-0.3;pstart(5)-0.3;pstart(9)-0.3;pstart(13)-0.3;pstart(17)-0.3];
155 %dposy1=[pstart(2)-0.2;pstart(6)-0.2;pstart(10)-0.2;pstart(14)-0.2;pstart(18)-0.2];
156 %dvelx1=[pstart(3)-0;pstart(7)-0;pstart(11)-0;pstart(15)-0;pstart(19)-0];
157 %dvely1=[pstart(4)-0;pstart(8)-0;pstart(12)-0;pstart(16)-0;pstart(20)-0];
158 else
159 load(’sfalmata.mat’);
160 end
161 epos1start=[LBstart*dposx1;LBstart*dposy1];
162 evel1start=[LBstart*dvelx1;LBstart*dvely1];
163 geitpos1start=[epos1start(1);epos1start(6);epos1start(2);
164 epos1start(7);epos1start(3);epos1start(8);epos1start(4);
165 epos1start(9);epos1start(5);epos1start(10)];
166 geitvel1start=[evel1start(1);evel1start(6);evel1start(2);
167 evel1start(7);evel1start(3);evel1start(8);evel1start(4);
168 evel1start(9);evel1start(5);evel1start(10)];
169 lamda=3;
170 r_apeiro=0.0081;
171 sigma1=geitvel1start+lamda*geitpos1start;
172 r0=2*abs(sigma1)+0.2;
173 a=1.005;
174 l=-(log(((a-1)*r_apeiro)./(r0-r_apeiro))/(10*pi/5)-tstart);
175 end

Calculation of requested quantities s
σ(t)
i,k (t), ρ

σ(t)
i,k (t) and e

σ(t)
i,k (t), i = 1, ..., 5, k ∈

{x, y}:

1 function [sigma,rfun,dposx0,dposy0,dvelx0,dvely0]=calc_all(ts1,sol1,l,r0,tstart)
2 if tstart<pi/5; % the adjancy matix
3 A0=[0 0 0 0 0; % is different at each

45

APPENDIX A. APPENDIX A.1

4 1 0 0 0 0; % switching time
5 0 1 0 0 0;
6 0 0 1 0 0;
7 0 0 0 1 0];
8 elseif tstart<2*pi/5;
9 A0=[0 1 0 0 0;

10 0 0 0 0 0;
11 0 1 0 0 0;
12 0 0 1 0 0;
13 1 0 0 0 0];
14 elseif tstart<3*pi/5;
15 A0=[0 0 0 0 0;
16 1 0 0 0 0;
17 0 1 0 0 0;
18 0 0 1 0 0;
19 0 0 0 1 0];
20 elseif tstart<4*pi/5;
21 A0=[0 0 0 0 0;
22 0 0 1 0 0;
23 0 0 0 0 0;
24 0 0 1 0 0;
25 1 0 0 0 0];
26 elseif tstart<5*pi/5;
27 A0=[0 1 0 0 0;
28 0 0 0 0 0;
29 0 1 0 0 0;
30 0 0 1 0 0;
31 1 0 0 0 0];
32 elseif tstart<6*pi/5;
33 A0=[0 1 0 0 0;
34 0 0 0 0 0;
35 0 1 0 0 0;
36 0 0 1 0 0;
37 1 0 0 0 0];
38 elseif tstart<7*pi/5;
39 A0=[0 0 0 0 0;
40 1 0 0 0 0;
41 0 1 0 0 0;
42 0 0 1 0 0;
43 0 0 0 1 0];
44 elseif tstart<8*pi/5;
45 A0=[0 0 0 0 0;
46 0 0 1 0 0;
47 0 0 0 0 0;
48 0 0 1 0 0;
49 1 0 0 0 0];
50 elseif tstart<9*pi/5;
51 A0=[0 1 0 0 0;

46

APPENDIX A. APPENDIX A.1

52 0 0 0 0 0;
53 0 1 0 0 0;
54 0 0 1 0 0;
55 1 0 0 0 0];
56 %{
57 elseif tstart<10*pi/5;
58 A0=[0 0 0 0 0;
59 1 0 0 0 0;
60 0 1 0 0 0;
61 0 0 1 0 0;
62 0 0 0 1 0];
63 elseif tstart<11*pi/5; % the adjancy matix
64 A0=[0 0 0 0 0;
65 0 0 1 0 0;
66 0 0 0 0 0;
67 0 0 1 0 0;
68 1 0 0 0 0];
69 elseif tstart<12*pi/5;
70 A0=[0 1 0 0 0;
71 0 0 0 0 0;
72 0 1 0 0 0;
73 0 0 1 0 0;
74 1 0 0 0 0];
75 elseif tstart<13*pi/5;
76 A0=[0 0 0 0 0;
77 1 0 0 0 0;
78 0 1 0 0 0;
79 0 0 1 0 0;
80 0 0 0 1 0];
81

82 elseif tstart<14*pi/5; % the adjancy matix
83 A0=[0 0 0 0 0;
84 0 0 1 0 0;
85 0 0 0 0 0;
86 0 0 1 0 0;
87 1 0 0 0 0];
88 elseif tstart<15*pi/5;
89 A0=[0 1 0 0 0;
90 0 0 0 0 0;
91 0 1 0 0 0;
92 0 0 1 0 0;
93 1 0 0 0 0];
94 elseif tstart<16*pi/5;
95 A0=[0 0 0 0 0;
96 1 0 0 0 0;
97 0 1 0 0 0;
98 0 0 1 0 0;
99 0 0 0 1 0];

47

APPENDIX A. APPENDIX A.1

100 elseif tstart<17*pi/5;
101 A0=[0 0 0 0 0;
102 1 0 0 0 0;
103 0 1 0 0 0;
104 0 0 1 0 0;
105 0 0 0 1 0];
106 elseif tstart<18*pi/5; % the adjancy matix
107 A0=[0 0 0 0 0;
108 0 0 1 0 0;
109 0 0 0 0 0;
110 0 0 1 0 0;
111 1 0 0 0 0];
112 elseif tstart<19*pi/5;
113 A0=[0 1 0 0 0;
114 0 0 0 0 0;
115 0 1 0 0 0;
116 0 0 1 0 0;
117 1 0 0 0 0];
118 %}
119 else
120 A0=[0 0 0 0 0;
121 1 0 0 0 0;
122 0 1 0 0 0;
123 0 0 1 0 0;
124 0 0 0 1 0];
125

126 end
127 %%%%%%%%%%%%%%%%%
128 diagarray0=zeros([5 1]);
129 for i=1:5;
130 for k=1:5;
131 diagarray0(i)=diagarray0(i)+A0(i,k);
132 end
133 end
134 D0=diag(diagarray0);
135 %%%%%%%%%%%%%%%%%%%%%%%
136 L0=D0-A0;
137 %%%%%%%%%%%%%%%%%%%%
138 B0=zeros([5 5]);
139 for i=1:5;
140 if D0(i,i)==0;
141 B0(i,i)=1;
142 end
143 end
144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
145 LB0=L0+B0;
146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
147 dposx0=[sol1(:,1)’-3*cos(ts1’);sol1(:,5)’-3*cos(ts1’);sol1(:,9)’

48

APPENDIX A. APPENDIX A.1

148 -3*cos(ts1’);sol1(:,13)’-3*cos(ts1’);sol1(:,17)’-3*cos(ts1’)];
149 dposy0=[sol1(:,2)’-1.5*sin(ts1’);sol1(:,6)’-1.5*sin(ts1’);sol1(:,10)’
150 -1.5*sin(ts1’);sol1(:,14)’-1.5*sin(ts1’);sol1(:,18)’-1.5*sin(ts1’)];
151 dvelx0=[sol1(:,3)’+3*sin(ts1’);sol1(:,7)’+3*sin(ts1’);sol1(:,11)’
152 +3*sin(ts1’);sol1(:,15)’+3*sin(ts1’);sol1(:,19)’+3*sin(ts1’)];
153 dvely0=[sol1(:,4)’-1.5*cos(ts1’);sol1(:,8)’-1.5*cos(ts1’);sol1(:,12)’
154 -1.5*cos(ts1’);sol1(:,16)’-1.5*cos(ts1’);sol1(:,20)’-1.5*cos(ts1’)];
155 %dposx0=[sol1(:,1)’-0.3;sol1(:,5)’-0.3;sol1(:,9)’-0.3;sol1(:,13)’-0.3;sol1(:,17)’-0.3];
156 %dposy0=[sol1(:,2)’-0.2;sol1(:,6)’-0.2;sol1(:,10)’-0.2;sol1(:,14)’-0.2;sol1(:,18)’-0.2];
157 %dvelx0=[sol1(:,3)’-0;sol1(:,7)’-0;sol1(:,11)’-0;sol1(:,15)’-0;sol1(:,19)’-0];
158 %dvely0=[sol1(:,4)’-0;sol1(:,8)’-0;sol1(:,12)’-0;sol1(:,16)’-0;sol1(:,20)’-0];
159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
160 epos0=[LB0*dposx0;LB0*dposy0];
161 evel0=[LB0*dvelx0;LB0*dvely0];
162 geitpos0=[epos0(1,:);epos0(6,:);epos0(2,:);epos0(7,:);epos0(3,:);
163 epos0(8,:);epos0(4,:);epos0(9,:);epos0(5,:);epos0(10,:)];
164 geitvel0=[evel0(1,:);evel0(6,:);evel0(2,:);evel0(7,:);evel0(3,:);
165 evel0(8,:);evel0(4,:);evel0(9,:);evel0(5,:);evel0(10,:)];
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167 lamda=3;
168 sigma=geitvel0+lamda*geitpos0;
169 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
170 r_apeiro=0.0081;
171 rfun=zeros([10 21]);
172 for i=1:21;
173 rfun(:,i)=(r0-r_apeiro).*exp(-l*(ts1(i)-tstart))+r_apeiro;
174 end
175 end

Constructing the differential system:

1 function syst=mal1(t1,p1) % function that
2 % creates the
3 % differential system
4 load(’t_r0_l.mat’);
5 A1=alpha2(tstart); % adjency matrix
6 D1=degree1(A1); % degree matrix
7 L1=laplacian1(A1,D1); % laplacian
8 B1=beta1(D1); % matrix that shows the access of the agents
9 % to the leader ’s state

10 LB1=betalap1(L1,B1); % L + B
11 [dposx1,dposy1,dvelx1,dvely1]=deltaerror1(p1,t1); % disagreement errors
12 [geitpos1,geitvel1]=neiberror1(LB1,dposx1,dposy1,dvelx1,dvely1);
13 % neighborhood errors
14 sigma1=serror1(geitpos1,geitvel1); % error signals
15 rfun1=apodosh1(t1); % performance functions
16 u1=eisodos1(rfun1,sigma1); % control input

49

APPENDIX A. APPENDIX A.1

17 syst=systhma1(p1,u1,t1); % differential system in matrix form
18 end

Functions that "mal1" includes:

1 function A1=alpha2(tstart)
2 if tstart<pi/5; % the adjancy matix
3 A1=[0 0 0 0 0; % is different at each
4 1 0 0 0 0; % switching time
5 0 1 0 0 0;
6 0 0 1 0 0;
7 0 0 0 1 0];
8 elseif tstart<2*pi/5;
9 A1=[0 1 0 0 0;

10 0 0 0 0 0;
11 0 1 0 0 0;
12 0 0 1 0 0;
13 1 0 0 0 0];
14 elseif tstart<3*pi/5;
15 A1=[0 0 0 0 0;
16 1 0 0 0 0;
17 0 1 0 0 0;
18 0 0 1 0 0;
19 0 0 0 1 0];
20 elseif tstart<4*pi/5;
21 A1=[0 0 0 0 0;
22 0 0 1 0 0;
23 0 0 0 0 0;
24 0 0 1 0 0;
25 1 0 0 0 0];
26 elseif tstart<5*pi/5;
27 A1=[0 1 0 0 0;
28 0 0 0 0 0;
29 0 1 0 0 0;
30 0 0 1 0 0;
31 1 0 0 0 0];
32 elseif tstart<6*pi/5;
33 A1=[0 1 0 0 0;
34 0 0 0 0 0;
35 0 1 0 0 0;
36 0 0 1 0 0;
37 1 0 0 0 0];
38 elseif tstart<7*pi/5;
39 A1=[0 0 0 0 0;
40 1 0 0 0 0;
41 0 1 0 0 0;
42 0 0 1 0 0;

50

APPENDIX A. APPENDIX A.1

43 0 0 0 1 0];
44 elseif tstart<8*pi/5;
45 A1=[0 0 0 0 0;
46 0 0 1 0 0;
47 0 0 0 0 0;
48 0 0 1 0 0;
49 1 0 0 0 0];
50 elseif tstart<9*pi/5;
51 A1=[0 1 0 0 0;
52 0 0 0 0 0;
53 0 1 0 0 0;
54 0 0 1 0 0;
55 1 0 0 0 0];
56 else
57 A1=[0 0 0 0 0;
58 1 0 0 0 0;
59 0 1 0 0 0;
60 0 0 1 0 0;
61 0 0 0 1 0];
62 end
63 end

1 function D1=degree1(A1)
2 diagarray=zeros([5 1]);
3 for i=1:5;
4 for k=1:5;
5 diagarray(i)=diagarray(i)+A1(i,k);
6 end
7 end
8 D1=diag(diagarray);
9 end

1 function L1=laplacian1(A1,D1)
2 L1=D1-A1;
3 end

1 function B1=beta1(D1)
2 B1=zeros([5 5]);
3 for i=1:5;
4 if D1(i,i)==0;
5 B1(i,i)=1;
6 end
7 end
8 end

51

APPENDIX A. APPENDIX A.1

1 function LB1=betalap1(L1,B1)
2 LB1=L1+B1;
3 end

1 function [dposx1,dposy1,dvelx1,dvely1]=deltaerror1(p1,t1)
2 dposx1=[p1(1)-3*cos(t1);p1(5)-3*cos(t1);p1(9)-3*cos(t1);
3 p1(13)-3*cos(t1);p1(17)-3*cos(t1)];
4 dposy1=[p1(2)-1.5*sin(t1);p1(6)-1.5*sin(t1);p1(10)-1.5*sin(t1);
5 p1(14)-1.5*sin(t1);p1(18)-1.5*sin(t1)];
6 dvelx1=[p1(3)+3*sin(t1);p1(7)+3*sin(t1);p1(11)+3*sin(t1);
7 p1(15)+3*sin(t1);p1(19)+3*sin(t1)];
8 dvely1=[p1(4)-1.5*cos(t1);p1(8)-1.5*cos(t1);p1(12)-1.5*cos(t1);
9 p1(16)-1.5*cos(t1);p1(20)-1.5*cos(t1)];

10 %dposx1=[p1(1)-0.3;p1(5)-0.3;p1(9)-0.3;p1(13)-0.3;p1(17)-0.3];
11 %dposy1=[p1(2)-0.2;p1(6)-0.2;p1(10)-0.2;p1(14)-0.2;p1(18)-0.2];
12 %dvelx1=[p1(3)-0;p1(7)-0;p1(11)-0;p1(15)-0;p1(19)-0];
13 %dvely1=[p1(4)-0;p1(8)-0;p1(12)-0;p1(16)-0;p1(20)-0];
14 save(’sfalmata.mat’,’dposx1’,’dposy1’,’dvelx1’,’dvely1’);
15 end

1 function [geitpos1,geitvel1]=neiberror1(LB1,dposx1,dposy1,
2 dvelx1,dvely1)
3 epos1=[LB1*dposx1;LB1*dposy1];
4 evel1=[LB1*dvelx1;LB1*dvely1];
5 geitpos1=[epos1(1);epos1(6);epos1(2);epos1(7);
6 epos1(3);epos1(8);epos1(4);epos1(9);epos1(5);epos1(10)];
7 geitvel1=[evel1(1);evel1(6);evel1(2);evel1(7);
8 evel1(3);evel1(8);evel1(4);evel1(9);evel1(5);evel1(10)];
9 end

1 function sigma1=serror1(geitpos1,geitvel1)
2 lamda=3;
3 sigma1=geitvel1+lamda*geitpos1;
4 end

1 function rfun1=apodosh1(t1)
2 r_apeiro=0.0081;
3 load(’t_r0_l.mat’);
4 rfun1=(r0-r_apeiro).*exp(-l*(t1-tstart))+r_apeiro;
5 end

1 function u1=eisodos1(rfun1,sigma1)

52

APPENDIX A. APPENDIX A.1

2 kapa=0.5;
3 one=-kapa./(2.*rfun1);
4 two=(1+(sigma1./rfun1));
5 three=(1-sigma1./rfun1);
6 u=real(one.*(log(two./three))./((two).*(three)));
7 save(’input.mat’,’u’);
8 u1=[0;0;u(1);u(2);0;0;u(3);u(4);0;0;u(5);u(6);
9 0;0;u(7);u(8);0;0;u(9);u(10)];

10 end

1 function syst=systhma1(p1,u1,t1)
2 z4x4=zeros([4 4]);
3 fixx=1;
4 fixy=2;
5 gix=1.2;
6 giy=0.3;
7 dix=0.1;
8 diy=0.1;
9 subf1=[0 0 1 0;0 0 0 1;0 0 -fixx*p1(4) -fixy*(p1(3)+p1(4));

10 0 0 fixy*p1(3) 0];
11 subf2=[0 0 1 0;0 0 0 1;0 0 -fixx*p1(8) -fixy*(p1(7)+p1(8));
12 0 0 fixy*p1(7) 0];
13 subf3=[0 0 1 0;0 0 0 1;0 0 -fixx*p1(12) -fixy*(p1(11)+p1(12));
14 0 0 fixy*p1(11) 0];
15 subf4=[0 0 1 0;0 0 0 1;0 0 -fixx*p1(16) -fixy*(p1(15)+p1(16));
16 0 0 fixy*p1(15) 0];
17 subf5=[0 0 1 0;0 0 0 1;0 0 -fixx*p1(20) -fixy*(p1(19)+p1(20));
18 0 0 fixy*p1(19) 0];
19 F=[subf1 z4x4 z4x4 z4x4 z4x4;z4x4 subf2 z4x4 z4x4 z4x4;
20 z4x4 z4x4 subf3 z4x4 z4x4;z4x4 z4x4 z4x4 subf4 z4x4;
21 z4x4 z4x4 z4x4 z4x4 subf5];
22 subu=[0 0 0 0;0 0 0 0;0 0 gix 0;0 0 0 giy];
23 G=[subu z4x4 z4x4 z4x4 z4x4;z4x4 subu z4x4 z4x4 z4x4;
24 z4x4 z4x4 subu z4x4 z4x4;z4x4 z4x4 z4x4 subu z4x4;
25 z4x4 z4x4 z4x4 z4x4 subu];
26 D=[0;0;dix*sin(3*t1);diy*cos(4*t1);0;0;dix*sin(3*t1);
27 diy*cos(4*t1);0;0;dix*sin(3*t1);diy*cos(4*t1);
28 0;0;dix*sin(3*t1);diy*cos(4*t1);0;0;dix*sin(3*t1);diy*cos(4*t1)];
29 subs1=F*p1;
30 subs2=G*u1;
31 syst=real(subs1+subs2+D);
32 end

Reference trajectory (leader node):

1 function tr1=troxia(t1)

53

APPENDIX A. APPENDIX A.1

2 tr1=[3*cos(t1);1.5*sin(t1);-3*sin(t1);1.5*cos(t1)]; % ellipse
3 end

Plots of requested quantities: Trace of the agents in the workspace, error metrics

along with the imposed performance bounds, evolution of the position and velocity

states and required control input signals

1 traj1=troxia([0:0.01*pi/5:10*pi/5]); %
2 plot(traj1(1,:),traj1(2,:),’--’) %
3 hold on % plot of the traces of all
4 for k=0:4:16; % agents and plot of the
5 for i=1+k:20:181+k; % reference trajectory
6 plot(sol(:,i),sol(:,i+1)) %
7 hold on %
8 end %
9 end %

10 %%%
11 %%%% Evolution of the position and velocity states %%%%%%%
12 %%%%%%%% of the 1st agent%%%%%%%%
13 subplot(2,2,1)
14 plot([0:0.01*pi/5:10*pi/5],traj1(1,:),’--’)
15 hold on
16 for i=0:9;
17 plot(ts(:,i+1),sol(:,i*20+1))
18 hold on
19 end
20 subplot(2,2,2)
21 plot([0:0.01*pi/5:10*pi/5],traj1(2,:),’--’)
22 hold on
23 for i=0:9;
24 plot(ts(:,i+1),sol(:,i*20+2))
25 hold on
26 end
27 subplot(2,2,3)
28 plot([0:0.01*pi/5:10*pi/5],traj1(3,:),’--’)
29 hold on
30 for i=0:9;
31 plot(ts(:,i+1),sol(:,i*20+3))
32 hold on
33 end
34 subplot(2,2,4)
35 plot([0:0.01*pi/5:10*pi/5],traj1(4,:),’--’)
36 hold on
37 for i=0:9;
38 plot(ts(:,i+1),sol(:,i*20+4))
39 hold on
40 end

54

APPENDIX A. APPENDIX A.1

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%
42 %%%% Evolution of the position and velocity states %%%%%%%
43 %%%%%%% of the 2nd agent%%%%%%%%
44 subplot(2,2,1)
45 plot([0:0.01*pi/5:10*pi/5],traj1(1,:),’--’)
46 hold on
47 for i=0:9;
48 plot(ts(:,i+1),sol(:,i*20+5))
49 hold on
50 end
51 subplot(2,2,2)
52 plot([0:0.01*pi/5:10*pi/5],traj1(2,:),’--’)
53 hold on
54 for i=0:9;
55 plot(ts(:,i+1),sol(:,i*20+6))
56 hold on
57 end
58 subplot(2,2,3)
59 plot([0:0.01*pi/5:10*pi/5],traj1(3,:),’--’)
60 hold on
61 for i=0:9;
62 plot(ts(:,i+1),sol(:,i*20+7))
63 hold on
64 end
65 subplot(2,2,4)
66 plot([0:0.01*pi/5:10*pi/5],traj1(4,:),’--’)
67 hold on
68 for i=0:9;
69 plot(ts(:,i+1),sol(:,i*20+8))
70 hold on
71 end
72 %%%%%%%%%%%%%%%%%%%%%%%%%%%
73 %%%% Evolution of the position and velocity states %%%%%%%%
74 %%%%%%%%%% of the 3rd agent%%%%%%%%
75 subplot(2,2,1)
76 plot([0:0.01*pi/5:10*pi/5],traj1(1,:),’--’)
77 hold on
78 for i=0:9;
79 plot(ts(:,i+1),sol(:,i*20+9))
80 hold on
81 end
82 subplot(2,2,2)
83 plot([0:0.01*pi/5:10*pi/5],traj1(2,:),’--’)
84 hold on
85 for i=0:9;
86 plot(ts(:,i+1),sol(:,i*20+10))
87 hold on
88 end

55

APPENDIX A. APPENDIX A.1

89 subplot(2,2,3)
90 plot([0:0.01*pi/5:10*pi/5],traj1(3,:),’--’)
91 hold on
92 for i=0:9;
93 plot(ts(:,i+1),sol(:,i*20+11))
94 hold on
95 end
96 subplot(2,2,4)
97 plot([0:0.01*pi/5:10*pi/5],traj1(4,:),’--’)
98 hold on
99 for i=0:9;

100 plot(ts(:,i+1),sol(:,i*20+12))
101 hold on
102 end
103 %%%%%%%%%%%%%%%%%%%%%%%%%%%
104 %%%% Evolution of the position and velocity states %%%%%%
105 %%%%%% of the 4th agent%%%%%%%%
106 subplot(2,2,1)
107 plot([0:0.01*pi/5:10*pi/5],traj1(1,:),’--’)
108 hold on
109 for i=0:9;
110 plot(ts(:,i+1),sol(:,i*20+13))
111 hold on
112 end
113 subplot(2,2,2)
114 plot([0:0.01*pi/5:10*pi/5],traj1(2,:),’--’)
115 hold on
116 for i=0:9;
117 plot(ts(:,i+1),sol(:,i*20+14))
118 hold on
119 end
120 subplot(2,2,3)
121 plot([0:0.01*pi/5:10*pi/5],traj1(3,:),’--’)
122 hold on
123 for i=0:9;
124 plot(ts(:,i+1),sol(:,i*20+15))
125 hold on
126 end
127 subplot(2,2,4)
128 plot([0:0.01*pi/5:10*pi/5],traj1(4,:),’--’)
129 hold on
130 for i=0:9;
131 plot(ts(:,i+1),sol(:,i*20+16))
132 hold on
133 end
134 %%%%%%%%%%%%%%%%%%%%%%%%%%%
135 %%%% Evolution of the position and velocity states %%%%%%%%
136 %%%%%%% of the 5th agent%%%%%%%%

56

APPENDIX A. APPENDIX A.1

137 subplot(2,2,1)
138 plot([0:0.01*pi/5:10*pi/5],traj1(1,:),’--’)
139 hold on
140 for i=0:9;
141 plot(ts(:,i+1),sol(:,i*20+17))
142 hold on
143 end
144 subplot(2,2,2)
145 plot([0:0.01*pi/5:10*pi/5],traj1(2,:),’--’)
146 hold on
147 for i=0:9;
148 plot(ts(:,i+1),sol(:,i*20+18))
149 hold on
150 end
151 subplot(2,2,3)
152 plot([0:0.01*pi/5:10*pi/5],traj1(3,:),’--’)
153 hold on
154 for i=0:9;
155 plot(ts(:,i+1),sol(:,i*20+19))
156 hold on
157 end
158 subplot(2,2,4)
159 plot([0:0.01*pi/5:10*pi/5],traj1(4,:),’--’)
160 hold on
161 for i=0:9;
162 plot(ts(:,i+1),sol(:,i*20+20))
163 hold on
164 end
165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
166 %%%%%%%%%%%%%%Evolution of the error metrics %%%%%%%
167 %%%%%%% of the 1st agent%%%%%%%%%%%%
168 subplot(2,1,1)
169 for i=0:9;
170 plot(ts(:,i+1),abs(s(:,i*10+1)),’--’)
171 hold on
172 plot(ts(:,i+1),r(:,i*10+1))
173 hold on
174 end
175 subplot(2,1,2)
176 for i=0:9;
177 plot(ts(:,i+1),abs(s(:,i*10+2)),’--’)
178 hold on
179 plot(ts(:,i+1),r(:,i*10+2))
180 hold on
181 end
182 %%%%%%%%%%%%%%Evolution of the error metrics %%%%%%%%%%%
183 %%%%%% of the 2nd agent%%%%%%%%%%%%
184 subplot(2,1,1)

57

APPENDIX A. APPENDIX A.1

185 for i=0:9;
186 plot(ts(:,i+1),abs(s(:,i*10+3)),’--’)
187 hold on
188 plot(ts(:,i+1),r(:,i*10+3))
189 hold on
190 end
191 subplot(2,1,2)
192 for i=0:9;
193 plot(ts(:,i+1),abs(s(:,i*10+4)),’--’)
194 hold on
195 plot(ts(:,i+1),r(:,i*10+4))
196 hold on
197 end
198 %%%%%%%%%%%%%%Evolution of the error metrics %%%%%%%%%%%%
199 %%%%%%%% of the 3rd agent%%%%%%%%%%%%
200 subplot(2,1,1)
201 for i=0:9;
202 plot(ts(:,i+1),abs(s(:,i*10+5)),’--’)
203 hold on
204 plot(ts(:,i+1),r(:,i*10+5))
205 hold on
206 end
207 subplot(2,1,2)
208 for i=0:9;
209 plot(ts(:,i+1),abs(s(:,i*10+6)),’--’)
210 hold on
211 plot(ts(:,i+1),r(:,i*10+6))
212 hold on
213 end
214 %%%%%%%%%%%%%%Evolution of the error metrics %%%%%%%%%
215 %%%%%%%%% of the 4th agent%%%%%%%%%%%%
216 subplot(2,1,1)
217 for i=0:9;
218 plot(ts(:,i+1),abs(s(:,i*10+7)),’--’)
219 hold on
220 plot(ts(:,i+1),r(:,i*10+7))
221 hold on
222 end
223 subplot(2,1,2)
224 for i=0:9;
225 plot(ts(:,i+1),abs(s(:,i*10+8)),’--’)
226 hold on
227 plot(ts(:,i+1),r(:,i*10+8))
228 hold on
229 end
230 %%%%%%%%%%%%%%Evolution of the error metrics %%%%%%%%%%%%
231 %%%%%%%% of the 5th agent%%%%%%%%%%%%
232 subplot(2,1,1)

58

APPENDIX A. APPENDIX A.1

233 for i=0:9;
234 plot(ts(:,i+1),abs(s(:,i*10+9)),’--’)
235 hold on
236 plot(ts(:,i+1),r(:,i*10+9))
237 hold on
238 end
239 subplot(2,1,2)
240 for i=0:9;
241 plot(ts(:,i+1),abs(s(:,i*10+10)),’--’)
242 hold on
243 plot(ts(:,i+1),r(:,i*10+10))
244 hold on
245 end
246 %%%%calculation of input signals%%%%%%%%%%
247 inp=zeros([21 100]);
248 for k=1:100
249 for i=1:21
250 inp(i,k)=-(0.5/(2*r(i,k)))*((log((1+(s(i,k)/r(i,k)))/
251 (1-(s(i,k)/r(i,k)))))/((1+(s(i,k))/(r(i,k)))*(1-((s(i,k))/(r(i,k))))));
252 end
253 end
254 %%%%%%%%%%%%%plot of the control input signal of the 1st_agent%%%%%%%%
255 subplot(2,1,1)
256 for i=0:9
257 plot(ts(:,i+1),inp(:,i*10+1))
258 hold on
259 end
260 subplot(2,1,2)
261 for i=0:9
262 plot(ts(:,i+1),inp(:,i*10+2))
263 hold on
264 end
265 %%%%%%%%%%%%%plot of the control input signal of the 2nd agent%%%%%%%%
266 subplot(2,1,1)
267 for i=0:9
268 plot(ts(:,i+1),inp(:,i*10+3))
269 hold on
270 end
271 subplot(2,1,2)
272 for i=0:9
273 plot(ts(:,i+1),inp(:,i*10+4))
274 hold on
275 end
276 %%%%%%%%%%%%%plot of the control input signal of the 3rd agent%%%%%%%%
277 subplot(2,1,1)
278 for i=0:9
279 plot(ts(:,i+1),inp(:,i*10+5))
280 hold on

59

APPENDIX A. APPENDIX A.1

281 end
282 subplot(2,1,2)
283 for i=0:9
284 plot(ts(:,i+1),inp(:,i*10+6))
285 hold on
286 end
287 %%%%%%%%%%%%%plot of the control input signal of the 4th agent%%%%%%%%
288 subplot(2,1,1)
289 for i=0:9
290 plot(ts(:,i+1),inp(:,i*10+7))
291 hold on
292 end
293 subplot(2,1,2)
294 for i=0:9
295 plot(ts(:,i+1),inp(:,i*10+8))
296 hold on
297 end
298 %%%%%%%%%%%%%plot of the control input signal of the 5th agent%%%%%%%%
299 subplot(2,1,1)
300 for i=0:9
301 plot(ts(:,i+1),inp(:,i*10+9))
302 hold on
303 end
304 subplot(2,1,2)
305 for i=0:9
306 plot(ts(:,i+1),inp(:,i*10+10))
307 hold on
308 end
309 %%%%%%%%Bounds of the disagreement position error %%%%%%%%%%%%%
310 up_bound_x=zeros([1 21]);
311 down_bound_x=zeros([1 21]);
312 for i=1:21
313 up_bound(i)=0.022;
314 down_bound(i)=-0.022;
315 end
316 %%%%%%%%%Bounds of the disagreement velocity error %%%%%%%%%
317 up_bound=zeros([1 21]);
318 down_bound=zeros([1 21]);
319 for i=1:21
320 up_bound(i)=0.13;
321 down_bound(i)=-0.13;
322 end
323 %%%%%Evolution of the disagreement position error in x dimension%%%%%%%%
324 for k=0:5:45
325 plot(ts(:,k/5+1),up_bound,’--’)
326 hold on
327 plot(ts(:,k/5+1),down_bound,’--’)
328 hold on

60

APPENDIX A. APPENDIX A.1

329 plot(ts(:,k/5+1),dpx(:,k+1))
330 hold on
331 plot(ts(:,k/5+1),dpx(:,k+2))
332 hold on
333 plot(ts(:,k/5+1),dpx(:,k+3))
334 hold on
335 plot(ts(:,k/5+1),dpx(:,k+4))
336 hold on
337 plot(ts(:,k/5+1),dpx(:,k+5))
338 end
339 %%%%%Evolution of the disagreement position error in y dimension%%%%
340 for k=0:5:45
341 plot(ts(:,k/5+1),up_bound,’--’)
342 hold on
343 plot(ts(:,k/5+1),down_bound,’--’)
344 hold on
345 plot(ts(:,k/5+1),dpy(:,k+1))
346 hold on
347 plot(ts(:,k/5+1),dpy(:,k+2))
348 hold on
349 plot(ts(:,k/5+1),dpy(:,k+3))
350 hold on
351 plot(ts(:,k/5+1),dpy(:,k+4))
352 hold on
353 plot(ts(:,k/5+1),dpy(:,k+5))
354 end
355 %%%Evolution of the disagreement velocity error in x dimension%%%%
356 for k=0:5:45
357 plot(ts(:,k/5+1),up_bound,’--’)
358 hold on
359 plot(ts(:,k/5+1),down_bound,’--’)
360 hold on
361 plot(ts(:,k/5+1),dvx(:,k+1))
362 hold on
363 plot(ts(:,k/5+1),dvx(:,k+2))
364 hold on
365 plot(ts(:,k/5+1),dvx(:,k+3))
366 hold on
367 plot(ts(:,k/5+1),dvx(:,k+4))
368 hold on
369 plot(ts(:,k/5+1),dvx(:,k+5))
370 end
371 %%%%%Evolution of the disagreement velocity error in y dimension%%%%
372 for k=0:5:45
373 plot(ts(:,k/5+1),up_bound,’--’)
374 hold on
375 plot(ts(:,k/5+1),down_bound,’--’)
376 hold on

61

APPENDIX A. APPENDIX A.1

377 plot(ts(:,k/5+1),dvy(:,k+1))
378 hold on
379 plot(ts(:,k/5+1),dvy(:,k+2))
380 hold on
381 plot(ts(:,k/5+1),dvy(:,k+3))
382 hold on
383 plot(ts(:,k/5+1),dvy(:,k+4))
384 hold on
385 plot(ts(:,k/5+1),dvy(:,k+5))
386 end

Main m-file for system simulation - Consensus with protocol in [6]:

1 p=[0.30;0.20;0;0;0.4;0.3;0;0;0.38;0.28;0;0;0.22;0.12;0;0;0.2;0.1;0;0];
2 options=odeset(’reltol’,1e-6,’abstol’,1e-9);
3 ts=zeros([21 10]);
4 sol=zeros([21 200]);
5 for i=0:20:180;
6 t1=(i/20)*pi/5:0.05*pi/5:((i+20)/20)*pi/5;
7 tstart=t1(1);
8 save(’t_.mat’,’tstart’);
9 ls1=@allfun;

10 [ts1,sol1]=ode15s(ls1,t1,p,options);
11 p=sol1(21,:)’;
12 ts(:,(i/20)+1)=ts1;
13 sol(:,(i+1:i+20))=sol1;
14 end

Constructing the differential system:

1 function syst=allfun(t1,p)
2 load(’t_.mat’);
3 A=alpha(tstart);
4 %D1=degree1(A1);
5 %L1=laplacian1(A1,D1);
6 %B1=beta1(D1);
7 [dposx,dposy,dvelx,dvely]=delta(A,p);
8 u=control_input(dposx,dposy,dvelx,dvely);
9 syst=systhma(p,u,t1);

10 end

Functions that "allfun" includes:

1 function A=alpha(tstart)
2 if tstart<pi/5;

62

APPENDIX A. APPENDIX A.1

3 A=[0 1 0 0 0;
4 0 0 1 0 0;
5 0 0 0 1 0;
6 0 0 0 0 1;
7 1 0 0 0 0];
8 elseif tstart<2*pi/5;
9 A=[0 0 0 1 0;

10 0 0 1 0 0;
11 0 0 0 0 1;
12 0 1 0 0 0;
13 1 0 0 0 0];
14 elseif tstart<3*pi/5;
15 A=[0 1 0 0 0;
16 0 0 1 0 0;
17 0 0 0 1 0;
18 0 0 0 0 1;
19 1 0 0 0 0];
20 elseif tstart<4*pi/5;
21 A=[0 0 0 0 1;
22 1 0 0 0 0;
23 0 0 0 1 0;
24 0 1 0 0 0;
25 0 0 1 0 0];
26 elseif tstart<5*pi/5;
27 A=[0 0 0 1 0;
28 0 0 1 0 0;
29 0 0 0 0 1;
30 0 1 0 0 0;
31 1 0 0 0 0];
32 elseif tstart<6*pi/5;
33 A=[0 0 0 1 0;
34 0 0 1 0 0;
35 0 0 0 0 1;
36 0 1 0 0 0;
37 1 0 0 0 0];
38 elseif tstart<7*pi/5;
39 A=[0 1 0 0 0;
40 0 0 1 0 0;
41 0 0 0 1 0;
42 0 0 0 0 1;
43 1 0 0 0 0];
44 elseif tstart<8*pi/5;
45 A=[0 0 0 0 1;
46 1 0 0 0 0;
47 0 0 0 1 0;
48 0 1 0 0 0;
49 0 0 1 0 0];
50 elseif tstart<9*pi/5;

63

APPENDIX A. APPENDIX A.1

51 A=[0 1 0 0 1;
52 0 0 1 0 0;
53 1 0 0 1 0;
54 1 0 0 0 0;
55 0 0 1 0 0];
56 else
57 A=[0 1 0 0 0;
58 0 0 1 0 0;
59 0 0 0 1 0;
60 0 0 0 0 1;
61 1 0 0 0 0];
62 end
63 end

1 function [dposx,dposy,dvelx,dvely]=deltaerror(A,p)
2 px1=[p(1)-p(1);p(1)-p(5);p(1)-p(9);p(1)-p(13);p(1)-p(17)];
3 px2=[p(5)-p(1);p(5)-p(5);p(5)-p(9);p(5)-p(13);p(5)-p(17)];
4 px3=[p(9)-p(1);p(9)-p(5);p(9)-p(9);p(9)-p(13);p(9)-p(17)];
5 px4=[p(13)-p(1);p(13)-p(5);p(13)-p(9);p(13)-p(13);p(13)-p(17)];
6 px5=[p(17)-p(1);p(17)-p(5);p(17)-p(9);p(17)-p(13);p(17)-p(17)];
7

8 py1=[p(2)-p(2);p(2)-p(6);p(2)-p(10);p(2)-p(14);p(2)-p(18)];
9 py2=[p(6)-p(2);p(6)-p(6);p(6)-p(10);p(6)-p(14);p(6)-p(18)];

10 py3=[p(10)-p(2);p(10)-p(6);p(10)-p(10);p(10)-p(14);p(10)-p(18)];
11 py4=[p(14)-p(2);p(14)-p(6);p(14)-p(10);p(14)-p(14);p(14)-p(18)];
12 py5=[p(18)-p(2);p(18)-p(6);p(18)-p(10);p(18)-p(14);p(18)-p(18)];
13

14 vx1=[p(3)-p(3);p(3)-p(7);p(3)-p(11);p(3)-p(15);p(3)-p(19)];
15 vx2=[p(7)-p(3);p(7)-p(7);p(7)-p(11);p(7)-p(15);p(7)-p(19)];
16 vx3=[p(11)-p(3);p(11)-p(7);p(11)-p(11);p(11)-p(15);p(11)-p(19)];
17 vx4=[p(15)-p(3);p(15)-p(7);p(15)-p(11);p(15)-p(15);p(15)-p(19)];
18 vx5=[p(19)-p(3);p(19)-p(7);p(19)-p(11);p(19)-p(15);p(19)-p(19)];
19

20 vy1=[p(4)-p(4);p(4)-p(8);p(4)-p(12);p(4)-p(16);p(4)-p(20)];
21 vy2=[p(8)-p(4);p(8)-p(8);p(8)-p(12);p(8)-p(16);p(8)-p(20)];
22 vy3=[p(12)-p(4);p(12)-p(8);p(12)-p(12);p(12)-p(16);p(12)-p(20)];
23 vy4=[p(16)-p(4);p(16)-p(8);p(16)-p(12);p(16)-p(16);p(16)-p(20)];
24 vy5=[p(20)-p(4);p(20)-p(8);p(20)-p(12);p(20)-p(16);p(20)-p(20)];
25

26 a1=[A(1,1) A(1,2) A(1,3) A(1,4) A(1,5)];
27 a2=[A(2,1) A(2,2) A(2,3) A(2,4) A(2,5)];
28 a3=[A(3,1) A(3,2) A(3,3) A(3,4) A(3,5)];
29 a4=[A(4,1) A(4,2) A(4,3) A(4,4) A(4,5)];
30 a5=[A(5,1) A(5,2) A(5,3) A(5,4) A(5,5)];
31

32 dposx=[a1*px1;a2*px2;a3*px3;a4*px4;a5*px5];
33 dposy=[a1*py1;a2*py2;a3*py3;a4*py4;a5*py5];

64

APPENDIX A. APPENDIX A.1

34 dvelx=[a1*vx1;a2*vx2;a3*vx3;a4*vx4;a5*vx5];
35 dvely=[a1*vy1;a2*vy2;a3*vy3;a4*vy4;a5*vy5];
36

37 end

1 function u=control_input(dposx,dposy,dvelx,dvely)
2 k1=5;
3 k2=5;
4 ux=([5 1]);
5 uy=([5 1]);
6 for i=1:5
7 ux(i)=-k1*dposx(i)-k2*dvelx(i);
8 uy(i)=-k1*dposy(i)-k2*dvely(i);
9 end

10 u=[ux(1);uy(1);ux(2);uy(2);ux(3);uy(3);ux(4);uy(4);ux(5);uy(5)];
11 end

1 function syst=systhma(p,u,t1)
2 z4x4=zeros([4 4]);
3 fixx=1;
4 fixy=2;
5 gix=1.2;
6 giy=0.3;
7 dix=0.1;
8 diy=0.1;
9 g=[gix 0;0 giy];

10 f1=[-fixx*p(4) -fixy*(p(3)+p(4));fixy*p(3) 0];
11 f2=[-fixx*p(8) -fixy*(p(7)+p(8));fixy*p(7) 0];
12 f3=[-fixx*p(12) -fixy*(p(11)+p(12));fixy*p(11) 0];
13 f4=[-fixx*p(16) -fixy*(p(15)+p(16));fixy*p(15) 0];
14 f5=[-fixx*p(20) -fixy*(p(19)+p(20));fixy*p(19) 0];
15 v1=inv(g)*(-f1*[p(3);p(4)]+[u(1);u(2)]);
16 v2=inv(g)*(-f2*[p(7);p(8)]+[u(3);u(4)]);
17 v3=inv(g)*(-f3*[p(11);p(12)]+[u(5);u(6)]);
18 v4=inv(g)*(-f4*[p(15);p(16)]+[u(7);u(8)]);
19 v5=inv(g)*(-f5*[p(19);p(20)]+[u(9);u(10)]);
20 v=[0;0;v1;0;0;v2;0;0;v3;0;0;v4;0;0;v5];
21 subf1=[0 0 1 0;0 0 0 1;0 0 -fixx*p(4) -fixy*(p(3)+p(4));
22 0 0 fixy*p(3) 0];
23 subf2=[0 0 1 0;0 0 0 1;0 0 -fixx*p(8) -fixy*(p(7)+p(8));
24 0 0 fixy*p(7) 0];
25 subf3=[0 0 1 0;0 0 0 1;0 0 -fixx*p(12) -fixy*(p(11)+p(12));
26 0 0 fixy*p(11) 0];
27 subf4=[0 0 1 0;0 0 0 1;0 0 -fixx*p(16) -fixy*(p(15)+p(16));
28 0 0 fixy*p(15) 0];
29 subf5=[0 0 1 0;0 0 0 1;0 0 -fixx*p(20) -fixy*(p(19)+p(20));

65

APPENDIX A. APPENDIX A.1

30 0 0 fixy*p(19) 0];
31 F=[subf1 z4x4 z4x4 z4x4 z4x4;z4x4 subf2 z4x4 z4x4 z4x4;
32 z4x4 z4x4 subf3 z4x4 z4x4;z4x4 z4x4 z4x4 subf4 z4x4;
33 z4x4 z4x4 z4x4 z4x4 subf5];
34 subu=[0 0 0 0;0 0 0 0;0 0 gix 0;0 0 0 giy];
35 G=[subu z4x4 z4x4 z4x4 z4x4;z4x4 subu z4x4 z4x4 z4x4;
36 z4x4 z4x4 subu z4x4 z4x4;z4x4 z4x4 z4x4 subu z4x4;
37 z4x4 z4x4 z4x4 z4x4 subu];
38 D=[0;0;dix*sin(3*t1);diy*cos(4*t1);0;0;dix*sin(3*t1);diy*cos(4*t1);
39 0;0;dix*sin(3*t1);diy*cos(4*t1);0;0;dix*sin(3*t1);diy*cos(4*t1);
40 0;0;dix*sin(3*t1);diy*cos(4*t1)];
41 subs1=F*p;
42 subs2=G*v;
43 syst=real(subs1+subs2+1.*D);
44 end

Evolution of the position and velocity states plots of the network agents

1 %%consensus_x_position%%%%%%%%%%%%
2 subplot(2,2,1)
3 for i=1:4:17
4 for j=0:9
5 plot(ts(:,j+1),sol(:,20*j+i))
6 hold on
7 end
8 hold on
9 end

10 %%consensus_y_position%%%%%%%%%%%%
11 subplot(2,2,2)
12 for i=2:4:18
13 for j=0:9
14 plot(ts(:,j+1),sol(:,20*j+i))
15 hold on
16 end
17 hold on
18 end
19 %%consensus_x_velocity%%%%%%%%%%%%
20 subplot(2,2,3)
21 for i=3:4:19
22 for j=0:9
23 plot(ts(:,j+1),sol(:,20*j+i))
24 hold on
25 end
26 hold on
27 end
28 %%%%consensus_y_velocity%%%%%
29 subplot(2,2,4)

66

APPENDIX A. APPENDIX A.1

30 for i=4:4:20
31 for j=0:9
32 plot(ts(:,j+1),sol(:,20*j+i))
33 hold on
34 end
35 hold on
36 end

67

	englishenglishIntroduction
	englishenglishPreliminaries
	englishenglishMulti-agent Systems
	englishenglishLeader follower scheme

	englishenglishGraph Theory
	englishenglishGraph
	englishenglishConnectivity

	englishenglishProblem Formulation
	englishenglishDynamic Model
	englishenglishDisagreement error
	englishenglishUnderlying Communication Topology

	englishenglishMain Results
	 englishenglishSufficient Conditions
	 englishenglishDistributed Control Protocol
	englishenglishDesign Philosophy
	englishenglishDecentralization and structural complexity
	englishenglishRobust Prescribed Performance
	englishenglishControl Parameters selection
	englishenglishIncreasing dimensionality

	englishenglishSimulation Results
	englishenglishSecond Order Multi-agent System (MAS)
	englishenglishSet of Switching Graphs
	englishenglishSynchronization Example
	englishenglishComparative Simulation
	englishenglishDiscussion of Results

	englishenglishConclusions
	englishenglishReferences
	englishenglishAppendix
	englishenglishMATLAB Code

