

Εθνικό Μετσόβιο Πολυτεχνείο Διεπιστημονικό Πρόγραμμα Μεταπτυχιακών Σπουδών: Δομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών

Συντονίζουσα Σχολή: Σχολή Πολιτικών Μηχανικών ΕΜΠ

# Μεταπτυχιακή Εργασία

με τίτλο

Σύγκριση Μεθοδολογίας Ευρωκώδικα και Θεωρίας της Τροχιάς για διάφορα δοκίμια Οπλισμένου Σκυροδέματος

# Επιβλέπων Καθηγητής

Εμμανουήλ Βουγιούκας

# Μεταπτυχιακός Φοιτητής

Αχιλλέας Θεοδωρούλης

Αθήνα, Οκτώβριος 2018

# Περιεχόμενα

| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Περίληψη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19              |
| 1. Υβριδική τεχνική NSE / EB για την ενίσχυση διάτμησης δοκών RC χρησιμοποιώντας FRCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:              |
| Πειραματική μελέτη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23              |
| 1.1. Συνοπτική περιγραφή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23              |
| 1.2. Ιδιότητες Υλικών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23              |
| 1.2.1. Οπλισμένο Σκυρόδεμα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23              |
| Πίνακας 1: Σύνοψη ιδιοτήτων οπλισμού ενίσχυσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23              |
| 1.2.2. Πλέγμα σκυροδέματος υφασμάτινης ενίσχυσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23              |
| Πίνακας 2: Ιδιότητες του πλέγματος και των σγετικών κονιαμάτων για τα εφαρμοσμένα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| συστήματα FRCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24              |
| Εικόνα 1: Γεωμετρία Υφασμάτων: (a) ανθρακικού υφάσματος, (b) γυάλινου υφάσματος,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c)             |
| PBO υφάσματος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24              |
| 1.3. Διάταξη Δοκιμίων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25              |
| Εικόνα 2: Λεπτομέρειες δοκιμίων διαμήκων και διατομών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25              |
| Πίνακας 3: Μητρώο δοκιμών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26              |
| 1.4. Αποτελέσματα πειοαματικών δοκιμίων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27              |
| Πίνακας 4. Σύνοψη πειοαματικών αποτελεσμάτων δοκιμών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27              |
| Εικόνα 3. Σνηματική αναπαράσταση οωνιών όλες οι τιμές σε ΚΝ Παρατήρηση: το δοκ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1110            |
| αναφοράς ένει παρόμοια αστονία με το τελευταίο δοκίμιο G-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27              |
| Εικόνα 4: Αστοχίες δοκιμίων, Παρατηρηση: η αστοχία του τελευταίου δοκιμίου F-G είνο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۰۰۰۰ <i>۲</i> / |
| παρόμοια με την αστοχία του δοκιμίου αναφοράς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28              |
| 1.5 Συνκεντοωτικά Αποτελέσματα Υπολονισμών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20              |
| Συνκεντοωτικός Πίνακας Δποτελεσματων 1: Σύνκοιση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2)              |
| Διάνοσμια 1: Σύνκοιση Τύπου ΙΙ Θεωρίας Τρονιάς Θλιπτικής Δύναμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29              |
| 1.6. Σώνκοιση και σχολιασμός αποτελεσμάτων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| (δεξιά)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30              |
| Εικόνα 6: Ζώνη διατμητικής συνεισφοράς και πρόβρλοι-"δόντια" μεταφοράς εφελευσμο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Εικονά θ. Σωνή σιατμητικής συνεισφοράς και προρολοι- συντιά μεταφοράς εφελκοσμο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30              |
| 1.7. Συμπεράσματα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| <ol> <li>2. Καμπτική συμπεριφορά δοκών BC με ίνες βασάλτη και με αναγοκλωμένα αδοανή σκυροδέι</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 2. Καμπτική συμπεριφυρά σύκων ΚC με ίνες ράσαλτη και με ανακύκλωμενα αυράνη σκυρύσει                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ιατος<br>21     |
| 21 Συμοππική Περιμογισή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21              |
| $2.1.2000\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21              |
| 2.2.1 Vousopreumer A Society                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21              |
| $2.2.1$ $\Delta 0.000$ $\Delta 0.00$ |                 |
| 2.2.2. Tothevio, $\alpha \mu \mu \sigma \zeta$ , vepo kai ontio $\mu \sigma \zeta$ evio $\chi b \sigma \eta \zeta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| 2.2.5. Βασαλτικές μακρο-ινές (ΒΝΙΓ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32              |
| Πινακάς Γ. Μητρωο σοκιμών για σοκιμία σοκών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Πινακάς 2: Ειδικό ραρός, ποσόστο απορροφήσης και τριρή αντιστάσης των ΝCA και ΚC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 32            |
| Πινακάς 5: Ιοιοτητές οπλισμού ενισχύσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32              |
| 2.3. Ιοιοτητές Υλικών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| Εικονα Ι: Μακρο-ινες Βασαλτη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Πινακας 4: Αναλογιες μιγματος σκυροοεματος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| 2.4. Μεγαλης κλιμακας οοκιμία οοκών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Εικονα 2: Δοκιμη ρυθμισης με διαταζη οργανων (οι διαστασεις σε mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| Εικονα 3: Λεπτομερειες δοκού και διατομης (οι διαστάσεις σε mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Πινακας 5: Συνοψη αποτελεσματων δοκιμών δοκών μεγάλης κλίμακας                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35              |
| Πινακας 6: Προβλεπόμενες και μετρημένες καμπτικές ροπές θραύσης και οριακής                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

| κατάστασης                                                                               | 35  |
|------------------------------------------------------------------------------------------|-----|
| Εικόνα 4: Διάταξη οηνματωμένων δοκιμίων                                                  |     |
| 2.5. Συνκεντοωτικά Αποτελέσματα Υπολογισμών                                              | 37  |
| Συγκεντοωτικός Πίνακας Αποτελεσμάτων 1: Σύγκοιση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα           | 37  |
| Διάνομιμα 1: Σύγκοιση Τύπου ΙΙ Θεωρίας Τοργιάς Θλιπτικής Δύγαμης και Ευρωκώδικα          | 37  |
| 2.6. Σύψκοιση και σχολιασμός αποτελεσμάτων                                               | 38  |
| Εικόνα 5: Σύγκοιση αστογίας Τύπου ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δρεμιίου αναφορά      | ~   |
| $(\delta_{0}\xi_{1})$                                                                    | 38  |
| Εικόνα 6: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελευσμού        |     |
| στον οπλισμό ενίσευσης                                                                   | 38  |
| 2.7. Συμπεράσματα                                                                        | 38  |
| 2.7. Συμπερισματια                                                                       |     |
| 3. Διατμητική ενιοχούη τοιμέντεντών μέλων με μανούες ΤΚΝΙ. Επισρασή της αναλογίας        | 20  |
| 2.1 Swiggzum Doowooch                                                                    | 20  |
| 3.2. Παράματραι δρισμίση του σοιοσιμάτου                                                 |     |
| 5.2. Παραμετροί σοκιμιων και πειραματών                                                  | 40  |
| Eίκονα 1: (a) $2\chi$ ηματική αναπαραστάση σοκών και (b) σιατομήζ                        | 40  |
| 5.5. Υ Λικά και οιαοικασιά ενισχυσης                                                     | 41  |
| Πινακάς Γ: Διαμορφωση ενισχύσης και ιδιοτήτες υλικών για όλα τα δοκιμια                  | 41  |
| Πινακας 2: Συνοψη αποτελεσματών των ΤΚΜ δοκιμιών                                         | 42  |
| Πινακας 3: Συνοψη αποτελεσματών δοκιμών                                                  | 42  |
| Εικονα 2: Ρηγματωση και αστοχια δοκιμιων αναφορας 3.6 και 1.6                            | 43  |
| Πινακας 4: Συνοψη αποτελεσματών των ενισχυμενών δοκιμιών FRP                             | 43  |
| Πινακας 5: Συγκριση μεταζυ πειραματικών και προβλεπομενών τιμών V1                       | 43  |
| 3.4. Συγκεντρωτικα Αποτελεσματα Υπολογισμων                                              | 44  |
| 3.4.1. Συγκεντρωτικά Αποτελεσματά Υπολογισμών a/d=1.6                                    | 44  |
| Συγκεντρωτικός Πινακάς Απότελεσματών Ι: Συγκριση Θεωριάς Ι.Θ.Δ. και Ευρωκωδικά.          | 44  |
| Διαγραμμα 1: Συγκριση Ιυπου ΙΙΙ Θεωριας Γροχιας Θλιπτικης Δυναμης και Ευρωκωδικα         | 44  |
| 3.4.2. Συγκεντρωτικα Αποτελεσματα Υπολογισμών a/d=2.6                                    | 45  |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.          | 45  |
| Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα.         | 45  |
| 3.4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών a/d=3.6                                    | 46  |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.          | 46  |
| Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα.         | 46  |
| 3.5. Σύγκριση και σχολιασμός αποτελεσμάτων                                               | 47  |
| Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ, ΙΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων         | . – |
| αναφοράς (δεξιά)                                                                         | 47  |
| Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού        | ,   |
| στον οπλισμό ενίσχυσης                                                                   | 47  |
| 3.6. Συμπεράσματα                                                                        | 47  |
| 4. Πειραματική μελέτη και πρόβλεψη αντοχής σε διάτμηση για δέσμες σκυροδέματος με ενεργή | 1   |
| τέφρα                                                                                    | 48  |
| 4.1. Συνοπτική περιγραφή                                                                 | 48  |
| 4.2. Πειραματική έρευνα                                                                  | 48  |
| 4.2.1. Πειραματικά δοκίμια                                                               | 48  |
| 4.2.2. Ιδιότητες υλικών                                                                  | 49  |
| Πίνακας 1: Αποτελέσματα βοηθητικών δοκιμών για τις συστατικές ιδιότητες υλικών           | 49  |
| Εικόνα 1: Λεπτομέρειες δοκού και διατομής                                                | 50  |
| Πινακας 2: Εκτροπή στην πρώτη ρωγμή και τελικό φορτίο, λόγος ολκιμότητας και             |     |
| απορροφούμενη ενέργεια για δοκιμές δοκών RPC                                             | 50  |
| Πινακας 3: Οι μέσες τιμές, οι τυπικές αποκλίσεις και οι συντελεστές διασποράς των τιμών  | /   |
| σχετικής αντοχής διατμήσεως για τη δοκιμή των τροποποιημένων εξισώσεων                   | 51  |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>7</b> 1     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | Εικονα 2: Αστοχία και ρηγματωση δοκων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|    | 4.3. $\Sigma UY KEVT P W T KA A A T T C A C C C C C C C C C C C C C $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52             |
|    | Συγκεντρωτικός Πινακάς Απότελεσματών Ι: Συγκρισή Θεωριάς Ι.Θ.Δ. και Ευρωκωδικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52             |
|    | Διαγραμμα 1: Συγκριση Ιυπου ΙΙ Θεωριας Ιροχιας Θλιπτικής Δυναμής και Ευρωκωδικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52             |
|    | 4.4. Συγκριση και σχολιασμος αποτελεσματών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|    | Εικονα 3: Συγκριση Ιυπων αστοχιας ΙΙ Θεωριας Ι.Θ.Δ. (αριστερα) και δοκιμιων αναφορας                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5              |
|    | (δεξιά). Παρατήρηση· οι δοκοί B2, B3, B4 έχουν παρόμοια αστοχία με την δοκό B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53             |
|    | Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|    | στον οπλισμό ενίσχυσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53             |
|    | 4.5. Συμπεράσματα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53             |
| 5. | Επιδράσεις των ιδιιοτήτων των υλικών του ΗFDFRCC, χρησιμοποιώντας ανακυκλωμένο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| λε | πτόκοκκα αδρανή, στην διατμητική αντοχή δοικών RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54             |
|    | 5.1. Συνοπτική Περιγραφή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54             |
|    | 5.2. Πειραματική μέθοδος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54             |
|    | 5.2.1 HDFRCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54             |
|    | Πίνακας 1: Δοκίμια σκυροδέματος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54             |
|    | 5.2.2. Δοκιμές Υλικών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55             |
|    | Πίνακας 2: Ιδιότητες υλικών (α) R-HFDRCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55             |
|    | Πίνακας 3: Ιδιότητες υλικών (β) οπλισμός                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56             |
|    | Εικόνα 1: Λεπτμέρειες δοκού και διατομής                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56             |
|    | Πίνακας 4: Παράγοντες ανάλυσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56             |
|    | Πίνακας 5: Τα μέγιστα φορτία εξαγώμενα από τις δοκιμές φόρτισης και ανάλυσης των                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|    | δοκιμίων ΟΣ RHFDFRCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56             |
|    | 5.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57             |
|    | 5.3.1 Συνκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57             |
|    | Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57             |
|    | Διάνοαμμα 1: Σύνκοιση Τύπου ΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|    | 5.3.2 Συγκεντοωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|    | Συγκεντοωτικός Πίνακας Αποτελεσμάτων 2: Σύγκοιση Θεωρίας Τ.Θ.Λ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|    | Διάνοαμμα 2. Σύνκοιση Τύπου ΙΙ Θεωρίας Τρονιάς Θλιπτικής Δύναμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58             |
|    | 5.3.3 Συγκεντοωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59             |
|    | Συγκεντοωτικός Πίνακας Αποτελεσμάτων 3: Σύγκοιση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59             |
|    | Διάνοαμμα 3: Σύγκοιση Τύπου ΙΙ Θεωρίας Τρονιάς Ωλιπτικής Δύγαμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59             |
|    | 5.3.4 Συγκεντοφτικά Αποτελέσματα Υπολογισμών Λου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60             |
|    | 5.5.4 20 γκαντρωτικά Αποτελεσματά Τποπογισμών 400 υσκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60             |
|    | Δυγκεντρωτικός Πινακάς Αποτελεοματών 4. 20γκριση Θεωρίας 1.Θ.Δ. και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60             |
|    | 5.4. Σύνμοιση και συρλασμός αποτελεσμάτων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00             |
|    | 5.5. Supposition $x$ and $y$ contraction $y$ and $z$ | 01             |
| 6  | $5.5.20\mu\pi\epsilon\rho uo\mu tu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>62       |
| 0. | Aρισμητική αναλύση σοκών RC υψηλής αντοχής στην οριακή καταστάση τους                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02             |
|    | 6.1. 20νοπτική περιγραφη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02             |
|    | 6.2. Ιοιοτητές υλικων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62             |
|    | 6.2. Επιοραση μετρου ελαστικοτητάς και συντελέστη μεταφοράς διατμησης στις καμπυλές                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(\mathbf{a})$ |
|    | φορτιου-παραμορφωσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62             |
|    | Εικονα 2: Πειραματικα και αριθμητικα αποτελεσματα διαταξεων ρηγματωσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64             |
|    | 6.3. Συγκεντρωτικά Αποτελεσματα Υπολογισμών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65             |
|    | 6.3.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών Ιου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65             |
|    | Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65             |
|    | Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65             |
|    | 6.3.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66             |
|    | Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66             |
|    | 6.4. Σύγκριση και σχολιασμός αποτελεσμάτων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67             |

| Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς    | 5  |
|-----------------------------------------------------------------------------------------|----|
| (δεξιά)                                                                                 | 67 |
| Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού       |    |
| στον οπλισμό ενίσχυσης                                                                  | 67 |
| 6.5. Συμπεράσματα                                                                       | 67 |
| 7. Μοντελοποίηση πεπερασμένων στοιχείων δοκών RC με ινο-οπλισμένες ράβδους              | 68 |
| 7.1. Συνοπτική περιγραφή                                                                | 68 |
| 7.2. Λεπτομέρειες των δοκιμίων                                                          | 68 |
| Πίνακας 1: Μηχανικές ιδιότητες σκυροδέματος, οπλισμού και ενίσχυσης GFRP                | 68 |
| Εικόνα 1: Λεπτομέρειες δοκού                                                            | 69 |
| 7.3. Περιγραφή στοιχείων FRP και μέθοδος υπολογισμού ΑΤΕΝΑ FE                           | 69 |
| Πίνακας 2: Σύνοψη αποτελεσμάτων ανάλυσης                                                | 70 |
| Πίνακας 3: Συμπεριφορά θραύσης και τύπος αστοχίας                                       | 70 |
| Εικόνα 2: Σχήμα ρωγμών της υβριδικής δοκού                                              | 71 |
| 7.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών                                             | 72 |
| 7.4.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου                              | 72 |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα          | 72 |
| Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα         | 72 |
| 7.4.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου                              | 73 |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα          | 73 |
| Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα         | 73 |
| 7.4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου                              | 74 |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα          | 74 |
| Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα         | 74 |
| 7.5. Σύγκριση και σχολιασμός αποτελεσμάτων                                              | 75 |
| Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς    | 5  |
| (δεξιά)                                                                                 | 75 |
| Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού       |    |
| στον οπλισμό ενίσχυσης                                                                  | 75 |
| 7.6. Συμπεράσματα                                                                       | 75 |
| 8. Διατμητική και καμπτική συμπεριφορά προεντεταμένων και μη προεντεταμένων δοκών RC κα | X1 |
| SFRC δοκών RC                                                                           | 76 |
| 8.1. Συνοπτική περιγραφή                                                                | 76 |
| 8.2. Υλικά και Μεθοδολογία                                                              | 76 |
| Εικόνα 1: Λεπτομέρειες προεντεταμένων και μη προεντεταμένων δοκών                       | 77 |
| Πίνακας 1: Αναλογίες μίγματος σκυροδέματος                                              | 78 |
| Πίνακας 2: Λεπτομέρειες των μη προεντεταμένων δοκιμίων δοκών                            | 78 |
| Πίνακας 3: Λεπτομέρειες προεντεταμένων δοκιμίων δοκών                                   | 78 |
| Πίνακας 4: Αντοχή του σκυροδέματος εφαρμοσμένη στο μη προεντεταμένα και στο             |    |
| προεντεταμένα δοκίμια δοκών σκυροδέματος άοπλων και SFRC                                | 78 |
| 8.3 Μη προεντεταμένα δοκίμια δοκών σκυροδέματος                                         | 78 |
| Πίνακας 5: Σύνοψη πειραματικών αποτελεσμάτων για την μη προεντεταμένη δοκό              |    |
| σκυροδέματος                                                                            | 79 |
| 8.4 Προεντεταμένα δοκίμια δοκών σκυροδέματος                                            | 79 |
| Πίνακας 6: Σύνοψη πειραματικών αποτελεσμάτων για την προεντεταμένη δοκό                 |    |
| σκυροδέματος                                                                            | 80 |
| Εικόνα 2: Ρωγμή στο άοπλο σκυρόδεμα                                                     | 80 |
| 8.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών                                             | 81 |
| 8.5.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου                              | 81 |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα          | 81 |
| Διάγραμμα 1: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα          | 81 |

| 8.5.2. Συνκεντοφτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Συνκεντοωτικός Πίνακας Αποτελεσμάτων 2: Σύνκοιση Θεωρίας Τ.Θ.Α. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Διάνοαμμα 2. Σύγκοιση Τύπου Η Θεωρίας Τρογιάς Θλιπτικής Δύγαμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82         |
| 8.5.3. Συνκεντοωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83         |
| Συνκεντοωτικός Πίνακας Αποτελεσμάτων 3: Σύνκοιση Θεωρίας Τ.Θ.Λ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83         |
| Διάνοαμμα 3. Σύγκοιση Τύπου Ι Θεωρίας Τρογιάς Θλιπτικής Δύγαμης και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83         |
| 8.5.4. Συγκεντοωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05         |
| Συνκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύνκοιση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84         |
| Δύγκαντρωτικός Πινακάς Αποτελεοματών 4. 20γκριση Οεωρίας 1.Ο.Δ. και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 26 Σύνκοιση και σχολιασμός αποτελεσμάτων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04         |
| 5.0. 20γκριση και οχολασμος αποτελεσματων<br>Εικόνα 3: Σύγκριση Τύπων αστονίας Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφοράς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| $(\delta e^{\xi_1 \alpha})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85         |
| (υσςια)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Εικονα 4. Σωνη σιατμητικής συνειοφοράς και προρολοι- συντία μεταφοράς εφελκοσμου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85         |
| 8.7. Συμπεράσματα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05         |
| 0. Καμπτική συμπεριφορά και επίδραση μενέθους της τυπικής αυτογής υποστυλουιάτων υπό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 3. Καμπτική συμπεριφορά και επισράση μεγεσσός της τοπικής αντοχής οποστοπωμάτων όπο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86         |
| 0.1. Συνοπτική περιγογική                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00<br>     |
| 9.1. $2000\pi$ tiki $\pi \epsilon ptypu \phi i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>20   |
| 9.2. Ζχεοιασμός σοκιμιών και μηχανικές ισιοτητές των υλικών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00         |
| Είκονα 1. Λεπτομερειες υποστυπωματών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/         |
| 0.2. Πρότυπα αποτυνίας ιδίωντας                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/         |
| 9.5. Προτυπα αποτυχίας καμψης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00         |
| $9.5.1. \Delta \alpha \delta \kappa \alpha \delta \alpha \alpha \sigma \sigma \delta \alpha \alpha \sigma \sigma \delta \delta \alpha \kappa \alpha \sigma \delta \alpha \sigma \delta \alpha \sigma \delta \alpha \sigma \sigma \sigma \sigma$ | 00         |
| Elkova 2: $\Delta$ laolkaola aotozlac 100 ookimioo w-0.4-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00         |
| 9.5.2. Μορφες αυτοχίας όλων των σοκιμιών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09         |
| Πίνακας 2. Ιοιστητές υλικών για συλισμούς ενισχύσης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09         |
| Γινακάς 5. Αναλογιές μιγματός οκοροοεματός                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Είκονα 5. Μορφες αστοχίας όλων των σοκτμιών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90         |
| Πινακάς 4. Αποτεπεσματά σοκιμών χαρακτηριστικών σημειών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90         |
| Πινακάς 5: Παραμειροι εφαρμοσμένες στο σιαγραμμα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90         |
| 11ινακας Ο. Λεπτομερείες σοκιμιών εφαρμοσμένες για υπιψη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91         |
| 9.4. $20\%$ kevipolika Anotekeopara Thokoyiopov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92         |
| 9.4.1. 20γκεντρωτικά Αποτελεσματά Τπολογισμών 100 σοκιμισυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92         |
| 20γκεντρωτικός Πινακάς Αποτελεοματών Τ. 20γκριση Θεωρίας Τ.Θ.Δ. και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92         |
| Διαγραμμα 1. 20γκριση Τύπου ΠΙ Θεωρίας Τροχίας Θλιπτικής Δυναμής και Ευρωκωσικά.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92         |
| 9.4.2. 20γκεντρωτικά Αποτελεσματά Υπολογισμών 200 σοκιμισυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95         |
| Διάνοαμμα 2: Σύμκοιση Τύπου ΙΙΙ Θεωρίας Τρονιάς Ολιπτικής Δύμαμης και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Διαγραμμα 2. 20γκριση τολού ΠΕθεωρίας τροχίας Θλιλτικής Δυναμής και Ευρωκωσικά.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04         |
| 9.4.5. 20γκεντρωτικά Αποτελεσματά Τπολογισμών 500 σοκιμισυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94         |
| Διάνοαμμα 2: Σύμκοιση Τύπου ΙΙΙ Θεωρίας Τρονιάς Ολιπτικής Δύμαμης και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04         |
| Διαγραμμα 5. 20γκριση τύπου ΠΕθεωρίας τροχίας Θλιπτικής Δυναμής και Ευρωκωσικά.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94         |
| 5.4.4. 20γκεντρωτικά Αποτελεσματά Τπολογισμών 400 ουκιμισυ<br>Συνκευτροφτικός Πίνακας Αποτελεσμάτων 4: Σύνκοιση Θεφρίας Τ.Θ.Α. και Ευρογκόδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95         |
| Διάνοαμμα 4: Σύνκοιση Τύπου ΙΙΙ Θεωρίας Τρονιάς Ολιπτικής Δύναμης και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95         |
| 2.4.5 Συναευτουτικά Αποτελέσματα Υπολουποιών 5ου δοκιμίου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 5.4.5. 20γκεντρωτικά Αποτελεσματά Τπολογισμών 500 σοκιμισυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90         |
| 20γκεντρωτικός Πινακάς Αποτελεοματών 5. 20γκριση Θεωρίας 1.Θ.Δ. και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90         |
| Διαγραμμα 5. 20γκριση τοπου ΠΕθεωρίας τροχίας Θλιπτικής Δυναμής και Ευρωκωσικά.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 7.π.υ. Δυγκενιρωτικά Αποτελεσματά 1 πολογισμών σου σοκιμισυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ידט.<br>10 |
| Δυγκεντρωτικός πινακάς Αποτελεοματών οι Ζυγκρισή Θεωρίας Τ.Θ.Δ. και Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ・・ソ/<br>のフ |
| Διαγραμμα υ. Δυγκριση τοπου πι σεωρίας τροχίας Θλιπτικής Δυναμής και Ευρωκωσικά.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / ۲<br>۵۵  |
| 9.3. Δυγκριση και σχολιασμός αποτελεσματών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70         |

| Εικόνα 4: Σύγκριση αστοχίας Τύπου ΙΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφορα         | άς    |
|----------------------------------------------------------------------------------------------|-------|
| (θεςια)<br>Εικόνα 5: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού |       |
| Εικονά 5. Σωνή σιατμητικής συνεισφοράς και προρολοι- συντιά μεταφοράς εφελκοσμου             | 08    |
| 9 6 Συμπεράσματα                                                                             | 98    |
| 10. Επίδοαση της διάταξης στην συμπεριφορά κοντών υποστυλωμάτων                              | 90    |
| 10.1. Συνοπτική περινοαφή                                                                    | 90    |
| 10.1. $2000 \pi t \kappa \eta \pi c \rho \eta \rho \alpha \psi \eta$                         | 00    |
| 10.2. Isipuput to The pupulation $10.2$ Storman Viscon                                       | 100   |
| 10.5. Ιοιοτητές Τλικών                                                                       | .100  |
| Πινακάς Τ. Περιγραφή των σταφορετικών τολών σκοστολωματών εφαρμοσμένα στο λειρί              | 100   |
| <br>Εικόνα 1: Σκελετός r/f στύλου Τύπου Ι                                                    | .100  |
| Πίνακας 2: Περιγραφή των διαφορετικών τύπων υποστυλωμάτων εφαρμοσμένα στο πείρο              | χμα   |
|                                                                                              | .101  |
| Εικόνα 2: Μορφή αστοχίας στύλου Τύπου Ι                                                      | .101  |
| 10.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών                                                 | .102  |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.              | .102  |
| Διάγραμμα 1: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα             | . 102 |
| 10.5. Σύγκριση και σχολιασμός αποτελεσμάτων                                                  | .103  |
| Εικόνα 3: Σύγκριση αστοχίας Τύπου ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφορά          | C     |
| (δεξιά)                                                                                      | .103  |
| Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού            | )     |
| στον οπλισμό ενίσγυσης                                                                       | .103  |
| 10.6. Συμπεράσματα                                                                           | .103  |
| 11. Άμεση μέθοδος σχεδιασμού και διαγράμματα σχεδιασμού για υποστυλώματα RC και              |       |
| διατμητικών τοιχείων                                                                         | .104  |
| 11.1. Συνοπτική περιγραφή                                                                    | .104  |
| 11.2. Αποδεκτή διαδικασία σγεδιασμού στύλων                                                  | .104  |
| 11.2.1. Μονοαξονικό διάγραμμα αλληλεπίδρασης                                                 | .104  |
| 11.2.2. Μονοαξονικοί πίνακες ικανότητας φόρτισης στύλων                                      | .104  |
| 11.2.3. Περιγράμματα φόρτισης                                                                | .104  |
| 11.2.4. Σγέδιο 3D αλληλεπίδρασης                                                             | .105  |
| Πίνακας 1: Πίνακας δεικτών γωρητικότητας υποστυλώματος                                       | .105  |
| Πίνακας 2: Αποτελέσματα σγεδιασμού για τον τομέα του σγήματος 3                              | .105  |
| Πίνακας 3: Παραδείγματα σγεδιασμού επικύρωσης                                                | .105  |
| Πίνακας 4: Αποτελέσματα σγεδιασμού για κυκλική διατομή του σγήματος 12                       | .106  |
| Πίνακας 5: Τιμές σχεδιασμού για τον τομέα L μορφής του σχήματος 14                           | .106  |
| 11.3. Προγράμματα υπολογιστή                                                                 | .106  |
| 11.4. Ορισμός προβλήματος                                                                    | .106  |
| 11.5. Θεωρία του ιστορικού υποβάθρου και ανάπτυξης της μεθόδου                               | .107  |
| Εικόνα 1: Τυπική διατομή στύλου οπλισμένου σκυροδέματος                                      | .108  |
| Εικόνα 2: Τυπική διατομή στύλου οπλισμένου σκυροδέματος                                      | .108  |
| 11.6. Συγκεντοωτικά Αποτελέσματα Υπολογισμών                                                 | .109  |
| 11.6.1. Συνκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου                                  | .109  |
| Συνκεντοωτικός Πίνακας Αποτελεσμάτων 1: Σύνκοιση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.              | .109  |
| Διάνραμμα 1: Σύνκριση Τύπου ΙΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα             | .109  |
| 11.6.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου                                  | .110  |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.              | .110  |
| Διάγραμμα 2: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα             | . 110 |
| 11.6.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου                                  |       |
| Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.              | 111   |

Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα...111 11.6.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου......112 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .112 Διάγραμμα 4: Σύγκριση Τύπου ΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα. .112 11.6.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 5ου δοκιμίου......113 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 5: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .113 Διάγραμμα 5: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα....113 11.6.6. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 6ου δοκιμίου......114 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 6: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .114 Διάγραμμα 6: Σύγκριση Τύπου Ι Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα....114 11.6.7. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 7ου δοκιμίου......115 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 7: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .115 Διάγραμμα 7: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα. 115 11.6.8. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 8ου δοκιμίου......116 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 8: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .116 Διάγραμμα 8: Σύγκριση Τύπου ΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα. .116 11.6.9. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 9ου δοκιμίου......117 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 9: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα. .117 Διάγραμμα 9: Σύγκριση Τύπου ΙΙ Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα. .117 11.6.10. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 10ου δοκιμίου......118 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 10: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα 118 Διάγραμμα 10: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα 118 11.6.11. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 11ου δοκιμίου......119 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 11: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα.119 Διάγραμμα 11: Σύγκριση Τύπου Ι Θεωρίας Τρογιάς Θλιπτικής Δύναμης και Ευρωκώδικα..119 11.6.12. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 12ου δοκιμίου......120 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 12: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα 120 Διάγραμμα 12: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα..120 11.6.13. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 13ου δοκιμίου......121 Συγκεντρωτικός Πίνακας Αποτελεσμάτων 13: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα 121 Διάγραμμα 13: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα..121 11.7. Σύγκριση και σχολιασμός αποτελεσμάτων......122 [1] Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using [2] Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse [3] Shear strengthening of concrete members with TRM jackets: Effect of shear span-to-depth [4] Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams. 126 [5] Effects of material properties of HFDFRCC Using recycled fine aggregate on shear strength [6] Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour......126 [7] Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars...126 [8] Shear and flexural behaviour of prestressed and non-prestressed plain and SFRC concrete [9] Flexural behavior and size effect of normal-strength RC columns under monotonic horizontal 

| [11] Direct design method and design diagrams for reinforced concrete columns and shear walls                             |
|---------------------------------------------------------------------------------------------------------------------------|
| 127                                                                                                                       |
| [12] EN 1998-1 (2004) (English): Eurocode 8: Design of structures for earthquake resistance –                             |
| Part 1: General rules, seismic actions and rules for buildings [Authority: The European Union                             |
| Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]                                                        |
| Βιβλιογραφια                                                                                                              |
| [13] Compressive Force-Path Method: Unified Ultimate Limit-State Design of Concrete                                       |
| Structures                                                                                                                |
| Παραρτημα Ι                                                                                                               |
| Πινακας Υπολογισμών Ι: Εισαγώγη δεδομενών αρθρου Ι για το δοκιμιο αναφοράς και                                            |
| επιλυση προβληματος Θεωριας Ι.Θ.Δ129                                                                                      |
| Πινακάς Υπολογισμών 2: Εισαγώγη δεοομενών αρθρού Ι για το δοκιμιό αναφοράς και                                            |
| επιλυση προβληματος Ευρωκωσικα130                                                                                         |
| Πινακάς Υπολογισμών 3: Επιλυση εξισωσεών για διατηρηση ισορροπίας δυναμέων της                                            |
| Θεωριας Γ.Θ.Δ. και του Ευρωκωσικα                                                                                         |
| Πινακάς Υπολογισμών 4: Ευρεσή τεμνουσών και φορτισής σοκιμιών για την Θεώρια 1.Θ.Δ.                                       |
| Kαι του Ευρωκωσικα                                                                                                        |
| Πινακάς Υπολογισμών 5: 2υγκριση αποτελεσματών ράσει απαιτουμένων συνδέτηρων για την                                       |
| θεωρια 1.Θ.Δ. και τον Ευρωκωσικα                                                                                          |
| Παραρτημα Π                                                                                                               |
| πινακάς Υπολογισμών δ. Εισάγωγη δεοσμένων αρθρού 2 για το δοκιμιό αναφοράς και                                            |
| επιλυσή προρληματός Θεωρίας $1.\Theta.\Delta$                                                                             |
| πινακάς επολογισμών 7. Εισάγωγη δεοσμένων αρθρού 2 για το δοκιμιό αναφοράς και                                            |
| επιλυση προρληματος Ευρωκωσικα134                                                                                         |
| Πινακάς Γπολογισμών δ. Επιλυση εξισώσεων για σιατηρήση ισορροπίας συναμεών της                                            |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκωσικα                                                                                         |
| πινακάς Γπολογισμών 9. Ευρεση τεμνουσών και φορτισης σοκιμιών για την Θεώρια 1.Θ.Δ.                                       |
| Πίνακας Υπολογισμών 10: Σύγκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσων για                                          |
| την Θεωρία Τ.Θ. Δ. και τον Ευρωκάδικα                                                                                     |
| Паоа́отрия Ш                                                                                                              |
| Παραρτημα Π                                                                                                               |
| r πνακας πλολογισμών 11. Εισαγώγη σεοσμενών αρόρου 5 για το σοκιμιό αναφοράς 1 και $r$                                    |
| Πίνακας Υπολογισμών 12: Εισαγωνή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 1 και                                         |
| πινακας πλολογισμών 12. Εισαγώγη σεοσμενών αρόρου 5 για το σοκιμιο αναφοράς 1 και                                         |
| Πίνακας Υπολογισμών 13: Επίλυση εξισώσεων για διατήσηση ισοροοπίας δυνάμεων της                                           |
| Πινακάς Γκολογισμών 15. Εκκουή εξισώσεων για υπτηρήση ισορροκίας συναμεών της                                             |
| Πίνακας Υπολογισμών 14: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεφρία Τ.Θ.Δ                                       |
| ται του Ευρωκώδικα                                                                                                        |
| Πίνακας Υπολογισμών 15: Σύγκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσων για                                          |
| την Θεωρία Τ.Θ. Δ. και τον Ευρωκάδικα                                                                                     |
| Πίνακας Υπολογισμών 16: Εισαγωνή δεδομένων άσθοου 3 για το δοκίμιο αναφοράς 2 και                                         |
| r πνακας πλολογισμών το. Εισαγώγη σεοσμένων αρόρου 5 για το σοκιμίο αναφοράς 2 και $r$ sπίλωση πορβλήματος Θεωρίας Τ.Θ. Δ |
| Πίνακας Υπολογισμών 17: Εισαγωνή δεδομένων άσθοου 3 για το δοκίμιο αναφοράς 2 και                                         |
| πινακας πλολογισμών 17. Εισαγώγη σεοσμένων αρόρου 5 για το σοκιμίο αναφοράς 2 και<br>επίλωση πορβλήματος Ευρωκώδικα       |
| Πίνακας Υπολογισμών 18: Επίλυση εξισώσεων για διατήσηση ισοροοπίας δυνάμεων της                                           |
| Ωεωρίας Τ. Θ. Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολονισμών 19: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεφρία Τ.Θ.Δ                                       |
| και του Ευρωκώδικα                                                                                                        |
| Πίνακας Υπολονισμών 20: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσου για                                          |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                      |
|                                                                                                                           |

| Πίνακας Υπολογισμών 21: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 3 κα  | n<br>145            |
|-----------------------------------------------------------------------------------|---------------------|
| Επιχυση προρληματός Θεωριας 1.Θ.Δ.                                                | .143                |
| Πινακάς Υπολογισμών 22: Εισαγώγη δεοομένων αρθρού 5 για το δοκιμιό αναφοράς 5 και | 146                 |
| Επιχυσιή προρληματός Ευρωκωσικά                                                   | .140                |
| P $P$ $P$ $P$ $P$ $P$ $P$ $P$ $P$ $P$                                             | 1/7                 |
| Πίνακας Υπολογισμών 24: Εύροςση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τι | ע פ<br>ידדי         |
| πινακάς πιολογισμών 24. Ευρεσή τεμνούσων και φορτισής συκτμιών για την Θεώρια 1.6 | 9. <u></u> .<br>1/7 |
| Πίνακας Υπολογισμών 25: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσων γι   | .14/                |
| την Θεωρία Τ.Θ. Δ. και τον Ευρωκώδικα                                             | 1/18                |
| Ποάστημα ΙV                                                                       | 1/0                 |
| Παραρτημα Τν                                                                      | ידד.<br>ח           |
| πορβλήματος Θεωρίας Τ. Ο. Δ                                                       | יי<br>149           |
| Πίνακας Υπολογισμών 27: Εισαγωνή δεδομένων άρθρου 4 για το δοκίμιο αναφοράς και   | .17)                |
| επίλυση πορβλήματος Ευρωκώδικα                                                    | 150                 |
| Πίνακας Υπολογισμών 28: Επίλυση εξισώσεων για διατήσηση ισοροοπίας δυνάμεων της   | .120                |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                 | .151                |
| Πίνακας Υπολογισμών 29: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεφρία Τ.θ | -151                |
| και του Ευρωκώδικα                                                                | 151                 |
| Πίνακας Υπολογισμών 30: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσων γι   | α                   |
| την Θεωρία Τ.Θ.Λ. και τον Ευρωκώδικα                                              | .152                |
| Παράστημα V                                                                       | .153                |
| Πίνακας Υπολογισμών 31: Εισαγωνή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 1 και | i                   |
| επίλυση ποοβλήματος Θεωρίας Τ.Θ.Δ.                                                | .153                |
| Πίνακας Υπολογισμών 32: Εισαγωνή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 1 και | i                   |
| επίλυση προβλήματος Ευρωκώδικα                                                    |                     |
| Πίνακας Υπολογισμών 33: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της   |                     |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                 | .155                |
| Πίνακας Υπολογισμών 34: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.  | Θ.Δ.                |
| και του Ευρωκώδικα                                                                | .155                |
| Πίνακας Υπολογισμών 35: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων γι   | α                   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                              | .156                |
| Πίνακας Υπολογισμών 36: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 2 και | l                   |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                 | .157                |
| Πίνακας Υπολογισμών 37: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 2 και | l                   |
| επίλυση προβλήματος Ευρωκώδικα                                                    | .158                |
| Πίνακας Υπολογισμών 38: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της   |                     |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                 | .159                |
| Πίνακας Υπολογισμών 39: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ | Э.Д.                |
| και του Ευρωκώδικα                                                                | .159                |
| Πίνακας Υπολογισμών 40: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων γι   | α                   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                              | .160                |
| Πίνακας Υπολογισμών 41: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 3 και | L                   |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                 | .161                |
| Πίνακας Υπολογισμών 42: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 3 και | l                   |
| επίλυση προβλήματος Ευρωκώδικα                                                    | .162                |
| Πίνακας Υπολογισμών 43: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της   |                     |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                 | .163                |
| Πίνακας Υπολογισμών 44: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ | 9.Δ.                |
| και του Ευρωκώδικα                                                                | .163                |
| Πίνακας Υπολογισμών 45: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων γι   | α                   |

| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα164                                                                    |
|------------------------------------------------------------------------------------------------------------|
| Πίνακας Υπολογισμών 46: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 4 και                          |
| επιλυση προβληματος Θεωριας Ι.Θ.Δ165                                                                       |
| Πίνακας Υπολογισμών 47: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 4 και                          |
| επιλυση προρληματός Ευρωκωσικα                                                                             |
| Πινακάς Υπολογισμών 48: Επιλυση εξισώσεων για οιατηρηση ισορροπιάς συναμεών της                            |
| Πίνανας Μπολονησιών 40: Εύρωκωσικά                                                                         |
| πινακάς Γπολογισμών 49. Ευρεση τεμνούσων και φορτισης σοκιμιών για την Θεωρία 1.Θ.Δ.<br>και του Ευρωκάδικα |
| Πίνακας Μπο) ονισμών 50: Σύνκοιση αποτεί εσμάτων βάσει απαιτούμενων συνδετήσων για                         |
| πινακάς Γπολογισμών 50. 20γκριση αποτελεσματών ράσει απαιτοσμένων συνσετηρών για                           |
| Парабатича VI                                                                                              |
| Παραρτημα VI109                                                                                            |
| Πινακάς Υπολογισμών 51: Εισάγωγη δεοομενών αρθρού 6 για το δοκιμιο αναφοράς 1 και                          |
| επιλυση προβληματος Θεωριας Ι.Θ.Δ169                                                                       |
| Πινακας Υπολογισμών 52: Εισαγώγη δεδομενών αρθρού 6 για το δοκιμιό αναφοράς Ι και                          |
| επιλυση προβληματος Ευρωκωοικα1/0                                                                          |
| Πινακας Υπολογισμών 53: Επιλυση εξισώσεων για διατηρηση ισορροπιας δυναμεών της                            |
| Θεωριας Γ.Θ.Δ. και του Ευρωκωσικα                                                                          |
| Πινακας Υπολογισμών 54: Ευρεσή τεμνουσών και φορτισής δοκιμιών για την Θεώρια 1.Θ.Δ.                       |
| και του Ευρωκωδικα                                                                                         |
| Πίνακας Υπολογισμών 55: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                           |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα172                                                                    |
| Πίνακας Υπολογισμών 56: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 2 και                          |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ173                                                                       |
| Πίνακας Υπολογισμών 57: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 2 και                          |
| επίλυση προβλήματος Ευρωκώδικα174                                                                          |
| Πίνακας Υπολογισμών 58: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                            |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα175                                                                       |
| Πίνακας Υπολογισμών 59: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ.                       |
| και του Ευρωκώδικα175                                                                                      |
| Πίνακας Υπολογισμών 60: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                           |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα176                                                                    |
| Παράρτημα VII                                                                                              |
| Πίνακας Υπολογισμών 61: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 1 και                          |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                                          |
| Πίνακας Υπολογισμών 62: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 1 και                          |
| επίλυση προβλήματος Ευρωκώδικα178                                                                          |
| Πίνακας Υπολογισμών 63: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                            |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα179                                                                       |
| Πίνακας Υπολογισμών 64: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ.                       |
| και του Ευρωκώδικα179                                                                                      |
| Πίνακας Υπολογισμών 65: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                           |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα180                                                                    |
| Πίνακας Υπολογισμών 66: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 2 και                          |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ181                                                                       |
| Πίνακας Υπολογισμών 67: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 2 και                          |
| επίλυση προβλήματος Ευρωκώδικα182                                                                          |
| Πίνακας Υπολογισμών 68: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                            |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα183                                                                       |
| Πίνακας Υπολογισμών 69: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ.                       |
| και του Ευρωκώδικα                                                                                         |

| Πίνακας Υπολογισμών 70: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για     |
|--------------------------------------------------------------------------------------|
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                 |
| Πίνακας Υπολονισμών 71: Εισαγωνή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 3 και    |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                    |
| Πίνακας Υπολογισμών 72: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 3 και    |
| επίλυση προβλήματος Ευρωκώδικα186                                                    |
| Πίνακας Υπολογισμών 73: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της      |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                    |
| Πίνακας Υπολογισμών 74: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. |
| και του Ευρωκώδικα                                                                   |
| Πίνακας Υπολογισμών 75: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για     |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                 |
| Παράρτημα VIII                                                                       |
| Πίνακας Υπολογισμών 76: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 1 και    |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                    |
| Πίνακας Υπολογισμών 77: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 1 και    |
| επίλυση προβλήματος Ευρωκώδικα                                                       |
| Πίνακας Υπολογισμών 78: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της      |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                    |
| Πίνακας Υπολογισμών 79: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. |
| και του Ευρωκώδικα                                                                   |
| Πίνακας Υπολογισμών 80: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για     |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                 |
| Πίνακας Υπολογισμών 81: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 2 και    |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                    |
| Πίνακας Υπολογισμών 82: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 2 και    |
| επίλυση προβλήματος Ευρωκώδικα194                                                    |
| Πίνακας Υπολογισμών 83: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της      |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                    |
| Πίνακας Υπολογισμών 84: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. |
| και του Ευρωκώδικα                                                                   |
| Πίνακας Υπολογισμών 85: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για     |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα196                                              |
| Πίνακας Υπολογισμών 86: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 3 και    |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ197                                                 |
| Πίνακας Υπολογισμών 87: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 3 και    |
| επίλυση προβλήματος Ευρωκώδικα198                                                    |
| Πίνακας Υπολογισμών 88: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της      |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα199                                                 |
| Πίνακας Υπολογισμών 89: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. |
| και του Ευρωκώδικα                                                                   |
| Πίνακας Υπολογισμών 90: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για     |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                 |
| Πίνακας Υπολογισμών 91: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 4 και    |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                    |
| Πίνακας Υπολογισμών 92: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 4 και    |
| επίλυση προβλήματος Ευρωκώδικα202                                                    |
| Πίνακας Υπολογισμών 93: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της      |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                    |
| Πίνακας Υπολογισμών 94: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. |
| και του Ευρωκώδικα                                                                   |

|      | Πίνακας Υπολογισμών 95: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                     |
|------|----------------------------------------------------------------------------------------------------------------------|
|      | την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα204                                                                              |
| Παρό | ιρτημα IX205                                                                                                         |
|      | Πίνακας Υπολογισμών 96: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ  |
|      | Πίνακας Υπολογισμών 97: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 1 και<br>επίλυση ποοβλήματος Ευρωκώδικα  |
|      | Πίνακας Υπολογισμών 98: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                      |
|      | Θεωρίας Γ.Θ.Δ. και του Ευρωκώδικα                                                                                    |
|      | Πινακας Υπολογισμών 99: Ευρεση τεμνουσών και φορτισης δοκιμιών για την Θεώρια 1.Θ.Δ. και του Ευρωκώδικα              |
|      | Πίνακας Υπολογισμών 100: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                    |
|      | την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα208                                                                              |
|      | Πίνακας Υπολογισμών 101: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ |
|      | Πίνακας Υπολογισμών 102: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 2 και                                   |
|      | επίλυση προβλήματος Ευρωκώδικα                                                                                       |
|      | Πίνακας Υπολογισμών 103: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                     |
|      | Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                    |
|      | Πίνακας Υπολογισμών 104: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                       |
|      | Τ.Θ.Δ. και του Ευρωκώδικα                                                                                            |
|      | Πίνακας Υπολογισμών 105: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                    |
|      | την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                 |
|      | Πίνακας Υπολογισμών 106: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 3 και                                   |
|      | επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                                                    |
|      | Πίνακας Υπολογισμών 107: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 3 και                                   |
|      | επίλυση προβλήματος Ευρωκώδικα214                                                                                    |
|      | Πίνακας Υπολογισμών 108: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                     |
|      | Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                    |
|      | Πίνακας Υπολογισμών 109: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                       |
|      | Τ.Θ.Δ. και του Ευρωκώδικα                                                                                            |
|      | Πίνακας Υπολογισμών 110: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                    |
|      | την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                 |
|      | Πίνακας Υπολογισμών 111: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 4 και                                   |
|      | επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                                                    |
|      | Πίνακας Υπολογισμών Π2: Εισαγώγη δεδομένων αρθρού 9 για το δοκίμιο αναφοράς 4 και                                    |
|      | επιλυση προβληματος Ευρωκωδικα                                                                                       |
|      | Πινακάς Υπολογισμών Π3: Επιλυση εξισώσεων για διατηρηση ισορροπιας δυναμεών της                                      |
|      | Θεωρίας Ι.Θ.Δ. και του Ευρωκωσικα                                                                                    |
|      | Πινακάς Υπολογισμών 114: Ευρεση τεμνουσών και φορτισης οοκιμιών για την Θεώρια                                       |
|      | 1.Θ.Δ. και του Ευρωκωσικα                                                                                            |
|      | πινακάς Γπολογισμών 115. 20γκριση αποτελεσματών ράσει απαττούμενων συνσετηρών για                                    |
|      | Πίνανας Χπολουματιών 116: Εισανωνή δεδομήνων άσθοου θανα το δοιτίμιο αναφοράς 5 και                                  |
|      | επίληση πορβλήματος Θεωρίας Τ.Θ.Δ                                                                                    |
|      | Πίνακας Χπολογισμών 117: Εισανωνή δεδομένων άσθοου 9 για το δοκίμιο αναφοράς 5 και                                   |
|      | επίληση πορβλήματος Ευρωκώδικα                                                                                       |
|      | Πίνακας Υπολογισμών 118: Επίλυση εξισώσεων για διατήσηση ισοροσπίας δυνάμεων της                                     |
|      | Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                    |
|      | Πίνακας Υπολογισμών 119. Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                       |
|      | Τ.Θ.Δ. και του Ευρωκώδικα                                                                                            |
|      | — - r                                                                                                                |

| Πίνακας Υπολογισμών 120: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                       |
|-------------------------------------------------------------------------------------------------------------------------|
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα224                                                                                 |
| Πίνακας Υπολογισμών 121: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 6 και<br>επίλυση ποοβλήματος Θεωρίας Τ.Θ.Δ |
| Πίνακας Υπολογισμών 122: Εισαγωγή δεδομένων άρθορη 9 για το δοκίμιο αναφοράς 6 και                                      |
| επίλυση προβλήματος Ευρωκώδικα                                                                                          |
| Πίνακας Υπολογισμών 123. Επίλυση εξισώσεων για διατήσηση ισοροσπίας δυγάμεων της                                        |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολογισμών 124. Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                          |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                                                               |
| Πίνακας Υπολογισμών 125: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                       |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                    |
| Παράστημα Χ                                                                                                             |
| Πίνακας Υπολογισμών 126: Εισανωνή δεδομένων άρθρου 10 για το δοκίμιο αναφοράς και                                       |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                                                       |
| Πίνακας Υπολογισμών 127: Εισαγωγή δεδομένων άρθρου 10 για το δοκίμιο αναφοράς και                                       |
| επίλυση προβλήματος Ευρωκώδικα                                                                                          |
| Πίνακας Υπολογισμών 128: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                        |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολογισμών 129: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                          |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                                                               |
| Πίνακας Υπολογισμών 130: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                       |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                    |
| Παράστημα XI                                                                                                            |
| Πάραρτημα Πίτατα το δοκίμιο αναφοράς 1 και                                                                              |
| επίλυση πορβλήματος Θεωρίας Τ.Θ.Δ                                                                                       |
| Πίνακας Υπολογισμών 132. Εισανωνή δεδομένων άρθοου 11 για το δοκίμιο αναφοράς 1 και                                     |
| επίλυση ποοβλήματος Ευρωκώδικα                                                                                          |
| Πίνακας Υπολογισμών 133: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                        |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολογισμών 134: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                          |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                                                               |
| Πίνακας Υπολογισμών 135: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                       |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                    |
| Πίνακας Υπολογισμών 136: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 2 και                                     |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                                                       |
| Πίνακας Υπολογισμών 137: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 2 και                                     |
| επίλυση προβλήματος Ευρωκώδικα                                                                                          |
| Πίνακας Υπολογισμών 138: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                        |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολογισμών 139: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                          |
| Τ.Θ.Λ. και του Ευρωκώδικα                                                                                               |
| Πίνακας Υπολογισμών 140: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                       |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                    |
| Πίνακας Υπολογισμών 141: Εισανωνή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 3 και                                     |
| επίλυση ποοβλήματος Θεωρίας Τ.Θ.Δ                                                                                       |
| Πίνακας Υπολογισμών 142: Εισανωνή δεδομένων άρθρου 11 νια το δοκίμιο αναφοράς 3 και                                     |
| επίλυση ποοβλήματος Ευρωκώδικα                                                                                          |
| Πίνακας Υπολογισμών 143: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                        |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                       |
| Πίνακας Υπολογισμών 144: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                          |
|                                                                                                                         |

| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |
|-------------------------------------------------------------------------------------|
| Πίνακας Υπολογισμών 145: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                |
| Πίνακας Υπολογισμών 146: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 4 και |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                   |
| Πίνακας Υπολογισμών 147: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 4 και |
| επίλυση προβλήματος Ευρωκώδικα                                                      |
| Πίνακας Υπολογισμών 148: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της    |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                   |
| Πίνακας Υπολογισμών 149: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία      |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |
| Πίνακας Υπολογισμών 150: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                |
| Πίνακας Υπολογισμών 151: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 5 και |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                   |
| Πίνακας Υπολογισμών 152: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 5 και |
| επίλυση προβλήματος Ευρωκώδικα                                                      |
| Πίνακας Υπολογισμών 153: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της    |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                   |
| Πίνακας Υπολογισμών 154: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία      |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |
| Πίνακας Υπολογισμών 155: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                |
| Πίνακας Υπολογισμών 156: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 6 και |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                   |
| Πίνακας Υπολογισμών 157: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 6 και |
| επίλυση προβλήματος Ευρωκώδικα                                                      |
| Πίνακας Υπολογισμών 158: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της    |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                   |
| Πίνακας Υπολογισμών 159: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία      |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |
| Πίνακας Υπολογισμών 160: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                |
| Πίνακας Υπολογισμών 161: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 7 και |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                   |
| Πίνακας Υπολογισμών 162: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 7 και |
| επίλυση προβλήματος Ευρωκώδικα                                                      |
| Πίνακας Υπολογισμών 163: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της    |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                   |
| Πίνακας Υπολογισμών 164: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία      |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |
| Πίνακας Υπολογισμών 165: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για   |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                |
| Πίνακας Υπολογισμών 166: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 8 και |
| επίλυση προβλήματος Θεωρίας Τ.Θ.Δ                                                   |
| Πίνακας Υπολογισμών 167: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 8 και |
| επίλυση προβλήματος Ευρωκώδικα                                                      |
| Πίνακας Υπολογισμών 168: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της    |
| Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                   |
| Πίνακας Υπολογισμών 169: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία      |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                           |

| Πίνακας Υπολογισμών 170: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tην Θεωρία Ι.Θ.Δ. και τον Ευρωκωσικα204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Πινακας Υπολογισμών 171: Εισαγώγη δεδομενών αρθρου 11 για το δοκιμιο αναφοράς 9 και<br>επίλυση ποοβλήματος Θεωρίας Τ.Θ.Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Πίνακας Υπολονισμών 172: Εισανωνή δεδομένων άρθοου 11 για το δοκίμιο αναφοράς 9 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| επίλυση προβλήματος Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Πίνακας Υπολογισμών 173: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Θεωρίας Τ.Θ.Λ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Πίνακας Υπολογισμών 174: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Τ.Θ.Δ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Πίνακας Υπολογισμών 175: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Πίνακας Υπολογισμών 176: Εισανωνή δεδομένων άρθρου 11 νια το δοκίμιο αναφοράς 10 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| επίλυση ποοβλήματος Θεωρίας Τ.Θ.Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Πίνακας Υπολογισμών 177: Εισανωνή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 10 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| επίλυση ποοβλήματος Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Πίνακας Υπολονισμών 178: Επίλυση εξισώσεων για διατήσηση ισοροσπίας δυνάμεων της                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ο σαραζ ΤΤΟ Δ΄ και του Συρακασοκαιστινουσών και φόρτισης δοκιμίων νια την Θεφρία                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ΤΩ Λ και του Ευρωκώδικα 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Πίνακας Υπολονισμών 180: Σύνκοιση αποτελεσμάτων βάσει απαιτούμενων συνδετήσων νια                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| την Θεωρία Τ.Θ. Δ. και τον Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| την Θεωριά 1.0.Δ. και τον Ευρωκωσικα.<br>Πίνακας Υπολογισμών 181: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 11 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| επίλυση ποοβλήματος Θεωρίας Τ.Θ. Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Πίνακας Vπολογισμών 182: Εισανωνή δεδομένων άρθοου 11 για το δοκίμιο αναφοράς 11 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| πινακάς πλολογισμών 182. Εισαγώγη σεοσμένων αρόρου 11 για το σοκιμίο αναφοράς 11 και<br>επίλυση ποοβλήματος Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Πίνακας Υπολογισμών 183: Επίλυση εξισώσεων για διατήσηση ισοροοπίας δυνάμεων της                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Πινακάς Τκολογισμών 183. Εκιλυσή εξισώσεων για σιατηρήση ισορρολίας συναμεών της<br>Ωςωρίας Τ.Ω.Δ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ο εωρίας Υπολογισμών 184: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Τινακάς Τκολογισμών 184. Ευρεσή τεμνουσών και φορτισής σοκιμιών για την Οεώρια<br>Τ.Θ.Δ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0.Δ. και του Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| την θεωρία Τ.Θ. Δ. και τον Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| την Οεωρία 1.0.Δ. και τον Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| επίλυση ποοβλήματος Θεωρίας Τ.Θ. Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Πίνακας Υπολογισμών 187: Εισαγωγή δεδομένων άρθοου 11 για το δοκίμιο αναφοράς 12 και                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| πινακάς πλολογισμών 187. Εισαγώγη σεοσμένων αρόρου 11 για το σοκιμίο αναφοράς 12 και<br>επίλυση ποοβλήματος Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ατίνου προρληματός Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P $P$ $P$ $P$ $P$ $P$ $P$ $P$ $P$ $P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ο εωρίας Υπολογισμών 189: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $T \Theta \Lambda$ και του Ευρωκάδικα 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.0.Δ. και του Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| πινακάς Γπολογισμών 190. 20γκριση αποτελεσματών ράσει απαιτουμένων συνσετηρών για<br>την Θεωρία Τ.Θ. Δ. και του Ευρωκώδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Pi_{\mu}$ Θεωρία 1.Θ.Δ. και τον Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| επιλύση προρληματός θεωρίας 1. $\Theta$ . $\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{1}{2}$ $1$ |
| επιλυση προρληματος Ευρωκωσικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\pi$ (πολογισμών 195. Επιλυση εςισώσεων για σιατηρηση ισορροπίας συναμέων της                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| σεωρίας 1.9.Δ. και του Ευρωκωσικά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| πινακάς παιλογισμών 194. Ευρεσή τεμνούσων και φορτισής οσκιμιών για την Θεώρια<br>Τ.Θ.Δ. και του Ευροικόδικα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.87.7, KULLOU FUDUKUUOIKU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Π$ (μαμαρίο $V$ πο) ομημών 105: Σύμμου πο αποτο) οπιάπου βάπου αποτούμου τη $S_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα | 284 |
|--------------------------------------|-----|
|--------------------------------------|-----|

#### Abstract

This study concerns the comparison of the Eurocode method and the Theory of the Compressive Force Path Method (C.F.P.) for various reinforced concrete tests. For this purpose, experimental test data were collected from eleven (11) published articles. Most comparisons shown great relationship between the Theory of C.F.P. and the test results, as for the failure Type I, II and III and their ultimate failure test value, as for the superiority of the Theory of C.F.P. from the Eurocode Methodology. Few comparisons shown that Eurocode Methodology had better results, but usually not in an acceptable percentage related to test result. Some comparisons shown both same values and percentages for the two Methodologies, sometimes with values and percentages close to test values and sometimes far or too far from the real test values. In conclusion Theory of C.F.P. seem to be better from the Eurocode Methodology, but there are some cases where Eurocode Method is good enough. It is a great question if the Theory of C.F.P. should take into account the Eurocode Methodology or Eurocode Methodology should take into the Theory of C.F.P.. Certainly the merge of the two Methods would give the most promising results, with the Theory of Compressive Force Path Method (C.F.P.) being the dominant methodology, due to the results of the calculations of this study.

## Περίληψη

Η παρούσα μελέτη αφορά την σύγκριση της μεθοδολογίας του Ευρωκώδικα και της Θεωρίας της Τροχιάς Θλιπτιικής Δύναμης για διάφορα δοκίμια οπλισμένου σκυροδέματος. Για τον σκοπό αυτό αντλήθηκαν δεδομένα πειραματικών δοκιμίων από έντεκα (11) έγκριτα δημοσιευμένα άρθρα.

Στο άρθρο 1, η εξωτερικά συγκολλημένη (EB) πλάκα ινοπλισμένου σκυροδέματος (FRCM) χρησιμοποιήθηκε με επιτυχία ως δομική ενίσχυση για διάφορες εφαρμογές, συμπεριλαμβανομένης της καμπτικής και διατμητικής ενίσχυσης των δοκών οπλισμένου σκυροδέματος (RC), της καμπτικής ενίσχυσης των πλακών RC και της συγκράτησης των κολώνων. Κατασκευάστηκαν δεκατρείς δοκοί RC μεσαίου μεγέθους με ανεπάρκεια διάτμησης, ενισχυμένες στην διάτμηση και δοκιμασμένες με δοκιμή κάμψης τριών σημείων. Οι παράμετροι δοκιμής ήταν: (α) τύπου FRCM (πολυπαραφαινυλενο βενζοβισοξαζόλη, άνθρακας και γυαλί), (β) ενισχυτική διαμόρφωση (πλήρης έναντι διαλείπουσας λωρίδας), και (γ) αριθμός στρωμάτων υφάσματος. Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου III, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 2.27 αντίστοιχα.

Στο άρθρο 2, διερευνάται η επίδραση, της χρήσης ανακυκλωμένων αδρανών σκυροδέματος (RCA) από απόβλητα κατασκευών και καταστροφών (C&D) συνδυασμένα με μακρο-ίνες βασάλτη, στην καμπτική συμπεριφορά και στην οριακή αντοχή των δοκών οπλισμένου σκυροδέματος πειραματικά και αναλυτικά. Ένα σύνολο από 16 δοκίμια δοκών οπλισμένου σκυροδέματος δοκιμάστικαν σε καμτική αστοχία. Οι διευρευνούμενες παράμετροι περιλαμβάνουν το ποσοστό αντικατάστασης ανακυκλωμένων αδρανών σκυροδέματος (RCA) και το κλάσμα του όγκου των μακρο-ινών βασάλτη (BMF). Επιπλέον τα πειραματικά αποτελέσματα συγκρίθηκαν έναντι των ισχύοντων αναλυτικών μοντέλων και των εξισώσεων βασισμένων σε κώδικες, για διάφορα συμβατικά σκυροδέματα. Τα αποτελέσματα των δοκιμών έδειξαν ότι η καμπτική αντοχή των δοκών, με την προσθήκη μακρο-ινών βασάλτη (BMF), βελτιώθηκε. Από την άλλη πλευρά, η χρήση των ανακυκλωμένων αδρανών σκυροδέματος δεν έχει καμία σημαντική επίδραση στην καμπτική αντοχή των δοκών που διερευνήθηκαν. Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 0.87 αντίστοιχα. Στο ποσοστό αναλογίας ο Ευρωκώδικας είναι λίγο καλύτερος.

Στο άρθρο 3, δεκαοκτώ δοκοί ενεργούς πεπάλης σκυροδέματος (RPC) υποβλήθηκαν σε μονοτονικό φορτίο, δοκιμάστηκαν για να ποσοτικοποιήσουν την επίδραση ενός νέου τσιμεντοειδούς πλέγματος υλικών, σε διατμητική συμπεριφορά δοκών σκυροδέματος με διαμήκη οπλισμό, χωρίς συνδετήρες. Οι κύριες μεταβλητές των δοκιμών είναι το ποσοστό της αναλογίας διάτμησης με το ενεργό ύψος (a/d), το ποσοστό της διαμήκους όπλισης (pw), το ποσοστό των κλασμάτων όγκου ινών χάλυβα (Vf) και το ποσοστό της πούδρας πυριτίου (SF). Οι προτεινόμενες εξισώσεις σχεδιασμού διάτμησης από τους Ashour et al. και Bunni για δοκούς υψηλής αντοχής ινοπλισμένου σκυροδέματος (HSFRC) έχουν τροποποιηθεί στη δημοσίευση αυτή για να προβλέψουν την διατμητική αντοχή λεπτών δοκών, χωρίς συνδετήρες και με a/d≥2.5. Οι τροποιημένες προβλέψεις συγκρίθηκαν με τις προβλέψεις των Shine et al., Kwak et al. και Khuntia et al. Ο τρόπος και η μορφή αστοχίας της δοκού a/d=2.6 και a/d=3.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 1.16 και 2.99, 1.12 και 3.13 αντίστοιχα. Ο τρόπος και η μορφή αστοχίας της δοκού

a/d=1.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.49 και 1.95 αντίστοιχα.

Στο άρθρο 4, εκτελούνται δοκιμές φόρτισης σε δοκίμια δοκών οπλισμένου σκυροδέματος, κατασκευασμένα από σύνθετα τσιμεντοειδή ενισχυμένα με ίνες πολυουρεθάνης, ενσωματώνοντας λεπτόκοκκα αδρανή με διαφορετικές αναλογίες νερούσυνδετικού υλικού. Επίσης, πραγματοποιούνται μη γραμμικές αναλύσεις πεπερασμένων στοιχείων για να διερευνηθούν οι επιδράσεις των αναλογιών ύδατος-συνδετικού υλικού και των ράβδων οπλισμού, καθώς και την δύναμη διάτμησης δέσμης των δοκών οπλισμένου σκυροδέματος. Επιπρόσθετα, για ορισμένους παράγοντες, ερευνάται η επίδραση της παρουσίας ή της απουσίας των ράβδων οπλισμού με διάτμηση στην αντοχή διατμήσεως των ακτίνων R-HFDFRCC RC. Διαπιστώνεται ότι οι διακυμάνσεις στο μέγιστο φορτίο των δειγμάτων δοκών RC, που οφείλονται σε διαφορές στην αναλογία νερού-συνδετικού, μπορούν γενικά να προβλεφθούν, εάν κατανοήσουμε τις διαφορές στις ιδιότητες των υλικών (κυρίως αντοχή σε θλίψη, αντοχή σε εφελκυσμό και τελική εφελκυστική τάση), εξαιρετικά σε ρευστά με σύνθετα υλικά τσιμέντου που ενσωματώνουν ανακυκλωμένο λεπτόκοκκα αδρανή. Ο τρόπος και η μορφή αστοχίας της δοκού, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 0.17 και 0.21 αντίστοιχα.

Στο άρθρο 5, εκτελούνται δοκιμές φόρτισης σε δοκίμια δοκών οπλισμένου σκυροδέματος, κατασκευασμένα από σύνθετα τσιμεντοειδή ενισχυμένα με ίνες πολυουρεθάνης, ενσωματώνοντας λεπτόκοκκα αδρανή με διαφορετικές αναλογίες νερούσυνδετικού υλικού. Επίσης, πραγματοποιούνται μη γραμμικές αναλύσεις πεπερασμένων στοιχείων για να διερευνηθούν οι επιδράσεις των αναλογιών ύδατος-συνδετικού υλικού και των ράβδων οπλισμού, καθώς και η δύναμη διάτμησης δέσμης των δοκών οπλισμένου σκυροδέματος. Επιπρόσθετα, για ορισμένους παράγοντες, ερευνήσαμε την επίδραση της παρουσίας ή της απουσίας των ράβδων οπλισμού με διάτμηση στην αντοχή διατμήσεως των ακτίνων R-HFDFRCC RC. Διαπιστώσαμε ότι οι διακυμάνσεις στο μέγιστο φορτίο των δειγμάτων δοκών RC, που οφείλονται σε διαφορές στην αναλογία νερού-συνδετικού, μπορούν γενικά να προβλεφθούν, εάν κατανοήσουμε τις διαφορές στις ιδιότητες των υλικών (κυρίως αντοχή σε θλίψη, αντοχή σε εφελκυσμό και τελική εφελκυστική τάση), εξαιρετικά σε ρευστά με σύνθετα υλικά τσιμέντου που ενσωματώνουν ανακυκλωμένο λεπτόκοκκα αδρανή. Λόγω απουσίας δείγματος εικόνας αστοχίας δεν μπορεί να γίνει σύγκριση με τον Τύπο ΙΙ αστοχίας της μορφής όλων των δοκών. Η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές για την Θεωρία της Τ.Θ.Δ., ενώ για τον Ευρωκώδικα συμβαίνει σε κάποιες φορές να είναι κοντινές οι τιμές. Τα ποσοστά για τις 4 δοκούς είναι 0.21 και 0.39, 0.22 και 0.42, 0.38 και 0.73, 0.2 και 0.47 αντίστοιχα.

Στο άρθρο 6, η ανάπτυξη τεχνολογιών παραγωγής δοκών υψηλής αντοχής, με σκοπό την δημιουργία ασφαλούς και ανθεκτικού υλικού, συνδέεται με αριθμητικά μοντέλα πραγματικών αντικειμένων. Σε αυτή την μελέτη διερευνήθηκαν τριδιάστατα μη γραμμικά πεπερασμένα στοιχεία μοντέλων δοκών RC υψηλής αντοχής, με σύνθετη γεωμετρία. Η αριθμητική ανάλυση εκτελέστηκε χρησιμοποιώντας το πακέτο πεπερασμένων στοιχείων, ANSYS. Τα αριθμητικά αποτελέσματα για τα σχέδια με ρωγμές ρωγμών είναι ποιοτικά αποδεκτά ως προς τη θέση, την κατεύθυνση και τη διανομή με τα δεδομένα δοκιμών. Το μοντέλο ήταν σε θέση να προβλέψει την εισαγωγή και διάδοση των καμπτικών και των διαγώνιων ρωγμών. Το συμπέρασμα ήταν ότι το μοντέλο πεπερασμένων στοιχείων συνέλαβε με επιτυχία την ανελαστική συμπεριφορά κάμψης των δοκών σε αστοχία. Ο τρόπος και η μορφή αστοχίας των δοκών, δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών είναι κοντινή μόνο για την πρώτη δοκό ενώ στην δεύτερη ο Ευρωκώδικας έχει καλύτερα αποτελέσματα. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.06 και 3.82, 0.38 και 1.37 αντίστοιχα.

Στο άρθρο 7, αναφέρεται ότι το σκυρόδεμα είναι ένα ετερογενές σύνθετο υλικό φτιαγμένο από τσιμέντο, άμμο, χοντρόκοκκα αδρανή και νερό, αναμεμειγμένα σε επιθυμητή αναλογία, για να αποκτήσει την απαιτούμενη δύναμη. Το άοπλό σκυρόδεμα δεν αντέχει σε εφελκυσμό σε σύγκριση με την θλίψη. Για να αντισταθμιστεί το μειονέκτημα αυτό το σκυρόδεμα ενισχύεται με οπλισμό. Σήμερα, για την βελτίωση των ιδιοτήτων του σκυροδέματος και επίσης για να αναλάβει τον εφελκυσμό, ο συνδυασμός χάλυβα και γυαλιού σε ινοπλισμένες ράβδους πολυμερών (GFRP), υπόσχονται ικανονοποιητική αντοχή, λειτουργικότητα και ανθεκτικότητα. Για να διασφαλίσει την υπόσχεση και να υποστηρίξει τον σχεδιασμό κατασκευών με υβριδικό τύπο οπλισμού, η παρούσα μελέτη διερεύνησε την συμπεριφορά φόρτισης-εκτροπής δοκών RC με υβρίδια GFRP και ράβδους χάλυβα, χρησιμοποιώντας το λογισμικό ΑΤΕΝΑ. Αναλύθηκαν 14 δοκοί, περιλαμβάνοντας 6 δοκούς ελέγχου οπλισμένες με ράβδους μόνο χάλυβα ή μόνο GFRP Η δοκών αυτών διερευνήθηκε μέσω των συμπεριφορά των χαρακτηριστικών παραμόρφωσης φορτίου, της συμπεριφοράς θραύσης και του τρόπου αστοχίας. Η υβριδική δοκός RC GFRP-χάλυβα έδειξε τη βελτίωση της οριακής αντοχής και της παραμόρφωσης σε σχέση με την δοκό RC. Ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας είναι κοντινότερη για την πρώτη δοκό στον Ευρωκώδικα. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.17 και 0.91, 0.88 και 0.69, 0.81 και 0.64 αντίστοιχα.

Στο άρθρο 8, η παρούσα μελέτη στοχεύει στη βελτίωση της αντοχής σε διάτμηση και κάμψη του σκυροδέματος με την προσθήκη ινών χάλυβα. Επίσης, η μελέτη ερευνά την επίδραση της προέντασης στην αντοχή διάτμησης και κάμψης του σκυροδέματος. Σε αυτό το ερευνητικό έργο, προστίθεται 20% ιπτάμενης τέφρας (κλάση-C) ως υποκατάστατο συνδετικού υλικού στο βάρος του και 1,5% ίνες χάλυβα κατά βάρος σκυροδέματος. Με βάση τα πειραματικά αποτελέσματα, μπορεί να φανεί ότι η ικανότητα μεταφοράς φορτίου των ινών χάλυβα αυξήθηκε κατά 30-50% από την απλή δοκό χωρίς προεντεταμένη. Και η χωρητικότητα φορτίου αυξάνεται κατά περίπου 30-90% από την απλή δοκό προεντεταμένου σκυροδέματος. Η χρήση ινών χάλυβα σε ένα μείγμα σκυροδέματος βρέθηκε ότι αυξάνει την αντοχή στη ρωγμή των δοκών. Ως εκ τούτου, βάσει πειραματικών αποτελεσμάτων μπορεί να εξαχθεί το συμπέρασμα ότι οι δοκοί από οπλισμένο σκυρόδεμα προεντεταμένης χαλύβδινης ίνας συμβάλλουν στη βελτίωση της διάτμησης, της κάμψης και της διάβρωσης. Ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου Ι και ΙΙ. Ωστόσο η τιμή αστοχίας για την άοπλη δοκό απέχει για τις δυο μεθόδους. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 8.22 και 6.24, 0.81 και 0.47, 0.91 και 0.93, 0.93 και 0.07 αντίστοιχα.

Στο άρθρο 9, δοκιμάστηκαν συνολικά έξι γεωμετρικά όμοιες στύλοι RC κανονικής αντοχής διαφορετικών δομικών μεγεθών (σε αναλογία 3: 5: 7) και με αξονικές αναλογίες συμπίεσης (0,4 και 0,6) για να διερευνηθεί η συμπεριφορά κάμψης και το μέγεθος όπου τα μεγέθη διατομής των στύλων κυμαίνονταν από 300mm έως 700mm και η αναλογία διατμήσεως ήταν 4. Τα πειραματικά αποτελέσματα δείχνουν ότι οι επιπτώσεις του μεγέθους στην καμπτική συμπεριφορά των στύλων RC υπό μονοτονικό οριζόντιο φορτίο ήταν προφανείς, συμπεριλαμβάνοντας την φέρουσα ικανότητα των δειγμάτων και την ολκιμότητά τους και την παραμόρφωση συμπίεσης στο σκυρόδεμα, η οποία μειώθηκε με την αύξηση του ύψους της διατομής. Όσο μεγαλύτερος είναι ο λόγος αξονικής συμπίεσης, τόσο πιο εμφανές είναι το αποτέλεσμα μεγέθους της ικανότητας φέρουσας κάμψης και της τελικής τάσης συμπίεσης του σκυροδέματος. Όταν η αξονική αναλογία συμπίεσης ήταν μικρή, η επίδραση μεγέθους της ολκιμότητας ήταν πιο έντονη. Ωστόσο, η παραδοχή ενός επίπεδου τμήματος εξακολουθεί να συγκρατείται για δείγματα μεγάλης κλίμακας, γεγονός που αποτελεί ένδειξη μηδενικού αποτελέσματος μεγέθους. Επιπλέον, δεν υπήρχε εμφανής επίδραση μεγέθους στα πρότυπα αποτυχίας εκτός από την αύξηση του πλάτους της ρωγμής με το μέγεθος της εγκάρσιας τομής. Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 1.03 και 12.17, 0.9 και 15.03, 0.94 και 18.49, 0.72 και 25.25, 0.93 και 17.85, 0.92 και 25.59 αντίστοιχα.

Στο άρθρο 10, δοκιμάστηκαν μια σειρά εννέα δειγμάτων υποστυλωμάτων RC που έχουν διάμετρο εγκάρσιας διατομής 150mm x 150mm και ύψος 960mm. Το πείραμα διεξάγεται για έλεγχο υποστυλωμάτος, στύλους με μανδύα τύπου ινοπλέγματος ως ενισχυτικό συγκράτησης πέραν των συνδετήρων και στύλο με μανδύα τύπου ινοπλέγματος ως μόνη ενίσχυση συγκράτησης. Η συνολική απόκριση των δειγμάτων ερευνήθηκε ως προς την ικανότητα μεταφοράς φορτίου, την αξονική μετατόπιση, την τάση, την παραμόρφωση, την πλευρική μετατόπιση και την ολκιμότητα. Τα αποτελέσματα της δοκιμής έδειξαν ότι ο στύλος με προσθήκη ινοπλέγματος δίνει 20% αύξηση στην αξονική αντοχή σε σύγκριση με την κανονικό στύλο ελέγχου. Παρατηρείται ότι οι στύλοι με μανδύες τύπου ινοπλέγματος ως ενίσχυση οπλισμού εκτός από τους συνδετήρες παρέχουν καλύτερη ολκιμότητα και όταν ο στύλος ενισχύεται μόνο με ινόπλεγμα αστοχεί με όλκιμο τρόπο. Ο τρόπος και η μορφή αστοχίας της δοκού, παρόλο που η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.06 και 0.47 αντίστοιχα. Ο Ευρωκώδικας παρουσιάζει καλύτερη τιμή αστοχίας βάσει αναλογίας οπλισμών.

Στο άρθρο 11, ο σχεδιασμός των κολώνων από οπλισμένο σκυρόδεμα και των διατμητικών τοιχωμάτων είναι μια επαναληπτική διαδικασία. Η αντοχή ενός υποτιθέμενου τμήματος ελέγχεται χρησιμοποιώντας διαγράμματα αλληλεπίδρασης και η διαδικασία συνεχίζεται μέχρι να βρεθεί ικανοποιητικό τμήμα. Η μελέτη εισάγει μια μέθοδο άμεσου σχεδιασμού και διαγράμματα σχεδίασης. Η μέθοδος άμεσης σχεδίασης είναι μια αναλυτική προσέγγιση μέσω της οποίας η απαιτούμενη περιοχή οπλισμού για μικρούς στύλους RC ή διάτμησης προσδιορίζεται απευθείας χωρίς τοίχους την χρήση διαγράμματος αλληλεπίδρασης. Αυτή η μέθοδος παρέχει μια προσαρμοσμένη επίλυση για ένα τμήμα οπλισμένου σκυροδέματος. Η αντοχή του τμήματος είναι ίση με τη ζήτηση από τα εφαρμοζόμενα φορτία και ροπές. Για κάθε κολώνα ή τοίχο διάτμησης, μπορούν να χρησιμοποιηθούν πολλά προσαρμοσμένα τμήματα με διαφορετικά μεγέθη και διατάξεις ραβδών. Το διάγραμμα σχεδίασης δείχνει όλα τα πιθανά τοποθετημένα τμήματα για ένα συγκεκριμένο στύλο ή τοίχο διάτμησης. Αυτή η μελέτη παρέχει αλγόριθμο για την κατασκευή διαγραμμάτων σχεδίασης. Η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές ούτε για την Θεωρία της Τ.Θ.Δ., ούτε για τον Ευρωκώδικα. Τα ποσοστά για τους δεκατρείς (13) στύλους είναι 0.02 και 0.16, 0.03 και 0.20, 0.02 kai 0.16, 0.03 kai 0.07, 1.76 kai 1.88, 4.93 kai 5.28, 0.03 kai 0.10, 0.01 kai 0.12, 0.03 και 0.09, 0.04 και 0.08, 5.15 και 5.52, 2.93 και 3.14, 0.47 και 0.50 αντίστοιχα. Αξίζει να σημειωθεί ότι οι τιμές θραύσης των δοκιμίων είναι χωρίς συνδετήρες και οι τιμές αντοχής των στύλων χωρίς συνδετήρες, για τις δυο θεωρίες, παρουσιάζει κοντινές τιμές. Συνεπώς οι μέθοδοι είναι υπέρ της ασφαλείας.

Στο τέλος παρουσιάζονται η Ανασκόπηση των Αποτελεσμάτων, η Δικτυογραφία και η Βιβλιογραφία, καθώς και τα έντεκα (11) Παραρτήματα Υπολογισμών.

## 1. Υβριδική τεχνική NSE / EB για την ενίσχυση διάτμησης δοκών RC χρησιμοποιώντας FRCM: Πειραματική μελέτη

#### 1.1. Συνοπτική περιγραφή

Η εξωτερικά συγκολλημένη (EB) πλάκα ινοπλισμένου σκυροδέματος (FRCM) χρησιμοποιήθηκε με επιτυχία ως δομική ενίσχυση για διάφορες εφαρμογές, συμπεριλαμβανομένης της καμπτικής και διατμητικής ενίσχυσης των δοκών οπλισμένου σκυροδέματος (RC), της καμπτικής ενίσχυσης των πλακών RC και της συγκράτησης των κολώνων. Κατασκευάστηκαν δεκατρείς δοκοί RC μεσαίου μεγέθους με ανεπάρκεια διάτμησης, ενισχυμένες στην διάτμηση και δοκιμασμένες με δοκιμή κάμψης τριών σημείων. Οι παράμετροι δοκιμής ήταν: (α) τύπου FRCM (πολυπαραφαινυλενο βενζοβισοξαζόλη, άνθρακας και γυαλί), (β) ενισχυτική διαμόρφωση (πλήρης έναντι διαλείπουσας λωρίδας), και (γ) αριθμός στρωμάτων υφάσματος.

#### 1.2. Ιδιότητες Υλικών

#### 1.2.1. Οπλισμένο Σκυρόδεμα

Τα δείγματα ρίχνει την χρήση έτοιμου σκυροδέματος της ίδιας παρτίδας. Το μείγμα σκυροδέματος περιελάμβανε 800 kg λεπτόκοκκων αδρανών, 1100 κιλά φυσικών αδρανών, 371 κιλά συνηθισμένου τσιμέντου Πόρτλαντ και 168 kg νερού, για κάθε κυβικό μέτρο σκυροδέματος. Η χαρακτηριστική αντοχή σκυροδέματος σε θλίψη ελήφθη με δοκιμή προτύπου κυλίνδρων από σκυρόδεμα διαστάσεων διαμέτρου 150 mm και ύψους 300 mm σύμφωνα με την ASTM C39 / C39M [48]. Το αποτελέσματα των δοκιμών έδειξαν μέση θλιπτική αντοχή 28 ημερών των 30 ± 1,65 MPα. Η ενίσχυση περιελάμβανε ράβδους διαμέτρου 16 mm (που χρησιμοποιήθηκαν ως εφελκυστική ενίσχυση) και ράβδους διαμέτρου 8 mm (που χρησιμοποιούνται ως θλιπτική ενίσχυση και διάτμηση) με μέση τάση απόδοσης 594MPa και 536 MPα, αντίστοιχα. Ο Πίνακας 1 συνοψίζει τα αποτελέσματα των μέσων μηχανικών ιδιοτήτων των οπλισμού βασισμένα σε δοκιμασμένα δείγματα εργαστηρίου.

| Rebar Diameter (mm) | Yield stress (MPa) | COV (%) | Yield strain ey (%) | COV (%) | Ultimate strain (%) | COV (%) | Elastic modulus (GPa) |
|---------------------|--------------------|---------|---------------------|---------|---------------------|---------|-----------------------|
| 8.00                | 535.00             | 0.03    | 0.26                | 0.01    | 12.47               | 0.16    | 207.00                |
| 16.00               | 595.00             | 0.04    | 0.27                | 0.02    | 9.12                | 0.19    | 224.00                |

Πίνακας 1: Σύνοψη ιδιοτήτων οπλισμού ενίσχυσης

#### 1.2.2. Πλέγμα σκυροδέματος υφασμάτινης ενίσχυσης

Τρεις εμπορικά διαθέσιμοι τύποι υφασμάτων χρησιμοποιήθηκαν σε αυτή την μελέτη με τους κατασκευαστές να συνιστούν κονιάματα που αποτελούν τρία συστήματα FRCM, δηλαδή άνθρακα (C) - FRCM, PBO FRCM και γυαλί (G) - FRCM. Ο Πίνακας 2 συνοψίζει τα γεωμετρικά και μηχανικά χαρακτηριστικά κάθε τύπου υφάσματος κατά μήκος με την αντίστοιχη αντοχή του κονιάματος όπως προβλέπεται από τους κατασκευαστές. Επιπλέον, η γεωμετρία του υφάσματος φαίνεται στην Εικόνα 1a έως c για υφάσματα από άνθρακα, γυαλί και PBO, αντίστοιχα. Το κέντρο στο κεντρικό διάστημα των βελονιών στο υάλινο ύφασμα ήταν 18x14mm ενώ ήταν 10x10 mm και 10x17 mm για τον άνθρακα και PBO υφάσματα, αντίστοιχα.

#### Πίνακας 2: Ιδιότητες του πλέγματος και των σχετικών κονιαμάτων για τα εφαρμοσμένα συστήματα FRCM

|        |                   |          |          | Elastic | Tensile  |            |                             |                     |
|--------|-------------------|----------|----------|---------|----------|------------|-----------------------------|---------------------|
| Fabric | c/c spacing w arp | Af-w arp | Af-w eft | modulus | strength | Ultimate   | 28-day compressive strength | Tensile strength of |
| type   | weft (mm)         | (mm²/mm) | (mm²/mm) | (GPa)   | (GPa)    | strain (%) | of mortar (MPa)             | mortar (MPa)        |
| Carbon | 10 x 10           | 0.05     | 0.05     | 240.00  | 4.80     | 1.80       | 20.00                       | 3.50                |
| Glass  | 18 x 14           | 0.05     | 0.07     | 80.00   | 2.60     | 3.25       | 40.00                       | 8.30                |
| PBO    | 10 x 17           | 0.05     | 0.02     | 270.00  | 5.80     | 2.15       | 30.00                       | 4.00                |

Εικόνα 1: Γεωμετρία Υφασμάτων: (a) ανθρακικού υφάσματος, (b) γυάλινου υφάσματος, (c) ΡΒΟ υφάσματος







2

5 6

(c)

4

a



#### 1.3. Διάταξη Δοκιμίων

Η κατασκευή των δειγμάτων δοκιμής αφορούσε συνολικά δεκατρείς (13) ορθογώνιες δοκούς RC μεσαίου μεγέθους διαστάσεων 150 mm σε πλάτος, σε βάθος 330 mm και μήκος 2100 mm. Εικ. 2α δείχνει το διαμήκες τμήμα των δοκών. Έχει προβλεφθεί μια σταθερή τιμή καλύμματος από σκυρόδεμα 34 mm, αποδίδοντας μια τυπική δοκό στατικού ύψους 280 mm. Τα δείγματα δοκιμάστηκαν κάτω από φορτίο τριών σημείων, όπως μια απλή έδραση με ένα κάθαρο μήκος 1,9 m μεταξύ των στηριγμάτων.



Εικόνα 2: Λεπτομέρειες δοκιμίων διαμήκων και διατομών





Ένα δείγμα δεν ενισχύθηκε για να δρα ως σημείο αναφοράς, ενώ τα υπόλοιπα δώδεκα δείγματα ήταν ενισχυμένα για διάτμηση χρησιμοποιώντας συστήματα FRCM. Εννέα από

τα ενισχυμένα δείγματα χρησιμοποίησαν το σύστημα NSEEB-FRCM ενώ τα άλλα τρία δείγματα ενισχύθηκαν χρησιμοποιώντας το αντίστοιχο NSE-FRCM για το το σκοπό της σύγκρισης. Τα Σχήματα 2b και c δείχνουν λεπτομέρειες της διατομής για το NSE-FRCM και τα NSEEB-FRCM ενισχυμένα δείγματα, αντίστοιχα. Το NSEEB-FRCM περιλάμβανε δύο στρώματα, κοντά στην επιφάνεια, ενσωματωμένου FRCM και δύο ακόμη στρώματα EB-FRCM, με διαφορετικές διαμορφώσεις, με αποτέλεσμα το σύνολο των 4 στρώσεων FRCM, ενώ το NSE-FRCM χρησιμοποίησε δύο στρώματα υφάσματος που εφαρμόστηκαν στην προετοιμασμένη αυλάκωση με το αντίστοιχο κονίαμα. Η πειραματική μήτρα δοκιμής παρέχεται στον Πίνακα 3. Στο δείγμα ο προσδιορισμός ακολουθεί δύο βασικές παραμέτρους: ύφασμα και FRCM τόσο για ενσωματωμένο, κοντά στην επιφάνεια, όσο και για EBFRCM σύστημα. Για το σύστημα NSEEB-FRCM, ο προσδιορισμός του δείγματος χαρακτηρίζεται με την μορφή "A-B-D" όπως φαίνεται στον Πίνακα 3. Το «A» δηλώνει ο τύπος υφάσματος (C - για άνθρακα, P - για PBO, και G - για γυαλί)? " B " και ' Το "D" δηλώνει την διαμόρφωση ενίσχυσης ("Ι" αναπαριστά την διαμόρφωση διαλείπουσας λωρίδας και το " F " αναπαριστά πλήρη διαμόρφωση) για σύστημα ενσωματωμένο κοντά στην επιφάνεια και σύστημα EB-FRCM, αντίστοιχα. Κατά συνέπεια, το C-I-I δηλώνει ένα δείγμα δοκιμής ενισχυμένο με σύστημα άνθρακα NSEEB -FRCM, στο οποίο η κοντινή επιφάνεια έχει ενσωματωθεί και τα εξωτερικά συνδεδεμένα μέρη είναι διακεκομμένα, όπως φαίνεται στο Εικ. 2ε. Στην περίπτωση του συστήματος NSE-FRCM, έχει χρησιμοποιηθεί μόνο πλήρης διαμόρφωση με δύο στρώματα συστήματος FRCM. Έτσι, μόνο τα πρώτα δυο γράμματα χρησιμοποιήθηκαν για τον προσδιορισμό του NSE-FRCM, δηλαδή "A" για τον τύπο υφάσματος και το «Β» για τη διαμόρφωση NSE-FRCM που είναι πλήρης διαμόρφωση. Επομένως, το G-F υποδηλώνει ότι ένα δείγμα δοκιμής ενισχύθηκε με δύο στρώματα από γυαλί NSE-FRCM εφαρμοσμένα σε πλήρη FRCM διαμόρφωση.

| Beam ID   | Fabric type | Streng          | gthening scheme | Number of FRCM | ayers |
|-----------|-------------|-----------------|-----------------|----------------|-------|
|           |             | NSE             | EB              | NSE            | EB    |
| Reference | _           | _               | _               | _              | -     |
| C-F-F     | Carbon      | Full/continuous | Full/continuous | 2.00           | 2.00  |
| C-ŀF      | Carbon      | Intermittent    | Full/continuous | 2.00           | 2.00  |
| C-I-I     | Carbon      | Intermittent    | Intermittent    | 2.00           | 2.00  |
| C-F       | Carbon      | Full/continuous | _               | 2.00           | -     |
| P-F-F     | PBO         | Full/continuous | Full/continuous | 2.00           | 2.00  |
| P-I-F     | PBO         | Intermittent    | Full/continuous | 2.00           | 2.00  |
| P-I-I     | PBO         | Intermittent    | Intermittent    | 2.00           | 2.00  |
| P-F       | PBO         | Full/continuous | _               | 2.00           | -     |
| G-F-F     | Glass       | Full/continuous | Full/continuous | 2.00           | 2.00  |
| G-ŀF      | Glass       | Intermittent    | Full/continuous | 2.00           | 2.00  |
| G-I-I     | Glass       | Intermittent    | Intermittent    | 2.00           | 2.00  |
| G-F       | Glass       | Full/continuous | _               | 2.00           | _     |

#### Πίνακας 3: Μητρώο δοκιμών

#### 1.4. Αποτελέσματα πειραματικών δοκιμίων

| 1           | 2       | 3              | 4             | 5      | 6             | 7       | 8      | 9                     | 10                    | 11       | 12                                               |
|-------------|---------|----------------|---------------|--------|---------------|---------|--------|-----------------------|-----------------------|----------|--------------------------------------------------|
| Specimen ID | Pu (kN) | Gain in Pu (%) | $\rho_{_{f}}$ | Kf     | Normalized Kf | δu (mm) | δu=δuR | ε <sub>s,u</sub> (με) | ε <sub>c,u</sub> (με) | Ψ(KN.mm) | $\boldsymbol{\epsilon}_{_{FRCM,U}}(\mu\epsilon)$ |
| Reference   | 104.00  | -              | -             | -      | -             | 3.25    | -      | 1425.00               | -                     | 238.00   | -                                                |
| C-F-F       | 222.42  | 113.87         | 0.00          | 181.00 | 3.98 k        | 7.96    | 2.45   | -                     | -                     | 1189.00  | -                                                |
| C-I-F       | 205.57  | 97.66          | 0.00          | 150.00 | 3.29 k        | 6.21    | 2.05   | 1837.00               | 1615.00               | 761.00   | 345.00                                           |
| C-H         | 149.19  | 43.45          | 0.00          | 119.00 | 2.60 k        | 5.45    | 1.68   | 1768.00               | 1584.00               | 485.00   | 1299.00                                          |
| C-F         | 184.22  | 77.13          | 0.00          | 91.00  | 1.99 k        | 6.48    | 1.99   | 2711.00               | 2036.00               | 753.00   | 163.00                                           |
| P-F-F       | 183.31  | 76.26          | 0.00          | 91.00  | 2.00 k        | 6.41    | 1.97   | 2471.00               | 1779.00               | 760.00   | 166.00                                           |
| P-ŀF        | 169.94  | 63.40          | 0.00          | 75.00  | 1.65 k        | 6.30    | 1.94   | 1884.00               | 1329.00               | 653.00   | 348.00                                           |
| P-I-I       | 150.48  | 44.69          | 0.00          | 60.00  | 1.31 k        | 5.38    | 1.66   | 2203.00               | 1396.00               | 497.00   | 300.00                                           |
| P-F         | 169.46  | 62.94          | 0.00          | 46.00  | k             | 5.93    | 1.82   | 2457.00               | 1153.00               | 632.00   | 517.00                                           |
| G-F-F       | 186.83  | 79.64          | 0.00          | 97.00  | 2.12 k        | 7.44    | 2.29   | 2565.00               | 1581.00               | 932.00   | 1840.00                                          |
| G-I-F       | 185.37  | 78.24          | 0.00          | 80.00  | 1.76 k        | 6.24    | 1.92   | 2057.00               | 1251.00               | 717.00   | 387.00                                           |
| G-I-I       | 167.76  | 61.30          | 0.00          | 63.00  | 1.39 k        | 5.71    | 1.76   | 2228.00               | 2035.00               | 600.00   | 853.00                                           |
| G-F         | 173.83  | 67.14          | 0.00          | 48.00  | 1.06 k        | 5.98    | 1.84   | 2426.00               | 1891.00               | 694.00   | 300.00                                           |

Πίνακας 4: Σύνοψη πειραματικών αποτελεσμάτων δοκιμών

Εικόνα 3: Σχηματική αναπαράσταση ρωγμών, όλες οι τιμές σε KN. Παρατήρηση· το δοκίμιο αναφοράς έχει παρόμοια αστοχία με το τελευταίο δοκίμιο G-F.



Εικόνα 4: Αστοχίες δοκιμίων. Παρατηρηση· η αστοχία του τελευταίου δοκιμίου F-G είναι παρόμοια με την αστοχία του δοκιμίου αναφοράς.



(a) P-F-F



(b) P-F-F (FRCM composite removed)



(c) G-I-I



(d) G-I-I (top view)





(e) G-F-F



(g) G-F

- (h) G-F (top view)

## 1.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

|         | Type III |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 104.00  | -78.64   | 0.76          |
|         |          |               |
| Pu      | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu      | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 104.00  | -236.51  | 2.27          |
| Pu      | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 104.00  | -236.51  | 2.27          |
| Pu      | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 104.00  | -236.51  | 2.27          |
| Pu      | CPF      | EC            |
| Pu      | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 104.00  | -236.51  | 2.27          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Συγκεντρωτικός Πίνακας Αποτελεσματων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# Type III vs EC

#### 1.6. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 5: Σύγκριση αστοχίας Τύπου ΙΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφοράς (δεξιά)



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙΙ παρουσιάζει μια ομοιόμορφη εφελκυστική αστοχία διαγώνιου ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εκτός του διατμητικού μήκους. Στην Εικόνα 6 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 6: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 1.7. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 2.27 αντίστοιχα. [1] [12] [13].

### 2. Καμπτική συμπεριφορά δοκών RC με ίνες βασάλτη και με ανακυκλωμένα αδρανή σκυροδέματος

#### 2.1. Συνοπτική Περιγραφή

Αυτή η μελέτη διερευνά την επίδραση, της χρήσης ανακυκλωμένων αδρανών σκυροδέματος (RCA) από απόβλητα κατασκευών και καταστροφών (C&D) συνδυασμένα με μακρο-ίνες βασάλτη, στην καμπτική συμπεριφορά και στην οριακή αντοχή των δοκών οπλισμένου σκυροδέματος, πειραματικά και αναλυτικά. Ένα σύνολο από 16 δοκίμια δοκών οπλισμένου σκυροδέματος δοκιμάστικαν σε καμτική αστοχία. Οι διευρευνούμενες παράμετροι περιλαμβάνουν το ποσοστό αντικατάστασης ανακυκλωμένων αδρανών σκυροδέματος (RCA) και το κλάσμα του όγκου των μακρο-ινών βασάλτη (BMF). Επιπλέον τα πειραματικά αποτελέσματα συγκρίθηκαν έναντι των ισχύοντων αναλυτικών μοντέλων και των εξισώσεων βασισμένων σε κώδικες, για διάφορα συμβατικά σκυροδέματα. Τα αποτελέσματα των δοκιμών έδειξαν ότι η καμπτική αντοχή των δοκών, με την προσθήκη μακρο-ινών βασάλτη (BMF), βελτιώθηκε. Από την άλλη πλευρά, η χρήση των ανακυκλωμένων αδρανών σκυροδέματος δεν έχει καμία σημαντική επίδραση στην καμπτική αντοχή των δοκών που διερευνήθηκαν.

#### 2.2. Ιδιότητες Υλικών

#### 2.2.1. Χονδρόκοκκα Αδρανή

Οι δύο τύποι χονδροειδών αδρανών που χρησιμοποιήθηκαν σε αυτή την έρευνα ήταν ΝCA (Γάββρος) και RCA. Ο Γάββρος, ένας πυριγενής βράχος, είναι φυσικό χοντρόκοκκο αδρανές το οποίο χαρακτηρίζεται από το σκούρο χρώμα του. Ο Γάββρος δεν είναι φυσικά διαθέσιμος στο Κατάρ, επομένως, εισάγεται από το Ομάν για την κάλυψη των αναγκών των τοπικών αγορών. Αφ 'ετέρου, το RCA που χρησιμοποιήθηκε σε αυτή τη μελέτη έχει παραχθεί στο Κατάρ από το 2009 από τις κατεδαφισμένες κατασκευές σκυροδέματος. Ανάλυση διαβάθμισης διεξήχθη σύμφωνα με το πρότυπο ASTM C33. Η Εικόνα 1 δείχνει προκύπτουσες κατανομές μεγέθους σωματιδίων για τους δύο TIC τύπους συσσωματωμάτων σε σχέση με τα ανώτερα και κατώτερα όρια ASTM για τα αδρανή χρήσης σε σκυρόδεμα. Η καμπύλη RCA ήταν κοντά στο ανώτερο ASTM όριο, ενώ η καμπύλη διαβάθμισης της ΝΑΚ ήταν μεταξύ στα όρια της ASTM. Αποτελέσματα δοκιμών για το λόγο βάρους και απορρόφησης των δύο τύπων συσσωματωμάτων παρουσιάζονται στον Πίνακα 2. Όπως αναμενόταν, το RCA έδειξε χαμηλότερο ειδικό βάρος και βάρος μονάδας και σημαντικά υψηλότερη αναλογία απορρόφησης σε σύγκριση με τα συσσωματώματα Γάββρου. Τα αποτελέσματα των δοκιμών τριβής του Λος Άντζελες έδειξαν αύξηση της απώλειας υλικού για RCA.

#### 2.2.2. Τσιμέντο, άμμος, νερό και οπλισμός ενίσχυσης

Η πλυμένη άμμος χρησιμοποιήθηκε ως λεπτόκοκκο αδρανές σε όλα τα μείγματα σκυροδέματος σύμφωνα με τις προδιαγραφές κατασκευής 2014 του Κατάρ για ένα συνηθισμένο τσιμέντο Portland (OPC), όπου οι ιδιότητές συναντούν τις απαιτήσεις ASTM C150-07 [38]. Επιπλέον, το νερό της βρύσης χρησιμοποιήθηκε επίσης για όλα τα μείγματα σκυροδέματος. Χάλυβες με διάμετρο 8 mm και 16 mm χρησιμοποιήθηκαν ως διαμήκεις ενισχύσεις. Η μηχανικές ιδιότητες των ενισχυτικών ράβδων χάλυβα παρουσιάζονται στον Πίνακα 3. Κάθε τιμή αποτελέσματος βασίζεται στον μέσο όρο των τριών δοκιμασμένων δειγμάτων ράβδων οπλισμού.

#### 2.2.3. Βασαλτικές μακρο-ίνες (BMF)

Υπάρχουν διάφοροι τύποι ινών που έχουν χρησιμοποιηθεί στα μείγματα σκυροδέματος για την παραγωγή FRC. Ωστόσο, αυτή η έρευνα επικεντρώθηκε στην χρήση BMF σε μείγματα σκυροδέματος. Το BMF έχει σχεδιαστεί για τη βελτίωση του σκυροδέματος την αντοχή σε εφελκυσμό, τον έλεγχο ρωγμής και την παροχή υψηλής κάμψης αντίστασης με υψηλή ακεραιότητα, υψηλή θερμική αντίσταση και αλκαλική αντοχή. Πρόσφατα, μια ευρωπαϊκή εταιρεία έχει αναπτύξει βασάλτικές μακρο-ίνες με εμπορικό σήμα μάρκας MiniBar. Αυτός ο τύπος BMF χρησιμοποιήθηκε σε αυτή τη μελέτη. Είναι μια μη διαβρωτική διακριτή λεπτή ίνα κατασκευασμένη από πέτρα βασάλτη και επικαλυμμένη με κατάλληλο διάλυμα για χρήση σε σκυρόδεμα, με μέση διάμετρο 0,65 mm και μήκος 45 mm. Λειτουργεί ως ενεργός οπλισμός που παρέχει την άμεση μεταφορά εφελκυσμού όταν δημιουργούνται μικρές ρωγμές στο σκυρόδεμα. Έχει ένα εφελκυσμό αντοχής 1080 MPa και μέτρο ελαστικότητας 44 GPa, όπως προβλέπεται από τον κατασκευαστή. Επιπλέον, η πυκνότητά του είναι κοντά στην πυκνότητα συνθετικών ινών. Αυτό επιτρέπει την ανάμειξη του σκυροδέματος με BMF σε δοσολογίες έως και 3% κατ' όγκο χωρίς να υποβαθμιστεί η λειτουργικότητα του σκυρόδεματος.

Πίνακας 1: Μητρώο δοκιμών για δοκίμια δοκών

| Beam#   | A1 | A2 | A3 | A4  | A5  | A6  | Α7  | A8  | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
|---------|----|----|----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| RCA (%) | 0  | 25 | 50 | 100 | 0   | 25  | 50  | 100 | 0  | 25  | 50  | 100 | 0   | 25  | 50  | 100 |
| BMF(%)  | 0  | 0  | 0  | 0   | 0.5 | 0.5 | 0.5 | 0.5 | 1  | 1   | 1   | 1   | 1.5 | 1.5 | 1.5 | 1.5 |

#### Πίνακας 2: Ειδικό βάρος, ποσοστό απορρόφησης και τριβή αντίστασης των ΝCA και RCA

| Aggregates Type Bulk | Specific Gravity (Dry) | Bulk Specific Gravity (SSD*) | Bulk Specific Gravity (APP**) | Absorption (%) | Abrasion Resistance (Loss%) |
|----------------------|------------------------|------------------------------|-------------------------------|----------------|-----------------------------|
| NCA (Gabbro)         | 2.88                   | 2.89                         | 2.93                          | 0.65           | 8.9                         |
| RCA                  | 1.96                   | 2.04                         | 2.13                          | 4.06           | 17.6                        |

\* (SSD = Saturated Surface Dry).

\*\* (APP = Apparent).

#### Πίνακας 3: Ιδιότητες οπλισμού ενίσχυσης

| Bar Dia. (mm) | Area (mm²) | Yield Strain | Yield Stress (N/mm <sup>2</sup> ) | Ultimate Stress (N/mm <sup>2</sup> ) | Modulus of Elasticity (Gpa) |
|---------------|------------|--------------|-----------------------------------|--------------------------------------|-----------------------------|
| 8             | 50         | 0.00268      | 512                               | 551                                  | 191                         |
| 16            | 201        | 0.00266      | 525                               | 560                                  | 197                         |

#### 2.3. Ιδιότητες Υλικών

Συνολικά, 16 μίγματα σκυροδέματος με διαφορετικές αναλογίες αντικατάστασης RCA και κλάσματα όγκου BMP. Όλα τα μείγματα σκυροδέματος παρασκευάστηκαν με σταθερή αναλογία ύδατος προς τσιμέντο 0,45 και στοχευμένη θλιπτική αντοχή 35 MPa. Καθώς το RCA χαρακτηρίζεται από την υψηλότερη απορρόφηση του νερού λόγω των συνημμένων παλαιών κονιαμάτων σε σύγκριση με το NCA και την ποσότητα ελεύθερου νερού στο σκυρόδεμα το, μείγμα παίζει σημαντικό κανόνα στην ανάπτυξη στις ιδιότητες σκλήρυνσης του προκύπτοντος σκυροδέματος. Για τον λόγο αυτό, τα RCA και τα NCA πλύθηκαν και βυθίστηκαν σε νερό για 24 ώρες πριν από την ανάμιξη, και στη συνέχεια η επιφανειακή υγρασία ξηράνθηκε. Αυτό έγινε για να διασφαλιστεί ότι και οι δύο τύποι συσσωματωμάτων ήταν σε κατάσταση ξηρής κορεσμένης επιφάνειας (SSD) στην φάση της μείξης μπετόν. Το νερό που απορροφήθηκε από κορεσμένα συσσωματώματα δεν περιλαμβάνεται στον υπολογισμό της περιεκτικότητας νερού σε τσιμέντο. Ωστόσο πρέπει να διασφαλιστεί ότι η υπόλοιπη ποσότητα νερού είναι περίπου η ίδια και είναι αρκετό για να εξασφαλίσει την ενυδάτωση των σωματιδίων του τσιμέντου στο μείγμα μπετόν. Ο σχεδιασμός μείγματος άμεσης αντικατάστασης όγκου (DVR) υιοθετήθηκε ως μέθοδος για τον υπολογισμό των αναλογιών του μείγματος σκυροδέματος, όπου ο συνολικός όγκος του RCA συν το NCA σε ένα κυβικό μέτρο σκυροδέματος διατηρήθηκε σταθερός για όλα τα δείγματα σκυροδέματος, όπως που παρουσιάζεται στον Πίνακα 4.



Εικόνα 1: Μακρο-ίνες Βασάλτη

#### Πίνακας 4: Αναλογίες μίγματος σκυροδέματος

| Mix # | Specimen Description | Cement kg/m <sup>3</sup> | Sand kg/m <sup>3</sup> | Water kg/m <sup>3</sup> | NCA kg/m <sup>3</sup> | RCA kg/m <sup>3</sup> | BMF kg/m <sup>3</sup> |
|-------|----------------------|--------------------------|------------------------|-------------------------|-----------------------|-----------------------|-----------------------|
| A1    | RCA 0%–BMF 0%        | 349.5                    | 709                    | 156                     | 1076                  | 0                     | 0                     |
| A2    | RCA 25%–BMF 0%       | 349.5                    | 709                    | 156                     | 807                   | 189.5                 | 0                     |
| A3    | RCA 50%–BMF 0%       | 349.5                    | 709                    | 156                     | 538                   | 379.5                 | 0                     |
| A4    | RCA 100%–BMF 0%      | 349.5                    | 709                    | 156                     | 0                     | 759                   | 0                     |
| A5    | RCA 0%–BMF 0.5%      | 349.5                    | 709                    | 156                     | 1076                  | 0                     | 9                     |
| A6    | RCA 25%–BMF 0.5%     | 349.5                    | 709                    | 156                     | 807                   | 189.5                 | 9                     |
| A7    | RCA 50%-BMF 0.5%     | 349.5                    | 709                    | 156                     | 538                   | 379.5                 | 9                     |
| A8    | RCA 100%-BMF 0.5%    | 349.5                    | 709                    | 156                     | 0                     | 759                   | 9                     |
| A9    | RCA 0%-BMF 1%        | 349.5                    | 709                    | 156                     | 1076                  | 0                     | 18                    |
| A10   | RCA 25%-BMF 1%       | 349.5                    | 709                    | 156                     | 807                   | 189.5                 | 18                    |
| A11   | RCA 50%-BMF 1%       | 349.5                    | 709                    | 156                     | 538                   | 379.5                 | 18                    |
| A12   | RCA 100%–BMF 1%      | 349.5                    | 709                    | 156                     | 0                     | 759                   | 18                    |
| A13   | RCA 0%-BMF 1.5%      | 349.5                    | 709                    | 156                     | 1076                  | 0                     | 27                    |
| A14   | RCA 25%–BMF 1.5%     | 349.5                    | 709                    | 156                     | 807                   | 189.5                 | 27                    |
| A15   | RCA 50%–BMF 1.5%     | 349.5                    | 709                    | 156                     | 538                   | 379.5                 | 27                    |
| A16   | RCA 100%-BMF 1.5%    | 349.5                    | 709                    | 156                     | 0                     | 759                   | 27                    |

#### 2.4. Μεγάλης κλίμακας δοκίμια δοκών

Και οι 16 δοκοί ήταν μήκους 2550 mm με στατική απόσταση 2300 mm. Το πλάτος και το συνολικό βάθος ήταν 150 mm και 250 mm, αντίστοιχα. Χρησιμοποιήθηκαν συνδετήρες χάλυβα διαμέτρου 8 mm ως εγκάρσιος χαλύβδινος οπλισμός και δύο χάλυβες διαμέτρου 16 mm χρησιμοποιήθηκαν ως η κύρια επιμήκης ενίσχυση του πυθμένα. Οι συνδετήρες χάλυβα τοποθετήθηκαν σε απόσταση, για να έχουν καμπτική αστοχία στο μέσο της κάθε δέσμης. Η επικάλυψξη του σκυροδέματος είναι 25 mm. Η φυσική επιθεώρηση του νωπού σκυροδέματος εκτός από το μείγμα σκυροδέματος Α13 (RCA = 0% & BMP = 1,5%). Η φυσική επιθεώρηση του νωπού σκυροδέματος του Α13 έδειξε μπόλιασμα και διαχωρισμό των ινών λόγω σφάλματος στη διαδικασία ανάμειξης σκυροδέματος. Λόγω αυτού του σφάλματος, τα αποτελέσματα του δείγματος δοκού Α13 εξαιρέθηκαν από την μελέτη αυτή. Εκτός από την δοκό και τρεις κύλινδροι και πρίσματα μείγματος, αντίστοιχα.

Εικόνα 2: Δοκιμή ρύθμισης με διάταξη οργάνων (οι διαστάσεις σε mm)



(a) Test Setup



(b) Instrumentation Layout

#### Εικόνα 3: Λεπτομέρειες δοκού και διατομής (οι διαστάσεις σε mm)



Πίνακας 5: Σύνοψη αποτελεσμάτων δοκιμών δοκών μεγάλης κλίμακας

| Beam # | Specimen Description | Pc kN | Py kN | Pu kN | Mc kN.m | My kN.m | Mu kN.m | ∆maxmm. | DI   | Failure Mode |
|--------|----------------------|-------|-------|-------|---------|---------|---------|---------|------|--------------|
| A1     | RCA0%-BMF0%          | 25.0  | 110.2 | 113.1 | 10.6    | 46.8    | 48.1    | 35      | 2.57 | FF           |
| A2     | RCA25%-BMF0%         | 21.0  | 100.2 | 103.1 | 8.9     | 42.6    | 43.8    | 32      | 2.52 | FF           |
| A3     | RCA 50%-BMF 0%       | 19.0  | 99.3  | 105.2 | 8.1     | 42.2    | 44.7    | 31      | 2.46 | FF           |
| A4     | RCA100%-BMF0%        | 18.0  | 104.6 | 107.6 | 7.7     | 44.5    | 45.7    | 30      | 2.17 | FF           |
| A5     | RCA0%-BMF 0.5%       | 27.0  | 113.7 | 115.1 | 11.5    | 48.3    | 48.9    | 42      | 2.73 | FF           |
| A6     | RCA 25%-BMF 0.5%     | 24.0  | 116.8 | 117.8 | 10.2    | 49.6    | 50.1    | 39      | 2.67 | FF           |
| A7     | RCA 50%-BMF 0.5%     | 22.0  | 107.1 | 108.6 | 9.4     | 45.5    | 46.2    | 36      | 2.71 | FF           |
| A8     | RCA 100%–BMF 0.5%    | 21.0  | 108.0 | 108.5 | 8.9     | 45.9    | 46.1    | 34      | 2.46 | FF           |
| A9     | RCA0%-BMF 1%         | 30.0  | 118.2 | 120.6 | 12.8    | 50.2    | 51.3    | 45      | 3.26 | FF           |
| A10    | RCA25%-BMF1%         | 28.0  | 103.1 | 105.8 | 11.9    | 43.8    | 45.0    | 45      | 3.19 | FF           |
| A11    | RCA 50%-BMF 1%       | 27.0  | 103.6 | 106.9 | 11.5    | 44.0    | 45.4    | 46      | 3.38 | FF           |
| A12    | RCA100%-BMF1%        | 28.0  | 105.4 | 108.0 | 11.9    | 44.8    | 45.9    | 46      | 3.22 | FF           |
| A14    | RCA 25%–BMF 1.5%     | 33.0  | 112.9 | 113.1 | 14.0    | 48.0    | 48.1    | 52      | 3.53 | FF           |
| A15    | RCA 50%-BMF 1.5%     | 33.0  | 108.2 | 109.1 | 14.0    | 46.0    | 46.4    | 53      | 3.62 | FF           |
| A16    | RCA100%-BMF 1.5%     | 32.0  | 114.0 | 116.1 | 13.6    | 48.5    | 49.3    | 54      | 3.58 | FF           |

Note: FF = Flexural Failure.

# Πίνακας 6: Προβλεπόμενες και μετρημένες καμπτικές ροπές θραύσης και οριακής κατάστασης

| Beam # | Beam ID           | Mu,pred. (kN.m) | Mu,exp. (kN.m) | Mu,pred |
|--------|-------------------|-----------------|----------------|---------|
|        |                   |                 |                | Mu,exp  |
| A1     | RCA 0%–BMF 0%     | 40.7            | 48.1           | 0.85    |
| A2     | RCA 25%–BMF 0%    | 40.6            | 43.8           | 0.93    |
| A3     | RCA 50%–BMF 0%    | 40.4            | 44.7           | 0.9     |
| A4     | RCA 100%–BMF 0%   | 40.6            | 45.7           | 0.89    |
| A5     | RCA 0%–BMF 0.5%   | 41.5            | 48.9           | 0.85    |
| A6     | RCA 25%–BMF 0.5%  | 41.6            | 50.1           | 0.83    |
| A7     | RCA 50%–BMF 0.5%  | 40.6            | 46.2           | 0.88    |
| A8     | RCA 100%–BMF 0.5% | 41.5            | 46.1           | 0.9     |
| A9     | RCA 0%–BMF 1%     | 40.6            | 51.3           | 0.79    |
| A10    | RCA 25%–BMF 1%    | 41              | 45             | 0.91    |
| A11    | RCA 50%–BMF 1%    | 41.4            | 45.4           | 0.91    |
| A12    | RCA 100%–BMF 1%   | 41              | 45.9           | 0.89    |
| A14    | RCA 25%–BMF 1.5%  | 42              | 48.1           | 0.87    |
| A15    | RCA 50%–BMF 1.5%  | 42.2            | 46.4           | 0.91    |
| A16    | RCA 100%–BMF 1.5% | 41.8            | 49.3           | 0.85    |

# Εικόνα 4: Διάταξη ρηγματωμένων δοκιμίων


## 2.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

|                                         | Type II                                   |                                             |
|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                  | Pf – cfp / Pu                               |
| (KN)                                    | (KN)                                      | (KN)                                        |
| 113.10                                  | -85.88                                    | 0.76                                        |
|                                         |                                           |                                             |
|                                         |                                           |                                             |
| Pu (KN)                                 | Pf - ec2                                  | Pf - ec2 / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                          | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>113.10               | Pf – ec2<br>(KN)<br>-98.25                | Pf – ec2 / Pu<br>(KN)<br>0.87               |
| Pu (KN)<br>(KN)<br>113.10               | Pf – ec2<br>(KN)<br>-98.25                | Pf – ec2 / Pu<br>(KN)<br>0.87               |
| Pu (KN)<br>(KN)<br>113.10<br>Pu         | Pf – ec2<br>(KN)<br>-98.25<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.87<br>EC         |
| Pu (KN)<br>(KN)<br>113.10<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-98.25<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.87<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 2.6. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 5: Σύγκριση αστοχίας Τύπου ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφοράς (δεξιά)



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους. Στην Εικόνα 6 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 6: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



### 2.7. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 0.87 αντίστοιχα. Στο ποσοστό αναλογίας ο Ευρωκώδικας είναι λίγο καλύτερος. [2] [12] [13].

## 3. Διατμητική ενίσχυση τσιμεντένιων μελών με μανδύες TRM: Επίδραση της αναλογίας διατμητικής απόκλισης εις βάθος, υλικό και ποσότητα εξωτερικού οπλισμού

## 3.1. Συνοπτική Περιγραφή

Δεκαοκτώ δοκοί ενεργούς πεπάλης σκυροδέματος (RPC) υποβλήθηκαν σε μοναχικό φορτίο, δοκιμάστηκαν για να ποσοτικοποιήσουν την επίδραση ενός νέου τσιμεντοειδούς πλέγματος υλικών, σε διατμητική συμπεριφορά δοκών σκυροδέματος με διαμήκη οπλισμό, χωρίς συνδετήρες. Οι κύριες μεταβλητές των δοκιμών είναι το ποσοστό της αναλογίας διάτμησης με το ενεργό ύψος (a/d), το ποσοστό της διαμήκους όπλισης (pw), το ποσοστό των κλασμάτων όγκου ινών χάλυβα (Vf) και το ποσοστό της πούδρας πυριτίου (SF). Οι προτεινόμενες εξισώσεις σχεδιασμού διάτμησης από τους Ashour et al. και Bunni για δοκούς υψηλής αντοχής ινοπλισμένου σκυροδέματος (HSFRC) έχουν τροποποιηθεί στη δημοσίευση αυτή για να προβλέψουν την διατμητική αντοχή λεπτών δοκών, χωρίς συνδετήρες και με a/d≥2.5. Οι τροποιημένες προβλέψεις συγκρίθηκαν με τις προβλέψεις των Shine et al., Kwak et al. και Khuntia et al.

#### 3.2. Παράμετροι δοκιμίων και πειραμάτων

Συνολικά κατασκευάστηκαν 22 δοκοί RC (102 × 203 mm) και δοκιμάστηκαν ως απλά εδραζόμενοι υπό μονοτονικό φορτίο κάμψης τριών σημείων. Τα δείγματα είχαν συνολικό μήκος και στατικό καμπτικο μήκος ίσο με 1677 mm και 1077 mm αντίστοιχα. Τρεις διαφορετικές διατμητικές αναλογίες απόστασης προς βάθος, δηλαδή a / d = 1.6, 2.6 και 3.6 μελετήθηκαν. Οι δοκοί σχεδιάστηκαν σκόπιμα ως διατμητικά ελαττωματικές σε μια από τις δύο διατμήσεις. Επομένως, το ένα διάκενο διατμήσεως δεν περιείχε καθόλου συνδετήρες, ενώ το άλλο διάκενο διατμήσεως περιλάμβανε συνδετήρες διαμέτρου 8 mm σε διαστήματα των 100 mm, των 75 mm και των 50 mm στην αναλογία διατμητικής απόστασης ως προς το βάθος των δοκών, a / d ίση με 1.6, 2.6 και 3.6 αντίστοιχα. Η επένδυση TRM εφαρμόστηκε στο διάκενο διάτμησης χωρίς συνδετήρες, προκειμένου να αυξηθεί η ικανότητα διάτμησης. Οι δοκοί σχεδιάστηκαν έτσι ώστε η διατμητική δύναμη που αντιστοιχεί στην αντοχή κάμψης των δοκών να είναι 3 φορές της διατμητικής ικανότητας της μη ανατροφοδοτούμενης δοκού. Δύο παραμορφωμένες ράβδοι με διάμετρο 16 και 10 mm, αντίστοιχα, χρησιμοποιήθηκαν ως εφελκυστικές και θλιπτικές διαμήκεις ενίσχυσεις των δοκών. Η αναλογία εφελκυσμού ήταν 2,2% και το στατικό ύψος των δοκών ήταν ίσο με 177 mm. Οι κύριοι πειραματικοί παράμετροι σε αυτό το έγγραφο είναι:

(α) η επίδραση της ποσότητας του εξωτερικού λόγου ενίσχυσης TRM, ρf, χρησιμοποιώντας διαφορετικά υφαντικά υλικά (άνθρακα, γυαλί και βασάλτη)

β) η υφαντική γεωμετρία

(γ) η αναλογία διατμητικού μήκους-προς-βάθος, a / d.

Τρεις δοκοί με αναλογίες διατμητικής απόστασης προς βάθος ίσες με 1.6 (CON\_1.6), 2.6 (CON) και 3.6 (CON\_3.6) χρησιμοποιήθηκαν ως δείγματα ελέγχου και ενώ τα υπόλοιπα δείγματα ενισχύθηκαν από U σχήματος TRM. Χρησιμοποιήθηκαν τέσσερα διαφορετικά κλωστοϋφαντουργικά πλέγματα, δύο άνθρακες (έναν ελαφρύ και έναν βαρέως τύπου κλωστοϋφαντουργικό άνθρακα), ένα γυαλί και μια βασαλτική ίνα. Οι λεπτομέρειες των δειγμάτων παρουσιάζονται στον Πίνακα 1. Η σημείωση των ενισχυμένων δειγμάτων είναι Υ1L1\_Y2L2, όπου Y1 και Y2 υποδηλώνουν την πρώτη και τη δεύτερη (αν υπάρχει) ενίσχυση από υφαντικές ύλες, αντίστοιχα, και L1, L2 υποδηλώνουν τον αριθμό των στρώσεων TRM του πρώτου και του δεύτερου (εάν υπάρχει) υφασμάτινο οπλισμό (CL για

ελαφρύ άνθρακα, CH για βαρέων βαρών άνθρακα, G για γυαλί και B για βασάλτη), αντίστοιχα. Το επίθημα που χρησιμοποιήθηκε «λωρίδες» για δείγμα ενισχυμένο με λωρίδες που ήταν σε συνδυασμό με το συνεχές στρώμα TRM. Για δοκούς με διαφορετικό a/d από το 2,6, χρησιμοποιήθηκε ένα επίθημα με αναλογία διατμητικής απόστασης προς βάθος (1,6 ή 3,6). Ακολουθεί η περιγραφή των μετασκευών:

 CL1 και CL3: δοκοί με a / d = 2.6, ενισχυμένες με 1 και 3 ελαφριά στρώματα άνθρακα TRM, αντίστοιχα.

 CH1\_CL1, CH2\_CL1 και CH3\_CL1: δοκοί με a / d = 2.6, όπου ενισχύθηκαν με 1 ελαφρύ στρώμα άνθρακα TRM σε συνδυασμό με 1, 2 και 3 στρώματα TRM βαρέως άνθρακα, αντίστοιχα

.• CL1\_strips: δοκός με a / d = 2.6, που ενισχύεται με 1 ελαφρύ άνθρακα TRM σε συνδυασμό με ελαφρές ταινίες άνθρακα 125 mm πλάτους

.• G1, G3 και G7: δοκοί με a / d = 2.6, ενισχυμένες με 1, 3 και 7 γυαλί TRM στρώματα, αντίστοιχα.

• B1, B3 και B7: δοκοί με a / d = 2.6, ενισχυμένες με 1, 3 και 7 βασικά στρώματα TRM, αντίστοιχα.

CL1\_1.6 και CL3\_1.6: δοκοί με a / d = 1.6, ενισχυμένες με 1 και 3 στρώματα TRM ελαφρού άνθρακα, αντίστοιχα

.• CL1\_3.6 και CL3\_3.6: δοκοί με a / d = 3.6, ενισχυμένες με 1 και 3 στρώματα TRM ελαφρού άνθρακα, αντίστοιχα.



Εικόνα 1: (a) Σχηματική αναπαράσταση δοκών και (b) διατομής

#### 3.3. Υλικά και διαδικασία ενίσχυσης

Η χύτευση των δειγμάτων έγινε χρησιμοποιώντας το ίδιο σκυρόδεμα. Η θλιπτική αντοχή σκυροδέματος και η διάσπαση του σκυροδέματος, η αντοχή, ελήφθησαν με δοκιμή κυλίνδρων από σκυρόδεμα (300 × 150 mm) την ημέρα της δοκιμής των δοκών. Ο Πίνακας 1 συνοψίζει (το μέσο όρο των 3 δείγματων) τιμές αντοχής σκυροδέματος. Η τάση απόδοσης (μέσος όρος 3 δειγμάτων) διαμήκων ράβδων με διάμετρο 16 και 10 mm ήταν ίση σε 547 MPa και 552 MPa, αντίστοιχα, ενώ η τάση απόκλισης του με χαλύβδινες ράβδους και διάμετρο 8 mm που χρησιμοποιούνται για συνδετήρες, ήταν ίση με 568 Mpa. Τα τέσσερα υλικά κλωστοϋφαντουργικών πλεγμάτων που χρησιμοποιούνται στην παρούσα μελέτη έχουν το ίδιο ποσό των ινών σε δύο ορθογώνιες διευθύνσεις. Το βάρος του ελαφρού άνθρακα, για τα βαρέα υφάσματα από άνθρακα και γυαλί ήταν ίσα με 220 g / m2, αντιστοίχως, ενώ στο βάρος του βασαλτικού υφάσματος περιλαμβανόταν η επικάλυψη 10% ήταν 220 g / m2. Το ονομαστικό πάχος, tf (με βάση την ισοδύναμη διαστρωμένη κατανομή των ινών) του ελαφρού άνθρακα, του βαρέως άνθρακα, του υάλου και βασάλτη ήταν 0.062 mm, 0.095 mm, 0.044 mm και 0,037 mm, αντίστοιχα.

| Specimen         | ρf (‰) | Ef (GPa) | Ef_TRM (GPa) | ρf Ef_TRM (MPa) | Concrete st          | rength (MPa)               | Mortar strength (Mpa) |                   |  |
|------------------|--------|----------|--------------|-----------------|----------------------|----------------------------|-----------------------|-------------------|--|
|                  |        |          |              |                 | Compressive strength | Tensile splitting strength | Compressive strength  | Flexural strength |  |
| a/d = 2.6        |        |          |              |                 |                      |                            |                       |                   |  |
| CONª             | -      | -        | -            | 21.6            | 2.36                 | -                          | -                     |                   |  |
| CL1              | 1.2    | 225      | 167.6        | 203.75          | 23                   | 2.5                        | 38.7                  | 9.1               |  |
| CL1_strips       | 1.9    | 225      | 167.6        | 312.2           | 20                   | 1.98                       | 38.7                  | 9.1               |  |
| CH1 <sup>a</sup> | 1.9    | 225      | 163.3        | 304.19          | 23.8                 | 2.73                       | 31.1                  | 10.3              |  |
| CH1_CL1°         | 3.1    | 225      | 165.5        | 507.94          | 20                   | 1.98                       | 38.7                  | 9.1               |  |
| CH2 <sup>a</sup> | 3.7    | 225      | 163.3        | 608.37          | 23.8                 | 2.73                       | 31.1                  | 10.3              |  |
| CL3 <sup>b</sup> | 3.6    | 225      | 167.6        | 611.25          | 20.8                 | 2.39                       | 35.5                  | 8.1               |  |
| CH2_CL1°         | 4.9    | 225      | 164.7        | 812.12          | 20                   | 1.98                       | 38.7                  | 9.1               |  |
| CH3 <sup>a</sup> | 5.6    | 225      | 163.3        | 912.56          | 22.6                 | 2.81                       | 26.9                  | 8.64              |  |
| CH3_CL1°         | 6.8    | 225      | 164.4        | 1116.31         | 20                   | 1.98                       | 38.7                  | 9.1               |  |
| G1               | 0.9    | 74       | 41.1         | 35.46           | 20                   | 1.98                       | 35.5                  | 8.1               |  |
| G3               | 2.6    | 74       | 41.1         | 106.38          | 20                   | 1.98                       | 35.5                  | 8.1               |  |
| G7⁵              | 6      | 74       | 41.1         | 248.21          | 20                   | 1.98                       | 38.7                  | 9.1               |  |
| B1               | 0.7    | 89       | 63.7         | 46.34           | 23.1                 | 2.48                       | 33.3                  | 11.05             |  |
| B3               | 2.2    | 89       | 63.7         | 139.02          | 23.1                 | 2.48                       | 35.5                  | 8.1               |  |
| B7               | 5.1    | 89       | 63.7         | 324.37          | 23.1                 | 2.48                       | 35.5                  | 8.1               |  |
| a/d = 1.6        |        |          |              |                 |                      |                            |                       |                   |  |
| CON_1.6          | -      | -        | -            | 20.5            | 2.35                 | -                          | -                     |                   |  |
| CL1_1.6          | 1.2    | 225      | 167.6        | 203.75          | 22.6                 | 1.95                       | 33.3                  | 11.05             |  |
| CL3_1.6          | 3.6    | 225      | 167.6        | 611.25          | 22.6                 | 1.95                       | 33.3                  | 11.05             |  |
| a/d = 3.6        |        |          |              |                 |                      |                            |                       |                   |  |
| CON_3.6          | -      | -        | -            |                 | 20.5                 | 2.35                       | -                     | -                 |  |
| CL1_3.6          | 1.2    | 225      | 167.6        | 203.75          | 22.6                 | 1.95                       | 33.3                  | 11.05             |  |
| CL3_3.6          | 3.6    | 225      | 167.6        | 611.25          | 22.6                 | 1.95                       | 33.3                  | 11.05             |  |

Πίνακας 1: Διαμόρφωση ενίσχυσης και ιδιότητες υλικών για όλα τα δοκίμια

<sup>a</sup> Specimens included in Tetta et al. 2015 [28].

<sup>b</sup> Specimens included in Tetta and Bournas 2016 [4].

 ${}^{c} \rho_{f} E_{f\_TRM} = \rho_{f\_CH} E_{f\_TRM\_CH} + \rho_{f\_CL \ Ef\_TRM\_CL}$ 

## Πίνακας 2: Σύνοψη αποτελεσμάτων των TRM δοκιμίων

|                          | Light-<br>Car | weight<br>bon | Heavy<br>Ca<br>Toytil | -weight<br>rbon | Glatex | ass<br>(tile | Basalt<br>textile<br>(B)ª |        |
|--------------------------|---------------|---------------|-----------------------|-----------------|--------|--------------|---------------------------|--------|
|                          | Textile       | = (UL)        | Textil                |                 | (      | )            | ([                        | )      |
| Tensile strength, f      | 1501          | (132)         | 1382                  | (115)           | 794    | (86)         | 1188                      | (127)  |
| (MPa)                    |               |               |                       |                 |        |              |                           |        |
| Ultimate tensile strain, | 0.79          | (0.095)       | 0.79                  | (0.069)         | 1.66   | (0.13)       | 1.83                      | (0.11) |
| ε <sub>fu</sub> (%)      |               |               |                       |                 |        |              |                           |        |
| Modulus of elasticity of | 167.6         | (21)          | 163.3                 | (16)            | 41.1   | (5)          | 63.7                      | (8)    |
| cracked specimen,        |               |               |                       |                 |        |              |                           |        |
| E <sub>f_TRM</sub> (GPa) |               |               |                       |                 |        |              |                           |        |

<sup>a</sup> Standard deviation in parenthesis.

## Πίνακας 3: Σύνοψη αποτελεσμάτων δοκιμών

| Specimen   | (a)            | (b)               | (C)                    | (d)   | (e)  | (f)                      | (g)      |
|------------|----------------|-------------------|------------------------|-------|------|--------------------------|----------|
|            | Peak load (kN) | Displacement      | Failure                | VR    | Vf   | Shear capacity           | εeff (‰) |
|            |                | at peak load (mm) | mode                   | (kN)  | (kN) | increase Vf / VR,con (%) |          |
| a/d = 2.6  |                |                   |                        | . ,   | . ,  |                          |          |
| CON        | l 51.8 2.27    |                   | Tensile diagonal shear | 29.7  | -    | _                        | _        |
| CL1        | 102.3          | 3.77              | D                      | 58.6  | 28.9 | 97.3                     | 8.73     |
| CL1_strips | 110.7          | 4.22              | D                      | 63.4  | 33.7 | 113.5                    | 6.64     |
| CH1        | 78.2           | 3.09              | S                      | 44.8  | 15.1 | 50.8                     | 3.06     |
| CH1_CL1    | 117.4          | 5.19              | D                      | 67.3  | 37.6 | 126.6                    | 4.54     |
| CH2        | 120.2          | 5.6               | D                      | 68.9  | 39.2 | 132                      | 3.97     |
| CL3        | 118            | 4.38              | D                      | 67.6  | 37.9 | 127.6                    | 3.82     |
| CH2_CL1    | 129.3          | 5.24              | S                      | 74.1  | 44.4 | 149.5                    | 3.36     |
| CH3        | 131.1          | 5.47              | D                      | 75.1  | 45.4 | 152.9                    | 3.06     |
| CH3_CL1    | 136.5          | 5.2               | D                      | 78.2  | 48.5 | 163.3                    | 2.67     |
| G1         | 73.2           | 2.59              | FR                     | 41.9  | 12.2 | 41.1                     | 21.17    |
| G3         | 117.3          | 4.09              | D                      | 67.2  | 37   | 124.6                    | 21.41    |
| G7         | 144.3          | 5.47              | D                      | 82.7  | 53   | 178.5                    | 13.14    |
| B1         | 76.9           | 3.16              | FR                     | 44.1  | 14.4 | 48.5                     | 19.13    |
| B3         | 114.9          | 4.38              | D                      | 65.8  | 36.1 | 121.5                    | 15.98    |
| B7         | 135.4          | 5.15              | D                      | 77.6  | 47.9 | 161.3                    | 9.09     |
| a/d = 1.6  |                |                   |                        |       |      |                          |          |
| CON_1.6    | 88.4           | 2.93              | Shear compression      | 65.4  | -    | -                        | -        |
| CL1_1.6    | 123.7          | 3.85              | D                      | 91.5  | 26.1 | 39.9                     | 7.88     |
| CL3_1.6    | 142.7          | 4.66              | D                      | 105.6 | 40.2 | 61.5                     | 4.05     |
| a/d = 3.6  |                |                   |                        |       |      |                          |          |
| CON_3.6    | 62.2           | 1.51              | Tensile diagonal shear | 25.5  | -    | -                        | _        |
| CL1_3.6    | 133.8          | 4.91              | D                      | 54.9  | 29.4 | 115.3                    | 8.88     |
| CL3_3.6    | 158.7          | 5.92              | D                      | 65.1  | 39.6 | 155.3                    | 3.99     |

D for debonding, S for slippage of the vertical fibre rovings through the mortar and partial fibres rupture, FR for Fracture of the jacket.

Εικόνα 2: Ρηγμάτωση και αστοχία δοκιμίων αναφοράς 3.6 και 1.6



(a)

(b)

## Πίνακας 4: Σύνοψη αποτελεσμάτων των ενισχυμένων δοκιμίων FRP

| Specimen           | ρf (‰) | Ef (GPa) | Ef_FRP | Ultimate tensile strain, ɛfu (%) | Ultimate tensile strength, ffu (MPa) | Peak Load (kN) | Vf (kN) | εeff (‰) |
|--------------------|--------|----------|--------|----------------------------------|--------------------------------------|----------------|---------|----------|
|                    |        |          | (GPa)  |                                  |                                      |                |         |          |
| CH1_R <sup>a</sup> | 1,9    | 225      | 200.7  | 1.26                             | 2788.4                               | 113.4          | 35.3    | 5.81     |
| CH2_R <sup>ª</sup> | 3.7    | 225      | 200.7  | 1.26                             | 2788.4                               | 126.2          | 42.6    | 3.51     |
| CH3_R <sup>♭</sup> | 5.6    | 225      | 200.7  | 1.26                             | 2788.4                               | 139            | 49.9    | 2.74     |

<sup>a</sup> Specimens included in Tetta et al. 2015 [28].

<sup>b</sup> Specimen included in Tetta and Bournas 2016 [4].

### Πίνακας 5: Σύγκριση μεταξύ πειραματικών και προβλεπόμενων τιμών Vf

|                                         |                 | Αναλυτικά αποτελέσματα                |         |                      |         |                         |         |
|-----------------------------------------|-----------------|---------------------------------------|---------|----------------------|---------|-------------------------|---------|
|                                         |                 | Triantafillou and Antonopoulos (2000) | С       | Chen and Teng (2003) |         | Monti and Liotta (2007) |         |
|                                         |                 | Vf,pre                                | Vf,pre/ | Vf,pre               | Vf,pre/ | Vf,pre                  | Vf,pre/ |
|                                         | Vf,exp (kN)     | (kN)                                  | Vf,exp  | (kN)                 | Vf,exp  | (kN)                    | Vf,exp  |
| CL1                                     | 28.9            | 16.5                                  | 0.57    | 21.8                 | 0.76    | 18.1                    | 0.63    |
| CL1_strips                              | 33.7            | 22.1                                  | 0.66    | 25.2                 | 0.75    | 19.5                    | 0.58    |
| CL1_CH1                                 | 37.6            | 27.5                                  | 0.73    | 30.5                 | 0.81    | 23.6                    | 0.63    |
| CH2                                     | 39.2            | 31.9                                  | 0.81    | 34.5                 | 0.88    | 29.9                    | 0.76    |
| CL3                                     | 37.9            | 30.1                                  | 0.79    | 32.8                 | 0.87    | 27.3                    | 0.72    |
| CL1_CH2                                 | 44.4            | 33.9                                  | 0.76    | 36                   | 0.81    | 28                      | 0.63    |
| CH3                                     | 45.4            | 37.4                                  | 0.82    | 39                   | 0.86    | 34.7                    | 0.76    |
| CL1_CH3                                 | 48.5            | 39                                    | 0.8     | 39.7                 | 0.82    | 30.9                    | 0.64    |
| G3                                      | 37              | NA                                    | NA      | 18                   | 0.49    | 13.9                    | 0.38    |
| G7                                      | 53              | NA                                    | NA      | 25.7                 | 0.49    | 19.9                    | 0.38    |
| B3                                      | 36.1            | NA                                    | NA      | 18.8                 | 0.52    | 15.5                    | 0.43    |
| B7                                      | 47.9            | NA                                    | NA      | 27                   | 0.56    | 22.4                    | 0.47    |
| CL1_1.6                                 | 26.1            | 16.1                                  | 0.62    | 21                   | 0.81    | 16.2                    | 0.62    |
| CL3_1.6                                 | 40,2            | 29.7                                  | 0.74    | 32.5                 | 0.81    | 25.1                    | 0.62    |
| CL1_3.6                                 | 29,4            | 16.1                                  | 0.55    | 21                   | 0.72    | 16.2                    | 0.55    |
| CL3_3.6                                 | 39,6            | 29.7                                  | 0.75    | 32.5                 | 0.82    | 25.1                    | 0.63    |
| CH1_R                                   | 35.3            | 22.5                                  | 0.64    | 26.4                 | 0.75    | 22.5                    | 0.64    |
| CH2_R                                   | 42.6            | 31.9                                  | 0.75    | 34.5                 | 0.81    | 29.9                    | 0.7     |
| CH3_R                                   | 49.9            | 36.3                                  | 0.73    | 37.9                 | 0.76    | 30.5                    | 0.61    |
| Mean                                    |                 |                                       | 0.72    |                      | 0.74    |                         | 0.6     |
| CoV (%)                                 |                 |                                       | 12      |                      | 16.9    |                         | 18.6    |
| Average absol                           | ute error %     |                                       | 28.5    |                      | 25.9    |                         | 40.2    |
| Mean for carbon fibre textiles 0.72 0.8 |                 |                                       |         |                      |         |                         | 0.65    |
| CoV (%) for ca                          | arbon fibre tex | tiles                                 | 12      |                      | 5.98    |                         | 9.52    |
| Average absol                           | ute error %     |                                       | 28.5    |                      | 19.9    |                         | 35.2    |

#### 3.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

#### 3.4.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών a/d=1.6

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα Type III

| Pu (KN)<br>(KN)<br>88.40 | Pf – cfp<br>(KN)<br>-43.73 | Pf – cfp / Pu<br>(KN)<br>0.49 |
|--------------------------|----------------------------|-------------------------------|
| Pu (KN)<br>(KN)          | Pf – ec2<br>(KN)           | Pf – ec2 / Pu<br>(KN)         |
| 88.40                    | -172.54                    | 1.95                          |
|                          |                            |                               |
| Pu                       | CPF                        | EC                            |
| (KN)                     | (KN)                       | (KN)                          |
| 88.40                    | 43.73                      | 172.54                        |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 3.4.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών a/d=2.6

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 51.80   | -60.25   | 1.16          |
|         |          |               |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 51.80   | -154.90  | 2.99          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 51.80   | -154.90  | 2.99          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 51.80   | -154.90  | 2.99          |
| Pu      | CPF      | EC            |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 51.80   | -154.90  | 2.99          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 3.4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών a/d=3.6

|                                        | туре п                                     |                                             |
|----------------------------------------|--------------------------------------------|---------------------------------------------|
| Pu (KN)                                | Pf – cfp                                   | Pf – cfp / Pu                               |
| (KN)                                   | (KN)                                       | (KN)                                        |
| 62.20                                  | -69.53                                     | 1.12                                        |
|                                        |                                            |                                             |
|                                        |                                            |                                             |
|                                        | Df0                                        |                                             |
| Pu (KN)                                | Pf – ec2                                   | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                        | Pf – ec2<br>(KN)                           | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>62.20               | Pf – ec2<br>(KN)<br>-194.86                | Pf – ec2 / Pu<br>(KN)<br>3.13               |
| Pu (KN)<br>(KN)<br>62.20               | Pf – ec2<br>(KN)<br>-194.86                | Pf – ec2 / Pu<br>(KN)<br>3.13               |
| Pu (KN)<br>(KN)<br>62.20<br>Pu         | Pf – ec2<br>(KN)<br>-194.86<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>3.13<br>EC         |
| Pu (KN)<br>(KN)<br>62.20<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-194.86<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>3.13<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 3.5. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ, ΙΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς (δεξιά)



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους.

Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙΙ παρουσιάζει μια ομοιόμορφη εφελκυστική αστοχία διαγώνιου ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εκτός του διατμητικού μήκους.

Στην Εικόνα 4 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 3.6. Συμπεράσματα

## 4. Πειραματική μελέτη και πρόβλεψη αντοχής σε διάτμηση για δέσμες σκυροδέματος με ενεργή τέφρα

### 4.1. Συνοπτική περιγραφή

Σε αυτή την μελέτη εκτελούνται δοκιμές φόρτισης σε δοκίμια δοκών οπλισμένου σκυροδέματος, κατασκευασμένα από σύνθετα τσιμεντοειδή ενισχυμένα με ίνες πολυουρεθάνης, ενσωματώνοντας λεπτόκοκκα αδρανή με διαφορετικές αναλογίες νερούσυνδετικού υλικού. Επίσης, πραγματοποιούνται μη γραμμικές αναλύσεις πεπερασμένων στοιχείων για να διερευνηθούν οι επιδράσεις των αναλογιών ύδατος-συνδετικού υλικού και των ράβδων οπλισμού, καθώς και την δύναμη διάτμησης δέσμης των δοκών οπλισμένου σκυροδέματος. Επιπρόσθετα, για ορισμένους παράγοντες, ερευνάται η επίδραση της παρουσίας ή της απουσίας των ράβδων οπλισμού με διάτμηση στην αντοχή διατμήσεως των ακτίνων R-HFDFRCC RC. Διαπιστώνεται ότι οι διακυμάνσεις στο μέγιστο φορτίο των δειγμάτων δοκών RC, που οφείλονται σε διαφορές στην αναλογία νερού-συνδετικού, μπορούν γενικά να προβλεφθούν, εάν κατανοήσουμε τις διαφορές στις ιδιότητες των υλικών (κυρίως αντοχή σε θλίψη, αντοχή σε εφελκυσμό και τελική εφελκυστική τάση), εξαιρετικά σε ρευστά με σύνθετα υλικά τσιμέντου που ενσωματώνουν ανακυκλωμένο λεπτόκοκκα αδρανή.

#### 4.2. Πειραματική έρευνα

#### 4.2.1. Πειραματικά δοκίμια

Σε αυτή την εργασία, δοκιμάστηκαν συνολικά δεκαοκτώ δείγματα δοκών RPC χωρίς ενισχυτική μεμβράνη για να διερευνηθεί το φορτίο αντοχής, το πλάτος ρωγμών, ο ελάχιστος λόγος ενίσχυσης του ιστού, η τάση στο σκυρόδεμα, η ολκιμότητα, η ανθεκτικότητα και οι τρόποι αστοχίας των δοκών RPC. Τα δοκίμια δοκών σχεδιάστηκαν έτσι ώστε να έχουν μεγαλύτερη αντοχή στην κάμψη για να εγγυώνται διάτμηση. Οι μεταβλητές που εξετάστηκαν ήταν η αναλογία διαμήκους διατομής (a / d), η διαμήκης ενίσχυση (pw), το ποσοστό του κλάσματος όγκου ινών χάλυβα (Vf) και το ποσοστό της πούδρας πυριτίου (SF) όπως φαίνεται στον Πίνακα 1. Για όλα τα δείγματα δοκών, η διάσταση της διατομής ήταν 100 χιλιοστά (3,94 ίντσες) από 140 χιλιοστά (5.51 ίντσες), το στατικό ύψος ήταν 112 χιλιοστά (4.41 ίντσες) και το συνολικό μήκος ήταν 1300 χιλιοστά (51,18 ίντσες) με καθαρό άνοιγμα 1200 mm (47,24 in). Όλες οι δοκοί RPC είναι παρόμοιες στο μέγεθος και στη μέθοδο δοκιμής χρησιμοποιήθηκε κάμψη τεσσάρων σημείων. Οι δοκοί RPC με a / d ≥ 2,5 θεωρήθηκαν ως λεπτές δοκοί. Οι διαμήκεις χαλύβδινες ράβδοι που χρησιμοποιούνται στις δοκούς RPC έχουν διαφορετικές διαμέτρους 10, 12 και 16 mm (0,39, 0,47 και 0,63 in) με τάση απόδοσης 658 MPa, 698 MPa και 520 MPa (95,4, 101,2 και 75,4 ksi), αντίστοιχα. Οι κύριες ράβδοι ενίσχυσης οπλισμού για δοκούς RPC αποτελούσαν είτε δύο παραμορφωμένες χαλύβδινες ράβδους Ν16 που παριστάνουν λόγο χάλυβα 3,4% ή τέσσερις παραμορφωμένες ράβδους χάλυβα Ν16 συν Ν10 και το Ν16 συν Ν12 αντιπροσωπεύουν αναλογία χάλυβα 4,9% και 5,9% αντίστοιχα. Παρασκευάστηκαν ορθογώνιες πλάκες με πάχος 8 mm στο άκρο των διαμηκών ράβδων, προκειμένου να αποφευχθεί η αποτυχία του δεσμού. Αυτές οι πλάκες παρέχονται στα άκρα της δέσμης πέρα από τις θέσεις στήριξης. Τα δείγματα επισημάνθηκαν ως BX, για τις δοκούς RPC, όπου το Χ αντιπροσωπεύει τον αριθμό της δοκού.

#### 4.2.2. Ιδιότητες υλικών

Σε αυτή την έρευνα, σχεδιάστηκαν δέκα μείγματα. Όλα τα μείγματα αποτελούνται από τα ακόλουθα υλικά: 1000 kg / m3 (8,345 lb / gal) Tasloja συνηθισμένου τσιμέντου Portland (ASTM τύπου I), 1000 kg / m3 λεπτόκοκκου πυριτίου που παράγεται στο εργοστάσιο Al-Ramadi Glass (μέγεθος μικρότερο από 0,3 mm (0,0118 ίντσες)), 50-300 kg / m3 (0,417-2,5036 lb / gal) συμπυκνωμένου διοξειδίου του πυριτίου με ειδική επιφάνεια 21 m2 / g, 0-164 kg / m3 (0-1.3686 lb / gal) μικρο-χαλύβδινες ίνες (αντοχή εφελκυσμού 2600 MP3 (377,1 ksi), μήκος 13 mm, διάμετρος 0,2 mm) με ένα κλάσμα όγκου (Vf) που κυμαινόταν από 0-2,0%, 0,2 αναλογία ύδατος προς τσιμέντο (β / ο) και 1,7% κατά βάρος συνδετικού υλικού (τσιμέντο και διοξείδιο του πυριτίου) του μείγματος Sika® Viscocrete® 3110. Τα ξηρά συστατικά του RPC μετρήθηκαν με ηλεκτρονική ζυγαριά και αναμείχθηκαν σε μια μπετονιέρα που έχει οριζόντιο δίσκο για περίπου 5 λεπτά. Ο υπερ-πλαστικοποιητής και το νερό αναμειγνύονται και προστίθενται στα ξηρά υλικά. Η διαδικασία μείξης έπρεπε να συνεχιστεί για 15 λεπτά. Στη συνέχεια οι ίνες χάλυβα διασκορπίστηκαν ομοιόμορφα για 2 λεπτά. Τέλος, συνεχίζεται η διαδικασία ανάμειξης για επιπλέον 2 λεπτά. Η δοκός RPC ήταν 215mm (8.46 in) σε περιβάλλον και τα 15 δείγματα δοκών χυτεύθηκαν οριζόντια με δύο δείγματα δοκών χυτευμένα για κάθε παρτίδα. Για να αποτραπεί ο διαχωρισμός των ινών, το RPC συμπιέστηκε χρησιμοποιώντας μια δονητική τράπεζα. Μετά τη διαδικασία χύτευσης, όλες οι δέσμες RPC και τα δείγματα ελέγχου καλύφθηκαν με πλαστικό φύλλο για 24 ώρες. Στη συνέχεια, όλα τα δείγματα σκληρύνθηκαν με πλύση νερού κάτω από μια ορισμένη θερμοκρασία (20 ° C) μέχρι την ηλικία των 28 ημερών. Με την χρήση διαμέτρου 100 χλστ. (3.94 ίντσες) με κυλίνδρους μήκους 200 χλστ. (7.87 ίντσες), έγιναν οι τυποποιημένες δοκιμές συμπίεσης (με βάση την ASTM C39-86) και διεξήχθησαν δοκιμές διάσπασης (βάσει ASTM C496-86) για τον προσδιορισμό των τιμών της θλιπτικής αντοχής RPC, f'cf και της αντοχής σε εφελκυσμό, fspf. Η καμπτική αντοχή, frf, των 100 \* 100 \* 400mm (3.94 \* 3.94 \* 15.75 in) πραγματοποιήθηκε επίσης σε φόρτιση τεσσάρων σημείων (βάσει ASTM C78-84). Ο Πίνακας 2 παρέχει τα αποτελέσματα των βοηθητικών δοκιμών για το συστατικό υλικών ιδιοτήτων που χρησιμοποιούνται στην κατασκευή των δοκών RPC.

| No. | Specimens   | Vf%      | Silica | Compressive Strength | Compressive Strain | Splitting Tensile   | Modulus of        | Modulus of          |
|-----|-------------|----------|--------|----------------------|--------------------|---------------------|-------------------|---------------------|
|     | Designation | on Fume% |        | fcf(MPa)             | εcf                | Strength fspf (MPa) | Rupture frf (MPa) | Elasticity Ec (GPa) |
| 1   | M0.0-15     | 0        | 15     | 78                   | 0                  | 5.5                 | 5.7               | 39.1                |
| 2   | M0.5-15     | 0.5      | 15     | 94                   | 0                  | 9.2                 | 10                | 42.25               |
| 3   | M1.0-15     | 1        | 15     | 98                   | 0                  | 11                  | 12                | 44.2                |
| 4   | M1.5-15     | 1.5      | 15     | 103                  | 0 14.5             |                     | 15.05             | 46.8                |
| 5   | M2.0-15     | 2        | 15     | 110                  | 0                  | 15.4                | 19                | 48.8                |
| 6   | M2.0-10     | 2        | 10     | 101                  | 0                  | 14                  | 17.6              | 47.5                |
| 7   | M2.0-5      | 2        | 5      | 93                   | 0                  | 12.7                | 16                | 44.37               |
| 8   | M2.0-20     | 2        | 20     | 125                  | 0                  | 16.7                | 19.8              | 50.1                |
| 9   | M2.0-25     | 2        | 25     | 142                  | 0.01               | 17.9                | 20.5              | 52                  |
| 10  | M2.0-30     | 2        | 30     | 151                  | 0.01               | 18.5                | 21                | 52.7                |

Πίνακας 1: Αποτελέσματα βοηθητικών δοκιμών για τις συστατικές ιδιότητες υλικών

#### Εικόνα 1: Λεπτομέρειες δοκού και διατομής



#### Πίνακας 2: Εκτροπή στην πρώτη ρωγμή και τελικό φορτίο, λόγος ολκιμότητας και απορροφούμενη ενέργεια για δοκιμές δοκών RPC

| RPC   | Vf (%) | a/d | ρw   | SF (%) | f'cf Mpa | Diagonal      | Def. at | Ultimate | Def. at   | vu/vcr | Ductility | Absorbed | Mode of              |
|-------|--------|-----|------|--------|----------|---------------|---------|----------|-----------|--------|-----------|----------|----------------------|
| Beams |        |     |      |        |          | Cracking      | First   | Load Pu  | Ultimate  |        | Ratio     | Energy   | Failure <sup>a</sup> |
|       |        |     |      |        |          | Load Pcr (kN) | Crack   | (kN)     | Load (mm) |        |           | (kN.mm)  |                      |
|       |        |     |      |        |          |               | Load    |          |           |        |           |          |                      |
|       |        |     |      |        |          |               | (mm)    |          |           |        |           |          |                      |
| B1    | 0      | 3.5 | 0.03 | 15     | 78       | 50            | 4.15    | 71       | 7.15      | 1.42   | 1.72      | 287.7    | DT                   |
| B2    | 0,5    | 3.5 | 0.03 | 15     | 94       | 60            | 3.6     | 133      | 13.3      | 2.2    | 3.69      | 1174.3   | DT                   |
| B3    | 1      | 3.5 | 0.03 | 15     | 98       | 60            | 3.6     | 140      | 13        | 2.33   | 3.86      | 1166.9   | DT                   |
| B4    | 1,5    | 3.5 | 0.03 | 15     | 103      | 65            | 3.55    | 155      | 14.5      | 2.38   | 4.08      | 1537.3   | DT                   |
| B5    | 2      | 3.5 | 0.03 | 15     | 110      | 70            | 3.41    | 165      | 15.2      | 2.36   | 4.46      | 1972.5   | DT                   |
| B6    | 2      | 3.5 | 0.05 | 15     | 110      | 105           | 5.02    | 215      | 14.5      | 2.05   | 2.88      | 1907     | DT                   |
| B7    | 2      | 3.5 | 0.06 | 15     | 110      | 115           | 5.22    | 225      | 13.6      | 1.96   | 2.6       | 1837.2   | DT                   |
| B8    | 2      | 3.5 | 0.03 | 10     | 101      | 65            | 3.4     | 155      | 14.2      | 2.38   | 4.18      | 1860.8   | DT                   |
| B9    | 2      | 3.5 | 0.03 | 5      | 93.4     | 55            | 3.32    | 150      | 13.5      | 2.73   | 4.07      | 1850.6   | SC                   |
| B10   | 2      | 2.5 | 0.03 | 15     | 110      | 75            | 2.64    | 250      | 16        | 3.33   | 6.06      | 2718.2   | SC                   |
| B11   | 2      | 3   | 0.03 | 15     | 110      | 70            | 3.5     | 195      | 15.5      | 2.79   | 4.43      | 2031.5   | DT                   |
| B12   | 2      | 4   | 0.03 | 15     | 110      | 50            | 2.65    | 125      | 10.8      | 2.5    | 4.08      | 871.8    | S+F                  |
| B13   | 2      | 4.5 | 0.03 | 15     | 110      | 45            | 2.79    | 119      | 10.5      | 2.64   | 3.76      | 768.9    | S+F                  |
| B14   | 1      | 2.5 | 0.03 | 15     | 98       | 65            | 3.6     | 200      | 14.4      | 3.08   | 4         | 1767.7   | SC                   |
| B15   | 1      | 4.5 | 0.03 | 15     | 98       | 40            | 2.75    | 110      | 10.2      | 2.75   | 3.7       | 682.1    | DT                   |
| B16   | 2      | 3.5 | 0.03 | 20     | 125      | 82            | 3.4     | 188      | 16.1      | 2.29   | 4.74      | 2362.7   | DT                   |
| B17   | 2      | 3.5 | 0.03 | 25     | 142      | 100           | 3.45    | 202      | 17.3      | 2.02   | 5.01      | 2854.8   | S+F                  |
| B18   | 2      | 3.5 | 0.03 | 30     | 151      | 110           | 3.48    | 220      | 17.9      | 2      | 5.14      | 3190.5   | S+F                  |

<sup>a</sup> DT: diagonal tension failure, S+F: shear-flexure failure, SC: shear-compression failure. (1MPa=0.145 ksi, 1kN=0.225 kip, 1mm=0.0394 inch &0.00328 ft).

# Πίνακας 3: Οι μέσες τιμές, οι τυπικές αποκλίσεις και οι συντελεστές διασποράς των τιμών σχετικής αντοχής διατμήσεως για τη δοκιμή των τροποποιημένων εξισώσεων

| Beams | Experimental strength, | Predicted strengt | h, MPa (I | RSSV)           |        |           |        |                    |        |                 |        | Proposed | equation | s, MPa (F | RSSV)  |
|-------|------------------------|-------------------|-----------|-----------------|--------|-----------|--------|--------------------|--------|-----------------|--------|----------|----------|-----------|--------|
|       | MPa                    |                   |           |                 |        |           |        |                    |        |                 |        |          |          |           |        |
|       |                        | Ashour et al. [2] |           | Shin et al. [4] |        | Bunni [3] |        | Khuntia et al. [5] |        | Kwak et al. [6] |        | Eq. (9)  |          | Eq. (10)  |        |
|       |                        | Eq. (1)           |           | Eq. (3)         |        | Eq. (5)   |        | Eq. (6)            |        | Eq. (7)         |        |          |          |           |        |
| B1    | 3.17                   | 1.92              | (1.65)    | 1.94            | (1.63) | 2.09      | (1.51) | 1.47               | (2.15) | 2.51            | (1.26) | 3.82     | (0.83)   | 3.48      | (0.91) |
| B2    | 5.94                   | 2.29              | (2.6)     | 2.93            | (2.02) | 2.55      | (2.32) | 2.01               | (2.95) | 3.82            | (1.55) | 4.91     | (1.21)   | 5.47      | (1.08) |
| B3    | 6.25                   | 2.56              | (2.4)     | 3.56            | (1.75) | 2.8       | (2.23) | 2.45               | (2.54) | 4.55            | (1.37) | 5.41     | (1.15)   | 6.17      | (1.01) |
| B4    | 6.92                   | 2.85              | (2.42)    | 4.52            | (1.53) | 3.03      | (2.28) | 2.93               | (2.35) | 5.64            | (1.23) | 5.96     | (1.16)   | 6.81      | (1.01) |
| B5    | 7.37                   | 3.14              | (2.34)    | 4.97            | (1.48) | 3.25      | (2.27) | 3.45               | (2.13) | 6.11            | (1.2)  | 6.61     | (1.11)   | 7.45      | (0.99) |
| B6    | 9.6                    | 3.54              | (2.7)     | 5.37            | (1.79) | 3.55      | (2.7)  | 3.45               | (2.78) | 6.75            | (1.42) | 8.85     | (1.08)   | 9.62      | (0.99) |
| B7    | 10                     | 3.76              | (2.65)    | 5.64            | (1.77) | 3.72      | (2.69) | 3.45               | (2.89) | 7.11            | (1.40) | 10.27    | (0.97)   | 11.07     | (0.90) |
| B8    | 6.92                   | 3.08              | (2.24)    | 4.66            | (1.48) | 3.18      | (2.17) | 3.31               | (2.09) | 5.76            | (1.2)  | 6.17     | (1.12)   | 7.05      | (0.98) |
| B9    | 6.7                    | 3.02              | (2.21)    | 4.4             | (1.52) | 3.12      | (2.14) | 3.18               | (2.1)  | 5.44            | (1.23) | 5.79     | (1.16)   | 6.71      | (0.99) |
| B10   | 11.2                   | 3.51              | (3.19)    | 7.48            | (1.5)  | 3.78      | (2.96) | 3.45               | (3.24) | 6.7             | (1.67) | 8.65     | (1.29)   | 9.89      | (1.13) |
| B11   | 8.7                    | 3.3               | (2.6)     | 5.12            | (1.7)  | 3.48      | (2.5)  | 3.45               | (2.5)  | 6.37            | (1.36) | 7.47     | (1.16)   | 8.48      | (1.03) |
| B12   | 5.58                   | 3                 | (1.86)    | 4.86            | (1.15) | 3.06      | (1.82) | 3.45               | (1.62) | 5.89            | (0.95) | 5.94     | (0.94)   | 6.67      | (0.84) |
| B13   | 5.31                   | 2.89              | (1.83)    | 4.77            | (1.11) | 2.91      | (1.82) | 3.45               | (1.53) | 5.71            | (0.93) | 5.4      | (0.98)   | 6.06      | (0.87) |
| B14   | 8.93                   | 3.42              | (2.6)     | 6.51            | (1.37) | 3.68      | (2.4)  | 3.26               | (2.7)  | 5.57            | (1.6)  | 7.88     | (1.13)   | 9.13      | (0.98) |
| B15   | 4.91                   | 2.81              | (1.74)    | 3.93            | (1.25) | 2.83      | (1.73) | 3.26               | (1.5)  | 4.78            | (1.03) | 4.92     | (0.99)   | 5.64      | (0.87) |
| B16   | 8.39                   | 3.23              | (2.6)     | 5.26            | (1.6)  | 3.35      | (2.5)  | 3.68               | (2.28) | 6.43            | (1.3)  | 7.34     | (1.14)   | 8.12      | (1.03) |
| B17   | 9.02                   | 3.33              | (2.7)     | 5.5             | (1.6)  | 3.45      | (2.6)  | 3.92               | (2.29) | 6.69            | (1.34) | 8.18     | (1.1)    | 8.88      | (1.01) |
| B18   | 9.82                   | 3.38              | (2.9)     | 5.62            | (1.74) | 3.51      | (2.8)  | 4.04               | (2.4)  | 6.83            | (1.44) | 8.62     | (1.14)   | 9.29      | (1.06) |
| μ     |                        | 2.41              |           | 1.56            |        | 2.3       |        | 2.34               |        | 1.31            |        | 1.09     |          | 0.98      |        |
| SD    |                        | 0.42              |           | 0.23            |        | 0.39      |        | 0.48               |        | 0.21            |        | 0.11     |          | 0.08      |        |
| COV   |                        | 0.17              |           | 0.15            |        | 0.17      |        | 0.21               |        | 0.16            |        | 0.1      |          | 0.08      |        |

(1MPa=0.145 ksi).

## Εικόνα 2: Αστοχία και ρηγμάτωση δοκών



## 4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

|         | туре п             |                         |
|---------|--------------------|-------------------------|
| Pu (KN) | V <sub>II-cr</sub> | V <sub>II-cr</sub> /Pu  |
| (KN)    | (KN)               | (KN)                    |
| 71.00   | -11.75             | 0.17                    |
|         |                    |                         |
| Pu (KN) | Pf – ec2           | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)               | (KN)                    |
| Pu (KN) | Pf – ec2           | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)               | (KN)                    |
| 71.00   | -15.00             | 0.21                    |
| Pu (KN) | Pf – ec2           | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)               | (KN)                    |
| 71.00   | -15.00             | 0.21                    |
| Pu (KN) | Pf – ec2           | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)               | (KN)                    |
| 71.00   | -15.00             | 0.21                    |
| Pu      | CPF                | EC                      |
| Pu (KN) | Pf – ec2           | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)               | (KN)                    |
| 71.00   | -15.00             | 0.21                    |
| Pu      | CPF                | EC                      |
| (KN)    | (KN)               | (KN)                    |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 4.4. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς (δεξιά). Παρατήρηση· οι δοκοί Β2, Β3, Β4 έχουν παρόμοια αστοχία με την δοκό Β1



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους. Στην Εικόνα 3 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 4.5. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας της δοκού, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 0.17 και 0.21 αντίστοιχα. [4] [12] [13].

## 5. Επιδράσεις των ιδιιοτήτων των υλικών του HFDFRCC, χρησιμοποιώντας ανακυκλωμένο λεπτόκοκκα αδρανή, στην διατμητική αντοχή δοικών RC

#### 5.1. Συνοπτική Περιγραφή

Σε αυτή την μελέτη εκτελούνται δοκιμές φόρτισης σε δοκίμια δοκών οπλισμένου σκυροδέματος, κατασκευασμένα από σύνθετα τσιμεντοειδή ενισχυμένα με ίνες πολυουρεθάνης, ενσωματώνοντας λεπτόκοκκα αδρανή με διαφορετικές αναλογίες νερούσυνδετικού υλικού. Επίσης, πραγματοποιούνται μη γραμμικές αναλύσεις πεπερασμένων στοιχείων για να διερευνηθούν οι επιδράσεις των αναλογιών ύδατος-συνδετικού υλικού και των ράβδων οπλισμού, καθώς και η δύναμη διάτμησης δέσμης των δοκών οπλισμένου σκυροδέματος. Επιπρόσθετα, για ορισμένους παράγοντες, ερευνήσαμε την επίδραση της παρουσίας ή της απουσίας των ράβδων οπλισμού με διάτμηση στην αντοχή διατμήσεως των ακτίνων R-HFDFRCC RC. Διαπιστώσαμε ότι οι διακυμάνσεις στο μέγιστο φορτίο των δειγμάτων δοκών RC, που οφείλονται σε διαφορές στην αναλογία νερού-συνδετικού, μπορούν γενικά να προβλεφθούν, εάν κατανοήσουμε τις διαφορές στις ιδιότητες των υλικών (κυρίως αντοχή σε θλίψη, αντοχή σε εφελκυσμό και τελική εφελκυστική τάση), εξαιρετικά σε ρευστά με σύνθετα υλικά τσιμέντου που ενσωματώνουν ανακυκλωμένο λεπτόκοκκα αδρανή.

#### 5.2. Πειραματική μέθοδος

#### 5.2.1 HDFRCC

Ο Πίνακας 1 παρέχει μια επισκόπηση του R-HFDFRCC που χρησιμοποιήθηκε σε αυτή την μελέτη. Το ανακυκλωμένο λεπτό συσσωμάτωμα (R) είναι ένα μείγμα μέσης λεπτότητας (μέγιστες διαστάσεις αδρανών: 2,5 mm, ξηρή πυκνότητα επιφάνειας: 2,57 g / cm3, ποσοστό απορρόφησης νερού: 2,96%. συντελεστής λεπτότητας: 2,61) και πολύ λεπτό (μέγιστες διαστάσεις αδρανών: 0,6 mm; ξηρή πυκνότητα επιφάνειας: 2,55 g / cm3. ποσοστό απορρόφησης νερού: 4,46%. συντελεστής λεπτότητας: 1.16). Το τσιμέντο ήταν συνηθισμένο τσιμέντο Portland (πυκνότητα: 3,16 g / cm3). Οι τιμές R / HFDFRCC W / B ήταν 40, 50 και 60%. Τα δείγματα δοκιμής υλικού R-HFDFRCC και τα δείγματα δοκών RC-RF-HFDFRCC απογυμνώθηκαν δύο ημέρες μετά την τοποθέτησή του, ακολούθως υγροποιήθηκαν μέχρις ότου η σωρευτική θερμοκρασία μέσα στο θάλαμο σκλήρυνσης έφθασε 1.680° (ισοδύναμα με την ηλικία των 56 ημερών (56D)), οπότε έγινε η δοκιμή. Χρησιμοποιήθηκε ίνα PVA (διάμετρος: 0,2 mm, μήκος: 18 mm, μέτρο ελαστικότητας: 27 kN / mm2, αντοχή εφελκυσμού: 975 N / mm2) και ο λόγος ανάμειξης όγκου ινών (Vf) ήταν 3%. Η πρόσμιξη ήταν υψηλής απόδοσης ΑΕ ο παράγοντας μείωσης νερού, ο παράγοντας μείωσης διαχωρισμού και η ιπτάμενη τέφρα τύπου ΙΙ (πυκνότητα: 2,30 / cm3, τσιμέντο αναλογία αντικατάστασης: 20%).

|                      |             |            | Fiber    | Replacement |
|----------------------|-------------|------------|----------|-------------|
| Specimen             | Waterbinder | Sandbinder | volume   | ratio of    |
|                      | ratio       | ratio      | fraction | fly ash     |
|                      | (%)         | (%)        | (vol.%)  | (%)         |
| R-HFDFRCC-40-56D     | 40          | 40         | 3        | 20          |
| R-HFDFRCC-50-56D     | 50          | 65         | 3        | 20          |
| R-HFDFRCC-50-56D@150 | 50          | 65         | 3        | 20          |
| R-HFDFRCC-60-56D     | 60          | 90         | 3        | 20          |

Πίνακας 1: Δοκίμια σκυροδέματος

#### 5.2.2. Δοκιμές Υλικών

Σε αυτή τη μελέτη, πραγματοποιήθηκαν μονοαξονικές δοκιμές συμπίεσης R-HFDFRCC, δοκιμές κάμψης τριδιάστατων σημείων, δοκιμές έλξης και δοκιμές εφελκυσμού ράβδων οπλισμού για την ενεργοποίηση του ελέγχου της αντοχής του R-HFDFRCC RC και να εξαθχούν οι παράμετροι μηχανικής θραύσης που επηρεάζουν την καταστατική εξίσωση υλικού του R-HFDFRCC. Τα δοκιμαστικά δείγματα ήταν, στις δοκιμές μονοαξονικής συμπίεσης, ένας κύλινδρος 100 × 200 mm, στην τριδιάστατη δοκιμή κάμψης ενός πρίσματος 100 × 100 × 400 mm, για τις δοκιμές έλξης, ένα πρίσμα 100 × 100 × 100 mm με μια ράβδο ενίσχυσης D-16 (SD490) τοποθετημένη, για τις δοκιμές εφελκυσμού ράβδου οπλισμού, ένα D-16 (SD490), του οποίου το μήκος του παράλληλου μέρους ήταν 10 φορές μεγαλύτερο από την ονομαστική διάμετρο ή μεγαλύτερο. Ο αριθμός των παραγόμενων δειγμάτων ανά δοκιμή ήταν έξι για τις δοκιμές μονοαξονικής συμπίεσης και οι δοκιμές κάμψης τριδιάστατων σημείων και τρεις για τις δοκιμές έλξης και τις δοκιμές εφελκυσμού ράβδων οπλισμού. Οι μονοαξονικές δοκιμασίες συμπίεσης πραγματοποιήθηκαν με τη μέθοδο που περιγράφεται στην εργασία αναφοράς. Τα αντικείμενα μέτρησης ήταν το φορτίο, η διαμήκης και εγκάρσια καταπόνηση στο κεντρικό τμήμα του δείγματος (όπως μετράται με ένα συμπιεσόμετρο), και η μετατόπιση μεταξύ των πλακών φόρτωσης (όπως μετράται από ένα υψηλό μετρητή μετατόπισης ευαισθησίας). Επιπλέον, η ενέργεια θραύσης συμπίεσης (GFc) υπολογίστηκε με την μέθοδο πλαστικής παραμόρφωσης, σε έργα αναφοράς μέχρι 3,0 mm). Οι δοκιμές κάμψης τριδιάστατου σημείου έγιναν με τη μέθοδο που περιγράφεται στην εργασία αναφοράς. Τα αντικείμενα μέτρησης ήταν το φορτίο, η μετατόπιση στο κεντρικό τμήμα της στατικής απόστασης (όπως μετράται από ένα υψηλό μετρητή μετατόπισης ευαισθησίας) και η καμπυλότητα (όπως μετράται με μετρητή μετατόπισης σε σχήμα π). Υπολογίστηκαν η αντοχή σε εφελκυσμό (Ft, b) και η τελική εφελκυστική τάση (εtu, b). Οι δοκιμές απομάκρυνσης πραγματοποιήθηκαν με τη μέθοδο που περιγράφεται στην εργασία αναφοράς. Η μέτρηση αντικειμένων ήταν το φορτίο και ο βαθμός ολίσθησης των ράβδων οπλισμού. Οι δοκιμές εφελκυσμού των ράβδων οπλισμού πραγματοποιήθηκαν με τη μέθοδο που περιγράφεται στην εργασία αναφοράς. Τα αντικείμενα μέτρησης ήταν το φορτίο, η διαμήκης και εγκάρσια καταπόνηση στο κεντρικό τμήμα του δείγματος και το βαθμό επιμήκυνσης των ράβδων οπλισμού. Συγκεντρώσαμε δεδομένα μέτρησης από τις δοκιμές υλικών χρησιμοποιώντας καταγραφείς δεδομένων. Ο Πίνακας 2 δίνει το υλικό ιδιοτήτων των ράβδων οπλισμού και R-HFDFRCC που λαμβάνονται από τις δοκιμές υλικών.

|                      | Compression          |          |             | Bending  |          |           | Pull-out      |               |
|----------------------|----------------------|----------|-------------|----------|----------|-----------|---------------|---------------|
|                      | Compressive          | Young's  | Compressive | Bending  | Tensile  | Ulitimate | Bond strength | Slip of       |
| Specimen             | strength             | modulus  | fracture    | strength | strength | tensile   | ттах          | bond strength |
|                      | Fc                   | Е        | energy      | (N/mm²)  | Ft,b     | strain    | (N/mm²)       | Su            |
|                      | (N/mm <sup>2</sup> ) | (kN/mm²) | GFc         |          | (N/mm²)  | (ɛtu,b)   |               | (mm)          |
|                      |                      |          | (N/mm)      |          |          |           |               |               |
| R-HFDFRCC-40-56D     | 50.4                 | 19.3     | 64.7        | 7.15     | 2.25     | 0.0190    | 17.1          | 205           |
| R-HFDFRCC-50-56D     | 35.4                 | 15.9     | 59.7        | 6.52     | 2.25     | 0.0302    | 15.8          | 357           |
| R-HFDFRCC-50-56D@150 | 35.7                 | 15.4     | 55.8        | 6.27     | 2.28     | 0.0263    | 14.0          | 327           |
| R-HFDFRCC-60-56D     | 28.6                 | 14.1     | 53.6        | 6.34     | 1.88     | 0.0330    | 12.3          | 418           |

Πίνακας 2: Ιδιότητες υλικών (α) R-HFDRCC

| J 1 J (1)            | •       | 2           |          |          |              |          |
|----------------------|---------|-------------|----------|----------|--------------|----------|
|                      | Main re | inforcement |          | Shear re | einforcement |          |
|                      |         | Young's     | Yield    |          | Young's      | Yield    |
| Specimen             | Ratio   | modulus     | strength | Ratio    | modulus      | strength |
|                      | (%)     | (kN/mm2)    | (N/mm2)  | (%)      | (kN/mm2)     | (N/mm2)  |
| R-HFDFRCC-40-56D     | 5.88    | 197         | 511      | _        | —            |          |
| R-HFDFRCC-50-56D     | 5.88    | 197         | 511      | _        |              |          |
| R-HFDFRCC-60-56D     | 5.88    | 197         | 511      | _        |              |          |
| R-HFDFRCC-50-56D@150 | 5.88    | 197         | 511      | 0.95     | 200          | 373      |

#### Πίνακας 3: Ιδιότητες υλικών (β) οπλισμός

## Εικόνα 1: Λεπτμέρειες δοκού και διατομής



#### Πίνακας 4: Παράγοντες ανάλυσης

|                      | Maximum    | load(kN) |
|----------------------|------------|----------|
| Specimen             | Experiment | Analysis |
| R-HFDFRCC-40-56D     | 94.6       | 111      |
| R-HFDFRCC-50-56D     | 96.3       | 112      |
| R-HFDFRCC-50-56D@150 | 167        | _        |
| R-HFDFRCC-60-56D     | 93.6       | 89.8     |

#### Πίνακας 5: Τα μέγιστα φορτία εξαγώμενα από τις δοκιμές φόρτισης και ανάλυσης των δοκιμίων ΟΣ RHFDFRCC

|                  | Compression |          |             | Bending  |           | Pull-out |               |
|------------------|-------------|----------|-------------|----------|-----------|----------|---------------|
|                  | Compressive | Young's  | Compressive | Tensile  | Ulitimate | Bond     | Slip of       |
| Specimen         | strength    | modulus  | fracture    | strength | tensile   | strength | bond strength |
|                  | Fc          | E        | energy      | Ft,b     | strain    | ттах     | Su            |
|                  | (N/mm2)     | (kN/mm2) | GFc         | (N/mm2)  | εtu,b     | (N/mm2)  | (mm)          |
|                  |             |          | (N/mm)      |          |           |          |               |
| R-HFDFRCC-50-56D | 35.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 15.8     | 0.357         |
| Case-1           | 20          | 15.9     | 59.7        | 2.25     | 0.0302    | 15.8     | 0.357         |
| Case-2           | 50.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 15.8     | 0.357         |
| Case-3           | 35.4        | 15.9     | 55          | 2.25     | 0.0302    | 15.8     | 0.357         |
| Case-4           | 35.4        | 15.9     | 65          | 2.25     | 0.0302    | 15.8     | 0.357         |
| Case-5           | 35.4        | 15.9     | 59.7        | 2        | 0.0302    | 15.8     | 0.357         |
| Case-6           | 35.4        | 15.9     | 59.7        | 2.5      | 0.0302    | 15.8     | 0.357         |
| Case-7           | 35.4        | 15.9     | 59.7        | 2.25     | 0.019     | 15.8     | 0.357         |
| Case-8           | 35.4        | 15.9     | 59.7        | 2.25     | 0.0604    | 15.8     | 0.357         |
| Case-9           | 35.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 10       | 0.357         |
| Case-10          | 35.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 20       | 0.357         |
| Case-11          | 35.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 15.8     | 0.2           |
| Case-12          | 35.4        | 15.9     | 59.7        | 2.25     | 0.0302    | 15.8     | 0.5           |
| Case-13          | 50.4        | 15.9     | 59.7        | 2.25     | 0.019     | 15.8     | 357           |
| Case-14          | 50.4        | 15.9     | 59.7        | 2.25     | 0.0604    | 15.8     | 0.357         |

#### 5.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

#### 5.3.1 Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 94.60   | -19.42   | 0.21          |
|         |          |               |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 94.60   | -36.82   | 0.39          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 94.60   | -36.82   | 0.39          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 5.3.2 Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 96.30   | -21.07   | 0.22          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 96.30   | -40.64   | 0.42          |
|         |          |               |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |
| 96.30   | 21.07    | 40 64         |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 5.3.3 Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 167.00  | -63.08   | 0.38          |
|         |          |               |
| Pu (KN) | Pt – ec2 | Pr – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 167.00  | -121.60  | 0.73          |
|         |          |               |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |
| 167.00  | 63 08    | 121 60        |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 5.3.4 Συγκεντρωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου

|                                        | Type II                                   |                                             |
|----------------------------------------|-------------------------------------------|---------------------------------------------|
| Pu (KN)                                | Pf – cfp                                  | Pf – cfp / Pu                               |
| (KN)                                   | (KN)                                      | (KN)                                        |
| 93.60                                  | -18.82                                    | 0.20                                        |
|                                        |                                           |                                             |
|                                        |                                           |                                             |
| Pu (KN)                                | Pf – ec2                                  | Pf-ec2 / Pu                                 |
| Pu (KN)<br>(KN)                        | Pf – ec2<br>(KN)                          | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>93.60               | Pf – ec2<br>(KN)<br>-43.70                | Pf – ec2 / Pu<br>(KN)<br>0.47               |
| Pu (KN)<br>(KN)<br>93.60               | Pf – ec2<br>(KN)<br>-43.70                | Pf – ec2 / Pu<br>(KN)<br>0.47               |
| Pu (KN)<br>(KN)<br>93.60<br>Pu         | Pf – ec2<br>(KN)<br>-43.70<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.47<br>EC         |
| Pu (KN)<br>(KN)<br>93.60<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-43.70<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.47<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 4: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 5.4. Σύγκριση και σχολιασμός αποτελεσμάτων

Λόγω απουσίας δείγματος εικόνας αστοχίας δεν μπορεί να γίνει σύγκριση με τον Τύπο ΙΙ αστοχίας της μορφής όλων των δοκών.

#### 5.5. Συμπεράσματα

Η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές για την Θεωρία της Τ.Θ.Δ., ενώ για τον Ευρωκώδικα συμβαίνει σε κάποιες φορές να είναι κοντινές οι τιμές. Τα ποσοστά για τις 4 δοκούς είναι 0.21 και 0.39, 0.22 και 0.42, 0.38 και 0.73, 0.2 και 0.47 αντίστοιχα. **[5] [12] [13].** 

# 6. Αριθμητική ανάλυση δοκών RC υψηλής αντοχής στην οριακή κατάστασή τους

## 6.1. Συνοπτική περιγραφή

Η ανάπτυξη τεχνολογιών παραγωγής δοκών υψηλής αντοχής, με σκοπό την δημιουργία ασφαλούς και ανθεκτικού υλικού, συνδέεται με αριθμητικά μοντέλα πραγματικών αντικειμένων. Σε αυτή την μελέτη διερευνήθηκαν τριδιάστατα μη γραμμικά πεπερασμένα στοιχεία μοντέλων δοκών RC υψηλής αντοχής, με σύνθετη γεωμετρία. Η αριθμητική ανάλυση εκτελέστηκε χρησιμοποιώντας το πακέτο πεπερασμένων στοιχείων, ANSYS. Τα αριθμητικά αποτελέσματα για τα σχέδια με ρωγμές ρωγμών είναι ποιοτικά αποδεκτά ως προς τη θέση, την κατεύθυνση και τη διανομή με τα δεδομένα δοκιμών. Το μοντέλο ήταν σε θέση να προβλέψει την εισαγωγή και διάδοση των καμπτικών και των διαγώνιων ρωγμών.

### 6.2. Ιδιότητες υλικών

Οι μονοαξονικές δυνάμεις συμπίεσης και εφελκυσμού του HSC πραγματοποιήθηκαν σε κύβους και κυλινδρικά δείγματα. Το μοντέλο ελαστικότητας υπολογίζεται με βάση την πειραματικά προσδιορισμένη μονοαξονική αντοχή συμπίεσης σύμφωνα με το ACI 363. Ο συντελεστής διατμητικής μεταφοράς για ανοικτή ρωγμή εκτιμάται με βάση αριθμητική ανάλυση. Οι ιδιότητες των χαλύβδινων ράβδων υπολογίστηκαν με βάση τις αξονικές δοκιμές εφελκυσμού σε χαλύβδινες ράβδους φ16, φ10, φ6 mm. Οι ιδιότητες των HSC και των χαλύβδινων ράβδων δίδονται για τα μοντέλα δοκού BP-1a / BP-2a, αντίστοιχα. Το σκυρόδεμα υψηλής αντοχής ορίζεται από την μονοαξονική θλιπτική αντοχή fc = 81,2 / 78,8 MPa, συντελεστής ελαστικότητας Ec = 36,8 / 36,4 GPa, μονοαξονική αντοχή σε εφελκυσμό ft = 5,23 / 4,57 MPa, λόγος Poisson vc = 0,15, πυκνότητα  $\rho$ c = 2600 kg / m3, συμπιεστική καταπόνηση στο στέλεχος αντοχής σc1 = 6 ‰, στέλεχος εcu = 12 ‰, συντελεστής διατμητικής μετατόπισης για ανοικτή ρωγμή βt = 0,3 και συντελεστής διατμητικής μετατόπισης για κλειστή ρωγμή βc = 0,9. Οι κατάλληλες ιδιότητες υλικών για τις χαλύβδινες ράβδους των διαμέτρων φ16 / φ10 / φ6 mm έχουν ως εξής: μέτρο ελαστικότητας Es = 196/194/201 GPa, τάση απόδοσης fy = 437/420/353 MPa, μονοαξονική αντοχή εφελκυσμού fst = 713/624/466 MPa, τελική καταπόνηση στην τάση απόδοσης εsu = 106/116/75 ‰, συντελεστής πλαστικής παραμόρφωσης ET = 2659,7 / 1792,1 / 1542,8 MPa,  $\alpha v \alpha \lambda o \gamma (\alpha Poisson vs = 0,3 \kappa \alpha i \pi u \kappa v \delta \tau n \tau \alpha \rho s = 7800 kg / m3. Oi μεταλλικές πλάκες$ στήριξης και μεταφοράς φορτίου καθορίζονται από το μέτρο ελαστικότητας Es = 210 GPa, Aναλογία Poisson vs = 0,3 και πυκνότητα ρs = 7800 kg / m3.

# 6.2. Επίδραση μέτρου ελαστικότητας και συντελεστή μεταφοράς διάτμησης στις καμπύλες φορτίου-παραμόρφωσης

Η αντοχή σε θλίψη είναι απαραίτητη για τον προσδιορισμό άλλων παραμέτρων του μη γραμμικού μοντέλου HSC. Εκτελέστηκαν οι υπολογισμοί μοντέλου δοκού BP-1a από σκυρόδεμα με αντοχή σε θλίψη 81,2 MPa για την εκτίμηση της επίδρασης του συντελεστή ελαστικότητας (Ec) και του συντελεστή μετατόπισης διάτμησης για μια ανοικτή ρωγμή (βt) στις καμπύλες φορτίου-παραμόρφωσης. Διαφορετικές σχέσεις μεταξύ της αντοχής σε θλίψη και του μέτρου ελαστικότητας για την HPC παρουσιάζεται στον Πίνακα 1. Μπορεί να σημειωθεί ότι οι υπολογισμένες τιμές μέτρησης μέτρου ελαστικότητας έχουν μεγάλη διασπορά αποτελεσμάτων.

#### Εικόνα 1: Λεπτομέρειες δοκών και διατομών



Πίνακας 1: Εξισώσεις για τον προσδιορισμό του μέτρου Ελαστικότητας

|                     | Equations                      | Ec (MPa)             |
|---------------------|--------------------------------|----------------------|
|                     |                                | for $f_c$ = 81.2 MPa |
| CEB-FIB             | $Ec = 10(\sqrt{fc} + 8)^{1/3}$ | 44681                |
| CAN A23.3-M90       | $E c = 5 \sqrt{f c}$           | 45056                |
| ACI 363             | $E c = 3.32\sqrt{f c} + 6.9$   | 36817                |
| Prop. Kikizaki [17] | $E c = 3.65 \sqrt{f c}$        | 32890                |
| Prop. Neville [17]  | $E c = 57000 \sqrt{f c}$       | 42649                |



Εικόνα 2: Πειραματικά και αριθμητικά αποτελέσματα διάταξεων ρηγμάτωσης

#### 6.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

#### 6.3.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 23.00   | -24.49   | 1.06          |
|         |          |               |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 23.00   | -87.92   | 3.82          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 23.00   | -87.92   | 3.82          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 23.00   | -87.92   | 3.82          |
| Pu      | CPF      | EC            |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 23.00   | -87.92   | 3.82          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



Type II vs EC

## 6.3.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|                                        | Type II                                    |                                             |
|----------------------------------------|--------------------------------------------|---------------------------------------------|
| Pu (KN)                                | Pf – cfp                                   | Pf – cfp / Pu                               |
| (KN)                                   | (KN)                                       | (KN)                                        |
| 80.00                                  | -30.63                                     | 0.38                                        |
|                                        |                                            |                                             |
|                                        |                                            |                                             |
| Pu (KN)                                | Pf – ec2                                   | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                        | Pf – ec2<br>(KN)                           | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>80.00               | Pf – ec2<br>(KN)<br>-109.99                | Pf – ec2 / Pu<br>(KN)<br>1.37               |
| Pu (KN)<br>(KN)<br>80.00               | Pf – ec2<br>(KN)<br>-109.99                | Pf – ec2 / Pu<br>(KN)<br>1.37               |
| Pu (KN)<br>(KN)<br>80.00<br>Pu         | Pf – ec2<br>(KN)<br>-109.99<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>1.37<br>EC         |
| Pu (KN)<br>(KN)<br>80.00<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-109.99<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>1.37<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 6.4. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς (δεξιά).



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους. Στην Εικόνα 4 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 6.5. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας των δοκών, δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών είναι κοντινή μόνο για την πρώτη δοκό ενώ στην δεύτερη ο Ευρωκώδικας έχει καλύτερα αποτελέσματα. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.06 και 3.82, 0.38 και 1.37 αντίστοιχα. [6] [12] [13].

## 7. Μοντελοποίηση πεπερασμένων στοιχείων δοκών RC με ινοοπλισμένες ράβδους

## 7.1. Συνοπτική περιγραφή

Αναφέρεται ότι το σκυρόδεμα είναι ένα ετερογενές σύνθετο υλικό φτιαγμένο από τσιμέντο, άμμο, χοντρόκοκκα αδρανή και νερό, αναμεμειγμένα σε επιθυμητή αναλογία, για να αποκτήσει την απαιτούμενη δύναμη. Το άοπλό σκυρόδεμα δεν αντέχει σε εφελκυσμό σε σύγκριση με την θλίψη. Για να αντισταθμιστεί το μειονέκτημα αυτό το σκυρόδεμα ενισχύεται με οπλισμό. Σήμερα, για την βελτίωση των ιδιοτήτων του σκυροδέματος και επίσης για να αναλάβει τον εφελκυσμό, ο συνδυασμός χάλυβα και γυαλιού σε ινοπλισμένες ράβδους πολυμερών (GFRP), υπόσχονται ικανονοποιητική αντοχή, λειτουργικότητα και ανθεκτικότητα. Για να διασφαλίσει την υπόσχεση και να υποστηρίξει τον σχεδιασμό κατασκευών με υβριδικό τύπο οπλισμού, η παρούσα μελέτη διερεύνησε την συμπεριφορά φόρτισης-εκτροπής δοκών RC με υβρίδια GFRP και ράβδους χάλυβα, χρησιμοποιώντας το λογισμικό ΑΤΕΝΑ. Αναλύθηκαν 14 δοκοί, περιλαμβάνοντας 6 δοκούς ελέγχου οπλισμένες με ράβδους μόνο χάλυβα ή μόνο GFRP Η συμπεριφορά των δοκών αυτών διερευνήθηκε μέσω των χαρακτηριστικών παραμόρφωσης φορτίου, της συμπεριφοράς θραύσης και του τρόπου αστοχίας. Η υβριδική δοκός RC GFRP-χάλυβα έδειξε τη βελτίωση της οριακής αντοχής και της παραμόρφωσης σε σχέση με την δοκό RC.

### 7.2. Λεπτομέρειες των δοκιμίων

Κατασκευάστηκαν και αναλύθηκαν δεκατέσσερα δείγματα δοκών από σκυρόδεμα υψηλής απόδοσης ενισχυμένα με διαφορετικούς τύπους καμπτικού οπλισμού και ίνας, συμπεριλαμβανομένων έξι δοκών ελέγχου. Όλα τα δείγματα είχαν μήκος 2300 mm με ορθογώνια διατομή 200 x 250 mm. Η ομάδα Α ενισχύθηκε με ένα στρώμα ενίσχυσης και η ομάδα Β και Γ ενισχύθηκε με δύο στρώσεις ενίσχυσης και τα αποτελεσματικά βάθη της εξωτερικής στρώσης (d1) και το εσωτερικό στρώμα (d2) ήταν 213,5 mm και 200,5 mm, αντίστοιχα. Κάθε δείγμα είχε διαφορετικούς συνδυασμούς καμπτικής ενίσχυσης των συμβατικών χαλύβδινων ράβδων και των ράβδων GFRP. Το πρώτο γράμμα στα ονόματα των δειγμάτων δείχνει την δοκό ελέγχου και την υβριδική δοκό αντίστοιχα. Σε όλους τους οπλισμούς χρησιμοποιήθηκε η ίδια διάμετρος που είναι 12 mm για τη χαλύβδινη ράβδο και 13 mm για τη ράβδο GFRP. Χρησιμοποιήθηκε ένα κάλυμμα από σκυρόδεμα 30mm και χάλκινες ράβδοι 8 mm χρησιμοποιήθηκαν ως κλειστοί συνδετήρες σε απόσταση 100 mm και ως επιμήκεις ενισχύσεις συμπίεσης για όλα τα δείγματα. Όλα τα δείγματα σχεδιάστηκαν για να αστοχήσουν από θραύση σκυροδέματος και να αποφύγουν την ψαθυρή αστοχία. Οι μηχανικές ιδιότητες του σκυροδέματος, του χάλυβα και των GFRP ενισχύσεων παρουσιάζονται στον παρακάτω Πίνακα 1.

| Material                  | Elastic Modulus | Compressive Strength | Yield Strength | Tensile Strength |
|---------------------------|-----------------|----------------------|----------------|------------------|
|                           | (GPa)           | (MPa)                | (MPa)          | (MPa)            |
| High Performance Concrete | 36.95           | 61.8                 | —              | 6.18             |
| Steel bars (12 mm)        | 200             | —                    | 550            | —                |
| Steel bars (8 mm)         | 200             | —                    | 250            | —                |
| GFRP bars (13 mm)         | 44.1            |                      |                | 920              |

#### Πίνακας 1: Μηχανικές ιδιότητες σκυροδέματος, οπλισμού και ενίσχυσης GFRP

#### Εικόνα 1: Λεπτομέρειες δοκού



## 7.3. Περιγραφή στοιχείων FRP και μέθοδος υπολογισμού ATENA FE

Το συμβατικό οπλισμένο σκυρόδεμα εφαρμόζεται ευρέως στον κατασκευαστικό κλάδο λόγω της τη διαθεσιμότητας και το χαμηλό κόστος του χάλυβα και του σκυροδέματος, τις γνώσεις σχετικά με το σχεδιασμό και την τεράστια εμπειρία χρήσης του στην πράξη. Λόγω των διαφορετικών μηχανικών ιδιοτήτων τους, η συμπεριφορά των μελών FRP RC είναι αρκετά διαφορετική από εκείνη του παραδοσιακού οπλισμένου σκυροδέματος. Πρόσφατα, σημειώθηκε ραγδαία αύξηση στην χρήση των ράβδων ενισχυμένου πολυμερούς ινών (FRP) με αντικατάσταση συμβατικών χαλύβδινων ράβδων για δομές σκυροδέματος, λόγω των πλεονεκτημάτων των μη διαβρωτικών χαρακτηριστικών, της υψηλής αντοχής και του ελαφρού βάρους των ράβδων FRP. Σε σχέση με το μέτρο ελαστικότητας των ράβδων FRP. το μέτρο ελαστικότητας των ράβδων χάλυβα, είναι πολύ μικρότερο. Αυτό το χαμηλό μέτρο ελαστικότητας οδηγεί σε μεγαλύτερη εκτροπή και μεγαλύτερο πλάτος ρωγμών στη δοκό οπλισμού σκυροδέματος FRP που έχουν ισοδύναμη αναλογία ενίσχυσης δοκών οπλισμένου σκυροδέματος. Επιπλέον, ενώ οι χαλύβδινοι ράβδοι συμπεριφέρονται ελαστικά μετά τη δύναμη απόδοσης, οι ράβδοι FRP δείχνουν τέλεια ελαστική συμπεριφορά μέχρι την αποτυχία και αποτυγχάνουν με εύθραυστα αποτελέσματα. Προκειμένου να ξεπεραστούν αυτά τα προβλήματα όσον αφορά τη δυνατότητα παραμορφώσεως και ολκιμότητας δοκών από σκυρόδεμα ενισχυμένες με ράβδους FRP, προτάθηκαν εναλλακτικές λύσεις υβριδικής ενίσχυσης με FRP και χαλύβδινες ράβδους με χρήση οπλισμένου σκυροδέματος (FRC). Η χαμηλότερη δυσκαμψία και η μεγαλύτερη εκτροπή της ενισχυμένης δοκού με ράβδους FRP ελέγχθηκαν και βελτιώθηκαν με υβριδική ενίσχυση με χαλύβδινες ράβδους. Λόγω της αυξημένης απόλυτης θλιπτικής καταπόνησης σκυροδέματος, οι ενισχυμένες δοκοί με ράβδους GFRP με χάλυβα και οι συνθετικές ίνες έδειξαν ανελαστική και όλκιμη συμπεριφορά κοντά στην αποτυχία και υψηλότερη απόλυτη κάμψη από την δοκό χωρίς ίνες.

|   | Group of Specimen | Ptheo  | δtheo | PATE  | δΑΤΕ  | ΔΡ(%) | Δδ(%) | ρ(%) |
|---|-------------------|--------|-------|-------|-------|-------|-------|------|
|   |                   | (kN)   | (mm)  | (kN)  | (mm)  | (kN)  | (mm)  |      |
|   | C-3S              | 32.77  | 22.62 | 45    | 48.76 | 0.73  | 0.46  | 0.79 |
| Α | C-3G              | 60.78  | 41.95 | 55.14 | 40.51 | 1.1   | 1.04  | 0.93 |
|   | H-2S1G            | 42.49  | 29.33 | 50.47 | 33.36 | 0.84  | 0.88  | 0.84 |
|   | H-1S2G            | 51.83  | 25.77 | 49.7  | 29.74 | 1.04  | 0.87  | 0.89 |
|   | C-5S              | 50.77  | 35.04 | 67    | 42.1  | 0.76  | 0.83  | 1.37 |
|   | C-5G              | 89.81  | 61.99 | 65.25 | 34.02 | 1.38  | 1.82  | 1.6  |
| В | H-3S2Ga           | 67.55  | 46.62 | 67.38 | 32.23 | 1     | 1.45  | 1.46 |
|   | H-2S3Ga           | 75.35  | 52.01 | 65.96 | 35.21 | 1.14  | 1.48  | 1.51 |
|   | H-3S2Gb           | 67.55  | 46.62 | 66.01 | 34.33 | 1.02  | 1.36  | 1.46 |
|   | H-2S3Gb           | 75.35  | 52.01 | 65.94 | 36.1  | 1.14  | 1.44  | 1.51 |
|   | C-6S              | 59.67  | 41.19 | 77    | 32.27 | 0.88  | 1.41  | 1.64 |
| С | C-6G              | 102.95 | 71.06 | 67.78 | 29.22 | 1.34  | 2.2   | 1.92 |
|   | H-4S2G            | 75.64  | 52.21 | 76.11 | 33.52 | 1.05  | 1.56  | 1.73 |
|   | H-2S4G            | 90.07  | 62.17 | 72.6  | 33.52 | 1.24  | 1.85  | 1.83 |

#### Πίνακας 2: Σύνοψη αποτελεσμάτων ανάλυσης

Οι ίνες χάλυβα σε σκυρόδεμα και η υβριδική ενίσχυση με χάλυβα ελεγχόταν για την διάδοση των ρωγμών και για το πλάτος των ρωγμών των ενισχυμένων δοκών FRP. Και τελευταία, αλλά όχι μόνο η προσθήκη ινών και η υβριδική ενίσχυση με χαλύβδινες ράβδους μπορεί να είναι πιθανές μέθοδοι να υπερνικήσουν την χαμηλή ολκιμότητα των ενισχυμένων δοκών FRP. Επιπλέον, η ολκιμότητα της δομής RC και η εύθραυστη αποτυχία της δοκού FRP μπορεί να επιλυθεί με τοποθέτηση των τενόντων FRP στην γωνιακή περιοχή όπου το σκυρόδεμα είναι εύκολο να καταστραφεί και πρέπει ακόμα να συνεχίσει την φόρτιση έως το τελικό φορτίο μετά την απόδοση των χαλύβδινων ράβδων και παρουσιάζει ορισμένο συντελεστή ασφαλείας και καλή πλαστιμότητα. Στο άρθρο αυτό, ερευνάται η ακρίβεια της πρόβλεψης εκτροπής από το πεπερασμένο πακέτο στοιχείων ΑΤΕΝΑ και οι μέθοδοι κώδικα σχεδιασμού ACI και EC2. Τελικά ο G. Kaklauskas δήλωσε ότι η εκτροπή υπολογίστηκε από την δοκό εντός του διαστήματος φορτίσης που κυμαίνεται από 30 έως 90% του θεωρητικού τελικού φορτίου χρησιμοποιώντας το ΑΤΕΝΑ FE.

|   | Group of Specimen | Pcr (kN) | Failure Mode |
|---|-------------------|----------|--------------|
|   | C-3S              | 17       | Flexural     |
| Α | C-3G              | 15.9     | Flexural     |
|   | H-2S1G            | 16.37    | Flexural     |
|   | H-1S2G            | 16.14    | Flexural     |
|   | C-5S              | 18       | Flexural     |
|   | C-5G              | 16.03    | Flexural     |
| В | H-3S2Ga           | 16.62    | Flexural     |
|   | H-2S3Ga           | 16.5     | Flexural     |
|   | H-3S2Gb           | 16.74    | Flexural     |
|   | H-2S3Gb           | 16.38    | Flexural     |
|   | C-6S              | 18       | Flexural     |
| С | C-6G              | 16.09    | Flexural     |
|   | H-4S2G            | 16.93    | Flexural     |
|   | H-2S4G            | 16.59    | Flexural     |

Πίνακας 3: Συμπεριφορά θραύσης και τύπος αστοχίας

Εικόνα 2: Σχήμα ρωγμών της υβριδικής δοκού



#### 7.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

#### 7.4.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|         | Type II  |                         |
|---------|----------|-------------------------|
| Pu (KN) | Pf – cfp | P <sub>f-cfp</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 45.00   | -52.51   | 1.17                    |
|         |          |                         |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 45.00   | -40.83   | 0.91                    |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 45.00   | -40.83   | 0.91                    |
| Pu      | CPF      | EC                      |
| (KN)    | (KN)     | (KN)                    |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



Type II vs EC
# 7.4.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|                                        | Туре п                                    |                                                       |
|----------------------------------------|-------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                | Pf – cfp                                  | V <sub>II-cr</sub> / Pu                               |
| (KN)                                   | (KN)                                      | (KN)                                                  |
| 67.00                                  | -58.67                                    | 0.88                                                  |
|                                        |                                           |                                                       |
|                                        |                                           |                                                       |
|                                        |                                           |                                                       |
| Pu (KN)                                | Pf – ec2                                  | P <sub>f-ec2</sub> / Pu                               |
| Pu (KN)<br>(KN)                        | Pf – ec2<br>(KN)                          | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>67.00               | Pf – ec2<br>(KN)<br>-46.08                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.69               |
| Pu (KN)<br>(KN)<br>67.00               | Pf – ec2<br>(KN)<br>-46.08                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.69               |
| Pu (KN)<br>(KN)<br>67.00<br>Pu         | Pf – ec2<br>(KN)<br>-46.08<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.69<br>EC         |
| Pu (KN)<br>(KN)<br>67.00<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-46.08<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.69<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# 7.4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου

|                                        | Туре п                                    |                                                       |
|----------------------------------------|-------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                | Pf – cfp                                  | V <sub>II-cr</sub> / Pu                               |
| (KN)                                   | (KN)                                      | (KN)                                                  |
| 77.00                                  | -62.15                                    | 0.81                                                  |
|                                        |                                           |                                                       |
|                                        |                                           |                                                       |
|                                        |                                           |                                                       |
| Pu (KN)                                | Pf – ec2                                  | P <sub>f-ec2</sub> / Pu                               |
| Pu (KN)<br>(KN)                        | Pf – ec2<br>(KN)                          | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>77.00               | Pf – ec2<br>(KN)<br>-49.10                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.64               |
| Pu (KN)<br>(KN)<br>77.00               | Pf – ec2<br>(KN)<br>-49.10                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.64               |
| Pu (KN)<br>(KN)<br>77.00<br>Pu         | Pf – ec2<br>(KN)<br>-49.10<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.64<br>EC         |
| Pu (KN)<br>(KN)<br>77.00<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-49.10<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.64<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 7.5. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση Τύπων αστοχίας ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς (δεξιά).



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους. Στην Εικόνα 4 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



## 7.6. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας είναι κοντινότερη για την πρώτη δοκό στον Ευρωκώδικα. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.17 και 0.91, 0.88 και 0.69, 0.81 και 0.64 αντίστοιχα. [7] [12] [13].

## 8. Διατμητική και καμπτική συμπεριφορά προεντεταμένων και μη προεντεταμένων δοκών RC και SFRC δοκών RC

## 8.1. Συνοπτική περιγραφή

Η παρούσα μελέτη στοχεύει στη βελτίωση της αντοχής σε διάτμηση και κάμψη του σκυροδέματος με την προσθήκη ινών χάλυβα. Επίσης, η μελέτη ερευνά την επίδραση της προέντασης στην αντοχή διάτμησης και κάμψης του σκυροδέματος. Σε αυτό το ερευνητικό έργο, προστίθεται 20% ιπτάμενης τέφρας (κλάση-C) ως υποκατάστατο συνδετικού υλικού στο βάρος του και 1,5% ίνες χάλυβα κατά βάρος σκυροδέματος. Με βάση τα πειραματικά αποτελέσματα, μπορεί να φανεί ότι η ικανότητα μεταφοράς φορτίου των ινών χάλυβα αυξήθηκε κατά 30-50% από την απλή δοκό χωρίς προένταση. Και η χωρητικότητα φορτίου αυξάνεται κατά περίπου 30-90% από την απλή δοκό προεντεταμένου σκυροδέματος. Η χρήση ινών χάλυβα σε ένα μείγμα σκυροδέματος βρέθηκε ότι αυξάνει την αντοχή στη ρωγμή των δοκών. Ως εκ τούτου, βάσει πειραματικών αποτελεσμάτων μπορεί να εξαχθεί το συμπέρασμα ότι οι δοκοί από οπλισμένο σκυρόδεμα προεντεταμένης χαλύβοινης ίνας συμβάλλουν στη βελτίωση της διάτμησης, της κάμψης και της διάβρωσης.

#### 8.2. Υλικά και Μεθοδολογία

Για την παρούσα μελέτη χρησιμοποιήθηκε βαθμός σκυροδέματος Μ40 που είναι σχεδιασμένος σύμφωνα με τον κώδικα IS. Η αναλογία ανάμειξης που ελήφθη ήταν 1: 1.30: 2.37 με λόγο W / C 0.4. Και χρησιμοποιήθηκε ανάμειξη νερού (Flowcon-PC 163 JK) 1% κατά βάρος τσιμέντου. Ο Πίνακας 1 δείχνει το ποσοστό μίγματος σκυροδέματος για απλό και οπλισμένο σκυρόδεμα από χάλυβα. Συγκεντρώθηκαν 36 δείγματα δοκών με το καθένα να έχει διατομή 140 mm x 140 mm με μήκος 1500 mm. Τα δείγματα άοπλων δοκών από σκυρόδεμα αποτελούνται από 20% ιπτάμενη τέφρα κατά βάρους τσιμέντου. Τα δείγματα οπλισμένου σκυροδέματος από χάλυβα αποτελούνται από 20% ιπτάμενης τέφρας κατά βάρος τσιμέντου και 1,5% ίνες χάλυβα κατ' όγκο από σκυρόδεμα. Οι ίνες χάλυβα που χρησιμοποιήθηκαν στη μελέτη έχουν εφελκυστική αντοχή 1050 MPa, λόγο διαστάσεων (μήκος ινών έως την διάμετρο) 80, μήκος ινών 60 mm και διάμετρος = 0,75 mm. Για την παρούσα μελέτη αποφασίστηκε να ληφθεί υπόψη το ποσοστό ινών ως 1,5%, λαμβάνοντας υπόψη τη δυνατότητα επεξεργασίας και την αποφυγή του σβολιάσματος των ινών ώστε να ταιριάζουν στις διαθέσιμες εγκαταστάσεις στο εργαστήριο. Στην παρούσα μελέτη επιλέχθηκε ο τύπος ινών Dramix για χρήση με βάση την ανασκόπηση της βιβλιογραφίας, καθώς αναμειγνύεται σωστά, λεπτομερώς στο καλούπι. Ακόμη και στην ανασκόπηση της βιβλιογραφίας η παράμετρος αντοχής που επιτυγχάνεται με το σκυρόδεμα ήταν επίσης καλύτερη όταν χρησιμοποιήθηκαν ίνες χάλυβα Dramix. Σβόλιασμα ή γύρισμα των ινών βρέθηκαν λιγότερο σε σύγκριση με άλλους τύπους χάλυβα ινών. Οι ίνες ήταν σχετικά άκαμπτες και κολλημένες σε δεσμίδες. Η κόλλα διαλύθηκε στο νερό κατά τη διάρκεια της ανάμειξης, διασκορπίζοντας έτσι τις ίνες στο μείγμα. Το μείγμα σκυροδέματος προετοιμάστηκε σε έναν μόνο γέμισμα και εδράστηκε χρησιμοποιώντας ράβδους συμπίεσης. Μετά την ρύθμιση, τα δοκίμια δοκών καλύφθηκαν με υγρές σακούλες. Το λινάρι διατηρήθηκε για 3 ημέρες. Στο τέλος της τρίτης ημέρας, οι δοκοί απογυμνώθηκαν και τα δείγματα δοκών διατηρήθηκαν για ωρίμανση έως 28 ημέρες. Δύο ράβδοι προέντασης με διάμετρο των 4 mm το καθένα χρησιμοποιήθηκαν στην παρούσα μελέτη. Ο μέσος όρος εκκεντρότητας που διατηρήθηκε ήταν 30 mm. Όλα τα δείγματα προέντασης σχεδιάστηκαν έτσι ώστε να έχουν την ίδια δύναμη προέντασης Pu = 27156,74 N και ποσότητα προεντεταμένου χάλυβα (25,13 mm2). Οι κλώνοι προέντασης τάχθηκαν χρησιμοποιώντας ένα μονό υδραυλικό βύσμα μιας ημέρας πριν από τη χύτευση. Η δύναμη του κλώνου

υπολογίστηκε από το επιμηκυμένο μήκος του τεντωμένου κλώνου καθώς και από έναν μετατροπέα πίεσης εγκατεστημένο στον υδραυλικό γρύλο. Οι τεντωμένοι κλώνοι ήταν κλειδωμένοι σε χαλύβδινα στηρίγματα χρησιμοποιώντας βαρέλια (αρσενικό και θηλυκό κώνο) στο ναυπηγείο προέντασης. Μετά από τρεις ημέρες δειγμάτων δέσμης, μια σταδιακή ένταση διαδικασίας μεταφοράς στο σκυρόδεμα χρησιμοποιήθηκε για να κόψει την προένταση από ένα μηχανικό κόπτη, ταυτόχρονα. Η ρύθμιση φόρτωσης ενός σημείου της απλά εδραζόμενης δοκού εφαρμόστηκε με συγκεντρωμένο φορτίο στο μέσο μήκος της δοκού. Χρησιμοποιήθηκε μια δοκιμή διπλού σημείου απλά εδραζόμενης δοκού με δύο συγκεντρωμένα φορτία εφαρμοζόμενα σε απόσταση / 3 αποστάσεων από τα στηρίγματα. Το φορτίο εφαρμόστηκε χρησιμοποιώντας υδραυλικό βύσμα έως την αστοχία του. Παρατηρήθηκαν το δείγμα και τα σχέδια ρωγμών. Σε κάθε βήμα φόρτισης, οι ρωγμές επιθεωρήθηκαν, σημειώθηκαν και φωτογραφήθηκαν τα δείγματα δοκών.

Εικόνα 1: Λεπτομέρειες προεντεταμένων και μη προεντεταμένων δοκών



Figure 2 Prestressed concrete beam specimen.



Figure 3a Single point loading setup.



## Πίνακας 1: Αναλογίες μίγματος σκυροδέματος

| Sr. No.                       | Mix proportion per cubic metre                                                                              |
|-------------------------------|-------------------------------------------------------------------------------------------------------------|
| Mix-1 (plain concrete)        | Cement: 412.8 kg/cu.m, (IS: 12269-1976, IS: 2720-part-3, IS: 4031-1968, IS: 12269-1976, IS: 12269-1976). 43 |
|                               | grade, specific gravity of cement=3.15 (IS: 2720-part-3)                                                    |
|                               | Batch type: concrete mixing (IS: 4634:1968) was carried out                                                 |
|                               | Coarse aggregate: 1223.89 kg/cu.m. (IS: 2386-part-4, IS 283-1970)                                           |
|                               | Fine aggregate (river sand): 673.5 kg/cu.m (IS 2386-(part-I)-1963)                                          |
|                               | Water: 206.4 kg/cu.m (IS: 456-2000). Water/cement (W/C) ratio was 0.40<0.6 (IS 456-2000)                    |
|                               | Fly ash: 103.2 kg/cu.m class-C (IS 3812 part I-2003)                                                        |
|                               | Water reducing Admixture: 5.16 kg/cu.m                                                                      |
| Mix-2 (steel fibre reinforced | Cement: 412.8 kg/cu.m, (IS: 12269-1976, IS: 2720-part-3, IS: 4031-1968, IS: 12269-1976, IS: 12269-1976). 43 |
| concrete)                     | grade, specific gravity of cement=3.15 (IS: 2720-part-3)                                                    |
|                               | Batch type: concrete mixing (IS: 4634:1968) was carried out                                                 |
|                               | Coarse aggregate: 1223.89 kg/cu.m. (IS: 2386-part-4, IS 283-1970)                                           |
|                               | Fine aggregate (river sand): 673.5 kg/cu.m (IS 2386-(part-I)-1963)                                          |
|                               | Water: 206.4 kg/cu.m (IS: 456-2000). Water/cement (W/C) ratio was 0.40<0.6 (IS 456-2000)                    |
|                               | Fly ash: 103.2 kg/cu.m class-C (IS 3812 part I-2003)                                                        |
|                               | Water reducing Admixture: 5.16 kg/cu.m                                                                      |
|                               | Steel fibres: 39.37 kg/cu.m. Dramix type-Bekaert company (ISO-9001 certified)                               |

#### Πίνακας 2: Λεπτομέρειες των μη προεντεταμένων δοκιμίων δοκών

| Beam specimen | No. of beam | Specimen   | % Fly | % of steel | Specimen type        | Point loads adopted for |
|---------------|-------------|------------|-------|------------|----------------------|-------------------------|
| series        | specimens   | denoted    | ash   | fibre      |                      | testing                 |
| Series-1      | 3           | PL-S-1,2,3 | 20    | 0          | Plain concrete       | Single                  |
| Series-2      | 3           | PL-D-1,2,3 | 20    | 0          | Plain concrete       | Double                  |
| Series-3      | 3           | SF-S-1,2,3 | 20    | 1.5        | Steel fibre concrete | Single                  |
| Series-4      | 3           | SF-D-1,2,3 | 20    | 1.5        | Steel fibre concrete | Double                  |

#### Πίνακας 3: Λεπτομέρειες προεντεταμένων δοκιμίων δοκών

| Beam specimen | No. of beam | Specimen     | % Fly | % of steel | Specimen type        | Point loads adopted for |
|---------------|-------------|--------------|-------|------------|----------------------|-------------------------|
| series        | specimens   | denoted      | ash   | fibre      |                      | testing                 |
| Series-1      | 3           | PL-P-S-1,2,3 | 20    | 0          | Plain concrete       | Single                  |
| Series-2      | 3           | PL-P-D-1,2,3 | 20    | 0          | Plain concrete       | Double                  |
| Series-3      | 9           | SF-P-S-1,2,3 | 20    | 1.5        | Steel fibre concrete | Single                  |
| Series-4      | 9           | SF-P-D-1,2,3 | 20    | 1.5        | Steel fibre concrete | Double                  |

#### Πίνακας 4: Αντοχή του σκυροδέματος εφαρμοσμένη στο μη προεντεταμένα και στο προεντεταμένα δοκίμια δοκών σκυροδέματος άοπλων και SFRC

| Beam       | Compressive     | Split tensile | Analytical split     |
|------------|-----------------|---------------|----------------------|
| specimen   | strength Fck in | strength in   | tensile strength 0.7 |
| series     | MPa             | MPa           | √Fck in MPa          |
| Series-1-2 | 42.35           | 4.03          | 4.55                 |
| Series-3-4 | 45.72           | 5.26          | 4.73                 |

#### 8.3 Μη προεντεταμένα δοκίμια δοκών σκυροδέματος

Με βάση τα παραπάνω στοιχεία μια σύγκριση της άοπλου δοκού από ινο-οπλισμένο σκυρόδεμα δείχνουν αύξηση του φορτίου στην φέρουσα ικανότητα ινο-οπλισμένου σκυροδέματος, κατά προσέγγιση 30-50% από την απλή δοκό. Από τα παραπάνω στοιχεία, μπορεί να φανεί σαφώς ότι η ικανότητα μεταφοράς φορτίου της δοκού σκυροδέματος

SFRC πέρα από το ελαστικό όριο ήταν μεγαλύτερη από αυτή των απλών δοκών από σκυρόδεμα. Έτσι, όπως η πλαστική ικανότητα της δοκού ήταν σημαντική με τη χρήση των ινών χάλυβα και η αυξημένη ολκιμότητα ήταν δικαιολογημένη. Η χρήση ινών χάλυβα σε σκυρόδεμα βρέθηκε ότι αυξάνει την αντοχή στην ρωγμή των δοκών. Αυτό οφείλεται στο γεγονός ότι η παρουσία ινών σε όλη την εγκάρσια τομή της δοκού και ειδικά, στο ότι η επιφάνεια παγιδεύει τις ρωγμές που αναπτύσσονται στην επιφάνεια και εμποδίζει την περαιτέρω διάδοση της ρωγμής μέσω του βάθους της δοκού. Παρατηρήθηκε ότι η ανάπτυξη της πρώτης ρωγμής για τη δομή από οπλισμένο σκυρόδεμα ήταν υψηλότερη για φορτία από την απλή δοκό σκυροδέματος. Σημειώθηκε επίσης ότι η εκτροπή ήταν ικανοποιητική. Το πλάτος της ρωγμής δεν ήταν μεγαλύτερο από 6 mm σε περίπτωση οποιασδήποτε από τις ενισχυμένες ίνες δοκού. Η εφελκυστική αντοχή καθώς και η αντοχή διάτμησης του σκυροδέματος αυξήθηκε λόγω της παρουσίας των ινών. Σε περίπτωση εμφάνισης ρωγμών δειγμάτων απλής δοκού σε πρώιμο στάδιο. Η φέρουσα ικανότητα της δοκού έληξε μετά την ανάπτυξη ρωγμών. Η ισχύς κάμψης της δοκού αυξάνεται καθώς η απόσταση μεταξύ του σημείου φόρτισης και της στήριξης μειώνεται. Η περίπτωση διπλής φόρτισης παρατηρήθηκε ως μεγαλύτερη από την φόρτιση ενός σημείου. Αστοχία σε περίπτωση μοναχικού φορτίου σημείου υπήρξε ως αστοχία τύπου κάμψης στα αρχικά στάδια και αστοχία κάμψης σε μεταγενέστερο στάδιο φόρτισης. Ενώ στην περίπτωση του προγράμματος δοκιμών φορτίου δύο σημείων διαγώνιες ρωγμές αναπτύχθηκαν κάτω από φορτία που καταλήγουν σε διατμητική αστοχία. Ο Πίνακας 5 δείχνει την αντοχή στην διάτμηση, την αντοχή στην κάμψη και την μετατόπιση της μη προεντεταμένης δοκού σκυροδέματος.

| Πίνακας 5: Σύνοψη πειραματικών | αποτελεσμάτων για την μη προεντ | εταμένη δοκό |
|--------------------------------|---------------------------------|--------------|
| σκυροδέματος                   |                                 |              |

|                | Shear strength (kN) |              | Flexure strength (MPa) |              | Deflections in mm |              |
|----------------|---------------------|--------------|------------------------|--------------|-------------------|--------------|
|                | Single point        | Double point | Single point           | Double point | Single point      | Double point |
| Plain concrete | 2.68                | 3.98         | 4.1                    | 4.25         | 0.97              | 1.14         |
| SFRC           | 3,44                | 5.1          | 5.35                   | 5.48         | 1.95              | 2.43         |

#### 8.4 Προεντεταμένα δοκίμια δοκών σκυροδέματος

Η αντοχή φόρτισης αυξάνεται περίπου κατά 30-90% από την απλή δοκό προεντεταμένου σκυροδέματος. Οι ίνες χάλυβα στο σκυρόδεμα προσθέτει επίσης την ολκιμότητα των στοιχείων της δοκού και βοηθάει στην βελτίωση της χαρακτηριστικής απορρόφησης ενέργειας των δοκών. Η αντοχή διάτμησης και κάμψης του σκυροδέματος αυξάνεται για μια ινοπλισμένη δοκό προεντεταμένου σκυροδέματος. Παρατηρήθηκε ότι η ανάπτυξη της πρώτης ρωγμής για μια ενισχυμένη με ίνες δοκό προεντεταμένου σκυροδέματος δέματος ήταν σε υψηλότερα φορτία από την απλή δοκό προεντεταμένου σκυροδέματος. Σημειώθηκε επίσης ότι η μετατόπιση ήταν ικανοποιητική. Το πλάτος της ρωγμής δεν ήταν περισσότερο από 3 mm σε περίπτωση οποιουδήποτε δείγματος δέσμης. Σε περίπτωση διπλής φόρτισης, η δύναμη καμπυλότητας ήταν μεγαλύτερη από τη φόρτιση ενός σημείου. Αποτυχία στην περίπτωση φορτίου ενός σημείου ήταν η αποτυχία τύπου κάμψης στα αρχικά στάδια και στην αποτυχία της κάμψης σε μεταγενέστερο στάδιο φόρτισης. Ενώ στην περίπτωση της διαγωνίου προγράμματος δοκιμών φορτίου δύο σημείων δημιουργήθηκαν ρωγμές κάτω από τα φορτία που κατέληξαν σε αποτυχία διατμήσεως. Ο Πίνακας 6 δείχνει τα συνοπτικά

# Πίνακας 6: Σύνοψη πειραματικών αποτελεσμάτων για την προεντεταμένη δοκό σκυροδέματος

|                | Shear strength (kN) |              | Flexure strength (MPa) |              | Deflections in mm |              |
|----------------|---------------------|--------------|------------------------|--------------|-------------------|--------------|
|                | Single point        | Double point | Single point           | Double point | Single point      | Double point |
| Plain concrete | 4.62                | 6.79         | 7.28                   | 7.32         | 1.7               | 2.27         |
| SFRC           | 6.61                | 9.5          | 10.55                  | 10.28        | 2.54              | 2.98         |

# Εικόνα 2: Ρωγμή στο άοπλο σκυρόδεμα



## 8.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

## 8.5.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|         | Type I            |                         |
|---------|-------------------|-------------------------|
| Pu (KN) | V <sub>I-cr</sub> | V <sub>I-cr</sub> / Pu  |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 22.00             | 8.22                    |
|         |                   |                         |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu      | CPF               | EC                      |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu      | CPF               | EC                      |
| (KN)    | (KN)              | (KN)                    |

Διάγραμμα 1: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



Type I vs EC

# 8.5.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|                     | Type II             |               |
|---------------------|---------------------|---------------|
| Pu (KN)             | Pf – cfp            | Pf – cfp / Pu |
| (KN)                | (KN)                | (KN)          |
| 3.98                | 3.21                | 0.81          |
|                     |                     |               |
| Pu (KN)             | Pf – ec2            | Pf – ec2 / Pu |
| (KN)                | (KN)                | (KN)          |
| (1,1,1,1)           | (1,1,1,1)           | ()            |
| 3.98                | 1.85                | 0.47          |
| 3.98                | 1.85                | 0.47          |
| 3.98<br>Pu          | 1.85<br>CPF         | 0.47<br>EC    |
| 93.98<br>Pu<br>(KN) | 1.85<br>CPF<br>(KN) | EC<br>(KN)    |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 2: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# 8.5.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου

|                            | Type I                       |                                |
|----------------------------|------------------------------|--------------------------------|
| Pu (KN)<br>(KN)            | V <sub>I-cr</sub><br>(KN)    | V <sub>I-cr</sub> / Pu<br>(KN) |
| 4.62                       | -4.23                        | 0.91                           |
| Pu (KN)                    | Pf – ec2                     | P <sub>f=ec2</sub> / Pu        |
|                            | ( <b>IZN</b> I)              |                                |
| (KN)                       | (KN)<br>-4.28                | (KN)                           |
| (KN)<br>4.62               | (KN)<br>-4.28                | (KN)<br>0.93                   |
| (KN)<br>4.62<br>Pu         | (KN)<br>-4.28<br>CPF         | (KN)<br>0.93<br>EC             |
| (KN)<br>4.62<br>Pu<br>(KN) | (KN)<br>-4.28<br>CPF<br>(KN) | (KN)<br>0.93<br>EC<br>(KN)     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 3: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# 8.5.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|                                       | Type II                                  |                                             |
|---------------------------------------|------------------------------------------|---------------------------------------------|
| Pu (KN)                               | Pf – cfp                                 | Pf – cfp / Pu                               |
| (KN)                                  | (KN)                                     | (KN)                                        |
| 6.79                                  | -6.34                                    | 0.93                                        |
|                                       |                                          |                                             |
|                                       |                                          |                                             |
| Pu (KN)                               | Pf – ec2                                 | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                       | Pf – ec2<br>(KN)                         | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>6.79               | Pf – ec2<br>(KN)<br>-0.47                | Pf – ec2 / Pu<br>(KN)<br>0.07               |
| Pu (KN)<br>(KN)<br>6.79               | Pf – ec2<br>(KN)<br>-0.47                | Pf – ec2 / Pu<br>(KN)<br>0.07               |
| Pu (KN)<br>(KN)<br>6.79<br>Pu         | Pf – ec2<br>(KN)<br>-0.47<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.07<br>EC         |
| Pu (KN)<br>(KN)<br>6.79<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-0.47<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.07<br>EC<br>(KN) |

Διάγραμμα 4: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 8.6. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση Τύπων αστοχίας Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφοράς (δεξιά).



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου Ι παρουσιάζει μια εφελκυστιική αστοχία.

Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους.

Στην Εικόνα 3 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 8.7. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου Ι και ΙΙ. Ωστόσο η τιμή αστοχίας για την άοπλη δοκό απέχει για τις δυο μεθόδους. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 8.22 και 6.24, 0.81 και 0.47, 0.91 και 0.93, 0.93 και 0.07 αντίστοιχα. [8] [12] [13].

# 9. Καμπτική συμπεριφορά και επίδραση μεγέθους της τυπικής αντοχής υποστυλωμάτων υπό μονοτονική οριζόντια φόρτιση

## 9.1. Συνοπτική περιγραφή

Σε αυτή τη μελέτη, δοκιμάστηκαν συνολικά έξι γεωμετρικά όμοιες στύλοι RC κανονικής αντοχής διαφορετικών δομικών μεγεθών (σε αναλογία 3: 5: 7) και με αξονικές αναλογίες συμπίεσης (0,4 και 0,6) για να διερευνηθεί η συμπεριφορά κάμψης και το μέγεθος όπου τα μεγέθη διατομής των στύλων κυμαίνονταν από 300mm έως 700mm και η αναλογία διατμήσεως ήταν 4. Τα πειραματικά αποτελέσματα δείχνουν ότι οι επιπτώσεις του μεγέθους στην καμπτική συμπεριφορά των στύλων RC υπό μονοτονικό οριζόντιο φορτίο ήταν προφανείς, συμπεριλαμβάνοντας την φέρουσα ικανότητα των δειγμάτων και την ολκιμότητά τους και την παραμόρφωση συμπίεσης στο σκυρόδεμα, η οποία μειώθηκε με την αύξηση του ύψους της διατομής. Όσο μεγαλύτερος είναι ο λόγος αξονικής συμπίεσης, τόσο πιο εμφανές είναι το αποτέλεσμα μεγέθους της ικανότητας φέρουσας κάμψης και της τελικής τάσης συμπίεσης του σκυροδέματος. Όταν η αξονική αναλογία συμπίεσης ήταν μικρή, η επίδραση μεγέθους της ολκιμότητας ήταν πιο έντονη. Ωστόσο, η παραδοχή ενός επίπεδου τμήματος εξακολουθεί να συγκρατείται για δείγματα μεγάλης κλίμακας, γεγονός που αποτελεί ένδειξη μηδενικού αποτελέσματος μεγέθους. Επιπλέον, δεν υπήρχε εμφανής επίδραση μεγέθους στα πρότυπα αποτυχίας εκτός από την αύξηση του πλάτους της ρωγμής με το μέγεθος της εγκάρσιας τομής.

## 9.2. Σχεδιασμός δοκιμίων και μηχανικές ιδιότητες των υλικών

Όπως προαναφέρθηκε, οι δύο στόχοι αυτής της μελέτης είναι να εξεταστούν η καμπτική συμπεριφορά των μεγάλων υποστυλωμάτων RC κάτω από μονοτονική οριζόντια φόρτιση και διερεύνηση του αποτελεσματικού μεγέθους σε αυτό. Έτσι, δύο σειρές από γεωμετρικά παρόμοιους στύλους RC με διαφορετικά μεγέθη διατομών και αξονικές αναλογίες συμπίεσης σχεδιάστηκαν και δοκιμάστηκαν για συνολικά έξι στύλους. Τα αναλυτικά μεγέθη δειγμάτων και οι διαμορφώσεις οπλισμού παρατίθενται στον Πίνακα 1. Οι ομάδες δειγμάτων ήταν W-0.4 και W-0.6, όπου το "W" αντιπροσωπεύει την εμφάνιση της κάμψης και 0.4 και 0.6 αντιπροσωπεύουν τον λόγο της αξονικής συμπίεσης δοκιμής η. Στις ετικέτες των δειγμάτων, το "3" δείγμα που ενκάρσιας αντιπροσωπεύει то αντιστοιχεί σε μένεθος TOUŃC 300 mm × 300 mm, το "5" αντιπροσωπεύει το δείγμα που αντιστοιχεί σε μέγεθος εγκάρσιας διατομής 500 mm × 500 mm και το "7" το δείγμα που αντιστοιχεί σε μέγεθος διατομής 700 mm X 700 mm. Επομένως, το μέγεθος της εγκάρσιας τομής (b × h) των δοκιμαστικών στηλών RC ήταν μεταξύ 300 mm × 300 mm και 700 mm × 700 mm. Η αναλογία διάτμησης λ για όλους τους στύλους RC ήταν 4. Έτσι, το πραγματικό ύψος τους (H =  $\lambda$  × h0) κυμάνθηκε από 1092 mm έως 2548 mm. Το h0 αντιπροσωπεύει το αποτελεσματικό ύψος διατομής. Η αναλογία επιμήκους ενίσχυσης ρω ήταν 1,51% και η ο βαθμός χάλυβα που χρησιμοποιήθηκε ήταν HRB400. οι διάμετροι των W-0.4-3, W-0.4-5, και W-0.4-7 ήταν 12 mm, 20 mm και 28 mm, αντίστοιχα. Ο λόγος συνδετήρων ρεν ήταν 1,89% και η χρησιμοποιούμενη ποιότητα χάλυβα ήταν HPB300. Οι διάμετροι των W-0.4-3, W-0.4-5 και W-0.4-7 ήταν 6 mm, 10 mm, και 14 mm, αντίστοιχα. Οι ιδιότητες του υλικού του χρησιμοποιούμενου χάλυβα, συμπεριλαμβανομένων των διαμέτρων, ο βαθμός, το μέτρο ελαστικότητας, η απόδοση δύναμης και η τελική περιεκτικότητα σε σκυρόδεμα είναι C30 και η πραγματική πυκνότητα θλίψεως της θλίψεως ήταν 29,5 ΜΡα, η οποία προσδιορίσθηκε χρησιμοποιώντας δείγματα κύβων 150 mm × 150 mm × 150 mm δοκιμασμένα για 28 ημέρες. η αναλογία ανάμειξης του σκυροδέματος παρουσιάζεται στον Πίνακα 3. Τα πάχη επικάλυψης σκυροδέματος από W-0.4-3, W-0.4-5 και W-0.4-7 ήταν 27

mm, 45 mm και 63 mm αντίστοιχα. Μπορεί να παρατηρηθεί ότι ορισμένες παράμετροι διατηρήθηκαν αμετάβλητες, συμπεριλαμβανομένων του λόγου των συνδετήρων, του λόγου διαμήκους ενίσχυσης, των ρυθμίσεων των συνδετήρων και του διαμήκους οπλισμού και της διατμητικής αναλογίας. Ωστόσο, όλες οι γεωμετρικές διαστάσεις σχεδιάστηκαν με την αναλογία 3: 5: 7, συμπεριλαμβανομένης της διαμέτρου, των αποστάσεων των συνδετήρων και του διαμήκους οπλισμού και



#### Εικόνα 1: Λεπτομέρειες υποστυλωμάτων

#### Πίνακας 1: Παράμετροι των δοκιμίων υποστυλώματων ΟΣ

| Series                                              | W-0.4   |         |         | W-0.6   |         |         |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Specimen name                                       | W-0.4-3 | W-0.4-5 | W-0.4-7 | W-0.6-3 | W-0.6-5 | W-0.6-7 |
| Cross-sectional width, b (mm)                       | 300     | 500     | 700     | 300     | 500     | 700     |
| Cross-sectional height, h (mm)                      | 300     | 500     | 700     | 300     | 500     | 700     |
| Concrete cover thickness, c (mm)                    | 15      | 25      | 35      | 15      | 25      | 35      |
| Effective cross-sectional height of column, h0 (mm) | 273     | 455     | 637     | 273     | 455     | 637     |
| Effective height of RC columns, H=λ×h0 (mm)         | 1092    | 1820    | 2548    | 1092    | 1820    | 2548    |
| Diameter of longitudinal reinforcement (mm)         | 12      | 20      | 28      | 12      | 20      | 28      |
| Diameter of stirrup (mm)                            | 6       | 10      | 14      | 6       | 10      | 14      |
| Stirrup spacing, s (mm)                             | 43      | 71      | 100     | 43      | 71      | 100     |
| Number of longitudinal reinforcements               | 12      | 12      | 12      | 12      | 12      | 12      |
| Longitudinal reinforcement ratio, pw (%)            | 1.51    | 1.51    | 1.51    | 1.51    | 1.51    | 1.51    |
| Concrete compressive strength, fcu (MPa)            | 29.5    | 29.5    | 29.5    | 29.5    | 29.5    | 29.5    |
| Number of stirrups                                  | 4       | 4       | 4       | 4       | 4       | 4       |
| Shear-span ratio, λ                                 | 4       | 4       | 4       | 4       | 4       | 4       |
| Stirrup ratio, pw (%)                               | 1.89    | 1.89    | 1.89    | 1.89    | 1.89    | 1.89    |
| Test axial compression ratio, n                     | 0.4     | 0.4     | 0.4     | 0.6     | 0.6     | 0.6     |
| Axial compression, N (kN)                           | 1062    | 2950    | 5782    | 1593    | 4425    | 8673    |

## 9.3. Πρότυπα αποτυχίας κάμψης

#### 9.3.1. Διαδικασία αστοχίας του δοκιμίου W-0.4-7

Η ανάπτυξη ρωγμών του δείγματος φαίνεται στην Εικόνα 2. Στην Εικόνα 2 (α) – (ε) φαίνεται η κατάσταση ρωγμών του δείγματος υπό διαφορετικά οριζόντια φορτία ή οι οριζόντιες μετατοπίσεις. Όταν το οριζόντιο φορτίο που εφαρμόστηκε ήταν 420 kN, δύο οριζόντιες ρωγμές εμφανίστηκαν, 250 χιλιοστά και 670 χιλιοστά από τον αριστερό στύλο όπως φαίνεται στην Εικόνα 2. Όταν το εφαρμοζόμενο φορτίο ήταν 560 kN, το αρχικό οριζόντιο ρωγμές είχε εκτεταμένες κατά μήκος της οριζόντιας κατεύθυνσης και τρεις νέες οριζόντιες ρωγμές εμφανίστηκαν όπως φαίνεται στην Εικόνα 2 (β). Όταν το οριζόντιο φορτίο εφαρμόστηκε ήταν ίδια με την εκτόνωση της απόδοσης, χωρίς νέα οριζόντια εμφανίση ρωγμής και οι τέσσερις ρωγμές στο κάτω μέρος του δείγματος που εκτείνεται κατά μήκος της οριζόντιας κατεύθυνσης και τρεις νέες αρανίση ρωγμής και οι τέσσερις ρωγμές στο κάτω μέρος του δείγματος που εκτείνεται κατά μήκος της οριζόντιας κατεύθυνσης, όπως φαίνεται στην Εικόνα 2 (γ).

Εικόνα 2: Διαδικασία αστοχίας του δοκιμίου W-0.4-7



Όταν το οριζόντιο φορτίο που εφαρμόστηκε ήταν διπλάσιο, η μετατόπιση της απόδοσης. μια άλλη οριζόντια ρωγμή εμφανίστηκε στα 1,5 h (h είναι η διατομή ύψος), και η ζώνη συμπίεσης εμφάνισε μακρά κατακόρυφη ρωγμή περίπου μήκους 400 mm, όπως φαίνεται στην Εικόνα 2 (d). Όταν το οριζόντιο φορτίο που εφαρμόστηκε ήταν τετραπλάσιο, η μετατόπιση της απόδοσης, ήταν χωρίς εμφάνιση από νέες ρωγμές και βρέθηκαν έξι έως επτά οριζόντιες ρωγμές στη διάρκεια της 1,5 ώρας στο φάσμα κατά μήκος του ύψους του δείγματος. Ωστόσο, περισσότερες κάθετες ρωγμές εμφανίστηκαν στη ζώνη συμπίεσης και το στρώμα κάλυψης σκυροδέματος στην ζώνη συμπίεσης έπεσε χαμηλά, όπως φαίνεται στην Εικόνα 2 (ε). Με αύξηση του οριζόντιου φορτίου δεν εμφανίστηκαν νέες μεγάλες οριζόντιες ρωγμές. Ωστόσο, το πλάτος των αρχικών οριζόντιων ρωγμών αυξήθηκε. Οι δύο ρωγμές στο κάτω μέρος εκτείνονται κατά μήκος της οριζόντιας κατεύθυνσης, ενώ η άλλη δημιουργεί ρωγμές πρώτα εκτεινόμενες κατά μήκος αυτής της κατεύθυνσης και κάτω της κλίσης. Η γωνία ήταν περίπου 45°. Τέλος, μια μεγάλη ποσότητα σκυροδέματος με συμπίεση έπεσε κάτω, και ο διαμήκης χάλυβας και οι συνδετήρες είχαν εκτεθεί ως που φαίνεται στην Εικόνα (f). Από την παραπάνω περιγραφή είναι προφανές ότι η διαδικασία αποτυχίας του δείγματος W-0.4-7 ήταν μια τυπική βλάβη κάμψης Δγ.

## 9.3.2. Μορφές αστοχίας όλων των δοκιμίων

Αν και τα μεγέθη διατομής όλων των δειγμάτων ήταν διαφορετικά, όλα τα δείγματα παρουσίασαν αρχικά οριζόντιες ρωγμές από το δείγμα στο κάτω μέρος των στύλων. Οριζόντιες ρωγμές στη ζώνη έντασης, στη συνέχεια σταδιακά εμφανίστηκε ένας μεγάλος αριθμός κάθετων ρωγμών στη ζώνη συμπίεσης. Όταν επιτεύχθηκε το μέγιστο φορτίο, εμφανίστηκαν πέντε έως επτά οριζόντιες ρωγμές κατά μήκος της περιοχής των 1,5 h του στύλου. Ακολούθως, οι οριζόντιες ρωγμές δεν αυξάνονται πλέον κατά μήκος του ύψους του στύλου μέχρι να ολοκληρωθεί το πείραμα. Ο αριθμός των ρωγμών δεν αυξήθηκε επίσης, αλλά τα πλάτη τους αυξήθηκαν γρήγορα, και παρόλο που οι διαμήκεις ράβδοι και οι συνδετήρες είχαν εκτεθεί, η φέρουσα ικανότητα δεν μειώθηκε γρήγορα. Έτσι, τα πρότυπα αστοχίας όλων των στύλων είχαν τυπικό τύπο αστοχίας κάμψης. Ωστόσο, παρατηρήθηκαν κάποιες διαφορές στα πρότυπα αποτυχίας του αυτές τους στύλους. Για παράδειγμα, η περιοχή της αστοχίας σκυροδέματος συμπίεσης των στύλων με υψηλή αξονική συμπίεση.

| Diameter | Grade of  | Yield     | Ultimate     | Elongation (%) | Elastic  |
|----------|-----------|-----------|--------------|----------------|----------|
| of rebar | steel bar | strength, | strength, fu |                | modulus  |
| (mm)     |           | fy (MPa)  | (MPa)        |                | (MPa)    |
| 6        | HPB300    | 460       | 545          | 16.11          | 2.09×105 |
| 10       | HPB300    | 382       | 435          | 15             | 2.07×105 |
| 14       | HPB300    | 327       | 462          | 29.05          | 2.06×105 |
| 12       | HRB400    | 433       | 606          | 20.56          | 2.03×105 |
| 20       | HRB400    | 424       | 589          | 28.5           | 2.01×105 |
| 28       | HRB400    | 422       | 616          | 26.43          | 2.02×105 |

Πίνακας 2: Ιδιότητες υλικών για οπλισμούς ενίσχυσης

Πίνακας 3: Αναλογίες μίγματος σκυροδέματος

| Grade of concrete | Diameter of stone (mm) | Content by vol | ume (kgm⁻³) |      |       |
|-------------------|------------------------|----------------|-------------|------|-------|
|                   |                        | Water          | Cement      | Sand | Stone |
| C30               | 5–20                   | 228            | 380         | 1008 | 824   |

# Εικόνα 3: Μορφές αστοχίας όλων των δοκιμίων



# Πίνακας 4: Αποτελέσματα δοκιμών χαρακτηριστικών σημείων

| Specimen name | Pm (kN) | Tested Mt (kN·m) | Theoretical Mc (kN m) | Mt/Mc | Δy (mm) | ∆u (mm) | μ    |
|---------------|---------|------------------|-----------------------|-------|---------|---------|------|
| W-0.4-3       | 183.2   | 217.95           | 150.55                | 1.44  | 6.8     | 43      | 6.32 |
| W-0.4-5       | 410.7   | 910.61           | 683.34                | 1.33  | 11.4    | 54.7    | 4.82 |
| W-0.4-7       | 826.6   | 2497.83          | 1896.96               | 1.31  | 19.8    | 78.4    | 3.97 |
| W-0.6-3       | 222.8   | 267.08           | 152.39                | 1.59  | 7.5     | 39.8    | 5.31 |
| W-0.6-5       | 452.5   | 1020             | 700.33                | 1.46  | 11.2    | 49      | 4.36 |
| W-0.6-7       | 868.24  | 2718.01          | 1918.19               | 1.41  | 18.7    | 73.5    | 3.92 |

# Πίνακας 5: Παράμετροι εφαρμοσμένες στο διάγραμμα

| Series | Specimen name | α <sub>1</sub> | X=D | $Y = (1/\alpha_1)^2$ | Α | Ψ   | В    | Do    | log(D/D0) | $log(\alpha_1/B)$ |
|--------|---------------|----------------|-----|----------------------|---|-----|------|-------|-----------|-------------------|
| W-0.4  | W-0.4-3       | 1.05           | 300 | 0.74                 | 0 | 0.5 | 1.41 | 670.8 | -0.3495   | -0.0847           |
|        | W-0.4-5       | 0.99           | 500 | 0.98                 | 0 | 0.5 | 1.41 | 670.8 | -0.1276   | -0.1437           |
|        | W-0.4-7       | 0.91           | 700 | 1.11                 | 0 | 0.5 | 1.41 | 670.8 | 0.02      | -0.1717           |
| W-0.6  | W-0.6-3       | 1.22           | 300 | 0.71                 | 0 | 0.5 | 1.41 | 670.8 | -0.3495   | -0.0735           |
|        | W-0.6-5       | 1.04           | 500 | 0.8                  | 0 | 0.5 | 1.41 | 670.8 | -0.1276   | -0.1019           |
|        | W-0.6-7       | 0.99           | 700 | 0.94                 | 0 | 0.5 | 1.41 | 670.8 | 0.02      | -0.1363           |

|                   | Specimen name | b×h (mm2) | h0 (mm) | N (kN) | Longitudinal reinforcement of tension or compression | fy (MPa) | fcu (MPa) | Mt (kN m) |
|-------------------|---------------|-----------|---------|--------|------------------------------------------------------|----------|-----------|-----------|
| Specimen No. [46] | HAS-1         | 200×200   | 181     | 485    | 4φ8                                                  | 560      | 62.1      | 54.04     |
|                   | HAS-2         | 200×200   | 181     | 545    | 4φ8                                                  | 560      | 62.1      | 60.77     |
|                   | HAM-1         | 400×400   | 362     | 1896   | 4 <b>φ</b> 16                                        | 383      | 62.1      | 419.28    |
|                   | HAM-2         | 400×400   | 362     | 1650   | 4 <b>φ</b> 16                                        | 383      | 62.1      | 366.71    |
|                   | HAL-1         | 800×800   | 724     | 6118   | 4φ32                                                 | 379      | 62.1      | 2705.5    |
|                   | HAL-2         | 800×800   | 724     | 6350   | 4φ32                                                 | 379      | 62.1      | 2809.18   |
|                   | HDS-1         | 200×200   | 175     | 522    | 4φ8                                                  | 560      | 62.1      | 56.29     |
|                   | HDS-2         | 200×200   | 175     | 573    | 4φ8                                                  | 560      | 62.1      | 61.83     |
|                   | HDM-1         | 400×400   | 354     | 1874   | 4 <b>φ</b> 16                                        | 383      | 62.1      | 405.42    |
|                   | HDM-2         | 400×400   | 354     | 1738   | 4 <b>φ</b> 16                                        | 383      | 62.1      | 377.93    |
|                   | HDL-1         | 800×800   | 714     | 7052   | 4φ32                                                 | 379      | 62.1      | 3076.22   |
|                   | HDL-2         | 800×800   | 714     | 6696   | 4 <b>þ</b> 32                                        | 379      | 62.1      | 2922.07   |
| Specimen No. [50] | FHC1-0.2      | 510×510   | 452     | 3334   | 2¢35.8+1¢28.7                                        | 473      | 51.3      | 1451.67   |
|                   | FHC2-0.34     | 510×510   | 452     | 5373   | 2¢35.8+1¢28.7                                        | 473      | 49.7      | 1671.82   |
|                   | FHC3-0.22     | 510×510   | 452     | 3630   | 2¢35.8+1¢28.7                                        | 473      | 49.7      | 1497.43   |
|                   | FHC4-0.33     | 510×510   | 452     | 5240   | 2¢35.8+1¢28.7                                        | 473      | 49.7      | 1694.45   |
|                   | FHC5-0.2      | 510×510   | 452     | 3334   | 2¢35.8+1¢28.7                                        | 473      | 51.3      | 1483.5    |
|                   | FHC6-0.2      | 510×510   | 452     | 3334   | 2¢35.8+1¢28.7                                        | 473      | 51.3      | 1476.79   |
| Specimen No. [51] | FS-9          | 305×305   | 267     | 2291   | 3ф19.1                                               | 334      | 25.9      | 177.66    |
|                   | ES-13         | 305×305   | 267     | 2298   | 3 <b>¢</b> 19.1                                      | 305      | 26        | 181.58    |
|                   | AS-3          | 305×305   | 267     | 1853   | 3¢19.1                                               | 334      | 26.6      | 208.08    |
|                   | AS-17         | 305×305   | 267     | 2242   | 3¢19.1                                               | 334      | 25        | 199.09    |
|                   | AS-18         | 305×305   | 267     | 2349   | 3¢19.1                                               | 305      | 26.2      | 217.99    |
|                   | AS-19         | 305×305   | 267     | 1412   | 3¢19.1                                               | 334      | 25.8      | 223.98    |
| Specimen No. [52] | AS-3H         | 305×305   | 267     | 3126   | 3ф19.1                                               | 334      | 43.4      | 257.85    |
|                   | AS-18H        | 305×305   | 267     | 3257   | 3ф19.1                                               | 305      | 43.8      | 274.33    |
|                   | AS-20H        | 305×305   | 267     | 3191   | 3ф19.1                                               | 305      | 42.9      | 303.82    |
|                   | A-17H         | 305×305   | 267     | 3574   | 3ф19.1                                               | 334      | 47.3      | 177.66    |
| Specimen No. [53] | 1             | 400×400   | 372     | 744    | 3ф16                                                 | 446      | 37.6      | 335.22    |
|                   | 2             | 400×400   | 371     | 2112   | 3ф16                                                 | 446      | 35.2      | 486       |
|                   | 3             | 400×400   | 372     | 2112   | 3ф16                                                 | 446      | 35.2      | 479.08    |
|                   | 4             | 400×400   | 373     | 1920   | 3¢16                                                 | 446      | 32        | 448.11    |
|                   | 5             | 400×400   | 371     | 3280   | 3¢16                                                 | 474      | 32.8      | 525.78    |
|                   | 6             | 400×400   | 373     | 3200   | 3¢16                                                 | 474      | 32        | 526.4     |
|                   | 7             | 400×400   | 367     | 4704   | 3¢16                                                 | 474      | 33.6      | 516.8     |
|                   | 8             | 400×400   | 371     | 4368   | 3ф16                                                 | 474      | 31.2      | 524.47    |
|                   | 9             | 400×400   | 367     | 4480   | 3φ16                                                 | 474      | 32        | 598.98    |

# Πίνακας 6: Λεπτομέρειες δοκιμίων εφαρμοσμένες για θλίψη

## 9.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

## 9.4.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|         | Type III |                         |
|---------|----------|-------------------------|
| Pu (KN) | Pf – cfp | P <sub>f-cfp</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 183.20  | -189.48  | 1.03                    |
|         |          |                         |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 183.20  | -2230.11 | 12.17                   |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 183.20  | -2230.11 | 12.17                   |
| Pu      | CPF      | EC                      |
| (KN)    | (KN)     | (KN)                    |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



Type III vs EC

# 9.4.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|         | Type III            |                          |
|---------|---------------------|--------------------------|
| Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu |
| (KN)    | (KN)                | (KN)                     |
| 222.80  | -199.96             | 0.90                     |
|         |                     |                          |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 222.80  | -3348.66            | 15.03                    |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 222.80  | -3348.66            | 15.03                    |
| Pu      | CPF                 | EC                       |
| (KN)    | (KN)                | (KN)                     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 2: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# 9.4.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου

|                                         | Type III                              |                                                        |
|-----------------------------------------|---------------------------------------|--------------------------------------------------------|
| Pu (KN)                                 | V <sub>III-cr</sub>                   | V <sub>III-cr</sub> / Pu<br>(KNI)                      |
| 410.70                                  | -387.22                               | 0.94                                                   |
|                                         | 1                                     | )                                                      |
|                                         |                                       |                                                        |
| Pu (KN)                                 | Vf<br>(KNI)                           | V <sub>f-ec2</sub> / Pu<br>(KN)                        |
| Pu (KN)<br>(KN)<br>410.70               | Vf<br>(KN)<br>-7592.36                | V <sub>f-ec2</sub> / Pu<br>(KN)<br>18.49               |
| Pu (KN)<br>(KN)<br>410.70               | Vf<br>(KN)<br>-7592.36                | V <sub>f-ec2</sub> / Pu<br>(KN)<br>18.49               |
| Pu (KN)<br>(KN)<br>410.70<br>Pu         | Vf<br>(KN)<br>-7592.36<br>CPF         | V <sub>f-ec2</sub> / Pu<br>(KN)<br>18.49<br>EC         |
| Pu (KN)<br>(KN)<br>410.70<br>Pu<br>(KN) | Vf<br>(KN)<br>-7592.36<br>CPF<br>(KN) | V <sub>f-ec2</sub> / Pu<br>(KN)<br>18.49<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 3: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 9.4.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου

|         | Type III            |                          |
|---------|---------------------|--------------------------|
| Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu |
| (KN)    | (KN)                | (KN)                     |
| 452.50  | -327.58             | 0.72                     |
|         |                     |                          |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 452.50  | -11425.45           | 25.25                    |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 452.50  | -11425.45           | 25.25                    |
| Pu      | CPF                 | EC                       |
| (KN)    | (KN)                | (KN)                     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

## Διάγραμμα 4: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



# 9.4.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 5ου δοκιμίου

|         | туре ш              |                          |
|---------|---------------------|--------------------------|
| Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu |
| (KN)    | (KN)                | (KN)                     |
| 826.60  | -768.06             | 0.93                     |
|         |                     |                          |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 826.60  | -14755.92           | 17.85                    |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 826.60  | -14755.92           | 17.85                    |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 826.60  | -14755.92           | 17.85                    |
| Pu      | CPF                 | EC                       |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 826.60  | -14755.92           | 17.85                    |
| Pu      | CPF                 | EC                       |
| (KN)    | (KN)                | (KN)                     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 5: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 5: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 9.4.6. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 6ου δοκιμίου

|         | Type III            |                          |
|---------|---------------------|--------------------------|
| Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu |
| (KN)    | (KN)                | (KN)                     |
| 868.24  | -796.34             | 0.92                     |
|         |                     |                          |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 868.24  | -22218.02           | 25.59                    |
| Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)                | (KN)                     |
| 868.24  | -22218.02           | 25.59                    |
| Pu      | CPF                 | EC                       |
| (KN)    | (KN)                | (KN)                     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 6: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 6: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 9.5. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 4: Σύγκριση αστοχίας Τύπου ΙΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίων αναφοράς (δεξιά)



Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙΙ παρουσιάζει μια ομοιόμορφη εφελκυστική αστοχία διαγώνιου ρήγματος και συνήθως σύνθλιψη της θλιπτικής ζώνης. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εκτός του διατμητικού μήκους. Στην Εικόνα 5 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 5: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 9.6. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 1.03 και 12.17, 0.9 και 15.03, 0.94 και 18.49, 0.72 και 25.25, 0.93 και 17.85, 0.92 και 25.59 αντίστοιχα. [9] [12] [13].

# 10. Επίδραση της διάταξης στην συμπεριφορά κοντών υποστυλωμάτων

#### 10.1. Συνοπτική περιγραφή

Σε αυτό το πειραματικό πρόγραμμα δοκιμάστηκαν μια σειρά εννέα δειγμάτων υποστυλωμάτων RC που έχουν διάμετρο εγκάρσιας διατομής 150mm x 150mm και ύψος 960mm. Το πείραμα διεξάγεται για έλεγχο υποστυλωμάτος, στύλους με μανδύα τύπου ινοπλέγματος ως ενισχυτικό συγκράτησης πέραν των συνδετήρων και στύλο με μανδύα τύπου ινοπλέγματος ως μόνη ενίσχυση συγκράτησης. Η συνολική απόκριση των δειγμάτων ερευνήθηκε ως προς την ικανότητα μεταφοράς φορτίου, την αξονική μετατόπιση, την τάση, την παραμόρφωση, την πλευρική μετατόπιση και την ολκιμότητα. Τα αποτελέσματα της δοκιμής έδειξαν ότι ο στύλος με προσθήκη ινοπλέγματος δίνει 20% αύξηση στην αξονική αντοχή σε σύγκριση με την κανονικό στύλο ελέγχου. Παρατηρείται ότι οι στύλοι με μανδύες τύπου ινοπλέγματος ως ενίσχυση ολκιμότητα και όταν ο στύλος ενισχύεται μόνο με ινόπλεγμα αστοχεί με όλκιμο τρόπο.

#### 10.2. Πειραματικό Πρόγραμμα

Σε αυτό το πειραματικό πρόγραμμα, δοκιμάστηκαν δείγματα εννέα στύλων ενός τρίτου κλίμακας (150 x 150 mm) με ύψος 960mm. Ο διαμήκης οπλισμός που χρησιμοποιείται σε ολόκληρη το στύλο είναι τέσσερις ράβδοι με διάμετρο 10 mm και 6mm διάμετρος ράβδων χρησιμοποιούτναι για συνδετήρες. Ένα τετράγωνο συγκολλημένο συρματόπλεγμα διαμέτρου 2mm, χρησιμοποιείται ως κάνναβος r / f με 75 x 75 mm απόσταση μεταξύ των ράβδων. Και οι εννέα στύλοι κατηγοριοποιούνται σε τρεις τύπους ως εξής.

Τύπος Ι: Δοκιμαστικό δείγμα: Αυτός ο τύπος στύλου έχει μέγεθος 150 x 150 mm με τέσσερις διαμήκεις ράβδους διαμέτρου 10 mm & δακτυλίους διαμέτρου 6 mm.

Τύπος ΙΙ: Δείγμα στύλου που συγκρατείται με συγκολλημένο συρματόπλεγμα πέρα από τους συνδετήρες 6mm: Αυτός ο τύπος στύλου έχει μέγεθος 150 x 150 mm με τέσσερις διαμήκεις ράβδους διαμέτρου 10mm & δακτυλίους διαμέτρου 6mm, εκτός από αυτό ένα τετράγωνο συγκολλημένο συρματόπλεγμα που είναι τυλιγμένο στον στύλο. Το τετράγωνο συγκολλημένο συρματόπλεγμα έχει μέγεθος 75 x 75 χιλιοστά και πάχος 2 χιλιοστών.

Τύπος ΙΙΙ: Δείγμα στύλου με μόνο συγκολλημένο συρματόπλεγμα ως ενίσχυση οπλισμού: Αυτός ο τύπος στύλου έχει μέγεθος 150 x 150 mm με τέσσερις διαμήκεις ράβδους διαμέτρου 10mm και ως κάνναβο r / f σε αυτό ένα τετράγωνο συγκολλημένο συρματόπλεγμα περιτυλίγεται πάνω στον στύλο. Το τετράγωνο συγκολλημένο συρματόπλεγμα έχει μέγεθος 75 x 75 χιλιοστά και πάχος 2 χιλιοστών. Σε αυτόν τον τύπο ΙΙΙ του στύλου δεν χρησιμοποιήθηκαν δακτύλιοι. Ο αριθμός και οι λεπτομέρειες του ενός τρίτου δείγματος του στύλου οπλισμένου σκυροδέματος RCC δίνονται στον Πίνακα 1 επίσης. Σε όλους τους παραπάνω τρεις τύπους στύλου, χρησιμοποιήθηκαν τέσσερις ράβδοι διαμέτρου 10 mm στον στύλο. Και μόνο το μοτίβο περιορισμού άλλαξε. Τόσο το κατώτατο όσο και το ανώτερο άκρο του στύλου ρυθμίστηκαν οριζόντια χρησιμοποιώντας λεπτό στρώμα γύψου, ενώ τοποθετούσαν το δείγμα βάσει UTM. Πριν από την τοποθέτηση του φορτίου στις ράβδους των χαλύβδινων στύλων, στερεώθηκαν και βιδώθηκαν μαζί για να αυξηθεί ο περιορισμός και να αποφευχθεί η πρόωρη αστοχία στα άκρα των στύλων. Η κατακόρυφη θέση του στύλου δοκιμάστηκε με τη βοήθεια πνευματικού μηχανήματος.

#### 10.3. Ιδιότητες Υλικών

Τα υλικά που χρησιμοποιήθηκαν για την παρασκευή του μείγματος σκυροδέματος περιλαμβάνουν το συνηθισμένο τσιμέντο Portland της JP Brand, χονδρόκοκκο αδρανές με μέγιστο μέγεθος 20 mm με ξηρό όγκο ειδικού βάρους 2,68, μείγμα πλυμένης άμμου με ξηρό όγκο ειδικού βάρους 2,60, και βρύσης. Οι αναλογίες του μείγματος σχεδιασμού σκυροδέματος προέκυψαν ως αναλογία 1: 2.836: 2.96 και η αναλογία τσιμέντου ύδατος που χρησιμοποιήθηκε ήταν 0.46. Για διαμήκη ενίσχυση του Fe-500, χρησιμοποιείται διάμετρος 6mm ράβδος για συνδετήρες. Χρησιμοποιήθηκε ένα συγκολλημένο συρματόπλεγμα διαμέτρου 2mm. με απόσταση 75 x 75 mm κατά μήκος της κατεύθυνσης. Η πλάκα που χρησιμοποιήθηκε, για να εγκλωβίσει τον στύλο στην στήριξη για να αποφευχθεί η τοπική αστοχία, ήταν πάχους 6 mm.

Πίνακας 1: Περιγραφή των διαφορετικών τύπων υποστυλωμάτων εφαρμοσμένα στο πείραμα

| Description of column | Longitudinal R/f   | Confinement R/f              | type No. of Column casted |
|-----------------------|--------------------|------------------------------|---------------------------|
| Type I                | 4 bars of 10mm dia | 6mm stirrups                 | 3                         |
| Type I                | 4 bars of 10mm dia | wrapped with 2mm thk.        | 3                         |
|                       |                    | Welded wire mesh in addition |                           |
|                       |                    | to 6mm stirrups              |                           |
| Туре І                | 4 bars of 10mm dia | Column with welded wire      | 3                         |
|                       |                    | Mesh only                    |                           |

## Εικόνα 1: Σκελετός r/f στύλου Τύπου Ι



# Πίνακας 2: Περιγραφή των διαφορετικών τύπων υποστυλωμάτων εφαρμοσμένα στο πείραμα

| Description of column | Confinement R/f type                               | Axial strength of column |
|-----------------------|----------------------------------------------------|--------------------------|
| Туре І                | 6 mm rings                                         | 658 kN                   |
| Туре І                | 6 mm bars rings & wrapped with 2 mm thk. Ferromesh | 795 kN                   |
| Туре І                | wrapped with 2 mm thk. Ferromesh                   | 664 kN                   |

Εικόνα 2: Μορφή αστοχίας στύλου Τύπου Ι



# 10.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

|                                         | туре п                                     |                                             |
|-----------------------------------------|--------------------------------------------|---------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                               |
| (KN)                                    | (KN)                                       | (KN)                                        |
| 658.00                                  | -37.78                                     | 0.06                                        |
|                                         |                                            |                                             |
| Pu (KN)                                 | Pf – ec2                                   | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>658.00               | Pf – ec2<br>(KN)<br>-308.87                | Pf – ec2 / Pu<br>(KN)<br>0.47               |
| Pu (KN)<br>(KN)<br>658.00               | Pf – ec2<br>(KN)<br>-308.87                | Pf – ec2 / Pu<br>(KN)<br>0.47               |
| Pu (KN)<br>(KN)<br>658.00<br>Pu         | Pf – ec2<br>(KN)<br>-308.87<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.47<br>EC         |
| Pu (KN)<br>(KN)<br>658.00<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-308.87<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.47<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

# Διάγραμμα 1: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



## 10.5. Σύγκριση και σχολιασμός αποτελεσμάτων

Εικόνα 3: Σύγκριση αστοχίας Τύπου ΙΙ Θεωρίας Τ.Θ.Δ. (αριστερά) και δοκιμίου αναφοράς (δεξιά)





Σύμφωνα με την Θεωρία Τ.Θ.Δ., η αστοχία Τύπου ΙΙ παρουσιάζει μια εφελκυστική αστοχία με διαγώνιους κλάδους ρήγματος. Χαρακτηριστικό αυτής της αστοχίας είναι ότι η αστοχία συμβαίνει εντός του διατμητικού μήκους.

Στην Εικόνα 4 παρουσιάζεται η διατμητική ζώνη συνεισφοράς του σκυροδέματος και οι εφελκυστικοί πρόβολοι-"δόντια" που συμβάλουν στην μεταφορά της εφελκυστικής δύναμης του σκυροδέματος στον ισχυρότερο εφελκυστικά οπλισμό ενίσχυσης.

Εικόνα 4: Ζώνη διατμητικής συνεισφοράς και πρόβολοι-"δόντια" μεταφοράς εφελκυσμού στον οπλισμό ενίσχυσης



#### 10.6. Συμπεράσματα

Ο τρόπος και η μορφή αστοχίας της δοκού, παρόλο που η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.06 και 0.47 αντίστοιχα. Ο Ευρωκώδικας παρουσιάζει καλύτερη τιμή αστοχίας βάσει αναλογίας οπλισμών. [10] [12] [13].

# 11. Άμεση μέθοδος σχεδιασμού και διαγράμματα σχεδιασμού για υποστυλώματα RC και διατμητικών τοιχείων

## 11.1. Συνοπτική περιγραφή

Ο σχεδιασμός των κολώνων από οπλισμένο σκυρόδεμα και των διατμητικών τοιχωμάτων είναι μια επαναληπτική διαδικασία. Η αντοχή ενός υποτιθέμενου τμήματος ελέγχεται χρησιμοποιώντας διαγράμματα αλληλεπίδρασης και η διαδικασία συνεχίζεται μέχρι να βρεθεί ικανοποιητικό τμήμα. Η μελέτη εισάγει μια μέθοδο άμεσου σχεδιασμού και διαγράμματα σχεδίασης. Η μέθοδος άμεσης σχεδίασης είναι μια αναλυτική προσέγγιση μέσω της οποίας η απαιτούμενη περιοχή οπλισμού για μικρούς στύλους RC ή τοίχους διάτμησης προσδιορίζεται απευθείας χωρίς την χρήση διαγράμματος αλληλεπίδρασης. Αυτή η μέθοδος παρέχει μια προσαρμοσμένη επίλυση για ένα τμήμα οπλισμένου σκυροδέματος. Η αντοχή του τμήματος είναι ίση με τη ζήτηση από τα εφαρμοζόμενα φορτία και ροπές. Για κάθε κολώνα ή τοίχο διάτμησης, μπορούν να χρησιμοποιηθούν πολλά προσαρμοσμένα τμήματα με διαφορετικά μεγέθη και διατάξεις ραβδών. Το διάγραμμα σχεδίασης δείχνει όλα τα πιθανά τοποθετημένα τμήματα για ένα συγκεκριμένο στύλο ή τοίχο διάτμησης.

## 11.2. Αποδεκτή διαδικασία σχεδιασμού στύλων

Οι ευρέως αποδεκτές προσεγγίσεις για το σχεδιασμό των στύλων RC θα μπορούσαν να ταξινομηθούν ως εξής:

## 11.2.1. Μονοαξονικό διάγραμμα αλληλεπίδρασης

Μπορεί να δημιουργηθεί ένα "διάγραμμα αλληλεπίδρασης" σχεδιάζοντας το σχέδιο αξονικής δύναμης φορτίου φPn έναντι της αντίστοιχης σχεδιαστικής ροπής δύναμης φMη. Αυτό το διάγραμμα ορίζεται η "χρησιμοποιούμενη" ισχύς ενός τμήματος με διαφορετικές εκκεντρότητες φόρτισης. Οποιοσδήποτε συνδυασμός φόρτισης που πέφτει μέσα στην καμπύλη είναι ικανοποιητικός, ενώ οποιοσδήποτε συνδυασμός που βρίσκεται εκτός της καμπύλης αντιπροσωπεύει βλάβη.

## 11.2.2. Μονοαξονικοί πίνακες ικανότητας φόρτισης στύλων

Οι πίνακες ικανότητας φόρτισης των στύλων παρέχουν δυνατότητες κάμψης τόσο για τους μεγάλους όσο και για τους μικρούς άξονες. Αυτοί οι πίνακες δίνουν τη δυνατότητα χρήσης αντοχής για συνηθισμένο φάσμα τετραγώνων, ορθογωνίων και στρογγυλών μεγεθών στύλων. Ο κατάλληλος πίνακας εισάγεται με τιμές των παραληφθέντων φορτίων και τη ροπών, καθώς και τις διαστάσεις της στύλων και της ενίσχυσης που ελήφθη. Ο Πίνακας 1 δείχνει έναν πίνακα αντοχής δείγματος στύλων.

# 11.2.3. Περιγράμματα φόρτισης

Σε αυτή τη μέθοδο τα περιγράμματα φόρτισης και η επιφάνεια αστοχίας προσεγγίζεται από μια οικογένεια καμπυλών που αντιστοιχούν σε σταθερές τιμές Pn. Αυτές οι καμπύλες, μπορεί να θεωρούνται ως "περιγράμματα φορτίου".

## 11.2.4. Σχέδιο 3D αλληλεπίδρασης

Ένα μονοδιάστατο διάγραμμα αλληλεπίδρασης καθορίζει τη δύναμη φορτίου-ροπής κατά μήκος ενός μονο-επιπέδου τμήματος κάτω από ένα αξονικό φορτίο P και ένα μονοαξονικό ροπής Μ. Η διαξονική αντίσταση κάμψης ενός αξονικά φορτισμένου στύλου μπορεί να παρουσιαστεί σχηματικά σαν μία επιφάνεια που σχηματίζεται από μία σειρά μονοαξονικών καμπυλών αλληλεπίδρασης που αντλούνται ακτινικά από τον άξονα P.

| SQUARE TIED COLUMNS 16" × 16" |                                                           |               |     |       |     |        |     |                 |     |         |     |             |       |                 |  |
|-------------------------------|-----------------------------------------------------------|---------------|-----|-------|-----|--------|-----|-----------------|-----|---------|-----|-------------|-------|-----------------|--|
| Short co                      | Short columns – no sidesway fc = 4000 psi fy = 60,000 psi |               |     |       |     |        |     |                 |     |         |     |             |       |                 |  |
| Bars syr                      | nmetric                                                   | al in 4 faces | 5   |       |     |        |     | φMn in in. kips |     |         |     | φPn in kips |       |                 |  |
| BARS                          | RHO                                                       | Max Cap       |     | 0% fy |     | 25% fy |     | 50% fy          |     | 100% fy |     | εt = 0.005  |       | Zero axial load |  |
|                               |                                                           | φMn           | φPn | φMn   | φPn | φMn    | φPn | φMn             | φPn | φMn     | φPn | φMn         | φPn   |                 |  |
| 4-#8                          | 1.23                                                      | 866           | 546 | 1232  | 468 | 1483   | 392 | 1625            | 332 | 1782    | 239 | 2064        | 189   | 1092            |  |
| 4-#9                          | 1.56                                                      | 898           | 570 | 1321  | 481 | 1590   | 402 | 1752            | 338 | 1950    | 237 | 2255        | 179   | 1344            |  |
| 4-#10                         | 1.98                                                      | 936           | 602 | 1432  | 499 | 1724   | 415 | 1912            | 345 | 2159    | 234 | 2492        | 166   | 1660            |  |
| 4-#11                         | 2.44                                                      | 963           | 636 | 1547  | 514 | 1853   | 425 | 2059            | 351 | 2322    | 224 | 2653        | 141   | 1963            |  |
| 4-#14                         | 3.52                                                      | 1044          | 717 | 1806  | 561 | 2169   | 459 | 2435            | 372 | 2783    | 210 | 3161        | 98    | 2698            |  |
| 4-#18                         | 6.25                                                      | 1225          | 924 | 2412  | 681 | 2914   | 546 | 3289            | 419 | 3823    | 166 | 4254        | - 35  | 4222            |  |
| 8-#6                          | 1.38                                                      | 831           | 556 | 1170  | 481 | 1416   | 402 | 1550            | 339 | 1686    | 243 | 1968        | 160   | 1217            |  |
| 8-#7                          | 1.88                                                      | 867           | 594 | 1275  | 503 | 1543   | 418 | 1700            | 349 | 1885    | 240 | 2205        | 136   | 1602            |  |
| 8-#8                          | 2.47                                                      | 907           | 639 | 1395  | 530 | 1690   | 438 | 1875            | 361 | 2119    | 238 | 2477        | 107   | 2043            |  |
| 8-#9                          | 3.13                                                      | 949           | 688 | 1525  | 560 | 1849   | 459 | 2065            | 374 | 2371    | 235 | 2765        | 73    | 2513            |  |
| 8-#10                         | 3.97                                                      | 1001          | 752 | 1689  | 598 | 2049   | 487 | 2304            | 391 | 2686    | 230 | 3122        | 28    | 3056            |  |
| 8-#11                         | 4.88                                                      | 1041          | 820 | 1851  | 635 | 2237   | 512 | 2524            | 405 | 2932    | 214 | 3370        | - 40  | 3332            |  |
| 8-#14                         | 7.03                                                      | 1164          | 982 | 2232  | 733 | 2709   | 583 | 3088            | 447 | 3625    | 191 | 4136        | - 175 | 3976            |  |

#### Πίνακας 1: Πίνακας δεικτών χωρητικότητας υποστυλώματος

| Πίνακας   | 2: Αποτελέα      | σματα σχεδ | ιασμού νια | τον τομέα | του σχήματος 3 |
|-----------|------------------|------------|------------|-----------|----------------|
| 111101005 | 2.7 (11010/10/10 |            | Inches her | iot iopea |                |

|      | Input    |       |             |       |             |      | Result      |          |
|------|----------|-------|-------------|-------|-------------|------|-------------|----------|
| Load | Pu       |       | Mux         |       | Muy         |      | Ab          |          |
| case | kN (kip) |       | kN m (k ft) |       | kN m (k ft) |      | mm² (in. ²) |          |
| 1    | 2180     | (490) | 190         | (140) | 0           |      | 504         | (0.78)   |
| 2    | 1780     | (400) | 102         | (75)  | 0           |      | - 586       | (- 0.91) |
| 3    | 3335     | (750) | 339         | (250) | 0           |      | 2268        | (3.51)   |
| 4    | 2225     | (500) | 135         | (100) | 102         | (75) | 468         | (0.73)   |

#### Πίνακας 3: Παραδείγματα σχεδιασμού επικύρωσης

|         | CRSI [25] |              | Direct sesign |          |       |            |        |    |
|---------|-----------|--------------|---------------|----------|-------|------------|--------|----|
| Design  | Bars      | фМn          |               | φPn      |       | Ab         |        | В  |
| example |           | kN m (k in.) |               | kN (kip) |       | mm2 (in.2) |        | si |
| 1       | 4#8       | 139          | (1232)        | 2081     | (468) | 509        | (0.79) | #  |
| 2       | 4#8       | 168          | (1483)        | 1744     | (392) | 509        | (0.79) | #  |
| 3       | 8#7       | 192          | (1700)        | 1552     | (349) | 387        | (0.60) | #  |
| 4       | 8#7       | 213          | (1885)        | 1067     | (240) | 387        | (0.60) | #  |
| 4       | 12#10     | 228          | (2016)        | 3104     | (698) | 819        | (1.27) | #  |
| 4       | 12#10     | 314          | (2782)        | 1966     | (442) | 819        | (1.27) | #  |

| Points | Input    |        |    | Result |          |       |          |        |
|--------|----------|--------|----|--------|----------|-------|----------|--------|
|        | D        |        | n  | Angle  | С        |       | Ab       |        |
|        | mm (in.) |        | _  | deg.   | mm (in.) |       | mm² (in) |        |
| 1      | 600      | (23.6) | 8  | 27.6   | 205      | (8.0) | 505      | (0.78) |
| 2      | 600      | (23.6) | 11 | 26.9   | 205      | (8.0) | 355      | (0.55) |
| 3      | 550      | (21.6) | 10 | 27.5   | 230      | (9.1) | 705      | (1.09) |

Πίνακας 4: Αποτελέσματα σχεδιασμού για κυκλική διατομή του σχήματος 12

Πίνακας 5: Τιμές σχεδιασμού για τον τομέα L μορφής του σχήματος 14

| Points | Input    |        |     |       | Result |          |        |          |        |
|--------|----------|--------|-----|-------|--------|----------|--------|----------|--------|
|        | t        | S      |     | Angle | С      | Ab       |        |          |        |
|        | mm (in.) |        | -   |       | deg.   | mm (in.) |        | mm² (in) |        |
| 1      | 350      | (13.8) | 100 | (4.0) | 128.5  | 780      | (30.8) | 330      | (0.51) |
| 2      | 350      | (13.8) | 150 | (6.0) | 128.7  | 795      | (31.3) | 510      | (0.79) |
| 3      | 300      | (11.8) | 150 | (6.0) | 130.2  | 895      | (35.3) | 720      | (1.1)  |

# 11.3. Προγράμματα υπολογιστή

Μερικά από τα διαθέσιμα προγράμματα ηλεκτρονικών υπολογιστών για έρευνα και πρακτική αναφέρονται σε αυτήν την ενότητα. Το spColumn (StructurePoint) είναι ένα λογισμικό για το σχεδιασμό και την διερεύνηση των τμημάτων οπλισμένου σκυροδέματος που υποβάλλονται σε αξονικές και καμπτικές δυνάμεις. Το τμήμα μπορεί να είναι ορθογώνιο, στρογγυλό ή ακανόνιστο, με οποιαδήποτε διάταξη οπλισμού ή σχέδιο. Το CSiCOL (CSi) είναι πακέτο λογισμικού που χρησιμοποιείται για την ανάλυση και τον σχεδιασμό των στύλων. Το πρόγραμμα μπορεί να πραγματοποιήσει τον σχεδιασμό του οπλισμένου σκυροδέματος, ή σύνθετης διατομής. Το Response 2000 (Bentz et al.) είναι ένα πρόγραμμα ανάλυσης διατομής που υπολογίζει την αντοχή και την ολκιμότητα του οπλισμένου σκυροδέματος μιας διατομής που υποβλήθηκε σε διατμητική, στιγμιαία και αξονική φόρτιση με βάση την τροποποιημένη θεωρία πεδίου συμπίεσης. Το OpenSees (Fenves et al.) είναι ένα ανοιχτό σύστημα προσομοίωσης μηχανικής σεισμού, είναι ένα αντικειμενοστραφές, πλαίσιο λογισμικού ανοιχτού κώδικα. Επιτρέπει στους χρήστες να δημιουργήσουν πεπερασμένα στοιχία για την προσομοίωση της απόκρισης των δομικών συστημάτων, τμήματα και επίπεδα ινών. Το BIAX (Wallace κ.ά.) είναι ένα πρόγραμμα υπολογιστή γενικής χρήσης για την αξιολόγηση μονοαξονικών και διαξονικών αντοχών και παραμόρφωσης των τμημάτων οπλισμένου σκυροδέματος. Το πρόγραμμα μπορεί να χρησιμοποιηθεί για να υπολογίσει τις σχέσεις δύναμης ή ροπής-καμπυλότητας για μονοτονική φόρτιση.

## 11.4. Ορισμός προβλήματος

Ο σχεδιασμός των κολώνων από οπλισμένο σκυρόδεμα και των διατμητικών τοιχωμάτων είναι μια δοκιμαστική διαδικασία. Εάν τα γνωστά φορτία και ροπές είναι γνωστά και είναι απαραίτητο να επιλεχθεί μια διατομή για να τους αντισταθεί, η διαδικασία παραπέμπεται ως σχέδιο ή αναλογία. Ένα πρόβλημα σχεδίασης επιλύεται από το να προβλεφθεί ένα τμήμα, να αναλυθεί εάν θα είναι ικανοποιητικό, να αναθεωρηθεί η διατομή και η εκ νέου ανάλυσή του. Η διατομή ανάλυσης του προβλήματος για το σχεδιασμό της διατομής του στύλου πραγματοποιείται κυρίως μέσω διαγραμμάτων αλληλεπίδρασης. Αυτά τα διαγράμματα είναι το αποτέλεσμα της ανάλυσης της διατομής για υποτιθέμενες κατανομές

τάσεων. Η παραδοσιακή διαδικασία σχεδιασμού είναι χρονοβόρα και δεν το κάνει να οδηγεί αναγκαστικά σε μια τυπική διατομή Για παράδειγμα, υποτίθεται ότι απαιτείται για να επιλεχθεί μια διατομή για ένα κοντό τετράγωνο στύλο οπλισμένου σκυροδέματος έχει υποστεί το ακόλουθο φορτίο και ροπή: Pu = 2180kN (490kips): Εφαρμοσμένο αξονικό φορτίο. Mux = 190kNm (140kft): Εφαρμοσμένη ροπή σχετικά με τον άξονα x. Το μέγεθος και η διάταξη ενίσχυσης της διατομής είναι γνωστά. Απαιτείται να διερευνηθεί η υποτιθέμενη διατομή με διαφορετικές περιοχές ράβδων Ab που θα βρεθούν αν οποιοδήποτε από αυτά θα ικανοποιούσε τα εφαρμοζόμενα φορτία. Η γραφική παράσταση για Ab = 500 mm2 (0,8 in. 2). Δείχνει ότι η αντοχή του το τμήματος με Ab = 500 mm2 ισούται με τα εφαρμοζόμενα φορτία. Άλλα τμήματα με Ab> 500 mm2 είναι πάνω από τα σχεδιασμένα και τα τμήματα με Ab <500 mm 2 δεν επαρκούν. Η υπολογιζόμενη περιοχή ράβδων είναι αποδεκτή για διαφορετικούς σχεδιαστές και πρέπει να αναθεωρείται η διάσταση της διατομής ή η διάταξη των γραμμών και να επαναλαμβάνεται η διαδικασία. Ένας κοντός ορθογώνιος στύλος οπλισμένου σκυροδέματος που υποβλήθηκε πάνω στο ορισμένο φορτίο και ροπή, έχει ένα τυπικό τετράγωνο τμήμα μήκους 405 mm με τέσσερις ράβδους με Ab = 500 mm2 (# 8 bar).

## 11.5. Θεωρία του ιστορικού υποβάθρου και ανάπτυξης της μεθόδου.

Για να δημιουργηθεί ένα διάγραμμα σχεδίασης, είναι απαραίτητο να υπάρχει μια αποτελεσματική μέθοδος για τον υπολογισμό της απαιτούμενης επιφάνειας ράβδων. Σε αυτή τη μελέτη, η άμεση μέθοδος σχεδιασμού χρησιμοποιείται για τον αποτελεσματικό και γρήγορο υπολογισμό των απαιτούμενων περιοχών ενίσχυσης. Η σύνθεση που αναπτύχθηκε για την μέθοδο άμεσου σχεδιασμού σε αυτή την εργασία έγινε σύμφωνα με την ACI 318-14 Building Code. Υποτίθεται ότι η μέγιστη επιτρεπόμενη παραμόρφωση στο σκυρόδεμα είναι εcu = 0,003 και στα στελέχη η ενίσχυση και το σκυρόδεμα είναι ανάλογες της απόστασης τους από τον ουδέτερο άξονα. Επίσης, η τάση του σκυροδέματος 0,85f'c είναι ομοιόμορφη και διαμετρήθηκε στη ζώνη συμπίεσης που οριοθετείται από τη διατομή και η ευθεία γραμμή παράλληλη προς τον ουδέτερο άξονα σε απόσταση a = β1c από τις ίνες μέγιστης θλιπτικής καταπόνησης, όπου c είναι η απόσταση από τον ουδέτερο άξονα στην ίνα της μέγιστης θλιπτικής τάσης. Η ενίσχυση θεωρείται ελαστική - τέλεια πλαστική. Ωστόσο, αυτή η διαδικασία επιτρέπει την χρήση οποιουδήποτε διαγράμματος τάσηςπαραμόρφωσης για το σκυρόδεμα και την ενίσχυση. Η επιτρεπόμενη επιφάνεια του επιμήκους οπλισμού για τα μη σύνθετα μέλη συμπίεσης θεωρείται ότι δεν είναι από 0.01Ag ή περισσότερο από 0.08Ag. Το σύστημα συντεταγμένων αναφέρεται στο κεντροειδές του τσιμέντου. Η θέση του ουδέτερου ο άξονας ορίζεται από τις μεταβλητές c, θ. Όπου θ είναι η γωνία του ουδέτερου με τον άξονα χ.

Εικόνα 1: Τυπική διατομή στύλου οπλισμένου σκυροδέματος



Εικόνα 2: Τυπική διατομή στύλου οπλισμένου σκυροδέματος


#### 11.6. Συγκεντρωτικά Αποτελέσματα Υπολογισμών

#### 11.6.1. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 1ου δοκιμίου

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 1: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

|                 | туре ш                      |                                  |
|-----------------|-----------------------------|----------------------------------|
| Pu (KN)<br>(KN) | V <sub>III-cr</sub><br>(KN) | V <sub>III-cr</sub> / Pu<br>(KN) |
| 840.71          | -20.59                      | 0.02                             |
|                 |                             |                                  |
| Pu (KN)         | Vf<br>(KN)                  | V <sub>f-ec2</sub> / Pu<br>(KN)  |
| 840.71          | -132.27                     | 0.16                             |
|                 | -102.21                     | 0.10                             |
|                 | -102.21                     | 0.10                             |
| Pu              | CPF                         | EC                               |
| Pu<br>(KN)      | CPF<br>(KN)                 | EC<br>(KN)                       |

Διάγραμμα 1: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.2. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 2ου δοκιμίου

|         | Type III          |                          |
|---------|-------------------|--------------------------|
| Pu (KN) | V <sub>Ⅲ-cr</sub> | V <sub>III-cr</sub> / Pu |
| (KN)    | (KN)              | (KN)                     |
| 840.71  | -21.33            | 0.03                     |
|         |                   |                          |
| Pu (KN) | Vf                | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)              | (KN)                     |
| Pu (KN) | Vf                | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)              | (KN)                     |
| 840.71  | -164.45           | 0.20                     |
| Pu (KN) | Vf                | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)              | (KN)                     |
| 840.71  | -164.45           | 0.20                     |
| Pu      | CPF               | EC                       |
| Pu (KN) | Vf                | V <sub>f-ec2</sub> / Pu  |
| (KN)    | (KN)              | (KN)                     |
| 840.71  | -164.45           | 0.20                     |
| Pu      | CPF               | EC                       |
| (KN)    | (KN)              | (KN)                     |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 2: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 2: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.3. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 3ου δοκιμίου

|                                         | Туре п                                     |                                             |
|-----------------------------------------|--------------------------------------------|---------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                               |
| (KN)                                    | (KN)                                       | (KN)                                        |
| 738.40                                  | -16.19                                     | 0.02                                        |
|                                         |                                            |                                             |
|                                         |                                            |                                             |
| - (1 (1 ))                              |                                            |                                             |
| Pu (KN)                                 | Pf – ec2                                   | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>738.40               | Pf – ec2<br>(KN)<br>-115.60                | Pf – ec2 / Pu<br>(KN)<br>0.16               |
| Pu (KN)<br>(KN)<br>738.40               | Pf – ec2<br>(KN)<br>-115.60                | Pf – ec2 / Pu<br>(KN)<br>0.16               |
| Pu (KN)<br>(KN)<br>738.40<br>Pu         | Pf – ec2<br>(KN)<br>-115.60<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.16<br>EC         |
| Pu (KN)<br>(KN)<br>738.40<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-115.60<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.16<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 3: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 3: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.4. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 4ου δοκιμίου

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 627.20  | -21.77   | 0.03          |
|         |          |               |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 627.20  | -42.74   | 0.07          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 627.20  | -42.74   | 0.07          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 627.20  | -42.74   | 0.07          |
| Pu      | CPF      | EC            |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 627.20  | -42.74   | 0.07          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 4: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 4: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.5. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 5ου δοκιμίου

|                                         | Type T                                     |                                                       |
|-----------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                                         |
| (KN)                                    | (KN)                                       | (KN)                                                  |
| 435.93                                  | -766.96                                    | 1.76                                                  |
|                                         |                                            |                                                       |
|                                         |                                            |                                                       |
| Pu (KN)                                 | Pf – ec2                                   | P <sub>f-ec2</sub> / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>435.93               | Pf – ec2<br>(KN)<br>-821.47                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>1.88               |
| Pu (KN)<br>(KN)<br>435.93               | Pf – ec2<br>(KN)<br>-821.47                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>1.88               |
| Pu (KN)<br>(KN)<br>435.93<br>Pu         | Pf – ec2<br>(KN)<br>-821.47<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>1.88<br>EC         |
| Pu (KN)<br>(KN)<br>435.93<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-821.47<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>1.88<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 5: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

# Διάγραμμα 5: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.6. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 6ου δοκιμίου

|                                         | турет                                      |                                                       |
|-----------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                                         |
| (KN)                                    | (KN)                                       | (KN)                                                  |
| 155.69                                  | -766.96                                    | 4.93                                                  |
|                                         |                                            |                                                       |
|                                         |                                            |                                                       |
|                                         |                                            |                                                       |
| Pu (KN)                                 | Pf – ec2                                   | P <sub>f-ec2</sub> / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>155.69               | Pf – ec2<br>(KN)<br>-821.47                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.28               |
| Pu (KN)<br>(KN)<br>155.69               | Pf – ec2<br>(KN)<br>-821.47                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.28               |
| Pu (KN)<br>(KN)<br>155.69<br>Pu         | Pf – ec2<br>(KN)<br>-821.47<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.28<br>EC         |
| Pu (KN)<br>(KN)<br>155.69<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-821.47<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.28<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 6: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 6: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.7. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 7ου δοκιμίου

|                                         | Type III                            |                                                       |
|-----------------------------------------|-------------------------------------|-------------------------------------------------------|
| Pu (KN)                                 | V <sub>III-cr</sub>                 | V <sub>III-cr</sub> / Pu<br>(KN)                      |
| 711.72                                  | -21.40                              | 0.03                                                  |
|                                         |                                     |                                                       |
|                                         |                                     |                                                       |
| Pu (KN)<br>(KN)                         | Vf<br>(KN)                          | V <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>711.72               | Vf<br>(KN)<br>-68.76                | V <sub>f-ec2</sub> / Pu<br>(KN)<br>0.10               |
| Pu (KN)<br>(KN)<br>711.72<br>Pu<br>(KN) | Vf<br>(KN)<br>-68.76<br>CPF<br>(KN) | V <sub>f-ec2</sub> / Pu<br>(KN)<br>0.10<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 7: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 7: Σύγκριση Τύπου ΙΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.8. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 8ου δοκιμίου

|                                         | туре п                                    |                                             |
|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                  | Pf – cfp / Pu                               |
| (KN)                                    | (KN)                                      | (KN)                                        |
| 604.96                                  | -8.65                                     | 0.01                                        |
|                                         |                                           |                                             |
|                                         |                                           |                                             |
| Pu (KN)                                 | Pf – ec2                                  | Pf-ec2 / Pu                                 |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                          | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>604.96               | Pf – ec2<br>(KN)<br>-74.10                | Pf – ec2 / Pu<br>(KN)<br>0.12               |
| Pu (KN)<br>(KN)<br>604.96               | Pf – ec2<br>(KN)<br>-74.10                | Pf – ec2 / Pu<br>(KN)<br>0.12               |
| Pu (KN)<br>(KN)<br>604.96<br>Pu         | Pf – ec2<br>(KN)<br>-74.10<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.12<br>EC         |
| Pu (KN)<br>(KN)<br>604.96<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-74.10<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.12<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 8: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 8: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.9. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 9ου δοκιμίου

|         | Type II  |               |
|---------|----------|---------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu |
| (KN)    | (KN)     | (KN)          |
| 475.96  | -12.52   | 0.03          |
|         |          |               |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 475.96  | -42.93   | 0.09          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 475.96  | -42.93   | 0.09          |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 475.96  | -42.93   | 0.09          |
| Pu      | CPF      | EC            |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu |
| (KN)    | (KN)     | (KN)          |
| 475.96  | -42.93   | 0.09          |
| Pu      | CPF      | EC            |
| (KN)    | (KN)     | (KN)          |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 9: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

#### Διάγραμμα 9: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.10. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 10ου δοκιμίου

|                                         | Type II                                   |                                             |
|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                  | Pf – cfp / Pu                               |
| (KN)                                    | (KN)                                      | (KN)                                        |
| 324.72                                  | -13.00                                    | 0.04                                        |
|                                         |                                           |                                             |
|                                         |                                           |                                             |
| Pu (KN)                                 | Pf – ec2                                  | Pf – ec2 / Pu                               |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                          | Pf – ec2 / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>324.72               | Pf – ec2<br>(KN)<br>-26.73                | Pf – ec2 / Pu<br>(KN)<br>0.08               |
| Pu (KN)<br>(KN)<br>324.72               | Pf – ec2<br>(KN)<br>-26.73                | Pf – ec2 / Pu<br>(KN)<br>0.08               |
| Pu (KN)<br>(KN)<br>324.72<br>Pu         | Pf – ec2<br>(KN)<br>-26.73<br>CPF         | Pf – ec2 / Pu<br>(KN)<br>0.08<br>EC         |
| Pu (KN)<br>(KN)<br>324.72<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-26.73<br>CPF<br>(KN) | Pf – ec2 / Pu<br>(KN)<br>0.08<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 10: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 10: Σύγκριση Τύπου ΙΙ Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.11. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 11ου δοκιμίου

|                                         | Type T                                     |                                                       |
|-----------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                                         |
| (KN)                                    | (KN)                                       | (KN)                                                  |
| 124.55                                  | -641.45                                    | 5.15                                                  |
|                                         |                                            |                                                       |
|                                         |                                            |                                                       |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>124.55               | Pf – ec2<br>(KN)<br>-687.15                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.52               |
| Pu (KN)<br>(KN)<br>124.55               | Pf – ec2<br>(KN)<br>-687.15                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.52               |
| Pu (KN)<br>(KN)<br>124.55<br>Pu         | Pf – ec2<br>(KN)<br>-687.15<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.52<br>EC         |
| Pu (KN)<br>(KN)<br>124.55<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-687.15<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>5.52<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 11: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 11: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.12. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 12ου δοκιμίου

|                                         | Type I                                     |                                                       |
|-----------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                 | Pf – cfp                                   | Pf – cfp / Pu                                         |
| (KN)                                    | (KN)                                       | (KN)                                                  |
| 177.93                                  | -521.84                                    | 2.93                                                  |
|                                         |                                            |                                                       |
| Pu (KN)<br>(KN)                         | Pf – ec2<br>(KN)                           | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>177.93               | Pf – ec2<br>(KN)<br>-559.01                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>3.14               |
| Pu (KN)<br>(KN)<br>177.93<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-559.01<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>3.14<br>EC<br>(KN) |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 12: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 12: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.6.13. Συγκεντρωτικά Αποτελέσματα Υπολογισμών 13ου δοκιμίου

|         | Type I   |                         |
|---------|----------|-------------------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu           |
| (KN)    | (KN)     | (KN)                    |
| -778.44 | -362.24  | 0.47                    |
|         |          |                         |
|         |          | D (D:                   |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| -778.44 | -388.05  | 0.50                    |
|         |          |                         |
| Pu      | CPF      | EC                      |
|         | - · ·    |                         |
| (KN)    | (KN)     | (KN)                    |

Συγκεντρωτικός Πίνακας Αποτελεσμάτων 13: Σύγκριση Θεωρίας Τ.Θ.Δ. και Ευρωκώδικα

Διάγραμμα 13: Σύγκριση Τύπου Ι Θεωρίας Τροχιάς Θλιπτικής Δύναμης και Ευρωκώδικα



#### 11.7. Σύγκριση και σχολιασμός αποτελεσμάτων

Λόγω απουσίας δείγματος εικόνας αστοχίας δεν μπορεί να γίνει σύγκριση με τον Τύπο Ι, ΙΙ και ΙΙΙ αστοχίας της μορφής όλων των στύλων.

#### 11.8. Συμπεράσματα

Η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές ούτε για την Θεωρία της Τ.Θ.Δ., ούτε για τον Ευρωκώδικα. Τα ποσοστά για τους δεκατρείς (13) στύλους είναι 0.02 και 0.16, 0.03 και 0.20, 0.02 και 0.16, 0.03 και 0.07, 1.76 και 1.88, 4.93 και 5.28, 0.03 και 0.10, 0.01 και 0.12, 0.03 και 0.09, 0.04 και 0.08, 5.15 και 5.52, 2.93 και 3.14, 0.47 και 0.50 αντίστοιχα. Αξίζει να σημειωθεί ότι οι τιμές θραύσης των δοκιμίων είναι χωρίς συνδετήρες και οι τιμές αντοχής των στύλων χωρίς συνδετήρες, για τις δυο θεωρίες, παρουσιάζει κοντινές τιμές. Συνεπώς οι μέθοδοι είναι υπέρ της ασφαλείας. [11] [12] [13].

#### Ανασκόπηση Συμπερασμάτων

Στο άρθρο 1, ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 2.27 αντίστοιχα.

Στο άρθρο 2, ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.76 και 0.87 αντίστοιχα. Στο ποσοστό αναλογίας ο Ευρωκώδικας είναι λίγο καλύτερος.

Στο άρθρο 3, ο τρόπος και η μορφή αστοχίας της δοκού a/d=2.6 και a/d=3.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 1.16 και 2.99, 1.12 και 3.13 αντίστοιχα. Ο τρόπος και η μορφή αστοχίας της δοκού a/d=1.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας της δοκού a/d=1.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό 1.16 και 2.99, 1.12 και 3.13 αντίστοιχα. Ο τρόπος και η μορφή αστοχίας της δοκού a/d=1.6, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 0.49 και 1.95 αντίστοιχα.

Στο άρθρο 4, ο τρόπος και η μορφή αστοχίας της δοκού, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 0.17 και 0.21 αντίστοιχα.

Στο άρθρο 5, η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές για την Θεωρία της Τ.Θ.Δ., ενώ για τον Ευρωκώδικα συμβαίνει σε κάποιες φορές να είναι κοντινές οι τιμές. Τα ποσοστά για τις 4 δοκούς είναι 0.21 και 0.39, 0.22 και 0.42, 0.38 και 0.73, 0.2 και 0.47 αντίστοιχα.

Στο άρθρο 6, ο τρόπος και η μορφή αστοχίας των δοκών, δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας βάσει αναλογίας οπλισμών είναι κοντινή μόνο για την πρώτη δοκό ενώ στην δεύτερη ο Ευρωκώδικας έχει καλύτερα αποτελέσματα. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.06 και 3.82, 0.38 και 1.37 αντίστοιχα.

Στο άρθρο 7, ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ. Ωστόσο η τιμή αστοχίας είναι κοντινότερη για την πρώτη δοκό στον Ευρωκώδικα. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 1.17 και 0.91, 0.88 και 0.69, 0.81 και 0.64 αντίστοιχα.

Στο άρθρο 8, ο τρόπος και η μορφή αστοχίας των δοκών, όσο και η τιμή δείχνουν ότι οι δοκοί έχουν παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου Ι και ΙΙ. Ωστόσο η τιμή αστοχίας για την άοπλη δοκό απέχει για τις δυο μεθόδους. Συνολικά οι δύο μέθοδοι έχουν καλά ποσοστά, καλύτερα όμως η Θεωρία Τ.Θ.Δ.. Σε σύγκριση με τον Ευρωκώδικα διαφέρουν κατά ποσοστά 8.22 και 6.24, 0.81 και 0.47, 0.91 και 0.93, 0.93 και 0.07 αντίστοιχα.

Στο άρθρο 9, ο τρόπος και η μορφή αστοχίας της δοκού, τόσο και η τιμή αστοχίας βάσει αναλογίας οπλισμών, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον οποίο διαφέρουν κατά ποσοστά 1.03 και 12.17, 0.9 και 15.03, 0.94 και 18.49, 0.72 και 25.25, 0.93 και 17.85, 0.92 και 25.59 αντίστοιχα.

Στο άρθρο 10, ο τρόπος και η μορφή αστοχίας της δοκού, παρόλο που η τιμή αστοχίας βάσει αναλογίας οπλισμών δεν είναι κοντινή, δείχνουν ότι η δοκός έχει παρόμοια συμπεριφορά αστοχίας με την δοκό Τύπου ΙΙ, σε αντίθεση με τον Ευρωκώδικα με τον

οποίο διαφέρουν κατά ποσοστά 0.06 και 0.47 αντίστοιχα. Ο Ευρωκώδικας παρουσιάζει καλύτερη τιμή αστοχίας βάσει αναλογίας οπλισμών.

Στο άρθρο 11, η μόνη σύγκριση γίνεται βάσει αναλογίας οπλισμών και οι τιμές των ποσοστών δεν είναι κοντινές ούτε για την Θεωρία της Τ.Θ.Δ., ούτε για τον Ευρωκώδικα. Τα ποσοστά για τους δεκατρείς (13) στύλους είναι 0.02 και 0.16, 0.03 και 0.20, 0.02 και 0.16, 0.03 και 0.07, 1.76 και 1.88, 4.93 και 5.28, 0.03 και 0.10, 0.01 και 0.12, 0.03 και 0.09, 0.04 και 0.08, 5.15 και 5.52, 2.93 και 3.14, 0.47 και 0.50 αντίστοιχα. Αξίζει να σημειωθεί ότι οι τιμές θραύσης των δοκιμίων είναι χωρίς συνδετήρες και οι τιμές αντοχής των στύλων χωρίς συνδετήρες, για τις δυο θεωρίες, παρουσιάζει κοντινές τιμές. Συνεπώς οι μέθοδοι είναι υπέρ της ασφαλείας.

### Δικτυογραφία

[1] Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study

Tadesse G. Wakjira <sup>a</sup>, Usama Ebead <sup>b</sup>, \*

<sup>a</sup> Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

<sup>b</sup> Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar

\*Corresponding author,E-mail addresses: <u>twakjira@qu.edu.qa</u> (T.G. Wakjira), <u>uebead@qu.edu.qa</u> (U. Ebead).

https://www.sciencedirect.com/science/article/pii/S0950061817326296?via %3Dihub

[2] Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates

Wael Alnahhal, Omar AljiddaDepartment of Civil and Architectural Engineering, College of Engineering, Qatar University, Qatar University, P. O. Box 2713, Doha, Qatar

\*Corresponding author at: Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.E-mail address: wael.alnahhal@qu.edu.ga (W. Alnahhal).

https://www.sciencedirect.com/science/article/pii/S0950061818303842?via %3Dihub

[3] Shear strengthening of concrete members with TRM jackets: Effect of shear span-to-depth ratio, material and amount of external reinforcement

Zoi C. Tetta<sup>a</sup>,<sup>\*</sup>, Lampros N. Koutas<sup>b</sup>, Dionysios A. Bournas<sup>c</sup>

<sup>d</sup> Deprt. of Civil Engineering, University of Nottingham, NG7 2RD, Nottingham, UK

<sup>b</sup> Dept. of Civil Engineering, University of Thessaly Volos, GR-38221 Greece

<sup>c</sup> European Commission, Joint Research Centre (JRC), Directorate for Space, Security & Migration, Safety and Security of Buildings Unit, Via E. Fermi 2749, I-21027, Ispra, Italy

\* Corresponding author.E-mail addresses: <u>zoi\_tetta@hotmail.com</u> (Z.C. Tetta), koutasciv@gmail.com (L.N. Koutas), dionysios.bournas@ec.europa.eu (D.A. Bournas). <u>https://www.sciencedirect.com/science/article/pii/S1359836817303943</u> [4] Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams

Maha M.S. Ridha <sup>a</sup>, \*, Kaiss F. Sarsama <sup>a</sup>, Ihsan A.S. Al-Shaarbaf <sup>b</sup>

<sup>a</sup> University of Technology, Iraq

<sup>b</sup> Al-Nahrain University, Iraq

\* Corresponding author.E-mail addresses: <u>srmaha@yahoo.com.au</u> (M.M.S. Ridha), <u>kaisssarsam@yahoo.com</u> (K.F. Sarsam), <u>ishaarbaf@yahoo.com</u> (I.A.S. Al-Shaarbaf).

https://www.sciencedirect.com/science/article/pii/S2214509517302462?via %3Dihub

**[5]** Effects of material properties of HFDFRCC Using recycled fine aggregate on shear strength of RC beam

Yuhei Shiratori<sup>1</sup> and Ken Watanabe<sup>2</sup>

<sup>1</sup> Tokai University/Department of Architecture, Hiratsuka City, JapanE-mail: <u>yuhei1228kenntiku@gmai.com</u>

<sup>2</sup> Tokai University/Department of Architecture, Hiratsuka City, JapanE-mail: <u>kenw@keyaki.cc.u-tokai.ac.jp</u>

http://iopscience.iop.org/article/10.1088/1757-899X/264/1/012009

[6] Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

Piotr Smarzewski<sup>1</sup>, Adam Stolarski<sup>2</sup>

<sup>1</sup> Lublin University of Technology, 40 Nadbystrzycka, 20-618 Lublin, Poland

<sup>2</sup> Military University of Technology, 2 Kaliskiego, 00-908 Warsaw-49, <u>Polandp.smarzewski@pollub.pl</u> <u>http://iopscience.iop.org/article/10.1088/1757-899X/245/3/032013/pdf</u>

[7] Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

Santa binti Sinring <sup>1</sup>, <sup>a</sup> \*, Norhafizah Salleh <sup>1</sup>, <sup>b</sup>, NoorAzlina Abdul Hamid <sup>1</sup>, <sup>c</sup>, MasniA.Majid <sup>1</sup>, <sup>d</sup>

<sup>1</sup> Department of Structural and Material Engineering, Faculty of Civil

Engineering andEnvironmental, Universiti Tun Hussein Onn Malaysia\* Corresponding author: <u>santasinring@gmail.com</u> <u>http://iopscience.iop.org/article/10.1088/1757-899X/271/1/012093/pdf</u> [8] Shear and flexural behaviour of prestressed and non-prestressed plain and SFRC concrete beams

Sudhir P. Patil \*, Keshav K. Sangle

Structural Engineering Department, Veermata Jijabai Technological Institute

(VJTI), Matunga, Mumbai, India\* Corresponding author: E-mail address: <u>sudhir\_pp@yahoo.com</u> (S.P. Patil).Peer review under responsibility of King Saud University

https://www.sciencedirect.com/science/article/pii/S101836391600009X

[9] Flexural behavior and size effect of normal-strength RC columns under monotonic horizontal loading

Yongping Xie <sup>a</sup>, Zhenbao Li <sup>b</sup>,\*, Lei Jia <sup>a</sup>, Hongyu Zhou <sup>b</sup>, Wenting Bai <sup>a</sup>, Yuan Li <sup>a</sup>

<sup>a</sup> College of Exploration Technology and Engineering, HeBei GEO University, Shijiazhuang 050031, China

<sup>b</sup> The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

\* Corresponding author: E-mail addresses: <a href="mailto:axypa@163.com">axypa@163.com</a> (Y. Xie), lizb@bjut.edu.cn (Z. Li), jialei1978@126.com</a> (L. Jia), <a href="mailto:zhouhy@bjut.edu.cn">zhouhy@bjut.edu.cn</a> (H. Zhou), <a href="mailto:bwenting@163.com">bwenting@163.com</a> (W. Bai), <a href="mailto:32158700@qq.com">32158700@qq.com</a> (Y. Li). <a href="https://www.sciencedirect.com/science/article/pii/S0141029617338099">https://www.sciencedirect.com/science/article/pii/S0141029617338099</a>

[10] Effect of confinement on behavior of short concrete column

Syed Wasim N Razvi <sup>a</sup>, M. G. Shaikh <sup>b</sup>

<sup>a</sup> Marathwada Institute of Technology, Aurangabad, 431001, India

<sup>b</sup> Department of applied mechanics, Government college of engineering, Aurangbad, 431001, India

\* Corresponding author: Tel.: +91-9422212942 .*E-mail address:* wasim.razvi@mit.asia https://www.esiapaedirect.com/asiapae/article/pii/\$22510780182011

https://www.sciencedirect.com/science/article/pii/S2351978918301197

# [11] Direct design method and design diagrams for reinforced concrete columns and shear walls

Mustafa Mahamid <sup>a</sup>,\*, Majid Houshiar <sup>b</sup>

<sup>a</sup> University of Illinois at Chicago, USA

<sup>b</sup> StructurePoint, LLC, USA

\* Corresponding author: E-mail address: <u>mmahamid@uic.edu</u> (M. Mahamid). <u>https://www.sciencedirect.com/science/article/pii/S2352710217306459</u>

[12] EN 1998-1 (2004) (English): Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]

www.phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf

# Βιβλιογραφία

[13] Compressive Force-Path Method: Unified Ultimate Limit-State Design of Concrete Structures

Michael D Kotsovos Series: Engineering Materials Publisher: Springer International Publishing Year: 2014 Language: English Edition: 1 ISBN: 978-3-319-00487-7, 978-3-319-00488-4

# Παράρτημα Ι

Πίνακας Υπολογισμών 1: Εισαγωγή δεδομένων άρθρου 1 για το δοκίμιο αναφοράς και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

|      | Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |                   |     |         |           |         |                                    |         |                |           |           |        |          |         |
|------|------------------------------------------------------|-------------------|-----|---------|-----------|---------|------------------------------------|---------|----------------|-----------|-----------|--------|----------|---------|
|      | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός        |                   |     |         |           | Ä       | ρθρο:                              |         | [1]            |           |           |        |          |         |
| Δα   | ομ.Μέλος                                             |                   |     | Δοκός   |           | Μελ     | νετητής:                           | Αχιλλέ  | ας Θεοδωρούλης |           |           |        |          |         |
|      |                                                      |                   |     |         |           |         |                                    |         |                |           |           |        |          |         |
|      | Σκυρόδευς                                            |                   |     | λχ      | 23        | fcd     | F                                  | с       | Мс             |           |           |        |          |         |
|      | Ζκυρουεμα                                            | •                 |     | -85.00  | -0.0035   | 32.37   | 412                                | .68     | -85.63         |           | _         |        |          |         |
| α/α  | У                                                    | #Φ                | Φ   | As      | εi        | σί      | F                                  | ï       | Mi             | x =       | -85       | .00    |          |         |
| 1    |                                                      |                   |     | 0       | 0,00%     | 0.00    |                                    | )       | -0             |           |           |        |          |         |
| 2    | 34.000                                               | 2                 | 8   | 100.531 | -1,57%    | -535.00 | -53.7840                           | 0662295 | -7.0457126761  | Νεξωτ     | 0.0       | 00     | Διαφορά: | 0.00    |
| 3    |                                                      |                   |     | 0       | 0,00%     | 0.00    | 0.00 0<br>595.00 -358.8955447461   |         | -0             | Τελική    | αξονική   |        | N =      | 0.00    |
| 4    | 280.000                                              | 3                 | 16  | 603.186 | -0,56%    | -595.00 | 5.00 -358.8955447461<br>00 0       |         | -47.0153163617 | Τελικι    | ή ροπή    |        | M =      | -139.69 |
| 5    |                                                      |                   |     | 0       | 0,00%     | 0.00    | 00 -358.8955447461<br>00 0<br>00 0 |         | -0             |           |           |        |          |         |
| 6    |                                                      |                   |     | 0       | 0,00%     | 0.00    |                                    |         | -0             |           |           |        |          |         |
| 7    |                                                      |                   |     | 0       | 0,00%     | 0.00    | 0                                  |         | -0             |           |           |        |          |         |
| 8    |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | Διαστ. (m | m)        |        | Συντ. Α  | σφ.     |
| 9    |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | b=        | 150.00    | ] [    | γc=      | 1.00    |
| 10   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | h=        | 330.00    |        | γs=      | 1.00    |
| 11   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             |           |           |        |          |         |
| 12   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             |           | Αντοχές ( | MPa)   |          |         |
| 13   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | fck=      | 30.00     | fcd=   | 32.37    |         |
| 14   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | a=        | 1.08      | λ=     | 1.00     |         |
| 15   |                                                      |                   |     | 0       | 0,00%     | 0.00    | (                                  | )       | -0             | 1.0       | 0_fyk=    | 0.00   | fyd=     | 0.00    |
| Aroc |                                                      | vnúv <del>a</del> |     | max     | 0.00%     | 5       | 412 670                            | 6100756 | 54 0610200378  | 2.0       | 0 fyk=    | 535.00 | fyd=     | 535.00  |
| Акр  |                                                      | φωυ               | εıς | min     | -0.015689 | 2       | -412.075                           | 0109750 | -54:0010290378 | 3.0       | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |                                                      |                   |     |         |           |         |                                    |         |                | 4.0       | 0 fyk=    | 595.00 | fyd=     | 595.00  |
|      |                                                      |                   |     |         |           |         |                                    |         |                | 5.0       | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |                                                      |                   | 6.0 | 0 fyk=  | 0.00      | fyd=    | 0.00                               |         |                |           |           |        |          |         |

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     | Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ.        |      |     |         |           | ΑΝΙΟ<br>Άρθρο: |                   | ΟΧΗ ΣΕ ΚΑΜ | ЧН             |       |        |           |        |          |         |
|-----|-----------------------------------------------|------|-----|---------|-----------|----------------|-------------------|------------|----------------|-------|--------|-----------|--------|----------|---------|
|     | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |      |     |         |           | Ä              | φθρο:             |            | [1]            |       |        |           |        |          |         |
| Δ   | ομ.Μέλος                                      |      |     | Δοκός   | -         | Mε             | λετητής:          | Αχιλλέ     | ας Θεοδωρούλης |       |        |           |        |          |         |
|     |                                               |      |     |         |           |                |                   |            |                |       |        |           |        |          |         |
|     | Σκυρόδουκ                                     | ~    |     | λx      | 23        | fcd            | F                 | c          | Мс             |       |        |           |        |          |         |
|     | Ζκυρουεμι                                     |      |     | -107.89 | -0.0035   | 25.50          | 412               | .68        | -90.35         |       |        |           |        |          |         |
| α/α | У                                             | #Ф   | Φ   | As      | εί        | σi             | F                 | i          | Mi             | x=    |        | -134      | .86    |          |         |
| 1   |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             |       |        |           |        |          |         |
| 2   | 34.000                                        | 2    | 8   | 100.531 | -1,57%    | -535.00        | -53.7840          | 662295     | -7.0457126761  | Νεξωτ |        | 0.0       | 00     | Διαφορά: | 0.00    |
| 3   |                                               |      |     | 0       | 0,00%     | 0.00           | C                 |            | -0             | Τελ   | νική α | ξονική    |        | N =      | 0.00    |
| 4   | 280.000                                       | 3    | 16  | 603.186 | -0,56%    | -595.00        | 0 -358.8955447461 |            | -47.0153163617 | Τε    | ελική  | ροπή      |        | M =      | -144.42 |
| 5   |                                               |      |     | 0       | 0,00%     | 0.00           | 0 -338.8955447461 |            | -0             |       |        |           | ·      |          |         |
| 6   |                                               |      |     | 0       | 0,00%     | 0.00           | 0                 |            | -0             |       |        |           |        |          |         |
| 7   |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             |       |        |           |        |          |         |
| 8   |                                               |      |     | 0       | 0,00%     | 0.00           | 0                 |            | -0             | Διαστ | . (mm  | ı)        | ] [    | Συντ. Α  | ισφ.    |
| 9   |                                               |      |     | 0       | 0,00%     | 0.00           | 0                 |            | -0             | b=    |        | 150.00    | 1      | γc=      | 1.00    |
| 10  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             | h=    |        | 330.00    | 1 [    | γs=      | 1.00    |
| 11  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             |       |        |           | _      |          |         |
| 12  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             |       | A      | Αντοχές ( | MPa)   |          |         |
| 13  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             | fck=  |        | 30.00     | fcd=   | 25.50    |         |
| 14  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             | a=    |        | 0.85      | λ=     | 0.80     |         |
| 15  |                                               |      |     | 0       | 0,00%     | 0.00           | C                 | )          | -0             |       | 1.00   | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro |                                               |      |     | max     | 0.00%     | 7              | 412 670           | 8100756    | 54 0610200279  |       | 2.00   | fyk=      | 535.00 | fyd=     | 535.00  |
| Акр | μιες παραμοι                                  | ρφωο | εıς | min     | -0.015689 | 2              | -412.079          | 0109700    | -04.0010290376 |       | 3.00   | fyk=      | 0.00   | fyd=     | 0.00    |
|     |                                               |      |     |         |           |                |                   |            |                |       | 4.00   | fyk=      | 595.00 | fyd=     | 595.00  |

Πίνακας Υπολογισμών 2: Εισαγωγή δεδομένων άρθρου 1 για το δοκίμιο αναφοράς και επίλυση προβλήματος Ευρωκώδικα

5.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 30.00 | 22.00                | 2.37                                | 32.37                               | -85.00  | 150.00 | -412.68                      | -53.78 | -358.90 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -134.86 | 150.00 | 412.68                       | -53.78 | -358.90 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 3: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

#### Πίνακας Υπολογισμών 4: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |         |          |         |          |                    |                                            |
|--------------------------------------------|----------------|----------------|---------|----------|---------|----------|--------------------|--------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)               | (KN)                                       |
| -139.69                                    | 0.55           | 1.86           | -253.98 | -357.46  | 104.00  | Type III | 49.73              | 110.53                                     |
| EC                                         |                |                |         |          |         |          |                    |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf-ec2   | Pu (KN) |          | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$      | (KN)    | (KN)     | (KN)    | Туре     | (KN)               | (KN)                                       |
| -144.42                                    | 0.55           | 1.86           | -262.57 | -369.55  | 104.00  | -        | -                  | -                                          |

|                                                                              |                                                                            |         | Type III |              |                                                | one side<br>number of | 25.00<br>stirrups at a | other side<br>number of | uniformly     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|----------|--------------|------------------------------------------------|-----------------------|------------------------|-------------------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11,1</sub> ,V <sub>11,2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Pf – cfp | Pf – cfp/ Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of            | stirrups                | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)     | (KN)         | (mm²)                                          | #8D + 1#8D            | mm                     | #8D - 1#8D              | # 8D /        |
| 34.81                                                                        | 34.81                                                                      | 104.00  | -78.64   | 0.76         | 1186.09                                        | 25.00                 | 22.00                  | 61.00                   | 22.00         |
|                                                                              |                                                                            |         |          |              |                                                | στο lcr               |                        | εκτός lcr               |               |
|                                                                              |                                                                            |         |          |              | medium ductility                               | διάστημα              | number of              | ανά διάστημα            |               |
| $M^{(2.5d)}_{\parallel} = (2.5d) \min(V_{\parallel,1}, V_{\parallel,2})$     | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu      | Pf-ec2   | Pf-ec2/Pu    | Lcr = h                                        | S                     | stirrups               | 2*s                     |               |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)     | (KN)         | (mm)                                           | (mm)                  | #8D + 1#8D             | (mm)                    |               |
| -                                                                            | -                                                                          | 104.00  | -236.51  | 2.27         | 330.00                                         | 64.00                 | 10.00                  | 128.00                  | -             |
|                                                                              |                                                                            |         |          |              |                                                | στο lcr               |                        | εκτός lcr               |               |
|                                                                              |                                                                            | Pu      | CPF      | EC           | high ductility                                 | διάστημα              | number of              | ανά διάστημα            |               |
|                                                                              |                                                                            | (KN)    | (KN)     | (KN)         | Lcr = 1.5 * h                                  | S                     | stirrups               | 2*s                     |               |
|                                                                              |                                                                            | 104.00  | 78.64    | 236.51       | (mm)                                           | (mm)                  | #8D + 1#8D             | (mm)                    |               |
|                                                                              |                                                                            |         |          |              | 495.00                                         | 48.00                 | 20.00                  | 96.00                   | -             |

Πίνακας Υπολογισμών 5: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα II

Πίνακας Υπολογισμών 6: Εισαγωγή δεδομένων άρθρου 2 για το δοκίμιο αναφοράς και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path   | AN        | ΤΟΧΉ ΣΕ ΚΑΜΨΗ        |
|-----------|---------------------|-----------|----------------------|
| Σχεδιασμ  | ιού Κατασκευών Ο.Σ. | Άρθρο:    | [2]                  |
| Λου Μέλος | Λοκός               | Μελετητής | Αγιλλέας Θεοδωρούλης |

|     |                |      |     |         |           |         |                  | 1              | -          |           |        |          |        |
|-----|----------------|------|-----|---------|-----------|---------|------------------|----------------|------------|-----------|--------|----------|--------|
|     | Σκυρόδεικ      | v    |     | λχ      | 23        | fcd     | Fc               | Мс             |            |           |        |          |        |
|     | Ζκυρουεμα      |      |     | -46.42  | -0.0035   | 37.71   | 262.59           | -38.92         |            |           |        |          |        |
| α/α | У              | #Φ   | Φ   | As      | εί        | σί      | Fi               | Mi             | x =        | -46.      | 42     |          |        |
| 1   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             |            |           |        |          |        |
| 2   | 25.00          | 2    | 8   | 100.531 | -2,05%    | -512.00 | -51.4718540364   | -5.1471854036  | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | Τελική ο   | ιξονική   |        | N =      | 0.00   |
| 4   | 225.00         | 2    | 16  | 402.124 | -0,54%    | -525.00 | -211.1150263212  | -21.1115026321 | Τελική     | ροπή      |        | M =      | -65.18 |
| 5   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             |            |           |        |          |        |
| 6   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             |            |           |        |          |        |
| 7   |                | 0    |     | 0,00%   | 0.00      | 0       | -0               |                |            |           |        |          |        |
| 8   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | Διαστ. (mm | ר)        | ] [    | Συντ. Α  | .σφ.   |
| 9   |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | b=         | 150.00    |        | γc=      | 1.00   |
| 10  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | h=         | 250.00    |        | γs=      | 1.00   |
| 11  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             |            |           |        |          |        |
| 12  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | fck=       | 35.00     | fcd=   | 37.71    |        |
| 14  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | a=         | 1.08      | λ=     | 1.00     |        |
| 15  |                |      |     | 0       | 0,00%     | 0.00    | 0                | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Arc |                |      |     | max     | 0.00%     | 7       | 262 5969902577   | 26 2506000250  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акр | αιες ι ιαραμορ | JΨWO | εiς | min     | -0.020466 | 2       | -202.00000000777 | -20.2360660356 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                |      |     |         |           |         |                  |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 <u>fyk=</u>

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

8.00

9.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Ευrocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |       |     |         |           | AN      | ΟΧΗ ΣΕ ΚΑΙ            | іФН     |                |            |           |        |          |        |
|----------------------------------------|-----------------------------------------------|-------|-----|---------|-----------|---------|-----------------------|---------|----------------|------------|-----------|--------|----------|--------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |       |     | .Σ.     | Ά         | φθρο:   |                       | [2]     |                |            |           |        |          |        |
| Δ                                      | ομ.Μέλος                                      |       |     | Δοκός   |           | Μελ     | λετητής:              | Αχιλλέ  | ας Θεοδωρούλης |            |           |        |          |        |
|                                        |                                               |       |     |         |           |         |                       |         |                |            |           |        |          |        |
|                                        | Σκυρόδουο                                     |       |     | λx      | 23        | fcd     | F                     | с       | Мс             |            |           |        |          |        |
|                                        | Ζκυροσεμο                                     | 4     |     | -58.84  | -0.0035   | 29.75   | 262                   | .59     | -40.55         |            |           |        |          |        |
| α/α                                    | У                                             | #Φ    | Φ   | As      | εί        | σί      | F                     | ï       | Mi             | x=         | -73       | .55    |          |        |
| 1                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0<br>0 -51.4718540364 |         | -0             |            |           |        |          |        |
| 2                                      | 25.00                                         | 2     | 8   | 100.531 | -2,05%    | -512.00 | -51.4718              | 3540364 | -5.1471854036  | Νεξωτ      | 0.        | 00     | Διαφορά: | 0.00   |
| 3                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0                     |         | -0             | Τελική α   | αξονική   |        | N =      | 0.00   |
| 4                                      | 225.00                                        | 2     | 16  | 402.124 | -0,54%    | -525.00 | 0 -211.1150263212     |         | -21.1115026321 | Τελική     | ροπή      |        | M =      | -66.81 |
| 5                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0 -211.1150263212     |         | -0             |            |           |        |          | -      |
| 6                                      |                                               |       |     | 0       | 0,00%     | 0.00    |                       |         | -0             |            |           |        |          |        |
| 7                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0                     |         | -0             |            |           |        |          |        |
| 8                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0<br>0                |         | -0             | Διαστ. (mn | n)        | ] [    | Συντ. Α  | σφ.    |
| 9                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0<br>0<br>0           |         | -0             | b=         | 150.00    | 1 [    | γc=      | 1.00   |
| 10                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             | h=         | 250.00    | 1 [    | γs=      | 1.00   |
| 11                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             |            |           |        |          |        |
| 12                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             |            | Αντοχές ( | (MPa)  |          |        |
| 13                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             | fck=       | 35.00     | fcd=   | 29.75    |        |
| 14                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (                     | )       | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro                                    | αίες Παραμος                                  | vnúra | 516 | max     | 0.00%     | 2       | -262 586              | 8803577 | -26 2586880358 | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|                                        | αιες Γιαραμομ                                 | φωσ   | S   | min     | -0.020466 | 2       | -202.000              | 0003377 | -20.2000000000 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|                                        |                                               |       |     |         |           |         |                       |         |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|                                        |                                               |       |     |         |           |         |                       |         |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|                                        |                                               |       |     |         |           |         |                       |         |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|                                        |                                               |       |     |         |           |         |                       |         |                | 7.00       | fyk=      | 0.00   | fyd=     | 0.00   |

# Πίνακας Υπολογισμών 7: Εισαγωγή δεδομένων άρθρου 2 για το δοκίμιο αναφοράς και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyk=

fyk=

9.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

8.00

10.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|--------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -46.42 | 150.00 | -262.59                      | -51.47 | -211.12 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |        |        |                              |        |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -73.55 | 150.00 | 262.59                       | -51.47 | -211.12 | 0.00 | 0.00              |

#### Πίνακας Υπολογισμών 8: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

#### Πίνακας Υπολογισμών 9: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |        |          |         |         |                                 |                                                        |
|--------------------------------------------|----------------|-----------|--------|----------|---------|---------|---------------------------------|--------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                   |
| -65.18                                     | 0.85           | 3.78      | -76.68 | -153.36  | 113.10  | Type II | 45.81                           | 69.49                                                  |
| EC                                         |                |           |        |          |         |         |                                 |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                   |
| -66.81                                     | 0.85           | 3.78      | -78.60 | -157.19  | 113.10  | -       | -                               | -                                                      |

| 5       |          |               |                  |          |               |               |            |        | •        |        |  |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|--|
|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |  |
|         |          |               | Location 1       |          | 2.5*d         | 562.50        | Location 2 |        |          |        |  |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 4.00          | Asw        | b      | stirrups | 4.00   |  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | # 8D / d | # 8D / |  |
| 113.10  | -85.88   | 0.76          | 149.76           | 225.00   | 4.00          | 56.00         | 149.76     | 150.00 | 4.00     | 37.00  |  |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |  |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα  |            |        |          |        |  |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups      | 2*s           |            |        |          |        |  |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |  |
| 113.10  | -98.25   | 0.87          | 250.00           | 62.50    | 8.00          | 125.00        | -          | -      | -        | -      |  |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |  |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα  |            |        |          |        |  |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s           |            |        |          |        |  |
| 113.10  | 85.88    | 98.25         | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |  |
|         |          |               | 375.00           | 48.00    | 14.00         | 96.00         | -          |        |          |        |  |

Πίνακας Υπολογισμών 10: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα III

Πίνακας Υπολογισμών 11: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path  | AN         | ΤΟΧΉ ΣΕ ΚΑΜΨΗ       |   |
|-----------|--------------------|------------|---------------------|---|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ. | Άρθρο:     | [3]                 |   |
| Δομ.Μέλος | Δοκός              | Μελετητής: | Αχιλλέας Θεοδωρούλη | c |

|       |                |      |     |         |           |         |                 | 1               | -          |           |        |          |        |
|-------|----------------|------|-----|---------|-----------|---------|-----------------|-----------------|------------|-----------|--------|----------|--------|
|       | Σκυρόδουσ      | ~    |     | λx      | 23        | fcd     | Fc              | Мс              |            |           |        |          |        |
|       | Ζκυροσεμα      | Å    |     | -136.44 | -0.0035   | 22.12   | 307.89          | -52.26          |            |           |        |          |        |
| α/α   | У              | #Φ   | Φ   | As      | εί        | σί      | Fi              | Mi              | x =        | -136      | 6.44   |          |        |
| 1     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              |            |           |        |          |        |
| 2     | 26.00          | 2    | 10  | 157.08  | -0,80%    | -547.00 | -85.9225590757  | -6.4871532102   | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | Τελική α   | ξονική    |        | N =      | 0.00   |
| 4     | 177.00         | 2    | 16  | 402.124 | -0,42%    | -552.00 | -221.972370532  | -16.7589139752  | Τελική     | ροπή      |        | M =      | -75.50 |
| 5     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              |            |           |        |          |        |
| 6     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              |            |           |        |          |        |
| 7     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | -          |           |        |          |        |
| 8     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | Διαστ. (mm | ו)        | ] [    | Συντ. Α  | σφ.    |
| 9     |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | b=         | 102.00    |        | γc=      | 1.00   |
| 10    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | h=         | 203.00    |        | γs=      | 1.00   |
| 11    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              |            |           |        |          |        |
| 12    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              |            | Αντοχές ( | (MPa)  |          |        |
| 13    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | fck=       | 20.50     | fcd=   | 22.12    |        |
| 14    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | a=         | 1.08      | λ=     | 1.00     |        |
| 15    |                |      |     | 0       | 0,00%     | 0.00    | 0               | -0              | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Arrow |                |      |     | max     | 0.00%     | 7       | 207 2040206077  | 00 0460671954   | 2.00       | fyk=      | 547.00 | fyd=     | 547.00 |
| Ακρ   | αιες ι ιαραμορ | υφωσ | εις | min     | -0.008041 | 2       | -301.8949290011 | -23.240007 1854 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|       |                |      |     |         |           |         |                 |                 | 4.00       | fvk=      | 552.00 | fvd=     | 552.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Ευrocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |       |     |         |           | AN      | ΙΟΧΗ ΣΕ ΚΑΜ | ЧН      |                |           |         |        |          |        |
|----------------------------------------|-----------------------------------------------|-------|-----|---------|-----------|---------|-------------|---------|----------------|-----------|---------|--------|----------|--------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |       |     |         |           | А́      | φθρο:       |         | [3]            |           |         |        |          |        |
| Δ                                      | ομ.Μέλος                                      |       |     | Δοκός   |           | Mε      | λετητής:    | Αχιλλέ  | ας Θεοδωρούλης |           |         |        |          |        |
|                                        |                                               |       |     |         |           |         |             |         |                |           |         |        |          |        |
|                                        | Σκυράδουρ                                     |       |     | λx      | 23        | fcd     | F           | с       | Мс             |           |         |        |          |        |
|                                        | -173.23 -0.0035 17.43 307.89                  |       |     |         | .89       | -57.92  |             |         |                |           |         |        |          |        |
| α/α                                    | У                                             | #Ф    | Φ   | As      | εi        | σί      | F           | ï       | Mi             | x=        | -216    | 6.54   |          |        |
| 1                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0           |         | -0             |           |         |        |          |        |
| 2                                      | 26.00                                         | 2     | 10  | 157.08  | -0,80%    | -547.00 | -85.9225    | 5590757 | -6.4871532102  | Νεξωτ     | 0.      | 00     | Διαφορά: | 0.00   |
| 3                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | )       | -0             | Τελική    | αξονική |        | N =      | 0.00   |
| 4                                      | 177.00                                        | 2     | 16  | 402.124 | -0,42%    | -552.00 | -221.972    | 2370532 | -16.7589139752 | Τελικι    | j ροπή  |        | M =      | -81.17 |
| 5                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0           | )       | -0             |           |         |        |          |        |
| 6                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0           | )       | -0             |           |         |        |          |        |
| 7                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0           | )       | -0             |           |         | _      |          |        |
| 8                                      |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             | Διαστ. (m | m)      |        | Συντ. Α  | .σφ.   |
| 9                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | )       | -0             | b=        | 102.00  |        | γc=      | 1.00   |
| 10                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             | h=        | 203.00  |        | γs=      | 1.00   |
| 11                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             |           |         |        |          | _      |
| 12                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             |           | Αντοχές | (MPa)  |          | ]      |
| 13                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             | fck=      | 20.50   | fcd=   | 17.43    |        |
| 14                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             | a=        | 0.85    | λ=     | 0.80     |        |
| 15                                     |                                               |       |     | 0       | 0,00%     | 0.00    | C           | )       | -0             | 1.0       | 0 fyk=  | 0.00   | fyd=     | 0.00   |
| Aro                                    | αίες Παραμος                                  | vivio |     | max     | 0.00%     | 5       | -307 804    | 0206077 | -23 2460671854 | 2.0       | 0 fyk=  | 547.00 | fyd=     | 547.00 |
|                                        | αιες παραμομ                                  | φωσ   | εις | min     | -0.008041 | 2       | -307.034    | 3230011 | -23.2400071034 | 3.0       | 0 fyk=  | 0.00   | fyd=     | 0.00   |
|                                        |                                               |       |     |         |           |         |             |         |                | 4.0       | 0 fyk=  | 552.00 | fyd=     | 552.00 |
|                                        |                                               |       |     |         |           |         |             |         |                | 5.0       | 0 fyk=  | 0.00   | fyd=     | 0.00   |
|                                        |                                               |       |     |         |           |         |             |         |                | 6.0       | ) fyk=  | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 12: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 20.50 | 12.50                | 1.62                                | 22.12                               | -136.44 | 102.00 | -307.89                      | -85.92 | -221.97 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | _                                   | -                                   | -216.54 | 102.00 | 307.89                       | -85.92 | -221.97 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 13: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 14: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |              |         |          |         |          |                    |                                                                        |
|--------------------------------------------|----------------|--------------|---------|----------|---------|----------|--------------------|------------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |              | Vf      | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =0.5bdf | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $a_v^{}$ / d | (KN)    | (KN)     | (KN)    | Туре     | (KN)               | (KN)                                                                   |
| -75.50                                     | 0.28           | 1.58         | -269.65 | -364.38  | 88.40   | Type III | 14.66              | 82.68                                                                  |
| EC                                         |                |              |         |          |         |          |                    |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |              | Vf      | Pf – ec2 | Pu (KN) |          | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                             |
| (KN*m)                                     | m              | $a_v / d$    | (KN)    | (KN)     | (KN)    | Туре     | (KN)               | (KN)                                                                   |
| -81.17                                     | 0.28           | 1.58         | -289.88 | -339.98  | 88.40   | -        | -                  | -                                                                      |

|                                                                              |                                                                              |         | Type III |               |                                                | one side<br>number of | 22.00<br>stirrups at a | other side<br>number of | uniformly     |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|----------|---------------|------------------------------------------------|-----------------------|------------------------|-------------------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Pf – cfp | Pf – cfp / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of            | stirrups                | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)     | (KN)          | (mm²)                                          | #8D + 1#8D            | mm                     | #8D - 1#8D              | 8D /          |
| 6.49                                                                         | 6.48                                                                         | 88.40   | -43.73   | 0.49          | 1030.99                                        | 22.00                 | 12.00                  | 66.00                   | 12.00         |
|                                                                              |                                                                              |         |          |               |                                                | στο lcr               |                        | εκτός lcr               |               |
|                                                                              |                                                                              |         |          |               | medium ductility                               | διάστημα              | number of              | ανά διάστημα            |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Pf-ec2   | Pf – ec2 / Pu | Lcr = h                                        | s                     | stirrups               | 2*s                     |               |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)     | (KN)          | (mm)                                           | (mm)                  | #8D + 1#8D             | (mm)                    |               |
| -                                                                            | -                                                                            | 88.40   | -172.54  | 1.95          | 203.00                                         | 50.75                 | 8.00                   | 101.50                  | -             |
|                                                                              |                                                                              |         |          |               |                                                | στο lcr               |                        | εκτός lcr               |               |
|                                                                              |                                                                              | Pu      | CPF      | EC            | high ductility                                 | διάστημα              | number of              | ανά διάστημα            |               |
|                                                                              |                                                                              | (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h                                  | S                     | stirrups               | 2*s                     |               |
|                                                                              |                                                                              | 88.40   | 43.73    | 172.54        | (mm)                                           | (mm)                  | #8D + 1#8D             | (mm)                    |               |
|                                                                              |                                                                              |         |          |               | 304.50                                         | 50.75                 | 12.00                  | 101.50                  | -             |

Πίνακας Υπολογισμών 15: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

| Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |       |     |         |           | AN      |          | /IYH    |                 |            |           |        |          |        |
|------------------------------------------------------|-----------------------------------------------|-------|-----|---------|-----------|---------|----------|---------|-----------------|------------|-----------|--------|----------|--------|
|                                                      | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |       |     |         |           | А́      | ρθρο:    |         | [3]             |            |           |        |          |        |
| Δα                                                   | ομ.Μέλος                                      |       |     | Δοκός   |           | Μελ     | λετητής: | Αχιλλέ  | ας Θεοδωρούλης  |            |           |        |          |        |
|                                                      |                                               |       |     |         |           |         |          |         |                 |            |           |        |          |        |
|                                                      | Σκυράδουσ                                     | ~     |     | λχ      | 23        | fcd     | F        | с       | Мс              |            |           |        |          |        |
|                                                      | -129.45 -0.0035 23.32 307.89                  |       | .89 | -51.18  |           | -       |          |         |                 |            |           |        |          |        |
| α/α                                                  | У                                             | #Φ    | Φ   | As      | εί        | σί      | F        | ï       | Mi              | x =        | -129      | 9.45   |          |        |
| 1                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            |           |        |          |        |
| 2                                                    | 26.00                                         | 2     | 10  | 157.08  | -0,83%    | -547.00 | -85.9225 | 5590757 | -6.4871532102   | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | Τελική α   | αξονική   |        | N =      | 0.00   |
| 4                                                    | 177.00                                        | 2     | 16  | 402.124 | -0,42%    | -552.00 | -221.972 | 2370532 | -16.7589139752  | Τελική     | ροπή      |        | M =      | -74.43 |
| 5                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            |           |        |          |        |
| 6                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            |           |        |          |        |
| 7                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            |           | _      |          |        |
| 8                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | Διαστ. (mn | n)        | ] [    | Συντ. Α  | ωσφ.   |
| 9                                                    |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | b=         | 102.00    | ] [    | γc=      | 1.00   |
| 10                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | h=         | 203.00    | ] [    | γs=      | 1.00   |
| 11                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            |           |        |          |        |
| 12                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              |            | Αντοχές ( | MPa)   |          |        |
| 13                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | fck=       | 21.60     | fcd=   | 23.32    |        |
| 14                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | a=         | 1.08      | λ=     | 1.00     |        |
| 15                                                   |                                               |       |     | 0       | 0,00%     | 0.00    | (        | )       | -0              | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Area                                                 |                                               | າດທຳອ |     | max     | 0.00%     | 7       | 207 904  | 0206077 | 22 2460671954   | 2.00       | fyk=      | 547.00 | fyd=     | 547.00 |
| Акр                                                  | αιες ι ιαραμομ                                | ψu0   | εıς | min     | -0.008286 | ۷       | -307.094 | 5230011 | -23.240007 1004 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|                                                      |                                               |       |     |         |           |         |          |         |                 | 4.00       | fyk=      | 552.00 | fyd=     | 552.00 |
|                                                      |                                               |       |     |         |           |         |          |         |                 | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Πίνακας Υπολογισμών 16: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Ευrocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |       |     |         |           | AN      | ΙΟΧΗ ΣΕ ΚΑΝ | ЛФН     |                 |           |           |        |          |                                       |
|----------------------------------------|-----------------------------------------------|-------|-----|---------|-----------|---------|-------------|---------|-----------------|-----------|-----------|--------|----------|---------------------------------------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |       |     |         |           | Ä       | ρθρο:       |         | [3]             |           |           |        |          |                                       |
| Δ                                      | ομ.Μέλος                                      |       |     | Δοκός   |           | Με      | λετητής:    | Αχιλλέ  | έας Θεοδωρούλης |           |           |        |          |                                       |
|                                        |                                               |       |     |         |           |         |             |         |                 |           |           |        |          |                                       |
|                                        | Σιμοάδομο                                     |       |     | λx      | 23        | fcd     | F           | c       | Мс              |           |           |        |          |                                       |
|                                        | Ζκυροσεμά                                     | X     |     | -164.41 | -0.0035   | 18.36   | 307         | 7.89    | -56.56          |           |           |        |          |                                       |
| α/α                                    | У                                             | #Φ    | Φ   | As      | εi        | σi      | Fi          |         | Mi              | x=        | -20       | 5.51   |          |                                       |
| 1                                      |                                               |       |     | 0       | 0,00%     | 0.00    | 0           |         | -0              |           |           |        |          |                                       |
| 2                                      | 26.00                                         | 2     | 10  | 157.08  | -0,83%    | -547.00 | -85.9225    | 5590757 | -6.4871532102   | Νεξωτ     | 0.        | 00     | Διαφορά: | 0.00                                  |
| 3                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | Τελικι    | ί αξονική |        | N =      | 0.00                                  |
| 4                                      | 177.00                                        | 2     | 16  | 402.124 | -0,42%    | -552.00 | -221.972    | 2370532 | -16.7589139752  | Τελικ     | κή ροπή   |        | M =      | -79.81                                |
| 5                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | )       | -0              |           |           |        |          | · · · · · · · · · · · · · · · · · · · |
| 6                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              |           |           |        |          |                                       |
| 7                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              |           |           | _      |          |                                       |
| 8                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | Διαστ. (r | nm)       |        | Συντ. Α  | λσφ.                                  |
| 9                                      |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | b=        | 102.00    |        | γc=      | 1.00                                  |
| 10                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | h=        | 203.00    | 1 [    | γs=      | 1.00                                  |
| 11                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              |           |           |        |          | _                                     |
| 12                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              |           | Αντοχές   | (MPa)  |          |                                       |
| 13                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | fck=      | 21.60     | fcd=   | 18.36    |                                       |
| 14                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | C       | -0              | a=        | 0.85      | λ=     | 0.80     |                                       |
| 15                                     |                                               |       |     | 0       | 0,00%     | 0.00    | (           | 0       | -0              | 1.0       | 00 fyk=   | 0.00   | fyd=     | 0.00                                  |
| Aro                                    | αίες Παραμος                                  | າທິກາ | SIC | max     | 0.00%     | 2       | -307 804    | 0206077 | -23 2460671854  | 2.0       | 00 fyk=   | 547.00 | fyd=     | 547.00                                |
| ЛКР                                    |                                               | γuu   | εις | min     | -0.008286 | 2       | -307.034    | 9290011 | -23.2400071034  | 3.0       | 00_fyk=   | 0.00   | fyd=     | 0.00                                  |
|                                        |                                               |       |     |         |           |         |             |         |                 | 4.0       | 00 fyk=   | 552.00 | fyd=     | 552.00                                |
|                                        |                                               |       |     |         |           |         |             |         |                 | 5.0       | 00 fyk=   | 0.00   | fyd=     | 0.00                                  |
|                                        |                                               |       |     |         |           |         |             |         | 6.0             | 00∣ fyk=  | 0.00      | fyd=   | 0.00     |                                       |

Πίνακας Υπολογισμών 17: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 21.60 | 13.60                | 1.72                                | 23.32                               | -129.45 | 102.00 | -307.89                      | -85.92 | -221.97 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -205.51 | 102.00 | 307.89                       | -85.92 | -221.97 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 18: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 19: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |         |          |         |         |                        |                                                                       |
|--------------------------------------------|----------------|-----------|---------|----------|---------|---------|------------------------|-----------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf     | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}})/f_{_{\rm c}})$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                   | (KN)                                                                  |
| -74.43                                     | 0.46           | 2.60      | -161.80 | -282.42  | 51.80   | Type II | 15.51                  | -82.91                                                                |
| 50                                         |                |           |         |          |         |         |                        |                                                                       |
| EC                                         |                |           |         |          |         |         |                        |                                                                       |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |           | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1} = 0.5 bdf_t$ | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                            |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                   | (KN)                                                                  |
| -79.81                                     | 0.46           | 2.60      | -173.50 | -228.92  | 51.80   | -       | -                      | -                                                                     |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 442.50        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 11.00         | Asw        | b      | stirrups | 11.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 51.80   | -60.25   | 1.16          | 497.22           | 177.00   | 11.00         | 16.00         | 497.22     | 102.00 | 11.00    | 9.00   |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups      | 2*s           |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
| 51.80   | -154.90  | 2.99          | 203.00           | 50.75    | 8.00          | 101.50        | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s           |            |        |          |        |
| 51.80   | 60.25    | 154.90        | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
|         |          |               | 304.50           | 50.75    | 12.00         | 101.50        | -          |        |          |        |

Πίνακας Υπολογισμών 20: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα
|     | Compressive Force Path |                   |     |          |           |         | AN             | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH              |       |         |           |        |          |        |
|-----|------------------------|-------------------|-----|----------|-----------|---------|----------------|-------------|-----------------|-------|---------|-----------|--------|----------|--------|
|     | Σχεδιασμ               | ού Κ              | ατα | σκευών Ο | ).Σ.      | Ά       | ρθρο:          |             | [3]             |       |         |           |        |          |        |
| Δα  | ομ.Μέλος               |                   |     | Δοκός    | -         | Με      | λετητής:       | Αχιλλέα     | ας Θεοδωρούλης  |       |         |           |        |          |        |
|     |                        |                   |     |          |           |         |                |             |                 |       |         |           |        |          |        |
|     | Σκυρόδουσ              | ,                 |     | λx       | εc        | fcd     | F              | c           | Мс              |       |         |           |        |          |        |
|     | Ζκυρυσεμα              |                   |     | -136.44  | -0.0035   | 22.12   | 307            | .89         | -52.26          |       |         |           |        |          |        |
| α/α | У                      | #Φ                | Φ   | As       | εί        | σί      | F              | ï           | Mi              | x =   |         | -136      | 6.44   |          |        |
| 1   |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              |       |         |           |        |          |        |
| 2   | 26.00                  | 2                 | 10  | 157.08   | -0,80%    | -547.00 | -85.9225590757 |             | -6.4871532102   | Νεξωτ |         | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   |                        |                   |     | 0        | 0,00%     | 0.00    | 0              |             | -0              | Τε    | ελική α | ξονική    |        | N =      | 0.00   |
| 4   | 177.00                 | 2                 | 16  | 402.124  | -0,42%    | -552.00 | -221.972370532 |             | -16.7589139752  |       | Γελική  | ροπή      |        | M =      | -75.50 |
| 5   |                        |                   |     | 0        | 0,00%     | 0.00    | 0              |             | -0              |       |         |           |        |          |        |
| 6   |                        |                   |     | 0        | 0,00%     | 0.00    | 0              |             | -0              |       |         |           |        |          |        |
| 7   |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              |       |         |           |        |          |        |
| 8   |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              | Διασ  | т. (mm  | ı)        |        | Συντ. Α  | σφ.    |
| 9   |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              | b=    |         | 102.00    |        | γc=      | 1.00   |
| 10  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              | h=    |         | 203.00    |        | γs=      | 1.00   |
| 11  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              |       |         |           |        |          |        |
| 12  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              |       | ŀ       | Αντοχές ( | MPa)   |          |        |
| 13  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              | fck=  |         | 20.50     | fcd=   | 22.12    |        |
| 14  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              | a=    |         | 1.08      | λ=     | 1.00     |        |
| 15  |                        |                   |     | 0        | 0,00%     | 0.00    | (              | )           | -0              |       | 1.00    | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |                        | vnúv <del>a</del> |     | max      | 0.00%     | 5       | 307 804        | 0206077     | 23 2460671854   |       | 2.00    | fyk=      | 547.00 | fyd=     | 547.00 |
| Акр | ares i iupupop         | φωο               | εις | min      | -0.008041 | ۷       | -307.094       | 9290011     | -23.240007 1004 |       | 3.00    | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                        |                   |     |          |           |         |                |             |                 |       | 4.00    | fyk=      | 552.00 | fyd=     | 552.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

#### Πίνακας Υπολογισμών 21: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

|      | Eurocode       |       |      |          |           |         | ANI            | ΟΧΗ ΣΕ ΚΑΜ | ΨH              |           |         |        |          |        |
|------|----------------|-------|------|----------|-----------|---------|----------------|------------|-----------------|-----------|---------|--------|----------|--------|
|      | Σχεδιασμ       | JOÚ K | ίατα | σκευών Ο | ).Σ.      | Ά       | ρθρο:          |            | [3]             |           |         |        |          |        |
| Δα   | ομ.Μέλος       |       |      | Δοκός    |           | Mε      | λετητής:       | Αχιλλέ     | ας Θεοδωρούλης  |           |         |        |          |        |
|      |                |       |      |          |           |         |                |            |                 |           |         |        |          |        |
|      | Σκυράδουκ      | ~     |      | λχ       | 23        | fcd     | F              | с          | Мс              |           |         |        |          |        |
|      | Ζκυροσεμι      | ,     |      | -173.23  | -0.0035   | 17.43   | 307            | .89        | -57.92          |           |         |        |          |        |
| α/α  | У              | #Ф    | Φ    | As       | εi        | σί      | F              | ï          | Mi              | x=        | -21     | 6.54   |          |        |
| 1    |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              |           |         |        |          |        |
| 2    | 26.00          | 2     | 10   | 157.08   | -0,80%    | -547.00 | -85.9225       | 5590757    | -6.4871532102   | Νεξωτ     | 0.      | 00     | Διαφορά: | 0.00   |
| 3    |                |       |      | 0        | 0,00%     | 0.00    | 0              |            | -0              | Τελική    | άξονική |        | N =      | 0.00   |
| 4    | 177.00         | 2     | 16   | 402.124  | -0,42%    | -552.00 | -221.972370532 |            | -16.7589139752  | Τελική    | j ροπή  |        | M =      | -81.17 |
| 5    |                |       |      | 0        | 0,00%     | 0.00    | 0              |            | -0              |           |         |        |          |        |
| 6    |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              |           |         |        |          |        |
| 7    |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              |           |         |        |          |        |
| 8    |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | Διαστ. (m | m)      | ] [    | Συντ. Α  | ισφ.   |
| 9    |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | b=        | 102.00  |        | γc=      | 1.00   |
| 10   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | h=        | 203.00  |        | γs=      | 1.00   |
| 11   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              |           |         |        |          | •      |
| 12   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              |           | Αντοχές | (MPa)  |          | ]      |
| 13   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | fck=      | 20.50   | fcd=   | 17.43    | ]      |
| 14   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | a=        | 0.85    | λ=     | 0.80     | ]      |
| 15   |                |       |      | 0        | 0,00%     | 0.00    | C              | )          | -0              | 1.0       | ) fyk=  | 0.00   | fyd=     | 0.00   |
| Area |                | ວດທຳອ |      | max      | 0.00%     | 7       | 207 204        | 0206077    | 22 2460671954   | 2.0       | ) fyk=  | 547.00 | fyd=     | 547.00 |
| Ακρ  | αιες ι ιαραμορ | υψωO  | εıς  | min      | -0.008041 |         | -307.894       | 9290077    | -23.240007 1004 | 3.00      | ) fyk=  | 0.00   | fyd=     | 0.00   |
|      |                |       |      |          |           |         |                |            |                 | 4.00      | ) fyk=  | 552.00 | fyd=     | 552.00 |

Πίνακας Υπολογισμών 22: Εισαγωγή δεδομένων άρθρου 3 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

5.00 fyk=

6.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 20.50 | 12.50                | 1.62                                | 22.12                               | -136.44 | 102.00 | -307.89                      | -85.92 | -221.97 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -216.54 | 102.00 | 307.89                       | -85.92 | -221.97 | 0.00 | 0.00              |

## Πίνακας Υπολογισμών 23: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 24: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |         |          |         |         |                    |                                                        |
|--------------------------------------------|----------------|----------------|---------|----------|---------|---------|--------------------|--------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                   |
| -75.50                                     | 0.64           | 3.59           | -118.90 | -289.72  | 62.20   | Type II | 14.66              | -82.68                                                 |
| EC                                         |                |                |         |          |         |         |                    |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                   |
| -81.17                                     | 0.64           | 3.59           | -127.82 | -191.98  | 62.20   | -       | -                  | -                                                      |

|         | Type II  |               |                  |          | at a distance |              |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|--------------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         |              | Location 2 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 12.00        | Asw        | b      | stirrups      | 12.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /       | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 62.20   | -69.53   | 1.12          | 510.07           | 177.00   | 12.00         | 14.00        | 510.07     | 102.00 | 12.00         | 8.00   |
|         |          |               |                  | στο lcr  |               | εκτός lcr    |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα |            |        |               |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      | 2*s          |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)         |            |        |               |        |
| 62.20   | -194.86  | 3.13          | 203.00           | 50.75    | 8.00          | 101.50       | -          | -      | -             | -      |
|         |          |               |                  | στο lcr  |               | εκτός lcr    |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s          |            |        |               |        |
| 62.20   | 69.53    | 194.86        | (mm)             | (mm)     | #8D + 1#8D    | (mm)         |            |        |               |        |
|         |          |               | 304.50           | 50.75    | 12.00         | 101.50       | -          |        |               |        |

Πίνακας Υπολογισμών 25: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα IV

Πίνακας Υπολογισμών 26: Εισαγωγή δεδομένων άρθρου 4 για το δοκίμιο αναφοράς και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

|      | Compressive Force Path |       |      |          |           |         | AN       | ΓΟΧΗ ΣΕ ΚΑΜ | IWH            |            |           |        |          |        |
|------|------------------------|-------|------|----------|-----------|---------|----------|-------------|----------------|------------|-----------|--------|----------|--------|
|      | Σχεδιασμ               | ιού K | ίατα | σκευών Ο | .Σ.       | Ά       | φθρο:    |             | [4]            | ]          |           |        |          |        |
| Δ    | ομ.Μέλος               |       |      | Δοκός    |           | Μελ     | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |        |
|      |                        |       |      |          |           |         |          |             |                | -          |           |        |          |        |
|      | Σκυρόδευς              | v     |      | λχ       | 23        | fcd     | F        | c           | Мс             |            |           |        |          |        |
|      | Ζκυρουεμα              | •     |      | -25.56   | -0.0035   | 82.61   | 211      | .12         | -17.48         |            |           |        |          |        |
| α/α  | У                      | #Φ    | Φ    | As       | εί        | σί      | F        | i           | Mi             | x =        | -25       | .56    |          |        |
| 1    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 2    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | 0              | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | Τελική     | αξονική   |        | N =      | 0.00   |
| 4    | 112.00                 | 2     | 16   | 402.124  | -0,73%    | -525.00 | -211.115 | 0263212     | -14.7780518425 | Τελική     | ροπή      |        | M =      | -32.25 |
| 5    | 5 0 0,00               |       |      | 0,00%    | 0.00      | (       | )        | -0          |                |            |           |        |          |        |
| 6    |                        |       |      | 0        | 0,00%     | 0.00    | 0        |             | -0             |            |           |        |          |        |
| 7    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 8    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | Διαστ. (mi | n)        |        | Συντ. Α  | σφ.    |
| 9    |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | b=         | 100.00    |        | γc=      | 1.00   |
| 10   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | h=         | 140.00    |        | γs=      | 1.00   |
| 11   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 12   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | fck=       | 78.00     | fcd=   | 82.61    |        |
| 14   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | a=         | 1.06      | λ=     | 1.00     |        |
| 15   |                        |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Arco | αίες Παραμος           |       |      | max      | 0.00%     | ~       | 211 115  | 0262212     | 14 7790519425  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Ακρ  | αιες ι ιαραμομ         | φωο   | εις  | min      | -0.007335 | 2       | -211.115 | 0203212     | -14.7780518425 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|      |                        |       |      |          |           |         |          |             |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|      |                        |       |      |          |           |         |          |             | 5.00           | fyk=       | 0.00      | fyd=   | 0.00     |        |
|      |                        |       |      |          |           |         |          |             |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00   |

fyk= fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00 fyk= 15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     | Eurocode  |       |     |          |           |         | AN                 | $10XH \Sigma E KAM$ | ΨH             |            |           |        |          |        |
|-----|-----------|-------|-----|----------|-----------|---------|--------------------|---------------------|----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιασμ  | ιού Κ | άτα | σκευών Ο | ).Σ.      | Ά       | ρθρο:              |                     | [4]            |            |           |        |          |        |
| Δ   | ομ.Μέλος  |       |     | Δοκός    |           | Μελ     | λετητής:           | Αχιλλέ              | ας Θεοδωρούλης |            |           |        |          |        |
|     |           |       |     |          |           |         |                    |                     |                |            |           |        |          |        |
|     | Σκυράδουσ |       |     | λx       | εc        | fcd     | F                  | c                   | Мс             |            |           |        |          |        |
|     | Ζκυροσεμα | 1     |     | -31.84   | -0.0035   | 66.30   | 211                | .12                 | -18.14         |            |           |        |          |        |
| α/α | У         | #Φ    | Φ   | As       | εi        | σί      | F                  | i                   | Mi             | x=         | -39       | .80    |          |        |
| 1   |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             |            |           |        |          |        |
| 2   |           |       |     | 0        | 0,00%     | 0.00    | 0                  |                     | 0              | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   |           |       |     | 0        | 0,00%     | 0.00    | 00 0               |                     | -0             | Τελική ο   | ξονκή     |        | N =      | 0.00   |
| 4   | 112.00    | 2     | 16  | 402.124  | -0,73%    | -525.00 | 00 -211.1150263212 |                     | -14.7780518425 | Τελική     | ροπή      |        | M =      | -32.92 |
| 5   |           |       |     | 0        | 0,00%     | 0.00    | 0                  |                     | -0             |            |           |        |          |        |
| 6   |           |       |     | 0        | 0,00%     | 0.00    | 0                  |                     | -0             |            |           |        |          |        |
| 7   |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             |            |           |        |          |        |
| 8   |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | Διαστ. (mn | ר)        |        | Συντ. Α  | σφ.    |
| 9   |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | b=         | 100.00    | 1      | γc=      | 1.00   |
| 10  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | h=         | 140.00    |        | γs=      | 1.00   |
| 11  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             |            |           |        |          | _      |
| 12  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | fck=       | 78.00     | fcd=   | 66.30    |        |
| 14  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15  |           |       |     | 0        | 0,00%     | 0.00    | (                  | )                   | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |           |       |     | max      | 0.00%     | 2       | _211 115           | 0263212             | -14 7780518425 | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|     |           | φωυ   | SIS | min      | -0.007335 |         | -211.115           | 0200212             | -14.7700310423 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |           |       |     |          |           |         |                    |                     | 4.00           | fyk=       | 525.00    | fyd=   | 525.00   |        |
|     |           |       |     |          |           |         |                    |                     |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 27: Εισαγωγή δεδομένων άρθρου 4 για το δοκίμιο αναφοράς και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| ofo      |                 |       |       | . ,                | για υψηλή αντοχή   |                                | ,      |        |                              | ,    |         |      |                   |
|----------|-----------------|-------|-------|--------------------|--------------------|--------------------------------|--------|--------|------------------------------|------|---------|------|-------------------|
| Сір      |                 |       |       | f _ f _ 0          | οκυροσεματός       | 6                              |        |        |                              |      |         |      |                   |
| Specimen |                 |       | fc'   | $I_{ck} = I_c - 8$ | ft=ftoln(1+fc/fco) | $O_{\alpha} = I_{c} +  I_{t} $ | Х      | b      | $F_c = XDO_{\alpha}$         | F's  | Fs      | Ν    | Fc + F's - Fs = N |
| ID       | f <sub>t0</sub> | fc0   | (MPa) | (MPa)              | (MPa)              | (MPa)                          | (mm)   | (mm)   | (KN)                         | (KN) | (KN)    | (KN) | (KN)              |
| B1       | 2.12            | 10.00 | 78.00 | -                  | 4.61               | 82.61                          | -25.56 | 100.00 | -211.12                      | 0.00 | -211.12 | 0.00 | 0.00              |
|          |                 |       |       |                    |                    |                                |        |        |                              |      |         |      |                   |
| EC       |                 |       |       |                    |                    |                                |        |        |                              |      |         |      |                   |
| Specimen |                 |       |       |                    |                    |                                | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's  | Fs      | Ν    | Fc + F's - Fs = N |
| ID       |                 |       |       |                    |                    |                                | (mm)   | (mm)   | (KN)                         | (KN) | (KN)    | (KN) | (KN)              |
| B1       | -               | -     | -     | -                  | -                  | -                              | -39.80 | 100.00 | 211.12                       | 0.00 | -211.12 | 0.00 | 0.00              |

### Πίνακας Υπολογισμών 28: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 29: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |        |          |         |         |                                 |                                                                        |
|--------------------------------------------|----------------|-----------|--------|----------|---------|---------|---------------------------------|------------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sup>v</sup> |           | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                                   |
| -32.25                                     | 0.39           | 3.50      | -82.28 | -164.56  | 71.00   | Type II | 25.82                           | -46.06                                                                 |
| EC                                         |                |           |        |          |         |         |                                 |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a              |           | Vf     | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}})/f_{_{\rm c}})$  |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                                   |
| -32.92                                     | 0.39           | 3.50      | -83.97 | -167.95  | 71.00   | -       | -                               | -                                                                      |

|                              |                                |                             | •                                         | •                                         |                                             |                                                   |            |        |          |        |
|------------------------------|--------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------------|------------|--------|----------|--------|
|                              | Type II                        |                             |                                           |                                           | at a distance                               | at a distance                                     |            |        |          |        |
|                              |                                |                             | Location 1                                |                                           | 2.5*d                                       | 280.00                                            | Location 2 |        |          |        |
| Pu (KN)                      | V <sub>II-cr</sub>             | V <sub>II-cr</sub> / Pu     | Asw                                       | d                                         | stirrups                                    | 4.00                                              | Asw        | b      | stirrups | 4.00   |
| (KN)                         | (KN)                           | (KN)                        | (mm²)                                     | (mm)                                      | # 8D / d                                    | # 8D /                                            | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 71.00                        | -11.75                         | 0.17                        | 149.60                                    | 112.00                                    | 4.00                                        | 28.00                                             | 149.60     | 100.00 | 4.00     | 25.00  |
|                              |                                |                             |                                           | στο lcr                                   |                                             | εκτός lcr                                         |            |        |          |        |
|                              |                                |                             | medium ductility                          | διάστημα                                  | number of                                   | ανά διάστημα                                      |            |        |          |        |
| Pu (KN)                      | Pf – ec2                       | P <sub>f-ec2</sub> / Pu     | Lcr = h                                   | S                                         | stirrups                                    | 2*s                                               |            |        |          |        |
| (KN)                         | (KN)                           | (KN)                        | (mm)                                      | (mm)                                      | #8D + 1#8D                                  | (mm)                                              |            |        |          |        |
|                              |                                | ()                          | · · · ·                                   | . ,                                       |                                             | . ,                                               |            |        |          |        |
| 71.00                        | -15.00                         | 0.21                        | 140.00                                    | 35.00                                     | 6.00                                        | 70.00                                             | -          | -      | -        | -      |
| 71.00                        | -15.00                         | 0.21                        | 140.00                                    | 35.00<br>ото Icr                          | 6.00                                        | 70.00<br>εκτός lcr                                | -          | -      | -        | -      |
| 71.00<br>Pu                  | -15.00<br>CPF                  | 0.21<br>EC                  | 140.00<br>high ductility                  | 35.00<br>στο lcr<br>διάστημα              | 6.00<br>number of                           | 70.00<br>εκτός lcr<br>ανά διάστημα                | -          | -      | -        | -      |
| 71.00<br>Pu<br>(KN)          | -15.00<br>CPF<br>(KN)          | 0.21<br>EC<br>(KN)          | 140.00<br>high ductility<br>Lcr = 1.5 * h | 35.00<br>στο lcr<br>διάστημα<br>s         | 6.00<br>number of<br>stirrups               | 70.00<br>εκτός lcr<br>ανά διάστημα<br>2*s         | -          | -      | -        | -      |
| 71.00<br>Pu<br>(KN)<br>71.00 | -15.00<br>CPF<br>(KN)<br>11.75 | 0.21<br>EC<br>(KN)<br>15.00 | high ductility<br>Lcr = 1.5 * h<br>(mm)   | 35.00<br>στο lcr<br>διάστημα<br>s<br>(mm) | 6.00<br>number of<br>stirrups<br>#8D + 1#8D | 70.00<br>εκτός lcr<br>ανά διάστημα<br>2*s<br>(mm) | -          | -      | -        | -      |

Πίνακας Υπολογισμών 30: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα V

Πίνακας Υπολογισμών 31: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| -         |                     |            | · · · · · ·          |
|-----------|---------------------|------------|----------------------|
| Compre    | essive Force Path   | AN         | ΤΟΧΗ ΣΕ ΚΑΜΨΗ        |
| Σχεδιασμ  | ιού Κατασκευών Ο.Σ. | Άρθρο:     | [5]                  |
| Δομ.Μέλος | Δοκός               | Μελετητής: | Αχιλλέας Θεοδωρούλης |

|     |                |     |     |         |           |         |                 |                | -          |           |        |          |        |
|-----|----------------|-----|-----|---------|-----------|---------|-----------------|----------------|------------|-----------|--------|----------|--------|
|     | Σκυράδουρ      |     |     | λx      | 23        | fcd     | Fc              | Мс             |            |           |        |          |        |
|     | Ζκυροσεμα      |     |     | -77.13  | -0.0035   | 54.07   | 417.00          | -53.61         |            |           |        |          |        |
| α/α | У              | #Φ  | Φ   | As      | εί        | σi      | Fi              | Mi             | x =        | -77       | .13    |          |        |
| 1   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 2   | 30.00          | 2   | 16  | 402.124 | -1,03%    | -512.00 | -205.8874161457 | -12.3532449687 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   | 120.00         | 2   | 16  | 402.124 | -0,62%    | 0.00    | -0              | 0              | Τελική ο   | ιξονική   |        | N =      | 0.00   |
| 4   | 150.00         | 2   | 16  | 402.124 | -0,49%    | -525.00 | -211.1150263212 | -12.6669015793 | Τελική     | ροπή      |        | M =      | -78.63 |
| 5   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 6   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 7   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 8   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | Διαστ. (mm | ו)        |        | Συντ. Α  | σφ.    |
| 9   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | b=         | 100.00    |        | γc=      | 1.00   |
| 10  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | h=         | 180.00    |        | γs=      | 1.00   |
| 11  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 12  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | fck=       | 50.40     | fcd=   | 54.07    |        |
| 14  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | a=         | 1.07      | λ=     | 1.00     |        |
| 15  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |                |     |     | max     | 0.00%     | 7       | 417 0024424660  | 25 020146549   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акр | αιες ι ιαραμορ | φωο | εıς | min     | -0.010307 | 2       | -417.0024424009 | -25.020140546  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                |     |     |         |           |         |                 |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |                         | Euro               | bcod | le       |           |         | AN       | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |        |
|-----|-------------------------|--------------------|------|----------|-----------|---------|----------|-------------|----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιαα                 | <del>σ</del> μού Κ | άτα  | σκευών Ο | ).Σ.      | β       | ρθρο:    |             | [5]            |            |           |        |          |        |
| Δ   | ομ.Μέλος                |                    |      | Δοκός    |           | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |        |
|     |                         |                    |      |          |           |         |          |             |                |            |           |        |          |        |
|     | Σκυρόδει                | ia                 |      | λx       | 23        | fcd     | F        | c           | Мс             |            |           |        |          |        |
|     |                         |                    |      | -97.34   | -0.0035   | 42.84   | 417      | .00         | -57.83         |            |           |        |          |        |
| α/α | У                       | #Φ                 | Φ    | As       | εί        | σί      | F        | -i          | Mi             | x=         | -121      | .67    |          |        |
| 1   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            |           |        |          |        |
| 2   | 30                      | 2                  | 16   | 402.124  | -1,03%    | -512.00 | -205.887 | 4161457     | -12.3532449687 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   | 120                     | 2                  | 16   | 402.124  | -0,62%    | 0.00    | -(       | 0           | 0              | Τελική α   | αξονική   |        | N =      | 0.00   |
| 4   | 150                     | 2                  | 16   | 402.124  | -0,49%    | -525.00 | -211.115 | 0263212     | -12.6669015793 | Τελική     | ροπή      |        | M =      | -82.85 |
| 5   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            |           |        |          |        |
| 6   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            |           |        |          |        |
| 7   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            |           |        |          |        |
| 8   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | Διαστ. (mn | n)        |        | Συντ. Α  | σφ.    |
| 9   | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | b=         | 100.00    |        | γc=      | 1.00   |
| 10  | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | h=         | 180.00    |        | γs=      | 1.00   |
| 11  | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            |           |        |          |        |
| 12  | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | fck=       | 50.40     | fcd=   | 42.84    |        |
| 14  | 0                       | 0                  | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15  | 15 0 0 0                |                    | 0    | 0        | 0,00%     | 0.00    | (        | 0           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Δκο | Δκοαίες Παραμοριοιώσεις |                    |      | max      | 0.00%     | 5       | -417 002 | 4424669     | -25 020146548  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|     |                         | υρφωυ              | cις  | min      | -0.010307 | 2       | -+17.002 |             | -20.020140040  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                         |                    |      |          |           |         |          |             |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |

Πίνακας Υπολογισμών 32: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 50.40 | 42.40                | 3.67                                | 54.07                               | -77.13  | 100.00 | -417.00                      | -205.89 | -211.12 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν    | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -121.67 | 100.00 | 417.00                       | -205.89 | -211.12 | 0.00 | 0.00              |

### Πίνακας Υπολογισμών 33: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 34: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |         |          |         |         |                                 |                                                                        |
|--------------------------------------------|----------------|----------------|---------|----------|---------|---------|---------------------------------|------------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                                   |
| -78.63                                     | 0.45           | 3.00           | -174.74 | -349.47  | 94.60   | Type II | 27.51                           | -105.61                                                                |
|                                            |                |                |         |          |         |         |                                 |                                                                        |
| EC                                         |                |                |         |          |         |         |                                 |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                             |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                                   |
| -82.85                                     | 0.45           | 3.00           | -184.10 | -368.20  | 94.60   | -       | -                               | -                                                                      |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 375.00        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 6.00          | Asw        | b      | stirrups | 6.00   |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 10D / d     | # 10D /       | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 94.60   | -19.42   | 0.21          | 341.95           | 150.00   | 6.00          | 25.00         | 341.95     | 100.00 | 6.00     | 16.00  |
|         |          |               |                  | στο Icr  |               | εκτός lcr     |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      | 2*s           |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
| 94.60   | -36.82   | 0.39          | 180.00           | 45.00    | 6.00          | 90.00         | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s           |            |        |          |        |
| 94.60   | 19.42    | 36.82         | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
|         |          |               | 270.00           | 45.00    | 10.00         | 90.00         | -          |        |          |        |

Πίνακας Υπολογισμών 35: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|      | Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |       |      |          |            |         | AN       | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |        |
|------|------------------------------------------------------|-------|------|----------|------------|---------|----------|-------------|----------------|------------|-----------|--------|----------|--------|
|      | Σχεδιασμ                                             | ιού Κ | ίατα | σκευών Ο | .Σ.        | Ά       | φθρο:    |             | [5]            |            |           |        |          |        |
| Δα   | ομ.Μέλος                                             |       |      | Δοκός    |            | Μελ     | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |        |
|      |                                                      |       |      |          |            |         |          |             | 1              |            |           |        |          |        |
|      | Σκυρόδευς                                            | v     |      | λx       | <b>3</b> 3 | fcd     | F        | С           | Мс             |            |           |        |          |        |
|      | Ζκυρουεμα                                            | A<br> |      | -109.33  | -0.0035    | 38.14   | 417      | .00         | -60.33         |            |           |        |          |        |
| α/α  | У                                                    | #Ф    | Φ    | As       | εί         | σί      | F        | ï           | Mi             | x =        | -109      | 9.33   |          |        |
| 1    |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 2    | 30.00                                                | 2     | 16   | 402.124  | -0,83%     | -512.00 | -205.887 | 4161457     | -12.3532449687 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3    | 120.00                                               | 2     | 16   | 402.124  | -0,54%     | 0.00    | -(       | 0           | 0              | Τελική α   | αξονική   |        | N =      | 0.00   |
| 4    | 4 150.00 2 1<br>5                                    |       | 16   | 402.124  | -0,45%     | -525.00 | -211.115 | 0263212     | -12.6669015793 | Τελική     | ροπή      |        | M =      | -85.35 |
| 5    | 5 6                                                  |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 6    | 6                                                    |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 7    | 6<br>7                                               |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 8    |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | Διαστ. (mn | n)        |        | Συντ. Α  | .σφ.   |
| 9    |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | b=         | 100.00    |        | γc=      | 1.00   |
| 10   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | h=         | 180.00    | ] [    | γs=      | 1.00   |
| 11   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 12   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | fck=       | 35.40     | fcd=   | 38.14    |        |
| 14   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | a=         | 1.08      | λ=     | 1.00     |        |
| 15   |                                                      |       |      | 0        | 0,00%      | 0.00    | (        | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aroc |                                                      |       |      | max      | 0.00%      | 5       | 417 002  | 1121660     | 25 020146548   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акрс | Ακραίες Ι Ιαραμορφωσεις                              |       |      | min      | -0.008302  | 2       | -417.002 | 4424009     | -23.020140340  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|      |                                                      |       |      |          |            |         |          |             |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|      |                                                      |       |      |          |            |         |          |             |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 36: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

8.00

9.00

10.00

11.00

12.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |                                                                    | Euro  | bcod | le       |           |          | AN       | ΓΟΧΗ ΣΕ ΚΑΜ    | ΨH             |            |         |        |          |        |
|-----|--------------------------------------------------------------------|-------|------|----------|-----------|----------|----------|----------------|----------------|------------|---------|--------|----------|--------|
|     | Σχεδιασμ                                                           | loú K | ατα  | σκευών Ο | ).Σ.      | Ά        | φθρο:    |                | [5]            |            |         |        |          |        |
| Δ   | ομ.Μέλος                                                           |       |      | Δοκός    |           | Με       | λετητής: | Αχιλλέ         | ας Θεοδωρούλης |            |         |        |          |        |
|     |                                                                    |       |      |          |           |          |          |                |                | _          |         |        |          |        |
|     | Σκυρόδουκ                                                          | ~     |      | λx       | εc        | fcd      | F        | с              | Мс             |            |         |        |          |        |
|     | Ζκυρουεμι                                                          | ,     |      | -138.59  | -0.0035   | 30.09    | 417      | .00            | -66.43         |            |         |        |          |        |
| α/α | У                                                                  | #Φ    | Φ    | As       | εί        | σί       | F        | ï              | Mi             | x=         | -173    | 3.23   |          |        |
| 1   | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             |            |         |        |          |        |
| 2   | 30                                                                 | 2     | 16   | 402.124  | -0,83%    | -512.00  | -205.887 | 4161457        | -12.3532449687 | Νεξωτ      | 0.      | 00     | Διαφορά: | 0.00   |
| 3   | 120                                                                | 2     | 16   | 402.124  | -0,54%    | 0.00     | -(       | C              | 0              | Τελική 🤇   | άξονική |        | N =      | 0.00   |
| 4   | 4     150     2     16     402.124       5     0     0     0     0 |       |      | -0,45%   | -525.00   | -211.115 | 0263212  | -12.6669015793 | Τελική         | ροπή       |         | M =    | -91.45   |        |
| 5   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              |       |      | 0,00%    | 0.00      | (        | )        | -0             |                |            | •       |        |          |        |
| 6   | 5     0     0     0     0       6     0     0     0     0     0    |       |      | 0        | 0,00%     | 0.00     | (        | )              | -0             |            |         |        |          |        |
| 7   | 6     0     0     0       7     0     0     0                      |       | 0    | 0,00%    | 0.00      | (        | )        | -0             |                |            |         |        |          |        |
| 8   | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | Διαστ. (mr | n)      |        | Συντ. Α  | .σφ.   |
| 9   | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | b=         | 100.00  |        | γc=      | 1.00   |
| 10  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | h=         | 180.00  |        | γs=      | 1.00   |
| 11  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             |            |         |        |          |        |
| 12  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             |            | Αντοχές | (MPa)  |          |        |
| 13  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | fck=       | 35.40   | fcd=   | 30.09    |        |
| 14  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | a=         | 0.85    | λ=     | 0.80     |        |
| 15  | 0                                                                  | 0     | 0    | 0        | 0,00%     | 0.00     | (        | )              | -0             | 1.00       | fyk=    | 0.00   | fyd=     | 0.00   |
| Aro |                                                                    |       |      | max      | 0.00%     | 2        | _/17 002 | 1121660        | -25 0201/65/8  | 2.00       | fyk=    | 512.00 | fyd=     | 512.00 |
|     | Ακραίες ι ιαραμορφωσει                                             |       |      | min      | -0.008302 | 2        | -417.002 | 4424009        | -20.020140040  | 3.00       | fyk=    | 0.00   | fyd=     | 0.00   |
|     |                                                                    |       |      |          |           |          |          |                |                | 4.00       | fyk=    | 525.00 | fyd=     | 525.00 |
|     |                                                                    |       |      |          |           |          |          |                |                | 5.00       | fyk=    | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 37: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |      |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | 1.40            | 10.00 | 35.40 | 27.40                | 2.74                                | 38.14                               | -109.33 | 100.00 | -417.00                      | -205.89 | -211.12 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |         |      |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | _                                   | -                                   | -173.23 | 100.00 | 417.00                       | -205.89 | -211.12 | 0.00 | 0.00              |

## Πίνακας Υπολογισμών 38: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 39: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |              |                |         |          |         |         |                                 |                                            |
|--------------------------------------------|--------------|----------------|---------|----------|---------|---------|---------------------------------|--------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |                | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m            | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                       |
| -85.35                                     | 0.45         | 3.00           | -189.66 | -379.32  | 96.30   | Type II | 20.56                           | 110.24                                     |
| EC                                         |              |                |         |          |         |         |                                 |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |                | Vf      | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m            | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                       |
| -91.45                                     | 0.45         | 3.00           | -203.21 | -406.42  | 96.30   | -       | -                               | -                                          |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 375.00        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 6.00          | Asw        | b      | stirrups | 6.00   |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 10D / d     | # 10D /       | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 96.30   | -21.07   | 0.22          | 371.15           | 150.00   | 6.00          | 25.00         | 371.15     | 100.00 | 6.00     | 16.00  |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| Pu (KN) | Pf-ec2   | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      | 2*s           |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
| 96.30   | -40.64   | 0.42          | 180.00           | 45.00    | 6.00          | 90.00         | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               | εκτός lcr     |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα  |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s           |            |        |          |        |
| 96.30   | 21.07    | 40.64         | (mm)             | (mm)     | #8D + 1#8D    | (mm)          |            |        |          |        |
|         |          |               | 270.00           | 45.00    | 10.00         | 90.00         | -          |        |          |        |

Πίνακας Υπολογισμών 40: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|       | Compr                 | essiv | <i>i</i> e Fo | orce Path |           |         | AN       | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH             |           |           |        |          |        |
|-------|-----------------------|-------|---------------|-----------|-----------|---------|----------|-------------|----------------|-----------|-----------|--------|----------|--------|
|       | Σχεδιασμ              | JOÚ K | άτα           | σκευών Ο  | ).Σ.      | Ά       | φθρο:    |             | [5]            |           |           |        |          |        |
| Δ     | ομ.Μέλος              |       |               | Δοκός     |           | Mε      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |           |           |        |          |        |
|       |                       |       |               |           |           |         |          |             |                |           |           |        |          |        |
|       | Σκυρόδουκ             | ~     |               | λx        | εc        | fcd     | F        | c           | Мс             |           |           |        |          |        |
|       | Ζκυροσεμι             | J     |               | -108.42   | -0.0035   | 38.46   | 417      | .00         | -60.14         |           |           |        |          |        |
| α/α   | У                     | #Φ    | Φ             | As        | εί        | σί      | F        | i           | Mi             | x =       | -108      | 3.42   |          |        |
| 1     |                       |       |               | 0         | 0,00%     | 0.00    | (        | 2           | -0             |           |           |        |          |        |
| 2     | 30.00                 | 2     | 16            | 402.124   | -0,83%    | -512.00 | -205.887 | 4161457     | -12.3532449687 | Νεξωτ     | 0.0       | 00     | Διαφορά: | 0.00   |
| 3     | 120.00                | 2     | 16            | 402.124   | -0,54%    | 0.00    | -1       | 0           | 0              | Τελική    | αξονική   |        | N =      | 0.00   |
| 4     | 150.00                | 2     | 16            | 402.124   | -0,45%    | -525.00 | -211.115 | 0263212     | -12.6669015793 | Τελικ     | ή ροπή    |        | M =      | -85.16 |
| 5     | 5 0                   |       | 0             | 0,00%     | 0.00      | (       | )        | -0          |                |           |           |        |          |        |
| 6     |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             |           |           |        |          |        |
| 7     |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             |           |           |        |          |        |
| 8     |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | Διαστ. (m | m)        | ] [    | Συντ. Α  | .σφ.   |
| 9     |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | b=        | 100.00    | 1      | γc=      | 1.00   |
| 10    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | h=        | 180.00    | 1      | γs=      | 1.00   |
| 11    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             |           |           |        |          |        |
| 12    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             |           | Αντοχές ( | MPa)   |          | ]      |
| 13    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | fck=      | 35.70     | fcd=   | 38.46    |        |
| 14    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | a=        | 1.08      | λ=     | 1.00     |        |
| 15    |                       |       |               | 0         | 0,00%     | 0.00    | (        | )           | -0             | 1.0       | ) fyk=    | 0.00   | fyd=     | 0.00   |
| A.K.0 |                       |       |               | max       | 0.00%     | ~       | 417.000  | 4424660     | 25.020146549   | 2.0       | ) fyk=    | 512.00 | fyd=     | 512.00 |
| Ακρ   | Ακραίες Παραμορφώσεις |       |               | min       | -0.008342 | 2       | -417.002 | 4424009     | -20.020140048  | 3.0       | ) fyk=    | 0.00   | fyd=     | 0.00   |
|       |                       |       |               |           |           |         |          |             |                | 4.0       | ) fyk=    | 525.00 | fyd=     | 525.00 |
|       |                       |       |               |           |           |         |          |             |                | 5.0       | ) fyk=    | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 41: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |                                               | Euro                | bcod | е        |           |          | ANT      | ΌΧΗ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |        |
|-----|-----------------------------------------------|---------------------|------|----------|-----------|----------|----------|------------|----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιασ                                       | <mark>σμού Κ</mark> | άτα  | σκευών Ο | ).Σ.      | Ά        | ρθρο:    |            | [5]            |            |           |        |          |        |
| Δ   | ομ.Μέλος                                      |                     |      | Δοκός    |           | Μελ      | λετητής: | Αχιλλέ     | ας Θεοδωρούλης |            |           |        |          |        |
|     |                                               |                     |      |          |           |          |          |            |                | _          |           |        |          |        |
|     | Σκυρόδοι                                      | 10                  |      | λx       | 23        | fcd      | F        | с          | Мс             |            |           |        |          |        |
|     | Ζκυροσεμ                                      | JU                  |      | -137.42  | -0.0035   | 30.35    | 417      | .00        | -66.18         |            |           |        |          |        |
| α/α | У                                             | #Φ                  | Φ    | As       | εi        | σί       | F        | ï          | Mi             | x=         | -171      | .78    |          |        |
| 1   | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             |            |           |        |          |        |
| 2   | 30                                            | 2                   | 16   | 402.124  | -0,83%    | -512.00  | -205.887 | 4161457    | -12.3532449687 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   | 120                                           | 2                   | 16   | 402.124  | -0,54%    | 0.00     | -(       | )          | 0              | Τελική α   | ξονική    |        | N =      | 0.00   |
| 4   | 150                                           | 2                   | 16   | 402.124  | -0,45%    | -525.00  | -211.115 | 0263212    | -12.6669015793 | Τελική     | ροπή      |        | M =      | -91.20 |
| 5   | 5 0 0 0 0                                     |                     |      | 0        | 0,00%     | 0.00     | C        | )          | -0             |            |           |        |          |        |
| 6   | 5 0 0 0   6 0 0 0                             |                     |      | 0        | 0,00%     | 0.00     | C        | )          | -0             |            |           |        |          |        |
| 7   | 6     0     0     0       7     0     0     0 |                     |      | 0        | 0,00%     | 0.00     | C        | )          | -0             |            |           |        |          |        |
| 8   | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | Διαστ. (mn | ר)        |        | Συντ. Α  | .σφ.   |
| 9   | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | b=         | 100.00    | 1      | γc=      | 1.00   |
| 10  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | h=         | 180.00    |        | γs=      | 1.00   |
| 11  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             |            |           |        |          |        |
| 12  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | fck=       | 35.70     | fcd=   | 30.35    |        |
| 14  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15  | 0                                             | 0                   | 0    | 0        | 0,00%     | 0.00     | C        | )          | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |                                               |                     |      | max      | 0.00%     | 7        | 417 002  | 1121660    | 25 020146548   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|     | Ακράιες ι ιαραμορφωσεις                       |                     |      | min      | -0.008342 | <u>۲</u> | -417.002 | ++24003    | -23.020140340  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                                               |                     |      |          |           |          |          |            |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|     |                                               |                     |      |          |           |          |          |            |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 42: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

11.00

12.00

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |          |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |      |                   |
|-----------|----------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|------|-------------------|
| Specimen  |          |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | $f_{t0}$ | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | 1.40     | 10.00 | 35.70 | 27.70                | 2.76                                | 38.46                               | -108.42 | 100.00 | -417.00                      | -205.89 | -211.12 | 0.00 | 0.00              |
| EC        |          |       |       |                      |                                     |                                     |         |        |                              |         |         |      |                   |
| Specimen  |          |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |          |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | -        | -     | -     | -                    | -                                   | -                                   | -171.78 | 100.00 | 417.00                       | -205.89 | -211.12 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 43: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 44: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |         |          |         |         |                    |                                                          |
|--------------------------------------------|----------------|----------------|---------|----------|---------|---------|--------------------|----------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sup>v</sup> |                | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                     |
| -85.16                                     | 0.45           | 3.00           | -189.24 | -378.47  | 167.00  | Type II | 20.71              | -110.15                                                  |
| EC                                         |                |                |         |          |         |         |                    |                                                          |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$               |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                     |
| -91.20                                     | 0.45           | 3.00           | -202.67 | -405.35  | 167.00  | -       | -                  | -                                                        |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 375.00        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 6.00          | Asw        | b      | stirrups | 11.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 10D / d     | # 10D /       | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 167.00  | -63.08   | 0.38          | 370.33           | 150.00   | 6.00          | 25.00         | 740.65     | 100.00 | 11.00    | 9.00   |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |          |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
| 167.00  | -121.60  | 0.73          | 180.00           | 45.00    | 6.00          | -             | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |        |          |        |
| 167.00  | 63.08    | 121.60        | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
|         |          |               | 270.00           | 45.00    | 10.00         | -             | -          |        |          |        |

# Πίνακας Υπολογισμών 45: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compressive Force Path |                   |      |          |           | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |          |         |                |       |        |           |        |          |        |
|-----|------------------------|-------------------|------|----------|-----------|-----------------|----------|---------|----------------|-------|--------|-----------|--------|----------|--------|
|     | Σχεδιασμ               | ιού Κ             | ίατα | σκευών Ο | ).Σ.      | Ά               | ρθρο:    |         | [5]            |       |        |           |        |          |        |
| Δ   | ομ.Μέλος               |                   |      | Δοκός    |           | Μελ             | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |       |        |           |        |          |        |
|     |                        |                   |      |          |           |                 |          |         |                | _     |        |           |        |          |        |
|     | Σκυρόδουσ              |                   |      | λx       | 23        | fcd             | F        | c       | Мс             |       |        |           |        |          |        |
|     | Ζκυροσεμα              |                   |      | -135.10  | -0.0035   | 30.87           | 417      | .00     | -65.70         |       |        |           |        |          |        |
| α/α | У                      | #Φ                | Φ    | As       | εί        | σί              | F        | i       | Mi             | x =   |        | -135      | 5.10   |          |        |
| 1   |                        |                   |      | 0        | 0,00%     | 0.00            | (        | C       | -0             |       |        |           |        |          |        |
| 2   | 30.00                  | 2                 | 16   | 402.124  | -0,74%    | -512.00         | -205.887 | 4161457 | -12.3532449687 | Νεξωτ |        | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   | 120.00                 | 2                 | 16   | 402.124  | -0,51%    | 0.00            | -        | 0       | 0              | Τε    | λική α | ξονική    |        | N =      | 0.00   |
| 4   | 150.00                 | 2                 | 16   | 402.124  | -0,43%    | -525.00         | -211.115 | 0263212 | -12.6669015793 | Т     | ελική  | ροπή      |        | M =      | -90.72 |
| 5   |                        |                   |      | 0        | 0,00%     | 0.00            | 0        |         | -0             |       |        |           |        |          |        |
| 6   |                        |                   |      | 0        | 0,00%     | 0.00            | 0        |         | -0             |       |        |           |        |          |        |
| 7   |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |       |        |           |        |          |        |
| 8   |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | Διαστ | г. (mm | ı)        |        | Συντ. Α  | σφ.    |
| 9   |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | b=    |        | 100.00    |        | γc=      | 1.00   |
| 10  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | h=    |        | 180.00    |        | γs=      | 1.00   |
| 11  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |       |        |           | -      |          |        |
| 12  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |       | A      | Αντοχές ( | MPa)   |          |        |
| 13  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | 0       | -0             | fck=  |        | 28.60     | fcd=   | 30.87    |        |
| 14  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | 0       | -0             | a=    |        | 1.08      | λ=     | 1.00     |        |
| 15  |                        |                   |      | 0        | 0,00%     | 0.00            | (        | 0       | -0             |       | 1.00   | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |                        | vnúv <del>a</del> |      | max      | 0.00%     | 5               | 417 002  | 4424660 | 25 020146548   |       | 2.00   | fyk=      | 512.00 | fyd=     | 512.00 |
| ЛКР |                        | φωυ               | S    | min      | -0.007386 | 2               | -417.002 | 4424009 | -20.020140040  |       | 3.00   | fyk=      | 0.00   | fyd=     | 0.00   |
|     |                        |                   |      |          |           |                 |          |         |                |       | 4.00   | fyk=      | 525.00 | fvd=     | 525.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

8.00

9.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd= fyd=

fyd=

fvd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Πίνακας Υπολογισμών 46: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

|     |           |       |         |          |           | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |          |         |                |            |           |        |          |        |
|-----|-----------|-------|---------|----------|-----------|-----------------|----------|---------|----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιασμ  | ιού Κ | ατα     | σκευών Ο | ).Σ.      | Ά               | ρθρο:    |         | [5]            |            |           |        |          |        |
| Δ   | ομ.Μέλος  |       |         | Δοκός    |           | Mε              | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |            |           |        |          |        |
|     |           |       |         |          |           |                 |          |         |                |            |           |        |          |        |
|     | Σκυρόδεικ | v     |         | λχ       | 23        | fcd             | F        | с       | Мс             |            |           |        |          |        |
|     | Ζκυρουεμα |       |         | -171.54  | -0.0035   | 24.31           | 417      | .00     | -73.30         |            |           |        |          |        |
| α/α | У         | #Ф    | Φ       | As       | εί        | σί              | F        | ï       | Mi             | x=         | -214      | 1.42   |          |        |
| 1   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 2   | 30        | 2     | 16      | 402.124  | -0,74%    | -512.00         | -205.887 | 4161457 | -12.3532449687 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   | 120       | 2     | 16      | 402.124  | -0,51%    | 0.00            | -(       | )       | 0              | Τελική α   | άξονική   |        | N =      | 0.00   |
| 4   | 150       | 2     | 16      | 402.124  | -0,43%    | -525.00         | -211.115 | 0263212 | -12.6669015793 | Τελική     | ροπή      |        | M =      | -98.32 |
| 5   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           | •      |          | ·      |
| 6   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 7   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 8   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | Διαστ. (mn | n)        | ] [    | Συντ. Α  | σφ.    |
| 9   | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | b=         | 100.00    | 1      | γc=      | 1.00   |
| 10  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | h=         | 180.00    | 1 [    | γs=      | 1.00   |
| 11  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 12  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             |            | Αντοχές ( | (MPa)  |          |        |
| 13  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | fck=       | 28.60     | fcd=   | 24.31    |        |
| 14  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15  | 0         | 0     | 0       | 0        | 0,00%     | 0.00            | (        | )       | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro |           |       | <b></b> | max      | 0.00%     | ~               | 417 002  | 1121660 | 25 020146549   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акр |           | νφωυ  | εις     | min      | -0.007386 | 2               | -417.002 | 4424009 | -23.020140340  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |           |       |         |          |           |                 |          |         |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|     |           |       |         |          |           |                 |          |         |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 47: Εισαγωγή δεδομένων άρθρου 5 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Ευρωκώδικα

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                     |         |                    | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |      |                   |
|-----------|---------------------|---------|--------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|------|-------------------|
| Specimen  |                     | fc'     | $f_{ck} = f_c - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> fck | 0 (MPa) | (MPa)              | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference | 1.40 10.            | 28.60   | 20.60              | 2.27                                | 30.87                               | -135.10 | 100.00 | -417.00                      | -205.89 | -211.12 | 0.00 | 0.00              |
| EC        |                     |         |                    |                                     |                                     |         |        |                              |         |         |      |                   |
| Specimen  |                     |         |                    |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν    | Fc + F's - Fs = N |
| ID        |                     |         |                    |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN) | (KN)              |
| Reference |                     | -       | -                  | _                                   | -                                   | -214.42 | 100.00 | 417.00                       | -205.89 | -211.12 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 48: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 49: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |              |                |         |          |         |         |                    |                                                                        |
|--------------------------------------------|--------------|----------------|---------|----------|---------|---------|--------------------|------------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |                | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                             |
| (KN*m)                                     | m            | $a_v / d$      | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                                   |
| -90.72                                     | 0.45         | 3.00           | -201.60 | -403.19  | 93.60   | Type II | 17.00              | 111.99                                                                 |
| EC                                         |              |                |         |          |         |         |                    |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |                | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m            | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                                   |
| -98.32                                     | 0.45         | 3.00           | -218.48 | -436.96  | 93.60   | -       | -                  | -                                                                      |

|         | • •      |               | •                | •        | •             |               | • •        |        | •        |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|         |          |               | Location 1       |          | 2.5*d         | 375.00        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 7.00          | Asw        | b      | stirrups | 7.00   |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 10D / d     | # 10D /       | (mm²)      | (mm)   | # 8D / d | # 8D / |
| 93.60   | -18.82   | 0.20          | 394.51           | 150.00   | 7.00          | 21.00         | 394.51     | 100.00 | 7.00     | 14.00  |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |          |        |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups      |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
| 93.60   | -43.70   | 0.47          | 180.00           | 45.00    | 6.00          | -             | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |        |          |        |
| 93.60   | 18.82    | 43.70         | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
|         |          |               | 270.00           | 45.00    | 10.00         | -             | -          |        |          |        |
|         |          |               |                  |          |               |               |            |        |          |        |

Πίνακας Υπολογισμών 50: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα VI

Πίνακας Υπολογισμών 51: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

|           | <u>· · · · · · · · · · · · · · · · · · · </u> |            |                 |          |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------|------------|-----------------|----------|--|--|--|--|--|--|--|
| Compre    | essive Force Path                             | AN         | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |          |  |  |  |  |  |  |  |
| Σχεδιασμ  | ιού Κατασκευών Ο.Σ.                           | Άρθρο:     | Άρθρο: [6]      |          |  |  |  |  |  |  |  |
| Δομ.Μέλος | Δοκός                                         | Μελετητής: | Αχιλλέας Θεο    | δωρούλης |  |  |  |  |  |  |  |

|      | Σκυρόδουκ      | ~    |     | λχ     | 23        | fcd     | Fc              | Мс             |            |           |        |          |        |
|------|----------------|------|-----|--------|-----------|---------|-----------------|----------------|------------|-----------|--------|----------|--------|
|      | Ζκυροσεμα      | J.   |     | -12.64 | -0.0035   | 85.89   | 162.89          | -25.46         |            |           |        |          |        |
| α/α  | У              | #Φ   | Φ   | As     | εi        | σί      | Fi              | Mi             | x =        | -12       | .64    |          |        |
| 1    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 2    | 20.00          | 2    | 10  | 157.08 | -8,10%    | -512.00 | -80.4247719319  | -10.4552203511 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | Τελική ο   | ξονική    |        | N =      | 0.00   |
| 4    | 280.00         | 2    | 10  | 157.08 | -0,90%    | -525.00 | -82.4668071567  | -10.7206849304 | Τελική     | ροπή      |        | M =      | -46.64 |
| 5    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 6    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 7    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 8    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | Διαστ. (mm | ו)        |        | Συντ. Α  | σφ.    |
| 9    |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | b=         | 150.00    | 1 [    | γc=      | 1.00   |
| 10   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | h=         | 300.00    |        | γs=      | 1.00   |
| 11   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 12   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | fck=       | 81.20     | fcd=   | 85.89    |        |
| 14   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | a=         | 1.06      | λ=     | 1.00     |        |
| 15   |                |      |     | 0      | 0,00%     | 0.00    | 0               | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro  |                |      |     | max    | 0.00%     | ~       | 162 9015700996  | 21 1750052915  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акра | αιες ι ιαραμοι | JΨWO | εıς | min    | -0.081007 | 2       | -102.0913790000 | -21.1759052615 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|      |                |      |     |        |           |         |                 |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |

5.00 fyk=

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode |             |                                               |      |          |           | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |          |         |                |            |           |        |          |        |
|----------|-------------|-----------------------------------------------|------|----------|-----------|-----------------|----------|---------|----------------|------------|-----------|--------|----------|--------|
|          | Σχεδιασμ    | ιού Κ                                         | ίατα | σκευών Ο | ).Σ.      | Ά               | ρθρο:    |         | [6]            |            |           |        |          |        |
| Δα       | ομ.Μέλος    |                                               |      | Δοκός    |           | Μελ             | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |            |           |        |          |        |
|          |             |                                               |      |          |           |                 |          |         |                |            |           |        |          |        |
|          | Σκυρόδευο   | ,                                             |      | λx       | 23        | fcd             | F        | c       | Мс             |            |           |        |          |        |
|          | Ζκυρουεμα   | ۱ <u>ــــــــــــــــــــــــــــــــــــ</u> |      | -15.73   | -0.0035   | 69.02           | 162      | 2.89    | -25.72         |            |           |        |          |        |
| α/α      | У           | #Φ                                            | Φ    | As       | εί        | σί              | F        | Fi      | Mi             | x=         | -19       | .67    |          |        |
| 1        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 2        | 20.00       | 2                                             | 10   | 157.08   | -8,10%    | -512.00         | -80.4247 | 7719319 | -10.4552203511 | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | Τελική     | άξονική   |        | N =      | 0.00   |
| 4        | 280.00      | 2                                             | 10   | 157.08   | -0,90%    | -525.00         | -82.4668 | 8071567 | -10.7206849304 | Τελική     | ροπή      |        | M =      | -46.89 |
| 5        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 6        |             |                                               |      | 0        | 0,00%     | 0.00            | 0 -0     |         | -0             |            |           |        |          |        |
| 7        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 8        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | Διαστ. (mr | n)        | ] [    | Συντ. Α  | σφ.    |
| 9        |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | b=         | 150.00    | ] [    | γc=      | 1.00   |
| 10       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | h=         | 300.00    | ] [    | γs=      | 1.00   |
| 11       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |            |           |        |          |        |
| 12       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | fck=       | 81.20     | fcd=   | 69.02    |        |
| 14       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15       |             |                                               |      | 0        | 0,00%     | 0.00            | (        | )       | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aroc     |             |                                               |      | max      | 0.00%     | 5               | 162 801  | 5700886 | 21 1750052815  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акрс     | μες παραμομ | φωυ                                           | εıς  | min      | -0.081007 | 2               | -102.091 | 5790660 | -21.1759052615 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|          |             |                                               |      |          |           |                 |          |         |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|          |             |                                               |      |          |           |                 |          |         |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 52: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για υψηλή αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |        |      |                   |
|-----------|-----------------|-------|-------|----------------------|----------------------------------|-------------------------------------|--------|--------|------------------------------|--------|--------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft=ftoln(1+fc/fco)               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fc0   | (MPa) | (MPa)                | (MPa)                            | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)   | (KN) | (KN)              |
| Reference | 2.12            | 10.00 | 81.20 | -                    | 4.69                             | 85.89                               | -12.64 | 150.00 | -162.89                      | -80.42 | -82.47 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                  |                                     |        |        |                              |        |        |      |                   |
| Specimen  |                 |       |       |                      |                                  |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν    | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                  |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)   | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                | -                                   | -19.67 | 150.00 | 162.89                       | -80.42 | -82.47 | 0.00 | 0.00              |

Πίνακας Υπολογισμών 53: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 54: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |        |          |         |         |                                 |                                                        |
|--------------------------------------------|----------------|-----------|--------|----------|---------|---------|---------------------------------|--------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |           | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                   |
| -46.64                                     | 0.80           | 2.86      | -58.30 | -116.60  | 23.00   | Type II | 98.41                           | 34.91                                                  |
| EC                                         |                |           |        |          |         |         |                                 |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                                   |
| -46.89                                     | 0.80           | 2.86      | -58.61 | -117.23  | 23.00   | -       | -                               | -                                                      |

| ,       |          |               |                  |          |               |               |            | -      |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|----------|--------|
|         | Type II  |               |                  |          | at a distance | at a distance |            |        |          |        |
|         |          |               | Location 1       |          | 2.5*d         | 700.00        | Location 2 |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | #VALUE!       | Asw        | b      | stirrups | 7.00   |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | # 6D / d | # 8D / |
| 23.00   | -24.49   | 1.06          | Επαρκεί          | 280.00   | #VALUE!       | #VALUE!       | 165.15     | 150.00 | 7.00     | 21.00  |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |          |        |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | s        | stirrups      |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
| 23.00   | -87.92   | 3.82          | 300.00           | 75.00    | 8.00          | -             | -          | -      | -        | -      |
|         |          |               |                  | στο lcr  |               |               |            |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | s        | stirrups      |               |            |        |          |        |
| 23.00   | 24.49    | 87.92         | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |          |        |
|         |          |               | 450.00           | 60.00    | 14.00         | -             | -          |        |          |        |
|         |          |               |                  |          |               |               |            |        |          |        |

Πίνακας Υπολογισμών 55: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|      | Compre      | essiv | e Fo | orce Path |          |         | ANT      | ΌΧΗ ΣΕ ΚΑΜ | ΨH             |            |         |        |          |        |
|------|-------------|-------|------|-----------|----------|---------|----------|------------|----------------|------------|---------|--------|----------|--------|
|      | Σχεδιασμ    | ιού Κ | ατα  | σκευών Ο  | .Σ.      | Ά       | ρθρο:    |            | [6]            |            |         |        |          |        |
| Δc   | μ.Μέλος     |       |      | Δοκός     |          | Μελ     | \ετητής: | Αχιλλέ     | ας Θεοδωρούλης |            |         |        |          |        |
|      |             |       |      |           |          |         |          |            |                |            |         |        |          |        |
|      | Σκυρόδουσ   |       |      | λx        | εc       | fcd     | F        | c          | Мс             |            |         |        |          |        |
|      | Ζκυροσεμα   |       |      | -13.02    | -0.0035  | 83.43   | 162      | .89        | -25.49         |            |         |        |          |        |
| α/α  | У           | #Φ    | Φ    | As        | εί       | σί      | F        | i          | Mi             | x =        | -13     | .02    |          |        |
| 1    |             |       |      | 0         | 0,00%    | 0.00    | 0        |            | -0             |            |         |        |          |        |
| 2    | 20.00       | 2     | 10   | 157.08    | -7,88%   | -512.00 | -80.4247 | 719319     | -10.4552203511 | Νεξωτ      | 0.      | 00     | Διαφορά: | 0.00   |
| 3    |             |       |      | 0         | 0,00%    | 0.00    | 0        |            | -0             | Τελική α   | άξονική |        | N =      | 0.00   |
| 4    | 280.00      | 2     | 10   | 157.08    | -0,89%   | -525.00 | -82.4668 | 071567     | -10.7206849304 | Τελική     | ροπή    |        | M =      | -46.67 |
| 5    |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             |            |         |        |          |        |
| 6    |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             |            |         |        |          |        |
| 7    |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             |            |         |        |          |        |
| 8    |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             | Διαστ. (mr | n)      | ] [    | Συντ. Α  | σφ.    |
| 9    |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             | b=         | 150.00  |        | γc=      | 1.00   |
| 10   |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             | h=         | 300.00  |        | γs=      | 1.00   |
| 11   |             |       |      | 0         | 0,00%    | 0.00    | 0        | )          | -0             |            |         |        |          |        |
| 12   |             |       |      | 0         | 0,00%    | 0.00    | 0        | )          | -0             |            | Αντοχές | (MPa)  |          |        |
| 13   |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             | fck=       | 78.80   | fcd=   | 83.43    |        |
| 14   |             |       |      | 0         | 0,00%    | 0.00    | 0        | 1          | -0             | a=         | 1.06    | λ=     | 1.00     |        |
| 15   |             |       |      | 0         | 0,00%    | 0.00    | 0        |            | -0             | 1.00       | fyk=    | 0.00   | fyd=     | 0.00   |
| A    |             |       |      | max       | 0.00%    |         | 100.001  | -700000    | 04 4750050045  | 2.00       | fyk=    | 512.00 | fyd=     | 512.00 |
| Ακρο | αες παραμορ | φωο   | εις  | min       | -0.07879 | 2       | -102.891 | 5790000    | -21.1759052815 | 3.00       | fyk=    | 0.00   | fyd=     | 0.00   |
|      |             |       |      |           |          |         |          |            |                | 4.00       | fyk=    | 525.00 | fyd=     | 525.00 |
|      |             |       |      |           |          |         |          |            |                | 5.00       | fyk=    | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 56: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00

8.00

fyk=

fyk=

7.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |             | Euro  | bcod     | е        |          |         | ANT      | ΓΟΧΗ ΣΕ ΚΑΝ | ЛЧН             |            |           |        |          |        |
|-----|-------------|-------|----------|----------|----------|---------|----------|-------------|-----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιασμ    | ιού Κ | ατα      | σκευών Ο | .Σ.      | Ά       | ρθρο:    |             | [6]             |            |           |        |          |        |
| Δ   | ομ.Μέλος    |       |          | Δοκός    |          | Μελ     | ∖ετητής: | Αχιλλέ      | έας Θεοδωρούλης |            |           |        |          |        |
|     |             |       |          |          |          |         |          |             |                 |            |           |        |          |        |
|     | Σκυρόδευς   | ,     |          | λx       | 23       | fcd     | F        | с           | Мс              |            |           |        |          |        |
|     | Ζκυρουεμα   |       |          | -16.21   | -0.0035  | 66.98   | 162      | .89         | -25.75          |            |           |        |          |        |
| α/α | У           | #Φ    | Φ        | As       | εί       | σί      | F        | 1           | Mi              | x=         | -20.      | 27     |          |        |
| 1   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              |            |           |        |          |        |
| 2   | 20.00       | 2     | 10       | 157.08   | -7,88%   | -512.00 | -80.4247 | 719319      | -10.4552203511  | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              | Τελική ο   | ξονκή     |        | N =      | 0.00   |
| 4   | 280.00      | 2     | 10       | 157.08   | -0,89%   | -525.00 | -82.4668 | 3071567     | -10.7206849304  | Τελική     | ροπή      |        | M =      | -46.93 |
| 5   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              |            |           |        |          |        |
| 6   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              |            |           |        |          |        |
| 7   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              |            |           |        |          |        |
| 8   |             |       |          | 0        | 0,00%    | 0.00    | 0        | )           | -0              | Διαστ. (mm | ı)        |        | Συντ. Α  | σφ.    |
| 9   |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              | b=         | 150.00    |        | γc=      | 1.00   |
| 10  |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              | h=         | 300.00    |        | γs=      | 1.00   |
| 11  |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              |            |           |        |          | _      |
| 12  |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              | 1          | Αντοχές ( | MPa)   |          |        |
| 13  |             |       |          | 0        | 0,00%    | 0.00    | 0        | )           | -0              | fck=       | 78.80     | fcd=   | 66.98    |        |
| 14  |             |       |          | 0        | 0,00%    | 0.00    | (        | )           | -0              | a=         | 0.85      | λ=     | 0.80     |        |
| 15  |             |       |          | 0        | 0,00%    | 0.00    | C        | )           | -0              | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Ara |             | vníva | <u>.</u> | max      | 0.00%    | 5       | 162 801  | 5700886     | 21 1750052815   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|     | μες παραμοι | φuu   | cıS      | min      | -0.07879 | 2       | -102.091 | 0190000     | -21.1759052015  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |             |       |          |          |          |         |          |             |                 | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|     |             |       |          |          |          |         |          |             |                 | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |             |       |          |          |          |         |          |             |                 | 6.00       | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 57: Εισαγωγή δεδομένων άρθρου 6 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για υψηλή αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |        |      |                   |
|-----------|-----------------|-------|-------|----------------------|----------------------------------|-------------------------------------|--------|--------|------------------------------|--------|--------|------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft=ftoIn(1+fc/fco)               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν    | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fc0   | (MPa) | (MPa)                | (MPa)                            | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)   | (KN) | (KN)              |
| Reference | 2.12            | 10.00 | 78.80 | -                    | 4.63                             | 83.43                               | -13.02 | 150.00 | -162.89                      | -80.42 | -82.47 | 0.00 | 0.00              |
| EC        |                 |       |       |                      |                                  |                                     |        |        |                              |        |        |      |                   |
| Specimen  |                 |       |       |                      |                                  |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν    | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                  |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)   | (KN) | (KN)              |
| Reference | -               | -     | -     | -                    | -                                | -                                   | -20.27 | 150.00 | 162.89                       | -80.42 | -82.47 | 0.00 | 0.00              |

## Πίνακας Υπολογισμών 58: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 59: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |        |          |         |         |                                 |                                            |
|--------------------------------------------|----------------|-----------|--------|----------|---------|---------|---------------------------------|--------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{II,2} = F_{c}(1-1/(1+5 f_{l} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                       |
| -46.67                                     | 0.80           | 2.86      | -58.34 | -116.67  | 80.00   | Type II | 97.22                           | 35.38                                      |
| EC                                         |                |           |        |          |         |         |                                 |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf              | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)                            | (KN)                                       |
| -46.93                                     | 0.80           | 2.86      | -58.66 | -117.33  | 80.00   | -       | -                               | -                                          |

|         | Type II  |               |                  |          | at a distance | at a distance |               |        |          |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|---------------|--------|----------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 700.00        | Location 2    |        |          |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | #VALUE!       | Asw           | b      | stirrups | 7.00   |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)         | (mm)   | # 6D / d | # 6D / |
| 80.00   | -30.63   | 0.38          | Επαρκεί          | 280.00   | #VALUE!       | #VALUE!       | 165.26        | 150.00 | 7.00     | 21.00  |
|         |          |               |                  | στο lcr  |               | εκτός lcr     | in the middle |        |          |        |
|         |          |               | medium ductility | διάστημα | number of     | ανά διάστημα  | number of     |        |          |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      | 2*s           | stirrups      |        |          |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    | (mm)          | #8D - 1#8D    |        |          |        |
| 80.00   | -109.99  | 1.37          | 300.00           | 75.00    | 8.00          | 150.00        | 21.00         |        |          |        |
|         |          |               |                  | στο lcr  |               | εκτός lcr     | in the middle |        |          |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     | ανά διάστημα  | number of     |        |          |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      | 2*s           | stirrups      |        |          |        |
| 80.00   | 30.63    | 109.99        | (mm)             | (mm)     | #8D + 1#8D    | (mm)          | #8D - 1#8D    |        |          |        |
|         |          |               | 450.00           | 60.00    | 14.00         | 120.00        | 16.00         |        |          |        |

Πίνακας Υπολογισμών 60: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα VII

Πίνακας Υπολογισμών 61: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path  | AN         | ΤΟΧΉ ΣΕ ΚΑΜΨΗ        |
|-----------|--------------------|------------|----------------------|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ. | Άρθρο:     | [7]                  |
| Δομ.Μέλος | Δοκός              | Μελετητής: | Αχιλλέας Θεοδωρούλης |

|      | Σκυράδουσ    |     |     | λx      | 23        | fcd     | Fc              | Мс             |            |           |        |          |        |
|------|--------------|-----|-----|---------|-----------|---------|-----------------|----------------|------------|-----------|--------|----------|--------|
|      | Ζκυροσεμα    | X   |     | -17.40  | -0.0035   | 65.98   | 229.60          | -30.70         |            |           |        |          |        |
| α/α  | У            | #Φ  | Φ   | As      | εί        | σί      | Fi              | Mi             | x =        | -17.      | 40     |          |        |
| 1    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 2    | 30.00        | 2   | 8   | 100.531 | -4,78%    | -512.00 | -51.4718540364  | -4.8898261335  | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | Τελική α   | ξονική    |        | N =      | 0.00   |
| 4    | 237.00       | 3   | 12  | 339.292 | -0,61%    | -525.00 | -178.1283034585 | -16.9221888286 | Τελική     | ροπή      |        | M =      | -52.51 |
| 5    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 6    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 7    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 8    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | Διαστ. (mm | ו)        |        | Συντ. Α  | σφ.    |
| 9    |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | b=         | 200.00    |        | γc=      | 1.00   |
| 10   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | h=         | 250.00    |        | γs=      | 1.00   |
| 11   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |            |           |        |          |        |
| 12   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1          | Αντοχές ( | MPa)   |          |        |
| 13   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | fck=       | 61.80     | fcd=   | 65.98    |        |
| 14   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | a=         | 1.07      | λ=     | 1.00     |        |
| 15   |              |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aroc |              |     |     | max     | 0.00%     | 5       | 220 600157405   | 21 912014062   | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
| Акрс | μες ι αραμομ | ψωο | εıς | min     | -0.047754 | 2       | -229.000157495  | -21.012014902  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|      |              |     |     |         |           |         |                 |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

10.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fvd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |              | Euro    | ococ | le       |           |         | AN       | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |        |
|-----|--------------|---------|------|----------|-----------|---------|----------|-------------|----------------|------------|-----------|--------|----------|--------|
|     | Σχεδιασμ     | ιού Κ   | ίατα | σκευών Ο | .Σ.       | β       | φθρο:    |             | [7]            |            |           |        |          |        |
| Δ   | ομ.Μέλος     |         |      | Δοκός    |           | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |        |
|     |              |         |      |          |           |         |          |             |                | -          |           |        |          |        |
|     | Σκυράδουσ    |         |      | λx       | 23        | fcd     | F        | с           | Мс             |            |           |        |          |        |
|     | Ζκυροσεμα    | X       |      | -21.85   | -0.0035   | 52.53   | 229      | .60         | -31.21         |            |           |        |          |        |
| α/α | У            | #Φ      | Φ    | As       | εί        | σί      | F        | ï           | Mi             | x=         | -27.      | 32     |          |        |
| 1   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 2   | 30.00        | 2       | 8    | 100.531  | -4,78%    | -512.00 | -51.4718 | 3540364     | -4.8898261335  | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | Τελική (   | άξονική   |        | N =      | 0.00   |
| 4   | 237.00       | 3       | 12   | 339.292  | -0,61%    | -525.00 | -178.128 | 3034585     | -16.9221888286 | Τελική     | ροπή      |        | M =      | -53.02 |
| 5   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 6   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 7   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 8   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | Διαστ. (mr | n)        |        | Συντ. Α  | σφ.    |
| 9   |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | b=         | 200.00    |        | γc=      | 1.00   |
| 10  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | h=         | 250.00    |        | γs=      | 1.00   |
| 11  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            |           |        |          |        |
| 12  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | fck=       | 61.80     | fcd=   | 52.53    |        |
| 14  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15  |              |         |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro | αίες Παραμος | າດທີ່ກາ |      | max      | 0.00%     | 2       | -220 600 | 157/05      | -21 81201/062  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|     | αιες παραμορ | φωυ     | cις  | min      | -0.047754 | 2       | -229.000 | 5157435     | -21.012014302  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |              |         |      |          |           |         |          |             |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|     |              |         |      |          |           |         |          |             |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |              |         |      |          |           |         |          |             |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|     |              |         |      |          |           |         |          |             |                | 7.00       | fyk=      | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 62: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

|          |         | •     |       |                      |                                  |                                     |        |        |                              |        |         |      |                   |
|----------|---------|-------|-------|----------------------|----------------------------------|-------------------------------------|--------|--------|------------------------------|--------|---------|------|-------------------|
| cfp      |         |       |       |                      | για υψηλή αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |         |      |                   |
| Specimen |         |       | fc'   | $f_{ck} = f_{c} - 8$ | ft=ftoln(1+fc/fco)               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID       | f<br>t0 | fc0   | (MPa) | (MPa)                | (MPa)                            | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | 2.12    | 10.00 | 61.80 | -                    | 4.18                             | 65.98                               | -17.40 | 200.00 | -229.60                      | -51.47 | -178.13 | 0.00 | 0.00              |
| EC       |         |       |       |                      |                                  |                                     |        |        |                              |        |         |      |                   |
| Specimen |         |       |       |                      |                                  |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's – Fs = N |
| ID       |         |       |       |                      |                                  |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | -       | -     | -     | -                    | -                                | -                                   | -27.32 | 200.00 | 229.60                       | -51.47 | -178.13 | 0.00 | 0.00              |

### Πίνακας Υπολογισμών 63: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 64: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                    |        |          |         |         |                    |                                            |
|--------------------------------------------|----------------|--------------------|--------|----------|---------|---------|--------------------|--------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                    | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | a <sub>v</sub> / d | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                       |
| -52.51                                     | 1.00           | 4.22               | -52.51 | -52.51   | 45.00   | Type II | 99.05              | -55.23                                     |
| EC                                         |                |                    |        |          |         |         |                    |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                    | Vf     | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | a, / d             | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                       |
| -53.02                                     | 1.00           | 4.22               | -53.02 | -53.02   | 45.00   | -       | -                  | -                                          |

|         | Type II  |                         |                  |               |
|---------|----------|-------------------------|------------------|---------------|
|         |          |                         | Location 1       | Location 2    |
| Pu (KN) | Pf – cfp | P <sub>f-cfp</sub> / Pu | Asw              | Asw           |
| (KN)    | (KN)     | (KN)                    | (mm²)            | (mm²)         |
| 45.00   | -52.51   | 1.17                    | Επαρκεί          | Επαρκεί       |
|         |          |                         |                  | in the middle |
|         |          |                         | medium ductility | number of     |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu | Lcr = h          | stirrups      |
| (KN)    | (KN)     | (KN)                    | (mm)             | #8D - 1#8D    |
| 45.00   | -40.83   | 0.91                    | 250.00           | 23.00         |
|         |          |                         |                  | in the middle |
| Pu      | CPF      | EC                      | high ductility   | number of     |
| (KN)    | (KN)     | (KN)                    | Lcr = 1.5 * h    | stirrups      |
| 45.00   | 52.51    | 40.83                   | (mm)             | #8D - 1#8D    |
|         |          |                         | 375.00           | 19.00         |

Πίνακας Υπολογισμών 65: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα
|      | Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |       |     |          |           | AN      | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH      |                |           |         |        |          |        |
|------|------------------------------------------------------|-------|-----|----------|-----------|---------|-------------|---------|----------------|-----------|---------|--------|----------|--------|
|      | Σχεδιασμ                                             | ιού Κ | ατα | σκευών Ο | ).Σ.      | Ά       | ρθρο:       |         | [7]            |           |         |        |          |        |
| Δα   | ομ.Μέλος                                             |       |     | Δοκός    |           | Με      | λετητής:    | Αχιλλέ  | ας Θεοδωρούλης |           |         |        |          |        |
|      |                                                      |       |     |          |           |         |             |         |                | -         |         |        |          |        |
|      | Σκυρόδουο                                            |       |     | λx       | εc        | fcd     | F           | c       | Мс             |           |         |        |          |        |
|      | Ζκυρουεμο                                            | ۰<br> |     | -26.40   | -0.0035   | 65.98   | 348         | 3.35    | -48.14         |           |         |        |          |        |
| α/α  | У                                                    | #Φ    | Φ   | As       | εi        | σί      | F           | -i      | Mi             | x =       | -26     | .40    |          |        |
| 1    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             |           |         |        |          |        |
| 2    | 30.00                                                | 2     | 8   | 100.531  | -3,27%    | -512.00 | -51.4718    | 8540364 | -4.8898261335  | Νεξωτ     | 0.      | 00     | Διαφορά: | 0.00   |
| 3    | 224.00                                               | 2     | 12  | 226.195  | -0,69%    | -525.00 | -118.752    | 2023057 | 11.281459219   | Τελική    | αξονική |        | N =      | 0.00   |
| 4    | 237.00                                               | 3     | 12  | 339.292  | -0,52%    | -525.00 | -178.128    | 3034585 | -16.9221888286 | Τελικ     | ή ροπή  |        | M =      | -58.67 |
| 5    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             |           |         |        |          |        |
| 6    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             |           |         |        |          |        |
| 7    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             |           |         |        |          |        |
| 8    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             | Διαστ. (n | ım)     |        | Συντ. Α  | σφ.    |
| 9    |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             | b=        | 200.00  |        | γc=      | 1.00   |
| 10   |                                                      |       |     | 0        | 0,00%     | 0.00    | 0           | 0       | -0             | h=        | 250.00  |        | γs=      | 1.00   |
| 11   |                                                      |       |     | 0        | 0,00%     | 0.00    | 0           | 0       | -0             |           |         |        |          |        |
| 12   |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             |           | Αντοχές | (MPa)  |          |        |
| 13   |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             | fck=      | 61.80   | fcd=   | 65.98    |        |
| 14   |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | 0       | -0             | a=        | 1.07    | λ=     | 1.00     |        |
| 15   |                                                      |       |     | 0        | 0,00%     | 0.00    | (           | )       | -0             | 1.0       | 0 fyk=  | 0.00   | fyd=     | 0.00   |
| AKOC |                                                      | າດທຳກ | รเก | max      | 0.00%     | 5       | -348 352    | 3598007 | -10 530555743  | 2.0       | 0 fyk=  | 512.00 | fyd=     | 512.00 |
|      |                                                      | φω0   | uς  | min      | -0.032668 | -       | -0-0.002    |         | -10.00000740   | 3.0       | 0 fyk=  | 525.00 | fyd=     | 525.00 |
|      |                                                      |       |     |          |           |         |             |         | 4.0            | 0 fyk=    | 525.00  | fyd=   | 525.00   |        |

Πίνακας Υπολογισμών 66: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |             |       |      |          |           | ΑΝΤΟΧΗ ΣΕ ΚΑΜΨΗ |           |         | ΨH             |       |                 |          |        |          |        |
|----------------------------------------|-------------|-------|------|----------|-----------|-----------------|-----------|---------|----------------|-------|-----------------|----------|--------|----------|--------|
|                                        | Σχεδιασμ    | ιού Κ | ίατα | σκευών Ο | .Σ.       | Ά               | φθρο:     |         | [7]            |       |                 |          |        |          |        |
| Δ                                      | ομ.Μέλος    |       |      | Δοκός    |           | Με              | λετητής:  | Αχιλλέα | ας Θεοδωρούλης |       |                 |          |        |          |        |
|                                        |             |       |      |          |           |                 |           |         |                |       |                 |          |        |          |        |
|                                        | Σκυρόδουσ   | ~     |      | λx       | εc        | fcd             | Fo        | 0       | Мс             |       |                 |          |        |          |        |
|                                        | Ζκυροσεμα   | ,     |      | -33.16   | -0.0035   | 52.53           | 348       | .35     | -49.32         |       |                 |          |        |          |        |
| α/α                                    | У           | #Ф    | Φ    | As       | εί        | σί              | F         | i       | Mi             | x=    |                 | -41.     | 45     |          |        |
| 1                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       |                 |          |        |          |        |
| 2                                      | 30.00       | 2     | 8    | 100.531  | -3,27%    | -512.00         | -51.4718  | 540364  | -4.8898261335  | Νεξωτ |                 | 0.0      | 00     | Διαφορά: | 0.00   |
| 3                                      | 224.00      | 2     | 12   | 226.195  | -0,69%    | -525.00         | -118.7522 | 2023057 | 11.281459219   | Т     | ελική α         | ξονική   |        | N =      | 0.00   |
| 4                                      | 237.00      | 3     | 12   | 339.292  | -0,52%    | -525.00         | -178.1283 | 3034585 | -16.9221888286 |       | Τελική μ        | οσπή     |        | M =      | -59.85 |
| 5                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       |                 |          |        |          |        |
| 6                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       |                 |          |        |          |        |
| 7                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       |                 |          |        |          |        |
| 8                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             | Διασ  | <b>э</b> т. (mm | )        |        | Συντ. Α  | σφ.    |
| 9                                      |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             | b=    |                 | 200.00   |        | γc=      | 1.00   |
| 10                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         |         | -0             | h=    |                 | 250.00   |        | γs=      | 1.00   |
| 11                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       |                 |          |        |          |        |
| 12                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             |       | A               | ντοχές ( | MPa)   |          |        |
| 13                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             | fck=  |                 | 61.80    | fcd=   | 52.53    |        |
| 14                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         | 1       | -0             | a=    |                 | 0.85     | λ=     | 0.80     |        |
| 15                                     |             |       |      | 0        | 0,00%     | 0.00            | 0         | )       | -0             |       | 1.00            | fyk=     | 0.00   | fyd=     | 0.00   |
| Aro                                    |             | າທຳາ  |      | max      | 0.00%     | 2               | 348 353   | 3508007 | 10 530555743   |       | 2.00            | fyk=     | 512.00 | fyd=     | 512.00 |
| Акр                                    | μες παραμοι | Jψuu  | εις  | min      | -0.032668 | 2               | -340.332  | 5590007 | -10.00000740   |       | 3.00            | fyk=     | 525.00 | fyd=     | 525.00 |
|                                        |             |       |      |          |           |                 |           |         |                |       | 4.00            | fyk=     | 525.00 | fyd=     | 525.00 |
|                                        |             |       |      |          |           |                 |           |         |                |       | 5.00            | fyk=     | 0.00   | fyd=     | 0.00   |
|                                        |             |       |      |          |           |                 |           |         |                |       | 6.00            | fyk=     | 0.00   | fyd=     | 0.00   |
|                                        |             |       |      |          |           |                 |           |         |                |       | 7.00            | fyk=     | 0.00   | fyd=     | 0.00   |
|                                        |             |       |      |          |           |                 |           |         |                |       | 8.00            | fyk=     | 0.00   | fyd=     | 0.00   |
|                                        |             |       |      |          |           |                 |           |         |                |       | 9.00            | fyk=     | 0.00   | fyd=     | 0.00   |
|                                        |             |       |      |          |           |                 |           |         |                |       | 10.00           | fyk=     | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 67: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

| cfp      |                 |       |       |                      | για υψηλή αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |         |      |                   |
|----------|-----------------|-------|-------|----------------------|----------------------------------|-------------------------------------|--------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft=ftoIn(1+fc/fco)               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID       | f <sub>t0</sub> | fc0   | (MPa) | (MPa)                | (MPa)                            | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | 2.12            | 10.00 | 61.80 | -                    | 4.18                             | 65.98                               | -26.40 | 200.00 | -348.35                      | -51.47 | -178.13 | 0.00 | 118.75            |
| EC       |                 |       |       |                      |                                  |                                     |        |        |                              |        |         |      |                   |
| Specimen |                 |       |       |                      |                                  |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's – Fs = N |
| ID       |                 |       |       |                      |                                  |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | -               | -     | -     | -                    | _                                | -                                   | -41.45 | 200.00 | 348.35                       | -51.47 | -178.13 | 0.00 | 118.75            |

# Πίνακας Υπολογισμών 68: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 69: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |              |        |          |         |         |                    |                                                        |
|--------------------------------------------|----------------|--------------|--------|----------|---------|---------|--------------------|--------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_v$     |              | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v^{}$ / d | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                   |
| -58.67                                     | 1.00           | 4.22         | -58.67 | -58.67   | 67.00   | Type II | 99.05              | -83.79                                                 |
| EC                                         |                |              |        |          |         |         |                    |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |              | Vf     | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$    | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                   |
| -59.85                                     | 1.00           | 4.22         | -59.85 | -59.85   | 67.00   | -       | -                  | -                                                      |

|         | Type II  |                         |                  |               |
|---------|----------|-------------------------|------------------|---------------|
|         |          |                         | Location 1       | Location 2    |
| Pu (KN) | Pf – cfp | V <sub>II-cr</sub> / Pu | Asw              | Asw           |
| (KN)    | (KN)     | (KN)                    | (mm²)            | (mm²)         |
| 67.00   | -58.67   | 0.88                    | Επαρκεί          | Επαρκεί       |
|         |          |                         |                  | in the middle |
|         |          |                         | medium ductility | number of     |
| Pu (KN) | Pf-ec2   | P <sub>f-ec2</sub> / Pu | Lcr = h          | stirrups      |
| (KN)    | (KN)     | (KN)                    | (mm)             | #8D - 1#8D    |
| 67.00   | -46.08   | 0.69                    | 250.00           | 23.00         |
|         |          |                         |                  | in the middle |
| Pu      | CPF      | EC                      | high ductility   | number of     |
| (KN)    | (KN)     | (KN)                    | Lcr = 1.5 * h    | stirrups      |
| 67.00   | 58.67    | 46.08                   | (mm)             | #8D - 1#8D    |
|         |          |                         | 375.00           | 19.00         |

Πίνακας Υπολογισμών 70: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

| Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |        |     |         | ΑΝΤΟΧΗ<br>Άρθρο: |         | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH      |                |           |           |        |          |        |
|------------------------------------------------------|-----------------------------------------------|--------|-----|---------|------------------|---------|-------------|---------|----------------|-----------|-----------|--------|----------|--------|
|                                                      | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |        | .Σ. | β       | ρθρο:            |         | [7]         |         |                |           |           |        |          |        |
| Δα                                                   | ομ.Μέλος                                      |        |     | Δοκός   |                  | Με      | λετητής:    | Αχιλλέ  | ας Θεοδωρούλης |           |           |        |          |        |
|                                                      |                                               |        |     |         |                  |         |             |         |                |           |           |        |          |        |
|                                                      | Σκυρόδεικ                                     | ~      |     | λχ      | 23               | fcd     | F           | c       | Мс             |           |           |        |          |        |
|                                                      | Ζκυρουεμα                                     |        |     | -30.90  | -0.0035          | 65.98   | 407         | 7.73    | -57.27         |           | T         |        |          |        |
| α/α                                                  | У                                             | #Φ     | Φ   | As      | εi               | σί      | F           | i       | Mi             | x =       | -30       | .90    |          |        |
| 1                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           |           |        |          |        |
| 2                                                    | 30.00                                         | 2      | 8   | 100.531 | -2,84%           | -512.00 | -51.4718    | 3540364 | -4.8898261335  | Νεξωτ     | 0.0       | 00     | Διαφορά: | 0.00   |
| 3                                                    | 224.00                                        | 3      | 12  | 339.292 | -0,64%           | -525.00 | -178.128    | 3034585 | 16.9221888286  | Τελική    | αξονική   |        | N =      | 0.00   |
| 4                                                    | 237.00                                        | 3      | 12  | 339.292 | -0,50%           | -525.00 | -178.128    | 3034585 | -16.9221888286 | Τελικι    | j ροπή    |        | M =      | -62.15 |
| 5                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           |           |        |          |        |
| 6                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           |           |        |          |        |
| 7                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           |           |        |          |        |
| 8                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | Διαστ. (m | m)        |        | Συντ. Α  | σφ.    |
| 9                                                    |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | b=        | 200.00    |        | γc=      | 1.00   |
| 10                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | h=        | 250.00    |        | γs=      | 1.00   |
| 11                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           |           | -      |          |        |
| 12                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             |           | Αντοχές ( | (MPa)  |          |        |
| 13                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | fck=      | 61.80     | fcd=   | 65.98    |        |
| 14                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | a=        | 1.07      | λ=     | 1.00     |        |
| 15                                                   |                                               |        |     | 0       | 0,00%            | 0.00    | (           | )       | -0             | 1.0       | 0 fyk=    | 0.00   | fyd=     | 0.00   |
| Are                                                  |                                               | ວທູ່ນອ |     | max     | 0.00%            | 7       | 107 720     | 4600525 | 1 0000061005   | 2.0       | 0 fyk=    | 512.00 | fyd=     | 512.00 |
| Акр                                                  | μομαμοι                                       | υψωο   | εις | min     | -0.02842         | 2       | -407.720    | 4009000 | -4.0090201333  | 3.0       | ) fyk=    | 525.00 | fyd=     | 525.00 |
|                                                      |                                               |        |     |         |                  |         |             |         |                | 4.0       | ) fyk=    | 525.00 | fyd=     | 525.00 |
|                                                      |                                               |        |     |         |                  |         |             |         |                | 5.0       | ) fyk=    | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 71: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

11.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

10.00

12.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |           |       |     |          |          | ΑΝΤΟ<br>Άρθρο: |          | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |        |
|----------------------------------------|-----------|-------|-----|----------|----------|----------------|----------|-------------|----------------|------------|-----------|--------|----------|--------|
|                                        | Σχεδιασμ  | ιού Κ | ατα | σκευών Ο | .Σ.      | Ά              | ρθρο:    |             | [7]            |            |           |        |          |        |
| Δ                                      | ομ.Μέλος  |       |     | Δοκός    |          | Μελ            | ∖ετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |        |
|                                        |           |       |     |          |          |                |          |             |                |            |           |        |          |        |
|                                        | Σκυρόδουκ | ~     |     | λx       | 23       | fcd            | F        | c           | Мс             |            |           |        |          |        |
|                                        | Ζκυροσεμα | 1     |     | -38.81   | -0.0035  | 52.53          | 407      | .73         | -58.88         |            |           |        |          |        |
| α/α                                    | У         | #Ф    | Φ   | As       | εi       | σί             | F        | i           | Mi             | x=         | -48.      | .51    |          |        |
| 1                                      |           |       |     | 0        | 0,00%    | 0.00           | 0        | )           | -0             |            |           |        |          |        |
| 2                                      | 30.00     | 2     | 8   | 100.531  | -2,84%   | -512.00        | -51.4718 | 3540364     | -4.8898261335  | Νεξωτ      | 0.0       | 00     | Διαφορά: | 0.00   |
| 3                                      | 224.00    | 3     | 12  | 339.292  | -0,64%   | -525.00        | -178.128 | 3034585     | 16.9221888286  | Τελική α   | αξονική   |        | N =      | 0.00   |
| 4                                      | 237.00    | 3     | 12  | 339.292  | -0,50%   | -525.00        | -178.128 | 3034585     | -16.9221888286 | Τελική     | ροπή      |        | M =      | -63.77 |
| 5                                      |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             |            |           |        |          |        |
| 6                                      |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             |            |           |        |          |        |
| 7                                      |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             |            |           |        |          |        |
| 8                                      |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | Διαστ. (mn | n)        |        | Συντ. Α  | σφ.    |
| 9                                      |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | b=         | 200.00    | 1 [    | γc=      | 1.00   |
| 10                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | h=         | 250.00    |        | γs=      | 1.00   |
| 11                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             |            |           | -      |          | _      |
| 12                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             |            | Αντοχές ( | MPa)   |          |        |
| 13                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | fck=       | 61.80     | fcd=   | 52.53    |        |
| 14                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | a=         | 0.85      | λ=     | 0.80     |        |
| 15                                     |           |       |     | 0        | 0,00%    | 0.00           | (        | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00   |
| Aro                                    |           |       | sic | max      | 0.00%    | 5              | _407 728 | 4600535     | -1 8808261335  | 2.00       | fyk=      | 512.00 | fyd=     | 512.00 |
|                                        |           | φuu   | S   | min      | -0.02842 | <u> </u>       | -407.720 | -003000     | -+.0030201000  | 3.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|                                        |           |       |     |          |          |                |          |             |                | 4.00       | fyk=      | 525.00 | fyd=     | 525.00 |
|                                        |           |       |     |          |          |                |          |             |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00   |
|                                        |           |       |     |          |          |                |          |             |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 72: Εισαγωγή δεδομένων άρθρου 7 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd= fyd=

7.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

fyk=

fyk=

8.00

| cfp      |                 |       |       |                      | για υψηλή αντοχή<br>σκυροδέματος |                                     |        |        |                              |        |         |      |                   |
|----------|-----------------|-------|-------|----------------------|----------------------------------|-------------------------------------|--------|--------|------------------------------|--------|---------|------|-------------------|
| Specimen |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft=ftoIn(1+fc/fco)               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID       | f <sub>t0</sub> | fc0   | (MPa) | (MPa)                | (MPa)                            | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | 2.12            | 10.00 | 61.80 | -                    | 4.18                             | 65.98                               | -30.90 | 200.00 | -407.73                      | -51.47 | -178.13 | 0.00 | 178.13            |
| EC       |                 |       |       |                      |                                  |                                     |        |        |                              |        |         |      |                   |
| Specimen |                 |       |       |                      |                                  |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν    | Fc + F's - Fs = N |
| ID       |                 |       |       |                      |                                  |                                     | (mm)   | (mm)   | (KN)                         | (KN)   | (KN)    | (KN) | (KN)              |
| B1       | -               | -     | -     | -                    | -                                | -                                   | -48.51 | 200.00 | 407.73                       | -51.47 | -178.13 | 0.00 | 178.13            |

Πίνακας Υπολογισμών 73: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 74: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |        |          |         |         |                    |                                                                        |
|--------------------------------------------|----------------|-----------|--------|----------|---------|---------|--------------------|------------------------------------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                                   |
| -62.15                                     | 1.00           | 4.22      | -62.15 | -62.15   | 77.00   | Type II | 99.05              | -98.07                                                                 |
| EC                                         |                |           |        |          |         |         |                    |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf     | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)   | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                                                   |
| -63.77                                     | 1.00           | 4.22      | -63.77 | -63.77   | 77.00   | -       | -                  | -                                                                      |

|         | Type II  |                         |                  |               |
|---------|----------|-------------------------|------------------|---------------|
|         |          |                         | Location 1       | Location 2    |
| Pu (KN) | Pf – cfp | V <sub>II-cr</sub> / Pu | Asw              | Asw           |
| (KN)    | (KN)     | (KN)                    | (mm²)            | (mm²)         |
| 77.00   | -62.15   | 0.81                    | Επαρκεί          | Επαρκεί       |
|         |          |                         |                  | in the middle |
|         |          |                         | medium ductility | number of     |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu | Lcr = h          | stirrups      |
| (KN)    | (KN)     | (KN)                    | (mm)             | #8D - 1#8D    |
| 77.00   | -49.10   | 0.64                    | 250.00           | 23.00         |
|         |          |                         |                  | in the middle |
| Pu      | CPF      | EC                      | high ductility   | number of     |
| (KN)    | (KN)     | (KN)                    | Lcr = 1.5 * h    | stirrups      |
| 77.00   | 62.15    | 49.10                   | (mm)             | #8D - 1#8D    |
|         |          |                         | 375.00           | 19.00         |
|         |          |                         |                  |               |

Πίνακας Υπολογισμών 75: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

# Παράρτημα VIII

Πίνακας Υπολογισμών 76: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path  | AN         | ΤΟΧΉ ΣΕ ΚΑΜΨΗ        |
|-----------|--------------------|------------|----------------------|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ. | Άρθρο:     | [8]                  |
| Δομ.Μέλος | Δοκός              | Μελετητής: | Αχιλλέας Θεοδωρούλης |

|     | Σκυράδου    | ~    |     | λx    | εc      | fcd      | Fc      | Мс    |            |           |      |          |         |
|-----|-------------|------|-----|-------|---------|----------|---------|-------|------------|-----------|------|----------|---------|
|     | Ζκυροσεμι   | u    |     | 70.00 | -0.0035 | 45.54    | -446.26 | 15.62 |            |           |      |          |         |
| α/α | у           | #Φ   | Φ   | As    | εί      | σί       | Fi      | Mi    | x =        | 70.       | 00   |          |         |
| 1   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            |           |      |          |         |
| 2   | 0.00        | 0    | 0   | 0     | 0,00%   | 0.00     | 0       | 0     | Νεξωτ      | 0.0       | 00   | Διαφορά: | #DIV/0! |
| 3   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | Τελική α   | ιξονική   |      | N =      | -446.26 |
| 4   | 0.00        | 0    | 0   | 0     | 0,00%   | 0.00     | 0       | 0     | Τελική     | ροπή      |      | M =      | 15.62   |
| 5   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            |           |      |          |         |
| 6   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            |           |      |          |         |
| 7   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            |           |      |          |         |
| 8   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | Διαστ. (mn | ר)        |      | Συντ. Α  | ωσφ.    |
| 9   |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | b=         | 140.00    |      | γc=      | 1.00    |
| 10  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | h=         | 140.00    |      | γs=      | 1.00    |
| 11  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            |           |      |          |         |
| 12  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    |            | Αντοχές ( | MPa) |          |         |
| 13  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | fck=       | 42.35     | fcd= | 45.54    |         |
| 14  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | a=         | 1.08      | λ=   | 1.00     |         |
| 15  |             |      |     | 0     | 0,00%   | 0.00     | 0       | -0    | 1.00       | fyk=      | 0.00 | fyd=     | 0.00    |
| Are |             | ~~~  |     | max   | 0.00%   | 7        | 0       | 0     | 2.00       | fyk=      | 0.00 | fyd=     | 0.00    |
| Ακρ | αιες παράμο | μφωο | دις | min   | -0.0035 | <u>ک</u> | 0       | U     | 3.00       | fyk=      | 0.00 | fyd=     | 0.00    |
|     |             |      |     |       |         |          |         |       | 4.00       | fvk=      | 0.00 | fvd=     | 0.00    |

5.00

7.00

8.00

10.00

6.00 fyk=

9.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode<br>Σχεδιασμού Κατασκειιών Ο Σ |              |       |     |          |         |       | ΑΝΤΟΧΗ ΣΕ ΚΑ   |                  |            |            |      |          |         |
|----------------------------------------|--------------|-------|-----|----------|---------|-------|----------------|------------------|------------|------------|------|----------|---------|
|                                        | Σχεδιασμ     | ιού Κ | άτα | σκευών Ο | .Σ.     | Ά     | ρθρο:          | [8]              |            |            |      |          |         |
| Δ                                      | ομ.Μέλος     |       |     | Δοκός    |         | Mε    | λετητής: Αχιλλ | ∖έας Θεοδωρούλης |            |            |      |          |         |
|                                        |              |       |     |          |         |       |                |                  | _          |            |      |          |         |
|                                        | Σκυρόδευς    |       |     | λx       | 23      | fcd   | Fc             | Мс               |            |            |      |          |         |
|                                        | Ζκυρουεμα    |       |     | 56.00    | -0.0035 | 36.00 | -282.22        | 11.85            |            |            |      |          |         |
| α/α                                    | У            | #Φ    | Φ   | As       | εί      | σί    | Fi             | Mi               | x=         | 70.0       | 00   |          |         |
| 1                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            |            |      |          |         |
| 2                                      | 0.00         | 0     | 0   | 0        | 0,00%   | 0.00  | 0              | 0                | Νεξωτ      | 0.0        | 0    | Διαφορά: | #DIV/0! |
| 3                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | Τελική ο   | ιξονική    |      | N =      | -282.22 |
| 4                                      | 0.00         | 0     | 0   | 0        | 0,00%   | 0.00  | 0              | 0                | Τελική     | ροπή       |      | M =      | 11.85   |
| 5                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            |            |      |          |         |
| 6                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            |            |      |          |         |
| 7                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            |            |      |          |         |
| 8                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | Διαστ. (mm | า)         |      | Συντ. Α  | ωσφ.    |
| 9                                      |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | b=         | 140.00     |      | γc=      | 1.00    |
| 10                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | h=         | 140.00     |      | γs=      | 1.00    |
| 11                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            |            |      |          | _       |
| 12                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               |            | Αντοχές (Ι | MPa) |          |         |
| 13                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | fck=       | 42.35      | fcd= | 36.00    |         |
| 14                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | a=         | 0.85       | λ=   | 0.80     |         |
| 15                                     |              |       |     | 0        | 0,00%   | 0.00  | 0              | -0               | 1.00       | fyk=       | 0.00 | fyd=     | 0.00    |
| Aro                                    |              |       |     | max      | 0.00%   | 2     | 0              | 0                | 2.00       | fyk=       | 0.00 | fyd=     | 0.00    |
| Акр                                    | μιες παραμομ | φωυ   | εıς | min      | -0.0035 | 2     | 0              | 0                | 3.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 4.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 5.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 6.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 7.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 8.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 9.00       | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 10.00      | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 11.00      | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 12.00      | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 13.00      | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       |                |                  | 14.00      | fyk=       | 0.00 | fyd=     | 0.00    |
|                                        |              |       |     |          |         |       | 15.00          | fyk=             | 0.00       | fyd=       | 0.00 |          |         |

## Πίνακας Υπολογισμών 77: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |       |        |                              |      |      |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|-------|--------|------------------------------|------|------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х     | b      | $F_{c} = xb\sigma_{a}$       | F's  | Fs   | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)  | (mm)   | (KN)                         | (KN) | (KN) | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 42.35 | 34.35                | 3.19                                | 45.54                               | 70.00 | 140.00 | 446.26                       | 0.00 | 0.00 | -446.26 | -446.26           |
| EC        |                 |       |       |                      |                                     |                                     |       |        |                              |      |      |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х     | b      | $F_{c} = \lambda x b f_{cd}$ | F's  | Fs   | Ν       | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)  | (mm)   | (KN)                         | (KN) | (KN) | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | 70.00 | 140.00 | -282.22                      | 0.00 | 0.00 | -282.22 | -282.22           |

Πίνακας Υπολογισμών 78: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 79: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |       |          |         |        |
|--------------------------------------------|----------------|----------------|-------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |                | Vf    | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)  | (KN)     | (KN)    | Туре   |
| 15.62                                      | 0.71           | 5.07           | 22.00 | 44.00    | 2.68    | Type I |
| EC                                         |                |                |       |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf    | Pf-ec2   | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$      | (KN)  | (KN)     | (KN)    | Туре   |
| 11.85                                      | 0.71           | 5.07           | 16.69 | 33.39    | 2.68    | -      |

Πίνακας Υπολογισμών 80: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|         | Турет             |                         |
|---------|-------------------|-------------------------|
| Pu (KN) | V <sub>I-cr</sub> | V <sub>I-cr</sub> / Pu  |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 22.00             | 8.22                    |
|         |                   |                         |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu      | CPF               | EC                      |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 2.68    | 16.69             | 6.24                    |
| Pu      | CPF               | EC                      |
| (KN)    | (KN)              | (KN)                    |

| Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |       |       |       |         |       |          |        |                |          |           |       |          |         |
|------------------------------------------------------|-----------------------------------------------|-------|-------|-------|---------|-------|----------|--------|----------------|----------|-----------|-------|----------|---------|
|                                                      | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |       |       |       |         | Ά     | φθρο:    |        | [8]            |          |           |       |          |         |
| Δ                                                    | ομ.Μέλος                                      |       |       | Δοκός |         | Με    | λετητής: | Αχιλλέ | ας Θεοδωρούλης |          |           |       |          |         |
|                                                      |                                               |       |       |       |         |       |          |        |                |          |           |       |          |         |
|                                                      | Σκυράδουρ                                     |       |       | λx    | εc      | fcd   | F        | с      | Мс             |          |           |       |          |         |
|                                                      | Ζκυροσεμο                                     |       |       | 70.00 | -0.0035 | 45.54 | -446     | 6.26   | 15.62          |          |           |       |          |         |
| α/α                                                  | У                                             | #Φ    | Φ     | As    | εί      | σi    | F        | ï      | Mi             | x =      | 70        | 0.00  |          |         |
| 1                                                    |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             |          |           |       |          |         |
| 2                                                    |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | 0              | Νεξωτ    | 0         | .00   | Διαφορά: | #DIV/0! |
| 3                                                    |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             | Τελικ    | ή αξονική |       | N =      | -446.26 |
| 4 0                                                  |                                               | 0     | 0,00% | 0.00  | C       | )     | 0        | Τελι   | κή ροπή        |          | M =       | 15.62 |          |         |
| 5                                                    | 5 0 0,0                                       |       |       | 0,00% | 0.00    | C     | )        | -0     |                |          |           |       |          |         |
| 6 0 0,                                               |                                               | 0,00% | 0.00  | C     | )       | -0    |          |        |                |          |           |       |          |         |
| 7                                                    | 7 0 0                                         |       |       | 0,00% | 0.00    | C     | )        | -0     |                |          |           |       |          |         |
| 8                                                    |                                               |       |       | 0     | 0,00%   | 0.00  | 0        |        | -0             | Διαστ. ( | nm)       |       | Συντ. Α  | ωσφ.    |
| 9                                                    |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             | b=       | b= 140.00 |       | γc=      | 1.00    |
| 10                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | 0        |        | -0             | h=       | 140.00    | )     | γs=      | 1.00    |
| 11                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | 0        |        | -0             |          |           |       | <u> </u> |         |
| 12                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             |          | Αντοχές   | (MPa) |          | ]       |
| 13                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             | fck=     | 42.35     | fcd=  | 45.54    | 1       |
| 14                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             | a=       | 1.08      | λ=    | 1.00     | 1       |
| 15                                                   |                                               |       |       | 0     | 0,00%   | 0.00  | C        | )      | -0             | 1.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
| A                                                    |                                               |       |       | max   | 0.00%   | ~     |          |        | 0              | 2.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
| Ακρ                                                  | αιες ι ιαραμορ                                | φωο   | εις   | min   | -0.0035 | 2     | L L      | )      | 0              | 3.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 4.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 5.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 6.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 7.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 8.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 9.       | 00 fyk=   | 0.00  | fyd=     | 0.00    |
|                                                      |                                               |       |       |       |         |       |          |        |                | 10.      | 00 fyk=   | 0.00  | fyd=     | 0.00    |

Πίνακας Υπολογισμών 81: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

| Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ.        |               |     |     |       |         | ΑΝΤΟΧΗ ΣΕ ΚΑΜΨΗ |          |         |                |               |            |      |          |         |
|-----------------------------------------------|---------------|-----|-----|-------|---------|-----------------|----------|---------|----------------|---------------|------------|------|----------|---------|
| Σχεδιασμού Κατασκευών Ο.Σ.<br>Λου Μέλος Δοκός |               |     |     |       | .Σ.     | Ά               | φθρο:    |         | [8]            |               |            |      |          |         |
| Δ                                             | ομ.Μέλος      |     |     | Δοκός |         | Mε              | λετητής: | Αχιλλέα | ας Θεοδωρούλης | 1             |            |      |          |         |
|                                               |               |     |     |       |         |                 |          |         |                | _             |            |      |          |         |
|                                               | Σκυρόδευσ     | ,   |     | λx    | 23      | fcd             | Fc       |         | Мс             |               |            |      |          |         |
|                                               | Ζκυρουεμα     |     |     | 56.00 | -0.0035 | 36.00           | -282.22  |         | 11.85          |               |            |      |          |         |
| α/α                                           | У             | #Φ  | Φ   | As    | εί      | σί              | Fi       |         | Mi             | x=            | 70.        | 00   |          |         |
| 1                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               |            |      |          |         |
| 2                                             | 0.00          | 0   | 0   | 0     | 0,00%   | 0.00            | 0        |         | 0              | Νεξωτ         | 0.0        | 0    | Διαφορά: | #DIV/0! |
| 3                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | Τελική αξονκή |            |      | N =      | -282.22 |
| 4                                             | 0.00          | 0   | 0   | 0     | 0,00%   | 0.00            | 0        |         | 0              | Τελική        | ροπή       |      | M =      | 11.85   |
| 5                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               |            |      |          |         |
| 6                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               |            |      |          |         |
| 7                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               |            |      |          |         |
| 8                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | Διαστ. (mm    | ו)         |      | Συντ. Α  | σφ.     |
| 9                                             |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | b=            | 140.00     |      | γc=      | 1.00    |
| 10                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | h=            | 140.00     |      | γs=      | 1.00    |
| 11                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               |            |      |          |         |
| 12                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             |               | Αντοχές (Ι | MPa) |          |         |
| 13                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | fck=          | 42.35      | fcd= | 36.00    |         |
| 14                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | a=            | 0.85       | λ=   | 0.80     |         |
| 15                                            |               |     |     | 0     | 0,00%   | 0.00            | 0        |         | -0             | 1.00          | fyk=       | 0.00 | fyd=     | 0.00    |
| ٨٢٥                                           | αίες Παραμορ  |     |     | max   | 0.00%   | 2               | 0        |         | 0              | 2.00          | fyk=       | 0.00 | fyd=     | 0.00    |
| Акр                                           | αιες Γιαραμορ | φωυ | sις | min   | -0.0035 | 2               | 0        |         | 0              | 3.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 4.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 5.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 6.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 7.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 8.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 9.00          | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 10.00         | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 11.00         | fyk=       | 0.00 | fyd=     | 0.00    |
|                                               |               |     |     |       |         |                 |          |         |                | 12.00         | fyk=       | 0.00 | fyd=     | 0.00    |

Πίνακας Υπολογισμών 82: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

13.00 fyk=

14.00 fyk= 15.00 fyk=

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |       |        |                              |      |      |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|-------|--------|------------------------------|------|------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х     | b      | $F_{c} = xb\sigma_{a}$       | F's  | Fs   | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)  | (mm)   | (KN)                         | (KN) | (KN) | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 42.35 | 34.35                | 3.19                                | 45.54                               | 70.00 | 140.00 | 446.26                       | 0.00 | 0.00 | -446.26 | -446.26           |
| EC        |                 |       |       |                      |                                     |                                     |       |        |                              |      |      |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х     | b      | $F_{c} = \lambda x b f_{cd}$ | F's  | Fs   | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)  | (mm)   | (KN)                         | (KN) | (KN) | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | 70.00 | 140.00 | -282.22                      | 0.00 | 0.00 | -282.22 | -282.22           |

Πίνακας Υπολογισμών 83: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 84: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |              |           |       |          |         |         |                    |                                            |
|--------------------------------------------|--------------|-----------|-------|----------|---------|---------|--------------------|--------------------------------------------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |           | Vf    | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m            | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                       |
| 15.62                                      | 0.47         | 3.38      | 33.00 | 66.00    | 3.98    | Type II | 31.23              | 115.69                                     |
| EC                                         |              |           |       |          |         |         |                    |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$ |           | Vf    | Pf-ec2   | Pu (KN) |         | $V_{II,1}$ =0.5bdf | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m            | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре    | (KN)               | (KN)                                       |
| 11.85                                      | 0.47         | 3.38      | 25.04 | 50.08    | 3.98    | -       | -                  | -                                          |

|         | Type II  |               |                  |          | at a distance | at a distance |            |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|
|         |          |               | Location 1       |          | 2.5*d         | 350.00        | Location 2 |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 3.00          | Asw        |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      |
| 3.98    | 3.21     | 0.81          | 60.00            | 140.00   | 3.00          | 46.00         | Επαρκεί    |
|         |          |               |                  | στο lcr  |               |               |            |
|         |          |               | medium ductility | διάστημα | number of     |               |            |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      |               |            |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |
| 3.98    | 1.85     | 0.47          | 140.00           | 35.00    | 6.00          | -             | -          |
|         |          |               |                  | στο lcr  |               |               |            |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |
| 3.98    | 3.21     | 1.85          | (mm)             | (mm)     | #8D + 1#8D    |               |            |
|         |          |               | 210.00           | 35.00    | 10.00         | -             | -          |

Πίνακας Υπολογισμών 85: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

| Compressive Force Path             |                                  |    |           |          |             |                 |          |         |                |                  |           |        |          |        |
|------------------------------------|----------------------------------|----|-----------|----------|-------------|-----------------|----------|---------|----------------|------------------|-----------|--------|----------|--------|
| Σχεδιασμού Κατασκευών Ο.Σ.         |                                  |    |           |          | ).Σ.        | Ά               | ρθρο:    |         | [8]            |                  |           |        |          |        |
| Δα                                 | ομ.Μέλος                         |    |           | Δοκός    | -           | Μελ             | λετητής: | Αχιλλέα | ας Θεοδωρούλης |                  |           |        |          |        |
|                                    |                                  |    |           |          |             |                 |          |         |                | -                |           |        |          |        |
|                                    | Σκυράδουσ                        |    |           | λx       | εc          | fcd             | F        | c       | Мс             | Νεξωτ            | 0.0       | 00     |          |        |
|                                    | Ζκυροσεμα                        | 4  |           | -6.43    | -0.0035     | 45.54           | 40.      | .99     | -3.00          | x =              | -2.1      | 17     |          |        |
| α/α                                | У                                | #Ф | Φ         | As       | εί          | σί              | F        | -i      | Mi             | x <sub>N</sub> = | -6.4      | 43     |          |        |
| 1                                  |                                  |    |           | 0        | 0,00%       | 0.00            | (        | )       | -0             |                  |           |        |          |        |
| 2                                  | 0.00                             | 0  | 0         | 0        | 0,00%       | 0.00            | (        | )       | 0              | Νεξωτ            | 27.       | 17     | Διαφορά: | 0.00   |
| 3                                  | 90.00                            | 1  | 4         | 12.5664  | -3,07%      | -550.00         | -6.9115  | 6038379 | 0.4838052687   | Τελική α         | άξονική   |        | N =      | 27.17  |
| 4                                  | 110.00                           | 1  | 4         | 12.5664  | -1,98%      | -550.00         | -6.9115  | 6038379 | -0.4838052687  | Τελική           | ροπή      |        | M =      | -3.00  |
| 5                                  |                                  |    |           | 0        | 0,00%       | 0.00            | (        | )       | -0             |                  |           |        |          |        |
| 6                                  |                                  |    |           | 0        | 0,00%       | 0.00            | (        | 0       | -0             |                  |           |        |          |        |
| 7                                  |                                  |    |           | 0        | 0,00%       | 0.00            | 0        | 0       | -0             |                  |           | . –    |          |        |
| 8                                  |                                  |    |           | 0        | 0,00%       | 0.00            | 0        | 0       | -0             | Διαστ. (mn       | <u>1)</u> |        | Συντ. Α  | σφ.    |
| 9                                  |                                  |    |           | 0        | 0,00%       | 0.00            | (        | 2       | -0             | b=               | 140.00    |        | γc=      | 1.00   |
| 10                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | 0       | -0             | h=               | 140.00    |        | γs=      | 1.00   |
| 11                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | 2       | -0             |                  |           |        |          |        |
| 12                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | כ       | -0             |                  | Αντοχές ( | MPa)   |          |        |
| 13                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | 0       | -0             | fck=             | 42.35     | fcd=   | 45.54    |        |
| 14                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | D       | -0             | a=               | 1.08      | λ=     | 1.00     |        |
| 15                                 |                                  |    |           | 0        | 0,00%       | 0.00            | (        | D       | -0             | 1.00 fyk= 0.00   |           |        | fyd=     | 0.00   |
| Aron                               | Arogisc Egoguoogrigsic max 0.00% |    |           | 0.00%    | 5 13 823007 | 12 8220076758 0 | 2.00     | fyk=    | 0.00           | fyd=             | 0.00      |        |          |        |
| Ακραίες Γιαραμορφώσεις min -0.0307 |                                  |    | -0.030716 | <u> </u> | -15.0250    | 0010100         | U        | 3.00    | fyk=           | 550.00           | fyd=      | 550.00 |          |        |
|                                    |                                  |    |           |          |             |                 |          |         |                | 4.00             | fyk=      | 550.00 | fyd=     | 550.00 |

Πίνακας Υπολογισμών 86: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Ευrocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                            |     |     |         |           |         |          |        |                |                |           |        |          |        |
|----------------------------------------|----------------------------|-----|-----|---------|-----------|---------|----------|--------|----------------|----------------|-----------|--------|----------|--------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ. |     |     |         |           | Ά       | ρθρο:    |        | [8]            |                |           |        |          |        |
| Δ                                      | ομ.Μέλος                   |     |     | Δοκός   |           | Με      | λετητής: | Αχιλλέ | ας Θεοδωρούλης |                |           |        |          |        |
|                                        |                            |     |     |         |           |         |          |        |                |                |           |        |          |        |
|                                        | Σιμοάδομο                  |     |     | λx      | 23        | fcd     | F        | с      | Мс             |                |           |        |          |        |
|                                        | Ζκυροσεμο                  | I   |     | -8.13   | -0.0035   | 36.00   | 40.      | 99     | -3.04          | ]              |           |        |          |        |
| α/α                                    | У                          | #Φ  | Φ   | As      | εί        | σί      | F        | ï      | Mi             | x =            | -10       | .17    |          |        |
| 1                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             |                |           |        |          |        |
| 2                                      | 0.00                       | 0   | 0   | 0       | 0,00%     | 0.00    | C        | )      | 0              | Νεξωτ          | 27.       | 17     | Διαφορά: | 0.00   |
| 3                                      | 90.00                      | 1   | 4   | 12.5664 | -3,07%    | -550.00 | -6.9115  | 038379 | 0.4838052687   | Τελική αξονική |           |        | N =      | 27.17  |
| 4                                      | 110.00                     | 1   | 4   | 12.5664 | -1,98%    | -550.00 | -6.9115  | 038379 | -0.4838052687  | Τελική         | ροπή      |        | M =      | -3.04  |
| 5                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             |                |           |        |          |        |
| 6                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | ]              |           |        |          |        |
| 7                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             |                |           |        |          |        |
| 8                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | Διαστ. (m      | m)        |        | Συντ. Α  | σφ.    |
| 9                                      |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | b=             | 140.00    | 1      | γc=      | 1.00   |
| 10                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | h=             | 140.00    |        | γs=      | 1.00   |
| 11                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             |                |           |        |          |        |
| 12                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             |                | Αντοχές ( | MPa)   |          |        |
| 13                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | fck=           | 42.35     | fcd=   | 36.00    |        |
| 14                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | a=             | 0.85      | λ=     | 0.80     |        |
| 15                                     |                            |     |     | 0       | 0,00%     | 0.00    | C        | )      | -0             | 1.00           | 0 fyk=    | 0.00   | fyd=     | 0.00   |
| Aro                                    | αίες Παραμος               |     |     | max     | 0.00%     | 7       | 13 8230  | 076758 | 0              | 2.00           | ) fyk=    | 0.00   | fyd=     | 0.00   |
| Акр                                    | αιες παραμομ               | φωυ | εıς | min     | -0.030716 | 2       | -13.0230 | 010130 | 0              | 3.00           | 0 fyk=    | 550.00 | fyd=     | 550.00 |
|                                        |                            |     |     |         |           |         |          |        |                | 4.00           | ) fyk=    | 550.00 | fyd=     | 550.00 |
|                                        |                            |     |     |         |           |         |          |        |                | 5.0            | ) fyk=    | 0.00   | fyd=     | 0.00   |
|                                        |                            |     |     |         |           |         |          |        |                | 6.0            | ) fyk=    | 0.00   | fyd=     | 0.00   |
|                                        |                            |     |     |         |           |         |          |        |                | 7.0            | ) fyk=    | 0.00   | fyd=     | 0.00   |

# Πίνακας Υπολογισμών 87: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| -         |                 | -     |       |                      |                                     |                                     | -      | •      |                              | -    |       | •     |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|--------|--------|------------------------------|------|-------|-------|-------------------|
| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |        |        |                              |      |       |       |                   |
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's  | Fs    | Ν     | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN) | (KN)  | (KN)  | (KN)              |
| Reference | 1.40            | 10.00 | 42.35 | 34.35                | 3.19                                | 45.54                               | -6.43  | 140.00 | -40.99                       | 0.00 | -6.91 | 27.17 | 34.08             |
| EC        |                 |       |       |                      |                                     |                                     |        |        |                              |      |       |       |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's  | Fs    | Ν     | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)   | (mm)   | (KN)                         | (KN) | (KN)  | (KN)  | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -10.17 | 140.00 | 40.99                        | 0.00 | -6.91 | 27.17 | 34.08             |

Πίνακας Υπολογισμών 88: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 89: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |       |          |         |        |
|--------------------------------------------|----------------|-----------|-------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sub>v</sub> |           | Vf    | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре   |
| -3.00                                      | 0.71           | 5.07      | -4.23 | -8.45    | 4.62    | Type I |
| EC                                         |                |           |       |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf    | Pf-ec2   | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре   |
| -3.04                                      | 0.71           | 5.07      | -4.28 | -8.55    | 4.62    | -      |

Πίνακας Υπολογισμών 90: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|         | Type I            |                         |
|---------|-------------------|-------------------------|
| Pu (KN) | V <sub>I-cr</sub> | V <sub>I-cr</sub> / Pu  |
| (KN)    | (KN)              | (KN)                    |
| 4.62    | -4.23             | 0.91                    |
|         |                   |                         |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 4.62    | -4.28             | 0.93                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 4.62    | -4.28             | 0.93                    |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 4.62    | -4.28             | 0.93                    |
| Pu      | CPF               | EC                      |
| Pu (KN) | Pf – ec2          | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)              | (KN)                    |
| 4.62    | -4.28             | 0.93                    |
| Pu      | CPF               | EC                      |
| (KN)    | (KN)              | (KN)                    |

| Compressive Force Path |           |       |     | ΑΝΤΟΧΗ ΣΕ ΚΑΜΨΗ |           |          |          |         |                |                  |           |           |        |          |        |
|------------------------|-----------|-------|-----|-----------------|-----------|----------|----------|---------|----------------|------------------|-----------|-----------|--------|----------|--------|
|                        | Σχεδιασμ  | ιού Κ | άτα | σκευών Ο        | ).Σ.      | Ά        | φθρο:    |         | [8]            |                  |           |           |        |          |        |
| Δα                     | ομ.Μέλος  |       |     | Δοκός           |           | Μελ      | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |                  |           |           |        |          |        |
|                        |           |       |     |                 |           |          |          |         |                |                  |           |           |        |          |        |
|                        | Σκυράδουκ |       |     | λx              | 23        | fcd      | F        | c       | Мс             | Νεξωτ            |           | 0.0       | 00     |          |        |
|                        | Ζκυροσεμα | X     |     | -6.43           | -0.0035   | 45.54    | 40       | .99     | -3.00          | x =              | x = -2.17 |           | 17     |          |        |
| α/α                    | У         | #Φ    | Φ   | As              | εί        | σi       | F        | -i      | Mi             | x <sub>N</sub> = |           | -6.       | 43     |          |        |
| 1                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  |           |           |        |          |        |
| 2                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | 0              | Νεξωτ            |           | 27.       | 17     | Διαφορά: | 0.00   |
| 3                      | 90.00     | 1     | 4   | 12.5664         | -3,07%    | -550.00  | -6.9115  | 5038379 | 0.4838052687   | Τελ              | ική α     | ξονική    |        | N =      | 27.17  |
| 4                      | 110.00    | 1     | 4   | 12.5664         | -1,98%    | -550.00  | -6.9115  | 5038379 | -0.4838052687  | Tε               | :λική     | ροπή      |        | M =      | -3.00  |
| 5                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  |           |           |        |          |        |
| 6                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  |           |           |        |          |        |
| 7                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  |           |           |        |          |        |
| 8                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             | Διαστ            | . (mm     | ı)        |        | Συντ. Α  | σφ.    |
| 9                      |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             | b=               |           | 140.00    |        | γc=      | 1.00   |
| 10                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             | h=               |           | 140.00    |        | γs=      | 1.00   |
| 11                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  |           |           |        |          |        |
| 12                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  | A         | Αντοχές ( | MPa)   |          |        |
| 13                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             | fck=             |           | 42.35     | fcd=   | 45.54    |        |
| 14                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             | a=               |           | 1.08      | λ=     | 1.00     |        |
| 15                     |           |       |     | 0               | 0,00%     | 0.00     | (        | 0       | -0             |                  | 1.00      | fyk=      | 0.00   | fyd=     | 0.00   |
| Aroc                   |           |       |     | max             | 0.00%     | 2        | -13 823  | 0076758 | 0              |                  | 2.00      | fyk=      | 0.00   | fyd=     | 0.00   |
| Ακρι                   |           | φωυ   | εıς | min             | -0.030716 | <u>ک</u> | -15.6250 | 0010130 | 3.00 fyk= 550. |                  | 550.00    | fyd=      | 550.00 |          |        |
|                        |           |       |     |                 |           |          |          |         |                |                  | 4.00      | fyk=      | 550.00 | fyd=     | 550.00 |
|                        |           |       |     |                 |           |          |          |         |                |                  | 5.00      | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 91: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode ANTOXH ΣΕ ΚΑΜΨΗ |              |       |     | _        |           |         |            |        |                |            |         |        |          |        |
|--------------------------|--------------|-------|-----|----------|-----------|---------|------------|--------|----------------|------------|---------|--------|----------|--------|
|                          | Σχεδιασμ     | ιού Κ | ατα | σκευών Ο | .Σ.       | Ά       | Άρθρο: [8] |        |                |            |         |        |          |        |
| Δ                        | ομ.Μέλος     |       |     | Δοκός    |           | Με      | λετητής:   | Αχιλλέ | ας Θεοδωρούλης |            |         |        |          |        |
|                          |              |       |     |          |           |         |            |        |                | -          |         |        |          |        |
|                          | Σκυράδουσ    |       |     | λx       | 23        | fcd     | F          | с      | Мс             |            |         |        |          |        |
|                          | Ζκυροσεμα    | X     |     | -8.13    | -0.0035   | 36.00   | 40.99      |        | -3.04          |            |         |        |          |        |
| α/α                      | У            | #Φ    | Φ   | As       | εi        | σί      | Fi         |        | Mi             | x = -10.17 |         |        |          |        |
| 1                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            |         |        |          |        |
| 2                        | 0.00         | 0     | 0   | 0        | 0,00%     | 0.00    | (          | )      | 0              | Νεξωτ      | 27      | .17    | Διαφορά: | 0.00   |
| 3                        | 90.00        | 1     | 4   | 12.5664  | -3,07%    | -550.00 | -6.9115    | 038379 | 0.4838052687   | Τελική     | αξονική |        | N =      | 27.17  |
| 4                        | 110.00       | 1     | 4   | 12.5664  | -1,98%    | -550.00 | -6.9115    | 038379 | -0.4838052687  | Τελικ      | ή ροπή  |        | M =      | -3.04  |
| 5                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            |         |        |          |        |
| 6                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            |         |        |          |        |
| 7                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            |         |        |          |        |
| 8                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | Διαστ. (n  | וm)     | ] [    | Συντ. Α  | .σφ.   |
| 9                        |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | b=         | 140.00  |        | γc=      | 1.00   |
| 10                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | h=         | 140.00  |        | γs=      | 1.00   |
| 11                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            |         |        |          | _      |
| 12                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             |            | Αντοχές | (MPa)  |          |        |
| 13                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | fck=       | 42.35   | fcd=   | 36.00    |        |
| 14                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | a=         | 0.85    | λ=     | 0.80     |        |
| 15                       |              |       |     | 0        | 0,00%     | 0.00    | (          | )      | -0             | 1.0        | 0 fyk=  | 0.00   | fyd=     | 0.00   |
| Aro                      |              |       |     | max      | 0.00%     | ~       | 12 000     | 076759 | 0              | 2.0        | 0 fyk=  | 0.00   | fyd=     | 0.00   |
| Акр                      | αιες παραμομ | φωυ   | εις | min      | -0.030716 | 2       | -13.0230   | 070756 | 0              | 3.0        | 0 fyk=  | 550.00 | fyd=     | 550.00 |
|                          |              |       |     |          |           |         |            |        |                | 4.0        | 0 fyk=  | 550.00 | fyd=     | 550.00 |
|                          |              |       |     |          |           |         |            |        |                | 5.0        | 0 fyk=  | 0.00   | fyd=     | 0.00   |
|                          |              |       |     |          |           |         |            |        |                | 6.0        | 0 fyk=  | 0.00   | fyd=     | 0.00   |

#### Πίνακας Υπολογισμών 92: Εισαγωγή δεδομένων άρθρου 8 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Ευρωκώδικα

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

fyk=

12.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                   |      |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |        |        |                              |      |       |       |                   |
|-----------|-------------------|------|-------|----------------------|-------------------------------------|-------------------------------------|--------|--------|------------------------------|------|-------|-------|-------------------|
| Specimen  |                   |      | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х      | b      | $F_{c} = xb\sigma_{a}$       | F's  | Fs    | Ν     | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> · | fck0 | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)   | (mm)   | (KN)                         | (KN) | (KN)  | (KN)  | (KN)              |
| Reference | 1.40 1            | 0.00 | 42.35 | 34.35                | 3.19                                | 45.54                               | -6.43  | 140.00 | -40.99                       | 0.00 | -6.91 | 27.17 | 34.08             |
| EC        |                   |      |       |                      |                                     |                                     |        |        |                              |      |       |       |                   |
| Specimen  |                   |      |       |                      |                                     |                                     | х      | b      | $F_{c} = \lambda x b f_{cd}$ | F's  | Fs    | Ν     | Fc + F's - Fs = N |
| ID        |                   |      |       |                      |                                     |                                     | (mm)   | (mm)   | (KN)                         | (KN) | (KN)  | (KN)  | (KN)              |
| Reference | -                 | -    | -     | -                    | -                                   | -                                   | -10.17 | 140.00 | 40.99                        | 0.00 | -6.91 | 27.17 | 34.08             |

# Πίνακας Υπολογισμών 93: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 94: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |       |          |         |         | $k=(h-x)/(h-x_N)$       |                                                        |
|--------------------------------------------|----------------|-----------|-------|----------|---------|---------|-------------------------|--------------------------------------------------------|
| cfp                                        |                |           |       |          |         |         | 0.97                    |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf    | Pf – cfp | Pu (KN) |         | $V_{II,1} = k*0.5bdf_t$ | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                                   |
| -3.00                                      | 0.47           | 3.38      | -6.34 | -12.68   | 6.79    | Type II | 23.83                   | -10.63                                                 |
|                                            |                |           |       |          |         |         |                         |                                                        |
| EC                                         |                |           |       |          |         |         |                         |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf    | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf      | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)  | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                                   |
| -3.04                                      | 0.47           | 3.38      | -6.41 | -12.83   | 6.79    | -       | -                       | -                                                      |

| r invarias r hologic para 35. Zograpicija norelecta para pačera na novezava obvočni pav gla nije Ocaspia 1.0.2. kal tog Lop |
|-----------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------|

|         | Type II  |               |                  |            |
|---------|----------|---------------|------------------|------------|
|         |          |               | Location 1       | Location 2 |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | Asw        |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm²)      |
| 6.79    | -6.34    | 0.93          | Επαρκεί          | Επαρκεί    |
|         |          |               |                  | στο lcr    |
|         |          |               | medium ductility | διάστημα   |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | S          |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)       |
| 6.79    | -0.47    | 0.07          | 140.00           | 35.00      |
|         |          |               |                  | στο lcr    |
| Pu      | CPF      | EC            | high ductility   | διάστημα   |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S          |
| 6.79    | 6.34     | 0.47          | (mm)             | (mm)       |
|         |          |               | 210.00           | 24.00      |

# Παράρτημα ΙΧ

Πίνακας Υπολογισμών 96: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | Compressive Force Path ANTOXH ΣΕ ΚΑΜΨΗ |            |                      |  |  |  |  |
|-----------|----------------------------------------|------------|----------------------|--|--|--|--|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ.                     | Άρθρο:     | [9]                  |  |  |  |  |
| Δομ.Μέλος | Δοκός                                  | Μελετητής: | Αχιλλέας Θεοδωρούλης |  |  |  |  |

|     |                |     |     |         |           | ,       |                 |                |                  |           |        |          |         |
|-----|----------------|-----|-----|---------|-----------|---------|-----------------|----------------|------------------|-----------|--------|----------|---------|
|     | Σκυρόδευς      |     |     | λx      | 23        | fcd     | Fc              | Мс             | Νεξωτ            | 0.0       | 00     |          |         |
|     | Ζκυρουεμα      | •   |     | -172.75 | -0.0035   | 31.83   | 1649.65         | -389.93        | x =              | -61.      | .54    |          |         |
| α/α | У              | #Φ  | Φ   | As      | εί        | σi      | Fi              | Mi             | x <sub>N</sub> = | -172      | 2.75   |          |         |
| 1   | 27.000         | 4   | 12  | 452.389 | -0,90%    | -433.00 | -195.8845851366 | 16.8460743218  |                  |           |        |          |         |
| 2   | 64.00          | 2   | 12  | 226.195 | -0,83%    | -433.00 | -97.9422925683  | -8.4230371609  | Νεξωτ            | 1062      | 2.00   | Διαφορά: | 0.00    |
| 3   | 155.00         | 2   | 12  | 226.195 | -0,64%    | -433.00 | -97.9422925683  | 8.4230371609   | Τελική ο         | ξονκή     |        | N =      | 1062.00 |
| 4   | 273.00         | 4   | 12  | 452.389 | -0,40%    | -433.00 | -195.8845851366 | -16.8460743218 | Τελική           | ροπή      |        | M =      | -389.93 |
| 5   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 6   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 7   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 8   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | Διαστ. (mm       | ו)        | ] [    | Συντ. Α  | σφ.     |
| 9   |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | b=               | 300.00    | ]      | γc=      | 1.00    |
| 10  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | h=               | 300.00    |        | γs=      | 1.00    |
| 11  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 12  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  | Αντοχές ( | MPa)   |          | ]       |
| 13  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | fck=             | 29.50     | fcd=   | 31.83    | 1       |
| 14  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | a=               | 1.08      | λ=     | 1.00     | 1       |
| 15  |                |     |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1.00             | fyk=      | 433.00 | fyd=     | 433.00  |
| Aro |                |     |     | max     | 0.00%     | 7       | E87 6E27EE4000  | 0              | 2.00             | fyk=      | 433.00 | fyd=     | 433.00  |
| Акр | αιες ι ιαραμορ | φωο | εiς | min     | -0.009031 |         | -367.0337354099 | 0              | 3.00             | fyk=      | 433.00 | fyd=     | 433.00  |
|     |                |     |     |         |           |         |                 | •              | 4.00             | fyk=      | 433.00 | fyd=     | 433.00  |

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|       | Eurocode ANTOXH ΣΕ ΚΑΜΨΗ |       |      |          |           |         |                                 |         |                |             |           |        |          |         |
|-------|--------------------------|-------|------|----------|-----------|---------|---------------------------------|---------|----------------|-------------|-----------|--------|----------|---------|
|       | Σχεδιασμ                 | JOÚ K | ίατα | σκευών Ο | ).Σ.      | Ά       | φθρο:                           |         | [9]            |             |           |        |          |         |
| Δ     | ομ.Μέλος                 |       |      | Δοκός    |           | Mε      | Λελετητής: Αχιλλέας Θεοδωρούλης |         |                |             |           |        |          |         |
|       |                          |       |      |          |           |         |                                 |         |                |             |           |        |          |         |
|       | Σκυρόδεικ                | ~     |      | λx       | εc        | fcd     | F                               | с       | Мс             |             |           |        |          |         |
|       | Ζκυρουεμι                |       | -    | -219.30  | -0.0035   | 25.08   | 1649.65                         |         | -428.33        |             |           |        |          |         |
| α/α   | У                        | #Φ    | Φ    | As       | εί        | σί      | F                               | ï       | Mi             | x = -274.12 |           |        |          |         |
| 1     | 27.000                   | 4     | 12   | 452.389  | -0,90%    | -433.00 | -195.884                        | 5851366 | 16.8460743218  |             |           |        |          |         |
| 2     | 64.00                    | 2     | 12   | 226.195  | -0,83%    | -433.00 | -97.9422                        | 2925683 | -8.4230371609  | Νεξωτ       | 1062      | 2.00   | Διαφορά: | 0.00    |
| 3     | 155.00                   | 2     | 12   | 226.195  | -0,64%    | -433.00 | -97.9422                        | 925683  | 8.4230371609   | Τελική α    | αξονική   |        | N =      | 1062.00 |
| 4     | 273.00                   | 4     | 12   | 452.389  | -0,40%    | -433.00 | -195.884                        | 5851366 | -16.8460743218 | Τελική      | ροπή      |        | M =      | -428.33 |
| 5     |                          |       |      | 0        | 0,00%     | 0.00    | (                               | )       | -0             |             |           |        |          |         |
| 6     |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             |             |           |        |          |         |
| 7     |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             |             |           |        |          |         |
| 8     |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             | Διαστ. (mr  | n)        | ] [    | Συντ. Α  | .σφ.    |
| 9     |                          |       |      | 0        | 0,00%     | 0.00    | (                               | )       | -0             | b= 300.00   |           | 1      | γc=      | 1.00    |
| 10    |                          |       |      | 0        | 0,00%     | 0.00    | (                               | )       | -0             | h=          | 300.00    | 1      | γs=      | 1.00    |
| 11    |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             |             |           |        |          | ·       |
| 12    |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             |             | Αντοχές ( | MPa)   |          | ]       |
| 13    |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             | fck=        | 29.50     | fcd=   | 25.08    |         |
| 14    |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             | a=          | 0.85      | λ=     | 0.80     |         |
| 15    |                          |       |      | 0        | 0,00%     | 0.00    | C                               | )       | -0             | 1.00        | fyk=      | 433.00 | fyd=     | 433.00  |
| Arrow |                          | ດດນຳອ |      | max      | 0.00%     | ~       | E07 6E2                         | 7554000 | 0              | 2.00        | fyk=      | 433.00 | fyd=     | 433.00  |
| Акр   | αιες Γιαραμοι            | ρφωο  | εις  | min      | -0.009031 | 2       | -307.033                        | 7554099 | 0              | 3.00        | fyk=      | 433.00 | fyd=     | 433.00  |
|       |                          |       |      |          |           |         |                                 |         |                | 4.00        | fyk=      | 433.00 | fyd=     | 433.00  |
|       |                          |       |      |          |           |         |                                 |         |                | 5.00        | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 97: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

11.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -172.75 | 300.00 | -1649.65                     | -97.94 | -195.88 | 1062.00 | 1355.83           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -274.12 | 300.00 | 1649.65                      | -97.94 | -195.88 | 1062.00 | 1355.83           |

## Πίνακας Υπολογισμών 98: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 99: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |          | k=(h-x)/(h-x <sub>N</sub> ) |                                                                        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|----------|-----------------------------|------------------------------------------------------------------------|
| cfp                                        |                |           |         |          |         |          | 0.76                        |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_v$     |           | Vf      | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf        | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}} /f_{_{\rm c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                                   |
| -389.93                                    | 0.67           | 2.45      | -581.99 | -581.99  | 183.20  | Type III | 73.04                       | 442.28                                                                 |
|                                            |                |           |         |          |         |          |                             |                                                                        |
| EC                                         |                |           |         |          |         |          |                             |                                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf-ec2   | Pu (KN) |          | $V_{II,1}$ =0.5bdf          | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$                 |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                                   |
| -428.33                                    | 0.67           | 2.45      | -639.30 | -639.30  | 183.20  | -        | -                           | -                                                                      |

|                                                                              |                                                                            |         | Type III |                            |                                                | one side<br>number of | 85.00<br>stirrups at a | other side<br>number of | uniformly     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|----------|----------------------------|------------------------------------------------|-----------------------|------------------------|-------------------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Pf – cfp | P <sub>f-cfp</sub> / Pu    | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of            | stirrups                | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)     | (KN)                       | (mm <sup>2</sup> )                             | #6D + 1#6D            | mm                     | #6D – 1#6D              | 6D /          |
| 43.09                                                                        | 43.05                                                                      | 183.20  | -189.48  | 1.03                       | 2371.52                                        | 85.00                 | 7.00                   | 95.00                   | 7.00          |
|                                                                              |                                                                            |         |          |                            |                                                | στο lcr               |                        |                         |               |
|                                                                              |                                                                            |         |          |                            | medium ductility                               | διάστημα              | number of              |                         |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Pf – ec2 | $P_{_{\mathrm{f-ec2}}}/Pu$ | Lcr = h                                        | s                     | stirrups               |                         |               |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)     | (KN)                       | (mm)                                           | (mm)                  | #6D + 1#6D             |                         |               |
| -                                                                            | -                                                                          | 183.20  | -2230.11 | 12.17                      | 300.00                                         | 75.00                 | 8.00                   | -                       | -             |
|                                                                              |                                                                            |         |          |                            |                                                | στο lcr               |                        |                         |               |
|                                                                              |                                                                            | Pu      | CPF      | EC                         | high ductility                                 | διάστημα              | number of              |                         |               |
|                                                                              |                                                                            | (KN)    | (KN)     | (KN)                       | Lcr = 1.5 * h                                  | s                     | stirrups               |                         |               |
|                                                                              |                                                                            | 183.20  | 189.48   | 2230.11                    | (mm)                                           | (mm)                  | #6D + 1#6D             |                         |               |
|                                                                              |                                                                            |         |          |                            | 450.00                                         | 72.00                 | 12.00                  | -                       | -             |

Πίνακας Υπολογισμών 100: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compre          | essiv | e Fo | orce Path |           | ΑΝΤΟΧΗ ΣΕ ΚΑΜΨΗ |                 |         |                |                  |           |        |          |            |
|-----|-----------------|-------|------|-----------|-----------|-----------------|-----------------|---------|----------------|------------------|-----------|--------|----------|------------|
|     | Σχεδιασμ        | ιού Κ | ίατα | σκευών C  | ).Σ.      | β               | γρθρο:          |         | [9]            |                  |           |        |          |            |
| Δα  | ομ.Μέλος        |       |      | Δοκός     |           | Με              | λετητής:        | Αχιλλέ  | ας Θεοδωρούλης |                  |           |        |          |            |
|     |                 |       |      |           |           |                 |                 |         |                |                  |           |        |          |            |
|     | Σκυρόδεικ       | v     |      | λx        | 23        | fcd             | F               | с       | Мс             | Νεξωτ            | 0.0       | 00     |          |            |
|     | Ζκυρουεμα       | A     |      | -228.35   | -0.0035   | 31.83           | 218             | 0.65    | -576.07        | x =              | -61       | .54    |          |            |
| α/α | У               | #Φ    | Φ    | As        | εί        | σί              | F               | ï       | Mi             | x <sub>N</sub> = | -228      | 3.35   |          |            |
| 1   | 27.000          | 4     | 12   | 452.389   | -0,77%    | -433.00         | -195.8845851366 |         | 16.8460743218  |                  |           |        |          |            |
| 2   | 64.00           | 2     | 12   | 226.195   | -0,71%    | -433.00         | -97.9422        | 2925683 | -8.4230371609  | Νεξωτ            | 1593      | 3.00   | Διαφορά: | 0.00       |
| 3   | 155.00          | 2     | 12   | 226.195   | -0,57%    | -433.00         | -97.9422        | 2925683 | 8.4230371609   | Τελική αξονική   |           |        | N =      | 1593.00    |
| 4   | 273.00          | 4     | 12   | 452.389   | -0,39%    | -433.00         | -195.884        | 5851366 | -16.8460743218 | Τελική           | ροπή      |        | M =      | -576.07    |
| 5   |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             |                  |           |        |          |            |
| 6   |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             |                  |           |        |          |            |
| 7   |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             |                  |           |        |          |            |
| 8   |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | Διαστ. (mr       | <u>n)</u> |        | Συντ. Α  | <u>σφ.</u> |
| 9   |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | b=               | 300.00    |        | γc=      | 1.00       |
| 10  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | h=               | 300.00    |        | γs=      | 1.00       |
| 11  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             |                  |           |        |          | -          |
| 12  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             |                  | Αντοχές ( | (MPa)  |          |            |
| 13  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | fck=             | 29.50     | fcd=   | 31.83    |            |
| 14  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | a=               | 1.08      | λ=     | 1.00     |            |
| 15  |                 |       |      | 0         | 0,00%     | 0.00            | (               | )       | -0             | 1.00             | fyk=      | 433.00 | fyd=     | 433.00     |
| Δκο | מוֹבּר 🗖מסמייסט | າດທຳກ | 'EIC | max       | 0.00%     | 5               | -587 653        | 7554099 | 0              | 2.00             | fyk=      | 433.00 | fyd=     | 433.00     |
|     |                 | φ     | 5    | min       | -0.007684 | 2               | -307.033        | 100-000 | 0              | 3.00             | fyk=      | 433.00 | fyd=     | 433.00     |
|     |                 |       |      |           |           |                 |                 |         | 4.00           | fyk=             | 433.00    | fyd=   | 433.00   |            |

Πίνακας Υπολογισμών 101: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00 fyk=

6.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode |           |       |     |          | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |         |                 |         |                |                |           |        |          |         |
|----------|-----------|-------|-----|----------|-----------------|---------|-----------------|---------|----------------|----------------|-----------|--------|----------|---------|
|          | Σχεδιασμ  | ιού Κ | ατα | σκευών Ο | .Σ.             | Ά       | ρθρο:           |         | [9]            |                |           |        |          |         |
| Δα       | ομ.Μέλος  |       |     | Δοκός    |                 | Μελ     | \ετητής:        | Αχιλλέ  | ας Θεοδωρούλης |                |           |        |          |         |
|          |           |       |     |          |                 |         |                 |         |                | _              |           |        |          |         |
|          | Σκυρόδεικ | r     |     | λx       | 23              | fcd     | F               | с       | Мс             |                |           |        |          |         |
|          | Ζκυρουεμα | л<br> |     | -289.88  | -0.0035         | 25.08   | 2180            | 0.65    | -643.17        |                |           |        |          |         |
| α/α      | У         | #Φ    | Φ   | As       | εi              | σί      | Fi              |         | Mi             | x =            | -362      | 2.36   |          |         |
| 1        | 27.000    | 4     | 12  | 452.389  | -0,77%          | -433.00 | -195.8845851366 |         | 16.8460743218  |                |           |        |          |         |
| 2        | 64.00     | 2     | 12  | 226.195  | -0,71%          | -433.00 | -97.9422925683  |         | -8.4230371609  | Νεξωτ 1593.00  |           | 3.00   | Διαφορά: | 0.00    |
| 3        | 155.00    | 2     | 12  | 226.195  | -0,57%          | -433.00 | -97.9422925683  |         | 8.4230371609   | Τελική αξονική |           |        | N =      | 1593.00 |
| 4        | 273.00    | 4     | 12  | 452.389  | -0,39%          | -433.00 | -195.8845851366 |         | -16.8460743218 | Τελική ροπή    |           |        | M =      | -643.17 |
| 5        |           |       |     | 0        | 0,00%           | 0.00    | 0               |         | -0             |                |           |        |          |         |
| 6        |           |       |     | 0        | 0,00%           | 0.00    | 0               |         | -0             |                |           |        |          |         |
| 7        |           |       |     | 0        | 0,00%           | 0.00    | 0               |         | -0             |                |           |        |          |         |
| 8        |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | Διαστ. (n      | ım)       |        | Συντ. Α  | σφ.     |
| 9        |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | b=             | 300.00    |        | γc=      | 1.00    |
| 10       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | h=             | 300.00    |        | γs=      | 1.00    |
| 11       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             |                |           |        |          |         |
| 12       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             |                | Αντοχές ( | MPa)   |          |         |
| 13       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | fck=           | 29.50     | fcd=   | 25.08    |         |
| 14       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | a=             | 0.85      | λ=     | 0.80     |         |
| 15       |           |       |     | 0        | 0,00%           | 0.00    | C               | )       | -0             | 1.0            | 0 fyk=    | 433.00 | fyd=     | 433.00  |
| Aroc     |           | າທິກາ | ຄດ  | max      | 0.00%           | 5       | -587 653        | 7554000 | 0              | 2.0            | 0_fyk=    | 433.00 | fyd=     | 433.00  |
|          |           | λάτος | εις | min      | -0.007684       | 2       | -007.000        | 1004000 | 0              | 3.0            | 0 fyk=    | 433.00 | fyd=     | 433.00  |
|          |           |       |     |          |                 |         |                 |         |                | 4.0            | 0 fyk=    | 433.00 | fyd=     | 433.00  |
|          |           |       |     |          |                 |         |                 |         |                | 5.0            | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|          |           |       |     |          |                 |         |                 |         | 6.0            | 0 fyk=         | 0.00      | fyd=   | 0.00     |         |

Πίνακας Υπολογισμών 102: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |         |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|---------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs      | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -228.35 | 300.00 | -2180.65                     | -97.94 | -195.88 | 1593.00 | 1886.83           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |         |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs      | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)    | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | _                                   | -                                   | -362.36 | 300.00 | 2180.65                      | -97.94 | -195.88 | 1593.00 | 1886.83           |

# Πίνακας Υπολογισμών 103: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 104: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |          | k=(h-x)/(h-x <sub>N</sub> ) |                                                                       |
|--------------------------------------------|----------------|-----------|---------|----------|---------|----------|-----------------------------|-----------------------------------------------------------------------|
| cfp                                        |                |           |         |          |         |          | 0.68                        |                                                                       |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf        | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$                            |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                                  |
| -576.07                                    | 0.67           | 2.45      | -859.81 | -859.81  | 222.80  | Type III | 65.35                       | 584.65                                                                |
| EC                                         |                |           |         |          |         |          |                             |                                                                       |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |          | $V_{II,1}$ =0.5bdf          | $V_{_{\rm II,2}} = F_{_{\rm c}}(1-1/(1+5 f_{_{\rm t}})/f_{_{\rm c}})$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                                  |
| -643.17                                    | 0.67           | 2.45      | -959.95 | -959.95  | 222.80  | -        | -                           | -                                                                     |

|                                                                              |                                                                            |         | Type III            |                          |                                                | one side   | 121.00      | other side | uniformly     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|------------|-------------|------------|---------------|
|                                                                              |                                                                            |         |                     |                          |                                                | number of  | sumups at a | numper or  | uniionniy     |
| $M^{(2.30)}_{\parallel} = (2.5d) \min(V_{\parallel,1}, V_{\parallel,2})$     | $M_{\parallel} = M^{(2.50)} + (M_f - M^{(2.5)})(2.5d-\alpha_v)/(1.5d)$     | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mt - M_{III}) / (av * tyv)$ | stirrups   | distance of | stirrups   | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #6D + 1#6D | mm          | #6D – 1#6D | 6D /          |
| 38.56                                                                        | 38.52                                                                      | 222.80  | -199.96             | 0.90                     | 3366.23                                        | 121.00     | 5.00        | 133.00     | 5.00          |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr    |             |            |               |
|                                                                              |                                                                            |         |                     |                          | medium ductility                               | διάστημα   | number of   |            |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>  .1</sub> ,V <sub>  .2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | s          | stirrups    |            |               |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)       | #6D + 1#6D  |            |               |
| -                                                                            | -                                                                          | 222.80  | -3348.66            | 15.03                    | 300.00                                         | 75.00      | 8.00        | -          | -             |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr    |             |            |               |
|                                                                              |                                                                            | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα   | number of   |            |               |
|                                                                              |                                                                            | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S          | stirrups    |            |               |
|                                                                              |                                                                            | 222.80  | 199.96              | 3348.66                  | (mm)                                           | (mm)       | #6D + 1#6D  |            |               |
|                                                                              | _                                                                          |         |                     |                          | 450.00                                         | 72.00      | 12.00       | -          | -             |

Πίνακας Υπολογισμών 105: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compr        | Compressive Force Path ANTOXH ΣΕ ΚΑΜΨΗ |            |          |           |          |                 |          |                |                  |               |           |        |          |        |
|-----|--------------|----------------------------------------|------------|----------|-----------|----------|-----------------|----------|----------------|------------------|---------------|-----------|--------|----------|--------|
|     | Σχεδιασμ     | ιού Κ                                  | ίατα       | σκευών Ο | .Σ.       | Ά        | ρθρο:           |          | [9]            |                  |               |           |        |          |        |
| Δ   | ομ.Μέλος     |                                        |            | Δοκός    |           | Μελ      | λετητής:        | Αχιλλέ   | ας Θεοδωρούλης |                  |               |           |        |          |        |
|     |              |                                        |            |          |           |          |                 |          |                |                  |               |           |        |          |        |
|     | Σκυράδουκ    | ~                                      |            | λx       | 23        | fcd      | F               | с        | Мс             | Νεξωτ            |               | 0.0       | 00     |          |        |
|     | Ζκυρουεμι    |                                        |            | -285.78  | -0.0035   | 31.83    | 4548            | 3.44     | -1787.03       | x =              |               | -100      | .43    |          |        |
| α/α | У            | #Ф                                     | Φ          | As       | εί        | σί       | F               | ï        | Mi             | x <sub>N</sub> = |               | -285      | .78    |          |        |
| 1   | 45.000       | 4                                      | 20         | 1256.64  | -0,91%    | -424.00  | -532.8141140488 |          | 76.3700230137  |                  |               |           |        |          |        |
| 2   | 106.67       | 2                                      | 20         | 628.319  | -0,83%    | -424.00  | -266.4070570244 |          | -38.1850115068 | Νεξωτ            | Νεξωτ 2950.00 |           | 0.00   | Διαφορά: | 0.00   |
| 3   | 258.33       | 2                                      | 20         | 628.319  | -0,65%    | -424.00  | -266.4070570244 |          | 38.1850115068  | Τελική αξονική   |               |           | N =    | 2950.00  |        |
| 4   | 455.00       | 4                                      | 20         | 1256.64  | -0,41%    | -424.00  | -532.8141140488 |          | -76.3700230137 | Τελική ροπή      |               |           | M =    | -1787.03 |        |
| 5   |              |                                        |            | 0        | 0,00%     | 0.00     | 0               |          | -0             |                  |               |           |        |          |        |
| 6   |              |                                        |            | 0        | 0,00%     | 0.00     | 0               |          | -0             |                  |               |           |        |          |        |
| 7   |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             |                  |               |           |        |          |        |
| 8   |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             | Διαστ            | . (mm         | )         | ] [    | Συντ. Α  | ισφ.   |
| 9   |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             | b=               |               | 500.00    |        | γc=      | 1.00   |
| 10  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             | h=               |               | 500.00    |        | γs=      | 1.00   |
| 11  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             |                  |               |           |        |          | _      |
| 12  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             |                  | A             | Αντοχές ( | MPa)   |          |        |
| 13  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             | fck=             |               | 29.50     | fcd=   | 31.83    |        |
| 14  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             | a=               |               | 1.08      | λ=     | 1.00     |        |
| 15  |              |                                        |            | 0        | 0,00%     | 0.00     | (               | )        | -0             |                  | 1.00          | fyk=      | 424.00 | fyd=     | 424.00 |
| Aro | αίες Παραμοι | າທີ່ກາ                                 | <b>SIC</b> | max      | 0.00%     | 5        | -1508 ///       | 23/21/65 | 0              |                  | 2.00          | fyk=      | 424.00 | fyd=     | 424.00 |
|     |              | φu0                                    | cις        | min      | -0.009073 | <u> </u> | -1030.442       | 20721400 | 0              |                  | 3.00          | fyk=      | 424.00 | fyd=     | 424.00 |
|     |              |                                        |            |          |           |          |                 |          |                |                  | 4.00          | fyk=      | 424.00 | fyd=     | 424.00 |
|     |              |                                        |            |          |           |          |                 |          |                |                  | 5.00          | fyk=      | 0.00   | fyd=     | 0.00   |

Πίνακας Υπολογισμών 106: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode |             |        |      |          |           | AN      | ΓΟΧΉ ΣΕ ΚΑΝ       | IΨH      |                |           |           |        |          |          |
|----------|-------------|--------|------|----------|-----------|---------|-------------------|----------|----------------|-----------|-----------|--------|----------|----------|
|          | Σχεδιασι    | μού Κ  | ίατα | σκευών Ο | .Σ.       | ́А́     | ρθρο:             |          | [9]            |           |           |        |          |          |
| Δ        | ομ.Μέλος    |        |      | Δοκός    |           | Mε      | λετητής:          | Αχιλλέ   | ας Θεοδωρούλης |           |           |        |          |          |
|          |             |        |      |          |           |         |                   |          |                |           |           |        |          |          |
|          | Σκυράδουκ   | ~      |      | λx       | 23        | fcd     | F                 | С        | Мс             |           |           |        |          |          |
|          | Ζκυροσεμι   | u      |      | -362.79  | -0.0035   | 25.08   | 454               | 8.44     | -1962.17       |           |           |        |          |          |
| α/α      | У           | #Ф     | Φ    | As       | εi        | σί      | F                 | ï        | Mi             | x =       | -453      | 3.48   |          |          |
| 1        | 45.000      | 4      | 20   | 1256.64  | -0,91%    | -424.00 | 0 -532.8141140488 |          | 76.3700230137  |           |           |        |          |          |
| 2        | 106.67      | 2      | 20   | 628.319  | -0,83%    | -424.00 | -266.4070570244   |          | -38.1850115068 | Νεξωτ     | 2950      | 0.00   | Διαφορά: | 0.00     |
| 3        | 258.33      | 2      | 20   | 628.319  | -0,65%    | -424.00 | -266.4070570244   |          | 38.1850115068  | Τελική    | αξονική   |        | N =      | 2950.00  |
| 4        | 455.00      | 4      | 20   | 1256.64  | -0,41%    | -424.00 | -532.8141140488   |          | -76.3700230137 | Τελική    | ι ροπή    |        | M =      | -1962.17 |
| 5        |             |        |      | 0        | 0,00%     | 0.00    | 0                 |          | -0             |           |           |        |          |          |
| 6        |             |        |      | 0        | 0,00%     | 0.00    | 0                 |          | -0             |           |           |        |          |          |
| 7        |             |        |      | 0        | 0,00%     | 0.00    | 0                 |          | -0             |           |           |        |          |          |
| 8        |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | Διαστ. (m | m)        |        | Συντ. Α  | λσφ.     |
| 9        |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | b=        | 500.00    | ] [    | γc=      | 1.00     |
| 10       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | h=        | 500.00    | ] [    | γs=      | 1.00     |
| 11       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             |           |           |        |          | _        |
| 12       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             |           | Αντοχές ( | (MPa)  |          |          |
| 13       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | fck=      | 29.50     | fcd=   | 25.08    |          |
| 14       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | a=        | 0.85      | λ=     | 0.80     |          |
| 15       |             |        |      | 0        | 0,00%     | 0.00    | (                 | )        | -0             | 1.00      | ) fyk=    | 424.00 | fyd=     | 424.00   |
| Aro      | αίες Παραμο | ດທີ່ກາ |      | max      | 0.00%     | 7       | 1508 111          | 03421465 | 0              | 2.00      | ) fyk=    | 424.00 | fyd=     | 424.00   |
|          | αιες παραμο | ρφωυ   | cις  | min      | -0.009073 | L _     | -1090.442         | 20421400 | U              | 3.00      | ) fyk=    | 424.00 | fyd=     | 424.00   |
|          |             |        |      |          |           |         |                   |          |                | 4.00      | ) fyk=    | 424.00 | fyd=     | 424.00   |
|          |             |        |      | 5.00     | ) fyk=    | 0.00    | fyd=              | 0.00     |                |           |           |        |          |          |
|          |             |        |      |          |           |         |                   | 6.00     | ) fyk=         | 0.00      | fyd=      | 0.00   |          |          |

Πίνακας Υπολογισμών 107: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -285.78 | 500.00 | -4548.44                     | -266.41 | -532.81 | 2950.00 | 3749.22           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |         |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -453.48 | 500.00 | 4548.44                      | -266.41 | -532.81 | 2950.00 | 3749.22           |

Πίνακας Υπολογισμών 108: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 109: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |          |          |         |          | k=(h-x)/(h-x <sub>N</sub> ) |                                                        |
|--------------------------------------------|----------------|-----------|----------|----------|---------|----------|-----------------------------|--------------------------------------------------------|
| cfp                                        |                |           |          |          |         |          | 0.76                        |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf – cfp | Pu (KN) |          | $V_{II,1} = k*0.5bdf_t$     | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                   |
| -1787.03                                   | 0.91           | 2.00      | -1963.77 | -1963.77 | 410.70  | Type III | 202.71                      | 1219.46                                                |
| 50                                         |                |           |          |          |         |          |                             |                                                        |
| EC                                         |                |           |          |          |         |          |                             |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |           | Vf       | Pf – ec2 | Pu (KN) |          | $V_{II,1}=0.5bdf_t$         | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                                   |
| -1962.17                                   | 0.91           | 2.00      | -2156.23 | -2156.23 | 410.70  | -        | -                           | -                                                      |

|                                                                              |                                                                                  |         | Type III            |                          |                                                | one side     | 129.00        | other side   |               |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|--------------|---------------|--------------|---------------|
|                                                                              |                                                                                  |         |                     |                          |                                                | number of    | stirrups at a | number of    | uniformly     |
| $M^{(2.5d)}_{\parallel} = (2.5d) \min(V_{\parallel,1}, V_{\parallel,2})$     | $M_{III} = M^{(2.5d)}_{III} + (M_{f} - M^{(2.5)}_{III})(2.5d-\alpha_{v})/(1.5d)$ | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups     | distance of   | stirrups     | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                           | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #10D + 1#10D | mm            | #10D – 1#10D | 10D /         |
| 199.33                                                                       | 199.13                                                                           | 410.70  | -387.22             | 0.94                     | 10034.90                                       | 129.00       | 7.00          | 129.00       | 7.00          |
|                                                                              |                                                                                  |         |                     |                          |                                                | στο lcr      |               |              |               |
|                                                                              |                                                                                  |         |                     |                          | medium ductility                               | διάστημα     | number of     |              |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$       | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | S            | stirrups      |              |               |
| (KN*m)                                                                       | (KN*m)                                                                           | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)         | #10D + 1#10D  |              |               |
| -                                                                            | -                                                                                | 410.70  | -7592.36            | 18.49                    | 500.00                                         | 125.00       | 8.00          | -            | -             |
|                                                                              |                                                                                  |         |                     |                          |                                                | στο lcr      |               |              |               |
|                                                                              |                                                                                  | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα     | number of     |              |               |
|                                                                              |                                                                                  | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S            | stirrups      |              |               |
|                                                                              |                                                                                  | 410.70  | 387.22              | 7592.36                  | (mm)                                           | (mm)         | #10D + 1#10D  |              |               |
|                                                                              |                                                                                  |         |                     |                          | 750.00                                         | 120.00       | 12.00         | -            | -             |

Πίνακας Υπολογισμών 110: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα
|     | Compr        | essiv | e Fo | orce Path |           |          | AN        | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |                  |        |          |        |          |          |
|-----|--------------|-------|------|-----------|-----------|----------|-----------|-------------|----------------|------------------|--------|----------|--------|----------|----------|
|     | Σχεδιασι     | JOÚ K | ίατα | σκευών Ο  | .Σ.       | Ά        | ρθρο:     |             | [9]            |                  |        |          |        |          |          |
| Δ   | ομ.Μέλος     |       |      | Δοκός     |           | Με       | λετητής:  | Αχιλλέ      | ας Θεοδωρούλης |                  |        |          |        |          |          |
|     |              |       |      |           |           |          |           |             |                |                  |        |          |        |          |          |
|     | Σκυράδουκ    | ~     |      | λx        | εc        | fcd      | F         | с           | Mc             | Νεξωτ            |        | 0.0      | 00     |          |          |
|     | Ζκυροσεμα    | J     |      | -378.45   | -0.0035   | 31.83    | 6023      | 3.44        | -2645.65       | x =              |        | -100     | .43    |          |          |
| α/α | У            | #Ф    | Φ    | As        | εί        | σί       | F         | ï           | Mi             | x <sub>N</sub> = |        | -378     | .45    |          |          |
| 1   | 45.000       | 4     | 20   | 1256.64   | -0,77%    | -424.00  | -532.814  | 1140488     | 76.3700230137  |                  |        |          |        |          |          |
| 2   | 106.67       | 2     | 20   | 628.319   | -0,71%    | -424.00  | -266.407  | 0570244     | -38.1850115068 | Νεξωτ            |        | 4425     | 5.00   | Διαφορά: | 0.00     |
| 3   | 258.33       | 2     | 20   | 628.319   | -0,57%    | -424.00  | -266.407  | 0570244     | 38.1850115068  | Τελ              | κή α   | ξονική   |        | N =      | 4425.00  |
| 4   | 455.00       | 4     | 20   | 1256.64   | -0,39%    | -424.00  | -532.814  | 1140488     | -76.3700230137 | Τε               | \ική ρ | οπή      |        | M =      | -2645.65 |
| 5   | 5            |       |      | 0         | 0,00%     | 0.00     | (         | )           | -0             |                  |        |          |        |          |          |
| 6   | 6            |       | 0    | 0,00%     | 0.00      | C        | )         | -0          |                |                  |        |          |        |          |          |
| 7   |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             |                  |        |          |        |          |          |
| 8   |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             | Διαστ.           | (mm    | )        |        | Συντ. Α  | .σφ.     |
| 9   |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             | b=               |        | 500.00   |        | γc=      | 1.00     |
| 10  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             | h=               |        | 500.00   |        | γs=      | 1.00     |
| 11  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             |                  |        |          |        |          | _        |
| 12  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             |                  | A      | ντοχές ( | MPa)   |          |          |
| 13  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             | fck=             |        | 29.50    | fcd=   | 31.83    |          |
| 14  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             | a=               |        | 1.08     | λ=     | 1.00     |          |
| 15  |              |       |      | 0         | 0,00%     | 0.00     | C         | )           | -0             |                  | 1.00   | fyk=     | 424.00 | fyd=     | 424.00   |
| Aro | αίες Παραιμο |       | max  | 0.00%     | 7         | 1508 111 | 2421465   | 0           | :              | 2.00             | fyk=   | 424.00   | fyd=   | 424.00   |          |
| μν  |              | ρφωυ  | sις  | min       | -0.007708 | <u>۲</u> | -1090.442 | 20421400    | U              | :                | 3.00   | fyk=     | 424.00 | fyd=     | 424.00   |
|     |              |       |      |           |           |          |           |             |                |                  | 1.00   | fyk=     | 424.00 | fyd=     | 424.00   |
|     |              |       |      |           |           |          |           |             |                | :                | 5.00   | fyk=     | 0.00   | fyd=     | 0.00     |

#### Πίνακας Υπολογισμών 111: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |           | Euro  | bcod | le       |           |         | ANT       | ΌΧΗ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |          |
|-----|-----------|-------|------|----------|-----------|---------|-----------|------------|----------------|------------|-----------|--------|----------|----------|
|     | Σχεδιασμ  | ιού Κ | ατα  | σκευών Ο | .Σ.       | Ά       | ρθρο:     |            | [9]            |            |           |        |          |          |
| Δα  | ομ.Μέλος  |       |      | Δοκός    |           | Μελ     | \ετητής:  | Αχιλλέ     | ας Θεοδωρούλης |            |           |        |          |          |
|     |           |       |      |          |           |         |           |            |                | _          |           |        |          |          |
|     | Σκυρόδευα | r     |      | λχ       | 23        | fcd     | Fo        | 0          | Мс             | _          |           |        |          |          |
|     | Ζκυρουεμα | л<br> |      | -480.43  | -0.0035   | 25.08   | 6023      | 3.44       | -2952.79       |            |           |        |          |          |
| α/α | У         | #Φ    | Φ    | As       | εi        | σί      | F         | i          | Mi             | x =        | -600      | ).54   |          |          |
| 1   | 45.000    | 4     | 20   | 1256.64  | -0,77%    | -424.00 | -532.814  | 1140488    | 76.3700230137  |            |           |        |          |          |
| 2   | 106.67    | 2     | 20   | 628.319  | -0,71%    | -424.00 | -266.4070 | 0570244    | -38.1850115068 | Νεξωτ      | 4425      | 5.00   | Διαφορά: | 0.00     |
| 3   | 258.33    | 2     | 20   | 628.319  | -0,57%    | -424.00 | -266.4070 | 0570244    | 38.1850115068  | Τελική α   | άξονική   |        | N =      | 4425.00  |
| 4   | 455.00    | 4     | 20   | 1256.64  | -0,39%    | -424.00 | -532.814  | 1140488    | -76.3700230137 | Τελική     | ροπή      |        | M =      | -2952.79 |
| 5   | 5 0   6 0 |       |      | 0,00%    | 0.00      | 0       | 1         | -0         |                |            | ·         |        |          |          |
| 6   | 6 0   7 0 |       |      | 0        | 0,00%     | 0.00    | 0         |            | -0             | ]          |           |        |          |          |
| 7   | 6 0   7 0 |       |      | 0,00%    | 0.00      | 0       | 1         | -0         | ]              |            |           |        |          |          |
| 8   |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             | Διαστ. (mr | n)        | ] [    | Συντ. Α  | .σφ.     |
| 9   |           |       |      | 0        | 0,00%     | 0.00    | 0         |            | -0             | b=         | 500.00    |        | γc=      | 1.00     |
| 10  |           |       |      | 0        | 0,00%     | 0.00    | 0         |            | -0             | h=         | 500.00    | 1 [    | γs=      | 1.00     |
| 11  |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             |            |           |        |          |          |
| 12  |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             |            | Αντοχές ( | (MPa)  |          | ]        |
| 13  |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             | fck=       | 29.50     | fcd=   | 25.08    |          |
| 14  |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             | a=         | 0.85      | λ=     | 0.80     |          |
| 15  |           |       |      | 0        | 0,00%     | 0.00    | 0         | 1          | -0             | 1.00       | fyk=      | 424.00 | fyd=     | 424.00   |
|     |           |       |      | max      | 0.00%     | 2       | 1508 442  | 3421465    | 0              | 2.00       | fyk=      | 424.00 | fyd=     | 424.00   |
| Акр | μομομοι   | υψωυ  | εις  | min      | -0.007708 | 2       | -1596.442 | .5421405   | 0              | 3.00       | fyk=      | 424.00 | fyd=     | 424.00   |
|     |           |       |      |          |           |         |           |            |                | 4.00       | fyk=      | 424.00 | fyd=     | 424.00   |
|     |           |       |      |          |           |         |           |            |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00     |

Πίνακας Υπολογισμών 112: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

fyk=

fyk=

fyk=

\_\_\_\_\_\_\_fyk=

fyk=

fyk=

fyk=

7.00

8.00

9.00

10.00

11.00

12.00

14.00

13.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |         |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|---------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs      | Ν       | Fc + F's – Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -378.45 | 500.00 | -6023.44                     | -266.41 | -532.81 | 4425.00 | 5224.22           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |         |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs      | Ν       | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)    | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -600.54 | 500.00 | 6023.44                      | -266.41 | -532.81 | 4425.00 | 5224.22           |

Πίνακας Υπολογισμών 113: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

### Πίνακας Υπολογισμών 114: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |                    |          |          |         |          | $k=(h-x)/(h-x_N)$               |                                            |
|--------------------------------------------|----------------|--------------------|----------|----------|---------|----------|---------------------------------|--------------------------------------------|
| cfp                                        |                |                    |          |          |         |          | 0.68                            |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                    | Vf       | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf            | $V_{II,2} = F_c(1-1/(1+5 f_t /f_c))$       |
| (KN*m)                                     | m              | α <sub>v</sub> / d | (KN)     | (KN)     | (KN)    | Туре     | (KN)                            | (KN)                                       |
| -2645.65                                   | 0.91           | 2.00               | -2907.31 | -2907.31 | 452.50  | Type III | 181.32                          | 1614.92                                    |
|                                            |                |                    |          |          |         |          |                                 |                                            |
| EC                                         |                |                    |          |          |         |          |                                 |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                    | Vf       | Pf-ec2   | Pu (KN) |          | $V_{II,1}$ =0.5bdf <sub>t</sub> | $V_{II,2} = F_{c}(1-1/(1+5 f_{l} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$          | (KN)     | (KN)     | (KN)    | Туре     | (KN)                            | (KN)                                       |
| -2952.79                                   | 0.91           | 2.00               | -3244.83 | -3244.83 | 452.50  | -        | -                               | -                                          |

|                                                                              |                                                                            |         | Type III            |                          |                                                | one side<br>number of | 183.00<br>stirrups at a | other side<br>number of | uniformly     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|-----------------------|-------------------------|-------------------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>1.1</sub> ,V <sub>1.2</sub> )   | $M_{III} = M^{(2.5d)} + (M_f - M^{(2.5)})(2.5d-\alpha_v)/(1.5d)$           | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of             | stirrups                | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #10D + 1#10D          | mm                      | #10D – 1#10D            | 10D /         |
| 178.30                                                                       | 178.12                                                                     | 452.50  | -327.58             | 0.72                     | 14266.85                                       | 183.00                | 4.00                    | 227.00                  | 4.00          |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr               |                         |                         |               |
|                                                                              |                                                                            |         |                     |                          | medium ductility                               | διάστημα              | number of               |                         |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | S                     | stirrups                |                         |               |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)                  | #10D + 1#10D            |                         |               |
| -                                                                            | -                                                                          | 452.50  | -11425.45           | 25.25                    | 500.00                                         | 125.00                | 8.00                    | -                       | -             |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr               |                         |                         |               |
|                                                                              |                                                                            | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα              | number of               |                         |               |
|                                                                              |                                                                            | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S                     | stirrups                |                         |               |
|                                                                              |                                                                            | 452.50  | 327.58              | 11425.45                 | (mm)                                           | (mm)                  | #10D + 1#10D            |                         |               |
|                                                                              |                                                                            |         |                     |                          | 750.00                                         | 120.00                | 12.00                   | -                       | -             |

Πίνακας Υπολογισμών 115: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compre              | essiv | e Fo | orce Path |           |         | ANT       | ΟΧΗ ΣΕ ΚΑΝ | 14H            |    |                  |       |          |        |          |          |
|-----|---------------------|-------|------|-----------|-----------|---------|-----------|------------|----------------|----|------------------|-------|----------|--------|----------|----------|
|     | Σχεδιασμ            | ιού Κ | ίατα | σκευών Ο  | .Σ.       | Ά       | ρθρο:     |            | [9]            |    |                  |       |          |        |          |          |
| Δ   | ομ.Μέλος            |       |      | Δοκός     |           | Μελ     | \ετητής:  | Αχιλλέ     | ας Θεοδωρούλης |    |                  |       |          |        |          |          |
|     |                     |       |      |           |           |         |           |            | 1              |    |                  |       |          |        |          |          |
|     | Σκυρόδουσ           | ~     |      | λx        | εc        | fcd     | Fo        | ;          | Mc             |    | Νεξωτ            |       | 0.0      | 00     |          |          |
|     | Ζκυροσεμα           | Å     |      | -399.42   | -0.0035   | 31.83   | 8900      | .17        | -4892.53       |    | x =              |       | -204     | .27    |          |          |
| α/α | У                   | #Φ    | Φ    | As        | εί        | σί      | Fi        |            | Mi             |    | x <sub>N</sub> = |       | -399     | .42    |          |          |
| 1   | 63.000              | 4     | 28   | 2463.01   | -0,91%    | -422.00 | -1039.389 | 6462549    | 208.570855681  | 18 |                  |       |          |        |          |          |
| 2   | 149.33              | 2     | 28   | 1231.5    | -0,83%    | -422.00 | -519.6948 | 231274     | -104.285427840 | 09 | Νεξωτ            |       | 5782     | 2.00   | Διαφορά: | 0.00     |
| 3   | 361.67              | 2     | 28   | 1231.5    | -0,65%    | -422.00 | -519.6948 | 231274     | 104.285427840  | )9 | Τελι             | κή α  | ξονική   |        | N =      | 5782.00  |
| 4   | 4 637.00 4 2<br>5 4 |       |      | 2463.01   | -0,41%    | -422.00 | -1039.389 | 6462549    | -208.570855681 | 18 | Τελ              | ική ρ | οσπή     |        | M =      | -4892.53 |
| 5   | 5                   |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    |                  |       |          |        |          |          |
| 6   | 6                   |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    |                  |       |          |        |          |          |
| 7   | 6<br>7              |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    |                  |       |          |        |          |          |
| 8   |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | Διαστ.           | (mm   | )        |        | Συντ. Α  | .σφ.     |
| 9   |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | b=               |       | 700.00   |        | үс=      | 1.00     |
| 10  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | h=               |       | 700.00   |        | γs=      | 1.00     |
| 11  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    |                  |       |          |        |          | _        |
| 12  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    |                  | A     | ντοχές ( | MPa)   |          |          |
| 13  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | fck=             |       | 29.50    | fcd=   | 31.83    |          |
| 14  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | a=               |       | 1.08     | λ=     | 1.00     |          |
| 15  |                     |       |      | 0         | 0,00%     | 0.00    | 0         |            | -0             |    | 1                | .00   | fyk=     | 422.00 | fyd=     | 422.00   |
| Aro |                     |       |      | max       | 0.00%     | 2       | 3118 168  | 0387646    | 0              |    | 2                | 2.00  | fyk=     | 422.00 | fyd=     | 422.00   |
| Акр | αιες παραμομ        | ψωυ   | εıς  | min       | -0.009082 | ۷       | -3110.100 | 5507040    | 0              |    | 3                | 6.00  | fyk=     | 422.00 | fyd=     | 422.00   |
|     |                     |       |      |           |           |         |           |            |                | _  | 4                | .00   | fyk=     | 422.00 | fyd=     | 422.00   |
|     |                     |       |      |           |           |         |           |            |                |    | 5                | 5.00  | fyk=     | 0.00   | fyd=     | 0.00     |

Πίνακας Υπολογισμών 116: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 5 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00 fyk=

7.00 fyk= 8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd= fyd= 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|        |                                         | Euro  | bcod | le       |           |         | AN        | ΤΟΧΗ ΣΕ ΚΑΜ | ΨH              |            |           |                                          |          |          |
|--------|-----------------------------------------|-------|------|----------|-----------|---------|-----------|-------------|-----------------|------------|-----------|------------------------------------------|----------|----------|
|        | Σχεδιασμ                                | ιού Κ | ίατα | σκευών Ο | ).Σ.      | β<br>Ά  | φθρο:     |             | [9]             |            |           |                                          |          |          |
| Δα     | ομ.Μέλος                                |       |      | Δοκός    |           | Με      | λετητής:  | Αχιλλέ      | ας Θεοδωρούλης  |            |           |                                          |          |          |
|        |                                         |       |      |          |           |         |           |             |                 |            |           |                                          |          |          |
|        | Σκυρόδεικ                               | v     |      | λx       | 23        | fcd     | F         | c           | Мс              |            |           |                                          |          |          |
|        | Ζκυρουεμι                               |       |      | -507.06  | -0.0035   | 25.08   | 890       | 0.17        | -5371.52        |            | _         |                                          |          |          |
| α/α    | У                                       | #Φ    | Φ    | As       | εi        | σi      | F         | -i          | Mi              | x =        | -633      | 3.82                                     |          |          |
| 1      | 63.000                                  | 4     | 28   | 2463.01  | -0,91%    | -422.00 | -1039.389 | 96462549    | 208.5708556818  |            |           |                                          |          |          |
| 2      | 149.33                                  | 2     | 28   | 1231.5   | -0,83%    | -422.00 | -519.694  | 8231274     | -104.2854278409 | Νεξωτ      | 5782      | 2.00                                     | Διαφορά: | 0.00     |
| 3      | 361.67                                  | 2     | 28   | 1231.5   | -0,65%    | -422.00 | -519.694  | 8231274     | 104.2854278409  | Τελική (   | άξονική   |                                          | N =      | 5782.00  |
| 4      | 637.00                                  | 4     | 28   | 2463.01  | -0,41%    | -422.00 | -1039.38  | 96462549    | -208.5708556818 | Τελική     | ροπή      |                                          | M =      | -5371.52 |
| 5      | 5                                       |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              |            |           | L. L |          |          |
| 6      | 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |      | 0        | 0,00%     | 0.00    | (         | C           | -0              |            |           |                                          |          |          |
| 7      | 7                                       |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              |            |           |                                          |          |          |
| 8      | 7 8                                     |       |      | 0        | 0,00%     | 0.00    | (         | 0           | -0              | Διαστ. (mr | n)        | ] [                                      | Συντ. Α  | σφ.      |
| 9      |                                         |       |      | 0        | 0,00%     | 0.00    | (         | 0           | -0              | b=         | 700.00    | 1                                        | γc=      | 1.00     |
| 10     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              | h=         | 700.00    | 1                                        | γs=      | 1.00     |
| 11     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              |            |           |                                          |          |          |
| 12     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              |            | Αντοχές ( | MPa)                                     |          | ]        |
| 13     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              | fck=       | 29.50     | fcd=                                     | 25.08    | 1        |
| 14     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              | a=         | 0.85      | λ=                                       | 0.80     | 1        |
| 15     |                                         |       |      | 0        | 0,00%     | 0.00    | (         | )           | -0              | 1.00       | fyk=      | 422.00                                   | fyd=     | 422.00   |
| A.v.a. |                                         |       |      | max      | 0.00%     | ~       | 2110 10   | 00007646    | 0               | 2.00       | fyk=      | 422.00                                   | fyd=     | 422.00   |
| Ακρα   | πες παραμοι                             | υφωο  | εις  | min      | -0.009082 | 2       | -3116.100 | 59387040    | 0               | 3.00       | fyk=      | 422.00                                   | fyd=     | 422.00   |
|        |                                         |       |      |          |           |         |           |             |                 | 4.00       | fyk=      | 422.00                                   | fyd=     | 422.00   |
|        |                                         |       |      |          |           |         |           |             |                 | 5.00       | fyk=      | 0.00                                     | fyd=     | 0.00     |

### Πίνακας Υπολογισμών 117: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 5 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |          |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|----------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs       | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)     | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -399.42 | 700.00 | -8900.17                     | -519.69 | -1039.39 | 5782.00 | 7341.08           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |          |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs       | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)     | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -633.82 | 700.00 | 8900.17                      | -519.69 | -1039.39 | 5782.00 | 7341.08           |

Πίνακας Υπολογισμών 118: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 119: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |          |          |         |          | $k=(h-x)/(h-x_N)$    |                                              |
|--------------------------------------------|----------------|-----------|----------|----------|---------|----------|----------------------|----------------------------------------------|
| cfp                                        |                |           |          |          |         |          | 0.82                 |                                              |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                 | (KN)                                         |
| -4892.53                                   | 1.27           | 2.00      | -3840.29 | -3840.29 | 826.60  | Type III | 427.66               | 2386.19                                      |
|                                            |                |           |          |          |         |          |                      |                                              |
| EC                                         |                |           |          |          |         |          |                      |                                              |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf-ec2   | Pu (KN) |          | $V_{II,1}$ =0.5bdf   | $V_{II,2} = F_c(1-1/(1+5 f_t /f_c))$         |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                 | (KN)                                         |
| -5371.52                                   | 1.27           | 2.00      | -4216.26 | -4216.26 | 826.60  | -        | -                    | -                                            |

|                                                                              |                                                                            |         | Type III            |                          |                                                | one side<br>number of | 121.00<br>stirrups at a | other side number of | uniformly     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|-----------------------|-------------------------|----------------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>1.1</sub> ,V <sub>1.2</sub> )   | $M_{III} = M^{(2.5d)} + (M_f - M^{(2.5)})(2.5d-\alpha_v)/(1.5d)$           | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of             | stirrups             | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #14D + 1#14D          | mm                      | #14D – 1#14D         | 14D /         |
| 588.74                                                                       | 588.15                                                                     | 826.60  | -768.06             | 0.93                     | 18623.13                                       | 121.00                | 10.00                   | 127.00               | 10.00         |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr               |                         |                      |               |
|                                                                              |                                                                            |         |                     |                          | medium ductility                               | διάστημα              | number of               |                      |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | S                     | stirrups                |                      |               |
| (KN*m)                                                                       | (KN*m)                                                                     | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)                  | #14D + 1#14D            |                      |               |
| -                                                                            | -                                                                          | 826.60  | -14755.92           | 17.85                    | 700.00                                         | 175.00                | 8.00                    | -                    | -             |
|                                                                              |                                                                            |         |                     |                          |                                                | στο lcr               |                         |                      |               |
|                                                                              |                                                                            | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα              | number of               |                      |               |
|                                                                              |                                                                            | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S                     | stirrups                |                      |               |
|                                                                              |                                                                            | 826.60  | 768.06              | 14755.92                 | (mm)                                           | (mm)                  | #14D + 1#14D            |                      |               |
|                                                                              |                                                                            |         |                     |                          | 1050.00                                        | 168.00                | 12.00                   | -                    | -             |

Πίνακας Υπολογισμών 120: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compr          | essiv  | e Fo    | orce Path |           |           | AN        | ΤΟΧΉ ΣΕ ΚΑΜ     | IΨH             |                  |      |          |        |          |         |
|-----|----------------|--------|---------|-----------|-----------|-----------|-----------|-----------------|-----------------|------------------|------|----------|--------|----------|---------|
|     | Σχεδιασμ       | loú k  | άτα     | σκευών Ο  | ).Σ.      | Ά         | ρθρο:     |                 | [9]             |                  |      |          |        |          |         |
| Δ   | ομ.Μέλος       |        |         | Δοκός     |           | Με        | λετητής:  | Αχιλλέ          | ας Θεοδωρούλης  |                  |      |          |        |          |         |
|     |                |        |         |           |           |           |           |                 |                 |                  |      |          |        |          |         |
|     | Σκυρόδεικ      |        |         | λx        | εc        | fcd       | F         | c               | Mc              | Νεξωτ            |      | 0.0      | 00     |          |         |
|     | Ζκυρουεμα      | A      |         | -529.17   | -0.0035   | 31.83     | 1179      | 91.17           | -7246.66        | x =              |      | -139     | .94    |          |         |
| α/α | У              | #Ф     | Φ       | As        | εί        | σί        | F         | -i              | Mi              | × <sub>N</sub> = |      | -529     | 0.17   |          |         |
| 1   | 63.000         | 4      | 28      | 2463.01   | -0,77%    | -422.00   | -1039.389 | 96462549        | 208.5708556818  |                  |      |          |        |          |         |
| 2   | 149.33         | 2      | 28      | 1231.5    | -0,71%    | -422.00   | -519.694  | 8231274         | -104.2854278409 | Νεξωτ            |      | 8673     | 3.00   | Διαφορά: | 0.00    |
| 3   | 361.67         | 2      | 28      | 1231.5    | -0,57%    | -422.00   | -519.694  | 8231274         | 104.2854278409  | Τελι             | κή α | ξονική   |        | N =      | 8673.00 |
| 4   | 637.00         | 28     | 2463.01 | -0,39%    | -422.00   | -1039.389 | 96462549  | -208.5708556818 | Τελ             | ική (            | οπή  |          | M =    | -7246.66 |         |
| 5   | 5              |        |         |           | 0,00%     | 0.00      | (         | C               | -0              |                  |      |          |        |          |         |
| 6   |                |        |         | 0         | 0,00%     | 0.00      | (         | C               | -0              |                  |      |          |        |          |         |
| 7   |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              |                  |      |          |        |          |         |
| 8   |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              | Διαστ.           | (mm  | )        |        | Συντ. Α  | σφ.     |
| 9   |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              | b=               |      | 700.00   |        | γc=      | 1.00    |
| 10  |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              | h=               |      | 700.00   |        | γs=      | 1.00    |
| 11  |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              |                  |      |          |        |          |         |
| 12  |                |        |         | 0         | 0,00%     | 0.00      | (         | C               | -0              |                  | A    | ντοχές ( | MPa)   |          |         |
| 13  |                |        |         | 0         | 0,00%     | 0.00      | (         | 0               | -0              | fck=             |      | 29.50    | fcd=   | 31.83    |         |
| 14  |                |        |         | 0         | 0,00%     | 0.00      | (         | C               | -0              | a=               |      | 1.08     | λ=     | 1.00     |         |
| 15  |                |        |         | 0         | 0,00%     | 0.00      | (         | C               | -0              | 1                | .00  | fyk=     | 422.00 | fyd=     | 422.00  |
| Δκο | αίες Παραμοι   | າທີ່ກາ | EIC.    | max       | 0.00%     | Σ         | -3118 168 | 89387646        | 0               | 2                | 2.00 | fyk=     | 422.00 | fyd=     | 422.00  |
|     | ales i lapapop | ųω     | 5       | min       | -0.007713 | <u> </u>  | -0110.100 | 000070-0        | U               | 3                | 3.00 | fyk=     | 422.00 | fyd=     | 422.00  |
|     |                |        |         |           |           |           |           |                 |                 | 4                | .00  | fyk=     | 422.00 | fyd=     | 422.00  |

Πίνακας Υπολογισμών 121: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 6 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00

7.00

8.00

9.00

11.00

fyk=

fyk=

fyk= fyk=

fyk=

6.00 fyk=

10.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |           | Eur   | 0000 | e        |           |          | AN        | ΓΟΧΗ ΣΕ ΚΑΜ | ΨΗ              |        |        |         |        |          |          |
|-----|-----------|-------|------|----------|-----------|----------|-----------|-------------|-----------------|--------|--------|---------|--------|----------|----------|
|     | Σχεδιασμ  | ioú k | Κατα | σκευών C | ).Σ.      | Ά        | φθρο:     |             | [9]             |        |        |         |        |          |          |
| Δα  | ομ.Μέλος  |       |      | Δοκός    |           | Μελ      | λετητής:  | Αχιλλέ      | ας Θεοδωρούλης  |        |        |         |        |          |          |
|     |           |       |      |          |           |          |           |             |                 |        |        |         |        |          |          |
|     | Σκυρόδευς |       |      | λx       | 23        | fcd      | F         | с           | Мс              |        |        |         |        |          |          |
|     | Ζκυρουεμα | 4     |      | -671.77  | -0.0035   | 25.08    | 1179      | 1.17        | -8087.36        |        |        |         |        |          |          |
| α/α | У         | #Φ    | Φ    | As       | εί        | σί       | F         | ï           | Mi              | x =    |        | -839    | 9.71   |          |          |
| 1   | 63.000    | 4     | 28   | 2463.01  | -0,77%    | -422.00  | -1039.389 | 96462549    | 208.5708556818  |        |        |         |        |          |          |
| 2   | 149.33    | 2     | 28   | 1231.5   | -0,71%    | -422.00  | -519.694  | 8231274     | -104.2854278409 | Νεξωτ  |        | 8673    | 3.00   | Διαφορά: | 0.00     |
| 3   | 361.67    | 2     | 28   | 1231.5   | -0,57%    | -422.00  | -519.694  | 8231274     | 104.2854278409  | Τελι   | κή αξ  | ονκή    |        | N =      | 8673.00  |
| 4   | 637.00    | 4     | 28   | 2463.01  | -0,39%    | -422.00  | -1039.389 | 96462549    | -208.5708556818 | Τελ    | \ική ρ | οπή     |        | M =      | -8087.36 |
| 5   |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        |        |         | ·      |          | ·        |
| 6   |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        |        |         |        |          |          |
| 7   |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        |        |         |        |          |          |
| 8   |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              | Διαστ. | (mm)   |         | ] [    | Συντ. Α  | ωσφ.     |
| 9   |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              | b=     | 7      | 700.00  | 1 [    | γc=      | 1.00     |
| 10  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              | h=     | 7      | 700.00  | 1 [    | γs=      | 1.00     |
| 11  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        |        |         |        |          |          |
| 12  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        | A١     | ποχές ( | MPa)   |          | ]        |
| 13  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              | fck=   |        | 29.50   | fcd=   | 25.08    |          |
| 14  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              | a=     |        | 0.85    | λ=     | 0.80     |          |
| 15  |           |       |      | 0        | 0,00%     | 0.00     | (         | )           | -0              |        | 1.00   | fyk=    | 422.00 | fyd=     | 422.00   |
| Aro |           |       | max  | 0.00%    | 7         | 3118 169 | 20397646  | 0           | :               | 2.00   | fyk=   | 422.00  | fyd=   | 422.00   |          |
| Акр |           | φωυ   | SIS  | min      | -0.007713 | 2        | -3110.100 | 5507040     | 0               | ] ;    | 3.00   | fyk=    | 422.00 | fyd=     | 422.00   |
|     |           |       |      |          |           |          |           |             |                 | 4      | 4.00   | fyk=    | 422.00 | fyd=     | 422.00   |
|     |           |       |      |          |           |          |           |             |                 | :      | 5.00   | fyk=    | 0.00   | fyd=     | 0.00     |

Πίνακας Υπολογισμών 122: Εισαγωγή δεδομένων άρθρου 9 για το δοκίμιο αναφοράς 6 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

8.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |         |          |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|---------|----------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's     | Fs       | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)     | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 29.50 | 21.50                | 2.33                                | 31.83                               | -529.17 | 700.00 | -11791.17                    | -519.69 | -1039.39 | 8673.00 | 10232.08          |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |         |          |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's     | Fs       | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)    | (KN)     | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -839.71 | 700.00 | 11791.17                     | -519.69 | -1039.39 | 8673.00 | 10232.08          |

## Πίνακας Υπολογισμών 123: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 124: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |          |          |         |          | k=(h-x)/(h-x <sub>N</sub> ) |                                            |
|--------------------------------------------|----------------|-----------|----------|----------|---------|----------|-----------------------------|--------------------------------------------|
| cfp                                        |                |           |          |          |         |          | 0.68                        |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |           | Vf       | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf        | $V_{_{II,2}} = F_c(1-1/(1+5 f_t /f_c))$    |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                       |
| -7246.66                                   | 1.27           | 2.00      | -5688.12 | -5688.12 | 868.24  | Type III | 355.30                      | 3161.28                                    |
|                                            |                |           |          |          |         |          |                             |                                            |
| EC                                         |                |           |          |          |         |          |                             |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf – ec2 | Pu (KN) |          | $V_{II,1}$ =0.5bdf          | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                        | (KN)                                       |
| -8087.36                                   | 1.27           | 2.00      | -6348.01 | -6348.01 | 868.24  | -        | -                           | -                                          |

|                                                                              |                                                                              |         | Type III            |                          |                                                | one side     | 172.00        | other side   |               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|--------------|---------------|--------------|---------------|
|                                                                              |                                                                              |         |                     |                          |                                                | number of    | stirrups at a | number of    | uniformiy     |
| $M^{(2.5d)}_{\parallel} = (2.5d) \min(V_{\parallel,1}, V_{\parallel,2})$     | $M_{III} = M^{(2.5d)} + (M_f - M^{(2.5)})(2.5d-\alpha_v)/(1.5d)$             | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups     | distance of   | stirrups     | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #14D + 1#14D | mm            | #14D – 1#14D | 14D /         |
| 489.13                                                                       | 488.64                                                                       | 868.24  | -796.34             | 0.92                     | 26284.25                                       | 172.00       | 7.00          | 181.00       | 7.00          |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr      |               |              |               |
|                                                                              |                                                                              |         |                     |                          | medium ductility                               | διάστημα     | number of     |              |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | s            | stirrups      |              |               |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)         | #14D + 1#14D  |              |               |
| -                                                                            | -                                                                            | 868.24  | -22218.02           | 25.59                    | 700.00                                         | 175.00       | 8.00          | -            | -             |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr      |               |              | •             |
|                                                                              |                                                                              | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα     | number of     |              |               |
|                                                                              |                                                                              | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S            | stirrups      |              |               |
|                                                                              |                                                                              | 868.24  | 796.34              | 22218.02                 | (mm)                                           | (mm)         | #14D + 1#14D  |              |               |
|                                                                              |                                                                              |         |                     |                          | 1050.00                                        | 168.00       | 12.00         | -            | -             |

Πίνακας Υπολογισμών 125: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

## Παράρτημα Χ

Πίνακας Υπολογισμών 126: Εισαγωγή δεδομένων άρθρου 10 για το δοκίμιο αναφοράς και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path  | AN         | ΤΟΧΉ ΣΕ ΚΑΜΨΗ        |
|-----------|--------------------|------------|----------------------|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ. | Άρθρο:     | [10]                 |
| Δομ.Μέλος | Δοκός              | Μελετητής: | Αχιλλέας Θεοδωρούλης |

|     |               |      |     | λx      | εc        | fcd     | Fc              | Мс            | Νεξωτ            | 0.0       | 00     |          |         |
|-----|---------------|------|-----|---------|-----------|---------|-----------------|---------------|------------------|-----------|--------|----------|---------|
|     | Σκυρόδεμα     | x    |     | -251.79 | -0.0035   | 21.58   | 815.08          | -163.75       | x =              | -48       | .52    |          |         |
| α/α | У             | #Ф   | Φ   | As      | εί        | σί      | Fi              | Mi            | x <sub>N</sub> = | -251      | 1.79   |          |         |
| 1   | 0.000         | 0    |     |         | 0,00%     | 0.00    | 0               | -0            |                  |           |        |          |         |
| 2   | 35.00         | 2    | 10  | 157.08  | -0,51%    | -500.00 | -78.5398163397  | -3.1415926536 | Νεξωτ            | 658       | .00    | Διαφορά: | 0.00    |
| 3   | 0.00          | 0    |     |         | 0,00%     | 0.00    | 0               | -0            | Τελική α         | ξονική    |        | N =      | 658.00  |
| 4   | 115.00        | 2    | 10  | 157.08  | -0,40%    | -500.00 | -78.5398163397  | -3.1415926536 | Τελική           | ροπή      |        | M =      | -170.03 |
| 5   |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            |                  |           |        |          |         |
| 6   |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            |                  |           |        |          |         |
| 7   |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            |                  |           |        |          |         |
| 8   |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | Διαστ. (mm       | ı)        |        | Συντ. Α  | σφ.     |
| 9   |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | b=               | 150.00    |        | γc=      | 1.00    |
| 10  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | h=               | 150.00    |        | γs=      | 1.00    |
| 11  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            |                  |           |        |          |         |
| 12  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | l A              | Αντοχές ( | (MPa)  |          |         |
| 13  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | fck=             | 20.00     | fcd=   | 21.58    |         |
| 14  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | a=               | 1.08      | λ=     | 1.00     |         |
| 15  |               |      |     | 0       | 0,00%     | 0.00    | 0               | -0            | 1.00             | fyk=      | 0.00   | fyd=     | 0.00    |
| Ara |               | ~~~  |     | max     | 0.00%     | 7       | 157 0706326705  | 6 2831853072  | 2.00             | fyk=      | 500.00 | fyd=     | 500.00  |
| Акр | αιες ι αραμορ | υψωο | εıς | min     | -0.005099 | 2       | -157.0790320795 | -0.2631653072 | 3.00             | fyk=      | 0.00   | fyd=     | 0.00    |
|     |               |      |     |         |           |         |                 |               | 4.00             | fvk=      | 500.00 | fvd=     | 500.00  |

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fvd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Ευrocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |              |       |                | AN       | ΙΟΧΗ ΣΕ ΚΑΜ | IYH     |                |         |                |            |           |        |          |         |
|----------------------------------------|--------------|-------|----------------|----------|-------------|---------|----------------|---------|----------------|------------|-----------|--------|----------|---------|
|                                        | Σχεδιασμ     | ιού Κ | ατα            | σκευών Ο | ).Σ.        | Ά       | ρθρο:          |         | [10]           |            |           |        |          |         |
| Δ                                      | ομ.Μέλος     |       |                | Δοκός    | -           | Μελ     | \ετητής:       | Αχιλλέ  | ας Θεοδωρούλης |            |           |        |          |         |
|                                        |              |       |                |          |             |         |                |         |                |            |           |        |          |         |
|                                        | Σκυράδουκ    | ~     |                | λx       | εc          | fcd     | F              | Ċ       | Мс             |            |           |        |          |         |
|                                        | Ζκυροσεμα    | X     |                | -319.64  | -0.0035     | 17.00   | 815            | 5.08    | -191.40        |            |           |        |          |         |
| α/α                                    | У            | #Φ    | Φ              | As       | εί          | σί      | F              | i       | Mi             | x =        | -399      | .55    |          |         |
| 1                                      | 0.000        | 0     |                |          | 0,00%       | 0.00    | (              | )       | -0             |            |           |        |          |         |
| 2                                      | 35.00        | 2     | 10             | 157.08   | -0,51%      | -500.00 | -78.5398       | 3163397 | -3.1415926536  | Νεξωτ      | 658       | .00    | Διαφορά: | 0.00    |
| 3                                      | 0.00         | 0     |                |          | 0,00%       | 0.00    | (              | )       | -0             | Τελική ο   | ξονκή     |        | N =      | 658.00  |
| 4                                      | 115.00       | 2     | 10             | 157.08   | -0,40%      | -500.00 | -78.5398       | 3163397 | -3.1415926536  | Τελική     | ροπή      |        | M =      | -197.68 |
| 5                                      |              |       |                | 0        | 0,00%       | 0.00    | 0 0            |         | -0             | -          |           |        |          |         |
| 6                                      |              |       | 0 0,00% 0.00 0 |          | )           | -0      |                |         |                |            |           |        |          |         |
| 7                                      |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             |            |           |        |          |         |
| 8                                      |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | Διαστ. (mm | ר)        | ] [    | Συντ. Α  | .σφ.    |
| 9                                      |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | b=         | 150.00    | 1 [    | γc=      | 1.00    |
| 10                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | h=         | 150.00    | 1 [    | γs=      | 1.00    |
| 11                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             |            |           |        |          |         |
| 12                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | 1          | Αντοχές ( | MPa)   |          | ]       |
| 13                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | fck=       | 20.00     | fcd=   | 17.00    |         |
| 14                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | a=         | 0.85      | λ=     | 0.80     |         |
| 15                                     |              |       |                | 0        | 0,00%       | 0.00    | (              | )       | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00    |
| Ava                                    |              | າດທຳອ |                | max      | 0.00%       | 7       | 457.0700200705 |         | 6 2021052072   | 2.00       | fyk=      | 500.00 | fyd=     | 500.00  |
| Ακρ                                    | αιες παραμορ | JΨWO  | داح            | min      | -0.005099   | 2       | -157.079       | 0320793 | -0.2031003072  | 3.00       | fyk=      | 0.00   | fyd=     | 0.00    |
|                                        |              |       |                | •        |             | • U     |                |         | ·              | 4.00       | fyk=      | 500.00 | fvd=     | 500.00  |

Πίνακας Υπολογισμών 127: Εισαγωγή δεδομένων άρθρου 10 για το δοκίμιο αναφοράς και επίλυση προβλήματος Ευρωκώδικα

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |        |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|--------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν      | Fc + F's – Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)   | (KN)              |
| Reference | 1.40            | 10.00 | 20.00 | 12.00                | 1.58                                | 21.58                               | -251.79 | 150.00 | -815.08                      | -78.54 | -78.54 | 658.00 | 658.00            |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |        |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν      | Fc + F's – Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)   | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -399.55 | 150.00 | 815.08                       | -78.54 | -78.54 | 658.00 | 658.00            |

Πίνακας Υπολογισμών 128: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 129: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |         | $k=(h-x)/(h-x_N)$     |                                                        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|---------|-----------------------|--------------------------------------------------------|
| cfp                                        |                |           |         |          |         |         | 0.49                  |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =k*0.5bdf  | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                  | (KN)                                                   |
| -170.03                                    | 0.48           | 4.17      | -354.23 | -708.45  | 658.00  | Type II | 6.74                  | 218.51                                                 |
| 50                                         |                |           |         |          |         |         |                       |                                                        |
| EG                                         |                |           |         |          |         |         |                       |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1} = 0.5bdf_t$ | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                  | (KN)                                                   |
| -197.68                                    | 0.48           | 4.17      | -411.83 | -823.67  | 658.00  | -       | -                     | -                                                      |

|         | Type II  |               | Location 1       |          | at a distance<br>2.5*d | at a distance<br>287,50 | Location 2         |        |          |        | Location 3         |        | at a distance<br>2.5*d |        |
|---------|----------|---------------|------------------|----------|------------------------|-------------------------|--------------------|--------|----------|--------|--------------------|--------|------------------------|--------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups               | 27.00                   | Asw                | b      | stirrups | 27.00  | Asw                | d      | stirrups               | 23.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 6D / d               | # 6D /                  | (mm <sup>2</sup> ) | (mm)   | # 6D / d | # 6D / | (mm <sup>2</sup> ) | (mm)   | # 6D / d               | # 6D / |
| 658.00  | -37.78   | 0.06          | 708.45           | 115.00   | 27.00                  | 4.00                    | 708.45             | 150.00 | 27.00    | 5.00   | 644.05             | 150.00 | 23.00                  | 6.00   |
|         |          |               |                  | στο lcr  |                        | εκτός lcr               |                    |        |          |        |                    |        |                        |        |
|         |          |               | medium ductility | διάστημα | number of              | ανά διάστημα            |                    |        |          |        |                    |        |                        |        |
| Pu (KN) | Pf-ec2   | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups               | 2*s                     |                    |        |          |        |                    |        |                        |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D             | (mm)                    |                    |        |          |        |                    |        |                        |        |
| 658.00  | -308.87  | 0.47          | 150.00           | 37.50    | 6.00                   | 75.00                   | -                  | -      | -        | -      | -                  | -      | -                      | -      |
|         |          |               |                  | στο lcr  |                        | εκτός lcr               |                    |        |          |        |                    |        |                        |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of              | ανά διάστημα            |                    |        |          |        |                    |        |                        |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups               | 2*s                     |                    |        |          |        |                    |        |                        |        |
| 658.00  | 37.78    | 308.87        | (mm)             | (mm)     | #8D + 1#8D             | (mm)                    |                    |        |          |        |                    |        |                        |        |
|         |          |               | 225.00           | 37.50    | 10.00                  | 75.00                   | -                  |        |          |        |                    |        |                        |        |

Πίνακας Υπολογισμών 130: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

## Παράρτημα ΧΙ

Πίνακας Υπολογισμών 131: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

| Compre    | essive Force Path  | AN         | ΤΟΧΉ ΣΕ ΚΑΜΨΗ        |
|-----------|--------------------|------------|----------------------|
| Σχεδιασμ  | ού Κατασκευών Ο.Σ. | Άρθρο:     | [11]                 |
| Δομ.Μέλος | Δοκός              | Μελετητής: | Αχιλλέας Θεοδωρούλης |

|       |                |            |     | ٨v      | 22        | fed     | Fo              | Mo             | NL c             | 0.0       | 0      |          |         |
|-------|----------------|------------|-----|---------|-----------|---------|-----------------|----------------|------------------|-----------|--------|----------|---------|
|       | Σκυρόδεμα      | X          |     | 140.70  | 0.0025    | 27.74   |                 |                | ΙΝεξωτ           |           |        |          |         |
|       |                | 1          |     | -149.72 | -0.0035   | 37.71   | 2280.88         | -034.29        | x =              | -7.       | 00     |          |         |
| α/α   | У              | <b>#</b> Φ | Φ   | As      | εί        | σί      | Fi              | Mi             | x <sub>N</sub> = | -149      | .72    |          |         |
| 1     |                |            |     |         | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 2     | 65.00          | 2          | 9   | 127.235 | -1,14%    | -420.00 | -53.4384910376  | -7.3477925177  | Νεξωτ            | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3     |                |            |     |         | 0,00%     | 0.00    | 0               | -0             | Τελική α         | ξονική    |        | N =      | 2180.00 |
| 4     | 340.00         | 2          | 9   | 127.235 | -0,50%    | -420.00 | -53.4384910376  | -7.3477925177  | Τελική           | ροπή      |        | M =      | -648.98 |
| 5     |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 6     |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 7     |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 8     |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | Διαστ. (mm       | ו)        | ] [    | Συντ. Α  | .σφ.    |
| 9     |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | b=               | 405.00    |        | γc=      | 1.00    |
| 10    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | h=               | 405.00    | ] [    | γs=      | 1.00    |
| 11    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             |                  |           |        |          |         |
| 12    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1                | Αντοχές ( | MPa)   |          |         |
| 13    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | fck=             | 35.00     | fcd=   | 37.71    |         |
| 14    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | a=               | 1.08      | λ=     | 1.00     |         |
| 15    |                |            |     | 0       | 0,00%     | 0.00    | 0               | -0             | 1.00             | fyk=      | 0.00   | fyd=     | 0.00    |
| Arrow |                |            |     | max     | 0.00%     | ~       | 106 9760920751  | 14 6055950252  | 2.00             | fyk=      | 420.00 | fyd=     | 420.00  |
| Акро  | τιες ι ιαραμορ | υφωο       | εις | min     | -0.011448 |         | -100.0709820751 | -14.0900800303 | 3.00             | fyk=      | 0.00   | fyd=     | 0.00    |
|       |                |            |     |         |           |         |                 |                | 4.00             | fyk=      | 420.00 | fyd=     | 420.00  |

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fvd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |              |                          |     |          |           |         | ANT      | ΙΟΧΗ ΣΕ ΚΑΝ | ЛФН             |        |          |           |        |          |         |
|-----|--------------|--------------------------|-----|----------|-----------|---------|----------|-------------|-----------------|--------|----------|-----------|--------|----------|---------|
|     | Σχεδιασμ     | ού Κ                     | ατα | σκευών Ο | .Σ.       | Ά       | ρθρο:    |             | [11]            |        |          |           |        |          |         |
| Δ   | ομ.Μέλος     |                          |     | Δοκός    |           | Μελ     | .ετητής: | Αχιλλ       | έας Θεοδωρούλης |        |          |           |        |          |         |
|     |              |                          |     |          |           |         |          |             |                 |        |          |           |        |          |         |
|     | Σκυρόδουσ    | ,                        |     | λx       | 23        | fcd     | F        | с           | Мс              |        |          |           |        |          |         |
|     | Ζκυροσεμα    |                          |     | -189.80  | -0.0035   | 29.75   | 2286     | 5.88        | -680.12         |        |          |           |        |          |         |
| α/α | У            | #Φ                       | Φ   | As       | εί        | σί      | F        | ï           | Mi              | x =    | :        | -237      | .25    |          |         |
| 1   |              |                          |     |          | 0,00%     | 0.00    | C        | )           | -0              |        |          |           |        |          |         |
| 2   | 65.00        | 2                        | 9   | 127.235  | -1,14%    | -420.00 | -53.4384 | 1910376     | -7.3477925177   | Νεξω   | л        | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3   |              |                          |     |          | 0,00%     | 0.00    | C        | )           | -0              |        | Τελική α | ξονκή     |        | N =      | 2180.00 |
| 4   | 340.00       | 2                        | 9   | 127.235  | -0,50%    | -420.00 | -53.4384 | 1910376     | -7.3477925177   |        | Τελική   | ροπή      |        | M =      | -694.82 |
| 5   |              |                          |     | 0        | 0,00%     | 0.00    | 0        |             | -0              |        |          |           |        |          |         |
| 6   |              |                          |     | 0        | 0,00%     | 0.00    | 0 00     |             | -0              |        |          |           |        |          |         |
| 7   |              | <b>0</b> 0,00% 0.00 0 -0 |     |          |           |         |          | Διαστ. (mm) |                 |        |          |           |        |          |         |
| 8   |              |                          |     | 0        | 0,00%     | 0.00    | 0.00 0   |             | -0              | Δια    | αστ. (mn | n)        | ] [    | Συντ. Α  | .σφ.    |
| 9   |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              | b=     |          | 405.00    |        | γc=      | 1.00    |
| 10  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              | h=     |          | 405.00    |        | γs=      | 1.00    |
| 11  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              |        |          |           |        |          |         |
| 12  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              |        |          | Αντοχές ( | MPa)   |          |         |
| 13  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              | fck    | =        | 35.00     | fcd=   | 29.75    |         |
| 14  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              | a=     |          | 0.85      | λ=     | 0.80     |         |
| 15  |              |                          |     | 0        | 0,00%     | 0.00    | C        | )           | -0              |        | 1.00     | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro |              |                          |     | max      | 0.00%     | 7       | 106 976  | 0820751     | 14 6055850353   |        | 2.00     | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр | μιες παραμομ | φωυ                      | εıς | min      | -0.011448 | 2       | -100.070 | 9020731     | -14.0900000000  |        | 3.00     | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |                          |     |          |           | 4.00    | fyk=     | 420.00      | fyd=            | 420.00 |          |           |        |          |         |
|     |              |                          |     |          |           |         |          |             |                 |        | 5.00     | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |                          |     |          |           |         |          |             |                 |        | 6.00     | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |                          |     |          |           |         |          |             |                 |        | 7.00     | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |                          |     |          |           |         |          |             |                 |        | 8.00     | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |                          |     |          |           |         |          | 9.00        | fyk=            | 0.00   | fyd=     | 0.00      |        |          |         |

Πίνακας Υπολογισμών 132: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 1 και επίλυση προβλήματος Ευρωκώδικα

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -149.72 | 405.00 | -2286.88                     | -53.44 | -53.44 | 2180.00 | 2180.00           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -237.25 | 405.00 | 2286.88                      | -53.44 | -53.44 | 2180.00 | 2180.00           |

Πίνακας Υπολογισμών 133: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 134: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |          |          |         |          | k=(h-x)/(h-x <sub>N</sub> )            |                                                        |
|--------------------------------------------|----------------|-----------|----------|----------|---------|----------|----------------------------------------|--------------------------------------------------------|
| cfp                                        |                |           |          |          |         |          | 0.74                                   |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf – cfp | Pu (KN) |          | $V_{II,1} = k*0.5bdf_t$                | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{c}}))$           |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                                   | (KN)                                                   |
| -648.98                                    | 0.62           | 1.81      | -1055.26 | -2110.51 | 840.71  | Type III | 138.81                                 | 605.21                                                 |
| 50                                         |                |           |          |          |         |          |                                        |                                                        |
| EC                                         |                |           |          |          |         |          |                                        |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf       | Pf – ec2 | Pu (KN) |          | V <sub>II,1</sub> =0.5bdf <sub>t</sub> | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)     | (KN)     | (KN)    | Туре     | (KN)                                   | (KN)                                                   |
| -694.82                                    | 0.62           | 1.81      | -1129.78 | -2259.56 | 840.71  | -        | -                                      | -                                                      |

|                                                                              |                                                                              |         | Type III            |                          |                                                | one side   | 92.00         | other side |               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|------------|---------------|------------|---------------|
|                                                                              |                                                                              |         |                     |                          |                                                | number of  | stirrups at a | number of  | uniformly     |
| $M^{(2.5d)}_{\parallel} = (2.5d) \min(V_{\parallel,1}, V_{\parallel,2})$     | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups   | distance of   | stirrups   | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #8D + 1#8D | mm            | #8D - 1#8D | 8D /          |
| 117.99                                                                       | 117.87                                                                       | 840.71  | -20.59              | 0.02                     | 4534.25                                        | 92.00      | 6.00          | 102.00     | 6.00          |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr    |               |            |               |
|                                                                              |                                                                              |         |                     |                          | medium ductility                               | διάστημα   | number of     |            |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | S          | stirrups      |            |               |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)       | #8D + 1#8D    |            |               |
| -                                                                            | -                                                                            | 840.71  | -132.27             | 0.16                     | 405.00                                         | 72.00      | 10.00         | -          | -             |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr    | •             | •          |               |
|                                                                              |                                                                              | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα   | number of     |            |               |
|                                                                              |                                                                              | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S          | stirrups      |            |               |
|                                                                              |                                                                              | 840.71  | 20.59               | 132.27                   | (mm)                                           | (mm)       | #8D + 1#8D    |            |               |
|                                                                              | ·                                                                            |         |                     |                          | 607.50                                         | 54.00      | 22.00         | -          | -             |

Πίνακας Υπολογισμών 135: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

| Compressive Force Path |           |       |      |          |           |         | AN       | ΓΟΧΉ ΣΕ ΚΑΝ | IΨH            |                  |         |          |        |          |         |
|------------------------|-----------|-------|------|----------|-----------|---------|----------|-------------|----------------|------------------|---------|----------|--------|----------|---------|
|                        | Σχεδιασμ  | ιού Κ | ίατα | σκευών Ο | ).Σ.      | Ά       | φθρο:    |             | [11]           |                  |         |          |        |          |         |
| Δα                     | ομ.Μέλος  |       |      | Δοκός    | -         | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |                  |         |          |        |          |         |
|                        |           |       |      |          |           |         |          |             |                |                  |         |          |        |          |         |
|                        | Σκυράδουκ | ~     |      | λx       | εc        | fcd     | F        | c           | Мс             | Νεξωτ            |         | 0.0      | 00     |          |         |
|                        | Ζκυροσεμι | X     |      | -149.72  | -0.0035   | 37.71   | 228      | 6.88        | -634.29        | x =              |         | -7.      | 00     |          |         |
| α/α                    | у         | #Φ    | Φ    | As       | εί        | σί      | F        | ï           | Mi             | x <sub>N</sub> = |         | -149     | 9.72   |          |         |
| 1                      |           |       |      |          | 0,00%     | 0.00    | (        | )           | -0             |                  |         |          |        |          |         |
| 2                      | 65.00     | 2     | 9    | 127.235  | -1,14%    | -420.00 | -53.4384 | 4910376     | -7.3477925177  | Νεξωτ            |         | 2180     | 0.00   | Διαφορά: | 0.00    |
| 3                      |           |       |      |          | 0,00%     | 0.00    | (        | )           | -0             | Τε/              | ική αδ  | σνκή     |        | N =      | 2180.00 |
| 4                      | 340.00    | 2     | 9    | 127.235  | -0,50%    | -420.00 | -53.4384 | 4910376     | -7.3477925177  | Τε               | ελική ρ | οπή      |        | M =      | -648.98 |
| 5                      |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  |         |          |        |          |         |
| 6                      |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  |         |          |        |          |         |
| 7                      |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  |         |          |        |          |         |
| 8                      |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | Διαστ            | . (mm   | )        | ] [    | Συντ. Α  | .σφ.    |
| 9                      |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | b=               |         | 405.00   |        | γc=      | 1.00    |
| 10                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | h=               |         | 405.00   |        | γs=      | 1.00    |
| 11                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  |         |          |        |          |         |
| 12                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  | A       | ντοχές ( | (MPa)  |          |         |
| 13                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | fck=             |         | 35.00    | fcd=   | 37.71    |         |
| 14                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             | a=               |         | 1.08     | λ=     | 1.00     |         |
| 15                     |           |       |      | 0        | 0,00%     | 0.00    | (        | )           | -0             |                  | 1.00    | fyk=     | 0.00   | fyd=     | 0.00    |
| Aro                    |           | າທຳອ  |      | max      | 0.00%     | 7       | 106 976  | 0920751     | 14 6055950252  |                  | 2.00    | fyk=     | 420.00 | fyd=     | 420.00  |
| Акр                    |           | ųωυ   | εıς  | min      | -0.011448 | 2       | -100.070 | 3020731     | -14.0900000000 |                  | 3.00    | fyk=     | 0.00   | fyd=     | 0.00    |
| -                      |           |       |      |          |           |         |          |             |                |                  | 4.00    | fyk=     | 420.00 | fyd=     | 420.00  |
|                        |           |       |      |          |           |         |          |             |                |                  | 5.00    | fyk=     | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 136: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode |              |        |     |          |           |           | ANT      | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |            |           |        |          |         |
|----------|--------------|--------|-----|----------|-----------|-----------|----------|-------------|----------------|------------|-----------|--------|----------|---------|
|          | Σχεδιασι     | μού Κ  | ατα | σκευών Ο | .Σ.       | Ά         | ρθρο:    |             | [11]           |            |           |        |          |         |
| Δ        | ομ.Μέλος     |        |     | Δοκός    |           | Mε        | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |         |
|          |              |        |     |          |           |           |          |             |                |            |           |        |          |         |
|          | ΣινιοάΣοιν   | ~      |     | λχ       | 23        | fcd       | F        | с           | Мс             |            |           |        |          |         |
|          | Ζκυροσεμα    | J      |     | -189.80  | -0.0035   | 29.75     | 2286     | 6.88        | -680.12        |            |           |        |          |         |
| α/α      | У            | #Φ     | Φ   | As       | εi        | σί        | F        | ï           | Mi             | x =        | -237      | .25    |          |         |
| 1        |              |        |     |          | 0,00%     | 0.00      | C        | )           | -0             |            |           |        |          |         |
| 2        | 65.00        | 2      | 9   | 127.235  | -1,14%    | -420.00   | -53.4384 | 1910376     | -7.3477925177  | Νεξωτ      | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3        |              |        |     |          | 0,00%     | 0.00      | C        | )           | -0             | Τελική α   | ξονική    |        | N =      | 2180.00 |
| 4        | 340.00       | 2      | 9   | 127.235  | -0,50%    | -420.00   | -53.4384 | 1910376     | -7.3477925177  | Τελική     | ροπή      |        | M =      | -694.82 |
| 5        |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             |            |           | ·      |          |         |
| 6        |              |        |     | 0        | 0,00%     | 0.00 0 -0 |          | -0          |                |            |           |        |          |         |
| 7        |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             |            |           |        |          |         |
| 8        |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | Διαστ. (mn | ר)        | ] [    | Συντ. Α  | .σφ.    |
| 9        |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | b=         | 405.00    | 1 [    | γc=      | 1.00    |
| 10       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | h=         | 405.00    | ] [    | γs=      | 1.00    |
| 11       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             |            |           |        |          |         |
| 12       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             |            | Αντοχές ( | MPa)   |          |         |
| 13       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | fck=       | 35.00     | fcd=   | 29.75    |         |
| 14       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | a=         | 0.85      | λ=     | 0.80     |         |
| 15       |              |        |     | 0        | 0,00%     | 0.00      | C        | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00    |
| ٨٢٥      | αίες Παραμο  | ດແມ່ງຜ |     | max      | 0.00%     | 2         | 106 876  | 0820751     | 14 6055850353  | 2.00       | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр      | αιες παραμοι | ρφωυ   | εıς | min      | -0.011448 | 2         | -100.070 | 9020731     | -14.0900000000 | 3.00       | fyk=      | 0.00   | fyd=     | 0.00    |
|          |              |        |     |          |           |           |          |             |                | 4.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|          |              |        |     |          |           |           |          |             |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00    |
|          |              |        |     |          |           |           |          |             |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00    |
|          |              |        |     |          |           |           |          |             |                | 7.00       | fyk=      | 0.00   | fyd=     | 0.00    |

### Πίνακας Υπολογισμών 137: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 2 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's – Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -149.72 | 405.00 | -2286.88                     | -53.44 | -53.44 | 2180.00 | 2180.00           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -237.25 | 405.00 | 2286.88                      | -53.44 | -53.44 | 2180.00 | 2180.00           |

Πίνακας Υπολογισμών 138: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 139: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |          | $k=(h-x)/(h-x_N)$    |                                                        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|----------|----------------------|--------------------------------------------------------|
| cfp                                        |                |           |         |          |         |          | 0.74                 |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |          | $V_{II,1}$ =k*0.5bdf | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{c}}))$           |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                 | (KN)                                                   |
| -648.98                                    | 0.78           | 2.29      | -832.03 | -1664.06 | 840.71  | Type III | 138.81               | 605.21                                                 |
|                                            |                |           |         |          |         |          |                      |                                                        |
| EC                                         |                |           |         |          |         |          |                      |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf-ec2   | Pu (KN) |          | $V_{II,1}=0.5bdf_t$  | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                 | (KN)                                                   |
| -694.82                                    | 0.78           | 2.29      | -890.79 | -1781.58 | 840.71  | -        | -                    | -                                                      |

|                                                                              |                                                                              |         | Type III            |                          |                                                | one side<br>number of | 73.00<br>stirrups at a | other side | uniformly     |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|-----------------------|------------------------|------------|---------------|
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups              | distance of            | stirrups   | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #8D + 1#8D            | mm                     | #8D - 1#8D | 8D /          |
| 117.99                                                                       | 117.87                                                                       | 840.71  | -21.33              | 0.03                     | 3575.08                                        | 73.00                 | 10.00                  | 77.00      | 10.00         |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr               |                        |            |               |
|                                                                              |                                                                              |         |                     |                          | medium ductility                               | διάστημα              | number of              |            |               |
| $M^{(2.5d)}_{\parallel} = (2.5d) \min(V_{\parallel,1},V_{\parallel,2})$      | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | s                     | stirrups               |            |               |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)                  | #8D + 1#8D             |            |               |
| -                                                                            | -                                                                            | 840.71  | -164.45             | 0.20                     | 405.00                                         | 72.00                 | 10.00                  | -          | -             |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr               |                        |            |               |
|                                                                              |                                                                              | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα              | number of              |            |               |
|                                                                              |                                                                              | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S                     | stirrups               |            |               |
|                                                                              |                                                                              | 840.71  | 21.33               | 164.45                   | (mm)                                           | (mm)                  | #8D + 1#8D             |            |               |
|                                                                              | ·                                                                            |         |                     |                          | 607.50                                         | 54.00                 | 22.00                  | -          | -             |

#### Πίνακας Υπολογισμών 140: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

| Compressive Force Path |              |       |      |          |           |         | AN             | ΤΟΧΉ ΣΕ ΚΑΝ | 1¥H            |                  |         |           |        |          |         |
|------------------------|--------------|-------|------|----------|-----------|---------|----------------|-------------|----------------|------------------|---------|-----------|--------|----------|---------|
|                        | Σχεδιασμ     | ιού Κ | ίατα | σκευών Ο | .Σ.       | Άſ      | οθρο:          |             | [11]           |                  |         |           |        |          |         |
| Δ                      | ομ.Μέλος     |       |      | Δοκός    |           | Μελ     | ετητής:        | Αχιλλέ      | ας Θεοδωρούλης |                  |         |           |        |          |         |
|                        |              |       |      |          |           |         |                |             |                |                  |         |           |        |          |         |
|                        | Σκυράδουσ    |       |      | λx       | 23        | fcd     | F              | c           | Mc             | Νεξωτ            |         | 0.0       | 00     |          |         |
|                        | Ζκυροσεμα    | 4     |      | -151.36  | -0.0035   | 37.71   | 231            | 1.95        | -643.14        | x =              |         | -8.       | 64     |          |         |
| α/α                    | у            | #Φ    | Φ    | As       | εί        | σί      | F              | Fi          | Mi             | x <sub>N</sub> = |         | -151      | .36    |          |         |
| 1                      |              |       |      |          | 0,00%     | 0.00    | (              | )           | -0             |                  |         |           |        |          |         |
| 2                      | 65.00        | 2     | 10   | 157.08   | -1,14%    | -420.00 | -65.9734       | 4457254     | -9.0713487872  | Νεξωτ            |         | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3                      |              |       |      |          | 0,00%     | 0.00    | (              | )           | -0             | T                | ελική α | ξονική    |        | N =      | 2180.00 |
| 4                      | 340.00       | 2     | 10   | 157.08   | -0,50%    | -420.00 | -65.9734457254 |             | -9.0713487872  | -                | Τελική  | ροπή      |        | M =      | -661.28 |
| 5                      |              |       |      | 0        | 0,00%     | 0.00    | (              | )           | -0             |                  |         |           |        |          |         |
| 6                      |              |       |      | 0        | 0,00%     | 0.00    | (              | C           | -0             |                  |         |           |        |          |         |
| 7                      |              |       |      | 0        | 0,00%     | 0.00    | (              | C           | -0             |                  |         |           |        |          |         |
| 8                      |              |       |      | 0        | 0,00%     | 0.00    | (              | )           | -0             | Διασ             | лт. (mn | ר)        |        | Συντ. Α  | σφ.     |
| 9                      |              |       |      | 0        | 0,00%     | 0.00    | (              | )           | -0             | b=               |         | 405.00    |        | γc=      | 1.00    |
| 10                     |              |       |      | 0        | 0,00%     | 0.00    | (              | 2           | -0             | h=               |         | 405.00    | J      | γs=      | 1.00    |
| 11                     |              |       |      | 0        | 0,00%     | 0.00    | (              | כ           | -0             |                  |         |           |        |          | _       |
| 12                     |              |       |      | 0        | 0,00%     | 0.00    | (              | C           | -0             |                  |         | Αντοχές ( | MPa)   |          |         |
| 13                     |              |       |      | 0        | 0,00%     | 0.00    | (              | 0           | -0             | fck=             |         | 35.00     | fcd=   | 37.71    |         |
| 14                     |              |       |      | 0        | 0,00%     | 0.00    | (              | 0           | -0             | a=               |         | 1.08      | λ=     | 1.00     |         |
| 15                     |              |       |      | 0        | 0,00%     | 0.00    | (              | 0           | -0             | _                | 1.00    | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro                    | αίες Παραμος | າທາ   |      | max      | 0.00%     | 2       | -131 0/6       | 801/508     | -18 1/260757/5 |                  | 2.00    | fyk=      | 420.00 | fyd=     | 420.00  |
|                        | αιες παραμορ | φωo   | sις  | min      | -0.011362 | 2       | -101.340       | 0314000     | -10.1420373743 |                  | 3.00    | fyk=      | 0.00   | fyd=     | 0.00    |
|                        |              |       |      |          |           |         |                |             |                |                  | 4.00    | fyk=      | 420.00 | fyd=     | 420.00  |
|                        |              |       |      |          |           |         |                |             |                |                  | 5.00    | fyk=      | 0.00   | fyd=     | 0.00    |
|                        |              |       |      |          |           |         |                |             |                |                  | 6.00    | fyk=      | 0.00   | fyd=     | 0.00    |
|                        |              |       |      |          |           |         |                |             |                |                  | 7.00    | fyk=      | 0.00   | fyd=     | 0.00    |
|                        |              |       |      |          |           |         |                | 8.00        | fyk=           | 0.00             | fyd=    | 0.00      |        |          |         |

Πίνακας Υπολογισμών 141: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode |              |       |      |          |           |         | ANT      | ΌΧΗ ΣΕ ΚΑΜ | ΨH             |            |            |        |          |         |
|----------|--------------|-------|------|----------|-----------|---------|----------|------------|----------------|------------|------------|--------|----------|---------|
|          | Σχεδιασμ     | ιού Κ | ίατα | σκευών Ο | ).Σ.      | Ά       | ρθρο:    |            | [11]           |            |            |        |          |         |
| Δ        | ομ.Μέλος     |       |      | Δοκός    |           | Μελ     | λετητής: | Αχιλλέα    | ας Θεοδωρούλης |            |            |        |          |         |
|          |              |       |      |          |           |         |          |            |                | -          |            |        |          |         |
|          | Σκυράδουρ    |       |      | λx       | εc        | fcd     | F        | c          | Мс             |            |            |        |          |         |
|          | Ζκυροσεμο    |       |      | -191.88  | -0.0035   | 29.75   | 2312     | .95        | -689.98        |            |            |        |          |         |
| α/α      | У            | #Φ    | Φ    | As       | εί        | σί      | F        | i          | Mi             | x =        | -239       | .85    |          |         |
| 1        |              |       |      |          | 0,00%     | 0.00    | C        |            | -0             |            |            |        |          |         |
| 2        | 65.00        | 2     | 10   | 157.08   | -1,14%    | -420.00 | -65.9734 | 457254     | -9.0713487872  | Νεξωτ      | 2180       | 0.00   | Διαφορά: | 0.00    |
| 3        |              |       |      |          | 0,00%     | 0.00    | C        | 1          | -0             | Τελική α   | αξονική    |        | N =      | 2180.00 |
| 4        | 340.00       | 2     | 10   | 157.08   | -0,50%    | -420.00 | -65.9734 | 457254     | -9.0713487872  | Τελική     | ροπή       |        | M =      | -708.12 |
| 5        |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             |            |            |        |          |         |
| 6        |              |       |      | 0        | 0,00%     | 0.00    | C        | 1          | -0             |            |            |        |          |         |
| 7        |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             |            |            |        |          |         |
| 8        |              |       |      | 0        | 0,00%     | 0.00    | C        | )          | -0             | Διαστ. (mn | n)         |        | Συντ. Α  | σφ.     |
| 9        |              |       |      | 0        | 0,00%     | 0.00    | 0        |            | -0             | b=         | 405.00     |        | γc=      | 1.00    |
| 10       |              |       |      | 0        | 0,00%     | 0.00    | C        | 1          | -0             | h=         | 405.00     |        | γs=      | 1.00    |
| 11       |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             |            |            |        |          |         |
| 12       |              |       |      | 0        | 0,00%     | 0.00    | C        | )          | -0             |            | Αντοχές (Ι | MPa)   |          |         |
| 13       |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             | fck=       | 35.00      | fcd=   | 29.75    |         |
| 14       |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             | a=         | 0.85       | λ=     | 0.80     |         |
| 15       |              |       |      | 0        | 0,00%     | 0.00    | C        |            | -0             | 1.00       | fyk=       | 0.00   | fyd=     | 0.00    |
| ٨٢٥      | αίες Παραμος | vnúva |      | max      | 0.00%     | 2       | -131 9/6 | 801/508    | -18 1/260757/5 | 2.00       | fyk=       | 420.00 | fyd=     | 420.00  |
|          | αιες παραμομ | φωσ   | εις  | min      | -0.011362 | 2       | -131.340 | 5914500    | -10.1420973743 | 3.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 4.00       | fyk=       | 420.00 | fyd=     | 420.00  |
|          |              |       |      |          |           |         |          |            |                | 5.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 6.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 7.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 8.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 9.00       | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 10.00      | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                | 11.00      | fyk=       | 0.00   | fyd=     | 0.00    |
|          |              |       |      |          |           |         |          |            |                |            | fyk=       | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 142: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 3 και επίλυση προβλήματος Ευρωκώδικα

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

| -         |                 |       |       | •                    |                                     |                                     | • •     |        |                              |        |        | •       |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ftO(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -151.36 | 405.00 | -2311.95                     | -65.97 | -65.97 | 2180.00 | 2180.00           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -239.85 | 405.00 | 2311.95                      | -65.97 | -65.97 | 2180.00 | 2180.00           |

### Πίνακας Υπολογισμών 143: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 144: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |         | $k=(h-x)/(h-x_N)$       |                                                        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|---------|-------------------------|--------------------------------------------------------|
| cfp                                        |                |           |         |          |         |         | 0.74                    |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1} = k*0.5bdf_t$ | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                                   |
| -661.28                                    | 0.99           | 2.91      | -667.96 | -1335.92 | 738.40  | Type II | 138.95                  | 611.84                                                 |
|                                            |                |           |         |          |         |         |                         |                                                        |
| EC                                         |                |           |         |          |         |         |                         |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf      | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                                   |
| -708.12                                    | 0.99           | 2.91      | -715.28 | -1430.55 | 738.40  | -       | -                       | -                                                      |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        | at a distance |        |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|---------------|--------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 850.00        | Location 2 |        | 2.5*d         |        | Location 3 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 28.00         | Asw        | b      | stirrups      | 28.00  | Asw        | 1.5*d  | stirrups      | 25.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | # 8D / d      | # 8D / | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 738.40  | -16.19   | 0.02          | 1335.92          | 340.00   | 28.00         | 12.00         | 1335.92    | 405.00 | 28.00         | 14.00  | 1214.47    | 510.00 | 25.00         | 20.00  |
|         |          |               |                  | στο lcr  |               |               |            |        |               |        |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |               |        |            |        |               |        |
| Pu (KN) | Pf-ec2   | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups      |               |            |        |               |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |               |        |            |        |               |        |
| 738.40  | -115.60  | 0.16          | 405.00           | 80.00    | 10.00         | -             | -          | -      | -             | -      | -          | -      | -             | -      |
|         |          |               |                  | στο lcr  |               |               |            |        |               |        |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |               |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |        |               |        |            |        |               |        |
| 738.40  | 16.19    | 115.60        | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |               |        |            |        |               |        |
|         |          |               | 607.50           | 60.00    | 20.00         | -             | -          |        |               |        |            |        |               |        |

Πίνακας Υπολογισμών 145: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compre       | essiv | e Fo | orce Path |           |         | AN       | ΓΟΧΗ ΣΕ ΚΑΝ | 14H            |                  |        |           |        |          |         |
|-----|--------------|-------|------|-----------|-----------|---------|----------|-------------|----------------|------------------|--------|-----------|--------|----------|---------|
|     | Σχεδιασμ     | ιού Κ | ίατα | σκευών Ο  | .Σ.       | Ά       | φθρο:    |             | [11]           |                  |        |           |        |          |         |
| Δ   | ομ.Μέλος     |       |      | Δοκός     |           | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |                  |        |           |        |          |         |
|     |              |       |      |           |           |         |          |             |                |                  |        |           |        |          |         |
|     | Σκυράδουρ    |       |      | λx        | εc        | fcd     | F        | c           | Мс             | Νεξωτ            |        | 0.0       | 00     |          |         |
|     | Ζκυροσεμά    | I     |      | -153.17   | -0.0035   | 37.71   | 233      | 9.66        | -652.97        | x =              |        | -8.6      | 64     |          |         |
| α/α | У            | #Ф    | Φ    | As        | εi        | σί      | F        | Fi          | Mi             | x <sub>N</sub> = |        | -153      | 3.17   |          |         |
| 1   |              |       |      |           | 0,00%     | 0.00    | (        | )           | -0             |                  |        |           |        |          |         |
| 2   | 65.00        | 2     | 11   | 190.066   | -1,13%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Νεξωτ            |        | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3   |              |       |      |           | 0,00%     | 0.00    | (        | )           | -0             | Τελ              | λική α | ξονκή     |        | N =      | 2180.00 |
| 4   | 340.00       | 2     | 11   | 190.066   | -0,50%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Ta               | ελική  | ροπή      |        | M =      | -674.92 |
| 5   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |        |           |        |          |         |
| 6   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |        |           |        |          |         |
| 7   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |        |           |        |          |         |
| 8   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | Διαστ            | . (mm  | ı)        | ] [    | Συντ. Α  | .σφ.    |
| 9   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | b=               |        | 405.00    |        | γc=      | 1.00    |
| 10  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | h=               |        | 405.00    |        | γs=      | 1.00    |
| 11  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |        |           |        |          | _       |
| 12  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  | A      | Αντοχές ( | MPa)   |          |         |
| 13  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | fck=             |        | 35.00     | fcd=   | 37.71    |         |
| 14  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | a=               |        | 1.08      | λ=     | 1.00     |         |
| 15  |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  | 1.00   | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro | αίες Παραμος |       |      | max       | 0.00%     | 7       | 150 655  | 7396554     | 21.0526640651  |                  | 2.00   | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр | αιες παραμομ | φωυ   | εıς  | min       | -0.011269 | 2       | -159.055 | 7 300334    | -21.9520040051 |                  | 3.00   | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |       |      |           |           |         |          |             |                |                  | 4.00   | fyk=      | 420.00 | fyd=     | 420.00  |
|     |              |       |      |           |           |         |          |             |                |                  | 5.00   | fyk=      | 0.00   | fyd=     | 0.00    |
|     |              |       |      |           |           |         |          |             |                |                  | 6.00   | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 146: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

7.00

8.00

9.00

10.00

11.00

12.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|      |              | Euro   | pcod | e        |           |         | AN       |         | IYH            |       |        |          |        |          |         |
|------|--------------|--------|------|----------|-----------|---------|----------|---------|----------------|-------|--------|----------|--------|----------|---------|
|      | Σχεδιασμ     | JOÚ K  | ίατα | σκευών Ο | ).Σ.      | Ä       | φθρο:    |         | [11]           |       |        |          |        |          |         |
| Δ    | ομ.Μέλος     |        |      | Δοκός    |           | Mε      | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |       |        |          |        |          |         |
|      |              |        |      |          |           |         |          |         |                | -     |        |          |        |          |         |
|      | Σιμοάδουκ    |        |      | λx       | 23        | fcd     | F        | с       | Мс             |       |        |          |        |          |         |
|      | Ζκυροσεμα    | 1      |      | -194.18  | -0.0035   | 29.75   | 2339     | 9.66    | -700.94        | ]     |        |          |        |          |         |
| α/α  | У            | #Ф     | Φ    | As       | εί        | σi      | F        | ï       | Mi             | x =   |        | -242     | 2.73   |          |         |
| 1    |              |        |      |          | 0,00%     | 0.00    | (        | )       | -0             |       |        |          |        |          |         |
| 2    | 65.00        | 2      | 11   | 190.066  | -1,13%    | -420.00 | -79.8278 | 3693277 | -10.9763320326 | Νεξωτ |        | 2180     | 0.00   | Διαφορά: | 0.00    |
| 3    |              |        |      |          | 0,00%     | 0.00    | (        | )       | -0             | Τε    | λική α | ξονική   |        | N =      | 2180.00 |
| 4    | 340.00       | 2      | 11   | 190.066  | -0,50%    | -420.00 | -79.8278 | 3693277 | -10.9763320326 | ٦     | ελική  | οπή      |        | M =      | -722.89 |
| 5    |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             |       |        |          |        |          |         |
| 6    |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | ]     |        |          |        |          |         |
| 7    |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | ]     |        |          |        |          |         |
| 8    |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | Διασ  | т. (mm | )        | ] [    | Συντ. Α  | νσφ.    |
| 9    |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | b=    |        | 405.00   |        | γc=      | 1.00    |
| 10   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | h=    |        | 405.00   |        | γs=      | 1.00    |
| 11   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             |       |        |          |        |          |         |
| 12   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             |       | A      | ντοχές ( | MPa)   |          |         |
| 13   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | fck=  |        | 35.00    | fcd=   | 29.75    |         |
| 14   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             | a=    |        | 0.85     | λ=     | 0.80     |         |
| 15   |              |        |      | 0        | 0,00%     | 0.00    | (        | )       | -0             |       | 1.00   | fyk=     | 0.00   | fyd=     | 0.00    |
| Arro |              | ົາທ່າງ |      | max      | 0.00%     | 5       | 150 655  | 7206554 | 21 0526640651  |       | 2.00   | fyk=     | 420.00 | fyd=     | 420.00  |
| Акр  | αιες παραμορ | JΨWO   | εıς  | min      | -0.011269 | 2       | -109.000 | 7300334 | -21.9520040051 |       | 3.00   | fyk=     | 0.00   | fyd=     | 0.00    |
|      |              |        |      |          |           |         |          |         |                | -     | 4.00   | fyk=     | 420.00 | fyd=     | 420.00  |
|      |              |        |      |          |           |         |          |         |                |       | 5.00   | fyk=     | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 147: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 4 και επίλυση προβλήματος Ευρωκώδικα

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00

8.00

10.00

11.00

12.00

14.00

7.00 fyk=

9.00 fyk=

13.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -153.17 | 405.00 | -2339.66                     | -79.83 | -79.83 | 2180.00 | 2180.00           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -242.73 | 405.00 | 2339.66                      | -79.83 | -79.83 | 2180.00 | 2180.00           |

## Πίνακας Υπολογισμών 148: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 149: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |         | $k=(h-x)/(h-x_N)$       |                                            |
|--------------------------------------------|----------------|-----------|---------|----------|---------|---------|-------------------------|--------------------------------------------|
| cfp                                        |                |           |         |          |         |         | 0.74                    |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1} = k*0.5bdf_t$ | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                       |
| -674.92                                    | 1.22           | 3.59      | -553.21 | -1106.43 | 627.20  | Type II | 138.50                  | -619.18                                    |
|                                            |                |           |         |          |         |         |                         |                                            |
| EC                                         |                |           |         |          |         |         |                         |                                            |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf      | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                    | (KN)                                       |
| -722.89                                    | 1.22           | 3.59      | -592.54 | -592.54  | 627.20  | -       | -                       | -                                          |

|         | Type II  |               |                  |          | at a distance | at a distance |            |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 850.00        | Location 2 | Location 3 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 24.00         | Asw        | Asw        | 1.5*d  | stirrups      | 21.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 627.20  | -21.77   | 0.03          | 1106.43          | 340.00   | 24.00         | 14.00         | Επαρκεί    | 1005.84    | 510.00 | 21.00         | 24.00  |
|         |          |               |                  | στο lcr  |               |               |            |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |            |        |               |        |
| Pu (KN) | Pf – ec2 | Pf-ec2 / Pu   | Lcr = h          | S        | stirrups      |               |            |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |            |        |               |        |
| 627.20  | -42.74   | 0.07          | 405.00           | 88.00    | 10.00         | -             | -          | -          | -      | -             | -      |
|         |          |               |                  | στο lcr  |               |               |            |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |            |        |               |        |
| 627.20  | 21.77    | 42.74         | (mm)             | (mm)     | #8D + 1#8D    |               |            |            |        |               |        |
|         |          |               | 607.50           | 66.00    | 18.00         | -             | -          |            |        |               |        |

Πίνακας Υπολογισμών 150: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|      | Compre       | essiv | e Fo | orce Path |           |         | AN       | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |                  |           |        |          |         |
|------|--------------|-------|------|-----------|-----------|---------|----------|-------------|----------------|------------------|-----------|--------|----------|---------|
|      | Σχεδιασμ     | ιού Κ | ίατα | σκευών Ο  | .Σ.       | Ά       | φθρο:    |             | [11]           |                  |           |        |          |         |
| Δα   | ομ.Μέλος     |       |      | Δοκός     |           | Με      | λετητής: | Αχιλλέα     | ας Θεοδωρούλης |                  |           |        |          |         |
|      |              |       |      |           |           |         |          |             | 1              |                  |           |        |          |         |
|      | Σκυράδουσ    |       |      | λχ        | 23        | fcd     | F        | с           | Мс             | Νεξωτ            | 0.0       | 00     |          |         |
|      | Ζκυροσεμα    |       |      | -153.17   | -0.0035   | 37.71   | 2339     | 9.66        | -652.97        | x =              | -8.       | 64     |          |         |
| α/α  | У            | #Φ    | Φ    | As        | εί        | σi      | F        | ï           | Mi             | x <sub>N</sub> = | -153      | 3.17   |          |         |
| 1    |              |       |      |           | 0,00%     | 0.00    | (        | )           | -0             |                  |           |        |          |         |
| 2    | 65.00        | 2     | 11   | 190.066   | -1,13%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Νεξωτ            | 218       | 0.00   | Διαφορά: | 0.00    |
| 3    |              |       |      |           | 0,00%     | 0.00    | (        | )           | -0             | Τελική           | αξονική   |        | N =      | 2180.00 |
| 4    | 340.00       | 2     | 11   | 190.066   | -0,50%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Τελικ            | ή ροπή    |        | M =      | -674.92 |
| 5    |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |           |        |          |         |
| 6    |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |           |        |          |         |
| 7    |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |           |        |          |         |
| 8    |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | Διαστ. (n        | im)       |        | Συντ. Α  | ωσφ.    |
| 9    |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | b=               | 405.00    |        | γc=      | 1.00    |
| 10   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | h=               | 405.00    |        | γs=      | 1.00    |
| 11   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  |           |        |          | _       |
| 12   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             |                  | Αντοχές ( | (MPa)  |          |         |
| 13   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | fck=             | 35.00     | fcd=   | 37.71    |         |
| 14   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | a=               | 1.08      | λ=     | 1.00     |         |
| 15   |              |       |      | 0         | 0,00%     | 0.00    | (        | )           | -0             | 1.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
| Aro  |              | vivi  |      | max       | 0.00%     | 5       | -150 655 | 7386554     | -21 05266/0651 | 2.0              | 0 fyk=    | 420.00 | fyd=     | 420.00  |
| ЛКРС | μιες παραμοι | φωυ   | εις  | min       | -0.011269 | 2       | -109.000 | 7300334     | -21.3320040031 | 3.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |              |       |      |           |           |         |          |             |                | 4.0              | 0 fyk=    | 420.00 | fyd=     | 420.00  |
|      |              |       |      |           |           |         |          |             |                | 5.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |              |       |      |           |           |         |          |             |                | 6.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |              |       |      |           |           |         |          |             |                | 7.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |              |       |      |           |           |         |          |             |                | 8.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |
|      |              |       |      |           |           |         |          |             |                | 9.0              | 0 fyk=    | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 151: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 5 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

|     |                | Euro  |      | le       |           |         | ANT      | ΟΧΗ ΣΕ ΚΑΝ | IWH            |       |        |           |        |          |         |
|-----|----------------|-------|------|----------|-----------|---------|----------|------------|----------------|-------|--------|-----------|--------|----------|---------|
|     | Σχεδιασμ       | ιού Κ | ίατα | σκευών Ο | ).Σ.      | Ά       | ρθρο:    |            | [11]           |       |        |           |        |          |         |
| Δ   | ομ.Μέλος       |       |      | Δοκός    |           | Μελ     | λετητής: | Αχιλλέ     | ας Θεοδωρούλης |       |        |           |        |          |         |
|     |                |       |      |          |           |         |          |            |                | _     |        |           |        |          |         |
|     | Σκυρόδεικ      | v     |      | λx       | εc        | fcd     | F        | <b>c</b>   | Мс             |       |        |           |        |          |         |
|     | Ζκυρουεμα      |       | _    | -194.18  | -0.0035   | 29.75   | 2339     | 9.66       | -700.94        |       |        |           |        |          |         |
| α/α | У              | #Ф    | Φ    | As       | εί        | σί      | F        | i          | Mi             | x =   |        | -242      | 2.73   |          |         |
| 1   |                |       |      |          | 0,00%     | 0.00    | 0        | 1          | -0             |       |        |           |        |          |         |
| 2   | 65.00          | 2     | 11   | 190.066  | -1,13%    | -420.00 | -79.8278 | 693277     | -10.9763320326 | Νεξωτ |        | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3   |                |       |      |          | 0,00%     | 0.00    | 0        | 1          | -0             | Τε    | λική α | ξονική    |        | N =      | 2180.00 |
| 4   | 340.00         | 2     | 11   | 190.066  | -0,50%    | -420.00 | -79.8278 | 693277     | -10.9763320326 | 1     | ελική  | ροπή      |        | M =      | -722.89 |
| 5   |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       |        |           |        |          |         |
| 6   |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       |        |           |        |          |         |
| 7   |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       |        |           |        |          |         |
| 8   |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             | Διασ  | т. (mm | ı)        |        | Συντ. Α  | ισφ.    |
| 9   |                |       |      | 0        | 0,00%     | 0.00    | 0        |            | -0             | b=    |        | 405.00    |        | γc=      | 1.00    |
| 10  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             | h=    |        | 405.00    |        | γs=      | 1.00    |
| 11  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       |        |           |        |          | _       |
| 12  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       | ŀ      | Αντοχές ( | MPa)   |          |         |
| 13  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             | fck=  |        | 35.00     | fcd=   | 29.75    |         |
| 14  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             | a=    |        | 0.85      | λ=     | 0.80     |         |
| 15  |                |       |      | 0        | 0,00%     | 0.00    | 0        | 1          | -0             |       | 1.00   | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro |                |       |      | max      | 0.00%     | 5       | 150 655  | 7386554    | 21.0526640651  |       | 2.00   | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр | uicy i iupupop | ψωο   | εıς  | min      | -0.011269 | ۷       | -159.055 | 100004     | -21.9520040051 |       | 3.00   | fyk=      | 0.00   | fyd=     | 0.00    |
|     |                |       |      |          |           |         |          |            |                |       | 4.00   | fyk=      | 420.00 | fyd=     | 420.00  |
|     |                |       |      |          |           |         |          |            |                |       | 5.00   | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 152: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 5 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |          |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|----------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |          |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | $f_{t0}$ | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40     | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -153.17 | 405.00 | -2339.66                     | -79.83 | -79.83 | 2180.00 | 2180.00           |
| EC        |          |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |          |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |          |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -        | -     | -     | -                    | -                                   | -                                   | -242.73 | 405.00 | 2339.66                      | -79.83 | -79.83 | 2180.00 | 2180.00           |

Πίνακας Υπολογισμών 153: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

## Πίνακας Υπολογισμών 154: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |         |          |         |        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -674.92                                    | 1.76           | 5.18      | -383.48 | -766.96  | 435.93  | Type I |
| EC                                         |                |           |         |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -722.89                                    | 1.76           | 5.18      | -410.73 | -821.47  | 435.93  | -      |

Πίνακας Υπολογισμών 155: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|         | Type I   |                         |
|---------|----------|-------------------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu           |
| (KN)    | (KN)     | (KN)                    |
| 435.93  | -766.96  | 1.76                    |
| Pu (KN) | Pf-ec2   | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| (KN)    | (KN)     | (KN)                    |
| 435.93  | -821.47  | 1.88                    |
| (KN)    | (KN)     | (KN)                    |
| 435.93  | -821.47  | 1.88                    |
| (KN)    | (KN)     | (KN)                    |
| 435.93  | -821.47  | 1.88                    |
| Pu      | CPF      | EC                      |
| (KN)    | (KN)     | (KN)                    |
|                     | Compr                 | essiv | e Fo    | orce Path |         |          | AN             | ΓΟΧΉ ΣΕ ΚΑΝ    | IWH            |                  |       |         |        |          |        |
|---------------------|-----------------------|-------|---------|-----------|---------|----------|----------------|----------------|----------------|------------------|-------|---------|--------|----------|--------|
|                     | Σχεδιασμ              | JOÚ K | ίατα    | σκευών Ο  | ).Σ.    | Ά        | φθρο:          |                | [11]           |                  |       |         |        |          |        |
|                     | ομ.Μέλος              |       |         | Δοκός     |         | Μελ      | λετητής:       | Αχιλλέ         | ας Θεοδωρούλης |                  |       |         |        |          |        |
|                     |                       |       |         |           |         |          |                |                |                |                  |       |         |        |          |        |
|                     | Σκυρόδουκ             | ~     |         | λx        | εc      | fcd      | F              | с              | Mc             | Νεξωτ            |       | 0.0     | 00     |          |        |
|                     | Ζκυρουεμι             | J.    |         | -153.17   | -0.0035 | 37.71    | 2339           | 9.66           | -652.97        | x =              |       | -8.6    | 64     |          |        |
| α/α                 | У                     | #Ф    | Φ       | As        | εί      | σi       | F              | ï              | Mi             | x <sub>N</sub> = |       | -153    | .17    |          |        |
| 1                   |                       |       |         |           | 0,00%   | 0.00     | (              | )              | -0             |                  |       |         |        |          |        |
| 2                   | 65.00                 | 2     | 11      | 190.066   | -1,13%  | -420.00  | -79.8278693277 |                | -10.9763320326 | Νεξωτ            |       | 2180    | 0.00   | Διαφορά: | 0.00   |
| 3 0,00% 0.00 0      |                       |       |         | -0        | Τελικ   | ή αξον   | ική            |                | N =            | 2180.00          |       |         |        |          |        |
| 4 340.00 2 11 190.0 |                       |       | 190.066 | -0,50%    | -420.00 | -79.8278 | 3693277        | -10.9763320326 | Τελι           | κή ροπ           | rή    |         | M =    | -674.92  |        |
| 5                   |                       |       |         | 0         | 0,00%   | 0.00     | 0              |                | -0             |                  |       |         |        |          |        |
| 6                   |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             |                  |       |         |        |          |        |
| 7                   |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             |                  |       |         |        |          |        |
| 8                   |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | Διαστ. (         | mm)   |         |        | Συντ. Α  | .σφ.   |
| 9                   |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | b=               | 405   | 5.00    |        | γc=      | 1.00   |
| 10                  |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | h=               | 405   | 5.00    |        | γs=      | 1.00   |
| 11                  |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             |                  |       |         |        |          |        |
| 12                  |                       |       |         | 0         | 0,00%   | 0.00     | 0              | )              | -0             |                  | Avro  | οχές (I | MPa)   |          |        |
| 13                  |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | fck=             | 35    | 5.00    | fcd=   | 37.71    |        |
| 14                  |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | a=               | 1.    | .08     | λ=     | 1.00     |        |
| 15                  |                       |       |         | 0         | 0,00%   | 0.00     | (              | )              | -0             | 1                | 00 fy | ′k=     | 0.00   | fyd=     | 0.00   |
| Aro                 |                       |       |         | max       | 0.00%   | ~        | 150 655        | 7396554        | 21.0526640651  | 2                | 00 fy | /k=     | 420.00 | fyd=     | 420.00 |
| Акр                 | μιες ι ιαραμοι        | εις   | min     | -0.011269 | 2       | -159.055 | 1300334        | -21.9520040051 | 3              | 00 fy            | /k=   | 0.00    | fyd=   | 0.00     |        |
|                     |                       |       |         |           |         |          |                |                |                | 4                | 00 fy | ′k=     | 420.00 | fyd=     | 420.00 |
|                     | 5.00  fyk = 0.00  fyk |       |         |           |         |          |                |                |                |                  |       |         | fyd=   | 0.00     |        |

Πίνακας Υπολογισμών 156: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 6 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00

7.00

8.00

9.00

10.00

11.00

13.00

12.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |                         | Euro  | 0000  | le       |           |         | ANT      | ΓΟΧΉ ΣΕ ΚΑΜ | ΨH             |           |           |        |          |         |
|-----|-------------------------|-------|-------|----------|-----------|---------|----------|-------------|----------------|-----------|-----------|--------|----------|---------|
|     | Σχεδιασμ                | ιού K | ζατα  | σκευών Ο | .Σ.       | μ Ά     | φθρο:    |             | [11]           |           |           |        |          |         |
| Δ   | ομ.Μέλος                |       |       | Δοκός    |           | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |           |           |        |          |         |
|     |                         |       |       |          |           |         |          |             |                |           |           |        |          |         |
|     | ΣινιοάΣοιιο             |       |       | λx       | 23        | fcd     | F        | c           | Мс             |           |           |        |          |         |
|     | Ζκυροσεμα               | X     |       | -194.18  | -0.0035   | 29.75   | 2339     | 9.66        | -700.94        |           |           |        |          |         |
| α/α | У                       | #Ф    | Φ     | As       | εί        | σί      | F        | i           | Mi             | x =       | -242      | 2.73   |          |         |
| 1   |                         |       |       |          | 0,00%     | 0.00    | (        | )           | -0             |           |           |        |          |         |
| 2   | 65.00                   | 2     | 11    | 190.066  | -1,13%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Νεξωτ     | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3   |                         |       |       |          | 0,00%     | 0.00    | (        | )           | -0             | Τελικι    | ή αξονική |        | N =      | 2180.00 |
| 4   | 340.00                  | 2     | 11    | 190.066  | -0,50%    | -420.00 | -79.8278 | 3693277     | -10.9763320326 | Τελικ     | κή ροπή   |        | M =      | -722.89 |
| 5   |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             |           |           |        |          |         |
| 6   |                         |       | 0     | 0,00%    | 0.00      | (       | )        | -0          |                |           |           |        |          |         |
| 7   | 0 0 0,00%   7 0 0,00%   |       | 0,00% | 0.00     | (         | )       | -0       |             |                |           |           |        |          |         |
| 8   |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | Διαστ. (r | nm)       | ] [    | Συντ. Α  | νσφ.    |
| 9   |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | b=        | 405.00    |        | γc=      | 1.00    |
| 10  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | h=        | 405.00    |        | γs=      | 1.00    |
| 11  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             |           |           | -      |          |         |
| 12  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             |           | Αντοχές ( | MPa)   |          | ]       |
| 13  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | fck=      | 35.00     | fcd=   | 29.75    |         |
| 14  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | a=        | 0.85      | λ=     | 0.80     |         |
| 15  |                         |       |       | 0        | 0,00%     | 0.00    | (        | )           | -0             | 1.0       | 00 fyk=   | 0.00   | fyd=     | 0.00    |
| Aro | αίες Παραμοι            |       |       | max      | 0.00%     | 7       | 150 655  | 7386554     | 21.0526640651  | 2.0       | 00 fyk=   | 420.00 | fyd=     | 420.00  |
| Акр | Ακραιες Ι ιαραμορφωσεις |       |       | min      | -0.011269 | 2       | -159.055 | 7 300334    | -21.9520040051 | 3.0       | 00 fyk=   | 0.00   | fyd=     | 0.00    |
|     |                         |       |       |          |           |         |          |             |                | 4.0       | 00 fyk=   | 420.00 | fyd=     | 420.00  |
|     |                         |       |       |          |           |         |          |             |                | 5.0       | 00 fyk=   | 0.00   | fyd=     | 0.00    |
|     |                         |       |       |          |           |         |          |             |                | 6.0       | 00 fyk=   | 0.00   | fyd=     | 0.00    |
|     |                         |       |       |          |           |         |          |             |                |           | 00 fyk=   | 0.00   | fyd=     | 0.00    |

#### Πίνακας Υπολογισμών 157: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 6 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | x       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -153.17 | 405.00 | -2339.66                     | -79.83 | -79.83 | 2180.00 | 2180.00           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -242.73 | 405.00 | 2339.66                      | -79.83 | -79.83 | 2180.00 | 2180.00           |

Πίνακας Υπολογισμών 158: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 159: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |         |          |         |        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -674.92                                    | 1.76           | 5.18      | -383.48 | -766.96  | 155.69  | Type I |
| EC                                         |                |           |         |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -722.89                                    | 1.76           | 5.18      | -410.73 | -821.47  | 155.69  | -      |

Πίνακας Υπολογισμών 160: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|         | турет    |                         |
|---------|----------|-------------------------|
| Pu (KN) | Pf – cfp | Pf – cfp / Pu           |
| (KN)    | (KN)     | (KN)                    |
| 155.69  | -766.96  | 4.93                    |
|         |          |                         |
|         |          |                         |
| Pu (KN) | Pf – ec2 | P <sub>f-ec2</sub> / Pu |
| (KN)    | (KN)     | (KN)                    |
| 155.69  | -821.47  | 5.28                    |
|         |          |                         |
| Pu      | CPF      | EC                      |
| (KN)    | (KN)     | (KN)                    |
| 155 69  | 766.96   | 821 47                  |

|                                                    | Compr                 | ressiv | e Fo | orce Path |              |         | AN             | ΤΟΧΗ ΣΕ ΚΑΝ   | IΨH            |                  |           |        |          |         |
|----------------------------------------------------|-----------------------|--------|------|-----------|--------------|---------|----------------|---------------|----------------|------------------|-----------|--------|----------|---------|
|                                                    | Σχεδιασι              | μού Κ  | ατα  | σκευών Ο  | .Σ.          | Ά       | φθρο:          |               | [11]           |                  |           |        |          |         |
|                                                    | ομ.Μέλος              |        |      | Δοκός     |              | Mε      | λετητής:       | Αχιλλέ        | ας Θεοδωρούλης |                  |           |        |          |         |
|                                                    |                       |        |      |           |              |         |                |               |                |                  | -         |        |          |         |
|                                                    | Σκυράδουκ             | ~      |      | λx        | 23           | fcd     | F              | c             | Mc             | Νεξωτ            | 0.0       | 00     |          |         |
|                                                    | Ζκυροσεμι             | r      |      | -148.94   | -0.0035      | 37.71   | 227            | 5.00          | -630.11        | x =              | -6.       | 22     |          |         |
| α/α                                                | У                     | #Ф     | Φ    | As        | εi           | σί      | F              | i             | Mi             | x <sub>N</sub> = | -148      | 3.94   |          |         |
| 1                                                  |                       |        |      |           | 0,00%        | 0.00    | 0              |               | -0             |                  |           |        |          |         |
| 2                                                  | 65.00                 | 3      | 6    | 84.823    | -1,15%       | -420.00 | -35.6256606917 |               | -4.8985283451  | Νεξωτ            | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3 202.50 2 6 56.5487 -0,83% -420.00 -23.7504404611 |                       |        |      |           | 3.2656855634 | Τελική  | άξονική        |               | N =            | 2180.00          |           |        |          |         |
| 4                                                  | 4 340.00 3 6<br>5     |        |      | 84.823    | -0,50%       | -420.00 | -35.625        | 6606917       | -4.8985283451  | Τελική           | ροπή      |        | M =      | -636.64 |
| 5                                                  |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             |                  |           |        |          |         |
| 6                                                  |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             |                  |           |        |          |         |
| 7                                                  |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             |                  |           |        |          |         |
| 8                                                  |                       |        |      | 0         | 0,00%        | 0.00    | (              | 0             | -0             | Διαστ. (mi       | n)        |        | Συντ. Α  | .σφ.    |
| 9                                                  |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             | b=               | 405.00    | ]      | γc=      | 1.00    |
| 10                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             | h=               | 405.00    |        | γs=      | 1.00    |
| 11                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             |                  |           | -      |          |         |
| 12                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             |                  | Αντοχές ( | (MPa)  |          |         |
| 13                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             | fck=             | 35.00     | fcd=   | 37.71    |         |
| 14                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             | a=               | 1.08      | λ=     | 1.00     |         |
| 15                                                 |                       |        |      | 0         | 0,00%        | 0.00    | (              | C             | -0             | 1.00             | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro                                                |                       |        |      | max       | 0.00%        | 7       | 05 001         | 7619446       | 6 5313711269   | 2.00             | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр                                                | Ακραιες Παραμορφωσεις |        | min  | -0.01149  | ۷            | -95.001 | 1010440        | -0.0313711200 | 3.00           | fyk=             | 420.00    | fyd=   | 420.00   |         |
|                                                    |                       |        |      |           |              |         |                |               |                | 4.00             | fyk=      | 420.00 | fyd=     | 420.00  |
|                                                    |                       |        |      |           |              |         |                |               |                |                  | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 161: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 7 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|                  |                        | Euro  | bcod | le       |          |         | AN             | ΤΟΧΗ ΣΕ ΚΑΝ | IYH            |            |           |        |          |         |
|------------------|------------------------|-------|------|----------|----------|---------|----------------|-------------|----------------|------------|-----------|--------|----------|---------|
|                  | Σχεδιασμ               | ιού Κ | άτα  | σκευών Ο | .Σ.      | Ά       | φθρο:          |             | [11]           |            |           |        |          |         |
| Δ                | ομ.Μέλος               |       |      | Δοκός    |          | Με      | λετητής:       | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |         |
|                  |                        |       |      |          |          |         |                |             |                |            |           |        |          |         |
|                  | Σκυρόδεικ              | v     |      | λx       | 23       | fcd     | F              | c           | Мс             |            |           |        |          |         |
|                  | Ζκυρουεμα              |       |      | -188.82  | -0.0035  | 29.75   | 227            | 5.00        | -675.47        |            |           |        |          |         |
| α/α              | У                      | #Φ    | Φ    | As       | εί       | σί      | F              | Fi          | Mi             | x =        | -236      | 6.02   |          |         |
| 1                |                        |       |      |          | 0,00%    | 0.00    | (              | 0           | -0             |            |           |        |          |         |
| 2                | 65.00                  | 3     | 6    | 84.823   | -1,15%   | -420.00 | -35.6256606917 |             | -4.8985283451  | Νεξωτ      | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3                | 202.50                 | 2     | 6    | 56.5487  | -0,83%   | -420.00 | -23.7504       | 4404611     | 3.2656855634   | Τελική α   | άξονική   |        | N =      | 2180.00 |
| 4                | 340.00                 | 3     | 6    | 84.823   | -0,50%   | -420.00 | -35.6256       | 6606917     | -4.8985283451  | Τελική     | ροπή      |        | M =      | -682.00 |
| 5 0 0,00% 0.00 0 |                        | )     | -0   |          | -        |         |                |             |                |            |           |        |          |         |
| 6                |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             |            |           |        |          |         |
| 7                |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             |            |           |        |          |         |
| 8                |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | Διαστ. (mn | n)        | ] [    | Συντ. Α  | .σφ.    |
| 9                |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | b=         | 405.00    |        | γc=      | 1.00    |
| 10               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | h=         | 405.00    | 1      | γs=      | 1.00    |
| 11               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             |            |           |        |          |         |
| 12               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             |            | Αντοχές ( | MPa)   |          | ]       |
| 13               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | fck=       | 35.00     | fcd=   | 29.75    | ]       |
| 14               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | a=         | 0.85      | λ=     | 0.80     | ]       |
| 15               |                        |       |      | 0        | 0,00%    | 0.00    | (              | )           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00    |
| Are              |                        |       |      | max      | 0.00%    | 7       | 05 001         | 7619446     | 6 5313711269   | 2.00       | fyk=      | 420.00 | fyd=     | 420.00  |
| Ακρ              | Ακραιες Γιαραμορφωσεις |       |      | min      | -0.01149 | ۷       | -95.001        | 1010440     | -0.0010711200  | 3.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                  |                        |       |      |          |          |         |                |             |                | 4.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                  |                        |       |      |          |          | 5.00    | fyk=           | 0.00        | fyd=           | 0.00       |           |        |          |         |

Πίνακας Υπολογισμών 162: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 7 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

8.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |      |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |      |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f_t0 | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40 | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |      |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |      |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |      |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -    | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

Πίνακας Υπολογισμών 163: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 164: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| Mf = Fc(h/2 – 0.5x) + (F's + Fs)(h/2 – d') | α <sub>v</sub> |                | Vf      | Pf – cfp | Pu (KN) |          | k=(h-x)/(h-x <sub>N</sub> )<br>0.74<br>V <sub>II,1</sub> =k*0.5bdf <sub>t</sub> | V <sub>II,2</sub> = F <sub>c</sub> (1-1/(1+5 f <sub>t</sub>  /f <sub>c</sub> ) |
|--------------------------------------------|----------------|----------------|---------|----------|---------|----------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (KN*m)                                     | m              | $a_v / d$      | (KN)    | (KN)     | (KN)    | Туре     | (KN)                                                                            | (KN)                                                                           |
| -636.64                                    | 0.69           | 2.03           | -922.67 | -1845.34 | 711.72  | Type III | 138.75                                                                          | 602.07                                                                         |
| Mf = Fc(h/2 – 0.5x) + (F's + Fs)(h/2 – d') | α <sub>v</sub> |                | Vf      | Pf – ec2 | Pu (KN) |          | V <sub>II.1</sub> =0.5bdf <sub>t</sub>                                          | V <sub>II,2</sub> = F <sub>c</sub> (1-1/(1+5 f <sub>t</sub>  /f <sub>c</sub> ) |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре     | (KN)                                                                            | (KN)                                                                           |
| -682.00                                    | 0.69           | 2.03           | -988.40 | -1976.81 | 711.72  | -        | -                                                                               | -                                                                              |

|                                                                              |                                                                              |         | Type III            |                          |                                                | one side   | 81.00         | other side |               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---------------------|--------------------------|------------------------------------------------|------------|---------------|------------|---------------|
| cfp                                                                          |                                                                              |         |                     |                          |                                                | number of  | stirrups at a | number of  | uniformly     |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{II} + (M_f - M^{(2.5)}_{II})(2.5d-\alpha_v)/(1.5d)$   | Pu (KN) | V <sub>III-cr</sub> | V <sub>III-cr</sub> / Pu | $A_{sv,III} = 2 * (Mf - M_{III}) / (av * fyv)$ | stirrups   | distance of   | stirrups   | stirrups at a |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm²)                                          | #8D + 1#8D | mm            | #8D - 1#8D | 8D /          |
| 117.93                                                                       | 117.81                                                                       | 711.72  | -21.40              | 0.03                     | 3976.05                                        | 81.00      | 8.00          | 86.00      | 8.00          |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr    |               |            |               |
| EC                                                                           |                                                                              |         |                     |                          | medium ductility                               | διάστημα   | number of     |            |               |
| $M^{(2.5d)}_{\parallel}$ = (2.5d) min(V <sub>11.1</sub> ,V <sub>11.2</sub> ) | $M_{III} = M^{(2.5d)}_{III} + (M_f - M^{(2.5)}_{III})(2.5d-\alpha_v)/(1.5d)$ | Pu (KN) | Vf                  | V <sub>f-ec2</sub> / Pu  | Lcr = h                                        | s          | stirrups      |            |               |
| (KN*m)                                                                       | (KN*m)                                                                       | (KN)    | (KN)                | (KN)                     | (mm)                                           | (mm)       | #8D + 1#8D    |            |               |
| -                                                                            | -                                                                            | 711.72  | -68.76              | 0.10                     | 405.00                                         | 48.00      | 16.00         | -          | -             |
|                                                                              |                                                                              |         |                     |                          |                                                | στο lcr    |               | •          | •             |
|                                                                              |                                                                              | Pu      | CPF                 | EC                       | high ductility                                 | διάστημα   | number of     |            |               |
|                                                                              |                                                                              | (KN)    | (KN)                | (KN)                     | Lcr = 1.5 * h                                  | S          | stirrups      |            |               |
|                                                                              | ĺ                                                                            | 711.72  | 21.40               | 68.76                    | (mm)                                           | (mm)       | #8D + 1#8D    |            |               |
|                                                                              | ·                                                                            |         |                     |                          | 607.50                                         | 36.00      | 32.00         | -          | -             |

Πίνακας Υπολογισμών 165: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compr                                            | essiv | e Fo | orce Path |         |               | ANT      | ΌΧΗ ΣΕ ΚΑΜ    | ΨH             |                  |          |          |        |         |         |
|-----|--------------------------------------------------|-------|------|-----------|---------|---------------|----------|---------------|----------------|------------------|----------|----------|--------|---------|---------|
|     | Σχεδιασι                                         | ιού Κ | ίατα | σκευών Ο  | .Σ.     | Ä             | .ρθρο:   |               | [11]           |                  |          |          |        |         |         |
| Δ   | ομ.Μέλος                                         |       |      | Δοκός     |         | Μελ           | λετητής: | Αχιλλέ        | ας Θεοδωρούλης |                  |          |          |        |         |         |
|     |                                                  |       |      |           |         |               |          |               |                |                  |          |          |        |         |         |
|     | Σκυρόδουκ                                        | ~     |      | λx        | εc      | fcd           | F        | C             | Мс             | Νεξωτ            |          | 0.0      | 00     |         |         |
|     | Ζκυρουεμι                                        |       |      | -148.94   | -0.0035 | 37.71         | 2275     | 5.00          | -630.11        | x =              |          | -6.      | 22     |         |         |
| α/α | У                                                | #Ф    | Φ    | As        | εί      | σί            | F        | i             | Mi             | x <sub>N</sub> = |          | -148     | 8.94   |         |         |
| 1   |                                                  |       |      |           | 0,00%   | 0.00          | 0        |               | -0             |                  |          |          |        |         |         |
| 2   | 2 65.00 3 6 84.823 -1,15% -420.00 -35.6256606917 |       |      |           |         | -4.8985283451 | Νεξωτ    |               | 2180           | 0.00             | Διαφορά: | 0.00     |        |         |         |
| 3   | 202.50                                           | 2     | 6    | 56.5487   | -0,83%  | -420.00       | -23.7504 | 404611        | 3.2656855634   | Τελ              | ική α    | ξονική   |        | N =     | 2180.00 |
| 4   | 340.00                                           | 3     | 6    | 84.823    | -0,50%  | -420.00       | -35.6256 | 606917        | -4.8985283451  | Τε               | λική μ   | οπή      |        | M =     | -636.64 |
| 5   |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        |               | -0             |                  |          |          |        |         | •       |
| 6   |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             |                  |          |          |        |         |         |
| 7   |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             |                  |          |          |        |         |         |
| 8   |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | )             | -0             | Διαστ.           | (mm      | )        |        | Συντ. Α | σφ.     |
| 9   |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             | b=               |          | 405.00   |        | γc=     | 1.00    |
| 10  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             | h=               |          | 405.00   |        | γs=     | 1.00    |
| 11  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             |                  |          |          |        |         |         |
| 12  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             |                  | A        | ντοχές ( | MPa)   |         |         |
| 13  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             | fck=             |          | 35.00    | fcd=   | 37.71   |         |
| 14  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             | a=               |          | 1.08     | λ=     | 1.00    |         |
| 15  |                                                  |       |      | 0         | 0,00%   | 0.00          | 0        | 1             | -0             |                  | 1.00     | fyk=     | 0.00   | fyd=    | 0.00    |
| Aro | αίες Παραμο                                      |       | max  | 0.00%     | 5       | -05 0017      | 618446   | 6 5313711268  |                | 2.00             | fyk=     | 420.00   | fyd=   | 420.00  |         |
| Акр |                                                  | cις   | min  | -0.01149  | 2       | -93.0017      | 010440   | -0.0010711200 |                | 3.00             | fyk=     | 420.00   | fyd=   | 420.00  |         |
|     |                                                  |       |      |           |         |               |          |               |                |                  | 4.00     | fyk=     | 420.00 | fyd=    | 420.00  |
|     |                                                  |       |      |           |         |               |          |               |                |                  |          | fyk=     | 0.00   | fyd=    | 0.00    |

Πίνακας Υπολογισμών 166: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 8 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00 fyk= 15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

|     |                       | Euro  | DCOC  | le       |          |         | AN       | ΓΟΧΗ ΣΕ ΚΑΜ | ΨH             |           |         |        |          |         |
|-----|-----------------------|-------|-------|----------|----------|---------|----------|-------------|----------------|-----------|---------|--------|----------|---------|
|     | Σχεδιασμ              | ιού Κ | ίατα  | σκευών Ο | ).Σ.     | Ä       | φθρο:    |             | [11]           |           |         |        |          |         |
|     | ομ.Μέλος              |       |       | Δοκός    |          | Mε      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |           |         |        |          |         |
|     |                       |       |       |          |          |         |          |             |                |           |         |        |          |         |
|     | Σκυρόδουκ             | ~     |       | λx       | 23       | fcd     | F        | с           | Мс             |           |         |        |          |         |
|     | Ζκυρουεμι             |       |       | -188.82  | -0.0035  | 29.75   | 227      | 5.00        | -675.47        |           |         |        |          |         |
| α/α | У                     | #Ф    | Φ     | As       | εί       | σi      | F        | ï           | Mi             | x =       | -236    | 5.02   |          |         |
| 1   |                       |       |       |          | 0,00%    | 0.00    | (        | )           | -0             |           |         |        |          |         |
| 2   | 65.00                 | 3     | 6     | 84.823   | -1,15%   | -420.00 | -35.6256 | 606917      | -4.8985283451  | Νεξωτ     | 218     | 0.00   | Διαφορά: | 0.00    |
| 3   | 202.50                | 2     | 6     | 56.5487  | -0,83%   | -420.00 | -23.7504 | 1404611     | 3.2656855634   | Τελικ     | αξονική |        | N =      | 2180.00 |
| 4   | 4 340.00 3 6<br>5     |       |       | 84.823   | -0,50%   | -420.00 | -35.6256 | 606917      | -4.8985283451  | Τελι      | τή ροπή |        | M =      | -682.00 |
| 5 0 |                       | 0     | 0,00% | 0.00     | (        | )       | -0       |             |                |           |         |        |          |         |
| 6   |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             |           |         |        |          |         |
| 7   |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             |           |         |        |          |         |
| 8   |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | Διαστ. (ι | nm)     |        | Συντ. Α  | ωσφ.    |
| 9   |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | b=        | 405.00  |        | γc=      | 1.00    |
| 10  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | h=        | 405.00  |        | γs=      | 1.00    |
| 11  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             |           |         | -      |          | _       |
| 12  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             |           | Αντοχές | (MPa)  |          |         |
| 13  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | fck=      | 35.00   | fcd=   | 29.75    |         |
| 14  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | a=        | 0.85    | λ=     | 0.80     |         |
| 15  |                       |       |       | 0        | 0,00%    | 0.00    | (        | )           | -0             | 1.        | 00 fyk= | 0.00   | fyd=     | 0.00    |
| Ara |                       |       |       |          | 0.00%    | 5       | -05 0017 | 7618446     | 6 5313711268   | 2.        | 00 fyk= | 420.00 | fyd=     | 420.00  |
| Arp | Ακράτες παραμορφωσεις |       |       | min      | -0.01149 | ۷       | -95.0017 | 010440      | -0.0010711200  | 3.        | 00 fyk= | 420.00 | fyd=     | 420.00  |
|     |                       |       |       |          |          |         |          |             |                | 4.        | 00 fyk= | 420.00 | fyd=     | 420.00  |

Πίνακας Υπολογισμών 167: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 8 και επίλυση προβλήματος Ευρωκώδικα

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | x       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

# Πίνακας Υπολογισμών 168: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 169: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |            |         |          |         |         | k=(h-x)/(h-x <sub>N</sub> ) |                                                        |
|--------------------------------------------|----------------|------------|---------|----------|---------|---------|-----------------------------|--------------------------------------------------------|
| cfp                                        |                |            |         |          |         |         | 0.74                        |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |            | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1}$ =k*0.5bdf        | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$  | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                                   |
| -636.64                                    | 0.94           | 2.76       | -677.28 | -1354.56 | 604.96  | Type II | 138.75                      | -602.07                                                |
|                                            |                |            |         |          |         |         |                             |                                                        |
| EC                                         |                |            |         |          |         |         |                             |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |            | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf          | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v^{}/d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                                   |
| -682.00                                    | 0.94           | 2.76       | -725.53 | -1451.06 | 604.96  | -       | -                           | -                                                      |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        | at a distance |        |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|---------------|--------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 850.00        | Location 2 |        | 2.5*d         |        | Location 3 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 28.00         | Asw        | b      | stirrups      | 28.00  | Asw        | 1.5*d  | stirrups      | 25.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | # 8D / d      | # 8D / | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 604.96  | -8.65    | 0.01          | 1354.56          | 340.00   | 28.00         | 12.00         | 1354.56    | 405.00 | 28.00         | 14.00  | 1231.41    | 510.00 | 25.00         | 20.00  |
|         |          |               |                  | στο lcr  |               |               |            |        |               |        |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |               |        |            |        |               |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      |               |            |        |               |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |               |        |            |        |               |        |
| 604.96  | -74.10   | 0.12          | 405.00           | 48.00    | 16.00         | -             | -          | -      | -             | -      | -          | -      | -             | -      |
|         |          |               |                  | στο lcr  |               |               |            |        |               |        |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |               |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |        |               |        |            |        |               |        |
| 604.96  | 8.65     | 74.10         | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |               |        |            |        |               |        |
|         |          |               | 607.50           | 36.00    | 32.00         | -             | -          |        |               |        |            |        |               |        |

Πίνακας Υπολογισμών 170: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compr     | essiv | e Fo    | orce Path |          |         | AN       | ΤΟΧΗ ΣΕ ΚΑΝ | IWH            |                  |        |          |        |          |         |
|-----|-----------|-------|---------|-----------|----------|---------|----------|-------------|----------------|------------------|--------|----------|--------|----------|---------|
|     | Σχεδιασι  | JOÚ K | ατα     | σκευών Ο  | .Σ.      | Ά       | φθρο:    |             | [11]           |                  |        |          |        |          |         |
| Δα  | ομ.Μέλος  |       |         | Δοκός     |          | Με      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |                  |        |          |        |          |         |
|     |           |       |         |           |          |         |          |             |                |                  |        |          |        |          |         |
|     | Σκυρόδουκ | ~     |         | λx        | εc       | fcd     | F        | c           | Mc             | Νεξωτ            |        | 0.0      | 00     |          |         |
|     | Ζκυρουεμι | J     |         | -148.94   | -0.0035  | 37.71   | 227      | 5.00        | -630.11        | x =              |        | -6.2     | 22     |          |         |
| α/α | У         | #Ф    | Φ       | As        | εί       | σί      | F        | ī           | Mi             | x <sub>N</sub> = |        | -148     | .94    |          |         |
| 1   |           |       |         |           | 0,00%    | 0.00    | (        | C           | -0             |                  |        |          |        |          |         |
| 2   | 65.00     | 3     | 6       | 84.823    | -1,15%   | -420.00 | -35.6256 | 6606917     | -4.8985283451  | Νεξωτ            |        | 2180     | 0.00   | Διαφορά: | 0.00    |
| 3   | 202.50    | 2     | 6       | 56.5487   | -0,83%   | -420.00 | -23.7504 | 4404611     | 3.2656855634   | Τελι             | κή αξ  | ονκή     |        | N =      | 2180.00 |
| 4   | 340.00    | 3     | 6       | 84.823    | -0,50%   | -420.00 | -35.6256 | 6606917     | -4.8985283451  | Τελ              | \ική ρ | οπή      |        | M =      | -636.64 |
| 5   |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             |                  |        |          |        |          | •       |
| 6   |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             |                  |        |          |        |          |         |
| 7   |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             |                  |        |          |        |          |         |
| 8   |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             | Διαστ.           | (mm)   | )        | ] [    | Συντ. Α  | σφ.     |
| 9   |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             | b=               |        | 405.00   | ] [    | γc=      | 1.00    |
| 10  |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             | h=               |        | 405.00   | ] [    | γs=      | 1.00    |
| 11  |           |       |         | 0         | 0,00%    | 0.00    | (        | 0           | -0             |                  |        |          |        |          |         |
| 12  |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             |                  | A      | ντοχές ( | MPa)   |          |         |
| 13  |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             | fck=             |        | 35.00    | fcd=   | 37.71    |         |
| 14  |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             | a=               |        | 1.08     | λ=     | 1.00     |         |
| 15  |           |       |         | 0         | 0,00%    | 0.00    | (        | C           | -0             |                  | 1.00   | fyk=     | 0.00   | fyd=     | 0.00    |
| Aro |           | ~~~   | <u></u> | max       | 0.00%    | 7       | 05 001   | 7619446     | 6 5313711268   |                  | 2.00   | fyk=     | 420.00 | fyd=     | 420.00  |
|     |           | ρφωυ  | εıς     | min       | -0.01149 | 2       | -95.001  | 1010440     | -0.3313711200  | :                | 3.00   | fyk=     | 420.00 | fyd=     | 420.00  |
|     |           |       |         |           |          |         |          |             |                | 4                | 1.00   | fyk=     | 420.00 | fyd=     | 420.00  |
|     |           |       |         |           |          |         |          |             |                | Ę                | 5.00   | fyk=     | 0.00   | fyd=     | 0.00    |

| Πίνακαα | ; Υπολογισμών | / 171: E | ισαγωγή δεδ | ομένων ά | άρθρου 11 | για το δοκίι | ιο αναφορ | ράς 9 | 9 και επίλυση | προβ | λήματοα | ς Θεωρίαα | ς Τ.Θ.Δ. |
|---------|---------------|----------|-------------|----------|-----------|--------------|-----------|-------|---------------|------|---------|-----------|----------|
|         |               |          |             |          |           |              |           |       |               |      |         |           |          |

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk= 15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |              |       |     |          |          |         | ANT      | ΓΟΧΗ ΣΕ ΚΑΜ | IWH            |        |       |          |        |          |         |
|-----|--------------|-------|-----|----------|----------|---------|----------|-------------|----------------|--------|-------|----------|--------|----------|---------|
|     | Σχεδιασμ     | ιού Κ | ατα | σκευών Ο | .Σ.      | Ä       | ρθρο:    |             | [11]           |        |       |          |        |          |         |
| Δ   | ομ.Μέλος     |       |     | Δοκός    |          | Μελ     | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |        |       |          |        |          |         |
|     |              |       |     |          |          |         |          |             |                |        |       |          |        |          |         |
|     | Σιμοάδουσ    |       |     | λx       | 23       | fcd     | F        | с           | Мс             |        |       |          |        |          |         |
|     | Ζκυροσεμα    | ,     |     | -188.82  | -0.0035  | 29.75   | 2275     | 5.00        | -675.47        |        |       |          |        |          |         |
| α/α | У            | #Ф    | Φ   | As       | εί       | σί      | F        | ï           | Mi             | x =    |       | -236     | .02    |          |         |
| 1   |              |       |     |          | 0,00%    | 0.00    | C        | )           | -0             |        |       |          |        |          |         |
| 2   | 65.00        | 3     | 6   | 84.823   | -1,15%   | -420.00 | -35.6256 | 606917      | -4.8985283451  | Νεξωτ  |       | 2180     | 0.00   | Διαφορά: | 0.00    |
| 3   | 202.50       | 2     | 6   | 56.5487  | -0,83%   | -420.00 | -23.7504 | 1404611     | 3.2656855634   | Τελιι  | κή α  | ξονική   |        | N =      | 2180.00 |
| 4   | 340.00       | 3     | 6   | 84.823   | -0,50%   | -420.00 | -35.6256 | 606917      | -4.8985283451  | Τελ    | ική ρ | οπή      |        | M =      | -682.00 |
| 5   |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             |        |       |          |        |          |         |
| 6   |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             |        |       |          |        |          |         |
| 7   |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             |        |       |          |        |          |         |
| 8   |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | Διαστ. | (mm   | )        |        | Συντ. Α  | .σφ.    |
| 9   |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | b=     |       | 405.00   |        | γc=      | 1.00    |
| 10  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | h=     |       | 405.00   |        | γs=      | 1.00    |
| 11  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             |        |       |          |        |          |         |
| 12  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             |        | Α     | ντοχές ( | MPa)   |          | ]       |
| 13  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | fck=   |       | 35.00    | fcd=   | 29.75    |         |
| 14  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | a=     |       | 0.85     | λ=     | 0.80     |         |
| 15  |              |       |     | 0        | 0,00%    | 0.00    | C        | )           | -0             | 1      | .00   | fyk=     | 0.00   | fyd=     | 0.00    |
| 140 | αίες Παραμοι | ~~~   |     | max      | 0.00%    | 5       | 05 0017  | 7619446     | 6 5313711268   | 2      | 2.00  | fyk=     | 420.00 | fyd=     | 420.00  |
| Акр | αιες παραμοι | Jφuio | εıς | min      | -0.01149 | 2       | -95.0017 | 010440      | -0.3313711200  | ) 3    | 6.00  | fyk=     | 420.00 | fyd=     | 420.00  |
|     |              |       |     |          |          |         |          |             |                | 4      | .00   | fyk=     | 420.00 | fyd=     | 420.00  |
|     |              |       |     |          |          |         |          |             |                | 5      | 5.00  | fyk=     | 0.00   | fyd=     | 0.00    |
|     |              |       |     |          |          |         | 6        | 6.00        | fyk=           | 0.00   | fyd=  | 0.00     |        |          |         |
|     |              |       |     |          |          |         |          |             |                | 7      | .00   | fyk=     | 0.00   | fyd=     | 0.00    |
|     |              |       |     |          |          |         |          |             |                | 8      | 6.00  | fyk=     | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 172: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 9 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |          |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|----------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |          |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's – Fs = N |
| ID        | $f_{t0}$ | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40     | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |          |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |          |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |          |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -        | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

# Πίνακας Υπολογισμών 173: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

# Πίνακας Υπολογισμών 174: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |            |         |          |         |         | k=(h-x)/(h-x <sub>N</sub> ) |                                              |
|--------------------------------------------|----------------|------------|---------|----------|---------|---------|-----------------------------|----------------------------------------------|
| cfp                                        |                |            |         |          |         |         | 0.74                        |                                              |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |            | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1} = k*0.5bdf_t$     | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v^{}/d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                         |
| -636.64                                    | 1.24           | 3.63       | -515.50 | -1031.00 | 475.96  | Type II | 138.75                      | 602.07                                       |
|                                            |                |            |         |          |         |         |                             |                                              |
| EC                                         |                |            |         |          |         |         |                             |                                              |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |            | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf          | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$   |
| (KN*m)                                     | m              | $a_v^{}/d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                         |
| -682.00                                    | 1.24           | 3.63       | -552.23 | -1104.45 | 475.96  | -       | -                           | -                                            |

|         | Type II  |               |                  |          | at a distance | at a distance |            |        |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|--------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 850.00        | Location 2 |        | Location 3 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 22.00         | Asw        | b      | Asw        | 1.5*d  | stirrups      | 19.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm)   | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 475.96  | -12.52   | 0.03          | 1031.00          | 340.00   | 22.00         | 15.00         | Επαρκεί    | 405.00 | 937.27     | 510.00 | 19.00         | 26.00  |
|         |          |               |                  | στο lcr  |               |               |            |        |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |        |            |        |               |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      |               |            |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |            |        |               |        |
| 475.96  | -42.93   | 0.09          | 405.00           | 48.00    | 16.00         | -             | -          | -      | -          | -      | -             | -      |
|         |          |               |                  | στο Icr  |               |               |            |        |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |        |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |        |            |        |               |        |
| 475.96  | 12.52    | 42.93         | (mm)             | (mm)     | #8D + 1#8D    |               |            |        |            |        |               |        |
|         |          |               | 607.50           | 36.00    | 32.00         | -             | -          |        |            |        |               |        |

Πίνακας Υπολογισμών 175: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|       | Compre       | essiv | e Fo | orce Path |          |         | AN                           | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH             |                  |           |        |          |            |
|-------|--------------|-------|------|-----------|----------|---------|------------------------------|-------------|----------------|------------------|-----------|--------|----------|------------|
|       | Σχεδιασμ     | ιού Κ | ατα  | σκευών Ο  | ).Σ.     | Ä       | φθρο:                        |             | [11]           |                  |           |        |          |            |
| Δ     | ομ.Μέλος     |       |      | Δοκός     |          | Με      | λετητής:                     | Αχιλλέα     | ας Θεοδωρούλης |                  |           |        |          |            |
|       |              |       |      |           |          |         |                              |             |                |                  |           |        |          |            |
|       | Σκυρόδεικ    | v     |      | λχ        | εc       | fcd     | F                            | c           | Мс             | Νεξωτ            | 0.0       | 00     |          |            |
|       | Ζκυρουεμα    | A<br> |      | -148.94   | -0.0035  | 37.71   | 227                          | 5.00        | -630.11        | x =              | -6.       | 22     |          |            |
| α/α   | У            | #Φ    | Φ    | As        | εί       | σί      | F                            | =i          | Mi             | x <sub>N</sub> = | -148      | 8.94   |          |            |
| 1     |              |       |      |           | 0,00%    | 0.00    | (                            | 0           | -0             |                  |           |        |          |            |
| 2     | 65.00        | 3     | 6    | 84.823    | -1,15%   | -420.00 | -35.6256                     | 6606917     | -4.8985283451  | Νεξωτ            | 2180      | 0.00   | Διαφορά: | 0.00       |
| 3     | 202.50       | 2     | 6    | 56.5487   | -0,83%   | -420.00 | -23.7504404611 3.2656855634  |             |                | Τελική (         | αξονική   |        | N =      | 2180.00    |
| 4     | 340.00       | 3     | 6    | 84.823    | -0,50%   | -420.00 | -35.6256606917 -4.8985283451 |             |                | Τελική           | ροπή      |        | M =      | -636.64    |
| 5     |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             |                  |           |        |          |            |
| 6     |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             |                  |           |        |          |            |
| 7     |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             |                  |           |        |          |            |
| 8     |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | Διαστ. (mr       | <u>n)</u> |        | Συντ. Α  | <u>σφ.</u> |
| 9     |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | b=               | 405.00    |        | γc=      | 1.00       |
| 10    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | h=               | 405.00    | J      | γs=      | 1.00       |
| 11    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             |                  |           |        |          |            |
| 12    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             |                  | Αντοχές ( | MPa)   |          |            |
| 13    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | fck=             | 35.00     | fcd=   | 37.71    |            |
| 14    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | a=               | 1.08      | λ=     | 1.00     |            |
| 15    |              |       |      | 0         | 0,00%    | 0.00    | (                            | 0           | -0             | 1.00             | fyk=      | 0.00   | fyd=     | 0.00       |
| Δκο   | αίες Παραυρα | າດທຳກ | ۶IC  | max       | 0.00%    | Σ       | -95 001                      | 7618446     | -6 5313711268  | 2.00             | fyk=      | 420.00 | fyd=     | 420.00     |
| / inp |              | -φΟ   | 5    | min       | -0.01149 |         | -55.001                      | 1010110     | 0.0010711200   | 3.00             | fyk=      | 420.00 | fyd=     | 420.00     |
|       |              |       |      |           |          |         |                              |             |                | 4.00             | ∫ fyk=    | 420.00 | fyd=     | 420.00     |

Πίνακας Υπολογισμών 176: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 10 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00 fyk=

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |           | Euro  | bcod | le       |          |          | AN       | ΤΟΧΗ ΣΕ ΚΑΜ | IWH            |           |         |        |          |         |
|-----|-----------|-------|------|----------|----------|----------|----------|-------------|----------------|-----------|---------|--------|----------|---------|
|     | Σχεδιασμ  | ιού Κ | άτα  | σκευών Ο | ).Σ.     | Ά        | φθρο:    |             | [11]           |           |         |        |          |         |
| Δα  | ομ.Μέλος  |       |      | Δοκός    |          | Μελ      | λετητής: | Αχιλλέ      | ας Θεοδωρούλης |           |         |        |          |         |
|     |           |       |      |          |          |          |          |             |                |           |         |        |          |         |
|     | Σκυρόδεικ | v     |      | λx       | 23       | fcd      | F        | c           | Мс             |           |         |        |          |         |
|     | Ζκυρουεμα | л<br> |      | -188.82  | -0.0035  | 29.75    | 227      | 5.00        | -675.47        |           |         |        |          |         |
| α/α | У         | #Φ    | Φ    | As       | εi       | σί       | F        | i           | Mi             | x =       | -236    | 5.02   |          |         |
| 1   |           |       |      |          | 0,00%    | 0.00     | (        | 0           | -0             |           |         |        |          |         |
| 2   | 65.00     | 3     | 6    | 84.823   | -1,15%   | -420.00  | -35.6256 | 6606917     | -4.8985283451  | Νεξωτ     | 218     | 0.00   | Διαφορά: | 0.00    |
| 3   | 202.50    | 2     | 6    | 56.5487  | -0,83%   | -420.00  | -23.7504 | 4404611     | 3.2656855634   | Τελική    | αξονική |        | N =      | 2180.00 |
| 4   | 340.00    | 3     | 6    | 84.823   | -0,50%   | -420.00  | -35.6256 | 6606917     | -4.8985283451  | Τελικ     | ή ροπή  |        | M =      | -682.00 |
| 5   |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             |           |         |        |          |         |
| 6   |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             |           |         |        |          |         |
| 7   |           |       |      | 0        | 0,00%    | 0.00     | (        | 2           | -0             |           |         | _      |          |         |
| 8   |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             | Διαστ. (n | ım)     |        | Συντ. Α  | .σφ.    |
| 9   |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             | b=        | 405.00  | ] [    | γc=      | 1.00    |
| 10  |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             | h=        | 405.00  |        | γs=      | 1.00    |
| 11  |           |       |      | 0        | 0,00%    | 0.00     | (        | 2           | -0             |           |         |        |          | _       |
| 12  |           |       |      | 0        | 0,00%    | 0.00     | (        | 2           | -0             |           | Αντοχές | (MPa)  |          |         |
| 13  |           |       |      | 0        | 0,00%    | 0.00     | (        | כ           | -0             | fck=      | 35.00   | fcd=   | 29.75    |         |
| 14  |           |       |      | 0        | 0,00%    | 0.00     | (        | 2           | -0             | a=        | 0.85    | λ=     | 0.80     |         |
| 15  |           |       |      | 0        | 0,00%    | 0.00     | (        | )           | -0             | 1.0       | 0 fyk=  | 0.00   | fyd=     | 0.00    |
| Aro |           | າທິກາ |      | max      | 0.00%    | 2        | -05 001  | 7618446     | 6 5313711269   | 2.0       | 0 fyk=  | 420.00 | fyd=     | 420.00  |
|     |           | νφωΟ  | εις  | min      | -0.01149 | <u> </u> | -95.001  | 1010440     | -0.3313711200  | 3.0       | 0 fyk=  | 420.00 | fyd=     | 420.00  |
|     |           |       |      |          |          |          |          |             |                | 4.0       | 0 fyk=  | 420.00 | fyd=     | 420.00  |
|     | · · · ·   |       |      |          |          |          |          |             |                | 5.0       | 0 fyk=  | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 177: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 10 και επίλυση προβλήματος Ευρωκώδικα

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00 fyk=

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

# Πίνακας Υπολογισμών 178: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 179: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

|                                            |                |           |         |          |         |         | k=(h-x)/(h-x <sub>N</sub> ) |                                                        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|---------|-----------------------------|--------------------------------------------------------|
| cfp                                        |                |           |         |          |         |         | 0.74                        |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |         | $V_{II,1} = k*0.5bdf_t$     | $V_{II,2} = F_{c}(1-1/(1+5 f_{t} /f_{c}))$             |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                                   |
| -636.64                                    | 1.57           | 4.60      | -406.80 | -813.60  | 324.72  | Type II | 138.75                      | -602.07                                                |
|                                            |                |           |         |          |         |         |                             |                                                        |
| EC                                         |                |           |         |          |         |         |                             |                                                        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |         | $V_{II,1}$ =0.5bdf          | $V_{_{II,2}} = F_{_{c}}(1-1/(1+5 f_{_{t}} /f_{_{c}}))$ |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре    | (KN)                        | (KN)                                                   |
| -682.00                                    | 1.57           | 4.60      | -435.78 | -871.56  | 324.72  | -       | -                           | -                                                      |

|         | Type II  |               |                  |          | at a distance | at a distance |            |            |        | at a distance |        |
|---------|----------|---------------|------------------|----------|---------------|---------------|------------|------------|--------|---------------|--------|
|         |          |               | Location 1       |          | 2.5*d         | 937.50        | Location 2 | Location 3 |        | 2.5*d         |        |
| Pu (KN) | Pf – cfp | Pf – cfp / Pu | Asw              | d        | stirrups      | 18.00         | Asw        | Asw        | 1.5*d  | stirrups      | 15.00  |
| (KN)    | (KN)     | (KN)          | (mm²)            | (mm)     | # 8D / d      | # 8D /        | (mm²)      | (mm²)      | (mm)   | # 8D / d      | # 8D / |
| 324.72  | -13.00   | 0.04          | 813.60           | 375.00   | 18.00         | 20.00         | Επαρκεί    | 739.64     | 375.00 | 15.00         | 25.00  |
|         |          |               |                  | στο lcr  |               |               |            |            |        |               |        |
|         |          |               | medium ductility | διάστημα | number of     |               |            |            |        |               |        |
| Pu (KN) | Pf – ec2 | Pf – ec2 / Pu | Lcr = h          | S        | stirrups      |               |            |            |        |               |        |
| (KN)    | (KN)     | (KN)          | (mm)             | (mm)     | #8D + 1#8D    |               |            |            |        |               |        |
| 324.72  | -26.73   | 0.08          | 405.00           | 48.00    | 16.00         | -             | -          | -          | -      | -             | -      |
|         |          |               |                  | στο Icr  |               |               |            |            |        |               |        |
| Pu      | CPF      | EC            | high ductility   | διάστημα | number of     |               |            |            |        |               |        |
| (KN)    | (KN)     | (KN)          | Lcr = 1.5 * h    | S        | stirrups      |               |            |            |        |               |        |
| 324.72  | 13.00    | 26.73         | (mm)             | (mm)     | #8D + 1#8D    |               |            |            |        |               |        |
|         |          |               | 607.50           | 36.00    | 32.00         | -             | -          |            |        |               |        |

Πίνακας Υπολογισμών 180: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|     | Compr          | essiv | e Fo | orce Path | ΑΝΤΟΧΗ ΣΕ ΚΑΜΨΗ<br>Ο.Σ. Άρθρο: [11] |         |          |         |                |                  |              |        |          |         |
|-----|----------------|-------|------|-----------|-------------------------------------|---------|----------|---------|----------------|------------------|--------------|--------|----------|---------|
|     | Σχεδιασμ       | ιού Κ | ίατα | σκευών Ο  | .Σ.                                 | Ά       | ρθρο:    |         | [11]           |                  |              |        |          |         |
| Δ   | ομ.Μέλος       |       |      | Δοκός     |                                     | Me      | λετητής: | Αχιλλέ  | ας Θεοδωρούλης |                  |              |        |          |         |
|     |                |       |      |           |                                     |         |          |         |                |                  |              |        |          |         |
|     | Σκυρόδοικ      | v     |      | λx        | 23                                  | fcd     | F        | с       | Мс             | Νεξωτ            | 0            | .00    |          |         |
|     | Ζκυρουεμι      |       |      | -148.94   | -0.0035                             | 37.71   | 227      | 5.00    | -630.11        | x =              | -6           | .22    |          |         |
| α/α | У              | #Ф    | Φ    | As        | εί                                  | σί      | F        | ï       | Mi             | x <sub>N</sub> = | -14          | 8.94   |          |         |
| 1   |                |       |      |           | 0,00%                               | 0.00    | (        | )       | -0             |                  |              |        |          |         |
| 2   | 65.00          | 3     | 6    | 84.823    | -1,15%                              | -420.00 | -35.6256 | 606917  | -4.8985283451  | Νεξωτ            | 218          | 0.00   | Διαφορά: | 0.00    |
| 3   | 202.50         | 2     | 6    | 56.5487   | -0,83%                              | -420.00 | -23.7504 | 1404611 | 3.2656855634   | Τε               | λική αξονική |        | N =      | 2180.00 |
| 4   | 340.00         | 3     | 6    | 84.823    | -0,50%                              | -420.00 | -35.6256 | 606917  | -4.8985283451  | ٦                | ελική ροπή   |        | M =      | -636.64 |
| 5   |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  |              |        |          |         |
| 6   |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  |              |        |          |         |
| 7   |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  |              |        |          |         |
| 8   |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             | Διασ             | т. (mm)      |        | Συντ. Α  | ωσφ.    |
| 9   |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             | b=               | 405.00       |        | γc=      | 1.00    |
| 10  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             | h=               | 405.00       |        | γs=      | 1.00    |
| 11  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  |              |        |          | _       |
| 12  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  | Αντοχές      | (MPa)  |          |         |
| 13  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             | fck=             | 35.00        | fcd=   | 37.71    |         |
| 14  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             | a=               | 1.08         | λ=     | 1.00     |         |
| 15  |                |       |      | 0         | 0,00%                               | 0.00    | (        | )       | -0             |                  | 1.00 fyk=    | 0.00   | fyd=     | 0.00    |
| Aro | αίες Παραμογ   | າທຳກ  |      | max       | 0.00%                               | 2       | -95 001  | 7618446 | -6 5313711268  |                  | 2.00 fyk=    | 420.00 | fyd=     | 420.00  |
|     | ales i lapapop | φuu   | S    | min       | -0.01149                            | 2       | -95.0017 | 010440  | -0.0010/11200  |                  | 3.00 fyk=    | 420.00 | fyd=     | 420.00  |
|     |                |       |      |           |                                     |         |          |         |                |                  | 4.00 fyk=    | 420.00 | fyd=     | 420.00  |
|     |                |       |      |           |                                     |         |          |         |                |                  | 5.00 fyk=    | 0.00   | fyd=     | 0.00    |

| Πίνακαα | : Υπολονισμών | <sup>,</sup> 181: Εισανων | /ή δεδομένω                             | ν άρθρου 11 | νια το δοκίμιο α    | αναφοράς 11 | 1 και επίλυση π | ιοοβλήματος | Θεωρίας   | Τ.Θ.Δ. |
|---------|---------------|---------------------------|-----------------------------------------|-------------|---------------------|-------------|-----------------|-------------|-----------|--------|
|         |               |                           | 11 0000 0000000000000000000000000000000 |             | The to obtain the c |             |                 |             | 000001013 | ,      |

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.00 fyk=

7.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyk=

8.00

9.00

10.00

11.00

12.00

13.00 fyk= 14.00 fyk=

15.00 fyk=

| Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |        |     |         |          |         | AN             | ΤΟΧΗ ΣΕ ΚΑΝ | ΨH             |            |           |        |          |         |
|----------------------------------------|-----------------------------------------------|--------|-----|---------|----------|---------|----------------|-------------|----------------|------------|-----------|--------|----------|---------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |        |     |         | .Σ.      | Ά       | φθρο:          |             | [11]           |            |           |        |          |         |
| Δ                                      | ομ.Μέλος                                      |        |     | Δοκός   |          | Μελ     | λετητής:       | Αχιλλέ      | ας Θεοδωρούλης |            |           |        |          |         |
|                                        |                                               |        |     |         |          |         |                |             |                |            |           |        |          |         |
|                                        | Σκυρόδεικ                                     | ~      |     | λx      | εc       | fcd     | F              | c           | Мс             |            |           |        |          |         |
|                                        | Ζκυρουεμι                                     | J      |     | -188.82 | -0.0035  | 29.75   | 227            | 5.00        | -675.47        |            |           |        |          |         |
| α/α                                    | У                                             | #Φ     | Φ   | As      | εί       | σί      | F              | Fi          | Mi             | x =        | -236      | 5.02   |          |         |
| 1                                      |                                               |        |     |         | 0,00%    | 0.00    | (              | C           | -0             |            |           |        |          |         |
| 2                                      | 65.00                                         | 3      | 6   | 84.823  | -1,15%   | -420.00 | -35.6250       | 6606917     | -4.8985283451  | Νεξωτ      | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3                                      | 202.50                                        | 2      | 6   | 56.5487 | -0,83%   | -420.00 | -23.7504       | 4404611     | 3.2656855634   | Τελική α   | ξονκή     |        | N =      | 2180.00 |
| 4                                      | 340.00                                        | 3      | 6   | 84.823  | -0,50%   | -420.00 | -35.6256606917 |             | -4.8985283451  | Τελική     | ροπή      |        | M =      | -682.00 |
| 5                                      |                                               |        |     | 0       | 0,00%    | 0.00    | 0              |             | -0             |            |           |        |          |         |
| 6                                      |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             |            |           |        |          |         |
| 7                                      |                                               |        |     | 0       | 0,00%    | 0.00    | (              | C           | -0             |            |           |        |          |         |
| 8                                      |                                               |        |     | 0       | 0,00%    | 0.00    | (              | 0           | -0             | Διαστ. (mn | ו)        | ] [    | Συντ. Α  | .σφ.    |
| 9                                      |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             | b=         | 405.00    | ] [    | γc=      | 1.00    |
| 10                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             | h=         | 405.00    | ] [    | γs=      | 1.00    |
| 11                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             |            |           |        |          |         |
| 12                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             |            | Αντοχές ( | MPa)   |          |         |
| 13                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             | fck=       | 35.00     | fcd=   | 29.75    |         |
| 14                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | )           | -0             | a=         | 0.85      | λ=     | 0.80     |         |
| 15                                     |                                               |        |     | 0       | 0,00%    | 0.00    | (              | C           | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00    |
| Aro                                    |                                               | ດແມ່ງຜ |     | max     | 0.00%    | 7       | 05 001         | 7619446     | 6 5212711260   | 2.00       | fyk=      | 420.00 | fyd=     | 420.00  |
| Акр                                    | αιες Γιαραμο                                  | ρφωυ   | εις | min     | -0.01149 | 2       | -95.001        | 1010440     | -0.5515711200  | 3.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                                        |                                               |        |     |         |          |         |                |             |                | 4.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                                        |                                               |        |     |         |          |         |                |             |                | 5.00       | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 182: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 11 και επίλυση προβλήματος Ευρωκώδικα

6.00 fyk=

7.00 fyk=

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's – Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

Πίνακας Υπολογισμών 183: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 184: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |         |          |         |        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | a <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -636.64                                    | 1.99           | 5.84      | -320.73 | -641.45  | 124.55  | Type I |
| EC                                         |                |           |         |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_{v}$   |           | Vf      | Pf-ec2   | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -682.00                                    | 1.99           | 5.84      | -343.58 | -687.15  | 124.55  | -      |

Πίνακας Υπολογισμών 185: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|                                         | Type T                         |                    |
|-----------------------------------------|--------------------------------|--------------------|
| Pu (KN)                                 | Pf – cfp                       | Pf – cfp / Pu      |
| (KN)                                    | (KN)                           | (KN)               |
| 124.55                                  | -641.45                        | 5.15               |
|                                         | Df oc?                         | P / Pu             |
| (KN)                                    | (KN)                           | (KN)               |
| (KN)<br>(KN)<br>124.55                  | (KN)<br>-687.15                | (KN)<br>5.52       |
| (KN)<br>(KN)<br>124.55                  | (KN)<br>-687.15                | (KN)<br>5.52       |
| Pu (KN)<br>(KN)<br>124.55<br>Pu         | (KN)<br>-687.15<br>CPF         | (KN)<br>5.52<br>EC |
| Pu (KN)<br>(KN)<br>124.55<br>Pu<br>(KN) | (KN)<br>-687.15<br>CPF<br>(KN) | EC<br>(KN)         |

| Compressive Force Path<br>Σχεδιασμού Κατασκευών Ο.Σ. |           |       |         |           |               |         | AN⁻      | ΤΟΧΉ ΣΕ ΚΑΜ | ΨH             |                  |           |      |          |         |
|------------------------------------------------------|-----------|-------|---------|-----------|---------------|---------|----------|-------------|----------------|------------------|-----------|------|----------|---------|
|                                                      | Σχεδιασμ  | ιού Κ | ατα     | σκευών Ο  | .Σ.           | Ά       | .ρθρο:   |             | [11]           |                  |           |      |          |         |
| Δα                                                   | ομ.Μέλος  |       |         | Δοκός     |               | Μελ     | λετητής: | Αχιλλέα     | ας Θεοδωρούλης |                  |           |      |          |         |
|                                                      |           |       |         |           |               |         |          |             |                |                  |           |      |          |         |
|                                                      | Σκυρόδευς |       |         | λx        | εc            | fcd     | F        | c           | Mc             | Νεξωτ            | 0.        | 00   |          |         |
|                                                      | Ζκυρουεμα | •     |         | -148.94   | -0.0035       | 37.71   | 227      | 5.00        | -630.11        | x =              | -6.       | 22   |          |         |
| α/α                                                  | у         | #Φ    | Φ       | As        | εί            | σί      | F        | =i          | Mi             | x <sub>N</sub> = | -148      | 3.94 |          |         |
| 1                                                    |           |       |         |           | 0,00%         | 0.00    | (        | 0           | -0             |                  |           |      |          |         |
| 2                                                    | 65.00     | 3     | 6       | 84.823    | -1,15%        | -420.00 | -35.6250 | 6606917     | -4.8985283451  | Νεξωτ            | 218       | 0.00 | Διαφορά: | 0.00    |
| 3                                                    | 202.50    | 2     | 6       | 56.5487   | -0,83%        | -420.00 | -23.7504 | 4404611     | 3.2656855634   | Τελική           | αξονική   |      | N =      | 2180.00 |
| 4                                                    | 340.00    | 3     | 6       | 84.823    | -0,50%        | -420.00 | -35.6256 | 6606917     | -4.8985283451  | Τελική           | ροπή      |      | M =      | -636.64 |
| 5                                                    |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             |                  |           |      |          |         |
| 6                                                    |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             |                  |           |      |          |         |
| 7                                                    |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             |                  |           |      |          |         |
| 8                                                    |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | Διαστ. (m        | n)        |      | Συντ. Α  | σφ.     |
| 9                                                    |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | b=               | 405.00    |      | γc=      | 1.00    |
| 10                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | h=               | 405.00    | J    | γs=      | 1.00    |
| 11                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             |                  |           |      |          |         |
| 12                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             |                  | Αντοχές ( | MPa) |          |         |
| 13                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | fck=             | 35.00     | fcd= | 37.71    |         |
| 14                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | a=               | 1.08      | λ=   | 1.00     |         |
| 15                                                   |           |       |         | 0         | 0,00%         | 0.00    | (        | 0           | -0             | 1.00             | ) fyk=    | 0.00 | fyd=     | 0.00    |
| Ακοσίες Παραμοραγίσεις max 0.00% Σ                   |           |       | -95 001 | 7618446   | -6 5313711268 | 2.00    | ) fyk=   | 420.00      | fyd=           | 420.00           |           |      |          |         |
| Ακραίες Γιαραμορφωσείς min -0.01149 2 -95.0017618446 |           |       |         | 1010-1-10 | -0.0010711200 | 3.00    | ) fyk=   | 420.00      | fyd=           | 420.00           |           |      |          |         |
|                                                      | min -0.01 |       |         |           |               |         |          |             | 4.00           | ) fyk=           | 420.00    | fyd= | 420.00   |         |

Πίνακας Υπολογισμών 186: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 12 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

5.00

7.00

8.00

9.00

fyk=

fyk=

fyk=

fyk=

6.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Eurocode<br>Σχεδιασμού Κατασκευών Ο.Σ. |                                               |              |    |         |          |          | AN               | ΝΤΟΧΗ ΣΕ ΚΑΜΨΗ |                |            |           |        |          |         |
|----------------------------------------|-----------------------------------------------|--------------|----|---------|----------|----------|------------------|----------------|----------------|------------|-----------|--------|----------|---------|
|                                        | Σχεδιασμού Κατασκευών Ο.Σ.<br>Δομ.Μέλος Δοκός |              |    |         |          | Ά        | φθρο:            |                | [11]           |            |           |        |          |         |
| Δ                                      | ομ.Μέλος                                      |              |    | Δοκός   |          | Μελ      | λετητής:         | Αχιλλέ         | ας Θεοδωρούλης |            |           |        |          |         |
|                                        |                                               |              |    |         |          |          |                  |                |                |            |           |        |          |         |
|                                        | Σκυρόδευν                                     | <b>~</b>     |    | λx      | 23       | fcd      | F                | c              | Мс             |            |           |        |          |         |
|                                        | Ζκυρουεμί                                     | л<br>— — — — |    | -188.82 | -0.0035  | 29.75    | 227              | 5.00           | -675.47        |            |           |        |          |         |
| α/α                                    | У                                             | #Φ           | Φ  | As      | εί       | σί       | F                | i              | Mi             | x =        | -236      | 5.02   |          |         |
| 1                                      |                                               |              |    |         | 0,00%    | 0.00     | (                | )              | -0             |            |           |        |          |         |
| 2                                      | 65.00                                         | 3            | 6  | 84.823  | -1,15%   | -420.00  | -35.6256         | 6606917        | -4.8985283451  | Νεξωτ      | 2180      | 0.00   | Διαφορά: | 0.00    |
| 3                                      | 202.50                                        | 2            | 6  | 56.5487 | -0,83%   | -420.00  | -23.7504404611   |                | 3.2656855634   | Τελική ο   | ιξονική   |        | N =      | 2180.00 |
| 4                                      | 340.00                                        | 3            | 6  | 84.823  | -0,50%   | -420.00  | 0 -35.6256606917 |                | -4.8985283451  | Τελική     | ροπή      |        | M =      | -682.00 |
| 5                                      |                                               |              |    | 0       | 0,00%    | 0.00     | 0                |                | -0             |            |           |        |          |         |
| 6                                      |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             |            |           |        |          |         |
| 7                                      |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             |            |           | _      |          |         |
| 8                                      |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | Διαστ. (mm | ר)        |        | Συντ. Α  | .σφ.    |
| 9                                      |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | b=         | 405.00    |        | γc=      | 1.00    |
| 10                                     |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | h=         | 405.00    |        | γs=      | 1.00    |
| 11                                     |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             |            |           |        |          | _       |
| 12                                     |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | /          | Αντοχές ( | MPa)   |          |         |
| 13                                     |                                               |              |    | 0       | 0,00%    | 0.00     | 0                | )              | -0             | fck=       | 35.00     | fcd=   | 29.75    |         |
| 14                                     |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | a=         | 0.85      | λ=     | 0.80     |         |
| 15                                     |                                               |              |    | 0       | 0,00%    | 0.00     | (                | )              | -0             | 1.00       | fyk=      | 0.00   | fyd=     | 0.00    |
| Δκο                                    |                                               | ດດທຳກາ       |    | max     | 0.00%    | 5        | -95 0017         | 7618446        | -6 5313711268  | 2.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                                        |                                               | ρφωσ         | uς | min     | -0.01149 | <u> </u> | -35.0017         | 010440         | -0.0010711200  | 3.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                                        |                                               |              |    |         |          |          |                  |                |                | 4.00       | fyk=      | 420.00 | fyd=     | 420.00  |
|                                        |                                               |              |    | 5.00    | fyk=     | 0.00     | fyd=             | 0.00           |                |            |           |        |          |         |
|                                        |                                               |              |    |         |          |          |                  |                |                | 6.00       | fyk=      | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 187: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 12 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.00 fyk= 8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

| cfp       |         |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|---------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |         |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | x       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's – Fs = N |
| ID        | f<br>t0 | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40    | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |         |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |         |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |         |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -       | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

# Πίνακας Υπολογισμών 188: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 189: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |           |         |          |         |        |
|--------------------------------------------|----------------|-----------|---------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -636.64                                    | 3.52           | 10.34     | -181.12 | -362.24  | -778.44 | Type I |
| EC                                         |                |           |         |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |           | Vf      | Pf – ec2 | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -682.00                                    | 3.52           | 10.34     | -194.03 | -388.05  | -778.44 | -      |

Πίνακας Υπολογισμών 190: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|                                          | Type I                                     |                                                       |
|------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Pu (KN)                                  | Pf – cfp                                   | Pf – cfp / Pu                                         |
| (KN)                                     | (KN)                                       | (KN)                                                  |
| -778.44                                  | -362.24                                    | 0.47                                                  |
|                                          |                                            |                                                       |
| Pu (KN)                                  | $Pf - ec^2$                                | P,, / Pu                                              |
| Pu (KN)<br>(KN)                          | Pf – ec2<br>(KN)                           | P <sub>f-ec2</sub> / Pu<br>(KN)                       |
| Pu (KN)<br>(KN)<br>-778.44               | Pf – ec2<br>(KN)<br>-388.05                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.50               |
| Pu (KN)<br>(KN)<br>-778.44               | Pf – ec2<br>(KN)<br>-388.05                | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.50               |
| Pu (KN)<br>(KN)<br>-778.44<br>Pu         | Pf – ec2<br>(KN)<br>-388.05<br>CPF         | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.50<br>EC         |
| Pu (KN)<br>(KN)<br>-778.44<br>Pu<br>(KN) | Pf – ec2<br>(KN)<br>-388.05<br>CPF<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN)<br>0.50<br>EC<br>(KN) |

|                 | Compre       | essiv | e Fo | orce Path |          | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |                |         |                |                  |             |        |          |         |
|-----------------|--------------|-------|------|-----------|----------|-----------------|----------------|---------|----------------|------------------|-------------|--------|----------|---------|
|                 | Σχεδιασμ     | ιού K | ατα  | σκευών Ο  | .Σ.      | Ä               | λρθρο: [11]    |         |                |                  |             |        |          |         |
|                 | ομ.Μέλος     | Δοκός |      |           |          | Μελ             | \ετητής:       | Αχιλλέ  | ας Θεοδωρούλης |                  |             |        |          |         |
|                 |              |       |      |           |          |                 |                |         |                |                  |             |        |          |         |
| Σκυρόδευα λχ ες |              | 23    | fcd  | F         | сМс      |                 | Νεξωτ          | 0.0     | 00             |                  |             |        |          |         |
|                 | Ζκυρουεμα    |       |      | -148.94   | -0.0035  | 37.71           | 2275           | 5.00    | -630.11        | x =              | -6.         | 22     |          |         |
| α/α             | У            | #Φ    | Φ    | As        | εί       | σί              | Fi             |         | Mi             | x <sub>N</sub> = | -148        | 3.94   |          |         |
| 1               |              |       |      |           | 0,00%    | 0.00            | 0              |         | -0             |                  |             |        |          |         |
| 2               | 65.00        | 3     | 6    | 84.823    | -1,15%   | -420.00         | -35.6256606917 |         | -4.8985283451  | Νεξωτ            | 2180        | 0.00   | Διαφορά: | 0.00    |
| 3               | 202.50       | 2     | 6    | 56.5487   | -0,83%   | -420.00         | -23.7504404611 |         | 3.2656855634   | Τελική α         | ξονκή       |        | N =      | 2180.00 |
| 4               | 340.00       | 3     | 6    | 84.823    | -0,50%   | -420.00         | -35.6256       | 606917  | -4.8985283451  | Τελική           | ροπή        |        | M =      | -636.64 |
| 5               |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             |                  |             |        |          |         |
| 6               |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             |                  |             |        |          |         |
| 7               |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             |                  |             |        |          |         |
| 8               |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             | Διαστ. (mr       | Διαστ. (mm) |        | Συντ. Α  | ωσφ.    |
| 9               |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             | b=               | 405.00      |        | γc=      | 1.00    |
| 10              |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             | h=               | 405.00      |        | γs=      | 1.00    |
| 11              |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             |                  |             |        |          | _       |
| 12              |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             |                  | Αντοχές (   | (MPa)  |          |         |
| 13              |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             | fck=             | 35.00       | fcd=   | 37.71    |         |
| 14              |              |       |      | 0         | 0,00%    | 0.00            | C              | )       | -0             | a=               | 1.08        | λ=     | 1.00     |         |
| 15              |              |       |      | 0         | 0,00%    | 0.00            | 0              | )       | -0             | 1.00             | fyk=        | 0.00   | fyd=     | 0.00    |
| Δκο             | αίες Παραυρα | າດທຳກ | รเก  | max       | 0.00%    | Σ               | -95 0017       | 7618446 | -6 5313711268  | 2.00             | fyk=        | 420.00 | fyd=     | 420.00  |
|                 |              | ųω    | сıς  | min       | -0.01149 | L 2             | -95.0017       | 010-+-0 | -0.0010711200  | 3.00             | fyk=        | 420.00 | fyd=     | 420.00  |
|                 |              |       |      |           |          |                 |                |         |                | 4.00             | fyk=        | 420.00 | fyd=     | 420.00  |
|                 |              |       |      |           |          |                 |                |         |                | 5.00             | fyk=        | 0.00   | fyd=     | 0.00    |

Πίνακας Υπολογισμών 191: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 13 και επίλυση προβλήματος Θεωρίας Τ.Θ.Δ.

6.00

7.00

8.00 fyk=

9.00 fyk=

10.00 fyk=

11.00 fyk=

12.00 fyk=

13.00 fyk=

14.00 fyk=

15.00 fyk=

fyk=

fyk=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

fyd=

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

|     |              | Eurc  | bcod | е        |          | ΑΝΤΟΧΉ ΣΕ ΚΑΜΨΗ |                |          |                |               |             |         |        |            |         |
|-----|--------------|-------|------|----------|----------|-----------------|----------------|----------|----------------|---------------|-------------|---------|--------|------------|---------|
|     | Σχεδιασμ     | ιού Κ | ατα  | σκευών Ο | .Σ.      | Ά               | φθρο:          | ρο: [11] |                |               |             |         |        |            |         |
| Δ   | ομ.Μέλος     |       |      | Δοκός    |          | Με              | λετητής:       | Αχιλλέ   | ας Θεοδωρούλης |               |             |         |        |            |         |
|     |              |       |      |          |          |                 |                |          |                | -             |             |         |        |            |         |
|     | Σκυρόδουσ    |       |      | λx       | εc       | fcd             | F              | с        | Мс             |               |             |         |        |            |         |
|     | Ζκυρυσεμα    |       |      | -188.82  | -0.0035  | 29.75           | 2275           | 5.00     | -675.47        |               |             |         |        |            |         |
| α/α | У            | #Ф    | Φ    | As       | εί       | σi              | F              | ï        | Mi             | x =           |             | -236.02 |        |            |         |
| 1   |              |       |      |          | 0,00%    | 0.00            | (              | )        | -0             |               |             |         |        |            |         |
| 2   | 65.00        | 3     | 6    | 84.823   | -1,15%   | -420.00         | -35.6256606917 |          | -4.8985283451  | Νεξωτ         |             | 2180.00 |        | Διαφορά:   | 0.00    |
| 3   | 202.50       | 2     | 6    | 56.5487  | -0,83%   | -420.00         | -23.7504404611 |          | 3.2656855634   | Τε/           | \ική α      | ξονική  |        | N =        | 2180.00 |
| 4   | 340.00       | 3     | 6    | 84.823   | -0,50%   | -420.00         | -35.6256606917 |          | -4.8985283451  | Τε            | ελική       | οπή     |        | M =        | -682.00 |
| 5   |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             |               |             |         |        |            |         |
| 6   |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | ]             |             |         |        |            |         |
| 7   |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | 1             |             |         |        |            |         |
| 8   |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | Διαστ         | Διαστ. (mm) |         | ] [    | Συντ. Ασφ. |         |
| 9   |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | b=            |             | 405.00  | 1 [    | γc=        | 1.00    |
| 10  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | h=            |             | 405.00  | 1 [    | γs=        | 1.00    |
| 11  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             |               |             |         |        |            | •       |
| 12  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | Αντοχές (MPa) |             | MPa)    |        |            |         |
| 13  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | fck=          |             | 35.00   | fcd=   | 29.75      |         |
| 14  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             | a=            |             | 0.85    | λ=     | 0.80       |         |
| 15  |              |       |      | 0        | 0,00%    | 0.00            | (              | )        | -0             |               | 1.00        | fyk=    | 0.00   | fyd=       | 0.00    |
| Ako | αίες Παραμος | າທຳອ  |      | max      | 0.00%    | 7               | 05 0017        | 7619446  | 6 5212711269   |               | 2.00        | fyk=    | 420.00 | fyd=       | 420.00  |
| Акр | αιες παραμομ | φωυ   | εις  | min      | -0.01149 | 2               | -95.0017       | 010440   | -0.0313711200  |               | 3.00        | fyk=    | 420.00 | fyd=       | 420.00  |
|     |              |       |      |          |          |                 |                |          |                | -             | 4.00        | fyk=    | 420.00 | fyd=       | 420.00  |
|     |              |       |      |          |          |                 |                |          |                |               | 5.00        | fyk=    | 0.00   | fyd=       | 0.00    |
|     |              |       |      |          |          |                 |                |          |                |               | 6.00        | fyk=    | 0.00   | fyd=       | 0.00    |
|     |              |       |      |          |          |                 |                |          |                |               | 7.00        | fyk=    | 0.00   | fyd=       | 0.00    |
|     |              |       |      |          |          |                 |                |          |                | 8.00          | fyk=        | 0.00    | fyd=   | 0.00       |         |
|     |              |       |      |          |          |                 |                |          |                |               | 9.00        | fyk=    | 0.00   | fyd=       | 0.00    |
|     |              |       |      |          |          |                 |                |          |                |               |             |         |        |            |         |

Πίνακας Υπολογισμών 192: Εισαγωγή δεδομένων άρθρου 11 για το δοκίμιο αναφοράς 13 και επίλυση προβλήματος Ευρωκώδικα

0.00

0.00

0.00

0.00

0.00

0.00

10.00

11.00

12.00

13.00

14.00 fyk= 15.00 fyk=

fyk=

fyk=

fyk=

fyk=

fyd=

fyd=

fyd=

fyd=

fyd=

fyd=

0.00

0.00

0.00

0.00

0.00

| cfp       |                 |       |       |                      | για κανονική αντοχή<br>σκυροδέματος |                                     |         |        |                              |        |        |         |                   |
|-----------|-----------------|-------|-------|----------------------|-------------------------------------|-------------------------------------|---------|--------|------------------------------|--------|--------|---------|-------------------|
| Specimen  |                 |       | fc'   | $f_{ck} = f_{c} - 8$ | ft = ft0(fck/fck0)2/3               | $\sigma_{\alpha} = f_{c} +  f_{t} $ | х       | b      | $F_{c} = xb\sigma_{a}$       | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        | f <sub>t0</sub> | fck0  | (MPa) | (MPa)                | (MPa)                               | (MPa)                               | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | 1.40            | 10.00 | 35.00 | 27.00                | 2.71                                | 37.71                               | -148.94 | 405.00 | -2275.00                     | -35.63 | -35.63 | 2180.00 | 2203.75           |
| EC        |                 |       |       |                      |                                     |                                     |         |        |                              |        |        |         |                   |
| Specimen  |                 |       |       |                      |                                     |                                     | х       | b      | $F_{c} = \lambda x b f_{cd}$ | F's    | Fs     | Ν       | Fc + F's - Fs = N |
| ID        |                 |       |       |                      |                                     |                                     | (mm)    | (mm)   | (KN)                         | (KN)   | (KN)   | (KN)    | (KN)              |
| Reference | -               | -     | -     | -                    | -                                   | -                                   | -236.02 | 405.00 | 2275.00                      | -35.63 | -35.63 | 2180.00 | 2203.75           |

Πίνακας Υπολογισμών 193: Επίλυση εξισώσεων για διατήρηση ισορροπίας δυνάμεων της Θεωρίας Τ.Θ.Δ. και του Ευρωκώδικα

Πίνακας Υπολογισμών 194: Εύρεση τέμνουσών και φόρτισης δοκιμίων για την Θεωρία Τ.Θ.Δ. και του Ευρωκώδικα

| cfp                                        |                |                |         |          |         |        |
|--------------------------------------------|----------------|----------------|---------|----------|---------|--------|
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | $\alpha_v$     |                | Vf      | Pf – cfp | Pu (KN) |        |
| (KN*m)                                     | m              | $\alpha_v / d$ | (KN)    | (KN)     | (KN)    | Туре   |
| -636.64                                    | 3.52           | 10.34          | -181.12 | -362.24  | -778.44 | Type I |
| EC                                         |                |                |         |          |         |        |
| Mf = Fc(h/2 - 0.5x) + (F's + Fs)(h/2 - d') | α <sub>v</sub> |                | Vf      | Pf – ec2 | Pu (KN) |        |
| (KN*m)                                     | m              | $a_v / d$      | (KN)    | (KN)     | (KN)    | Туре   |
| -682.00                                    | 3.52           | 10.34          | -194.03 | -388.05  | -778.44 | -      |

Πίνακας Υπολογισμών 195: Σύγκριση αποτελεσμάτων βάσει απαιτούμενων συνδετήρων για την Θεωρία Τ.Θ.Δ. και τον Ευρωκώδικα

|                 | Type I           |                                 |
|-----------------|------------------|---------------------------------|
| Pu (KN)         | Pf – cfp         | Pf – cfp / Pu                   |
| (KN)            | (KN)             | (KN)                            |
| -778.44         | -362.24          | 0.47                            |
| Pu (KN)<br>(KN) | Pf – ec2<br>(KN) | P <sub>f-ec2</sub> / Pu<br>(KN) |
| -778.44         | -388.05          | 0.50                            |
|                 |                  |                                 |
|                 |                  |                                 |
| Pu              | CPF              | EC                              |
| Pu<br>(KN)      | CPF<br>(KN)      | EC<br>(KN)                      |