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Περίληψη

Στην παρούσα διπλωματική εργασία μελετούμε φιλαλήθεις μηχανισμούς σε Συνδυ-

αστικές Δημοπρασίες με budgets. Για την περίπτωση που δεν υπάρχει περιορισμός στα bud-
gets, παρόλο που υπάρχει μηχανισμός που βρίσκει τη βέλτιστη λύση για το Social Welfare,
η εφαρμογή του είναι υπολογιστικά αδύνατη. Συνεπώς, πρέπει να αναζητήσουμε προσεγγισ-

τικούς μηχανισμούς που να εκτελούνται αποδοτικά. Στο πλαίσιο αυτό, παρουσιάζουμε ένα

διαφορετικό είδος μηχανισμών, τις δημοπρασίες αυξανόμενης τιμής, και τις ιδέες των clearing
prices και Walrasian Equilibrium. Επιπλέον, παρουσιάζουμε μηχανισμούς για συνδυαστικές

δημοπρασίες με χρήση demand query oracles, που εμπνεύστηκαν από την ιδέα των clearing
prices, και επιτυγχάνουν τους καλύτερους λόγους προσέγγισης, μέχρι σήμερα. Αναλύοντας

τα βασικά συστατικά των μηχανισμών αυτών, ερευνούμε τις προϋποθέσεις, κάτω από τις

οποίες μπορούμε να επεκτείνουμε τα αποτελέσματα αυτά για το Liquid Welfare, μία μετρική

μέτρησης της αποτελεσματικότητας των μηχανισμών με budget-restricted παίχτες, η οποία

προτάθηκε από τους Dobzinski και Leme.
΄Επειτα, δείχνουμε ότι κάποια από τα πιο γνωστά αποτελέσματα μηχανισμών για τη

προσέγγιση του Social Welfare με submodular (ή XOS) παίχτες μπορούν να προσαρμοστούν

για τη μετρική του Liquid Welfare. Πιο συγκεκριμένα, για τη βελτιστοποίηση του Liquid
Welfare σε συνδυαστικές δημοπρασίες με submodular παίχτες, παίρνουμε ένα φιλαλήθη

O(logm)-προσεγγιστικό μηχανισμό, όπου m ο αριθμός των αντικειμένων, προσαρμόζοντας

το μηχανισμό των Krysta και Vöcking.
Στη συνέχεια, με βάση την ιδέα του large market assumption, παρουσιάζουμε μία νέα έν-

νοια για competitive markets και δείχνουμε ότι σε τέτοιες αγορές, το Liquid Welfare μπορεί

να προσεγγιστεί με ένα σταθερό παράγοντα. Τέλος, για το Bayesian setting, προσαρμό-

ζοντας τα αποτελέσματα των Feldman et al., παίρνουμε έναν φιλαλήθη O(1)-προσεγγιστικό
μηχανισμό για την περίπτωση που τα valuation των παιχτών παράγονται σαν ανεξάρτητα

δείγματα από γνωστές κατανομές.

Λέξεις Κλειδιά: Σχεδιασμός Μηχανισμών, Συνδυαστικές Δημοπρασίες, Walrasian Equi-
librium, Demand Queries, Περιορισμοί στο Budget, Liquid Welfare, Competitive Mar-
kets.





Abstract

In this thesis, we study truthful mechanisms in Combinatorial Auctions with budgets.
For the budget-unrestricted case, although there is a mechanism that provides a welfare
maximizing solution in a truthful way, its implementation is computationally intractable
in most cases. Therefore, we have to design approximation mechanisms that can be exe-
cuted efficiently. In this sense, we present a different kind of mechanisms, the Ascending
Price auctions, and the notion of clearing prices and Walrasian Equilibirum. Further-
more, we present mechanisms for Combinatorial Auctions through demand query oracles
that are motivated by the clearing prices and succeed the best approximation ratios, until
now. Analyzing the basic components of such mechanisms, we investigate the conditions
under which we can extend these results for the Liquid Welfare, a notion of efficiency for
budget-constrained bidders introduced by Dobzinksi and Leme.

In this work, we show that some of the best known truthful mechanisms that approx-
imate the Social Welfare for Combinatorial Auctions with submodular (or XOS) bidders
through demand query oracles can be adapted so that they retain truthfulness and achieve
asymptotically the same approximation guarantees for the Liquid Welfare. More specif-
ically, for the problem of optimizing the Liquid Welfare in Combinatorial Auctions with
submodular bidders, we obtain a universally truthful randomized O(logm)-approximate
mechanism, where m is the number of items, by adapting the mechanism of Krysta and
Vöcking.

Additionally, motivated by large market assumptions often used in mechanism design,
we introduce a notion of competitive markets and show that in such markets, Liquid Wel-
fare can be approximated within a constant factor by a randomized universally truthful
mechanism. Finally, in the Bayesian setting, we obtain a truthful O(1)-approximate
mechanism for the case where bidder valuations are generated as independent samples
from a known distribution, by adapting the results of Feldman et al. .

Keywords: Mechanism Design, Combinatorial Auctions, Walrasian Equilibrium, Posted-
Price mechanisms, Demand Queries, Budget Constraints, Liquid Welfare, Competitive
Markets.
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Chapter 1

Εκτεταμένη Ελληνική Περίληψη

Στο σημείο αυτό, θα συνοψίσουμε το περιεχόμενο της παρούσας διπλωματικής, δίνοντας

βασικούς ορισμούς και θεωρήματα, χωρίς αποδείξεις.

1.1 Εισαγωγή

Με τον όρο ‘Σχεδιασμός Μηχανισμών’ (Mechanism Design) εννοούμε το σχεδιασμό μιας

διαδικασίας σε ένα παίγνιο με στρατηγικούς παίχτες, με στόχο την εύρεση της βέλτιστης

λύσης, σύμφωνα με κάποια αντικειμενική συνάρτηση. Στα παίγνια αυτά, κάθε παίχτης έχει

την προσωπική του στρατηγική και δρα με γνώμονα αποκλειστικά την δική του ικανοποίηση.

Σκοπός του μηχανισμού είναι να μη δώσει κίνητρο στους παίχτες να δηλώσουν ψευδείς

πληροφορίες, ώστε να έχει εγγυήσεις για το αποτέλεσμα. Οι μηχανισμοί χωρίζονται σε

direct revelation, όπου οι παίχτες ανακοινώνουν στο μηχανισμό τις προτιμήσεις τους, και σε

indirect, όπου ο μηχανισμός εξελίσσεται ανάλογα με τις πράξεις των παιχτών. ΄Ενας direct
revelation μηχανισμός με n παίχτες και ένα σύνολο O από δυνατά αποτελέσματα λειτουργεί

ως εξής: Κάθε παίχτης i έχει ένα valuation vi : O → R≥0 και ανακοινώνει στον μηχανισμό

το bid του bi. Ο μηχανισμός αντιστοιχεί το ~b = (b1, . . . , bn) μέσω μιας συνάρτησης f :
~b→ O σε ένα αποτέλεσμα και υπολογίζει ένα διάνυσμα πληρωμών ~p = (p1, . . . , pn). Single-
parameter περιβάλλον θεωρούμε όταν κάθε παίχτης πρέπει να ανακοινώσει μία μόνο τιμή,

ενώ multi-parameter αν πρέπει πολλαπλές. Το single-parameter είναι αρκετά ευκολότερο

και γι΄ αυτό θα ασχοληθούμε με το multi-parameter.

΄Ενα multi-parameter περιβάλλον ορίζεται στην γενική περίπτωση ως εξής:

• n στρατηγικοί παίχτες.

• ΄Ενα πεπερασμένο σύνολο Ω από τα εφικτά αποτελέσματα.

• Κάθε παίχτης έχει ένα προσωπικό valuation vi(ω), ∀ω ∈ Ω.

Η ωφέλεια κάθε παίχτη i ορίζεται στις περισσότερες περιπτώσεις ως ui = vi(f(~b))− pi(~b)
και ονομάζουμε τη στρατηγική bi ενός παίχτης κυρίαρχη στρατηγική, εάν μεγιστοποιεί

την ωφέλειά του, ανεξάρτητα με το τι θα παίξουν οι άλλοι. Αν η κυρίαρχη στρατηγική

ενός παίχτη είναι να ανακοινώσει το πραγματικό του valuation, τότε ο μηχανισμός είναι

φιλαλήθης.
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Συνδυαστική Δημοπρασία είναι μία ειδική κατηγορία του multi-parameter περιβάλ-

λοντος. Πιο συγκεκριμένα, αποτελείται από ένα σύνολο m αντικειμένων και n στρατηγικούς

παίχτες. Κάθε παίχτης i έχει ένα valuation vi : 2m → R≥0. Σκοπός είναι να υπολογί-

σουμε μία ανάθεση S = (S1, . . . , Sn) των m αντικειμένων ώστε να μεγιστοποιήσουμε τη

συνάρτηση αξιολόγησης, η οποία στις περισσότερες περιπτώσεις είναι η συνάρτηση Κοιν-

ωνικής Ευημερίας και ορίζεται ως
∑n

i=1 vi(Si). Οι πιο βασικές κλάσεις valuation είναι

οι additive, gross substitutes, submodular,XOS, subadditive και περιγράφονται αναλυτικά

στο section 3.3.2

Ο μηχανισμός VCG , ο οποίος παρουσιάζεται αναλυτικά στο section 3.3, υπολογίζει μία

ανάθεση που μεγιστοποιεί τη συνάρτηση κοινωνικής ευημερίας με φιλαλήθη τρόπο, ωστόσο

είναι αδύνατη η εφαρμογή του, στις περισσότερες περιπτώσεις, λόγω της υπολογιστικής

πολυπλοκότητας. Για το λόγο αυτό, πρέπει να σχεδιάσουμε μηχανισμούς που προσεγγίζουν

τη βέλτιστη λύση. Μία κατηγορία τέτοιων μηχανισμών είναι οι Posted-Price μηχανισμοί.

Σε έναν posted-price μηχανισμό, δίνουμε τιμές στα αντικείμενα και στη συνέχεια, οι

παίχτες έρχονται με μία σειρά και διαλέγουν το σύνολο από αντικείμενα που μεγιστοποιεί

την ωφέλειά τους στις τιμές αυτές, ~p. Πολλές φορές, εφαρμόζεται ένας κανόνας ενημέρωσης

στις τιμές των αντικειμένων που επιλέγονται. Στο σημείο αυτό, είναι εμφανές πως ο λόγος

προσέγγισης εξαρτάται από τον τρόπο που υπολογίζονται και ενημερώνονται οι τιμές των

αντικειμένων. Το σύνολο των αντικειμένων που μεγιστοποιεί την ωφέλειά τους δίνεται μέσω

Demand Queries (DQ). ΄Ενα DQ(vi, U, ~p) επιστρέφει, δηλαδή, το:

Si = arg max
S∈U
{vi(S)− p (S)}

Επίσης, λέμε ότι ένας τυχαιοποιημένος μηχανισμός έχει λόγο προσέγγισης ρ, εάν E[ALG] ≥
ρ ·OPT , όπου ρ ≤ 1, ALG η λύση του μηχανισμού και OPT η βέλτιστη λύση.

1.2 Δημοπρασίες αυξανόμενης τιμής

Μια κατηγορία δημοπρασιών είναι οι δημοπρασίες αυξανόμενης τιμής. Σε αυτές

τις δημοπρασίες, αρχικοποιούνται οι τιμές όλων των αντικειμένων στο 0, και κάθε πάιχτης

καλείται να διαλέξει το σύνολο των αντικειμένων που μεγιστοποιούν την ωφέλειά του στις

υπάρχουσες τιμές, μέσα από μια επαναληπτική διαδικασία. ΄Οταν ένας παίχτης διαλέγει ένα

σύνολο, τότε κάθε αντικείμενο σε αυτό αυξάνει την τιμή του. Οι επόμενοι παίχτες μπορούν

φυσικά να πάρουν κάποια από τα αντικείμενά του, τα οποία αν θέλει μπορεί να ξαναπάρει

στον επόμενο γύρο σε κάποια μεγαλύτερη τιμή. ΄Οταν κανένας παίχτης δεν επιθυμεί κάποιο

άλλο αντικείμενο, πέρα από αυτά που του έχουν απομείνει, η δημοπρασία τερματίζει. ΄Ενας

τέτοιος μηχανισμός περιγράφεται στον αλγόριθμο 5. Το ζήτημα είναι να αναλύσουμε την

αποτελεσματικότητα του μηχανισμού αυτού. Για το λόγο αυτό, πρώτα θα ορίσουμε κάποιες

απαραίτητες έννοιες για την ανάλυσή μας.

΄Εστω n στρατηγικοί παίχτες και ένα σετ U από m διαφορετικά αντικείμενα. Ως Walrasian
Equilibrium ορίζουμε ένα διάνυσμα τιμών ~p και μία ανάθεση S = (S1, . . . , Sn), και λέμε
ότι το (S, ~p) είναι μία Walrasian Equilibrium, εάν ικανοποιούν τις εξής συνθήκες:
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• Κάθε παίχτης i παίρνει το σύνολο που μεγιστοποιεί την ωφέλειά του (ή το ∅), δηλαδή:

Si ∈ arg max
T⊆U

{
vi(T )−

∑
j∈T

pj

}

• ΄Ενα αντικείμενο j ∈ U είναι απούλητο, μόνο εάν pj = 0.

Η έννοια της Walrasian Equilibrium είναι πολύ σημαντική, καθώς εξασφαλίζει υψηλή

Κοινωνική Ευημερία. Πιο συγκεκριμένα, σύμφωνα με το παρακάτω Θεώρημα, αν το (S, ~p)
είναι μία Walrasian Equilibrium, τότε η ανάθεση S μεγιστοποιεί την Κοινωνική Ευημερία.

Θεώρημα: ΄Εστω μηχανισμός με n παίχτες, ένα σύνολο U από m διαφορετικά αντικείμενα,

μία ανάθεση S = (S1, . . . , Sn) κι ένα διάνυσμα τιμών ~p. Αν (S, ~p) είναι μία Walrasian
ισορροπία, τότε η S μεγιστοποιεί την κοινωνικά ευημερία.

Απόδειξη: ΄Εστω O = (O1, . . . , On) μία ανάθεση που μεγιστοποιεί την κοινωνικά ευημερία

και P =
∑

j∈U pj. Αφού (S, ~p) είναι μια Walrasian ισορροπία, κάθε παίχτης παίρνει το

‘αγαπημένο’ του σύνολο, δηλαδή για κάθε άλλο σύνολο T ⊆ U , έχουμε:

Si ∈ arg max
T∈U

{
vi(T )−

∑
j∈T

pj

}

Συνεπώς, για κάθε παίχτη i ισχύει:

vi(Si)−
∑
j∈Si

pj ≥ vi(Oi)−
∑
j∈Oi

pj

Αθροίζοντας τις εξισώσεις για κάθε παίχτη, έχουμε:

v(S)−
∑
i∈[n]

∑
j∈Si

pj ≥ v(O)−
∑
i∈[n]

∑
j∈Oi

pj (1.1)

Ωστόσο, επειδή στην ανάθεση S ένα αντικείμενο j είναι απούλητο μόνο αν pj = 0, ο

αρνητικός όρος του αριστερού μέλους της παραπάνω εξίσωσης αθροίζει σε όλα τα αντικείμενα

που έχουν μη μηδενικές τιμές και άρα έχουμε:∑
i∈[n]

∑
j∈Si

pj ≥
∑
i∈[n]

∑
j∈Oi

pj (1.2)

Συνδυάζοντας τις εξισώσεις (1.1) και (1.2), παίρνουμε:

v(S) ≥ v(O)

και άρα η S μεγιστοποιεί την κοινωνική ευημερία.

Οι τιμές σε ένα Walrasian διάνυσμα τιμών ~p ονομάζονται clearing prices, καθώς, υπό αυτές

τις τιμές, η προσφορά ισούται με τη ζήτηση και άρα υπάρχει μια ισορροποία στην αγορα.

Επίσης, αν έχουμε υπολογίσει clearing prices, τρέχοντας έναν posted-price μηχανισμό,

καταλήγουμε σε βέλτιστη λύση.
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Ωστόσο, η υπάρξη μιας Walrasian Equilibrium δεν είναι δεδομένη και εξαρτάται από την

κλάση των valuation των παιχτών. Η κλάση Gross Substitutes, που ορίζεται αναλυτικά

στο section 4.5 είναι η μεγαλύτερη κλάση συναρτήσεων για τις οποίες υπάρχει πάντα μία

Walrasian Equilibrium. Με λίγα λόγια, η κλάση αυτή περιγράφεται από την εξής ιδιότητα:

΄Εστω κάποιος παίχτης που αγόρασε ένα σύνολο αντικειμένων T , το οποίο μεγιστοποιούσε

την ωφέλειά του, υπό ένα διάνυσμα τιμών ~p και ~p ′ ένα διάνυσμα τιμών με pj ≤ p′j, για κάθε

αντικείμενο j. Τότε, τα αντικείμενα R ⊆ T των οποίων η τιμή παρέμεινε σταθερή πρέπει να

ανήκουν στο σετ που μεγιστοποιεί την ωφέλειά του υπό το δίανυσμα τιμών ~p ′. Υπό αυτή

την ιδιότητα, ο αλγόριθμος 5 τερματίζει σε μία Walrasian Equilibria.

1.3 Συνδυαστικές Δημοπρασίες μεDemand Queries

Στο κεφάλαιο αυτό παρουσιάζουμε τα πιο σημαντικά αποτελέσματα των συνδυαστικών δημο-

πρασιών, που προκύπτουν από posted-price μηχανισμούς. Πιο συγκεκριμένα, αναλύουμε τα

δομικά συστατικά τους και τις ιδέες, συνδυάζοντας τεχνική ανάλυση και διαίσθηση. Η ιδέα

πίσω από τους posted-price μηχανισμούς είναι να δώσουμε τιμές στα αντικείμενα, τέτοιες

ώστε, αν οι παίχτες έρχονται σε μία σειρά και παίρνουν το σύνολο που μεγιστοποιεί την

ωφέλειά τους, να εξασφαλίσουμε ότι η τελική ανάθεση είναι κοντά στη βέλτιστη λύση. Για

valuation κλάσεις, όπου η ύπαρξη clearing prices είναι δεδομένη, μπορούμε να βρούμε τιμές

που ένας posted-price μηχανισμός, μεγιστοποιεί την κοινωνική ευημερία. Ωστόσο, όπως

τονίσαμε στο προηγούμενο κεφάλαιο, κάτι τέτοιο δεν ισχύει για submodular, XOS και sub-
additive κλάσεις. Συνεπώς, αυτό που μπορούμε να κάνουμε είναι να βρούμε approximate
clearing prices. Από το Παράδειγμα 5.1 καθίσταται σαφές ότι δεν αρκεί μόνο αυτό, αλλά

πρέπει το revenue του μηχανισμού να είναι συγκρίσιμο με την αξία της βέλτιστης λύσης.

Συνεπώς, αν ο μηχανισμός τερματίσει με την ανάθεση S, θέλουμε για τις τιμές των αν-

τικειμένων να ισχύει: ∑
j∈S

pj ≥ a · v(OPT )

όπου a ο λόγος προσέγγισης.

Στο worst-case setting, όπου δεν έχουμε καμία πληροφορία για τα valuation των παιχτών,

οι Dobzinski et al. [21] εισήγαγαν έναν O(log2m)- approximation posted-price μηχανισμό

για submodular valuations. Η ιδέα πίσω από το μηχανισμό αυτό είναι η εύρεση μίας τιμής,

ίδιας για όλα τα αντικείμενα, όχι πολύ υψηλής ούτε πολύ χαμηλής, η οποία να εξασφαλίζει

ότι τα αντικείμενα που θα αγοραστούν, προσεγγίζουν τη βέλτιστη λύση με ένα παράγοντα

O(log2m). Ο μηχανισμός αυτός παρουσιάζεται πιο αναλυτικά στο section 5.3.1.

΄Επειτα, οι Krysta και Vöcking [41] κατάφεραν να προσεγγίσουν την βέλτιστη Κοινωνική

Ευημερία με ένα παράγοντα O(logm) για submodular valuations. Η ιδέα του μηχανισμού

προήλθε από τις δημοπρασίες αυξανόμενης τιμής, όπου η τιμή κάθε αντικειμένου αυξανό-

ταν ανάλογα με τη ζήτησή του. ΄Ετσι, ορίζοντας έναν χώρο αναζήτησης τιμών μεγέθους

logm, όταν ένας παίχτης αγοράζει κάποιο αγαθό η τιμή του αγαθού διπλασιάζεται. Για να

διατηρηθεί η εφικτότητα της λύσης, ο μηχανισμός αναθέτει ‘εικονικά’ αντίγραφα των αν-

τικειμένων, μαθαίνοντας έτσι τη ‘σωστή’ τιμή του κάθε αντικειμένου και τελικά αποφασίζει

για την ανάθεσή τους ή μη μέσω ανεξάρτητων δοκιμών Bernoulli. Ο μηχανισμός αυτός

παρουσιάζεται πιο αναλυτικά στο section 5.3.2.

Το πιο πρόσφατο αποτέλεσμα για submodular valuations είναι ένας O(
√

logm) μηχανισ-
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μός από τον Dobzisnki [16], όπου συνδυάζει τις δύο προηγούμενες ιδέες, δηλαδή ίδιων και

διαφορετικών τιμών. Ο τρόπος που το επιτυγχάνει αυτό είναι μέσω επαναλαμβανόμενων

δημοπρασιών, οι οποίες γίνονται τελικές με μία μικρή πιθανότητα, με ίδια τιμή σε όλα τα

αντικείμενα, μέσω των οποίων μαθαίνει τις διαφορετικές τιμές των αντικειμένων, ανάλογα

με τον αν αγοράστηκαν ή όχι στις εκάστοτε τιμές. Ο μηχανισμός αυτός παρουσιάζεται πιο

αναλυτικά στο section 5.3.3.

Τέλος, για το Bayesian setting, όπου τα valuations των παιχτών προέρχονται από κατανομές,

τις οποίες γνωρίζει ο μηχανισμός, παρουσιάζουμε ένα O(1)-προσεγγιστικό μηχανισμό, τον

οποίο εισήγαγαν οι Feldman et al. [29]. Ο τρόπος που υπολογίζει ο μηχανισμός αυτός τις

τιμές είναι μέσω ghost samples από τις κατανομές. Πιο συγκεκριμένα, μέσω των samples
υπολογίζει μία σχεδόν βέλτιστη λύση, και θέτει την τιμή κάθε αντικειμένου ίση με το μισό

της συνεισφοράς του στη λύση αυτή. Ο μηχανισμός αυτός παρουσιάζεται πιο αναλυτικά στο

section 5.4.

1.4 Liquid Welfare σε Συνδυαστικές Δημοπρασίες

Μέχρι στιγμής, όλοι οι μηχανισμοί που αναλύσαμε αγνοούσαν μία σημαντική παράμετρο:

τον περιορισμό στα budgets των παιχτών. Επειδή η αντικειμενική της Κοινωνικής Ευημερίας

(SW) δε μπορεί να προσεγγιστεί από κάποιο παράγοντα μικρότερο του n με φιλαλήθη τρόπο,

όταν οι παίχτες έχουν περιορισμούς ρευστότητας, οι Dobzinski και Leme [19] πρότειναν σαν

αντικειμενική συνάρτηση τη Ρευστή Ευημερία (LW), η οποία ορίζεται ως το ελάχιστο

του valuation και του budget κάθε παίχτη. Πιο συγκεκριμένα, το LW μιας ανάθεσης S =
(S1, . . . , Sn) ορίζεται ως:

LW (S) =
n∑
i=1

min{vi(Si), Bi}

όπου Bi το budget του παίχτη i. Ως liquid valuation ορίζουμε το v̄i(Si) = min{vi(Si), Bi}.

Σε συνδυαστικές δημοπρασίες, δεν υπήρχε κανένα αποτέλεσμα μέχρι τώρα στην προσέγ-

γιση του LW, εκτός από την περίπτωση με διαιρέσιμα αντικείμενα και additive valuations
υπό ένα large market assumption. ΄Ενα εύλογο ερώτημα είναι, γιατί δεν εφαρμόζουμε τους

posted-price αλγόριθμους για SW με χρήση του DQ(min{v,B}, U, ~p); Αρχικά, πρέπει να

αποδείξουμε ότι τα v και v̄ ανήκουν στην ίδια κλάση, για v submodular, XOS ή subadditive.
Η απόδειξη δίνεται στο παρακάτω Λήμμα.

Λήμμα 1: ΄Εστω v μία submodular (αντίστοιχα XOS, subadditive) συνάρτηση. Τότε, για

οποιοδήποτε B ∈ R≥0, v̄ = min{v,B} είναι επίσης sumodular (αντίστοιχα XOS, subaddi-
tive).

Απόδειξη: Αρχικά, η v̄ διατηρεί τη μονοτονία. Κάνουμε την απόδειξη για κάθε περίπτωση

ξεχωριστά.

• (submodular) ΄Εστω v submodular συνάρτηση. Τότε, από τον ορισμό του submod-
ularity, για sets T ⊆ S και j /∈ S έχουμε:

v (S ∪ {j})− v (S) ≤ v (T ∪ {j})− v (T )
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Επίσης, επειδή v είναι μονότονη: v(T ) ≤ v(S), το οποίο συνεπάγεται v̄(T ) ≤ v̄(S).
΄Εχουμε, λοιπόν τις εξής περιπτώσεις:

1. Αν B ≤ v (T ∪ {j}) ≤ v (S ∪ {j}). Τότε, για τα liquid valuations έχουμε:

v̄ (S ∪ {j}) − v̄ (S) = B − v̄ (S) ≤ B − v̄(T ) ≤ v̄ (T ∪ {j}) − v̄(T ), όπου η

πρώτη ανισότητα ισχύει από τη μονοτονία.

2. Αν v̄(T ∪{j}) ≤ v̄(S∪{j}) ≤ B. Τότε, v̄(S∪{j})− v̄(S) = v(S∪{j})−v(S) ≤
v(T ∪ {j})− v(T ) = v̄(T ∪ {j})− v̄(T ).

3. Αν v(T ∪{j}) ≤ B ≤ v(S ∪{j}). Τότε, έχουμε τις ακόλουθες περιπτώσεις: Αν

v(S) ≥ B τότε, v̄(S∪{j})− v̄(S) = 0 ≤ v(T ∪{j})−v(T ) = v̄(T ∪{j})− v̄(T ).
Αν v(S) < B, τότε v̄(S ∪ {j}) − v̄(S) = B − v(S) ≤ v(S ∪ {j}) − v(S) ≤
v(T ∪{j})−v(T ) = v̄(T ∪{j})− v̄(T ). Τέλος, λόγω της μονοτονίας αυτές είναι

οι μοναδικές περιπτώσεις.

• (XOS) ΄Εστω v μία XOS συνάρτηση: Τότε, υπάρχουν αθροιστικές συναρτήσεις α1, . . . , αl,
τέτοιες ώστε v(S) = maxi∈[l] αi(S). Για να είναι η v̄ XOS, πρέπει να δείξουμε ότι υπ-

άρχουν αθροιστικές συναρτήσεις α′1, . . . , α
′
k τ΄τετοιες ώστε v̄(S) = maxi∈[k] α

′
i(S).

Για κάθε συνάρτηση αi θα ορίσουμε m! συναρτήσεις, μία για κάθε διαφορετική μετά-

θεση π των αντικειμένων. ΄Εστω μια συγκεκριμένη μετάθεση πt των αντικειμένων

{1, 2, . . . ,m} και έστω πt(j) η θέσει του αντικειμένου j στη μετάθεση πt. Ορίζουμε

βπti ως:

βπti ({j}) =

{
αi({j}), αν

∑
k:πt(k)≤πt(j) αi ({k}) ≤ B

max
{
B −

∑
k:πt(k)<πt(j)

αi ({k}) , 0
}
, αν

∑
k:πt(k)≤πt(j) αi ({k}) > B

Πρώτα, θα δείξουμε ότι για κάθε S ⊆ U, βπti (S) ≤ min{v(S), B},∀i, πt.

Από τον ορισμό του βπti , είναι προφανές ότι βπti ({j}) ≤ αi({j}). Συνεπώς, αθροίζον-

τας σε όλα τα αντικείμενα στο S (αφού έχουμε αθροιστικές συναρτήσεις), παίρνουμε

ότι:

βπti (S) ≤ αi(S) ≤ max
k
αk(S) = v(S)

Από τον ορισμό του βπti , έχουμε ακόμα ότι βπti (S) ≤ B.

Στη συνέχεια, θα δείξουμε ότι για κάθε S ⊆ U : ∃βπti τέτοια ώστε βπti (S) =
min{v(S), B}. Διακρίνουμε τις εξής περιπτώσεις:

1. v(S) ≤ B. ΄Εστω πt μία μετάθεση, τέτοια ώστε όλα τα αντικείμενα στο S έρχον-

ται πρώτα και έστω αi∗ η maximizing συνάρτηση για το σύνολο S, δηλ. v(S) =
αi∗(S). Τότε, επειδή

∑
j∈S αi∗({j}) ≤ B, έχουμε βπti∗ (S) =

∑
j∈S β

πt
i∗ ({j}) =∑

j∈S αi∗({j}) = v(S).
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2. v(S) > B. ΄Εστω πt μία μετάθεση, τέτοια ώστε όλα τα αντικείμενα στο S
έρχονται πρώτα και έστω αi∗ η maximizing συνάρτηση για το σύνολο S, δηλ.

v(S) = αi∗(S). ΄Εστω j∗ το τελευταίο αντικείμενο στη μετάθεση πt για το οποίο∑
r:πt(r)≤πt(j∗) αi∗({r}) ≤ B. Τότε:∑

r:πt(r)≤πt(j∗)

βπti∗ ({r}) =
∑

r:πt(r)≤πt(j∗)

αi∗({r})

Για τα επόμενα αντικείμενα z ∈ S στη μετάθεση πt,έχουμε ότι βπti∗ ({z}) =
max{B −

∑
k:πt(k)<πt(z)

αi({k}), 0}. Στην πραγματικότητα, το πρώτο αντικεί-

μενο μετά το j∗ θα συμπληρώσει την επιπλέον αξία, τέτοια ώστε να έχουμε:∑
k:πt(k)≤πt(j∗)+1 β

πt
i∗ ({j}) = B , και για όλα τα επόμενα αντικείμενα q θα έχουμε

βπti∗ ({q}) = 0. Τότε,
∑

j∈S β
πt
i∗ ({j}) = B.

• (subadditive) ΄Εστω v μία subadditive συνάρτηση. Τότε, από τον ορισμό του subad-
ditivity, για τα σύνολα T, S έχουμε:

v (S ∪ T ) ≤ v (T ) + v (S)

΄Εχουμε τις εξής περιπτώσεις:

1. Αν v̄(S ∪ T ) = v(S ∪ T ) < B. Τότε έχουμε σίγουρα ότι v̄(S) = v(S) < B και

ότι v̄(T ) = v(T ) < B. Τότε, v̄(S∪T ) = v(S∪T ) ≤ v(S)+v(T ) = v̄(S)+ v̄(T ),
όπου η ανισότητα προκύπτει από το subadditivity της v.

2. Αν v̄(S ∪ T ) = B < v(S ∪ T ). ΄Επειτα, παίρνουμε τις εξής περιπτώσεις:

(α) Αν v̄(S) = B < v(S), v̄(T ) = B < v(T ). Τότε, v̄(S ∪ T ) = B ≤ 2B =
v̄(S) + v̄(T ).

(β) Αν v̄(S) = B < v(S), v̄(T ) = v(T ) < B. Τότε, v̄(S∪T ) = B ≤ B+v(T ) =
v̄(S)+v̄(T ), όπου η ανισότητα προκύπτει από το ότι το liquid valuation είναι

μη αρνητικό.

(ς) Αν v̄(S) = v(S) < B, v̄(T ) = B < v(T ). Τότε, v̄(S∪T ) = B ≤ v(S)+B =
v̄(S)+v̄(T ), όπου η ανισότητα προκύπτει από το ότι το liquid valuation είναι

μη αρνητικό.

(δ) v̄(S) = v(S) < B, v̄(T ) = v(T ) < B. Τότε, v̄(S ∪ T ) = B ≤ v(S ∪ T ) ≤
v(S) + v(T ) = v̄(S) + v̄(T ), όπου η τελευταία ανισότητα προκύπτει από το

γεγονός ότι η v είναι subadditive.

Ωστόσο, έχουμε το εξής πρόβλημα, όπως φαίνεται στο παρακάτω παράδειγμα:

Παράδειγμα: Φανταστείτε ένα παίχτη με B = 2 και δύο αντικείμενα a και b διαθέσιμα στις

τιμές pa = 2 και pb = 1. Αν υποθέσουμε ότι το valuation του είναι v({a}) = v({a, b}) = 10,
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v({b}) = 2 (και άρα το liquid valuation είναι v̄({a}) = v̄({b}) = v̄({a, b}) = 2), τότε θέλει

το a στην τιμή 2, έχοντας ωφέλεια 8. ΄Ομως, το demand query για το liquid valuation v̄
επιλέγει το b, που του δίνει ωφέλεια 1. Συνεπώς, ο παίχτης έχει κίνητρο να πει ψέματα στο

demand query oracle.

Το παράδειγμα αυτό αποτυπώνει ότι κάθε παίχτης θέλει να μεγιστοποιήσει την ωφέλειά

του, ανεξάρτητα με το πόσα χρήματα έχει να διαθέσει. Συνεπώς, διαλέγει το σύνολο των

αντικειμένων που θέλει μέσω του BCDQ(v, U, ~p,B) που του επιστρέφει, από ένα σύνολο

αντικειμένων U , το σετ:

Si = arg max
S∈U

{
vi(S)− p (S)

∣∣p(S) ≤ Bi

}
Το πρόβλημα έιναι ότι δε φαίνεται ξεκάθαρα να μπορούμε να πάρουμε μία αντίστοιχη σχέση

για το liquid valuation σαν αυτή που δίνει το DQ(min{v,B}, U, ~p), δηλαδή:

v̄(S)− p(S) ≥ v̄(T )− p(T )

για κάθε T ⊆ U . Ωστόσο, έχουμε το παρακάτω λήμμα:

Λήμμα 2: ΄Εστω S ⊆ U το σύνολο που επιστρέφει το BCDQ για κάποιον παίχτη με

valuation v και budget B. Τότε, για οποιοδήποτε σύνολο T ⊆ U , ισχύουν τα εξής:

1. v̄(S) ≥ v̄(T )− p(T )

2. 2v̄(S)− p(S) ≥ v̄(T )− p(T ).

Απόδειξη: Θα αποδείξουμε τους δύο ισχυρισμούς ξεχωριστά. Για την πρώτη σχέση, αν

p(T ) > B, τότε το δεξί μέλος την ανισότητας θα είναι αρνητικό και άρα η ανισότητα ισχύει

τετριμμένα. Συνεπώς, θα εστιάσουμε στην περίπτωση που p(T ) ≤ B. ΄Εχουμε τις εξής

περιπτώσεις:

1. (v̄(S) = v(S) και v̄(T ) = v(T ).) ΄Αρα, B ≥ v(T ). Το σύνολο T εξετάστηκε από το

query και παρ΄ όλα αυτά επέστρεψε το σύνολο S. Συνεπώς: v̄(S) ≥ v̄(S) − p(S) =
v(S)− p(S) ≥ v(T )− p(T ) = v̄(T )− p(T ).

2. (v̄(S) = B και v̄(T ) = B) Τότε, η ανισότητα ισχύει τετριμμένα διότι: B ≥ B − p(T )
και οι τιμές είναι μη αρνητικές.

3. (v̄(S) = B και v̄(T ) = v(T )) Η ανισότητα ισχύει αφού:B ≥ B−p(T ) ≥ v(T )−p(T ) =
v̄(T )− p(T ).

4. (v̄(S) = v(S) και v̄(T ) = B) ΄Αρα, B ≤ v(T ). Το σύνολο T εξετάστηκε από το

query και παρ΄ όλα αυτά επέστρεψε το σύνολο S. Συνεπώς: v̄(S) ≥ v̄(S) − p(S) =
v(S)− p(S) ≥ v(T )− p(T ) ≥ B − p(T ) = v̄(T )− p(T ).

Αυτό ολοκληρώνει την απόδειξη της πρώτης σχέσης.

Για τη σχέση 2, επειδή το S είναι το σετ που επέστρεψε το BCDQ, τότε μπορούσε να

αγοραστεί: v̄(S) ≥ p(S). Αθροίζοντας την ανισότητα αυτή στη σχέση 1, έχουμε ότι:

2v̄(S)− p(S) ≥ v̄(T )− p(T ).

΄Εχοντας αυτές τις σχέσεις, μπορούμε να πάρουμε για το LW ίδιας τάξης προσεγγίσεις με
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Algorithm 1 KV-Mechanism for Liquid Welfare

1: Fix an ordering π of bidders and set U1 = U .
2: Set initial prices p

(1)
1 = · · · = p

(1)
m = L

4m
.

3: for each bidder i = 1, . . . , n according to π do
4: Let Si = BCDQ(vi, Ui, ~p

(i), Bi)
5: With probability q, allocate Ri = Si to i and set Ui+1 = Ui \ Si . Otherwise, set
Ui+1 = Ui, Ri = ∅ .

6: Update prices ∀j ∈ Si: p(i+1)
j = 2p

(i)
j .

7: end for

αυτές που δίνουν posted-price μηχανισμοί για το SW. Παρακάτω φαίνεται πως μετασχη-

ματίζεται ο αλγόριθμος των Krysta και Vöcking [41] με τη χρήση του BCDQ. Η αναλυτική

απόδειξη φαίνεται στο section 6.4. Την ίδια μετατροπή μπορούμε να κάνουμε και στο [29]

για το Bayesian setting, παίρνοντας πάλι ίδιας τάξης προσέγγιση.

Στη συνέχεια, δείχνουμε ότι η προσέγγιση των Lu και Xiao [46] για το large market as-
sumption δεν εφαρμόζεται στην περίπτωση των συνδυαστικών δημοπρασιών με αδιαίρετα

αντικείμενα και ορίζουμε με διαφορετικό τρόπο ένα competitive market assumption. Πιο

συγκεκριμένα, οι Lu και Xiao [46] θεώρησαν την προϋπόθεση Bi ≤ OPT
m·c , όπου OPT η

βέλτιστη τιμή του LW και c μια μεγάλη σταθερά για συνδυαστικές δημοπρασίες με διαιρέσιμα

αντικείμενα. Ωστόσο, στην περίπτωση των αδιαίρετων αντικειμένων κάτι τέτοιο δεν είναι

εφικτό, αφού το πολύ m παίχτες θα πάρουν κάποιο αντικείμενο και άρα OPT ≤ mBmax.

Τότε, η σχέση αυτή δίνει Bmax ≤ Bmax
c

για c > 1, πράγμα άτοπο.

Η δική μας προσέγγιση στον ορισμό του competitive market βασίζεται στην ιδέα ότι αν

αφαιρέσουμε ένα τυχαίο σύνολο από n/2 παίχτες, έστω S τότε με πιθανότητα τουλάχιστον

1 − δ, όπου δ < 1
2
, η βέλτιστη λύση στο εναπομείναν σύνολο T θα είναι συγκρίσιμη με τη

βέλτιστη λύση του προβλήματος. Πιο συγκεκριμένα, έχουμε:

Ορισμός: ΄Εστω 0 ≤ ε < 2 και σταθερά δ ≥ 0. Μία αγορά καλείται (ε, δ) - Competitive,
αν, αφαιρώντας ένα τυχαίο σύνολο S, από n

2
παίχτες, για το εναπομείναν σύνολο T, ισχύει:

P
[

¯OPT T ≥
(

1− ε

2

)
· ¯OPT

]
≥ 1− δ (1.3)

όπου με ¯OPT T συμβολίζουμε το βέλτιστο LW στο σύνολο T.

Λόγω συμμετρίας του συνόλου που αφαιρέσαμε και του εναπομείναντος, με πιθανότητα

τουλάχιστον 1 − 2δ, και τα δύο σύνολα έχουν λύσεις συγκρίσιμες με τη βέλτιστη, και

άρα μπορούμε να υπολογίσουμε τις τιμές από το S και να τις προσφέρουμε στους παίχτες

του T. Πιο αναλυτικά, η ιδέα αυτή παρουσιάζεται στο section 6.6.

Λήμμα 3: ΄Εστω C =

{
j
∣∣qTj > v̄(AS

j)
β

}
για σταθερά β > 1. Τότε,

∑
j∈C q

T
j ≤ ε

2(β−1)
¯OPT

και
∑

j∈C q
T
j ≥

β(2−ε)−2
2(β−1)

¯OPT .

Απόδειξη: Από τον ορισμό 6.4, ισχύει με σταθερή πιθανότητα ότι:

¯OPT ≥
∑
j∈C

qTj +
∑
j∈C

qTj =
∑
j∈U

qTj ≥
(

1− ε

2

)
· ¯OPT
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Algorithm 2 Competitive Market (CM) Αλγόριθμος

1: Divide the bidders into sets S,T uniformly at random, s.t., |S| = n
2

= |T|.
2: Run the greedy algorithm A for bidders in S and denote the solution obtained by AS.
3: for j ∈ U do
4: Set pj = 1

2β
v̄
(
AS
j

)
, where β > 1 is a constant

5: end for
6: Fix an internal ordering of bidders in T, π, and set U1 = U .
7: for each bidder i ∈ T arriving according to π do
8: Let Si = BCDQ(vi, Ui, ~p).
9: Set Ui+1 = Ui \ Si.

10: end for

. ΄Εστω SC ⊆ S το σύνολο των παιχτών που παίρνουν τα non-competitive αντικείμενα από

τον άπληστο αλγόριθμο A όταν τρέχει στο σύνολο S. Τότε, στο επαυξημένο σετ T ∪ SC,
υπάρχει ανάθεση Q με liquid valuation

v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
(1.4)

και άρα:

¯OPT ≥ v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
≥
∑
j∈C

qTj + β
∑
j∈C

qTj

≥
(

1− ε

2

)
¯OPT + (β − 1)

∑
j∈C

qTj

Μετά από πράξεις, παίρνουμε:∑
j∈C

qj +
ε

2(β − 1)
¯OPT ≥

∑
j∈U

qTj ≥
(

1− ε

2

)
¯OPT

Συνεπώς, για τα αντικείμενα στο C ισχύει:∑
j∈C

qTj ≥
β(2− ε)− 2

2(β − 1)
¯OPT

Στο επόμενο λήμμα, δίνουμε ένα κάτω φράγμα για τη συνεισφορά των competitive αν-

τικειμένων στη λύση του άπληστου αλγορίθμου.

Λήμμα 4:
∑

j∈C v̄
(
AS
j

)
≥ 2(β−1)−ε·(3β−1)

4(β−1)
¯OPT .

Απόδειξη: Συνδυάζοντας την ανισότητα (1.4) και το Λήμμα 3 παίρνουμε ότι:∑
j∈C

v̄
(
AS
j

)
≤ βε

2(β − 1)
¯OPT (1.5)
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Ο αλγόριθμος A δίνει μία 2-προσέγγιση για το βέλτιστο LW για το σετ S, συνεπώς έχουμε:∑
j∈C

v̄
(
AS
j

)
+
∑
j∈C

v̄
(
AS
j

)
≥ 1

2
¯OPT S ≥

1− ε
2

2
¯OPT (1.6)

Συνδυάζοντας τις 2 τελευταίες σχέσεις, παίρνουμε το αποτέλεσμα.

Θεώρημα: Ο CM Αλγόριθμος είναι φιλαλήθης και και πετυχαίνει O(1) προσέγγιση του

βέλτιστου Liquid Welfare. Πιο συγκεκριμένα:

E [v̄ (S)] ≥ (1− 2δ) · 2(β − 1)− ε · (3β − 1)

16β(β − 1)
OPT

.
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Chapter 2

Introduction

Imagine that you are a social planner wanting to auction-off the seats of a local stadium
in an extremely wealthy neighborhood (i.e., people have no budget constraints for the
seats) for a big concert. As a social planner, your goal is to allocate the seats in a way
that maximizes (or at least approximates as closely as possible) the happiness of the
people interested in these seats. However, different people have different seat preferences;
some people are happy with two consecutive seats anywhere in the stadium, some might
be happy with only one seat in front of the stage, and some might want a whole row.
Phrased in mechanism design language, this is a Combinatorial Auction, where you seek
to optimize the Social Welfare by a truthful mechanism. Combinatorial Auctions, like
the one above, appear in many contexts (e.g., spectrum auctions, network routing auc-
tions [38], airport time-slot auctions [53], etc.) and have been extensively studied by both
Economists and Computer Scientists (see e.g.,[12] for a survey).

As if this problem was not hard enough to solve, imagine that you find out two un-
fortunate events; the stadium is in fact at a working-middle class neighborhood (i.e.,
people do have budget constraints) and your boss is concerned about the effect of budget
constraints on potential revenue. Now, the objective function should balance between
the willingness and the ability of the people to pay for their seats. Motivated by usual
discrepancies between auction participants’ ability and willingness to pay, Dobzinski and
Leme [19] introduced the notion of Liquid Welfare, which is the minimum of an agent’s
budget and valuation for a bundle of goods. As such, maximizing the Liquid Welfare
achieves a reasonable compromise between social efficiency and potential for revenue ex-
traction (which is constrained by the budgets).

It is clear that in such complex and unprincipled systems the people’s preferences may
coincide, in a way that they cannot all be fulfilled at the same time, and, as an outgrowth,
they behave in a selfish manner to get the maximum satisfaction, ignoring whether their
actions disappoint other people or not. This context comprises a game, where many
people, the so called agents, interact with each other in order to satisfy their own desire.
These agents have their private strategy and their sole aim is to maximize their “happi-
ness”, the so called utility.

Game Theory is the field that tries to quantify in a principled way the interactions be-
tween the agents, calculating the benefits and the losses of every possible action and
providing solutions that try to maximize every agent’s payoff. However, these solutions
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may be inefficient for the whole welfare.Mechanism design- the science of rule-making-
tries to fix this problem, providing guarantees that agents behave in such a manner, that
the final solution is efficient for the whole system and as a result can be thought as reverse
game theory. In this field, we design procedures that affirm that no agent has incentive
to lie about their preference, and thus, maximize their ulitity by acting in a truthful
manner. Consequently, we are able to predict the action of the players and, therefore, to
reason about the outcome of the mechanism. In other words, we want to design systems
with strategic participants that have good performance guarantees.

Informally, a mechanism is characterized by a set of feasible outcomes O, an alloca-
tion rule f and a payment rule ~p = (p1, . . . , pn). Each agent has a private valuation
vi : O → R≥0 and tries to maximize its utility, which is defined as the valuation for the
outcome ω minus the payment, i.e. ui = vi(ω) − pi. This utility model is called quasi-
linear. From now on, we will assume that the utilities of the agents are quasi-linear, unless
mentioned otherwise. We call a mechanism truthful, if every agent has no incentive to lie
about their private information, no matter how the rest of the agents play. This means
that every agent maximizes its utility by reporting his true valuation, independently of
what others’ strategies are. Therefore, the payment rule is essential for succeeding the
truthfulness of the mechanism.

The performance is measured, in the majority of the mechanisms in the literature, by the
total utility or Social Welfare, which is defined as the sum of every agent’s valuation on
the outcome of the mechanism ω ∈ O, i.e.

∑n
i=1 vi(ω). At this point, we have to mention

that problems in Mechanism Design are either single-parameter, where the preference
of each agent consists of only one number, or multi-parameter. In this diploma thesis,
we focus on a certain type of mechanisms, the so called Auctions, which are mechanisms
specifically for the exchange of goods and money, and has been studied by both Computer
Scientists and Economists.

Single-Parameter Auctions

Imagine that you want to auction-off an item and there are n available buyers. Every
buyer i has a private valuation vi for the item and wants to maximize their utility, i.e.
ui = vi − p, if buyer i gets the item, where p is the price he has to pay and 0 otherwise.
Your goal is to give the item to the buyer who wants it more, i.e. the buyer with the
highest valuation. Now, we are going to compare two different payment rules, that do not
affirm truthfulness. First, we assume that the item is given for free, meaning that p = 0.
Then, every buyer would misreport their true valuation, by announcing a much higher
number, since they only have better chances of getting the item. Second, we assume that
if buyer i gets the item, he has to pay the number he announced to the auctioneer. Then,
it s clear, that every buyer would announce a lower number, as their utility stays 0 by
reporting their true valuation, whether they acquire the item or not. This latter form is
known as first-price auction and its performance has been studied extensively in

The solution to this problem is due to Vickrey [64], who introduced the so called Second-
Price Auction. In this mechanism, the bidder with the highest bid gets the item and
has to pay a price equal to the second highest bid. The truthfulness of the Second-Price
auction is presented in Section 3.2.1.
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In the case of multi-unit auctions, where there are multiple copies of the same item, My-
erson [49] proved that a mechanism is truthful if and only if is monotone, meaning that
the amount of staff an agent is allocated is monotone to his bid. At the same time, the
payment rule is unique (see Section 3.2.2) and, intuitively, each agent pays for each unit of
item the minimum report needed to win this unit. As the single-parameter environment
is well understood, we will focus on the multi-parameter environment and Combinatorial
Auctions.

Multi-Parameter Auctions

Now, assume that we have to face a more general problem, for example there are multiple
items to be auctioned. This setting is known as a Combinatorial Auction. A Combina-
torial Auction (CA) consists of a set U of m items to be allocated to n bidders. Each
bidder i has a valuation function vi : 2U → R≥0. Valuation functions, v, are assumed to
be non-decreasing, i.e., v(S) ≤ v(T ), for all S ⊆ T ⊆ U , and normalized v(∅) = 0. For the
objective of Social Welfare (SW), the goal is to compute a partitioning S = (S1, . . . , Sn)
of the set of items, U , that maximizes v(S) =

∑n
i=1 vi(Si).

We focus on Combinatorial Auctions with submodular, XOS or subadditive bidders.
A set function v : 2U → R≥0 is submodular if for every S, T ⊆ U , v(S) + v(T ) ≥
v(S ∩ T ) + v(S ∪ T ) and subadditive if v(S) + v(T ) ≥ v(S ∪ T ). A set function v is XOS
(a.k.a. fractionally subadditive, see [28]) if there exist additive functions wk : 2U → R≥0

such that for every S ⊆ U , v(S) = maxk{wk(S)}. The class of submodular functions is
a proper subset of the class of XOS functions, which is a proper subset of the class of
subadditive functions.

The question is how should an appropriate payment rule look like in a Combinatorial
Auction in order to to retain truthfulness. In fact, there is a mechanism that terminates
with the optimal solution for general valuation functions in a truthful way. This mech-
anism was introduced by Vickrey [64], Clarke [8] and Groves [35] and is known as VCG
mechanism. VCG is the unique truthful welfare-maximizing mechanism and is applied in
general mechanism design environments. The idea behind this mechanism is to associate
the welfare maximization with the maximization of the utility of each bidder and charge
him his externality, i.e. pi = maxω∈Ω

∑
j 6=i vj(ω) −

∑
j 6=i vj(ω

∗), where ω∗ is the optimal
solution (see Section 3.3.3 for further details). However, VCG cannot be implemented in
polynomial time for most valuation function classes and as a result, we have to look for
approximation mechanisms. One would may ask why not compute an approximate VCG
solution and calculate the prices according to it. The answer is that any price calculation
based on approximation would result to non-truthful mechanisms. As far as the com-
munication complexity of the mechanism is concerned, we assume that the auctioneer
has oracle access to the players’ utilities and that he can ask queries to them, since each
bidder has to announce exponentially-sized information to the mechanis. The two main
categories of queries are the value and the demand queries. In this thesis, we focus on
Combinatorial Auctions with demand queries, as this kind of queries is a more powerful
tool and allows the achievement of much better approximation guarantees.
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Combinatorial Auctions via Value Queries

In mechanisms that operate with value queries, valuations are given via black boxes. In
a value query, the mechanism defines a subset S ⊆ U and the player i returns vi(S). As
optimization problem, forgetting incentives, the computation of a near-optimal welfare
maximizing allocation with value queries is still a challenging task; Khot et al. [40] proved
that there is no approximation algorithm that uses polynomially many value queries and
approximates the optimal welfare by a factor better than (1 − 1/e), unless P = NP .
Based on this result, Vondrak [65] developed an algorithm which achieves a (1 − 1/e)-
approximation for the submodular welfare problem with polynomial number of value
queries. Furthermore, Mirrokni et al. [48] proved that for any fixed ε > 0, achieving
an approximation ratio of (1− 1

e
+ ε) for welfare maximization with submodular bidders

requires an exponential number of value queries. For the case of subadditive valuations,
Dobzinski [20] introduced an 1√

m
-approximation algorithm, using a polynomial number

of value queries. Later, Mirrokni et al. [48] proved that for any fixed ε > 0, achieving an
approximation ratio of 1

m
1
2−ε

for welfare maximization with subadditive bidders requires

an exponential number of value queries. Dobzinski [15] proved that any truthful mecha-

nism for submodular Combinarorial Auctions with approximation ratio better than m
1
2
−ε

must use exponentially many value queries.

Combinatorial Auctions via Demand Queries

In mechanisms that operate with demand queries, valuations are given via black boxes.
In a demand query DQ(vi, U, ~p), the mechanism presents price vector ~p for the goods
and each player i returns the set Si of goods that maximizes his utility, i.e. Si =
arg maxT∈U {vi(T )− p (T )}. In the worst-case setting, where we do not make any further
assumptions on bidders’ valuations, Dobzinski et al. [21] presented the first truthful mech-
anism with a non-trivial approximation guarantee of O(log2m). Dobzinski [17] improved
the approximation ratio to O(logm log logm) for the more general class of subadditive
valuations. Subsequently, Krysta and Vöcking [41] provided an elegant randomized on-
line mechanism that achieves an approximation ratio of O(logm) for XOS valuations.
Dobzinksi [16] broke the logarithmic barrier for XOS valuations, by providing an approx-
imation guarantee of O(

√
logm). We highlight that accessing valuations through demand

queries is essential for these strong positive results. In the Bayesian setting, bidder valu-
ations are drawn as independent samples from a known distribution. Feldman et al. [29]
showed how to obtain item prices that provide a constant approximation ratio for XOS
valuations. In Chapter 5 we analyze these mechanisms’ components, presenting the way
they operate.

In fact, these mechanisms are inspired from the notion of clearing prices, for which sup-
ply equals demand. We say that an allocation S = (S1, . . . , Sn) and a price vector ~p

are in Walrasian Equilibrium if (i) Si ∈ arg maxT⊆U

{
vi(T )−

∑
j∈T pj

}
and (ii) an item

j ∈ U is unsold, only if pj = 0. According to the First Welfare Theorem, if (S, ~p) is a
Walrasian Equilibrium, then S is a welfare-maximizing allocation. The case of Walrasian
Equilibrium in auction format has been first studied through ascending price auctions
(see e.g. [47, 10, 1, 2]). Kelso and Crawford [10] introduced an ascending price auction
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with use of demand queries that terminates at a Walrasian Equilibrium for gross substi-
tutes valuations. An agent is said to have a gross substitutes valuation if, whenever the
prices of some items increase and the prices of other items remain constant, the agent’s
demand for the items whose price remain constant weakly increases. However, Gul and
Staccheti [36] proved that gross substitutes is the largest valuation class, for which a
Walrasian Equilibrium is guaranteed to exist (see Chapter 4 for further details). As a
result, for more general valuation functions, such as submodular, XOS, or subadditive,
where clearing prices are not guaranteed to exist, the above mechanisms tried to compute
approximate clearing prices, i.e. prices that a posted-price mechanism would result with
high welfare. In other words, these mechanisms try to find prices, neither too low, nor
too high, such that there exist an allocation S with

∑
j∈S pj ≥ a · v(OPT).

Value vs Demand Queries

It is apparent that demand queries are much more powerful than value queries. In fact,
a value query can be simulated by polynomially many value queries, but exponentially
many value queries may be required to simulate a single demand query, as Blumrosen
and Nisan [5, Lemma 3] proved. It gets more clear with the following example: Assume
there are 2 bidders and m items. The first bidder has valuations 2|S| for every set S,
except for a set H of m

2
items with valuation 2|H|+ 2, and the second bidder has valua-

tion 2|S| + 1 for each set S. The optimal solution is to assign H to the first bidder and
the rest m

2
items to the second bidder, with a total welfare of 2m + 3. For price vector

~p = (p1, . . . , pm) with pj = 2 + ε for all items j, the demand query of the first bidder
returns set H. However, with the use of value queries, unless all the sets of m

2
items be

queried, the optimal allocation cannot be determined. Therefore, Ω(2m) value queries
will be needed in the worst case. As this example highlights, a demand query can export
and communicate exponentially larger amount of information than a value query, as it
returns the utility maximizing set along all possible 2m different subsets.

Budget Feasible Mechanisms

Until now, the mechanisms presented did not take into account a crucial parameter in real
life application, the budget constraints. However, when bidders are budget constrained,
the Social Welfare cannot be approximated by a factor better than n, where n is the
number of agents. The classic VCG approach does not hold anymore, since the utilities
of the bidders stop being quasi-linear. In fact, they are formed as:

ui =

{
vi − p, if p ≤ Bi

−∞ otherwise

where Bi is bidder’s i budget. Nonetheless, a reverse approach has been studied exten-
sively, in the so called Procurement Auctions. In a Procurement Auction there are n
sellers, competing each other to be preferred by a single buyer. Budget feasible mecha-
nisms refer to the case where the buyer is budget constrained. This topic was introduced
by Singer [62], where he introduced a randomized O(1) factor budget feasible mechanism
that is universally truthful for the class of submodular functions. Moreover, Dobzinski
et al. [22] proved a O(log2 n) approximation for the case of subadditive functions. This
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results were improved by Bei et al. [4], where they gave a O( logn
log logn

) approximation mech-
anism for subadditive functions. Budget feasible mechanism design focuses on payment
optimization in reverse auctions, a setting almost orthogonal to the setting we consider
in our work, but we refer to it for completeness.

Liquid Welfare

Liquid Welfare was introduced as an efficiency measure for auctions when bidders are
budget constrained in [19], since it was known that getting any non-trivial approxima-
tion for the SW in these cases is impossible. Moreover, Dobzinski and Leme [19] proved
a O(log n) (resp. (log2 n))-approximation to the optimal LW for the case of a single di-
visible item and submodular (resp. subadditive) bidders. Dobzinski and Leme [19] and
Lu and Xiao [45] proved that the optimal LW can be approximated truthfully within
constant factor for a single divisible good, additive bidder valuations and public budgets.
Closer to our setting, Lu and Xiao [46] provided a truthful mechanism that achieves a
constant factor approximation to the LW for multi-item auctions with divisible auctions,
under a large market assumption. Under similar large market assumptions, Eden et al.
[26] obtained mechanisms that approximate the optimal revenue within a constant factor
for multi-unit online auctions with divisible and indivisible items, and a mechanism that
achieves a constant approximation to the optimal LW for general valuations over divisible
items. However, prior to our work, there was no work on approximating the LW in CAs
(in fact, that was one of the open problems in [19]).

Our Results: Intuition and Contribution

Our aim is to extend these results to the objective of Liquid Welfare. To this end, we
exploit the fact that most of the mechanisms above (and the mechanisms of [41] and [29],
in particular) follow a simple pattern: first, by exploring either part of the instance in
[41] or the knowledge about the valuation distribution in [29], the mechanism computes
appropriate (a.k.a. supporting1) prices for all items. Then, these prices are “posted” to
the bidders, who arrive one-by-one and select their utility-maximizing bundle, through a
demand query, from the set of available items,as in Algorithm 3.

Algorithm 3 Core Mechanism

1: Fix an ordering π of bidders and set U1 = U .
2: Set initial prices for the items: ~p(1) = (p

(1)
1 , . . . , p

(1)
m ).

3: for each bidder i = 1, . . . , n according to π do
4: Let Si = DQ(vi, Ui, ~p

(i), )
5: With probability q, allocate Si to i and set Ui+1 = Ui \ Si . Otherwise, set
Ui+1 = Ui .

6: Update item prices to ~p(i+1) = (p
(i+1)
1 , . . . , p

(i+1)
m ).

7: end for

The technical intuition behind the high level approach above is nicely explained in [16,
Section 1.2]. Let O = (O1, . . . , On) be an optimal solution for the SW (in fact, any con-

1A price vector ~p = (p1, . . . , pm) supports allocation S = (S1, . . . , Sn), if v(S) ≥
∑

j pj .

18



stant factor approximation suffices). The supporting price of item i in O is qj = wk({j}),
where wk is the additive valuation determining the value vi(Oi) (recall that valuation
functions are XOS). Intuitively, qj is how much item j contributes to the social welfare of
O. Then, a price of pj = qj/2 for each item j is appropriate in the sense that a constant
approximation to v(O) can be obtained by letting the bidders arrive one-by-one, in an
arbitrary order, and allocating to each bidder i her utility maximizing bundle, chosen
from the set of available items by a demand query (see [16, Lemma 4.2]).

Hence, approximating the SW by demand queries boils down to computing such prices
pj. In the Bayesian setting, prices pj can be obtained by drawing n samples from the
valuation disribution and computing the expected contribution of each item j to a con-
stant factor approximation of the optimal allocation (see Section 3 and Lemma 3.4 in
[29]). Similarly, the idea of estimating the contribution of the items would work un-
der some market uniformity assumption, as the one introduced in Definition 6.4. In
the worst-case setting, if we assume integral and polynomially-bounded valuations (i.e.,
that maxi{vi(U)} ≤ md, for some constant d), a uniform price for all items selected at
random from 1, 2, 4, 8, . . . , 2d logm results in an logarithmic approximation ratio. Krysta
and Vöcking [41] show how to estimate supporting prices online, by combining binary
search and randomized rounding. Importantly, as long as each bidder does not affect the
prices offered to her, this general approach results in (randomized universally) truthful
mechanisms.

Towards extending the above approach and results to the LW, our first observation
(Lemma 6.2) is that if a valuation function v is submodular (resp. XOS), then the
corresponding liquid valuation function v̄ = min{v,B} is also submodular (resp. XOS).
Then, one can directly use the mechanisms of e.g., [41, 16, 29] with valuation functions
v̄ = min{v,B} and demand queries of the form: DQ(min{v,B}, U, ~p) (i.e., wrt. the
liquid valuation of the bidders) and obtain the same approximation guarantees but now
for the LW. However, the resulting mechanisms are no longer truthful; bidders still seek
to maximize their utility (i.e., value minus price) from the bundle that they get, subject
to their budget constraint, rather than their liquid utility (i.e., liquid value minus price).
Specifically, given a set of items U available at prices pj, j ∈ U , a budget-constrained
bidder i wants to receive the bundle Si = arg maxS⊆U{vi(S) − p(S) | p(S) ≤ Bi}, and
might not be happy with the bundle S ′i = arg maxS⊆U{v̄i(S) − p(S)} computed by the
demand query for the liquid valuation.

To restore truthfulness, we replace demand queries with budget-constrained demand queries.
A budget-constrained demand query, denoted by BCDQ(v, U, ~p,B), specifies a valuation
function v, a set of available items U , a price pj for each j ∈ U and a budget B, and
receives the set S ⊆ U maximizing v(S) − p(S), subject to p(S) ≤ B, i.e., the set of
available items that maximizes bidder’s utility subject to her budget constraint.

To establish the approximation ratio, we first observe that the fact that liquid valua-
tions are XOS suffices for estimating supporting prices, as in previous work on the SW.
Additionally, we show that the bundles allocated by BCDQ(v, U, ~p,B) approximately sat-
isfy the efficiency guarantees on the liquid welfare and the liquid utility of the allocated
bundles (see Lemma 6.3). Specifically, we observe that the approximation guarantees of
mechanisms for the SW mostly follow from the fact that a demand query DQ(v, U, ~p)
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guarantees that for the allocated bundle S and for any T ⊆ U :

1. v(S)− p(S) ≥ v(T )− p(T )

2. v(S) ≥ v(T )− p(T )

In Lemma 6.3, we show that a budget-constrained demand query, BCDQ(v, U, ~p,B),
guarantees that for the allocated bundle S and any T ⊆ U ,

1. 2v̄(S)− p(S) ≥ v̄(T )− p(T )

2. v̄(S) ≥ v̄(T )− p(T ).

Using this property, we can prove the equivalent of [16, Lemma 4.2] in Lemma 6.5) and
also the approximation guarantees of the mechanisms in [41, 29] but for the LW.

Formalizing the intuition above, we obtain (i) a randomized universally truthful mech-
anism that approximates the LW within a factor of O(logm) (Section 6.4), and (ii) a
posted-price mechanism that approximates the LW within a constant factor when bidder
valuations are drawn as independent samples from a known distribution (Section 6.5).
Both mechanisms assume XOS bidder valuations; the former is based on the mechanism
of [41] and the latter on the mechanism of [29].

Motivated by large market assumptions often used in Algorithmic Mechanism Design (see
e.g., [6, 26, 46] and the references therein), we introduce a competitive market assump-
tion in Section 6.6. The main idea is that when there is an abundance of bidders, even
if we remove a random half of them, the optimal LW does not decrease by much. Then,
computing supporting prices for all items based on a randomly chosen half of the bidders,
and offering these prices through budget-constrained demand queries to the other half,
yields a universally truthful mechanism that approximates LW within a constant factor
(Theorem 6.4).
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Organization of the Thesis

In Chapter 3 we will make a brief introduction to Mechanism Design, giving fundamental
definitions and theorems, such as the notions of dominant strategy, truthfulness, DSIC
mechanisms and Revelation Principle. For the single-parameter case, we will deal with
the Second-Price Auction and Myerson’s Lemma, while for the multi-parameter setting,
we will state the VCG mechanism, its power and limitations, and the definition of a
Combinatorial Auction. Afterwards, we will introduce a different class of mechanism, the
Posted-Price mechanisms and finally, we will make a short notice on the Linear Program-
ming machinery.

In Chapter 4 we will introduce a new notion of auctions, the Ascending Price auctions
and define a new concept of truthful revelation, sincere bidding and ex-post Nash equi-
librium. Furthermore, we are going to deal with the case of market equilibrium, the so
called Walrasian Equilibrium and the prerequisites under which, ascending price auctions
terminate at a Walrasian Equilibrium. Finally, we will express the Combinatorial Auc-
tions via Linear Programming and examine under which conditions the VCG mechanism
can be implemented in polynomial time.

In Chapter 5 we will introduce the supporting prices and the structure of Posted-Price
mechanisms in Combinatorial Auctions. In the worst-case and the Bayesian setting, we
will present the most important results, providing a deeper explanation and intuition to
their technics. More specific, we are going to categorize mechanisms according to the
way they post the prices, and connect it with the notions of Walrasian Equilibrium and
Ascending-Price auctions.

In Chapter 6 we will present an alternative notion of efficiency in auctions with budget-
constrained bidders, the so called Liquid Welfare, introduced by Dobzinski and Leme
[19]. Thus far, there was no work approximating the Liquid Welfare in Combinatorial
Auctions, except the case of multi-item divisible setting with additive bidders under a
large market assumption. However, we will extend the approximation results of Social
Welfare in Combinatorial Auctions with submodular (or XOS) bidders for the measure
of Liquid Welfare. Finally, we will define a new notion of Competitive Markets and give
a constant approximation mechanism for XOS bidders.
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Chapter 3

Basics of Mechanism Design

First, we are going to give some fundamental definitions of the area of mechanism design
and present some basic mechanisms for single and multi -parameter environment.

3.1 Preliminaries

The basic setup: Assume that there are n agents participating in the mechanism
and let O be the set of the feasible outcomes. Each agent i has a private valuation
vi : O → R≥0 and reports its bid bi : O → R≥0 to the mechanism. After collecting the

bids, the mechanism uses a social choice function f : ~b → O, which maps the bidding
profile, ~b = (b1, . . . , bn), to an allocation, and a payment scheme ~p = (p1, . . . , pn) for this
allocation. A deterministic mechanism is defined by the pair (f, p).
Note: A mechanism that operates as described above, is called direct revelation An in-
direct mechanism is a function M : An → O, which maps an action vector to a feasible
outcome. We will focus later on indirect mechanisms.

Notation: By ~v−i we express the valuation profile of all agents, except for i, i.e.
~v−i = (v1, . . . , vi−1, vi+1, . . . , vn)

Definition 3.1 (Quasi-linear Utility). In a mechanism (f, p) we say that the utility func-
tions are quasi-linear if:

ui = vi(f(~b))− pi(~b) (3.1)

where ~b is the bid profile of the agents.

Note: For the rest of the analysis, we assume that all agents have quasi-linear utilities,
until we introduce the notion of Liquid Welfare.

Definition 3.2 (Dominant Strategy). A bidding strategy bi ∈ Vi is dominant, if it max-
imizes agent’s i utility, regardless what others are doing. Formally:

vi (f(bi, ~v−i))− pi(bi, ~v−i) ≥ vi (f(b′i, ~v−i))− pi(b′i, ~v−i) (3.2)

We call a mechanism truthfull, when truthtelling is the dominant strategy for every
agent. Formally:
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Definition 3.3 (Truthfulness, [51]). Let (f, p) be a mechanism. Then, Mechanism (f, q)
is truthful if for all i ∈ [n] and for any v′i, it holds that:

vi (f(vi, ~v−i))− pi(vi, ~v−i) ≥ vi (f(v′i, ~v−i))− pi(v′i, ~v−i) (3.3)

Our mechanisms in this work are going to be randomized, i.e., they are probability distri-
butions over deterministic mechanisms. The incentives desiderata for randomized mecha-
nisms are either universal truthfulness (when all the deterministic mechanisms are Domi-
nant Strategy Incentive Compatible (DSIC)) or truthfulness in expectation(when bidders’
expected utilities are maximized under truthful reporting of their private information).
In this work, we are focusing on the former, stronger notion; the one of universal truth-
fulness.

Definition 3.4 (Universal Truthfulness). Let
(
f̃ , p̃
)

be a randomized mechanism over

a set of deterministic mechanisms
{

(f 1, p1) , . . . ,
(
fk, pk

)}
. Mechanism

(
f̃ , p̃
)

is univer-

sally truthful if for all i ∈ [n], κ ∈ [k] and for any v′i, it holds that:

vi (f
κ(vi, ~v−i))− pκi (vi, ~v−i) ≥ vi (f

κ(v′i, ~v−i))− pκi (v′i, ~v−i) (3.4)

When an agent enters the mechanism, it is important for him to know that whatever the
outcome is, he can never have negative utility. The mechanisms that fulfill this property
are called individually rational. Formally, we have:

Definition 3.5 (Individually Rational, [51]). A mechanism (f, p) is individually rational
if for all i ∈ [n] and for all valuation profiles ~v = (v1, . . . , vn), it holds:

vi (f(~v))− pi(~v) ≥ 0 (3.5)

Definition 3.6 (DSIC). A mechanism (f, p) is DSIC (Dominant Strategy Incentive Com-
patible) if it is truthful and individually rational.

Assume that mechanism (f, p) is non-DSIC, in the sense that every agent has a dom-
inant strategy, but it is not guaranteed that this strategy is truthtelling. The question
that arrises is whether (f, q) can be simulated by another mechanism (f ′, p′), such that
(f ′, p′) is DSIC. The answer is positive and is called Revelation Principle. Formally, we
have:

Theorem 3.1 (Revelation Principle). For every mechanism (f, p) in which every agent
has a dominant strategy, there is an equivalent direct-revelation DSIC mechanism (f ′, p′).

Proof. As defined above, every agent has a private valuation vi and a dominant strategy
si(vi). Hence, it means that each agent i would announce si(vi) to (f, p). Let us now
construct an equivalent mechanism (f ′, p′) that accepts each agent’s bid bi, operates the
function si on the announced bid bi,∀i ∈ [n] and then outputs the same allocation and

payments as (f, p). Formally, we define f ′(~b) = f
(
s(~b)

)
and p′(~b) = p

(
s(~b)

)
, where

s(~b) = (s1(b1), . . . , sn(bn)).
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Consequenlty, as agent i who has private valuation vi and dominant strategy si(vi), would
only diminish their utility by reporting a bid other than vi and therefore, by possibly
playing in (f, p) a strategy other than si(vi). Hence, mechanism (f ′, p′) is DSIC.

By this time, we have not mention anything about the measure of efficiency of the mech-
anisms. It is reasonable that efficiency varies according to the mechanism’s designer
wishes. If a government is to decide about the realization or not of a public project, then
the appropriate efficiency measure is the total welfare of the community. If a seller is
to auction his car, he probably wants to get as much money as possible and wants to
maximize their revenue. Formally, we have:

Definition 3.7 (Social Welfare). Let (f, p) a mechanism and S ∈ O its output by the
participation of n agents. Then, Social Welfare is defined as:

SW =
n∑
i=1

vi(S) (3.6)

On the other hand, it is logical that the revenue extracted from the agents is the
sum of the prices each agent was charged. More formally, we define the revenue of the
mechanism as follows:

Definition 3.8 (Revenue). Let (f, p) a mechanism and S ∈ O its output by the partici-
pation of n agents. Then, revenue is defined as:

REV =
n∑
i=1

pi(S) (3.7)

In Chapter 6 we introduce another notion of effficiency, called Liquid Welfare which is
defined when agents are restricted by their budget. Briefly, we have:

Definition 3.9 (Liquid Welfare). In a budgeted setting with n bidders, where each bidder
i has budget Bi and valuation vi, we define the Liquid Welfare of outcome ω ∈ O by:

LW =
n∑
i=1

min{vi(ω), Bi} (3.8)

Finally, we are going to define the concept of approximation and randomized algorithms,
which are widely used in Mechanism Design.

Approximation in Mechanism Design. We say that a mechanism ρ-approximates
the optimal solution if: ALG ≥ ρ · v(OPT), where ρ ≤ 1, ALG is the solution of the
mechanism and OPT the optimal solution.

Randomization in Mechanism Design. We say that a randomized mechanism ρ-
approximates the optimal solution if: E[ALG] ≥ ρ · OPT, where ρ ≤ 1, ALG is the
solution of the mechanism and OPT the optimal solution.
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3.2 Single-Parameter Environments

3.2.1 Single-item Auctions

Suppose that you want to design an auction for an indivisible item, so as to maximize
the Social Welfare, i.e. allocate the item to the agent that wants it more. As claimed
before, we cannot give the item for free, nor charge the winning bidder his bid, as we
incentivize the agents to misreport their true valuation and can lead to a really low
welfare. Therefore, we have to find the appropriate payment rule, so as no agent can
augment their utility by lying about their valuation. The solution to this problem is the
so called Second-Price Auction, where the bidder with the highest bid gets the item and
has to pay a price equal tothe second highest bid, and which was introduced by Vickrey.

Theorem 3.2. The Second-Price Auction is DSIC.

Proof. Let n be the number of bidders that participate in the auction. Fix an arbitrary
player i an let vi be its valuation. Our aim is to prove that i has dominant strategy to
bid their true valuation, i.e. bi = vi. Let b−i be the bidding profile of the rest of the
agents and let L be the highest bid, among them, i.e. L = arg maxj 6=i bj. Now, we are
going to distinguish the following cases:

• vi < L. If bi < vi then the outcome of the auction remains the same and i does not
get the item. If bi > vi, agent i compromises to exceed L and therefore, to acquire
the item in the price of L, getting negative utility.

• vi ≥ L If bi > vi then the outcome of the auction remains the same and agent i
gets the item in the price of L. If bi < vi, agent i compromises to fall behind L
and therefore, to lose the item , getting zero utility. If they still win the item, then
price will be still be L and their utility would remain the same.

Therefore, it is clear that agent i has no incentive to lie about their valuation and
truthtelling is their dominant strategy.

3.2.2 Multi-unit Auctions

Now, suppose that you have multiple or infinite copies of the same item. Second-Price
Auction seems a powerless tool to be implemented in this setting. So, we have to think
of a new feasible allocation and payment rule f(~b), p(~b) ⊆ Rn. Agents have still to report
their valuation v, which in this case is the valuation “per unit of staff”. The solution to
this setting was given by Myerson. Formally, we have:

Theorem 3.3 (Myerson’s Lemma, [49]). A mechanism (f, p) is DSIC if and only if,

assuming for every bidder i with bid bi and ~b−i, it holds:

• fi(bi,~b−i) is non-decreasing in its bid bi

• the unique payment rule is given by the formula:

pi(bi,~b−i) =

∫ bi

0

z
d

dz
fi(z,~b−i)dz (3.9)
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3.3 Multi-Parameter Environments

In the previous sections, we discussed primarily for cases where agents should report to
the mechanism a single valuation. What if we have to face a more general problem, for
example there are multiple items to be auctioned? How should an appropriate payment
rule look like in order to to retain truthfulness? One would reasonable think that, running
separate Second-Price Auctions for each item, would result to DSIC mechanism. Hence,
the answer is more complex than that. In fact, separate Second-Price Auctions is the
solution if agents’ valuations are additive, meaning that the valuation of a bundle of items
equals to the sum of valuation of each item separately.

3.3.1 Combinatorial Auctions

At this point, we are ready to define the notion of a Combinatorial Auction. Informally, it
is a special case of the multi-parameter environment defined previously, where valuation
functions are defined on the 2m subsets of the m different items, although there are
(n + 1)m different outcomes. The reason for this is that every agent is indifferent who
gets an item, if it is not him.

Definition 3.10 (Combinatorial Auction). A Combinatorial Auction (CA) consists of
a set U of m items to be allocated to n bidders. Each bidder i has a valuation function
vi : 2U → R≥0. Valuation functions, v, are assumed to be non-decreasing, i.e., v(S) ≤
v(T ), for all S ⊆ T ⊆ U , and normalized v(∅) = 0. For the objective of Social Welfare
(SW), the goal is to compute a partitioning S = (S1, . . . , Sn) of the set of items, U , that
maximizes v(S) =

∑n
i=1 vi(Si).

3.3.2 Valuation Classes

Now, we are going to give some basic definitions about the valuation classes, which
determine the difficulty of the problem. Let v a valuation function and U the set of m
items.

Definition 3.11 (Additive). A set function v : 2U → R≥0 is additive if for every S ⊆ U :

v(S) =
∑
j∈S

v({j}) (3.10)

This is the least general class of valuation functions and entails that there are no de-
pendencies between the items or the size of the set. This setting can be solved optimal
through parallel second-price auctions.

Definition 3.12 (Gross Substitutes). An agent is said to have a gross substitutes valu-
ation if, whenever the prices of some items increase and the prices of other items remain
constant, the agent’s demand for the items whose price remain constant weakly increases.

The above definition is informal, as it requires some more technical background, which is
provided later in the thesis, and this class arises naturally as a necessity for the efficiency
guarantees of an ascending price auction, presented later. Therefore, we give the formal
definition in Section 4.5.
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Definition 3.13 (Submodular). A set function v : 2U → R≥0 is submodular if for every
S, T ⊆ U , with T ⊆ S and item j /∈ S:

v(S ∪ {j})− v(S) ≤ v(T ∪ {j})− v(T ) (3.11)

Submodularity can be seen as the discrete analog of concavity and arises naturally in
economic settings since it captures the property that marginal utilities are decreasing as
we allocate more goods to a player.

Definition 3.14 (XOS). A set function v is XOS (a.k.a. fractionally subadditive) if
there exist additive functions wk : 2U → R≥0 such that for every S ⊆ U :

v(S) = max
k
{wk(S)} (3.12)

Definition 3.15 (Subadditive). A set function v : 2U → R≥0 is subadditive if for every
S, T ⊆ U ,:

v(S) + v(T ) ≥ v(T ∪ S) (3.13)

Subadditivity can be seen as complement-free market, as the combination of any two
bundles of items does not increase their value.

The relation between the aformentioned classes is the following:

Additive ⊆ Gross Substitutes ⊆ Submodular ⊆ XOS ⊆ Subadditive (3.14)

Figure 3.1: The relation between the valuation function classes.

3.3.3 VCG mechanism

Hence, there is a mechanism that solves much more complicated and general settings
than the auctioning of multiple items, even for general valuation functions. Imagine the
most abstract definition of a multi-parameter environment. Then, it should be defined
like this:
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• There are n agents.

• There is a finite set Ω of possible outcomes.

• Every agent has a private valuation vi(ω), ∀ω ∈ Ω.

Now, we are ready to introduce a DSIC mechanism for the Welfare maximization of
any multi-parameter environment, where the utilities are quasi-linear.

Theorem 3.4 (VCG mechanism, [64, 8, 35]). In every general mechanism design en-
vironment, there is a DSIC welfare-maximizing mechanism (f, p), which is defined as
follows:

• ω∗ = f(~b) = arg maxω∈Ω

∑n
i=1 bi(ω)

• pi(~b) = maxω∈Ω

∑
j 6=i bj(ω)−

∑
j 6=i bj(ω

∗).

(Intuitively, each agent is asked to pay its externality, since the first term in the RHS of
the payment rule equals to the optimal solution, calculated on all the agents except for
i, and the second term equals to the contribution of the rest of the agents in the optimal
solution.)

Proof. Fix an arbitrary player i an let vi be its valuation function. Our aim is to prove
that i has dominant strategy to bid their true valuation function, i.e. bi = vi. Let ~b−i be
the bidding profile of the rest of the agents. Based on the allocation and payment rules,
defined above, the utility of player i is defined as:

ui = vi(ω
∗)− pi(ω∗) =

[
vi(ω

∗) +
∑
j 6=i

bj(ω
∗)

]
−max

ω∈Ω

∑
j 6=i

bj(ω) (3.15)

It is clear, that agent i cannot influence the second term of the RHS of equation (1.9).

However, the term
[
vi(ω

∗) +
∑

j 6=i bj(ω
∗)
]

is maximized when agent i reveals their true

valuation profile, by the definition of the allocation rule, as misreporting can lead to
another outcome with lower welfare. Therefore, it is dominant strategy for every agent
i to bid their true valuation function. Moreover, it is easy to verify that truthtelling
guarantees non-negative utilities for all agents, since the maximization space for the
positive term of the RHS of (1.9) is only bigger than that of the negative term, and
hence, the VCG mechanism is DSIC.

However, as we will discuss now, VCG is not a panacea; imagine a Combinatorial Auction
with n bidders and m items. As defined above, each bidder has to announce 2m values, one
for each bundle of items, assuming that valuations are not additive. So, for instance, for
m = 20 each bidder has to communicate more than 1 million numbers to the auctioneer,
and as a result, it is clear that it cannot be implemented in real life.
Even if we overlook the communication problem, another problem that appears is that
VCG cannot be implemented in polynomial time, except for some very specific classes of
valuation function, that we are going to define in the next chapter. As a result, the way
to overcome this problem is to seek for near-optimal solutions, the so called approximate
solutions.
Furthermore, although we proved that VCG is DSIC mechanism, it is vulnerable to
collusion among the agents. In other words, it is not group strategyproof. The following
example delineates this issue.
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Example 3.1. Think of a case with 3 agents and the mechanism wants to decide whether
to build a road or not. The possible outcomes are ”yes” and ”no”. Now, assuming
v1(yes) = v2(yes) = 3, v1(no) = v2(no) = 0 and v3(yes) = 0, v3(no) = 5, then the
outcome of the mechanism, implementing VCG, is “yes” and ends up with payments
p1 = p2 = 2, p3 = 0. Now, if agents 1, 2 collude and report v′1(yes) = v′2(yes) = 5, then
the outcome will remain the same, but the payments will decrease to 0, for both agents.

The last example highlights one more problem, that VCG can have a really bad rev-
enue. Finally, in many real-life situations, decisions about the allocation of resources
must be made online, without information about the future. For example, think of a
Combinatorial Auction, where bidders arrive sequentially; how can the seller be reas-
sured that items will not end up early to agents with low valuations? The problem that
arises is that VCG cannot be implemented in online settings, as it requires to compute
an offline optimal solution.
Consequently, there have to be found another mechanisms to be implemented in Combi-
natorial Auctions. Until now, we have only talked about direct-revelation mechanisms,
where the agents report all of their private information to the mechanism. Though, we
have to introduce a new category of mechanisms, the so called indirect mechanism, where
information is provided only on a “need-to-know” basis through queries.

3.4 Value and Demand Queries

As it has been clear, Combinatorial Auctions with m items have a strong disadvantage;
the communication complexity. Each agent has 2m different values, one for each bundle,
except for the case of additive valuations. Of course, it is impossible for a mechanism to
operate with exponential size of input, even in real life auctions with a small number of
items. A solution to this problem is the implementation of queries, through which the
mechanism can acquire the information needed. The two main categories are the Value
and the Demand queries. More specifically, we have:

Definition 3.16 (Value Query (VQ)). Let S be a set of items. Then, bidder i’s Value
Query (VQ(S)) returns the value of the set:

VQ(S) = vi(S) (3.16)

The definition of a value query is simple enough; it just returns the value of a bundle. It
is clear that this tool does not give great power to the mechanism, as it would require
exponentially many value queries, in order to execute VCG. However, it allows the mech-
anism designer to define the way he learns the valuations. A more powerful tool is the
demand query and is defined as follows:

Definition 3.17 (Demand Query (DQ)). Let U be the set of items that are available
and ~p their prices. Then, bidder i’s Demand Query (DQ(vi, U, ~p)) returns set Si ⊆ U
satisfying:

Si = arg max
S∈U
{vi(S)− p (S)} (3.17)

It is apparent, that demand queries are much more powerful than value queries; they
return the most profitable bundle between 2m different bundles at specific prices. A naive
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way to simulate the function of demand queries through value queries would require to
examine all 2m possible bundles. However, it is necessary in many cases, as it is illustrated
by the following example:

Example 3.2 ([5]). Assume there are 2 bidders and m items. The first bidder has val-
uations 2|S| for every set S, except for a set H of m

2
items with valuation 2|H|+ 2, and

the second bidder has valuation 2|S|+ 1 for each set S. The optimal solution is to assign
H to the first bidder and the rest m

2
items to the second bidder, with a total welfare of

2m + 3. For price vector ~p = (p1, . . . , pm) with pj = 2 + ε for all items j, the demand
query of the first bidder returns set H. However, with the use of value queries, unless all
the sets of m

2
items be queried, the optimal allocation cannot be determined. Therefore,

Ω(2m) value queries will be needed in the worst case.

More specifically, we have the following lemmas, according to Blumrosen and Nisan [5]:

Lemma 3.1. A value query can be simulated by a polynomial number of demand queries.

Lemma 3.2. An exponential number of value queries may be required for simulating a
single demand query.

Mechanism design with the exclusive use of value queries is very restricted. In fact, as
optimization problem, forgetting incentives, the computation of a near-optimal welfare
maximizing allocation with value queries is still a challenging task; for example, Mir-
rokni et al. [48] proved that for any fixed ε > 0, achieving an approximation ratio of
(1 − 1

e
+ ε) for welfare maximization with submodular bidders requires an exponential

number of value queries. Moreover, Dobzinski [15] proved that any truthful mechanism

for submodular Combinarorial Auctions with approximation ratio better than m
1
2
−ε must

use exponentially many value queries. Therefore, we have to look to obtain better ap-
proximation guarantees with the use of demand queries.

Informally, in a Combinatorial Auction with Demand Queries, items are posted with
prices and agents arrive one-by-one, choosing their utility-maximizing bundle in the ex-
isting prices. Then, it is common to operate an update rule on the prices, which is
necessary for the improvement of the approximation guarantees. It is important to men-
tion that this whole procedure is executed in a way that retains truthfulness. Now, it is
clear that the efficiency of such mechanisms depends on the way of posting and updating
the prices.
In order to illustrate the notion of approximate randomized combinatorial auctions with
demand queries, we give the following simple example:

Example 3.3. Let a single-item auction with n agents. We divide the agents into sets
A,B uniformly at random, such that |A| = |B| = n

2
. The mechanism comprises of two

phases; in the first phase, we ask the agents of set |A| to reveal their valuation and let
L = maxi∈A{vi} be the maximum of these valuations. These agents will not be allocated
the item, so they have no incentive to lie about their true valuation. In the second phase,
we post price L to the item and fix an internal ordering π of agents in |B|. Then, agents
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from set |B| arrive one-by-one and have to decide whether they buy the item or not. The
moment the item gets sold (if any), the mechanism is terminated.
We claim that the above randomized mechanism 1

4
-approximates the optimal solution.

Indeed, with probability 1
4

the second largest bidder, i.e. the one whose valuation is the
second largest among all the bidders, belongs to the set A and the largest bidder to set
B. Conditioning on this event, the only bidder from set |B| that can buy the item is the
largest one, which results to the optimal solution. Therefore, E[ALG] ≥ 1

4
OPT.
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Chapter 4

Ascending Implementations and
Walrasian Equilibrium

When someone hears about auctions, the first thing that comes to their mind are big
auction houses, where items of great value, such as art work and houses, are sold. In
this context, the auctioneer raises constantly the price, until only one bidder remains in
the auction and who finally gets the item. It is apparent that this type of mechanism
is indirect, in the sense that bidders do not report their valuation to the auctioneer, but
rather they answer “yes” or “no” queries, as the price increases. The question is why this
kind of auctions are implemented in most cases in real life and whether we can reason
about efficiency and incentive guarantees.

First of all, it is clear that it is easier for bidders to answer simple queries than
to announce their valuation, especially in more tortuous settings. Secondly, it retains
privacy, since the winner of the auction does not reveal their valuation, even not to the
auctioneer; we just learn a lower bound on their valuation by the last price all other
bidders quited the auction. Thirdly, it has more transparency, since all bidders are able
to see the price augmentation. First, we are going to analyse the k−Vickrey auction
in an ascending price format and define the equivalent notion of truthful revelation in
ascending price auctions. This chapter is based on [54, 55, 60, 56, 57, 58].

4.1 Warm-up

Suppose an auction with n bidders and k identical items, the so called k−Vickrey Auction.
Each bidder is unit demand, meaning that he only wants to acquire one copy of the item.
Implementing VCG on this setting, the k highest bidders would be allocated a copy of
the item, and they would be charged the k+1 highest bid. An ascending implementation
of this setting is described on Algorithm 1.

Let us now reason about the incentives of this procedure. First, we are going to define
an analog of truthful revelation in ascending price auctions.

Definition 4.1 (Sincere bidding). We say that an agent bids sincere, if they answer
honestly all queries.

In this case, sincere bidding means that an agent aswers “yes” in Step 3 of Algorithm 1,
only if his valuation exceeds pt + ε.
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Algorithm 4 Ascending Implementation of k−Vickrey Auction

1: Initialize the price p0 = 0 and the set of active bidders S0 = [n], t = 0.
2: while |St| > k do
3: Ask each bidder in St if they want the item in price pt + ε and let St+1 be the set

of the bidders they answered positive.
4: pt+1 = pt + ε
5: t← t+ 1.
6: end while
7: Allocate an item to each bidder in |St| at price pt−1.
8: if |St| < k then
9: Choose at random k− |St| bidders from St−1−St and give them an item on price
pt−1.

10: end if

Proposition 4.1. Sincere bidding is a dominant strategy in Algorithm 1 (up to ε).

In this setting, it easy to reason about incentives, since if a bidder leaves earlier from
the auction, then he loses the chance to get the item in a profitable price, while if he
stays longer, he jeopardizes getting the item in a higher price than his valuation, and
thus, leading to negative utility. Therefore, the welfare achieved by this auction is within
kε of the maximum possible.

Now, think of a case with n bidders, m non-identical items and each bidder has
additive valuation function. It is easy to see that the VCG solution is the same as running
m parallel Second-Price auctions, since there is no dependence between the items that an
agent gets. Based on the previous setting, it is reasonable to think that sincere bidding
is a dominant strategy. However, as we show on the next example, it is not a dominant
strategy.

Example 4.1. Suppose a Combinatorial Auction with items A,B and 2 bidders with
additive valuations. Let v1(A) = v1(B) = 2 and v2(A) = v2(B) = 1. Asumming that
both agents bid sincere, then agent 1 acquires both items in price 1 each. Now, think that
agent 2 follows the strategy below: If agent 1 bids for item A, then keep bidding for both
items until agent 1 leaves the auction, otherwise, bid sincere. Then, it is clear that agent
1 would prefer to bid only for item 2 since it guarantees him a utility of 1.

The aformentioned example illustrates a fundamental problem of the ascending price
auctions; the action space is much larger than that of the direct revelation mechanisms
and is history-dependent. In other words, it means than an agent can act according to the
information he receives by observing what other agents do, since it proceeds iteratively.
Therefore, we have to define a new notion of incentive guarantees, implying that sincere
bidding is dominant strategy, conditioning on the event that all other agents bid sincere.
This guarantee does not sound implausible, since each agents has only to assume that all
others bid according to their valuation profile, no matter what it looks like. In the next
section we are going to define a class of mechanisms, according to this guarantee, the so
called EPIC mechanisms.

35



4.2 EPIC Mechanisms

In this section, we are going to define a new equilibrium concept, the so called ex post
Nash equilibrium. Assume there an n bidders, and each bidder i has a set of private
valuations Vi. As strategy of bidder i, we define a function si : Vi → Ai, where Ai is
the set of actions. Ai is much more richer than that of direct revelation mechanisms, as
ascending auctions proceed in iterations and can be history-dependent.

Definition 4.2 (Ex Post Nash Equilibrium). A strategy profile (s1, . . . , sn) is an ex post
Nash equilibrium, if, for each bidder i, sincere bidding, i.e. si(vi), is dominant strategy
to every action profile s−i(~v−i)

In other words, it means every bidder knows that sincere bidding is the best response,
only knowing that all the other agents use strategies s−i(~v−i), without actually knowing
their true valuation profile.

Note: Ex post Nash equilibrium is a weaker equilibrium concept than dominant strategy
equilibrium as the latter does not need to assume anything about the action of the others.

Definition 4.3 (EPIC mechanism). A mechanism (f, p) is ex post incentive compatible
(EPIC), if sincere bidding is an ex post Nash equilibrium ,and is individually rational.

Now, the question that needs to be answered is, how difficult is it to design an EPIC mech-
anism. Since dominant strategy equilibrium concept is subset of ex post Nash equilibrium,
then it is obvious that every DSIC mechanism is EPIC. However, in direct-revelation
mechanisms, the two concepts coincide, since every available action is consistent with
the truthful revelation of a possible valuation profile, and as a result, truthtelling can
only increase a bidder’s utility. Therefore, designing an EPIC iterative mechanism is
only harder than designing a DSIC direct-revelation mechanism; assume that (f, p) is an
EPIC iterative mechanism. Then, implementing revelation principle, there is a mecha-
nism (f ′, p′) that is direct-revelation and has the same outcome as (f, p). Since the two
equilibrium concepts are equivalent in direct revelation mechanisms, as described above,
then (f ′, p′) is DSIC.

As we claimed in the previous chapter, in a direct-revelation mechanism, VCG out-
come is the unique welfare maximizing outcome, that guarantees truthfulness. Further-
more, as said before, for every EPIC mechanism, there is an equivalent direct-revelation
DSIC mechanism, by implementation of the revelation principle. Therefore, we have the
following proposition:

Proposition 4.2. Every EPIC and welfare-maximizing mechanism must lead to the same
allocation and payment rule as VCG.

In the next section, we are going to define the notion of a new equilibrium concept,
but this time an equilibrium concept by the side of the market.
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4.3 Walrasian Equilibrium

In economics, markets are places for the exchange of money and goods, where buyers and
sellers participate and act selfishly. If the price of an item is relative low, meaning that
its demand exceeds its supply, then there is a great margin for the seller to augment the
price, without losing revenue. On the other hand, if the price of the item is relative high,
then supply surpasses the demand and the price diminution is inevitable. As we observe,
there is a state, where supply equals demand, the so called Market Equilibrium. The price
that succeeds this type of equilibrium is called clearing price; for instance, in the case of
the k-Vickrey auction, every price between the k-highest and the (k + 1)-highest bid is
clearing, since the demand of the bidders equals to k for every price in that region. The
question is how effective a Market Equilibrium is, in the sense of the welfare achieved. In
this section we will define the notion of competitive or Walrasian Equilibrium and explore
its efficiency guarantees.
Formally, in a Combinatorial Auction environment, the Walrasian Equilibrium is defined
as follows:

Definition 4.4 (Walrasian Equilibrium). Suppose there are n agents and a set U of m
non-identical items. A Walrasian Equilibrium (WE) is a non-negative price vector ~p and
an allocation S = (S1, . . . , Sn) such that:

• Each agent i is allocated its utility-maximizing bundle (or ∅), i.e.

Si ∈ arg max
T⊆U

{
vi(T )−

∑
j∈T

pj

}
(4.1)

• If j /∈ ∪iSi, then pj = 0.

Then, we say that (S, ~p) is a Walrasian Equilibrium.

It is clear, that some very interesting and fundamental properties emerge from the
above definition. Suppose a Walrasian price vector ~p, i.e. there exists an allocation S,
such that (S, ~p) is a Walrasian Equilibrium. Then, we have that every agent is allocated
its favorite bundle and therefore, there are no collisions among the bundles that agents
want to get. As a result, if we have a Walrasian price vector ~p, there is no need for a
central coordination of the mechanism, since there is a distributed solution, where each
agent would choose their favorite bundle, without worrying that another agent would get
some of the items included in it. The question that arises is how efficient is the allocation
S in a Walrasian Equilibrium (S, ~p). The answer is given by the First Welfare Theorem.

Theorem 4.1 (First Welfare Theorem). Let a mechanism with n agents, a set U of m
non-identical items, an allocation S = (S1, . . . , Sn) and a price vector ~p. If (S, ~p) is a
Walrasian Equilibrium, then S is a welfare-maximizing allocation.

Proof. Let O = (O1, . . . , On) be a welfare-maximizing allocation rule and P =
∑

j∈U pj.
Since (S, ~p) is a Walrasian Equilibrium, each agents is allocated its favorite bundle, mean-
ing that for every bundle T ⊆ U , we have:

Si ∈ arg max
T∈U

{
vi(T )−

∑
j∈T

pj

}
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Therefore, for each agent i it holds:

vi(Si)−
∑
j∈Si

pj ≥ vi(Oi)−
∑
j∈Oi

pj

Summing the above equation for each agent, we have:

v(S)−
∑
i∈[n]

∑
j∈Si

pj ≥ v(O)−
∑
i∈[n]

∑
j∈Oi

pj (4.2)

However, since in allocation S an item j is unsold only if pj = 0, the negative term of
the LHS of the above equation sums over all the items that have a non-zero price, and,
thus, we have that: ∑

i∈[n]

∑
j∈Si

pj ≥
∑
i∈[n]

∑
j∈Oi

pj (4.3)

Combining equations (2.2) and (2.3), we get that:

v(S) ≥ v(O)

and, therefore, S is a welfare-mazimizing allocation.

The question that emerges is in what cases there exists a Walrasian Equilibrium and how
it can be reached.

4.4 Ascending-Price Combinatorial Auctions

Now, think of the most general valuation model you can think. The only assumptions
that need to be made are the following:

• v(∅) = 0

• if T ⊆ S, then v(T ) ≤ v(S).

Next, we provide an algorithm, introduced by Kelso and Crawford, and then, we will
examine what properties should the valuations meet, in order to terminate at a Walrasian
Equilibrium.

Now, think the above algorithm, implemented on the following case of 2 bidders and
a set U of 2 items, A and B, with valuations:

v1(S) =

{
2, if S = U

0 otherwise

and:

v2(S) =

{
1.5, if S 6= ∅
0 otherwise

So, the first bidder, wants both items or non, meaning that he has zero valuation for each
of the items seperately. On the other hand, the second bidder wants at least one item,
being indifferent which of the two he gets. Now, if we run Algorithm 2 on this setting,
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Algorithm 5 Kelso-Crawford (KC) Auction

1: Initialize the price of each item j, pj = 0 and the allocating set of each bidder i, Si = ∅.
2: while true do
3: Ask each bidder sequentially for their favorite bundle of items not assigned to

them, giving them the items they already have, .i.e. for each bidder i:

Ti = arg max
T⊆[m]−Si

{vi(Si ∪ T )− pε(Si ∪ T )}

where:
pε(Si ∪ T ) =

∑
j∈Si

pj +
∑
j∈T

(pj + ε)

4: if Ti = ∅ for each bidder i then
5: Terminate the auction with allocation (S1, . . . , Sn) and prices ~p.
6: else
7: Choose uniformly at random a bidder i, with Ti 6= ∅
8: Si ← Si ∪ Ti
9: Sk ← Sk − Ti, for all k 6= i

10: pj ← pj + ε, for all j ∈ Ti
11: end if
12: end while

the first bidder will bid on both items, at price zero, and the second bidder will bid for
one of the two, say item A. Then, the first bidder will bid again on both the items, while
this time, the second bidder will bid on item B, which has a lower price. This bidding
procedure will continue until the price of each reaches 1. Then, the second bidder will
choose one of the two items, say A, increasing its price to 1 + ε. Now, the first bidder
wants to drop item B at price 1, as he has zero valuation for it alone. However, this
kind of action, i.e. drop an item you already have, is not allowed by the algorithm. As a
result, it is clear, that this algorithm is suitable only for specific valuation classes.

Note: This situation, where a bidder wants to drop an item, unless he has not an-
other item, is known as the exposure problem.

This example did not only show a fundamental problem of this algorithm, but also indi-
cated what properties should a valuation class fulfill, in order to terminate at a Walrasian
Equilibrium.

4.5 Gross Substitutes

As it is apparent from the implementation of Algorithm 2 to the above setting, the
problem that occured was a situtation, where a bidder preffered to drop an item he
already had, by the price augmentation of another item. This is exactly the condition
that our valuation functions need to meet and this class of functions are called Gross
Substitutes.

Definition 4.5 (Gross Substitutes). Let a set of m items U a valuation function v, a
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price vector ~p and let D(~p) the set, containing the most demanded set under these prices,
i.e.:

arg max
T⊆U

{
v(T )−

∑
j∈T

pj

}
We say that valuation function v satisfies the gross substitutes condition, if the following
condition hold:
For every set S ∈ D(~p) and price vector ~q, with qj ≥ pj for each j ∈ U , there exists a set
T ⊆ U , such that:

(S − A) ∪ T ∈ D(~q)

where A = {j|qj > pj}.

To simplify the notation above, the gross substitutes condition means that if a bidder has
a “favorite” bundle under a specific price vector, the increase in the prices of some of the
items of the bundle, does not make him want to drop the items, whose price remained
stable, but rather there exist a set, containing those items that is his “favorite” under
the new price vector.

As a result, it is clear that we have fixed the problem, presented in the example above.
Formally, we have the following theorem:

Theorem 4.2. The Kelso-Crawford mechanism terminates at a mε-Walrasian Equilib-
rium, if all bidders have gross substitutes valuations and bid sincere.

Proof. The first condition of the Walrasian Equilibrium is more challenging than the
second. First, we are going to prove the claim that at each moment of KC mechanism,
with price vector ~p, Si belongs to a set of Di(pε), where pε equals pj, if j ∈ Si and pj + ε
if j /∈ Si. The proof is by induction:

• The base case where Si = ∅ for each bidder i, holds trivial.

• Now, think of a bidder i.

– If i is chosen to bid at this iteration, then, by inductive hypothesis, there is
a set Ti ⊆ U − Si, such that Si ∪ Ti ∈ Di(pε). As a result, at the end of the
iteration, Si ← Si ∪ Ti and, thus, Si ∈ Di(pε).

– If i was not chosen to bid at this iteration, then think of the last time he was
chosen and acquired bundle Gi. Then, Si = Gi −Hi, where Hi is the bundle
of items that were taken from him by the other agents in the next iterations
until now. Because his valuation satisfies the gross substitutes condition, we
have that Si ∈ Di(pε).

As a result, at the final iteration, where no one wants to acquire any items he does not
possess, every agent is with their favorite bundle. The second condition of the Walrasian
Equilibrium, that an item j has pj = 0 only if it is unsold, it is trivial, since bidders
relinquish an item only if it is taken by another bidder. As a result, if an item is unsold,
it entails that no one ever bids on it, and therefore has a price of 0. Therefore, KC auction
terminates at a Walrasian Equilibrium.

It is clear that the mε term results from the descretization of the price increase.
Therefore, we have:
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Proposition 4.3. Let a mechanism with n agents and m items. If v1, . . . , vn fulfill the
gross substitutes condition, then there exists a Walrasian Equilibrium.

Although we have proved that the Kelso-Crawford auction terminates at amε-Walrasian
Equilibrium, if all bidders have gross substitutes valuations and bid sincere, we have not
talked about incentives. So, is this auction EPIC?

As we claimed in Proposition 2.2, a welfare-mazimizing allocation must lead to the
same allocation and payment rule as VCG, in order to be EPIC. For the unit-demand
case, i.e. each bidder wants only one item, there is a variation of KC mechanism, the
Crawford-Knoer Auction, which yields to a Walrasian Equilibrium and the VCG payment
rule. However, for gross substitutes valuation function, there does not exist a similar
guarantee. Formally, we have:

Theorem 4.3. Let n bidders whose valuations fulfill the gross substitutes condition.
Then, there is no ascending price auction, that results to VCG payment rule for every
possible valuation profile ~v = (v1, . . . , vn).

The proof of the theorem is based on the idea that in an indirect mechanism, where
bidders answer queries, there may not be enough information revealed, so as to compute
VCG prices. For example, there may be two different valuation profiles, that lead to
exact the same aswer queries by the bidders, and as a result, the mechanisms computes
the same allocation and payment rule, as it depends only on the aswer of the queries.

Proposition 4.4. If a valuation function v satisfies the gross substitutes condition, then
v is submodular.

Finally, as we will show in the next section, gross substitutes is largest valuation class,
that guarantees the implementation of VCG in polynomial time.

4.6 Combinatorial Auctions via Linear Programming

In this section, we are going to show that gross substitutes is largest valuation class, that
guarantees the implementation of VCG in polynomial time, and at the same time, enhance
our intuition about the Posted-Price mechanisms, which are discussed in the next chapter.
As we have already seen, VCG is reduced to the calculation of n+ 1 welfare-maximizing
allocations, as the payment of each bidder requires computing such an allocation. But
the question is whether there is a way to calculate a welfare maximizing allocation in
polynomial time. The KC auction is not an option, as it is pseudo-polynomial. The
solution is provided by the Linear Programming. Formally, a Combinatorial Auction is
expressed by the linear program, below:

max
∑
i∈[n]

∑
S⊆[m]

vi(S)xiS

s.t.
∑
i∈[n]

∑
S⊆[m]:j∈S

xiS ≤ 1 ∀j ∈ [m]

∑
S⊆[m]

xiS ≤ 1 ∀i ∈ [n]

xiS ≥ 0 ∀i ∈ [n],∀S ⊆ [m]

(4.4)
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and its dual:

min
∑
i∈[n]

ui +
∑
j∈[m]

pj

s.t. ui ≥ vi(S)−
∑
j∈S

pj ∀i ∈ [n],∀S ⊆ [m]

ui, pj ≥ 0 ∀i ∈ [n],∀j ∈ [m]

(4.5)

In fact, we should allow xiS to take only integer values. However, since integer pro-
gramming is NP-hard, we express its linear relaxation. Before we proceed to the main
theorem, let us express the Complementary Slackness conditions for this linear program:

1. if xiS > 0, then ui = vi(S)−
∑

j∈S pj

2. if ui > 0, then
∑

S⊆[m] xiS = 1

3. if pj > 0, then
∑

i∈[n]

∑
S⊆[m]:j∈S xiS = 1

The first and third conditions resemble the Walrasian Equilibrium definition, as the first
means that if i gets (even fractionally) bundle S, then it is i’s “favorite” bundle and the
third that since item j has a non-zero price, then it is sold. Now, we have the following
theorem:

Theorem 4.4. Let OPTIP and OPTLP be the optimal values of the integer program and
its linear relaxation, respectively. Then:

• There exists a Walrasian Equilibrium if and only if OPTIP = OPTLP

• Conditioning on this, ~p is a Walrasian price vector if and only if there exists vector
~u such that (~u, ~p) is an optimal solution to the dual problem (2.5).

Proof. Let ~p be a price vector and A an allocation. We will prove the equivalent condition,
that (A, ~p) is a Walrasian Equilibrium if and only if there exists vector ~u such that (~u, ~p)
is an optimal solution to the dual and A is an optimal solution for the linear relaxation.
First, assume that (A, ~p) is a Walrasian Equilibrium and let ~x denote the integral solution
induced by allocation A, meaning that xiAi = 1 and xiS = 0,∀S 6= Ai, for all bidders i.
Since we have ~x and ~p, the only thing that remains to be constructed is the vector ~u.
Now, setting:

ui = max

{
0, max

S⊆[m]

{
vi(S)−

∑
j∈S

pj

}}
we have that if bidder i is allocated Ai, then

ui = vi(Ai)−
∑
j∈Ai

pj ≥ vi(S)−
∑
j∈S

pj,∀S ⊆ [m]
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since (A, ~p) is a Walrasian Equilibrium. Furthermore, if xiAi = ∅, i.e.
∑

S⊆[m] xiS = 0
and, by the above definition of ui’s, we have that ui = 0. Finally, the third condition
holds, since (A, ~p) is a Walrasian Equilibrium and ~x is induced by A.
Now, assuming that OPTIP = OPTLP , let ~x be the optimal solution of the integer
program, and (~u, ~p) the dual solution. Then, because of optimality, the Complementary
Slackness conditions are fulfilled and therefore the allocation A, induced by ~x, and the
price vector ~p, form a Walrasian Equilibrium.

Therefore, according to Proposition 2.3, we have the following corollary:

Corollary 4.1. Let an auction with n bidders and m items. If v1, . . . , vn satisfy the Gross
Substitutes condition, then OPTIP = OPTLP .

Now, it is clear that if we are able to solve the LP in polynomial time, then we are also
able to implement VCG in polynomial time. Thus, we can compute the LP in polynomial
time via ellipsoid algorithm.

43



44



Chapter 5

Combinatorial Auctions with
Demand Queries

5.1 Introduction

As we have already seen in the first chapter, there is a DSIC mechanism, VCG, that
achieves a welfare-maximizing solution for Combinatorial Auctions with general valu-
ation classes. The problem is that VCG cannot be implemented in polynomial time,
except for some very limited cases. In the previous chapter we have claimed that Gross
Substitutes is the “largest” valuation class that guarantees the existence of Walrasian
Equilibrium and, therefore, the VCG implementation in polynomial time. The question
that emerges is whether we can design a computational efficient mechanism that suc-
ceeds even a near-optimal solution in Combinatorial Auctions with submodular, XOS or
subadditive valuation classes. The answer to this question is positive and the solution
is achieved by the implementation of Posted-Price mechanisms, where bidders arrive in
the auction according to a specific order, and buy their favorite bundle of items in the
prices being posted. As a result, the efficiency of the mechanism depends on the way
prices are calculated. At this point, we should mention again a fundamental property
of clearing prices ; once they have been calculated, running a posted-price auctions with
agents arriving even in adversarial order, it terminates with an optimal solution. Based
on the notion of clearing prices and Walrasian Equilibrium, it would be ideal if we were
able to calcualte approximate clearing prices. However, approximate clearing prices are
not enough; the following examples illustrate the problem may arise and highlights a
fundamental property these prices should satisfy.

Example 5.1. Suppose there are n bidders with additive valuations and n non-identical
items. Since valuations are additive, there exist clearing prices and Walrasian Equilib-
rium. Now assume that agents have the following valuations:

• vii = n, for i = 1, . . . , n

• vij = 1, for i 6= j and i, j = 1, . . . , n

It is clear, that in OPT solution, agent i receives item i, for all i = 1, . . . , n, and the
welfare achieved is n2. Every price vector ~p = (p1, . . . , pn), where pi ∈ (1, n) is a Wal-
rasian price vector, since only bidder i wants to buy item i in a price between 1 and n.
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As a result, suppose a Walrasian price vector ~p ∗ = (p∗1, . . . , p
∗
n), where p∗i = 1 + ε, for all

i = 1, . . . , n. Now, suppose that someone with full knowledge of the private information
of the bidders, gives us an approximate price vector ~̂p = (p̂1, . . . , p̂n), where p̂i ∈ (

p∗i
2
, p∗i ).

We expect that, running a posted-price auctions with the approximate Walrasian price
vector ~̂p, then the welfare achieved will be near-optimal. However, assume a random or-
der of the bidders. Then, the first bidder arriving at the auction, say bidder k, will buy
not only item k, but also all the other items, since his valuation for them exceeds their
price. As a result, the welfare achieved by the mechanism will be 2n−1, which is a O(n)-
approximation of the optimal solution.

It is apparent, that it is not enough calculating approximate clearing prices; we have to
calculate prices that achieve revenue comparable to the optimal welfare, meaning that if
it terminates with allocation S, then:∑

j∈S

pj ≥ a · v(OPT)

In this chapter, we are going to discuss and analyze the algorithmic technics and compo-
nents some of the Posted-Price Combinatorial Auctions, that give the best approximation
ratios, until now.

In the worst-case setting, where we do not make any further assumptions on bidders’
valuations, Dobzinski et al. [21] presented the first truthful mechanism with a non-trivial
approximation guarantee of O(log2m). Dobzinski [17] improved the approximation ratio
to O(logm log logm) for the more general class of subadditive valuations. Subsequently,
Krysta and Vöcking [41] provided an elegant randomized online mechanism that achieves
an approximation ratio of O(logm) for XOS valuations. Dobzinksi [16] broke the logarith-
mic barrier for XOS valuations, by providing an approximation guarantee of O(

√
logm).

We highlight that accessing valuations through demand queries is essential for these strong
positive results. Dobzinski [15] proved that any truthful mechanism for submodular CAs

with approximation ratio better than m
1
2
−ε must use exponentially many value queries.

In the Bayesian setting, bidder valuations are drawn as independent samples from a
known distribution. Feldman et al. [29] showed how to obtain item prices that provide a
constant approximation ratio for XOS valuations.

In the next section, we are going to present some of the basic components that are found
in Posted-Price mechanisms.

5.2 Structure of Posted-Price mechanisms

At this section, we are going to analyze the idea and the basic components of Posted-Price
mechanisms.

5.2.1 Preliminaries

Before we proceed with the core components, we find it useful to provide a definition
from [17], that will assist us in our analysis.

Definition 5.1 (γ-supporting prices). Prices p1, . . . , pm are called γ-supporting for a set
of items S and valuation function v if the following conditions hold simultaneously:
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• S is strongly profitable: for each T ⊆ S it holds that: v(T ) ≥
∑

j∈T pj.

• the prices are high:
∑

j∈S pj ≥
v(S)
γ

For XOS valutions, we have to give a slightly different definition of supporting prices. At
this point we have to make clear that it is not the same as γ-supporting prices, defined
above.
Let O = (O1, . . . , On) be an allocation and wi be the maximizing clause of Oi in the
valuation vi of bidder i. For each bidder i and j ∈ Oi, we say that j’s contribution in
the allocation O is qj = wi({j}). Moreover, we say that allocation O is supported by
prices p1, . . . , pm, if qj ≥ pj for all items j. These prices are called supporting prices of
an allocation. Once calculating supporting prices of an allocation, we have the following
lemma of Dobzinski [16]:

Lemma 5.1. Let T = (T1, ..., Tn) be an allocation that is supported by prices p′1, ..., p
′
m.

A fixed price auction with prices pj = p′j/2 generates an allocation (S1, ..., Sn), with∑
i vi(Si) ≥

∑
j∈∪iTi

p′j
2

.

This lemma makes obvious, that if we to calculate supporting prices with high value, we
achieve an allocation with high welfare.

5.2.2 Components

General Framework for aproximating Social Welfare in CAs. It was well under-
stood in the literature that posted-price mechanisms for approximating the SW in CAs
use some core components; the most crucial of them are the Price-Exploration and
the Price-Exploitation. Both for the Bayesian and the worst-case setting, the core
of the framework remains the same; it goes without saying that the more advanced the
results become, the more advanced the techniques become, as well. As we realized, this
core is much more general than it is originally stated.

1. [Dominant Bidder] With constant probability, run a second-price auction for the
grand bundle U , in case there is a dominant bidder. If there is a dominant bidder,
i.e. his valuation for all the items is a higher fraction of the optimal solution than
the approximation ratio, we get in a truthful way the desired result by allocating
all the items to the dominant bidder.

2. [Sampling and Estimation]: Agents are divided with some probability into some
sets, most commonly into SAMPLE and TEST sets, in order to estimate a quantity
from the SAMPLE set and apply it on the TEST set. Because sampling methods
depend only on statistical properties and agents do not get any items, it does not
break the truthfulness. In the absence of a dominant bidder, two randomly chosen
groups of bidders have many common characteristics, such as a constant fraction
of the total welfare and preferences.
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3. [Price-Exploration] Find γ-supporting prices pj, j ∈ U for an allocation S:∑
j∈U

pj ≥
v(S)

γ

that is a c1-approximation to the optimal:

v(S) ≥ v (OPT)

c1

.

4. [Price-Exploitation] Post prices pj, j ∈ U and let bidders use Demand Queries
(DQ) to choose their most preferred bundles.

The key relation for the analysis of the posted-price mechanism is the relaxed utility-
maximizing property, obtained from the Demand Query (DQ), i.e. for each agent i,
where Si is the bundle he obtained and Ti every other bundle available at the moment
he arrived:

vi(Si) ≥ vi(Ti)− p(Ti)

The above relation is used to relate the the value of the bundle an agent obtained with
the value of the bundle he acquired in the optimal solution, restricted on the available
items. The strong profitability of a set is used for ensuring that when an agent arrives at
the auction, the bundle he acquired in the optimal solution, restricted on the available
items, gives him non-negative utility, and therefore, he could have chosen it. Finally, we
have to inspect under which conditions the Demand Query returns a Strongly Profitable
set. In Dobzinski [17] lies the following lemma:

Lemma 5.2. Let v be a subadditive valuation and let S be the set returned from the
utility-maximizing Demand Query in the price vector ~p. Then, S is strongly profitable in
these prices.

5.3 Worst-case Setting

In this section we are going to analyze the three main ways of implementing a Posted-
Price mechanism in a worst-case setting - Uniform Prices, Distinguished Prices and a
combination of the two - in order to enhance out intuition about the primal technics, and
present the most important results. We also provide the mechanisms in an algorithmic
form, explaining the ideas behind them and the key reasons they finally work.

5.3.1 Uniform Prices

Assume that you know somehow a good approximation of the optimal solution, APX,
such that APX ≥ a · OPT. Then, supposing that every item contributes the same to
the optimal solution, i.e. qj = OPT

m
for all j ∈ U , a plausible thought would be to run a

posted price auction with fixed price p = APX
2m

for all items. According to Lemma 5.1, and
since APX

m
≤ OPT

m
, a fixed price auction with price p would lead to an 2- approximation
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of the optimal welfare. In the absence of the assumption that all items contribute the
same in the optimal solution, could we find a price that results to a fixed price auction
with high welfare? Of course this price cannot be too low, neither too high and has to
balance between the low and high valued items. The answer to this question is positive
and a mechanism, operating in this way, was designed by Dobzinski et al. [21], which
results to a O(log2m)- approximation.

Algorithm 6 Dobzinski et al. [21] - O(log2m) mechanism for XOS valuations

1: Assign each bidder to exactly one of the following three sets: SEC-PRICE with
probability 1− ε, FIXED with probability ε/2, and STAT with probability ε/2.

2: Find an O(1) approximation of the optimal solution with bidders from STAT,
OPTSTAT .

3: From the above allocation, find a price p′ and an allocation T , such that T is supported
by p′ and its supported value is Ω(OPTSTAT

logm
).

4: Run a second price auction for the grand bundle U with the bidders from SEC-PRICE
and reserve price ε

100
· OPTSTAT

log2m
and if there is a winning bidder, terminate the auction.

5: Run a fixed-price auction with price p′/2 with bidders from STAT.

Theorem 5.1. Algorithm 6 is universally truthful and achieves an approximation ratio
of O(log2m) for the Social Welfare.

First, we are going to give some definitions. We say that an allocation T = (T1, . . . , Tn)
is supported by a price p, if for each bidder i and possible bundle Si ⊆ Ti, it holds that
vi(Si) ≥ |Si| · p. We call

∑
i |Ti| · p the supported value of T .

The key point of the mechanism lies in Step 2 and Step 3 of the algorithm. In the
absence of a dominant bidder, Sample and Estimation component succeeds with high
probability that OPTSTAT ≥ ε

4
·OPT and OPTFIXED ≥ ε

4
·OPT. The most crucial part

of the algorithm is the Price-Exploration and the calculation of price p′. The success
of the algorithm is owed to the following lemma:

Lemma 5.3. There exists with high probability a price pk ∈ P =
{

OPT
2m logm

, . . . , OPT
logm

}
,

where |P | = logm, such that there exists an allocation T k of the items to the bidders in
FIXED only, such that T k is supported by pk and the supported value of T k is Ω(OPTSTAT

logm
).

Therefore, according to Lemma 5.1, running a fixed price auction with price p′/2, gives
the desired result.

5.3.2 Distinguished Prices

The above mechanism is based on the idea that, in the absence of a dominant bidder,
we have to find a price, neither too low, nor too high, in order to sell the items at that
price and achieve a revenue comparable to the optimal welfare. But, as it has been clear
from the previous chapter and the definition of Walrasian Equilibrium, every item should
be sold at a different price, according to its demand. Therefore, the matter is whether
we can imitate the notion of clearing prices in order to achieve better approximations.
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This idea was implemented from Krysta and Vöcking [41], achieving an approximation
ratio of O(logm). Their algorithm is inspired from the Ascending-Price auctions, where
the price of each item is increased, as long as it is preferred by the agents. Informally,
the mechanism calculates supporting prices by combining binary search and randomized
rounding and operates as follows:

Supposing there an n agents, arriving online, and m non-identical items, the mech-
anism assigns each item the same price at first. As long as the bidders arrive online
and acquire their utility-maximizing bundle, through a demand query, the mechanism
increases the price of the items being chosen, multiplicatively, allowing the overselling of
copies. In this way, the mechanism learns the appropriate price of each item, terminating,
however, with an infeasible solution. In order to fix the infeasibility of the allocation, the
mechanism assigns each bidder “virtual copies”, and decides the realization of the bun-
dle via oblivious randomized rounding. Therefore, the mechanism succeeds in finding of
“correct” prices and at the same time, keeping the allocation feasible. Below, we provide
the randomized algorithm, terminating at a feasible solution.

Algorithm 7 KV [41] O(logm) -mechanism for submodular valuations

1: Ask the first half of the bidders their valuation for the whole set of the items U and
let L be the highest value. Allocate them nothing.

2: Fix an ordering π of the rest bidders and set U1 = U .
3: Set initial prices p

(1)
1 = · · · = p

(1)
m = L

4m
.

4: for each bidder i according to π do
5: Let Si = DQ(vi, Ui, ~p

(i))
6: With probability q, allocate Ri = Si to i and set Ui+1 = Ui \ Si . Otherwise, set
Ui+1 = Ui, Ri = ∅ .

7: Update prices ∀j ∈ Si: p(i+1)
j = 2p

(i)
j .

8: end for

Theorem 5.2. Algorithm 10 is universally truthful and for q = 1/Θ(logm), achieves an
approximation ratio of O(logm) for the Social Welfare.

In this mechanism, the Sample and Estimation step is used in order to calculate
the parameter L for the prices. In fact, the mechanisms conditions on the event that the
second-highest bidder belongs to the SAMPLE set and the highest bidder to TEST set.
The truthfulness of the mechanism is retained, since the first half of the bidders do not
have incentives to lie, as they will not receive any item, and the rest do not affect the
prices offered to them and the realization of their chosen bundles. Unlike the previous
mechanism, the Price-Exploration and Price-Exploitation components take place
simultaneously, as prices are posted for each bidder and formed online for the next one.
The key lemma that allows the above mechanism achieve a “good” approximation ratio
is the following:

Lemma 5.4. For Algorithm 10 with q = 1
4(log(4m)+1)

, it holds that for each agent i and

for all A ⊆ U , E[vi(A ∩ Ui)] ≥ vi(A)/2.

The above lemma ensures that, when an agent arrives at the auction, the expected value
of every bundle, restricted on the set of the available items, is comparable to the value
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of the unrestricted bundle. Therefore, it allows us to compare for each agent the value of
the chosen bundle with his utility in the optimal solution. The proof of the theorem is
based on the combination of the above lemma and the property of the utility-maximizing
bundle. Informally, for each agent i, where Ti is the bundle of items he receives in the
optimal solution, the fundamental relation is the following:

E[vi(Si)] ≥ E[vi(Ti ∩ Ui)]− E[p(Ti ∩ Ui)]

≥ 1

2
vi(Ti)− E[p(Ti)]

Summing the above equation for all agents, we can relate the welfare obtained from
the Algorithm 10 with the optimal solution, as follows:

E[v(S)] ≥ 1

2
v(OPT )− E[p(OPT )]

Finally, by the starting price and the price update rule, we get that:

E[v(S)] ≥ 1

8
v(OPT )

and since E[v(R)] = q E[v(S)], we get the result. The analysis is almost identical to the
analysis in Section 6.4 for the case of Liquid Welfare.

5.3.3 Uniform and Distinguished Prices

The question that emerges is whether we can combine the above ideas, i.e. uniform and
distinguished price for all the items, and achieve a better approximation ratio. Dobzinski
[16] managed to do this in a much more involved way, achieving an approximation ratio
of O(

√
logm)

First we are going to define some necessary notions. Let A = (A1, . . . , An) be some

allocation and P = {2kv(A)
m2 }k∈Z. We say that bin k is associated with p(k) = 2kv(A)

m2 in
allocation A. Suppose that all valuations are XOS and let qAj denote the contribution of
item j in A. Let q′j be the maximal value in P such that qAj ≥ q′j. We say that an item j
belongs in bin k in allocation A if q′j = p(k).

At this point, we are going to expand our intuition. If we assume that all valuations
are constructed from integers in {1, 2, 4, 8, . . . ,m}, a uniform price for all items selected
at random from 1, 2, 4, 8, . . . , 2logm results in an logarithmic approximation ratio. To
see this, let O = (O1, . . . , On) be the optimal allocation. For each bidder i and item
j ∈ Oi, let qj = ai({j}) be the contribution of j in the optimal solution. Now, we
partition the optimal allocation into logm bins, and allocate item j to bin Gr if qj = r.
Let c(Gr) = r|Gr| be the contribution of bin Gr to the optimal solution O. It is clear
that v(O) =

∑
r c(Gr). For additive valuations, it is straightforward that in a fixed price

auction with price r, all the items in bins Gr or higher would be sold. For XOS valuations,
we have a similar result; from Lemma 5.1, it holds that running a fixed price auction with
price r

2
terminates to an allocation with welfare Ω(c(Gr)). Therefore, choosing a price p

from 1, 2, 4, 8, . . . , 2logm uniformly at random, we obtain an allocation with approximation
ratio O(logm).

Now, what if we use O(1) numbers of bins? Intuitively, when an item j belongs to bin
k, it holds that pk ≤ qj ≤ pk+1. In the case of logm bins, we have that pk ≤ qj ≤ 2pk and
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as a result, pk ≥ qj/2. Therefore, when we find the correct price of an item, we get the
efficient guarantee for free, which is impossible in the case of O(1) bins. An elegant way
to diminish the number of bins is by arranging the logm them into

√
logm chunks, such

that each chunk contains
√

logm bins. Let val(Ck) be the value of chunk k, i.e. val(Ck) =∑
r∈Ck c(Gr). We call a chunk k easily approximable if, running a fixed price auction with

price rk
2

, where rk is the price of the first bin in chunk k, terminates to an allocation with
welfare Ω(val(Ck)). Then, if the value of easily approximable chunks is high, selecting
uniformly at random a price from the first bins of all the

√
logm chunks, and running

a fixed price auction with this price, the mechanism terminates to an allocation with
approximation ratio O(

√
logm). On the other hand, if the value of easily approximable

chunks is low, we have think of something else. Intuitively, a fixed price auction with
low price will end up with the items, having high contribution to the optimal solution,
sold. The problem is that it does not entail that these items are bought by bidders with
high valuation, and therefore, can lead to inefficient solution. However, the fact that the
items are sold in fixed price auctions with price lower than their contribution, allows us to
execute an ascending-price procedure, in order to find their correct price. The idea that
leads to a O(

√
logm) approximation ratio is running “imaginery” fixed price auctions

with increasing price to find the chunk of each item in the optimal solution. Then,
choosing uniformly at random one of the

√
logm prices in each chunk, we “guess” for

each chunk Ck the correct price of items of expected value (
√

logm)−1val(Ck). Formally,
the mechanism is described in Algorithm 8.

Theorem 5.3. Algorithm 8 is universally truthful and achieves an approximation ratio
of O(

√
logm) for the Social Welfare.

The most innovative and interesting fact at this mechanism is that there are two
Price-Exploration and two Price-Exploitation phases, intersecting with each other.
To be more specific, in Step 7 of the algorithm, the Price-Exploitation from bidders
in UNIFORM leads to Price-Exploration for bidders in FINAL. The key claim of the
mechanism is that if Price-Exploration of Step 7(b) gives a bad approximation ratio,
it results to an effective Price-Exploration for Step., i.e. calculates “good” supporting
prices, and is given by the following lemma:

Lemma 5.5. Let A = (A1, ..., An) be an allocation that is supported by p′1, ..., p
′
m. For

every item j ∈ Ai, let qj be its supporting price. Let o =
∑

i

∑
j∈Ai qj. Let N ′ be a ran-

dom set of bidders where each bidder is in N ′ independently at random with probability r.
Let T = (T1, ..., Tn) be the random variable that denotes the allocation of the fixed price
auction with price pj = p′j/2 for every item j when N ′ is constructed at random as above
and the order over bidders in N ′ is chosen uniformly at random.

Let c = 1−
∑
i

∑
j∈Ai∩(∪kTk)

qj

o
. Then E [

∑
i vi(Ti)] ≥

o·E[c]·r
4

, where expectations are taken
over the random choices of N ′ and its internal order.

Let us make the above lemma more clear. We have to interpret the role of variable c.
From its definition, c expresses the fraction of the welfare the items, that were unsold in
allocation T , give in allocation A. Therefore, when c is small, it means that the majority
of the items were bought in allocation A, while when c is large, it ensures that allocation
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Algorithm 8 Dobzinski [16] - O(
√

logm) mechanism for XOS valuations

1: With probability 1
2

run a second-price auction for the grand bundle U and terminate
the auction.

2: Divide the agents uniformly at random at sets STAT, UNIFORM, FINAL.
3: Run a 2-approximation greedy algorithm for bidders in STAT and let APX be the

allocation.
4: Partition bins 1, . . . , logm of the allocation APX into

√
logm disjoint chunks, such

that chunk Ck contains bins {(k − 1) · 4 logm√
logm

, . . . , k · 4 logm√
logm
}

5: Select uniformly at random an integer from {1, 2, 3, · · · , 4 logm√
logm
}

6: Select uniformly at random an ordering π of the bidders in UNIFORM and set pj = 0
for all items j ∈ U .

7: Consider each chunk Ck in an ascending order:

a) Let p′ be the smallest price associated with any bin in Ck. Run a fixed price
auction restricted to bidders in UNIFORM with price p′/2 for every item, where
the order of the bidders in UNIFORM is π (Step 6). Denote the allocation that
this fixed-price auction outputs by T k = (T k1 , . . . , T

k
n ) and by pi,k the payment

of bidder i.

b) With probability 1√
logm

the mechanism ends with the allocation T k. Each bidder

i pays pi,k.

c) Let p′′ be the price of the bin with the r’th smallest value in Ck. Update the
price pj of every item j ∈ ∪iT ki to pj = p′′/2.

8: Run a fixed price auction with prices p1, . . . , pm with the participation of bidders in
FINAL.

T has high welfare.
Now, assume that A is the optimal allocation from bidders in UNIFORM ∪ FINAL,
restricted on the items of chunk Ck. Then, A is supported by every price p below the price
of the first bin of Ck. Let T be the allocation from the fixed price auction from bidders in
UNIFORM with price pk, where pk is the value of the first bin of a chunk Ck. When chunk
Ck is not easily approximable, it holds that E[c] ≤ 1

4
and as a result, according to the above

explanation, most of the items of chunk Ck were bought in allocation T . Therefore, when
running “fictitious” fixed price auctions, most items are sold until reaching the chunk
they belong and finally, we are able to guess their correct price. This step embodies the
ascending-price procedure.Finally, the fact that the first bins of consecutive chunks are at
a distance of

√
logm bins, ensures that the value of items that become repriced, even after

they reach their chunk, is small. Consequently, after having calculated
√

logm-supporting
prices for bidders in FINAL, according to Lemma 5.1, the posted price auction in Step 8
gives the result.

5.4 Bayesian Setting

As it has been made clear through the previous section, a Posted-Price mechanism aims to
calculate approximate clearing prices either through sampling methods, or dynamically.
However, if we were able to see the full valuation profile of the bidders, what would we
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do? Perhaps, we would calculate a greedy solution, (for XOS valuations there is a 2-
approximation greedy algorithm), and post prices according to every item’s contribution
in the solution. More specifically, for XOS bidders, we would calculate a 2-approximation
allocation A and set for every item j price pj = qAj /2, where qAj is the contribution of j
in A. Then, according to Lemma 5.1, we would get an allocation S with:

v(S) ≥ 1

2
·
m∑
j=1

qAj ≥
1

4
· v(OPT )

In the Bayesian setting, where agents’ valuations are drawn independently from V1, . . . ,Vn,
we denote by V = V1 × · · · × Vn so that ~v is drawn from V . We suppose that V is public
knowledge and we have sample access, but the realization of vi is known only to bidder i.
In the Bayesian setting, we say that an allocation A is an a - approximation of optimal
solution if:

E
~v∼V

[v(A)] ≥ 1

a
· E
~v∼V

[v(OPT )]

Feldman et al. [29] implemented this idea in a slightly different, more probabilistic
analysis. The aim is to assign for each item j price pj = 1

2
E~v∼V [qAj ]. However, we have

only sample access to the distribution V .Therefore, we have to estimate pj.

Lemma 5.6. Let p′j be the average of t = (logm+ log n− log ε)4m2/ε2 identical samples
from distribution V, with expected value pj. Then, with probability at least 1 − ε/n, we
have

|pj − p′j| <
ε

2m
for all items j.

Now, we are ready to proceed to the main lemma:

Lemma 5.7. Given a distribution V over XOS valuations, let ~p be the price vector de-
fined as pj = 1

2
E~v∼V [qAj ]. Let ~p ′ be any price vector such that |pj − p′j| < ε

2m
for all items

j. Then for any arrival order π, a posted price mechanism with prices ~p ′ results in an
expected welfare at least 1

2
E~v∼V [v(A)]− ε

2
.

Algorithm 9 Feldman et al. [29] - O(1) mechanism for XOS valuations in Bayesian
setting

1: for each item j ∈ U do
2: Qj ← 0
3: Repeat t times:
4: Draw ~v ∼ V and let T = A(~v).
5: Let qj be the contribution of item j in A.
6: Qj ← Qj + qj
7: p′j ← 1

2t
Qj.

8: end for
9: Run a posted price auction with prices p′1, . . . , p

′
m.

Formally, the mechanism is described in Algorithm 9. It is clear, that in this mech-
anism, the Sample and Estimation component is omitted, since we can learn all the
information needed through samples from the distribution. The analysis is almost iden-
tical to the analysis in Section 6.5 for the case of Liquid Welfare.
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5.5 Incentives: Dominant Strategy vs Ex-Post Nash

Equilibrium

In Chapter 4 we defined a new notion of incentives’ guarantee, the Ex-Post Nash Equi-
librium. This definition was necessary for reasoning about the strategy profile of the
bidders in iterative mechanisms, such as ascending price auctions. The main reason is
that in an ascending price procedure, the actions’ space can be history dependent, since
it proceeds in rounds and every bidder can act according to the actions of the others.
The question that may arises is how the mechanisms, presented in the previous sections,
differ from the framework of chapter 4. The main difference is that when bidders ar-
rive at the auction and choose their utility-maximizing bundle, they do not affect the
price increase, as long as they are to participate again in the auction. Even in case of
Algorithm 8, where bidders in UNIFORM participate in an ascending price auction in
Step 7, the prices offered to them does not get influenced by their decisions in previous
rounds, as they are pre-defined by the values of the bins; they only affect the prices that
are posted to the bidders in FINAL. Therefore, it is Dominant Strategy for the agents to
choose their utility-maximizing bundle and these mechanisms are truthful.
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Chapter 6

Liquid Welfare

6.1 Introduction

In the previous chapters, we studied Combinatorial Auctions and Posted-Price mecha-
nism, trying to maximize the Social Welfare, i.e.

∑n
i=1 vi(Si), where S is the allocation of

the mechanism. However, we overlooked a crucial parameter for real life applications; the
Budget constraints. The budget constraints become more important as the magnitude of
the financial transactions augments, as in spectrum auctions, where hundreds of millions
of dollars are paid. Even in Google Adwords, the bidders are asked their available bud-
get, even before bids or keywords. Until now, we designed truthful mechanism with good
approximating guarantees, without taking into account the potential of the bidders to
pay the asked amount. But what should we do in a second price auction, if the winning
bidder has budget below the second highest bid? One thought would be to give him the
item and get all of his budget. Nonetheless, such an action would violate the most fun-
damental property of mechanism design, the truthfulness of the mechanism. In order to
make it more clear, imagine a single item auction, where bidder i has vi = 2 and budget
Bi = 1. Then, knowing that we can announce a much higher bid, for example bi = 100
and avoid paying more than 1, why would he report his true preference? However, we
said that VCG is a DSIC mechanism for much more general environments. Why does it
fail now? The reason is, that the utility of the bidders stops being quasi-linear and is
modified as follows:

ui =

{
vi − p, if p ≤ Bi

−∞ otherwise

The aformentioned example illustrates an essential problem for the efficiency measure
under budget constraints. In fact, Social Welfare cannot be approximated by a factor
better than n, where n is the number of the agents, even when bidders’ budgets are known
to the auctioneer. The n-approximation is succeeded by allocating the item uniformly
at random and charge nothing. Dobzinski and Leme [19] introduced a new notion of
efficiency for budgeted settings, a measure that balances between the willingness and
ability to pay, the so called Liquid Welfare. Informally, Liquid Welfare is defined as the
minimum between each agent’s budget and his valuation for the acquired bundle of items.
In other words, this measure of efficiency respects the available funds of each bidder and
as a result, denotes a compromise between the social welfare and the maximum revenue
extraction, which is upper bounded by the budgets.
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In this chapter, we are going to extend the results of Posted-Price mechanisms in
Social Welfare to Liquid Welfare, but first we will present the some results in the multi-
unit case.

6.2 Definitions and Previous Results

First, we are going to give the notion of Liquid Valuation and Liquid Welfare, as defined
in [19]. Formally, we have:

Definition 6.1 (Liquid Valuation). In a budgeted setting , we define the liquid valuation
of a bidder in allocation S = (S1, . . . , Sn) by:

v̄i(Si) = min{vi(Si), Bi} (6.1)

Definition 6.2 (Liquid Welfare). In a budgeted setting with n bidders, we define the
Liquid Welfare of allocation S = (S1, . . . , Sn) by:

LW =
n∑
i=1

v̄i(Si) (6.2)

At this point, the question that arises is whether we can implement VCG on liquid
valuations. In fact, for single-item case, the aswer is positive. Formally we have, according
to [19]:

Theorem 6.1. For single-item case with indivisible item, VCG on modified values v̄i =
min{vi, Bi} is DSIC and exactly optimizes the liquid welfare objective.

The proof is similar to that of Theorem 3.2, since if an agents overbids, he may has
to pay more than his budget. Nevertheless, for multi-unit auctions with divisible item, it
holds:

Lemma 6.1. For multi-unit auctions with divisible item, the allocation that maximizes

the Liquid Welfare occurs for x∗i = min

(
Bi
vi
,
[
1−

∑
j<i x

∗
j

]+
)

, where agents are sorted

in non-increasing order of value, i.e. v1 ≥ · · · ≥ vn.

However, it is clear that this allocation rule is not monotone. To see this, the amount
the highest bidder is allocated, is decreasing by the increase of his bid. Therefore, we had
to design approximation mechanisms that guarantee truthfulness and the main technic
was Posted-Price mechanisms.

Dobzinski and Leme [19] proved a 2-approximation to the optimal Liquid Welfare for the
case of a single divisible item and additive bidders with public budgets and a O(log n)
(resp. (log2 n))-approximation to the optimal Liquid Welfare for submodular (resp. sub-
additive) bidders with private budgets. Lu and Xiao [45] proved that the optimal Liquid
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Welfare can be approximated truthfully within constant factor for a single divisible good,
general valuations and private budgets. Closer to our setting, Lu and Xiao [46] provided a
truthful mechanism that achieves a constant factor approximation to the Liquid Welfare
for multi-item auctions with divisible items and additive valuations, under a large market
assumption. Under similar large market assumptions, [26] obtained mechanisms that ap-
proximate the optimal revenue within a constant factor for multi-unit online auctions with
divisible and indivisible items, and a mechanism that achieves a constant approximation
to the optimal Liquid Welfare for additive valuations over divisible items. However, prior
to our work, there was no work on approximating the Liquid Welfare in Combinatorial
Auctions (in fact, that was one of the open problems in [19]). In the next sections, we
are going to extend the results of Posted-Price mechanisms for Social Welfare to Liquid
Welfare.

6.3 Liquid Welfare in Combinatorial Auctions

As we said in the previous section, prior to our work, there was no work on approximating
the Liquid Welfare in Combinatorial Auctions. The main difference between the multi-
unit and multi-item setting is the heterogeneity of the items; in multi-item setting, agents
have to “divide” their budget into many items, whereas in the multi-unit setting they
have to buy the most their budget allows them.

6.3.1 Approach

If we are going to extend the results of chapter 3, we have to ensure that liquid valuation
functions belong to the same class as the valuation function. Formally, we have:

Lemma 6.2. Let v be a non-negative monotone submodular (resp. XOS, subadditive)
function. Then, for any B ∈ R≥0, v̄ = min{v,B} is also monotone submodular (resp.
XOS, subadditive).

Proof. Clearly, capping valuation with budget does not affect monotonicity. We provide
the proof for each case (i.e., submodular, XOS, subbaditive) separately.

• (submodular) Let v be a monotone submodular set function. Then, by the definition
of submodularity, for sets T ⊆ S and j /∈ S we have:

v (S ∪ {j})− v (S) ≤ v (T ∪ {j})− v (T )

Further, since v is monotone: v(T ) ≤ v(S), which implies that v̄(T ) ≤ v̄(S). We
distinguish the following cases:

1. If B ≤ v (T ∪ {j}) ≤ v (S ∪ {j}). Then, for the liquid valuations we have:
v̄ (S ∪ {j}) − v̄ (S) = B − v̄ (S) ≤ B − v̄(T ) ≤ v̄ (T ∪ {j}) − v̄(T ), where the
first inequality is due to monotonicity.

2. If v̄(T ∪{j}) ≤ v̄(S∪{j}) ≤ B. Then, v̄(S∪{j})− v̄(S) = v(S∪{j})−v(S) ≤
v(T ∪ {j})− v(T ) = v̄(T ∪ {j})− v̄(T ).
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3. If v(T ∪ {j}) ≤ B ≤ v(S ∪ {j}). This breaks down to the following two cases;
on the one hand, if v(S) ≥ B then, v̄(S∪{j})−v̄(S) = 0 ≤ v(T∪{j})−v(T ) =
v̄(T ∪ {j})− v̄(T ). On the other hand, if v(S) < B, then v̄(S ∪ {j})− v̄(S) =
B − v(S) ≤ v(S ∪ {j}) − v(S) ≤ v(T ∪ {j}) − v(T ) = v̄(T ∪ {j}) − v̄(T ).
Finally, we remark that due to monotonicity, these cases are the only possible
ones.

• (XOS) Let v be an XOS set function; there exist additive functions α1, . . . , αl s.t.
v(S) = maxi∈[l] αi(S). In order for v̄ to XOS, we need to prove that there exist
additive functions α′1, . . . , α

′
k s.t. v̄(S) = maxi∈[k] α

′
i(S). For each function αi we

are going to define m! functions, one for each permutation π of the items. Suppose
a specific ordering πt of the items {1, 2, . . . ,m} and let πt(j) be the position of item
j in ordering πt. We define βπti as:

βπti ({j}) =

{
αi({j}), if

∑
k:πt(k)≤πt(j) αi ({k}) ≤ B

max
{
B −

∑
k:πt(k)<πt(j)

αi ({k}) , 0
}
, if

∑
k:πt(k)≤πt(j) αi ({k}) > B

First, we are going to prove that for each S ⊆ U, βπti (S) ≤ min{v(S), B},∀i, πt.

By the definition of βπti , it is clear to see that βπti ({j}) ≤ αi({j}). Therefore,
summing upon all items in S (since we have additive functions), we get that:

βπti (S) ≤ αi(S) ≤ max
k
αk(S) = v(S)

By the definition of βπti , we also have that βπti (S) ≤ B.

Next, we are going to prove that for each S ⊆ U : ∃βπti s.t. βπti (S) = min{v(S), B}.
We distinguish the following cases:

1. v(S) ≤ B. Let πt be a permutation, s.t. all items in S come first and let
αi∗ be the maximizing function for set S, i.e. v(S) = αi∗(S). Then, because∑

j∈S αi∗({j}) ≤ B, we have βπti∗ (S) =
∑

j∈S β
πt
i∗ ({j}) =

∑
j∈S αi∗({j}) =

v(S).

2. v(S) > B. Let πt be a permutation, s.t. all items in S come first and let
αi∗ be the maximizing function for set S, i.e. v(S) = αi∗(S). Let j∗ be
the last item in the permutation πt s.t.

∑
r:πt(r)≤πt(j∗) αi∗({r}) ≤ B. Then,∑

r:πt(r)≤πt(j∗) β
πt
i∗ ({r}) =

∑
r:πt(r)≤πt(j∗) αi∗({r}). For the next items z ∈ S

in permutation πt, we have βπti∗ ({z}) = max{B −
∑

k:πt(k)<πt(z)
αi({k}), 0}.

In fact, the first item after j∗ will complete the missing value, in order to
have:

∑
k:πt(k)≤πt(j∗)+1 β

πt
i∗ ({j}) = B , and all subsequent items, q will have

βπti∗ ({q}) = 0. Therefore,
∑

j∈S β
πt
i∗ ({j}) = B.
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• (subadditive) Let v be a monotone subadditive set function. Then, by the definition
of subadditivity, for sets T, S we have:

v (S ∪ T ) ≤ v (T ) + v (S)

We distinguish the following cases:

1. If v̄(S∪T ) = v(S∪T ) < B. Then, we know for a fact that v̄(S) = v(S) < B and
that v̄(T ) = v(T ) < B. Then, v̄(S∪T ) = v(S∪T ) ≤ v(S)+v(T ) = v̄(S)+v̄(T ),
where the inequality comes from the subadditivity of v.

2. If v̄(S ∪ T ) = B < v(S ∪ T ). We have to further distinguish the following
cases:

(a) v̄(S) = B < v(S), v̄(T ) = B < v(T ). Then, v̄(S ∪ T ) = B ≤ 2B =
v̄(S) + v̄(T ).

(b) v̄(S) = B < v(S), v̄(T ) = v(T ) < B. Then, v̄(S ∪ T ) = B ≤ B + v(T ) =
v̄(S) + v̄(T ), where the inequality comes from the non-negativity of the
liquid valuation.

(c) v̄(S) = v(S) < B, v̄(T ) = B < v(T ). Then, v̄(S ∪ T ) = B ≤ v(S) + B =
v̄(S) + v̄(T ), where the inequality again comes from the non-negativity of
the liquid valuation.

(d) v̄(S) = v(S) < B, v̄(T ) = v(T ) < B. Then, v̄(S ∪ T ) = B ≤ v(S ∪ T ) ≤
v(S) + v(T ) = v̄(S) + v̄(T ), where the last inequality comes from the fact
that v is subadditive.

Then, one might think that he can directly use the mechanisms of e.g., [41, 16, 29] with
valuation functions v̄ = min{v,B} and demand queries of the form: DQ(min{v,B}, U, ~p)
(i.e., wrt. the liquid valuation of the bidders) and obtain the same approximation guaran-
tees but now for the LW. However, the resulting mechanisms are no longer truthful; bid-
ders still seek to maximize their utility (i.e., value minus price) from the bundle that they
get, subject to their budget constraint, rather than their liquid utility (i.e., liquid value
minus price). Specifically, given a set of items U available at prices pj, j ∈ U , a budget-
constrained bidder i wants to receive the bundle Si = arg maxS⊆U{vi(S)− p(S) | p(S) ≤
Bi}, and might not be happy with the bundle S ′i = arg maxS⊆U{v̄i(S)− p(S)} computed
by the demand query for the liquid valuation, as the following example highlights:

Example 6.1. Consider a bidder with budget B = 2 and two items a and b avail-
able at prices pa = 2 and pb = 1. Assume that the bidder’s valuation function is
v({a}) = v({a, b}) = 10, v({b}) = 2 (and therefore, her liquid valuation is v̄({a}) =
v̄({b}) = v̄({a, b}) = 2). The bidder wants to get item a at price 2, which gives her
utility 8. However, the demand query for her liquid valuation function v̄ allocates item b,
which gives her a utility of 1. Clearly, in this example, the bidder would have incentive
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to misreport her preferences to the demand query oracle.

To restore truthfulness, we replace demand queries with budget-constrained demand
queries. A budget-constrained demand query, denoted by BCDQ(v, U, ~p,B), specifies a
valuation function v, a set of available items U , a price pj for each j ∈ U and a budget
B, and receives the set S ⊆ U maximizing v(S) − p(S), subject to p(S) ≤ B, i.e., the
set of available items that maximizes bidder’s utility subject to her budget constraint.
Formally, we have:

Definition 6.3 (BCDQ). Let U be the set of items that are available. Then, bidder i’s
BCDQ returns set Si ⊆ U satisfying:

Si = arg max
S∈U

{
vi(S)− p (S)

∣∣p(S) ≤ Bi

}
(6.3)

To establish the approximation ratio, we first observe that the fact that liquid valua-
tions are XOS suffices for estimating supporting prices, as in previous work on the SW.
Additionally, we have to show that the bundles allocated by BCDQ(v, U, ~p,B) approxi-
mately satisfy the efficiency guarantees of DQ on the liquid welfare and the liquid utility
of the allocated bundles. In fact, it holds:

Lemma 6.3. Let S ⊆ U be the set allocated by the BCDQ for a bidder with valuation v
and budget B. Then, for every other T ⊆ U , the following hold:

1. v̄(S) ≥ v̄(T )− p(T )

2. 2v̄(S)− p(S) ≥ v̄(T )− p(T ).

Proof. We will prove each claim of the lemma separately. For claim 1, notice that if
p(T ) > B, then the Right Hand Side (RHS) of the inequality will be negative and
thus, the inequality trivially holds. So, we will focus on the case where p(T ) ≤ B. We
distinguish the following cases:

1. (v̄(S) = v(S) and v̄(T ) = v(T ).) Hence, B ≥ v(T ). Bundle T was considered at the
time of the query and yet, the query returned set S. Thus: v̄(S) ≥ v̄(S)− p(S) =
v(S)− p(S) ≥ v(T )− p(T ) = v̄(T )− p(T ).

2. (v̄(S) = B and v̄(T ) = B) Then, the inequality trivially holds since: B ≥ B− p(T )
and prices are non-negative.

3. (v̄(S) = B and v̄(T ) = v(T )) The inequality holds since: B ≥ B − p(T ) ≥ v(T )−
p(T ) = v̄(T )− p(T ).

4. (v̄(S) = v(S) and v̄(T ) = B) Hence, B ≤ v(T ). Bundle T was considered at the
time of the query and yet, the query returned set S. Thus, v̄(S) ≥ v̄(S)− p(S) =
v(S)− p(S) ≥ v(T )− p(T ) ≥ B − p(T ) = v̄(T )− p(T ).

This concludes our proof for claim 1.

For claim 2, notice that since S is the set received from the BCDQ, then it is affordable:
v̄(S) ≥ p(S). Adding this inequality to the inequality of claim 1, we have that: 2v̄(S)−
p(S) ≥ v̄(T )− p(T ).
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Now that we have ensured the truthfulness and the efficiency guarantees of the
BCDQs, we can examine whether we can implement the same components as in Sec-
tion 5.2.2 for the objective of Liquid Welfare.

6.3.2 Components

First of all, we have to check whether the γ− supportingprices definitions can hold with
liquid valuations. The condition we have to examine is the strong profitability of a set
chosen by the BCDQ. Therefore, we have the following lemma:

Lemma 6.4. Let S = arg maxS′⊆U {v(S ′)− p(S ′)|p(S ′) ≤ B} a strongly profitable set
under item prices p1, . . . , pm for valuation v. Then, S is also a strongly profitable set for
the liquid valuation v̄.

Proof. Let T ⊆ S. We want to show that v̄(T ) ≥ p(T ). If v̄(T ) = v(T ), then the
property holds, since S is strongly profitable for valuation v. If v̄(T ) = B, then, due to
monotonicity of v̄, v̄(T ) = v̄(S) ≥ p(S) ≥ p(T ), where the first inequality comes from
individual rationality.

Now, if we want to find supporting prices for Liquid Welfare, we need a variant of
Lemma 5.1 for liquid valuations, in order to guarantee high welfare. Therefore, we have:

Lemma 6.5 (Extension of Lemma 4.2 in [16]). Let α = (α1, . . . , αn) be an allocation that
is supported by prices p1, . . . , pm. A fixed price auction where budget constrained bidders
make BCDQs and the items have prices p′j =

pj
2

generates an allocation Â = (α̂1, . . . , α̂n)

with LW:
∑

i∈[n] v̄i(α̂i) ≥
∑
j∈∪iαi

pj

4
.

Proof. We will follow closely the proof presented by Dobzinski [16], changing the analysis
only slightly when it is required to reason about the behavior of the BFDO.

For every bidder i, let Wi = ∪i′<iα̂i′ denote the set of competitive items that were
allocated before bidder i arrives to the auction. Let OPTi =

∑
j∈(∪i′≥iαi′ )\Wi

pj. Then,

OPT1 =
∑

j∈∪iαi pj and OPTn+1 = 0. For every bidder i ∈ [n] it holds that Wi+1 =
Wi + α̂i and that the allocation (∅, . . . , ∅, αi \Wi, αi+1 \Wi, . . . , αn \Wi) is still supported
by p1, . . . , pm. Thus,

OPTi −OPTi+1 =
∑

j∈(αi\Wi)

pj +
∑
j∈α̂i

pj (6.4)

Now notice that bidder i could buy set αi −Wi which implies that the liquid valuation
that he got from the set that was ultimately received by the BCDQ was lower bounded
by:

v̄i(αi \Wi)−
∑

j∈(αi\Wi)

qj = v̄i(αi \Wi)−
∑

j∈(αi\Wi)

pj
2

≥
∑

j∈(αi\Wi)

pj
2

(6.5)
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Since the bidder had enough budget to buy set α̂i (otherwise, it would not have been
received as the answer of the BCDQ) we have that:

v̄i (α̂i) ≥
∑
j∈α̂i

pj
2

(6.6)

Summing up Equations(6.5) and (6.6) and using Equation (6.4) we get:

2v̄i (α̂i) ≥
∑

j∈(αi\Wi)

pj
2

+
∑
j∈α̂i

pj
2

=
OPTi −OPTi+1

2

which concludes our proof.

At this point, we need to test if the components Section 5.2.2 are violated because of the
liquid valuations. The Dominant Bidder phase remains the same, since as we showed
in Theorem 6.1, the VCG mechanism for single-item setting is DSIC and maximizes the
Liquid Welfare. The same holds for the Sample and Estimation component, since liquid
valuation functions belong to the same class as valuation functions (for submodular, XOS,
subadditive functions) and therefore, we can implement the same algorithms, as agents
have no incentive to lie. Finally, the Price-Exploration and Price-Exploitation

phases are executed with the usage of BCDQs instead of Demand Queries and therefore,
we have the efficiency guarantees of BCDQs, according to Lemma 6.3.

Conceptually, we present a general approach through which known truthful approx-
imations to the SW, that access valuations through demand queries, can be adapted
so that they retain truthfulness and achieve similar approximation guarantees for the
LW. The important properties required are that liquid valuation functions v̄ belong to
the same class as valuation functions v (proven for submodular, XOS and subadditive
valuations), and that the efficiency guarantees of budget-constrained demand queries on
liquid welfare and liquid utility are similar to the corresponding efficiency guarantees of
standard demand queries for liquid valuations (proven for all classes of valuations func-
tions). Indeed, applying this approach to the mechanism of [16], we obtain a universally
truthful mechanism that approximates the LW for CAs with XOS bidders within a fac-
tor of O(

√
logm). In the next sections, we will prove the approximation guarantees of

the mechanisms in Krysta and Vöcking [41], Feldman et al. [29] but for the LW, using
BCDQs, since our technics become more clear in these mechanisms than in [16] .

6.4 Worst-Case setting

In this section, we present Algorithm 10, which is based on the mechanism of [41] and
achieves the same approximation guarantee for the objective of Liquid Welfare. The
only difference is that budget-constrained bidders in Algorithm 10 are restricted to using
BCDQs, instead of DQs, thus making the mechanism universally truthful. Resembling the
analysis of [41], we show that for 1/q = Θ(logm), Algorithm 10 achieves an approximation
ratio of O(logm) for the LW. First, we note that parameter1 L is selected so that there
exists only one bidder whose liquid valuation for U (weakly) exceeds it.

1L can be computed with standard techniques, as explained in [41].
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Algorithm 10 KV-Mechanism for Liquid Welfare

1: Fix an ordering π of bidders and set U1 = U .
2: Set initial prices p

(1)
1 = · · · = p

(1)
m = L

4m
.

3: for each bidder i = 1, . . . , n according to π do
4: Let Si = BCDQ(vi, Ui, ~p

(i), Bi)
5: With probability q, allocate Ri = Si to i and set Ui+1 = Ui \ Si . Otherwise, set
Ui+1 = Ui, Ri = ∅ .

6: Update prices ∀j ∈ Si: p(i+1)
j = 2p

(i)
j .

7: end for

Theorem 6.2. Algorithm 10 is universally truthful and for q = 1/Θ(logm), achieves an
approximation ratio of O(logm) for the LW.

We present a series of Lemmas that will lead us naturally to the proof of the Theorem.
Let S = (S1, . . . , Sn) and R = (R1, . . . , Rn) the provisional and the final allocation of
Algorithm 10 respectively. First, we provide two useful bounds on v̄(S). We find it
important to also discuss an overselling variant of Algorithm 10. In the Overselling
variant, allow us to assume that for Step 5 of Algorithm 10, q = 1 (i.e., Si is allocated
to bidder i with certainty) and Ui+1 = Ui = U (thus the name of the variant). The
Overselling variant allocates at most k = log(4m) + 2 copies of each item and collects a
liquid welfare within a constant factor of the optimal LW. To see that, observe that for
q = 1, after allocating k − 1 copies of some item j, j’s price becomes L

4m
2log(4m)+1 = 2L.

Then, there is only one agent with liquid valuation larger than L who can get a copy of
j.

Lemma 6.6. Let pj denote the final price of each item j. Then, for any sets U1, . . . , Un ⊆
U of items available when the bidders arrive, Algorithm 10 with q = 1 satisfies v̄(S) ≥∑

j∈U pj − L/4.

Proof. Since bidders are individually rational and do not violate their budget constraints,
for every bidder i it holds that Bi ≥

∑
j∈Si p

(i)
j and vi(Si) ≥

∑
j∈Si p

(i)
j . The rest of the

proof is identical to the proof of [41, Lemma 2] for b = 1. Specifically, let `
(i)
j be the

number of copies of item j allocated just before bidder i arrives, and let `j be the total
number of copies of item j allocated by Algorithm 10 with q = 1. Then,

v̄(S) ≥
n∑
i=1

∑
j∈Si

p
(i)
j = L

4m

n∑
i=1

∑
j∈Si

2`
(i)
j

= L
4m

∑
j∈U

(2`j − 1) =
∑
j∈U

pj − L/4 ,

where we have changed the order of summation and we have used the fact that pj =
L

4m
2`j .

Lemma 6.7. For sets U1 = · · · = Un ⊆ U , the Overselling variant of Algorithm 10 with
q = 1 satisfies v̄(S) ≥ OPT−

∑
j∈U pj.
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Proof. Let O = (O1, . . . , On) be the optimal allocation. From Lemma 6.3, we get that
for each bidder i:

v̄(Si) ≥ v̄(Oi)−
∑
j∈Oi

p
(i)
j ≥ v̄(Oi)−

∑
j∈Oi

pj

where we use that the final price of each item is the largest one. Summing over all bidders,
we have that:

v̄(S) ≥ v̄(O)−
n∑
i=1

∑
j∈Oi

pj ≥ OPT−
∑
j∈U

pj

where the last inequality uses the fact that the optimal solution is feasible and thus, each
item is allocated at most once in O.

Lemma 6.8. The Overselling variant of Algorithm 10 with q = 1 allocates at most
log(4m) + 2 copies of each item and computes an allocation S with liquid welfare v̄(S) ≥
3
8
OPT.

Proof. Summing the equations from Lemma 6.6, Lemma 6.7 we have:

2v̄(S) ≥ OPT− L

4

Since OPT ≥ L, we have:

2v̄(S) ≥ OPT− 1

4
OPT⇒ v̄(S) ≥ 3

8
OPT

Of course, the allocation S in Lemma 6.8 is highly infeasible, since it allocates a loga-
rithmic number of copies of each item. The remedy is to use an allocation probability
q = 1/Θ(logm). For such values of q, we can plugin the proof of [41, Lemma 6] (which
just uses that the valuation functions are fractionally subadditive) and show that for each
agent i and for all A ⊆ U , E[v̄i(A ∩ Ui)] ≥ v̄i(A)/2. We are now ready to conclude the
proof of Theorem 6.2.

Lemma 6.9. For Algorithm 10 with q = 1
4(log(4m)+1)

, it holds that E[v̄(S)] ≥ OPT/8 and

E[v̄(R)] ≥ qOPT/8.

Proof. Let O = (O1, . . . , On) be the optimal allocation. For each bidder i, Lemma 6.3
implies that the response Si of BCDQ satisfies:

v̄i(Si) ≥ v̄i(Oi ∩ Ui)−
∑

j∈Oi∩Ui

p
(i)
j

for any Ui resulted from the outcome of the random coin flips. Therefore:

E[v̄i(Si)] ≥ E[v̄i(Oi ∩ Ui)]− E[
∑

j∈Oi∩Ui

p
(i)
j ]
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By the choice of q, for any bidder i, E[v̄i(Oi ∩ Ui)] ≥ v̄i(Oi)/2. Then, working with the
expectations as in the proofs of Lemma 6.6, Lemma 6.7, we have:

E[v̄(S)] ≥ E

[∑
j∈U

pj

]
− L/4

and:

E[v̄(S)] ≥ 1

2
OPT− E

[∑
j∈U

pj

]
Summing the above equations and using the fact that OPT ≥ L we have:

E[v̄(S)] ≥ OPT/8

Finally, one can use linearity of expectation and show that E[v̄(R)] = q E[v̄(S)].

6.5 Bayesian setting

In this setting, let ~v = (v1, . . . , vn) be a profile of bidder valuations and ~B = (B1, . . . , Bn)
a profile of bidder budgets. Assume that the bidders’ valuations are drawn independently
from distributions V1, . . . ,Vn and the budgets from distributions B1, . . . ,Bn. For simplic-
ity, let us assume that their liquid valuations are drawn independently from distributions
D1, . . . ,Dn. We will denote by D = D1 × · · · × Dn the product distribution where liquid
valuations profiles, v̄ = (v̄1, . . . , v̄n), are independently drawn from.

We are going to show that the results presented in [29] can be extended for budget-
constrained bidders. Specifically, we are going to show that, if liquid valuations are
fractionally subadditive, then we can create appropriate prices such that, when presented
to the bidders in a posted-price mechanism and bidders are making BCDQs, then we
can obtain universally truthful constant-factor approximation mechanisms for the LW in
Bayesian CAs. Our Lemma 6.10 establishes the existence of such appropriately scaled
prices. The key component activating our results is that instead of reasoning about the
utility achieved from the bundle purchased by bidder i (as received by the BCDQ), we
instead have to use Lemma 6.3.

Theorem 6.3. Let distribution D over XOS liquid valuation profiles be given via a sample
access to D. Suppose that for every v̄ ∼ D, we have:

1. black-box access to a LW maximization algorithm, ALG2 for CAs.

2. an XOS value query oracle (for liquid valuations sampled from D)3.

Then, for any ε > 0, we can compute item prices in POLY(m,n, 1/ε) time such that,
for any bidder arrival order, the expected liquid welfare of the posted price mechanism is
at least 1

4
Ev̄∼D[v̄(ALG(v̄))] − ε, where by ALG(v̄) we denote the solution produced by

algorithm ALG.
2ALG can be any algorithm that provides a O(1)-approximation to the optimal LW, since we do not

care about incentives (access to ALG will only happen for ghost samples). For example, it could be the
greedy algorithm by [42].

3An XOS value oracle takes as input a set T and returns the corresponding additive representative
function for the set T , i.e., an additive function Ai(·), such that (i) v̄i(S) ≥ Ai(Ŝ) for any Ŝ ⊂ [m] and
(ii) v̄i(T ) = Ai(T ).
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Lemma 6.10. Given a distribution D over XOS liquid valuations, let ~p be the price
vector s.t. pj = 1

2
Ev̄∼D[LWj(v̄)], where LWj(v̄) is the contribution of item j to the liquid

welfare under valuation profile v̄. Let ~p ′ be any price vector such that |p′j − pj| < δ for
all j ∈ [m]. Then, for any arrival order, π, bidders buying bundles by making BCDQs
under prices ~p ′ results in expected liquid welfare at least 1

4
Ev̄∼D[v̄(ALG(v̄))]− mδ

2
.

Proof. We are going to follow the proof presented by [29]. For each j ∈ Si, we denote
by LWj(v̄) := Ai({j}) (i.e., LWj(v̄) corresponds to the contribution of item j to the
liquid welfare, under liquid valuation profile v̄), where Ai(·) is the corresponding additive
representative function for the set Si. From the definition of pj:

p′j = E
v̄∼D

[
LWj(v̄)− p′j

]
+ 2(p′j − pj) (6.7)

=
∑
i∈[n]

E
v̄∼D

[(
LWj(v̄)− p′j

)
1 {j ∈ Si(v̄)}

]
+ 2(p′j − pj)

Let SOLDi(v̄, π) be the set of items that have been sold prior to the arrival of bidder
i. Bidder i’s BCDQ receives set Si as the answer, from the items in U \ SOLDi(v̄, π)
that maximizes v(Si) − p(Si) subject to the fact that p(Si) ≤ Bi. Consider another
random liquid valuation profile v̄′−i ∼ D−i, independent of v̄. Let Si(v̄i, v̄

′
−i) be the

allocation returned by ALG on input (v̄i, v̄
′
−i). For the additive representative function

Ai for the set Si(v̄i, v̄
′
−i) it holds that Ai({j}) = LWj(v̄i, v̄

′
−i) for each j ∈ Si(v̄i, v̄

′
−i).

Let Si(v̄i, v̄−i, v̄
′
−i) := Si(v̄i, v̄

′
−i) \ SOLDi(v̄, π) be the subset of items in Si(v̄i, v̄−i) that

are available for purchase when bidder i arrives. Since bidder i could have bought set
Si(v̄i, v̄−i, v̄

′
−i) but instead did not, using Lemma 6.3 we get that:

2v̄i(Si(v̄))− p(Si(v̄)) ≥ E
v̄′−i

[
max

{
LWj(v̄i, v̄

′
−i)− p′j, 0

}]
Summing up for all the bidders and taking the expectation over all v̄ ∼ D we have:

2 E
v̄∼D

∑
i∈[n]

v̄i(Si(v̄))

− E
v̄∼D

∑
i∈[n]

p(Si(v̄))


≥
∑
j∈M

∑
i∈[n]

E
v̄i,v̄−i,v̄′−i

[
1
{
j ∈ Si(v̄i, v̄′−i)

}
·max

{
LWj(v̄i, v̄

′
−i)− p′j, 0

}
· 1 {j 6= SOLDi(v̄, π)}

]
(6.8)

Following exactly the same steps as in [29] we can rewrite the above as:

2 E
v̄∼D

∑
i∈[n]

v̄i(Si(v̄))

− E
v̄∼D

∑
i∈[n]

p(Si(v̄))


≥
∑
j∈U

P̄
v

[j 6= SOLD(v̄, π)] · (pj + (pj − p′j)) (6.9)

For the expected revenue, due to individual rationality of the bidders it holds that:

E
v̄∼D

[Rev(v̄, π)] =
∑
j∈U

P̄
v

[j ∈ SOLD(v̄, π)] · (pj − (pj − p′j)) (6.10)
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Adding Equations (6.10) and (6.9) we get:

2 E
v̄∼D

∑
i∈[n]

v̄i(Si(v̄))

− E
v̄∼D

∑
i∈[n]

p(Si(v̄))

+ E
v̄∼D

[Rev(v̄, π)]

≥
∑
j∈U

+
∑
j∈U

(pj − p′j)
(

1− 2 P̄
v

[j ∈ SOLD (v̄, π)]
)

≥ 1

2
E

v̄∼D

∑
i∈[n]

v̄i(Si)

−∑
j∈U

∣∣pj − p′j∣∣
≥ 1

2
E

v̄∼D

∑
i∈[n]

v̄i(Si)

−mδ

6.6 Large and Competitive Market

In this section, we are going to extend the notion of Large Market Assumption for multi-
unit settings, as presented in [6, 26, 46], and introduce a new notion of a competitive
market in the multi-item setting. Finally, we give a O(1)-approximation algorithm for
Liquid Welfare with XOS bidders under the competitive market assumption.

6.6.1 Introduction

Intuitively, the large market assumption says that the contribution of a single bidder
or a small group of agents to the whole market is negligent. This assumption is well
founded in cases, such as the internet economy. In budgeted settings, this assumption
can be expressed through the ratio of the budget of each agent to the optimal solution
for multi-unit cases. Borgs et al. [6] were the first ones to define a budget dominance
parameter that corresponded to the ratio of the maximum budget of all the bidders to the
value of the optimum SW in the context of multi-unit auctions with budget-constrained
bidders. More recently, Eden et al. [26] and Lu and Xiao [46] used similar notions of
budget dominance4 (termed large market assumptions) as a means to achieve constant
factor approximation to the LW in multi-unit auctions and auctions with divisible items
respectively, when bidders have additive valuation functions. However, for the case of
divisible items, it is clear that the definition of a large market used in the previous cases,
becomes almost void.

Example 6.2. Imagine, a large market with m indivisible items and n bidders, s.t.
Bi ≤ OPT

m·c for some large constant c > 1. The number of bidders who receive at least one

item is at most m and therefore, OPT ≤ m ·Bmax, which leads to Bmax ≤ Bmax/c, which
is a contradiction.

In reality, the previous settings possessed another crucial property, that made it pos-
sible for the large market assumption to activate the results about the constant factor

4Namely, that ∀i ∈ [n] : Bi ≤ OPT
m·c , where c is a large constant.
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approximation of the optimal LW. This property was the homogeneity of the goods be-
ing auctioned; every bidder wanted exactly the same item or at least some portion of
every item. The homogeneity of the goods, coupled with the large market assumption,
essentially established competitive markets.

6.6.2 Preliminaries

Below, we first introduce our definition of Competitive Markets for indivisible goods and
then, show how one can obtain a constant factor approximation of the optimal LW, when
bidders have XOS liquid valuations. To enhance our intuition, by competitive market
we mean that if we remove a randomly selected group of agents from the auction, the
value optimal solution does not get affected so much. This is a reasonable assumption,
especially in budget-restricted agents, since it denotes the existence of many agents with
similar budgets and preferences under the budget constraints.

Definition 6.4 ((ε, δ) - Competitive Market). Let 0 ≤ ε < 2 and a constant δ ≥ 0. A
market is called (ε, δ) - Competitive Market, if for any randomly removed set of bidders,
S, with cardinality n

2
, then for the remaining set of bidders, T, it holds that:

P
[
OPTT ≥

(
1− ε

2

)
·OPT

]
≥ 1− δ (6.11)

where by OPTT we denote the optimal LW achieved by bidders in set T.

Proposition 6.1. In an (ε, δ) - Competitive Market, let S ⊆ [n] be randomly chosen s.t.
|S| = n

2
and let T = [n] \ S. Then:

P
[{

OPTT ≥
(

1− ε

2

)
OPT

}
∩
{

OPTS ≥
(

1− ε

2

)
OPT

}]
≥ 1− 2δ

Proof. Let XS the event that OPTS ≥
(
1− ε

2

)
OPT and XT the event that OPTT ≥(

1− ε
2

)
OPT. Then, we have:

P [XS ∩XT] = 1− P
[
XS ∪XT

]
≥ 1− 2δ

where the inequality follows from the Union Bound.

6.6.3 CM mechanism

Our mechanism operates as follows. First we divide the agents uniformly at random into
two equal sets S and T. Then, we run a 2-approximation greedy algorithm on the sample
set S. Our claim is that, since both OPTS, OPTT are close to the optimal solution, the
items whose contribution in OPTS is much greater than in OPTT cannot be large, since
we could transfer their owners from S to T and take a solution whose value is greater
than OPT. Now, we are ready to state our Competitive Market mechanism that will be
used for approximating the optimal LW. We note here that the greedy algorithm A is
due to [42].

As usual, we denote S = (S1, . . . , Sn) the final allocation from mechanism presented
in Algorithm 11. Valuations of bidders are XOS (and so are the liquid valuations (Lemma
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Algorithm 11 Competitive Market (CM) Algorithm

1: Divide the bidders into sets S,T uniformly at random, s.t., |S| = n
2

= |T|.
2: Run the greedy algorithm A for bidders in S and denote the solution obtained by AS.
3: for j ∈ U do
4: Set pj = 1

2β
v̄
(
AS
j

)
, where β > 1 is a constant

5: end for
6: Fix an internal ordering of bidders in T, π, and set U1 = U .
7: for each bidder i ∈ T arriving according to π do
8: Let Si = BCDQ(vi, Ui, ~p).
9: Set Ui+1 = Ui \ Si.

10: end for

6.2)); let ai be the maximizing clause of Si in the liquid valuation v̄i of bidder i. Since
ai’s are additive, for each bidder i and j ∈ Si let qj = ai({j}). Notice that

∑
i∈[n] v̄(Si) =∑

j∈∪i∈[n]Si qj. We denote by OPTT =
∑

j∈U q
T
j , where qTj is the contribution of item j

in OPTT. We divide the set of all items U into two sets; the set of competitive items,
denoted by C and the set of non-competitive items, denoted by C =M\C. The following
lemma upper bounds the contribution of non-competitive items in the optimal solution.

Lemma 6.11. Let C =

{
j
∣∣qTj > v̄(AS

j)
β

}
for constant β > 1. Then,

∑
j∈C q

T
j ≤ ε

2(β−1)
OPT

and
∑

j∈C q
T
j ≥

β(2−ε)−2
2(β−1)

OPT.

Proof. From Definition 6.4, it holds with constant probability (w.c.p) that: OPT ≥∑
j∈C q

T
j +

∑
j∈C q

T
j =

∑
j∈U q

T
j ≥

(
1− ε

2

)
· OPT. Let SC ⊆ S be the set of the bidders

that are allocated the non-competitive items from the greedy algorithm A when running
on set S. Then, in the augmented set T ∪ SC, there exists an allocation Q5 with liquid
valuation,

v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
(6.12)

and therefore we have w.c.p:

OPT ≥ v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
≥
∑
j∈C

qTj + β
∑
j∈C

qTj

≥
(

1− ε

2

)
OPT + (β − 1)

∑
j∈C

qTj

Re-arranging the latter and using the fact that:∑
j∈C

qj +
ε

2(β − 1)
OPT ≥

∑
j∈U

qTj ≥
(

1− ε

2

)
OPT

As a result, for the items in C it holds w.c.p that:
∑

j∈C q
T
j ≥

β(2−ε)−2
2(β−1)

OPT.

5Allocation Q is realized by allocating all items in C to bidders in T that also had them in the OPTT
allocation and all items in C to the bidders in SC that had them in the allocation of the greedy A. The
claim is completed by submodularity.
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In the next Lemma, we prove a lower bound on the contribution of competitive items
to the solution obtained by the greedy algorithm, with respect to OPT.

Lemma 6.12.
∑

j∈C v̄
(
AS
j

)
≥ 2(β−1)−ε·(3β−1)

4(β−1)
OPT.

Proof. Combining Inequality (6.12) and Lemma 6.11 we get that:∑
j∈C

v̄
(
AS
j

)
≤ βε

2(β − 1)
OPT (6.13)

Algorithm A provides a 2-approximation to the optimal LW of set S [42], so w.c.p we
have: ∑

j∈C

v̄
(
AS
j

)
+
∑
j∈C

v̄
(
AS
j

)
≥ 1

2
OPTS ≥

1− ε
2

2
OPT (6.14)

Combining the last two equations, we get the result.

Theorem 6.4. The CM Algorithm is universally truthful and achieves, on expectation,
a constant approximation to the optimal LW, i.e., E [v̄ (S)] ≥ (1−2δ)· 2(β−1)−ε·(3β−1)

16β(β−1)
OPT.

Proof. Since the bidders that control the prices being posted belong to set S and they
never get any item, it is their (weakly) dominant strategy to report their valuations and
their budgets truthfully. Furthermore, the bidders that are buying under the said posted
prices belong to set T and they make BCDQs, which we shown to be truthful. Finally,
the bidders are uniformly at random split at sets S and T.

For each item j ∈ C we have qTj > v̄(AS
j )/β. Therefore, there exists an allocation

for bidders in T and items in C that is supported by prices p1, . . . , pm, where pj =
v̄(AS

j)

β
.

Thus, from a modification of [16, Lemma 4.2] (formally presented in Lemma 6.5), setting
p′j = pj/2, for each j ∈ C, and running a fixed price auction in T with prices p′1, . . . , p

′
m,

we get that: v̄(S) ≥
∑

j∈C pj/4. Using the latter, along with the prices of the items, we
have:

v̄(S) =
1

4β

∑
j∈C

v̄(AS
j ) ≥

2(β − 1)− ε(3β − 1)

16β(β − 1)
OPT

where the last inequality is due to Lemma 6.12. Thus, we conclude that:

E [v̄ (S)] ≥ (1− 2δ)
2(β − 1)− ε · (3β − 1)

16β(β − 1)
OPT
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6.7 Conclusion and Future Work

In this work, we showed how some of the best known truthful mechanisms that approx-
imate the SW, can be adapted in order to yield the same order approximations for the
LW, when bidders are budget-constrained in the worst-case and Bayesian instances. Ad-
ditionally, we introduced a notion of market competitiveness, for markets with indivisible
goods and provided a constant factor approximation to the LW in this case. The most
meaningful question that arises from our work (apart, of course, from the ever existent
one of lowering the approximation guarantee in worst-case instances) is related to the
competitive markets. We conjecture that the condition that we provide can be made
even weaker, and leave it to future research. We hope that the results and the techniques
presented in this work, will serve future researchers in obtaining improved same order
approximations for both the SW and the LW.
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