5

/Jz
J

==

NPOMHOEY
nvpeopo

N>

EoNIKO METZ0BIO IIOAYTEXNEIO
> XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTISTON
TOMEAY TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTISTON
EPrASTHPIO MIKPOYIIOAOTISTON & WHSIAKON L YSTHMATON

FPGA Architectures of
Deep Convolutional Neural Networks

for Satellite Image Classification

Apyitextovixéc FPGA yia
Bata Yuvedixtied Nevpwvixd Abcrua
Ta&wvéunons Aopugopuddv Eudbdvov

AITAOMATIKH EPTAYIA
TOL

PEIITTA - XPYYXOBITXINOY AHMHTPIOY

EnBréenwv: Anuiteoc I Zodvteng
Av. Kadnyntic HMMY

Adnva, YentéuPerog 2018

Edvixé Metoofio Iloauteyvelo

Eyoh) Hhextpohdywv Mnyavixwy xou Mnyovixdv Yohoyiotody

W
e
A2 Il
SE>
2&c
a)

Touéag Teyvoroyiog [IAnpogpopuxrc xa Troloyiotdy

S

Eeyoaotipio Mxpobmoloyiotdv & Ungoxdy Luctnudtony

FPGA Architectures of
Deep Convolutional Neural Networks

for Satellite Image Classification

Apytextovixéc FPGA yia
Badwa Yuvelixtied Nevpwvixa Abrua
Taévéunons Aopupopudyv Euddvov

AIIIAOMATIKH EPrAsIiA
TOL

PEIITIA - XPYXOBITXINOY AHMHTPIOY

EnBrénwv: Anudtpoc I Sodvteng
Av. Kadnyntic HMMY

Evyxpldnxe and v tewelr) e€etaotin emitponh) Ty 17n NenteyPeiou 2018.

(Ymoypagry) (Tmoypagry) (Tmoypagry)
Anunrteiog 1. Lolvteng Kiopdh Z. Heoxpeotln Kovotavtivog Kagdvtlorog
Av. Kodnyntic HMMT Kodnyntic HMMYT Enixovpoc Kodnyntic XATM

Adnva, YentéuPerog 2018

Edvixo Metaofio Ilohuteyveio

5}

Eyoh) Hhextpohdywv Mnyavixwy xou Mnyovixdv Yohoyiotody
Touéag Teyvoroyiog [IAnpogpopuxrc xa Troloyiotdy

." MPOMHOEV §
=
nvpgopo

‘.

Eeyoaotipio Mxpobmoloyiotdv & Ungoxdy Luctnudtony

Copyright (©—All rights reserved Pénnag - Xpuoofitowoe Anuftelog, 2018.

Me tnv em@OAaEn TUVTOC SXOUMUATOC.

Anoayopedeton 1 avTiypapr, amothxeuon xou Swovouy| Tng mopoloug epyactiog, €€ oAoxApou
1 TUWAUATOC QUTHG, Yia EUToEX6 oxomo. Emrtpénetan 1 avatinwor, anodrixeuon xal dloavour
Yot OXOTO U] XEEOOOKOTUNO, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolndleoT va
OVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. Epwthuata mou apopodv

TN XeMoT TNS EpYUCLAg VLol XEPOOOXOTILXO OXOTO TEETEL VoL aneuHivVOVTaL TEOS TOV GUYYROPEA.

Ou amdeic xan o GUUTERPACUATA TOU TEPLEYOVTAL OE AUTO TO €YYEUPO eXPEALOUV TOV CLY-
Yoapéa xa dev mEETEL Vo gpunvevdel 6Tl avtitpocwnebouy Tig enionues Yéoeg Tou Edvixod

Metod6fiou Hohuteyvelou.

YrebOuvn ARAwon

Me mAfien enly vewoT TwV CUVETELDY TOU VOUOU TERL TVELUOTIXMY DIXOUWUATODY, SNAGVG EVUTO-
Yedpwe OTL elpal anoxAEloTIXOC cuYYpapEas TN apovoas Atmhwpatixhc Epyactoc, yio tnv
ohoxAfpwon tng onolog xdde Borlela eivar TAREEE oVOry VWELGUEVT XAl OVUPERETOL AETTOUERKS
otny gpyaocia auth. ‘Eyw avagéper mhpws xou ye capelc avapopés, OAeg TiC TNYES Yerong
0edoPEVLY, andewy, FECEWY Kol TROTICEWY, LOEWY XL AEXTIXMV OVOPOPWY, EITE XATE XU-
prohedia elte Bdoel emoTNUOVIX:C ToEdpeaons. ANAMVe, CUVETOC, OTL aUTH 1 ALTAWUATIXN
Epyaocia tpoetowdotnxe xow ohoxhne@inxe and euéva TEOCWTIXA XUl ATOXAELT TIXE XoU OTL,
ovVoAoBAvVe TANEWS OAES TIC GUVETELEG TOU VOUOU TNV TERITTMON xuTd TNV ontola amodetyde-
{, Blaypovixd, 6Tl 1 epyaoior auTh N TUAA TN BV Pou avrxel BLOTL lvol TEOtOY Aoyoxhomic

GAANC TVELUATIXAC BloXTNolaS.

(Troypagn)

Pénnag - Xpuoofitowoe Anurtelog

[epiindn

Tnv tedeutaia dexaetio To Luvehxtind Nevpovind Aixtua (ENA) avadelydnxay o pio and g xo-
ANOTEPEC TPOCEYYIOEIC YLl TNV AVTWETOTLON 0ploUévwy TpoxAficewy e ‘Opaong Trohoylot®y, 6teg 1
TaEWVOUNGCT EXOVOY XAl O EVIOTUOUOS avTXEWEVKDY ot autéc. Ta v ofomoinon twv NNA oe éva
A 00 EQapUoY®Y amattoLYToL UPNAGDY ETLBOCEWY Xl YUUNATIC XATAVIAWDCTS EVERYELNS UTOAOYLO TiX GU-
othuata. Xty xatedduvorn auth, 1 texvohoyio Twv FPGA anotelel évav eCoupetind vnodrglo yio tny
vhomoinon XNA oe evowyotwuéva cucthuata. Anogocicaue va diepeuviicouue FPGA opyitextovinée
yroe Suvehxtind Nevpovind Aixtuo To&vounomng 8opugopix®dy eOvmy, €Y0VTS XATE YOU TI OVAYXES TNG
emoTNUovixic xowotntac e Tnhemoxdémnone. H napoloo dimhwpotixd| epyaocia tapadider (i) FPGA
apyrtextovixéc oyedaopévee oe VHDL yia tny uhonoinon Xuvehixtindv Nevpwvixomv Axtinv yenouwo-
TOLOVTOG ATOXAELG TXG TNV UVAUT TN Tpoypappatilouevne Aoywhic xau (ii) to "Modified Cifar-10 Full”,
éva Bordd XNA Aywv bit, xataoxevacuévo xou extoudeuuévo ue to Caffe framework oe edvec tou SAT-6
airborne dataset. To cuyxexpiuévo cOvolo Bedouévwy amoteheital and exdves Twv 28 X 28 eixovoo Tolye-
lwv, ywehc axp{Belac Tou evog YETpou, ol onoleg avixouv ot 6 xatnyoplec: dyovn yn, dévipa, ABddia,
dpouol, xthptor xou uddtiveg pdlec. To Modified Cifar-10 Full ¥NA mou xotadétoupe, emtuyydver va
o€ vourioel 6woTd Tic emdveg tou SAT-6 airborne dataset ue top-1 axpiBeio 94,89%, yenoylomoudvtog
8-bit yia o fdpn Tou Bixtbou xan 4-bit yior o xovdAa EldwY xon e£60wv eviog Tou. H mirene extéheon
tou "Modified Cifar-10 Full” ¥NA npoyyotonoleiton anoxhelcxd otnyv npoyeoudatillOUEV AOYIXT) TOU
FPGA, yweic tnv yerion ewtepixic uviung 1 ty dtapecordBnon pag CPU. Torodetnuévn otn cuoxeun
Xilinx Zynq Z-7020 SoC, n apyttextoviny| mou oyedidoaue Aettovpyel ota 100 MHz, unopel vo to€ivourioet
4650 exdveg To BeutepOAeTTO X xatavaAovel 1,76 Watt evépyeia, emituyydvovtag X377 emitdyuvor 6To
eudud Tavounong emodvwy ot oyéon pe TNy extéieot) Tou LNA anoxAeloTixd otov evowpatwuévo Cor-
tex A9-Arm enelepyaoth. Xe obyxpion pe HLS viomowoeig enl tng Blag cuoxeunc, 1 oyediooy| pog
emiTuyydvel X 2,4 emitdyuvor. Téhog, cuyxevouevn ye to Fathom Neural Compute Stick tng Movidius
mou PBaoiletar oto Myriad Visual Processing Unit, 1 oyedloot| pac ent tou Xilinx Zyng Z-7020 SoC
emTuYYdver X 16 upniotepo puud TaEvounoNg.

Aéeic KAeoud

Yuvehitd Nevpwvind Aixtua, Mnyavix) Mdidnor, Talwvounon exoveyv, FPGA, VHDL, dopugopt-

%€ EOVES, ETUTAYUVTEG UAXOU, evonuatwuéva cucthuata, Caffe framework

Abstract

Over the past decade Convolutional Neural Networks (CNNs) emerged as the state-of-
the-art approach to tackle certain Computer Vision problems such as image classifi-
cation and object detection. Employing CNNs in a multitude of applications requires
high-performance, low-power computing. Field Programmable Gate Array (FPGA)
technologies have been identified as exceptional candidates for the implementation of
CNNs’ inference stage. We explored FPGA architectures for satellite image classification
using CNNs, having in mind the needs of the remote sensing community. This thesis
delivers a high-throughput, low-power FPGA design of a highly accurate deep Convolu-
tional Neural Network, suitable for embedded systems placed on UAVs-drones/satellites,
classifying images at the edge of the computing cloud. More specifically, we deliver i)
FPGA architectures designed in VHDL for the inference of deep CNNs, using only the
on-chip memory of the Programmable Logic and, ii) a low bit-width customized CNN
model (the "Modified Cifar-10 Full"), created and trained with the Caffe framework
on the SAT-6 airborne dataset. The SAT-6 airborne dataset consists of 28x28 pixel
images of one meter spatial resolution, covering six land cover classes (barren land,
trees, grassland, roads, buildings and water bodies). Using 8-bit weights and 4-bit
feature maps, Modified Cifar-10 Full achieves 94.89% top-1 accuracy on the SAT-6
airborne dataset. The whole processing of Modified Cifar-10 Full is performed on the
Programmable Logic of the FPGA chip without a need for an external memory or a CPU
to coordinate and monitor the algorithm’s execution. When mapped on the Xilinx Zynq
Z-7020 SoC our design operates at 100MHz consuming 1.76 Watt and can classify 4650
images per second. Compared against other implementations, our design on the Xilinx
Zynq Z-7020 SoC achieves throughput speedups of x377 against an implementation
solely on the embedded Cortex-A9 Arm processor, x2.4 against High-Level Synthesis
implementations on the same device and, x16.2 against the Fathom Neural Compute
Stick by Movidius featuring the Myriad Visual Processing Unit.

Key words: Convolutional Neural Networks, FPGA, VHDL, Machine Learning, Deep
Learning, Image Classification, Satellite Images, Caffe framework, Hardware Acceleration,
Zynq SoC, Embedded systems, CNN, Remote Sensing

Euvyapiotieg

Oa AHela vo euyaploTHow Tov xadnyNT x. Anurten Lolvten yio Ty suxaipio TOU Uou
€0WOE VO EXTIOVACHL T1 CLUYXEXPWEVY Omhwpatixt| epyacia oto Epyacthpio Mixpolmohoyi-
o010V & Ynplaxdy YuoTnudtey.

H epyoaoio autr 6ev Yo ftay epuety| ywelc Ty xadodrynon xou utooTplln and Tov UeTa-
owooxtopd epeuvnth Iidpyo Aevtden. Ov oulntrioeic poall tou elvon Wioktepa exmoudeuTinég
xaL oL YPNYORES %ot EVGTOYES TaPATNENOELS Tou XxaoploTIXES Yio TNV Topela Tng epyaoiog.

4 4 e 7 4 7. 7
It tor mopamdves, oA xon yior TNV T8VTa XohY) TOU BIIEST), TOV EUYPLO T LOLUTERAL.

iii

Ewaywywd Ynuesiopa - Aoun Epyaciog

To mpwTo AEPIAUO TEOGPEREL Lo TATIRT EMIOXOTNOT TNG epyaoiag ota ehAnvixd. Ta u-
TONOLTIOL XEQPAAALOL ELVOLL YRUUUEVO OTaL Ay YA AVOAUTIXOTERX, TO BEUTEPO XEPANOUO AVEL [l
eloaywyY) oto Véua, To Tplto mapouctdlel eucivonta To Yewentixd undfadeo Tne epyasiac,
Ta xepdhana 4 & 5 mapouctdlouy TN B pag mpaypdtevon ent Tou {ntiuatoc. Téhoc oto
xepdhato 6 cuvoilouue To Pooixd anoTEAECUOTO TNS EPYACiOC LS XL TEOTEVOUUE XATEL-
Yovoeg yia pehhovtr €peuva. O xmdxag o omolog yenowonolinxe oTny tapolLoa epyacia
elvon SLotl€oLlog XaTOTY EMXOVWVING UE TO ERYAOTHELO tixpolnoloyio Tty & Pnploxody cu-

O TNUATOV.

ITepieydueva

Hepirngm

Evyopiotieg

Ewcaywywxd Enpeiopa - Aowr Epyaciag
IMTepieybpeva

A" Apyrtextovixég FPGA yio Badid Tuvehuxtind Nevpwvixd Alxtua

TaZwounong Aopugopixwy Euxxovey
AT BEwoaywyh . . .
A’ 1.1 Etoyow tne Ammiopotinic Epyoolag .o 0 0000000000000
A2 Teyvntd Nevpwvied Abctvor ..o oo 000
A’2.1 Yuvehrtwd Nevpwvixd Abetvor ..o oo o0 oo oo
A3 Yvotoiyla Emtoma Hpoypopypotiloyevwy ITurdv (FPGA)
A’3.1 Zuvehxtxd Nevpwvixd Atxtvoeoe FPGA . . . 0 000000000
A’ 4 Exnaldevon XNA xa Behtotomoinon Lo
A’ 4.1 Tlpocapuoyt tou XNA govtéhouv oTny MERITTWOR Hog
A’4.2 Arnoteléopota exnaldevong tou Modified Cifar-10 Full XENA
A’4.3 Xuumélovroc to XNA: Behtiotonolnon ufxoug Adé&ng
A’5 Thomoinonoe FPGA
A'5.1 TMpooéyylon . . . o oo
A’5.2 Apyrtextovix FPGA - To Booixd otoyelor oo oo oL
A’6 Opydvwon tncon-chip uvAungo
A’7T E&epelvnom Tou Y®eou GYEBIONG .« . . L L oo
A’7.1 Anoteléopota e€epedvnong yweou oyedlaong L.
A’7.2 Buyxprtin extiunon tng vhomolnong . . . L. L L

vii

Contents

1 Executive Summary in Greek

2 Introduction
2.1 Motivation e e
2.2 Thesis Goals e

3 Background and concepts

3.1 Convolutional Neural Networks
3.1.1 A step back: The bigger picture of Machine Learning
Types of Machine Learning

A bit of Supervised Learning L.

3.1.2 The problem of Image Classification
3.1.3 Introduction to Artificial Neural Networks
3.1.4 Introduction to Convolutional Neural Networks
3.1.5 Common layers used to build CNNs
3.1.6 Convolutional Neural Network Architectures

3.2 Field-Programmable Gate Arrays
3.2.1 FPGA Programming
322 FPGA Fabric e

3.3 Convolutional Neural Networks in FPGAs

4 CNN training and Optimization
4.1 The Caffe Frameworko
4.2 The SAT-4 & SAT-6 Airborne datasets
4.3 CNN models in this Thesis 0.
4.3.1 The original "Cifar-10 Full' CNN model
4.3.2 Why use the "Cifar-10 Full' model?
4.3.3 Customizing the "Cifar-10 Full" model to our needs
4.3.4 The "Modified Cifar-10 Full' CNN model
4.3.5 The "Modified Cifar-10 Full" CNN model’s Training & Results . . .
4.4 Compressing the network: Word-length Optimization

45
45
48

51
o1
ol
52
23
56
o8
61
63
69
72
74
76
80

83
83
84
85
85
87
88
90
93
95

ii Contents

5 FPGA Implementation 101
5.1 Design Approach 101
5.2 The design’s key components L Lo 103

5.2.1 The "Expander" component, 105
5.2.2 The "2D Convolution Engine" component 105
5.2.3 The "SP" component 107
5.2.4 The "Window-Gen" component 107
5.2.5 The "Pooling Layer" component 108
5.2.6 The "Fully Connected Layer" component 110

5.3 Bit-width Calculations Lo o 112
5.4 On-Chip Memory Organization 113
5.5 Intra-Layer Control L 115
5.6 Inter-Layer Control 118
5.7 Design Space Explorationo 122
5.7.1 Approach 122
5.7.2 Results e 127

5.8 Final Configuration and FPGA Implementation Results 132
5.8.1 Comparison to relevant works 137

6 Conclusions 145

Bibliography 149

Contents

CHAPTER 1

Executive Summary in Greek

A" Apywtextovixéeg FPGA yio Badid Xuvehixtind
Nevpwvixd Alxtuva Talwwounong Aopugopixwy

Ewxovey

A’.1 Ewaywyn

Trv tehevtaia Sexoetio, T Buvehixtind Nevpwvind Aixtua (ENA) avadetydnxoy o évag
a6 TOUG XUAUTEQOUE TEOTIOUS YId TNV ETUALGCT| OPLOUEVGLY TEOBANUdT®Y and To Tedio Tne ‘Opa-
ong Trohoyiotodv. H uhnin axeifelo ue v onola avtomoxpivovton tar Xuvehixtind Nevpwvixd
Alxtua o€ TEOBAAUATI OTIWE 1) VALY VORLOT) EXOVWY XL O EVIOTUOUOS AVTIXEWEVWY OF AUTES,
TAUTOYEOVA YE TNV parydota adinom Twv Sladéotuwy Pneloxdy BeBoUEVOY xol TNV EUPAVION
oL Atadixtiou twv Heaypdtwy (IoT), éyouv avirioet to evdlagépov yia Ty o&lonoinot Toug
o€ TARUOG EPELVNTIX®Y, BLOUNYOVIXDY XAl EUTOPIXMY EQUQUOYOY. XE Vo ONuavTxd Thrdog
EPUAPUOY OV, OTIKC YLOL TURAUDELY O TO AUTOVOUOL OY HUATA XAk O EAEY YOG BLOUNYOVIXGDY BLAOLXACL-
OV, To EUTAEXOUEVA UTOAOYIC TIXE GUGC TAHUATOL OO TELTAL VoL ELVOL UIXEWY PUOIXOV BLIC TUCEWY,
VO AELTOUEYOUY UE YOUNAY| XUTAVIAWGOT) EVEQYELNS XAl TAUTOY POV VAL UTOPOUY VoL AELTOLEY OV
EVTOC AUOTNEGY TRodlaypapwy otoug Ypovoug extéieonc. Toa ENA napovoidlouvv udpniy
UTIOAOYLO TIXY| TOAUTTAOXOTNTOL X0 TTROXEWEVOL VAL EQPUPUOCTOUY ETLTUY WS OE TEOBARUAUTA TOU
BaolCovton oty avoryvoplon exovag, yeetdletor vor Aotondoly 6e EVOOUATWUEVY UTOAOYL-
TG CUCTAUNTA YOUNAAC XATAVIAWONS EVERYELNS ot LPNA®Y EMBOCEWY. e QUTH TNV Xa-
tevduvor, n teyvoroyia Twv FPGA -Xuctorylo Emtéma Ipoypoupatilopevmy TTuadv- €xel
Tpocdlopto Tel we o e€anpeTixy Abon yio TV vAomoinon Teyvitdv Neuponvixdv Axtioy.
Ta FPGA anoteholv npoypopuatilopeva meioaxd xuxAduota, nl Twyv onolwy unopody vo
oYEBLCTOOY EEEWBIXEVPEVES QRYITEXTOVIXEC TaPdAANANG eneepyaoiag. H 1816tntd Toug auth
O€veL opuovixd Ye to yeyovog ottt Teyvntd Nevpwvind Alxtua elvon eyyevog oyedloouéva
we eCoupeTNd YEYIANG TopoAnhiog utohoyloTixd povtéla. Emnpdcdeta, 1o FPGA €youv
VIETEQUVIG TIXO YPOVO EXTEAECTIC XOUL YOUNAY) XUTAVAAWOT) EVERYELNC. L€ OYECT| UE TIC UYNA®Y
eMBOoEWY xdpTEC Yeapwy, To FPGA npocgépouy péyel xat 5o téielc yeyédoug Aydtepn
AATAVIAWOT EVERYELaS. Evdeuxtind avagépouue twe n NVIDIA Tesla K40 GPU xotavaiovel
235 Watt, evey n etepoyevric mhatgopua tng Xilinx Zynq Z-7020 SoC, 1 omolo nepthaufBdvel
uxpoenegepyaoth tne ARM xou FPGA teyvohoyio oto (8o chip, xatovardver 2,5 Watt.H
YOUNAT) XAUTAVIAWDOT) EVERYELXS, 1) LPNAY| eTiBoom xat 1) SUVATOHTNTA ENAVATEOYROUUATIOLOD TWV
FPGA, éyouv odnyroet etaupelec onwe n Microsoft xou 1 Amazon va ypnowwonoticouy FPGA

OTA XEVTEO DEBOUEVLY TOUC YLOL VOL UELWDCOUY TO XOOTOC EVERYELNC, VO ETLTAYUVOUY AELTOVPYIES

1

PANINET

gectronics markets
2yng

2045
M1 Module Plus

10,2 cm

Syfua A% 1: Hopdderyyo evée evowpatouévou unoloylotixol cuotiuatos. To Xilinx Zynqg MMP,
10 omnolo mepléyel éva Zyng-Z7045 SoC. H ouyxexpyévn mhat@opua xootiletl nepinou 3000€. Ilo
OLXOVOUIXEC AUGCELS UTIdEY 0V, 0TS Ylo Topddetypa To Zybo Zyng-7000 to omolo neptéyetl éva System
on Chip pe ouyxprtxd hydtepouc FPGA mépouc xou xootiletl nepinov 300€.

TOUC Xa Yo VoL Tpoc@épouy duvatotntes Teyvnthic Nonpoolvng oe mépouc Tou unoroyiotixod
vépoug. Tlopdtt undpyouv Aooelg yia TNV exTERETN TV LuVeAXTiX®V Neupomvixdv Axtimy
OTO UTOAOYLOTIXO VEPOS, O TARUOC TEQITTOOEMY UTEQYEL oV XT] OL UTOAOYIGUOL VO EXTENO-
Ovton tomd. Iopadelypotog ydpen, ot TEPLTTWOELS TOU OL YEOVOL UTOXELoNS EVOL XEIoUoL, GE
TEPITTWOOELC oL Bev unopel va e€acpaiiotel otadepd Yeryopn cUVOEST 0TO (VIEQVET, OE TEpL-
TTWOOELS TOL UTEEY oLV {NTARNTA Ao@areiog, ot AUGEC TOUG UTOAOYIGTIXOU VEQOUS UG TEROUV.

To teheutala ypovia apxetol emitayuvtég LAXoL Yoo TNA éyouv mpotodel.

H vmirc axpBetag Ta&vounom eixdvmy xal 0 EVIOTIOUOS AVTIXEEVWLY elvor WBlalTepal o1
wovTixr) oe éva TAfYog epopuoy®y Tou Bacllovtal OTIC aepoPOTOYEAUPIES XL Tal BOPUPOEIXJ
oedopéva. Ilopadooiaxd, oe auTéC TIC €QopUOYES T dEdOPEVA BEV a&lohOYOLVTOL TNV WEA
TIOU BNULOVEYOLYTOL, OTA TOTUXE UTOAOYICTIXG GUGTAUATA, ohAd amodnxedovtal 1| anocTéA-
hovtaw yia vor utoBAntoly oe enc€epyasio oE anopaxpUoUEV amd To oNUElo GUANOYHAC TOUG
urohoYlo Tixd cuo TApaTo. H eyxatdo o0 EVOWUATOUEVLY CUG TNUATOVY IXAVMY Vo EXTEAODY
Yuvehitind Nevpwvind Alxtuo Tédve o€ Un-enavOpmUEVA 0EROOAAPT| XA BOPUPOEOUS UTOREL
VO TPOGPEREL TNV AUTOPATOTOMNUEVT), LPNATC oxp(BELag xan O TEaYUTiXo Yeovo Tagvouno
EXOVWY, YWElg TNV avdyxn TNG ATOCTOA S TWV OEDOUEVWY GE ATOUUXPUOHEVA UTOAOYIC TIXE
ocuoThuato. Auto umopel vo etvan Wwitepa yerowo oe éva TAHog EQopUOYOY OTKS OE Gu-
o TAHATO EYXAENE TEOEBOTOMONE ToTOVETNUEVA OE BOPUPOEOLS Xal 1) BNULOVEY (0 U TOVOUWY
UTFETUVOPOUEVOY OEROCHAPADY VLol XOUVOTOUES TEYVOAOYIXEC AUCES Ty oTnv Sloyelplon @u-
OIXWY XATACTEOPWY, OF OUTOUATOTOLNUEVY YEWEYIXT TapaywYY| oxplPelag xou oe unnpeoieg
QAUTOPATOTOMNUEVNC TAUYUHETAPORAS TROLOVTWY. Y€ TETOLOU TUTOU EQUOUOYES, 1) XUTUVIAWOT)
EVEPYELUC XU TO QUOIXO UEYEVOC TOU EVOWUATWOUEVOU UTOAOYLIOTIXOU GUC TAHUATOS ATOTEAOUY
%plOLOUC TAUPAYOVTES KoL CUVETS 1) ETLAOYT| LIS XATIAANANG EVOWOUATWHUEVNS TAATQORUIC

elvo BLUTERO ONUAVTIXT. L€ UPXETES EPUPUOYES EVOLAPEPOUACTE YLl TNV TAEWVOUNCT| OERO-

cpco'coypocqmbv/ BOPUPOPIXWY EXOVKY OE OYEaT UE TN xdhudn yne. Qg xdhudn yng optleton 7
puotx xan Broloyi xdhudn tne empdvetag tng yne. Hoapadelypota xAdocwy oty xdhudn
yNne ebvan yior TapddetyUor o 83OT), OL UBETIVOL Y NUATIOUOL, Ol DOUNUEVES TIEQLOYES XAl OL Oy PO-
Tiég meployéc. Ot ydptec xdhuhng YN cLVEICYEEOLY GTNY ToEUXOAOUINCT| X0k TOV EVTOTIOUS
InnudTey Omwe 1 anoihwot), 1 ovaddonmao, 1 UEWoT) TV UBATIVKDY TORMY XL 1) ETEXTACT)

TWYV 0O TIXWY TEQLOYWV.

Land Cover Classes

water ice urban bare forest scrub grass crops wetlands

Eyfuor A”2: Toapdderypo evoe ydetn xdhudne yne and tnv mepoyr tou Portland, Oregon USA
(NASA Earth Observatory).

A’1.1 3toyol tng Awmhwpatixrc Epyaciac

7. 4 7 4 4 7
H rapoloa dimhwyotiny epyocia €yel Toug xdtwh otdyouc:

Ty avooxonnon 1wy tpdcputwy eCehiéewy oTo avtixelyevo tne Mnyoavixic Mdidnong

oe oyéon e To Luvehxtnd Nevpwvixd Alxtua.

Trnv avaoxémnon e undpyoucos Bihoypaploc oc oyéon Ue T mpooeyyloel ot

oyedlaon vionoioeny Twv XNA o LAXO.

Trv emhoy? xan exnaidevon wag apyttextovixnc YNA xatdAAning yia Ty tagvounon

BOPUPOPUDY ELXOVWV.

Trv epapuoyn Behtiotonoioewy TNy apyltextovixr) Tou emheyuévou YNA ue oxomo
Vv vAomoinoy tou oc FPGA.

Tnv oyedlaon apyitextovixwy FPGA vy v vhonoinon Xuvehxtixdv Nevpovixdy

AwxtOwy.

Tnv Behtiotonoinon xaw atohdynon tne FPGA apyitextovnAc Yo T0 ouyxeXpyévo
Yuvehtind Nevpwvixd Aixtuo oe oyéon e Ty puiud Ta€vounong exXOVwY xol TNy
YeNon TopwY NS CUCKELNC, Yo apxeTéC cuoxevég tng Xilinx Zyng 7000 SoC ouxo-

YEVELC.

A’.2 Teyvntd Nevpwvixd Alxtua

Ta Teyvnra Nevpwvixd Abtua efvar uTOAOYIGTIXG GUCTAUATA Xot IAYORLIUOL EUTVEUCUE VL
a6 Tov avipOTIVO EYREPANO %Ol TNV TURATHENOT OTL 0 avIeOTIVOS EYXEPUAOG AElTOUPYEL UE
Toh0 BlapopeTind TeoTO and Toug ouuBatxols, Pnplaxoic unohoyiotée. To Poacixd Souxd
ototyeto Twv TNA eivon o teyvntdc vevpdvae. IIA0oc and teyvntolc veupmveg SlacuVOEoVTOL
YL VoL oY NUATiooLy €val BiXTUO, 1) CUUTEELPOEE TOL oTolou e&uETATAL QUETH 06 TO TARUOC TwV
VELPOVOY TIOU TEPLEYEL XoU ATO TNV TomoAoyia P TNy onola autol dlacuvdéovton. TAomolfoelg
Teyvntdv Nevpovixdyv Aixtinv 1600 o8 UAXO, 0G0 Xol AOYLOUIXO €YOUV EQUPUOCTEL OE
mAdog epapuoymy 6nwe 1 avaryvopton yapoxtieny (ty OCR), 1 npdiedn ypovooepdy xou
0 éheyyoc Slepyootdy xat ouotnudtoy [Wid94].

Biological Neuron Artificial Neuron

weights
Dendrites inputs
yl‘f
activation

Synapses functon
1-:»\ * @ net input
_— < net;
D) e et
i Axon activation
. P —
=g '
Signal flow . . }Eigilfgr:
Y—=r> Input : . 0
=>4 X J
=P Output " @ threshold

Syfuo A.3: To amhomomuévo poviého evic Bloroyxol veupmva (aplotepd) xou To padnuatind ho-
vTého evée teyvnTol veupiva (8e€id). e xdde ofjua e1ob8ou Tou e VNTON VEupmVo avTio Totyel Eva
Bdpoc ue to omolo molhamhaotdleton xan to anoteréopata adpollovton. T va mopoydel n é€odoc
TOU VEUPOVA, 0TO oTotopévo dlpotopa e@apuoleTal plo Un-yeopuxy) cuvdpetnon evepyomolnong
y=o> [J:i . wl] + wp).

I v exnaideuon tov Teyvntdv Nevpovixdyv Atiny emio tpatebovton ohydprduol and
t0 nedio tne Mrnyoavixic Mddnone (Machine Learning). H unyavixd, pédnon yenotponote
TEYVIXEC amd TN OTATIOTIXY xou TN hodnuotiny| Bektiotonoinon xou Baciletar otnv undieon
otTL M yvoaon unopel va e€oydel péoa and mhrdog mopaderyudtov. Eml tou mopdvtog unde-
Youv 800 Bacwéc mpooeyyloel oty unyovixr udinon: a) n emPBrenduevn pdinon xou B) n
un-emPBrendpevn pudinor. Xto TpoPAfuATe TNG ORACTC UTOAOYLO TGV WS €T TO TAElGTOV YEr-
owomololVTAL ETPBAETOUEVES TEYVIXEC pdinong. Xtnv meplnTtwor Tou TeoBAYuaTog Tne Tagl-
vounong, otnyv emPBAenoyevn udinon éyoupe éva tAdog and mpo-tagivounuéva topadelyyarta,
Tou ovopdlovton dedopéva exnaidevong (training data). Awxdétoviag Tic yetofAntéc eloddouL
X tou akyoplduou yio xdie mapddetyuo, xou Yvwpeilovtag Tic avtiotolyeg e€66oug Y, tpoona-
Yolpe pe enavaknmiixée pedddouc va tpooeyyioouvue tn ouvdptnon f, 6mou Y = f(X). e
avtideon ye tn podnuatixy Behtiotononon, oty unyovix Udinor dev eVOLUPEROUACTE UOVO

Vo TpoceyYiooupe xavoromnTixd T ouvdETNoY f, ahAd ETIUPOVUUE TO LOVTEAD TTOU XATUGKEL-

layer 2 (hidden layer) layer 3 (hidden layer) layer 4 (hidden layer)

£

£
S 4/
ST Nl

Yyfuor A”4: Hopdderypo evog mAHpwe BlacuvOEdeUEVoU TeVNTOU veupnvixod dixtiou. ‘Ohot o veu-

POVES TOU £VOE EMTEBOU GUVBEOVTOL UE OAOUC TOUC VEUPWVES TWYV YELTOVIXWY EMTEDWY.

GLoulE VoL UTOREL Vo YEVIXEVUGEL, TOEVOUMYTIS OWOTd xot Se60uéva Tor omtola 6V €yel Eavadet.
[o to oxond autd aflohoyoLUe TNV ENLBOCT TOU UOVTEAOU YENOWOTOLOVTS €Vl QUG TNRd
Eexwptotd oeT dedopévmv eAéyyou (test data), ue to omola To povTéNO dev €xel exmatdeu-
tel. O mo ouyvd yenowomowluevn uévodog exnaideuone Teyvntdv Nevpovixdv Awtdwy

ovoudaleton ‘Backpropagation'™.

~ Artificial
/ Intelligence

| A
| ‘ Statistics
| Computer
| Science
Q /

Yyfuor A”5: H oyéon tng pnyaving péimong pe dAla emotnugovixd media.

A’.2.1 3Suveluwtixd Nevpwvixd Aixtua

To Xuvehxtixd Nevpovind Aixtua (ENA) eivon pa xotnyopion Teywntidv Nevpwvixdv
Awtinv (TNA) nou npwtospgaviotnxay otig apyés Tou 1990 xau tor omola €youv oyediooTel
€W Yo TNV ovory VORLOT) SLoBIAC TATWY aVTIXEWEVKY, Tapouatdlovtag UPnio Badud avoh-
AolmTNG CLUTEPLPOEAS XATA TNV UETAVETT), XALUIHWOT), OTEEBANMOT %ot GAAEC TORAULOPPWCELS
e woodou. To Buvehxtnd Nevpwvixd Alxtuo opyavovovtow oe enineda, xdde Eva ex Twv
onolwy extehel war pordnuatid tedln. [oAld enineda Siacuvocovtar oynuatiloviog €vay xa-
TeLYUVOUEVO dxuxho Yedpo. ‘Otav yenoionotodvTal Yo TNV Toa&vounon emxovewy, to LNA
Talpvouv ©¢ €lcod0 TNV EoOvVa oL TaEdYoLY €V BIEVUCUN AO GXOE TOU LTOOEXVOOUY TNV
xAdom oty omolo avixeL 1) exdva. Xe oyéorn ye ta TAHews Slocuvdedeuéva TNA, to ENA
drodéTouv o €EAC BIPOPETING TOLOTIXG YOEAUXTNELOTIXG: o) OL VEUPMVES Xdde emmédou dev
elva oLVOEDBEUEVOL UE OAOUC TOUC VEUPWVES TV YELTOVIXWY ETUTEOWY, AAAS UOVO UE €Vl ULXpO
TAAYOC amd TOUG VEUPWYES TOU TROoNYOUUEYOL emEBOU 0 xadévac, B) ot vevptveg xdie emi-
Tédou potpdlovton xowd Bdern uetadd toug, oe avtideon pe ta mapadoctoxd TNA onou xdde
VEUPMVAS €YEL TO 81X TOU BApOC Xat Y) AvEUESH 0T ETYEEOUS ETUTESH VELPOVWY UECONIBOUY
BLUTAEELC TTIOU TEAYHATOTIOLOLY Ywelxn) untodetypatondla. Me ta mototixd autd SiopopeTind
YAUEOXTNEIOTIXG, Ol EQEUVNTES TOL TpwTo-oyedicay To XNA emyelonooy vo EVOOUATOCOLY
TEOTERN YVAOOT 6T dopun Tou BixTOoU, OTWC Yo TUEABELYUA OTL Ol EXOVES EYOLV EYYEVOC

diodido oty doun [Yan9s].

224x224x3 224 x224x64

56
28x28x512 rf;”‘HQ
T _1x1x4096 1x1x1000

@ convolution+ReLU

@ max pooling
] fully connected+ReLU

f 1’ softmax

Yyuor A”.6: Topdderypa evog Luvehxtinol Nevpwvixol Awxtdou: TIodld enineda totodetodvron to
€vol JETE To GANO xou Ta dedopéva péouv Tpog wiat Lévo xatevduvor (tpoc ta dedid). To dixtuo 'VGG-
16’ mou mapouctdotnxe to 2014. To povtého autd métuye 92,7% top-5 oxpifea otov dorywviousd

tadvounone emdvey Imagenet.

Yo Yuvehtind Neupovind AXTud GXEQPTOUACTE TOUG VEUPWYVES TOU XAUE ETUTEDOU 1
0pYOVWUEVOUS GE XUPBIXY| SouT xat Tar SEBoUEV Tou lcépyovTal xat eE€pyovTal o xde enine-
00 wc éva cVVoAo amd Olodtdotatoue Tivaxec. Ou dioddoTaTol Ttivaxee eloddwy xou eEO3wV
ovopdlovton xovahio 1 ydeteg yapoxtnetoixwy. To mo Baocwxd eidn emmnédny ye to onola
ouvtidevtar XNA etvar: o) To cuvehxtind eninedo, B) 1o eninedo ywpeixic uroderypotolndiog

Xl Y) T0 TAAEWS SLocLVOEDSEUEVO eninedo

To cuveAixTixd eninedo

To cuvehixtixd eninedo anoteAel T0 ONUAVTIXOTERO SOUIXG CLUOTATIXG TwY NNA, 61K
IAOOTE TO GVOUd TOU UTOVOEL.

To ouvehixtixd dixtuo e&dyet N xavdhio €£660v, and M xavdio E.0600U, EXTEAWMVTAS TNV
TedEN TNg cLVENENC peTal xdde evdg and tor M xavdha eioddou e N gidtpa. Kdde gpihtpo
éyel dwotdoeic KaeKaM. Kdade évag and touc KxK Swoddotatoug mivoaxes ovoudleton
muprvag. Kdde o and tic N - K - K - M rmoapopéteoug twv @iktpwy ovoudleto Bdpog.
Kdée vevpwvog tou emnédou cuvdéetal oe €va VB0 VEUROVWY amd TO TEONYOUUEVO ETENEDO,
ueyédoug KaKaM. Av ta N xovoha €€680u €youv péyedoc H - H to xadéva, t6Te Yo
NV exTéAeot) Tou cuVEAXTIXOL emumédou anartovvton H - H - N - K - K - M mohhamhactacyot.
Trodétovtag 6Tt ol Xavdhior €L06B0U €Youv TIC (Bleg BLUOTACES UE Ta XovdAla €€680L, T

eUTEOoVLOL LETOUPOEE BEQOUEVWY oE auTd Tal Ttimeda utohoviletan wc:
Mme METAPOP M Y c:

Vn=1:N (IIMdoc v xavahidy e£650u)
Vi=1:R (ITAjdoc ypouudv avd xavi)
Vj =1:C(IIMidoc otnhédv avd xavit)
M K-1K-1
Flni gl =t + 30 5 S ®fm,i+aj+9-wm,zy] (A1)
m=1 =0 y=0
6mov

o F elvon €vog TavuoTAHSC TOL TEPLAOBAVEL ToL XovaALaL TNE €€680U

e b[n| eivan pror petaBAnt téAwone mou mpootitetal o€ x&e oToLyElo TwY xavohidy E£650L

n
' /7 /7 4 /
o ® clvon €vag TaVUOTAC TV KAVIALDY ELGOBOL

o w €vag TaVUoTrS antd piATea Tou éuae To BiXTUO GTO GTABIO TNG EXTULBEVOTG

To yéyedoc xdie dobidoTtatou xavahiol e£680u o1 ULor BIdoTACT) UTOREL Var UTOAOYLOTEL
oe:
H' - K + 2 * P ’
Hyyp = — 3 +1 (A".2)

onou Hjp, o péyedog tng Wiag mAeupds Tou doddotatou mivaxa etcodou, P to mhidog

TWV UNdeEVIX®Y oToLyelwv Ue Tor omola Yo UEYUAMOEL TO XUVAAL ELGOBOU KoL Y ENOHIOTOLELTOL
yioe vo puduioouge to péyedog tng €€660u xou S To Brua pe to omolo o doddcTtatoc KK

TLUENVOSC “YAUOTEAEL EMAVE GTOV TVOXOL TOU XAVIAOU ELGOBOU.

e

Syfuo A'7: H Baow npdén tou cuvekxtixol emnédou. Ovoudletar cuvEAEY, ahAd xat’ ouciov

TpoXELTAL Yia Blodldotaoy eTepocuoyéTion. ‘Evag 3z3 muprvag YAuotedel ndvew and éva 4x4 xavdil
ewbddov. H;y =4 K =3, 5 =1, P =0. To xavdh e e€6dou Va €yel diaotdoeis 222. IIny:
[Dum16]

Criginal Gaussian Blur Sharpen Edge Detection
0 0 0 1 1 2 1 0 -1 0 -1 -1 -1
0 1 0 16 2 4 2 -1 5 -1 -1 8 -1
0 0 0 1 2 1 0 -1 0 -1 -1 -1

Yyfuor A”.8: MuvéEhén wiog emdvag Ye yvwotolg nuprveg and to nedio g ‘Opaong Trohoyiotov:
Blur, sharpen, edge detection. Yta Xuvehxtuxd Nevpwvixd Aixtua avtideta, ol muprveg elvan ot
petoBAntéc mou Vo puoTOOY Y Vo TPOCEYYIOOUYE TN CUVEETNOY MOV ANOTUTWVEL TNV EXOVA
€100 TNV xUTEAANAN Xhdon e€650v.

10

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
®x[:,2,0] wl[:,:,0] wll[:,:,0] ol:z,2,0]
0 0 T -1 1 0 1 7 3
0 0 0 10 5 1
0 0 -1 0 -1 3 4 7
0 0 will:,:,1] ol:z,2,1]
0 2 0 0 -1 0 3 -3
0 2 B 2 93
0 0 -11 -1 53 4
x[: wll:,:;2]

0 1 1 0

0 0 1 0

0 -1 1 -1

0 Bias bl (1x1x1)

0 bll[:,:,0]

0 0

0

x[

0

0

0

0

0

0

0

Syfua A”9: Tapdderypo tne tpioddotatne cuvééne: Telo xavdhio elo680u cuvelicoovton pe 5o
pikTpa, Topdryoviag 800 xoavdha e€680u. IInyn: [Karb]

11

A’.3 Yvotowyla Entonia I[lpoypapuatilopevey TTuhay
(FPGA)

To FPGA elvon piar teyvohoyia emavadioadop@oileveny OAOXANEOUEVKDY xUxhoudtwy. To
TAEOVEX T QUTWY TWVY LOVAdWY efval 1) SuvaTOTNTA LAOTOINCTNEC EEEWBIXEVIEVWY GUGTNUATWY
Toh) VYNNG ToEUAANALAG, ETITUYYAVOVTAS UE QUTOV TOV TEOTo emdOoE TON) LYNAOTERES
a6 %OWEC EMEEEpYUoTNES LOVADES. T'lal TOV TEOYPOUUATIONO TOUS YENOLOTOUVTAL YADGOES
TepLy papric UAoL 6mwe 1 VHDL, xadog enlong xou teyvirée udmidtepou emnédou agaipeong
and 1o Vhxd (High Level Synthesis). Ta obyypova FPGA nepulopfdvouv mhndodpeo and
BLoUOPPOVUEVES NOYIXES HOVADES, Xl ETIONE Xo LOVADES EEEIBUEVUEVV AELTOVRYIWY OTIWS
uvAueg SRAM, DSPs, Ethernet mounodéxteg. Emmpdodeta, mhéov tonodetolvton pall ue
uxpoenegepyaotéc omwe autol g ARM, oe wo xown dngide, oynuatilovtag ctepoyevi
Yvothuata oe Undida (SoC) yia vo utootne{Zouy xat BUVATOTATES NOYIOUXDY VAOTIOLAGERY

TAUTOYPOVA UE TOUC ETUTOYUVTEC UAXOU.

Input/Output

[10B]
B \I .
[10B]

Switch
Matrix

I
I
-

|
1
1

[
I
-

EEET

Configurable
Logic
Block I

L

Sy A”.10: H npoypoppotilouevn oy twv FPGA

[Mo par wotopuery avaoxonnorn twv FPGA xa tn ¥éorn toug 610 olunay Ty nuiaywyoy
xou TV Pnelaxadyv cusTnudtwy napaméunovue oto [WoolT7]. T wa obyypovn olyxpelor toug
pe v teyvohoyio twv GPU oto [Berb).

A’.3.1 3uvehuxtixd Nevpwvixd Aixtua o FPGA

Enl tou napdvtog, oTic TEplocbTERES TERINTOOELS 1) exTtoldeuot Twv Teyvntdv Nevpwvinwmy
Awxtdwy npoypoatonoeiton o xdptec yoapixdv (GPU) xa oe molunbpnvous enelepyactés
(CPU). ‘Ocov agopd v eunpdota diddoon twv ENA vty extéheon e to&vounone,
apXETEC LAOTIOAOELC Xt TeoTol oyediaone ot FPGA €youv npotoel ta teheutala ypdvio.

H teyvoroylo twv FPGA éyer avoderydel we pio e€onpetind) Aoon yia Ty ulornoinon ENA oe

12

eVoUATLUEVY cucThuata. Opiouévol Yo autd Adyol ebvon:

e Ta Teyvntd Nevpwwixd Alxtua elvar eyyevedg TOAD YeYdANC TapaAANAlUS UTONOYLOTL-
%8 cLCTAHUNTA Xt ohyOELIUOL, Ywelg UTE cLVDYXES BLAXAABNOOELS. Ol aEYITEXTOVIXES
FPGA oyedidlovta wg €etdixeupévou TOUTOU UTOAOYIO TIXA GUC THUOTA UEYSANG Tapoh-
Anhioc. And tnv drodn tng mapakiniiog ta yopoxtnetoTind twv TNA Beloxovton oe

GUUTAEUGT) UE TG BUVITOTNTES Tou poc@épouy To FPGA.

e Ye mohhéc egapuoyéc v LNA amouteiton Tor EUTAEXOUEVO CUCTHLOTA VoL Efval ixed oe
péyedog, v £YOUV YoUNAT XATAVIAWDCY) EVEQYELS XAl YEHYOPOUS YPOVOUS UTOXQLCTC.
To FPGA mpoogépouv VIETEQUIVIOTIXG UTOAOYIGTIXO YPOVO 0L YOUUNAY XAUTAVEAWON

EVEQYELOC.

o YTIc U€peC Uag LTdpyEL UEYAAO Tedlo Epeuvacs YUpw amd tot XNA xou VEES ooyl TeEXTOVIXES
npoteivovtal cuveye. O apyttextovixéc FPGA umopolv va emavadiapoppwioly kote

VO GUUTERLAOUBAVOUY 0TN AELTOURYIO TOUC TIC VEEC TEYVIXEC TWV EXAGTOTE XOADTEQWY
ENA.

o To XNA éyel anodeyydel 6Tl unopolv va SoLAEpouv xohd pe younine aprduntixhc
axpBetag mpdlelg xou dedouéva. Ou opyitextovinéc FPGA oyedidlovtou ye mpooap-
poopévo péyedog datapath yioa v xdde eqopuoyr. Me autd Tov TEOTO amanteiton
Ayotepn uvAun xou unopel va emiteuydel peyohiTepng TUXVOTATAS AOYLXY GTO TOLT, TO
ornolo odnyel o adENoN TV TUPIAANAWY UTOAOYLO TIXWY LOVADWY XUl CUVETWS OE YET
yopdtepn extéleot) Tou XNA, ywpls onuovtind xd6ctog otny axpBeta Tadvounong mou

AUTO ETUTUYYAVEL.

INo to meoBinua tng anotinwong apyttextovixey YNA oe apyitextovinéc FPGA €youv
npotoel mAdog npoceyyicewy. Tlpdoputa UEPIXEC AVUOHOTACELS TWV TEOTEWVOUEVWY TEOGEY-
yioewv dnpootebtnrav [Abd18al, [Guol7], [Zhal8] . Xuvoliloupe to Boowxd Toug evphuota

WS TPOS TIG TEYVIXEC TOL EQUPUOLOVTOL GTNY EMOUEVY] ELXOVAL.

VOII 020 YN ML loanXonns ala mA m301AAz30001 S3aong 10y 1177,y ol

swylo3)y
|[opow 92404 yoJeas
auljooy a1nig 213SIN3H
{ uolneso|dx3
STH uoyisodwodaq aoeds
opeAIA Touado an|ep Jejn3uis Suiuunug usisag
“ofensuer BRI OHomaN.
! sisayjuAg | uoneussauday BuiL | Buyoaun | ssasouq
uonduasag : U104 paxi4 Apaeds d d
QLN\S_U._NT_ _®>®|_ IM_T_ ! : 001 007 ;O_%mwmo
uoljeJauan uoileziwndo uoneziwndo
alempieH [opow NND JUSWAAO|A BleQ 13 WSI|9||eded

SNND jo
UOI1eJ3|922Y VYO d4

144

peJ3oulpy

XlJ}e|Al 01 UoIlln|oAUO)

(IWW39/|00zwWi)
uonedldiyniy

uoneziwnindo
dlwyos|y

13

14

A’.4 Exrnaidcsuorn XNA xouw BeAtiotonoinon

Yy ouyxexpiévn epyacta exnadedoope €vo SNA yio Tagvounaot 80pupopney EOVmY.
Xpnowonotfoaye to eretepa ntpocPdoito ovvolo dedopévev SAT-6 airborne dataset [Bas15],
70 omoio arotehelton and 324.000 ewdveg exnaideuong xou 81.000 eixdveg eréyyou. O eixdveg
auTéG ebvan xoupdTior Twv 28X 28 cixovocTolyeiwy, pe éva uétpo ywelxy axplBela avd eixovo-
ototyelo, Tou €youy e€oydel and uPnirc avdluong dopugopinéc exdveg amd To NAIP dataset.
HepthapBdvouv €€ xatnyoplee xdhudne yng: dyovn yn, 0€vtpa, ABAdLo, BEOUOUC, XTHRLAL XoL
vddTveg pdleq.

: -it?

Sy A’ 12: Toapadetyyata edvov and to SAT-6 airborne dataset.

Iow v exnaidevon tou XNA yenowonowooue to Caffe framework. To Caffe elvan
évo epyahelo yio Pohd pdinon mou avantOydnxe omd to Berkeley AI Research xou amé
CUVELGQEPOVTES TNG XOWVOTNTAS TNG UNYAVIXAS Uddnong.

To XNA nou exnadetoaue Baciotnxe oty dour| xan 6Toug xovévee pdinong tou Cifar-10
Full CNN, oyeduouévo and tov Alex Krizhevsky. To apyixd dixtuo otdyeve atny tadivoun-
o1 emoOVLY 32 X 32 eixovoc tolyeiwy oe déxa xhdoeic. H dour Tou dixthou gaiveton 6tny exdva
A’13. To ouyxexpyévo povtého emtuyydvel udmAy) oxeifBeio Tagvounong ota dedopéva yag,
eV TapdAAnha Ywedel otny on-chip pvAun tou Xilinx Zynq Z-7020 SoC. Toutdypova el
uxeoTepeS LoloyloTég anarthoelg and LNA neplocdtepwy emnédwy. To yopoxtnelo Tixd

aUTd TO xANoTOUV LOLUTERA TOUELACTO POVTERD YioL TNV TEPIMTWOT| UoC.

15

In: 3ch, 32x32 3 In: 32ch, 16x16 | In: 32ch, 8x8
Out: 32ch, 32x32 Out: 32ch, 8x8 | Out: 64ch, 8x8
Pad: 2 Pool: Average Pad: 2
Kernel Size: 5 Kernel Size: 3 | Kernel Size: 5
1 Stride: 2 Stride: 1
\ﬁ/—/
Classes

Eyfua A”13: H dopn tou Cifar-10 Full ¥NA.

A’.4.1 Tlpocappoy” tou XNA poviéAou GTNV NERINTWOY] oG

o AN\ayh TwV 068wV xou €£60wy clupwva pe to SAT-6 dataset Auty
elvon uior Tpoavrc ahharyr), TO dpyXd HOVTENO OTOYEUE OF exOVEC 32 X 32 Ue 0éxa

XAJOELS, EVEK TO DX Uoc OF ExOveS 28 X 28 €€L xAdoEWV.

o Agaipeon tou xavaiiol NIR and ta dedouéva ewo6dou. Tooo oe mponyo-
Uuevee epyooiec and) Pihoypagia ([Papl6]), 6co xa péoa and tn duad yog Soxuyr,
emBefouwoope 6Tt 10 cUYXEXEWEVO XNA, 610 cUYXEXPIWEVO GUVONO BEBOUEVLDY AEl-
ToupYel EZUEETING Xl YwplC TO CLUYXEXEWEVO Xavdhl eloédou. And tnv dnodmn tng
oyedloong Tou VAoV autd elvon Bohixd xon onuovTied: Arydtepa dedopéva oTny elcodo
oNUAtvOLY ALYOTERT ATATOVUEVT) UV X0l xeOTERO TAHVOC UTOROYLoU®Y. Eudixd yia
T YNA ta onolo €y0uv UeYIAT UTOAOYIO TIXT) TOAUTAOXOTNTA 1) UELWOT) TV BLIC TACEWY

/ 7 /. 14
€10600U elvor TOAD CNUOVTLX.

o Agaipeon tou Normalization eminédou. To teheutala ypedvia 1 CLVEIGQOEA
AUTOV TV ETTEOWY oTny axpifela Tou dtLou augePnteiton xou oTA TO TEOGPITA
YNA éyel nder n yprion tou ([Karc], [Chel6a]). Xtnv duad poc nepintwon mpdypo-
TL N apalpect| Tou Oev elye xapla eminTtwon oty emTUYYAVOUEYY oxp(Bela. BUVETOC
T0 Vewphooue TEPLTTO Vo LAoToNUel T0 oUYXEXEIEVO ElB0C ETMEDWY OE Uiar oy Edio-
o1 vhixoL. Emnpdoveta mpenetl va onueidooupe otL too Normalization eninedoa €youv
Ayotepec Multiply-Accumulate npdgeic and tor cUVEMXTIXG ETITESY, TEAYUATOTOLOVY

ouwe dlnpéaelg pe pn-otatepoie aprduole, To onolo eival UTOAOYIG TG axEl30.

e Xprion wovo Tou max pooling yia TNV ywewxy vrnodelypatoAndia Twv
XAVAALOY L0000V, XT0 dpyixd YovTélo To eMINEda MOU eXTEAOLY TNV YweixY
urodetypatoAndla, yenotwomooly eVOAREE To PEYIOTO TOU XAUe TUETVO Xol TO UECO
6p0 ToL TUET VA W¢ TEAEeLC. TMar var €éyouue €val TepLoGOTERO eviaio BixTUO anogacicoue

audaipeTa Vo YpNOILOTOACOUUE UWOVO TNy Tedln Tou UeyioTou.

16

o AN\aYH TWV UNER-TOEAUETEPWY TWV EMNESWY LTOdelYaToANiag yio
v eniteudn cLUUETEX®Y StacTdoewy e£66ou. To Caffe framework dev
uroroyilel Tic dluoTdoelc €EOB80U TWY CUVEMXTIXMV ETUTEDWY %ol TWV ETUTEDWY UTO-
detypotohndlog e tov (Blo axpBig TedTo. XTNV TEPITTWOT TOL CUVEALXTIXOU ETITESOU
o TEOYYUAOTOLEl TEOC Tal X4Tw, €VE OTo eninedo unodelyUaToAnplag oTEOYYLAOTOLEL

mpog to mavew. H wa Sidotaon xdie Siodido tatou mivaxo e€660u utoroyileton we

Input_height — K [_height
Pooling Output_height = ceil(nput-heig ernel-hetg + 1)

Stride

7, Z 7 4 4 7 7
Orav to mopandve xAdoua dev etvan axépatog, To Caffe vhomolel Tnv otpoyyLAOTOMOT
TWV BIOTACEWY TEOC TA VL TEOCVETOVTOS UNOEVIXG OTIC UIOEC oMo TIC oxUéS xdrde

HOVOMOU ELGGO0L.

YTg eXOVES Tou axohoLJoUV AMOTUTIMVOVTUL YUEUXTNRIOTIXG TNG UEYLTEXTOVIXNS TOU
"Modified Cifar-10 Full” ¥NA mou yenotuonololye.

vJo 'l Max Pooling
28x28 28x28 14x14

Kernel: 2
Stride: 2
32CH IWEXSEelelllle]
Convol 2 32CH | Kernel: 2
7x7 Stride: 2

P Yo"l Max Pooling cernel: 3

Convolution Kernels: 5x5 FuIIy

Stride: 1 Connected
Padding: 2

Yyfuo A”.14: To ”"Modified Cifar-10 Full” XNA.

17

Mace (M)

Multiply-Accumulate
Operations per Layer

Convl

Conv2

Conv3

Ipl

thiveights (k)

60

50

40

30

20

10

Convl

per Layer

Conv2

Number of Weights

Conv3 Ip1

Yy A'15: To mindog twv npdéewmv xou twv Bapmv avd eninedo oto ”Modified Cifar-10 Full”.

data Input 28x28 3 28x28 activation: 2.35k
. . activations: 25.00k
convl Convolution 3 2Ex 2R 32 2Bx2R Mace: 1.88M L
parameters: 2.43k
pooll | Max Pooling a2 Iy 2K a2 14x14 Comp: 25.00k activations: 6.27k
relul RelLU 32 14x14 32 14x14 Comp: 6.27k activations: 6.27k
conv? | Convolution | 32 14x14 32 14x14 | Mace: 5.02v | 2ctivations: 637k
parameters: 25.63k
pool? | Max Pooling a2 14x14 32 7T Comp: 6.27k activations: 1.5Tk
relu ReLU a2 T a2 7T Comp: 1.57k activations: 1.57k
convd | Convolution a2 =T 64 T Mace: 2.51M ;::nazzrn: 5311;;:
poold | Max Pooling 64 TXT fid4 3x3 Comp: 5.18k activations: 576
relud ReLU fid 3x3 64 3x3 Comp: 576 activations: 576
ipl |Inner Product| 64 3x3 6 ix1 Mace: 3.46k activations: §
parameters: 3.46k
add: 6
prob Softmax B 1x1 G 1x1 div: 6 activation: 6
expr 6
Mace: 9.41M | actlvations: 53.69k
TOTAL Comp: 44.96k |parameters: 82.79k

Eyfuo A”16: Avdhuon tov emnédwy tou "Modified Cifar-10 Full” ¥NA.

18

A’.4.2 Aroteléopata exnaidevorng tou Modified Cifar-10 Full ¥NA

To SAT-6 6Ovoho BeBOUEVLV EIVAL YWEIOUEVO EX TWV TEOTERKY GE GOVOAO EXTALBEVCTC Xalt
oUVoAo ehéyyou. 'Eyovtac xatd vou 4Tl T0 GUYXEXPWEVO GUVORO BEGOUEVMY ONUOCIEUTNXE UE
oxomo6 ahyopldpoug Tng unyovixhc udinong, dev mpayuatonotiooue xadoptoud, enadinomn v
AATOLO UETACY NUATIOUS TwV 6edouévev. To uévo 6tddio npo-eneepyaciag mou napeUBEAAeToL
avaueoa oo dedouéva exdvag xo 1o ENA elvon 0 v xovdhl UTOAOYIOUOS TOU PUEGOU GEOU
OAWY TV EXOVKLY xal 1) agaipect) Tou. ‘Ocov agopd Tov ahyoprduo exudinone xou TG UTER-
TUPUUETEOUC TIOU TEETEL VoL pUIULOTOOV Ylol TNV EXTOUOEUGT], OXONOVUHCUUE TO TOEAOELY UL
tou Cifar-10 Full ¥NA. Evtég €& emoydv exnaldevong to dixtuo métuye top-1 axpifelo
tolwvounone 98,8%. Xtnv enduevn exdva amoTUTOVOURE TN dtodixaoior Tne extoddeuoTe.
Yuyxpltxd amoteréopata Ue dAAeg wedodoug and tn Pubhoypapia, enl tou (Blou cuvohou

dedopévey Topouctdlouue oTny exova A’ 18.

1.8 T T T T — T
train loss

test accuracy ———
16 test loss .

14 1

12 1

0.8 1

0.6 1

0.2 rhbalil)
'"‘F" l"""]-'].1 || I

I aLll
'|l"l'|"""r"||Fl i i ‘-.l i Sl gt L L) i1

Ll A il A !
FT e ot WP AT e

0 2000 4000 6000 8000 looc00 12000 14000

Yyfuor A"17: Training loss and accuracy of the "Modified Cifar-10 Full” CNN model, for the
SAT-6 dataset after 4 epochs of training.

19

CNN meodel (this Thesis)

DBN [Basl5] B1.7T8 76.41

CNN [Basl5] B6.83 79.06

SDAE [Basl3j] 79.98 T78.43
Semi-Supervised [Basli] O7.95 03.92
Pretrained-AlexNet [Vakl5] 00.46 09.57
AlexNet [Paplf] 00,498 09.93
AlexNet-small [Paplt] 00,56 99.90
VGG [Paplf] 00.98 09.98
"Modified Cifar-10 Full" 099.09 08.8

Yyfuor A”18: Yuyxeitind anoteléopata oty axpBela tagivounong twy dedouévev tou SAT-6 air-

borne dataset pe pedodoug an’ ™ Pi3hoypapio.

20

A’.4.3 3Svumeélovtag to XNA: BeAtiotonoinon wrixoug AEEng

To Caffe framework, omwg xan dAAo epyaheia exnaldevong dXTLKY, YeNoylonotoly opll-
unTo) axeifelor 32-Bit xivntAc unodlac ol 201600 oL MEdEelg ue oTadepr] UTOBLIG TOAY
amoutoly AtydTEQOUE TOPOUE Xat Toupldlouy xohltepa o apyttextovixéc FPGA. "Eyel enlong
avadeytel ta Tedeutala ypovior 6Tt T XNA unopodv va AltoupyHoouv xaAd xal Ue Alywv
Imelwv aprdunuxy otadephc unodiaotorrc [Gysl6], [Could]. Ye auth tn SmhwpoTixs epyo-
ola yenowomololue To Ristretto, o enéxtaor tou Caffe yio Tov npocdlopioud tng enldpaong
Tou unxoug tne Aé&ng otnv axpelfBeta tou ENA pog. Xenowonotjdnxe 1o oeviplo Suvauixhc
otoeprc umodlacTorrc: Evtog xdie emmédou tou ENA 1 unodiactohy eivan otadepr|, oAAd
umopel var yetafdhheton and eninedo oe eninedo. ‘Ola ta Bden tou XNA yenowwonoolyv to

8lo mAftog and bit xou GAeC oL TWES TWV XAVAALWY €GOS0V xat €680U €YOLV To (Blo UHx0g
bit.

Ta anotedéopato Tng BIEEELYNONE ATOTUTWYOVTAL GTNY Exova A'.19 xou To cevdplo mou

emAEyOnxe yio TNV mapovoa SimAwuoTixr otny ewdva A’.20.

W A B C D E
Group
Conv Weights 8 bit 8 bit | 8 bit 4 bit | Power-of-2
FC Weights 2 bit 2 bit 2 bit 2 bit | Power-of-2
Activations 32 bit | 8 bit | 4 bit 4 bit 8 bit
Accuracy % 0.9792 | 0.9783 | 0.9489 [0.7588 0.9432

Yyfuor A”19: Arapopetixd oevdpla prixoug Aé€ng yio to Modified Cifar-10 Full XNA.

Scenario C Convl | Conv2 | Conv3d | FC
Bw Layer In 4 4 4 4
Bw Layer Out 4 4 4 4
Bw Weights 8 8 8 2
FL Layer In -1 -3 -3 -3
FL Layer Out -4 -5 -h 0
FL Weights 8 10 10 7

Syfua A”.20: To oevdplo duvopxrc otadepric unodlaotolic Tou emhéEape yia To Modified Cifar-10
Full ¥NA.

21

A’.5 TYlomroinon o FPGA

A’.5.1 TIlpoocéyyiom

Tao Luvehutnd Nevpwvixd Alxtua ebvar ey yevde TOA) UeYIANC TopoAANAloC UTOAOYIGTL-
%3 cuo THUoTo xou ahyderduol. EZetdlovtog to mpdto povo cuvehixtind eninedo tou Modified
Cifar-10 Full mopotneodue 6t autd anoteheiton amd 1,9 exatoupdeta TedEelc TOAATAACLOUCUO)-
CLUCCWEEVCTS, oL oToleg efva dAeg aveldpTnteg N pat amd Ty dhAn. To obyypova Badd XNA
ATAUTOVY TOCO UEYIAO 0pilud UTOAOYLOTIX®Y TOPWY, TOU GTNY TAEOPN@plo TV TEPITTMOEWY
ol ool 1wv FPGA Sev enopxolv yia tnv mAfen extOlin tne napahhniiog toug. Ta autd
TO AOYO X0l GE GUVOUAOUO HE TA UEYSAA TOGE UVAUNG TTOU amanToOvVToL, 1) TAEOV GUVNUIGUEVT
ey v anotinwone UNA oe FPGA eivou pe) yeron s€wtepinic uviung o amotiixeuct
HEEOUC TMV BEBOUEVLV Xal EVOS XEVTEXOV ETEEERYAOTY| 0 oTtolog GLVTOVILEL TO ToLd BEGOUEVX
Beloxovtaw xdde otyur) evidoe tou FPGA mnpog enelepyacia. Ou umohoyiotixol mopol tou
FPGA ypnowonoloivial o€ auth) TNV TERINT®ON UOVO Yl TV ETLTAYLYVOT TwV TEAEEwY Tou
nolhamhaotaopol xo cucotpeuons [Chelbb; Qiul6; Zhalb]. Xtnv mopoloo SimAwpotixd
oXOAOUUHCOUE WOTOCO Wia dlapopeTixy| mpoceyylon: O anawtioeic oc pvAun tou Modified
Cifar-10 Full ¥XNA unopolv va xahugdoiv and tnv on-chip uvriun te npoypeauuotillouevng
hoywig. e auth Aowmdv Ty mepintwon 1 yenon e€wtepinic pvAune xar CPU xodiota-
Tan TEELTTY) X To dixtuo umopel va extedeciel €€’ ohoxhripou oto FPGA. Katd autd tov
TEOTO amoPedYOUUE Ta TEOPBATATO ToU eUpovi{ovTal OYETIXA UE TO TOTE oL TOLA OEQOUEVA
Yo petagepody and xar mpog Ty ewtepxh uvAun [Zhals]. Qotéoo tavtdypova tideton
TEPLOPLOUOS 0TO PEYLOTO U€yelog edvag Tou 1 LAOTOINGT Yag unopel var utoo Tneilel xou
oto péyloto péyedog LAN. Ye xdle neplntwor, 1600 6T UAOTOWACELS Tou €Y0ouv TpoTadel
otn BPBMoYpapia 660 xou OTH BIxLd YOG, EVOLUPEPOUICTE Yial TNV ALENOT TNG ATOTUTWUEVNS
TopohAnAlag xon TNV VPECT) TNG XATAAANAOTERNC BLALOPPKOTE TOU CUCTAUATOS, Tou Va dla-
potedlel Ye TETolo TEOTO TOUG UTOAOYLIO TX0UE TTOPOUS TOU GUC TAUATOC OOTE VoL ETLTUY Y AVEL

TNV XxaAUTERY AmOdooT).

22

Treviuuiloupe 6Tt éva cuVEMXTXG entinedo L Aopfdvelr M xovdhio el6600U, BICTACEWY
Hip, x Hip, non mopdryer N xorvahior e£660u 8100 Tdoewy H oyt X Hoyt, extehedvtag N cuveliZelg ue
N gihtpa Swoctdoewy M x K x K 1o xadéva. Xtny vhomoinon XNA o FPGA eugaviCovtou
ot e€n¢ duvatdTnTeg ToRUAANALNG:

o Yy neplntwon enelepyaociog plog exdvog:

1. H nopddAnin Aertovpyia twv Sladoyixwy emmédwy. To L+1 eninedo dev ypeidleton
vor ovaével var ohoxhnpwdel mhifpwe 1 Aettovpyia tou L emmédou. Avtideta To
L + 1 eninedo unopel va enc€epydletan ta dedopéva mou to L eninedo moapdyet,

oTov puiud Ue ToV oTolo AUTE TAUEAYOVTAL.

2. "Eva cuvehixtixo eninedo L pmopel vo eneepyaotel nopdhhnia dha tor M xarvdhio
€L0600L TOL TOU AVTIOTOLY 0DV, ELOAYOVTAS EVOL EXOVOCTOLYE(D amd xdde xavaAL ovd.

x0xho pohoytol. (Evvoho M ewovootouyeior ovd xUx)ho.)

3. "Eva ouvehxtixd eninedo L unopel vo napdryel mopdAinio 6ha toe N xorvéhio 660U
Topdhhnha, €vo exxovoototyeio and to xadéva avd xOxho pohoyol. (Lovoho N

eovooToLyeio avd xOx\o.)

4. 'Eva cuvelxtixd eninedo L unopel vo enelepydleton nopdAAnio Oha tor Hyy X Hiy,
4 7 4 7 7’ 4 Ié 7
ELXOVOOoTOLYElL EVOC XAVOMOU ELGOBOL TOU, MOTE VO TORAYEL TUESAANAL OAaL Tl

Hyut % Hyyp exovootolyeion otny €€060.

5. Xe éva ouvehxTxd eminedo €vog muprvag amoteheltan and K x K PBden xou ou-
venog anoutolvion K X K nolhamhacloopol, ol omolol UTtopoly Vo UTOAOYIG TOUY

TEAAANAAL.

o YTV TEPINTOON PONC EOVKY T SLUPORETIXE ETUTEDA TOU BIXTUOU UTOEOVY VA AELTOUE-
yYoouv pipelined. e auth| TV nepintwon dev ypeidletar Vo TEPUUEVOUNE VoL eXTEAEGTO-
OV 6hOL OL LUTOAOYIGUOL Yia L EXOVOL UEYPL VoL ELOAYOUUE TNV EToUeVT. Ta SiapopeTind

OLad0y S ETUTEDA TEETEL OUWS VoL ATOTUTWVOUY TUPIAANAL GTO LALXO.

o IlopdAAnAn viomoinon ToAAATAGY, Buwy, aveldptntwyv LNA ce éva FPGA vy tov
XUTUUEQIOUO TOU POETOL TAEWVOUNONC TOMGDY EXOVKLY. AuTH elvan Uiot eTAOYY ToU TO
LA oL €YOLUE 6TN BLAIESY| g axOUa BEV PAUEVETOL VoL TNV ETUTEETEL YLaL TaL GUYYPOVOU
peyédoug XNA.

X1y mopo0od SITAWUATIXT ERYACIa oo TIC TUPATEVE TURUAANAIES EMLYELPNOUUE VoL EXTU-
ANZoupe Tic (2), (3),(5) xar tnv pipelined Aertoupyia twv emmédwy yio pory emdvwy. T va
emtOyouUE TNV pipelined Aeitovpyla TWV EMTEDWY YL POT| EXOVWYV, ATOTUTOVOUNE Xdde enine-
60 Tou ENA o€ 8ix00¢ ToU UTOAOYLIE TIX0UE TORPOUS KO YRNOHIOTIOLOVUE VAUESO GTaL ETETEDA
Vv texvxy) Tou ping-pong double buffering. T'i ta (2) %o (3) opyavidvouue xdde cuve-
A6 eninedo L tou dixthou wg éva Slodidotato Théyua 01ac Taoewy Mparaitel X Nparailel,
10 onoto nepéyel Mparaiiel X Nparaitet 0VveNxTixég pnyoavéc. T to (5) yenotpwonoolue og

Baowr) cuveAixTix povada uio pipelined cuveluctin| unyovn and Tt BiSAoyeadpio.

23

‘Ohoc o VHDL x@dwoag tng mapoloag epyaciog elvon TAHpwS TOQUUETROTOMNGCWOS Ao
éva eviafo oapyelo Blaudppwone mou mepthaBdvel Tor Uixn Twv Aélewv oe bit, to uéyedog
TN EXOVAS, TNV TUPAAANALL OTIC EIGOBOUS Xt TG €EOB0UC TWV ETUTEOWY, OLUPOPES UTER-
TOPAUUETRPOUC TV Bootxdy Tedlewy (to uéyedoc twv muphvwy, 10 TARYOC TwV Undevixy
eméxtaong, to PAue e ouvéMEng, xth). To otddo tng enahfdevone tne oyedioong Po-
olotnre oc xaTeEVIUVOUEVA TECT XU GE EMOTTEUCT) TWV UMOTEAECUATWY TWV TEOCOUOIWGEWY
oto mepBdrhov epyaoioc Vivado tng Xilinx. To atoteréoyota cuyxpldnxay wg mpog v

aprdunTix Toug axpifela ue anoteréoyata and to Matlab.

A’.5.2 Apyrtextovixy) FPGA - Ta Baocwxd ctouyesia

H Bour evoc evomoinuévou emnédou NG dpyLTEXTOVIXNG UAC omelxovileTal oTny oV
A’21. Q¢ evornoinuévo eninedo ovopdloupe éva eminedo mou exTeAEl TV TEALN TNS CUVEAL-
&ne (convolution), v meddn g ywewhc utoderypatoindiac (pooling), v enéxtoon twy
xovolov pe undevixée twéc (zero padding), tic adpoicelc v anoterecudtwy, TNV TEdEN
Relu, xadog xan tnv nepiony| e axpelfetag tov ¢nelwv eioddou xou e£66ou. To eninedo
Ahofaver 6Ny €lcodd Tou Eva eixovocTolyelo ot xdle xUxho pOROYLOU, Yo xde €va amd To
Mparatier TapdhAnho xavdhior 166800, dNAABY) GUVOAXS Mpgraiiel E0OVOGTOLYElL 0TV €{G0D6
Tou avd x0xho poroylol. T'a vor ohoxhnpwiel 1 enelepyacio OAwV Twv M xavahidy elc6d0u
xat var opary Yoy oha tar N xavdhar e€60ou Tou emmédou, yenotdonoleiton toAunheéioa oTov
XPOVO, TOGO oTaL Xxavahla €Ll0600U, 600 xou oTo @iltea. Av xou Sev oamewovileton, Pooixd
oTotyelo TNg apyLteExToVIXg elvan 0 TEOTOC UE Tov omolo cuvepydlovton xou cuvtovilovTal Ta
emuépouc pépn (control). Autd anotelel éva and o o dVoxola onpeia otn oyediaon VAo
HE YAWooeg meptypaphc LAXoL, 6mwe 1 VHDL. I tnv eniteuls) tou anouteiton e&onpetin

TEOCOY T OTNV AETTOUEQRELA.

24

#M Input
Channels Parallelly

#N Filters Par

allelly

(M channels of each per time)

N [

‘ | E I FE
| | ' IROM | ' IROM |
: ! an (N
| RAM | c I i | | |

| o)
1 1 Conv p) | " Conv | |
1 = Engine #i‘ | Engine ﬁ~—sp "i
\ € | [\
| — & ‘ 1 | |
‘ . ' ! !
3 ‘ o3 IR I
| e ' ROM | ROM
o E ep Lol
RAM 3 w ‘ \ |
} 2 | § Conv 4‘% sp | == om Conv 4\{ Sp ‘\
| I8 Engine ~ -7 Engine © - ‘
; - ! | | |
| | | |
ot e B
! = ‘ | n | = = = ‘ - ‘
‘] | | n }] | n |
| ‘ ‘ ‘ .
e - -
| | | | ''ROM |
' RAM | ‘ ‘
} M | | | B B | p ‘
\ | : !
| : |)

" Window ‘ ‘ Window ‘
_ Generator == Generator
Adder : ; Bias Adder N Bias
tree L',','/‘ ROM 1 tree ('l'/‘ ROM N
RelU & ‘ RelU&
Quantizationﬂ r‘Quantization
Pool . Pool .
RAM . Pooling « = « RAM —p Pooling o 4N Output
Layer 1 Layer N .
1 N Channels
: ‘ Parallelly
>

Yyfuor A”.21: H apyrtextovixn; Tou evonoinuévou eminédou. Extelel tic mpd€eig tng cuvéMEng, tne
ETEXTAONS TWY XAVOMDY Elo6dou pe undevixée twée (zero padding), tnv mepixony twv bit otic
elo6doug xou eZodoug, Ty Relu xau v ywewxr utoderypatohndio Bactopévn otn cuvdptnom peyiotou
(max pooling). Enépouc tétola eninedo cuvdéovton yia va oynuaticouy to TNA.

Pixel in

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]

Eytua A’.22: H Yuvehuetind Mrnyovr. AnewoviCeton yio évay mupriva dlactdoewy 5 X 5.

26

fifo

fifo

fifo

. !
g

A 3x3 Window on a

5x5 input 2D array Registers
Window

Yyfuor A'.23: Anplovpydvtag To TopdAAnio mapddupo méve oto omoio Vo e@opuooTel N ywelxn
unoderypatorndio.

C ~
\
a® o¥ LY .u e N
o o -

max |

00

[=-]

—
-
.
w
e

;-
,

Comparator tree

Syfua A’.24: Eva 8évtpo ouyxpltdv yior Ty eaywyy Tou péylotou otolyeiou amd tor mapdhinia
dedopéva atny €lcodd tou. Aomoleltan oY yweLxr) urodetypoatolndio.

27

sesse|)

Num_of_Channels

Img_Width *
Img_Width *

Output Layer

Input Layer

Syhua A’.25: H tomoloyia evic mipwe dlacuvdedeyévou eminédou. Xe TATen avToTolyEld YE Ta
napadoctond TNA.

Parallel
inputs

VY
SGSSEp

Number of classes
MACs parallelly

Eyfuor A’.26: To otouyeio mou extelel o Thipwe dacuvdedepévo eninedo. Mia MAC yovdda yia
x&de xhdon tov ENA. H apyitextovin) tou vhomolel To mhripeg cuvdedepévou eninedo eivon pipelined
WS TEOS TO TEONYOVUEVS TOU cUVENXTXO emtinedo. Moac EMTEENEL Vo YENOLLOTOCOLUE éval Uxped
mAdoc and ITohhamhaotaoTéc-XuoompeuTES, xaddg TEOXEITAL VLo TOV TOMAATAACIAOUS VOC Tivaxo
-ta Bden Tou TAAewS BlacuVEBEUEVOU- e Evar Bidvuoya -1 elcodog Tou eminédou. To didvuouo tne
elobdou yivetow dladéoipo otodiaxd.

28

A’.6 Opyavwon tng on-chip wvAung

H opydvwon tne on-chip puviung yia xée eninedo e€optdtar amd 10 TARYOC TwV ToRIAAN-
AV €608V Mpqr %ot TUREANAGY €€60WY Npq,r TOU emnédou. ‘Eyouue: Mg, uviuec RAM
otny £l6000, Npgr uviuec RAM yia 0 ywewn| uroderypotorndio, Mpyqr X Npgr pviuec ROM
yior o pihteor xo Npg, pviuee ROM yio tnv noéAwon,.

Fori=1---Mpe and j =1---Npg and Myotar, Niotal 70 GUVONXS TAVOC €1GO0WY

xan €€60wY avtioTolyd, €youuE:

e the Filter ROM;; shall contain the filters in following order:
ROM;; i= for k=1 to J\;pf“«
for v=1 to 7]\]([/}“”1
par
Filter[j 4+ (k — 1) - Npar] : Channel[i + (v — 1) - Mpqr]
end

end

e the Bias ROM;’s contents should have the following order:
ROM; j= for k=1 to]\;p:lr
Filter[j + (k — 1) - Npar]

end

e the Pooling RAM;’s contents should have the following order:
ROM; i= for k=1 to fetat

Channel[j + (k — 1) - Npa,|

end

e the input RAM;’s contents should have the following order:
RAM,; j= for v=1 to 71‘]([4‘0“”
par
Channelfi + (v — 1) - Mpa,]

end

‘Evor napdderypo anewovileton otny exova A'.27.

29

ROM (1,1)

ROM (1,2)

Filter 1, Channel 1
Filter 3, Channel 1

Filter 31, Channel 1

Filter 2, Channel 1
Filter 4, Channel 1

Filter 32, Channel 1

ROM (2,1)
Filter 1, Channel 2
Filter 3, Channel 2

Filter 31, Channel 2

ROM (2,2)
Filter 2, Channel 2
Filter 4, Channel 2

Filter 32, Channel 2

ROM (3,1)
Filter 1, Channel 3
Filter 3, Channel 3

Filter 31, Channel 3

ROM (3,2)
Filter 2, Channel 3
Filter 4, Channel 3

Filter 32, Channel 3

Syhua A%.27: Opydvwon uviune yio 32 @iAtea TV 3 Xovolody EXaoTo, Yo Vol TAEYUS CUVEAMXTIXY

unyavedy 3 x 2 (Mpar X Npar).

A’T

Egepebvnon tou yweouv oyedlaong

"Exovtoc oYeBIdoEL TNV TopoUETROTOACHY apyLTEXTOVIXY| LhoToinone Tou Modified Cifar-

10 Full XNA, xorodyacte vo puduicoupe 1o péyedog tng moparkniiog oTic €l06B0UC Xou

€€600UC OAWY TV EVOTOUNUEVKDY ETUTEDWY. ALPOopeTINéC pUUUICEL] QUTMV TWV TOUROAANAL-

OV UmopoLV v BuvdueL vor 0dnyNoouy o Etlixd BLIPORETINT CUUTERLPOEE TOU GUC THUITOC.

Mrnopolue vo aZloAOYHCOUUE T CUUTERLPOEE TOU CUC TAUATOS UE BAom TIC xdtwil HETEXES:

e ITocooTtd yerong Twyv nMépwy ToL CLCTAKATOS. Autd To Yéyedoc amotelel

T tdypova 0TdY0 PelTioTonoMoNg XU TERLOPIoUS TN oyedlaone. Aev unopolue va

umepPBolue Toug Bladé€oUouE TOPOUE UG CUOXEVHC, UAAA EMIUUOUUE Vo Toug o&loToL-

NOOVUE TAHELC.

o Xpovixr Kaduotépnon. Ebval 1o yéyetog tou ypdvou mou yeetdleton t0 cUoTnua

yior va emelepyaoTtel wo glcodo (pla emdva).

e Pudpog tagwounone. Eivon 1o mhflog Twv exdvemy mou unopel vo TagvouroeL avd

novéda yeovou (Img/sec).

e Xpovog agionoinong LAxoU. Eivat 1060016 nou ex@pdlel 1600 anoTEAEGUTIXG

YENOWOTOLOUUE TOUS TOPOUS TOU UAXOU ToU 1) GYEDBINoT Wog xatahauPBdver, dnAadt v

X0l X0Td TOCO OL TOPOL oL €YOUUE BEGUEVOEL Elvol GE GUVEYT) AclToupYIaL.

o Katavdlwon evépyetag. To 10od tng evépyelag Tou T0 cUGTNUA TOU OYESLICOUE

yeetdleTon yior T Agttovpyla Tou.

Ou eheiiepeg TOPGUETEOL TOU CUCTHUITOS TOU 0popolY TNV TapUAANAla TV el06dwy &

€€60wV TwV emmEdwY etvat oL e€AC: MELL N]{j}r, MZL2 NLZ ppL3 L3

par»

To cuvolixd Thidog

par> *Ypars Y*pars £ Ypar-

30

A6 GUVENXTIXES UNYAVES OTIC OTOlEG aVTIG TOLY 0LV elvol £ = szaa-N;alT—l—Mpor -Nlﬁfr—f—Mﬁf}-
NpLa?;. Eivar ouvetd va meplopicouye Tic TWES Tou aUTEC oL UETOBANTEC UmoEolY Vol TEEOUY.
Sty avtidetn mepintwon o ybpoc oyediaone anoteheitan and = [[o_, (Layer?, - Layer? ;) =
3-32-32-32-32- 64 puduioewc, mou eivar > 227, Ou tepiocbtepe amd autée Tic puduioeic
elvon un e@téc emhoyéc Aoyw Tou TepdoTiou apliuol mépwy tng cuoxevric FPGA nou da
xeetalopac Tay, eV xatd xavova ol cuoxeuéc FPGA nou e€etdlouye elvon apxetd mo uixpés.
Ot tpoéTOL PE Toug oToloug amoPUGioAUUE KOS Xt TOCO Yo TEPLOPICOVUE AUTES TIC HETUPBANTES
elvor Sranodntixol xan epnetpol. Ye yeydro Podud eCoptidnxay amd ahhendAiniec cuviéoelg
TANY0UC OYEDUCENDY TEOXEWEVOU VoL AmOXTHOOUNE afoUnon Twv Yeyedoy ot onola amoTu-
nwveton 1 oyedloor| pog. Mo mapathenon eivon Tt 6TIC TEPICCOTERES TEPLTTWOELS EMIUHOVUE
NPLM < Mﬁw. Avutd umopel var yivel avTIANTTO Xt omd TNV OMEXOVION NS AEYLTEXTOVIXTHC
(oyfua A’.21) 6mou aivetan 6Tt 1 abEnon twv TopdAANAwY eE68wY Npgr CUVETAYETOL TNV
av&non tou TARYoug xou GAAWY GTOLYEIWY, XL OYL HOVO TWV CUVEAXTXOV unyovoy. To o-
TOTUTOVOUUE UE UETPNOELS antd TN oUVIEDT X0 OTNY ToEoXATe EXOVA, OTOU QaiveTon OTL Lol
eVduon evog emmédou My, X Npar = 2 x 8 anoutel X2 népoug LUT xou x4,5 népoug BRAM
oe oyéon ue wa pLUwoT Tou Blou emnédou Mpyg, X Npgr = 8 X 2.

80 40 60
10 L L 50
2 60 o 30 P
o 50 g% 0
S5 40 -g 20 <E£ 30
4
3 ¥ S 15 Z %
02 10 X
= [1) 10
" 10 2 5 0
0 " 0 @
2x8 4x4 8x2 16x1 8 4x4 82 16x1 2x8 4x4 8x2 16x1
M_parallel xN_parallel M _parallel xN_parallel M_parallel xN_parallel

Yyfuor A’.28: Xpron tev népwv Tou cusTAUATOS Yo SlpopeTixés puduiceic, 6tav to Thlog Twv
CUVEAXTIXWY Unyovodv Topopével To (Blo. H adEnon twv napdhAniny elo6dwy @aivetol we TpoTYOTERT
EvavTt NG adENong Twv TUEdAANAWY eE68wWV.

31

Y roloyiopnog yeovixng xaduoTEpnong

Kdéie diodidotato xavdht ypedletn C = E? + E - X + b xOxhouc yio vo. exteheoTel
N oLVEAEY Tou pe évay muprva k x k, omou E ebvar to péyedoc tou Sobidotatou xavolon
e€68ou xou X = k—1 elvon oL gogéc mou o Tuprvas Yo Peedel otny dxpn Tou xavaklol ELlG650L
%x00¢ “YAUOTEAEL EMAVL ToL xou Va YpelaoTel Vo oAAEEEL oelpd. AuTol oL Ypdvol TpoxiTTouY
OO TNV OEYLTEXTOVIXY) TNG CUVEAXTIXNS Ny avig Tou oyedidooue. [va mporypoatotoindoldv

OAeC 0L GUVENEELC EVTOC TV ETUTESWY YpeldlovTon ot xdtwih xUxhoL unyovic:

e Layer 1 : CL=1 = 1029 - Cell(Mme1) : Ceﬂ(NpLarl)
e Layer 2 CL=2 =329 . e1l(M{7m2) . ell(N}aﬁ)
e Layer 3 : CL=3 =126 - Ceﬂ(M,,LM3) . ceil(NfL}Tg,)

Puduoéc tagwounonc

Max Latency = max(Latency™, Latency™®, Latency™®)

sec
cycles
Img

Throughput =

Design’s Clock Frequency <CZ/CZ€S> s

Maz Latency

Xpovog agonoinong LALXoU

Luvohixd TARUOG amd CUVERXTIXES UMY OVES OTO BixTUO: Z = MEL . NLL 4 ppL2 L2

par par par par
ML3 NL3
par par*

ML . NL Latency)®
Number of Relative Engines = Lz_l (par(Mazlrl)Jat(enCy) .

Number of Relative Engines

Hardware Time Utilization = 7

-100% (A.4)

32

A’.7.1 Amroteléopata e€epedvnong yweouv oyedlaong

Yyfuo A’.29: Anoteréopata e€epedivnong Tou ydpou oyedlaong Yo tela SlapopeTind ey édn cuvoll-
AWV CUVEAXTXGDY Unyovedy. BB wa avalhnon 6mou o xweog teploplotnxe VéTovTag Ti¢ eEAeVepeES
uetoPAntéc NpLamUez < Mzﬁzrallel i Ohar Tor emineda, M]f;i;llel e[L3] xo NpL;clLueu MpL;chlZel’
N M3 NEs3ua € [1,32]. Me padpouc %0xhouc OTUELOVOUUE T OROTEAEGHOTA OV
npoxOnTOLY av Yécoupe TNV TopaAAnAion TwV EIGOBWY xat TwV eE6BwWY TéTow WoTE Tt Mpar, Npar
va efvan Btanpéteg tou apyxol TABoug elcdBwY xo €€6BWY TOL TEOXVTTOLY AT TNV UPYLTEXTOVIXN
tou ENA. Xe exelvn v neplntwon odnyoduyacte ot UTOBEATIOTEC ADOELS OTWC QUTEC TOU €Y OUUE

onueldoel oto didypoppa. Ilepioodtepn cul¥tnon oto ayyAxd Yépog tng epyaoiog.

Conv. Engines Layer distribution: X:Y:Z 3 16 8
2712 3.9
Conv. Engines Grid dimensions: ApEARSL 2°2°
Xy Vo 2y
» 38 Conv Engines (0] o
e« 22 Conv Engines -
14 Conv Engines - e
4000 - LU
- L]
1 3118 «fe " T 22410
__lu!l TTE - .- .. 2°1°1
g 3000 - ¢ A e .
— T T .
)
3 L e I Q s
= - - & = & .
g‘?[}ﬂﬂ- -n:: - -. .-
P 3.3.32 VrIL = s *
|-E 1171 aadhdaldlo. S0l Wi
I & - am
L WEP. JE8 % o
1000 1 RS — L
- et
L -
o
I I I I I
20 40 60 80 100
Hardware Time Utilization (%)

SRR

Throughput (Img/sec)

LUTs

33

Z-7045
20000 <

18000
16000
14000
12000
10000
8000 @

Z-7035.

Z-7030 5

Z- 7020

6000
Z 7015
4000
”mlllll
0

2 3 45 6 7 8 9 10 1112 13 14 15

180000
160000
140000
120000
100000

80000

60000

40000
= [T

12 3 456 7 8 9 10111213 14 15

Conv. Engines Convolution
Index Layer Distribution Engines Grid
dimensions
1 6:11:11 (28) 3.11 .11
D 2°1°1
D 2 6:12:10 (28) 3.4.5
27372
) 3 6:14:10 (30) 3.1.5
- 27272
4 6:14:11 (31) 3.7.11
D 2°2° 1
. 5 6:16:11 (33) 3.16 11
2°1°1
. 6 6:16:12 (34) 3.16 4
2°1°3
o 7 6:16:16 (38) 3.16.8
2°1°2
. 8 9:32:16 (57) 3.16 16
3°2°1
n 9 9:22:24 (55) 3.us
3°2°3
. 10 9:24:22 (55) 3.8 11
3'3°2
M 11 9:32:32 (73) 3.32.32
. 37171
12 15:32:32 (79) 3.32.32
- 57171
0 13 12:64:32 (108) 3.32.32
. 421
"*] 14 15:64:32 (111) 3.32,
- 5°2°
3.32,
8§ 2°

.15

24:64:64 (152)

Eyuor A.30: Anoteréopota TV xahiTEpnY pPUIRICEWY TV TUPUUETEWY 6TaY GTOXEVOUUE GTIC GU-

oxevég tng owoyévelag Xilinx Zyng-7000 SoC. Iagouoidloupe to pudud to€ivouncng xaL Ty avTi-

otouyela tne oyedloone oe LUT. H wixpdtepn cuoxeu| oty omolo uropel va totodetnidel to Modified

Cifar-10 Full XNA etvou 1 Z-7015 Aéyw Twv anauthoewy o UvApn el TG ToYeouaTilOUevng Aoyi-

xhC.

34

A’7.2 Buyxputixn extiwnon tng vAonoinong

Méoa and v e€epedivnor Tou Ywpeou oyedlaong mpocdlopicoue 6Tl Yot TV UAoTolnom
tou Modified Cifar-10 Full ¥NA oto Zynq Z-7020, uio and Ti¢ XahOTEREC TUPUUETPOTOLNTELS
e mapodnhiog ebvor 1 [3 X 2,16 x 1,8 X 2], n onola unopel vo To€vounfioet exXOVES UE TOV
LEYloTo puiuod Yl auth TN oyedlaon xou auth TN cuoxeur. Ou AemTouépeleg TG uhomoln-
one anewxovilovton oTig €xxoveg mou oxohoutolv. Ta va emtiyelr pudud tadivounone 4650
EXOVEC TO OEUTEQOAETTO, 1) GUGKEUY| TPETEL VO TPOPOOBOTEITOL UE TOUAGYLOTOV TOGES ELXOVES
T0 BeuTEPOAETTO GTNY £l6006 Tne. Autd cuvemdyetan éva ebpog Lwvng 4650 - 28 - 28 -3 - 8 =
87.5 Mbit/sec. Lto epyoaotiiplo Microlab-NTUA éyoupe petprioet 6t 1 mpoypouuotilouevn
Aoy Umopel VoL EMIXOVOVACEL UE TOV EVOWUATWUEVO ETEEEPYAT TN UE Eva pLIUS UeTdd0ooMC
~ 3 Gbit/sec. Emnpdoieta, éva 100Mbit/sec Ethernet xahéddio unopet va xahber autéc tic
AVAYHES UETABOOTE Yiot TNV oUVOEST, Tou Zynq Z-7020 pe xduepa, xth. To emduuntd ebpog
Cwvng €lo680L elvor AoLTOY EQIXTO Xl O YEOVOS TTOU ATAUTELTOL VLol VoL LETAUPEPOUIE Tol BedoUEVaL
dev anotelel teploplopd. Enl tou napdvtog, o puidudc tadivounone tng cuoxeuic teptoplleTon
UOVO amd TNV GUYVOTNTA TOU POAOYLO) OTNV onola AELTOURYEL xou Toug Bladéctuous Topoug
oto FPGA.

YNUELOVOUUE OTL YL TOUC 0X0TOUC AUTHS TNS OLTAWUATIXTC EpYaoiog Bev xplinxe anapaltn-
TO VoL UNOTIOLACOUPE TN OYeBloT| Yo OE €val AELTOURYIXO TewToTUTO. AVt autol otoyeloaue
oty axpPn extiunon tng enidoong xau Tou x6cToUC TNE Vhomoinong evoc ENA oe FPGA

OCUOXEVEC.

FPGA chip on
Xilinx Zynq Z-7020 SoC
7 Series PL Artix-7
Equivalent
Logic Cells 85K
Look-Up Tables 53200
(LUTs)
Flip-flops 106400
Total Block RAM 4.9 Mb
DSP Slices 220

Eyua A”.31: Ou mpodiarypagéc tne cuoxeuic Zyng Z-7020 SoC.

35

L1 L2 L3 FL
Engines 3x2 16x1 8x2 6
(2 inputs each)
Slice LUTs % 13.33 | 3597 | 26.49 0.08
Slice Registers % 8.79 23.75 19.8 0.02
Block RAM Tile % | 15.71 | 18.56 | 20.71 2.14
DSPs % 0 0 90.91 8.18

Latency (cycles) 16574 | 21502 | 17022 | 288 (as stand alone)
4 (attached to L3)

Possible Clock (ns) 6 9 8 -
Dynamic Power (W) | 0.412 0.46 0.752 0.026
Device Static Power | 0.106 | 0.107 0.11 0.101

(W)

Sy A”.32: Anotehéopota tng ovvieone g mpotevduevng apyttextovixhic Yo o Modified Cifar-
10 Full ¥NA otnv mhat@épua Zyng Z-7020 SoC avd eninedo.

Deliverable Design

Algorithm : “Modified Cifar-10 Full” Convolutional Neural Network

Target Xilinx Convolution Engines 38
Platform Zynq Z-7020
Slice LUTs 75.81 Latency 0.5510
% (ms)
Slice Registers 52.36 Throughput 4650
% (Images/sec)
Block RAM Tile 57.12 Hardware Time 87.6
% Utilization %
DSPs 99.09 Image size 28x28x3,
% (RGB) 8-bit values
Clock 10 Word Length Inputs & Outputs : 4 bit
(ns) (100 MHz) Conv Weights : 8 bit
FC Weights: 2 bit
Total On-chip 1.76 CNN's Classification 94.89%
Power (W) Accuracy
Designed VHDL Workload per Image 18.864
with (Million OPs)

Syhua A".33: Anoteréopota tne oUvdeonc g TpoTevdpevNS apyttextovixfic Yo To Modified Cifar-
10 Full ¥NA oty mhatgoppa Zyng Z-7020 SoC yiot 10 cuvohixd dixtuo.

36

Kodog n apyitextoviny) mou oyedidooue Pooiletar otnv on-chip uvAun, dev umopel va
unootnel&el edveg onotoudrrote peyédoug. Nto Zynq Z-7020 SoC unopel va enelepyaoTtel
emoveg Yéypet mepinou 3 @opéc to uéyedog Twv ewdveov tou SAT-6 airborne dataset. O

Xpovoc extéheons auEdveton TETpoywxd pe To uéyedog tne emdvag (edva A'.34).

1,6
1,4
1,2

0,8

0.6 Hms
0,4

*m [

,

28x28 32x32 42x42 64x64 84x84

Execution time (ms)

Input Image size (pixels)

Syfua A’.34: Xpbvoe extéleor tou 'Modified Cifar-10 Full’ ¥NA oty npotevdpevn apyttextovixt
v to Zyng Z-7020 SoC ot cuvdptnon ue 1o péyedog tng edvag. To Zyng Z-7020 umopel va

unootnel€el etdveg uéypl ~ 50 x 50 exovootouyela.

37

250000
200000

Zynq

/7020
S N
|

150000
100000

mLUTs

Registers
Block RAM

0
150000
100000

50000
120
100

{ n mpotewoduevn op-

7

Eyfuo A”.35: H petaforr) tou mijdoug twv moépwv FPGA nou yenowonote

Ménc. H

fxoc e
4-bit ei0ddouc xar e€600UC

7

Bdhheton TO W

7

Zynq Z-7020 [3x2, 16x1, 8x2|, étav yeta

7

YLTEXTOVIXY YOl TO

e o

7

MZnc (A'4.3) avédele ta 8-bit 3

7

{non oto uhxoc e

7

BehtioTomno

7

éval edvoV.

dedop

’

eV

YNA ota ouyxexpl

z

N Y& TOV CUYXEXQLUEVO

7

AN emhoy

’

WC HATA,

Implementation | Device CNN Input Image Programming Bitwidth Freq Power Throughput
Model Size (Img/sec)
VPU: Fathom NCS “Cifar-10 32x3x3 Caffe software 16 fixed N/a N/a 232
[Xyg17] Quick”
VPU: Myriad2 “Cifar-10 32x3x3 C & Assembly 16 fixed 600 MHz 1,09 W 909
[Xyg17] Quick”
CPU: Intel Xeon E5-2650 v2, “Cifar-10 32x3x3 Caffe software 32 float 2.6 GHz N/a 1000
4 cores [Xygl7] Quick”
CPU: Cortex-A9 Xilinx Zynq “Cifar-10” 32x3x3 Caffe software 32 float N/a N/a 10
ARM Z-7020
[Dan18]
FPGA: Xilinx “Cifar-10” 32x3x3 Automatically 16 fixed 125 MHz N/a 6080
FpgaConvNet XC72045 generated HLS
[Ven17]
FPGA: Haddoc2 Xilinx “Cifar-10” 32x3x3 Automatically 6 fixed 54.17 MHz N/a 17633
[Abd17] XC72045 generated VHDL
This Thesis Xilinx Zynq “Modified 32x3x3 VHDL Dynamic Fixed Point 100 MHz 1.76 W 3778
Z-7020 Cifar-10 Full” Inputs & Outputs : 4
Conv Weights : 8
FC Weights : 2
Synua A’.36: X0yxplon ye dhheg vhonooelg and 1N Bifhoypapla, extedwviac to 7 Cifar-107 XNA.

38

39

16000
14000
12000
10000
8000
6000
[|
4000 Img/sec
2000 l
0 o — || ||
& H e

Q~® $C)% & &> R RS e,é’\

& S
o & W g o
A) S 3
P \(»\\e} &
&

Yyhuor A”.37: B0yxpion pe dhhe vhonooelg and T Bihoypapla, exteddvtag to 7 Cifar-107 YNA.
Ta FpgcaConvNet xou Haddoc2 eivar FPGA vionowjoeic eni tne Xilinx Zynq Z-7045 cuoxeuvfic, N
omola elvan ~4 @opég peyahitepn and v Zyng Z-7020

40

Syfuor A”.38: Liyxpon e apyrtextovixic FPGA g nopoloas Simhwpatinic Ye Tic VAOTOOELS

Twv avtopatonomnuévewy epyoreinv FpgcaConvNet xou Haddoc2 ent tne (diac FPGA cuoxeunc.

Device : Xilinx Z -7045

CNN : Cifarl0 Input Image Size : 32x32x3
Implementation Bitwidth Freq LUTs % DSPs % Power Throughput
(Img/sec)
FpgaConvNet (v) 16 fixed 125 MHz N/a N/a N/a 6080
Haddoc2 (vi) 6 fixed 54.17 MHz 79 % 0% N/a 17633
This Thesis Dynamic Fixed Point 100 MHz 75% 88.89 % 4.79 W 15115
Inputs & Outputs : 4
Layer Configuration: Conv Weights : 8
3x8, 32x2, 32x2 FC Weights : 2
20000
15000
10000 B [mages/sec
0
FpgaConwNet Haddoc2 This Thesis

CHAPTER 2

Introduction

2.1 Motivation

Computer Vision is of particular interest in creating autonomous machines and further
automate parts of the human activities. We seek to equip machines with the capability
of dealing with sensory inputs and employ them for tasks that the humans are carrying
out based on their visual ability. Over the past decade Convolutional Neural Networks
(CNNs) emerged as the state-of-the-art approach to tackle problems of Computer Vision,
such as image classification and object detection. Convolutional Neural Networks are a
particular class of Artificial Neural Networks (ANNs), which are computing systems
and/or algorithms vaguely inspired by the way brain works and constitute an important
part of the Machine Learning field. ANNs learn to perform the desired function by
iteratively examining a large amount of data and tuning their internal components
accordingly. Even though CNNs were first introduced at the beginning of the 1990s, work
on ANNs had already emerged by the mid-twentieth century with software and hardware
implementations of ANNs in a multitude of applications, like character recognition in
OCR, time series prediction in real estate and process control in manufacturing [Lei]
[Wid94].

The high performance in accuracy of the contemporary, deep Artificial Neural Networks
in a variety of tasks -and particularly, of CNNs in image classification and object
detection, alongside the exponential growth of digital data and the emergence of the
Internet Of Things (IoT), has renewed the interest in applying these computational
systems in research as well as in commercial and industrial applications. In many of these
applications, such as assisting the navigation of autonomous vehicles, the computing
systems must be physically small, have low power consumption and be able to operate
within demanding timing constraints (real-time). Contemporary Convolutional Neural
Networks have very high computational complexity and in order to be effectively applied,
they need to be integrated in low-power, high-performance embedded computing systems.

45

46 2 Introduction

Field Programmable Gate Array (FPGA) is a reconfigurable integrated circuit (IC)
technology that has been identified as an exceptional candidate for the implementation
of the inference stage of Deep Neural Networks.

The FPGA architecture can be customized for specialized parallel computing, naturally
matching Artificial Neural Networks, which are inherently massively parallel computing
systems and algorithms. FPGAs provide huge processing capabilities with great power
efficiency, reducing thermal management and space requirements. This feature allows
the integration of acceleration hardware in small housings, on-board equipment, or
extreme temperature environments. Moreover, FPGAs have deterministic timing in
the order of nanoseconds, which can be an especially important feature in real-time
applications. Compared against the high-end GPUs, FPGAs consume up to two orders
of magnitude less power. For example, the NVIDIA Tesla K40 GPU consumes 235
Watt, while the Xilinx Zynq Z-7020 System-On-Chip consumes 2.5W. The low-power,
high-performance and dynamic reconfigurability of FPGAs has led companies like
Microsoft and Amazon to utilize them in order to accelerate datacenter operations with
reduced power consumption, or provide Artificial Intelligence (AI) cloud computing.
Although cloud computing solutions for Convolutional Neural Networks are available, in
applications where i) system reaction time is critical, ii) fast connection to the cloud is
not guaranteed, iii) privacy is highly important and, iv) energy and/or monetary costs
are limited, computation needs to be done locally. To benefit from these advantages,
many hardware accelerators of Deep Neural Networks have recently been proposed.

PAVNET
e it
Zang. 72045
Mm1 Module P

5,7 cm

10,2 cm

Figure 2.1: Example of a System-on-Module that can be used for embedded computing
solutions: the Xilinx Zynqg MMP, which contains a Zynq-Z7045 SoC. This board costs about
3000€. Lower cost solutions do exist, like the Zybo Zyng-7000, which features a smaller
SoC and costs approximately 300€.

2.1 Motivation 47

Highly accurate image classification and object detection is of great importance in
several applications that depend on airborne/satellite data. Traditionally in these
applications the data are not evaluated locally at the time of their acquisition, but rather
they are stored or transmitted to be processed remotely. Placing embedded systems
capable of executing the inference of Convolutional Neural Networks on UAVs-drones
and satellites can offer automated, highly accurate, real-time and locally computed image
classification & object detection. This can be of great benefit in numerous cases, such as
satellite-based early warning systems, creating autonomous UAVs-drones for emerging
technical solutions in disaster response, automated precision agriculture, drone delivery
systems, etc. In such applications both the power consumption and physical size of the
embedded devices are crucial and therefore choosing the appropriate embedded platform
becomes important. In several applications we are interested in land cover classification.
Land cover represents the physical and biological cover of the Earth’s surface including
classes such as forests, water bodies, build-up areas, and agricultural areas. Land cover
classification maps allow to track issues like deforestation/reforestation, water sources
reduction and urban growth.

Land Cover Classes

water ice urban bare forest scrub grass crops wetlands

Figure 2.2: A land cover map from the area of Portland, Oregon, in the USA (NASA
Earth Observatory).

48

2 Introduction

2.2 Thesis Goals

This thesis has the following goals:

Review the recent developments in the field of Machine Learning regarding Convo-
lutional Neural Networks.

Review the prior work in the approaches of designing hardware CNN implementa-
tions.

Select and train a suitable CNN architecture for the problem of satellite image
classification.

Optimize the chosen Convolutional Neural Network architecture for implementation

on FPGA.
Design FPGA architectures to implement Convolutional Neural Networks.

Optimize and evaluate the FPGA architecture of the CNN designed, regarding the
throughput performance -images classified per second- and the device utilization
for several devices of the Xilinx Zyng-7000 SoC family.

49

CHAPTER 3

Background and concepts

This chapter’s goal is to present the two main technological advancements that this
Thesis is based on: Convolutional Neural Networks (CNNs) and Field-Programmable
Gate Arrays (FPGAs).

3.1 Convolutional Neural Networks

3.1.1 A step back: The bigger picture of Machine Learning

Before we dive into the specifics of Convolutional Neural Networks, we first have to put
them in context: CNNs belong to a wide range of algorithms in the field of Machine
Learning (ML). "What is Machine Learning", one may ask, "and why should one care"?
If we search the net about the importance of ML, we’ 11 find plenty of success stories
of how ML is already integrated in several aspects of everyday-life in the developed
world: e-mail spam filters, voice, text and image recognition, reliable web search engines,
Grandmaster’s level chess opponents, personal recommendations of music, increasingly
autonomous vehicles, etc. However important, this simple listing of ML applications,
does not really answer the questions posed.

Machine Learning is a computational sub-field of Artificial Intelligence. Artificial
Intelligence itself, poses two main questions: "What is intelligence and how does it
work?" and "Can we build intelligent machines?". Correlated with the latter one and,
as its name suggests, in Machine Learning we try to train computers, in a way that
they can learn to solve problems, without being explicitly programmed. Using a more
formal definition for "learning" in this context: "A computer program is said to learn
from experience E, with respect to some task T, and some performance measure P, if
its performance on T as measured by P, improves with experience E". At the core of
Machine Learning lies the assumption that knowledge can be derived from data. Based
on this assumption, the majority of ML algorithms so far are data-driven, in contrast to
other Al approaches which may be symbolic, knowledge-based, etc. Machine Learning

51

52

3 Background and concepts

takes steps towards "intelligent" machines, promising a wider range and greater depth
of automation in human activities. Both the theoretical work and its technological
applications contribute to the material preconditions for a world where monotonous,
repetitive tasks will be carried out by machines.

© Artificial
Intelligence

| Statistics |
| Computer
Science

Figure 3.1: Machine Learning’s relation to other fields

Types of Machine Learning

So far, there are two major types of Machine Learning: Supervised Learning and
Unsupervised Learning. CNNs usually employ supervised learning techniques.

o In Supervised Learning we have the input variables (X) and the output variables

(Y) and the goal is for the algorithm to learn an approximation of the mapping
function from the input to the output, Y = f(X). It is called "supervised" because
there is a form of "teacher", giving feedback to the algorithm, based on the already
known correct answers. The most common problems that fall under supervised
learning are classification and regression, depending on whether the output is
discrete (i.e classes) or continuous, respectively.

In Unsupervised Learning we are only given the input data (X) and no correspond-
ing output variables. The goal is to model the underlying structure in the data, if
of course there is one. The most common problems in unsupervised learning are
those of clustering: We are interested in grouping a set of objects in such a way
that objects in the same group, the "cluster", are more similar to each other than
to those in other clusters.

In this thesis, the problem at hand is a classification problem. With that in mind, we’ Il
make a small intro to supervised learning.

3.1 Convolutional Neural Networks 53

A bit of Supervised Learning

Machine learning algorithms are data-driven. In general, obtaining data is no easy task,
neither is deciding what kind of data we need for a specific problem.

From a systems perspective, we feed an algorithm’s inputs with data, paired with their
corresponding, known output and the algorithm iteratively calibrates the parameters of
a model to fit these data. The dataset used to train our algorithm is called the "training
set". After the training, our model’s performance will be assessed using previously
unseen data, usually called the "test set". The model’s ability to perform good on data
with which it has not been calibrated, has to do with the concept of model generalization
and of course, with the need for a representative training dataset. The ability of the
models to generalize is a central goal in machine learning. We are not only looking
for our model to decently fit the training data through minimizing a cost function, we
also want the generalization error, also called the test error, to be low as well [Gool6,
p. 108]. The factors determining how well a machine learning algorithm will perform
are its ability to:

e Make the training error small.
e Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: under-
fitting and over-fitting. Under-fitting occurs when the model is not able to obtain a
sufficiently low error value on the training set. Over-fitting occurs when the gap between
the training error and test error is too large (figure 3.3) [Gool6, p. 109]. A training
set for which the two aforementioned conditions are sufficiently met is a representative
training set.

Training Data

l

Learning Algorithm

l

Input Model —— Estimated
';(OQutput
Y

Figure 3.2: Supervised Learning

54 3 Background and concepts

= - Training error
Underfitling zone | Overfitting zone " ; .
— (Generalization error

Error

e, - o

0] Optimal Capacity

(f'i||'1<'1c"l1 Y

Figure 3.3: Relation of Training Error and Generalization Error to Under-fitting &
Over-fitting. Source: "Deep Learning", MIT Press, p.113

As we mentioned, the algorithm calibrates the parameters of the model. The form of the
model, also called the "hypothesis", may be pre-decided by the engineer. For example,
in the case of linear regression, we have a vector of independent variables X € R, also
called the predictors or features, and the output is a continuous function of the input,
Y € R. We want to specify & construct a function between the input and the output of
the model, based on known pairs of inputs and outputs. Based on the hypothesis that
there is a linear relationship between X and Y, we define our model as:

H=WTX + B, (3.1)

where H € R and W7 is a 1zn vector. W and B are the parameters of this model and
they control its behaviour. The algorithm will iteratively change the values of W, B in
order for our model H to approximate the given values of Y. Having a function for the
model, we also need a function that will quantify how well our model approximates the
desired output Y. This function is called the "objective" or "cost function'. A frequently
used cost function is for example the mean squared error of the predictions H (z) and
the real values Y for every point ¢ in in our training set.

m

Tasiar) = 5= 3 (H(wi) = Vi) (32
i=1

In order for our model H to perform better, we need to minimize the equation 3.2. One
way to achieve this is through an algorithm called Gradient Descent. For example, if we
suppose a hypothesis h(z) = a1z + ag, then the Gradient Descent algorithm would be:

0
80,1' J(ao, a1> (3.3)

ai:ai—L

3.1 Convolutional Neural Networks 55

where ¢ = 0 and ¢ = 1 are simultaneously updated until convergence and L is defined as
the learning rate.

Several variations of the Gradient Descent algorithm are also used when training
Convolutional Neural Networks. We should note that the learning rate is of great
importance: If L is too small, gradient descent can be very slow. If L is too large,
gradient descent may overshoot the minimum, which means it may fail to converge, or
it could even diverge. After we have calibrated our model to all the data in the training
set, we then use the same cost function to calculate the test error.

Initial
weight

AN

Jw) /_— Gradient J(w)

Global cost minimum
- Jmin(w)

w w

v

Figure 3.4: Learning Rate in Gradient Descent.

In the example presented above, the hypothesis space of the model described by equation
3.1, meaning the set of functions that the learning algorithm is allowed to select as being
the solution, is the set of all linear functions of its input. If we define the capacity of a
model as its ability to fit a wide variety of functions, then we can observe that: i) Models
with low capacity may struggle to fit the training set and ii) Models with high capacity
can overfit by memorizing properties of the training set that do not serve them well on
the test set (figure 3.5). Machine learning algorithms will generally perform best when
their capacity is appropriate for the true complexity of the task they need to perform and
the amount of training data they are provided with. Models with insufficient capacity
are unable to solve complex tasks. Models with high capacity can solve complex tasks,
but when their capacity is higher than needed to solve the present task, they may overfit
[Gool6, p. 110].

56 3 Background and concepts

Underfitting Appropriate capacity Overfitting
e®
= /(= =
L L]
Ty £ g

Figure 3.5: Under-fitting, Fitting and Over-fitting. Models’ Capacity. Source:[Gool6]

3.1.2 The problem of Image Classification

The problem of image classification is the task of assigning an input image one label
from a fixed set of categories. It is one of the core problems in Computer Vision and
has a large variety of practical applications. To a computer an image is represented
as a multi-dimensional array of numbers, usually as a 3-D array of brightness values
when using the RGB color model. Thus a 32x32 pixels image may be represented as a
32x32x3 array, a total of 3072 numbers.

The data-driven approach to this algorithmic problem relies on first accumulating a
training dataset of labeled images, which will serve as examples of each class, upon
which the learning algorithms will be trained. Although recognizing a visual concept
is trivial for humans, there are various challenges involved from the perspective of a
Computer Vision/ Machine Learning algorithm. Some of these challenges are [Karal:

« Viewpoint variation A single instance of an object can be oriented in many
ways with respect to the camera.

e Scale variation Visual classes often exhibit variation in their size (size in the
real world, not only in terms of their extent in the image).

e Deformation Many objects of interest are not rigid bodies and can be deformed
in extreme ways.

e Occlusion The objects of interest can be occluded. Sometimes only a small
portion of an object (as little as few pixels) could be visible.

e Illumination conditions The effects of illumination are drastic on the pixel
level.

e Background clutter The objects of interest may blend into their environment,
making them hard to identify.

3.1 Convolutional Neural Networks 57

e Intra-class variation The classes of interest can often be relatively broad, such
as "chair". There are many different types of these objects, each with their own
appearance.

A good image classification model must be invariant to the cross product of all these
variations, while simultaneously retaining sensitivity to the inter-class variations.

Over time, different algorithms have been used for image processing tasks. Traditionally
these algorithms were making use of handcrafted features, like detecting the edges at
various positions inside the image. Neural networks, in contrast, can automatically create
both high-level and low-level features. This is one of the key properties that lies in the
core of Deep Learning and distinguishes it from the various other machine learning fields.
Deep Learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction, while the
models extract the features needed in the procedure by themselves. In order to achieve
this, an abundance of data needs to be available, to serve as training examples for the
algorithms. Advances in computer systems and the emergence of big data have enabled
the training of increasingly complex and deep models, which have achieved superior
performance in a variety of tasks in the past few years.

IMAGENET
Accuracy Rate
100%

®Traditional CV ® Doop Loarning
90%
80%

70%

60%

50%

40%

30%

20%

10%

0%

2010 2011 2012 2013 2014 2015

Figure 3.6: Performance of traditional Computer Vision and Deep learning algorithms in
the Imagenet competition, 2010-2015. Top-5 accuracy illustrated. Source: openpowerfoun-
dation.org

https://openpowerfoundation.org/presentations/power-efficient-machine-learning-on-power-systems-using-fpga-acceleration/

58 3 Background and concepts

3.1.3 Introduction to Artificial Neural Networks

In this section we’ 1l briefly present Artificial Neural Networks (ANNs), a very interesting
part of Machine Learning, with rich history and theoretical foundation. Artificial Neural
Networks have regained attention in the past two decades, being in the center of the
Deep Learning approach. They have been employed in multiple tasks, such as: Pattern
Association, Pattern Recognition, Function Approximation and Processes Control.

Work on ANNs emerged in the mid-twentieth century and has been motivated by the
recognition that the human brain computes in an entirely different way compared to the
conventional digital computer. The brain is a highly complex, nonlinear, and parallel
information-processing system, with the capability to organize its structural constituents,
known as neurons [Hay09]. While computers perform extremely well in a variety of
tasks, outperforming humans in speed and accuracy when coming to the manipulation
of numerical data, that has not been the case for problems like pattern recognition,
perception and motor control. Artificial Neural Networks are computing systems inspired
by the biological neural networks.

A biological and a mathematical model of a neuron can be seen in figure 3.7. Neurons
are the basic computational units. In the biological model each neuron receives input
signals from its dendrites and produces output signals along its (single) axon. The axon
eventually branches out and connects via synapses to dendrites of other neurons. In
the computational model, the artificial neuron, also called the perceptron, receives a
number of input signals z; from other neurons. These input signals are multiplied with
weights w; to simulate the synaptic interaction at the dendrites. The weighed input
signals are summed up, biased with a fixed w, and fed into a non-linear activation
function ¢, which produces the neuron’s output signal y = ¢(>_ [a:z . wi} + wp) [Karb].

Biological Neuron Artificial Neuron

weights
inputs

()
activation

Synapses functon
‘_‘/\ o @ net input
= - net;
J X
o Axon 2 qj ‘of .
activation
R j Fpa—
=7 ’
S ncion
Y>> Input : : 0
=7 X, j
=P Output n @ threshold

Figure 3.7: A simplified model of a biological neuron (left) and its mathematical model
(right).

3.1 Convolutional Neural Networks 59

The weights w can be seen as the tuning knobs that define the neuron’s reaction to a

given input signal, and their values can be adjusted in order to learn to approximate a

desired output signal. Historically, a common choice of the activation function ¢ is the
1

sigmoid function o(x) = 1.—[Karb]

A single neuron is the basic building block in Artificial Neural Networks. By intercon-
necting many of these neurons, a network is created, which exhibits behaviour far more
complex than that of a single neuron.! The network’s weights are adjusted based on
a learning algorithm, the most common of which is Backpropagation. The behaviour
of the network is highly dependent on its structure and new forms of neural networks
are continually being created. Several techniques also exist with which the ANNs can
dynamically adapt both their weights and their own structure. An illustration of several
types of ANNs follows in the next page 2.

layer 2 (hidden layer) layer 3 (hidden layer) layer 4 (hidden layer)

Figure 3.8: Example of a Feed-Forward Neural Network with tree hidden layers, three
inputs and two outputs. The weights of the network are illustrated with the arrows.

In the example of figure 3.8, the input is a [1x3] vector and the output a [1x2] vector.
All the weights of a layer can be stored in a single matrix. For example, the weights
that connect the input to the second layer in figure 3.8 are a matrix of size [3x5]. Then,
in the forward pass phase, the values at the second layer can be calculated through
multiplication of the input vector by the weight matrix, resulting to a [1x5] vector. By
applying the activation function ¢ to each one of the vector’s elements, the values at
the second layer are calculated. In a similar way the output of each of the next layers
is calculated. The full forward pass of this 4-layer neural network is then simply four
matrix multiplications, interwoven with the application of the activation function.

1 A classical, simple and insightful example is how a single layer of perceptrons can not implement the
XOR function, while two layers of perceptrons can.
2 Source of illustration: Asimov Institute

A mostly complete chart of

O Backfed Input Cell N e u ra l N Etwo rks Deep Feed Forward (OFF)

©2016 Fjodor van Veen - asimovinstitute.org

o Input Cell

4 Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

(@ Hidden Cell - o -
. Probablistic Hidden Cell : : :

. Spiking Hidden Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
O O a0 e

Output Cell - - -
o NN TN
. Match Input Output Cell BRAYS "’ \" '\ \'l \'l
o AT AT
AY XD A \\XD
. Recurrent Cell - ‘ ‘ - ‘ ‘
. Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

" Kernel

6 Convolution or Pool

<

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BV (RBM) Deep Belief Network (DBN)

¥

Q) _©O)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

ol e

. /\/Q\/\ PEe P
ayay N Gens ST Ge.
O X0
ENSA g % g ® K 0
v\/o/v\/\ NN
TN P, S,
— Q\/\ f«>_</\/Q

~ @ -~

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SYM) Neural Turing Machine (NTM)

T

3.1 Convolutional Neural Networks 61

3.1.4 Introduction to Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of acyclic Artificial Neural
Networks, which aim to the processing of data that has a known grid-like topology.
Convolutional Neural Networks are in the center of the current intensity of interest in
Deep Learning, since they have been proven to perform far better than other algorithms
in problems like image classification and object detection (figure 3.6). CNNs exhibit a
high degree of invariance to translation, scaling, skewing, and other forms of distortion
of its input.

Convolutional Neural Networks are constructed by utilizing a set of mathematical
operations. Each operator can be seen as a layer, which receives a finite number of
inputs, performs the respective mathematical operation and generates a finite number of
outputs. Multiple layers are inter-connected in a directed, acyclic graph to form a CNN.
Common types of layers include the convolution, pooling, inner product, normalization
and activation layers. When employed for the problem of image classification, CNNs
take as input an image and generate a vector of scores, indicating the class that the
image belongs to. This kind of problem falls under the category of supervised learning
and as such, there are two distinct computational phases: the training and the inference
phase.

224 x224x3 224x224x64

112 x|112x 128

56
28><28><51214 4 rT2><7><612
T _1x1x4096 1% 1x1000

@ convolution+ReLLU

@ max pooling
1 fully connected+ReLU

f]’ softmax

Figure 3.9: Example of a Convolutional Neural Network: Several layers are placed one after
the other and the data flow in one direction (to the right). Network "VGG-16", introduced
in 2014. This network achieved 92.7% top-5 accuracy in the ImageNet competition.

62 3 Background and concepts

Compared to the Deep Feed Forward Neural Networks (DFF), Convolutional Neural
Networks exhibit three unique properties: (i) local receptive fields of the neurons in
the convolution layers, (ii) shared weights among the neurons of a single layer and (iii)
spatial sub-sampling. If we examine the DFF networks, which consist of layers where
each neuron is fully connected to the neurons of the adjacent layers (for example the
network in figure 3.8), we can observe that they completely ignore the topology of the
input. When we input an image to such a fully connected network, the order of the
image’s pixels does not affect the outcome of the network.! This comes in contrast
with the strong 2D local structure that images inherently have. Convolutional Neural
Networks exploit the grid topology of the input, by restricting the receptive field of the
neurons in the convolution layers to a local, subset of the input, instead of each neuron
being connected to every neuron of the preceding layer. The idea of connecting the
units to local receptive fields on the input can be traced back to the early 60s and was
strengthened based on the discovery that the neurons in the cat’s visual system are also
locally sensitive (Hubel & Wiesel). Beside the local connectivity, neurons within the
same convolution layer share the same set of weights. This is very convenient from a
computational perspective, since it results to a reduced number of weights, compared
to DFFs with the same number of neurons. It also makes sense from a high level
perspective, since feature detectors -e.g detecting edges, corners, etc- that are useful on
one part of the image, are likely to be useful across the entire image. This property also
embeds into the network the ability of being invariant to displacements of the input
image. Spatial sub-sampling corresponds to the operation of the pooling layer. The
high-level idea is that once a feature has been detected, its exact location becomes less
important, as long as its approximate position -relative to other features- is preserved.
Pooling reduces the network’s output sensitivity to shifts and distortion by preserving
and feeding the output of the most important neurons in each region to the next layers.
Moreover, pooling improves the computational efficiency of the network because the
next layer has fewer inputs to process.[Gool6] [Yan98|

These three properties of the CNNs described above result in reducing the free parameters
in the network, and thus, in a reduction of the space of possible functions that the
network can generate. As the capacity of the network is reduced, training the network
becomes relatively easier and the chance of over-fitting is also reduced. Convolutional
Neural Networks are a successful example of how information about the problem at
hand can be built into the structure of the network.

1 When we input an image to a fully connected Feed Forward neural network, each pixel of the image
is connected to a different input neuron.

3.1 Convolutional Neural Networks 63

Data arrangement in a CNN

Each layer in a CNN takes as input a stack of Cj, 2D matrices, of dimension h;, x w;n,
each; the "input feature maps". FEach layer then produces a stack of Cy,; 2D matrices,
of dimension hey: X Weye each, the "output feature maps'. Since the input at each layer
is essentially a 3D matrix, we tend to think the neurons of a CNN as being arranged
in 3D (width, height, depth)!. The feature maps are also called channels or activation
maps, or activation volumes, or slices of depth, planes, etc. As a general observation,
there is still not a unified nomenclature in the field of Machine Learning and several
concepts and techniques keep re-appearing with different names.

Depth: 3 Channels

- Height: 4 pixels

Width: 4 Pixels

Figure 3.10: Example of an RGB image: A 3D matrix of size 4x4x3. 8 bit for each value
(24 bit per pixel).

3.1.5 Common layers used to build CNNs

Convolution Layer

The convolution layer is the basic building block of a Convolutional Neural Network, as
its name suggests. These are also the layers that occupy the most of the computation
time.

A convolution layer extracts N output feature maps, from M input feature maps, by
convolving each one of the M input feature maps with N filters. Each filter is of size
KxKaxM. Each one of the Kx K 2D matrices of a filter is called a kernel. Each one of the
N - KeKxM values that compose the N filters of a convolution layer is called a weight.
If each input feature map is square, of size H;, x H;, and each output feature map is of

1 The term depth here refers to the dimension of a single layer and not to the total number of
consecutive layers in the network.

64 3 Background and concepts

size Hoyt X Hoyt, then the convolution layer consists of Hyyp X Hoye x N neurons (height
x width x depth) and N - K - K - M weights. The receptive field of each neuron is to an
are of size K x K x M of the input 3D volume. A total of Hyyt - Hoyt - N - K - K - M
multiplications is required for every convolution layer. The forward pass in these layers
is computed as:

Vn =1: N (Number of output feature maps)
Vi =1: R (Feature map rows)

Vj = 1: C(Feature map columns)
M K-1K-1

F[n,i,j] = b[n] + Z Z Z &[myi+ x,j + y| - wn,m,x,y| (3.4)

m=1 z=0 y=0

where
e F'is a tensor of output feature maps
o b[n] is the bias term applied to each "pixel" of the output feature map n
e @ is a tensor of input feature maps
e w is a tensor of pre-learned filters

Although it is called convolution layer, this layer actually performs a cross-correlation
operation, also known as a sliding dot product, between each of the input feature maps
and the filters’ kernels. This is equal to the convolution operation with a flipped kernel
in reverse row-major order. The 3D operation can be performed by adding the results
of multiple 2D operations. In the equation 3.4 above, the two inner sums perform the
2D cross-correlation over an input feature map, while the external sum (Z%zl) realizes
the 3D operation by adding the results of all the M input feature maps at each kernel
location. In the 2D cross-correlation operation, each "pixel" of the input feature map is
replaced with a linear combination of its neighbours. Figure 3.13 illustrates an example
of the 3D convolution operation, while figure 3.11 illustrates how a kernel slides upon
the input feature map during the 2D cross-correlation operation.

The size of each one of the output feature maps can be calculated with the following
equation:

Hyp, —-K+2-P
Hout = S+ +1 (35)

where S is the stride with which the 2D kernel slides upon the 2D input feature map
and P is the amount of padding used at the border of the input feature map. The size

3.1 Convolutional Neural Networks

65

of the output feature map is Hyyr X Hoyt. This is also the number of times that the 2D

kernel fits inside the 2D input feature map.

e »

Figure 3.11: 2D Cross-correlation: a 3x3 kernel slides over a 4x4 input with unit stride

and no padding (i.e H;, =4 ,K =3, 5 =1, P = 0. Results to an output of size 2x2. Source:

[Dum16]

Looking a bit ahead, the computations described in equation 3.4 exhibit a large amount
of potential parallelism, since all the multiplications involved are independent of one
another. That means that all the Kz K multiplications within a kernel can be computed
concurrently, while all the M input feature maps can be convolved concurrently, while
all the N output feature maps can be generated concurrently. Moreover, all the H,,; x
H,.: "pixels" of each of the NV output feature maps can be calculated simultaneously.

Original Gaussian Blur Sharpen Edge Detection
0 0 0 1 1 2 1 0 -1 0 -1 -1 -1
0 1 0 16 2 4 2 -1 5 -1 -1 8 -1
0 0 0 1 2 1 0 -1 0 -1 -1 -1

Figure 3.12: Convolution of an image with known kernels, from the traditional Computer
Vision field: Blur, sharpen, edge detection. In Convolutional Neural Networks the kernels
are the variables that will be calibrated in order to approximate a function that maps the
input image to a class.

66 3 Background and concepts

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[z,:,0] will[:,:,0] wll:,:,0] olz,:,0]
0 0 T -1 1 0 il B
0 0 0 10 5 1
0 0 -1 0 -1 304 |7
0 0 wll:,:,1] olz,:,1]
0 2 0 0 -1 0 3 -3
0 2 -1 1 1 2 93
0 0 -1 1 -1 5 3 4
x[z,: wll:,:,2]

0 0 1 1 0

0 0 0 1 0

0 0 -1 1 -1

1 Bias bl (1x1x1)

0 2 bl[:,:,0]

0 2 E

0 0

x[z,:

0 0

0 0

0 1

0 1

N b

0 2

0 0

Figure 3.13: Example of 3D Convolution operation: Three input feature maps, getting
convolved with two filters, generating two output feature maps. Padding=1, Stride=1. The
marked "pixel" on the output feature map is a sum of all the dot products between the
marked area of the input feature maps and the WO filter’s kernels. Source: [Karb]

3.1 Convolutional Neural Networks 67

Pooling Layer

The pooling layer operates independently on every feature map and it performs a spatial
sub-sampling of its input. It is common to insert a pooling layer between successive
convolution layers in a CNN architecture. The operation of this layer is similar to that
of the convolution layer in the sense that there is a kernel that slides upon the input
feature map. This time however, the kernel does not have a set of tunable weights.
Instead, at each position it performs a pre-defined function on the corresponding "pixels"
of the input feature map. Common functions are the max and the average. The pooling
layer accepts a volume of size H; x W7 x D1 and outputs a volume of size Hy x Ws x
Dy, where Wy = (W — K)/S+1, Hy = (Hy — K)/S+ 1 and Dy = D;. S is the stride
with which the KxK kernel slides upon the feature map. The pooling layer leaves the
depth dimension of its input unchanged. Figure 3.14 illustrates this procedure when the
max function is utilized.

224x%224x64 | .
112x112x64 Single depth slice
: JI1 1 24
max pool with 2x2 filters

5 6 Fi 8 and stride 2 [8

; I 32 N 3|4
11234

224 downsampling ! 12
12

224 :

Figure 3.14: Pooling layer downsamples the volume spatially, independently in each depth
slice of the input volume. Left: In this example, the input volume of size [224x224x64]
is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that
the volume depth is preserved. Right: The most common downsampling operation is max,
giving rise to max pooling, here shown with a stride of 2. That is, each max is taken over 4
numbers (little 2x2 square). Source: [Karb]

Inner product Layer

The inner product layer, also called fully connected layer, is a regular neural network
layer, as seen in Deep Feed Forward networks in section 3.1.3. All neurons in these
layers are connected to all neurons in the previous layer. We think of these neurons as
being arranged in a [1xN] vector.

Normalization Layer

Many types of normalization layers have been proposed for use in Convolutional Neural
Networks architectures, sometimes with the intentions of implementing inhibition schemes

63 3 Background and concepts

observed in biological brains. However, these layers have since fallen out of favor because
in practice their contribution has been shown to be minimal, if any [Karc].

Activation Layer

The activation layer is an element-wise operator that applies a non-linear function to the
output of each neuron. Although this computation can be structured as a distinct layer
and, for computational reasons it often is, this is a bit problematic from a conceptual
point of view: The activation function is an integral part of the artificial neuron’s
model (figure 3.7). Without it, an Artificial Neural Network would just be performing a
multiplication between its input and a weighted matrix, which means that the model
of the classic ANN would degenerate to that of linear regression. Thus, an activation
layer is being attached to every convolution layer and the element-wise operation is
being performed at the output of every neuron. Multiple non-linear functions have
been proposed and used as activation functions, most popular of which nowadays is the
Rectified Linear Unit (ReLU), computing the f(x) = maxz(0,x). Other functions used
are the sigmoid, the parametric ReLU, the Maxout, the exponential linear unit (ELU),
tanh etc. Figure 3.15 illustrates several of these functions. Among these, ReLLU is the
easiest one to implement and the less expensive one from a computational point of view.

Sigmoid] tanh) RelLU . PReLU ELU

X0 0 / o— 0 0 /
1 1 "/ -1 1 1
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
X X X X X

Figure 3.15: The Non-Linear Activation Functions Sigmoid, tanh, ReLU, PReLU and
ELU. Source: [Gsc16]

Softmax Layer

The softmax layer is the most common classifier. A classifier layer is added after the last
convolution or fully-connected layer in image classification CNNs, and normalizes the
raw class scores Z; produced from the rest of the network in the [0,1] range, to interpret
them as probabilities P; according to:

Zi

P=
D pey €7k

i=1,- K

3.1 Convolutional Neural Networks 69

3.1.6 Convolutional Neural Network Architectures

Artificial Neural Networks rely on the interconnection of multiple simple components,
i.e the artificial neurons, in order achieve overall complex computations. Issues such as
the way these simple components interconnect, the number of simple components used,
the choice of the learning procedure employed for network calibration, etc have been
major questions since the emergence of the filed in the 60s. Although our understanding
has greatly advanced both in depth and range since the first ANNs were created, these
questions still remain open today. The design of Artificial Neural Networks is still largely
dominated by empiricism, which is why ANNs are considered in some degree a "black
box" and designing them is partially viewed as an "art". Nevertheless, Artificial Neural
Networks have been proven to be able to solve complex problems and perform better
than other approaches, although the theoretical development -for the time being- lags
behind.

Convolutional Neural Networks can be traced back at least to the start of the 90s [Lec89].
The current intensity of interest in CNNs began in 2012, when the AlexNet model outper-
formed in terms of accuracy the algorithms from the traditional Computer Vision field
in the ILSVRC competition (figure 3.6). The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) was an annual competition where participants developed algorithms
to classify images from a subset of the ImageNet database. The ImageNet database
consists of more than 14 million photographs collected from the Internet, each labeled
with one ground-truth class. The ILSVRC training set consists of approximately 1.2
million images in 1000 different classes, covering a huge variety of objects [Rus15]. The
ImageNet database became the most popular dataset upon which Convolutional Neural
Networks and other Computer Vision algorithms are being evaluated. New architectures
of CNNs are continually being created and new approaches and guidelines on training
are continually being proposed. Several of the most well-known CNN architectures are
presented in figure 3.16 and 3.17.

As one can observe in figure 3.16, the CNN architectures were getting increasingly
"deeper" in every generation, as it was observed that CNNs with more convolution layers
were performing better in terms of accuracy. However, as CNNs are getting bigger
& deeper, the amount of memory they need and their computational load increases.
Smaller CNNs are easier to train and more suited to be deployed on hardware platforms
where resources are limited. SqueezeNet was one of the first CNN architectures that
aimed in that direction, instead of aiming at increased accuracy.

70 3 Background and concepts

Network Year #conv. #MACCs #params # activations Imagenet

layers [millions] [millions] [millions] top-5 error
AlexNet 2012 5 1140 62.4 24 19.7%
Network-in-Network 2013 12 1100 7.6 4.0 19.0%
VGG-16 2014 16 15470 138.3 29.0 8.1%
GoogleNet 2014 22 1600 7.0 10.4 9.2%
ResNet-50 2015 50 3870 25.6 46.9 7.0%
Inception-ResNet-v2 2016 96 9210 31.6 74.5 4.9%
SqueezeNet 2016 18 860 1.2 12.7 19.7%

Figure 3.16: Well-known Convolutional Neural Network Architectures in chronological
order.

3.1 Convolutional Neural Networks

O\ /O .o
’\.}.“

0000
/ s v / /Oy V /
‘000 000/ 999/ 000 000 000/ 000/ 000 999/ 000 000 000 \gg9/ 000/ 000 \gge!

S bl

boonar| ooy sosasey]
e

Meesess|
/-—'/F
leeelleosle

/

00
o
ool

—| J J J | feeeefovenreee
lee
food ondl

ool oo o] el

o

lee /
o
A e

0000000000000 00000
000000000000 00000000000

:
:
:
§

00 -

e
[4

Figure 3.17: Visualization of well-known CNN Architectures. Left to right: AlexNet,
Network—in—Network, VGG-16, GoogLeNet, ResNet-50, Inception v3, Inception-ResNet-v2,
SqueezeNet. Data flows from top to bottom. Convolution layers are presented with brown.
Source: [Gscl6]

72 3 Background and concepts

3.2 Field-Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that were de-
veloped to answer the need for reconfigurable hardware. Based around a matrix of
configurable logic blocks (CLBs) that are connected via programmable interconnects,
FPGAs can be reprogrammed to desired application or functionality requirements after
manufacturing and perform specific tasks as a digital circuit, hence "field-programmable".
Modern high-end FPGA generations feature hundreds of thousands of configurable logic
blocks and additionally include an abundance of hardened functional units which enable
fast and efficient implementations of common functions. Commonly integrated hard
blocks are on-chip SRAM, Digital Signal Processors, PCle as serial interconnect, Ethernet
Transceivers and even full ARM processor cores, to provide software programmability,
forming System on Chip boards (SoC).

Input/Output

Block \I

Switch
Matrix

Configurable
Logic
Block I

Figure 3.18: FPGA Fabric

FPGAs vs CPUs The advantage of FPGA-based systems over traditional processor-
based systems such as desktop computers, smart-phones and most embedded
systems, is the availability of freely programmable general-purpose logic blocks.
These can be arranged into heavily specialized accelerators for very specific tasks,
resulting in improved processing speed, higher throughput and energy savings.
FPGAs are truly parallel in nature, so different processing operations do not
have to compete for the same resources. Each independent processing task is
assigned to a dedicated section of the chip, and can function autonomously. As a
result, the performance of one part of the application is not affected when you add
more processing because the application logic is implemented in hardware circuits
rather than executing on top of an OS, drivers, and application software. This
advantage comes at the price of reduced agility and increased complexity during
the development, where the designer needs to carefully consider the available

3.2 Field-Programmable Gate Arrays 73

hardware resources and the efficient mapping of his algorithm onto the FPGA
architecture.

FPGA vs ASIC Application-Specific Integrated Circuits (ASIC) are custom-tailored
semiconductor devices. In contrast to FPGAs, they do not suffer any area or timing
overhead from configuration logic and generic interconnects, and therefore typically
result in the smallest, fastest and most energy-efficient systems. However, the
sophisticated fabrication processes for ASIC results in lengthy development cycles
and very high upfront costs, which demands a first-time-right design methodology
and very extensive design verification. Therefore ASIC are mostly suited for very
high-volume, cost-sensitive applications where the non-recurring engineering and
fabrication costs can be shared between a large number of devices. FPGAs with
their reprogrammability are better suited for prototyping and short development
cycles [Kael2].

FPGAs vs GPUs Both allowing massively parallel computing, the comparison between
these two technologies on specific tasks in terms of speed, remains still open. GPUs
run software, while FPGAs are hardware implementations. FPGAs are designed to
perform concurrent fixed-point operations with a close-to-hardware programming
approach, while GPUs are optimized for parallel processing of floating-point
operations using thousands of small cores. FPGAs require specialized design
engineers and increased developing time compared to GPU programming, on the
other hand they are far more energy-efficient and, arguably, better suited for
real-time applications; the latter also due to their highly deterministic nature. A
nice comparison between the two technologies can be found at [Berb].

For a history of FPGAs and their place in the semiconductor universe, one can refer to
[WoolT7].

ASICs
it

UELERREE g RRARRT R

FLEXIBILITY EFFICIENCY

Figure 3.19: Flexibility vs Efficiency: CPU, GPU, FPGA, ASIC technologies.

74 3 Background and concepts

Floating-Point
Processing

Processing / € Timing Latency

Development Interfaces

Size Processing / Watt

—GPU

—FPGA Flexibility Backward

Compatibility

Figure 3.20: GPU vs FPGA qualitative comparison. Source: [Berb]

3.2.1 FPGA Programming

The implementation of a design in modern FPGAs requires thousands or millions of
programmable switches and configuration bits set to proper state. This task is not
achieved through manually reprogramming each element individually -that would be
too complex and time consuming. Instead, the designer tackles the specific problem at
higher levels of abstraction: Either by describing the specific circuit using a Hardware
Description Language, for instance, VHDL or Verilog, or at an even higher level of
abstraction, by describing the desired algorithmic behavior in a high-level language
such as C, in a procedure known as High-Level Synthesis. The whole process is highly
dependent on software tools, responsible for simulating, synthesizing, mapping, placing
and routing the design on a target device and also calculating various metrics regarding
the implementation’s performance. In fact, the whole process would not be feasible
without the use of dedicated software suites.

In this thesis, the digital circuits were created with the use of VHDL -standing for Very
High-Speed Integrated Circuit Hardware Description Language- and Xilinx’s "Vivado"
software. As its name suggests, VHDL is a language invented to describe hardware. In
contrast with most higher-level computer languages that are used to describe algorithms
and are sequential, in VHDL instructions are all executed concurrently. The steps to
map a design on an FPGA are briefly described below and are also illustrated in figure
3.21:

The first stage of synthesis converts the circuit description from an HDL file into a netlist

3.2 Field-Programmable Gate Arrays 75

Soure Code

l

Logic Synthesis

Technology Mapping

.

Placement

!

Routing

!

Bitstream Generation

HAERaENEE B iler it
C1LG10I110101c
1104116010011
poplenelllledalr

K
=
22 8]
1

2 8]

£
e

-
n:
L

130 Lifra Ren
COl1010010011
1102010101010

Wl

F‘
el

(o] "
i,
k]‘r-:‘i{:l,f

Bitstraam

Figure 3.21: FPGA mapping flow

of basic gates. This netlist is converted then into a netlist of FPGA logic blocks according
to the desired synthesis properties (speed, area or power specifications). During this
stage, several optimizations take place removing redundant logic and simplifying the
design. After the synthesis stage, the implementation stage follows where the netlist is
translated into a placed and routed FPGA design. During the physical design stage,
in the technology mapping stage, several LUTs and registers are packed into one logic
block respecting limitations imposed by the FPGA platform. In this stage, a number of
optimizations are available depending on the goals the designer has chosen. Important
optimizations are LUT combining in order to minimize resource utilization and minimize
number of signals to be routed between logic blocks. Once the circuit has been mapped
on a specific device, the placement stage begins where heuristic placement algorithms

76 3 Background and concepts

determine which logic block within the FPGA should implement each of the logic blocks
required by the circuit. The optimization goals are to place connected logic blocks close
together to minimize the required wiring (wirelength-driven placement), and sometimes
to place blocks to balance the wiring density across the FPGA (routability-driven
placement) or to maximize circuit speed (timing-driven placement). After the location
for all the logic blocks in the circuit has been chosen, it is necessary to program the
switches on the device to be used in order to connect all logic block input and output
pins required by the circuit. In this stage, the routing architecture of the device is
represented as a directed graph. Thus, routing a connection corresponds to finding a
path in this routing-resource graph. Since most of the delay in FPGA designs is routing
delay, a timing-driven optimization in the routing stage is crucial to minimize overall
circuit delay [23]. Finally, after the design has been successfully placed and routed
(PAR) on the chosen FPGA, the design tool creates a bitstream of the final design after
PAR which is then downloaded to the FPGA and configures the device accordingly.

3.2.2 FPGA Fabric

Although the internal structure of an FPGA is technology-specific, the various fabrics
share common design concepts. In this section basic properties of FPGA’s structure
will be presented, based on Xilinx’s 7-Series.

CLB and their Arrangement

In Xilinx’s 7 Series, CLBs are arranged in columns. Fach CLB element contains a pair
of slices, and each slice is composed of four 6-input LUTs and eight storage elements.
Carry chains run vertically in a column from one slice to the one above as illustrated in
3.22. Connections between CLBs and other resources use the fabric routing, extending
vertically, horizontally and diagonally.

The structure of a slice can be seen in figure 3.24 and a simplified diagram in 3.23. Each
slice contains:

o Four 6-input Look Up Tables (LUT), also called logic-function generators
o Wide-function multiplexers

e Carry logic

o Four flip-flop/latches

o Four additional flip-flops

Generally, an N-input-LUT is a functional unit capable of computing any function of N
inputs. The operation of a LUT resembles the process of finding the value of a logical
function via its truth table. Given the truth table of a function, the LUT is programmed

3.2 Field-Programmable Gate Arrays

7

couT couT
FiE_ _____ {___"
| Slice1

| X1¥1

|

I

: Slice0

| xov1

|

| CIN CIN
—___|CourT__ _couT_
| CLB

{ Slice1

1 X1Y0

|

|

' Slice0

] X0Y0

|

cout couT
Fii_ _____ {___7
| Slice1 | |
| X3yl |
! |
| |
| | siice0 I
P xeyd :
|

| CIN CIN |
e JOOOE . HOCOUSL.
| CLB |
: sicel | |
| Xavo | |
| |
| |
| slice0 !
|| xavo :
| |

UGATA_c2_01_092210

Figure 3.22: Row and Column Relationship between CLBs and Slices.

User Guide

— LUT —

—

Clock signal

N >
MK — =3
B &
8
=
Lt
oo &
L]
> x—| =
;o =

-

—>
|
-

——
-
|

—
b

Source: Xilinx’s

Figure 3.23: Simplified diagram of an FPGA slice. Since the Xilinx Virtex-5 generation
introduced in 2006, the slices contain 6-input LUTs.

78 3 Background and concepts

accordingly. Then it is responsible for matching a pattern of the N inputs with one
of the 2N rows of the table and generate the corresponding output value. LUTs can
be combined to implement more complex functionalities than a N-bit logical function.
Specifically, a LUT is able to implement a logical function of N inputs, a N-bit shift
register or, alternatively be used as N-bit distributed memory.

In 7 Series each LUT has 6 inputs, meaning that a single LUT can implement:
e Any arbitrarily defined six-input Boolean function

e Two arbitrarily defined five-input Boolean functions, as long as these two functions
share common inputs

e Two arbitrarily defined Boolean functions of 3 and 2 inputs or less

The slice may also be used to implement a synchronous RAM resource, called a distributed
RAM element, or a shift register.

Hardwired Blocks

As already mentioned, configurable logic blocks serve as the main functional unit of an
FPGA, with the look up tables playing an important role in their operation. However, it is
currently the rule for an FPGA to have common functionalities embedded into the silicon,
in order to reduce the required area and provide increased speed compared to building
those functionalities from primitives. Examples of hardwired blocks include multipliers,
generic DSP blocks, embedded processors, high-speed 1/0 logic and embedded memories.

FPGA boards are equipped with various memory elements that can be utilized as RAM,
ROM or shift registers. One of these elements is the look up table which is discussed
in the previous sub-section. Flip-flops also serve as a basic storage unit in an FPGA
design. Another significant memory element is the BRAM (Block RAM). The BRAM is
a dual-port RAM component which is embedded into the FPGA board and can achieve
storage of a large set of data. The capacity of block RAMs usually instantiated is is
18KB and 32KB. Of course, each and every board comes with a specific number of
embedded BRAMs [3]. A key element in BRAMs is the dual-port operation which is
introducing a parallel behavior as it is providing access to different locations in the same
clock cycle.

One of the most important and complex computational unit embedded into the FPGA
fabric is the DSP (Digital Signal Processing) Block. The usage of embedded DSP blocks
has been established in order to support the increasing amount of computational load.
A DSP block is a combination of adders, subtractors and multipliers put together to
compose an arithmetic logic unit (ALU).

3.2 Field-Programmable Gate Arrays 79
o SAHI
_<D7 D ooALo % Raset Type
oMt af— :
couT =—{CE ainiTD 0 Syna/Asyne
ﬂ gy == SIH OFFLAT
1 [~
o =
1 | [y OMUX
DIz —
DE:A e ABAL | ¥]
L wreawi =
i} —0
o6] ™ o FF/LAT
& 0% ST al-—oe
p oMm
cK oH e SAHI
SAHI OSALD
WEN MCH |—— j] i) = &
o ONTE af—
b= ={CE ainTe
—oK an i
= Th— '
= [J > CMUX
Diz 2
Ced Co— A6:A1 i ¥ 1
L e) E—" —
gg . E o FF/LAT
CX, oM
oH o amm =0
o g OSAHI
WEN MCH |—— | o ORI w o DSALO
a
SR
cl ol
o gE ommo @
A
— T ™
BX L i MUK
DIz |__
BEA o AG:Ad I b
b e [
| 1B >E
o5 . ™ o FFILAT
BX oNT af-C>ea
oH H O olNITO
cK CE oSAHI
WEN McH H S e cx DSALO
O oseLD =R
B > oM
o CE gnmg @
gk o
_<D‘ ol I e
> 1 [AMuUx
DIZ] :)
Agd C5— AB:A1 =
L w1 £ —
& N Ter
=]
D onm 2 A
cK o cE OSRHI
WEN MCH OSALO
: — [~ oK
- SR
Al o h
SR [Un
CE> 0
oLK > 11:)' T
oK
|— WEN n
WEL= i

Figure 3.24: Internal structure of a single FPGA slice.

LEdTa o2 OE 110840

80 3 Background and concepts

3.3 Convolutional Neural Networks in FPGAs

Currently, in most cases, the training of Convolutional Neural Networks is done offline
using GPU-based training systems or CPUs. As far as the inference stage, i.e the forward
pass, of CNNs is concerned, FPGAs have been identified as an exceptional candidate for
Neural Networks implementations, for multiple reasons:

e The FPGA architecture can be customized for specialized parallel computing,
naturally matching Artificial Neural Networks, which are inherently massively
parallel computing systems and algorithms, with very few conditional branch
operations.

e In many computer vision applications the computing systems must be small in
physical dimensions, have low power consumption and be able to operate within
demanding timing constraints. FPGAs offer deterministic timing in their execution
and relatively low power consumption. [Berb]

e Currently there is plenty of research in Deep Neural Networks and new techniques
and architectures are constantly being proposed. FPGAs can be reconfigured to
account for the new functionalities needed, in order to implement the state-of-the-
art CNNs of each time.

e CNNs have been shown to work well with limited numerical precision. FPGAs can
be configured with non-standard word-lengths, optimized for each network and
application. This allows both less memory requirements and denser logic, which
in turn leads to an increase to the amount of parallel processing blocks and thus
faster execution.

Over the past few years many hardware accelerators for Deep Neural Networks have
been proposed and a few a commercial solutions have been made available. Recently,
several reviews examining the approaches of designing hardware CNN implementations
in FPGA were published [Abd18a], [Guol7], [Zhal8|.

When porting a CNN to an FPGA device, the problem boils down to finding an
efficient mapping between the computational model of the CNN and the execution model
supported by the FPGA. In figure 3.25 the main strategies to address this mapping
problem are illustrated. Current FPGA-based accelerators for CNNs rely on at least
one of the following optimization techniques to efficiently infer CNNs.

SYHJ U0 9ouaIejul NN 9)ela[edor 0} seyoroidde urejy :gg g 2anSrg

swyyo3|y
7 |[opow 7 92104 7 yoJeas
aujjjooy 21nig 213S1IN3H
d uolleso|dx3
STH uoniso Eou,mn_i aoeds
onm>_> 7 ._Ucoaoi 7 anjep sejnsuis mc_ccEn; uSisq
a8ensuen < < YIom1aN
uondiosag | | S'SeUIAS co_“,_wwcmm“wmm H_Emam suiL 7 7mc___8c3 $59204d
alempieH w>m._ Y3iH 310d paxd dooq doo] moyjeleq
uoljesauan uoneziwndo uoneziwndo
alempieH [opow NND JUSWIDAO|A eleQ 13 Wisi|9||eded
SNND j0

uo11et9|3ddY V¥OdA

(WINID/|00zW!)
co_umu__a_u_z_)_

7 144 7 Temo:_i
XL13e|Al 0} UOIIN|OAUOD)

uoneziwndo
dlwyios|y

81

CHAPTER 4

CNN training and Optimization

This chapter’s goal is threefold: First, we will briefly present Berkeley’s "Caffe" framework
for training and deploying deep models. Then, a case study of training a CNN over
the SAT-4 & SAT-6 airborne datasets will be presented. Finally, some optimizations of
the chosen network architecture from the hardware implementation perspective will be
discussed and explored.

4.1 The Caffe Framework

There are many popular software frameworks specifically built for the design and training
of neural networks, including, among others, the Neural Network Toolbox for MATLAB,
Theano, Torch, TensorFlow and Caffe. Most of these frameworks, apart from CPUs,
they can utilize one or multiple GPUs in order to heavily accelerate the training of
neural networks. In this thesis, we used the Caffe framework.

Caffe is a deep learning framework developed by Berkeley AI Research (BAIR) and
by community contributors, first introduced in 2014. It powers ongoing research
projects, large-scale industrial applications, and startup prototypes in vision, speech,
and multimedia. The framework is a BSD-licensed C++ library with Python and
MATLAB bindings for training and deploying general-purpose convolutional neural
networks and other deep models. [Jial4]. Using CUDA GPU computation it can process
over 60 million images per day with a single NVIDIA K40 GPU running at 235 Watt,
meaning about 1 ms/image for inference and 4 ms/image for learning, for images of the
ImageNet competition (256 * 256 pixels [Bera]). For the purposes of this thesis, it is
worth to note that the NVIDIA Tesla K40 GPU needs about two orders of magnitude
more energy than the Xilinx Zyng-7000 SoC targeted in this thesis.

83

84 4 CNN training and Optimization

Caffe offers a wide variety of layers, implementing various mathematical operations, and
an extensive library of pre-trained models in its "Model Zoo". There are four steps in
training a Convolutional Neural Network using Caffe:

1. Data preparation: Image pre-processing and storage in a format that can be
used by Caffe.

2. Model definition: Choosing a CNN architecture and defining its parameters in
a configuration file with extension ".prototxt".

3. Solver definition: Defining the solver parameters in a configuration file with
extension ".prototxt".

4. Model training: Caffe will iteratively train the chosen model on the provided
data and will output two files: a file with extension ".caffemodel" and a file with
extension ".solverstate', both being binary files. The first one is generated at a
specified interval while training and contains a snapshot of the network’s weights,
while the latter contains the information required to continue training the model
from where it last stopped. During this procedure, the user can monitor the
network’s performance on the training and test sets. After the training phase, the
".caffemodel" file can be used in deploying the model and make predictions on new,
unseen data.

We will see a bit more of how to use the Caffe framework, dealing with a specific problem
of image classification, utilizing the SAT-4 & SAT-6 airborne datasets.

4.2 The SAT-4 & SAT-6 Airborne datasets

SAT-4 and SAT-6 are publicly available, high resolution satellite multispectral datasets,
assembled for addressing the problem of satellite image classification. In general,
extracting information regarding the various terrain objects, land cover and land usage
status, is valuable for a wide range of applications in areas like urban planning, agriculture,
geology and environmental studies. DeepSat contains patches extracted from the National
Agriculture Imagery Program (NAIP) dataset with about 330,000 scenes spanning the
entire Continental United States. The average image tiles in the (NAIP) dataset are
6000 pixels in width and 7000 pixels in height, measuring around 200 megabytes each.
The images consist of 4 bands: red, green, blue and Near Infrared (NIR) and were
acquired at a ground sample distance (GSD) of 1 meter, having horizontal accuracy up
to 6 meters. The patches in SAT-4 and SAT-6 were sampled from a multitude of scenes,
covering different landscapes like rural areas, urban areas, densely forested, mountainous
terrain, small to large water bodies, agricultural areas, etc. covering the whole state of
California, with each patch being of size 28x28. Each of these dasets is split in train
and test sets. SAT-4 has four different classes which are: barren land, trees, grassland
and a class that consists of all land cover classes other than the above three. The SAT-4
dataset consists of 400.000 training and 100.000 testing patches. SAT-6, contains six

4.3 CNN models in this Thesis 85

different classes: barren land, trees, grassland, roads, buildings and water bodies and
consists of 324.000 training and 81.000 testing patches [Bas15].

TRE T A

Figure 4.1: Sample images from the SAT-6 dataset. Source: [Basl15]

4.3 CNN models in this Thesis
4.3.1 The original "Cifar-10 Full'" CNN model

"Cifar-10 Full" is a, reproduced in Caffe, Convolutional Neural Network model, created
by Alex Krizhevsky. It takes its name after the respective "Cifar-10" dataset that it was
initially targeting. The dataset consists of 60000, 32x32 colour images in 10 classes. The
model can be found in the Caffe source code at "examples/cifar10/cifar10_full train_-
test.prototxt". It composes layers of convolution, pooling, rectified linear unit (ReLU)
nonlinearities, and local contrast normalization with a softmax classifier on top of it all.

Cifar-10 Full is essentially the model that we trained to classify the images from the
SAT-4 & SAT-6 ariborne datasets. We customized the model to fit these datasets -i.e
the input image size, the number of output classes- and we also customized it based on
design decisions from the hardware design perspective. These changes in the model will
be explained in the next section 4.3.3. First, let’s take a look at the original structure.

As we can see in figure 4.2, there are three convolutional layers, each one followed by a
layer of pooling, a rectified linear unit and, in the case of the first two convolution layers
(Convs), a normalization layer. All the kernels used in the convolutions are of size 5x5.
The pooling operation is applied on kernels of size 3x3, utilizing either a max function, or
an average function. The rectified linear unit layer applies the function f(z) = maz(z,0)
on each element of its input. The normalization layer is a Local Response Normalization

https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt

86

4 CNN training and Optimization

Kernel Size: 3
Stride: 2

Kernel Size: 5
Stride: 1

Kernel Size: 5
Stride: 1

In: 32ch, 16x16
Out: 32ch, 8x8
Pool: Average
Kernel Size: 3
Stride: 2

In: 32ch, 8x8
Out: 64ch, 8x8
Pad: 2

Kernel Size: 5
Stride: 1

Classes

Figure 4.2: Original "Cifar-10 Full' CNN Model structure

(LRN), which performs a kind of “lateral inhibition” by normalizing over local input
regions. The network has 32 filters of size 5x5x3 in the first convolution layer, 32 filters
of size 5x5x32 in the second convolution layer and 64 filters of size 5x5x64 in the third
convolution layer, for a total of about 80 thousand learnable parameters.

In the prototxt file that describes the model’s architecture, each layer is assigned a name,
for example "convl". The flow of data is described by determining the previous layer,
namely the "bottom" one, from which the data come. An example of how a Convolution
layer looks like within a prototxt file can be seen below. A detailed list of the supported
layers can be found at Caffe Layers ®.

layer {

3 name: "convl"
type: "Convolution"
bottom: "data"
top: "convl"
param {

1lr mult: 1
}
param {
1lr_mult: 2
}

convolution_param {
num_output: 32
pad: 2
zero-padding)

1 caffe.berkeleyvision.org/tutorial /layers.html

learn 32 filters
number of pixels to add to each side of the input (

learning rate multiplier for the filters

learning rate multiplier for the biases

http://caffe.berkeleyvision.org/tutorial/layers.html

S © W N O

NN NN = e e
N OCEE Rt

NN
S1

4.3 CNN models in this Thesis 87

kernel _size: 5 # each filter is bx*b

stride: 1 # step 1 pixel between each filter application

weight_filler {
type: "gaussian" # initialize the filters from a Gaussian distribution
std: 0.0001 # with stdev 0.01

}

bias_filler {
type: "constant" # initialize the biases (default: zero)

}

X
}

The other prototxt file needed, defines the solver parameters. It can be found in Caffe’s
source code, at "examples/cifar10/cifar10_full solver.prototxt".Beside the solver’s pa-
rameters, in this file we can determine how frequently will the framework pause the
training process in order to test the model’s performance and when to create snapshots
of the model’s state. Alex Krizhevsky who created this solver targeting the "Cifar-10"
dataset also determined the number of training epochs at which lowering the learning
rate can help the algorithm converge to a better minimum.

4.3.2 Why use the "Cifar-10 Full' model?

The Cifar-10 Full model delivers high accuracy for the targeted dataset while being
small enough to be stored in on-chip memory. Therefore, this model is a good candidate
to address the realistic problem of real time classification of SAT6-like images. Even
though Cifar-10 Full is not as deep as more recent models (e.g. ResNet), Cifar-10 Full
cannot be regarded as outdated as long as it fulfills its purpose. Overall, Cifar-10 Full
is a good fit for the purposes of this thesis. More complex models have demonstrated
similar or slightly better results in accuracy on the SAT-4 & SAT-6 datasets (figure 4.3),
but one should not use a bazooka to kill a mosquito. Finally, the basic problems that
emerge in implementing this model in an FPGA, using VHDL, also present themselves
in models of higher complexity, which makes Cifar-10 a good place to start.

The exact complexity of the model that we used is presented in detail in section 4.3.4.
For reference purposes and to enable comparison, table 4.1 presents info on some of the
most popular CNN models and an entry of how would the specs of the "Cifar-10 Full"
model scale, in case it was used for images of 224x224x3 pixels size (the model originally
aimed the Cifar dataset, with images of size 32x32x3).

https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver.prototxt

38 4 CNN training and Optimization

Table 4.1: Comparison of Different CNN Topologies for Image Classification on ImageNet
dataset. Source: [Gscl6].The "Cifar-10 Full" model is included with its input image
dimensions altered to 224x224, to get a better feeling of the network’s size compared to the
other networks.

AlexNet | 227x227x3| 5 1140 62,4 2.4 19,70%
Network-in- oo ooaxs| 12 | 1100 7.6 4 19,00%
Network

VGG-16 224x224x3 16 15470 138,3 29 8,10%
GoogLeNet | 227x227x3| 22 1600 7 10,4 9,20%
ResNet-50 |224x224x3| 50 3870 25,6 46,9 7,00%
Inception v3[299x299x3| 48 5710 23,8 32,6 5,60%
Inception-

ResNet-v2 299x299x3 [96 9210 31,6 74,5 4,90%
SqueezeNet |227x227x3| 18 860 1,2 12,7 19,70%
Cifar-10 Full| o0) ooaxg| 3 604 0,58 4,4 not available
(scaled)

4.3.3 Customizing the "Cifar-10 Full" model to our needs

Adjusting the Input & Output to the SAT datasets

This is an obvious change; Cifar-10 model is targeting a dataset with 10 classes, while
SAT-4 and SAT-6 have four and six output classes respectively. Moreover, the Cifar-10
dataset consists of RGB images of 32x32x3 pixels size, while the SATs contain images of
28x28x4 pixels size, with four channels: RGB-NIR.

Removing the NIR-input channel

Although in hyperspectral and multispectral imaging the Near Infrared (NIR) band
offers valuable information in identifying different materials, in our case we decided
to remove the NIR channel. Initially this was a trial & error decision, based on the
fact that most of the existing models for image classification in the Caffe’s "Model Zoo"
take as an input images with three channels in depth and we wanted to use a mostly
pre-defined network. The top-1 accuracy that the model achieved in the preliminary
training on the SAT-4 & SAT-6 datasets, while omitting the NIR-channel, exceeded our
expectations and was deemed enough for our case (over 90% top-1 accuracy). Thus,
we kept the R,G,B subset and no permutations were tested. This decision was further
strengthened based on the results of [Papl6], where training a deep CNN model on the
SAT-4 & SAT-6 datasets, with and without the NIR band, proved to produce similar
results in terms of accuracy. From a hardware design perspective, this reduction in the
dimensionality of the input space is both convenient and important: less data as input,
means fewer computations and less memory needed.

4.3 CNN models in this Thesis 89

Beside the specific datasets used in this thesis, there is also one more reason why one
should consider favoring the R-G-B channels over NIR, when available: Most models
are trained on images that use channels from the visible spectrum, as in the case of the
ImageNet dataset (RGB and CMYK format). In order to use pre-trained models and
utilize "transfer learning" techniques, the target dataset should be similar to the one
originally used. Transfer learning can be highly useful, when training data are scarce, or
when we want to reduce computational time for training. In our case, the models were
trained from scratch, since there were plenty of data available in the SAT datasets.

Removing the Local Response Normalization layers

The contribution of these layers to the accuracy of CNN models has been in doubt for
the past few years and they seem to have fallen out of favor [Karc] [Chel6a]. Although
Alex Krizhevsky mentioned a 2% increase in the accuracy for Cifar-10 when using the
normalization layer [Kril2], removing the layer didn’t have any significant impact in
our case. Thus we regarded that the hardware implementation of the model should
not spare resources for this kind of layer. Moreover, it should be noted that although
the LRN layers have fewer Multiply-Accumulate operations than the convolution layers,
they use division with non-constant numbers, which is computationally and resource
expensive.

Using only "max" operation for Pooling

The "Cifar-10 Full" model alternates between average pooling and max pooling in its
layers. To have a more uniform network we decided to keep only one kind of pooling
and arbitrarily chose the max-pooling operation.

Order of Pooling & Rectifier Linear Unit layers

In the original "Cifar-10 Full" model we can observe that the Pooling and Relu layers
do not always appear in the same order. This decision did have some impact when
the average pooling function was used. However, in the case of max pooling and relu
(x1), if we suppose a submatrix B of a real matrix A, then maz_ pooling(relu(B)) =
relu(maz__pooling(B)). Since we decided to use only the max pooling function, we can
re-order these two layers. Although the layer’s result will be the same regardless the order,
these two cases are not completely equivalent: In the case of maz_pooling(relu(B)),
the relu operation will have to be applied to all the MxN elements of the submatrix
B, whereas in the case of relu(maz_pooling(B)) it will have to be applied only to one
element, the scalar result of max_pooling. Thus, Pooling layers in our network should
be placed before the Relu layers.

90 4 CNN training and Optimization

Pooling layer’s output size

The Caffe framework does not calculate the output size of the convolution layer and
the pooling layer in exactly the same way. In the case of the convolution layer, a floor
function is used to make sure that the calculated dimension is an integer number, whereas
in the case of pooling the ceiling function is used. Output’s size in one dimension is:

Input__height — K l_height
Pooling Output__height = ceil(nput_hetg erner_new + 1>

Stride

When the fraction is not an integer number itself, Caffe implements the ceiling function
by zero-padding half of the input plane’s matrix sides (figure 4.3).

e

. .

Figure 4.3: Half zero-padding the input plane. Ceiling pooling layer’s output size.

In order to avoid the extra logic needed to conditionally handle the incoming pixels in
the pooling layer, we slightly modified the pooling kernel size wherever needed, so that
the fraction in the equation above would be an integer and thus zero-padding would not
be needed in this stage. Specifically, we changed the pooling kernel in layers 1&2 to
height=2, but kept the kernel in the third layer with height=3. However, it should be
relatively easy to include this functionality if needed, since a FSM for zero-padding is
already written for the convolution layers.

4.3.4 The "Modified Cifar-10 Full' CNN model

Having in mind the adjustments mentioned in the subsections above, the network that
we used has the architecture illustrated in figure 4.4. The CNN model is identical for
both the SAT-4 & SAT-6 datasets,with the exception of the number of output classes.

Using Netscope!, a web-based CNN analyzer, we can quickly calculate the network’s
complexity in terms of number of operations and memory (table 4.2). "Activations" is the

1 dgschwend.github.io/netscope/quickstart.html

http://dgschwend.github.io/netscope/quickstart.html

4.3 CNN models in this Thesis 91

layer’s number of outputs, while "parameters" is the number of learnable weights. The
number of Multiply-Accumulate (Macc) operations per convolution layer is calculated
as: Number of Input Channels - (Width of the kernel)? - Number of Filters in the Layer
- (Width of the Output plane)?. For example, in the first convolution layer (conv1) that
is3-5-5-32-28-28 = 1881600 Macc operations.

In figure 4.5 we can see that the second convolution layer is the most computationally
exhausting, while the third convolution layer has the largest number of weights.

kyle"l@l Max Pooling
32CH

H
Data 3¢ Convol 1 Kernel: 2
28x28 28x28 14x14 | Stride: 2
k¥Jo"l Max Pooling
32CH | kernel: 2
7x7 Stride: 2
Yo"l Max Pooling .
Convol 3 | Kernel: 3
Stride: 2

ReLU
64CH¢ 3x3

Convolution Kernels: 5x5 FU”y

Stride: 1 Connected
Padding: 2

Figure 4.4: The "Modified Cifar-10 Full" CNN model: based on the "Cifar-10 Full".

92 4 CNN training and Optimization

Multiply-Accumulate Number of Weights
Operations per Layer per Layer
6 60
i 50
4 40
=] =
g 3 £ 30
=]
= 2 % 20
1 10
0 0
Convl Convz Conv3 Ipl Convl Convz Conva Ip1

Figure 4.5: Number of Operations & Weights per layer

Table 4.2: "Modified Cifar-10 Full" CNN: Number of Operations & Network’s Size

data Input 3 28x28 3 28x28 activation: 2.35k
convl Convolution 3 28x28 32 28x28 Macc: 1.88M activations: 25.09k
parameters: 2.43k
pooll Max Pooling 32 28x28 32 14x14 Comp: 25.09k activations: 6.27k
relul ReLU 32 14x14 32 14x14 Comp: 6.27k activations: 6.27k
conv2 | Convolution 32 14x14 32 14x14 Mace: 5.02M | activations: 6.27k
parameters: 25.63k
pool2 Max Pooling 32 14x14 32 <7 Comp: 6.27k activations: 1.57k
relu2 ReLU 32 <7 32 <7 Comp: 1.57k activations: 1.57k
conv3 Convolution 32 <7 64 =7 Macc: 2.51M activations: 3.14k
parameters: 51.26k
pool3 Max Pooling 64 =7 64 3x3 Comp: 5.18k activations: 576
relu3 ReLU 64 3x3 64 3x3 Comp: 576 activations: 576
. activations: 6
ipl Inner Product 64 3x3 6 1x1 Macc: 3.46k parameters: 3.46k
add: 6
prob Softmax 6 1x1 6 1x1 div: 6 activation: 6
exp: 6
Macc: 9.41M | activations: 53.69k
TOTAL Comp: 44.96k | parameters: 82.79k

4.3 CNN models in this Thesis 93

4.3.5 The "Modified Cifar-10 Full'" CNN model’s Training & Results

There are plenty of tutorials online on how to install and use the Caffe framework for
training. In this thesis, the framework’s command line interface and python interface
were used.

SAT4 & SATG6 datasets are pre-split in train and test sets. Having in mind that they
were created and published for being used by machine learning algorithms, no cleansing,
augmenting, or transforming the data was applied for this thesis. The only pre-processing
applied before training was the per channel mean subtraction, calculated over all the
images, as common practice suggests. For the solver configuration, which requires the
choice of several hyper-parameters that heavily influence the learning process, we used
the configuration described for the "Cifar-10 Full" as a starting point and adjusted the
total number of epochs and the learning rate by observing the network’s performance.
This method falls under the category of manually searching the hyper-parameter space
and it is a bit primitive. However, luck was on our side and the algorithm quickly
converged, thus no further exploration was carried out. Although not in the scope
of this thesis, it should be noted that methods of grid search, random search and
various methods of optimization to tackle the very interesting problem of selecting the
hyper-parameters of a machine learning problem do exist.

At about four epochs! of training (with batch size=100), the results obtained for the
SAT-6 dataset were those illustrated in figure 4.6. We can see that at around 8000
iterations the model’s accuracy gradually stopped improving and reached a plateau.
The model reached a top-1 accuracy of 98.5% after just 3 epochs of training, which is
pretty fast. After a total of 6 epochs of training and having lowered the learning rate by
a factor of 10 , the algorithm achieved a top-1 accuracy of 98.8% for the SAT-6 test
dataset. It is exciting how quickly the algorithm converged, although we didn’t use a
pre-trained model, but rather initiated the training from scratch. The results for the
SAT-4 dataset were similar, achieving a 99.09% top-1 accuracy. Comparative results of
applying different learning frameworks on these two datasets can be seen in table 4.3.

1 One epoch consists of one full training cycle on the entire training set. Here, with batch size =100, a
training epoch is equal to 3240 iterations, since the dataset consists of 324000 training samples.

4 CNN training and Optimization

18 T T T T

train loss
test accuracy ————
16 test loss 1

14 _

12 1

0.8 _
0.6 .
0.4 _
0.2 ! _

I -,.|.|,‘.-1FII VR L'I !

0 1
0 2000 4000 6000 8000 10000 12000 14000

ey 'Il 'y skl | 1M1 |
i . r "’ A 1 UL ety _._-Il.‘ll l_ il bk il -.-I-, _..l_.|| .ll'_ll LY LT

Figure 4.6: Training loss and accuracy of the "Modified Cifar-10 Full' CNN model, for
the SAT-6 dataset after 4 epochs of training.

Table 4.3: Accuracy rates for SAT-4 & SAT-6 datasets using different learning frameworks
[Papl6].

DBN [Basl15]

CNN [Bas15] 86.83 79.06
SDAE [Basl5] 79.98 78.43
Semi-Supervised [Basl15] 97.95 93.92
Pretrained-AlexNet [Vak15] 99.46 99.57
AlexNet [Papl0] 99.98 99.93
AlexNet-small [Pap16] 99.86 99.90
VGG [Papl6] 99.98 99.98

"Modified Cifar-10 Full"
CNN model (this Thesis) 99.09 8.8

4.4 Compressing the network: Word-length Optimization 95

4.4 Compressing the network: Word-length Optimization

Caffe trains the network using 32-bit floating point precision. However, fixed point
arithmetic is less resource hungry than floating point arithmetic and better suited for
most FGPA designs. Moreover, it has been shown that fixed point arithmetic is adequate
for neural network computation [Gys16], [Could]. (figure 4.7).

In this thesis the "Ristretto"! tool was employed to estimate how different bit-width
representations will affect the network’s accuracy. Ristretto is an extension of Caffe that
offers automated CNN-approximation to condense the 32-bit floating point networks. It
allows the user to test, train and fine-tune networks with limited numerical precision.

Ristretto offers three approximations schemes: Dynamic Fixed Point, Minifloat and
Power-of-two parameters. In this thesis, the Dynamic Fixed Point approximation was
applied to the delivered design, while the accuracy of the Power-of-two parameters
approximation was also calculated.

Layer CONV FC 32-bit floating Fixed point

outputs parameters parameters point baseline accuracy
LeNet (Exp 1) 4-bit 4-bit 4-bit 99.1% 99.0% (98.7%)
LeNet (Exp 2) 4-bit 2-bit 2-bit 99.1% 98.8% (98.0%)
Full CIFAR-10 8-bit 8-bit 8-bit 81.7% 81.4% (80.6%)
SqueezeNet top-1 8-bit 8-bit 8-bit 57.7% 57.1% (55.2%)
CaffeNet top-1 8-bit 8-bit 8-bit 56.9% 56.0% (55.8%)
GoogLeNet top-1 8-bit 8-bit 8-bit 68.9% 66.6% (66.1%)

Figure 4.7: Fixed point arithmetic is adequate for neural network computation: Compara-
tive presentation of the achieved accuracy between the full precision and a quantized version
of various networks. These are fine-tuned networks with dynamic fixed point parameters &
outputs. The numbers in parentheses indicate accuracy without fine-tuning. [Gys16]

Dynamic Fixed Point approximation

In the fixed point representation used, each number n is represented as follows:

B-2
n=(-1)*-27FF> "2 g (4.1)
=0

Here B denotes the bit-width, s the sign bit, FL is the fractional length, and x the
mantissa bits. The "dynamic" refers to the fact that each different part of the network

1 http://lepsucd.com/?page_id=621

http://lepsucd.com/?page_id=621

96 4 CNN training and Optimization

is allowed to have a different fixed point representation, in order to better cover their
dynamic range. Specifically, each layer of the network is split into two groups: one for
the layer outputs and one for the layer weights. Within each group, all numbers are
represented using the same integer and fractional length. Examples of this representation
can be seen in figure 4.8.

Integer Fractional
part i part
- ; >

sign mantissa

FL=2,B=7

FL=4,B=7

I I}

e d
BAOEE o] r-28=s

e
80 EECETYE

Figure 4.8: Examples of dynamic fixed point numbers. Note that the fractional length
may be negative or greater than the word length.

4.4 Compressing the network: Word-length Optimization 97

Applying the Ristretto tool: Results

In table 4.4 the "Modified Cifar-10 Full' CNN model’s accuracy analysis produced by
the Ristretto is displayed. This analysis presents how the network’s accuracy is affected
when applying fixed point representation to individual network parts. During this
analysis each one of the categories is quantized to dynamic fixed point, while the rest
remain in full precision.

Table 4.4: "Modified Cifar-10 Full" CNN’s accuracy analysis. Applying dynamic fixed
point representation to one category at a time, while the rest remain in full 32-bit precision.

Baseline 32bit float Accuracy: 0.9874

16 bit 8 bit 4 bit 2 bit 1 bit

CONYV Weights | 0.9874 0.9873 0.8862 0.2399 -
FC Weights 0.9863 0.9863 0.9865 0.9737 0.0251
Activations 0.9656 0.9631 0.9316 0.3756 -

In table 4.5 the accuracy results of five different quantization scenarios are presented. In
the power-of-two weights scheme, weights are represented as n = (—1)%-2°P | exp 5{ -
8-y — 1}. The power-of-two approximation comes in very handy for hardware
implementations, since it exempt us from the need of using multipliers. Instead, the
multiplications can be computed by bit-shifts, which are less resource & energy hungry
than multipliers. Although this approximation is ideal for a hardware accelerator and
the accuracy achieved for the specific dataset-network, without fine-tuning, is close to
the baseline of using 32-bit floating numbers, we decided to not follow the power-of-two
weights approximation scheme in our design. Instead, we followed the scenario C,
in an attempt to study a more generic, and currently more frequent, version of the
CNN-to-FPGA problem, while still using low-bit approximations.

It is often suggested that after reducing the precision of the network’s activations and
parameters, one should fine-tune the network to achieve even better performance. In our
case however, re-training the network didn’t have any effect on the achieved performance,
despite experimenting with various magnitudes of learning rate.

Table 4.5: Different approximation scenarios applied on the "Modified Cifar-10 Full"
network. Scenarios A-D use dynamic fixed point approximation. Scenario E forces weights
to be power-of-two and applies dynamic fixed point to the activations.

Scenario A B C D E
Group
Conv Weights 8 bit 8 bit 8 bit 4 bit | Power-of-2
FC Weights 2 bit 2 bit 2 bit 2 bit | Power-of-2
Activations 32 bit | 8 bit 4 bit 4 bit 8 bit
Accuracy % 0.9792 | 0.9783 | 0.9489 | 0.7588 0.9432

N}

98 4 CNN training and Optimization

Table 4.6: Exact configuration of the chosen approximation. It corresponds to the
scenario C in table 4.5, achieving 94.89% accuracy. Bw stands for "bit-width" and FL for
"floating-length". Also note that the Bias follows the approximation of the Weights at each

layer.

Convl | Conv2 | Conv3 | FC

Bw Layer In 4 4 4 4

Bw Layer Out 4 4 4 4

Bw Weights 8 8 8 2

FL Layer In -4 -3 -3 -3

FL Layer Out -4 -5 -5 0

FL Weights 8 10 10 7

Extracting the Quantized Weights

Ristretto performs the quantization on-the-fly, without storing the quantized weights.
The weights remain unmodified within the tool, in their initial 32-bit float representation.
However we need to extract the quantized version of the weights, in their binary
representation, in order to feed the RAMs of our design. One way to perform this is
without changing Ristretto’s source code: Through Caffe’s python interface we access the
network and read its weights. Then we quantize them, in the same way that Ristretto
does !, and save them in external files, split as needed?. The following code in Python
is an example of a way to achieve this.

import numpy as np
import caffe
import bitstring

net = caffe.Net('SAT6.prototxt', 'latest_run.caffemodel', caffe.TEST)

i| Weights_Layerl = net.params['convl'][0].data

The Filters are stored in ['convl'][0], the Bias in ['conv1'][1]
max_data_weights_Cl1l = (2**(bit_width-1)-1)*(2**(-FL))
min_data_weights_C1 -(2%x (bit_width-1))*(2%x(-FL))

Weights_Layerl.shape={32,3,5,5}. This is a 4D array.
filters_num = Weights_Layerl.shape[0]

channels_num = Weights_Layerl.shape[1]

for filters in range(l,filters_num+1):
for channels in range(l,channels_num+1):

1 Described at "Trim2FixedPoint_cpu" function, at http://github.com/pmgysel/caffe/blob/
master/src/caffe/ristretto/layers/base_ristretto_layer.cpp

2 In the next chapter, we describe that for in our FPGA design the weights must be organized in a

very specific way (see section 5.4).

http://github.com/pmgysel/caffe/blob/master/src/caffe/ristretto/layers/base_ristretto_layer.cpp
http://github.com/pmgysel/caffe/blob/master/src/caffe/ristretto/layers/base_ristretto_layer.cpp

16

4.4 Compressing the network: Word-length Optimization 99

with open('convl_quantized weights’i_%i.txt'}(filters,channels), 'a') as

outfile:

for x in np.nditer(Weights_Layeri[filters-1] [channels-1],order='C',
op_flags=['readwrite']:
For each one of the 5x5 weights.

float_x = float(x)

Saturate data ("cut-off the msb")

float_x = max(min(float_x,max_data_convl), min_data_convil)
Divide & Round Data ("cut-off the 1sb")

float_x /= 2*x(-8)

float_x = round(float_x)

int_x = np.int8(float_x)
integer_out=bitstring.BitArray(int=int_x, length=8)
outfile.write('b"{}"\n'.format (integer_out.bin))

Listing 4.1: Example code of extracting the quantized weights

In figure 4.9 we can see how many of the weights, per layer, are equal to zero, one, or
power-of-two, after the dynamic-fixed point quantization. It is possible that a hardware
design, fined-tuned over these specific weights, could decrease the amount of multipliers

needed.

120
100
a0
B0
40
20

SATGE - Quantized Weights' distribution

—
B Other
B Power-of-two
=1
One
B Zero
m B

Convi Conv2 Conv3 I

Layer

Figure 4.9: "Modified Cifar-10 Full' CNN model’s Weights after quantization: Per layer
percentages of how many weights are equal to zero, one, or a power-of-two number.

CHAPTER b

FPGA Implementation

This chapter presents the architecture of the system that we designed, that implements
the CNN topology described in the previous chapter. We also discuss some of the design
decisions and options and we present metrics of the design’s performance.

5.1 Design Approach

Convolutional Neural Networks are inherently massively parallel algorithms. For example,
if we examine the first convolution layer of our topology (table 4.2), we can see that it
consists of 1.88 million multiply operations. We shall observe that these multiplications
are all independent of one another. Thus, a FPGA design that implements a convolution
layer should utilize the potential of computing these multiplications in parallel, meaning
the potential of loop unrolling the algorithm along the various dimensions. Our approach
is pretty direct: Within a single layer create multiple instances of the basic components
in order to reduce the need of multiplexing the components in time, effectively trading off
resources for speed-up. Due to the data independence between the multiply operations
within the same layer, the loop unrolling is limited only by the number of available
hardware resources. However, since hardware resources are finite, design questions
emerge regarding which loops and to what extent to unroll and how these configurations
affect the other metrics of the system. Besides the loop-unrolling, there is also potential
to pipeline parts of the design: From a higher level perspective, the different layers of
the network can be pipelined, especially when computing a stream of images, while from
a low-level design perspective, the RTL can be optimized to decrease the levels of logic
and enable a higher clock frequency.

It is common in CNN-to-FPGA mappings to use the FPGA as an accelerator for the
multiply-accumulate operations, while the whole process is controlled from a CPU and
most of the data are stored on external to the FPGA memory [Chel6b; Qiul6; Zhal5].
However, in this thesis, the size of the specific network used enables us to perform all the

101

102 5 FPGA Implementation

processing and the control on the FPGA chip, without the need for an external memory
to store the intermediate results, or a CPU to coordinate and monitor the algorithm’s
execution. Throughput is therefore not limited by the off-chip memory bandwidth'.
Since the algorithm is solely executed on the FPGA chip, we decided to concurrently
map all the layers of the network on the design. Each layer’s architecture and control
is dependent on the size of its inputs and outputs, which varies across the network.
Moreover, due to the dynamic fixed point quantization scheme described in the previous
chapter, these inputs and outputs use different fixed-point representation from layer to
layer. Thus, the architecture that implements the 1st Convolution Layer wouldn’t be
possible to implement the 2nd Convolution Layer, etc without some reconfiguration of
the design or complex control.

For each layer L of the CNN, we unrolled the computation in three dimensions: (i)
The parallel processing of M input channels, (ii) the parallel generation of N output
channels, which can also be seen as the parallel processing of N filters and (iii) the
parallel computation of all the k? multiplications within each one of the M - N parallel
filters’ channels. This M, N configuration creates a grid of multiple instances of the
design’s basic components, some of which are of multiplicity 1 (one), some of M, some
of N and some of M x N. The memory organization of the activations (the layer’s
inputs & outputs) and the parameters (the layer’s filters) is highly dependent on the
choice of M, N.

In order to increase the portability and adjustability of the design, all the VHDL code in
this thesis is completely parameterizable through a single configuration file, including the
various bit-lengths, the size of the image, the multitude of the instantiated components
and the hyper-parameters of the basic operations (e.g the kernel’s size, the padding size
& the stride of the convolution). The verification of the design was based on directed
testing and on manual inspection of the simulation results in Xilinxs’ Vivado Suite,
which were then compared to results from MATLAB.

1 This claim is further justified in section 5.8

5.2 The design's key components 103

5.2 The design’s key components

The design needs components that implement the following operations:

e Zero-pad the incoming data array at each convolution layer.

o Keep track and apply the different fixed point representations between the layers.
Use full-precision accumulation inside each convolution layer before truncating.

e The 3D convolution operation.

e The max-pooling operation.

o The maz(x,0) element-wise operation, as a rectifier linear unit.
e The inner product operation for the final layer of the network.

e Control and synchronize all the operations both intra- & inter- layer.

A generic version of one layer is illustrated in figure 5.1. This is a unified Layer,
implementing the Convolution, the ReLU and the Max Pooling operations. This unified
Layer makes up most of the design. Three of these unified Layers are stacked up one
after the other to complete the convolution phase of the network, followed by a fully
connected layer. We shall now describe its components.

104 5 FPGA Implementation

#M Input #N Filters Parallelly
Channels Parallelly (M channels of each per time)
e e
- ROM ROM
(1,1) (1.N)
RAM 5 o i c
1 2] onv ' ~ A T onv
= Engine i Engine i
T I8
3
(o] P
o3 F g F
. 2 ROM ROM
S (2,1) i (2\N)
RAM 3 . v P
2 2 . COI‘!V <SP = = =] COT!V <SP
S : Engine = P Engine —
I u><.' | I | H H |
]] L]
[] n "= = = .
[]] L] |]

F
o ROM
(M,1)
RAM i
M Conv < sp " = om

Window Window
Generator = == Generator
Adder Bias Adder : Bias
tree < ROM 1 tree + . ROM N
RelU & RelU &
Quantization Quantization
Pool . Pool .
ey : Pooling . = = RAM p Pooling #N Output
Layer 1 Layer N .
1 AR N AR _ Channels
S e . Parallelly

\J

Figure 5.1: A generic version of the unified Layer’s structure. Performs the zero-padding
of its input, the truncation of its inputs & outputs, the convolution, the ReLLU and the max
pooling operations.

5.2 The design's key components 105

5.2.1 The "Expander" component

Multiplicity per Layer : 1

The Expander component is responsible for symmetrically zero-padding the 2D input
matrices at each layer. The 3D operation is realized by repeating the operation for every
channel of the input. We suppose that every channel is stored in row-major order and
that each pixel is stored at each own address. The Expander keeps track of which pixel
is being processed and sets the RAM address accordingly. When reaching the edges of
each input channel, it points to a specific address, where the default value "0" is stored.
A "padding" variable in the configuration file determines by how many zero-pad values
will the input array be expanded.

5.2.2 The "2D Convolution Engine' component

Multiplicity per Layer : MxzN

At the core of the convolution layers lies a component that performs a 2D cross-correlation
operation, between a filter and an input 2D array. By storing the filter’s weights pre-
flipped in the memory, or accessing them in reverse row-major order, the 2D convolution
operation is performed.! The 3D operation is realized by repeating the 2D operation for
every input channel and aggregating the intermediate results.

Our component is based on the work described at [Sho93]. Its structure can be seen in
figure 5.2. We suppose that both the filter and the input array are square. The input
array is of size (Imagewiqn + 2 - Padding)?. At the input of the component arrives
one pixel per cycle, in raster-scan order. Each pixel is simultaneously multiplied by all
the 5x5 weights (the filter’s coefficients) and then partial sums are accumulated by the
adder chain. The delays between the adders allow the proper alignment of the kernel to
the input array. This architecture creates bursts of "E" correct results, one per cycle,
interleaved by "X" wrong results. "E" is the number of times that the kernel fits inside
the given input, in one dimension, calculated as

_ Imagewign + 2 - Padding — Kernely g, + Stride

FE
Stride

"X" is the number of times that the kernel won’t be correctly aligned to the input array,
calculated as X = Kernely ;g — 1. This situation arises when we reach the edge of the
input array and the kernel will have to move to the next line.

The first valid result will be ready after b = (Kernelyan — 1) - (Imagew;qmn + 2 -
Padding) + Kernelyiqn pixels have been streamed into the Convolution Engine. One

1 This is also the way that the Caffe framework performs the convolution: by storing the weights
pre-flipped.

106 5 FPGA Implementation

pass of the whole 2D-input array will be completed after E2 + E « X + b cycles, where
E? are the times that the kernel fits inside the input array and E % X are the total
wrong results between the bursts of valid ones.!

Pixel in

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]
Delays

[Image width —
Kernel width + 1]

Figure 5.2: The 2D Convolution Engine. Illustrated for a 5x5 Kernel.

1 Actually, this could be E? + (E — 1) * X 4 b, since we don’t have to wait for the last "X" cycles.

5.2 The design's key components 107

5.2.3 The "SP" component

Multiplicity per Layer : MxzN

Each one of the Convolution Engines gets loaded with filters from its own ROM. The
SP component is a Serial-to-Parallel converter, responsible for reading the filters from
the corresponding ROM and feed them to the Convolution Engine. Each filter consists
of 25 values of weights (5x5), with each weight stored at each own memory address. The
Convolution Engine component needs all of these 25 values simultaneously, thus the SP
component shifts these values on registers for immediate, parallel access. The control
that is responsible for the SP component makes sure that the next set of weights is
always pre-loaded on registers, so that the Convolution Engines can run without being
paused.!

5.2.4 The "Window-Gen' component

Multiplicity per Layer : N

The Window-Gen component is a sliding window generator and it is a component that
wasn’t created during this thesis. We borrowed it from the work described at [Stil6]
and its source code can be found here 2.

Let Mpgrauer be the number of input channels processed in parallel and M;yq; the
total number of input channels at a given convolution layer. When Mq,qiie1 < Miotais
we process a 3D partition of the input plane. Thus, to complete the 3D convolution
operation, we need to aggregate these partial 3D-convolution results.?

The Window-Gen component stores those intermediate, partial 3D-convolution results,
aligns them, and outputs them in a window of parallel registers. We use the Window-
Gen module to feed theses partial 3D-convolution results to an adder tree and ensure
that the ny, element produced by processing the M}’;am” ¢; Channels, 7 =1--. N}wﬁ%

parallel ’

n=1--- (Outputwidth)Q, will eventually be summed with the ny, elements produced by

J . M. ota . .4 .. .
;h; Mpamllel channels, j =1--- m and j # i. * The process is illustrated in figure

The Window-Gen can handle the interrupting way that the 2D Convolution Engines
produce valid results, with a corresponding "input_ valid" signal, which enables us to

1 Otherwise, a pause of k-k = 25 cycles would be needed to shift each new filter from the ROM to the
registers.

2 https://github.com/ARC-Lab-UF /window_ gen

3 Reminder: A 3D convolution of a 3D input with one 3D filter, results in a 2D output. Miotar 2D
convolution operations must be performed and their results at each position have to be aggregated.
Miotar is the depth of the 3D input.

4 i & jare indices.

https://github.com/ARC-Lab-UF/window_gen

108 5 FPGA Implementation

pipeline the creation of the windows to the Convolution Engines, reading the results
at the rate at which they are created. To achieve this, the Window-Gen module uses
complex control between its internal RAMs.

M slices

Window-Gen
(parallelly)

Mg | il (i
parallel ‘ 3 : l

fifo)
P |

oy

ava
W

(OQutputPlane

w.dth)z_ 1

......................................

Figure 5.3: The Window-Gen component. Eventually each fifo ¢ will contain the partial

results generated by processing the M;; parallel channels, ¢ = 1. Mtotal

arallel Mparatiel "

5.2.5 The "Pooling Layer'" component

Multiplicity per Layer : N

The Pooling Layer consists of several sub-components itself. It reads a single channel
of the 3D-convolution’s output, one pixel per cycle, and creates a window that "slides"
over the whole 2D input array. The window is a set of registers, that at each time
contain a sub-matrix of the given 2D input array. The elements of the window are
parallelly input into a comparator-tree. This structure resembles an adder-tree, but

5.2 The design's key components 109

performs a comparison operation between its nodes instead. The Pooling Layer outputs
one pixel per cycle, the one that has the greatest value at each position of the window.
Its operation is pipelined to the operation of the Convolution Engines.

A 3x3 Window on a
5x5 input 2D array Registers

Window

Figure 5.4: Pooling Window

T
Y
L

G-U m-U -h--U UJ-U i

"

max |

o0

—
-~
A
Lo
-~

&
s

Comparator tree

Figure 5.5: Comparator Tree

110 5 FPGA Implementation

5.2.6 The "Fully Connected Layer" component

The Fully Connected layer is the final stage of the network. Its topology is the same
as seen in classical neural networks. Since there is only one layer of fully connected
neurons and no hidden layers, this operation is actually a multiplication of a matrix
with a vector. The matrix is the weights of the layer with size (Number of classes) x
(Input I mage?m- ane Total number of input channels) and the vector is the input of size
(Input I mage%uidth- Total number of input channels) x 1. The output is a vector of size
(Number of classes) x 1 (figure 5.6(a)), containing the scores for each class.

In the above description we have assumed a point in time where all the inputs are
simultaneously available. However, the inputs are generated from the previous layer,
NL=3 of them per cycle. Thus all the inputs will be available (FC’s Input I magefvidth .

par
Nﬁ?ﬁz{e%}n}})’;ﬁaﬁfe{fﬁ;ﬁf}éﬁﬁfgs — 1) cycles after the 1st input is generated. We can observe
that we can pipeline the computation and use the inputs at the rate at which they
are generated, without waiting for the full input vector to be formed. This can be
achieved by using Multiply-Accumulate components, one per output, meaning one per
classification class. Each of these components will take at its input the NpLaf:g parallelly
available values and gradually perform the full multiplication. The final, per class, results
will be available shortly after the last inputs will become available. The component’s

diagram can be seen in figure 5.6(b).

In the general case, a serial-to-parallel converter would also be needed here, in order
to simultaneously provide the MAC components with as many weights, as the number
of their inputs. However, due to the quantization scheme, the weights in the Fully
Connected Layer are pretty small -just 2 bits wide- and thus we decided to pack M;;f of

them at the same RAM address, where M]f;f = NpLaf?’ is the number of parallel inputs
at the FC layer.

5.2 The design's key components

111

sasse|)

Num_of_Channels

Img_Width *
Img_Width *

Output Layer

Input Layer

(a) The topology of the Fully Connected layer.

Parallel
inputs

Number of classes
MACs parallelly

(b) The "Fully Connected Layer" component.

Sasse|d

112 5 FPGA Implementation

5.3 Bit-width Calculations

In this section we briefly discuss the bit-widths of some of the signals involved in a the
convolution operation of a single layer. We assume that an image is square, of size
I x I, each element of each is BWj,, bits, with the sign bit included. Every kernel is
of size kxk and its elements are of BW4,qam bits size each, with the sign bit included.
For each Convolution Engine we perform k x k& multiplications and we sum the results.
We want to calculate these results in full precision, so in order to prevent them from
overflowing, each Convolv_Engine Result is a signal BW, + BWparam + [(log2(k - k)]
bits wide. Moreover, in order to produce one output channel, we sum the results of
multiple Convolution Engines and also add the respective bias value. If there are M;ysq;
input channels to be processed, then the signal that carries the addition of all these
values should be BWy, + BWparam + [(log2(k - k)| + [(log2(Miotar) | +1 bits wide. Before
adding the bias value, the result from the Convolution Engines would have F' Loy, bits
fractional length, F'Loony = F'Lin + FLpgram- However, special care must be taken
when adding numbers of different fractional lengths, in order for the bits of the two
operands to be aligned. The bias is of size BWy4rqm bits and has F'Lygrqm bits fractional
length. The signal with the smaller fractional length is shifted left in such a way that
the two numbers will be aligned and their addition can be performed. In the current
configuration for the bit-widths, as produced by the Ristretto tool (see section 4.4), the
result of the Convolution Engines has always smaller floating length than the floating
length of the bias.

Radix Point
; '/ \

A4A3A23A1A0 + C2C1§C0 A Bit Width =5, A Floating Length =2
3 ‘ C Bit Width = 3, C Floating Length =1

: Shifting the number with the smaller
A4A3A2}A1AO ﬂoat'ing length as many places as needed,
+ Cchco 0 to align the radix of the two numbers

Figure 5.7: Simplified illustration of adding two numbers with different floating lengths.

Truncation: The signal that carries the sum of the results of the Convolution Engines
and the bias is BWgcony bits wide and has a fractional length F'Lscony = F Lparam- We
want to truncate this signal and the result should be Desired_out_ BW bits wide with
Desired_out__FL floating length, to match the results of the Ristretto tools (section

5.4 On-Chip Memory Organization 113

4.4).
Depth of RAMs

e The RAMSs where the input feature maps of the convolution layer are stored, are

of depth I - T - U}/[t%} each!, where I is the width of the input feature map,

parallel

Miotqi the total number of input feature maps (input channels) and Mpgraiier the
number of input features maps that are parallelly input in the layer.

e The ROMs where the weights of the convolution kernels are stored, are of depth

NNtot“l [MMMW |-k -k each. Nyyq are the total number of output feature
parallel parallel

maps (channels) that the layer has to generate, Npgraier is the number of output
channels that the layer generates simultaneously and k x k are the dimensions of a
single kernel. A single convolution layer has a total of Myyiar - Niotal - k - k weights
which are distributed between these ROMs.

« The ROMs where the bias of each filter is stored are of depth [+ tetel] each.

Nparallel

In order to address each one of these RAMs, the respective address signal needs
to be [log2(RAM Depth)] bits wide.

5.4 On-Chip Memory Organization

The organization of the memory for a specific layer is dependent on the layer’s number
of parallel input & output channels. For M,,, parallel inputs and NN, parallel outputs,
we have: M,q, input RAMs, N, Pooling RAMs, M4, x Npe Filter ROMs and N,
Bias ROMs (see figure 5.1).

Fori=1---Mpg and j =1--- Ny, and Myprar, Niotar the total number of input &
output channels respectively, to be processed, we will have 2:

o the Filter ROM;; will contain the filters in following order:
ROMZ] <= for k=1 to %

par

— Mtotal
for v=1 to S

Filter[j er(al; — 1) Npar] : Channeli+ (v — 1) - Mpqa,]
end
end

 the Bias ROM;’s contents should have the following order:
ROM; <= for k=1 to %

Filter[j + (k — 1) - Npar]
end

1 ceil(A)=[A]

2 Mpar and Npqr should be divisors of Miotar, Ntotai respectively. For example, if we have Miotqr = 32
and we want Mpqr = 7, we shall increase the Miorqr = 35 with dummy RAMs/ROMs. More on this
matter in the next section.

114 5 FPGA Implementation

 the Pooling RAM;’s contents should have the following order:
ROM; <= for k=1 to ‘getal
Channel[j + (k — 1) - Npar]
end

o the input RAM;’s contents should have the following order:
RAMZ <= for v=1 to %

anr

Channelli + (v —1) - Mpa,]

end

An example is illustrated in table 5.1.

Table 5.1: Memory Organization of 32 filters, with 3 channels each, for a 3x2 grid of

Convolution Engines (Mpq,XNpqr)-

ROM (1,1)

ROM (1,2)

Filter 1, Channel 1
Filter 3, Channel 1

Filter 31, Channel 1

Filter 2, Channel 1
Filter 4, Channel 1

Filter 32, Channel 1

ROM (2,1)
Filter 1, Channel 2
Filter 3, Channel 2

Filter 31, Channel 2

ROM (2,2)
Filter 2, Channel 2
Filter 4, Channel 2

Filter 32, Channel 2

ROM (3,1)
Filter 1, Channel 3
Filter 3, Channel 3

Filter 31, Channel 3

ROM (3,2)
Filter 2, Channel 3
Filter 4, Channel 3

Filter 32, Channel 3

5.5 Intra-Layer Control 115

5.5 Intra-Layer Control

One thing that became apparent during this thesis is that, when designing a system in
VHDL, more effort is needed in order to control and synchronize the various components,
than to design the components themselves. We shall now briefly describe how the
components within the layers are being synchronized. We will examine the unified Layer,
which performs the zero-pad expanding of its input, the truncating of the inputs &
outputs, the convolution operation, the ReLU and the max pooling operations (illustrated
in figure 5.1). The Fully Connected layer does not have the same complexity and is
sufficiently described in the according section.

The control is based upon signals between the components -thus internal to the Layer’s
architecture-, or signals that are input in the Layer -external to the Layer’s architecture.
These signals are altering the state of the components. That can be an on-off switch, a
reset of the component to its initial state, ordering a transition to another state in their
FSM, or a simpler straight-forward boolean operation. All the circuits in this thesis are
designed to be synchronous to the clocks. Meticulous attention must be given for all the
operations in the design to be exactly and correctly synchronized. A common practice
is to observe the operation of a block and manually insert the appropriate amount of
registers to delay several of the control signals included. Delaying the data is generally
discouraged, because that would translate to more resources of the design, whereas the
control signals are usually one bit each.

Suppose that we start the function of a Layer having all the data inputs ready and
stored in the respective RAMs and ROMs and that the design is in its initial state. That
can be due to a reset, external to the Layer’s architecture, the FPGA’s configuration !,
or the Layer has returned to its initial state after some computations. At that point
in time, the system is in an "IDLE" state. However, a pulse-signal has already been
issued to the Serial-to-Parallel components and their associated ROMs to start working,
in order to have the first set of weights ready for computation. After ~ 25 cycles 2
the Layer will be ready to start reading the data from its input RAMs, will inform its
surrounding environment about this with an "Initialization_ ready" signal and the SP
components will be paused. When an external "enable" signal arrives, the Layer will issue
the Expander component to start working. The Expander will control which address of
the input RAMs is read. Since all the Convolution Engines work simultaneously, only
one address is needed for all the input RAMs, where the input channels are stored, and
thus only one Expander component is needed per Layer. The Expander, in its turn, will
inform with a pulse-signal when the first "pixel" of the input RAMs is available and the
main, convolution state machine will transit to the "CONVOLUTION RUNNING" state.

1 configuration has the same effect as global reset: Xilinx’s white paper "Get Smart About Reset:
Think Local, Not Global", 2008
2 that is kernel?, 4, cycles, since each weight is stored at each own address

116 5 FPGA Implementation

At that point in time, the SP components will kick in again. The weights needed for the
convolution operation that has just started, are already in place and will remain static
while the first set of 2D input planes is being read. The SP components will also get the
next set of weights ready, so that they will be immediately available for the next set of 2D
input planes. Also, a component that keeps track of the Convolution Engines’ operation
is being started. This component, the "Shoup Controller" is responsible for monitoring
all the 2D convolution operations within the Layer and create a "valid_out" signal to
accompany the Convolution Engine components’ results. As stated in subsection 5.2.2,
these Engines produce results in an interleaved manner, where bursts of valid results
are followed by bursts of invalid results, so a "valid_out" signal is imperative here. The
Shoup Controller also informs the main convolution state machine when a set of 2D
convolutions has finished. Then the convolution operation will continue with the next
set of weights and inputs, until we reach the ending address of the weights’ ROMs. That
signals that the last 2D convolution is about to be performed and thus that all the
filters will have been convolved with the input plane and sets the main, convolution
state machine to the "LAST CONVOLUTION" state. Mind that we check when we
will reach the ending address of the weights” ROMs and not the ending address of the
input RAMs. The input RAMs will be re-read multiple times in order to convolve the
input channels with all the filters'. After the last convolution is calculated, the main
convolution state machine will transit to an "IMAGE DONE" state and wait till a new
image is input, to start all over again.

The Convolution Engines produce one output per cycle and the proper addition of
the valid outputs is taken care with the use of the "Window-Gen" components, paired
with adder trees. When all the channels of a filter are processed, the respective Bias
value is also added to the final results, which are then truncated. In the case that the
output pixel is negative, it is set to zero, applying the non-linearity of the ReLU. These,
final outputs, are the results of the 3D convolution operation, which consist the output
plane before the pooling operation. Still accompanied by, an appropriately delayed,
"valid__out" signal, these results of the 3D convolution operation are stored in dual-port
RAMs, denoted as "Pool RAM" in figure 5.1. To perform the pooling operation we need
"windows" of values, as already described in section 5.2.5. However, this time we do not
use the Window-Gen component. Instead, we use a different and less resource-hungry
approach. The Pooling Layer component will internally create the windows needed, in a
similar manner to the Window-Gen component. However, it lacks the complex control
to handle the interrupting rate in which the 3D convolution results are created. Since
we do not want to wait for the entire plane of the convolved values to be generated and
then start the max-pooling operation, nor can we directly connect the Pooling Layer
to the preceding adder tree, we decided to store the valid convolution results in the

1 That means that the contents of these RAMs must not be changed, until the whole 3D convolution
operation of this Layer is completed. More about this in the next section.

5.5 Intra-Layer Control 117

intermediate "Pooling RAMs". The Pooling Layer will start reading these RAMs, after a
certain delay in time. The delay before we start reading the RAMs’ contents makes sure
that we won’t read an address that has not yet been written '. That’s why these RAMs
need to be dual-port, so that they can be both read by the Pooling Layer and written
by the convolution operation at different addresses, at the same time. The Pooling
Layer will complete its operation a few cycles after the last valid convolution result
will have been generated and made available at its input. Its operation is pipelined
to the operation of the Convolution Engines. The Pooling Layer resembles a bit the
convolution layer, in the sense that it makes use of a "moving window" on top of its
input plane, performing some operations on the data within the window. That implies
that the Pooling layer component itself, contains several FSMs, counters and control
signals. However, we will not describe it in any more detail.

1 We give the writing process a head start of about (k — 1) - I'mg cycles before we start reading the
results. K and Img refer to the convolution operation’s parameters of kernelyiqatn and Input.yidtn-

118 5 FPGA Implementation

5.6 Inter-Layer Control

"Inter-Layer" control refers to how are the various Layers connected to one another, thus
how and when will the data generated from one Layer be input to the next Layer.

In order to address this question, we shall first make some observations. Every unified
Layer has M;yq input channels to process and Ny, output channels to generate for
every image. Each of these Layers is designed to operate simultaneously on Mp,,qizel
and Npgraier of them respectively. In order to produce each set of the N;f;zrall . output

channels, the layer L must combine the intermediate results produced by all the Mtgwl

channels at its input. Since the Layer L process MpLamllel input channels simultaneously,
the next Layer L + 1 will have valid results at its input and can start its operation, only
when the last input channels of Layer L will be under processing, for that particular set
of NpLamuez output channels. When Ngj;;”el < Ntﬁ;ﬁ, meaning, when the Layer L + 1

performs the convolution operation with a subset of the total number of its filters at a
L+1
time, the Layer L 41 will need to re-read the data at its input —£#2— times, in order to
parallel

produce all the output channels. That means, that until the Layer L + 1 has finished its
operation, Layer L must not modify these data. Thus, when processing a single image,
there aren’t many opportunities to pipeline the various layers of the network, with the
sole exception of the Fully Connected layer, which can be fully pipelined (section 5.2.6).
However, when processing a stream of images, things can be more in our favor.

When processing a stream of images, we can pipeline the computation of different images.
For that reason we double the buffers in between the Layers and use them in a ping-pong
manner. Then, while the Layer L 4+ 1 is operating, the Layer L no longer needs to be
completely idle. It can operate on a new image and store its output in a RAM not
currently being read. In an ideal scenario, the Layers would be fully pipelined and none
of them would need to be idle at all. This is a property that depends on the latency of
each Layer L and whether it can store its output without corrupting the data that the
next Layer reads. In practice, the Layers cannot be fully pipelined and their operation
will need to be stalled at times. A simplified example of this ping-pong style of buffering
is illustrated in figure 5.8.

The network’s specification for the Layers’ output is that NtLO;% = 32, Nt%:ﬁ = 32 and
Nt%;% = 64. Deciding the exact configuration of Mpurqiier X Nparaiel for each Layer is a
matter that will be explored in the next section "Design Space Exploration" (section 5.7).
Here we will examine how consecutive Layers should be interconnected, for a wide range
of possible configurations. The easiest approach from the point of design is to force
NI{JM allel = MPLJ;U o> meaning that the L+ 1 Layer has as many input channels in parallel
as the previous Layer L generates. This makes the wiring pretty easy and reduces the
amount of control needed between the Layers. Of course, the need for multiplexing
the dual buffers to implement the Ping-Pong buffering remains. However, this is a

restricting design approach which, as we will see in the next section 5.7, does not lead

5.6 Inter-Layer Control 119

to the best results in terms of performance. Therefore it is a choice that presents itself
as a design time vs performance trade-off. If instead we let NPLM atiel 7 M. L+l then

parallel’
the number of RAMs between the two Layers shall be 2 - max(Nzﬁlmllel,MpLJi”el), where

[" . . . L L+1
the "times two" term is due to the ping-pong, double buffering. If Npam”el <M

parallel?

then the L Layer must multiplex its writing, alternating between the MPL;;;” o RAMS.

If Mlﬁj;;”el < N;zﬁwallel’ then the L 4+ 1 Layer must multiplex its reading, alternating

between the szamll o RAMs. An example is illustrated in figure 5.8. In this example,

L _ L+1 _ L L+1 _
Npa'r’allel - 1’ Mparallel =2 and Ntotal - Mtoml =8.

Although we let Ngﬁzrullel £ M;fat;zzew we do demand that the My, que and Npgraiier
are divisors of Nypqr and My, respectively. The profound range of values then is
MpL;;zzez e {1,3} and NpL;;zzelvM;ﬁ;szzenNﬁ;guen MzijgllelvNﬁiguez e {1,2,4,8,16,32}.
However, we may also select values that are not included in the above sets, but are
within [1,32] interval instead. In that case, we increase the number of the Layer’s total
channels adequately, with "dummy" channels, where all values will be equal to zero, in
order to satisfy the demand for the number of parallel channels to be divisors of the
total number of channels. The extra, "dummy" channels will not affect the numerical
results of the Layer. In these configurations the amount of RAMs needed is increased,
but by allowing configurations like these to be inside our range of exploration, we can
better control the latency of each Layer and possibly gain in performance '. However,
these choices significantly increase the design’s complexity. An example is illustrated
in figure 5.9. In this example we suppose that we have initial NtLotal = Mtg;ﬁ =5. We
configure the Layer L to produce three output channels parallelly and the Layer L + 1
to read four input channels parallelly. This configuration will result in a need for some

dummy channels and filters.

1 For example consider a scenario where we have to process 32 channels in the input of a Layer. If
we are allowed to only choose from divisors of 32, we can process either 1,2,4,8,16, or 32 of them
parallelly. If we can’t fit in our design the processing of 16 of them parallelly, then the next best
choice is 8 channels parallelly, resulting in a 32/8 = 4 factor of how many iterations will be needed
to process all the channels. If instead we allow configurations of M,N ¢ [1,32], we may choose M=11
and reduce the number of iterations needed to 33/11 = 3.

120 5 FPGA Implementation

Layer
| E—
L+1

&
<
(1]
=
-
—>
\/

ping pong
AAaAaafaananiccceclcccc
B B|B BB BIDDDOD|IDDDD
layerl+#1 [[[[fI [[[:T DL IJI T T T g
i t2
RAM ping pong
. . : L _ L+1 _ L _
Figure 5.8: Example of connecting two Layers. Nporaner = 1 and Mpam”el =2. Ny =
L1 _ L+1 L41 _
M, = 8. Also Npamllel =1 and N, ., = 2. Layer L creates one output channel each

time, while Layer L + 1 reads two channels at a time. For that reason Layer L alternates its
writing between RAMs A&B. Because the L + 1 Layer has to create two output channels,
but only generates one of them at a time, it will re-read the input data twice, one for each
filter. Moreover, double buffers in Ping-Pong style, to pipeline the processing of a stream of
images: At one point in time Layer L created the output of Imgl (ping) and then continues
with generating the output of Img2 (pong). Layer L 4 1 reads the output of Imgl, while
the output of Img2 is generated. When Layer L + 1 proceeds to reading the output of Img2,
Layer L will continue in generating the output of Img3, etc. Note that the two time axis
use a different scale and their relative position is unrelated. Also stalling is not illustrated.

5.6 Inter-Layer Control

121

—
Layer > ‘
L 4

Control }7

IMG 1

Chl
Chs

IMG 1

Ch2
Dum 6

IMG 1

Ch3
Dum 7

IMG 1

Cha
Dum 8

RAM

Nt 3

parallel ~
. ML+1 - 4
parallel

e L - L+1 -
e InitialN°__ =M™ =5
Dummy Channels increase

N

L
total total

to6 and M"!,__ to8

Figure 5.9: Layer L creates three output channels parallelly, while Layer L + 1 reads four
input channels parallelly. The total amount of channels in between initially was equal to five.
In order to preserve the symmetry, dummy channels are used, which increase the amount of

channels in between

to NE

tota

, = ceil(3)

-3 =06 and MET! = ceil

two time axis use a different scale and their relative position is unrelated.

(g) -4 = 8. Mind that the

122 5 FPGA Implementation

5.7 Design Space Exploration

One question that emerges is how to decide the number of parallel input & output
channels for each layer. When imposing no constraints, the design has a vast space
of possible configurations = Hle(Layerfn - Layer®), which is > 227. !Different
configurations of the design result in widely different performance of the system.

5.7.1 Approach
We can measure the performance of the design using multiple metrics:

Device Resource Utilization is a percentage indicating how many of the device’s
available resources we are using.

Latency is the amount of time needed for the system to process a single image input.
For a pipelined system, this time interval is different from the time needed to process
successive inputs.

Throughput is the rate at which the system can classify new images.

Hardware Time Utilization is a percentage indicating how effectively we are using
the device resources that we have occupied, during the execution time, i.e whether
and how much of our resources are continuously busy. This is a metric closely related
with pipelining. A fully pipelined system would have Hardware Time Utilization =
100%.

Power Consumption is the amount of energy in time that the design needs to
operate.

We decided to explore the design space and optimize the design based on two axes:
(i) maximize the system’s throughput and (ii) take into account the hardware time
utilization. In this thesis we did not have specific constraints to satisfy in our design, i.e
for the power consumption, etc. However, we perceive throughput as the most important
metric of our design, since we expect that the FPGA will have a continuous stream of
images at its input to classify and we want to perform the classification as fast as possible,
delivering a design that can be meaningfully and successfully employed in real-time
satellite image classification. Latency on the other hand is considered as less important
for this application. Another important metric is the power consumption, however
it is very computationally exhaustive to calculate the power consumption for every
configuration. This would require the execution of both synthesis and implementation
for each configuration, which are computationally heavy processes. Moreover, we rely
on the fact that FPGAs typically have smaller energy consumption compared to their
competitors. A comparison regarding the power consumption of different configurations
can be estimated based on the respective hardware time utilization of these configurations.

1 thatis: 3-32-32-32-32-64 = 201.326.592 possible configurations.

5.7 Design Space Exploration 123

We can narrow down the design space a lot, based on (i) the maximum number of
Convolution Engines that can fit on the device in the best scenario, given the available
resources and (ii) various constraints on the input & output of the Layers. We apply
constraints on the 1&0O of the Layers based on the fact that for a constant throughput,
certain configurations are more resource hungry and that certain configurations increase
the inter-layer control complexity (as explained in section 5.6). More specifically, we
observed that increasing the amount of the parallelly input channels for the convolution
layers is preferable over increasing the amount of the parallelly output channels. This is
justifiable: If we look at figure 5.1 we can see that by increasing the number of parallel
outputs Ny, we also increase the number of "Window Generator" & "Pooling Layer"
components. In fact, our experiments showed that a configuration of M,z Npe, =
228 needs almost x2 the LUT resources and x4.5 the Block RAM resources of the
MpaTpraT = 82 configuration for a specific layer (figure 5.10). Moreover, when
Mp - rallel = Mt’:;t 1> We no longer have to accumulate intermediate, partial 3D-convolution
results and thus the Window-Gen component will no longer be needed, which frees some
resources. Regarding the 1&O constraints, we tried the following explorations:

« A space where M/~ arallel € [1’3] and N/ arallel’ MpL;guelv N;i;guezv M;f:;glleh NpL;guel

[1, 32]. This is the case where we do not apply any constraint on the input &
output of the Layers.

e A space where N parallel S M]f;zrallel for all Layers, ML= amllel € [1,3] and NL=

arallel’
Mzﬁwgllel, NpLa;a”el, Mlﬁ;g’”el, Nﬁ;gllel € [1,32]. Here we take into account that
increasing the amount of the parallelly input channels for the convolution layers is
preferable over increasing the amount of the parallelly output channels. Moreover,
we allow the dimensions of the grid of Convolution Engines at each layer to not
match completely the initial dimensions of the data that the Layer has to process

(see section 5.6).

L
e A space where Npamllel < Mpamllel for all Layers, Mpamllel € {1 3} and N parallel’
L=2
Mparallel’ Nparallel’ Mparallel’ NL= am”el e {1 2,4,8,16, 32} Similar to the above,

but we force the dimensions of the grid of Convolution Engines at each layer to be
divisors of the initial dimensions of the data that they have to process.

_ L+1 L=1 =
« A space where Nparallel - Mparallel’ Mparallel € {1 3} and M, parallel’ Mparallel
€ {1, 2,4,8,16, 32}, which leads to configurations with the easiest inter-Layer
control.
e A space where Npamllel < Mpam”el for Layers 2 & 3 but not for Layer 1,
L=3
M arallel € {1’273} arallel’ M (M’a,llel7 N arallel’ Mparallel’ € {1 2 3 4 5 6 7 8

11,16 32} and N pamllel € {1,2,3,4,5,6,7,8,11,16,32,64} which is the most fine-
grained exploration between the ones listed. One can observe that due to the
ceil function when calculating the latency, and the requirement that M, e and
Nparatier should be divisors of My and Nigq respectively, these are the only

124 5 FPGA Implementation

configurations that have an impact on the throughput of the system, from within
the [1,32] interval !

As one can observe, the first space in the list above is a superset of the latter four. In
each of the rest explorations we narrow the scope, to better screen for configurations of
increased interest, due to the resource utilization and inter-layer control complexity to
which they result. We search the design space by using Python scripts, calculating the
throughput and the hardware time utilization for every configuration that lies within
our constraints and then we manually evaluate the top candidates.

80 40 60
70 S 2 50
X 60 o 30 o
o 50 8% = 40
5 40 -g 20 <Et 30
4
2 ¥ g 2 2
L 20 10 X
= [V] %) 10
0 10 2 5 o
0 » 9 o 9
28 4x4 8x2 16x1 2x8 4x4 8x2 16x1 2x8 4x4 8x2 16x1
M_parallel xN_parallel M_parallel xN_parallel M_parallel xN_parallel

Figure 5.10: Device’s resource utilization, for different M, qrqiier X Nparalier configurations
of the 2nd Layer, while keeping the number of Convolution Engines within the Layer
constant. DSPs are not used in this example. Increasing the number of parallel inputs in
the Layer is preferable over increasing the number of parallel outputs.

1 Fori from 1 to N, compute a; = [%] Keep ai as the first element. If a;1 # a;, keep a;41 as the
next element. For example, for N=32 that yields 32,16,11,8,7,6,5,4,3,2,1. For example, if we choose

9, which is not in the above list, then [%%1 = [22] = 4. We have increased the parallelism to
paralle

more than 8, but we have not gained anything in terms of speed.We only spent more resources.

5.7 Design Space Exploration 125

Per Layer Latency

Each 2D array needs a total of Cf = E? + E - X + b cycles to get convolved with one
filter and produce one output channel (see section 5.2.2). Thus, for all the convolutions
to be completed within a layer L, we need CtLom[cycles:

L L
C CL Mtotal . Ntotal (5 1)
total — “1 ML NL .
parallel parallel

The equation 5.1 gives for each layer:

e Layer 1 : CL=1 =1029 - cell(ML)" cell(NL 1)

tota
par par

o Layer 2 : CL=2 =329 . cell(ML 2)- cell(NL 2)

o Layer 3 : CL=3 =126 - cell(ML 3)- cell(NL 3)

This is an approximation of the layers’ latency, which does not take into account the
cycles needed for initialization and the control signals. However, it is rather accurate -
~2% off the true latency of the unified Layers- and we can still compare the latency of the
different layers, identify which one acts as a potential bottleneck and perform the design
space exploration It is desirable that we find a configuration on M4 aiiers Nparatier for
which CL= otal o~ C’tot i C’t so that all the layers will need about the same time to
execute their operations.

otal’

Throughput

Throughput is measured in Images/sec. The images in this thesis consist of 28x28z3
8bit values each. We can classify one Image every Max Latency cycles, where Max
Latency = max(Latency™, Latency™?, Latency™).

Since we use ping-pong buffers between the Layers, the Layers can work on different
input images from each other simultaneously, thus throughput is dependent on the
part of the design that needs the most time to complete its operation. If the opera-
tion of the Layers wasn’t pipelined, throughput would be dependent on the sum of
the Layers’ latency instead. We want to find a configuration that will minimize the
max(Latency™®, Latency™?, Latency™) and thus increase the throughput.

sec
cycles
Img

Throughput = (5.2)

Design's Clock Frequency cycles
Max Latency

126 5 FPGA Implementation

Hardware Time Utilization

Different Mqraiier X Nparatier configurations result in a different distribution of the
available resources among the Layers. We want to choose a configuration that will
minimize the idle time of the Layers. The idle time is minimized when Latency™=! =
Latency’=2 = Latency™=3.

Suppose that we map to Layer L, #V Convolution Engines. We are interested in
whether these V' Engines are working-non stop and thus these are resources well spent,
or they are completing their load of work faster than needed, and thus we could map
less Engines on that particular Layer. A metric to quantify this is the following:

Time spent Working

Working as = #V Engines - —— " —

(5.3)

When Time spent working < Available Time, these Engines are idle for a fraction of the
execution time. By calculating equation 5.3 for every Layer, we can find the number of
"Relative Engines". Ideally this would be equal to the number of Engines we actually
mapped on the design. We then calculate the hardware time utilization. Total number
of Convolution Engines J = MLl . NLL 4 NpL2 o L2 4 ppL3 L3

par par par par par par

3 L L L
M - N - (Latenc
Number of Relative Engines = E (Mpar - Npar) - (2
= (Max Latency)

Number of Relative Engines
J

Hardware Time Utilization = -100% (5.4)

5.7 Design Space Exploration 127

5.7.2 Results

While exploring the design space, we run multiple experiments. In all of these experiments

. . . . L

we constrained the total nurnber of Convolution Engines < 44, i.e Mpam”el Npa'/‘allel +
L = -

Mpam”el Npam”el + ML= amllel Npam”el < 44, based on empirical observations of how

the Layers synthes1zed and how many resources they consumed. The device that
we target is a Xilinx Zynq Z-7020. Synthesis and Implementation were executed for
each Layer separately, in Xilinx’s Vivado Design Suite and both were run under the
"RunTimeOptimized" directive to reduce the computational time needed for each run.
We also forced the tool to use the available DSP resources to implement a part of the
design, while the rest was implemented on the available LUTs. However we should
note that the use of the available DSPs is not optimized. Our Layers use 4-bit inputs
and 8-bit weights, as explained in section 4.4, meaning that each Convolution Engine
performs multiple multiplications of 4 x 8 bit simultaneously!. Each of the on-chip DSPs
can perform 18 x 25 MACCs, thus more than one of the 4 x 8 bit multiplications could
be mapped on the same DSP2. This optimization technique is an option that we didn’t
make use of during this thesis and currently each 4 x 8 bit multiplication occupies a
different DSP. Having in mind all of the above, in the best scenario, we managed to fit
a total of 38 Convolution Engines on the Zynq Z-7020 device, leading to about 75%
LUTs utilization and 90% DSPs utilization. We expect the rest of the available LUTs to
be used for the routing of the design. To calculate the throughput, we used the same
clock for the whole device, at 100MHz frequency. This clock is a bit slower than the
clock that the implementation tool reported for the slowest part of the design, to take
into account that the timing constraints will not be as easily met when the Layers will
be interconnected and the full design placed and routed. We also examined whether
allowing the different Layers to run with a different clock frequency from each other,
could lead in a re-distribution of the Convolution Engines from the fastest Layer to the
slowest in order to increase the throughput. However, with the amount of resources
available on the Zynq Z-7020 device, this was not a fruitful path in terms of throughput
performance.

Figure 5.11 illustrates the results from exploring the design space for three different
numbers of Convolution Engines. This ﬁgure corresponds to an exploration where

L L L=2 L=2
Npar‘allel < Mparallel for all Layers M arallel € [] and Nparallel’ ‘Z\4pa7"allel7 Nparallel’
Mpam”el, N;;Z’llel € [1, 32]. We can see that the throughput is not a function of the

hardware time utilization, given that there are configurations within the same group of
total Convolution Engines that have the same throughput, but widely different hardware
time utilization. Moreover, while we get the sense that for a constant number of total

1 Specifically, kxk=5x5=25 multiplications at each Convolution Engine, where k is the width of one
kernel.
2 Explained in Xilinx’s Whitepaper "Deep Learning with INT8 Optimization on Xilinx Devices."

128 5 FPGA Implementation

Convolution Engines, higher throughput comes with higher hardware time utilization,
this is actually not the case for every configuration. At first, this might strike as a bit
confusing, as one expects that when hardware time utilization is increased, we have
distributed the available Convolution Engines in a more effective manner between the
Layers and thus that the latency of the slowest Layer should be decreased. However it
turns out that when we increase the amount of Convolution Engines in a Layer, we do not
necessarily decrease its latency. This comes as a result of the fact that we have allowed
the parallel inputs and outputs of each Layer to take values that are not divisors of the
initial values of the respective total channels, which does not turn into our favour in every
configuration. For example, if we assign to the third Layer, 18 Convolution Engines in a
9x2 configuration, this results in a latency= 329 - ceil(%) - ceil(32) = 32964, whereas a
8x2 configuration of 16 Convolution Engines also results in latency=329 - ceil(3—82) . % =
329 - 64. In that case, we have spent more resources but did not gain in performance.
On the other hand, when we force MpL;;”el € {1,3} and N;i;;llel’ pLajg”el, NpL(;gllelv
M;ﬁzfgllelv N}fz;gllel € {1, 2,4,8,16, 32}, the ceil function does not affect the calculation
of the Layers’ latency and the aforementioned situation does not emerge. Then, within
a constant number of Convolution Engines, an increase in the hardware time utilization
signifies an increase in the throughput of the system. Also, an increase in the number
of Convolution Engines for a particular Layer signifies a decrease in its latency, as
expected. However, such a restriction in the parallel inputs and outputs, may lead in
sub-optimal solutions (see figure 5.11). It turns out ! that the most fine-grained space
regarding the throughput performance, from which one should choose the parallelism
of the Convolution Engines is when M[)L;;llel € {1,2,3}, le;;”el, MpLafg”el, NpLafg”el,
Mﬁ;ﬁlld, e {1,2,3,4,5,6,7,8, 11,16,32} and Nﬁ;ﬁud e {1,2,3,4,5,6,7,8,11,16,32,64}.
In any case, one can observe that the same throughput may be obtained with less
Convolution Engines, when these Engines are better distributed between the Layers and
thus better used in time. It is evident that the various configurations result in widely
different performance of the system. In the results of the exploration illustrated in figure
5.11, when using 38 Convolution Engines, the throughput jumps from ~ 295 images/sec

in the worst case scenario to ~ 4749 images/sec in the best.

When the throughput is the same, the various configurations can be evaluated based
on the device’s resources utilization to which they will lead and the complexity of the
inter-Layer control that they will impose. Hardware time utilization is considered in that
case as less important. For example, for the results of the exploration illustrated in figure

1 Given a specification of L identical operations to be performed and searching for the number of J
identical parallel machines in which to distribute them: Each machine can perform a single operation
at a time and the single operation itself cannot be split. All machines start computing at the same
time. The set of numbers from which one should choose the parallelism of the machines can be
calculated as follows: For i from 1 to L, compute a; = [%] Keep a; as the first element of the set.
If aiy1 # a;, keep ait1 as the next element. This can be used to separately calculate each dimension
of the grid at each Layer.

5.7 Design Space Exploration 129

5.11 the best throughput is achleved with twelve different configurations of (M

Npamllel, ML= arallel be Npa:alleh ML= am”el b Npamllel) Some of these significantly increase
the inter- layer control complex1ty ([3x2, 9x2, 7x2]) and present the highest hardware
time utilization, others exceed the available LUT resources ([3x2, 4x4, 4x4]) and some
satisfy the resources’ constraints, while they present relatively easy inter-layer control
([3x2, 16x1, 16x1]) with slightly lower hardware time utilization than the highest
observed. We decided to prefer the latter one over the first. As long as the routing of the
design is not a problem, we decided to cling on the configurations with the least complex
inter-Layer control, despite occupying a bit more of the device’s resources. Although we
treated the hardware time utilization as less important than the other parameters in
the discussion above, this metric can be used to find configurations of increased interest
in terms of power: If there is the possibility to temporarily, completely switch off parts
of the design, configurations with lower hardware time utilization should be preferred,
since this would lead to less switching activity and thus to reduced power consumption.

parallel X

In the exploration where we did not apply any other constraint in the inputs and outputs
of the Layers - other than the total number of Convolution Engines < 38 - the highest
throughput was still at ~ 4749 images/sec. Thus, constraining N parallel S MpLam”el for
all Layers is not only necessary in order to reduce the amount of the device’s resources
needed and fit our design on the Zynq Z-7020, but it also doesn’t have any negative effect
on the achieved throughput. When examining the exploration where Np < rallel = M pLaJ;i” ol
and the Convolution Engines are equal to 38, the design space consists of only two
points, one of which corresponds to a configuration that can run with the maximum
throughput ([3x2, 2x8, 8x2]). This configuration is of particular interest due to the
fact that it leads to the least complex inter-Layer control. Unfortunately it is also a
configuration that exceeds the device’s available LUT resources and thus it is not a

feasible one.

To conclude this section, we turn our focus again to the relation between the hardware
time utilization and the throughput, but this time we do not take into account the
inter-Layer control complexity (figure 5.11). It is not profound which configuration
should one choose in each case. We may observe the following:

« Given a specification for the throughput, the threshold throughput may be achieved
with less Convolution Engines, if these engines are distributed between the Layers
in an effective manner. That translates to less resources needed, thus the possibility
of using a smaller device, or having enough resources to also implement some other
function on the same device. We search for configurations with high hardware
time utilization.

e Yet, for a constant throughput and a constant number of total Convolution
Engines, we prefer configurations with smaller hardware time utilization. These
configurations will lead to reduced power consumption, especially if the technology
and the available developing time offer the possibility of designing the circuit of

130 5 FPGA Implementation

the Layers to switch off, for the fraction of time that they would otherwise be idle.

Conv. Engines Layer distribution: X:Y:Z

3,168
2712 3.9.
Conv. Engines Grid dimensions: SlpEARL 2°2°
Xy M 2y
» 38 Conv Engines (0] :"/
« 22 Conv Engines -
» 14 Conv Engines - e
4000 - s
- L]
'y L] L] L]
@ 3.11.8 s 22410
a2 T3 srgeeme ' 2171
g 3000 - <+ AR .
- seme 8 oo e
5 cotmmn Kooy
-g- - - L] [Q- -
gzono_ -n:: " [1] -
o 3332 VIRt = aa °
= 17171 o el =
SSE e & W - = e
S e Y. 0
1000 - | S Gmmss wwe s
- e " i
e - -
L3 -
T T T T T
20 40 60 80 100

Hardware Time Utilization (%)

SN RN

Figure 5.11: Results from exploring the design space for three different number of

total Convolution Engines in the design, when Nzﬁlmllel < Mzﬁlm”el for all the Layers,

L=1 L=1 L=2 L=2 L=3 L=3
Mpa'r‘allel € [1’ 3] and Npa'fallel’]\Ipa'mllel7]\/vpa'r'allel7 ‘]\4'17117'allel7 Nparallel € [1732] .
Total Convolution Engines = X +Y + Z and X =z1 - 22, Y = y1 - 42, Z = 21 - 2.

With black circles denoted the (ionﬁgurations in which i\ipam”el aLnd Npamliel are diviLsors of
e e . =1 =1 =2 =2 =3
the initial Miotar, Niotai, i-€ Mparallel € {173} and Nparallel’ Mpa’rallel’ Npa’r‘allel’ Mparallel7
NPL;Z’”GZ € {1,2,4,8,16,32}. This proves that it is legitimate to not restrict the parallel

inputs and outputs in such a way, as it may lead to sub-optimal solutions.

Throughput (Img/sec)

LUTs

5.7 Design Space Exploration 131

| Conv. Engines Convolution
Z-7045 Index Layer Distribution | Engines Grid
20000 -« Y digmensions
1 |
8000 § B! 6:11:11 (28) 3unn
16000 : | - 2°1°1
2-7035. :
14000 < : i B 2 6:12:10 (28) 3.45
12000 2372
§ 3 6:14:10 (30) 3.7.5
10000 2_7030; | 272%2
8000 @ | 1a:
Z-7020 | {—] 4 6:14:11 (31) é_l_u
6000 @ o s | - 2°2°1
4000 = 5 6:16:11 (33) % . 11_6 :1_11
I 1 | | |
1 6 6:16:12 (34 3.16 4
0 - e 31
2 3456 7 8 9101112131415 . 6:16:16 (38) 3.16.8
; [2°1°2
T 9:32:16 (57) 3.16 16
| 37271
180000 . 9 9:22:24 (55) 3.11.8
160000 | 37273
140000 RS 9:24:22 (55) 3811
: 332
120000 3
e 11 9:32:32 (73 3,32.32
100000 |) Y
80000 DE: 15:32:32 (79) 3,32 32
60000 — s 11
40000 B 13 12:64:32 (108) %:%:¥
20000 I I I I I I I [15:64:32 (111) 3.32.32
5°2°1
2 3456 7 8 9101112131415 . 15 24:64:64 (152) 3,323
| 822

Figure 5.12: Results of extending the Design Space Exploration to other devices of the
Zyng-7000 SoC family. The achieved throughput (Img/sec) and the amount of LUTs
needed for each configuration is illustrated. The smallest device possible in which the
"Modified Cifar-10 Full" CNN can be implemented is the Z-7015, due to the on-chip memory
requirements. To compute all the convolutions of this particular CNN parallelly, a total of
3x32 4 32x32 4 32x64 = 3168 Convolution Engines would be needed and a huge amount of
Block RAMs.

132 5 FPGA Implementation

5.8 Final Configuration and FPGA Implementation Results

Through the exploration of the design space we determined that the configuration
[3x2,16x1,8x2|, presented in figure 5.14, is one of the configurations that yield the
maximum throughput, for the amount of resources that we have occupied on the device.
A detailed overview of the deliverable design’s properties can be seen in figure 5.15.
Unlike the Caffe framework, our design does not support batch processing. Instead it can
classify only one image at a time. In order to achieve the throughput of 4650 classified
images per second, the FPGA device must also be fed with images at its input at this
rate. This means that we need an input bandwidth = 4650-28-28-3-8 = 87.5 Mbit /sec!.
In the Microlab-NTUA we have measured that the programmable logic on the SoC
can communicate with the processing system at a rate of ~ 3 Gbit/sec. Moreover, the
Zynq Z-7020 SoC can be fed with the images using a 100Mbit /sec Ethernet cable to
connect it to an external camera, etc. Thus the desired input bandwidth for the FPGA
is achievable and the time needed for data transfers does not pose a bottleneck. The
throughput of the design is currently limited only by the clock frequency at which it
operates and the number of the device’s available resources.

For the purposes of this thesis it was not deemed necessary to perform in-circuit validation
of the design and integrate it to a working, demonstrator system. Rather, we aimed to
accurately estimate the cost and the performance of a Convolutional Neural Network
implemented on an FPGA device. With minimal effect on the conclusions of this thesis,
the final state machine that coordinates the different layers of the network has not been
designed, although their interconnection has been outlined in section 5.6. Moreover, the
Softmax Classifier was not mapped on the design, as it was not deemed necessary?.

1 The image is represented with 8-bit values, but our network will need only 4bits of each value at its
input. Currently we have configured this truncation to happen on the FPGA chip. Although half of
these bits are unused and their transfer & storage is pointless and expensive, this choice makes our
design more adjustable as far as the arithmetic precision and the dynamic fixed point strategy is
concerned. Moreover, we regard the quantization phase as part of the algorithm. We would like this
design to be an "all-included" CNN inference accelerator, without the design posing a list of special
needs to its surroundings in order to be interconnected.

2 The Softmax Classifier takes the class scores produced from the rest of the network and normalizes
them in the [0,1] range, to interpret them as probabilities. This does not change the "winning" class,
but serves as a way to comprehend the algorithm’s results.

5.8 Final Configuration and FPGA Implementation Results

133

FPGA chip on
Xilinx Zynq Z-7020 SoC
7 Series PL Artix-7
Equivalent
Logic Cells 85K
Look-Up Tables 53200
(LUTs)
Flip-flops 106400
Total Block RAM 4.9 Mb
DSP Slices 220

Figure 5.13: Characteristics of the Programmable Logic on the Xilinx Zynq Z-7020 SoC.

L1 L2 L3 FL
Engines 3x2 16x1 8x2 6
(2 inputs each)
Slice LUTs % 13.33 | 35.97 | 26.49 0.08
Slice Registers % 8.79 23.75 19.8 0.02
Block RAM Tile% | 15.71 | 18.56 | 20.71 2.14
DSPs % 0 0 90.91 8.18

Latency (cycles) 16574 | 21502 | 17022

288 (as stand alone)
4 (attached to L3)

Possible Clock (ns) 6 9 8 -
Dynamic Power (W) | 0.412 0.46 0.752 0.026
Device Static Power | 0.106 | 0.107 0.11 0.101

(W)

Figure 5.14: The configuration of the deliverable design’s Layers. Results obtained through
synthesis, implementation & simulation with Xilinx’s Vivado Design Suite, for the Zynq

Z-7020 SoC.

134

5 FPGA Implementation

Deliverable Design

Algorithm : “Modified Cifar-10 Full” Convolutional Neural Network

Target Xilinx Convolution Engines 38
Platform Zynq Z-7020
Slice LUTs 75.81 Latency 0.5510
% (ms)
Slice Registers 52.36 Throughput 4650
% (Images/sec)
Block RAM Tile 57.12 Hardware Time 87.6
% Utilization %
DSPs 99.09 Image size 28x28x3,
% (RGB) 8-bit values
Clock 10 Word Length Inputs & Outputs : 4 bit
(ns) (100 MHz) Conv Weights : 8 bit
FC Weights: 2 bit
Total On-chip 1.76 CNN's Classification 94.89%
Power (W) Accuracy
Designed VHDL Workload per Image 18.864
with (Million OPs)

Figure 5.15: The properties of the Deliverable Design on the Zynq Z-7020.

5.8 Final Configuration and FPGA Implementation Results 135

Since the deliverable design uses only the on-chip memory, it cannot process images
of any size. Given the available RAM of the Programmable Logic on the Zynq Z-7020
SoC, this design can handle images of at least up to three times the size of the SAT-6
airborne dataset’s images', if needed. The execution time is quadratically related to the
input size, as we already expected by equation 5.1 (figure 5.16).

1,6
1.4
1,2

0,8

06 Hms
0,4

“mm

,

28x28 32x32 42x42 64x64 84x84

Execution time (ms)

Input Image size (pixels)

Figure 5.16: Execution time of the "Modified Cifar-10 Full" CNN on the proposed
configuration for Zynq Z-7020, in relation to the size of the input image. Zynq Z-7020 can
handle images of up to ~ 50x50 pixels.

In figure 5.17 we present how the choice of the data word-length affects the amount of
resources needed by the deliverable design (configuration [3x2,16x1,8x2]). Five different
scenarios are taken into account: (i) 4-bit activations & 8-bit weights, which is the
proposed word-length. (ii) 8-bit activations & 8-bit weights, (iii) 16-bit activations &
8-bit weights, (iv) 8-bit activations & 16-bit weights, (v) 16-bit activations & 16-bit
weights. Both the amount of registers and Block RAM needed is within the resources of
the Z-7020 for all the different word-length scenarios, however the amount of LUTs needed
quickly exceeds the available resources of the Xilinx Zynq Z-7020. The characteristics
of the Programmable Logic in the Xilinx Zynq Z-7020 SoC can be seen in figure 5.13.
We remind that the proposed word length is based on exploring the relation of the
word-length to the accuracy of the specific CNN, on the specific dataset, in section 4.4.

1 Taking into account only the RGB channels, as explained in section 4.3.3.

136

5 FPGA Implementation

250000

200000

150000

100000 . l

50000 -

o 1N
12 12 12 12 12
Fg & fe 5 I8
TS T 5.5 E§Z’ T
AN TS T @ < N
55 Fs IS sy 53
¥ L S S F 5 d S 9
Y Y v\ch ~ v\'c\o

150000

100000

50000

0
12 12 12 12 12

<

é”é‘ é"é‘ Qﬁ’@ é".g é”é‘
o'qi,” o'qi,” o.§ °§® o'@o’
< S < S < @ < < S
. >3 SRS S >3
¥ &5 &5 d& $3
-] -] v\Q“),Q ~ v\‘(\o’

120

100

80

60

40

20

0
I & I 2 I
Lo Lo & e L,
Fe L Fo T of
D S 5§ E?éb D
¥ I T¢I I8
S x S % S e S S
A C "P;),S ° L Cd

Zynq

/ 7020

HLUTs

Registers

Block RAM

Figure 5.17: The amount of FPGA resources needed in relation to the word-length of
the data. Design configuration: [3x2, 16x1, 8x2]. Both the amount of registers and Block
RAM needed is within the resources of the Z-7020 for all the different word-length scenarios
presented. However, the LUTs needed quickly exceed the available resources of Zynq Z-7020.
The proposed word-length is to use 4-bits for the activations and 8-bits for the weights of

the "Modified Cifar-10 Full" CNN.

5.8 Final Configuration and FPGA Implementation Results 137

5.8.1 Comparison to relevant works

In this section we compare the estimated performance of our design to other implemen-
tations and technologies. To the best of our knowledge there hasn’t been another FPGA
implementation of a CNN that targets the SAT-6 airborne dataset. However, the CNN
model that is used in this thesis originated from the "Cifar-10 Full" model in the Caffe
framework’s source code and resembles the original model a lot. We compare our FPGA
architecture to implementations that use either exactly the same, or a close variation of
this CNN model. While these CNN models resemble each other greatly and thus we
believe that the comparison is valid, the properties of our design are also related to the
specific dataset that we used. In particular, the bit-width precision that we decided
to use in our design, was chosen based on its effect to the accuracy of the "Modified
Cifar-10 Full" CNN model on the SAT-6 airborne dataset. The particular application
of a CNN and the underlying dataset is often treated as indifferent when the primary
target is the acceleration of the CNN’s inference. However, it is the target application
that dictates which CNN model is adequate and a key factor of whether and to what
extent low bit-width approximations can be used.

We compare our design against: (i) an implementation of the "Cifar-10 Quick" CNN,
when the Caffe framework is executed on the Fathom Neural Compute Stick (ii) an
implementation of the "Cifar-10 Quick" CNN on the Movidius Myriad2 platform [Xygl7],
(iii) an implementation of the "Cifar-10 Quick" CNN, when the Caffe framework is
executed on the Intel Xeon E5-2650 v2 CPU, (iv) an implementation of the "Cifar-10
Full" CNN when the Caffe framework is executed solely on the dual core, Cortex-A9
MPCore ARM processor, located on the Zynq Z-7020 SoC, (v) an implementation of
the "Cifar-10" CNN on the Xilinx Zyng-7000 XC77Z045, produced by the FpgaConvNet
framework [Venl7] and (vi) An implementation of the "Cifar-10" CNN on the Xilinx
Zyng-7000 XC7Z045, produced by the Haddoc2 framework [Abd17]. Since most of these
implementations use images of size 32x3x3, we also use measurements of our design’s
performance for that size of input.

The first four implementations above (i, ii, iii & iv) are all software implementations
and thus they are not bound to the specific architecture of a CNN model. They can be
flexible and execute the inference of various CNNs topologies. The device on the first
implementation is a Fathom NCS. This is a commercial Neural Network accelerator by
Movidius, that utilizes the Myriad2 vision processor. The second implementation is also
on the Myriad2 platform (model MA2150) and was produced in the Microlab-NTUA
as part of a diploma thesis. It uses 16-bit floating point arithmetic and it is optimized
on the assembly level. The implementations on the Intel Xeon E5-2650 v2 and on
the Cortex-A9 ARM processor, use the standard 32-bit floating point arithmetic that
comes with the main fork of the Caffe framework. The Intel Xeon E5-2650 v2 is a
processor intended for server applications, with 8 cores, 16 threads and 2.60 GHz of
base processor frequency. The "Cifar-10 Quick" CNN used in the above implementations

138 5 FPGA Implementation

has one more fully connected layer than the "Modified Cifar-10 Full" used in this thesis.
This extra layer would increase the latency of our deliverable design, but would not
affect its throughput. Thus we do not regard this difference as an important one in
our comparison. The FpgaConvINet and the Haddoc2 are frameworks that automate
the mapping of a CNN topology on an FPGA device. Both are compatible with the
Caffe framework. FpgaConvNet creates synthesizable HLS code taking into account the
target platform, while the Haddoc2 generates platform-independent VHDL synthesizable
code. In the current comparison we have metrics of these frameworks when they are
implemented on the Xilinx Zyng-7000 XC7Z045. However, this device is much bigger
and resource rich than the Zynq Z-7020 that we targeted. In fact, it has ~ 4 times the
LUT resources and ~ 4 times the DSP resources of the Z-7020 device. Moreover, these
frameworks are very different from each other: The FpgaConvNet is a framework that
can map a huge number of different CNNs topologies. It utilizes partial reconfiguration of
the FPGA device, by creating different bit-streams for the different layers of the network
and does not rely solely on the on-chip memory. In this particular implementation of
the "Cifar-10" CNN, it uses 16-bit fixed point precision and runs at 125MHz. Haddoc2
on the other hand, can only map small CNN topologies, like the Cifar-10. That is
because, it relies solely on the on-chip memory of the FPGA. Moreover, Haddoc2 is fully
unrolling all the computations of the CNN, by physically mapping every single multiplier
needed for the convolution layers to its own resources on the device. By fully unrolling
all the computations, Haddoc2 can fully pipeline the execution of consecutive layers.
Moreover, the multipliers can be specialized to their constants (e.g zero, one, powers of
two). Haddoc2 uses 6-bit fixed point precision and runs at 54.17MHz. In a sense, the
delivered design of this thesis, is closer to the implementation produced by the Haddoc2
framework, than to the rest implementations discussed above -but for a significantly
smaller target device than that of the Haddoc2. We compare these implementations
regarding their throughput, for consecutive images (batch=1). The "Cifar-10" consists
of ~ 24.8 Million Operations (1 MAC Operation = 2 Operations) for each image. The
results of the comparison discussed above are illustrated in figures 5.18 and 5.19.

"NND ,0T-TeJID), 93 JO 9oUSISJUI 1) SUNIeXd ‘suorjejuouwro[dml JUAISHIP Jo uostredwio)) :8T°'g 2InS1q

T SIS’ DA
8 : SY3I9/W\ AUOD
¥ : sindinQ g sindu| AN 0T-1e41D 020L-Z
8LLE MOIL'T ZHIN 00T ulod paxi4 lwpbuAg 1AQHA EXEXTE PaIpPOIN,, buAz xuijix SIS9YL SiyL
1AQHA paiesauss S¥0ZLIX [£TPqV]
€€9/1 e/N ZHIN LT S paxiy 9 Ajleannewoiny EXEXTE «OT-18j1D,, Xul|ix 7o0ppeH :v¥9d4
[£TUsp]
S1H paiesauad S¥0Z£2X 19NAUODeSd4
0809 e/N ZHIN STT paxiy 9T Ajjeanewoiny EXEXTE «0T-18j1D,, Xul|ix '¥9d4
[8Tun@]
020.-2Z INYY
o] e/N e/N jeo|} € 9JeM1JOS dj4e) EXEXTE «OT-1841D,, buAz xuijix 6Y-XaL0) NdD
APIND [£THAX] s2100 ¢
000T e/N ZHH 9'C jeoj} z¢ 9JEMOS dj4e) EXEXTE 0T-48j0D,, ‘TN 0S9T-G3 UO3X U] :NdD
APIND [£THAX]
606 M 60T ZHIA 009 paxiy 9T Ajquiassy 18 D EXEXTE 0T-48j0D,, ZPeLAN :NdA
APIND [£THAX]
144 e/N e/N paxiy 9T 9JeM1JOS dj4e) EXEXTE 0T-4e41D,, SON woyieq :NdA
(09s/3wi) azs I9poN
andysnoayyl 19Mod bai4 yipimug Suijwweasoud 98ew) 3nduj NND 92InaQ | uonejuswsjdwy

139

140 5 FPGA Implementation

20000
18000
16000
14000
12000
10000
8000
6000
[
4000 I Img/sec
2000
0 o — || ||
N C)6 A & @
o & G S @660 <
FE SN N e
(\‘Q < S ~‘@0 QQ
<)
& @
NS

Figure 5.19: Comparison of different implementations executing the inference of the
"Cifar-10" CNN. FpgcaConvNet and Haddoc2 implemented on Xilinx Zynq Z-7045 device.
This thesis implemented on the smaller Zynq Z-7020 device.

Looking at figures 5.18 and 5.19 it is clear that the hardware implementations dominate
the software ones in terms of throughput, which is expected. Our deliverable design
on the Xilinx Zynq Z-7020, achieves a x4 speedup on throughput over the Myriad2
platform and a x377 speedup on throughput over the Cortex-A9 ARM processor. As
far as the FPGA implementations are concerned, our design is out-performed by the
implementations of the FpgaConvNet and the Haddoc2 frameworks. However, these
implementations are using a device that has x4 times the resources of the Zynq Z-7020.
In order to get a better feeling of how our design competes against the implementations
that these two frameworks produce, we synthesized a version of our design on the Zynq
Z-7045, without performing a meticulous design space exploration like before. The next
figure 5.20 illustrates a comparison of the three implementations, when targeting the
same device.

5.8 Final Configuration and FPGA Implementation Results 141

Device : Xilinx Z -7045
CNN : Cifarl0 Input Image Size : 32x32x3
Implementation Bitwidth Freq LUTs % DSPs % Power Throughput
(Img/sec)
FpgaConvNet (v) 16 fixed 125 MHz N/a N/a N/a 6080
Haddoc2 (vi) 6 fixed 54.17 MHz 79 % 0% N/a 17633
This Thesis Dynamic Fixed Point 100 MHz 75 % 88.89 % 479 W 15115
Inputs & Outputs : 4
Layer Configuration: Conv Weights : 8
3x8, 32x2, 32x2 FC Weights : 2
20000
15000
ol M Images/sec
5000 .
0
FpgaConwNet Haddoc2 This Thesis

Figure 5.20: Thesis design vs designs generated from the FpgaConvNet and the Haddoc2
frameworks, when targeting the same FPGA platform.

142 5 FPGA Implementation

When targeting the same device, Xilinx’s Zynq Z-7045, Haddoc2 still outperforms our
design, by a x1.17 factor. Moreover, while Haddoc2 reports that it completely unrolls
all the operations of the CNN, our design could not reach the full parallelization state,
as it didn’t fit on the device. The optimal target in terms of throughput for our design
would be a configuration of {3x32, 32x32, 32x64}, where all the input planes of a Layer
would be simultaneously processed and all the output planes simultaneously generated.
Instead, the configuration presented in figure 5.20, is a {3x8, 32x2, 32x2} configuration.
The reason we achieve a throughput close to that of the Haddoc2 implementation, is
because our design can run with a much faster clock. One thing to consider here is
that Haddoc2 uses 6-bit weights for the convolution filters, of which 33.78% are zero
parameters, 45.32% one parameters, 16.4% power-of-2 parameters and only 4.5% are
parameters of other values. That means that the need for actual multipliers on their
implementation is drastically reduced, which frees a lot of the device’s resources. On
the contrary, in the set of weights that the deliverable design of this thesis uses, we have
14.5% zero parameters, 12.5 % one parameters, 14.4% power-of-2 parameters and 58.5%
parameters of other values. This results in an increased need for resources in our design,
comparatively to Haddoc2’s implementation.

Compared to the HLS implementation of the FpgaConvNet [Venl7] and an HLS imple-
mentation on the Zynq Z-7020 reported by [Danl8], the design in this thesis achieves
x2.4 times their throughput when targeting the same device. We keep in mind that
these implementations use 16-bit fixed point arithmetic.

Shifting away our focus from the throughput performance, and to conclude this Chapter,
we have to observe that frameworks that automatically map CNN models to FPGA,
like FpgaConvNet and Haddoc2, truly dominate our design in some other aspects: (i)
the developing time and (ii) the flexibility to implement various CNN models.

143

CHAPTER 0O

Conclusions

This thesis delivers FPGA architectures designed in VHDL for the inference of Deep
Convolutional Neural Networks classifying images, using only the on-chip memory of the
Programmable Logic. It also delivers the "Modified Cifar-10 Full' CNN, a low bit-width
customized CNN model, created and trained with the Caffe framework on images of the
SAT-6 airborne dataset'. The SAT-6 airborne dataset consists of image patches, each
one of size 28x28 pixels with 1m spatial resolution, covering six land cover classes: barren
land, trees, grassland, roads, buildings and water bodies. Our customized, "Modified
Cifar-10 Full" CNN achieves 94.89% top-1 accuracy on the SAT-6 airborne dataset,
using 8-bit weights and 4-bit feature maps. The size of the "Modified Cifar-10 Full" CNN
allows us to perform the whole processing and control of the algorithm on the FPGA
chip, without a need for an external memory to store the intermediate results, or a CPU
to coordinate and monitor the algorithm’s execution. When mapped on the Xilinx Zynq
Z-7020 SoC, the design operates at 100MHz, can classify 4650 Images per second and
consumes 1.76 Watt 2 (figure 5.15). Our design on the Zynq Z-7020 achieves a x377
speedup on throughput over the embedded Cortex A9-Arm processor. Compared to HLS
implementations from relevant work our design achieves a x2.4 speedup on throughput
when targeting the same FPGA device. This is a high accuracy, high throughput, low
power FPGA design of Convolutional Neural Networks, suitable for embedded systems
placed on UAVs-drones/satellites, classifying images at the edge of the computing cloud,
without the need of transmitting the data of every image to a server.

1 Saikat Basu, et al. "DeepSat - A Learning framework for Satellite Imagery, ACM SIGSPATIAL
2015", [Bas15]
2 Without counting the energy needed for the data transfers to and from the FPGA chip.

145

146 6 Conclusions

Reviewing the recent developments in the field of Machine Learning, regarding Convo-
lutional Neural Networks and the prior work in the approaches of designing hardware
CNN implementations were among this thesis goals. Comprehensive reviews examining
the exact same issues were made available at the time of concluding this thesis [Abd18a],
[Guol7], [Zhal8]. Therefore, extensively reporting the results of our preliminary liter-
ature review became redundant. Instead a general overview of the field is outlined in
chapter 3.

Concluding this thesis, we discuss several possible improvements and directions for
future work:

¢ Create a fully functional prototype of the system designed. In this thesis
we accurately estimated the cost and the performance of a Convolutional Neural
Network for satellite image classification, implemented on an FPGA device. It was
not deemed necessary to perform in-circuit validation of the design and integrate it
to a working, demonstrator system, which remains to be addressed in the future.

e Optimize RTL-level pipeline. Currently there is plenty of room for optimiza-
tion in the RTL code. Long paths with multiple levels of logic have been identified.
The target is to reduce the levels of logic in the critical paths, by inserting flip-flops
in between, trading-off resources and increasing the latency, for an increase in
the maximum clock frequency of the design. This way the throughput will be
drastically increased. We expect that through optimization, an x2 increase in the
frequency of the clock is possible.

+ Reconsider the architecture of the Convolution Engines. Although it is
not profound, the architecture of the Convolution Engines that we used results
in every Convolution Engine creating its own window of input elements (figure
5.2). However, multiple Convolution Engines work simultaneously, while reading
the same input. We should consider exploring the trade-off of extracting the
memory elements outside the Convolution Engines and use a component external
to the Engines to create the window of the parallel registers that will feed all the
Convolution Engines within a layer. This will result in an increased fan-out for
the window’s registers, but will also reduce the amount of resources needed for
each Convolution Engine. Moreover, with such an approach, every Convolution
Engine will essentially be a MAC component, which the design tools are very good
at optimizing. We believe this is a direction worth exploring.

o Extend the library of our components. Currently we have designed compo-
nents that can perform the convolution operation, the rectified linear unit (ReLU),
the max pooling, the inner product (fully connected layer) and the zero padding
of the feature maps. However, new types of layers are constantly being created.
Even more importantly, new types of interconnections have also been proposed.
Of particular interest is the "Residual block" used in variations of the ResNet
network, which forwards the output of a convolution layer not only to the layer

147

after it, but also to layers that are several steps ahead. This poses an interesting
problem regarding the pipelined operation of these layers.

Advance the Design Space Exploration. When searching the design space,
we set two optimization goals: throughput and hardware time utilization. We used
empirically observed constraints and python scripts to calculate the throughput
and hardware time utilization for all the configurations that were inside the space
that our constraints defined. Then, we manually evaluated the top candidates and
synthesized several different versions of the design, examining how the dimensions
of the grid of Convolution Engines affects the resource utilization, in order to
identify the best configuration within the resources of each device. There is plenty
of room for constructing a more well formulated method and an automated tool
that will take into account the multiple constraints of both the design and the
target device and search for configurations under multiple optimization goals.

Further explore techniques of compressing the CNN models’ size. In
this thesis we decided to compress the size of the network, by exploring low
bit-width approximations of its weights, in relation to the network’s accuracy. The
Dynamic Fized Point Approximation method was applied, using the "Ristretto"
tool [Gys16], which calculates how the accuracy of the CNN model is affected by
the numerical precision. Hardware implementations benefit greatly from using
lower bit-width, while CNN models can work with limited numerical precision,
without a great loss in accuracy. However this is not the only option to compress a
network: Pruning some of the network connections, encoding the parameters of the
model to reduce their memory and several other techniques have been developed
[Han15]. This is an exciting path and a very useful one, in order to implement
CNN models on low-power embedded systems.

Explore algorithmic optimizations of the convolution operation. In order
to accelerate the execution of the convolution layers, several approaches have
been proposed, including Fast Fourier Transform, Winograd Transform and more
[Abd18b]. During this thesis we did not take them into account, so this is an area
of future study.

Study the problems that emerge when accelerating the inference of
larger CNNs. In this thesis, the network we used could fit entirely on the
FPGA'’s on-chip memory. With larger networks this is usually not the case and the
memory bandwidth becomes the main bottleneck in the execution time. Moreover,
Convolutional Neural Networks nowadays are becoming increasingly deeper and
bigger. Thus, studying the questions that arise -and the solutions that have
been proposed- regarding when and which data to move, is essential for designing
hardware implementations of CNNs.

Move towards the automation of CNN to FPGA mappings. Lately,
several toolflows for mapping Convolutional Neural Networks on FPGAs were

148

6 Conclusions

published [Ven18]. These tools enable the fast deployment of CNN models on
FPGA devices, minimizing the developing time, and can work for a variety of
CNN architectures. Considering that new architectures of CNNs are continuously
proposed, the adaptability of these tools is very important. In contrast, the
deliverable design of this thesis, although not bound to the specific architecture
of the "Modified Cifar-10 Full" CNN, exhibits limited flexibility, mainly due to
the constraint of the on-chip memory. Moreover, it requires re-configuration
from specialized design engineers and significantly increased developing time.
Nevertheless, working on the level of Hardware Description Languages to map
CNNs on FPGAs is neither outdated, nor in vain: Many of these frameworks are
based on hand-crafted, highly optimized computations engines, in order to achieve
increased performance. Moving towards the creation of tools that can take the
high-level description of a CNN and efficiently map it on a target FPGA device, is
a direction that the author of this thesis is very keen about.

Approach the design of CNN architectures in relation to the complexity
of the classification task. Currently most of the work in the deep learning field
is towards creating new architectures of CNNs that will out-perform the previous
generations in terms of accuracy. There is little understanding of how deep a
neural network should be and how many parameters it should have when targeting
a specific problem. Several research studies are in the direction of establishing the
theoretical foundation of deep artificial neural networks, which is imperative in
order to effectively harness these powerful computational tools.

The problem of nomenclature. Although this is not a direction for future
work, we have to acknowledge it as a problem: Currently there is not a uni-
fied nomenclature in the field of Machine Learning and several concepts and
techniques keep re-appearing with different names, while several terms are used
interchangeably despite describing different things. What is Machine Learning,
how it is distinct from Artificial Intelligence and what is Deep Learning? Are
they called Multilayer Perceptrons, regular Artificial Neural Networks, or Deep
Feed Forward Neural Networks? How does one calculate the depth of a network?
Do only the convolution layers count for CNNs, or are the pooling layers also
taken into account? Even for the input and output of the convolution layers we
have plenty of terms used: "feature maps", "channels", "activations", "activation
volumes", "planes”, "tensors", etc. This is by far a non-exhaustive list of overlapping
terminology, which impedes our understanding.

Bibliography

[Abd18a]

[Abd18b)]

[Abd17]

[Bas15]

[Bera]

[Berb]

[Chel6al

[Chel6b)

KAMEL ABDELOUAHAB, MAXIME PELCAT, JOCELYN SEROT, and FRANCOIS
BERRY: Accelerating CNN inference on FPGAs: A Survey. 2018 (cit. on
pp. 80, 146).

KAMEL ABDELOUAHAB, MAXIME PELCAT, JOCELYN SEROT, and FRANGOIS
BERRY: ‘Accelerating CNN inference on FPGAs: A Survey’. InCoRR (2018),
vol. abs/1806.01683 (cit. on p. 147).

KAMEL ABDELOUAHAB, MAXIME PELCAT, J. SXO0E9ROT, CEDRIC BOUR-
RASSET, and F. BERRY: ‘Tactics to Directly Map CNN Graphs on Embedded
FPGASs’. InJEEE Embedded Systems Letters (2017), vol. 9: pp. 113-116 (cit.
on p. 137).

SAIKAT BASU, SANGRAM GANGULY, SUPRATIK MUKHOPADHYAY, ROBERT
DiB1aANO, MANOHAR KARKI, and RAMAKRISHNA R. NEMANI: ‘DeepSat -
A Learning framework for Satellite Imagery’. In (2015), vol. (cit. on pp. 85,
94, 145).

BERKELEY: Why Caffe? URL: http://caffe.berkeleyvision.org/ (vis-
ited on) (cit. on p. 83).

BERTENDSP: Whitepaper: GPU vs FPGA Performance Comparison. URL:
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA _
Performance_Comparison_v1.0.pdf (cit. on pp. 73, 74, 80).

Yu-HsiN CHEN, JOEL EMER, and VIVIENNE SZE: ‘Eyeriss: A Spatial Ar-
chitecture for Energy-efficient Dataflow for Convolutional Neural Networks’.
In Proceedings of the 43rd International Symposium on Computer Architec-
ture. ISCA ’16. Seoul, Republic of Korea: IEEE Press, 2016: pp. 367-379
(cit. on p. 89).

Yu-HsiN CHEN, JOEL EMER, and VIVIENNE SZE: ‘Eyeriss: A Spatial Ar-
chitecture for Energy-efficient Dataflow for Convolutional Neural Networks’.
InSIGARCH Comput. Archit. News (June 2016), vol. 44(3): pp. 367-379
(cit. on p. 101).

149

http://caffe.berkeleyvision.org/
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf

150

Bibliography

[Coul4]

[Dan18]
[Dum16]

[Goo16]

[Gsc16]

[Guol7]

[Gys16]

[Han15]

[Hay09]

[Jial4]

[Kael2]

[Kara]

[Karb]

MATTHIEU COURBARIAUX, YOSHUA BENGIO, and JEAN-PIERRE DAVID:
‘Low precision arithmetic for deep learning’. InCoRR (2014), vol. abs/1412.7024
(cit. on p. 95).

DIMITRIOS DANOPOULOS: ‘Acceleration of Image Recognition on Caffe
framework using FPGAs’. 2018 (cit. on p. 142).

VINCENT DUMOULIN and FRANCESCO VISIN: ‘A guide to convolution arith-
metic for deep learning’. InCoRR (2016), vol. abs/1603.07285 (cit. on p. 65).

IAN GOODFELLOW, YOSHUA BENGIO, and AARON COURVILLE: Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 53,
55, 56, 62).

DaviD GSCHWEND: ‘ZynqNet: An FPGA-Accelerated Embedded Convolu-
tional Neural Network’. 2016 (cit. on pp. 68, 71, 88).

KAryuaAN GUO, SHULIN ZENG, JINCHENG YU, YU WANG, and HUAZHONG
YANG: A Survey of FPGA Based Neural Network Accelerator. 2017 (cit. on
pp. 80, 146).

PHIiLIPP GYSEL, MOHAMMAD MOTAMEDI, and SOHEIL GHIASI: ‘Hardware-
oriented Approximation of Convolutional Neural Networks’. InCoRR (2016),
vol. abs/1604.03168 (cit. on pp. 95, 147).

SoNG HAN, Huizi MaAo, and WiLLiaM J. DALLY: ‘Deep Compression:
Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding’. InCoRR (2015), vol. abs/1510.00149 (cit. on p. 147).

SIMON S. HAYKIN: Neural networks and learning machines. Third. Pearson
Education, 2009 (cit. on p. 58).

YANGQING JiA, EVAN SHELHAMER, JEFF DONAHUE, SERCGEY KARAYEV,
JONATHAN LONG, ROss GIRSHICK, SERGIO GUADARRAMA, and TREVOR
DARRELL: ‘Caffe: Convolutional Architecture for Fast Feature Embedding’.
InarXiv preprint arXiv:1408.5093 (2014), vol. (cit. on p. 83).

HUBERT KAESLIN: Digital Integrated Circuit Design: From VLSI Archi-
tectures to CMOS Fabrication. Cambridge University Press, 2012 (cit. on
p. 73).

ANDREJ KARPATHY: CS231n: Convolutional Neural Networks for Visual

Recognition - Image Classification. URL: http://cs231n. github . io/
classification/ (visited on) (cit. on p. 56).

ANDREJ KARPATHY: CS231n: Convolutional Neural Networks for Visual
Recognition - Neural Networks. URL: http://cs231n.github.io/neural-
networks-1/ (cit. on pp. 58, 59, 66, 67).

http://www.deeplearningbook.org
http://cs231n.github.io/classification/
http://cs231n.github.io/classification/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Bibliography 151

[Karc] ANDREJ KARPATHY: CS231n: Convolutional Neural Networks for Visual
Recognition - Normalization Layer. URL: http://cs231n. github. io/
convolutional-networks/#norm (visited on) (cit. on pp. 68, 89).

[Kril2] ALEX KRIZHEVSKY, ILYA SUTSKEVER, and GEOFFREY E HINTON: ‘ImageNet
Classification with Deep Convolutional Neural Networks’. In (2012), vol.
(cit. on p. 89).

[Lec89] YANN LECUN: ‘Generalization and network design strategies’. English (US).
In. Connectionism in perspective. Ed. by R. PFEIFER, Z. SCHRETER, F.
FOGELMAN, and L. STEELS. Elsevier, 1989 (cit. on p. 69).

[Lei] RICHARD LEIBRANDT: Commercial Applications of Neural Networks. URL:
https://www.nst.ei.tum.de/fileadmin/wOObgs/www/publications/
as/2012SS-HS-CommercialApplicationsOfNeuralNetworks.pdf (cit. on
p. 45).

[Papl6] M. PAPADOMANOLAKI, M. VAKALOPOULOU, S. ZAGORUYKO, and K. KARANTZA-
LOsS: ‘Benchmarking Deep Learning Frameworks for the Classification of
Very High Resolution Satellite Multispectral Data’. InISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences (2016), vol.
(cit. on pp. 88, 94).

[Qiul6] JIANTAO QIU, JIE WANG, SONG YAO, KATYUAN Guo, BoxuN Li, ERJIN
ZHOU, JINCHENG YU, TIANQI TANG, NINGYI XU, SEN SONG, YU WANG,
and HUAZHONG YANG: ‘Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network’. InFPGA. 2016 (cit. on p. 101).

[Rus15] OLGA RUSSAKOVSKY, Jia DENG, HAO SU, JONATHAN KRAUSE, SANJEEV
SATHEESH, SEAN MA, ZHIHENG HUANG, ANDREJ KARPATHY, ADITYA
KHOSLA, MICHAEL BERNSTEIN, ALEXANDER C. BERG, and L1 FEI-FEI:
‘ImageNet Large Scale Visual Recognition Challenge’. InInternational Journal
of Computer Vision (IJCV) (2015), vol. 115(3): pp. 211-252 (cit. on p. 69).

[Sho93] RicHARD G. SHOUP: Parameterized Convolution Filtering in o Field Pro-
grammable Gate Array Interval. Tech. rep. 1993 (cit. on p. 105).

[Stil6] GREG STITT, ERIC SCHWARTZ, and PATRICK COOKE: ‘A Parallel Sliding-
Window Generator for High-Performance Digital-Signal Processing on FP-
GAs’. InACM Trans. Reconfigurable Technol. Syst. (May 2016), vol. 9(3):
23:1-23:22 (cit. on p. 107).

[Vakl5] MARIA VAKALOPOULOU, KONSTANTINOS KARANTZALOS, NIKOS KOMODAKIS,
and NI1KOS PARAGIOS: ‘Building detection in very high resolution multispec-
tral data with deep learning features’. In2015 IEEFE International Geoscience
and Remote Sensing Symposium (IGARSS) (2015), vol.: pp. 1873-1876 (cit.
on p. 94).

http://cs231n.github.io/convolutional-networks/#norm
http://cs231n.github.io/convolutional-networks/#norm
https://www.nst.ei.tum.de/fileadmin/w00bqs/www/publications/as/2012SS-HS-CommercialApplicationsOfNeuralNetworks.pdf
https://www.nst.ei.tum.de/fileadmin/w00bqs/www/publications/as/2012SS-HS-CommercialApplicationsOfNeuralNetworks.pdf

152

Bibliography

[Ven17]

[Ven18]

[Wid94]

[Wool7]

[Xygl7]

[Yan9sg]

[Zhal5]

[Zhal8]

STYLIANOS I. VENIERIS and CHRISTOS-SAVVAS BOUGANIS: ‘Latency-driven
design for FPGA-based convolutional neural networks’. In2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL)
(2017), vol.: pp. 1-8 (cit. on pp. 137, 142).

STYLIANOS I. VENIERIS, ALEXANDROS KOURIS, and CHRISTOS-SAVVAS
Boucganis: ‘Toolflows for Mapping Convolutional Neural Networks on FP-
GAs: A Survey and Future Directions’. InACM Comput. Surv. (2018), vol.
51: 56:1-56:39 (cit. on p. 148).

BERNARD WIDROW, DAVID E. RUMELHART, and MICHAEL A. LEHR: ‘Neural

Networks: Applications in Industry, Business and Science’. InCommun. ACM
(Mar. 1994), vol. 37(3): pp. 93-105 (cit. on p. 45).

R. Woobs, J. MCALLISTER, G. LIGHTBODY, and Y. Y1: FPGA-based
Implementation of Signal Processing Systems. Wiley, 2017 (cit. on p. 73).

ATHANASIOS XYGKIS: ‘Implementation of Convolutional Neural Networks
on Embedded Architectures’. 2017 (cit. on p. 137).

LECUN YANN and BENGIO YOSHUA: ‘The Handbook of Brain Theory and
Neural Networks’. In. Ed. by MICHAEL A. ARBIB. Cambridge, MA, USA:
MIT Press, 1998. Chap. Convolutional Networks for Images, Speech, and
Time Series: pp. 255-258 (cit. on p. 62).

CHEN ZHANG, PENG L1, GUANGYU SUN, YIJIN GUAN, BINGJUN XIAO,
and JASON CoNG: ‘Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks’. InFPGA. 2015 (cit. on p. 101).

QIANRU ZHANG, MENG ZHANG, TINGHUAN CHEN, ZHIFEI SUN, YUZHE MA,
and BEI YU: Recent Advances in Convolutional Neural Network Acceleration.
2018 (cit. on pp. 80, 146).

List of Figures

2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10

3.11

Example of a System-on-Module that can be used for embedded computing
solutions: the Xilinx Zynq MMP, which contains a Zyng-77045 SoC. This
board costs about 3000€. Lower cost solutions do exist, like the Zybo
Zynqg-7000, which features a smaller SoC and costs approximately 300€. 46
A land cover map from the area of Portland, Oregon, in the USA (NASA

Earth Observatory). 47
Machine Learning’s relation to other fields 52
Supervised Learning L oo 53
Relation of Training Error and Generalization Error to Under-fitting &

Over-fitting. Source: "Deep Learning", MIT Press, p.113 54
Learning Rate in Gradient Descent. 55

Under-fitting, Fitting and Over-fitting. Models’ Capacity. Source:(Gool6] 56
Performance of traditional Computer Vision and Deep learning algorithms
in the Imagenet competition, 2010-2015. Top-5 accuracy illustrated.

Source: openpowerfoundation.org 57
A simplified model of a biological neuron (left) and its mathematical
model (right). o 58

Example of a Feed-Forward Neural Network with tree hidden layers, three
inputs and two outputs. The weights of the network are illustrated with
the arrows. L 59
Example of a Convolutional Neural Network: Several layers are placed
one after the other and the data flow in one direction (to the right).
Network "VGG-16", introduced in 2014. This network achieved 92.7%

top-5 accuracy in the ImageNet competition. 61
Example of an RGB image: A 3D matrix of size 4x4x3. 8 bit for each
value (24 bit per pixel). oo 63
2D Cross-correlation: a 3x3 kernel slides over a 4x4 input with unit stride

and no padding (i.e H;, =4 ,K =3, S =1, P = 0. Results to an output
of size 2x2. Source: [Duml6] 65

153

https://openpowerfoundation.org/presentations/power-efficient-machine-learning-on-power-systems-using-fpga-acceleration/

154

List of Figures

3.12

3.13

3.14

3.15

3.16

3.17

3.18
3.19
3.20
3.21
3.22

3.23

3.24
3.25

4.1
4.2
4.3
4.4
4.5
4.6

Convolution of an image with known kernels, from the traditional Com-
puter Vision field: Blur, sharpen, edge detection. In Convolutional Neural
Networks the kernels are the variables that will be calibrated in order to
approximate a function that maps the input image to a class.
Example of 3D Convolution operation: Three input feature maps, get-
ting convolved with two filters, generating two output feature maps.
Padding=1, Stride=1. The marked "pixel" on the output feature map
is a sum of all the dot products between the marked area of the input
feature maps and the WO filter’s kernels. Source: [Karb]
Pooling layer downsamples the volume spatially, independently in each
depth slice of the input volume. Left: In this example, the input volume
of size [224x224x64] is pooled with filter size 2, stride 2 into output volume
of size [112x112x64]. Notice that the volume depth is preserved. Right:
The most common downsampling operation is max, giving rise to max
pooling, here shown with a stride of 2. That is, each max is taken over 4
numbers (little 2x2 square). Source: [Karb]
The Non-Linear Activation Functions Sigmoid, tanh, ReLU, PReLU and
ELU. Source: [Gscl6]
Well-known Convolutional Neural Network Architectures in chronological
order. e
Visualization of well-known CNN Architectures. Left to right: AlexNet,
Network-in-Network, VGG-16, GooglLeNet, ResNet-50, Inception v3,
Inception-ResNet-v2, SqueezeNet. Data flows from top to bottom. Con-
volution layers are presented with brown. Source: [Gscl6]
FPGA Fabric
Flexibility vs Efficiency: CPU, GPU, FPGA, ASIC technologies.

GPU vs FPGA qualitative comparison. Source: [Berb]
FPGA mapping flow
Row and Column Relationship between CLBs and Slices. Source: Xilinx’s
User Guide
Simplified diagram of an FPGA slice. Since the Xilinx Virtex-5 generation
introduced in 2006, the slices contain 6-input LUTs.
Internal structure of a single FPGA slice.
Main approaches to accelerate CNN inference on FPGAs.

Sample images from the SAT-6 dataset. Source: [Basl5]
Original "Cifar-10 Full" CNN Model structure
Half zero-padding the input plane. Ceiling pooling layer’s output size.
The "Modified Cifar-10 Full" CNN model: based on the "Cifar-10 Full".
Number of Operations & Weights per layer
Training loss and accuracy of the "Modified Cifar-10 Full" CNN model,
for the SAT-6 dataset after 4 epochs of training.

65

90
91
92

List of Figures 155

4.7

4.8

4.9

5.1

5.2
5.3

5.4
5.5
5.7
5.8

5.9

Fixed point arithmetic is adequate for neural network computation:
Comparative presentation of the achieved accuracy between the full
precision and a quantized version of various networks. These are fine-
tuned networks with dynamic fixed point parameters & outputs. The
numbers in parentheses indicate accuracy without fine-tuning. [Gysl6] . 95
Examples of dynamic fixed point numbers. Note that the fractional length
may be negative or greater than the word length. 96
"Modified Cifar-10 Full" CNN model’s Weights after quantization: Per
layer percentages of how many weights are equal to zero, one, or a
power-of-two number.o o Lo 99

A generic version of the unified Layer’s structure. Performs the zero-
padding of its input, the truncation of its inputs & outputs, the convolu-
tion, the ReLLU and the max pooling operations. 104
The 2D Convolution Engine. Illustrated for a 5x5 Kernel. 106
The Window-Gen component. Eventually each fifo ¢ will contain the
partial results generated by processing the Mgam”el parallel channels,

G= 1ot 108
parallel

Pooling Window 109

Comparator Tree 109

Simplified illustration of adding two numbers with different floating lengths.112

: L _ L+1
Example of connecting two Layers. Nparatier = 1 and Mparallel = 2.
L _ AL+ _ L+1 L+1 _
Nitar = Myt = 8. Also Nparallel = 1land N,/ = 2. Layer L creates

one output channel each time, while Layer L + 1 reads two channels at a
time. For that reason Layer L alternates its writing between RAMs A&B.
Because the L 4+ 1 Layer has to create two output channels, but only
generates one of them at a time, it will re-read the input data twice, one
for each filter. Moreover, double buffers in Ping-Pong style, to pipeline
the processing of a stream of images: At one point in time Layer L created
the output of Imgl (ping) and then continues with generating the output
of Img2 (pong). Layer L + 1 reads the output of Imgl, while the output
of Img2 is generated. When Layer L+ 1 proceeds to reading the output of
Img2, Layer L will continue in generating the output of Img3, etc. Note
that the two time axis use a different scale and their relative position is
unrelated. Also stalling is not illustrated. 120
Layer L creates three output channels parallelly, while Layer L + 1 reads
four input channels parallelly. The total amount of channels in between
initially was equal to five. In order to preserve the symmetry, dummy
channels are used, which increase the amount of channels in between to
NE,., = ceil(3) -3 =6 and Mtﬁja% = ceil(2) -4 = 8. Mind that the two
time axis use a different scale and their relative position is unrelated. . . 121

156

List of Figures

5.10

5.11

5.12

5.13
5.14

5.15
5.16

5.17

5.18

Device’s resource utilization, for different Mpqrqi1er X Nparalier configura-
tions of the 2nd Layer, while keeping the number of Convolution Engines
within the Layer constant. DSPs are not used in this example. Increasing
the number of parallel inputs in the Layer is preferable over increasing
the number of parallel outputs. 124

Results from exploring the design space for three different number of

total Convolution Engines in the design, when NPLM allel S MPLM e for all

the Layers, ML=h, e [1,3] and NLTh, M2, NE=2, MI=3

parallel? parallel® =" parallel’ pa;allel)
Nﬁ;guel € [1, 32]. Total Convolution Engines = X +Y + Z and X =
r1:x2, Y = y1-y2, Z = z1-z2. With black circles denoted the configurations
in which M,qrqiie1 and Npgraier are divisors of the initial Myoa1, Niotal,
e Ml e {13} and NI, 0 M2, 1 N2 M Nemd
€ {1,2,4,8,16,32}. This proves that it is legitimate to not restrict the
parallel inputs and outputs in such a way, as it may lead to sub-optimal

solutions. e 130

Results of extending the Design Space Exploration to other devices of
the Zyng-7000 SoC family. The achieved throughput (Img/sec) and
the amount of LUTs needed for each configuration is illustrated. The
smallest device possible in which the "Modified Cifar-10 Full" CNN can
be implemented is the Z-7015, due to the on-chip memory requirements.
To compute all the convolutions of this particular CNN parallelly, a total
of 3x32 + 32x32 + 32x64 = 3168 Convolution Engines would be needed
and a huge amount of Block RAMs. 131

Characteristics of the Programmable Logic on the Xilinx Zynq Z-7020 SoC.133

The configuration of the deliverable design’s Layers. Results obtained
through synthesis, implementation & simulation with Xilinx’s Vivado
Design Suite, for the Zynq Z-7020 SoC. 133

The properties of the Deliverable Design on the Zynq Z-7020. 134

Execution time of the "Modified Cifar-10 Full' CNN on the proposed
configuration for Zynq Z-7020, in relation to the size of the input image.
Zynq Z-7020 can handle images of up to ~ 50x50 pixels. 135

The amount of FPGA resources needed in relation to the word-length
of the data. Design configuration: [3x2, 16x1, 8x2]. Both the amount
of registers and Block RAM needed is within the resources of the Z-
7020 for all the different word-length scenarios presented. However, the
LUTs needed quickly exceed the available resources of Zynq Z-7020. The
proposed word-length is to use 4-bits for the activations and 8-bits for
the weights of the "Modified Cifar-10 Full" CNN. 136

Comparison of different implementations, executing the inference of the
"Cifar-10" CNN. e 139

List of Figures

157

5.19 Comparison of different implementations executing the inference of the
"Cifar-10" CNN. FpgcaConvNet and Haddoc2 implemented on Xilinx

5.20 Thesis design vs designs generated from the FpgaConvNet and the Had-
doc2 frameworks, when targeting the same FPGA platform.

List of Tables

4.1

4.2
4.3

4.4

4.5

4.6

5.1

Comparison of Different CNN Topologies for Image Classification on Ima-
geNet dataset. Source: [Gscl6].The "Cifar-10 Full" model is included with
its input image dimensions altered to 224x224, to get a better feeling of
the network’s size compared to the other networks.
"Modified Cifar-10 Full" CNN: Number of Operations & Network’s Size .
Accuracy rates for SAT-4 & SAT-6 datasets using different learning frame-
works [Papl6].
"Modified Cifar-10 Full" CNN’s accuracy analysis. Applying dynamic fixed
point representation to one category at a time, while the rest remain in
full 32-bit precision.
Different approximation scenarios applied on the "Modified Cifar-10 Full"
network. Scenarios A-D use dynamic fixed point approximation. Scenario
E forces weights to be power-of-two and applies dynamic fixed point to
the activations. L
Exact configuration of the chosen approximation. It corresponds to the
scenario C in table 4.5, achieving 94.89% accuracy. Bw stands for "bit-
width" and FL for "floating-length". Also note that the Bias follows the
approximation of the Weights at each layer.

Memory Organization of 32 filters, with 3 channels each, for a 3x2 grid of
Convolution Engines (MparXNpar). - -« « v v v v v oo i i

97

159

	Contents
	1 Executive Summary in Greek
	2 Introduction
	2.1 Motivation
	2.2 Thesis Goals

	3 Background and concepts
	3.1 Convolutional Neural Networks
	3.1.1 A step back: The bigger picture of Machine Learning
	Types of Machine Learning
	A bit of Supervised Learning

	3.1.2 The problem of Image Classification
	3.1.3 Introduction to Artificial Neural Networks
	3.1.4 Introduction to Convolutional Neural Networks
	3.1.5 Common layers used to build CNNs
	3.1.6 Convolutional Neural Network Architectures

	3.2 Field-Programmable Gate Arrays
	3.2.1 FPGA Programming
	3.2.2 FPGA Fabric

	3.3 Convolutional Neural Networks in FPGAs

	4 CNN training and Optimization
	4.1 The Caffe Framework
	4.2 The SAT-4 & SAT-6 Airborne datasets
	4.3 CNN models in this Thesis
	4.3.1 The original "Cifar-10 Full" CNN model
	4.3.2 Why use the "Cifar-10 Full" model?
	4.3.3 Customizing the "Cifar-10 Full" model to our needs
	4.3.4 The "Modified Cifar-10 Full" CNN model
	4.3.5 The "Modified Cifar-10 Full" CNN model's Training & Results

	4.4 Compressing the network: Word-length Optimization

	5 FPGA Implementation
	5.1 Design Approach
	5.2 The design's key components
	5.2.1 The "Expander" component
	5.2.2 The "2D Convolution Engine" component
	5.2.3 The "SP" component
	5.2.4 The "Window-Gen" component
	5.2.5 The "Pooling Layer" component
	5.2.6 The "Fully Connected Layer" component

	5.3 Bit-width Calculations
	5.4 On-Chip Memory Organization
	5.5 Intra-Layer Control
	5.6 Inter-Layer Control
	5.7 Design Space Exploration
	5.7.1 Approach
	5.7.2 Results

	5.8 Final Configuration and FPGA Implementation Results
	5.8.1 Comparison to relevant works

	6 Conclusions
	Bibliography

