
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Τενικές ετιστοποίησης ια παράηο
οισμικό μεάης κίμακας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ευάεος Α. Γερανάς

Επιέπν: Νεκτάριος Κοζύρης
Αναπηρτής Καηητής

Αήνα, Ιούιος 2011

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Τενικές ετιστοποίησης ια παράηο
οισμικό μεάης κίμακας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ευάεος Α. Γερανάς

Επιέπν: Νεκτάριος Κοζύρης
Αναπηρτής Καηητής

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 18η Ιουίου 2011

..
Ν. Κοζύρης

Αν. Καηητής ΕΜΠ

..
Ν. Παπασπύρου

Επ. Καηητής ΕΜΠ

..
Δ. Φτάκης

Λέκτορας ΕΜΠ

Αήνα, Ιούιος 2011

...................................
Ευάεος Α. Γερανάς
∆ιπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright c© Ευάεος Γερανάς, 2011
Με επιφύαξη παντός δικαιώματος. All rights reserved.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας,
εξ’ οοκήρου ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση,
αποήκευση και διανομή ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής
φύσης, υπό την προϋπόεση να αναφέρεται η πηή προέευσης και να διατηρείται το
παρόν μήνυμα. Ερτήματα που αφορούν τη ρήση της ερασίας ια κερδοσκοπικό
σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν
τον συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις
του Ενικού Μετσόιου Πουτενείου.

Περίηψη

Ένα από τα πιο δύσκοα προήματα στα συστήματα παράηης επεξερασίας
είναι η ανάπτυξη παράηου οισμικού το οποίο κιμακώνει αποδοτικά. Αρκετές
εφαρμοές δεν κιμακώνουν έπειτα από έναν αριμό επεξεραστών επειδή το κόστος
επικοιννίας ίνεται συκρίσιμο με την φέιμη υποοιστική ερασία. Σκοπός
αυτής της διπματικής ερασίας είναι η υοποίηση ενός σήματος παράηης
εκτέεσης που επικαύπτει υποοισμούς με επικοιννία ώστε τεικά να μειώνεται ο
συνοικός ρόνος εκτέεσης της εφαρμοής. Χρησιμοποιούμε την επικαυπτόμενη
δρομοόηση σε τέσσερις αντιπροσπευτικές εφαρμοές: (α)Τον αόριμο Floyd
-Warshall που ρησιμοποιεί συοική επικοιννία, ()τον αόριμο Smith-Wa-
terman που είναι μία τυπική εφαρμοή δυναμικού προραμματισμού, ()την εξίσση
μεταφοράς τριών διαστάσεν που απαιτεί επικοιννία τν διερασιών μόνο προς
ορισμένη κατεύυνση και (δ)την εξίσση διάδοσης ερμότητας τριών διαστάσεν,
όπου κάε διερασία ανταάζει δεδομένα με όες τις ειτονικές της διερασίες.
Υοποιούμε αυτήν την τενική με δύο τρόπους, αρικά ρησιμοποιώντας ασύρονη
επικοιννία και έπειτα αναέτοντας το υποοιστικό κομμάτι και την επικοιννία σε
διαφορετικά νήματα. Η τεευταία υοποίηση ασίζεται σε υριδικό προραμματισμό
με MPI και OpenMP. Η πατφόρμα εκτέεσης είναι μία συστοιία από κόμους
πουεπεξεραστών με μοιραζόμενη μνήμη (SMP) και τα διαέσιμα δίκτυα διασύνδεσης
είναι Gigabit Ethernet και Myrinet. Εξετάζουμε την ισιμότητα αυτής της τενικής
και στα δύο δίκτυα διασύνδεσης και παρατηρούμε ετίση στην επίδοση ές 40%
σε σέση με τις απές παράηες εφαρμοές.

Λέξεις κειδιά: επικάυψη επικοιννίας, υριδικός προραμματισμός, SMP συ-
στοιία, Floyd-Warshall, Smith-Waterman, εξίσση μεταφοράς τριών διαστάσεν,
εξίσση διάδοσης ερμότητας τριών διαστάσεν

Abstract

One of the most difficult problems in parallel computing is to develop parallel
software that has effective scalability. Several applications do not scale further
than a number of processors because communication overhead becomes compa-
rable with computational work. The goal of this diploma thesis is to implement
a parallel execution scheme that overlaps computation and communication and
eventually reduces the overall execution time of the application. We utilize this
overlapping schedule in four representative applications: (a)The Floyd-Warshall
algorithm that uses collective communication, (b)the Smith-Waterman algorithm
which is a typical dynamic programming application, (c)the 3D advection equation
that requires the communication between processes only towards a specific direc-
tion and (d)the 3D heat equation that has a “halo” communication pattern, i.e.
every process exchanges data with all of its neighbors. We develop this optimiza-
tion technique in two ways, initially we use non-blocking communication functions
and then by assigning the computation and the communication workload to sep-
arate threads. The latter implementation is based on hybrid programming with
MPI and OpenMP. Our execution platform is a cluster of SMP nodes and there
are available a commodity interconnect (Gigabit Ethernet) and a high performance
network (Myrinet). We investigate the viability of this optimization technique re-
garding both interconnection networks and we notice improvement in performance
up to 40% relative to the baseline parallel applications.

Keywords: communication overlapping, hybrid programming, SMP cluster, Floyd-
Warshall, Smith-Waterman, 3D advection equation, 3D heat equation

Ευαριστίες

Η διπματική ερασία αυτή πραματοποιήηκε στο Εραστήριο Υποοιστικών
Συστημάτν της Σοής Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
του Ενικού Μετσόιου Πουτενείου, υπό την επίεψη του Αναπηρτή Καηητή
Νεκτάριου Κοζύρη.

Καταρήν α ήεα να ευαριστήσ τον καηητή μου κ. Νεκτάριο Κοζύρη, ια
την εποπτεία του κατά την εκπόνηση της ερασίας μου, αά και ια τη συμοή του
στη διαμόρφσή μου ς μηανικού από τις διδασκαίες του.

Θα ήεα επίσης να εκφράσ τις ευαριστίες μου σε όα τα μέη του εραστηρίου
και ιδιαίτερα στον Μεταδιδακτορικό Ερευνητή Γιώρο Γκούμα ια τη συνεή καοδή-
ηση και ενάρρυνση που μου προσέφερε ια την οοκήρση της διπματικής μου
ερασίας.

Τέος, α ήεα να ευαριστήσ το οικοενειακό και φιικό μου περιάον, η
υποστήριξη τν οποίν με οήησε τόσο στην εκπόνηση της ερασίας όσο και στην
οοκήρση τν προπτυιακών μου σπουδών.

2

Contents

1 Introduction 5
1.1 Overview . 5
1.2 The challenge of parallel programming 6
1.3 Multiprocessor architectures . 8

1.3.1 Shared memory architecture 8
1.3.2 Distributed memory architecture 9
1.3.3 Hybrid architecture . 10

1.4 Parallel programming models . 11
1.4.1 Shared address space programming model 12
1.4.2 Message–passing programming model 12
1.4.3 Hybrid programming model 14

2 Execution environment 15
2.1 Architecture of the system . 15
2.2 Interconnection Network . 15

2.2.1 Gigabit Ethernet . 16
2.2.2 Myrinet . 16

2.3 Implementation of a hybrid programming model 17
2.3.1 OpenMP . 17
2.3.2 MPI . 20
2.3.3 Combining MPI and OpenMP 21

3 Overlapping computation with communication 23
3.1 Motivation . 23
3.2 Implementation of the technique 26

3.2.1 Utilizing non-blocking communication functions 26
3.2.2 Dedicating separate threads 27
3.2.3 Efficiency issues . 28

4 Applications 30
4.1 Finding shortest paths: Floyd–Warshall algorithm 30

4.1.1 Algorithm . 30
4.1.2 Serial implementation . 31

3

4.1.3 Baseline parallel implementation 31
4.1.4 Overlapping parallel implementation 32

4.2 Sequence alignment: Smith–Waterman algorithm 34
4.2.1 Algorithm . 34
4.2.2 Serial implementation . 35
4.2.3 Baseline parallel implementation 35
4.2.4 Overlapping parallel implementation 37

4.3 Advection 3D . 39
4.3.1 Algorithm . 39
4.3.2 Serial implementation . 40
4.3.3 Baseline parallel implementation 40
4.3.4 Overlapping parallel implementation 43

4.4 Heat equation 3D . 46
4.4.1 Algorithm . 46
4.4.2 Serial implementation . 46
4.4.3 Baseline parallel implementation 47
4.4.4 Overlapping parallel implementation 49

4.5 Implementation issues . 51
4.5.1 Assigning work to specific threads 51
4.5.2 Binding threads to cores . 51
4.5.3 Minimizing OpenMP overhead 51

5 Experiments 53
5.1 Floyd-Warshall . 53
5.2 Smith-Waterman . 56
5.3 Advection 3D . 60
5.4 Heat equation 3D . 62
5.5 Overall experimental results . 65

6 Conclusions 72

Bibliography 74

4

Chapter 1

Introduction

1.1 Overview
Since the start of the personal computing revolution one of the things appli-

cation vendors could count on was that new hardware made applications faster.
Disk, memory, bus, processors - always became even more and always faster. Ap-
plication developers typically did not need to do anything - if the application ran
on the operating system and the operating system ran on the new hardware, the
application ran faster.

That was the case until now. Single core clock speeds maxed out and conse-
quently multicore is the next evolution in computing performance. Putting more
cores on a single processor seems like a straightforward way to deliver big perfor-
mance increases. With a first sight this evolution is ideal, except for two things:
managing multiple cores creates some significant overhead and most applications
require non-trivial re-engineering to parallelize the code and take advantage of
more than one core. In other words, without some considerable work there are
some applications that will run slower on multicore systems.

Moreover, there are scientific applications extremely demanding in computa-
tional sources like weather forecasting and protein synthesis. In addition, there
are non-scientific applications that are computationally demanding, e.g. search en-
gines, web servers and databases. All these applications may need notable time to
execute but the user would like to have the results as soon as possible, either be-
cause it could prevent unwelcome situations (see well-timed forecasting of natural
disasters) or because long waits bring resentment (for instance imagine a search
on the web that would last some minutes).

To deal effectively with this family of applications, parallel processing has
become a promising paradigm in computational models and parallel computer
architecture has been introduced to support these applications. Parallel computers
can be roughly classified according to the level at which the hardware supports
parallelism, with multicore computers having multiple processing elements within

5

a single machine, while clusters use multiple computers to work on the same task.
The tall challenge is to create hardware and software that will make it easy

to write correct parallel processing programs1 that will execute efficiently in per-
formance and power as the number of cores per chip and the number of nodes
per cluster scale up. There are rising questions relative to multicore processors,
clusters and parallel programs that will run on such systems:

• Why is it difficult to create efficient parallel processing programs?

• Which parallel architectures are available?

• Given the difficulty of writing programs to run well on parallel hardware,
which parallel programming models are available in order to simplify the
task?

These questions will be answered in the following sections of this chapter.

1.2 The challenge of parallel programming
The availability of multicore processors does not guarantee that applications

will execute faster without any effort. In several cases, the software needs to be
redesigned in order to run in parallel and take advantage of the available cores.
First of all, it is harder to develop a parallel program than a sequential one be-
cause eventually the parallel program must have better performance and efficiency,
otherwise there is no sense in re-writing programs, particularly because sequential
programs for uniprocessors are much easier to be written.

So the question is why writing fast parallel processing programs is a hard task
especially as the number of cores increases. The first performance-restrictive factor
is that the computational load has to be broken into equal-sized pieces and then
each piece should be assigned to a core. In case that the pieces are not equal-
sized, some cores would be idle while waiting for the other ones with the larger
pieces to finish. Another factor that could limit performance is that different
processors have to communicate with each other in order to process successfully
their workload. Obviously, if the time spent for communication is significant part
of the total time then the speedup of the parallel program would be downgraded.
In short, scheduling, load balancing, time for synchronization and overhead for
communication between the cores are significant challenges and they become even
greater as the number of processors increases.

Another fact that should be taken in deep consideration when writing parallel
programs is Amdahl’s law [1]. Let us first define speedup in a given problem as:

speedup(n processors) ≡ execution time(1 processor)

execution time(n processors)
(1.1)

1We use the term parallel processing program to refer to a single program that runs on
multiple processors simultaneously

6

Figure 1.1: Total speedup of a parallel program as parallel portion and number
of processors increase

Amdahl’s law refers to the increase of the performance that can be achieved by
improving a part of the total program, let it be a proportion p. If this improvement
makes that part of the program s times faster, i.e. it has a speedup equal to s,
then the total speedup of the program is given by the equation:

total speedup ≡ 1

(1− p) +
p

s

(1.2)

In our case, Amdahl’s law can be rephrased: If p is the proportion of the total
program that can be parallelized and 1 − p is the part of the program that can
not be parallelized (i.e. remains sequential), then the maximum total speedup that
can be achieved by using N processors is given by the equation:

total speedup ≡ 1

(1− p) +
p

N

(1.3)

As N goes to infinity, the maximum speedup goes to 1/(1 − p). Practically, the
analogy between efficiency and cost increases dramatically even if 1−p is relatively
small. For instance, if p = 90% then 1−p = 10%, so the program can be accelerated
by a factor of 10 in the best case, no matter how many processors we use. At
Figure 1.1 we can see how total speedup is affected while proportion p and number
of processors N change and we can draw some conclusions. First of all, the overall
speedup of a program that utilizes many cores in a parallel portion is bounded
by the sequential part of the program. Therefore, using even more cores and
improving parallel computer architectures is not panacea. Instead, an application
should be redesigned so that a larger part of it is parallelized.

7

1.3 Multiprocessor architectures
According to Flynn’s taxonomy [2] computer systems are categorized in terms

of how they use data, and how that data is controlled or manipulated. It defines
two control streams: SI (single instruction) and MI (multiple instruction), and two
data streams: SD (single data) and MD (multiple data). Any computer system
will have one type of control stream and one type of data stream, so there are four
categories:

• SISD: A sequential computer

• SIMD: Massively parallel processors, same instructions, multiple data (data-
level parallelism)

• MISD: Unusual – there are few machines in this category, none that have
been commercially successful or had any impact on computational science

• MIMD: Each processor executes its own instructions and processes its own
data. There are multiple threads (thread-level parallelism). Examples of
MIMD systems are: clusters (commodity/custom clusters) and multicore
systems

We will examine MIMD multiprocessor architectures according to their memory
organization. They can be placed in three categories that will be further ana-
lyzed in the next subsections: shared memory architectures, distributed memory
architectures and hybrid architectures.

1.3.1 Shared memory architecture
A shared memory multiprocessor (SMP) offers the programmer a single physical

address space across all processors, although a more accurate term would have
been shared-address multiprocessor. It is important to clarify that such systems
can run independent tasks in their own virtual address spaces, even if they all
share a physical address space. Processors communicate through shared variables
in memory, with all processors being capable of accessing any memory location via
loads and stores. Moreover, each processor has its local cache hierarchy. Figure 1.2
shows the classic organization of an SMP.

Single address space multiprocessors come in two memory organizations: The
first takes about the same time to access main memory independently of which
processor requests it and independently of which word is requested. These ma-
chines are called uniform memory access (UMA) multiprocessors. In the second
category, some memory accesses are much faster than others, depending on which
processor asks for which word. Such machines are called non-uniform memory
access (NUMA) multiprocessors. As it can be inferred, NUMA multiprocessors
conceal harder programming challenges than UMA multiprocessors, but on the

8

Figure 1.2: Classic organization of an SMP

other hand NUMAs can have lower latency to nearby memory and significantly
higher aggregate memory bandwidth.

As processors operating in parallel will normally share data, they also need
to coordinate when operating on shared data. Otherwise, a processor could start
working on a data before another processor is finished with it. Thus, when sharing
is supported with a single address space there must be a mechanism for synchro-
nization. An approach to achieve synchronization is the usage of locks for shared
variables. Only one processor at a time can acquire the lock and any other pro-
cessor interested in shared data must wait until the original processor unlocks the
variable.

The ability to access all shared data efficiently from any of the processors using
ordinary loads and stores, together with the automatic movement and replication
of shared data in the local caches, makes them attractive for parallel programming.
These features are also very useful for the operating system, whose different pro-
cesses share data structures and can easily run on different processors. However,
this approach has been used for connecting very small number of processors, typ-
ically up to 20 or 30. The scaling limit for these machines comes primarily due to
bandwidth limitations of the shared bus and memory system.

1.3.2 Distributed memory architecture
Another approach to sharing an address space is that each processor has its

own cache hierarchy and its own private physical address space. Figure 1.3 shows
the classic organization of a distributed memory architecture which is also called
message-passing architecture. Such a system has routines to send and receive
messages and the coordination is built in with message passing, since one processor
knows when a message is sent and the receiving processor knows when a message
arrives. If the sender needs information that the message has arrived, the receiving
processor can then send an acknowledgement message back to the sender. Note
that unlike the SMP, the interconnection network is between processor-memory
nodes.

9

Figure 1.3: Classic organization of a distributed memory architecture

There were several attempts to build high-performance computers based on
high performance message-passing networks and they did offer better absolute
communication performance than clusters built using commodity networks. Clus-
ters are generally collections of commodity computers that are connected to each
other over their I/O interconnect via standard network switches and cables. Each
one computer runs a distinct copy of the operating system.

One drawback of clusters has been that the cost of administering a cluster of n
machines is about the same as the cost of administering n independent machines,
while the cost of administering a shared memory multiprocessor with n processors
is about the same as administering a single machine.

Another drawback of clusters is that the processors in a cluster are usually
connected using the I/O interconnection of each computer, whereas the cores in a
multiprocessor are usually connected via the memory interconnect of the computer.
The memory interconnect has higher bandwidth and lower latency, allowing much
better communication performance.

The downside for programmers is that it’s harder to port a sequential program
to a message-passing computer, since every communication must be identified in
advance and explicitly implemented. However, the weakness of separate memories
for user memory turns into a strength in the availability of the system. The cluster
software is a layer that runs on top of local operating systems running on each
computer, therefore it is much easier to disconnect and replace a broken machine.

Finally, a great advantage of distributed memory systems has to do with their
scalability. Given that clusters are constructed from whole computers and inde-
pendent, scalable networks, this architecture scales up to some thousands of nodes.

1.3.3 Hybrid architecture
The hybrid architecture combines the previous two architectures: nodes with

shared memory architecture are connected via an interconnection network using
the distributed memory architecture. Figure 1.4 illustrates the organization of
a hybrid architecture. Obviously, this architecture shows up the advantages of

10

Figure 1.4: Example of a hybrid architecture

the previous two types and therefore it is the typical architecture of the modern
clusters and supercomputers.

1.4 Parallel programming models

A parallel programming model is a concept that enables the expression of par-
allel programs which can be compiled and executed. The value of a programming
model is usually judged on its generality: how well a range of different problems can
be expressed and how well they execute on a range of different architectures. The
implementation of a programming model can take several forms such as libraries
invoked from traditional sequential languages, language extensions, or complete
new execution models.

One way to classify parallel programming models is according to the process
interaction that takes place in a parallel processing program. Process interaction
relates to the mechanisms by which parallel processes are able to communicate
with each other. The most common forms of interaction are shared memory and
message passing. Furthermore, there is a mixed-type interaction between processes
and this represents the hybrid parallel programming model.

Parallel programming models exist as an abstraction above hardware and mem-
ory architectures. Although it may not seem apparent, these models are not spe-
cific to a particular type of machine or memory architecture. In fact, any of those
models can, theoretically, be implemented on any underlying hardware. For ex-
ample, a shared memory model may apply on a distributed memory machine if the
physically distributed machine memory is appeared to the user as a single shared
memory (global address space). Which model to use is often a combination of
what is available and personal choice. There is no “best” model, although there
certainly are better implementations of some models over others.

11

1.4.1 Shared address space programming model
In a shared address space model, parallel tasks share a address space which they

read and write to asynchronously. This requires protection mechanisms such as
locks and semaphores to control concurrent access to the shared memory. Shared
memory can be also emulated on distributed-memory systems but non-uniform
memory access (NUMA) times can come into play.

An advantage of this model from the programmer’s point of view is that the
notion of data “ownership” is lacking, so there is no need to specify explicitly the
communication of data between tasks. As a consequence, program development
can often be simplified. On the other hand, an important disadvantage in terms
of performance is that it becomes more difficult to understand and manage data
locality. Keeping data local to the processor that works on it implies memory
accesses, cache refreshes and bus traffic when multiple processors use the same
data. Unfortunately, controlling data locality is hard to understand and beyond
the control of the average user.

On shared memory platforms, the native compilers translate user program
variables into actual memory addresses, which are global. An implementation
that supports shared memory programming is OpenMP and will be discussed in
following chapter.

1.4.2 Message–passing programming model
In a message passing programming model, a set of tasks use their own local

memory during computation and multiple tasks can reside on the same physical
machine and/or across an arbitrary number of machines. Tasks exchange data
through communication by sending and receiving messages. In this programming
model there is a distance between itself and the real operations of the hardware,
since the communication on the user’s level is executed by the operating system
or by function calls from a library that in turn execute many low-level operations,
including the communication. At the user level, the most common communication
operations are variants of simple send and receive operations. In the naive version,
a send specifies a local buffer of data that will be sent and a receiving process. A
receive operation specifies a sending process and a local buffer of data in which the
received data will be stored. So, each send has a matching receive and together
they accomplish data transfer from a process to another, as it is illustrated in
Figure 1.5.

In most message passing systems, the operation of send is allowed to have
attached to a message an identifier or a tag, and the operation of receive could
specify a matching rule for the identifiers and the tags. In other words, the user’s
program renames local addresses and records to an abstract place of process-tags.
Each combination of a send and the corresponding receive achieves copy from
memory to memory, where each endpoint of the communication determines the
address of its local data.

12

Figure 1.5: The operations of send/receive from a user’s level viewpoint

As previously mentioned, there are many versions of send and receive opera-
tions. Synchronous communications require some type of “handshaking” between
tasks that are sharing data. This can be explicitly structured in code by the
programmer, or it may happen at a lower level unknown to the programmer. Syn-
chronous communications are often referred to as blocking communications since
other work must wait until the communications have completed. Asynchronous
communications allow tasks to transfer data independently from one another. For
instance, task 1 can prepare and send a message to task 2, and then immediately
begin doing other work. When task 2 actually receives the data does not matter.
Asynchronous communications are often referred to as non-blocking communica-
tions since other work can be done while the communications are taking place.

Another classification of communication in a parallel program has to do with
the number of tasks that take part in it. Point-to-point communication involves
two tasks with one task acting as the sender/producer of data, and the other
acting as the receiver/consumer. On the other hand, collective communication
involves data sharing between more than two tasks, which are often specified as
being members in a common group. For example, imagine the scenario where a
task has to send some data possessed by it to a group of tasks. The collective way
of sending that data is to broadcast it to the desired group of tasks.

From a programming perspective, message passing implementations commonly
embody a library of subroutines that are used in source code. The programmer
is responsible for determining all parallelism. Historically, a variety of message
passing libraries have been available since the 1980’s. These implementations dif-

13

fered substantially from each other making it difficult for programmers to develop
portable applications. In 1992, the MPI Forum was formed with the primary goal
of establishing a standard interface for message passing implementations. MPI
is now the “de facto” industry standard for message passing, replacing virtually
all other message passing implementations used for production work. For shared
memory architectures, MPI implementations usually do not use a network for task
communications. Instead, they use shared memory (memory copies) for perfor-
mance reasons. MPI will be discussed in more detail at a following chapter.

1.4.3 Hybrid programming model
In this model, the previous parallel programming models are combined. A

common example of a hybrid model is the combination of the message passing
model (MPI) with the shared memory model (OpenMP). This hybrid model fits
well to the increasingly common hardware environment of networked SMP ma-
chines. OpenMP is used to parallelize a program interior a node of a SMP cluster
and MPI is used for the communication between processes that reside in different
nodes of a cluster. More details in implementing such a programming model will
be described in following chapter.

14

Chapter 2

Execution environment

In the previous chapter, parallel architectures and programming models were
discussed in general. Now we will analyze an execution platform which is part of
our case study, as our parallel processing programs will run there.

2.1 Architecture of the system
Our system embraces the hybrid parallel architecture, i.e. it is a cluster con-

sisting of SMP nodes where each node has two Intel R© Xeon R© E5335 processors
(eight cores in total). The clock frequency of each core is 2.00 GHz and the cores
share in a pairwise way the same level two cache, which is 4 MB. Additionally,
each SMP node has one memory slot, whose size varies from node to node. Fi-
nally, the SMP nodes are connected via an interconnection network and form a
hybrid system. Totally, there are 16 SMP nodes available in our cluster and also
two different types of interconnection network may be used: Gigabit Ethernet and
Myrinet.

2.2 Interconnection Network
The overall performance of a cluster system can be determined by the speed of

its processors and the interconnection network. Regardless of how fast the proces-
sors are, communication among processors, and hence scalability of applications,
is in several cases bounded by the network bandwidth and latency. The bandwidth
is an indication of how fast a data transfer may occur from a sender to a receiver,
while latency is the time needed to send a minimal size message from a sender to
a receiver. In the early days of clusters, Ethernet was the main interconnection
network used to connect nodes. Many solutions have been introduced to achieve
high-speed networks. Key solutions in high-speed interconnects include Gigabit
Ethernet and Myrinet.

15

2.2.1 Gigabit Ethernet
Ethernet [3], in general, is a packet-switched LAN technology introduced by

Xerox PARC in the early 1970’s. Ethernet was designed to be a shared bus tech-
nology where multiple hosts are connected to a shared communication medium.
All hosts connected to an Ethernet receive every transmission, making it possible
to broadcast a packet to all hosts at the same time. Ethernet uses a distributed
access control scheme called Carrier Sense Multiple Access with Collision Detect
(CSMA/CD). Multiple machines can access an Ethernet at the same time. Each
machine senses whether a carrier wave is present to determine whether the net-
work is idle before it sends a packet. Only when the network is not busy sending
another message can transmission start. Each transmission is limited in duration
and there is a minimum idle time between two consecutive transmissions by the
same sender. In order to achieve an acceptable level of performance and to elimi-
nate any potential bottleneck, there must be some balance between the Ethernet
speed and the processor speed. Essentially, Gigabit Ethernet is the technology for
transmitting Ethernet frames at a rate of a gigabit per second.

In our case, when Gigabit Ethernet is selected to be the interconnection net-
work, the message passing of MPI uses the TCP protocol. TCP supports message
communication over Ethernet using the socket interface to the operating system’s
network protocol stack. Thus, when using TCP over Ethernet, memory copies are
required to move data between the application and the kernel. This procedure is
analyzed in [4]. We should have this issue in mind as it will be discussed again in
later chapter.

2.2.2 Myrinet
Myrinet [5] is a high-speed local area networking system designed by Myri-

com to be used as an interconnect between multiple machines to form computer
clusters. Myrinet has much lower protocol overhead than standards such as Ether-
net, and therefore provides better throughput, less interference, and lower latency
while using the host CPU. Although it can be used as a traditional networking
system, Myrinet is often used directly by programs that “know” about it, thereby
bypassing a call into the operating system. Myrinet physically consists of two fibre
optic cables, upstream and downstream, connected to the host computers with a
single connector. Machines are connected via low-overhead routers and switches,
as opposed to connecting one machine directly to another. Myrinet includes a
number of fault-tolerance features, mostly backed by the switches. These include
flow control, error control, and “heartbeat” monitoring on every link. The newest,
“fourth-generation” Myrinet, called Myri-10G, supports a 10 Gbit/s data rate and
is interoperable with 10 Gigabit Ethernet on the physical layer (cables, connectors,
distances, signaling).

Myrinet is a lightweight protocol with little overhead that allows it to operate
with throughput close to the basic signaling speed of the physical layer. However,

16

Figure 2.1: An overview of the architecture of the cluster

for supercomputing, the low latency of Myrinet is even more important than its
throughput performance, since, according to Amdahl’s law, a high-performance
parallel system tends to be bottlenecked by its slowest sequential process, which
is often the latency of message transmission across the network.

In contrary to Ethernet, user-level communication protocols employed by Myrinet
avoid memory copies to move data between the application and the kernel. This
is achieved by directly transferring data between the network interface and appli-
cation buffers, resulting finally in lower communication latencies.

In Figure 2.1 we illustrate an overview of the architecture of the cluster.

2.3 Implementation of a hybrid programming
model

In this section we discuss issues relevant to shared address space program-
ming, message passing and, finally, how hybrid programming is achieved by using
OpenMP and MPI.

2.3.1 OpenMP
In OpenMP’s execution model, programs execute serially until they encounter

the parallel directive. This directive is responsible for creating a group of threads,
where each thread has a unique thread id. The exact number of threads can be
specified by setting appropriately an environment variable, or at runtime using
OpenMP functions. The main thread that encounters the parallel directive be-
comes the master of this group of threads and is assigned the thread id 0 within
the group. Then, each thread created by this directive executes the structured
block specified by the parallel directive. Finally, at the end of a parallel region the

17

Figure 2.2: OpenMP execution model

threads are synchronized. This execution model is illustrated in Figure 2.2.
The parallel directive includes a clause list which is used to specify conditional

parallelization, number of threads and data handling. In regard with data han-
dling, a variable used in a parallel region can be private, firstprivate, lastprivate
and shared. A private variable is local to each thread, this is to say that each
thread has its own copy for that variable. The difference between a private and a
firstprivate variable is that the latter is initialized to a corresponding value before
the parallel region. Also, a lastprivate variable is updated after the parallel con-
struct. Finally, a shared variable is shared across all the threads, i.e. there is only
one copy for this variable. Special care must be taken while handling shared vari-
ables by threads to ensure serializability, since race conditions might be concealed.
This model of data is illustrated in Figure 2.3.

The work is shared among threads in a parallel region using the directives for,
sections and single. Specifically, the for directive distributes iterations of a for-loop
to a group of threads, the sections directive specifies one or more independent code
sections and they are assigned to the threads, while the single directive declares
that a code section should be executed by a sole thread of the group. We should
note here that work sharing could be also carried out by assigning separate code
sections to threads according to their thread ids.

Although, synchronization of the threads is implied at the end of parallel re-
gions, sometimes it may be necessary for a programmer to force synchronization
explicitly. Therefore, synchronization constructs are available and provide many
functionalities, e.g. the barrier construct results in the synchronization of the

18

Figure 2.3: OpenMP data model

threads of the group, the master construct specifies code that is executed only
by the master thread etc. Moreover, the OpenMP run-time library supports a set
of simple and nestable lock routines.

Finally, OpenMP supports reduction operations and in its last version (OpenMP
3.0) the task construct appeared, which is useful for parallelization when an ap-
plication produces work dynamically. For more details about OpenMP we refer
the reader to [6]. An example of code using OpenMP directives is illustrated in
Code 2.1, where functions f1() and f2() are executed in parallel.

Code 2.1 OpenMP code where f1() and f2() are executed in parallel
1 #pragma omp p a r a l l e l s e c t i o n s
2 {
3 #pragma omp s e c t i o n
4 f1 () ;
5
6 #pragma omp s e c t i o n
7 f2 () ;
8 }

19

(a)

(b)

Figure 2.4: (a) Point to point communication (b) Collective communication

2.3.2 MPI
As mentioned in section 1.4.2, MPI is the “de facto” industry standard for

message passing and most message-passing programs are written using the single
program multiple data (SPMD) approach. In SPMD programs the code executed
by different processes is identical. Moreover, each process has a unique rank in a
group of processes (such a group of processes is called communicator), and each
process works on a subset of the total data or differentiates its execution flow
according to its rank.

We focus on the communication functions, which are the heart of the message
passing paradigm. The point-to-point blocking communication is realized by the
functionsMPI Send andMPI Recv. Their arguments specify in general the sender,
the receiver, the amount of transferred data and its datatype. At this point we
remind that each send must have a matching receive. The respective non-blocking
functions for point-to-point communication are MPI Isend and MPI Irecv. Addi-
tionally, MPI Test and MPI Wait functions are used to check whether or not a
non-blocking send or receive operation has finished.

Regarding collective communication, MPI Bcast is the function that makes a
source process broadcast data to a communicator specified in the arguments. We
emphasize that collective communication is usually very efficient, e.g. sending a
message in a communicator that has p processes will take log p steps instead of
p-1 steps that would be needed if we used point-to-point communication, as it can
be shown at Figure 2.4. However, MPI Bcast and all collective communication
functions are blocking which means that collective operations must be completed

20

before continuing the execution of code. Another significant collective function is
MPI Reduce, which allows the process to perform an operation like min, max, sum,
product etc on data possessed by every process in a communicator. The final result
after applying the operation is stored at root process which is an argument of the
function. Moreover, MPI Scatter and MPI Gather functions are used to scatter
and gather data respectively. The latter functions become very useful when initial
data, like an array, has to be partitioned and distributed by a source process to
the others, or when messages from every process have to be gathered and merged
to a specific process. At this point, we should note that collective communication
must involve all processes in the scope of a communicator.

Finally, MPI Barrier function is used to synchronize the processes of a com-
municator and if it is not used carefully the parallelism is limited. We refer the
reader to [7] for an extensive description of the aforementioned MPI functions. An
example of MPI code that computes in parallel the expression f(0)+f(1) is shown
in Code 2.2.

Code 2.2MPI code where the expression f(0)+f(1) is computed in parallel
1 #include <mpi . h>
2
3 int main (int argc , char∗∗ argv) {
4 int v0 , v1 , sum , rank ;
5 MPI Status s t a t ;
6 MPI Init(&argc , &argv) ;
7 MPI Comm rank(MPICOMMWORLD, &rank) ;
8 i f (rank==1) {
9 v1=f (1) ;

10 MPI Send(&v1 , 1 , 0 , 5 0 ,MPI INT ,MPICOMMWORLD) ;
11 } else i f (rank==0) {
12 v0=f (0) ;
13 MPI Recv(&v1 , 1 , 1 , 5 0 ,MPI INT ,MPICOMMWORLD,& s t a t) ;
14 sum=v0+v1 ;
15 }
16 MPI Final ize () ;
17 return 0 ;
18 }

2.3.3 Combining MPI and OpenMP
So far we have discussed basic attributes of MPI and OpenMP, but the ultimate

goal was to implement a hybrid programming model. Since each MPI process can
call OpenMP routines, then it is straightforward how to create hybrid programs.
So, when a MPI process creates threads by using a parallel directive, then these
threads are assigned (if possible) to different processors on the SMP node that the
MPI process runs. This scheme is very flexible and provides the programmer with

21

many parallelization opportunities. An example of hybrid code that computes in
parallel the expression f(0)+f(1)+f(2)+f(3) is shown in Code 2.3. In this code
we create two MPI processes and each process has available two threads. So the
first MPI process computes in parallel the subexpression f(0) + f(1) by using a
OpenMP sections directive (and utilizing the two available threads) and so does
the second MPI process regarding subexpression f(2) + f(3).

Code 2.3 Hybrid code where the expression f(0) + f(1) + f(2) + f(3) is
computed in parallel

1 int main (int argc , char∗∗ argv) {
2 int v0 , v1 , v2 , v3 , subexpr , sum , rank ;
3 MPI Status s t a t ;
4 MPI Init(&argc , &argv) ;
5 MPI Comm rank(MPICOMMWORLD, &rank) ;
6 omp set num threads (2) ;
7 i f (rank==1) {
8 #pragma omp p a r a l l e l s e c t i o n s
9 {

10 #pragma omp s e c t i o n
11 v0=f (0) ;
12 #pragma omp s e c t i o n
13 v1=f (1) ;
14 }
15 subexpr=v0+v1 ;
16 MPI Send(&subexpr , 1 , 0 , 5 0 ,MPI INT ,MPICOMMWORLD) ;
17 } else i f (rank==0) {
18 #pragma omp p a r a l l e l s e c t i o n s
19 {
20 #pragma omp s e c t i o n
21 v2=f (2) ;
22 #pragma omp s e c t i o n
23 v3=f (3) ;
24 }
25 sum=v2+v3 ;
26 MPI Recv(&subexpr , 1 , 1 , 5 0 ,MPI INT ,MPICOMMWORLD,& s t a t) ;
27 sum+=subexpr ;
28 }
29 MPI Final ize () ;
30 return 0 ;
31 }

22

Chapter 3

Overlapping computation with
communication

3.1 Motivation
In section 1.2 we discussed the difficulty of creating efficient parallel programs.

Load-balancing is one of the factors that can reduce the performance of a parallel
application dramatically. Another issue that a programmer should have in mind
when creating parallel applications is granularity of parallelism, i.e. a qualitative
measure of the ratio of computation to communication. In a typical parallel pro-
gram, periods of computation are separated from periods of communication by
synchronization events. Therefore according to the ratio computation/communi-
cation the parallelism could be fine-grain or coarse-grain.

In the first case, relatively small amounts of computational work are carried out
between communication events and this leads to a low computation to communi-
cation ratio, since fine-grain parallelism implies high communication overhead and
less opportunity for performance enhancement. In an extreme scenario, if gran-
ularity is too fine, it is possible that the communication overhead between tasks
takes longer than the computation. However, successful load balancing is easier to
be achieved by following a fine-grain policy. Many methods have been proposed
in order to merge consecutive iterations of computation and we refer the reader
to [8] and [9]. On the other hand, in the case of coarse-grain parallelism, large
amounts of computational work are carried out between communication/synchro-
nization events and consequently the computation to communication ratio is high.
Although this fact provides more opportunity for performance increase, it is harder
to load balance efficiently. Figure 3.1 illustrates the difference between fine-grain
and coarse-grain parallelism. In general, the most efficient granularity is depen-
dent on the algorithm and the execution environment (hardware, run-time system
etc).

An equally important issue when building parallel programs especially for the

23

(a) (b)

Figure 3.1: (a) Fine-grain parallelism (b) Coarse-grain parallelism

large scale is the scalability of the program, i.e. how the execution behavior alters
as more processors are added in the execution. We expect that the pure computa-
tional time will decrease linearly as the number of cores increases linearly as well.
Furthermore, when the working set assigned to each processor is too small and fits
in its cache, then the decrease in the computational time could be super-linear. On
the other hand, the communication time of a program depends on the application
and the execution platform. For example, applications which are contingent on
point-to-point communication pattern possibly have larger communication over-
head than parallel programs that exploit collective communication. In addition,
when the number of processors increases it is much more difficult to have efficient
communication due to contention to network access. In [10], the constraints on the
network latency and bandwidth that cause insufficient scalability of three scien-
tific application classes (classical molecular dynamics, cosmological situations and
unstructured grid computations) are analyzed.

Let us pick the most favorable scenario, where the communication time de-
creases as the number of cores increases. Since the number of cores could scale up
to hundreds and even millions in modern platforms, the computational time would
be reduced drastically. Even if we assume that the parallelism has been imple-
mented in such a way so that the amount of communication is optimal, the time
required for each communication and synchronization overhead would be compa-
rable with the tiny computation time, forming a state similar to Figure 3.1(a).
This is true in real world, because when even more processors try to communi-
cate using a commodity interconnection network, then communication bottlenecks
appear and the communication time is not reduced linearly as computation time
does. Such a usual behavior of applications is depicted in Figure 3.2(a). First of all
we observe that the computation time halves as the number of cores participating
in execution doubles. The communication time (vertical distance of the compact

24

E
xe

cu
tio

n
tim

e

Number of cores

Total time
Computation time

E
xe

cu
tio

n
tim

e

Number of cores

Total time
Computation time

(a) (b)

Figure 3.2: Typical behavior of applications as the number of cores increases and
the communication time: (a)remains constant, (b)increases.

lines) decreases with a such a slow rate that it could be regarded as constant.
Consequently, there is a point that communication and computation time become
equal and after that point the communication becomes the dominating factor.
Another typical behavior for parallel applications is illustrated in Figure 3.2(b).
In this case, the communication time increases as long as we add cores to the
execution and thus it becomes rapidly the dominating factor.

After all, we drew the conclusion that communication is the dominating factor
in several parallel applications, especially when the number of processors increases
significantly. The most common cost model used in algorithm design for large
scale multiprocessors assumes that the program alternates between computation
and communication phases and that communication requires time linear in the size
of the message, plus a start-up cost [11]. This cost model governs Algorithm 3.1
and the total execution time of the parallel program is:

T = Tcompute + Tcommunicate (3.1)

and Tcommunicate = Nc(Ts+LcTb), where Ts is the start-up cost, Tb is the time per
byte-transfer, Lc is the message length, and Nc is the number of communications.
To achieve a satisfactory performance, the program should yield a sufficiently high
ratio of computation to computation, for example there should be Tcompute ≥
9 · Tcommunicate.

Here comes the idea of overlapping computation with communication ([12],
[13]). If we can execute in parallel the communication and the computation part
of the algorithm then the execution time would be:

T = max(Tcompute +NcTs, NcLcTb) (3.2)

Thus, to achieve high processor efficiency, the communication and compute times
need only balance, and the compute time needs to overweight the communication

25

Algorithm 3.1 Simplified model of a parallel algorithm
while work 6=done do

communicate()
compute()

end while

E
xe

cu
tio

n
tim

e

Number of cores

Total time
Computation time

Overlapping total time

E
xe

cu
tio

n
tim

e

Number of cores

Total time
Computation time

Overlapping total time
Overlapping computation time

(a) (b)

Figure 3.3: Expected behavior of the application after overlapping computation
with communication by using: (a)non-blocking functions, (b)helper threads

overhead, i.e. Tcompute � NcTs. The algorithmic changes that must be made
in order to execute in parallel computation with communication are not always
straightforward and usually they imply some computational and communication
overhead. For the moment, we neglect these issues. In the next section we discuss
two alternatives to implement overlapping.

3.2 Implementation of the technique
We consider two distinct approaches to implement applications that overlap

computation with communication. The “traditional” one involves non-blocking
communication and the “proposed” method uses separate threads for the compu-
tation and the communication part of the program.

3.2.1 Utilizing non-blocking communication functions
So far it is clear that blocking communication functions wait for the commu-

nication process to complete before continuing to the next program instruction.
Therefore, in the Algorithm 3.1 the communication and the computation pro-
cess are serialized and consequently the expression 3.1 implies the summation of

26

the individual times. However, as we mentioned in section 1.4.2, non-blocking
communication functions allow other work to be done while communication is in
progress. Assuming that all necessary algorithmic changes have been made in or-
der to overlap the computation with communication, algorithm 3.2 is a version
that implements overlapping. We refer the reader to [13], where this method is
analyzed extensively.

Algorithm 3.2 Algorithm that overlaps computation with communication
by using non-blocking functions
while work 6=done do

non-blocking communicate()
compute()

end while

The expected behavior of the application of Figure 3.2(a) after overlapping
computation and computation by using non-blocking functions is illustrated in
Figure 3.3(a). We assume that the overlapping is ideal, i.e. for a given num-
ber of cores, the total execution time of the overlapping version is approximately
max(computation time, communication time) and consequently it is reduced no-
tably. This “traditional” approach has been widely followed in the case of clusters
with uniprocessor nodes and high performance computing interconnects and such
a cluster is classic paradigm of late 90’s and early 00’s. In these clusters, each node
has just one physical core so we can not use separate thread to undertake the com-
munication part of the program. Therefore, a high performance interconnection is
needed so that the non-blocking functions do not waste time on the uniprocessor
and they can be executed in parallel with the computational part.

The non-blocking MPI routines that are available to implement the latter al-
gorithm are namely referred to section 2.3.2. Although Algorithm 3.2 is elegant,
there are some implementation reasons that could make such kind of overlapping
inefficient. These reasons will be discussed later in the chapter.

3.2.2 Dedicating separate threads
The “proposed” implementation of overlapping computation with communica-

tion is to utilize separate threads for the computational part and the communi-
cation part (see [14]). Again we assume that all necessary algorithmic changes
have been made in order to overlap the computation with communication. Pseu-
docode 3.1, which uses OpenMP directives, illustrates this different implementa-
tion.

27

Pseudocode 3.1 Implementation of overlapping by using separate
OpenMP threads

1 # omp p a r a l l e l {
2 while (work != done) {
3 # omp s e c t i o n s {
4
5 # omp s e c t i o n {
6 communicate () ;
7 }
8
9 # omp s e c t i o n {

10 compute () ;
11 }
12 }
13 }
14 }

In this case, we suppose that OpenMP has been properly set and there are
two available threads in the parallel region. As explained in section 2.3.1, each
section is assigned to a separate thread, thus communication and computation are
executed simultaneously. The expected behavior of the application is depicted in
Figure 3.3(b). Notice that, e.g. on the final state, the overlapping version of the
program uses the half cores for computational reasons and the rest cores in order to
accomplish communication. Therefore, the computation time at that point equals
to the computation time the simple program has when it uses the half cores of the
final state. However, since communication is the dominating factor for the simple
program, its total execution time is higher than the total time of the program
which overlaps computation with communication.

This “proposed” implementation of overlapping fits well to clusters of modern
multicore nodes, possibly without high performance interconnects. In these clusters
there are many cores available in every node and the whole communication part of
the program can be assigned to a separate thread. Therefore, in several applica-
tions there is not need for a high performance interconnection since the overhead of
the communication functions (implied by a commodity interconnection network)
is not serialized with the the computation part.

3.2.3 Efficiency issues
Although the first way of implementing overlapping is quite elegant, there are

some reasons that could downgrade the performance of this implementation.
First of all, in section 3.1 we implied that overlapping computation with com-

munication demands some overhead. Usually, this overhead involves copies to

28

buffers before and after using the communication routines1. Provided we use the
non-blocking functions to implement overlapping, these extra computations will be
serialized and consequently they could increase the total execution time. On the
contrary, if there are separate threads, the communication thread could undertake
this overhead.

Another considerable issue has to do with the interconnection network and
the protocols used to implement message passing. In subsections 2.2.1 and 2.2.2
we emphasized that the protocols used by Ethernet to support message passing
require data copies between the application and the kernel. These copies are
time demanding and finally a core takes them up. As long as we do not use helper
threading to implement overlapping, then these copies are executed by the core and
essentially computation and communication are not completely overlapped (before
continuing to the computation the same core performs these copies). However, in
the case of separate threads, this extra copies are completed in parallel, since
the communication thread is responsible for them while the other thread makes
computations. This fact may not be of great importance granted that the available
interconnection network is Myrinet, but mostly commodity networks like Ethernet
are used for the interconnection of nodes in a cluster.

Finally, the communication operation of a program could be a collective one,
e.g. a broadcast. As mentioned in subsection 2.3.2 all collective operations are
blocking, hence the first approach of implementing overlapping can not be followed
when communication is collective. Although implementing the latter method of
overlapping seems to be advantageous, we should note that it is more resource
consuming as half cores should be used to accomplish communication and just the
half cores execute computations.

In the next chapters we examine how overlapping is applied in four applications
(Floyd–Warshall, Smith–Waterman, 3D advection equation, 3D heat equation) and
we study the behavior of both overlapping approaches.

1These copies are called packing and unpacking respectively

29

Chapter 4

Applications

In the previous chapter we described the main idea of overlapping computation
with communication. Now we investigate the way this technique can be applied
on four applications: Floyd-Warshall, Sequence alignment, 3D advection equation
and 3D heat equation.

4.1 Finding shortest paths: Floyd–Warshall
algorithm

4.1.1 Algorithm
The Floyd–Warshall algorithm([15], [16]) is a graph analysis algorithm for

finding shortest paths in a weighted graph (with positive or negative edge weights).
A single execution of the algorithm will find the lengths (summed weights) of the
shortest paths between all pairs of vertices though it does not return details of the
paths themselves. The algorithm is an example of dynamic programming. In our
case we will examine graphs with positive edge weights.

The Floyd–Warshall algorithm compares all possible paths through the graph
between each pair of vertices. It is able to do this with Θ(|V |3) comparisons in a
graph. This is remarkable considering that there may be up to Ω(|V |2) edges in
the graph, and every combination of edges is tested. It does so by incrementally
improving an estimate on the shortest path between two vertices, until the estimate
is optimal.

Consider a graph G with vertices V , each numbered 1 through N . Further
consider a function shortestPath(i, j, k) that returns the shortest possible path
from i to j using vertices only from the set 1, 2, ..., k as intermediate points along
the way. Now, given this function, our goal is to find the shortest path from each i
to each j using only vertices 1 to k+1. There are two candidates for each of these
paths: either the true shortest path only uses vertices in the set 1, ..., k or there
exists some path that goes from i to k+1, then from k+1 to j that is better. We

30

know that the best path from i to j that only uses vertices 1 through k is defined
by shortestPath(i, j, k), and it is clear that if there were a better path from i to
k+1 to j, then the length of this path would be the concatenation of the shortest
path from i to k + 1 (using vertices in 1, ..., k) and the shortest path from k + 1
to j (also using vertices in 1, ..., k). We can define shortestPath(i, j, k) in terms
of the following recursive formula, granted that w(i, j) is the weight of the edge
between vertices i and j:

shortestPath(i, j, 0) = w(i, j)

shortestPath(i, j, k) = min

{
shortestPath(i, j, k − 1)

shortestPath(i, k, k − 1) + shortestPath(k, j, k − 1)

This formula is the heart of the Floyd–Warshall algorithm. The algorithm
works by first computing shortestPath(i, j, k) for all (i, j) pairs for k = 1, then
k = 2, etc. This process continues until k = n, and we have found the shortest
path for all (i, j) pairs using any intermediate vertices.

4.1.2 Serial implementation
Conveniently, when calculating the k− th case, one can overwrite the informa-

tion saved from the computation of k−1. This means the algorithm uses quadratic
memory. Pseudocode 4.1 describes the serial implementation of the algorithm, as-
suming that there are n vertices and the graph is initialized properly.

Pseudocode 4.1 Serial implementation of Floyd–Warshall algorithm
1 for (k=1 to n)
2 for (i=1 to n)
3 for (j=1 to n)
4 path [i] [j]=min (path [i] [j] , path [i] [k]+path [k] [j]) ;

4.1.3 Baseline parallel implementation
There are many approaches to parallelize Floyd–Warshall algorithm. In our

case we will follow a domain decomposition policy, i.e. the data associated with
our problem is decomposed and each parallel process then works on a portion of
the data.

Specifically, matrix path is partitioned in chunks that contain equal number of
lines and each process is assigned such a chunk, as it is illustrated at Figure 4.1.
All processes must synchronize before moving to a next k iteration, because at the
k+1 iteration the line k+1 of the initial matrix is necessary for the computations
and this line must be computed up to the k− th iteration. The latter requirement

31

Figure 4.1: Partitioning
of the matrix (n = 16)
into 4 chunks. The gray
line indicates the one to
be broadcast by process 2
when k = 11.

is satisfied by synchronizing the processes at the end of each k iteration. The
communication needed between the processes is a broadcast of the k − th line of
the initial matrix at each k iteration. This k − th line is crucial in order to make
computations because essentially it is the term path[k][j] of Pseudocode 4.1. As
it can be shown at Figure 4.1, the owner-process of the k− th line depends on the
value of k. Pseudocode 4.2 describes this simple parallel version of the algorithm.

Pseudocode 4.2 Simple parallel implementation of Floyd–Warshall algo-
rithm

1 for (k=1 to n) {
2
3 i f (my rank == sender)
4 pack (k−th l i n e to aux bu f f e r) ;
5
6 MPI Bcast (aux buf f e r , root=sender) ;
7
8 for (i=1 to l i n e s p e r chunk)
9 for (j=1 to n)

10 my chunk [i] [j]=min (my chunk [i] [j] , my chunk [i] [k]+
aux bu f f e r [j]) ;

11
12 }

4.1.4 Overlapping parallel implementation
The key observation that leads to overlapping computation with communica-

tion is the following one: When processes execute the k− th iteration, the process
that owns line k+ 1 could compute it and broadcast it while in parallel computes
its chunk for the k − th iteration. The other processes could receive that k + 1

32

line while in parallel compute their corresponding chunk for the k − th iteration.
As a result, when it is time to execute the (k + 1) − th iteration, all processes
already have available the line k + 1 and therefore can start immediately their
computations.

Pseudocode 4.3 Parallel implementation of Floyd–Warshall algorithm
that overlaps communication with computation

1
2 # omp p a r a l l e l
3 for (k=1 to n) {
4
5 /∗ Communication thread ∗/
6 # omp s e c t i o n {
7
8 /∗ Compute the l i n e k+1 ∗/
9 i f (my rank == owne r o f l i n e (k+1) {

10 for (j=1 to n)
11 my chunk [t h e l i n e] [j] = min (my chunk [t h e l i n e] [j] ,

my chunk [t h e l i n e] [k] + aux bu f f e r [j]) ;
12 for (j=1 to n)
13 aux bu f f e r [j] = my chunk [t h e l i n e] [j] ;
14 }
15
16 /∗ Broadcast the l i n e k+1 ∗/
17 MPI Bcast (aux buf f e r , root=owne r o f l i n e (k+1)) ;
18 }
19
20 /∗ Computation thread ∗/
21 # omp s e c t i o n {
22
23 for (i=1 to l i n e s p e r chunk)
24 for (j=1 to n)
25 my chunk [i] [j]=min (my chunk [i] [j] , my chunk [i] [k]+

aux bu f f e r [j]) ;
26 }
27 }

Obviously, two separate threads should be dedicated so that the first one is
responsible for the communication (and probably for computing one line if that
process owns the line k + 1) and the second one is responsible for the computa-
tion of a chunk. Pseudocode 4.3 describes this parallel version of the algorithm
that overlaps communication with computation (we do not include the necessary
initializations like computation and broadcasting of line 1).

33

4.2 Sequence alignment: Smith–Waterman
algorithm

4.2.1 Algorithm
In bioinformatics, a sequence alignment is a way of arranging the sequences

of DNA, RNA, or protein to identify regions of similarity that may be a con-
sequence of functional, structural, or evolutionary relationships between the se-
quences. Aligned sequences of nucleotide or amino acid residues are typically
represented as rows within a matrix. Gaps are inserted between the residues so
that identical or similar characters are aligned in successive columns. A variety of
computational algorithms have been applied to the sequence alignment problem,
including slow but formally optimizing methods like dynamic programming.

The Smith–Waterman algorithm [17] is a general local alignment method based
on dynamic programming. Instead of looking at the total sequence, the Smith-
Waterman algorithm compares segments of all possible lengths and optimizes the
similarity measure. So the core of this algorithm is the computation of a similarity
matrix H. Let us first define some notation:

• a, b : strings over an alphabet Σ

• m = length(a)

• n = length(b)

• if ai = bj then w(ai, bj) = w(match)

• if ai 6= bj then w(ai, bj) = w(mismatch)

• − is the gap and implies deletion or insertion

• w(ai,−) = w(−, bj) = gapscore

• H(i, j) is the maximum similarity-score between a suffix of a[1...i] and a
suffix of b[1...j]

The similarity matrix H is built from the following recursive expression:

H(i, 0) = 0, 0 ≤ i ≤ m

H(0, j) = 0, 0 ≤ j ≤ n

H(i, j) = max


0

H(i− 1, j − 1) + w(ai, bj) Match/Mismatch

H(i− 1, j) + w(ai,−) Deletion

H(i, j − 1) + w(−, bj) Insertion

, 1 ≤ i ≤ m, 1 ≤ j ≤ n

34

Smith-Waterman algorithm is fairly demanding of time and memory resources:
in order to align two sequences of lengths m and n, O(mn) time and space are
required.

4.2.2 Serial implementation
The serial implementation of the algorithm is quite straightforward and is

presented in Pseudocode 4.4.

Pseudocode 4.4 Serial implementation of Smith-Waterman algorithm
1 for (i=1 to m)
2 for (j=1 to n)
3 H[i] [j] = max(0 , H[i −1] [j −1] + w[a [i]] [b [j]]) , H[i −1] [j] +

GAP, H[i] [j −1] + GAP) ;

4.2.3 Baseline parallel implementation
In order to parallelize the Smith-Waterman algorithm we follow again domain

decomposition policy, i.e. each process will be assigned to compute a chunk of the
similarity matrix H. Such a partition of the similarity matrix H is illustrated on
Figure 4.2. The parallelization is not obvious yet, since every process (except one)
in order to compute the elements of its first column needs elements that do not
belong to it. To be more accurate, as Pseudocode 4.4 indicates, the computation
of H[i][j] demands among others the elements H[i − 1][j − 1] and H[i][j − 1]. In
case that H[i][j] is element of the first column in a chunk, then H[i− 1][j− 1] and
H[i][j − 1] are elements of the last column in a different chunk.

Now it is clear that every process (except one) has to send the last column of its
chunk to the “right neighbor”. However, if every process waits its “left neighbor” to
compute its whole chunk and then receives the wanted column, the computations of
the processes are serialized and consequently there is no parallelism. Instead, each
process can compute a line of its chunk and then send the last element of that line
to the “right neighbor”. After that, the process can receive from the “left neighbor”
the element needed to compute its next line and proceed to the computation of
the new line. Despite the fact that this scheduling enables parallelism it is fine-
grained and hence it is inefficient as described in section 3.1. Here comes the idea
of tiling [18], a method of aggregating a number of loop iterations into tiles where
the tiles execute atomically, i.e. a processor executing the iterations belonging to a
tile receives all the data it needs before executing any one of the iterations in the
tile, executes all the iterations in the tile and then sends the data needed by other
processors. So, every chunk is further partitioned in parts that each contains the
equal (if possible) number of lines. Let us name these parts tiles. So, the most left
process can compute a tile of its chunk, then send the last column of that tile to

35

Figure 4.2: Parallel implementation
of Smith-Waterman algorithm. Each
color represents a chunk of the sim-
ilarity matrix H and is assigned to
a different process. Horizontal bold
lines indicate the borders of the tiles.
The pale columns are the data to be
transferred between processes and the
bold horizontal arrows demonstrate
the flow of data. Finally, the diag-
onal dashed arrows indicate the step
at which each tile is computed.

its “right neighbor”, and then proceed with the next tile. Now the “right neighbor”
can receive the needed column and continue with the computation of its tile. After
computing that tile, the “right neighbor” can send the last column of that tile to
its corresponding right process and then receive the next needed column by its left
process. Note that the latter column has been computed by the left process as
long as the “right neighbor” was computing its tile. This scheduling remains active
until all tiles are computed and eventually there is coarse-grain parallelism.

For the moment, assume that there is a large number of tiles at every chunk
and that p processes are available. If we define as “step” the computation time of
each tile plus the communication time for a single tile-column send, then after p−1
steps all the processes will execute in parallel. This parallel scheme is explained
in detail on Figure 4.2. In this example, the two sequences have length m = 32
and n = 16, while the number of processes is p = 4. The tile factor here is 4,
hence each chunk consists of eight 4 × 4 tiles. As previously mentioned, after
three steps all processes run in parallel until step 7. From steps 8 to 10, one more
process becomes idle per step and eventually after step 10 all tiles are computed.
Pseudocode 4.5 describes this parallel version of the Smith-Waterman algorithm.

36

Pseudocode 4.5 Simple parallel implementation of Smith-Waterman al-
gorithm

1 for (i =1; i<=m; i+=t i l e f a c t o r) {
2
3 /∗ Receive column necessary f o r computation o f the t i l e ∗/
4 i f (my rank!=mo s t l e f t p r o c e s s) {
5 MPI Recv (recv column , sender=l e f t n e i g h b o r) ;
6 unpack (recv column) ;
7 }
8
9 /∗ Compute a t i l e ∗/

10 for (i i=i ; i i <i+t i l e f a c t o r ; i i ++)
11 for (j =1; j<=n ; j++)
12 H[i i] [j] = max(0 , H[i i −1] [j −1] + w[a [i i]] [b [j]]) ,
13 H[i i −1] [j] + GAP, H[i i] [j −1] + GAP) ;
14
15 /∗ Send column to r i g h t ne ighbor ∗/
16 i f (my rank!=mos t r i gh t p r o c e s s) {
17 pack (send column) ;
18 MPI Send (send column , r e c e i v e r=r i gh t n e i ghbo r) ;
19 }
20 }

4.2.4 Overlapping parallel implementation

Now we would like to modify the previous algorithm in order to overlap com-
putation with communication. Therefore, we defer the first computation of each
process (except the most left process) for one more step. Instead, these processes
receive a second column. This slight adjustment provides this opportunity: While
at step t a process is computing a specific tile, simultaneously this process can:
(a) receive the column needed for the computation of the next tile at step t + 1,
and (b) send the column of the tile computed at the previous step t − 1. Fi-
nally, some actions binary to the initialization operations have to be performed
before ending the algorithm. Pseudocode 4.6 describes this parallel version of
the Smith-Waterman algorithm that overlaps computation with communication
by using separate threads. Similar is the implementation that overlaps computa-
tion with communication by utilizing non-blocking communication routines. The
differences are that: (a) all omp directives are removed, (b) all communication
functions are replaced with their corresponding non-blocking version and (c) the
unpack function inside the main for-loop must be moved after the compute func-
tion. Of course, appropriate calls of MPI Wait function should be added to ensure
that non-blocking communications have been completed.

37

Pseudocode 4.6 Parallel implementation of Smith-Waterman algorithm
that overlaps computation with communication

1 /∗ f i r s t r e c e i v e ∗/
2 MPI Recv (s t ep 1) ;
3 unpack (s t ep 1) ;
4
5 /∗ second r e c e i v e ∗/
6 MPI Recv (s t ep 2) ;
7 unpack (s t ep 2) ;
8
9 /∗ f i r s t p roce s s ing ∗/

10 Compute (s t ep 1) ;
11
12 # omp p a r a l l e l
13 for (s tep=2 to t o t a l s t e p s −1) {
14
15 # omp s e c t i o n {
16
17 /∗ Receive column fo r computation o f the NEXT t i l e ∗/
18 MPI Recv (s tep+1) ;
19 unpack (s tep+1) ;
20
21 /∗ Send column of PREVIOUS t i l e to r i g h t ne ighbor ∗/
22 pack (step −1) ;
23 MPI Send (step −1) ;
24 }
25
26 # omp s e c t i o n {
27
28 /∗ Compute t i l e a t CURRENT s t ep ∗/
29 Compute (s tep) ;
30 }
31
32 }
33
34 /∗ Send column of semi−f i n a l s t ep ∗/
35 pack (semi− f i n a l s tep) ;
36 MPI Send (semi− f i n a l s tep) ;
37
38 /∗ Compute the f i n a l t i l e ∗/
39 Compute (f i n a l t i l e) ;
40
41 /∗ Send column of f i n a l s t ep ∗/
42 pack (f i n a l s tep) ;
43 MPI Send (f i n a l s tep) ;

38

4.3 Advection 3D
4.3.1 Algorithm

Advection, in chemistry, engineering and earth sciences, is a transport mech-
anism of a substance, or a conserved property, by a fluid, due to the fluid’s bulk
motion in a particular direction. An example of advection is the transport of
pollutants or silt in a river. The motion of the water carries these impurities
downstream. Another commonly advected property is energy or enthalpy, and
here the fluid may be water, air, or any other thermal energy-containing fluid ma-
terial. Any substance, or conserved property (such as enthalpy) can be advected,
in a similar way, in any fluid.

The fluid motion in advection is described mathematically as a vector field,
and the material transported is typically described as a scalar concentration of
substance, which is contained in the fluid. The advection equation [19] is the
partial differential equation that governs the motion of a conserved scalar as it is
advected by a known velocity field. It is derived using the scalar’s conservation law,
together with Gauss’s theorem, and taking the infinitesimal limit. The advection
equation for a scalar u, such as temperature, is expressed mathematically as:

∂u

∂t
+∇(uv) = 0 (4.1)

where ∇ is the divergence operator and v is the velocity vector field. Frequently,
it is assumed that the flow is incompressible, that is, the velocity field satisfies
∇v = 0 (it is said to be solenoidal). If this is so, the above equation reduces to:

∂u

∂t
+ v · ∇u = 0 (4.2)

Furthermore, if we regard speed to be constant, i.e. v = (−1,−1,−1), then the
advection equation becomes:

∂u

∂t
=

∂u

∂x
+

∂u

∂y
+

∂u

∂z
(4.3)

To solve this equation numerically, we approximate u to a discrete solution defined
in a cubic grid. For simplicity, if we use the explicit Euler discretization for the
partial derivatives and if we ignore all multiplying factors that come into play, then
the numerical equation is:

u(t, x, y, z) = u(t− 1, x, y, z) + u(t− 1, x− 1, y, z) +

u(t− 1, x, y − 1, z) + u(t− 1, x, y, z − 1) (4.4)

39

4.3.2 Serial implementation
So far our goal is to compute the values of scalar u after time T in all three

dimensions. Conveniently, after calculating scalar u for the t−th moment, one can
overwrite this information to the values of u for the (t−1)thmoment, since they are
not needed any more. Assuming that the limits of our 3D space are: 1 ≤ x ≤ X,
1 ≤ y ≤ Y and 1 ≤ z ≤ Z, Pseudocode 4.7 describes a serial implementation of
the algorithm.

Pseudocode 4.7 Serial implementation of 3D advection algorithm
1 cur rent =1;
2 prev ious =0;
3 for (t = 0 ; t < T − 1 ; t++) {
4 for (x = 1 ; x <= X; x++)
5 for (y = 1 ; y <= Y; y++)
6 for (z = 1 ; z <= Z ; z++)
7 u [cur r ent] [x] [y] [z] =
8 u [prev ious] [x] [y] [z] +
9 u [prev ious] [x−1] [y] [z] +

10 u [prev ious] [x] [y−1] [z] +
11 u [prev ious] [x] [y] [z−1] ;
12
13 swap (current , p rev ious) ;
14 }

4.3.3 Baseline parallel implementation
In order to parallelize the serial algorithm we will follow a domain decomposi-

tion policy, i.e. each process will be assigned to compute a chunk of the 3D space
until time T . Figure 4.3 shows the advection problem in two spatial dimensions
plus one time dimension in order to simplify the illustration. This state easily can
be generalized to three spatial dimensions plus one time dimension. As it can be
concluded from equation 4.4, a process in order to compute its chunk for a moment
t needs: (a) elements from the moment t − 1 that are already possessed by the
process, and (b) elements from the moment t−1 that do not belong to this process,
and specifically these elements are required in order to compute boundary elements
of the chunk. It is clear that these dependencies determine which elements have
to be sent between processes. Figure 4.4 illustrates the communication pattern for
the advection problem in two spatial dimensions plus one time dimension.

The previous description implies fine grain parallelism and this fact brings
usually drawbacks, as discussed in section 3.1. Another modification that can be
done is to implement the idea of tiling to the time dimension in order to implement
a coarse-grain parallel program. So every process computes k moments (k here is
the tile factor) before communicating with its neighbors. As a result, each process

40

(a) (b)

Figure 4.3: (a)Advection problem in two spatial dimensions plus a time dimen-
sion (b)Partitioning of the advection problem to 12 chunks. Each process will be
assigned such a chunk.

Figure 4.4: Communication pattern for the advection problem in two spatial
dimensions plus a time dimension

41

Figure 4.5: Communication pattern for the advection problem in two spatial
dimensions plus a time dimension when tiling is applied (tile factor = 10)

sends and receives per iteration more data than it would if just one moment had
been computed, but the total amount of data transferred is eventually the same.
Figure 4.5 illustrates the modified communication pattern for k = 10. The flow
of the computation begins from the process that lies on the start of the axis and
extends radially along the three axes. Obviously there is an initial delay until each
process receives the elements needed to start computations (remind Figure 4.2
where again each process waits for some elements in order to be able to compute).
However, this delay is negligible when the chunks are large enough. Pseudocode 4.8
describes this parallel version of the algorithm that uses tiling.

42

Pseudocode 4.8 Parallel implementation of 3D advection algorithm that
uses tiling

1 I n i t i a l i z e 3D (t i l e f a c t o r = k) ;
2
3 for (t = 0 ; t < T; t += k) {
4
5 /∗ Receive data ∗/
6 Rece ive f rom ne ighbor s (k , (x−1,y , z) , (x , y−1, z) , (x , y , z−1)) ;
7 Unpack data rece ived () ;
8
9 /∗ Compute data ∗/

10 for (t t = 0 ; t t < k ; t t++)
11 for (x = 1 ; x <= my chunk X ; x++)
12 for (y = 1 ; y <= my chunk Y ; y++)
13 for (z = 1 ; z <= my chunk Z ; z++) {
14 u [t t +1] [x] [y] [z] =
15 u [t t] [x] [y] [z] +
16 u [t t] [x−1] [y] [z] +
17 u [t t] [x] [y−1] [z] +
18 u [t t] [x] [y] [z−1] ;
19 }
20
21 /∗ Copy the data o f moment k to moment 0 , so t ha t they are
22 ready f o r the next i t e r a t i o n ∗/
23 copy data (u [k] [x] [y] [z] to u [0] [x] [y] [z]) ;
24
25 /∗ Send data ∗/
26 Pack data to send () ;
27 Send to ne ighbor s (k , (x+1,y , z) , (x , y+1,z) , (x , y , z+1)) ;
28 }

4.3.4 Overlapping parallel implementation
In order to overlap computation with communication we use again the same

idea as in subsection 4.2.4 and it is extensively discussed in [22]. So, initially
processes receive in advance one more piece of data needed for next computation.
After this modification the scheduling becomes: While at time t a process is com-
puting a specific tile, simultaneously this process can: (a) receive the data required
for computation at time t + 1, and (b) send data computed at previous moment
t− 1. Finally, some actions binary to the initialization operations have to be per-
formed before ending the algorithm. This scheduling is shown on Figure 4.6 for an
example of two spatial dimensions and a time dimension. Pseudocode 4.9 describes
this parallel version of the 3D advection algorithm that overlaps computation with
communication by using separate threads. Almost identical is the implementation
that overlaps computation with communication by utilizing non-blocking commu-

43

Figure 4.6: Scheduling for the advection problem in two spatial dimensions plus
a time dimension, when computation and communication are overlapped

nication routines. The differences are that: (a) all omp directives are removed
and (b) all communication functions are replaced with their corresponding non-
blocking version. Of course, appropriate calls of MPI Wait function should be
added to ensure that non-blocking communications have been completed.

44

Pseudocode 4.9 Parallel implementation of 3D advection algorithm that
overlaps computation with communication

1 I n i t i a l i z e 3D (t i l e f a c t o r = k) ;
2
3 /∗ F i r s t r e c e i v e ∗/
4 Receive (time=1) ;
5 Unpack data (time=1) ;
6
7 /∗ F i r s t compute ∗/
8 Compute t i le (time=1) ;
9

10 /∗ Second r e c e i v e ∗/
11 Receive (time=2) ;
12
13 # omp p a r a l l e l
14 for (s tep = k ; s tep < T−k ; s tep += k) {
15
16 /∗ Unpack data r e c e i v ed and pack data to be sen t ∗/
17 # omp s i n g l e {
18 Unpack data () ;
19 Pack data () ;
20 }
21
22 # omp ba r r i e r
23
24 /∗ Communication thread ∗/
25 # omp s e c t i o n {
26 Send (data o f time t−1) ;
27 Receive (data o f time t+1) ;
28 }
29
30 /∗ Computation thread ∗/
31 # omp s e c t i o n {
32 Compute t i le (computation o f time t) ;
33 }
34 }
35
36 /∗ Semi f ina l send ∗/
37 Pack data () ;
38 Send () ;
39
40 /∗ Fina l compute ∗/
41 Unpack data () ;
42 Compute t i le (f i n a l t i l e) ;
43
44 /∗ Fina l send ∗/
45 Pack data () ;
46 Send () ;

45

4.4 Heat equation 3D

4.4.1 Algorithm

The heat equation is an important partial differential equation which describes
the distribution of heat (or variation in temperature) in a given region over time.
For a function u(t, x, y, z) of three spatial variables (x, y, z) and the time variable
t, the heat equation is:

∂u

∂t
= a(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) (4.5)

One way to numerically solve this equation is to approximate all the derivatives
by finite differences [20]. We partition the domain in space using a mesh x =
1, ..., X, y = 1, ..., Y , z = 1, ..., Z, and in time using a discretization t = 0, ..., T .
Using a forward difference at time t, a second-order central difference for the space
derivatives and ignoring all multiplying factors, equation 4.5 becomes:

u(t, x, y, z) = 1/7 · (u(t− 1, x, y, z) +

u(t− 1, x− 1, y, z) + u(t− 1, x+ 1, y, z) +

u(t− 1, x, y − 1, z) + u(t− 1, x, y + 1, z) +

u(t− 1, x, y, z − 1) + u(t− 1, x, y, z + 1)) (4.6)

4.4.2 Serial implementation

Having in mind the numerical equation 4.6, we would like to compute the values
of scalar u after time T in all three dimensions. Conveniently, after calculating
scalar u for the t − th moment, one can overwrite this information to the values
of u for the (t − 1)th moment, since they are not needed any more. Assuming
that the limits of our 3D space are: 1 ≤ x ≤ X, 1 ≤ y ≤ Y and 1 ≤ z ≤ Z,
Pseudocode 4.10 describes a serial implementation of the algorithm.

46

Pseudocode 4.10 Serial implementation of 3D heat equation
1 cur rent =1;
2 prev ious =0;
3 for (t = 0 ; t < T − 1 ; t++) {
4 for (x = 1 ; x <= X; x++)
5 for (y = 1 ; y <= Y; y++)
6 for (z = 1 ; z <= Z ; z++)
7 u [cur r ent] [x] [y] [z] =1/7 ∗ (
8 u [prev ious] [x] [y] [z] +
9 u [prev ious] [x−1] [y] [z] +

10 u [prev ious] [x+1] [y] [z] +
11 u [prev ious] [x] [y−1] [z] +
12 u [prev ious] [x] [y+1] [z] +
13 u [prev ious] [x] [y] [z−1] +
14 u [prev ious] [x] [y] [z+1]) ;
15
16 swap (current , p rev ious) ;
17 }

4.4.3 Baseline parallel implementation

We will adopt a domain decomposition policy to parallelize the serial algorithm,
i.e. each process will be assigned to compute a chunk of the 3D space until time T .
Figure 4.7 shows the heat equation problem in two spatial dimensions in order to
simplify the illustration. This problem easily can be generalized to three spatial
dimensions. Equation 4.6 implies that a process in order to compute its portion
for a moment t needs: (a) some elements from the moment t− 1 that are already
owned by the process, and (b) some elements from the moment t− 1 that belong
to all other neighboring processes, and specifically these elements are compulsory
to compute boundaries of the portion. The crucial difference from 3D advection
equation is that in this case, there exist dependencies with data of all neighboring
processes. Figure 4.7 illustrates these dependencies for the heat equation problem
in two spatial dimensions.

After the previous explanations, the parallel algorithm is now quite clear: every
process sends its boundary elements computed at time t− 1 to the corresponding
neighbors and receives the corresponding boundary elements computed at time
t − 1 from its neighbors. Then, every process continues with the computation of
its chunk at time t and the whole procedure is repeated until T iterations are
made. Pseudocode 4.11 describes this parallel version of the heat equation.

47

Figure 4.7: Parallel implementation of heat equation in two spatial dimensions.
The spatial grid is a 16 × 16 square grid and is partitioned into 16 chunks. Each
chunk is assigned to a different process. Pale squares indicate the data that must
be exchanged between the processes. The bold arrows illustrate the flow of the
exchanged data.

48

Pseudocode 4.11 Parallel implementation of 3D heat equation
1 cur rent =1;
2 prev ious =0;
3 for (t = 0 ; t < T − 1 ; t++) {
4
5 /∗ Send and r e c e i v e data ∗/
6 Pack data (boundar ies o f t−1) ;
7 ISend (boundar ies o f t−1 to ne ighbors) ;
8 IRecv (boundar ies o f t−1 from ne ighbors) ;
9 Wait communication () ;

10 Unpack data (boundar ies o f t−1) ;
11
12 /∗ Computation o f time t ∗/
13 for (x = 1 ; x <= my X; x++)
14 for (y = 1 ; y <= my Y; y++)
15 for (z = 1 ; z <= my Z ; z++)
16 u [cur r ent] [x] [y] [z] =1/7 ∗ (
17 u [prev ious] [x] [y] [z] +
18 u [prev ious] [x−1] [y] [z] +
19 u [prev ious] [x+1] [y] [z] +
20 u [prev ious] [x] [y−1] [z] +
21 u [prev ious] [x] [y+1] [z] +
22 u [prev ious] [x] [y] [z−1] +
23 u [prev ious] [x] [y] [z+1]) ;
24
25 swap (current , p rev ious) ;
26 }

4.4.4 Overlapping parallel implementation
Since data dependencies in heat equation are quite complex and involve ev-

ery neighbor of each process, a non-trivial modification must be done aiming to
overlap computation with communication. Let us remind Figure 4.7 to explain
this adjustment with an example. In this scheduling that allows overlapping, a
process computes the bold elements of its chunk for the moment t and in paral-
lel receives and sends the respective boundaries computed at time t − 1. This
parallelism is valid because the computation of bold elements does not demand
data from neighboring processes. Finally, the computation and the communica-
tion thread are synchronized and the process is able to compute its boundaries
for moment t, since now it owns all needed elements from neighbors. Obviously
this last part of computation is not overlapped at all. The overlapping scheme
is analogous for the heat equation at three spatial dimensions. Pseudocode 4.12
describes the parallel version of the 3D heat equation that overlaps computation
with communication by using separate threads. Similar is the implementation that
overlaps computation with communication by utilizing non-blocking communica-

49

tion routines. The differences are that: (a) all omp directives are removed and (b)
the Wait communication() and Unpack data() functions inside the main for-loop
must be moved before the Compute boundaries of chunk() function.

Pseudocode 4.12 Parallel implementation of 3D heat equation that over-
laps computation with communication

1 cur rent =1;
2 prev ious =0;
3 # omp p a r a l l e l
4 for (t = 0 ; t < T − 1 ; t++) {
5
6 # omp s e c t i o n {
7 /∗ Send and r e c e i v e data ∗/
8 Pack data (boundar ies o f t−1) ;
9 ISend (boundar ies o f t−1 to ne ighbors) ;

10 IRecv (boundar ies o f t−1 from ne ighbors) ;
11 Wait communication () ;
12 Unpack data (boundar ies o f t−1) ;
13 }
14
15 # omp s e c t i o n {
16 /∗ Computation o f ” c en t r a l e lements ” f o r time t ∗/
17 for (x = 2 ; x <= my X−1; x++)
18 for (y = 2 ; y <= my Y−1; y++)
19 for (z = 2 ; z <= my Z−1; z++)
20 u [cur r ent] [x] [y] [z] =1/7 ∗ (
21 u [prev ious] [x] [y] [z] +
22 u [prev ious] [x−1] [y] [z] +
23 u [prev ious] [x+1] [y] [z] +
24 u [prev ious] [x] [y−1] [z] +
25 u [prev ious] [x] [y+1] [z] +
26 u [prev ious] [x] [y] [z−1] +
27 u [prev ious] [x] [y] [z+1]) ;
28 }
29
30 # omp s i n g l e {
31 /∗ Computation o f boundar ies f o r time t ∗/
32 Compute boundaries of chunk () ;
33 }
34
35 swap (current , p rev ious) ;
36 }

50

4.5 Implementation issues
In these section we discuss several implementation issues that affect the per-

formance of the parallel applications.

4.5.1 Assigning work to specific threads
In subsection 2.3.1 we mentioned that an alternative for work sharing at

OpenMP is to assign separate code segments to different threads according to
their thread-id in an SPMD (Single Process, Multiple Data) style. This option
has been followed in order to define the code for the computation and the com-
munication thread, despite the fact that all pseudocodes presented in this chapter
imply the usage of the sections construct. By this way a thread is enforced to
execute either the communication or the computation code for all iterations of
an execution. If we used the sections construct, thread 0 could, e.g., execute the
communication section for an iteration and at a next iteration it could run the
computation section. This interchange of code sections among threads must be
avoided because it restricts re-utilization of level one cache (keep in mind that each
core has its own level one data and instruction cache). Initial experiments showed
this performance behavior. Moreover, now we must put explicit omp barriers af-
ter the if statement that differentiates communication and computation code, so
that thread synchronization is accomplished (a sections construct imposes thread
synchronization).

4.5.2 Binding threads to cores
The ability of the scheduler of an operating system to bind a process (or

thread) to a specific core is called CPU affinity. In the Linux operating sys-
tem, sched affinity is a system call that gives to programmers the aforementioned
opportunity. This system call has as arguments the id of a process and a affinity
mask and determines on which cores this process can run according to the given
affinity mask.

Although it is not clear with a first sight, we desire the communication and
the computation thread to run on cores sharing the same level two cache in order
to access shared data with trivial latency. Granted that communication thread
except communication executes packing and unpacking of data as well, it accesses
data used by the computation thread. Thus, at the preliminaries of each program,
we use sched affinity system call to ensure that computation and communication
threads of a specific MPI process run on cores sharing the same level two cache.

4.5.3 Minimizing OpenMP overhead
Creating and reclaiming threads come along with additional OpenMP over-

head. First of all, it is pivotal for our application to create these threads just once

51

and reuse them during the iterations of an execution, therefore we should move the
omp parallel directive before the main for loop of the program. Another important
issue that demands thorough consideration is to declare the most suitable type for
a variable used in parallel construct. Obviously some variables must be private to
each thread in order to have valid execution of the program while other variables
must be shared between threads. Finally, there are variables whose type is indif-
ferent from a semantics view. However, as mentioned in subsection 2.3.1, a thread
has its local copy for a private variable, so multiple accesses to this variable could
have better performance than multiple reads if the variable was shared. Hence,
the type of these variables is meticulously chosen at every application.

52

Chapter 5

Experiments

5.1 Floyd-Warshall
In this section we present the experimental results of Floyd-Warshall imple-

mentations and we will try to interpret the behavior of the application. In all
Figures that will appear, compact lines refer to the simple parallel implementation
while dashed lines correspond to the implementation that overlaps computation
with communication. Moreover, the lines having “squares” at distinct points, repre-
sent the total execution time of the application at that points and the lines that do
not have “squares” stand for the computation time of the applications. The vertical
distance of compact lines at a point is the communication time of the simple paral-
lel application as equation 3.1 indicates. If we recall equation 3.2, we conclude that
such a fact is not true for the dashed lines. Let n the number of nodes of the graph.
We will study three cases depending on n (n = 1024, n = 2048 and n = 4096)
and for each case we use as interconnection network first Gigabit Ethernet and
then Myrinet. For each of the previous cases we used 8, 16, 32, 64 and 128 cores.
Here we must emphasize that in the case of the parallel programs with overlapping
feature, half cores execute computations and half communications. For instance,
when we exam the points of the dashed curves that correspond to 128 cores, we
should have in mind that 64 cores are dedicated to computations and the rest 64
cores to communication.

In Figure 5.1 we can see the case where n = 1024. First of all, we con-
clude that the scalability is poor when Ethernet is used as interconnection net-
work. Specifically, the best performance for the simple implementation is ap-
peared when 32 cores are used. When the number of cores increases to 64 and
128, despite the fact that computation time continues to halve as expected, com-
munication time enhances dramatically and subsequently total execution time is
even larger. The implementation that overlaps communication with computation
displays its best performance when 32 cores are used (16 for computations and
16 for communication) and it is 25% lower than the best time of the simple im-

53

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

(a)Ethernet (b)Myrinet

Figure 5.1: Floyd-Warshall results for a graph with 1024 nodes

plementation. This is achieved because the total time is now “approximately”
max(computation time, communication time), where the latter times refer to the
simple implementation and the case of 16 cores. We mentioned the word “ap-
proximately” because now the communication time could be slightly larger due
to various implementation overheads. The case of the overlapping version does
not scale further than 32 processors, because the communication time becomes so
significant that even when computation and communication are overlapped, the
maximum of the corresponding times remains huge.

The behaviors of both implementations change when Myrinet comes into play.
As described in subsection 2.2.2, Myrinet shows up much better performance than
Ethernet and this has impact to the communication time of the application. So,
the simple implementation scales up to 64 cores, where it exhibits the best per-
formance. When the number of cores doubles, the total time is approximately
constant since the communication time increases and is almost 3,5 times larger
than computation time. This behavior can be explained because in this state (128
cores) all the sources of the cluster are utilized, i.e. many cores try to use the
interconnection network and even the communication among cores in a specific
SMP node is problematic. On the other hand, the implementation that overlaps
computation with communication continues to scale up to 128 cores. The over-
all state here reminds the ideal behavior one would expect from overlapping and
essentially it improves the performance of the simple implementation by 30%.

Figure 5.2 illustrates the case where n = 2048. Here the situation is similar
to the previous one. First we analyze the situation where Ethernet is used. The
simple implementation scales up to 32 cores and as we can see, at 64 cores the
total execution time is almost constant and then (128 cores) it increases. On the
other hand, the implementation that uses overlapping scales up to 64 cores and
improves the performance of the simple program by 29%. When the number of

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

(a)Ethernet (b)Myrinet

Figure 5.2: Floyd-Warshall results for a graph with 2048 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP
OVRLP-COMP

(a)Ethernet (b)Myrinet

Figure 5.3: Floyd-Warshall results for a graph with 4096 nodes

cores goes to 128, communication time again becomes so large that overlapping is
meaningless.

However, the scene changes when Myrinet is the interconnection network of
the cluster. We observe that both implementations scale up to 128 cores, however
the simple program shows very poor scalability from 64 to 128 and this image
resembles to Figure 3.2, where we relied to explain the motivation for overlapping
computation with communication. Indeed, the overlapping implementation con-
tinues to scale adequately, and offers an improvement by 35% (in comparison with
the best performance of the simple implementation).

Lastly, Figure 5.3 presents the rest experimental results where n = 4096. When
Ethernet is used, the naive implementation has moderate scalability, this is to say
that from 64 to 128 cores the total time does not reduce because communication

55

Percentage performance improvement
Number of nodes Ethernet Myrinet

1024 25% 30%
2048 29% 35%
4096 40% -16%

Table 5.1: Percentage performance improvement of Floyd-Warshall parallel im-
plementation when overlapping is applied. A negative amount indicates how much
“slower” is the overlapping version.

becomes the dominating factor. When we bring into play the overlapping scheme,
the application scales even further and eventually improves the performance by
40%.

On the other hand, when Myrinet is reclaimed, the simple parallel application
scales up to 128 cores. However, the most effective situation (which is the one where
128 cores participate in execution) seems to be very critical as communication time
is 41% of total time. This means that provided we used 256 cores, if communication
time remained the same and if the computation time decreased by 50%, then (at
this hypothetical state) communication time would be 58% of total time.

The overlapping version however is a promising one as it scales ideally up
to 128 cores. Although this implementation does not improve the performance
of the naive version, it is worth saying that its total time is approximately the
computation time of the naive version that uses the same number of computational
cores. This fact was expected since at this input size (n = 4096), computation is
the dominating factor. Having this in mind, we conclude that if we had totally
256 cores available, then the total time of the overlapping version would be the
computation time of the naive version when 128 cores are utilized. Combining this
thought with the conclusion of the previous paragraph, we can assume that at 256
cores the overlapping version would be remarkably faster than the simple parallel
version.

In table 5.1 we summarize the impact of overlapping computation with com-
munication at Floyd-Warshall parallel implementation.

5.2 Smith-Waterman
In this section we exhibit the experimental results of Smith-Waterman im-

plementations and we will try to figure out their behavior. Let n the length of
both sequences to be aligned. We will study four cases depending on n (n = 4K,
n = 8K, n = 16K and n = 32K) and for each case we use as interconnection net-
work first Gigabit Ethernet and then Myrinet. For each of the previous cases we
utilize consecutively 8, 16, 32, 64 and 128 cores. Here we should mention that this
application has another parameter that affects performance, and specifically this

56

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.4: Smith-Waterman results for sequences with 4K length

argument is the tile factor. As explained in subsection 4.2.3, tile factor determines
the number of tiles that each process has to compute and essentially it regulates the
granularity of the application. Moreover this factor also specifies how many tiles
are computed completely in parallel. For example, when 128 cores are dedicated to
the simple parallel program, all cores compute tiles fully parallel after 127 “steps”.
So if the tile factor is large enough and the tiles that are available to each process
are less that 127, then there is not any moment where all cores operate in parallel.
Therefore we execute the experiments for various values of tile factor and the best
results at each case are displayed. We refer the reader to [21], where finding the
most appropriate tile size is discussed in detail. For each experiment we display in
a figure the performance of the simple parallel program and the behavior of two
alternative programs that overlap computation with communication.

In Figure 5.4 we can see the case where n = 4K. Let us concentrate first on the
case of Ethernet. We can see that the naive parallel implementation scales poorly
up to 32 processors and thereafter the total execution time increases abruptly.
The programs that implement overlapping behave similarly referring to the scal-
ability but they have improved performance as it can be shown in Figure 5.4(a).
Analogous is the scalability of the applications when we use Myrinet as intercon-
nection network. This poor performance can be justified if we have a look at the
computation time of the standard program. We conclude that when more than
32 cores are used, the communication time (vertical distance of the two lines that
are related with the standard program) is extremely augmented, hence the total
time is too large and also we would not expect to gain much from overlapping as
communication time is itself so significant.

Next we examine the case where each sequence has length 8K (Figure 5.5).
When Ethernet is utilized, we observe that the pure parallel implementation has
satisfactory scalability up to 64 cores, then communication factor becomes heavy

57

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.5: Smith-Waterman results for sequences with 8K length

and the total time increases. On the other hand, the applications that overlap com-
munication with computation improve the overall performance. To be more pre-
cise, the overlapping version that is based on non-blocking communication achieves
its best execution time when uses 32 threads. Thereafter, overlapping with non-
blocking communication becomes inefficient especially due to the interconnection
network, if we recall the comments of subsection 3.2.3. The alternative overlap-
ping implementation which handles separate threads scales even further (64 cores)
and improves the performance. This is easily explained if we do not forget the
fact that half cores execute computation and half communicate, which means that
communication and computation behavior should be identical to the naive parallel
program using 32 cores. So, the overlapping version does not suffer from exceed-
ing communication as it is happening when 64 cores execute communication. It
is worth saying however, that the first overlapping implementation accomplishes
the same level of improvement with the alternative version by consuming half
resources. When Myrinet is used, all applications exhibit better communication
performance, and this gives eventually the opportunity for acceptable scalability.
Although the simple parallel application does not scale further than 32 cores, there
is such a ratio between computation time and communication time that overlapping
manages to improve remarkably the overall performance and the implementations
that use overlapping continue to scale (the first implementation up to 64 cores
and the latter up to 128 cores). Again we emphasize that the first implementation
with overlapping scheduling optimizes the simple parallel program by using half
resources in comparison with the alternative implementation.

In the third experiment (Figure 5.6), again we can mark insufficient scalability
of the simple parallel application. The programs that exploit overlapping schedul-
ing optimize the total execution time and particularly the version that handles
helper threading displays the best performance when Ethernet is used and all 128

58

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.6: Smith-Waterman results for sequences with 16K length

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.7: Smith-Waterman results for sequences with 32K length

cores participate in execution. Though, in the case of Myrinet, interesting con-
clusions can be drawn. Up to the state where 64 cores are used, computation is
the dominating factor and in the next state (128 cores) the ratio of computation
time to communication time is 1:1. So, the implementation with the non-blocking
message passing improves slightly the ultimate performance of the pure parallel
program while the other implementation does not. This is expected, because in
the latter program only 64 threads execute computations, therefore computation
time itself is comparable with the total execution time of the naive program at the
final state (128 cores).

Finally, in Figure 5.7 we investigate the last case where n = 32K. As the
length of sequences is large enough and computation is the major portion of total
execution time, the experimental results are akin to the previous case. Here,

59

Percentage performance improvement
Length of Ethernet Myrinet
sequences non-block.

commun.
helper
threads

non-block.
commun.

helper
threads

4 K 2% 7% 13% 14%
8 K 5% 11% 32% 30%
16 K 11% 18% 9% -13%
32 K 13% 2% 7% -33%

Table 5.2: Percentage performance improvement of Smith-Waterman parallel
implementation when overlapping is applied. A negative amount indicates how
much “slower” is the overlapping version.

the most effective program is the parallel version that overlaps computation with
communication by using non-blocking communication.

In table 5.2 we summarize the results of each experiment.

5.3 Advection 3D
Here we exhibit the experimental results of the 3D advection equation and we

will try to interpret their behavior. Our study case consists of three 3D spaces
(64×64×64, 128×128×128 and 256×256×256) and we desire to solve the equation
until discrete time T = 500. For each case we use as interconnection network first
Gigabit Ethernet, then Myrinet and we utilize consecutively 8, 16, 32, 64 and 128
cores. Similarly to the previous application, this one has also a parameter that
affects performance, the tile factor. Additionally, as explained in subsection 4.3.3,
the 3D space is divided into chunks and assigned to processes that are placed
in a 3D grid. Thus, for a granted number of processes there are many ways to
organize them in 3D grid and this organization affects substantially communication
and computation time. So, it is preferred for a process to exchange data with
processes that run on physically adjacent cores, and moreover, the topology of the
3D process-grid determines the morphology of the chunks. The latter fact, not so
obviously, affects the computation time of a chunk because cache issues come into
play. Therefore we execute the experiments for various values of tile factor, for
all possible 3D grids of processes and the best results at each case are displayed.
For each experiment we display in a figure the performance of the simple parallel
program and the behavior of two alternative programs that overlap computation
with communication.

In Figure 5.8 we see the experimental results for a 3D space 64×64×64. When
we select Ethernet to be the interconnection network among the SMP nodes, the
scalability is insufficient for all three applications. This is expected if we have a
look at the computation time of the simple parallel program. The communication

60

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.8: Results of advection equation for a 3D space 64× 64× 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.9: Results of advection equation for a 3D space 128× 128× 128

time of the naive program is huge in comparison with the computation time even
when just few cores participate in execution. So, the maximum of these times,
which is the communication component, is approximately the total execution time
in the applications that overlap computation with communication and there are
not favorable conditions for improvement. In the case of Myrinet, scalability is
slightly better, however the communication remains the dominating factor at an
excessive rate. Hence, the overall performance is not improved when overlapping
is applied. However, we should note that the overlapping version with helper
threading exhibits satisfactory scalability up to 64 cores, while the naive imple-
mentation has the same performance when 128 cores are used, and consequently
double resources are used.

The results are similar for the 3D space 128× 128× 128 when Ethernet is used

61

 0

 2

 4

 6

 8

 10

 12

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 2

 4

 6

 8

 10

 12

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.10: Results of advection equation for a 3D space 256× 256× 256

(Figure 5.9(a)). The communication factor is severely larger than computation
time and overlapping computation with communication is meaningless. On the
other hand, as Myrinet supports communication in a much more efficient way, the
dominating factor now is the computation time. In the last state (128 cores), the
ratio of computation time to communication time is 1:1 and thus we can assume
that in the next stage overlapping would be beneficial for the overall performance.
This assumption is also strengthened by the experimental result of Figure 5.9(b),
where we see that the naive parallel implementation and the applications that over-
lap computation with communication have approximately the same performance
at the final stage (128 cores).

In Figure 5.10 we observe the final experiments for a 3D space 256×256×256.
Again, the applications scale poor (up to 32 cores) in both Ethernet and Myrinet.
The explanation now is that granted the 3D space is large enough, every process
has to compute a bulky chunk which, in turn, makes the computation component
heavy. In addition to this, such a chunk now does not fit in the cache of a core
and we do not expect to benefit much from cache reutilization. After all, we
deduce that when the 3D space is large enough, the computation time is the
major portion of total execution time and there are not favorable preconditions to
apply overlapping.

5.4 Heat equation 3D
In this section we present the experimental results of the 3D heat equation.

Our study case consists of three 3D spaces (64 × 64 × 64, 128 × 128 × 128 and
256 × 256 × 256) and we want to solve the equation until discrete time T =
100. For each case we use as interconnection network first Gigabit Ethernet, then
Myrinet and we utilize progressively 8, 16, 32, 64 and 128 cores. Similarly with the

62

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.11: Results of heat equation for a 3D space 64× 64× 64

advection equation, again the 3D space is divided into chunks and then assigned
to processes that are placed in a 3D grid. There are many ways to organize a
given number of processes in a 3D grid and this organization affects eventually
communication and computation time. Therefore we execute the experiments for
all possible 3D grids of processes and the best results at each case are illustrated.

In Figure 5.11 we can see the results for a 3D space 64 × 64 × 64. Either we
run the applications over Ethernet or over Myrinet, their scalability is inadequate.
If we notice the ratio of computation time to communication time, we draw the
conclusion that communication is such greater than computation that overlapping
would not be profitable for the application. This extravagant communication is
justified if we recall the communication pattern analyzed in subsection 4.4.3 and
realize the considerable amount of data which has to be transferred between the
processes. Additionally, the 3D space is relatively small, thus computations can
be completed quickly and the parallelism of this application is fine-grained.

The next experimental result (3D space 128 × 128 × 128) is exhibited in Fig-
ure 5.12. So, when the programs are executed over Ethernet, they do not scale
further that 32 cores due to enormous communication overhead. On the other
hand, when we exploit the Myrinet infrastructure, the analogy between computa-
tion time and communication time is propitious for applying the optimization of
overlapping. Indeed, in Figure 5.12(b) we see that the overlapping version with
helper threading scales up to 128 cores and improves the performance of the simple
parallel program by 10%. The alternative implementation that takes advantage of
the non-blocking communication functions has finally the same behavior with the
naive parallel implementation.

The final experimental result which involves heat equation in a 3D space
256 × 256 × 256 is displayed in Figure 5.13. In the first case (Ethernet as inter-
connection network), the naive parallel application scales up to 128 cores, however

63

 0

 0.05

 0.1

 0.15

 0.2

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.05

 0.1

 0.15

 0.2

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.12: Results of heat equation for a 3D space 128× 128× 128

 0

 0.5

 1

 1.5

 2

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

 0

 0.5

 1

 1.5

 2

 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cores

STD
STD-COMP

OVRLP-NON-BLOCK
OVRLP-THREADS

(a)Ethernet (b)Myrinet

Figure 5.13: Results of heat equation for a 3D space 256× 256× 256

64

Percentage performance improvement
Size of Ethernet Myrinet

3D space non-block.
commun.

helper
threads

non-block.
commun.

helper
threads

643 0% -2% -18% -29%
1283 0% -4% -3% 10%
2563 -3% 11% -7% 16%

Table 5.3: Percentage performance improvement of 3D heat equation parallel
implementation when overlapping is applied. A negative amount indicates how
much “slower” is the overlapping version.

the implementation that uses helper threading for communication and overlaps
computation with computation improves the best performance by 11%. The al-
ternative implementation of the overlapping scheduling does not indicate better
performance, instead it actually behaves like the naive parallel program. If we
exploit Myrinet as interconnection network, the standard parallel program scales
only up to 32 cores and so does the implementation that uses non-blocking func-
tions to overlap computation with communication. However, the alternative im-
plementation of overlapping with helper threading continues to improve its per-
formance up to 128 cores and finally its best performance is 16% greater than the
best performance exhibited by the standard parallel implementation. The ratio of
computation to communication is almost unit in the state where 64 cores execute
operations, so one would expect improvement by overlapping computation with
communication and that is the case.

In table 5.3 we summarize the results recorded during these last experiments.

5.5 Overall experimental results
Until now we have evaluated the experimental results by examining the execu-

tion time. In this section we investigate the results from the scope of the speedup
the parallel implementations have over the serial programs. For each one of the
aforementioned applications we present two figures, one regarding Ethernet and
one for Myrinet. The best speedup of the parallel implementations is given in the
form of bars and above each bar we indicate the number of cores utilized to achieve
this result.

In Figure 5.14, we illustrate the speedup of the Floyd-Warshall parallel imple-
mentations. In the case of Ethernet, we observe that the speed up of the baseline
parallel implementation is poor and it increases as the size of graph becomes larger.
This is expected mainly due to two reasons. Basically, when the size of the graph
is larger, then the computational load of every process is greater as well and the
parallelism tends to become coarse-grain. Moreover, as the graph becomes large

65

(a)Ethernet

(b)Myrinet

Figure 5.14: Speedup of Floyd-Warshall parallel implementations

66

enough it does not fit to the cache of a core and thus the serial program suffers
from cache misses, while the aggregate cache size in the parallel implementations
is sufficient (e.g. when 64 cores participate in execution the available “aggregate”
cache is 64 times greater). The baseline parallel program scales no more that
64 cores and the overlapping program demonstrates notable improvement. We
emphasize the case of the graph with 4096 nodes where the overlapping version
achieves a speedup 67% greater than the naive implementation, however double
resources should be dedicated. In the case of Myrinet, again we observe that as the
size of the graph increases the speedup is even more satisfactory. In contrast to
the previous case, the high performance interconnection provides the opportunity
for better scalability and hence higher speedup. Again, in the first two case stud-
ies the overlapping version improves drastically the best performance. In the last
experiment, the overlapping implementation has not adequate number of cores for
the computation needed (just half cores execute computations) and naturally it
does not overcome the performance of the baseline parallel implementation.

In Figure 5.15 we illustrate the speedup accomplished by the parallel implemen-
tations for the Smith-Waterman algorithm. Similarly to the previous application,
longer inputs provide the opportunity for better scalability and acceptable speedup
even when Ethernet is used as interconnection network. Also, in the case of com-
modity interconnect (Ethernet), the overlapping version with helper threading
improves considerably the speedup of the naive parallel program, but the alterna-
tive version with non-blocking functions is not suitable as the network infrastruc-
ture limits the overlapping of computation with communication. The landscape
changes when Myrinet is utilized since the overlapping version with non-blocking
functions scales better than the rest parallel implementations. Particularly for long
sequences-inputs, the speedup approaches the ideal value. Furthermore, we note
that the sequences of 8K length are of great practical importance as this is a com-
mon length of proteins and in this case, overlapping implementations accelerate
the execution significantly.

In Figure 5.16 we show the experimental results regarding the 3D advection
equation. First of all, we figure out that in the case of Ethernet the speedup is
extremely low and the interconnection network does not support successfully the
intensive communication of the application. Therefore, all parallel applications
do not scale up efficiently. When Myrinet is utilized, the applications show up
acceptable speedup only for the second case study (3D space 128× 128× 128) and
this is explained thoroughly in previous section. In this application and for these
inputs there are not favorable preconditions to apply overlapping and it is verified
by the experimental results.

Finally, in Figure 5.17 we see the results regarding the parallel implementations
of the 3D heat equation. The reader should keep in mind that this application has
inherently complex communication pattern and the parallelism is inevitably fine-
grained. As a result, the speedup is not high either we utilize Ethernet or Myrinet
as interconnection network. However, the overlapping implementation with helper

67

(a)Ethernet

(b)Myrinet

Figure 5.15: Speedup of Smith-Waterman parallel implementations

68

(a)Ethernet

(b)Myrinet

Figure 5.16: Speedup of 3D advection equation parallel implementations

69

(a)Ethernet

(b)Myrinet

Figure 5.17: Speedup of 3D heat equation parallel implementations

70

threads boosts up the performance of the baseline program in several cases using
the same resources.

71

Chapter 6

Conclusions

In this diploma thesis we examined the behavior of four parallel applications
that represent corresponding families of programs: Floyd-Warshall uses collective
communication, Smith-Waterman is a typical algorithm of dynamic programming,
3D advection equation requires the communication between processes only towards
a specific direction and the 3D heat equation has a “halo” communication pattern,
i.e. every process exchanges data with all of its neighbors.

These applications have problematic scalability due to excessive communica-
tion overhead either we utilize commodity interconnects (Ethernet) or a high per-
formance interconnection network (Myrinet). Therefore we modified these parallel
applications in order to overlap computation with communication and optimize the
overall performance. We implemented this optimization technique in two different
ways. Initially we used non-blocking communication, which is a method suit-
able for clusters popular in previous decades since each node had a uniprocessor.
The alternative implementation utilizes separate threads for the communication
and computation tasks and this technique is supported by a hybrid programming
model which in turn is popular for the modern clusters consisting of SMP nodes.

The overall goal is to investigate the viability of this optimizing technique not
only for clusters with high performance interconnects, but also for clusters with
commodity networks as they are the majority in high performance computing.
Generally, the experimental results have shown that the performance of the naive
parallel applications is notably improved when overlapping is applied. However,
which one of the overlapping implementations is more suitable for an application
depends on its attributes and essentially on the interconnection network of the
cluster.

In clusters with commodity interconnects, helper threading seems to be much
more advantageous than the overlapping implementation with non-blocking func-
tions. The latter functions do not behave “ideally” on networks like Ethernet, i.e.
they waste computational resources and actually the overlapping is limited. On
the other hand, a high performance interconnect, e.g. Myrinet is propitious for the
latter overlapping implementation and these programs exhibit the best speedup.

72

It is worth saying that helper threading demands in general more computational
resources because half of them are dedicated to computations and the rest to
communications. However, this method shows up better scalability because the
contention for network resources is reduced (half of the available cores execute
communication operations and require network resources).

Despite the fact that the algorithmic changes needed to overlap computation
and communication are common for the two aforementioned techniques, imple-
mentation issues come into play and affect the programmability of the method
with helper threads. While the “traditional” method with non-blocking functions
is quite straightforward and does not demand special care from the programmer’s
side, helper threading needs thorough implementation in order to accomplish high
level performance. Primarily, the developer has to determine which parameters
of the hybrid program will bring the optimal result, e.g. which data should be
shared among threads, which place is the most suitable for synchronization among
threads etc.

Since overlapping looks to be profitable in several cases, a tool that automat-
ically applies this optimization in parallel applications would be very useful to
developers. The preconditions that are favorable for applying this method are
known, i.e. the computation/communication ratio should be approximately unit,
and also, in some cases the algorithmic modifications can be conducted mechani-
cally in order to allow overlapping. So a performance model of the naive parallel
application should be sufficient for a tool to detect when it is meaningful to opti-
mize the application with this technique. The development of such a tool would
be an interesting future work.

Finally, as the clusters with SMP nodes become even more widespread and
the hybrid programming blooms, we suggest as a future work the conversion of
our overlapping implementations so that they utilize variable number of threads
for the communication and the computation part. Then our implementations
would be a special case, where each part is assigned to a separate thread, and
furthermore this mixed model provides the opportunity for various parallelization
schemes according to the available execution platform.

73

Bibliography

[1] Amdahl, G., The validity of the single processor approach to achieving large-
scale computing capabilities. In Proceedings of AFIPS Spring Joint Computer
Conference, Atlantic City, N.J., AFIPS Press, April 1967

[2] Flynn, M., Some Computer Organizations and Their Effectiveness. IEEE
Transactions on Computers, 1972

[3] Norris, Mark, Gigabit Ethernet Technology and Applications. Artech House,
2002

[4] S. Majumder and S. Rixner, Comparing Ethernet and Myrinet for MPI Com-
munication. In Proceedings of 7th Workshop on languages, compilers, and
run-time support for scalable systems, Houston Texas, 2004

[5] Nanette J. Boden , Danny Cohen , Robert E. Felderman , Alan E. Kulawik ,
Charles L. Seitz , Jakov N. Seizovic , Wen-king Su, Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 1995

[6] B. Chapman, G. Jost, R. van der Pas, D.J. Kuck (foreword), Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT Press, 2007

[7] Pacheco, Peter S., Parallel Programming with MPI. Morgan Kaufmann, 1997

[8] Tsanakas P., Koziris N., Papakonstantinou G, Chain Grouping: A Method
for Partitioning Loops onto Mesh-Connected Processor Arrays. IEEE Trans-
actions on Parallel and Distributed Systems, 2004

[9] Drossitis I., Goumas G., Koziris N., Papakonstantinou G., Tsanakas P, Eval-
uation of Loop Grouping Methods based on Orthogonal Projection Spaces.
International Conference on Parallel Processing, Toronto, Canada, 2000

[10] Abhinav Bhatele, Pritish Jetley, Hormozd Gahvari, Lukasz Wesolowski,
William D. Gropp and Laxmikant V. Kale, Architectural constraints to at-
tain 1 Exaflop/s on three scientific application classes. Accepted for the IEEE
International Parallel and Distributed Processing Symposium (IPDPS’2011),
Anchorage, USA, 2011

74

[11] T.V. Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser, Active Mes-
sages: A Mechanism for Integrated Communication and Computation. In
Proceedings of 25 Years ISCA: Retrospectives and Reprints, 1998

[12] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, Optimizing bandwidth lim-
ited problems using one-sided communication and overlap. In The 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2006

[13] G. Goumas, A.Sotiropoulos and N. Koziris, Minimizing Completion Time for
Loop Tiling with Computation and Communication Overlapping. Proceedings
of the 2001 International Parallel and Distributed Processing Symposium,
IEEE Press, San Francisco, California, 2001

[14] Rolf Rabenseifner, Georg Hager, and Gabriele Jost, Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-Core SMP Nodes. In Proceedings
of the 2009 17th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP ’09), 2009

[15] Floyd, Robert W., Algorithm 97: Shortest Path. Communications of the ACM,
1962

[16] Warshall, Stephen, A theorem on Boolean matrices. Journal of the ACM, 1962

[17] Smith F. Temple, Waterman S. Michael, Identification of Common Molecular
Subsequences. Journal of Molecular Biology, 1981

[18] J. Ramanujam, P. Sadayappan, Tiling Multidimensional Iteration Spaces for
Multicomputers. Journal of Parallel and Distributed Computing, 1992

[19] R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations
of Mathematical Physics. IBM Journal of Research and Development, 1967

[20] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equa-
tions: An Introduction. Cambridge University Press, Cambridge, England,
1994

[21] Goumas G., Drosinos N., Koziris N., Communication-aware Supernode Shape.
IEEE Transactions on Parallel and Distributed Systems, 2008

[22] Goumas G., Anastopoulos N., Ioannou N., Koziris N., Overlapping Compu-
tation and Communication in SMT Clusters with Commodity Interconnects.
International Conference on Cluster Computing, 2009

75

