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Abstract

Deep foundations consist of a practical solutions when specific geotechnical constraints do
not allow the use of shallow foundations for the support of the superstructure. Pile-soil
interaction remains a complex problem strongly influenced by non-linear phenomena of
unilateral friction of the interface, as well as soil behavior. Standard design methods are
based on approximations and correlations with experimental results while the estimation
of soil’s mechanical properties consists from it’s own quite an uncertain task. On this
context, numerical analysis can be of important support for the design and analysis of
geotechnical structures.

A full-FEM 3D model with code aster is proposed for a soil-pile geotechnical structure.
Interface behavior is modeled with the use of joint elements where Coulomb’s friction law
control sliding. Non-linear behavior of soil is considered in an elasto-plastic framework
adopting different soil modeling hypothesis. The proposed model is tested under different
loading conditions axial/lateral, monotone or cyclic, and sensibility studies are examined
so as to identify the impact of important parameters. A comparison with experimental
results provides the validation of the proposed modeling strategy/strategies.

Keywords : pile-soil interaction, 3D Full-FEM model, joint elements, elastoplastic con-
stitutive model, cyclic loading

Resumé

Les fondations profondes sont des solutions pratiques quand l’utilisation des fondations
superficielles n’est pas autorisée à cause de limitations géotechniques du site d’intérêt.
L’interaction sol-pieu reste un problème complexe fortement influencé par le comporte-
ment non-linéaire du frottement de l’interface, ainsi que du sol autour et à la pointe du
pieu. Les méthodes de dimensionnement sont actuellement basées sur des approximations
et corrélations avec des résultats expérimentaux, quand l’estimation des caractéristiques
mécaniques est aussi une source d’incertitude très importante. Dans ce cadre, les approches
numériques fournissent un outil très important quand à l’analyse et dimensionnement des
ouvrages géotechniques.

Un modèle 3D Full-FEM avec code aster est proposé pour une structure géotechnique
pieu-sol. Le comportement de l’interface est modélisé avec des éléments joints où la loi de
frottement de Coulomb gère le glissement de l’interface. Un comportement non-linéaire
pour le sol, développé dans un contexte élasto-plastique, admet différentes hypothèses
pour le comportement du sol. Le modèle en question est testé sous différents types de
chargement : axiale/latéral, monotone ou cyclique. Des études de sensibilité ont été réalisés
afin d’identifier l’impact des paramètres du modèle au comportement global du système.
Une comparaison avec de résultats expérimentaux fournit la validation de la stratégie de
modélisation proposée.

Mots clès : Interaction pieu-sol, modèle 3D full-FEM, éléments joints, comportement
elastoplastique, chargement cyclique
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1 1 INTRODUCTION

1 Introduction

1.1 Background and Motivation

Deep foundations consist of a technical solution that can be applied in numerous cases
where geotechnical constraints do not allow the use of typical shallow foundations. This is
the case for example for the construction of new nuclear installations constructed by EDF.

In France, design standards consider only shallow foundations for nuclear structures.
Following the Fukushima accident and after the requirement of the french Nuclear Safety
Authority (Arrêté démonstration de sûreté dit “INB” - 7/2/2012), EDF has to justify and
increase the safety of the existing and future nuclear power plants. In the framework of
the post-Fukushima, new facilities called “Noyau Dur” have been designed or reinforced
in order to withstand extreme events beyond sizing. Limited emplacements are available
for new structures to be added on sites (as post-Fukushima requirements), and the criteria
for the design of shallow foundations cannot always be met for these emplacements due to
existing geotechnical constraints. Therefore, deep foundations as well as soil reinforcement
by rigid inclusions have to be examined.

Pile-soil interaction has received special attention over the last decades (Frank and
Mestat [2000], Abchir [2016]), nevertheless, the design of piles still remains quite a com-
plex task due to the nature of the problem (Terzaghi [1943], Fleming et al. [2008]). Soil
mechanics theory is not always taken into consideration in the proposed formulas and even
if it does, formulations are characterized from empirical relations and correlation with ex-
perimental data (Costa Aguiar [2008]). To all these approximations and uncertainties, one
has to add the fact that the definition of soil characteristics remains a very complex task.

More importantly, theoretical formulations are mainly focused on the estimation of
bearing capacity for the pile, while in most cases the critical “quantity of interest” of
the problem is pile displacement. The increase of computational power came with the
development of several numerical methods that try to properly model pile-soil interaction
and estimate the global response of the system.

These numerical tools can be of great importance in an industrial environment where
they can serve as a support for the design and analysis of geotechnical structures in earth-
quake engineering. Therefore, for applications considering nuclear installations, it is the
role of EDF R&D to provide validated methodologies based on numerical simulations.

1.2 Objectives

The main objectives of this internship is the numerical evaluation of different modeling
strategies of nonlinear pile-soil interaction. The analyses conducted focus on different types
of loading, and take into account important aspects of pile-soil behavior, such as :

• non-linear behavior of unilateral friction in pile-soil interface ;

• non-linear behavior of soil at the base of the pile ;

• non-linear behavior of soil around the pile ;

• impact of installation procedure
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1.3 Scope of the work

This work consists of six main chapters. In Chapter 2 the theoretical background for
soil mechanics and foundation engineering is provided. The first part is dedicated to
the existing constitutive models for soil mechanics. A general discussion is provided so
as to better understand the difficulties of the analysis while at the end of this part two
constitutive laws that were used in the framework of this internship are detailed. General
definitions on foundation and a more specific discussion on bearing capacity as it was
defined by Terzaghi [1943] are given. The last part of this chapter presents a literature
review of the existing methods for single pile design under axial and lateral loading.

Chapter 3 introduces the numerical model used in the framework of finite elements
analysis with code aster. Important aspects of the model are explained with the focus
on joint elements (R7.01.25 [2016]), that serve as the pile-soil interface and thus, have a
primordial role in our analysis. Modelling procedure as well as important assumptions
made for numerical applications are discussed in Chapter 4.

Chapters 5, 6, and 7 are dedicated to the presentation of numerical results. Three cases
are examined separately where axial monotone, lateral monotone and lateral cyclic loading
are applied respectively. The main goals of those chapters are to evaluate :

• capabilities and limitations of the proposed model ;

• the impact of theoretical assumptions (soil behavior, initial stresses) ;

• the importance of a correct estimation of mechanical properties for pile and soil ;

• the impact of numerical parameters of the model in global system response ;

Main conclusions derived from this work are presented in Chapter 8, where important
aspects of numerical modeling as well as capabilities and limitations of the proposed nu-
merical model are discussed. Proposals and potential modifications of the model are also
given as perspectives of this work in the final chapter.



3 2 THEORETICAL BACKGROUND

2 Theoretical Background

The first chapter of this work is divided in three main parts, and provides the necessary
theoretical background for the understanding of foundation engineering. Starting from a
general point of view, in the first part, a brief discussion of soil constitutive laws is provided
so as to facilitate the lecture for the following parts. Some basic definitions for foundations
as well as the presentation of critical aspects of the subject are introduced in the second
part. At this level, we also provide a demonstration of the methodology proposed by
Terzaghi [1943] which led to the formulation of today’s Eurocode 7 expressions. Finally,
in the last and final part we present a literature review of the existing methods for the
design of single piles under axial and lateral loading.

2.1 Constitutive Laws in Soil Mechanics

The first constitutive laws that were developed for geotechnical applications were based in
the hypothesis of an elastic-perfectly plastic behavior for the soil. An initial linear part,
observed for small levels of stress/strain was described by the Hooke’s relation, though
the second, and non-linear part was expressed through the perfectly plastic relation based
on Coulomb’s friction theory. The combination of this two constitutive relations were
formulated in a plasticity framework and is called Mohr-Coulomb model.

Even though, the Mohr-Coulomb criterion provides satisfactory results in some cases,
it’s capacity to properly predict soil behaviour for any loading conditions is quite limited.
This is because of the complexity of soil media and the numerous factors that influence their
behaviour. More precisely, as described in Huat [2009] these factors can be summarized
as: 1) the existence of water (effective stress, pore pressure) ; 2) irreversible deformation ;
3) speed loading, strain level, soil density/permeability, and anisotropy that influence soil
stiffness and strength, and ; 4) compaction, dilatancy, or consolidation state that can also
have an important impact in soil behavior. To all these phenomena one has to add the
impact of cyclic loading where a degradation of stress–strain and shear strength properties
can be observed during loading cycles. Thus, it is quite evident, that soil behavior cannot
be completely described using this constitutive law. For this reason, during these last
decades and with the exponential growth of the computational power, several models have
been developed for soil mechanics in the framework of the finite element analysis. Each of
these models tries to properly describe some of the pre-mentioned aspects that influence
soil behavior, however in some cases the proposed models are described through a great
number of parameters that make their calibration quite a complicated task for the user.

Two different constitutive laws available on code aster were used in this work : 1)
Mohr-Coulomb and 2) Iwan’s law. For a larger overview of other existing constitutive
models the lecturer can refer to Huat [2009] and Lade [2005].

2.1.1 Mohr Coulomb

As already mentioned Mohr-Coulomb is one of the simplest elastic-perfectly plastic models
that can describe soil behaviour. Elastic behavior is completely linear and the plastic part
is described from a yield surface expressed in the principal stresses domain by equation
2.1:

F13(σ1, σ3) = (σ1 − σ3) + (σ1 + σ3) sinφ− 2c cosφ = 0 (2.1)
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where, φ and c are the internal friction angle and the cohesion respectively. In the same
way, the flow rule associated with the yield surface F13 is defined by equation 2.2:

G13(σ1, σ3) = (σ1 − σ3) + (σ1 + σ3) sinψ − 2c cosψ (2.2)

where ψ is the dilatancy angle. For the special case where φ = ψ the flow rule is associated
and for any other case non-associated. A graphical representation of the yield surface of
the model is given on Figure 1.

Figure 1: Mohr-Coulomb yield surface in the 3D principal stresses domain (2016).

It is important to state here that as seen from Figure 1 the yield surface of the model
is discontinuous and thus numerical difficulties can appear during numerical integration of
the constitutive law (non definition of the derivatives in the edges and tip discontinuity).
More information on how to overcome this problem in code aster can be found in R7.01.28
[2016].

2.1.2 Iwan’s Law

Iwan’s law is an elasto-plastic multimecanism constitutive model for the description of
deviatoric cyclic behavior of geomaterials, based on linear kinematic hardening. The vol-
umetric part is supposed completely elastic and thus the yield surface is expressed in
deviatoric stresses as :

fn = qn − Yn (2.3)

where Yn is a constant providing the yielding limit for the n mechanism and qn is the
deviatoric stress associated with the same mechanism.

Yielding limits Yn and kinematic hardening parameters are computed through the
degradation of the shear modulus G with the evolution of shear deformation γ. This
progressive degradation is obtained through the hyperbolic equation 2.4, and is used in
the definition of yielding limits Yn :

G =
Gmax

(1− γ
γref

)n
(2.4)

where Gmax is the initial shear modulus, γref is the shear deformation which generates
G = Gmax/2 and n is the exponential of the hyperbolic law. When in the calibration
of the law, the relation between the evolution G − γ can be obtained by calibrating the
parameters of the model so as to reproduce the existing G− γ curves that can be found in
the literature for existing types of soil. A complete description of the model can be found
in R7.01.38 [2017].
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2.2 Deep Foundations

The main goal of this section is to introduce the principal aspects for the design of deep
foundations. This section is divided in three main parts. In the first part some definitions
and the mechanical functionality of this type of foundations are provided so as to facilitate
the lecture of following sections. In the second part, the definition of bearing capacity as it
was introduced by Terzaghi [1943] is provided so as to pinpoint the important aspects that
have to be taken into consideration for the design of pile foundations. Finally, in the third
and last part of this chapter we provide a description of important factors that influence
the behavior of deep foundations as they were identified from several studies found in the
literature.

2.2.1 Definitions on Deep Foundation

Deep foundations are footings that have a length greater than 10 times their width or
diameter. Some classic examples of deep foundations are given in Figure 2.

(a) Piles (b) Strip Piles

(c) Wells

Figure 2: Different types of deep foundations.

In the framework of this internship we are especially interested in pile foundation. Their
use instead of shallow foundations is imposed either from the geotechnical constraints of a
specific site, or from the “tolerated” level of displacement imposed for the superstructure.
From a mechanical point of view, the main difference between shallow and deep foundations
is the capacity of the latter to mobilize lateral friction so as to support the load of the
superstructure. However, even for the specific case of piles we can distinguish two different
types of mechanical functionality which are related to the specific geotechnical constraints
of the site. More precisely, one can define :

• Friction or “Floating” piles : Piles that support the load of the superstructure
through the mobilization of the lateral friction of the shaft.
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• End-bearing piles : When a more rigid soil can be found in accessible depths a pile
can search to transfer the load of the superstructure to the more resistant soil layer.

2.2.2 Bearing Capacity

The definition of bearing capacity for a footing was firstly introduced by Terzaghi [1943]
in his pioneer work. His demonstration starts supposing a continuous shallow foundation
(Df ≤ B) loaded with a vertical force Q (Figure 3a). The force exerted in the footing is
transferred to the soil and one can define the critical load qd, and thus the bearing capacity,
as the maximum load per unit area, under which the supporting soil fails. Even though,
this definition “seems” quite clear, special attention needs to be taken for different types
of soil. More precisely, considering the settlement curve (settlement - load per unite area)
in Figure 3b two different cases can be distinguished : 1) for a dense or stiff soil it exists a
tangent line (C1) which clearly defines the critical load qd1; 2) for loose or fairly soft soils,
there is no clear definition of a critical load. In the second case the critical load qd2 (C2) is
defined as the load value for which the load-settlement relation is approximately linear.

(a) Section of shallow footing. (b) Settlement curve.

Figure 3: Bearing capacity of shallow foundations (Terzaghi et al. [1996]).

The theoretical framework for the definition of bearing capacity of a shallow foundation
is formulated through the theory of plastic equilibrium for the supporting soil. The method
admits a rupture surface of an “ideal material” for the supporting soil. This surface has the
form of the surface fede1f1 in Figure 4 and provides the necessary boundary conditions for
the analysis of the problem. More precisely, the bearing capacity of a shallow foundation
is given as the sum of three different terms : 1) adhesion and cohesion of a weightless
material without external load; 2) friction of a weightless media in addition of a surcharge
q on the ground surface, and; 3) friction of a material possessing weight and carrying no
surcharge. Given these assumptions, theoretical studies admitting the theorems of limit
analysis provide the solutions for each type of problem (presented in Figure 4).

1. Weightless soil with no surcharge :
As seen from Figure 4a, one can define three main zones when in soil failure. In
zone I, due to friction and adhesion between the soil and the base of the footing a
triangular wedge appears, which behaves elastically. The boundaries of the zone form
an angle of 45o+φ with the horizontal. Zone II is a zone of plastic flow, where radial
shear is developed. The boundaries of the domain are on the form of a logarithmic
spiral, the center of which is found in the outer edge of the base of the foundation.
Finally, zone III is a zone of plastic flow where a plane shear pattern, identical to the
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Figure 4: Plastic equilibrium zones in soil after failure (Terzaghi et al. [1996]).

one of the passive Rankine state, can be observed. In this zone, the boundaries of
the domain consist of straight lines that form an angle of 45o−φ with the horizontal.
The solution of this problem, according to Prandtl [1921], is given in the form of ;

qc = cNc (2.5)

where c is the cohesion and Nc is the bearing capacity factor expressed as :

Nc = cotφ

[
eπtanφtan2

(
45o +

φ

2

)
− 1

]
(2.6)

2. Weightless soil with surcharge :
For the case where a uniform surcharge q is supposed, Reissner (1924) has showed
that bearing capacity increases by a factor qNq and the expression for Nq is given
from equation 2.7 :

Nq = eπtanφtan2

(
45o +

φ

2

)
(2.7)

The combination of 2.7 and 2.6 postulates :

Nc = cotφ(Nq − 1) (2.8)

It is important to state here, that in general, shallow foundations are rarely in the
surface of the soil. On the contrary they are normally found in a depth, Df . Given
this fact, we can admit that there always be a surcharge of the superficial soil that
can be expressed as q = γDf and thus the additional term in the bearing capacity
for this problem takes the form of:

qq = γDfNq (2.9)

3. Soil with weight and friction :
When in a cohesionless soil with no surcharge, no general solution exists for the
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problem. The boundaries of the plastic equilibrium zones are shown in Figure 4b.
The once straight lines of zone I as well as the once radial lines of zone II are now
curved but the shear pattern of zone III is identical to the one described from the
passive Rankine state.

So as to treat this problem and be able to provide a solution, an approximation
is taken into consideration. More precisely, we now consider the case presented in
Figure 4c, where the once curved lines are replaced by straight lines forming an
angle ψ with the horizontal. The analysis now is focused on the research of a force
Pp exerted in the edges ad, bd in the moment of failure. This force, which is equal to
the passive earth pressure, is formed in an angle φ to the normal on the edge because
of the slip occurring along these edges. The equilibrium of the wedge, without weight
consideration, postulates that :

Q = 2Ppcos(ψ − φ) (2.10)

Supposing the average vertical pressure we define then :

qγ =
Q

B
=

2Pp
B
cos(ψ − φ) (2.11)

Consequently, the problem postulates that we have to determine the value of Pp. If
we define :

Nγ =
4Pp
γB2

cos(ψ − φ) (2.12)

The equation 2.11 takes now the form :

qγ =
1

2
γBNγ (2.13)

It is important to state here, that the unknown in equation 2.13 is the angle ψ.
When in the calculation of the term qγ then, for a given angle φ one must repeat the
computation until the minimization of Nγ.

Given the aforementioned analysis, the expression of bearing capacity for a shallow foun-
dation is obtained by the combination of equations 2.5, 2.9, and 2.13 :

qd = qc + qq + qγ ⇒

qd = cNc + γDfNq +
1

2
γBNγ

(2.14)

In an equivalent way, Terzaghi (1943) introduces the bearing capacity for a pile foundation
given as :

Qd = Qp +Qs ⇒
Qd = qpAp + CfsDf

(2.15)

Where, qp is the bearing capacity of the point, Ap is the section of the pile, C is the
circumference of the pile, Df is the depth, and fs is the average value of friction and
adhesion per unit area of the pile-soil interface.

The major difference between equations 2.14 and 2.15 is the existence of the friction
term in the definition of bearing capacity in piles. In addition, considering the estimation
of end-bearing capacity in piles, several others exist in the literature proposed by other
authors. Their main difference as can be seen in Figure 5 is the choice of the plastic zone
that is considered for the failure of the soil (Meyerhof [1951], Cheng [2004], and Vesic
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[1973]). According to the chosen plastic zone, a difference in the expression of Nq, Nc, and
Nγ is obtained.

Figure 5: Boundary conditions for plastic zone soil’s failure.

However, as explained by Terzaghi et al. [1996], the aforementioned theories are based in
important assumptions such as : 1) the “ideal” rupture surface adopted in Figure 4 and
5; 2) no consideration of the depth of the foundation Df , the soil weight γ, and the real
distribution of vertical and horizontal forces in the expression of bearing capacity, and; 3)
the hypothesis of a constant soil volume before failure. Nevertheless, given the uncertainties
of the problem related to the difficulty in the definition of mechanical characteristics of
soil, these approximations consist acceptable solutions for applied engineering.

2.2.3 Factors that influence pile behaviour

The main factors affecting the mechanical behavior of piles are the following :

2.2.3.1 Installation effects
Construction mode is of primordial importance in the design of pile foundations. Two
different types of piles can be distinguished : 1) displacement (driven, bored) and ; 2)
non-displacement (drilled) piles. The impact on each type of construction mode can be
distinguished in two main categories :

1. Impact on Soil State :
A change in the soil state can be observed according to the construction mode, related
to displacement, deformation and compaction of the soil media.

• Displacement Piles :
For driven piles in sandy soil, Shakhirev et al. [1996] have observed the creation
of two zones (Figure 6) in the soil media : 1) a zone of compaction and densifi-
cation (Zone 1) and ; 2) a zone where the soil is “pushed up” (Zone 2). Shakirev
relates the compaction zone to the combination of the compression of the pile
head, as well as the lateral friction which generates a vertical down-going force
in the sides. This compacted area, that grows bigger with the depth (in a radial
sense), has as a result the “push up” of the superior soil layers of the same
lateral distance. According to Shakhirev et al. [1996], the dimensions of zone 2
decrease in comparison to zone 1, with the evolution of the driving procedure
of the pile.
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Figure 6: Driven pile in sandy soil, vertical : a) deformation, b) displacement.

For the case of clay media, Shakhirev et al. [1996] have observed a different
behavior comparing to sand. More precisely, as can be observed in Figure 7,
the compaction zone (Zone 1) has a more cylindrical shape and the influence
depth at the head is more important than the radial dimension. This is related,
according to Shakirev, to the incapacity of clays to redistribute the stresses in
the media. This localization of stresses, can lead then to an earlier failure of
the soil in the case of clay media and one can conclude that bearing capacity of
displacement piles in sands is higher than the one in clays.

Figure 7: Deformation zones for the case of clay soil (Shakhirev et al. [1996]).

• Non-displacement piles :
For the case of drilled piles, it is quite evident that the phenomenon of soil
compaction is not present. On the contrary, Poulos and Davis [1980] have
observed that when the drilling procedure is adopted for the construction of
piles in sandy media, a relaxation of the soil in the head of the drill takes
place. For this reason, Tomlinson and Boorman [2001] proposes the adoption
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of the residual friction angle for the calculation of bearing capacity of piles.
When in a clay media, Poulos and Davis [1980] have proposed the adoption
of an adhesion coefficient between soil-pile which is lower than the undrained
cohesion of soil before installation. This is due to the local increase of hydraulic
pressure, yielded from the installation method, and which results on a local
relaxation of soil. For a more detailed presentation concerning the installation
effects of a pile one may refer to Abchir [2016].

2. Impact on Pile Capacity :
Pile capacity is influenced by soil state, as the lateral friction of the shaft (Qs in
equation 2.15) depends on the normal force exerted by the soil on the shaft.

For the case of a displacement pile, two different situation can be distinguished:
1) soil compaction causes an increase in the effective lateral stress exerted in the
interface and thus an increase in lateral friction can be observed or; 2) the installation
procedure causes a relaxation of lateral effective stress and thus a decrease in friction
capacity. This second case is known in the literature as friction fatigue or “h/r”
effect and was firstly observed by Vesic (1970) who showed that friction capacity at
a specific horizon varies according to the driving procedure. The main causes of this
effect can be summarized in Figure 8 and include : 1) free surface effect; 2) lateral
pile movement; 3) history of soil stress, and; 4) history of cyclic load. For more
information concerning friction fatigue one may refer to Costa Aguiar [2008].

Figure 8: Friction fatigue causes after Chow [1997] (adapted from Costa Aguiar [2008]).

The numerical modelling of the installation procedure still remains limited due to the
complexity of the phenomenon : 1) formulation in finite displacement, deformation and
rotation; 2) dynamic nature of driven piles, or 3) water flow during the pile installation.
Two different modelling methods that allow to take into consideration installation effects:

• Implicit modelling : Installations are taken into account through the consideration of
friction fatigue during installation and thus a modification of the stress state around
the pile (Said [2006]).

• Explicit modelling : Installation effects are taken into account explicitly through a
full finite element model (Sheng et al. [2005], Todo-Bom [2014]).

2.2.3.2 Construction Material
Construction material is also a very important parameter that influences pile capacity.
Piles can be constructed using wood, still, or concrete and considering the different types
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of material a difference in behavior can be observed. More precisely, the type of material
has an important impact in pile stiffness. For the case of a slender pile in a soil with a
softening behavior, Randolph (1983) has showed that soil failure can be provoked in soil
layers that are closer to the surface while the inferior soil layers are still intact (Figure 9).

Figure 9: Progressive failure of soil along the pile profile (Randolph [1983]).

This phenomenon is due to pile deformation that leads to important relative displace-
ment between pile and soil on the upper layers. On the contrary, for the case of a rigid
pile the movement of pile is homogeneous and thus failure comes simultaneously for the
total length of the pile.

Finally, construction material has an impact in the friction angle of the pile-soil inter-
face. For example, in the case of steel piles corrosion takes place with time and thus a
stronger bonding is created in the interface.

2.2.3.3 Time Effect
The last parameter that influences pile behavior is time after installation. Chow [1997]
has observed the evolution of bearing capacity in total terms, as well as in traction, for
driven piles in sand. The measured bearing capacity was compared to the one measured
in the first day after installation and as presented in Figure 10 both the total as well as
the capacity in traction seem to increase with time.

(a) Total bearing capacity Rc (b) Resistance in traction Rs

Figure 10: Evolution of bearing capacity of piles (Chow [1997]).
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Three main causes have been identified and are responsible according to Chow [1997]
for this increase :

• The corrosion of the interface that takes place during time increase the friction angle
of the interface.

• Increase of effective stress around the pile related to the decrease of water pressure.

• Soil densification and thus increase of the shear strength of the sand.

2.3 Design Methods for Single Piles

In this final section a literature review is provided for the existing design methods of
single piles. A distinction is made between axial and lateral capacity as well as between
theoretical/empirical and numerical solutions proposed in the literature.

2.3.1 Empirical/Theoretical solutions - Axial capacity

As already seen in equation 2.15, axial capacity of piles is described from a friction term
Qs and a term related to end-bearing capacity Qp. Several methods exist in the literature
and allow to compute those two terms. A categorization of those methods, as it was
proposed by Poulos [1989] can be found in Table 1. According to this table, three main
categories can be defined. Category 1 and 2 consist of empirical solutions that do not take
into consideration soil mechanics principles. The main idea behind these methods is the
definition of problem’s parameters through the correlation with existing data sets obtained
in-situ or in laboratory (API [2011], AFNOR [2012], Abchir [2016]). Category 3 consists
of more elaborated solutions that properly model soil behavior and that are developed in
the framework of numerical analysis with the finite or boundary element methods (FEM,
BEM).

Category Axial Pile Capacity Settlement

1

Correlations with CPT Approximate correlations with pile diameter

Correlations with SPT Column deflection multiplied by a factor

Total stress αmethod

2A Effective stress β method Elastic solutions

2B Effective stress method Elastic solutions modified for slip

3A
Plasticity solutions for

end-bearing capacity

Elastic finite element

solution

3B
Non-linear load transfer analysis

Non-linear boundary element analysis

Non-linear finite element analysis

3C Finite element analysis including simulations of pile installation

Table 1: Categorization of existing methods for definition of axial capacity of piles (after
Poulos [1989]).

As previously discussed (section 2.2.3.1), pile capacity is different according to the type
of installation as well as the type of soil that is found in site. More precisely, Fleming et al.
[2008] presented that bearing capacity for cohesive soils is principally described through
the estimation of the capacity in friction, when for non cohesive soils, end-bearing capacity
is a predominant percentage of total capacity.
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2.3.2 Empirical/Theoretical solutions - Lateral capacity

When in the choice of a pile foundation for the support of a surcharge, the design of the
foundation is mainly focused in the definition of vertical capacity. This is because the
exerted vertical load is in general, more important than the horizontal one. Moreover,
piles are usually constructed with an inclination to the horizontal, and thus we suppose
that horizontal loads are taken by the horizontal component generated from the inclination
of the pile. These two facts can make us believe that the estimation of lateral capacity of
a pile is “unnecessary”. However, the estimation of this lateral capacity can be of great
interest in several cases : 1) when piles are forced in a vertical sense (pile walls), or; 2)
when the construction of the more expensive “battered” piles can be avoided.

Pile design for lateral loading necessitates an a priori understanding of the failure
mechanisms that can take place. More precisely, as we can see in Figure 11, two different
mechanisms of failure can be observed. For short and rigid piles, a rotation of rigid body is
observed. Passive earth pressure takes place in the right side of the soil above the rotation
center as well as in the left side below the rotation center. For long piles, the mechanism
of collapse supposes the formation of a plastic hinge in a certain pile section, and as a
result, rotation takes place in the upper part of the pile according to the load. In this case
the estimation of lateral capacity is only based to the limiting pressure of the upper part,
because it is this part that controls pile failure.

Figure 11: Failure mechanisms for lateral loading (Fleming et al. [2008]).

Broms [1964a,b], studied the response of piles in lateral loading for the case of cohesive
and cohesionless soils, by distinguishing different case studies (short/long piles, free/fixed
head piles, and their combinations). Other approaches can be found in Reese et al. [2002],
and Fleming et al. [2008].

2.3.3 Numerical Solutions

The theoretical and empirical solutions mentioned in the previous section, provide an
estimation of the axial or lateral capacity of piles but in terms of bearing capacity. These
methods that are largely used in construction engineering, do not provide any information
on settlement of pile or deformation of the surrounding soil. This aspect is a considerable
drawback of these methods, as in some cases important displacements can be observed
for a pile foundation. For this reason more rigorous methods that properly estimate the
settlement for a given load (settlement curves) were developed.

2.3.3.1 Load transfer method
The principle idea behind the load transfer method is to represent the soil surrounding the
pile as a series of identical but mutually independent springs (Winkler model) (Figure 13a).
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Each spring has it’s own stiffness, k, that relates displacement with load per unit length,
and that is usually referred in the literature as the coefficient of subgrade reaction (Terzaghi
[1955]). Given the value of this coefficient (constant or linear evolution with depth) the
method allows the evaluation of internal forces and displacements for the pile.

(a) Problem Discretization (Costa Aguiar
[2008]).

(b) Pile friction/shear strength for steel piles in
clay (adapted from Dias and Bezuijen [2017]).

Figure 12: Load transfer method.

An amelioration of the Winkler method was adopted by Coyle and Reese [1966], which
leads in the so called load transfer method. The subgrade coefficients for the stiffness
definition were completely replaced by complete expressions of load transfer (t − z or
p− y) curves for each spring. According to the type of loading, lateral spring behavior is
expressed from : 1) a shear t, versus vertical head displacement z curve, for an axial load,
or; 2) normal force p, versus deflection y for a lateral load.

When in the application of the method, the load transfer curves can be obtained from
empirical relations or from full-scale load tests in piles. Different constitutive behavior
and non-linear models can be applied to express soil behavior in each level. A proposed
example (after Coyle and Reese [1966]), for piles in clays can be seen in Figure 13b and
for more examples one may refer to Abchir [2016].

2.3.3.2 Elastic continuum methods
The modelling procedure with the elastic continuum method admits a continuous media
for the soil domain. The method focuses in a small element of pile which is supposed to be
uniformly loaded. The solution of the problem is obtained after a compatibility condition
is imposed in the neighborhood of pile and soil. More precisely, supposing a given axial
load acting in a compressible pile, one can define pile displacement. Soil displacement
can be obtained through the Mindlin equations and a compatibility condition reads that,
when the pile soil behavior stays elastic, the two calculated displacements have to be equal.
Poulos and Davis [1980] have modified the initial method so as to take into account pile
in homogeneity and slippage of the interface.

2.3.3.3 Boundary element method
Boundary element method supposes a complete separation of the pile-soil media. Soil’s
behavior and characteristics are expressed in the model through the pile soil interface.
The solution of the problem is usually obtained supposing a substructure technique that
allows to separate the problem. More precisely, the initial structure is divided in small
substructures and each one of them is solved independently. Final solution is obtained
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through linear superposition of all solutions. Just like the elastic continuum method a
compatibility condition is necessary so as to determine the contact of the two “bodies”
(Poulos and Davis [1968]).

2.3.3.4 Finite element method
Finite element method is one of the most commonly used methods for the modelling of
pile-soil response. It’s popularity, with the scientific and construction community, lies
with the possibilities that offers to the user, to properly model the non linear behavior of
all the components of the problem, as well as the ability to model complex geometries.
Two main sources of non linearities can been distinguished for pile soil interaction : 1)
non-linear behavior of soil, and ; 2) non linear behavior of pile-soil interface. For the
case of soil behavior section 2.1 presented several elasto-plastic laws to model the non
linear phenomena in soil. When in the modelling of pile-soil interface, with FEM, the
most common strategies proposed in the literature are based on the use of specific types of
elements known as “joint elements”. Several versions of these elements have been proposed
in the literature. For reasons of completeness we simply cite here the existence of : 1) “zero-
thickness” elements (Cerfontaine et al. [2015]); 2) “thin-layer” elements (Sharma and Desai
[1992]), and; 3) “hybrid” elements (Villard [1996]).

Other types of modelling with FEM found in the literature propose a “simplified”
version of the pile represented with a macro-element (Grange et al. [2009], Lysmer et al.
[1981]).

2.4 Concluding remarks

The present chapter provides an overview of important aspects regarding pile foundations
and mechanical behavior of soils.

Constitutive laws are not capable to properly model all physical phenomena but ap-
proximations are proposed according to the case study. In this work, Mohr-Coulomb model
and Iwan’s law were chosen to model soil’s non-linear behavior.

The estimation of bearing capacity of footings is formulated in the framework of plastic
equilibrium for the soil, and is based on several hypothesis of simplification of the problem.
According to Terzaghi [1943], these are acceptable in regard to the great marge of error
in estimation of soil’s mechanical characteristics. Bearing capacity of pile is defined as the
sum of lateral friction of the shaft and end-bearing capacity at the base of the pile. It
arises from different literature studies that important factors influencing pile capacity are
the installation mode, construction material as well as the time after construction.

Single pile design methods can be distinguished in empirical/theoretical and numerical
ones. Empirical solutions consist of approximations of bearing capacity, based on correla-
tions with existing in-situ, or laboratory test results. Soil’s mechanical properties are not
taken into consideration in formulas and important aspects such as installation method
are implicitly taken into account with the use of corrective coefficients. Numerical solu-
tions focus on the estimation of load-settlement curves for the pile. Different methods
are proposed in the literature, while the most common remain load transfer method. The
introduction of the proposed numerical model, in the framework of finite elements analysis
is the subject of the following chapter.



17 3 NUMERICAL MODEL FOR PILE-SOIL INTERACTION

3 Numerical model for pile-soil interaction

The numerical method adopted in the framework of this internship is the finite element
method (FEM) with code aster. A full-FEM 3D model for a cylindrical pile is proposed,
where soil and pile are explicitly modelled. The geometry of the domain is provided via
the Salome-Meca software, where we can define the external boundaries of the semi-finite
domain, soil stratification, pile diameter and length, as well as the elements that are going
to serve as the interface between pile and soil.

In terms of finite elements the model consists of : 1) 3D 8-node hexahedric elements
representing the soil; 2) Euler-Bernouli beam elements representing the pile, and; 3) joint
elements for the modelling of the interface (Figure 13a). The particular choice of beam
elements for the representation of pile behavior is based on previous analysis realized at
EDF R&D, which showed that beam elements facilitate the calculation of internal forces
in the pile, comparing to 3D volumetric elements.

α×D

D : Diameter

Beam element

Joint element

Fixed borders

Refined domain

Rigid disk

(a) Schematic view of the numerical model. (b) Detail on kinematic relations.

Figure 13: Numerical model.

Continuity of the model is obtained by imposing equal displacement relations between
the nodes of the beam (yellow nodes PC i N in Figure 13b) and the external nodes at the
circumference of the pile situated in the same vertical z coordinate (red nodes TOR i N in
Figure 13b). At pile head beam elements arrive at a rigid disk allowing to better distribute
stresses at the head and thus better approximate the physical behavior. Green domain
defined in Figure 13a is a refined domain of dimension α×D, where D pile diameter. This
domain is used so as to refine the discretization of the medium only in a specific region
where it actually has an impact in results. An example of the obtained mesh for α = 2D
is given in Figure 14.
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(a) 3D view. (b) Detail on the refined area.

Figure 14: Discretization of the domain.

3.1 Joint elements

Joint elements are used in the model so as to represent the non-linearity of the lateral fric-
tion on the pile-soil interface. Joint elements implemented in code aster (JOINT MECA FROT)
are “thin-layer” elements where a small thickness can be defined (R7.01.25 [2016]).

3.1.1 Signorini conditions for unilateral contact

The contact conditions adopted for joint elements are defined from the Signorini conditions
of unilateral contact.

• σN ≤ Rt (Normal reaction on the interface)
The normal reaction σN to the interface can take values that are smaller than resis-
tance in traction Rt. If in contact σN < Rt. If not σN = 0.

• δN ≥ 0 (Impenetrability condition)
If the two bodies are in contact normal displacement δN < 0. If not δN = 0.

• σN × δN = 0 (Equivalent of the consistency condition in plasticity)
This expressions takes the place of the Kuhn-Tucker conditions.

A graphical representation of the condition applied to the reactions is given with Figure
15, where fT is the shear resistance.

σN

δN

Rt

(a) Normal component.

σT

δT

fT

(b) Tangential component.

Figure 15: Graphical representation of the Signorini conditions.

Numerical problems may occur when directly applying the Signorini conditions, due
to the non existence of the derivatives of the normal as well as the tangential component.
Therefore, special numerical procedure has to be applied so as to overcome this problem.



19 3 NUMERICAL MODEL FOR PILE-SOIL INTERACTION

3.1.1.1 Lagrange multipliers method
Lagrange multipliers methods, is based in the definition of certain multipliers λ, that admit
duality condition with the displacement (or reactions) of the problem. A reformulation of
the Signorini conditions in this framework, reads :

δN ≥ 0, λ ≤ Rt, δN × λ = 0 (3.1)

The resolution of the problem for each calculation instant is given by imposing the condition
of relative displacement equal to zero (δN = 0, λ 6= 0).

For the case of static loading, the method is quite efficient. However, for the dynamic
case possible problems may occur due to the non well definition of velocity δ̇. For example,
we considere the Newmark integration scheme described as :

δn+1 = δn + δ̇n∆t+

[(
1

2
− β

)
δ̈n + βδ̈n+1

]
∆t2

δ̇n+1 = δ̇n + [(1− γ)δ̈n + γδ̈n+1]∆t

(3.2)

Or equivalently, one can wright :

δ̈n+1 =
1

β∆t2
(δn+1 − δn)− 1

β∆t
δ̇n −

(
1− 2β

2β

)
δ̈n

δ̇n+1 =
γ

β∆t
(δn+1 − δn) +

(
1− γ

β

)
δ̇n −∆t

(
1− γ

2β

)
δ̈n+1

(3.3)

Supposing the specific parameters β = 1
4
, and γ = 1

2
, as well as δn+1 = δn (imposed

displacements), the second equation of the system 3.3 reads δ̇n+1 = −δ̇n. This means that
oscillations can be observed in the definition of velocity. A remedy for this problem can
be obtained with the correction of the velocity filed after convergence.

3.1.1.2 Penalty method
The penalty method is the one that is used in code aster and consists of an approximation
of the Signorini conditions (Figure 16). More precisely, an imposed stiffness allows us to
express stresses as :

σN = Kimp
N δN

σT = Kimp
T δT

(3.4)

This way, the derivatives can be normally computed and thus the implementation of the
model becomes easier.

σN

δN

(a) Normal component.

σT

δT

(b) Tangential component.

Figure 16: Graphical representation of the penalty method for the approximation of
Signorini conditions.
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3.1.2 Constitutive behavior of joint elements

The constitutive law, supposed for the joints is the Mohr-Coulomb criterion described in
chapter 2.1.1. According to this criterion, tangential and normal components of stress, are
related through the tangent of the friction angle (φ′) of the interface µ = tanφ′ :

‖τ‖ = µ× σN (3.5)

When in model calibration with joint elements, five parameters have to be defined : 1) KN ,
and KT the normal and tangential stiffness of the joints; 2) c, the adhesion of the joint; 3)
µ the friction coefficient of the joint, and; 4) K a hardening parameter. It is important to
state that traction resistance is given as Rt = c/µ.

Concerning the plasticity theory for the joints, only the tangential part admits plastic
deformations. Normal component is computed through elastic relations and thus we can
define for the tangential part :

δT = δelT + δplT

σT = KT δ
el
T = KT (δT − δplT )

σN = min(KNδN , Rt)

(3.6)

Given those parameters, the flow rule of the model is defined as :

f(σ, λ) = ‖σT‖+ µσN − c−Kλ ≤ 0

ḟ × λ̇ = 0; λ̇ ≥ 0

˙
δplT = λ̇

σT
‖σT‖

(3.7)

While f(σ, λ) < 0 elastic behavior is supposed for the problem and thus δplT = 0. When
f(σ, λ) = 0 the plastic flow is activated and thus model behavior is computed through
equations 3.7.

3.2 Concluding remarks

The present chapter introduces the numerical model used in the framework of this work. A
full-FEM 3D model is proposed for the modelling of pile soil interaction. Pile is represented
with beam elements that facilitate the computation of internal forces in the pile, while soil
is represented with volumetric elements. Modelling of friction in the pile-soil interface is
considered with the use of joint elements where the Mohr-Coulomb criterion of friction is
implemented. Particular aspects of the proposed model as well as the modelling strategy
and basic assumptions adopted in this work are the subject of the next chapter.
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4 Modelling strategy for pile-soil interaction

The main goal of this chapter is to sum up the principal ideas followed during the numerical
analysis. Different steps of numerical procedure are explained and main hypothesis are jus-
tified here so as to provide a global idea on the procedure before continuing with numerical
results. We simply cite here that those numerical results consist of in-situ experimental
campaigns where an axial, or lateral cyclic loading is applied.

4.1 Basic soil modeling assumptions

Different mechanisms of failure are due to different types of load applied in the structure,
and thus, constitutive behavior of the model is considered according to the type of the
applied load.

For axially loaded piles, the impact of non-linearities related to lateral friction, end-
bearing capacity as well as their combination has to be examined. Soil media above pile
base is supposed to be elastic and friction is modelled with joint elements, while soil below
pile base is either elastic or non-linear for the case where end-bearing capacity is examined
(Figure 17a).

For laterally loaded piles, non-linearities of lateral soil have to be examined. Soil below
pile base is supposed to be elastic or non-linear (either way no impact is observed between
these models) and soil above pile base is supposed non-linear (Figure 17b). Mohr-Coulomb
and Iwan’s law are tested so as to compare the results. Joint elements are used in this case
so as to allow the opening of soil-pile interface. Especially for the case of Iwan’s law, where
traction and compression resistance are equal, the use of joints elements is necessary so as
to allow pile-soil detachment and avoid non physical phenomena.

J
oi

n
ts

F

Elastic Elastic

Elastic

or

Non linear(Mohr-Coulomb)

(a) Axial load.

J
o
in

ts

F

Non linear

(Mohr-Coulomb)

(Iwan)

Non linear

(Mohr-Coulomb)

(Iwan)

Elastic

or

Non linear(Mohr-Coulomb)

(b) Lateral load.

Figure 17: Constitutive behavior of soil according to load.

4.2 Definition of mechanical parameters

For all types of constitutive behavior that we use in code aster, the minimum parameters
necessary to define the elastic behavior are listed bellow :

• Young’s modulus (E):
A first estimation of Young modulus is taken from correlations available on the
literature. When SPT results are provided, we can use the static cone resistance qc
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along with direct expressions for the estimation. Static cone resistance is related to
dynamic cone resistance through equation 4.1 :

qc = C × qd (4.1)

where the values of C are obtained from Table 2.

Material Above water table Below water table

Silt 1 1.2 to 3
Sandy clay 0.5 to 0.9 0.1 to 0.4

Sand 1 -
Sand and gravels 1 1 to 2.6

Table 2: Values of C proposed by Cassan [1988] (adapted from Alves Fernandes [2014])

Given equation 4.1, C values and qc we compute qd and we use the direct expressions
of Table 3 so as to estimate the elastic Young’s Modulus.

Material Analytic relation

Crushed graves E = 67.8× q0.55
d

Salty soils E = 53.7× ln qd + 9.1
Clayed soils E = 35.9× ln qd + 21.2

Plastic clayed soils E = 23.2× ln qd + 12.5

Table 3: Direct relations between the dynamic cone resistance and the Young’s Modulus
proposed by Chua [1988] (adapted from Alves Fernandes [2014])

When no SPT data are available literature references with indicative values, are
taken into consideration (Hunt [2005]).

• Poisson’s ration (NU) :
Fixed values of ν = 0.3 and ν = 0.2 are chosen for the soil, and pile respectively.

• Volumetric mass density (RHO):
Values are fixed according to the specific unit weight of soil (γ) and equation 4.2.

ρ =
γ

g
(4.2)

Unit weight values are given in the case studies.

For non-linear constitutive laws, other parameters that need to be defined.

4.2.1 Mohr - Coulomb

Three parameters of the model have to be defined : 1) friction angle φ; 2) dilatancy angle
ψ, and; 3) cohesion cmc. Friction angle and cohesion for the soil are directly defined from
soil characteristics provided in each case study. Dilatancy angle is taken equal to friction
angle so as to decrease the number of unknowns.
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4.2.2 Iwan’s law

Two parameters have to be defined : 1) shear deformation γref , and; 2) the exponential for
the hyperbolic law, n (see also equation 2.4). Given the Young Modulus, Poisson’s ratio
and the level of deformation to be examined, a shear test is reproduced in code aster (with
the command CALC ESSAI GEOMECA), so as to calibrate the aforementioned parameters
(γref , and n) and generate the G− γ curves proposed in the literature.

4.2.3 Joint elements

Joint elements constitutive behavior is described through five parameters. Three of them
are completely related to the numerical treatment of the Signorini conditions without any
physical meaning (KN , KT , K), while the rest of them (c, and µ) describe the physical
side of the model. An “ideal situation” would be to somehow fix the values of non physical
parameters in a way that joint behavior would be completely depended to physical ones.
This is to be examined in the sensitivity study and according to loading conditions.

Physical values of the model are calibrated through soil parameters. Concerning the
interface friction coefficient µ, it is standard practice to consider a percentage between 50%
and 70% of the soil’s internal friction angle. Adhesion supposed equal to soil cohesion.

4.3 Definition of initial stress field

The first step of modelling procedure is used to initialize the stress field at soil. For this
reason vertical stresses are calculated through the classic expression :

σz(z) = σv(z) = ρ× g × z (4.3)

where ρ, is the volumetric mass density of soil, g is gravity acceleration, and z is the depth
from the surface. In the same way, we can define the horizontal initial stresses as :

σ′h = K0 × σ′v (4.4)

where K0 is the earth pressure at rest. An important remark is that the definition of K0

is given in terms of effective stresses (σ′v, and σ′h) and thus the impact of water has to be
taken into account :

σ′v = σv − ρw × g × z ⇒
σ′v = σv − u

(4.5)

where ρw is the volumetric mass density of water. For all numerical studies conducted
during this internship, water pressure is only taken into account through equation 4.5 and
no increase in pore pressure or water flow are supposed.

Equation 4.4 implies that the used earth pressure is equal to the one at rest for the
soil. Despite the fact that this hypothesis do not consider the impact of pile installation
(see also chapter 2.2.3), this modelling strategy is adopted in this work. For the case of
sands, this earth pressure at rest can be expressed according to Jacky’s rule as :

K0 = 1− sinφ (4.6)

where φ is the internal friction angle for the soil. The impact of this choice is going to be
examined thereafter, so as to pinpoint the importance of a correct estimation for the earth
pressure.

After the initialization of initial stresses for the soil, a second computation takes place
so as reinitialize displacements to zero and verify the stress field. Finally, the external load
is applied.
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4.4 Sensitivity study

A mesh dependency analysis takes place before every computation so as to define the size
of discretization. When mesh dependency is studied the dimensions of the refined domain
(value of α in Figure 13a) is supposed sufficiently large so as not to influence results. For
a fixed mesh size, a sensitivity study concerning the size of the refined domain takes place.
In both cases the global response of the system is examined so as to conclude with the
choice of the size of refined domain and mesh.

In a next step, a parametric study concerning parameters of the joint elements (see
also chapter 4.2) is conducted so as to evaluate the impact of each parameter in global
response. Special attention is given in the influence of non physical parameters, whose
calibration consists a complex task.

4.5 Model calibration

At first, a re-calibration of Young Modulus of soil takes place, so as to reproduce the
elastic behavior of the experiment, and if this is deemed necessary. Unit weight γ, initial
earth pressure K0, and Poisson’s ratio ν are taken intact as they were previously defined
(sections 4.2, and 4.3). Two approaches are followed for the rest of the values.

• Numerical parameters of joint elements :
A first numerical study adopts mechanical properties of soil as they were estimated
from experimental procedures (section 4.2). Physical parameters of joints are taken as
µ = 0.5, to 0.7 tanφ, and c = csoil. A calibration of numerical parameters completes
the study.

• Parameters of joints and soil (cohesion, friction angle) :
Along with joint parameters, soil cohesion and friction angle are also changed so as
to obtain the approximation of experimental data.

When axial load is applied three cases are examined : 1) elastic behavior; 2) lateral
friction and elastic behavior for soil at base ; 3) perfect contact (no joints) and non-linear
soil behavior at the base.

4.6 Concluding remarks

The present chapter provides an overview of important aspects regarding modeling strategy
for pile-soil interaction.

It arises from the presented analysis that soil constitutive behavior is to be defined
according to the type of the applied load. Two main cases for an axial and lateral load
where distinguished and will be examined in the following.

When specific nonlinear material behavior is of interest, model parameters are the first
to define before numerical computations. When no information are provided, standardized
tests or literature references are used so as to estimate the necessary parameters. It is at
this point where the need of quantification methods finds it’s importance in the study. In
this work literature references as well as correlation with SPT results will be used.

For a specific set of parameters, a sensitivity study allows the definition of mesh size
and the borders of the refined domain. A parametric study follows so as to better under-
stand the impact of each parameter of joint elements. This step is necessary for the final
calibration of interface and soil parameters. In the following chapters different case studies
are examined so as to evaluate the proposed numerical model.
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5 Pile response to axial monotone loading

The reference case consists of an experimental campaign conducted by Briaud et al. [2000]
in piles undergoing axial static loading.

5.1 Case study description

The pile tested by Briaud et al. [2000] was a cylindrical concrete bored pile with a length
L = 11.7m and a diameter D = 0.915m. Young’s Modulus and Poisson ratio are supposed
to be Ep = 26GPa and νp = 0.2 respectively. Soil media consists of several deposits whose
geometry is presented in Figure 18. Water level is at a depth of 6.0m. The experimental
campaign was conducted by imposing an increasing load at the head of the pile. However,
in numerical study imposed displacements (δ = 15mm) were chosen so as to facilitate
convergence with the Mohr-Coulomb model (see section 6.1).
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Figure 18: Geometry and mechanical characteristics of site (Briaud et al. [2000]).

For the axial case, soil behavior is adopted from Figure 17a where soil below pile head
is modeled with the Mohr-Coulomb criterion.

5.2 Mechanical characteristics of soil

Not all the necessary mechanical characteristics of soil were provided in the experimental
study and thus assumptions have to be made with respect to chapter 4.2. Given the values
of shear strength Su measured in the site (Table 4), an estimation of the Young’s Modulus
for layers of very stiff clay can be obtained from equation 5.1 according to Hunt [2005].

Es = 1500× Su (5.1)

For the case of sand and shale, limit values for Es were obtained from the same source
(Hunt [2005]). Those values along with the given values of friction angle, unit weight,
earth pressure (adapted from equation 4.6) and cohesion are presented in Table 4. Values
with bold font were not provided and thus they were chosen from the literature.
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Su
[kPa]

Es
[MPa]

φ
[o]

γ
[kN/m3]

c
[Pa]

K0

Very Stiff Clay 110 165 20 19.6 13 ×103 0.65
Sand - 50 34 20 100 0.44

Very Stiff Clay 160 210 26.5 19.5 57 ×103 0.55
Shale - 4000 26 18.9 70 × 103 0.53

Table 4: Initial parameters of the numerical model.

5.3 Mesh dependency

The results of the mesh dependency analysis, are given in Figure 19. For those first studies
mechanical characteristics of soil are adopted from Table 4. Parameters of joint elements
are fixed as followed : KN = KT = 109Pa, K = 106Pa, µ = 0.6 × tanφ, and c = csoil.
Dilatancy angle for Mohr-Coulomb criterion is equal to friction angle.

According to Figure 19, a stabilization of the results is obtained for 41760 number of
elements in the refined zone.

Figure 19: Load-settlement curve for mesh dependency.

5.4 Size of the refined domain

Adopting the same assumptions described in section 5.3, dimensions of the refined domain
are now examined. Results are presented in Figure 20, where it can be seen that for
α = 1.5D (D : Diameter) we have the minimum size of the refined domain and thus
the minimum problem in terms of finite elements. Even if this value seems ideal for the
computation, a value of α = 2D was chosen. This choice was based on the computational
time of the numerical analysis. A total time of 9 minutes was needed for α = 2D, instead
of 33 minutes for α = 1.5D. This is due to the fact that non linearities still appear in
a distance greater than 1.5D at the base of the pile, and thus the larger elements at the
interface between the refined and not refined domains, impose an increase of iterations (=
increase of computational time) before attaining equilibrium.



27 5 PILE RESPONSE TO AXIAL MONOTONE LOADING

Figure 20: Dimensions of the refined domain.

5.5 Influence of numerical parameters KN , KT , and K

A sensitivity study on numerical parameters of the model allows better understanding of
the model behavior. Supposing fixed values for other parameters (Table 4) a variation of
KN = KT is examined, followed by a variation of K. Results are presented in Figure 21a
and 21b respectively.

(a) Load-settlement for KN , and KT variation. (b) Load-settlement for variation of K.

Figure 21: Sensitivity of numerical parameters of joint elements (KN , KT , and K).

As expected, an increase in KN and KT increases the stiffness of the model, and an
impact is observed in the first part of the curve. In the same way, an increase in K increases
the slope after yielding and thus the second part of the curve is influenced. A concluding
remark deriving from Figure 21, is that for values of KN = KT ≥ 1010 and K ≤ 105 allows
to obtain a stabilized global response.

5.6 Influence of physical parameters µ and c

Physical parameters of the interface, µ, and c influence the capacity in lateral friction.
This can be observed from numerical results Figures 22a, and 22b where an increase in µ,
or c causes an increase in the yielding limit of the pile soil-interface.
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(a) Impact of friction angle coefficient µ. (b) Impact of cohesion c.

Figure 22: Influence of physical parameters of joint elements (µ, and c).

5.7 Influence of initial stress field (K0)

As previously explained (section 4.3) initial stress field in soil is defined using the Jacky’s
rule (equation 4.6). Here, even though the case study supposes a bored pile, an extreme
value of K0 = 1 is chosen so as to evaluate the impact on system response. Results are
presented in Figure 23, where an an important difference can be observed in yielding force
which is the value taken into account when in pile design.

Figure 23: Load-settlement curve for a variation of K0.

5.8 Calibration of interface and soil parameters

Mechanical characteristics presented in Table 4 are adopted in this section. Values con-
cerning Young’s Modulus Es, friction angle φ, unit weight γ, and earth pressure coefficient
K0 are not modified. Calibration procedure explained in section 4.5 is adopted.

• Case 1 : Numerical parameters of joint elements
Model calibration is carried for numerical parameters of joint elements KN , KT ,
and K. As previously discussed (section 5.5) for increased values of KN = KT

global response is independent of those values. Subsequently, the minimum (better
condition number of the matrix) of all stabilization values is searched at first. A final
calibration of K provides the slope of the second part of the curve.
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• Case 2 : Parameters of joint elements and soil cohesion
Values of KN = KT are fixed so as to not influence global response. Friction angle
coefficient is fixed in it’s maximum value of µ = 0.7 × tanφ, and adhesion of joint
elements is taken as c = csoil. Friction angle and cohesion of soil are chosen next so
as to obtain the yielding limit of the curve and in the end the value of K is defined
so as to adjust the slope of the second part of the curve.

Table 5 assembles the final numerical values according to the aforementioned procedure.

KN = KT

[GPa]
K

[MPa]
c

[kPa]
µ φ

csoil
[kPa]

Very Stiff Clay

C
as

e
1

10

8

csoil 0.7× tanφ

20 13
Sand 2 34 0.1

Very Stiff Clay 15 26.5 57
Shale 15 26 70

Very Stiff Clay

C
as

e
2

10

2

csoil 0.7× tanφ

25 26
Sand 0.5 34 5

Very Stiff Clay 0.5 28 70
Shale 26 28 70

Table 5: Parameters of the numerical model.

Along with the aforementioned calibration cases, numerical analyses where linear be-
havior or non-linearities of each separate element were examined (lateral friction, or end-
bearing capacity). All numerical results are assembled in Figure 24.

Figure 24: Calibration of the model.

Main observations of the numerical analysis are listed below :

• Elastic behavior overestimates pile capacity and results do not correspond to reality;

• Lateral friction, or bearing capacity when considered uncoupled, and for the values
of final model calibration reproduce the behavior of the elastic model. This is related
to the fact that global response is rigid, and thus displacements that mobilize friction
or activate plastic deformation at the pile base cannot be developed ;
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• When both failure mechanisms are taken into account, the model is better capable of
approximating experimental results. Case 1, produces a good approximation of the
first part of experimental curve, while with the calibration of physical parameters
in Case 2 a better global approximation is provided up to 1 cm. Given the fact
that most of the time the critical parameter for pile design is the “tolerated” level of
displacements, we conclude that numerical results are satisfactory for the estimation
of pile-soil interaction under an axial load.

Before concluding with this numerical analysis a representation of the vertical stress field
as well as the plastic zone in soil are presented in Figures 25a, and 25b. Considering the
plastic zone a similar form with the one proposed from Skempton [1951] in Figure 5 can
be observed.

(a) Vertical stress σzz in soil. (b) Plastic zone in soil.

Figure 25: Stress and plastic zone in soil.

5.9 Concluding remarks

The present chapter provides an overview of important aspects regarding pile-soil interac-
tion under axial load.

An essential step of modelling procedure is the estimation of mechanical characteris-
tics of soil which is provided through correlation with experimental results. An important
uncertainty derives from this step which is crucial for the correct estimation pile-soil in-
teraction.

It arises from the presented study that the coupling of both non-linear phenomena
(lateral friction, end-bearing soil behavior) allows a satisfactory estimation of the global
response of the system, while the elastic model or each of the separate mechanisms over-
estimate pile-soil response.

Nevertheless, an important drawback of the model is the existence of numerical param-
eters for joint elements. Calibration is strongly influenced from these parameters which
are changed so as to obtain experimental curve. When in real cases of pile-soil interaction,
experimental curves have to be used so as to calibrate numerical parameters. However, this
calibration consists for the problem another source of uncertainty and thus the development
of a more “physical” model for joint elements is necessary.

A concluding remark refers to the way that we impose external load. Imposed displace-
ments were chosen in this analysis so as to facilitate convergence with the Mohr-Coulomb
criterion. A discussion concerning this choice is provided in the following chapter where
the response of single piles under lateral monotone loading is examined.
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6 Pile response to lateral monotone loading

This case consists of an intermediate step before continuing to the lateral cyclic loading.
It is presented here so as to complete the case of monotone loading and even though,
numerical results are not compared to experimental ones this step is necessary so as to
better understand model behavior for a lateral loading.

We adopt the same geometry and mechanical characteristics described in the previous
case and a lateral load of 30MN is applied at the head of the pile so as to investigate the
system response. Soil media around the pile are now modeled using the Mohr-Coulomb
criterion while soil at the base of the pile is supposed to be elastic (see Figure 17b). Joint
elements represent the pile-soil interface.

6.1 Soil behavior to lateral monotone loading

We are interested in generating the p−y curve for the soil (see also Chapter 2.3.3.1). Data
are measured on the first point between joints and soil and with respect to the depth (blue
cross in Figure 29). The value of p is computed as the product of the diameter D with the
equivalent Von Mises stress defined from equation 6.1.

σVM =

√
3

2
sijsij, where sij = σij −

1

3
tr(σ)δij (6.1)

where sij is the deviatoric stress tensor and δij is the identity matrix. Displacement y in
the direction of the force is also taken at the same points. Figure 26, assembles the p− y
curves for different depths from the surface.

Figure 26: Soil pressure curve.

According to this Figure 26, p− y curve correspond to the ones of an elastic-perfectly
plastic soil as described in the literature and Eurocodes (AFNOR [2012]). Main conclusions
referring to Figure 26 are :

• With an increase of depth an increase in soil capacity is observed (difference between
yellow and blue line).
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• Free surface soil (black line) seems to have a softening behavior, which is related
to the free border effect. As we advance in depth we come across to the expected
elasto-plastic behavior.

• Numerical analysis adopting the Mohr-Coulomb criterion with imposed force, may
lead to convergence problems due to the non existence of solution for the case of an
applied load that surpasses the limit load. As a result, given the fact that we search
to model until failure, numerical analysis with Mohr-Coulomb are to be conducted
on imposed displacements when this is possible.

When σyy stress distribution is examined (Figure 27), a compression area is observed at
the front of the pile above rotation center and at the back of the pile below rotation
center (blue color in Figure 27a). Traction (red zone) appears at the opposite sides of
compression. Higher values of traction are observed at the lateral side of the pile on an
angle perpendicular to the load, where pile-soil friction takes place.

(a) Stresses σyy (cut at pile center). (b) Stresses σyy (view of the top of the pile).

Figure 27: Stresses σyy in soil.

Considering plastic deformation on soil, the internal variable V 3 for the Mohr-Coulomb
criterion allows to identify the plastic region. For V 3 = 1 a plastic state is established,
while for V 3 = 0 soil behaves elastically. Figure 28 represents a z − y plane cut view in
the middle of the pile and the values of V 3 are plotted for soil media.

Figure 28: Internal variable of plastic deformation (plastic = 1, elastic = 0).

As we can see, soil creates a plastic zone in a form of a wedge at the front of the pile
in the direction of loading.
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6.2 Joint behavior to lateral monotone loading

Internal variables of joints are examined here, so as to verify sliding (internal variable V 2)
and opening (internal variable V 5) of the joints. When joints are open (or when in plastic
region for sliding) the internal variable takes the value 1, while for a closed joint (or when
in elastic region for sliding) a value of 0 is given. Values of internal variables are measured
in the front of the pile for opening (blue cross in Figure 29), and, at the lateral to the load
side for sliding (red cross in Figure 29).

F

Figure 29: Points where internal variables are measured (sliding=red, opening=blue).

Figure 30b represents the evolution of V 5 with time and for different points in pile
profile. In parallel to these internal variables the profile of displacement for the pile is
plotted in Figure 30a. Main remarks from Figure 30 are :

• In accordance to Figure 27a, pile is divided in two parts : 1) an upper part where
soil is compressed (joints are closed V 5 = 0), and; 2) a lower part where traction
takes place (joints are open V 5 = 1). The change point between the two states is
the rotation center of the pile.

• With the increase of external load a progressive shift of the rotation center towards
the surface takes place. According to Figure 30b, a load Fy ≥ 13.2 MN results in the
stabilization of the rotation center at a depth H ≈ 5.8m, while for a lower external
value Fy = 5.4MN rotation center was at H ≈ 7.9m.

(a) Deflection with depth. (b) Internal variable of opening V 5.

Figure 30: Numerical results with respect to pile profile.

Sliding is examined through the evolution of internal variable V 2 with depth and results
are given on Figure 31. Different levels of load are examined so as to better visualize the
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evolution of internal variables, and it can be observed that joint elements slide progressively
with the increase of the applied load. For a value Fy ≥ 6MN the pile has moved horizontally
sufficiently enough so as to mobilize friction to all of it’s nodes.

Figure 31: Evolution of internal variable of sliding V 2.

6.3 Concluding remarks

The present chapter provides an overview of important aspects regarding lateral monotone
loading of pile foundations. Analysis focuses on the study of internal variables of soil and
joint elements, as well as the stress field of soil.

Lateral soil behavior corresponds to the elastic-perfectly plastic behavior described
in Eurocodes, and used in the framework of load-transfer method. A possible source
of numerical problems was found for the Mohr-Coulomb criterion when external load is
considered in terms of imposed forces. Stresses in the direction of loading are consistent
with the load and verify the passive earth pressure profile for short piles proposed in
Eurocodes (see AFNOR [2012]). The creation of a plastic zone in the form of wedge is also
in correspondence with the theory of Broms [1964a] for short piles in cohesive soils.

The aforementioned were justified from the study of internal variables in joint elements.
Variables of sliding and opening of the joint were examined and results show a coherence
with the stress field in the soil and the profile of pile displacement. This study concludes
the analysis of lateral load in joint elements and in the next chapter cyclic behavior is to
be examined.
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7 Pile response to lateral cyclic loading

The reference case consist of an experimental campaign conducted by Jennings et al. [1984]
and studies the behavior of bored cylindrical piles under cyclic lateral loading.

7.1 Case study description

A cylindrical bored pile is supposed for this case study. The pile consists of an exterior
steel pipe, of a diameter D = 0.45m (wall thickness 10mm), initially installed in place
and then filled with reinforced concrete. It’s length is equal to L = 8.1m, and the given
mechanical characteristics for concrete and steel are Ec = 26GPa and Es = 200GPa,
respectively. Poisson ratio is supposed νc = νs = 0.2. The geometry of the problem is
given in Figure 32a, while in Figure 32b the results of an SPT test on the profile of the pile
are presented (east pile). Those experimental results allow the estimation of important
parameters for mechanical characteristics of soil through correlation with existing curves.
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(a) Geometry of the domain (b) SPT ‘N’ profile

Figure 32: Lateral cyclic loading of bored piles (Jennings et al. [1984])

Considering loading conditions, a lateral cyclic load is applied at the head of the pile
in the following sequence : 10kN, 20kN, 40kN (two cycles), 80kN (two cycles), 120kN
(two cycles), 160kN (two cycles), 200kN (two cycles), and the displacement of the pile is
measured at ground level. Water level is at 1.5m from ground surface.

7.2 Definition of mechanical properties

Friction angles for soil were defined from correlation with SPT curves where the angle is
obtained according to the SPT ‘N’ value (east pile in Figure 32b) and the effective vertical
stress (Hunt [2005]). For initial soil layers the static cone resistance qc is given (Table 6)
and thus the estimation of Young’s Modulus is computed according to equation 4.1 and
values obtained from Tables 2 and 3 (section 4.2). For layers where no qc data are provided
values of shear modulus for small strains are obtained from Hunt [2005]. Young’s Modulus
is then estimated through equation 7.1, where ν = 0.3 for the soil :

E = 2(1 + ν)×G (7.1)
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Indicative values of unit weight are taken from Hunt [2005] according to soil type. Numer-
ical data are presented in Table 6.

Zone
Depth

[m]
qc

[MPa]
E

[MPa]
γ

[kN/m3]
φ K0

1 0.5 - 90 18.9 28 0.53
2 1.0 4.5 90 18.9 28 0.53
3 1.5 2. 50 20 29 0.51
4 3.0 7.5 110 20 27 0.54
5 4.0 - 120 20 23 0.61
6 5.0 - 125 20.6 25 0.58
7 7.0 - 180 20.6 26 0.56
8 15.0 - 200 20.6 28 0.53

Table 6: Initial values for mechanical properties of soil.

No information are provided concerning the percentage of steel reinforcement in the pile
and thus a hypothesis is made, and an equivalent Young’s Modulus is obtained through
equation 7.2:

Epile =
Ec × Ac + Es × As

Ac + As
(7.2)

where Ac and As is concrete and steel area respectively. A value of Epile = 56MPa is fixed.
The provided experimental results are the load-deflection curve, as well as deflection

and moment profile of the pile for the following level of load : 40kN, 120kN, and 200kN.

7.3 Calibration of interface and soil parameters

Soil parameters are adopted from Table 6. Friction angle coefficient is defined as µ =
0.6 × tanφ. Joint adhesion is calibrated so as to allow opening of pile-soil interface in
the pile area situated behind the direction of loading, where numerical problems related
to soil traction may appear. For all the conducted simulations a value of c = 100Pa
was adopted. Numerical parameters of joints are calibrated so as to approximate the
experimental displacement profile. More precisely, an initial analysis supposes only the first
cycles of loading (until 120kN). An important remark deriving from numerical simulations
is that a high ratio between KN = KT , with Young’s modulus for soil, or between K and
KN = KT consist a source of possible numerical problems. Two constitutive behaviors were
examined for lateral soil, while soil below pile base is supposed elastic (see also Figure 17).

1. Iwan’s Law
An initial estimation of model parameters n and γref is obtained through correlation
with existing G − γ curves from the literature. The G − γ curve proposed by Seed
and Idriss [1971] was adopted in this work. A final calibration of those parameters
is obtained so as to better approximate experimental results.

2. Mohr-Coulomb’s criterion
Friction angle for soil is fixed according to Table 6, and is equal to the dilatancy
angle. Soil cohesion is calibrated at c = 50kPa for all soil layers. The choice of this
value is principally based in numerical problems when lower values were adopted
for soil. As previously discussed in section 6.1, when Mohr-Coulomb criterion is
adopted for modelling of soil behavior, along with imposed displacements a difficulty
in convergence was observed.
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Table 7 assembles the final numerical values according to the aforementioned procedure.

Constitutive
Model

KN = KT

[MPa]
K

[kPa]
c

[Pa]
µ

csoil
[kPa]

γref n

Mohr-Coulomb
10 10 100 0.6× tanφ

50 - -
Iwan - 4.5×10−4 0.76

Table 7: Parameters of the numerical model.

A comparison of numerical results adopting the two constitutive models is presented on
Figure 33.

Figure 33: Load-deflection curve.

Both models efficiently describe pile-soil behavior, while the Mohr-Coulomb criterion
presents a more rigid behavior than Iwan’s law. This is related to the elevated value of soil
cohesion that was chosen for the soil and the choice of which was more related to numerical
reasons than physical description of the problem. The deflection as well as the moment
profile for the pile are given in Figures 34 and 35 respectively.

Figure 34: Lateral deflection profile with respect to the applied load.
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Figure 35: Moment profile with respect to the applied load

Both numerical models provide a good approximation of experimental results. The
more rigid behavior of Mohr-Coulomb is also observed in the estimation of lateral deflection
and moment profile for the pile. Numerical results with Iwan’s law provide a very close
approximation of deflection and moment profile especially for more elevated values of
external load.

7.4 Concluding remarks

The present chapter provides an overview of important aspects regarding lateral cyclic
loading of pile foundation. Numerical results were compared to experimental ones, and
main conclusions are presented below.

Physical and numerical parameters of joint elements have been calibrated so as to allow
pile-soil detachment and avoid unwanted numerical problems. A low value of adhesion was
imposed so as to instantaneously open joints in traction. This consists of an important
drawback of joint elements, as the same value of adhesion is also used in the estimation of
friction capacity (φ and c in the Mohr-Coulomb criterion). A short term solution would be
to create zones of joint elements where behavior of the joint is controlled according to the
type of stress field exerted in joints, while a long term and more efficient solution would be
to change the constitutive law so as to uncouple both phenomena or even directly suppose
that traction capacity is equal to zero for the joint (Mohr-Coulomb criterion with tension
cut-off).

It arises from numerical simulations that pile-soil response is strongly related to nu-
merical values of KN = KT and K. This consists of a contradiction when compared to the
axial case, where the value of KN = KT was fixed so as not to influence numerical results,
and it increases the difficulties of parameters calibration for the case of a multidimensional
loading deriving for example from a dynamic analysis of the same pile-soil system.

Both numerical models tested here provide a good approximation of experimental re-
sults. From a computational point of view, Iwan’s law is by far more adapted for cyclic
loading. As an indicative example we simply cite here that numerical simulations with
Iwan’s law lasted about 13 hours, while for the Mohr-Coulomb criterion computational
time went up to 27 hours.
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8 Conclusion and Perspectives

Theoretical aspects as well as a numerical modelling strategy for pile-soil interaction were
discussed in the present work. A full-FEM 3D model with joint elements and nonlinear
soil behavior was presented and tested under axial and lateral monotone as well as lateral
cyclic loading. Concluding remarks were already provided throughout this work, and thus
only main conclusions are going to be discussed here.

Estimation of bearing capacity for pile-soil interaction remains a complex task related
to the strongly non-linear behavior of friction interface and lateral or end-bearing soil. The
uncertainties in the estimation of soil-pile response are usually high as it depends on the
evaluation of both mechanical characteristics of soil and pile-soil interface.

The proposed numerical model allows the estimation of global response for the examined
external loads. Yet, a strong dependence on numerical parameters of joints was observed.
In actual cases experimental curves from the site of interest have to be used so as to a priori
calibrate numerical parameters. This calibration consists from it’s own a supplementary
source of uncertainties and thus a more “physical” model for pile-soil interface is necessary
in order to better approximate pile-soil behavior.

Moreover, in the present version of joint elements, elastic behavior is adopted for the
normal component (opening). A more elaborated model where elasto-plasticity or fracture
mechanics are imposed in both directions can better represent real behavior of the interface
and is more adapted for studies where dynamic load is applied. It is in these cases that
the external load “activates” both tangential and normal components of joint plasticity.

Difficulties in convergence of numerical model were observed when imposed forces were
adopted for the application of external load and a Mohr-Coulomb criterion represented
constitutive behavior of lateral or end-bearing soil. Imposed displacements were applied
in certain numerical analysis of this work in order to facilitate convergence. Nevertheless,
in actual cases most of the time external loads are known in terms of forces and thus
displacements have to be estimated.

Following the analysis, and main conclusions deriving from this work, a series of recom-
mendations for future studies are provided with the following.

A multi-fibre representation of pile can provide a more accurate representation of pile
in terms of resistance and mechanical characteristics of the cross-section. For a lateral
load, the case of long piles can be examined where pile plasticity is taken into account and
thus pile-soil failure mechanism is similar to the one described in Figure 11b;

The proposed model was able to properly represent experimental results for lateral
cyclic loading. Yet, dynamic loading has to be examined so as to evaluate limitations and
validate the aforementioned discussion concerning numerical parameters of joints.

In everyday engineering applications, single piles are seldom to be found. On the
contrary, group of piles are used so as to assure stability of the superstructure. Theoretical
studies have yet to be conducted so as to investigate critical aspects of failure for a group
of piles. Numerical modelling will allow a better understanding of this challenging issue.
Group effect’s phenomena have to be examined and results have to be compared to actual
cases so as to validate the possible proposed numerical strategies.

A final goal would be the analysis of an actual case of soil-structure interaction. A
modelling strategy has to be developed for a model validation with actual case studies.
A further comparison with other numerical procedures proposed in the literature (section
2.3.3) can pinpoint the importance and utility of the proposed model.
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lors du fonçage des pieux. Bulletin-Laboratoires Des Ponts Et Chaussees, pages 95–116,
1996. URL http://www.geotech-fr.org/sites/default/files/revues/
blpc/BLPC206pp95-116Shakhirev.pdf.

FC Chow. Investigations into displacement pile behaviour for offshore foundations. Ph. D
Thesis, Univ. of London (Imperial College), 1997.

Sofia Costa Aguiar. Numerical modelling of soil-pile axial load transfer mechanisms in
granular soils. PhD thesis, ECOLE CENTRALE PARIS, 2008.

MF Randolph. Design consideration for offshore piles. In Proc. Conf. on Goet, Practice
in Offshore Engrg. Div., ASCE, pages 422–439, 1983.

Ken Fleming, Austin Weltman, Mark Randolph, and Keith Elson. Piling engineering.
Third edition, jul 2008. ISBN 9780203937648.

Jean-Louis Briaud, Marc Ballouz, and George Nasr. Static capacity prediction by dy-
namic methods for three bored piles. Journal of Geotechnical and Geoenvironmental
Engineering, 126(7):640–649, 2000.

DN Jennings, SJ Thurston, and FD Edmonds. Static and dynamic lateral loading of two
piles. In Proc 8th WCEE, pages 561–68, 1984.

Bengt B Broms. Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics
and Foundations Division, 90(2):27–64, 1964a.

http://www.code-aster.org
http://www.code-aster.org
https://www.code-aster.org/V2/doc/v14/fr/man_r/r7/r7.01.28.pdf
https://www.code-aster.org/V2/doc/v14/fr/man_r/r7/r7.01.28.pdf
http://www.geotech-fr.org/sites/default/files/revues/blpc/BLPC 206 pp 95-116 Shakhirev.pdf
http://www.geotech-fr.org/sites/default/files/revues/blpc/BLPC 206 pp 95-116 Shakhirev.pdf


41 REFERENCES

Roger Frank and Philippe Mestat. Aspects expérimentaux et numériques du frottement
latéral des pieux. Mécanique & industries, 1(6):651–666, 2000.
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Appendices

A Theoretical solutions for the estimation of bearing

capacity of axially loaded piles

A.1 Correlation with experimental data

The estimation of bearing capacity through correlation with experimental data is one of
the most popular methods due to their simplicity in application. Two different methods
can be distinguished and are briefly presented here. One can found the complete database
in AFNOR [2012].

A.1.1 Pressuremeter test

A.1.1.1 Lateral friction
Lateral friction per unit area is expressed according to Burlon et al. [2014] as :

qs = αinterface × fsoil(pl(z)) (A.1)

where αinterface is a coefficient depending in the construction mode and type of soil, pl is
the limit pressure measured in the soil, and fsol is a function depending in the type of soil.
This function is expressed as :

fsol(p
∗
l ) = (α× p∗l + b)× (1− ec×p∗l ) (A.2)

Coefficients αinterface, α, b, and c can be found in AFNOR [2012]. Given the value of
equation A.1 the friction resistance of a pile with a diameter D and a length L is defined
as:

Qs = πD

∫ L

0

qs(pl)dz (A.3)

A.1.1.2 End-bearing resistance
End-bearing resistance can be defined as :

Qp = κp × p∗le × Ap (A.4)

where Ap is the section of the pile. The limit pressure in the point, p∗le is defined as :

p∗le =
1

b+ 3a

∫ L+3a

L−b
p∗l (z)dz, where

{a = max (D/2; 0.5)

b = min (a;h)
(A.5)

The height h defines the part of the pile that is inside the more resistant soil layer. Co-
efficient κp is the coefficient that defines the end-bearing capacity, which depends on the
“effective embedding” of the pile defined as :

Def =
1

p∗le

∫ L

L−hD
p∗l (z)dz, where hD = 10D (A.6)

According to this value we obtain :

• κp = κpmax, if
Def

D
> 5

• κp = 1 + (κpmax − 1)× (Def/D/5), if
Def

D
< 5

Finally, the value of κpmax which depends to soil type and installation mode, is obtained
through tables AFNOR [2012].
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A.1.2 Penetration test (CPT)

The estimation of lateral friction and end-bearing capacity with the penetration test is
given through the same equations presented for the pressuremeter test. Two main differ-
ences can be distinguished between the two methods :

• The expressions are not formed in terms of limit pressure pl, but in terms of cone
resistance qc. This is related to the way that each method estimates soil capacity.

• For the case of end-bearing capacity, the final expressions of κc are now different
according to each type of soil. :

– κc = κcmax, if
Def

D
> 5

– if
Def

D
< 5 :

∗ kc = 0.3 + (kcmax − 0.3)(Def/D)/5, for clays

∗ kc = 0.2 + (kcmax − 0.2)(Def/D)/5, for intermediate soils

∗ kc = 0.1 + (kcmax − 0.1)(Def/D)/5, for sands and gravels

∗ kc = 0.15 + (kcmax − 0.15)(Def/D)/5, for marls or fragmented rocks

A.2 Total stress α method

Computational method for the calculation of axial capacity in clays. Installation method
is taken into account through the α coefficient.

A.2.1 Lateral Friction

The proposed expression by the API [2011] for the estimation of lateral friction is given
by :

qs = α× cu (A.7)

Where cu is the undrained shear strength of soil and α is a coefficient given by :

α = 0.5

(
cu
σ′v

)−0.5

, if

(
cu
σ′v

)
≤ 1

α = 0.5

(
cu
σ′v

)−0.25

, if

(
cu
σ′v

)
> 1

(A.8)

where σ′v is the vertical effective stress.

A.2.2 End-bearing Capacity

For the end-bearing capacity, the API [2011] proposes :

qp = 9× cu (A.9)

A.3 Effective stress β method

A.3.1 Lateral Friction

The estimation of lateral capacity takes into consideration the Mohr-Coulomb criterion
(equation 2.1) and the estimation of lateral friction is given as :

qs = σ′h × tan(δ′) = K × tan(δ′)× σ′v = β × σ′v (A.10)
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where K is the earth pressure coefficient for the soil, and δ′ is the friction angle of the
pile-soil interface. The method proposes a different β coefficient according to the type of
soil and construction mode.

For driven piles in sand with an open sections the values of β are given in Table 8, while
for the case of a close section an increase of 25% for the given parameters is recommended
and according to API [2011].

Relative
Density

Soil
Descritpion

Shaft Friction
factor β

Limiting shaft
friction values

[kPa]

End bearing
factor Nq

Limiting end
bearing values

[kPa]
Very Loose Sand

Loose Sand

Loose Sand-Silt
Not

Applicable
Not

Applicable
Not

Applicable
Not

Applicable
Medium Dense Silt

Dense Silt
Medium Dense Sand-Silt 0.29 67 12 3000
Medium Dense Sand

0.37
81 20 5000

Dense Sand-Silt
Dense Sand 0.46 96 40 10000

Very Dense Sand-Silt
Very Dense Sand 0.56 115 50 12000

Table 8: Design parameters for a cohesionless soil (API [2011]).

For the case of clays, the estimation of β is given through empirical expressions that
propose a relation between the β parameter and the internal friction angle of the soil φ, as
well as the over-consolidation ratio OCR. More precisely, according to Meyerhoff (1976)
we can estimate β as :

β = (1.5± 0.5)×K × δ′ ×
√
OCR (A.11)

Different variations of the aforementioned expression have been proposed in the litera-
ture (Abchir [2016]), which try to better adapt the estimation of β to specific conditions
(construction mode, type of pile).

A correct estimation of β can provide a satisfactory estimation of friction capacity.
However, the β parameter tries to simultaneously take into consideration different phe-
nomena : 1) installation procedure; 2) establishment of equilibrium after installation, and;
3) impact of axial load in the modification of the stress field after installation. For this
reason, special attention needs to be taken when in the calculation of β.

A.3.2 End-bearing Capacity

The estimation of end-bearing resistance is given according to API [2011] by :

qp = Nq × σ′v (A.12)

where, Nq is the end bearing factor found in Table 8.
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B Broms method for laterally loaded single piles

Broms studied the response of piles in lateral loading for the case of cohesive and cohesion-
less soils. His analysis is briefly discussed in this section with a focus on the basic ideas of
the method, and for a more detailed presentation one may refer to Broms [1964a], Broms
[1964b], and Reese et al. [2002].

B.1 Cohesive soil

When in failure of a cohesive soil, the distribution of lateral earth pressure that allows
the calculation of lateral capacity is presented in the right of Figure 36. Two important
hypothesis are made : 1) the soil situated at 1.5D from the surface is not taken into account
on calculation, and; 2) the distribution of earth pressure of the soil is approximated from
a constant value equal to 9cuD, where cu is the undrained shear strength, and D the
diameter of the pile. The first hypothesis is based on the fact that the superficial soil has
lower resistance and thus we can imagine a wedge of soil that is moved towards the surface
as shown in Figure 36. The second hypothesis, derives from studies on soil movement in
both sides of the pile.

Figure 36: Earth pressure distribution in cohesive soil (Broms [1964a]).

Once the distribution of lateral earth pressure is defined, Broms distinguished separate
case studies of failure (Figure 11) and studied the behavior of each case. For example, for
a short free-headed pile in cohesive soil, the developing moment of the pile as well as the
distribution of earth pressure are represented in Figure 37.
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Figure 37: Short pile in cohesive soil : deflection (left), earth pressure (middle),
moment(right) (Broms [1964a]).

The expression of maximum moment Mmax, is given in the section where shear force equals
to zero. One can easily define this height from equilibrium:

f =
P

9cuD
(B.1)

Given this value the maximum moment reads :

Mmax = P (e+ 1.5D + f)− 9cubf
2

2
⇒

Mmax = P (e+ 1.5D + 0.5f)
(B.2)

The above equation allows the estimation of maximum load P , for which a given moment
Mmax can be supported by the pile-soil system.

When a long pile is considered, we can directly obtain the maximum load P from
the equations described above. More precisely, we know that maximum moment Mmax

develops at a distance 1.5D + f from the surface. Given the failure mode for long piles
(Figure 11b) a plastic hinge develops at the same length and thus the maximum load P is
defined directly from equation B.2.

B.2 Cohesionless soil

When in a cohesionless soil, the distribution of earth pressure for a short free-headed pile,
is given in Figure 38.
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Figure 38: Distribution of earth pressure for short free-headed pile in cohesionless soil
(Fleming et al. [2008]).

Broms approximated this distribution of soil, by supposing a triangular one which for
the ultimate earth pressure takes a value equal to three times the Rankine passive pressure.
In that way, for a given depth z, Broms defines the exerted force as :

Pz = 3× b× γ × z ×Kp (B.3)

where γ is the unit weight of soil, Kp is coefficient of the passive Rankine earth pressure
given by :

Kp = tan2(45o +
φ

2
) (B.4)

After this assumptions he considered the case of Figure 39, supposing an exerted load Pt
and a moment Mt in the head.

Figure 39: Distribution of deflection, shear, and moment for a short headed pile in
cohesionless soil (Fleming et al. [2008]).
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The estimation of maximum moment for the pile is given, if an equilibrium is taken
at the rotation center. The first step of the analysis is to compute the distance of this
rotation center f . An equilibrium of shear stress reads :

Pt − Pf
f

2
= Pt − (3bγfKp)

f

2
= 0⇒

f = 0.816

(
Pt

γbKp

)0.5 (B.5)

The maximum moment can be obtained through the moment equilibrium in the rotation
center :

Mmax = Pt(e+ f) +Mt − (3bγfKp)
f

2

f

3
(B.6)

Broms repeated equivalent analysis for long piles and medium size piles. Cases with
fixed head are also considered and the results are assembled in tables so as to facilitate
calculations. Due to page constraints, those tables are not presented here but can be found
in Broms [1964a], Broms [1964b], or Reese et al. [2002].
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