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Abstract 

The main objective of this PhD is to provide a methodological approach for benchmarking 

driving efficiency in terms of safety on a trip and driver basis using data science 

techniques. The methodological approach is based on the definition of a safety efficiency 

index based on the Data Envelopment Analysis (DEA) theory and is related to 

macroscopic behavioral driving characteristics such as the number of sudden 

accelerations / decelerations, mobile phone usage time, and time exceeding the speed 

limit. In this dissertation, machine learning models are also developed to identify the 

different driving profiles that exist based on the temporal evolution of driving efficiency. 

The proposed methodological approach is applied on a real-world driving dataset 

collected from smartphones, which is analyzed using statistical methods to determine the 

amount of driving data to be used in the analysis. The results show that the optimized 

convex hull - DEA algorithm gives the exact solution in significantly less time than the 

classic DEA approaches. Furthermore, the methodology allows for the identification of 

the least efficient trips in a database as well as the efficient level of driving metrics of a 

trip to make it more efficient in terms of safety. Further clustering of the drivers based on 

the temporal evolution of driving performance leads to the identification of three main 

driver groups, the typical driver, the unstable driver and the less dangerous driver. 

Results indicate that having a prior knowledge on user's accident history solely affects 

the composition of the second cluster of the most volatile drivers, which incorporates 

drivers that are less efficient and unstable in terms of safety. It is shown that mobile phone 

use is not a critical factor in determining the safety efficiency of a driver since slight 

differences are found with regards to this characteristic between drivers of different 

efficiency classes. Furthermore, it is shown that a different driving data sampling is 

required for each a) road type, b) driving characteristic and c) driving aggressiveness 

level to collect enough data to obtain a clear picture of a driver’s behaviour and perform 

DE analysis. Results could be exploited to provide personalized feedback to drivers on 

their total driving efficiency and its evolution in order to improve and reduce accident risk.  
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Σύνοψη 

Ο κύριος στόχος της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη μιας 

ολοκληρωμένης μεθοδολογικής προσέγγισης για τη συγκριτική αξιολόγηση της οδηγικής 

επίδοσης, όσον αφορά την οδική ασφάλεια, τόσο σε επίπεδο διαδρομής, όσο και οδηγού, 

με τη χρήση τεχνικών της επιστήμης δεδομένων. Η μεθοδολογική προσέγγιση στηρίζεται 

στον καθορισμό ενός δείκτη επίδοσης που βασίζεται στη θεωρία της Περιβάλλουσας 

Ανάλυσης Δεδομένων (Data Envelopment Analysis - DEA) και σχετίζεται με 

μακροσκοπικά συμπεριφοριστικά χαρακτηριστικά οδήγησης, όπως ο αριθμός των 

απότομων επιταχύνσεων/ επιβραδύνσεων, ο χρόνος χρήσης του κινητού τηλεφώνου και 

ο χρόνος υπέρβασης του ορίου ταχύτητας. Ακόμα, αναπτύσσονται μοντέλα μηχανικής 

μάθησης για τον προσδιορισμό διακριτών προφίλ οδήγησης που βασίζονται στη χρονική 

εξέλιξη της οδηγικής επίδοσης. Η προτεινόμενη μεθοδολογική προσέγγιση εφαρμόζεται 

σε πραγματικά δεδομένα οδήγησης ευρείας κλίμακας που συλλέγονται από έξυπνες 

συσκευές κινητών τηλεφώνων (smartphones), τα οποία αναλύονται μέσω στατιστικών 

μεθόδων για τον προσδιορισμό της απαιτούμενης ποσότητας δεδομένων οδήγησης που 

θα χρησιμοποιηθούν στην ανάλυση. Τα αποτελέσματα δείχνουν ότι ο βελτιστοποιημένος 

αλγόριθμος convex hull – DEA δίνει εξίσου ακριβή και ταχύτερα αποτελέσματα σε σχέση 

με τις κλασικές προσεγγίσεις της DEA. Ακόμα, η μεθοδολογία επιτρέπει τον 

προσδιορισμό των λιγότερο αποδοτικών ταξιδιών σε μια βάση δεδομένων καθώς και το 

αποδοτικό επίπεδο οδηγικών στοιχείων ενός ταξιδιού για να καταστεί αποδοτικότερη από 

την άποψη της ασφάλειας. Η περαιτέρω ομάδοποίηση των οδηγών με βάση της απόδοσή 

τους σε βάθος χρόνου  οδηγεί στον εντοπισμό τριών ομάδων οδηγών, αυτή του μέσου 

οδηγού, του ασταθή οδηγού και του λιγότερο επικίνδυνου οδηγού. Τα αποτελέσματα 

δείχνουν ότι η εκ των προτέρων γνώση σχετικά με το ιστορικό ατυχημάτων του χρήστη 

φαίνεται να επηρεάζουν μόνο τη σύσταση της δεύτερης συστάδας των πιο ασταθών 

οδηγών, η οποία ενσωματώνει τους οδηγούς που είναι λιγότερο αποδοτικοί και ασταθής 

ως προς την ασφάλεια. Φαίνεται επίσης ότι η χρήση κινητών τηλεφώνων δεν αποτελεί 

κρίσιμο παράγοντα για τον καθορισμό της επίδοσης της ασφάλειας ενός οδηγού, καθώς 

διαπιστώθηκαν μικρές διαφορές σε σχέση με αυτό το χαρακτηριστική οδήγησης μεταξύ 

οδηγών διαφορετικών κατηγοριών επίδοσης. Επιπλέον, δείχνεται ότι απαιτείται μια 

διαφορετική δειγματοληψίας δεδομένων οδήγησης για κάθε α) οδικό τύπο, β) 

χαρακτηριστικό οδήγησης και γ) οδηγική επιθετικότητα για να συγκεντρωθούν αρκετά 

δεδομένα και να αποκτηθεί μια σαφής εικόνα της οδηγικής συμπεριφοράς και να 

εκτελεστεί ανάλυση με χρήση DEA. Τα αποτελέσματα θα μπορούσαν να αξιοποιηθούν 

για την παροχή εξατομικευμένης ανατροφοδότησης στους οδηγούς σχετικά με τη 

συνολική τους οδηγική επίδοση και την εξέλιξή της, προκειμένου να βελτιωθεί και να 

μειωθεί ο κίνδυνος ατυχήματος.  
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Summary 

The main objective of this PhD is to provide a methodological approach for driving 

safety efficiency benchmarking on a trip and driver basis using data science 

techniques. It also investigates the way to achieve this by defining a safety efficiency 

index based on travel and driving behaviour metrics collected from smartphone devices. 

The driving characteristics of each emerging efficiency group is discussed and the main 

driving patterns are identified. One of the most significant DEA’s weaknesses, i.e. the 

significant time required for processing large-scale data, is overcome by employing 

computational geometry techniques. Furthermore, the present doctoral research 

proposes a methodological framework for identifying the least efficient trips in a database 

and for estimating the efficient level of metrics that each non-efficient trip should reach to 

become efficient. Finally, this dissertation’s objective is to study the temporal evolution of 

driving efficiency and identify the main driving patterns and profiles of the driver groups 

formed.  

Literature review revealed that it is significant to study the potential of benchmarking 

driving safety efficiency using microscopic driving data collected from smartphone 

devices. This doctoral research attempts to address this certain issue by proposing a 

methodological framework based on data science techniques for evaluating driving 

characteristics. An improved DEA model is applied to deal with the analysis of large-scale 

smartphone data collected while driving. The model developed is incorporating several 

driving behaviour metrics allowing for the multi-criteria analysis of driving efficiency.  

The general methodological framework applied is illustrated in Figure 1.1. There are 

two data sources where data are derived from a) a database of drivers who participated 

in a naturalistic driving experiment in which data where recorded using the smartphone 

device of each participant and b) the questionnaire administered to a proportion of the 

participants. After data are collected, the factors representing driving efficiency in terms 

of safety are specified based on literature review conducted. After it is examined that a) 

adequate data is collected from each participant taken into consideration in this research 

and b) the driving metrics and distance recorded are proportionally increased and their 

ratio does not significantly change while monitored kilometres are accumulated, these 

factors are used as inputs and outputs for the DEA models developed. Consequently, 

trip and driver efficiency analysis is implemented per road type following the detailed 

description given below. The results obtained from the trip efficiency analysis are 

exploited mainly to reduce processing time for the driver efficiency analysis where the 

evolution of driving efficiency through time is investigated and secondarily to assess the 

practicability of providing a methodology for less efficient trip identification. The results of 

driver and driving efficiency evolution investigations are combined to perform cluster 

analysis on a driver level. For each driving cluster that results from this procedure, the 

typical driving characteristics of the drivers that belong to it are examined and presented.  
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Figure 1.1: Graphical representation of the general methodological framework of the present doctoral 

dissertation. 

 

To achieve the objectives set above by the present PhD dissertation, the structure of this 

research consists of six separate methodological steps presented below (Figure 1.1): 

Exhaustive literature review takes place as a first step, covering an overview of road 

safety and accidents and the fields driving behaviour and risk, driving characteristics, 

driving efficiency parameters (distraction, aggressiveness, etc.), naturalistic driving 

experiments, data envelopment analysis methodology, potential improvements on large-

scale data analysis and its applications on transport engineering and driving efficiency. 

The conclusions drawn from the review and the knowledge gap arising assists in setting 

the research objectives and research hypotheses and generally in setting up the problem.  

Based on the literature review conducted, it is considered necessary to study driving 

behaviour on a greater extent and shed more light on the evaluation of driving safety 

behaviour and the factors influencing it. As we move forward, UBI aims to assign 
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insurance premiums to the respective accident risk of each individual driver based on 

travel and driving behavioural characteristics. Therefore, drivers should reduce their 

annual mileage and improve their driving behaviour. This is because per-mile risk is an 

unspecified factor that fluctuates over time and therefore although mileage might be 

reducing, total crash risk can still be increasing. In support of the above, even if per-mile 

crash risk remains constant and annual mileage is known, total individual crash risk 

cannot be estimated since it depends on behavioural characteristics that are not currently 

recorded and considered in UBI. To achieve this, information about driving traits e.g. 

number of harsh braking and acceleration events, time of driving over the speed limits, 

road type etc. should be included in driver’s evaluation. In other words, risk factor is risk’s 

increase rate that indicates how total individual risk is increased as mileage increases. 

As a result, it is essential to develop a model that incorporates both distance travelled 

and the rest of the behavioural characteristics in order to evaluate driving risk. By 

developing DEA models that take into account these two categories of characteristics, 

this study aims to examine the applicability of such models.  

According to past research, naturalistic driving experiments are considered more 

appropriate for driving behaviour evaluation because behaviour is recorded under normal 

driving conditions and without any influence from external parameters. Regarding the 

main drawback of naturalistic driving experiments, driving under normal conditions will be 

recorded and no bias will appear if drivers are monitored for an appropriate amount of 

time. On the other hand, it is very important to determine the amount of data required to 

obtain a complete picture for each driver, where the rate of those metrics described above 

per km travelled converges to a stable value.  

It can be said from the above that the most significant human factors recorded by 

smartphone devices and were found to affect driving risk are mobile phone distraction, 

speed limit exceedance and the number of harsh braking and acceleration events 

occurred while driving. It can also be inferred that there are numerous researches that 

focus on driving behaviour evaluation and mainly on determining the correlation between 

driving behaviour metrics (speed limit exceedance, number of harsh acceleration/ braking 

events, mobile phone distraction etc.) either together or separately and accident 

probability. To the best of the author’s knowledge, this doctoral research is the first effort 

made to estimate and assign a relative safety efficiency index to each driver of a sample 

by exploiting distance travelled and several driving behaviour metrics that result from 

microscopic driving behaviour data recorded from smartphone devices.  

It can be concluded from all the above that it is significant to benchmark driving safety 

efficiency using microscopic driving data collected from smartphone devices. It is showed 

that DEA has never been used before in driving behaviour research and that driver’s 

efficiency has been studied in a great extent but never by making use of DEA techniques. 

Therefore, there should be an attempt to address this certain issue by proposing a 

methodological framework based on data science techniques for evaluating driving 

characteristics. The model that will be developed should incorporate several driving 

behaviour metrics allowing for the multi-criteria analysis of driving efficiency. It is also 

found important to address the problem of the large computation time required for a DEA 

algorithm and methodologically speaking, it is momentous to test the effectiveness of the 
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implementation of a DEA and convex-hull algorithm combination in a multiple inputs and 

outputs settings for large-scale driving data.  

The second step of the methodology is data collection and preparation, which includes 

a description of the survey design and questionnaire administration and extended 

description of how the OSeven platform works including the recording, collection, storage, 

evaluation and visualization process of driving behaviour data using smartphone 

applications and advanced machine learning (ML) algorithms. This innovative large-

scale data collection and analysis methodology applied, presents new challenges by 

gathering large quantities of data for analysis during this research. Furthermore, 

database is further processed and prepared to be imported in the final data analysis 

conducted afterwards. This preparation is made using Python programming language, 

which is suitable for large-scale data analysis.  

All aforementioned indicators, which are received directly from the OSeven system, are 

analysed and filtered to retain only those indicators that will be used as inputs and outputs 

herein for the DEA problem. Data filtering and DEA improvement algorithms are 

performed in Python programming language and several scripts are written for this 

reason. A significant amount of data is recorded using the smartphone application 

developed by OSeven Telematics. Data used in this research are anonymized before 

provided by OSeven so that driving behaviour of each participant cannot be connected 

with any personal information. This is a data exploitation approach that is user-agnostic 

and therefore less user intrusive. It should also be highlighted at this point that the 

approach followed in this study aims to identify driving behaviours and patterns and 

the factors influencing them and not to explain the causality between behaviour and other 

factors such as age, gender, occupation etc. or describe the distribution of the driving 

sample collected. The advantage of such an approach is that behaviours can be studied 

even in cases where demographic data of a driving sample are not available or cannot 

be collected.  

For the purposes of this doctoral research, a sample of 171 drivers participated in the 

designed experiment that endured 7-months and a large database of 49,722 trips is 

collected from the database of OSeven. For each individual part of the analysis 

conducted herein, a part of this database is exploited because of the different 

requirements of each analysis. The selection made is presented in Table 4.1. 

 

Table 4.1: Driving sample used in each part of the research 

 
Sampling time 
investigation 

Trip efficiency 
analysis 

Driver efficiency analysis 

data_sample_1 data_sample_2 

Urban Rural Urban Rural 

Number of drivers 171 88 100 100 43 39 

Number of trips 49,722 10,088 23,000 15,000 9,890 5,850 

 

An extended presentation of the statistical characteristics of the driving sample used 

in each of the three types of data analysis are also presented to acquire a clear picture 
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of the sample derived. The whole sample of 171 drivers participated in the designed 

experiment is used and a large database of 49,722 trips is created. All drivers chosen to 

be included in this part of the analysis should had driven at least for 10 hours and 40 trips 

that approximately equals the typical monthly number of trips for a driver assuming that 

each driver drives 2 trips of 15 minutes a day for 5 working days a week. As for the trip 

efficiency analysis, a part of the sample of eighty-eight (88) drivers participated in the 

designed experiment that took place between 28/09/2016 and 05/12/2016 and a large 

database of 10,088 trips is created.  

For the purposes of the driver efficiency analysis, driving data were selected from the 

initial database of 171 drivers based on some driver criteria. The first criterion chosen 

was that all drivers should have travelled at least 50 more trips than the number of trips 

required so that the total distance per road type is at least equal to the minimum distance 

found in the previous step of the sample quantification. This criterion is set to ensure that 

a) inputs are proportionally increased to outputs and therefore it is valid to develop a 

DEA model in each time step of the moving window and in total and that, b) the number 

of the time series observations is satisfying. Of course, this procedure of drivers’ 

selection aims to result to the maximum number of drivers possible.  

On the top of that, all drivers should have positive mileage on all three types of road 

network. The third criterion was that drivers with a zero sum of input attributes (i.e. harsh 

acceleration, braking, speed limit violation, mobile phone usage are all equal to zero) 

should be eliminated from the sample, which is a limitation of DEA. The business 

equivalent of a zero input could be a factory that is producing a product without making 

use of any material and/or workforce, which practically cannot occur. This procedure 

resulted to 100 drivers in urban and rural road type who fulfilled these criteria and were 

kept for the analysis conducted whereas the rest of the drivers were eliminated from this 

study. Drivers’ elimination resulted to only 18 drivers in highways, which was considered 

a low number of participants for the analysis to be conducted. The total number of trips 

that took place by each of the drivers chosen was 230 for urban and 150 for rural roads 

constructing thus a large database of 23,000 trips in urban and 15,000 in rural. From 

those drivers, 43 urban and 39 rural drivers have answered the questionnaire 

administered. Finally, the questionnaire is briefly discussed and its main questions are 

provided.  

The investigation of the adequate amount of data to be included in the analysis and the 

evolution of the metrics/ distance ratio takes place as a next step. This step is essential 

in order to specify the exact amount of data that should be used in the analysis and is 

neither deficient nor excessive. A deficient amount of data would lead this research to 

uncertain or unreasonable results while an excessive amount of data would significantly 

increase required processing time.  

As for the urban road, HA appears to be the most critical metric for the determination of 

the required sampling distance. It can be noticed that the maximum value of the adequate 

distance for the relevant metric to converge in the table appears for the percentile range 

75-100% of HA. The maximum median distance value is found to be 519km, which is 

approximately equal to 75 trips in urban road. Initially, the average distance per trip and 

consequently the number of required trips that each driver should perform to reach the 
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distance of 519km is calculated. The median value of all users for this variable is 

estimated to be around 75. This is the length of the moving window used in the driver 

efficiency analysis to create the time series of driving efficiency in rural road type. The 

median value is preferred instead of the average value for the same reasons stated above 

for the determination of the required sampling distance.  

As for the rural road, HB and MU appear to be the most critical metrics for the 

determination of the required sampling distance. It can be noticed that the maximum 

value of the adequate distance to converge for MU in the table appears for the percentile 

range 0-25% of HA. The maximum median distance value is found to be 579km, which 

is approximately equal to 81 trips in rural road. As in urban road analysis, the average 

distance per trip and consequently the number of required rural trips that each driver 

should perform to reach the distance of 579km is calculated. The median value of all 

users for this variable is estimated to be around 81. This is the length of the moving 

window used in the driver efficiency analysis to create the time series of driving efficiency 

in rural road type. The median value is preferred instead of the average value for the 

same reasons stated above for the determination of the required sampling distance.  

Finally for highways, HA and HB appear to be the most critical metrics for the 

determination of the required sampling distance. It can be noticed that the maximum 

value of the adequate distance to converge for MU in the table appears for the percentile 

range 50-75% of HA. The maximum median distance value is found to be 611km, which 

is approximately equal to 106 trips in highways. As in urban road analysis, the average 

distance per trip and consequently the number of required rural trips that each driver 

should perform to reach the distance of 611km is calculated. The median value of all 

users for this variable is estimated to be around 106. This the length of the moving window 

that should be used in the driver efficiency analysis to create the time series of driving 

efficiency in rural road type. Unfortunately, this value exceeds the number of trips (100) 

that are collected for the driver efficiency analysis in highways and therefore this analysis 

cannot be performed in the specific road type.  

It is therefore concluded that the driving efficiency problem can be dealt as a constant 

returns-to-scale (CRS) DEA problem since the required sampling distance is defined so 

that the sum of all metrics (inputs) recorded for each driver changes proportionally to 

the sum of driving distance (output) in each moving window examined and in total. This 

step also defines the moving window time step and concludes that the highway road type 

cannot be included in the analysis because only a short number of participants has been 

recorded for more than the respective kilometres found.  

Taking into account the literature review conducted, the data collected and all the 

peculiarities of the DEA technique, it is concluded that safety efficiency index may be 

defined using the number of harsh acceleration and braking events, the seconds of 

mobile usage and the seconds of driving over the speed limits as inputs and the distance 

travelled as output. This is the key-step connecting the “safety efficiency index 

estimation” and “benchmarking” part of this doctoral research. It constitutes a substantial 

step for moving forward with the DE analysis, determining the DEA inputs and outputs in 

such a way to i) be a scientifically sound formulation of the DEA technique and ii) 

represent driving safety efficiency and therefore the relative driving risk.  
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Trip efficiency analysis is conducted thereafter to determine the best performing 

technique among those tested and to develop a methodology for identifying the least 

efficient trips that exist in a certain trip database. Standard DEA, RBE DEA and convex 

hull DEA are tested and compared on the basis of required processing time. Convex hull 

algorithm combined with DEA outperforms the other two methodologies tested. This is a 

critical step that enables the reduction in required running time for all consequent steps 

engaged with DEA modelling. Furthermore, a convex hull DEA algorithm is implemented 

when both inputs and outputs are more than one. Lastly, a methodological approach is 

proposed for less efficient trip identification and efficient level of driving metrics estimation 

based on the safety efficiency index defined above.  

Driver efficiency analysis is performed to examine the potential of clustering drivers and 

identify the main driving characteristics of each cluster arose. Based on the safety 

efficiency index defined in the fourth step, for each driver total driver efficiency for the 

total recorded period is estimated together with driver efficiency for the time window of 

each time step examined. The efficiency time-series created is analysed and results are 

exploited for driver clustering. All driving profiles emerging from each cluster are 

presented.  

As mentioned above, the large-scale driving data were selected from the initial database 

of 171 drivers based on some criteria. The first criterion chosen was that all drivers should 

have travelled at least 50 more trips than the number of trips required so as the total 

distance per road type is securely higher than the minimum distance found in the 

previous step of the sample quantification. This procedure of drivers’ selection also aims 

to result to the maximum number of drivers possible. On the top of that, all drivers should 

have positive mileage on all three types of road network. In addition to that, drivers with 

a zero sum of input attributes (i.e. harsh acceleration, braking, speed limit violation, 

mobile phone usage are all equal to zero) are eliminated from the sample because this 

is a DEA limitation. This procedure resulted to 100 drivers in urban and rural road type 

who met these requirements and were used in the analysis conducted whereas the rest 

of the drivers were eliminated from this study. Drivers’ elimination resulted to only 18 

drivers in highways, which was considered a very low number of participants for the 

analysis to be conducted. The total number of trips that took place by each of the drivers 

chosen was 230 for urban and 150 for rural roads constructing thus a large database of 

23,000 trips in urban and 15,000 in rural. From those drivers, 43 urban and 39 rural 

drivers has answered the questionnaire administered.  

For each of the data_sample_1 and data_sample_2, the median of the attributes of each 

class arising is shown in Table 5.10 where the models per urban and rural road type are 

presented based on the inputs that were used in each model. Class 1 drivers are referred 

to as most efficient drivers despite the fact that only drivers with unit efficiency lie on the 

efficiency frontier; class 2 and 3 drivers are referred to as weakly efficient and non-

efficient drivers.  
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Table 5.10: Driving characteristics of the efficiency groups per 100km and per road and sample type 

Sample 
type 

Road 
type 

No of 
drivers 

Driving 
characteristics 

Efficiency classes 

Class 1: 0 - 25 % 
percentile 

Class 2: 25 - 75 % 
percentile 

Class 3: 75 - 100 % 
percentile 

d
at

a_
sa

m
p

le
_1

 

U
rb

an
 

100 

efficiency 0.22 0.36 0.61 

ha 21.49 11.82 8.82 

hb 9.64 5.31 3.68 

mu 316 205 141 

sp 1243 878 355 

R
u

ra
l 

100 

efficiency 0.24 0.42 0.90 

ha 34.11 24.06 11.30 

hb 14.92 9.16 5.42 

mu 529 419 165 

sp 1564 1004 708 

d
at

a_
sa

m
p

le
_2

 

U
rb

an
 

43 

efficiency 0.21 0.38 1.00 

ha 39.26 21.71 9.98 

hb 16.38 8.07 4.19 

mu 751 553 100 

sp 1892 965 477 

R
u

ra
l 

39 

efficiency 0.28 0.44 1.00 

ha 23.04 11.86 7.49 

hb 9.28 5.21 3.16 

mu 316 305 160 

sp 1423 939 378 

 

As expected, for all road network and sample type models, the median of the attributes 

is reducing while shifting to a class of higher efficiency. The difference between classes 

1 and 2 is found to be less significant for 
ruralmobile  and slightly less significant for 

urbanmobile  of both the data_sample_1 and data_sample_2. This result indicates that 

drivers of both road types (and especially rural road) have similar behaviour in terms of 

the mobile usage and therefore mobile usage is not a critical factor when measuring 

driving efficiency using DEA. In other words, the conclusion that can be drawn is that the 

overall driving safety profile of a less risky driver in urban and rural road is not 

considerably influenced by the driver’s mobile usage. A possible explanation of this 

phenomenon is either the fact that drivers of all classes use the mobile phone 

approximately the same or DEA’s sensitivity to outliers, which means that the model 

might sometimes be influenced by the extreme values of other inputs or outputs when 

estimating a DMU’s efficiency e.g. low number of speeding or mobile usage seconds. In 

either case, mobile phone distraction should be examined separately. The main factors 

influencing shifting from one class to another are also identified and a methodology for 

estimating the efficient level of driving metrics that each driver should reach to become 

efficient is proposed. Total efficiency and volatility are also estimated in this step, which 

will be used in the clustering procedure.  

The evolution of average driving efficiency over time will also be investigated by using 

different databases, accumulated over different timeframes from the beginning of 

recording time until the end of each timeframe. The time series that results is studied and 

decomposed in its main components, stationarity and trend. The average trend is 

observed to be approximately the same between the two road types of the 
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data_sample_1 despite the fact that median trend is diverged. This indicates the 

existence of high outlier trend values in urban road and low outlier trend values in rural 

road that influence the average trend value. As for the stationarity of the time series, the 

number of differences required for a time series to become stationary reveal that there 

are no users in urban road whose driving behaviour is stationary. On the other hand, the 

relative number in rural roads is low for the data_sample_1 but significantly higher for the 

data_sample_2.  

Using a k-means machine learning algorithm, drivers clustering is performed afterwards 

based on total driving efficiency, volatility, trend, stationarity of the time series arising as 

well as on the questionnaire data collected from the data_sample_2. The questions 

concerning the number of driving experience and the number of total accidents to date 

were the questionnaire data exploited in the clustering approach. These two questions 

were combined into one variable representing the total number of accidents per 10 years 

of driving and is presented in this form below. Driving characteristics of each cluster 

arose are analysed and conclusions drawn are presented. To prevent the results from 

being influenced by the outliers, all variables are normalized before used as inputs in the 

k-means clustering algorithm. The optimal number of clusters is determined using the 

elbow method.  

 

Table 5.19: Qualitative characteristics of the drivers' clusters 

Sample 

type 

Road 

type 
Cluster Trend (*10-3) Volatility Efficiency 

Accidents/ 10 years 

of driving experience 

d
at

a_
sa

m
p

le
_1

 

U
rb

an
 1 (typical) very low positive medium - high low low - medium 

2 (unstable) medium positive medium - high medium low 

3 (cautious) medium negative low - medium medium - high low 

R
u

ra
l 

1 (typical) low positive medium low low - medium 

2 (unstable) high negative high medium - high medium - high 

3 (cautious) high positive medium - high high low 

d
at

a_
sa

m
p

le
_2

 

U
rb

an
 1 (typical) very low positive medium low low 

2 (unstable) low - medium 

positive 

medium low high 

3 (cautious) medium negative low high low 

R
u

ra
l 

1 (typical) barely no trend medium - high low low 

2 (unstable) low negative medium low high 

3 (cautious) high positive medium - high high low 

 

Clustering analysis performed resulted to three driving groups, which mainly represent 

the average drivers, the unstable drivers and the cautious drivers. The main common 

attribute between all clusters of cautious drivers is the high driving efficiency index and 

the low value of the accident per year value regardless of whether or not it was included 

as a factor in the cluster analysis. On the other hand, all clusters of the average drivers 

feature a high driving efficiency index and an insignificant low positive trend indicating a 
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steadily poor driving behaviour. Finally, the unstable drivers of the second cluster present 

a medium to high volatility, which is found to be the only common characteristic between 

them. The rest of the clusters show similar characteristics in all attributes. The results of 

the clustering procedure are summarized in table 5.19.  

Finally, prior information on driving accident data seems to affect only the form of the 

second cluster of the most unstable drivers, which incorporates drivers that are both less 

safety efficient and unstable. This is extremely promising for driving behaviour literature 

since it implies that it is feasible to study massive anonymous datasets for which no 

personal data are provided and produce equally significant and not biased outcomes.  

This dissertation concludes that the methodological approach for the determination of the 

required driving data sampling distance depends on the scope of the research 

methodology that will be applied. In other words, the statistical principles of the 

methodological approach that will exploit the driving data collected determine the 

statistical rules that will be specified to estimate the amount of required data.  

An equally important conclusion is that the adequate amount of driving data is decreased 

as the driving metrics (for all metrics except speeding) increase, at least for rural road 

and highways. This means that the more aggressive a driver becomes, the less 

monitoring is required to acquire a clear picture about his/ her driving patterns. Results 

also demonstrated that a different type of metric is critical for the determination of the 

required amount of data that should be recorded in each road type. Additionally, it 

appears that a different amount of data is necessary to be collected depending on the 

road type examined.  

Results also indicate that the proposed DEA algorithm combined with convex hull is 

performing significantly better for large-scale data compared to other existing DEA 

algorithmic methodologies such as standard and RBE DEA methodologies. Another 

important contribution of this research is that it suggests a new approach for the 

benchmarking of a trip’s driving efficiency. The methodology to estimate a trip’s efficiency 

index, identify its “peers”, and therefore, determine its efficient level of inputs and outputs 

is provided. Finally, the methodological steps for the identification of the least efficient 

trips in a database are provided, which would be a valuable finding for a driving 

recommendation system.  

Another important highlight of the analysis conducted for each category is that 

considerable differences exist in driving characteristics between inefficient drivers and 

the classes of weakly efficient and most efficient drivers with the difference of the two 

latter to be less significant. On the other hand, mobile usage is not found to be a critical 

factor in safety efficiency benchmarking probably because DEA is providing a relative 

estimation of driving efficiency and at the same time, the difference in the seconds of 

mobile usage between different classes is not found to be significant. Another very 

important finding is probably that the shift between efficiency classes is mainly affected 

by different driving metrics in urban and rural road.  

The temporal dynamics of driving efficiency are also investigated and the moving time 

window in which each driver is benchmarked is specified. It is shown that despite the 

fact that drivers retain a steady driving behaviour for a certain period, there exists 
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dynamic major shifts in systematic behaviour within a long-term period. Furthermore, the 

average trend is observed to be approximately the same between the two road types 

despite the fact that median trend is differentiated significantly. Finally, studying 

stationarity demonstrated that three out of four driver groups have similar characteristics 

and therefore it would not play an important role in the final clustering procedure where 

this attribute is not included.  

Clustering analysis performed resulted to three driving clusters, which mainly represent 

the average drivers, the unstable drivers and the cautious drivers. The main common 

attribute between all clusters of cautious drivers is the high driving efficiency index and 

the low value of the accident per year value regardless of whether or not it was included 

as a factor in the cluster analysis. On the other hand, all clusters of the average drivers 

feature a high driving efficiency index and an insignificant low positive trend indicating a 

steadily poor driving behaviour. Finally, the unstable drivers of the second cluster present 

a medium to high volatility, which is found to be the only common characteristic between 

them. Finally, prior information on driving accident data seems to affect only the form of 

the second cluster of the most unstable drivers, which incorporates drivers that are both 

less safety efficient and unstable.  

This doctoral dissertation contributes towards the understanding of driving safety 

efficiency benchmarking, and therefore driving risk, using data science techniques 

applied on large-scale data in the form of travel and driving behaviour metrics collected 

from each trip and on a driver basis. A new methodological approach is also provided for 

estimating the efficient level of inputs and outputs that each driver should reach to 

become efficient in terms of safety. It is also very important that this research recognize 

the main characteristics of the driving safety efficiency groups arising from the improved 

DEA methodology performed, because this sets the ground for the in-depth study on 

driving efficiency based on microscopic driving characteristics. Finally, this research 

studies the time evolution of driving efficiency and reveals the characteristics of the 

driving profiles arose.  

This thesis is also dealing with the problem of data science techniques that can be 

applied in real transportation problems as the one examined, to deal with the problem 

driving efficiency benchmarking using DEA. Consequently, the performance of DEA 

methodology for large-scale data as well as the potential of applying an improved DEA 

approach with certain techniques (RBE, Convex Hull) to yield the same optimal solution 

in less time is examined herein. Moreover, the large-scale driving data collected are 

investigated through statistical methods in order to specify the certain amount of driving 

data that should be collected for each driver in each road type. The need for specifying 

this amount emerges from the fact that collecting either excessive or deficient driving data 

can be risky because it might lead to excessive computational effort when it comes to 

large-scale data or to non-significant conclusions, respectively.  

The latter approaches combined are the innovation of this doctoral research in terms of 

the large-scale data handling. This doctoral research presents how to reduce the 

dimensionality of a problem using large-scale data and draw valuable conclusions from 

them. This study also provides the methodological steps for estimating the efficient level 

of metrics for a trip and the approach to identify the least efficient trips in a database.   
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Chapter 1: Introduction 

1.1) Overview 

Road safety is a complex scientific field with far reaching implications to societies and 

industry field and has systematically attracted the interest of researchers and 

practitioners. Road accidents impose serious problems to society in terms of human 

costs, economic costs, property damage costs and medical costs. It is one of the most 

important concerns in modern societies around the globe since they result to 

approximately 1.25 million fatalities (around 3,400 per day) and between 20 to 50 million 

non-fatal injuries per year (WHO 2015). The impact of these injuries and fatalities on the 

families and the communities in which these people lived and worked is immeasurable. 

Road traffic crashes are extremely costly for most countries at a national level and 

particularly to developing economies ranging from 1–2 % for low- and middle-income 

countries, estimated at over US$ 100 billion a year (Jacobs 2000), to 3% of their gross 

domestic product (WHO 2015). Luckily, a steadily decreasing trend in road traffic 

casualties is noticed during the last few years. Nonetheless, the number of road fatalities 

in several countries and in Greece remains in unacceptably high levels which 

demonstrates the need for greater efforts and improvements in all aspects of road safety 

including driving behaviour and performance (OECD 2013).  

According to World Health Organization (WHO 2015), road accidents are estimated to be 

the tenth leading cause of fatalities globally and the leading cause of fatalities among 

people aged between 15 and 29 years old (nearly 400 000 young people per year). It is 

also a fact that people aged between 15 and 44 years account for 48% of global road 

traffic deaths. From a socioeconomic perspective, more than 90% of these fatalities and 

injuries occur in low- and middle-income countries and the highest rates are found in 

Africa and the Middle East region. However, even within high-income countries, people 

from lower socioeconomic backgrounds are more likely to be involved in road traffic 

crashes. These are probably the effects of rapid motorization which has not been 

accompanied sufficiently by improved road safety strategies and operations. While many 

strategies could be applied to reduce the need for road travel, and thus the exposure to 

crash risk, in practice the combination of increased road transportation and better and 

continuous forms of communication may be detrimental to the global road safety picture 

(WHO 2013). In terms of sex, males are more likely to be involved in road traffic crashes 

than females. Approximately 73% of all road traffic deaths occur among young males 

under the age of 25 years who are almost 3 times as likely to be killed in a road traffic 

crash as young females.  

A significant number of risk factors that affect the probability of participating in a road 

traffic accident have been identified in literature. It is a matter of great importance to limit 

the number of these risk factors in order to succeed in the efforts of reducing road traffic 

injuries. Among others, the most important risk factors recognized in literature (WHO 

2015, Elvik 2004, Pedden et al. 2004) are human factors (speeding, distracted driving, 

driving under the influence of alcohol and other psychoactive substances etc.), unsafe 
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road infrastructure, unsafe vehicles and inadequate law enforcement of traffic laws. 

Human factors are considered to be one of the main causes of road traffic fatalities and 

injuries every year and therefore it is highly important to study how these factors can 

affect traffic risk. As a result, it would be valuable to quantify the influence of driving 

behaviour on crash risk at least relatively to the rest of the drivers' population.  

Regarding mobile phone usage while driving, literature has shown that it has a significant 

effect on driver behaviour. Cell phone use causes drivers to have higher variation in 

accelerator pedal position, drive more slowly with more variation in speed and report a 

higher level of workload (Md Mazharul and Washington 2015) regardless of conversation 

difficulty level. Drivers tend to select larger vehicle spacing (Nilsson 1982), and longer 

time headways (Mohammad et al. 2015) suggesting possible risk compensatory behavior 

(Md Mazharul and Washington 2015, Törnros and Bolling 2006). Furthermore, the 

participants' reaction times (Patten et al., 2004) increase significantly when conversing, 

but no benefit of hands-free units over handheld units on rural roads/motorways were 

found (Handel et al., 2014, Yannis et al., 2014). Thus, with regards to mobile telephones, 

the content of the conversation was far more important for driving and driver distraction.  

Speeding is also recognized as one of the most important factors in driving risk since it 

influences the accident probability (e.g. decreased reaction distance, loss of control) as 

well as the crash impact. According to (OECD, 2006) speeding has been a contributory 

factor in 10% of the total accidents and more than 30% in fatal accidents. According to 

(Andersson and Nilsson 1997, Nilsson 1982) the probability of a crash involving an injury 

is proportional to the square of the speed, the probability of a serious crash is proportional 

to the cube of the speed and the probability of a fatal crash is related to the fourth power 

of the speed. Moreover, (Nilsson 2004) depicts the relationship between speed and 

driving risk via an exponential curve, showing that the driving risk is not proportional to 

the speed.  

Harsh acceleration, harsh breaking and harsh cornering events are three significant 

indicators for driving risk assessment (Derick and Trivedi 2011, Bonsall et al. 2005) 

especially for evaluating driving aggressiveness. This is because they are strongly 

correlated with unsafe distance from adjacent vehicles, possible near misses, lack of 

concentration, increased reaction time, poor driving judgement or low level of experience 

and involvement in situations of high risk (e.g. marginal takeovers). The correlation 

between HA and HB events with driving risk has been highlighted in the scientific papers 

published by (Tselentis et al., 2017, Bonsall et al. 2005) and it has been widely 

recognized by the insurance and telematics industry.  

Measuring driving efficiency has been the focus of many studies in driving behaviour 

literature in the past (Gerald et al. 1996, Gerald et al. 1998, Young et al. 2011). From a 

road safety perspective, it is extremely significant to identify the parameters that influence 

driving behaviour and therefore traffic risk. To achieve this, it is extremely important to 

study driving behaviour on a microscopic level a fact that necessitates the driver 

behaviour recording. Several studies have been carried out regarding mobile phone 

usage distraction and methodologies for collecting and analysing (Tselentis et al. 2017) 

driving behaviour data. The most common methodology applied to date, include driving 

simulators (Desmond et al. 1998, Lenné et al. 1997), questionnaires (Gerald et al. 1998) 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

29 

combined with simulators and naturalistic driving experiments (Toledo et al. 2008, Birell 

et al. 2014).  

The most common method for monitoring driving measures necessary for behaviour 

evaluation include recorders that relate to the car engine (Zaldivar et al 2011, Backer-

Grøndahl et al. 2011) and smartphones (Vlahogianni and Barmpounakis 2017). 

Generally, there are several emerging methods exploited for collecting naturalistic driving 

data based on in-vehicle sensors. The advantage of these sensors is the light and 

relatively low-cost equipment as well as the new possibilities offered by information and 

communication technologies for data transmission and processing, compared to 

traditional “heavy” vehicle instrumentation of early naturalistic driving experiments. This 

emerging telematics field is tested for a number of applications including traffic 

management, accident detection and emergency response, monitoring of fuel 

consumption and emissions, monitoring of hybrid electric vehicles, monitoring of 

professional drivers etc. (Zaldivar et al. 2011, Yang et al. 2013). It is used in innovative 

motor insurance schemes (UBI - usage based insurance) on pricing users based on 

distance travelled or driving behaviour by the OBD unit (Tselentis et al. 2017). Finally, 

using smartphones as recording devices is becoming popular during the last decade 

because of the precision of their installed sensors and the fact that they are considered 

to be the most affordable solution thus far.  

As it appears, this rapid technological progress along with the increasingly penetration 

rate by drivers (e.g. Smartphones), provide unprecedented opportunities to accurately 

monitor and analyse driving behaviour. First results from related applications (Tselentis 

et al. 2017, Theofilatos et al. 2017, Araújo et al. 2012, Enev et al. 2016) have confirmed 

the efficiency and usefulness of such big data collection schemes. Nevertheless, the 

exact amount of the necessary driving data that should be collected for each driver in 

driving behaviour assessment is not determined yet. Since both small and big data 

samples lurk the risk of leading to doubtable results, by acquiring a sample either biased 

or computationally expensive to analyse, it is a matter of great importance to specify 

exactly how much driving data should be recorded from each participant in the 

experiment.  

In order to benchmark driving efficiency based on different type of driving metrics, a data 

envelopment analysis (DEA) approach is proposed in this study. DEA is a technique of 

mathematical programming problem with minimal assumptions that determines a unit’s 

efficiency based on its inputs and outputs, and compares it to other units involved in the 

analysis. It is a data-oriented methodology that effects performance evaluations and other 

conclusions drawn from the analysis directly from the observed data. The efficiency of a 

Decision Making Unit (DMU) is comparatively measured and analysed relatively to the 

rest of the DMUs considering that all DMUs lay on or below the efficiency frontier. DEA 

has become one of the most popular fields in operations research, with applications 

involving a wide range of context (Thanassoulis 2001). It has been applied in great extent 

in literature (Cook & Seiford 2009, Emrouznejad et al. 2008) to measure and compare 

the productivity performance of a group of DMUs. Martić et al. (2009) presented the 

ample possibilities for using DEA for evaluating among others the performance of banks, 

schools, university departments, farming estates, hospitals and social institutions, military 

services and entire economic systems. DEA has also been successfully implemented in 
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transport fields in assessing public transportation system performance (Karlaftis et al. 

2013) and traffic safety studies (Egilmez & McAvoy 2013, Alper et al. 2015) but never 

before in driving behaviour research.  

One of the most important issues arising is that linear programming (LP) techniques, such 

as DEA requires a significant amount of time to perform on large-scale data. Many 

suggestions including Reduced Basis Entry (RBE) and Early Identification of Efficient 

DMUs (EIE) have been made thus far to reduce the running time of DEA with some of 

them performing notably better (Dulá, 2008; Barr & Durchholz, 1997; Ali, 1993; Dulá & 

López, 2009). Something also never addressed before is the multiple inputs and multiple 

outputs DEA problem for large-scale data.  

It can be concluded from all the above that it is significant to study the potential of 

measuring driving safety efficiency using microscopic driving data collected from 

smartphone devices. This doctoral research attempts to address this certain issue by 

proposing a methodological framework based on data science techniques for evaluating 

driving characteristics. An improved DEA model is applied to deal with the analysis of 

large-scale smartphone data collected while driving. The model developed is 

incorporating several driving behaviour metrics allowing for the multi-criteria analysis of 

driving efficiency. From many perspectives, the contribution of this thesis is deemed to 

be significant since a) it provides a methodology for driving safety efficiency assessment, 

based on microscopic driving characteristics b) it provides a methodology for least 

efficient trips identification and c) the results of this thesis can potentially be 

advantageous towards providing personalized feedback to drivers on how to enhance 

their driving behaviour. It should be highlighted at this point that from now on in the 

present dissertation, the term of driving safety efficiency will be mentioned as driving 

efficiency for brevity purposes.  

The main objective of this PhD is to provide a methodological approach for driving safety 

efficiency benchmarking on a trip and driver basis using data science techniques. It also 

investigates the way to achieve this by defining a safety efficiency index based on travel 

and driving behaviour metrics collected from smartphone devices. The driving 

characteristics of each emerging efficiency group is discussed and the main driving 

patterns are identified. One of the most significant DEA’s weaknesses, i.e. the significant 

time required for processing large-scale data, is overcome by employing computational 

geometry techniques. Furthermore, the present doctoral research proposes a 

methodological framework for identifying the least efficient trips in a database and for 

estimating the efficient level of metrics that each non-efficient trip should reach to become 

efficient. Finally, this dissertation’s objective is to study the temporal evolution of driving 

efficiency and identify the main driving patterns and profiles of the driver groups formed.  

1.2) Methodological steps 

To achieve the objectives set above by the present PhD dissertation, the structure of this 

research consists of six separate methodological steps presented below (Figure 1.1): 
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A) Exhaustive literature review takes place covering an overview of road safety and 

accidents and the fields driving behaviour and risk, driving characteristics, driving 

efficiency parameters (distraction, aggressiveness, etc.), naturalistic driving experiments, 

data envelopment analysis methodology, potential improvements on large-scale data 

analysis and its applications on transport engineering and driving efficiency. The 

conclusions drawn from the review and the knowledge gap arising assists in setting the 

research objectives and research hypotheses and generally in setting the problem up.  

B) Data collection and preparation which includes a description of the survey design and 

questionnaire administration and the procedure of data collection and transmission from 

the smartphone application, the storage of data to the central database of the platform 

developed by OSeven and the whole data processing procedure. Furthermore, database 

is further processed and prepared to be imported in the final DE analysis that is conducted 

afterwards. This preparation is made using Python programming language, which is 

suitable for large-scale data analysis.  

C) Investigation of the adequate amount of data to be included in the analysis and the 

evolution of the metrics/ distance ratio. This step is essential in order to specify the exact 

amount of data that should be used in the analysis and is neither deficient nor excessive. 

A deficient amount of data would lead this research to uncertain or unreasonable results 

while an excessive amount of data would significantly increase required processing time.  

D) Safety efficiency index is defined taking into account, literature review conducted, data 

collected and all the peculiarities of the DEA technique. This is the key-step connecting 

the “safety efficiency index estimation” and “benchmarking” part of this doctoral research. 

It constitutes a substantial step for moving forward with the DE analysis, determining the 

DEA inputs and outputs in such a way to i) be a scientifically sound formulation of the 

DEA technique and ii) represent driving safety efficiency and therefore the relative driving 

risk.  

E) Trip efficiency analysis is conducted to determine the best performing technique 

among those tested and to develop a methodology for identifying the least efficient trips 

that exist in a certain trip database. Standard DEA, RBE DEA and convex hull DEA are 

tested and compared on the basis of required processing time. Convex hull algorithm 

combined with DEA outperforms the other two methodologies tested. This is a critical 

step that enables the reduction in required running time for all consequent steps engaged 

with DEA modelling. Furthermore, a convex hull DEA algorithm is implemented when 

both inputs and outputs are more than one. Lastly, a methodological approach is 

proposed for less efficient trip identification and efficient level of driving metrics estimation 

based on the safety efficiency index defined above.  

F) Driver efficiency analysis is performed to examine the potential of clustering drivers 

and identify the main driving characteristics of each cluster arose. Based on the safety 

efficiency index defined in step D, for each driver total driver efficiency for the total 

recorded period is estimated together with driver efficiency for the time window of each 

time step examined. The time-series created is analysed and results are exploited for 

driver clustering. All driving profiles emerging from each cluster are presented.  
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Figure 1.1: Graphical representation of the general methodological framework of the present doctoral 

dissertation. 

The above graphical representation of the methodological approach is used to provide a 

broader and comprehensible picture of the workflow that takes place and results to the 

better understanding on how to analyse driving efficiency, using data science techniques 

for large-scale data. Further details on the methodological background and 

implementation of the techniques applied in this thesis are presented in each of the 

following sections.  

1.3) Structure of the dissertation 

Chapter 1 serves as an introductory part of this dissertation that aims to assist the reader 

in adapting smoothly with the specific research field that might not be familiar with. It 

provides a general description of the road safety sector, descriptive statistics on road 
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accidents and an overview of the microscopic risk factors that influence driving behaviour. 

The methodological steps followed to accomplish this research are also introduced. 

Finally, the contribution of the present doctoral dissertation is presented in details to 

document the reason why this research was necessary to be conducted.  

Chapter 2 constitutes the main part of the entire literature review and consists of several 

parts. This part includes an overview of road safety literature, driving behaviour and risk 

and a review of driving characteristics and their correlation with driving efficiency and 

performance. Several implementations of DEA methodology in Economics, Business, 

Transportation Engineering and Driving efficiency are also presented. The state-of-the-

art is given afterwards on how driving data are collected from naturalistic driving 

experiments. The existing knowledge gap in literature is identified allowing for 

conclusions to be drawn with respect to methodological and statistical limitations of 

existing studies and setting the key research questions for the present doctoral research. 

Finally, the research hypotheses and objectives on which this dissertation is based are 

specified.  

All data sources exploited in this research are explicitly referred in Chapter 3. The 

procedure of the experiment i.e. participants choice, naturalistic driving experiment data 

recording, transmission, data processing and storage from the smartphone devices to 

the central database is described in detail in this chapter. More specifically, a) a general 

description of the whole procedure of collecting data from the smartphone application, 

transmitting and stored to a central database of the OSeven platform and how these data 

are processed is provided and b) the way that large-scale smartphone data and 

questionnaire data are initially collected is presented. Details regarding the large 

database’s construction and processing before being exploited in the second phase of 

the analysis using Python as well as some sample characteristics are also provided. In 

the last section of this chapter, the descriptive statistics of the driving sample collected 

are illustrated.  

Chapter 4 presents the methodological approach of the research conducted. The 

structure of the methodological approach followed to achieve the objectives specified is 

described in this chapter including the processing procedure and the analysis conducted 

using large-scale data collected through the smartphone devices. The theoretical 

background of every statistical, parametric, non-parametric, linear programming, etc. 

method used in this thesis is presented in details in this chapter. Finally, the key 

methodological research questions are formulated.  

The results of the application of the methodology proposed to achieve the objectives of 

this PhD thesis are presented in Chapter 5. As a first step of the modelling application, 

the database is prepared to be used as input for the analysis. An investigation of the 

metrics/ distance ratio evolution takes place thereafter to verify the potential usability of 

the data collected in the model. As a next step, it is examined how much data should be 

used in the forthcoming analysis. Thereupon, it is explained which parameters will be 

used in the DEA model and with what input/output combination formulation and the safety 

efficiency index is estimated. Trip efficiency analysis is performed afterwards to study the 

potential of applying and providing an improved DEA model on the large-scale data 

collected as well as a methodology for identifying the less efficient trips. Next step is 
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driver efficiency analysis that is conducted to estimate efficiency on a driver basis given 

the recorded metrics. Analysis of the driving efficiency evolution is performed thereupon 

using time-series analysis and statistics. Finally, drivers are clustered through machine 

learning techniques to identify the attributes of the main driving profiles arising.  

Chapter 6 includes the conclusions and a critical synthesis of the results which answers 

all research questions raised at the commencement of the present PhD dissertation and 

suggestions for future research steps on studying driving efficiency and driving behaviour 

in general are made. Finally, the impact and scientific contributions of this research are 

highlighted.  

1.4) Contribution of this dissertation 

This doctoral dissertation aims to contribute in the field of driving safety efficiency 

measurement, which is correlated with driving risk, using data science techniques applied 

on large-scale data. Therefore, the way to perform driving efficiency benchmarking 

based on microscopic driving metrics collected from smartphones will be studied. It is 

equally important to investigate the evolution of driving efficiency over time and the main 

characteristics of the efficiency groups and drivers’ clusters arose. To achieve this, 

optimization and machine learning techniques will be combined.  

Findings will constitute a significant contribution towards the better understanding of the 

existing driving patterns, which is extremely significant for the literature of driving 

behaviour. This pattern recognition may assist in the identification of a driver’s pattern, 

which would assist in the provision of more representative and personalized information 

on how to improve driving behaviour.  

This thesis will also cope with the problem of data science techniques that can be applied 

in real transportation problems as the one examined, to deal with the problem driving 

efficiency benchmarking using DEA. Consequently, as the potential of applying an 

improved DEA methodology to yield the same optimal solution in less time is examined 

herein. Moreover, the large-scale driving data collected will be investigated to specify 

the certain amount of driving data that should be collected. These two approaches 

discussed constitute the innovation of this doctoral research in terms of the large-scale 

data handling.  

This study will attempt to make use of driving data collected using a smartphone 

application, which is an approach that is becoming popular nowadays for collecting data 

from naturalistic driving experiments.  

The practical value of this study is that results could be exploited to provide feedback 

to drivers on their total driving efficiency and its evolution. This constitutes a very 

significant contribution since driving safety efficiency measurement is correlated with 

driving risk, which means that this can potentially affect the accident probability of a 

driver, which can potentially lead to a reduction in the total number of accidents.   
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Chapter 2: Literature Review 

2.1) Road safety 

A very complicated scientific field of transportation research that has attracted huge 

efforts by researchers and practitioners is road safety. Since accidents impose serious 

problems to society in terms of human, economic, property damage and medical costs, 

it constitutes a major concern in the transportation industry. Accidents on a global level 

resulted to approximately 1.25 million fatalities (around 3,400 per day) in 2013 (WHO, 

2015) (Fig. 2.1), 25 thousands in Europe and 824 in Greece (EL.STAT. 2016) as well as 

between 20 to 50 million non-fatal injuries per year (WHO 2015) worldwide. These injuries 

and fatalities’ effect on families and communities where these people live and work is not 

something measurable. Lower income families are suffer more by both direct (e.g. 

medical) and indirect costs (e.g. lost wages) that result from these injuries. Road traffic 

crashes’ cost is extremely high for most countries at a national level and particularly to 

developing economies ranging from 1-2 % for low- and middle-income countries, 

estimated at over US$ 100 billion a year (Jacobs 2000), to 3% of their gross domestic 

product (WHO 2015).  

In terms of fatalities around the globe, road accidents (WHO 2015) are the eighth leading 

cause in all age categories, with a similar impact to that caused by many communicable 

diseases, such as malaria (Lazano et al., 2012) and the leading cause of fatalities for 

people between 15 and 29 years old (approximately 400,000 people/ year) (Fig. 2.2). 

Current trends observed in the number of road fatalities suggest that road traffic deaths 

will become the fifth leading cause of death by 2030 unless urgent action is taken (Global 

status report 2009). It should also be mentioned that people between 15-44 years old 

Figure 2.1: Number of road traffic deaths, worldwide, 2013 
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account for the 48% of road crash fatalities globally. From a socioeconomic perspective, 

more than 90% of these fatalities and injuries take place in low and middle-income 

countries and the highest rates are found to be in Africa and the Middle East region. 

Nonetheless, people from lower socioeconomic backgrounds in high-income countries 

are more likely to be involved in road traffic accidents. This is likely to be the impact of 

rapid motorization, which is not sufficiently accompanied by improved road safety 

strategies and operations. According to the same report (WHO 2015), eighty-eight 

countries (with almost 1.6 billion residents) reduced the number of roads fatalities 

between 2007 - 2010, showing that improvements are possible, and that there is potential 

in saving many more lives if countries take further actions. Nevertheless, the fact that 87 

countries saw increases in the numbers of road traffic fatalities over the same period is 

also concerning. Regarding sex, it is more likely for males to be involved in road traffic 

crashes than females. More than three-quarters of all road traffic deaths are among 

young males under the age of 25 years who are approximately 3 times more likely to 

participate in a fatal road traffic crash than young females.  

A steadily decreasing trend in road traffic casualties is fortunately observed during the 

last few years. Nonetheless, the number of road fatalities remains in unacceptably high 

levels in several countries including Greece, a fact that demonstrates the need for greater 

efforts, improvements and precautionary measures in all road safety aspects including 

driving behaviour and performance (OECD 2013). Despite the above mentioned fact, the 

number of fatalities in road accidents in most countries including Greece is still 

unacceptably high and therefore the need for increased efforts with respect to better 

driving behaviour and road safety is highlighted (WHO, 2015). National road safety policy 

formulation, aggregate and disaggregate level of road safety monitoring, speeding 

interventions for infrastructure improvement in interurban and urban road network, 

information and education campaigns, road users retraining and upgrade of the 

Figure 2.2: Top ten causes of death among people aged 15–29 years, 2012 
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requirements for a driver's license should be included by the necessary 

recommendations for the improvement of the road safety level (Golias et al., 1997).  

Road traffic safety is dealing with the necessary methods and precautionary measures 

for reducing a road network user’s risk of being seriously or fatally injured. The road 

network users’ categories include pedestrians, cyclists, motorists, their passengers, and 

passengers of on-road public transport, mainly buses and trams. The difference between 

the old and the new road safety paradigm is that the latter focuses upon the prevention 

of serious injuries and death crashes in spite of human fallibility (this is considered to be 

a best-practice road safety strategy) in contrast with the old that is focusing on simply 

reducing road crashes assuming road user’s compliance with traffic regulations. The goal 

of current safe road design is to provide a road environment that ensures vehicle speeds 

are within the human tolerances for serious injury and casualty in case of conflict points 

existence (International Transport Forum, 2008).  

With a focus on road accidents, a number of factors is identified to affect the probability 

of a road crash and therefore, limiting the exposure of these risk factors is a matter of 

great significance in order to reduce the effects of road traffic accidents. For instance, 

there are numerous scientific researches demonstrating that the increased risk of road 

traffic fatalities and injuries results from human factors, such as inappropriate speed, 

alcohol or mobile phone use (Alm and Nilsson 1994, Agathe and Sagberg, 2001), non-

use of seat-belts, child restraints or motorcycle helmets and driver distraction (Elvik et al., 

2004). Human factor is proved to be the basic cause of road accidents in a percentage 

of 65-95% (Sabey and Taylor, 1980; Salmon et al., 2017; Treat, 1980). The rest of the 

factors that have an impact on accident probability include road environment (pavement, 

road signs, weather conditions, road design etc.) and vehicles (equipment and 

maintenance, damage etc.) as well as combinations of all three contributory factors.  

Human factors research investigates people’s interaction with various aspects of the 

social environment as well as the way to make them safer, healthier, and more efficient. 

This interdisciplinary field of research has a wide scope of application, spanning road 

safety, healthcare delivery, physical, cognitive, and technological systems. Within the 

context of road safety, human factors research focuses on the understanding of a driver’s 

role in the safe operation of his or her vehicle. There are various factors contributing to 

the way a person behaves when on driver’s seat including environment, psychology, and 

vehicle design. Human factors research ultimate goal is to set out these factors, 

determine their influence on driver performance and propose road or vehicle design 

modifications for driving risk reduction and driving performance improvement. Vehicle 

safety features are part of a safe-driving system that includes human factors: the various 

ways drivers interact with those features help with the determination of both driver’s 

safety and safety features effectiveness.  

On the other hand, the list of human factors affecting crash risk is not limited to risky 

driving behaviour such as driving over the speed limits and distraction originating from 

mobile phone use. Age, driving experience etc. can have an impact on safety features 

performance. Drivers are a vital part of the road safety system, so factors that affect 

drivers are accordingly affecting road safety in general. There are several factors such 

as physiology, psychology, knowledge, culture, traffic laws and regulations, driver’s 
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experience and temper, and brain health on which driving traits, quality, and performance 

of a driver depend on. Driving characteristics can also be classified by skills and styles 

into prudent/ aggressive, stable/ unstable, conflict risk avoidance/ risk prone, skilfulness/ 

non-skilfulness, and law-abiding/ frequent violation driving.  

A nation-wide survey (TIRF, 2012) revealed that several drivers admit that if they owned 

a vehicle fully equipped with modern safety features, they would probably engage with 

unsafe driving practices such as distracted driving and speed limit exceedance. This 

presents how human factors may affect total safety benefits for drivers that arise as a 

consequence of using a vehicle with safety features. Nevertheless, many human factors 

are not obvious and a lack of familiarity with how safety features work may lead to a slight 

but negative influence on driver’s adaptability on these safety features and therefore on 

the potential benefits.  

In order to assess driving behaviour, several types of driving behaviour experiments exist 

- naturalistic driving experiments, driving simulator experiments, on road experiments, in-

depth accident investigations and surveys on opinion and stated behaviour, just to name 

a few. Focusing on naturalistic driving experiments, they allow for the examination of a 

range of driving performance measures in a completely natural, realistic and safe driving 

environment. However, during these experiments, drivers might be influenced by the fact 

that they are aware that they are being monitored, which can potentially influence the 

validity of the results obtained. Despite this fact, the present doctoral research assumes 

that the influence is roughly the same on all drivers and therefore the results obtained are 

not significantly affected since the analysis conducted is relative. In general, despite of 

these limitations, naturalistic driving experiments are an increasingly popular 

experimental design quickly adopted from many researchers to accurately measure and 

analyse driving characteristic in natural driving conditions, where originally observed, 

such as speed limit exceedance, distraction etc. and numerous studies have been 

conducted, particularly in the last decade (Tselentis et al., 2018).  

2.2) Driving behaviour analysis and benchmarking 

Measuring driving efficiency has been the focus of many studies in driving behaviour 

literature in the past (Gerald et al. 1996, Gerald et al. 1998, Young et al. 2011). From a 

road safety perspective, it is extremely significant to identify the parameters that influence 

driving behaviour and therefore traffic risk. To achieve this, it is extremely important to 

study driving behaviour on a microscopic level and therefore necessary to investigate on 

the factors that mainly influence it. Several studies have been carried out so far on these 

factors such as mobile phone usage distraction, speed limit exceedance and the number 

of harsh manoeuvers occurring.  

2.2.1) Risk factors 

There is a significant number of risk factors identified in literature, which affect accident 

probability. Previous studies showed that regardless of the type of measurement 
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technology, speed and hard braking are associated with higher accident rates (Klauer et 

al., 2008, Simons-Morton et al., 2009, Kloeden et al., 2001, Aarts and van Schagen, 

2006). It is therefore extremely important to limit these risk factors in order to succeed in 

the effort of reducing the number and severity of road traffic injuries. The most important 

risk factors recognized in literature (WHO 2015, Elvik 2004, Pedden et al. 2004) are 

human factors (speeding, distracted driving, driving under the influence of alcohol and 

other psychoactive substances etc.), unsafe road infrastructure, unsafe vehicles and 

inadequate law enforcement of traffic laws. Among them, human factors are likely to be 

the most important cause of road traffic fatalities and injuries every year and therefore 

the importance of studying how these factors can affect traffic risk is high. Consequently, 

it is valuable to quantify the influence of driver’s behaviour on crash risk at least relatively 

to the rest of the drivers' population.  

Driving behaviour includes many different aspects e.g. adjustability to traffic conditions, 

vehicle operation and driver’s intention and action such as acceleration and deceleration, 

etc., decision-making, smartphone and navigation systems usage, eating, drinking, 

talking to other passengers, applying cosmetics, looking at the external environment. 

Vehicle state is mainly comprised of vehicle position, speed, acceleration, and steering 

angle and rate (single vehicle trajectory), as well as distance headway, time headway, 

and time to collision.  

Driver distraction  

Driver distraction is one of the most important human factors that influence road accident 

probability. In general, driving distraction is defined as “a diversion of driver’s attention by 

focusing on an object, person, task or event not related to driving, which reduces driver’s 

awareness, decision making ability and/or performance, leading to an increased risk of 

corrective actions, near-crashes, or crashes” (Regan et al., 2008). More specifically, 

driver distraction involves a secondary task that distracts driver attention from the primary 

driving task (Donmez et al., 2006; Sheridan, 2004) and may include four different types: 

physical distraction, visual distraction, auditory distraction and cognitive distraction. A 

distracting activity involves one, or more of these. The act of operating a hand-held cell 

phone for example, may involve all four types of distraction.  

There are many types of distractions that can lead to impaired driving (WHO 2015). The 

distraction caused by mobile phones is a growing concern for road safety. Drivers using 

mobile phones are approximately 4 times more likely to be involved in a crash than drivers 

that are not using. Conversing while driving slows (Patten et al., 2004) reaction times 

(notably braking reaction time, but also reaction to traffic signals), and makes it difficult 

to keep in the correct lane and to keep the correct following distances. Hands-free phones 

are not much safer than hand-held phone sets on rural roads/motorways (Handel et al., 

2014, Yannis et al., 2014) and texting considerably increases the risk of a crash. With 

regards to mobile phones, the content of the conversation was far more important for 

driving and driver distraction.  

Physical distraction takes place when a driver has to use one or both hands to use the 

mobile phone instead of concentrating on the physical tasks that driving requires (Young 
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et al., 2007). Visual distraction occurs when drivers’ eyes are either totally off the road or 

on the road but failing to see because another activity takes place simultaneously (talking 

over the telephone). The use of mobile phones that display visual information (e.g. 

texting, watching videos) while driving are further distracting drivers’ visual attention 

(Dragutinovic and Twisk, 2005). Auditory distraction takes place when a driver’s attention 

is disturbed by external sounds not related with the driving procedure such as 

conversation, telephone ringing and music. Cognitive distraction occurs when two mental 

tasks are performed simultaneously and involves lapses in attention and judgment. 

Example given, conversation competes with driving demands, listening can reduce 

activity in the part of the brain associated with driving and the extent of the negative 

effects of mobile phone use while driving depends on the complexity of both cell phone 

conversations and of driving situation.  

Driver distraction is part of the broader category of driver inattention. The presence of a 

specific event or activity that triggers the distraction distinguishes distracted driving from 

inattentive driving (Regan et al., 2005). On the other hand, very few definitions of driver 

inattention exist in the literature such as driver distraction that vary in meaning. Driver 

inattention has been defined (Lee et al., 2008) as “diminished attention to activities critical 

for safe driving in the absence of a competing activity”. Other definitions (Regan et al., 

2005) of driver inattention and driver distraction are “insufficient or no attention to 

activities critical for safe driving” and “is just one form of driver inattention, with the explicit 

characteristic of the presence of a competing activity” respectively.  

Driving distraction factors can be subdivided into external and internal (in-vehicle). Those 

occurring inside the vehicle seem to have greater effect on driver’s behaviour and safety 

(Horberry et al., 2006). While some studies (Stutts et al., 2001) report that external 

distraction factors are less than 30% of the total distraction factors, other specify that they 

account for less than 10% (Sagberg, 2001; MacEvoy et al., 2007).  

Patel et al., (2008) examined perceived qualitative characteristics of 14 different driving 

distraction factors. Participants were asked to rank a list of distracting factors according 

to certain criteria. Table 2.4 illustrates the average perceived risk ratings for each of the 

14 factors.  

As shown, the highest perceived risk factors are those associated with mobile phone 

usage, followed by the 'looking at a map or book' and 'grooming' factors. On the other 

hand, the lowest perceived risk ratings were associated with 'listening to music', 'talking 

to passengers' and 'looking at road signs'. It is noticeable that advertising signs and 

landscape are both a significant perceived external distraction factor.  
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Table 2.1: Perceived risk associated with driver distraction (Patel et al., 2008) 

Driver Distraction Hazard Risk rating Lower limit Upper limit 

Listening to music 3.3 1.2 4.8 

Talking to passengers 3.8 2.0 5.0 

Looking for/at road signs 4.2 3.0 6.0 

Satellite navigator use 4.6 3.0 6.0 

Hands-free kit use 4.7 3.0 6.0 

Looking at Landscape 5.2 3.0 7.0 

Adjusting device 5.3 4.0 7.0 

Smoking 5.3 3.0 7.0 

Looking at advertising sign 5.7 4.0 8.0 

Eating or drinking 6.3 5.3 8.0 

Looking for object 7.4 6.0 9.0 

Grooming/make-up 8.5 8.0 10.0 

Looking at a map or book 8.5 8.0 10.0 

Mobile phone use 8.6 8.0 10.0 

 

The actual relative importance of different distraction factors was studied in more depth 

in the reports of the 100-Car naturalistic driving study carried out in the USA. Table 2.5 

shows results on the odds ratio or in other words the accident probability when engaging 

in various secondary distracting tasks over when driving without any distracting task 

(statistically significant results are in bold). As a result, a significant odds ratio indicates 

an important increase in accident risk when engaged with such a distracting activity. 

Results suggest that crash probability of “reaching for a moving object” is more than eight 

times higher when compared to just driving, followed by “reading' and 'applying make-up” 

where risk is increased by more than 3 times. Finally, mobile phone use is increasing 

accident risk by 2.8 times.  

 

Table 2.2: Odds ratio for secondary task (NHTSA, 2008) 

Type of Secondary Task Odds Ratio 
Reaching for a moving object 8.82 

Insect in vehicle 6.37 

Reading 3.38 

Applying makeup 3.13 

Dialling hand-held device 2.79 

Inserting/retrieving CD 2.25 

Eating 1.57 

Reaching for non-moving object 1.38 

Talking/listening to a handle-held device 1.29 

Drinking from open container 1.03 

Other personal hygiene 0.70 

Adjusting the radio 0.50 

Passenger in adjacent seat 0.50 

Passenger in rear seat 0.39 

Child in rear seat 0.33 

 

As for the influence of distraction on driving performance, a fundamental question is how 

and how much drivers are capable of self-regulating their driving behaviour in order to 
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compensate their driving inattention. As it appears, this issue has not been thoroughly 

examined thus far. This is probably because research has mainly focused on the 

identification of the impairment of driving performance as a result of distraction activities 

(Haigney et al., 2001). Nonetheless, the engagement with non-driving tasks is not 

necessarily indicative of driving performance impairment, and research (Poysti et al., 

2005) suggests that most drivers do engage in a range of conscious and unconscious 

compensatory behaviours (speed reduction etc.) in order to maintain an adequate level 

of safe driving.  

Compensatory behaviour (Alm and Nilsson, 1994; Lamble et al., 2002) might take place 

from a strategic (e.g., preferring not to use a mobile phone during driving) to an 

operational level (e.g., reducing speed). In order to moderate risk exposure, the choice 

of not engaging into a distracting task while driving can be the option at the highest level. 

Research (Alm and Nilsson, 1994; Lamble et al., 2002) showed that mobile phone usage 

impairs driving performance of elder drivers more than that of younger drivers and that 

this results in a compensatory behaviour at the highest level; a significant portion of older 

drivers choose not use a mobile phone during driving.  

Research showed that at an operational level, drivers endeavour to reduce workload and 

moderate their risk exposure when there is interaction with in-vehicle devices. This is 

done through speed reduction (Alm and Nilsson, 1990; Burns et al., 2002; Haigney et al., 

2001), headway distance increase (Strayer and Drews, 2004; Strayer et al., 2003), 

adjusting the relative amount of attention given to driving and non-driving tasks to 

respond to road environment changes (Brookhuis et al., 1991) and accepting a temporary 

degradation in certain driving tasks (Brookhuis et al., 1991; Harbluk et al., 2002). Mobile 

phone use results in higher variation of the throttle position, lower speed with higher 

variation and higher workload level (Md Mazharul and Washington 2015) regardless of 

the difficulty level of the conversation. Drivers tend to select larger headways (Nilsson 

1982) and longer time-headways (Mohammad et al. 2015) suggesting possible risk 

compensatory behaviour (Md Mazharul and Washington 2015, Törnros and Bolling 

2006).  

Speeding 

Speeding is also recognized (WHO, 2015) as one of the most important factors in driving 

risk analysis that influences accident probability (e.g. decreased reaction distance, loss 

of control) and crash severity. While, at an individual level, the perceived risk is low, the 

societal risk is high and usually not well understood. The higher the absolute speed, the 

higher the crash risk. This is probably because the driver needs a specific amount of time 

to react to unpredictable events. Therefore, the faster a vehicle is moving, the longer it 

moves before a reaction. In general, at high speeds the time to react to changes in the 

environment is shorter, manoeuvrability is harder and the stopping distance is larger. 

Apart from that, the larger the speed differences, the higher the accident probability. High 

speed differences increase the number of potentially conflicting situations. For instance, 

the probability of a rear-end collision with a slower car in front and a head-on collision 

when overtaking a slower car is increased because of the high speed difference.  
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The relationship between speed and accident probability is less direct and more 

complicated to quantify than the relationship between speed and accident severity. There 

are several studies (Kloeden et al., 1997, 2001, 2002) that relate crash risk to individual 

driver’s travel speed or the difference between it and the mean speed of traffic. One 

important factor that determines to what extent driving speed affects accident probability 

is the layout and design speed of a road. There are some roads that can cope with higher 

driving speeds than others, without influencing accident probability much. Traffic volume 

and traffic composition are also important factors.  

The severity of a crash follows from the laws of physics. At higher speeds, the energy 

released during a crash increases with the square of the speed and the change of speed 

experienced by those involved directly or indirectly in the crash, increase with speed. 

Crash risk increase because when speed increases, there is a shorter time to react to 

environment’s changes and the capability to maneuver the vehicle effectively is reduced. 

Drivers need approximately one second (reaction time) on average to react to an 

unforeseen event and choose how to respond when in traffic. The higher the driving 

speed, the longer the distance covered during the reaction time and before a response 

is initiated, reducing thus the opportunity to avoid a crash.  

Excessive speed is a major problem in all motorised countries. A research (Elvik, 2011) 

for Norway showed that if all drivers were driving below speed limits, there would be 20% 

less fatalities. Speeding has been (OECD, 2006) a contributory factor in 10% of the total 

accidents and more than 30% in fatal accidents. According to (Andersson and Nilsson 

1997, Nilsson 1982) the probability of a crash involving an injury is proportional to the 

square of the speed, the probability of a serious crash is proportional to the cube of the 

speed and the probability of a fatal crash is related to the fourth power of the speed. 

Moreover, (Nilsson 2004) depicts the relationship between speed and driving risk via an 

exponential curve, showing that the driving risk is not proportional to the speed. For 

instance, a 1 km/h increase in average vehicle speed results in a 3% increase in the 

frequency of accidents involving injuries and a 4–5% increase in the incidence of fatal 

crashes. The probability of a vehicle collision with an adult pedestrian to be fatal is less 

than 20% if the vehicle’s speed is less than 50 km/h and almost 60% if it is 80 km/h.  

The estimates in figure 2.4 are aligned with older research indicating (Rosen et al 2009, 

Kröyer et al., 2014) that fatality rate is about 4-5 times higher in collisions between a 

vehicle and a pedestrian at 50 km/h compared to 30 km/h. More than 50 km/h is not 

acceptable in areas where motorised vehicles and vulnerable road users might mix and 

share the same space. In those cases, e.g. in residential areas, a limit of 30 km/h is 

imposed.  
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Figure 2.3: The upper part of the relative fatality risk curves for base speeds 30 km/h, 40 km/h and 50 

km/h. (Source: Kröyer et al., (2014)) 

 

There are many empirical studies (Nilsson, 2004) that assess the influence of a change 

in average speed on a specific road on the number and severity of crashes on that road. 

Most scientifically sound studies are comparing the average speed and the number of 

crashes before and after a speed management intervention, e.g. a speed limit change or 

the introduction of speed enforcement. Results should be compared with a similar group 

of roads that were not affected by the speed management measure but can be taken to 

have been affected similarly by all other concurrent changes. This is to ensure that there 

are no other factors other than speed change that can explain a change in crash 

frequency (e.g. a change in traffic volume or an anti-speeding publicity campaign).  

Figure 2.4 illustrates the relationships between change in average speed and crashes. 

As it appears, a 10% increase in average speed will approximately lead to a 20% increase 

in all injury crashes, a 30% increase in fatal and serious crashes and a 40% increase in 

fatal crashes.  
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Figure 2.4: Illustration of the power model and the relationship between percentage change in speed 

and the percentage change in crashes (Source: Nilsson (2014)) 

 

Another strong theory is that speed variance is also related to accident frequency. 

Nonetheless, relative studies were not entirely conclusive and it is not clear how to 

interpret the relationship found. Speed differences are defined as the speed range over 

a 24 hours period of recording in most studies. This means that apart from speed 

differences between vehicles at a particular moment, measured speed differences also 

include peak and off-peak periods’ differences and related traffic volume differences.  

However, the use of loop detector data from highways during the last years has made it 

possible to study the effects of speed variance in a much more robust and well-controlled 

manner. If stored in s suitable format, data from loop detectors can be used to simulate 

traffic in great detail. It then becomes possible to determine if the period immediately 

before a crash occurred was characterized by a larger speed variance than other periods.  

A review (Elvik, 2014) of thirteen studies evaluating the speed variance effects on crash 

rates, based on loop detector data showed that although almost all found that a large 

speed variance increased crash risk, the numerical estimates of effect varied greatly. The 

fact that each study employed a different method made it impossible to synthesize their 

results by means of meta-analysis. It is evident that increased speed variance increases 

crash risk. Nevertheless, most of these crashes are probably property-damage-only 

crashes. Dense traffic featured by frequent and sudden speed changes is associated with 

a particularly high risk of crashes.  
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Harsh maneuvers 

When modeling the kinetic energy of an accident a very close relation to forces is 

observed. The forces in traffic depend mainly on speed change, the accelerations and 

the decelerations, and not on the speed itself. Accidents are a subset of the events that 

include unforeseen deceleration events and the higher the speed, the harsher are the 

deceleration events and the higher is the probability of injuries and/or fatalities among 

the involved road users. In specific accident type investigation, those forces applied on 

the human body are of a great interest, related to the driving speed level of the motor 

vehicle.  

Some studies (OECD, 2006, Elvik et al, 2009) mention that apart from the average speed, 

other factors, such as the frequency of accelerations, can sometimes be more important. 

Harsh acceleration, harsh breaking and harsh cornering events are three highly 

significant indicators for driving risk assessment, and risk level correlation and 

classification (Johnson and Trivedi 2011, Bonsall et al. 2005, Gündüz et al., 2018, 

Tselentis et al., 2017) especially when driving aggressiveness is evaluated. This is 

because they are strongly correlated with unsafe distance from adjacent vehicles, 

possible near misses, lack of concentration, increased reaction time, poor driving 

judgement or low level of experience and involvement in situations of high risk (e.g. 

marginal takeovers). The correlation between HA and HB events with driving risk has 

been highlighted in the scientific papers published by (Tselentis et al., 2017, Bonsall et 

al. 2005) and it has been widely recognized by the insurance and telematics industry.  

Alcohol and other psychoactive substances 

Driving under the influence of alcohol and any psychoactive substance or drug increases 

accident probability and may result in death or serious injuries (WHO, 2015). When drink-

driving takes place, crash risk remains at low levels when blood alcohol concentration 

(BAC) is low and increases significantly when the driver's BAC is higher than 0.04 g/dl.  

On the other hand, when drug-driving takes place, accident risk is increased to differing 

degrees depending on the psychoactive drug used. For example, fatal crash risk among 

those who have made use of amphetamines is about 5 times the risk of someone who 

has not.  

Motorcycle helmets, seat-belts and child restraints 

Wearing a motorcycle helmet correctly can reduce the fatal crash risk by approximately 

40% and the risk of severe injury crash risk by over 70% (WHO, 2015). Wearing a seat-

belt reduces fatal accident risk among front-seat passengers by 40–50% and of rear-seat 

passengers by between 25–75%. When child restraints are correctly installed and used, 

they can reduce fatalities among infants by approximately 70% and casualties among 

small children by between 54% - 80%.  
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2.2.2) Methods for quantifying safety efficiency in transportation 

The measurement of driving performance as well as the determination of which factors 

and how much they are influencing it has been studied a lot in the past. Matthews et al. 

(1996) examined whether driver stress is related to performance impairment because 

stress-prone drivers are vulnerable to overload of attentional resources. The driving 

sample comprised from eighty young drivers who participated at the same time in a 

simulated drive and a grammatical reasoning task, which was presented either visually 

or auditorily, with random priority assigned to the two tasks. Results indicated that driving 

performance is characterized by effort’s adaptive mobilization to keep up with changing 

task demands. The analysis conducted showed that stressed drivers adapted quite 

efficiently to high demand levels, but they are probably at performance impairment risk 

when the task requires relatively little active control.  

The potential improvement of driving performance using a smart driving system (that 

provides safety and fuel-efficient driving advice in real time) in on-road experiments was 

assessed  by Birrell et al. (2014). Forty participants participated in the experiment using 

an instrumented vehicle over a 50-min mixed-route driving scenario. The two different 

conditions adopted are to control the vehicle with and without smart driving feedback 

offered to the driver via a smartphone device. The study resulted that a 4.1% 

improvement in fuel efficiency can be achieved when using the smart driving aid (with no 

increase in travel time or average speed reduction). There were also observed significant 

changes in safety behaviour, namely an increase in mean headway to 2.3 s and an 

almost threefold reduction in time spent traveling closer than 1.5 s to the vehicle in front.  

Rakauskas et al. (2014) studied the influence of mobile phone usage on driving 

performance as well as the relationship between the distraction resulting and the difficulty 

level of a phone conversation. A driving simulator experiment is conducted to determine 

how and how much several levels of cell phone conversations influence driving 

performance. Mobile phone use resulted in higher variation in accelerator pedal position, 

average speed reduction and higher speed variation, and a higher level of workload 

regardless of conversation difficulty level. Drivers are likely to endure higher workloads 

or set reduced performance goals to cope with the additional phone conversations stress.  

In order to compare the effects of fatigue, performances and sleepiness in real-life driving 

and driving in a simulator, Philip et al. (2005) conducted a cross-over study that involved 

real driving (1200 km) or simulated driving after controlled habitual sleep (8 hours) or 

restricted sleep (2 hours). Twelve healthy young men (range 19-24 years) participated 

who were free of sleep disorders and measures collected included self-rated fatigue and 

sleepiness, simple reaction time before and after each session, the number of 

inappropriate line crossings from the driving simulator and from video-recordings of real 

driving. Results indicated that line crossings were more frequent in the driving simulator 

than in real driving and were increased by sleep deprivation in both conditions. Reaction 

times (10% slowest) were found to be slower during simulated driving and sleep 

deprivation. It was also found that the sleepiness scores were higher in the driving 

simulator and in the sleep restricted condition. Fatigue increased over time and with sleep 

deprivation but it was similar in both driving conditions.  
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Lenné et al. (1997) examined the time of day variation in driving ability as a possible 

cause of accidents. Eleven male subjects participated in a driving simulator experiment 

for 30 minutes, six times of day. The instructions given to subjects were to maintain a 

stable position in the left-hand lane, drive at a constant speed of 80 km/hour and perform 

a secondary reaction time task. The mood of each subject was measured at the beginning 

and end of every session. Driving performance was measured on the basis of the mean 

and standard deviation of lateral position and speed. It appeared that speed’s mean and 

standard deviation for curved and straight segments as well as reaction time varied 

significantly across the day. Performance was impaired more at 06:00 and 02:00 hours, 

with improvements in driving performance between 10:00 and 22:00 hours and an early 

afternoon dip. Results indicated that driving performance is subject to time of day 

variations. The fact that impairments in driving performance in the late evening and early 

morning are of a similar magnitude to those occurring in the early afternoon is also very 

important.  

It can be inferred from the literature review conducted that there is a plethora of 

researches studying the assessment of driving behaviour that are mainly focusing on 

determining the correlation between driving behaviour metrics (speed limit exceedance, 

number of harsh acceleration/ braking events, mobile phone distraction etc.) either 

together or separately and accident probability. To the best of the author’s knowledge, 

this is the first effort made to estimate and assign a relative safety efficiency index to each 

driver of a sample by exploiting several driving behaviour metrics that result from 

microscopic driving behaviour data recorded from smartphone devices.  

Linear programming for efficiency measurement 

The terms “efficiency” and “productivity” are widely used in economics and refers to the 

optimal way a production unit can make use of its available resources (Shone, 1981). 

More specifically (Farrell, 1957), a Decision-Making Unit (DMU) is “technically efficient” 

when the amount of outputs produced is maximized for a given amount of inputs, or for 

a given output the amount of inputs used is minimized. Thus, when a DMU is technically 

efficient, it operates on its production frontier and therefore DMUs lie on the efficiency 

frontier. Based on the assumptions stated below, drivers in this study are considered as 

DMUs and DEA applicability on the field of driver’s assessment based on microscopic 

behavioural characteristics is examined.  

DEA is therefore a mathematical programming technique with minimal assumptions that 

determines a unit’s efficiency based on its inputs and outputs, and compares it to other 

units involved in the analysis. A data-oriented methodology that effects performance 

evaluations and other conclusions drawn from the analysis directly from the observed 

data. The efficiency of a DMU is comparatively measured and analysed relatively to the 

rest of the DMUs considering that all DMUs lay on or below the efficiency frontier. No 

assumption is required about functional form (e.g. a regression equation, a production 

function, etc.) or the statistical distribution of data sample and as a result DEA is classified 

as a non-parametric method. It is a frontier analysis, a process of extremities, not driven 

by central tendencies in contrast to all statistical procedures. Each DMU is analysed 
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separately and the real and optimal performance that can be achieved for each unit is 

estimated.  

Efficiency can be defined as the ratio of input and output in a theoretical scenario of units 

that have a single input and output but in a real case scenario where typical organizational 

unit have multiple and incommensurate inputs and outputs a more scientific approach is 

needed. DEA is an approach for efficiency and productivity analysis of production units 

with multiple inputs to produce multiple outputs mostly used thus far in business, 

economics, management and health. The rationale for using DEA is its applicability to 

the multiple input–output nature of DMUs provision and the simplicity of the assumptions 

underlying the method. It is a methodology of several different interactive approaches 

and models used for the assessment of the relative efficiency of DMU and for the 

assessment of the efficiency frontier. It assists in drawing important conclusions on 

operational management of the efficient and inefficient units.  

DEA has become one of the most popular fields in operations research, with applications 

involving a wide range of context (Thanassoulis, 2001). It has been applied in great extent 

in literature (Cook & Seiford, 2009, Emrouznejad et al., 2008, Hollingsworth et al., 1999) 

to measure and compare the productivity performance of a group of DMUs. It is one of 

the most popular fields in operations research (Emrouznejad et al., 2008, Seiford, 1997) 

to say the least. (Martić et al., 2009) presented the ample possibilities for using DEA for 

evaluating among others the performance of banks, schools, university departments, 

farming estates, hospitals and social institutions, military services and entire economic 

systems. Since the introduction of CCR model (Charnes et al., 1978) in 1978, the number 

of publications where DEA is implemented has exponentially grown.  

DEA has also been implemented in transport fields in assessing public transportation 

system performance (Karlaftis et al., 2013), as well as traffic safety studies (Egilmez & 

McAvoy, 2013, Alper et al., 2015) where it was proved to be equally useful as in the fields 

stated above. DEA approaches have been applied so far to benchmark road safety on a 

country (Shen et al., 2011, Shen et al., 2012, Hermans et al., 2009, Wegman & Oppe, 

2010, ), state (Egilmez & McAvoy, 2013) and municipality level (Alper et al., 2015). It has 

also been used to prioritize highway accident sites (Cook et al., 2001) as well as to 

investigate target achievements and identify best traffic safety practices (Odeck, 2006). 

Finally, other studies considered combining road safety information in a performance 

index (Hermans et al., 2008) or creating more basic safety indicators (policy performance, 

final road safety outcomes, intermediate outcomes and background characteristics of 

countries) to relatively evaluate road safety among different countries (Gitelman et al., 

2010).  

Nonetheless, DEA has never been used before in driving behaviour research. Driver’s 

efficiency has been studied in a great extent but never by making use of DEA techniques. 

This research proposes a methodological framework to address the issue of measuring 

driver’s efficiency and categorize the drivers of the sample used in three groups i.e. non-

efficient, weakly efficient, most efficient. The main characteristics of each group are 

presented in order to draw important conclusions on the features of each driving group 

and provide recommendations for drivers on how to improve their driving efficiency. For 

the purposes of this study, drivers will be considered as DMUs, which is deemed to be 
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rational since a driver is a unit that makes decisions for a given mileage range about the 

number of events occurring and the time of mobile phone usage and speed limit violation. 

Driving attributes (metrics and distance recorded) will be considered the inputs and 

outputs of the DEA program. More details on the structure of the DEA formulation 

implemented are given below.  

The general idea of DEA is to minimize inputs (input-oriented model) given a specific 

production outcome or maximize the outputs of a problem (output-oriented model) give a 

specific set of inputs. More specifically in the case study examined herein, a driver should 

either drive more kilometres maintaining the same number of harsh braking or 

accelerating events or reduce the number of harsh braking/accelerating events given a 

specific driven mileage. The same applies to the rest of the metrics recorded for each 

driver. From a road safety perspective, increasing mileage increases crash risk (Tselentis 

et al., 2017) and, therefore, an input-oriented DEA program is being developed aiming to 

minimize inputs (recorded metrics) maintaining the same number of outputs (recorded 

distance). Although a trip cannot literally behave as a DMU, it can be evaluated as a DMU 

and, therefore, it will be considered as such for the purpose of this research considering 

trip attributes as inputs and outputs of the DEA program. This is deemed to be a correct 

assumption on a trip basis since a) all variables used are continuous quantitative 

variables as those used in previous DEA studies (Cook & Seiford, 2009, Hollingsworth 

1999, Karlaftis et al., 2013, Egilmez & McAvoy, 2013) and b) a driver should reduce his 

mileage (Tselentis et al., 2017) and the frequency of some of his driving characteristics 

such as harsh acceleration and braking, mobile phone usage and speeding (Tselentis et 

al., 2017, Aarts & Van Schagen, 2006, Young & Regan 2007). The proposed 

methodology is applied to a real-life case study of 23,000 and 15,000 trips recorded in 

urban and rural road respectively collected from one hundred drivers in each road type.  

Data envelopment analysis – Main principles 

Data envelopment Analysis (DEA) is a technique that has been exhaustively applied in 

literature (Cook & Seiford, 2009, Emrouznejad et al., 2007, Hollingsworth et al., 1999) to 

evaluate the efficiency of Decision-Making Unit (DMU) mainly in scientific fields such as 

economics, management and health. It has become one of the most popular fields in 

operations research, with applications involving a wide range of context (Thanassoulis 

2001). It has been applied in great extent in literature (Cook & Seiford 2009, Emrouznejad 

et al. 2008) to measure and compare the productivity performance of a group of DMUs. 

Martić et al. (2009) presented the ample possibilities for using DEA for evaluating among 

others the performance of banks, schools, university departments, farming estates, 

hospitals and social institutions, military services and entire economic systems. DEA has 

also been succesfully implemented in transport fields in assessing public transportation 

system performance (Karlaftis et al. 2013) and traffic safety studies (Shen et al., 2011, 

Egilmez & McAvoy 2013, Alper et al. 2015) but never before in driving behaviour 

research. In this study, a data envelopment analysis (DEA) approach is proposed to 

benchmark driving efficiency based on different type of driving metrics.  

The accuracy of the estimated performance measures depends on the use of appropriate 

and well-specified models, the inclusion of relevant inputs and outputs, and the use of 
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accurate data. Several pitfalls in DEA are discussed in literature (Dyson et al. 2001). It is 

mentioned that when input and output variables simultaneously are formulated as 

percentiles and/or ratios (e.g. profit per employee, and returns on investment), and raw 

data (e.g. revenues, assets, employees, profits), the efficiency score might be 

miscalculated. An example of such a potential problem in a DEA analysis is also 

demonstrated (Cooper et al., 2007). The choice of an appropriate model is also an 

important methodological issue. Different approaches have advantages and 

disadvantages and the choice of the most appropriate estimation method should depend 

on the type of organizations under investigation, the perspective taken, and the quality of 

available data. DEA is a non-parametric method and does not impose a functional form 

on the production frontier and hence can accommodate wide-ranging behaviour. 

However, measurement errors can bias results and DEA may be best employed in 

applications having relatively small potential measurement errors. A further line of enquiry 

is the impact on efficiency scores of sample size, and of more advanced DEA techniques, 

which allow for the ranking of efficient, as well as in-efficient units.  

Rapid technological progress, especially in telematics and big data analytics, along with 

the increase in the information technologies’ penetration and use by drivers (e.g. 

smartphones), provide unprecedented opportunities to accurately monitor and collect 

large-scale data on driving behaviour. On the other hand, linear programming techniques 

such as DEA are performing relatively fast on small-scale databases but much slower 

when it comes to large-scale data. So far, it hasn’t been necessary to analyse large 

databases using optimization techniques but with the innovative data collection methods 

emerging for collecting data it becomes necessary for stakeholders, policy-makers and 

scientists to come up with a practical solution. As a result, it becomes even more 

necessary for scientists to come across a practical solution to tackle the problem of 

analysing large databases using optimization techniques to support policy-makers and 

stakeholders (Vlahogianni 2015).  

This thesis is dealing with the problem of optimization techniques that can be applied in 

real transportation problems to deal with the problem of driving efficiency benchmarking 

using DEA. It addresses the multiple inputs and multiple outputs DEA problem for large-

scale data by proposing an algorithmic modification of DEA based on computational 

geometry and its effectiveness is tested. The approach is based on the “quickhull” 

algorithm, which is the computational geometry approach of frame recognition, i.e. the 

convex hull, to allow for extreme points identification before applying the standard DEA 

approach to the whole sample. The proposed approach is evaluated in terms of 

computation time, compared to other proposed approaches i.e. the RBE technique and 

the standard DEA procedure. The proposed methodology is applied to a real-life case 

study of 10,088 recorded trips collected from Eighty-eight (88) drivers.  

Improvements on DEA application on large-scale 

One of the most important issues arising when working with linear programming (LP) 

techniques such as DEA is that it requires a considerable amount of time to perform on 

large-scale data. Nonetheless, it is feasible to achieve enhancements and improvements 

for the standard DEA approach. Apart from all well-known approaches outside DEA for 
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improving LP performance (e.g., multiple pricing, product forms, hot starts, etc.), there 

are techniques that exploit DEA LPs’ special structure. Many suggestions are made so 

far to reduce DEA running time with the two best known among them, in terms of 

processing time, to be Reduced Basis Entry (RBE) and Early Identification of Efficient 

DMUs (EIE) (Dulá, 2008; Barr & Durchholz, 1997; Ali, 1993; Dulá & López, 2009). Both 

approaches are a result of the DEA LPs formulation, which defines the DEA LP optimal 

basis based only on the data points of efficient DMUs. The efficiency frontier consists 

only of those extreme data points (DMUs) whose efficiency equals to one. The inefficient 

DMUs do not play any role in defining the optimal solution and therefore their presence 

or absence from the LP coefficient matrix makes no difference. In other words, presence 

or absence of less efficient DMUs from the LP coefficient matrix has no effect on defining 

the optimal solution and, therefore, it is preferable to be absent in order to reduce the 

required running time for each LP. Ideally, for each LP that is required to be solved in 

order to identify the efficiency index and peers of every DMU m, it is recommended to 

omit all DMUs apart from the efficient ones and DMU m.  

On this basis, the concept of RBE is to leave out from the subsequent (next iterations) 

LP formulations every DMU found to be inefficient. The implementation of this idea is 

easy since LPs are iteratively formulated and solved thereafter. By systematically 

applying this approach, it gradually leads to a reduction of the size of the LPs and 

consequently to the running time of each iteration and of the total solution.  EIE is based 

on the concept that a DMU is deemed to be efficient if its constraint is an equality at 

optimality in a multiplier form or its variable appears in a basis of an optimal solution of 

an envelopment LP. Literature (Dulá, 2008) shows that EIE has less impact on improving 

performance than RBE. This is because in large data sets, the number of efficient DMUs 

is small compared to the number of data points. Furthermore, a relatively small subset of 

the efficient DMUs seem to have a preponderant presence in optimal bases. These two 

techniques were tested (Barr and Durchholz, 1997) together and a significant impact on 

reducing computation times is reported. It is also concluded (Bougnol et al., 2005) that 

RBE has the most impact on improvement.  

There are several alternative procedures for reducing DEA processing time. First of all, 

a combination of RBE and data partitioning schemes can be implementation (Barr & 

Durchholz, 1997). The main concept is based on the principle that if a DMU is inefficient 

within a subset of DMUs, it will be inefficient compared to any superset of the DMUs. An 

application consists of creating several dataset partitions of uniformly sized data blocks 

and independently solving the DEA LPs using the standard procedure to identify the 

inefficient DMUs within these blocks. This becomes an effective scheme for reducing 

processing time since it is a procedure that can be repeated each time with a new set of 

data blocks consisting of DMUs with unknown status, until a final single block with 

efficient DMUs is created. All DMUs are evaluated and scored in a second phase using 

LPs composed of the DMU that were not eliminated in the first phase. A significantly 

smaller LP than would otherwise be used in the standard approach is likely to arise after 

the first phase and so on. It is quite possible though, that more than n LPs will have to be 

solved. It was observed that the performance of a “hierarchical decomposition” schemes 

such as the one applied is mainly affected by the size of the initial and intermediary data 

blocks formed. This is an issue that requires experimental tuning before the 
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implementation. Tests performed in this research, indicated that substantial time 

reductions were achieved once these parameters are identified.  

Additionally, another implementation found in literature is the adaptation of procedures 

mainly used in computational geometry to solve the finite polyhedral frame problem, 

which is a version of the convex hull problem. This is the problem of identifying the 

extreme points of a finitely generated polyhedral set. The frame problem is similar to the 

problem of efficient DMUs identification in DEA (Dulá and López, 2006). The extreme 

point identification algorithm builds the exterior points set by identifying a superset that 

includes the efficient DMUs. Thereafter, the number of LPs solved applying the standard 

approach is equal to the number of inefficient DMUs while the final dimension of the LPs 

is equal to the total number of efficient DMUs in the data set plus one (the inefficient DMU 

examined in each iteration).  

Another option for reducing computation time for DEA is pre-processing ideas several of 

which have been implemented in literature (Dulá & López, 2009, Dulá & Hickman, 1997). 

In general, when the status of one or more DMUs is determined without having to solve 

the entire LP problem then less time is needed and a pre-processor is deemed as 

effective. DMUs classification is exactly what pre-processors are used for. It is not 

required in most cases to solve an LP for that DMU since advanced classification of an 

efficient DMU takes place with an inexpensive pre-processor. Especially when estimating 

the efficiency score of a DMU is not the goal of a research, the entire LP solution is 

obviated for inefficient DMUs since they are classified by the pre-processor. Therefore, a 

pre-processor can be proved extremely valuable in terms of cost and effectiveness. If 

efficiency score is required, a pre-processor could also be exploited to reduce the cost of 

inefficient DMUs identification by achieving fast classification. As described above, if a 

DMU is inefficient, it can be omitted from the solution of the LPs that should be solved for 

scoring and benchmarking the entire inefficient DMUs set. As an example, in variable-

returns-to-scale (VRS) model, a pre-processor could be simple sorting to identify efficient 

DMUs. A sorting is equivalent to the translation of a hyperplane that is parallel to one of 

the axes in the attribute space. This suggests other types of pre-processors based on 

translating and rotating hyperplanes. Pre-processors based on translating or rotating 

hyperplanes involve only inner products. More details on sorting in DEA can be found in 

(Dulá & Hickman, 1997). Maximum and minimum attribute values of outputs and inputs 

of DMUs respectively of the entire data set are also likely to represent efficient DMUs.  

Other approaches that yield significant results towards the reduction of the required time 

when applying DEA are the data partitioning approaches. The basic concept of these 

approaches is that RBE methodologies are combined with data partitioning schemes. 

The fundamental idea lies on the principle that if a DMU m is found to be inefficient within 

a set E of DMUs, DMU m will be inefficient within any superset that includes set E. To 

apply this, the main dataset is partitioned into equally sized subsets and DEA LPs are 

solved using RBE techniques for every DMU in each of those subsets. When this 

procedure is over, all inefficient DMUs are identified and compose the new sets of DMUs 

which still are subsets of the initial database. By applying the same approach repetitively 

in every superset created by efficient DMUs of each subset, a final superset comprising 

of the efficient DMUs of the initial dataset is composed. As a second phase of the 

procedure, a DEA LP is solved for each of the inefficient DMU m using only all DMUs that 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

54 

were evaluated as efficient plus DMU m in each iteration. As described above, the 

advantage that this approach offers is that computation time is significantly reduced since 

the LP comprises of a considerable lower number of variables; especially when the 

number of efficient DMUs (density) is low.  

The LPs arising are estimated to be much smaller than would otherwise be used in the 

standard approach. Nevertheless, depending on how data is partitioned, the number of 

efficient DMUs and a few other parameters, there is a slight chance that total required 

time will be more than that required if RBE without data partitioning was applied. In 

schemes like these, called “hierarchical decomposition” schemes, performance is 

affected by the size and density of the initial and intermediary sets of DMUs. According 

to (Barr & Durchholz, 1997), optimizing this procedure requires experimental tuning and 

results of the same research indicate a considerable improvement in computation time.  

Computational geometry procedures are another idea that has been extensively used as 

an improvement to the DEA procedure to solve the problem of the exterior points frame. 

The most common version of frame determination is the convex hull problem that tackles 

the problem of identifying the extreme points of a finitely generated polyhedral set. 

Convex hull algorithm builds the frame consisting of the extreme points (the efficient 

DMUs) as well as the vertices and line segments that joins them two by two (without 

intersecting the interior of the polyhedron). In general, the convex hull of a finite point set 

S is the set of all convex combinations of its points. Convex hull’s equivalent problem in 

DEA is the one of identifying solely the efficient DMUs (Dulá & López, 2006) without 

having to solve the entire LP for each of the DMUs in the set. As described above, the 

benefit of computational geometry methods such as the convex hull approach is that the 

size of the new LPs to be solved are considerably smaller and the number of the LP’s 

variable is represented by the total number of efficient DMUs in the dataset plus one, 

which is the DMU examined in each iteration.  

2.3) Naturalistic driving experiments 

In this section, an extended literature review is carried out regarding all available 

experiment types of assessing driving behaviour. More specifically, benefits and 

limitations are presented regarding naturalistic driving experiments, driving simulator 

experiments, on road experiments, in-depth accident investigations and surveys on 

opinion and stated behaviour. In the end, a comparative assessment of experiments for 

the assessment driver behaviour is taking place.  

Until recently, the high cost of real-time driving data recording systems, data programs, 

cloud computing services, the inability to accumulate and exploit massive data bases (big 

data) for transport and traffic management purposes (De Romph, 2013, Lee, 2014), as 

well as the low penetration rate of Smartphones and social networks, made it extremely 

hard to collect and manage real-time data and, therefore, to study the relation between 

driving behaviour and travel behaviour and the probability of crash involvement. 

Research has indicated that barriers like those mentioned above can be overcome when 

consumers are given an incentive such as a monetary prize (Reese and Pash, 2009); 
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this, along with informing drivers through personalised feedback about their speeding are 

also effective at encouraging drivers to reduce their (mainly speeding) driving behaviour 

(Ellison, 2015a). It is shown (Elvik, 2014) that the highest rates in speeding reduction by 

incentive schemes is around 60-80% while the respective percentage for mileage 

reduction is 0-10%.  

Thus, the main challenge road safety entities and policy-makers are facing at the moment 

is the wide provision of information on the social benefits that could arise from an 

implementation of such a policy. As a matter of fact, high level of interest has been 

observed among users who were given a medium value financial incentive of $88 per 6-

months period to reduce their mileage. Consumers stated that lower Insurance premiums 

is among the strongest incentive for them and that a mileage-based Insurance could 

probably lead them to ultimately consider car sharing or even using public transportation 

(Reese and Pash, 2009).  

2.3.1) Driving data collection 

Nowadays, it is feasible to collect high quality real-time data in an efficient way in order 

to model individual and total crash risk. Several studies have been carried out using 

innovative methodologies for collecting and analysing (Tselentis et al. 2017) driving 

behaviour data. The most common method for monitoring driving measures necessary 

for behaviour evaluation include recorders that relate to the car engine (Zaldivar et al 

2011, Backer-Grøndahl et al. 2011) and smartphones (Vlahogianni and Barmpounakis 

2017). Generally, there are several emerging methods exploited for collecting naturalistic 

driving data based on in-vehicle sensors.  

The advantage of these sensors is the light and relatively low-cost equipment as well as 

the new possibilities offered by information and communication technologies for data 

transmission and processing, compared to traditional “heavy” vehicle instrumentation of 

early naturalistic driving experiments. This emerging telematics field is tested for a 

number of applications including traffic management, accident detection and emergency 

response, monitoring of fuel consumption and emissions, monitoring of hybrid electric 

vehicles, monitoring of professional drivers etc. (Zaldivar et al. 2011, Yang et al. 2013). 

It is used in innovative motor insurance schemes (UBI - usage based insurance) on 

pricing users based on distance travelled or driving behaviour by the OBD unit (Tselentis 

et al. 2017). Finally, using smartphones as recording devices is becoming popular during 

the last decade because of the precision of their installed sensors and the fact that they 

are considered to be the most affordable solution thus far.  

On-road experiments 

The most common methodologies applied to date, include driving simulators (Paula et al. 

1998, Lenné et al. 1997), questionnaires (Gerald et al. 1998) combined with simulators 

and naturalistic driving experiments (Toledo et al. 2008, Birell et al. 2014). In terms of the 

driving data collection process, data in most studies are recorded either by the vehicle’s 

OBD (Jensen et al., 2011) or user’s smartphone (Handel et al., 2014) and transmitted to 
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a central database for central processing and analysis (Boquete et al., 2010, Iqbal and 

Lim, 2006). This allows the development of special indicators for evaluating driver’s risk 

travel and driving behaviour.  

In some studies, there exists an on board platform inside the vehicle which acquires and 

processes data obtained from the GPS, the EOBD system and a mobile-telephone use 

detection circuit (Boquete et al., 2010). Data are transmitted to a control centre (CC) via 

a mobile telephone connection, where the risk reflected by each vehicle to the insurance 

company is estimated. The system uses mobile telephony connection to transmit data 

between the On-board system (OS) and the CC. Vehicle function data (such as number 

of seatbelts fastened) are captured from the EOBD system, vehicle position-speed data 

from the GPS and driver mobile-telephone use data from a detector circuit (RF energy 

scavenging) are ultimately acquired by the OS. Before transmitting it to the CC, data 

captured by the OS are processed and stored by a high-performance microcontroller that 

exists inside the core of the OS.  

Other studies also incorporate light or weather sensors that interact via a communications 

channel (infrared or Bluetooth) with the on-board computing unit reporting a numerical 

value (Iqbal and Lim, 2006). Position, speed and time are continuously recorded by the 

GPS receiver and transmitted to the central computing unit. Finally, Barmpounakis et al. 

(2016) conclude that, since a few technological obstacles that exist nowadays are 

overtaken, these systems can also be exploited for real time traffic monitoring. Other 

methods include extraction of vehicular trajectories from video recordings using a 

trajectory extraction system to collect vehicle traffic data (Barmpounakis et al., 2015). 

Although this is also not available for real time traffic monitoring it is very likely to be used 

for this purpose in the near future.  

In other on-road experimental studies, an instrumented vehicle is equipped with 

instrumentation that records a variety of driving aspects (Rizzo et al., 2002) (Figure 2.6). 

The equipment includes GPS, video-cameras, sensors, accelerometers, computers, and 

radar and video lane tracking systems. Researchers designing on-road experiments 

attempt to gain in depth information regarding the factors influencing road crash risk. 

Experiments are conducted by trained experts from a wide spectrum of disciplines to 

collect the greatest amount of useful information possible, in order to answer key 

research questions arising (Wadley et al., 2009; Bowers et al., 2013; Okonkwo, 2009).  

On-road driving evaluations are generally considered a widely applied method for 

assessing driving behaviour since a large number of different variables can be recorded 

and evaluated. Nevertheless, on-road studies are criticized when data are not collected 

over a longer time period and in more naturalistic settings as it should be. Another 

methodological concern is that naturalistic studies typically have at least one researcher 

present, who gives navigation directions and sometimes a second researcher is also 

present to observe driving behaviour. This, along with the cost of the equipment, 

increases (Ball and Ackerman, 2011) the total cost of the experiment excessively.  
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Naturalistic driving experiments 

Naturalistic driving experiments is a relatively new research method used to observe and 

collect data of the everyday driving behaviour in natural driving conditions. To this end, 

equipment installed in participants' own vehicles, record manoeuvres occurred, driver’s 

in-vehicle physical motions (e.g. eye, head, hand manoeuvres) and external driving 

conditions (Figure 2.7). In some naturalistic driving studies (SWOV, 2010), participants 

are not given any specific instructions and no intervention is made, to let drivers drive the 

Figure 2.5: An instrumented vehicle used for on-road studies 

Figure 2.6: Naturalistic driving data collection (FHWA-HRT-12-040, 2012) 
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way they would normally do in their own car. This provides very interesting information 

about the relationship between driver, road, vehicle, weather and traffic conditions, both 

under normal driving conditions and in the case of unforeseen events or incidents.  

Naturalistic experiments provide a wide perspective of understanding normal microscopic 

travel and driving behaviour in normal conditions. It is extremely important for participants 

to be involved in an experiment that no experimenter is present, there are no 

experimental interventions and does not include events or incidents that participants have 

prior knowledge or can guess and act for. Moreover, there should not be a possibility for 

participants to observe or predict conflicts, near crashes or even actual crashes in real 

time without potential biases of post-hoc reports. Finally, a naturalistic study (Regan et 

al., 2012) can help a) determine accident risk, b) study the interaction between road/ 

traffic conditions and driver’s behaviour, c) understand the interaction between car drivers 

and vulnerable road users, d) specify the relationship between driving pattern and vehicle 

emissions and fuel consumption, and many other aspects of traffic participation.  

Nonetheless, an important disadvantage of naturalistic driving studies is that there is no 

experimental control of the various variables that can potentially affect the road user’s 

behaviour. This is probably because these studies usually result in specifying a 

correlation between variables examined and driver’s behaviour and not an unambiguous 

causal relationship. Moreover, in real driving conditions traffic incidents are extremely 

rare and not as usual as they appear to be in a naturalistic driving experiment scenario. 

Α general assumption is that participants in a naturalistic study drive normally because 

after a while they forget that they are being recorded. Despite the fact that there are 

strong indications that this is what actually happens, strict scientific proof is still lacking. 

Finally, since drivers in the experiment are participating on a voluntary basis, the 

observed behaviour may not always be representative of the whole population. It cannot 

be inferred that there is no self-selection bias and that volunteers do not significantly differ 

from non-participants. However, the direction and the approximate size of such a bias 

can be established and taken into account by using carefully designed background 

questionnaires (Van Schagen et al., 2011). The advantage of the present research is that 

since benchmarking is performed, the safety efficiency index of each participant is 

relatively estimated and therefore conclusions drawn partially take into account existing 

bias. Nonetheless, the more representative a driving sample is, the more accurate the 

results.  

Driving simulator experiments 

Driving simulators are used for the assessment of several driving performance measures 

in a controlled, relatively realistic and safe driving environment (Figure 2.8). Nonetheless, 

there are many kinds of driving simulators with different characteristics, which can affect 

their realism and therefore the validity of the results obtained.  
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Driving simulators have a number of advantages and disadvantages (Blana & Golias, 

2002). First, the fact that a safe environment is provided for the examination of various 

driving scenarios keeps the driver safe without having real crash risk but on the other 

hand, this gives the driver a tolerance for driving in a more risky way than in a real case 

scenario. As for the type and difficulty of driving tasks, these can be precisely specified, 

and any potentially confounding variables, such as weather, can be eliminated or 

controlled. On the contrary, these variables cannot be controlled in on-road experiments 

but conditions are more realistic. Conducting an experiment on a driving simulator, 

particularly a high-fidelity simulator, can be very expensive because of the high 

installation cost, while it might be significantly less for an on-road driving experiment 

especially for smaller-scale experiments. In general, data collected from a driving 

simulator include also the effects of adjusting on how to use the simulator and may also 

include the effects of being monitored by the experimenter. Simulator sickness is another 

problem encountered when conducting simulator experiments and appears particularly 

when older drivers participate (Papantoniou et al., 2013). Finally, the data volume 

collected from simulators is relatively small compared to an on-road naturalistic driving 

experiment where a vast amount of data can be collected.  

In-depth accident investigation 

Trained experts from multiple disciplines conduct in-depth accident investigations to 

collect on-site information useful to describe the causes of an accidents or a collision. 

These studies aim to reveal in-depth information on the facts that led to an accident by 

describing the accident process and determining appropriate countermeasures.  

Additionally, in-depth data shed light on injury prevention research by identifying the injury 

outcomes in different impact scenarios, including vulnerable road users, and how the 

interaction between different vehicle types affects injury outcome. These data have also 

Figure 2.7: Driving simulator experiment 
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been utilized for future research and development as a tool to come up with innovative 

ideas and evaluate the expected effectiveness of innovative safety systems.  

The basic disadvantage of in-depth accident investigation data is that there is insufficient 

reconstruction evidence in each case investigated and the long time required for the final 

investigation conclusions to be drawn (Hill et al., 2012).  

Surveys on opinion and stated behaviour 

A reference questionnaire based on a list of selected topics is built in stated behaviour 

surveys and a representative sample of population is interviewed. In order to answer the 

research questions raised, the survey approach can employ a range of methods e.g. 

postal questionnaires, face-to-face interviews, and telephone interviews.  

Surveys produce data on the basis of real-world observations, which allows for the 

investigation of new situations, outside the current set of experiences. Furthermore, a 

wide spectrum of many people or events is covered, which means that it is more likely to 

obtain more representative data that will lead to more representative results that can be 

generalized more easily. A large amount of data in a short time frame and for a fairly low 

cost can be obtained through surveys, making it easier to plan and deliver desired results.  

The main disadvantage is that questions are often hypothetical and the actual behaviour 

cannot be observed, while data produced are likely to lack from important details or depth 

on the topic that is investigated (Kelley et al., 2003).  

Experiments overview 

As it appears in Table 2.6, each driving behaviour assessment method may have different 

advantages and limitations.  

 

Table 2.3: Comparative assessment of experiments. 

Experiment type Method / tools Advantages Limitations 

On-road Instrumented vehicle Large degree of control over the 
variables, examination of driver 
competency 

Data collection for a short period, in 
response to selected interventions, high 
cost 

Naturalistic driving Systems installed in 
participants' own vehicles 

Understanding normal traffic, 
observation of conflicts 

No experimental control of variables, 
traffic incidents are very rare 

Driving simulator Driving simulator Safe environment, greater 
experimental control, large range of 
test conditions 

learning effect, simulator sickness, very 
expensive 

In-depth accident 
investigation 

Trained experts 
investigate the causes of 
an actual accident 

Identification of the factors 
contributing to an accident, 
research into injury prevention 

Insufficient reconstruction evidence, long 
time period 

Surveys on opinion 
and stated 
behaviour 

Questionnaire investigate new situations, 
large amount of data in a short time, 
low  cost 

Hypothetical questions, data lack details, 
self-reported data 

 

The selection of the appropriate methodology for assessing driving safety performance 

should be carried out based on the research questions of the assessment and the 
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objectives of the research conducted, the time frame, the infrastructure, available 

resources etc. To this end, all experiment types should also carefully follow the basic 

experimental design principles, allowing for reliable data analysis. The selection of the 

appropriate and relevant driving performance measures, the application of appropriate 

analysis techniques, and the reliability and validity of the analysis are also very important 

analysis challenges that should be addressed when assessing driving performance.  

Simulators (Pavlou et al., 2016) and questionnaire surveys (Vardaki & Karlaftis, 2011) 

are usually employed to assess the influence of various human factors on driving 

performance, especially in older drivers, yet they suffer from the known limitations of self-

reported information. Naturalistic driving experiments are considered to be more 

appropriate for the assessment of driving behaviour (Tselentis et al., 2017, Yannis et al., 

2017, Tselentis et al., 2018, Papadimitriou et al., 2018). This is because behaviour is 

recorded under normal driving conditions and without any influence from external 

parameters such as the presence of an experimenter, prior knowledge or possibility for 

participants to observe or predict conflicts, near crashes or even actual crashes in real 

time without potential biases on the recording. Furthermore, if drivers are monitored for 

an appropriate amount of time, driving under normal conditions will be recorded and no 

bias will appear because of the fact that drivers are aware that they are being recorded.  

2.3.2) Driving metrics - Adequate amount 

As it appears, this rapid technological progress along with the increasingly penetration 

rate by drivers (e.g. Smartphones), provide unprecedented opportunities to accurately 

monitor and analyse driving behaviour. First results from related applications (Tselentis 

et al. 2017, Theofilatos et al. 2017, Araújo et al. 2012, Enev et al. 2016) have confirmed 

the efficiency and usefulness of such big data collection schemes. Nevertheless, the 

exact amount of the necessary driving data that should be collected for each driver in 

driving behaviour assessment is not determined yet. Since both small and big data 

samples lurk the risk of leading to doubtable results, by acquiring a sample either biased 

or computationally expensive to analyse, it is a matter of great importance to specify 

exactly how much driving data should be recorded from each participant in the 

experiment.  

Literature review conducted, revealed that there is not enough research addressing the 

required amount of data, in terms of recording period, to identify driving patterns or 

evaluate the improvements achieved by intervention programs over time (Musicant et al., 

2011). An aspect close but indirectly related to this particular issue has been studied 

since the 1960s (Perkins, Harris, 1968; NCHRP, 1999), in an effort to answer the 

research question of how long a site should be observed to obtain reliable estimates of 

conflict rates (Robertson et al., 1994; Parker and Zegeer, 1988). Reviewing the recent 

literature on driving behaviour evaluation using the IVDRs, it was found that there is no 

unanimity regarding the required driving data measurements for driving assessment. 

Many studies using IVDR, conclude to a variable range that includes 80 h (Musicant et 

al., 2007), 400 h (Neale et al., 2002), and 2107 h (Musicant et al., 2011) per driver. It 

should be highlighted though, that the scope of each research as well as the limitation of 
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each study (driving conditions (driving at night, peak hours etc.), type of road, drivers 

(professional or not) etc.).  

There is only a handful of studies (Shichrur et al., 2014) that introduce methods for 

determining the required sampling time-frame from an IVDR in order to analyze and 

assess driving behaviour. Shichrur et al., (2014) installed IVDRs in the vehicle of each of 

the 64 taxi drivers participated, recording detailed information about unforeseen events 

occurred during the trip with regards to vehicle’s position, speed, vertical and horizontal 

acceleration, and maneuvers. This research concludes that i) collecting a sample of more 

than 300 hours per driver is more likely to result in a relatively stable and reliable measure 

of driver’s average event rate, ii) sampling less than 100 driving hours per driver is not 

likely to result in a reliable measure and iii) sampling between 100–300 h may also result 

in a stable measure but it is less recommended.  

It is therefore deemed to be valuable to determine the amount of data that is necessary 

to be recorded, in order to obtain a complete picture for each driver, where the rate of 

those metrics described above per km travelled converges to a stable value. One of the 

objectives of this dissertation is also to examine and quantify the need for driving data 

collection in driving performance assessments based on data collected through 

smartphone devices.  

2.4) Industrial and operator perspective 

When studying driving efficiency measurement, it is also very important to take into 

account and highlight the impact that such a study will have on several different aspects. 

In this study, this is done by studying driving efficiency measurement from an industrial 

and operator perspective. In order to obtain a valuable insight of the correlation between 

driving behaviour and crash risk it is extremely useful to study the evolution of 

conventional to usage-based insurance (UBI) that addresses the real life problem of 

assigning insurance premiums to the respective accident risk.  

UBI schemes 

Each road network user is charged a lump sum according to the current pricing policy of 

motor insurance companies around the world. This has been considered for long unfair 

and inefficient (Butler et al., 1988) since drivers with similar demographical characteristics 

(age, gender, etc.) pay approximately the same premiums regardless of the distance they 

drive each year and their driving characteristics. This approach is often compared 

(Bordoff and Noel, 2008) to an unlimited food policy restaurant that charges a fixed price 

per person, a fact that encourages people to eat more. Respectively, the conventional 

insurance pricing policy neither discourages drivers from driving more kilometres 

annually nor punishes risky driving behaviour and, on the other hand, it does not reward 

prudent driving behaviour. Most of all, this implies increased number of crashes, 

congestion conditions, carbon emissions, local pollution and dependence from oil. 

Drivers with lower annual mileage and safer driving behaviour are literally forced by the 
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unfair conventional pricing system to subsidize the insurance costs for drivers who drive 

more kilometres per year and in a more risky manner. Apart from that, research findings 

indicate that people with lower income drive fewer kilometres, which allows to draw the 

conclusion that most existing policies promote social inequities (Litman, 2002).  

It should be highlighted that within this part of the review, driver’s strategic choices (at 

real-time or not) regarding type of road network used and time of the day driving in order 

to fulfil travel needs arose will be referred as driver’s travel behaviour. Choices made are 

directly linked to driver’s exposure and therefore accident risk, through distance driven, 

road network type chosen and the related traffic conditions, the time of the day chosen 

to drive and the related weather conditions. Insurance charging systems based on travel 

behaviour are often called pay-as-you-drive (PAYD) UBI schemes. Furthermore, driver’s 

operational choices at real time regarding handling of the vehicle within the existing traffic 

conditions will be referred as driver’s driving behaviour. These choices are also directly 

linked to the probability of getting involved in a traffic accident, based on the way 

someone’s driving, e.g. by driving over the speed limit, harsh braking/ 

accelerating/cornering event occurrence, distraction generated by mobile phone usage, 

etc. Insurance charging systems based on driving behaviour are often called pay-how-

you-drive (PHUD) UBI schemes.  

Generally, a probability of crash involvement based on driving behaviour could be 

assigned to each driver (Tselentis et al., 2017). If all drivers are charged a lump sum, it 

is assumed that crash probability is approximately equal across the entire drivers 

population. Evidently, this is not a user optimum and socially equitable approach, since 

drivers with lower crash risk are imposed to "subsidize" those with higher risk. In other 

words, safer drivers are imposed to "purchase" higher probability of crash risk than the 

actual existing, unlike risky drivers who "purchase" less.  

There are potentially significant effects on safety from an innovative insurance policy 

depending on its design (Zantema et al., 2008). Since different driving styles could be 

sorted on a high to low risk scale (Sagberg et al., 2015) and create thus a safety scoring 

scale, differentiating premiums to reflect safety, more specifically by charging higher fees 

for unsafe road categories and night-time driving, most effectively and apply it to all 

drivers is a feasible solution. The insurance policy based on vehicle use (UBI) includes 

PAYD and PHYD systems. As mentioned above, premiums are charged based on total 

travel behaviour characteristics such as mileage and road network used in PAYD while 

in PHYD, this is based on measuring parameters such as speed, harsh acceleration/ 

braking etc., i.e. on individual driving behaviour. The automotive diagnostic systems, 

OBD (On-Board Diagnostics), installed in the vehicle and/ or the drivers’ smartphone is 

used as the main data source to collect the aforementioned parameters, sending all 

necessary information in a central database via mobile network.  

Ιf PAYD schemes were to be implemented in the Netherlands, total number of crashes 

could be reduced more than 5% leading to 60 less fatalities and 1000 less injuries each 

year (Zantema et al., 2008). Research in other countries outside Europe (Reese and 

Pash, 2009) on differentiating premiums indicates the same percentage of 5% mileage 

reduction on average although driving during low and medium risk hours was only 

significantly reduced.  
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UBI data collection 

Until recently, it was extremely difficult to collect and manage real-time data and therefore 

to study the relationship between driving behaviour and travel behaviour and the 

probability of crash involvement, due to the high cost of real-time driving data recording 

systems, data programs, cloud computing services, the inability to accumulate and exploit 

massive databases (big data) for transport and traffic management purposes (De Romph, 

2013, Lee, 2014) and the low penetration rate of Smartphones and social networks. 

Research (Reese and Pash, 2009) so far showed that these barriers can be overcome 

when consumers are given an incentive such as a monetary prize, which along with 

providing personalised feedback to drivers about their speeding are extremely effective 

(Ellison, 2015a) at encouraging them to drive (mainly in terms of speeding) safer. 

According to literature (Elvik, 2014), the highest reduction rates achieved by incentive 

schemes in speeding are around 60-80% and 0-10% for mileage reduction.  

As a result, the wide provision of information on the social benefits that could arise from 

an implementation of such a policy is the main present challenge road safety entities and 

policy-makers are facing. It is a fact that users who were given a medium value financial 

incentive of $88 per 6-months period to reduce their mileage, noted a high level of 

interest. A mileage-based insurance could probably lead users to consider car sharing or 

using public transportation (Reese and Pash, 2009) and lower insurance premiums is 

proved to be among the strongest incentive for switching to such a policy.  

High quality real-time data can be collected in an efficient way in order to model both 

individual and total crash risk. In most studies data are recorded either by vehicle’s OBD 

(Jensen et al., 2011) or user’s smartphone (Handel et al., 2014) and transmitted to a 

central database for processing and analysis (Boquete et al., 2010, Iqbal and Lim, 2006). 

This allows for the development of special indicators to estimate driver’s travel (PAYD) 

and driving (PHYD) behaviour.  

Data obtained from GPS, EOBD system and mobile-telephone use detection circuit 

(Boquete et al., 2010) are usually acquired and processed from an in-vehicle device. Data 

are transmitted via a mobile telephone connection to a control centre (CC), where 

individual crash risk for each vehicle is estimated. Mobile telephone connection is used 

for data transmission between the on-board system (OS) and the CC. The EOBD system, 

the GPS and a detector circuit (RF energy scavenging) respectively captures function 

data of the vehicle (e.g. number of seatbelts fastened), vehicle position-speed data and 

driver mobile-telephone use data, all of which are ultimately acquired by the OS. Before 

transmitted to the CC, data captured by the OS are processed and stored by a high-

performance microcontroller that exists inside the core of the OS.  

There are also other studies in literature (Iqbal and Lim, 2006) that incorporate light or 

weather sensors which interact via a communications channel (infrared or Bluetooth) with 

the on-board computing unit and report a numerical value.  The GPS receiver 

continuously records and transmits all information regarding position, speed and time to 

the central computing unit.  

These systems can also be exploited for real time traffic monitoring (Barmpounakis et al., 

2016) since a few technological obstacles that exist nowadays are overtaken. Extraction 
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of vehicular trajectories from video recordings using a trajectory extraction system is also 

used to collect vehicle traffic data (Barmpounakis et al., 2015). This is not available for 

real time traffic monitoring at present but it is very likely to be used for this purpose in the 

near future.  

Table 2.1 summarizes the main methods of several the telematics manufacturer to 

transmit collected data to the CC. Transmission methods include USB cable connection 

with the OBD and the CC, GPRS/CDMA network, wirelessly from a Bluetooth device 

built-in the OBD or micro-SD card. The installation cost is moderate whereas the 

monthly/yearly fees vary from a $0 to $19 charge every month after the first year of 

installation.  

 

Table 2.4: Manufacturers providing Telematic recording devices of driving characteristics. 

Manufacturer Data recorded: Distance, 

speed, time 

Method of 

transmission 

Installation cost Monthly/yearly fee 

CarChipFleetPro  Distance, time, acceleration, 
speed, GPS location, fuel, 
Engine speed 

USB cable/port 
(customer loaded) 

$149 (plus a $395 charge 
for software, one per fleet) 
Can also be used 
wirelessly with a $200 
base unit 

None 

Sky-meter time, distance, place, speed, 
acceleration of all driving, and 
the location and time of all 
parking 

GPRS/CDMA (other 
protocols available 
at extra charge) 

$50 - $250 activation fee $5 per month plus 5%–
8% of monthly premium 
(depending on volume) 

OnStar Distance, speed, time, (incl. 
other features) 

Automatic through 
GPS S 

First year free for new GM 
cars (only available 
for GM) 

$18.95 per month after 
one year 

Freematics Speed, distance, time, location, 
acceleration, engine RPM 

Built-in Bluetooth 
Low Energy and 
SPP module for 
wireless data 
communication or 
via microSD card 
(32GB) 

99$ (Plus $30 for GPS 
module, plus $10 for 
MEMS MPU-9150 (9-axis) 
module, plus $10 for DUO 
BLE-BT 2.1 and plus 5$ 
for 32GB microSD) 

None 

Progressive 
(MyRate Device) 

Distance, speed, time, location, 
acceleration, trip frequency 

Wirelessly None but $75 fee 
if not timely 
returned at end of 
policy 

Varies 

 

Risk factors used in UBI 

The indicators recorded by each device refer to travel and driving behavioural 

characteristics - distance, time, location and speed, acceleration/deceleration, seatbelt 

use (www.skymetercorp.com, www.carchip.com etc.) to name a few. Apart from these, 

there are manufacturers that measure additional information such as location and parking 

duration (www.skymetercorp.com). This information is processed afterwards based on 

rating information provided by the insurer, to generate the individual risk factors of interest 

for each user.  

Per minute or mile (or km) travelled charge is used so far by some insurers which can be 

modified based on driver’s driving record, vehicle type owned, the class of road, time of 

file:///C:/Users/Dimitris/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/STTHUM89/www.skymetercorp.com
http://www.carchip.com/
http://www.skymetercorp.com/
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the day driving, the riskiness of the historical behaviour or the riskiness of the current 

behaviour. Others also charge for parking (www.skymetercorp.com) per hour at high-risk 

locations (e.g., on street, in mall) but this is beyond the scope of this research.  

In general, the main driving indicators mainly used thus far in literature for estimating an 

individual’s driving risk are shown in the Table 2.2 below:  

 

Table 2.5: Risk indicators classification. 

Travel behaviour Driving behaviour 
Total distance driven by the user (the higher the mileage the higher 
the risk) 

Speeding expressed either as a percentage of kilometres/time 
driving over the speed limit or a percentage of speeding 

Road network type (increased crash frequency in the cities, 
increased crash severity outside) 

Harsh braking 

Risky hours driving (increased crash frequency during a particular 
hours range) 

Harsh acceleration 

Trip frequency (a driver is more likely to cause a crash during an 
infrequent trip) 

Harsh cornering 

Vehicle type Seatbelt use 

Weather conditions Mobile phone use 

 

PHYD concept is not yet thoroughly examined and much less implemented than PAYD 

concept. Nevertheless, it is worth mentioning that only a handful of studies include 

behavioural characteristics in their models. Thus far, there is only one insurance company 

exploiting behavioural information to assess driving behaviour and estimating their 

charges (https://www.progressive.com/auto/snapshot/).  

On a research level, there are several indicators both for travel behaviour (vehicle 

maintenance condition, safety rating of the vehicle from the IIHS (Insurance Institute for 

Highway Safety)) and driving behaviour (harsh cornering, alcohol use, ecological driving 

etc.) that affect crash risk as well but are not yet incorporated in risk modelling. Eco-

driving for instance, is a factor considerably significant for crash risk estimation (Haworth 

and Symmons, 2001). According to the manufacturer's specifications, conclusions can 

be drawn about how someone’s driving (aggressively, over the speed limits etc.) if fuel 

consumption estimated by the manufacturer is compared to the real fuel consumption 

recorded. Furthermore, the simultaneous existence of two driving traits such as excessive 

speeding during risky hours timeframe or braking harshly while using the mobile phone 

might excessively affect accident risk. All the above should be further investigated to 

conclude on their significance to crash risk modelling.  

It should be mentioned however that some of the indicators mentioned above such as 

alcohol use cannot be taken into account in the driving behaviour models of the present 

analysis as they cannot be captured efficiently yet. Nevertheless, it is very likely for 

scientists to be able to monitor these factors in an easy and reliable manner in the near 

future and therefore exploit this information as well.  

http://www.skymetercorp.com/
https://www.progressive.com/auto/snapshot/
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Travel behaviour-based Insurance (PAYD) 

Several studies focus on the correlation between kilometres travelled and driving risk and 

therefore the determination of the probability of a driver to get involved in an accident. In 

the initial form of PAYD models, mileage was only included as a travel behaviour 

characteristic. This implementation was based on the fact that mileage and accident risk 

are proved to be close related based on past research conducted on the field. There are 

certainly many studies (Litman, 2005, Bordoff and Noel, 2008) that result to a close 

relationship between VMT (vehicle miles travelled) reduction and the crash risk reduction. 

Edlin (2003) finds that the elasticity of the number of crashes occurring with respect to 

VMT is approximately 1.7, from which it can be inferred that if total mileage were reduced 

by 1%, this would lead to a 1.7% reduction of the number of crashes. Results from other 

research indicates that the elasticity of crash risk is around 1.2 (ICBC Research Services 

Data, 1998) and more specifically, that the 1981-1982 recession led to a 10% VMT and 

12% insurance claims reduction in British Columbia. Ferreira and Minikel (2010) revealed 

that, in support of the above, the statistical significance of mileage and risk’s positive 

correlation is high. It should be highlighted that the above findings are interpreted based 

on the concept of elasticity, which is defined as the relative importance of an independent 

variable in terms of its influence on the dependent variable. In other words, it can be 

explained as the percent change in the dependent variable engendered by a 1% change 

in the independent variable (Washington et al., 2010).  

On the other hand, much research is conducted on the relationship between mileage and 

crashes with a number of them indicating that there are serious grounds to believe that 

this relationship is neither linear nor proportional (Janke, 1991, Litman, 2008). The 

number of road accidents divided by the number of kilometres driven by a group of users 

should not therefore be expected to remain constant. Recent research (Ferreira and 

Minikel, 2010) concludes that when all vehicles are considered together with class or 

territory differentiation, the relationship between risk and mileage is less‐than‐
proportional and when these factors are not taken into consideration the relationship is 

less‐than‐linear.  

It is also found in literature (Janke, 1991, Langford et al., 2013) that most lower mileage 

drivers groups (e.g. young and older drivers) tend to have a higher crash rate compared 

to that of higher mileage drivers. The general trend is that per mile crashes decrease as 

annual mileage increases (Litman, 2008) which is mainly attributed to factors such as 

driving more kilometres in congested urban areas where crash risk is higher and less 

driving experience for low mileage drivers, medical conditions for older drivers etc.  

The early stage of the mileage-based insurance scheme that appeared later was 

presented by some studies in the past as the Pay-at-the-Pump (PATP) approach. PAYD 

and PATP approaches share many similar characteristics and the same conceptual basis 

considering that fuel consumption and mileage are somehow correlated. According to 

literature, PATP is probably the second most influential method of UBI and considers fuel 

consumption as its main estimating parameter of insurance premiums instead of mileage.  

Based on the above it is clear why first studies were focusing mainly on the development 

of mileage-models considering mileage as the most (and sometimes the only) influential 
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factor for crash risk. Mostly used models are presented and described below. It is 

highlighted that risk predictability increases when mileage is incorporated together with 

other rating factors in the model and does not stand alone (Litman, 1997, Ferreira and 

Minikel, 2010). As shown (Ferreira and Minikel, 2010), when combined with space and 

behavioural information of the miles driven, mileage provides a great explanatory power 

and therefore is deemed to be a powerful supplement for the rest of the traditional 

insurance rating factors (e.g. experience and territory). This would further increase 

fairness among motorists as drivers would be charged a flat-rate premium per mile, 

differentiated based on other driving characteristics as well.  

Furthermore, it has been found (Lourens et al., 1999) that the influence of sex and 

education variables is minimized when annual mileage is taken into consideration for 

crash prediction. At the same time, a strong positive correlation between traffic violation 

commitment and crash involvement (independent of the annual mileage driven) is seen 

in literature (Rajalin, 1994, Massie et al., 1997, Lourens et al., 1999) and a well-

documented age influence (young driver’s age group) is proved. There are a few 

researchers though (Ellison et al., 2015b) who dealt with the problem of modelling driving 

behaviour using other exposure spatiotemporal indicators as independent variables 

instead of mileage e.g. speed limits, school zones, rain, time of the day/ week, number 

of passengers, vehicle and driver’s demographic characteristics.  

Pay-at-the-pump (PATP) 

Wenzel (1995) argued that insurance premiums should be estimated based on motor use 

i.e. mileage. The travel behaviour-based system proposed was actually a per-gallon 

surcharge for consumers, a method similar to the PATP method, because VMT is a good 

predictor of insurance claims. It was also suggested that premiums should be the sum of 

a variable amount on the basis of fuel consumption (per-gallon surcharge), plus a fixed 

amount on the basis of location, vehicle safety characteristics and driving record, most of 

which are travel behaviour characteristics.  

In other proposed forms of PATP (Sugarman, 1994), the funds gathering should take 

place at the pump in the form of fuel surcharges collected by a governmental or county 

organization founded for the specific reason. It was suggested that additional charges 

should be imposed based on drivers’ driving record and experience as well as on vehicle 

ownership, apart from the fuel surcharge. The prior amount was suggested to be defrayed 

either as an annual instalment or as a once-off fee. It should be noted that this method 

would substitute tort liability or lawsuit system not for material damages but only for bodily 

injuries. The author draws the conclusion that this new system will provide better 

compensation, fairer funding and most of all greater safety for most users. On top of the 

benefits presented, it is argued (Litman, 2004, Sugarman, 1994) that the new vehicle 

injury plan (VIP) would assist in overcoming many problems that appear in today’s 

insurance policy e.g. a large percentage of premiums is attributed to other reasons such 

as claims administration, duplication of other sources of compensation, pain and suffering 

rewards or lost to fraud, the enormous number of seriously injured victims that are vastly 

undercompensated, the unsatisfying claims process, the long delays of many bodily injury 

claims payment and that safer driving and safer vehicles are insufficiently encouraged.  
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Some researchers (Khazzoom, 2000) estimated the marginal travel behaviour risk of the 

average driver to be approximately 2c/mile and suggested a fuel surcharge of 50c/gallon. 

They also argued for VMT-based over PATP insurance stating that the former removes 

uninsured motorists from the road and does not encourage them solely to switch to fuel 

efficient vehicles burdening this way the environment and that it does not have any 

implementation problems. Research on PATP (Kavalec and Woods, 1999, Khazzoom, 

1999, Khazzoom, 2000) indicates that this insurance scheme results to welfare benefits 

with both a direct and an indirect manner. The average driver might be benefitted either 

directly by paying less for insurance premiums and having an enhanced road safety 

system or indirectly by enjoying societal benefits such as reduced external costs e.g. 

reduced energy consumption, congestion, greenhouse gases, emissions etc.  

Nonetheless, because of the drawbacks referred above for the PATP method, it was not 

extensively implemented. Kavalec and Woods (1999) claimed that introducing a 

surcharge for gasoline is an incentive for consumers to drive vehicles that are energy 

efficient in order to reduce their tax exposure and therefore not reduce their annual 

mileage significantly. Khazzoom (2000) raised the issue that differences in vehicle fuel 

efficiency are probably leading to a discrepancy between drivers that is yet a fairer policy 

than today’s lump sum policy. PATP might also cause a slight shift to energy efficient 

vehicles, according to the author, a fact that will increase the above mentioned 

discrepancy even more. Previously (Khazzoom, 1999), criticism against PATP could be 

classified into two categories which are the criticism of PATP design such as state 

bureaucracy, uncertainty of insurers’ income and long-distance motorists penalization 

and the consequences of adopting this new method such as the burden on lower income 

insurers and the shift to fuel efficient vehicles.  

Mileage-based insurance 

Because of the PATP method drawbacks, efforts thereafter focused on distance-based 

methods that are “penalizing” driving in a more direct way. For instance, the potential of 

paying premiums proportionally to vehicle-kilometre use (PAYD) was examined (Weaver, 

1970) as a possible solution for the economic asymmetry that exists in the vehicle 

insurance market. Research results indicate that the new insurance method has the 

potential to reduce transaction costs, lead to more cost-efficient consumer behaviour, 

reduce premiums and benefit insurance companies, allowing for the creation of enhanced 

insurance policies that will be representative of the actual individual risk of each user. 

Past research also examined both social benefits and obstacles that are likely to result 

from the implementation of such a policy e.g. reducing GHG emissions and CO2, 

dependence on oil, lowest number of crashes, the reduced need for maintenance of the 

infrastructure etc.  

A Texas mileage research conducted by a US PAYD provider (Progressive Insurance, 

2005), was outstanding in terms of the number of observed vehicles and the experiment’s 

duration (36 months and 203,941 vehicles insured; nonetheless, the authors do not 

provide a detailed description of their sample selection). This study’s final report presents 

the relationship between annual mileages and insurance losses incurred for different 

coverage types using a methodology that was based on regression analysis. It was 
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shown that there is a strong impact by the number of vehicle-miles travelled by the user 

on insurance claims (dependent variable). The basic model tested was a linear 

regression model featuring a > 0.82 R2 (goodness-of-fit indicator). No more variables 

other than annual mileage are tested for correlation with insurance claims in this study.  

A mileage-based model (PAYD) development and evaluation (Bordoff and Noel, 2008) 

resulted that each household can reduce vehicle insurance contributions up to $ 270. It 

was pointed out that if a per kilometre charge policy was applied, drivers would have an 

extra incentive to drive less, which would result in a reduction to the total number of 

crashes. A reduction of the number of vehicles was estimate to be around 8%, a figure 

equivalent to $ 50-60 million due to reduced harmful effects on driving. The latter would 

also lead to a reduction of 2% and 4% to carbon dioxide emissions and oil consumption 

respectively. Regarding projected annual vehicle-kilometres, it is also shown (Nichols 

and Kockelman, 2014) that the average vehicle will be driven less by 2.7% (a reduction 

of 237 miles per year), with benefits of only $ 2.00 per vehicle for average consumers, 

with a premium that is partly fixed and partly based on mileage. Because of the convex 

relationship between vehicle mileage and accident probability, drivers with lower annual 

vehicle-kilometres are expected to receive the greatest social benefits. Therefore, PAYD 

policy can reduce vehicle-kilometres travelled annually and lead to a fairer premiums 

system, which supports the findings of literature thus far.  

Examples of the above mentioned PAYD models in practice are National General 

(http://www.nationalgeneral.com/auto-insurance/smart-discounts/low-mileage-

discount.asp) which is providing a discount of up to 54% and Metromile 

(https://www.metromile.com/insurance/) Insurance companies which charging 3.2¢ per 

mile. 

Behaviour-based insurance (PHYD) 

The main argument of literature thus far (Kantor and Stárek, 2014) against current PAYD 

systems is that there are several weaknesses and shortcomings since they focus solely 

on the number of driven kilometres and not on driving behaviour which is more significant. 

Evaluating a user’s driving behaviour is most of the times more crucial to crash risk 

estimation than the quantity of kilometres he has driven. Modelling the individual driving 

patterns of drivers in an efficient manner is a matter of significant importance for crash 

risk modelling, since it allows not only to sufficiently understand differences between 

driving behaviours but to take them into consideration as well.  

Linear modelling approaches are used by most researchers (Iqbal and Lim, 2006, 

Boquete et al., 2010) to model PHYD insurance. A UBI model that takes into account 

driving behaviour attributes is implemented for example by Boquete et al. (2010). The on-

board system installed in vehicles, transmitted data to the CC using mobile data service. 

The concept of this research was to build a model for premium estimation based on how 

much (mileage), where (Zones used), when (Day/night) and how (excessive speeding, 

harsh accelerations, number of vehicle passengers, mobile phone use) a vehicle is 

driven. Insurance premiums were calculated as a sum of a linear combination of the 

above mentioned indicators and their coefficients plus a fixed charge imposed to each 

http://www.nationalgeneral.com/auto-insurance/smart-discounts/low-mileage-discount.asp
http://www.nationalgeneral.com/auto-insurance/smart-discounts/low-mileage-discount.asp
https://www.metromile.com/insurance/


Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

71 

driver. Other recent studies (Iqbal and Lim, 2006) also included driving behavioural 

attributes in cost calculation incorporating exposure characteristics such as weather and 

light conditions risk, rush hour risk and road network risk terms as well as speeding risk 

terms in the form of the percentage of driving over the speed limit after detecting the road 

network type used. For premium cost computation, this study (Iqbal and Lim, 2006) 

proposed the product of a base rate for each driver by all risk factors calculated for each 

indicator used (road network type, excessive speeding etc.).  

Other studies (Kantor and Stárek, 2014) proposed alternative methods such as a fuzzy-

linguistic approximation apparatus which is proved to be a suitable tool considering the 

insufficient exact knowledge and the large possible combinations of the parameters used 

as model’s input. The process of driving pattern assessment was successfully 

incorporated by a concise algorithmic procedure and a projection of that evaluation into 

the insurance premium was made. The algorithm consisted of six algorithmic steps i.e. 

data collection, meteorological conditions evaluation, vehicle dynamic qualities 

determination, manoeuvre type determination, manoeuvre style evaluation and finally 

number of penalty points assignment and determination of driving style sanctions. The 

types of manoeuvres taken into consideration were driving straight, turning, overtaking, 

speeding, aggressive deceleration, non-fluent driving (frequent acceleration and 

deceleration) but the manoeuvre style is evaluated for driving straight, turning, overtaking 

and aggressive braking. The parameters visibility, deteriorated road conditions, sufficient 

vehicle performance, acceleration in x and y axes, speeding, motorways and roads 

(directions separated or not separated) were used as inputs for the fuzzy model. An 

algorithmic procedure to form the scoring procedure describing the risk profile based on 

the figure of merits of actuarial relevance is also followed by Handel et al. (2014) using 

smartphones as measurement probes. Parameters used included speeding, road 

network type, risky and rush hours driving, harsh acceleration, harsh braking, harsh 

cornering, manoeuvre type, trip duration, energy consumption, trip distance and 

smoothness.  

Chowdhury et al. (2014) proved that the statistical analysis and algorithmic approach 

applied to estimate driving score are able to capture the relationship between jerk energy 

(first derivative of acceleration in m/s3) and speed. A scoring mechanism for monitoring 

a vehicle was successfully established based on this relationship through large-scale 

data collection of a large number of vehicles that was made possible by OBD devices 

and smartphones. According to the authors, the algorithm presented can serve either as 

service analytics or for PHYD insurance model premium computation.  

There are also some studies in literature where several methods were tested to find the 

best fit. The potential of high-resolution travel behaviour data for PAYD insurance pricing 

was demonstrated by Paefgen et al. (2013) by training and testing the applicability of 

three different approaches, logistic regression, neural network, and decision tree 

classifiers and compare their outcomes. Speeding, road network, risky and rush hours, 

mileage and day of the week were the significant predictor variables in this study with 

vehicle mileage to be the strongest single predictor variable; it was noted that particularly 

for logistic regression its predictive power was further improved by applying a logarithmic 

transformation. PAYD insurance data recorded by in-vehicle data recorders (IVDR) from 

1600 vehicles and obtained from an insurance provider were exploited by Paefgen et al. 
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(2014). The authors developed and validated a variety of models to investigate and 

explain the differences that exist between vehicles that get involved in crashes and those 

that do not. Logistic regression modelling techniques are applied to estimate accident 

probability. As shown, crash risk fluctuates during the day (lower for daytime and higher 

for nightfall), the week (lower risk on Friday and weekends), road network type (higher 

risk on urban roads) and velocity range (mid-range (60 - 90 km/hr) velocities are 

associated with lower risk compared to low-range (0 - 30 km/hr) and higher range(90 – 

120 km/h)).  

Hultkrantz & Lindberg (2011) tested a variation of PHYD named Pay-As-You-Speed and 

simulated an insurance scheme based only on speed limit exceedance. The experiment’s 

duration was two months and participants that took part were divided in two groups; those 

that were receiving a malus/bonus for their speeding behaviour and those who were not. 

A fixed monthly payment deducted every time the participant was violating speeding 

traffic rules was received by each participant of the first group. According to findings, 

severe speeding violations were reduced during the first month but, after participants 

received their feedback reports with an account of earned payments, those not given a 

penalty did not change their behaviour in the second month. Research performed so far 

on PHYD schemes, indicated that it presents many potentials and appears to have many 

benefits. Despite the fact that PHYD is undoubtedly the best way to evaluate driving 

behaviour and estimate crash risk, it still remains a sharp shift from today’s lump sum 

policy; an alteration that requires significant effort to be diffused in society. PAYD 

methodologies implemented so far seems to be very persistent and unilateral in terms of 

the parameters considered. Regarding travel behaviour-based modelling, mileage is not 

the only factor influencing crash risk and therefore multivariate travel behaviour-based 

insurance models should be developed to consider parameters such as road network 

used, time-of-the-day driving etc. (on the top of mileage driven).  
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Kantor & Stárek (2014) Non-Linear (algorithm)  √ √ √  √                   

Iqbal & Lim (2006) Non-Linear √ √  √       √     √         

Boquete et al. (2010) Non-Linear √  √  √ √      √  √      √     

Handel et al. (2014) Non-Linear (algorithm) √ √ √ √ √  √ √ √      √  √ √   √    

Paefgen et al. (2013) Non-Linear √ √ √ √  √    √               

Paefgen et al. (2014) Generalized Linear/ Non- Linear √ √ √ √  √    √               

Chowdhury et al .(2014) Non-Linear                   √      

Hultkrantz & Lindberg (2011) Non-Linear √                        
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Overall 

The scope of studying UBI is to develop a premium calculation system based on travel 

and/or driving behavioural characteristics and to ultimately create reliable models that 

associate driving risk and travel behaviour (PAYD models) and/or driving behaviour 

(PHYD models) and charge road users based on driving risk. As for PAYD, literature 

review revealed that premium calculation method is based only on travel behaviour 

characteristics. Risk is correlated only with the exposure of a vehicle, assuming that the 

probability of a crash occurrence increases as some indicators referred above (e.g. driven 

kilometres) increase. Figure 2.3 illustrates that the traditional insurance approach 

considers neither the exposure of a vehicle nor the behaviour of a user and assigns an 

“average premium”, which corresponds to the “average driver” and consequently to an 

“average crash probability”, to a specific vehicle and driver. PHYD is on the other hand 

based on the evaluation of user’s driving and travel behaviour leading to a more realistic 

estimation of the corresponding risk. PHYD models incorporate a large number of 

parameters allowing for the accurate estimation of driving risk. The final outcome of 

PHYD models is an individual risk indicator that depicts the risk associated with a user’s 

driving behaviour. Since premium calculation in PHYD is based on the evaluation of 

driving behaviour of a user, it can be concluded that it leads to a more realistic 

assessment of driving risk than PAYD approach does.  

Traditional motor insurance has started to gradually transform into UBI during the last 

few decades. The question remaining is to what extent UBI will be widely adopted and 

which indicators are going to be fully incorporated. UBI is expected to play a key role in 

future motor insurance market and therefore it will significantly influence traffic safety. 

Figure 2.3 illustrates the types of insurance that currently exist in the marketplace as well 

as a prediction on the form of future motor insurance. Since motor insurance’s trend is to 

implement innovative schemes that embed travel and behavioural factors it is believed 

that future models will be in the form of Pay-As-How-You-Drive (PAHYD) including 

parameters from both PAYD and PHYD models.  

No Travel 

Behaviour 

Travel Behaviour-

based 

No Driving Behaviour 

Driving Behaviour-based 

Figure 2.8: UBI and current insurance policies 
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It can be said that the PAYD model using fewer parameters as risk indicators is a more 

simplistic approach. Nonetheless, there are significant advantages since (a) 

implementation is easier, (b) there is a significantly shorter period for developing and 

verifying the model (less data required and, significant information may be found in 

literature and reports of relevant organizations), (c) it is targeted to vehicles that are less 

often used. On the contrary, PHYD is a more sophisticated approach that aims to (a) 

associate driving risk with a large number of indicators quantifying driving behaviour in a 

realistic manner (b) raise driving awareness and motivate drivers to evaluate and improve 

their own driving behaviour and (c) decrease insurance companies’ claims via driving 

improvement.  

According to literature (Litman, 1999) on how well insurance pricing schemes represent 

crash risk, the best performing models are those taking into account time and location 

information (PHYD), followed by mileage-based models (PAYD), PATP models (PAYD), 

fixed vehicle charges models (current insurance policy) and external costs (not charged 

to drivers) models respectively.  

Finally, despite the significant contribution of past research on PAYD pricing, a small 

percentage to date has dealt with PHYD systems. As previously mentioned, this 

methodology is proposed to cope with the problem of estimating and assigning individual 

crash risk and therefore estimate personalized insurance premiums. It is deemed to be a 

more objective approach since it takes into account several significant factors such as 

sudden braking / acceleration events, driving over the speed limits, mobile usage etc. 

which makes it a tool that is more reliable for calculating the probability of accident 

involvement. Future research should mainly focus on this as well as on developing and 

evaluating PAYD and PHYD models and compare their efficiency.  

Finally, all metrics used in UBI modelling are describing and representing a driver’s 

behaviour in an explicit way. Apart from these metrics though, it is worth mentioning that 

there are factors affecting crash risk and are not yet considered in UBI modelling e.g. 

mobile phone, seatbelt (recorded from the OBD) usage, alcohol use, reaction time, time 

to collision (from naturalistic driving experiments), vehicle maintenance condition, vehicle 

safety rating etc. The combining effect of two different driving characteristics should also 

be examined such as using the mobile phone and driving over the speed limits. Although 

some of these factors cannot be currently monitored in an easy and reliable manner, 

most of them can or will be able to be efficiently captured in the near future.  

Literature review conducted above reveals a PAYD schemes trend, which are mainly 

focusing on the effects, externalities and potentials that UBI offers. Despite the fact that 

the potential arising from the implementation of PAYD schemes on insurance companies 

and drivers has been thoroughly examined (Husnjak et al., 2015), PΗYD is apparently 

not exhaustively modelled thus far.  

The specific section of the present doctoral dissertation’s literature review constitutes a 

systematic effort to gather, group and present the most scientifically significant studies 

relevant to UBI approaches which are particularly focused on PAYD and PHYD 

methodologies. Unlike the past, there is an obvious trend for more personalized motor 

insurance. Therefore, personal driving characteristics (travel and/or driving behavioural) 

are gradually incorporated into insurance models instead of estimating insurance 
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premiums based solely on demographic characteristics such as age, number of years 

holding a driving licence etc.  

Literature review conducted above revealed the extensive effort of analysis and 

evaluation of PAYD methods. Its small-scale implementation thus far has demonstrated 

a great influence on all levels, economic, social, environmental, etc. This is a ground-

breaking first attempt to alter the conventional insurance charging approach that is 

currently old-fashioned and unfair to many users and research proves that does not to 

contribute in crash reduction which is the goal of road safety.  

A gradual global transition towards PAYD/PHYD insurance can be envisaged in the near 

future. Low-risk drivers (low-mileage, less risky drivers etc.) will gain several incentives 

for opting out of traditional insurance in favour of alternative new insurance policies such 

as mileage-based insurance (Parry, 2004); this is becoming increasingly feasible while 

telematics systems are gradually incorporated in modern vehicles. Governments are also 

likely to encourage this upcoming trend in the future through relative legislation and 

political decisions such as subsidies, tax waivers for insurance companies offering 

alternative policies like these aforementioned.  

A simplistic approach to calculate annual crash risk is to estimate the product of per-mile 

crash risk and annual mileage (Litman, 2008). Although imposing drivers to reduce their 

annual mileage would probably lead to reduced crash risk, this approach does not take 

into consideration two important factors. First, a driver that is penalized based only on 

mileage driven is not incentivized at all to improve driving behaviour. Per-mile risk 

remains an unspecified factor that fluctuates over time and therefore although mileage 

might be reducing, total crash risk can still be increasing. Second, insurance system 

remains unfair and the cross-subsidies phenomenon is not eliminated since per-mile 

accident probability is considered to be the same for all drivers and is not individually 

estimated. Consequently, behavioural aspects of driving should be embedded in 

insurance models to contribute towards current trends of personalized vehicle insurance.  

Supporting the above mentioned, even if assumed that per-mile crash risk remains 

constant and annual mileage is reducing throughout the year, total individual crash risk 

reduction cannot be estimated since it depends on behavioural characteristics that are 

not currently recorded and therefore not considered in today’s UBI. Driving information 

e.g. number of harsh braking and acceleration events occurred, percentage of excessive 

speeding, road type etc. should be included in driver’s evaluation so as a per-mile risk 

factor could be estimated for each driver. In other words, risk factor is risk’s increase rate 

which indicates how total individual risk is increased as mileage raises. Estimating this 

factor is the only way to precisely predict individual crash risk and consequently, charge 

a fair amount to each driver based on the risk he reflects. Since technological solutions 

exist nowadays and conditions for recording and managing real-time big data efficiently 

are met, there is a need for science to move towards that direction.  

Based on the review conducted in this sub-chapter, it is concluded that UBI is expected 

to improve traffic safety as most UBI models (Paefgen et al., 2014) focus on determining 

the relationship between road safety parameters, such as crash risk, and travel and 

behavioural indicators such as mileage, risky hours, number of harsh braking/ 

acceleration events etc. This can be implemented by classifying each driving style on a 
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continuous scale from low to high risk (Sagberg et al., 2015) and subsequently estimate 

a safety scoring for each driver. It was also observed that a preferable practice to collect 

and transmit driving data for further analysis are IVDR such as OBD devices and 

smartphones. It is strongly believed that smartphones will be mostly used for data 

acquisition in the future since hardware cost of IVDR and smartphone penetration rate is 

high.  

As for the indicators used in today’s UBI models, the predominant among them are 

mileage, speeding, road network type and risky and rush hours driving. It is anticipated 

that apart from these, more behavioural parameters e.g. the number of sudden braking/ 

acceleration/ cornering events, mobile phone use etc. will be used a lot in future models 

because they represent crash probability better. Most barriers for the wide diffusion of 

UBI schemes have been overtaken, yet a few still exist namely the relatively medium 

capability level of cloud computing services for analysis and exploitation of big data, and 

the problems in data quality originating from the devices mentioned above. Future UBI is 

likely to be transformed in such a way as to adopt parameters from both PAYD and PHYD 

insurance schemes establishing a new Pay-As-How-You-Drive (PAHYD) model that 

embeds both travel behavioural and driving behavioural parameters.  

Regarding future directions of driver’s individual safety scoring, since it is possible to 

classify each driving style on a continuum scale from low to high risk, research should 

focus on the exploitation of actual accident record data. Data analysis techniques 

(artificial intelligence, big data analysis etc.) of data collected from naturalistic driving 

experiments are anticipated to play a significant role in the future. In naturalistic driving 

experiments where the user drives and reacts naturally, it is easier to “capture” those 

driving habits, styles and indicators exploiting normal driving data recorded and associate 

them with actual crash data. This is likely to be extremely convenient for researchers 

especially if datasets including both crash-involved and crash-free data exist that could 

be directly linked to driving behaviour indicators and/or styles. Review revealed that 

smartphone exploitation in the framework of naturalistic driving experiments is an 

innovative cost-effective approach for gathering and transmitting large amounts of travel 

and behavioural data. This methodology is now diffused and will be gradually used more 

in future UBI research.  

In terms of the indicators usually incorporated in UBI models, there are several 

influencing most traffic crashes and related insurance claims that are not yet taken into 

consideration. Past review highlighted (Sagberg et al., 2015) that crash involvement is 

thus far predicted mainly using factors that indicate aggressive and/or impatient driving 

such as driving over the speed limits and a high frequency of driving-related violations. 

Since driver drowsiness and distraction (Kaplan et al., 2015) are two factors that mostly 

influence traffic crashes and related insurance claims, they should also be taken into 

account in UBI modelling along with other namely alcohol use, ecological driving and 

vehicle maintenance condition.  

From a road safety perspective, estimating individual crash risk and charge based on that 

would reward good drivers for driving safely and therefore eliminate the cross-subsidies 

phenomenon. It would also serve as a strong incentive for more risky drivers to improve 

their driving behaviour, optimize their travel options and reduce their degree of exposure 
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by receiving feedback and monitoring their driving performance and preferences and 

paying less for insurance premiums. As a result, an insurance model incorporating 

individual driving characteristics would enhance traffic safety on a total and individual 

level by motivating drivers positively and negatively to alter their travel behaviour and 

improve their driving behaviour. It is suggested from the above that there are numerous 

and important challenges emerging on this research field, which will be further 

investigated in the near future.  

2.5) Critical synthesis 

Taking into account literature review conducted, it is deemed necessary to study driving 

behaviour on a greater extent and shed more light on the evaluation of driving safety 

behaviour and the factors influencing it. According to past research, naturalistic driving 

experiments are considered more appropriate for driving behaviour evaluation because 

behaviour is recorded under normal driving conditions and without any influence from 

external parameters. Regarding the main drawback of naturalistic driving experiments, 

driving under normal conditions will be recorded and no bias will appear if drivers are 

monitored for an appropriate amount of time. On the other hand, it is very important to 

determine the amount of data required to obtain a complete picture for each driver, where 

the rate of those metrics described above per km travelled converges to a stable value. 

Within this dissertation, the quantification of the need for driving data collection in driving 

performance assessments is also investigated based on data collected through 

smartphone devices.  

It can be said from the above that the most significant human factors that were found to 

affect driving risk are mobile phone distraction, speed limit exceedance and the number 

of harsh braking and acceleration events occurred while driving. It can also be inferred 

that there are numerous researches that focus on driving behaviour evaluation and 

mainly on determining the correlation between driving behaviour metrics (speed limit 

exceedance, number of harsh acceleration/ braking events, mobile phone distraction 

etc.) either together or separately and accident probability. To the best of the author’s 

knowledge, this doctoral research is the first effort made to estimate and assign a relative 

safety efficiency index to each driver of a sample by exploiting distance travelled and 

several driving behaviour metrics that result from microscopic driving behaviour data 

recorded from smartphone devices.  

It can be concluded from all the above that it is significant to study the potential of 

measuring driving safety efficiency using microscopic driving data collected from 

smartphone devices. It was showed that DEA has never been used before in driving 

behaviour research and that driver’s efficiency has been studied in a great extent but 

never by making use of DEA techniques. Therefore, there should be an attempt to 

address this certain issue by proposing a methodological framework based on data 

science techniques for evaluating driving characteristics. The model that will be 

developed should incorporate several driving behaviour metrics allowing for the multi-

criteria analysis of driving efficiency. For the purposes of this study, drivers will be 

considered as DMUs, which is deemed to be rational since a driver is a unit that makes 
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decisions for a given mileage range about the number of events occurring and the time 

of mobile phone usage and speed limit violation. Driving attributes (metrics and distance 

recorded) will be considered the inputs and outputs of the DEA program. More details on 

the structure of the DEA formulation implemented are given below. It is also important to 

address the problem of the computation time required for a DEA algorithm to run and 

methodologically speaking, it is momentous to test the effectiveness of the 

implementation of a DEA and convex-hull algorithm combination in a multiple inputs and 

outputs settings for large-scale data.  

As we move forward, UBI aims to assign insurance premiums to the respective accident 

risk of each individual driver based on travel and driving behavioural characteristics. It is 

evident (Litman, 2008) that drivers should reduce their annual mileage and improve their 

driving behaviour. This is because per-mile risk is an unspecified factor that fluctuates 

over time and therefore although mileage might be reducing, total crash risk can still be 

increasing. In support of the above, even if per-mile crash risk remains constant and 

annual mileage is known, total individual crash risk cannot be estimated since it depends 

on behavioural characteristics that are not currently recorded and considered in UBI. To 

achieve this, information about driving traits e.g. number of harsh braking and 

acceleration events, time of driving over the speed limits, road type etc. should be 

included in driver’s evaluation. In other words, risk factor is risk’s increase rate that 

indicates how total individual risk is increased as mileage increases. As a result, it is 

considered to be essential to develop a model that incorporates both distance travelled 

and the rest of the behavioural characteristics in order to evaluate driving risk. By 

developing DEA models that take into account these two categories of characteristics, 

this study aims to examine the applicability of such models.  

2.6) Research questions 

Based on the results of the literature review, the research questions of this doctoral 

dissertation are formulated as shown below: 

1) How well can driving safety efficiency be benchmarked? Can data science techniques 

and large-scale data provide sufficient answers?  

2) What are the temporal evolution characteristics of driving efficiency? What do the 

drivers’ groups formed represent?  

3) What is the required amount of driving data that should be collected for each driver?  

4) How can the least efficient trips of a database be identified?   
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Chapter 3: Methodological Approach 

3.1) General methodological framework 

The purpose of this chapter is to present the main structure of the methodological 

approach followed, including the processing procedure and the analysis conducted using 

large-scale data collected from smartphone devices. The description of every statistical, 

non-parametric, linear programming, non-supervised etc. methodology used in this thesis 

is given in details in this chapter. The overall methodological approach followed in this 

research is demonstrated below in order to achieve the objectives specified after the 

literature review conducted in this thesis.  

Overview 

Figure 3.1 illustrates the general methodological framework that is applied thereinafter. 

There are two data sources where data are derived from a) a database of drivers who 

participated in a naturalistic driving experiment in which data where recorded using the 

smartphone device of each participant and b) the questionnaire administered to a 

proportion of the participants. After data are collected, the factors representing driving 

efficiency in terms of safety are specified based on literature review conducted. After it is 

examined that a) adequate data is collected from each participant taken into 

consideration in this research and b) the driving metrics and distance recorded are 

proportionally increased and their ratio does not significantly change while monitored 

kilometres are accumulated, these factors are used as inputs and outputs for the DEA 

models developed. Consequently, trip and driver efficiency analysis is implemented per 

road type following the detailed description given below. The results obtained from the 

trip efficiency analysis are exploited mainly to reduce processing time for the driver 

efficiency analysis where the evolution of driving efficiency through time is investigated 

and secondarily to assess the practicability of providing a methodology for less efficient 

trip identification. The results of driver and driving efficiency evolution investigations are 

combined to perform cluster analysis on a driver level. For each driving cluster that results 

from this procedure, the typical driving characteristics of the drivers that belong to it are 

examined and presented.  
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Figure 3. 1: General methodological framework of the present doctoral dissertation. 

 

The above graphical illustration of the methodological approach is used to provide a 

broader and more comprehensive picture of the workflow that takes place and results to 

the better understanding on how driving efficiency can be analysed, using data science 

techniques for large-scale data. Further details on the methodological background and 

implementation of the techniques applied in this thesis are presented in each of the 

following sections.  
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3.2) Methodological steps 

3.2.1) Smartphone data preparation 

This step includes the data collection as well as the processing procedure that took place 

after data are obtained from the OSeven databases in order to be utilizable in the DEA 

models.  

Data collection 

The large-scale data that will be used within this research are mainly data collected from 

OSeven’s smartphone application e.g. distance driven in km, driving duration in seconds, 

seconds of driving over the speed limit, seconds of mobile usage etc. In this step, the 

requirements of the data collection procedure are presented. To accomplish the goals 

set in this doctoral research, a sample of one hundred and seventy one (171) drivers from 

a 7 months period is acquired from the sophisticated database of OSeven, which contains 

large-scale driving data recorded from smartphones, constructing thus a database of 

49,722 trips. For each individual part of the analysis conducted herein, a different part of 

this database is exploited because of the different requirements of each analysis.  

A proportion of the participants also participated in a survey designed for the purpose of 

assessing driving behaviour. Answers were collected from 43 and 39 drivers in urban and 

rural road respectively regarding accident history, tickets received, number of road traffic 

code infringements, demographics (age, nationality, occupation etc.), driving experience 

and characteristics, driver’s vehicle etc.  

All data are properly prepared, as described below, in order to meet the requirements set 

and they can be imported in the DEA models developed.  

3.2.2) Large-scale data investigation 

Investigation of metrics-distance ratio evolution 

In this step, it is examined whether or not the sum of metrics is proportionally increased 

to the sum of distances. One of the fundamentals of CRS DEA that cannot be overlooked 

is that the ratio of the inputs are increasing linearly to outputs. Therefore it is essential to 

examine how driving metrics are evolved in time compared to distance travelled not only 

in total but in each moving window examined as well.  

Adequate driving data 

In conjunction with the previous step, the amount of adequate driving data sample that 

should be collected for each driver is estimated in this step to ensure the significance of 

the results arising. As mentioned above, for the analysis of the total driving behaviour as 
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well as in moving window considered for the temporal analysis of driving efficiency, 

driving metrics should be linearly increased to distance travelled in order to apply CRS 

DEA. Therefore, the amount of data collected for each driver should be exceeding the 

minimum amount of data found that is required in each time step and in total as well.  

3.2.3) Safety efficiency index estimation 

After literature review revealed the existing knowledge gaps, research questions are set, 

and data are prepared and examined for adequacy, this leads to the estimation of the 

safety efficiency index. This index can be acquired using seconds of mobile usage, 

seconds of driving over the speed limits, and the number of harsh acceleration and 

braking events as inputs in the DEA model to measure safety efficiency. For the 

estimation of this index, distance travelled is used as output.  

3.2.4) Trip efficiency analysis 

As mentioned above, the main scope of the trip efficiency analysis is to a) implement an 

algorithm that outperforms the standard DEA algorithm in terms of computation time and 

b) provide a methodology for identifying less efficient trips. It is highlighted that a heuristic 

or meta-heuristic approach could also be investigated, but this is not within the scope of 

the present research, which aims to estimate the accurate solution of the DEA efficiency 

index.  

In general, input and output selection is a critical procedure for DEA and great care should 

be taken to address this major issue. Nonetheless, because of the fact that the objectives 

of the computation time investigation, it is not deemed necessary to select inputs and 

outputs based on a specific safety concept. Three outputs and inputs are examined in 

each problem and more specifically the combinations of distance per road type with the 

number of harsh acceleration and braking events, seconds driving over the speed limit 

and seconds of mobile phone usage per road type respectively. These combinations 

create four different DEA problems but herein only harsh acceleration per road type with 

distance per road type is presented to avoid chattering. All models provided similar results 

and therefore conclusions drawn can be generalized regardless of the variables chosen 

in the model.  

In all scenarios tested, results showed that all methods yield the same accurate solution 

as the standard DEA approach tested in terms of identifying the most efficient DMUs and 

peers, lamdas and theta values and calculating the efficient level of inputs and outputs 

for each DMU. This is a weighty outcome because for the first time tests proved the 

efficacy of the proposed methodology for performing a multiple input and output CH DEA. 

In the specific experiment, distance per road type travelled is used as output for DEA and 

convex hull algorithm is applied before applying standard DEA.  

Data used in this study are metrics recorded in the form of absolute values i.e. the number 

of harsh acceleration and braking events, seconds driving over the speed limit and 

seconds using the mobile phone. All metrics are recorded per road type (urban, rural, 
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highway) e.g. haurban, harural, hahighway, hburban, hbrural, hbhighway etc. Convex hull’s dimension 

is determined by the sum of the number of inputs and outputs of the DEA problem. 

Overall, the three approaches (Standard, RBE and CH DEA) are tested for seven 

different scenarios, i.e. for 100, 500, 1000, 2500, 5000, 7500 and 10088 trips.  

The amount of computational memory required to perform the Convex Hull – DEA (CH 

DEA) approach is notably high. Quickhull algorithm applied herein does not support 

medium-sized inputs in 9-D and higher, which is the limitation of the present study. This 

is the reason why the authors choose to test their models only for three inputs and outputs 

in order to create a convex hull problem of 6-D which is less than the algorithm’s capacity 

and can be calculated as described in the previous section.  

An important note is that trips with zero sum of inputs were excluded from the analysis 

since this problem cannot be defined in that case. The DEA cannot be solved for a DMU 

with a sum of inputs equal to zero because this the same as having a business that 

produces some outputs without using any inputs, which is irrational. This is not deemed 

to cause any effect on the identification of the less efficient trips since practically only the 

most efficient trips are omitted from the analysis and trip efficient is relatively estimated 

and therefore, although the absolute value of efficiency is changing the 
stk  percentile of 

the least efficient trips will include exactly the same trips.  

 

The methodological steps followed for the computation time investigation are presented 

below: 

Assuming a set E  of a number of N  trips, four overall models are created for testing the 

processing time of standard DEA, RBE DEA and convex hull DEA. Total distance 

travelled in urban, rural and highway roads as outputs (three dimensions) in all models 

whereas a) total number of harsh acceleration events occurred, b) total number of harsh 

braking events occurred, c) total seconds of  mobile phone use and d) total seconds of 

driving over the speed limits in urban, rural and highway roads are used as inputs (three 

dimensions) in model 1, 2, 3 and 4 respectively. One dimension will be created for each 

input and output i.e. six dimensions of the convex hull. The specifications of the models 

implemented are shown in Table 3.3.  

For this model, convex hull algorithm is ran to estimate the set eE  consisting of the 

number eN  most efficient trips. Consequently, each trip m  of the set { }eE E  of the non-

efficient trips will be run with the set eE  creating ( )eN N  DEA linear problems with 

1eN   (trip examined in each iteration) variables each time to calculate the efficiency   

and the slacks   of the peers of each trip m  of the set { }eE E  of the non-efficient trips.  

Required running time for each approach is estimated, compared and the optimal solution 

is determined. Results of this analysis are presented in the Results chapter.  
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Table 3.1: Inputs and outputs of the DEA models used in the trip efficiency analysis 

Model Type 
Overall model 

Set of Inputs used Set of Outputs used 

1 

1) haurban 

2) harural 

3) hahighway 

1) distanceurban 

2) distancerural 

3) distancehighway 

2 

4) hburban 

5) hbrural 

6) hbhighway 

1) distanceurban 

2) distancerural 

3) distancehighway 

3 

1) speedingurban 

2) speedingrural 

3) speedinghighway 

1) distanceurban 

2) distancerural 

3) distancehighway 

4 

1) mobileurban 

2) mobilerural 

3) mobilehighway 

1) distanceurban 

2) distancerural 

3) distancehighway 

 

The methodological steps for the least safety efficient trips identification are: 

a) Total distance travelled is used as DEA output and the total number of harsh 

acceleration and braking events occurred, total seconds of speed limit exceedance, total 

seconds of mobile usage are used as DEA inputs.  

b) A DEA model from table 3.3 is developed (in the road type examined).  

c) The least efficient trips among the 100n   trips are identified by the DEA model and 

the efficiency of each trip is acquired. In order to identify the least efficient trips, the 
stk  

percentile of the least efficient trips of the database is taken based on the efficiency index 

assigned to each trip by DEA LPs. For instance, if 5k   and therefore the target is to 

determine the list of the 5% least efficient trips of a database of 100 trips, trips are sorted 

by their efficiency index and the 5 least efficient are selected.  

The trip efficiency analysis could not stand alone since there are trips with zero sum of 

metrics recorded (harsh acceleration/ braking events, seconds of mobile use, seconds of 

speeding) which cannot be included when applying DEA methodology. For the same 

reason, the most efficient trips cannot be included in the DEA model development since 

their efficiency cannot be defined. As a result, the methodology presented here for least 

efficient trip identification is not estimating the actual efficiency (trips with zero metrics 

cannot be included); nonetheless the least efficient trips can be relatively identified. Since 

the scope of this section is to provide the methodology for the least efficient trips 

identification, results of this analysis are not presented in the Results chapter.  
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As for the methodology for estimating the efficient level of inputs and outputs of a trip, it 

is provided in 3.2.1. This is the actual level of metrics (seconds driving over the speed 

limit etc.) that should have been reached in the specific trip in order to become efficient. 

The results of this analysis are presented in the Results chapter.  

3.2.5) Driver efficiency analysis 

Efficiency estimation 

As mentioned above, the main scope of the driver efficiency analysis is to a) provide a 

methodology based on the DEA approach for driving safety efficiency determination and 

b) investigate the evolution of driving safety performance over time and cluster drivers 

based on the characteristics identified.  

Models representing driving behaviour in all road types are constructed, with multiple 

inputs and outputs. Input and output selection is a critical procedure for DEA and should 

be linked to the conceptual specifications of each problem. Dyson et al. (2001) discussed 

several issues that should be taken into account before applying DEA to a dataset. One 

of the pitfalls is that the efficiency score might be miscalculated when input and output 

variables are in the form of percentiles and/or ratios simultaneously with raw data (Cooper 

et al., 2006).  

The large-scale data used in this study are metrics recorded in the form of absolute values 

i.e. the number of harsh acceleration and braking events, seconds driving over the speed 

limit and seconds using the mobile phone. All metrics are recorded per road type (urban, 

rural, highway) e.g. haurban, harural, hahighway, hburban, hbrural, hbhighway etc. In this specific 

experiment, distance per road type travelled is used as output for DEA and the best 

performing algorithm identified in the trip efficiency analysis (convex hull DEA) is applied. 

Two different models are developed. The variables’ combinations for structuring these 

models in each road type was based on literature review. These two models include all 

traffic safety parameters found in literature review and account for the overall safety 

profile of the driver. The specifications of the models implemented are given below and 

are illustrated in Table 3.3. The reason why analysis is not conducted in highways is 

provided below.  

As for the driver efficiency analysis, in each model the cumulative metrics monitored 

during the total period recorded are used as inputs and outputs in the DEA models 

developed. In other words, the final database used in each model includes the cumulative 

value (for the period that each driver was recorded) of each variable considered in the 

DEA models, constructing thus a database with one row per driver.  
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Table 3.2: Inputs and Outputs of the DEA models used in the driver efficiency analysis 

DEA models Urban Rural 

Set of Inputs used 

1) haurban 

2) hburban 

3) speedingurban 

4) mobileurban 

1) harural 

2) hbrural 

3) speedingrural 

4) mobilerural 

Set of Outputs used 1) distanceurban 1) distancerural 

 

where the index x determines the road type of each model.  

Evolution of driving efficiency 

The temporal evolution of average driving efficiency is investigated using different 

databases of metrics accumulated over different timeframes. Time series are 

decomposed to acquire trend, volatility and estimate stationarity.  

A sample of 230 and 150 trips is taken into account respectively for urban and rural roads. 

This results to 100 users of data_sample_1 in both road types and to 43 and 39 users, 

for which questionnaire data are available, in urban and rural areas respectively. Trips 

chosen for the analysis are the last trips of each driver that were recorded. This is to 

ensure that there has been some time since the driver is being recorded so that the fact 

that is being monitored is not influencing his/ her driving behaviour any more.  

Unfortunately, the same analysis cannot be conducted on highways since it is found in 

previous steps of the analysis that there are very few end-users for whom a time series 

can be created with several observations. The analyses showed that there should be a 

moving window of at least 75, 81 and 116 trips in urban, rural and highways respectively 

in which driving performance is calculated to create the required time series. Table 3.4 

summarizes the sample used in this specific analysis for each road type. As it appears, 

it is not feasible to perform the analysis for highways since there are only 18 of the 

data_sample_1 drivers and 7 of the data_sample_2 that have the adequate total distance 

and number of trips. Even if the analysis was performed with these drivers, the length of 

the time series would not be enough to ensure the significance of the results. The two 

last columns of table 3.4 represent a) the number of participants that have at least as 

many trips required in “No of trips” column and b) the number of participants that have at 

least as many trips required in “No of trips” column and have also responded the 

questionnaire. More details on the sample choice are given in the data collection chapter.  

Finally, it is highlighted that the analyses are performed separately for the samples with 

and without available questionnaire data to compare the clusters arising and their 

characteristics. This procedure will evaluate the potential of driving safety efficiency 

benchmarking without having any knowledge on the personal information (age, gender, 

accident record etc.) of the user that is being assessed.  
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Table 3.3: Number of drivers participated in the analysis of the temporal evolution of driving efficiency in 

each road type 

Road type No of trips Required moving 

window (trips)  

No of participants of 

the data_sample_1 

No of participants of the 

data_sample_2 

Urban 230 75 100 43 

Rural 150 81 100 39 

Highway 150 116 18 7 

 

The methodological steps to achieve this are: 

For each driver: 

1) The last 230 and 150 trips are kept in urban and rural roads respectively 

2) The efficiency models are applied 

3) The efficiency of each driver is estimated in a moving window of 75 trips in urban roads 

and 81 in rural 

4) The time series of the driver’s efficiency evolution is created 

5) The volatility of driving efficiency is estimated 

6) The Augmented Dickey-Fuller (ADF) and KPSS test for unit root and stationarity 

respectively, is performed 

7) When the null hypothesis of both the ADF and KPSS test are rejected for a time series, 

then it is considered fractionally integrated and present long memory. An ARFIMA 

model is applied in this case to estimate the order d  of the time series. This variable 

takes values in the  1,1  region for fractionally integrated time series, close to 0 for 

stationary time-series and close to 1 for unit-root time series 

8) Time series trend is acquired by estimating the coefficient b of the linear regression 

model that best fits the time series data (slope) 

 

The efficiency models that will be applied in urban and rural roads are the following: 

1) One per road type, developing the following model combinations (models of table 3.3): 

a) Urban road: Output: total distance travelled in urban roads, Inputs: total number of 

harsh acceleration events occurred in urban roads, total number of harsh braking 

events occurred in urban roads, total seconds of speed limit exceedance in urban 

roads, total seconds of mobile usage in urban roads.  

b) Rural road: Output: total distance travelled in rural roads, Inputs: total number of 

harsh acceleration events occurred in rural roads, total number of harsh braking 

events occurred in rural roads, total seconds of speed limit exceedance in rural 

roads, total seconds of mobile usage in rural roads.  
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As mentioned above, for each model the cumulative metrics monitored during the period 

examined are used as inputs and outputs in the DEA models developed. As a result, a 

different database is created in each step of the moving window and a new DEA model 

is developed respectively to estimate driving efficiency in the specific step and 

consequently the temporal evolution of total driving efficiency. Thereafter, the cumulative 

metrics of the total recording period of the 230 and 150 trips are taken into consideration 

to estimate a driver’s total driving efficiency.  

Drivers clustering 

Based on the variables created from the analysis conducted above: 

1) Total efficiency of the driver during the complete recording period 

2) Volatility of the sequence 

3) Time series trend 

4) Stationarity of the time series 

5) Questionnaire data (used only in the data_sample_2) 

A K-means algorithm is employed for clustering drivers. The optimal number of clusters 

is determined using the elbow method. Driving characteristics of each cluster arose are 

analysed and conclusions drawn are presented.  

3.3) Theoretical background 

3.3.1) Data envelopment analysis 

DEA is a non-parametric approach that does not require any assumptions about the 

functional form of a production function and a priori information on importance of inputs 

and outputs. DEA allows each DMU to choose the weights of inputs and outputs which 

maximize its efficiency. The DMUs that achieve efficiency equal to unit are considered 

efficient while the other DMUs with efficiency scores between zero and unit are 

considered as inefficient. The first DEA model proposed by (Charnes et al., 1978) is the 

CCR model that assumes that production exhibits constant returns to scale i.e. outputs 

are increased proportionally to inputs. DEA models can also be distinguished based on 

the objective of a model; that can be either outputs maximization (output-oriented model) 

or inputs minimization (input-oriented model).  

Let us use X and Y to represent the set of inputs and outputs, respectively. Let the 

subscripts i and j to represent particular inputs and outputs respectively. Thus xi 

represents the 𝑖𝑡ℎ input, and yj represent the 𝑗𝑡ℎ output of a DMU. The input-oriented 

CCR model evaluates the efficiency of 𝐷𝑀𝑈𝑜 by solving the following (envelopment form) 

linear program (Ramanathan, 2003) and its mathematical formulation is formulated as: 
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min
 

Subject to the following constraints: 

0ox X                                (1) 

 

 

 

where i  is the weight coefficient for each iDMU  that is an element of set λ, X is the set 

of inputs, Y is the set of outputs and B  is a scalar representing the efficiency of reference 

0DMU . The objective function of this linear programming problem (DEA) is min i  i.e. 

minimize the efficiency of iDMU . In order to benchmark the efficiency of all DMUs (of 

each DMU) of the database, this linear programming problem should be solved for each 

iDMU . This is radically increasing the processing time of the problem as the number of 

DMUs and especially the dimensions (every extra input or output added to the problem 

increases the dimension by one unit) of the problem are increased. This is the reason 

why this research makes use of other techniques to reduce computation time.  

Although a trip and a driver cannot literally behave as a decision-making unit, it can be 

evaluated as a DMU and therefore, it will be considered as such for the purpose of this 

research. As mentioned above, this is deemed a correct assumption on a trip/ driver basis 

since a) all variables used are continuous quantitative variables as those used in previous 

DEA studies and b) a driver should reduce his mileage and the frequency of some of his 

driving characteristics. The mathematical formulation of DEA for the driving problem 

examined here is presented in the next section. It is noted that from now on, DMUs will 

be referred as either trips or drivers depending on the problem examined each time. For 

brevity purposes, DMUs are referred only as drivers in the next section but the constraints 

for solving the trip efficiency problem has exactly the same formulation and constraints.  
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Table 3.4: Description of the per trip variables recorded 

Variable name Variable short description 

hax number of harsh acceleration events in X road type 

haurban number of harsh acceleration events in urban road 

harural number of harsh acceleration events in rural road 

hahighway number of harsh acceleration events in highway 

hbx number of harsh braking events in X road type 

hburban number of harsh braking events in urban road 

hbrural number of harsh braking events in rural road 

hbhighway number of harsh braking events in highway 

speedingx total seconds of speed limit violation in X road type 

speedingurban total seconds of speed limit violation in urban road 

speedingrural total seconds of speed limit violation in rural road 

speedinghighway total seconds of speed limit violation in highway 

mobilex total seconds of mobile phone usage in X road type 

mobileurban total seconds of mobile phone usages in urban road 

mobilerural total seconds of mobile phone usage in rural road 

mobilehighway total seconds of mobile phone usage in highway 

distancex total distance driven in X road type 

distanceurban total distance driven in urban road 

distancerural total distance driven in rural road 

distancehighway total distance driven in highway 

 

Driving metrics recorded are illustrated in table 3.1. On a driver and trip basis, seconds 

of mobile use, number of harsh acceleration and braking events occurred and seconds 

of speed limit exceedance are used as DEA inputs while total distance travelled is used 

as DEA output for driving efficiency benchmarking. As literature review revealed a) these 

are the most important driving metrics that affect driving safety efficiency among those 

recorded from smartphone devices and b) a methodology that is capable of incorporating 

behavioural risk per unit of exposure should be developed.  

It is assumed that this study should adopt an input-oriented (IO) DEA model, since the 

objective is to minimize the number of harsh acceleration, harsh braking events etc. 

(inputs) that occur per driving distance unit rather than to maximize driving distance 

(outputs) for given metrics (output-oriented (OO) DEA model). In terms of road safety, 

the latter would increase the exposure of a driver (kilometrage) and therefore crash risk 

(Tselentis et al., 2017). Nonetheless, this is considered a minor issue since it is related 

to the general notion of the research problem and it only affects the formulation of the 

problem and not the research outcomes.  It is also proved in this research that the sum 

of all metrics (inputs) recorded (e.g. the number of harsh acceleration and braking events 

occurred in each tripi) converge to a constant and changes proportionally to the sum of 

driving distance (output) and therefore the driving efficiency problem is considered a 

constant-returns-to-scale (CRS) problem and is solved as such.  
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Mathematical formulation of DEA for the driving problem 

Let  ix  and jy  represent the set of inputs and outputs of a DMU. The input-oriented CCR 

model evaluates the efficiency of 0DMU  by solving the (envelopment form) linear program 

(Ramanathan, 2003) presented below. Considering each driver as a DMU and taking into 

account the principles of DEA (Charnes et al., 1978), the mathematical formulation for 

the specific driving efficiency problem examined herein is:  

 

Subject to the following constraints: 

                          (2) 

 

 

where i  is the weight coefficient for each idriver  that is an element of set λ, X is the set 

of Inputs (number of harsh acceleration/braking events etc.), Y is the set of Outputs 

(distance travelled) and Driving_Efficiency  is a scalar representing the efficiency of 

reference DMU i.e. 0driver . The objective function of DEA is min i  i.e. to minimize the 

efficiency of idriver . To benchmark the efficiency of each and all drivers of the database, 

this linear programming problem should be solved for each idriver .  

Efficient level of inputs and outputs for non-efficient drivers/ trips 

After DEA LPs of (1) are solved and the efficiency index Driving_Efficiency  and 

coefficients i  are estimated for each driver the efficient level of inputs and outputs at 

which each driver could optimally reach can be calculated. The efficient level of inputs for 

driver i can be calculated as the product sum of the lamdas and the input values of each 

of the identified peers whereas to find the efficient level of outputs for the same driver, 

each output value should be divided by theta value. Considering 
idriver  as the reference 

DMU and a set of  drivers, where  is the number of 
idriver  peers, the efficient 

level of iMetric  can be estimated using following formula (3):  

1

m

i j jj
Metric Metric


                        (3) 

More specifically, considering idriver  as the reference DMU and a set of m drivers, 

where m  is the number of 'idriver s  peers, the efficient level of e.g. 
urbanha  can 

be estimated using following formula (4):  

min(Driving_Efficiency )

Driving_Efficiency 0ox X    

Y oy 

0i i    

m m
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1i j

m

urban j urbanj
ha ha


                    (4) 

On the other hand, the efficient level of e.g. tan urbandis ce  is calculated from formula 

(5): 

urban i idistance =distance /Driving_Efficiency              (5) 

It should be noted that a DMU achieves its efficient level by reaching the efficient level of 

either its inputs or outputs. Additionally, a DMU is deemed to have achieved the efficient 

level when it reaches unit efficiency. Based on the above, it can be concluded that the 

required change of each driving attribute that was taken into consideration in order for a 

driver to shift either to the efficient frontier or to another driving class can be estimated. 

This can be achieved by solving the optimization problem for a specific input or output 

given the target efficiency ( Driving_Efficiency ), which is the upper or the lower limit of 

the class that the driver is shifting in case of efficiency decrease or increase respectively.  

Reduced basis entry (RBE) algorithm 

The Reduced Basis Entry (RBE) algorithm for DEA is iteratively solving the DEA LP for 

all DMUs in the database. The main difference from the standard DEA approach is that 

if the reference 0DMU  examined is found to be inefficient in an iteration, it is excluded from 

all the next solutions. Therefore, each time a non-efficient DMU is recognized, variables 

are reduced by one and as a result, the running time of the next LP will be lower. Thus, 

total computations are less expensive in terms of time. The pseudocode of RBE algorithm 

is given below: 

 

for every DMUx in DMUset: 
    θx,λx=DEA(DMUx,inputset,outputset) 
    if θx<1:                                                                                                                             (6) 
         DMUset.remove(DMUx) 
         delete[inputx] 
         delete[outputx]  

 

where DEA is the function written for solving the DEA LPs given reference DMU name, 

input matrix and output matrix, x  is the estimated efficiency for xDMU , x  is the weight 

coefficient of xDMU  and input and output are the matrices containing inputs and outputs 

respectively. This algorithm results in constructing two sets comprising of the thetas and 

lambdas of all DMUs in the dataset.  
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3.3.2) Convex hull 

The convex hull of a set of points is the smallest convex set that contains all points in the 

set. Reducing the required computation time for finding the optimal solution of convex 

hull is a fundamental problem for mathematics and computational geometry. In quickhull 

algorithm (Barber et al., 1996), that is used herein, it is assumed that points are in a 

general position, so that their convex hull is a simplicial complex (Preparata & Shamos, 

1985). Its vertices and facets represent a d-dimensional convex hull. A point is deemed 

to be extreme, and, therefore, lies on the hull, if it is a vertex of the convex hull. Each 

facet comprises of a set of vertices, a set of neighboring facets, and a hyperplane 

equation. The ridges of the convex hull are the (d - 2) - dimensional faces. The point 

where the vertices of two neighboring facets intersect, constructs a ridge. Quickhull 

makes use of two geometric operations (Barber et al., 1996), oriented hyperplane through 

d points and signed distance to hyperplane. It represents a hyperplane by its outward-

pointing unit normal and its offset from the origin. The inner product of the point and 

normal plus the offset represents the signed distance of a point to a hyperplane. A 

halfspace of points that have negative distances from the hyperplane is defined by the 

hyperplane. A point is above the hyperplane if this distance is positive.  

Assuming a set E  containing N  DMUs convex hull algorithm will initially estimate the 

set eE  consisting of the number eN  of the most efficient DMUs. Consequently, each DMU 

m  of the set { }eE E  of the non-efficient DMUs will be run with the set eE  creating 

( )eN N  DEA linear problems with 1eN   (DMU that is evaluated) variables. This will 

allow for the calculation of efficiency   and slacks   of the peers for each DMU m  of 

the set { }eE E  of the non-efficient DMUs.  

It should be mentioned that the DEA - convex hull algorithm consists of three different 

steps namely convex hull solution, determination of the efficient DMUs, DEA solution for 

non-efficient DMUs. At the first step, convex hull points are identified creating thus a 

superset of cN  points that includes all efficient DMUs. Nonetheless, because some of the 

convex hull points are not efficient DMUs since they do not lie on the efficiency frontier, 

cN  DEA LPs are solved to find the eN  efficient DMUs. During the third step, ( )eN N  DEA 

LPs one for each of the inefficient DMUs to estimate parameters i  and i .  

3.3.3) Driver’s behaviour volatility measure 

Since it is crucial to observe how each driver alters everyday behaviour and whether or 

not there is a stability in his/her driving behaviour, the natural logarithm of the ratio of the 

performance of two consecutive time steps is estimated (Mantouka et al., 2018). This 

corresponds to the improvement or impairment of overall driving efficiency respectively, 

which changes according to the way he/she is driving over time. Let Et,i be the efficiency 

of a driver at the time step t, Et = (1,…,n), where t = (1,2,..,n) the number of time steps 
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and I = (1,…,N) the ID of each driver. The improvement/ impairment ratio per time step 

is given by: 

 

,

,

1,

ln( )
t i

t i

t i

E
r

E 

                   (7) 

 

This indicator has a positive value, when the driver improves his overall driving efficiency 

in the next time step and negative values indicate a deterioration of overall driving 

efficiency. The total driver’s behaviour volatility measure is estimated as the standard 

deviation of the improvement/ impairment ratio, in order to detect the instability in driver’s 

safety efficiency evolution: 

 

Driver’s behaviour volatility = 

2

,

1

( )

1

n

t i i

t

r r

n








                      (8) 

 

where ,t ir is the gain/loss per trip corresponds to driver i , r  the average of gain/loss ratio 

and n  the number of trips.  

3.3.4) Driving efficiency time series 

Stationarity 

Stationarity is one of the most important concepts in time series analysis. This is because 

time series models may apply only to stationary data. Therefore, before proceeding with 

time series modelling, data must not have a trend. Assuming the existence of a time 

series tY , where t  is the observation period, the time series is strictly stationary if the 

joint probability distributions of (
1t

Y ,
2t

Y , . . . , 
nt

Y ) and (
1t LY  ,

2t LY  , . . . , 
nt LY  )  are the 

same for all 1t , 2t , . . . , nt and L  (length of seasonality). This implies that the joint 

distribution of (
1t

Y ,
2t

Y , . . . , 
nt

Y ) is time invariant, a strong condition that requires 

verification in practice (Tsay 2002).  

When both the mean of tY , and the covariance between 
nt

Y , and 
nt LY   are time invariant 

(for an arbitrary L ) weak stationarity applies, which is a weaker notion of stationarity. 

For 1n  , the univariate distribution of 
1t

Y is the same to that of 
1t LY  . Accordingly, 
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( ) ( )t t LE Y E Y   and ( ) ( )t t LVAR Y VAR Y   implying that the mean   and variance 2  

of the time series are constant over time (Shumway and Stoffer, 2000). For 2n  , the 

joint probability distributions of (
1t

Y , 
2t

Y ) and (
1t LY  , 

2t LY  ) are the same and their 

covariances are equal (Washington et al., 2010)  

 

   
1 2 1 2
,  ,  Y  t t t L t LCOV Y Y COV Y                    (9) 

 

The previous condition depends only upon the lag L . The covariance between tY and 

t LY   is called autocovariance (  ) and is a function that gives the covariance of the 

process with itself at pairs of time points. It is given by  

 

     ,  t t L t t LCOV Y Y E Y Y m                             (10) 

 

and   2

0 tVAR Y    

 

When a time series is not stationary, stationarity is usually obtained through first-order 

differencing in transportation research (Washington et al., 2010) i.e. tY  is 1t t tZ Y Y   . 

In this case, the original series tY  are called unit-root non-stationary. Several tests for 

non-stationarity (unit-root tests) have been proposed in literature (Granger & Engle, 1987) 

with the most satisfactory among them to be the Dickey–Fuller tests. The null hypothesis 

of this test is that the time series tY , is non-stationary and it requires at least one 

differencing to become stationary whereas the alternative is that the time series is already 

stationary.  

There are some cases though where a process does not have a unit root but is near to 

it. In most cases time series are usually differenced d  times to achieve stationarity, 

where d is the integration order d  and the number of existing unit roots. Nonetheless, 

when imposing erroneous differentiation parameters (Granger & Joyeux, 1980) d  is 

practically forced to be equal to 1 when it is not. This leads to overdifferentiation of the 

time series and forces an artificial correlation structure on the prediction models. 

Additionally, (0)I  and (1)I  model structures cannot account for persistence in a time 

series commonly referred to as “long memory”. A series is said to have “long memory” 

when significant autocorrelation is observed in wide timeframes. This is easily noticed by 

examining the autocorrelation function plot of a time series.  
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Short and long-memory time series are necessary to be fractionally integrated, with the 

order d  taking on any fractional or integer value in the  1,1  region. Data are generally 

modelled better using fractional integration because strict (0)I  or (1)I  processes are 

avoided and both long-term persistence and short-term correlation are explicitly modelled 

(Hosking, 1981). The order d  denotes the status of a time series in terms of stationarity 

(Hosking 1981; Odaki 1993) i.e. when 1d   it is a unit-root process, when 0d   it is 

stationary, when 0 1 2d  , it is fractionally integrated (Karlaftis and Vlahogianni 2009) 

and exhibits long memory and when 1 2 1d   stationarity in the series cannot be 

verified.  

Trend 

The trend of a time series can be defined as the “long-term” movement in a time series 

without calendar related and irregular effects, and is a reflection of the underlying level. 

It may appear as a result of an alteration in several factors that affect the time series e.g. 

price inflation, general economic changes and population growth. It is necessary thus in 

time series analysis to estimate the magnitude of this change in time. There are five main 

methodological approaches to quantify the trend of a time series (Zarnowitz & Ozyildirim, 

2006, Bianchi et al., 1999, Cameron, 2005, Pranab, 1968, Hodrick & Prescott, 1997, 

Rotemberg, 1999): 

 

1) Least squares linear regression 

Interlacing of the time series points by a straight line with the lowest sum of squared 

distances (in direction of y-axis) from all the points. This is the most usual choice called 

a least-squares fit, which minimizes the sum of the squared errors in the data series y.  

 

2

1 1 1 1 1 1

2 2

2 2

1 1 1 1

n n n n n n
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               (11) 

 

where ix  denotes the time points of measurements as in the previous equations. Given 

a set of points in time t , and data values tY  observed for those points in time, values of 

a  and b  are chosen so that  

 

2

( )tt
y at b  
                        (12) 
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is minimized. Here at b  is the trend line, so the sum of squared deviations from the 

trend line is what is being minimized. This can always be done in closed form since this 

is a case of simple linear regression. It can be therefore inferred that trend is the slope of 

the least squares line.  

 

2) Theil-Sen regression 

Nonparametric variant of the previous trend statistic computed as a median slope from 

all of the slopes of pairs of points in the time series (such that, the first point is 

predecessor of the second one in the pair).  

 

3) Delta 

Basic difference of the final and initial time point of the time series: 

 

1nDelta y y                   (13) 

 

4) The Hodrick-Prescott Trend 

Let a time series tY  be viewed as the sum of a growth (trend) component tg  and a 

cyclical component :t t t tc Y g c   for 1,...,t T . The growth component should be 

smooth, so that the procedure recommended by Hodrick and Prescott (1997) is to 

minimize  

 

   
2

2

1 1 2

T T

t t t t t

t t

c g g g g                      (14) 

 

where the parameter   is positive. The larger  , the smoother is the result; if  , which 

penalizes variability in tg , is large enough, approaches 0g t . Hodrick and Prescott 

favour 1,600   for quarterly data, but show that the numbers change little if   is 

reduced or increased by a factor of four.  

 

5) The Rotemberg Trend 

Rotemberg (1999) proposes a heuristic method of time series decomposition which 

estimates the value of   given two parameters, k  and v . Using the earlier notation, let 

t t tY g c  , where tg  and tc  are trend and cycle components of the time series tY , 
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respectively. The parameter k  ensures that the estimated trend minimizes the 

covariance of two values of the cyclical component, tc  and t kc  . The parameter v  

ensures that the trend and cycle components, tg  and tc , are orthogonal over the horizon 

of v  periods. Specifically, Rotemberg estimates the trend by minimizing  

 

   
21

1 1 2

1 2

*
T T

t t k t t t t

t k t

c c g g g g


   

  

                    (15) 

 

  is chosen as the lowest parameter value such that the following constraint holds  

 

   * 0
T k v

t t v t t t v

t k v

c g g g g
 

 

 

                  (16) 

 

Rotemberg recommends that k  be set to equal 16 quarters on the admittedly somewhat 

arbitrary ground that historically NBER business cycle troughs for the U.S. have been 

four years apart on average. (The dispersion around this average is very large.) With 

large k , the minimization of (5) results in a trend that is quite smooth and not very 

sensitive to either the cyclical movements of the series nor the choice of v . With low k a  

fortiori, with zero k , which is the case in the H-P trend – the effects are opposite. 

Rotemberg chooses v  to equal five quarters.  

Literature review revealed that given a set of time series data and the desire to estimate 

its trend, there are several functions that might be chosen for the fit. If there is no prior 

knowledge of the time series characteristics, then the simplest function to fit is probably 

a straight line with the data plotted vertically and values of time (t = 1, 2, 3, ...) plotted 

horizontally (Mills, 2003). This is the case when solving an online driving efficiency 

problem; there is no prior knowledge of the time series characteristics of each driver 

because a) these attributes are not known when a new driver is included in the analysis 

and b) even if they were, they are affected by the rest of the driving sample since 

efficiency is relatively estimated. Additionally, it is generally preferable to use the same 

approach for all drivers for the sake of simplicity and therefore this study makes use of 

the least squares linear regression methodology for the determination of the time series 

trend. It should be noted though, that the optimal choice would be to investigate the trend 

estimation approach that fits each time series best, but this is beyond the scope of this 

thesis.  
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3.3.5) K - means clustering 

K-means clustering is an unsupervised machine learning technique used when 

unlabelled data (data that are not categorized or grouped) exist. This algorithm aims to 

find the optimum way to group given data, with the number of groups represented by the 

variable K that is given as input. The algorithm iteratively assigns each data point to one 

of the K groups on the basis of the features provided. Data points are grouped based on 

the similarity of their features. The results of the K-means clustering algorithm are: 

1) The centroids of the K clusters, which can be used to label new data 

2) Labels for the training data (each data point is assigned to a single cluster) 

Clustering allows for finding and analysing the groups that were formed naturally, instead 

of defining groups prior to looking at the data. The section below describes how the 

number of groups can be determined. The centroid of each cluster is a collection of 

feature values that defines resulting groups. When the centroid feature weights are 

examined, the kind of group each cluster represents can be qualitatively interpreted.  

Algorithm 

An iterative refinement is used by the Κ-means machine learning clustering algorithm to 

produce the final result. The inputs used by the algorithm are the number Κ of clusters to 

be created and the data to be clustered. Data are a collection of features for each data 

point or in other words each data point has several attributes that account for its features. 

Initially, the algorithm randomly assigns the Κ centroids, which are randomly either 

generated or selected from the dataset. Afterwards, the algorithm iterates between two 

steps: 

 

1. Data assignment: 

 

Each data point is assigned to the nearest existing centroid in this step, based on the 

squared Euclidean distance. In other words, if ci is the collection of centroids in set C, 

each data point x is assigned to a cluster based on  

 

2arg min ( , )
i

i
c C

dist c x


                      (17) 

 

where dist(·) is the standard (L2) Euclidean distance. Let the set of data point 

assignments for each ith cluster centroid be Si.  

 

2. Centroid update: 
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In this step, the centroids are re-estimated by taking the mean of all data points assigned 

to that centroid's cluster.  

 

1

i i
i ix S

i

c x
S 

                   (18) 

 

The algorithm iterates between the two steps until one of the stopping criteria is met or 

in other words, no data point changes cluster and the sum of the distances is minimized 

or the maximum number of iterations set is reached.  

 

These algorithmic steps are guaranteed to converge to a result. The result though is likely 

to be a local optimum and not the optimum solution and therefore a better outcome might 

be reached by assessing more than one algorithm run with randomized starting centroids.  

Number of clusters 

The algorithmic steps presented above result to K clusters for a particular pre-determined 

K. To estimate the optimum number of clusters arising, it is necessary to run the algorithm 

for a range of K values and compare the results. In general, there is not a methodology 

to determine the exact value of K, but the techniques presented below can be used to 

obtain an accurate estimate.  

 

One of the most commonly used metrics for comparing results across different values of 

K is the mean distance between cluster centroids and the data points assigned to each 

one of them. Increasing the number of clusters will always lead to a reduction of this 

distance, to the extreme of reaching zero when the number K is equal to the number of 

data points. Therefore, the minimization of this metric cannot be used as the sole target. 

Instead of that, the mean distance to the centroid is plotted as a function of the number 

of clusters K and the "elbow point," which appears at the point where the rate of decrease 

sharply shifts, can be used to estimate K. Figure 3.1 shows an elbow method example.  
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Figure 3.2: Elbow method example 

 

A number of other techniques exist for estimating the optimum number of clusters K, such 

as information criteria, the information theoretic jump method, cross-validation, the 

silhouette method, and the G-means algorithm. Additionally, insights into how K-means 

algorithm is clustering data for each K are provided when monitoring the distribution of 

data points across groups.  

3.3.6) Cumulative event rate convergence 

The statistical analysis using the data collected from the smartphone will be conducted 

to determine the driving distance at which the rate of the driving indicators converges to 

a stable index and therefore DEA can be applied in each time step and no more data are 

required to be collected in total. In this research the magnitude of change measurement 

in a time series is employed which is decreasing over distance (km) as the specific 

magnitude converges on its average rate. At the same time, this means that the rate at 

which an event (number of harsh acceleration/ braking events, seconds of mobile phone 

usage, seconds driving over the speed limits per 100km) occurs also converges to its 

average rate e.g. the average rate of harsh acceleration events for the specific driver 

(average number of harsh acceleration events). For each driver and after each trip that 

took place, the above metrics were calculated by diving the total number of occurred 

events by the total distance driven thus far, constructing thus a time series of average 
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events per km. The mathematical formulation for calculating the convergence index of 

the event rate is given in the following section.  

Convergence index 

Assuming that we have calculated the time series of the total events per km travelled        

( iCR ) for n  trips, the following formula is used for calculating the convergence rate of 

events: 

 *

1 1( ) /   2,ni i i iCI CR CR CR i N in                         (19) 

where, 

1 1

/
i i

iCR E km   
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Chapter 4: Data Collection 

4.1) Recording procedure 

Α mobile App developed by OSeven Telematics is employed for the purposes of this 

study to record driving behaviour of the participating users, exploiting the hardware 

sensors of the smartphone device and a variety of APIs to read sensor data and transmit 

it to a central database.  

OSeven has developed an integrated system for the recording, collection, storage, 

evaluation and visualization of driving behaviour data using smartphone applications and 

advanced machine learning (ML) algorithms. This innovative large-scale data collection 

and analysis methodology applied, presents new challenges by gathering large quantities 

of data for analysis during this research. The system developed integrates a data 

collection, transmission, processing and visualization procedure using smartphones, the 

main features of which are outlined in the next paragraphs.  

This subsection comprises an overview of the OSeven Telematics data flow system. 

Therefore, it should be highlighted that none of the procedures described herein was 

implemented as part of this research, but the existing system of OSeven was exploited 

to acquire the necessary information for the analysis conducted afterwards. It is also 

noted that all ML algorithms developed for raw driving data analysis e.g. harsh event 

detection is company-owned and therefore all relevant information is kept confidential.  

4.1.1) Data recording system 

The data recording is initiated automatically in the mobile apps when a driving status is 

recognized and again it stops automatically when a non-driving status is recognized. Trip 

recording also continues after the vehicle is idled for five minutes, to consider the case 

that the driver continues his trip with a few minutes stop. All extra information collected 

after the “end of driving” are discarded using the machine learning techniques described 

below. The recorded data come from various smartphone sensors and data fusion 

algorithms provided by Android (Google) and iOS (Apple). A mobile application is 

developed to record user’s behaviour by exploiting the hardware sensors of the 

smartphone device and a variety of APIs, which read sensor data and temporarily store 

it to Smartphone’s database before transmitted to the central database. After the 

transmission, everything is discarded from the mobile phone.  

Indicatively, technology sensors that are integrated in mobile phone are: 

1) Accelerometer1 

                                            

1these sensors are recording attributes in x, y, z axes 
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2) Gyroscope1 

3) Magnetometer 

4) GPS (speed, course, longitude, latitude) 

Fusion Data provided by iOS and Android: 

1) Yaw, pitch, roll 

2) Linear acceleration1 

3) Gravity1 

The frequency of the data recording varies depending on the type of the sensor with a 

minimum value of 1Hz. It is noticeable that a massive dataset can be achieved and a 

very significant contribution can be made by the use of mobile phone applications to the 

collection of driving characteristics. The basic operating frame of the data flow is shown 

in Figure 1.  

 

 

Figure 4.1: Oseven data flow system 

4.1.2) Data transmission 

After the end of the trip, the application is transmitting all data recorded to the central 

database of the OSeven backend office via an appropriate communication channel such 

as a Wi-Fi network or cellular network (upon user’s selection) such as a 3G/4G network 

(online options) based on the user settings.  

To achieve the interoperability between those sides, an API is built which is used to 

deliver data from an online service to another client application. This architecture is used 

to transfer and receive data between systems, supporting their interoperability between 

them. Making data accessible over the World Wide Web with an API, empowers third 

party systems data to be submitted to the database and makes the information easily 

available.  

The total volume of data for an average driver is estimated around 50Mb/ month.  
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4.1.3) Data storage, security and privacy issues 

Large-scale data are stored in the OSeven backend system using advanced encryption 

and data security techniques in compliance with the national laws and EU directives for 

the protection of personal data (e.g. GDPR). The API used supports user authentication 

and encryption to prevent unauthorized data access.  

4.1.4) Data processing 

After data is stored in the cloud server for central processing and data reduction, it is 

converted into meaningful behaviour and safety related parameters (i.e. big data handling 

and processing). This is achieved by using the two big data processing methods which 

include two families of techniques, big data mining techniques and machine learning (ML) 

algorithms.  

 

Figure 4.2: Yaw, Pitch, Roll 

Machine learning methods (filtering, clustering and classification methods) are used to 

clean the data from noise and errors, and to identify repeating patterns within the data. 

Subsequently, these data patterns will be processed by means of big data mining 

techniques, in order to calculate the necessary parameters and derive behaviour 

indicators to be used in the analysis. In other words, the highly spatially and time 

disaggregated data from the Smartphone are processed in order to derive useful road 

safety indicators. Artificial intelligence methods allow for the detection of aggressive 

behaviour of the driver in the form of harsh events, the observed distraction of the driver 

due to the use of mobile phone, the identification of travel modes, the speed limit 

exceedance as well as where the determination of the time and spatial characteristics of 

all the above. The procedure of the ML algorithms and big data mining techniques include 

data filtering and outlier detection, data smoothening, driver clustering and classification, 
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detection of speeding regions, harsh acceleration/braking/cornering events, mobile 

usage, risky hours driving, travelling mode and driver or passenger recognition.  

The procedure of the machine learning algorithms and big data mining techniques 

includes the simple steps mentioned below: 

1) Data filtering and outlier detection 

2) Data smoothening (when needed) 

3) Driver clustering and classification 

4) Recognition of the speeding regions (duration of speeding, exceedance of speed limit 

etc.) 

5) Detection of harsh acceleration/ braking/ cornering events 

6) Detection of mobile usage (talking, texting, surfing) 

7) Identification of driving during risky hours (distance in risky hours periods) 

8) Determination of the travelling Mode (car, mass transit, bicycle, motorcycle) 

9) Driver or Passenger recognition 

 

After the ML process is completed, a variety of different indicators is calculated that is 

useful to the user and for the evaluation of driving behaviour. These indicators are divided 

into two distinct categories, risk exposure and driving behaviour indicators. The main risk 

exposure indicators arising are: 

1) Total distance (mileage) 

2) Driving duration 

3) Type(s) of the road network used (given by GPS position and integration with map 

providers e.g. Google, OSM) 

4) Time of the day driving (rush hours, risky hours) 

combined with other data sources (speed limits etc.) 

The main driving behaviour indicators arising are: 

1) Speeding time (duration of driving over the speed limits, speed limit exceedance etc.) 

2) Number and severity of harsh events: 

i) Harsh braking (longitudinal acceleration) 

ii) Harsh acceleration (longitudinal acceleration) 

iii) Harsh cornering (angular speed, lateral acceleration, course) 

3) Driving aggressiveness (e.g. average positive and negative acceleration) 

4) Time of mobile phone usage 
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These indicators along with other data (e.g. data from maps) are subsequently exploited 

to implement individual traveller’s statistics, on all road networks (urban, highway, etc.) 

and under various driving conditions, enabling the creation of a large database of driving 

characteristics.  

The final step of the data processing procedure is the development of the driving 

behaviour model. Aggregated data are analysed and the evaluation system is calibrated 

based on the whole sample. The driving behaviour model includes several indicators for 

driving benchmarking and finally aggregates the whole procedure on a trip basis for each 

driver in the sample in order to produce the final rating per driver. Each trip and therefore 

each driver is benchmarked based on the characteristics mentioned above. Final 

evaluation produced comprises both a total and a per indicator rating. Processed data is 

transferred to the smartphone apps and/or web platform offering user-friendly 

environments for the users to get their analytics and reports. The data visualization 

procedure is described in the next section.  

4.1.5) Data visualization 

The results of all the aforesaid procedure are accessible in the Smartphone app and the 

web portal, where it is available for the user to see all detected events and their place on 

the map as well as all scores (overall and per category). Thus, the driver is provided with 

a user-friendly way to realize the trip sections with risky driving behaviour and avoid 

similar behaviours in the future. At the same time the insurance companies have access 

to the data of their clients using the OSeven web portal. The driving scores are used for 

the determination of the insurance premium and/or the loyalty programs.  

 

Figure 4.3: Driving risk indicators 
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Figure 4.4: Mobile App and Web portal 

 

All aforementioned indicators, which are received directly from the OSeven system, are 

analysed and filtered to retain only those indicators that will be used as inputs and outputs 

herein for the DEA problem. The procedure how inputs and outputs are selected will be 

described in the next section. Data filtering and DEA improvement algorithms are 

performed in Python programming language and several scripts are written for this 

reason. Python packages used include Pandas and Numpy for numeric calculations and 

transformations, scipy that features quickhull algorithm and pulp for linear programming 

problem construction. More details on the algorithm implementation are given below. 

Coding is applied using Pycharm IDE Community edition, for Python & Scientific 

development. The computer used for the computation time estimation is an Intel® Core™ 

i7 CPU K 875 @ 2.93GHz × 8 featuring a 2.0 GiB Ram memory running on Ubuntu 16.04 

LTS. More details on the algorithmic implementation are given below.  

4.2) Data sample 

4.2.1) Overview 

A significant amount of data is recorded using the smartphone application developed by 

OSeven Telematics. Data used in this research are anonymized before provided by 

OSeven so that driving behaviour of each participant cannot be connected with any 

personal information. This is a data exploitation approach that is user-agnostic and 

therefore less user intrusive. It should also be highlighted at this point that the approach 

followed in this study aims to identify driving behaviours and patterns and the factors 

influencing them and not to explain the causality between behaviour and other factors 

such as age, gender, occupation etc. or describe the distribution of the driving sample 

collected. The advantage of such an approach is that behaviours can be studied even in 

cases where demographic data of a driving sample are not available or cannot be 

collected.  
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Figure 4.5: Driving sample used in each part of the analysis 

 

For the purposes of this doctoral research, a sample of one hundred and seventy one 

(171) drivers participated in the designed experiment that endured 7-months and a large 

database of 49,722 trips is collected from the database of OSeven. For each individual 

part of the analysis conducted herein, a part of this database is exploited because of the 

different requirements of each analysis. More details on the database selection are given 

below. The selection made is presented in table 4.1 and illustrated in figure 4.5.  

 

Table 4.1: Driving sample used in each part of the research 

 
Sampling time 

investigation 

Trip efficiency 

analysis 

Driver efficiency analysis 

data_sample_1 data_sample_2 

Urban Rural Urban Rural 

Number of drivers 171 88 100 100 43 39 

Number of trips 49,722 10,088 23,000 15,000 9,890 5,850 

 

In all three parts of the research, the indicators exploited are the distance travelled, the 

number of harsh acceleration events, the number of harsh braking events, the seconds 

of using the mobile phone, the seconds of speeding per trip travelled. For driver efficiency 
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analysis, it was necessary to cumulate data per trip as described below. The definition of 

these indicators is given in table 4.2. 

 

Table 4.2: Description of the variables recorded 

Variable name Variable short description 
hax number of harsh acceleration events in X road type 

haurban number of harsh acceleration events in urban road 

harural number of harsh acceleration events in rural road 

hahighway number of harsh acceleration events in highway 

hbx number of harsh braking events in X road type 

hburban number of harsh braking events in urban road 

hbrural number of harsh braking events in rural road 

hbhighway number of harsh braking events in highway 

speedingx seconds of speed limit violation in X road type 

speedingurban seconds of speed limit violation in urban road 

speedingrural seconds of speed limit violation in rural road 

speedinghighway seconds of speed limit violation in highway 

mobilex seconds of mobile phone usage in X road type 

mobileurban seconds of mobile phone usages in urban road 

mobilerural seconds of mobile phone usage in rural road 

mobilehighway seconds of mobile phone usage in highway 

distancex distance driven in X road type 

distanceurban distance driven in urban road 

distancerural distance driven in rural road 

distancehighway distance driven in highway 

 

Additionally, data have been collected from a questionnaire, which was administered to 

a proportion of the drivers that were selected for the analysis conducted herein. More 

details on the questionnaire administered are given below. It is highlighted that two 

different data samples, data_sample_1 and data_sample_2, were used in the driver 

efficiency analysis, which included participants that did not answer the questionnaire 

administered and participants that answered the questionnaire administered, 

respectively.  

4.2.2) Large-scale data investigation 

The whole sample of 171 drivers participated in the designed experiment is used and a 

large database of 49,722 trips is created. All drivers chosen to be included in this part of 

the analysis should had driven at least for 10 hours and 40 trips that approximately equals 

the typical monthly number of trips for a driver assuming that each driver drives 2 trips of 

15 minutes a day for 5 working days a week.  

Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15 illustrate some descriptive 

statistics concerning the attributes of the driving sample collected from the smartphone 

devices. The first five figures present the sample collected on a trip basis while the latter 

five figures present the sample collected on a driver basis. Figure 4.6 and 4.11 presents 

the average trip duration, average trip driving duration (duration of a trip with no stops 
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included) and average trip distance travelled respectively. Figure 4.7, 4.8, 4.12 and 4.13 

presents the average number of harsh events (acceleration and braking respectively) 

occurred in urban, rural and highway road network per 100 km distance travelled in each 

road network. Figure 4.9, 4.10, 4.14, 4.15 illustrate the percentage of time using the 

mobile phone and the percentage of time driving over the speed limits per trip travelled.  

It is evident that most trips have an average trip duration less than 20 minutes, an average 

trip driving duration less than 15 minutes and that most trips have a length between 0km 

and 10km. Additionally, it appears that the average number of harsh acceleration events 

occurred per 100km is higher than the number of harsh braking occurred. Especially for 

the urban and rural road types, this difference is sharp. As for the mobile usage, there is 

low or no mobile phone usage for the majority of the trips performed whereas the 

distribution of the percentage of speed limit exceedance appears to be more balanced. It 

should be highlighted though that speed limit exceedance takes place for almost two 

thirds of the trips recorded for urban roads. On the other hand, mobile phone usage takes 

place in more than the two thirds of the trips recorded for all road types. It is noted that 

the total number of trips is not equal to the sum of the trips illustrated in each sub-figure 

because there are several trips that were not performed in all road types.  

 

 

Figure 4.6: Histogram of the i) average trip duration (minutes), ii) average trip driving duration (minutes) 

and iii) average trip distance (km) of the driving sample’s per trip characteristics (from left to right). 

 

Figure 4.7: Histogram of the i) average haurban/ distanceurban, ii) average harural/ distancerural, iii) average 

hahighway/ distancehighway per 100 km of the driving sample’s per trip characteristics (from left to right). 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

113 

 

 

Figure 4.8: Histogram of the i) average hburban/ distanceurban, ii) average hbrural/ distancerural, iii) average 

hbhighway/ distancehighway per 100 km of the driving sample’s per trip characteristics (from left to right). 

 

 

Figure 4.9: Histogram of the percentage of time using the mobile phone per trip driving duration in i) 

urban, ii) rural iii) highway of the driving sample’s per trip characteristics (from left to right). 

 

 

Figure 4.10: Histogram of the percentage of time driving over the speed limits per trip driving duration in 

i) urban, ii) rural iii) highway of the driving sample’s per trip characteristics (from left to right). 
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Figures 4.11, 4.12, 4.13, 4.14, 4.15 illustrate some descriptive statistics regarding the 

attributes of the driving sample collected from the smartphone devices. Figure 4.11 

presents the average trip duration, average trip driving duration (duration of a trip with no 

stops included) and average trip distance travelled respectively. Figure 4.12 and 4.13 

presents the average number of events (harsh acceleration and braking respectively) 

occurred in urban, rural and highway road network per 100 km distance travelled in each 

road network. Figure 4.14 and 4.15 illustrate the percentage of time using the mobile 

phone and the percentage of time driving over the speed limits per trip travelled. It is 

evident that most drivers have an average trip duration around 60 minutes, an average 

trip driving duration of less than 60 minutes and that most drivers were monitored for less 

than 3000km. Additionally, it appears that the average number of harsh acceleration 

events occurred per 100km is higher than the number of harsh braking occurred in all 

road types. Mobile phone usage is limited to less than 5% of driving trip duration for the 

one third of the drivers in urban roads and for the 2 thirds in highways. As for the speed 

limit exceedance, the majority of the drivers driver over the speed limit between 10% and 

30% of the driving trip duration in urban and rural roads and less than 10% in highways.  

 

 

Figure 4.11: Histogram of the i) average trip duration (minutes), ii) average trip driving duration (minutes) 

and iii) average trip distance (km) of the driving sample’s per driver characteristics (from left to right). 

 

 

Figure 4.12: Histogram of the i) average haurban/ distanceurban, ii) average harural/ distancerural, iii) average 

hahighway/ distancehighway per 100 km of the driving sample’s per driver characteristics (from left to right). 
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Figure 4.13: Histogram of the i) average hburban/ distanceurban, ii) average hbrural/ distancerural, iii) average 

hbhighway/ distancehighway per 100 km of the driving sample’s per driver characteristics (from left to right). 

 

 

Figure 4.14: Histogram of the percentage of time using the mobile phone per trip driving duration in i) 

urban, ii) rural iii) highway of the driving sample’s per driver characteristics (from left to right). 

 

 

Figure 4.15: Histogram of the percentage of time driving over the speed limits per trip driving duration in 

i) urban, ii) rural iii) highway of the driving sample’s per driver characteristics (from left to right). 
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It appears that the majority of the drivers (131 out of 171) have driven between 20 and 

200 hours, while only a few spent more than 17 hours on road. Regarding distance 

covered, 155 drivers drove between 500 and 10,000 km. Only two drivers demonstrated 

a mileage of more than 10,000km.  

It should be highlighted that the required amount of driving data will be quantified in 

driving time and not in driving distance in order for the results to be comparable with other 

past studies (Shichrur et al. (2014)). The difference between trip duration and trip driving 

duration is that the first includes possible stops. They are both measured in driving hours.  

4.2.3) Trip efficiency analysis 

As for the trip efficiency analysis, a part of the sample of eighty-eight (88) drivers 

participated in the designed experiment that took place between 28/09/2016 and 

05/12/2016 and a large database of 10,088 trips is created.  

Figures 4.16, 4.17, 4.18, 4.19, 4.20 and table 4.3 illustrate some descriptive statistics 

concerning the attributes of the driving sample collected from the smartphone devices. 

Figure 4.16 presents the average trip duration, average trip driving duration (duration of 

a trip with no stops included) and average trip distance travelled respectively. Figure 4.17 

and 4.18 presents the average number of events (harsh acceleration and braking 

respectively) occurred in urban, rural and highway road network per 100 km distance 

travelled in each road network. Figure 4.19 and 4.20 illustrate the percentage of time 

using the mobile phone and the percentage of time driving over the speed limits per trip 

travelled.  

It is evident that most trips have an average trip duration less than 30 minutes, an average 

trip driving duration less than 15 minutes and that most trips have a length between 0km 

and 10km. Additionally, it appears that the average number of harsh acceleration events 

occurred per 100km is higher than the number of harsh braking events occurred. 

Especially for the rural and highway networks, this difference seems to be sharp. As for 

the mobile usage, there is low or no mobile phone usage for the majority of the trips 

performed whereas the distribution of the percentage of speed limit exceedance appears 

to be more balanced. It should be highlighted though that almost half of the trips recorded 

show a speed limit exceedance between 20% and 40% of driving time for urban roads. It 

is noted that the total number of trips is not equal to the sum of the trips illustrated in each 

sub-figure because there are several trips that were not performed in all road types.  



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

117 

 

Figure 4.16: Histogram of the i) average trip duration (minutes), ii) average trip driving duration (minutes) 

and iii) average trip distance (km) of the driving sample (from left to right). 

 

Figure 4.17: Histogram of the i) average haurban/ distanceurban, ii) average harural/ distancerural, iii) average 

hahighway/ distancehighway per 100 km of the driving sample (from left to right). 

 

 

Figure 4.18: Histogram of the i) average hburban/ distanceurban, ii) average hbrural/ distancerural, iii) average 

hbhighway/ distancehighway per 100 km of the driving sample (from left to right). 
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Figure 4.19: Histogram of the percentage of time using the mobile phone per trip driving duration in i) 

urban, ii) rural iii) highway of the driving sample (from left to right). 

 

 

Figure 4.20: Histogram of the percentage of time driving over the speed limits per trip driving duration in 

i) urban, ii) rural iii) highway of the driving sample (from left to right). 

 

Table 4.3 provides some descriptive statistics of the per trip values of the variables 

recorded. In other words, the final database includes the value of each variable 

considered in the DEA models, constructing thus a database with one row per trip, the 

descriptive statistics of which are presented in table 4.3. Taking into account the 

skewness of the metrics, the distributions of harsh acceleration and harsh braking appear 

to be more symmetric compared to the rest of the metrics collected. The only exception 

is the case of harsh acceleration events recorded in highways that show a higher 

skewness. The table also confirms that the number of harsh acceleration events is higher 

than the number of harsh braking events in all road types and that the average 

percentage of speed limit exceedance is higher than the average percentage of mobile 

phone usage. Nonetheless, the median of these two values is 0 in almost all road types 

(except from the speedingurban value) which shows that there is no mobile phone usage 

and/or speed limit exceedance over the 50% of the trips.  
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Table 4.3: Descriptive statistics of the per trip values of the variables recorded 

 Distance (km) HA HB Mobile (sec) Speeding (sec) 

 Urban 

Min 0.00 0.00 0.00 0.00 0.00 

Max 144.41 452.83 432.76 1.03 1.00 

Average 4.95 25.30 8.98 0.06 0.12 

Standard Deviation 5.34 38.65 22.00 0.14 0.16 

Median 3.68 7.45 0.00 0.00 0.05 

Kurtosis 215.90 11.92 44.37 12.80 5.64 

Skewness 10.26 2.70 5.03 3.35 2.17 

 Rural 

Min 0.00 0.00 0.00 0.00 0.00 

Max 130.35 1023.08 422.18 1.00 1.00 

Average 5.24 18.38 7.43 0.06 0.12 

Standard Deviation 8.65 40.22 21.25 0.15 0.20 

Median 2.73 0.00 0.00 0.00 0.01 

Kurtosis 50.56 84.66 118.36 15.64 4.24 

Skewness 5.64 6.66 8.33 3.79 2.11 

 Highway 

Min 0.00 0.00 0.00 0.00 0.00 

Max 292.38 399.16 244.02 1.09 1.00 

Average 2.95 3.26 1.52 0.05 0.10 

Standard Deviation 15.27 17.86 9.46 0.15 0.20 

Median 0.00 0.00 0.00 0.00 0.00 

Kurtosis 139.46 288.01 340.86 22.01 5.56 

Skewness 10.82 15.00 15.83 4.46 2.42 

 

4.2.4) Driver efficiency analysis 

For the purposes of this part of the research, driving data were selected from the initial 

database of 171 drivers based on some driver criteria. The first criterion chosen was that 

all drivers should have travelled at least 50 more trips than the number of trips required 

so that the total distance per road type is at least equal to the minimum distance found in 

the previous step of the sample quantification. This criterion is set to ensure that a) inputs 

are proportionally increased to outputs and therefore it is valid to develop a DEA model 

in each time step of the moving window and in total and that, b) the number of the time 

series observations is satisfying. Of course, this procedure of drivers’ selection aims to 

result to the maximum number of drivers possible. On the top of that, all drivers should 

have positive mileage on all three types of road network. The third criterion was that 
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drivers with a zero sum of input attributes (i.e. harsh acceleration, braking, speed limit 

violation, mobile phone usage are all equal to zero) should be eliminated from the sample, 

which is a limitation of DEA. The business equivalent of a zero input could be a factory 

that is producing a product without making use of any material and/or workforce, which 

practically cannot occur. This procedure resulted to 100 drivers in urban and rural road 

type who fulfilled these criteria and were kept for the analysis conducted whereas the rest 

of the drivers were eliminated from this study. Drivers’ elimination resulted to only 18 

drivers in highways, which was considered a low number of participants for the analysis 

to be conducted. The total number of trips that took place by each of the drivers chosen 

was 230 for urban and 150 for rural roads constructing thus a large database of 23,000 

trips in urban and 15,000 in rural. From those drivers, 43 urban and 39 rural drivers have 

answered the questionnaire administered.  

Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and table 4.4 illustrate some 

descriptive statistics concerning the attributes of the driving sample used for the analysis 

of the temporal evolution of driving efficiency. Figure 4.21, 4.23, 4.25 and 4.27 presents 

the total trip duration, total driving distance travelled and the average number of harsh 

acceleration events per 100 km driven for the urban data_sample_1, the rural 

data_sample_1, the urban data_sample_2 and the rural data_sample_2 respectively. 

Figure 4.22, 4.24, 4.26 and 4.28 presents the average number of harsh braking events 

per 100 km driven, the average percentage of time using the mobile phone and the 

average percentage of time driving over the speed limits for the urban data_sample_1, 

the rural data_sample_1, the urban data_sample_2 and the rural data_sample_2 

respectively.  

As for the data_sample_1, it is evident that most drivers were recorded for less than 100 

hours and between 800km and 1200km in urban roads whereas for rural drivers were 

monitored for less than 60 hours and 800 km. Again, it appears that the average number 

of harsh acceleration events occurred per 100km is higher than the number of harsh 

braking events occurred per 100km. Mobile usage detected is relatively low and 

significantly lower in rural than urban roads. On the other hand, the distribution of the 

percentage of speed limit exceedance appears to be more balanced and similar in both 

road types except from the first two ranges of 0-2% and 2-4%. It is highlighted though 

that a speed limit exceedance of more than 4% of the driving time is showed for the 40% 

of the drivers in urban roads and 36% in rural roads.  
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Figure 4.21: Histogram of the i) total trip duration (hours), ii) total driving distance (km) and iii) average 

number of haurban/ distanceurban per 100 km of the data_sample_1 travelled in urban road type (from left 

to right). 

 

 

Figure 4.22: Histogram of the i) average number of hburban/ distanceurban of 100 km  ii) average 

percentage of time using the mobile phone and iii) average percentage of time driving over the speed 

limits of the data_sample_1 travelled in urban road type (from left to right). 

 

 

Figure 4.23: Histogram of the i) total trip duration (hours), ii) total driving distance (km) and iii) average 

number of harural/ distancerural per 100 km of the data_sample_1 travelled in rural road (from left to right). 
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Figure 4.24: Histogram of the i) average number of hbrural/ distancerural per 100 km,  ii) average 

percentage of time using the mobile phone and iii) average percentage of time driving over the speed 

limits of the data_sample_1 travelled in rural road type (from left to right). 

 

As for the data_sample_1, it is evident that most drivers were recorded for less than 100 

hours and less than 1200km in urban roads whereas for rural drivers were monitored for 

more than 60 hours and less than 800 km. Again, it appears that the average number of 

harsh acceleration events occurred per 100km is higher than the number of harsh braking 

events occurred per 100 km. More precisely, most drivers performed more than 20 harsh 

acceleration events in urban roads and more than 10 in rural roads while the number of 

harsh braking events was less than 10 in both road types. Mobile usage detected is 

relatively low and significantly lower in rural than urban roads. The percentage of speed 

limit exceedance shows a similar distribution in both road types except from the last range 

of above 8%, which shows a higher concentration. It is highlighted though that a speed 

limit exceedance of more than 4% of the driving time is showed for around a 42% of the 

drivers in urban roads and 33% in rural roads.  

 

 

Figure 4.25: Histogram of the i) total trip duration (hours), ii) total driving distance (km) and iii) average 

number of haurban/ distanceurban per 100 km of the data_sample_2 travelled in urban road type (from left 

to right). 
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Figure 4.26: Histogram of the i) average number of hburban/ distanceurban 100 km ii) average percentage 

of time using the mobile phone and iii) average percentage of time driving over the speed limits of the 

data_sample_2 travelled in urban road type (from left to right). 

 

 

Figure 4.27: Histogram of the i) total trip duration (hours), ii) total driving distance (km) and iii) average 

number of harural/ distancerural per 100 km of the data_sample_2 travelled in rural road type (from left to 

right). 

 

 

Figure 4.28: Histogram of the i) average number of hbrural/ distancerural per 100 km ii) average 

percentage of time using the mobile phone and iii) average percentage of time driving over the speed 

limits of the data_sample_2 travelled in rural road type (from left to right). 
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Table 4.4 provides some descriptive statistics of the cumulative per driver values of the 

variables recorded. In other words, the final database includes the cumulative value (from 

the number of trips recorded in each road type) of each variable considered in the DEA 

models, which equals to the sum of metrics recorded in each trip of the specific driver, 

constructing thus a database with one row per driver, the descriptive statistics of which 

are presented in table 4.4. For instance, if driver X has a number of Y recorded trips, the 

number of harsh acceleration events of each of the Y trips is summed and used in the 

DEA models. Taking into account the skewness of the metrics, almost all data appear to 

be skewed right. The only exception is the case of distance in urban road type which is 

more normally distributed with a light tail in the data of the data_sample_1 and with a 

slightly negative skewness in the data of the data_sample_2. The kurtosis of the harsh 

braking and acceleration events is observed to be significantly higher and slightly higher 

than all the rest of the metrics, respectively. The table also confirms that the number of 

harsh acceleration events is higher than the number of harsh braking events in all road 

and data (data_sample_1/ data_sample_2) types and that the average percentage of 

speed limit exceedance is higher than the average percentage of mobile phone usage.  
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Table 4.4: Descriptive statistics of the cumulative per driver values of the variables recorded – Analysis 

of the temporal evolution of driving efficiency 

 Distance (km) HA HB Mobile (sec) Speeding (sec) 
 

Urban - data_sample_1 

Min 362.01 3.05 0.42 0.00 0.32 

Max 2138.24 131.77 62.95 12.04 17.18 

Average 992.31 27.81 11.73 1.92 4.22 

Standard 

Deviation 

312.03 18.40 9.71 1.96 3.19 

Median 1012.32 24.06 8.51 1.24 3.51 

Kurtosis 1.02 9.05 12.48 6.45 2.78 

Skewness 0.41 2.15 2.94 2.05 1.54 
 

Rural - data_sample_1 

Min 52.99 1.26 0.85 0.00 0.08 

Max 2459.47 68.45 41.49 8.13 26.15 

Average 777.86 15.17 8.33 1.18 4.22 

Standard 

Deviation 

470.13 10.19 6.52 1.33 4.46 

Median 702.22 13.26 6.46 0.75 2.73 

Kurtosis 2.38 7.34 6.52 6.75 6.55 

Skewness 1.34 2.04 2.13 2.12 2.24 
 

Urban - data_sample_2 

Min 362.01 3.05 0.42 0.05 0.32 

Max 1804.49 131.77 60.50 7.69 17.18 

Average 1010.03 27.89 11.14 2.02 4.51 

Standard 

Deviation 

317.31 22.88 10.42 1.98 4.08 

Median 1012.96 22.05 7.76 1.16 2.77 

Kurtosis -0.29 8.76 11.04 0.57 1.38 

Skewness -0.08 2.43 2.85 1.21 1.39 
 

Rural - data_sample_2 

Min 133.40 1.26 0.85 0.00 0.08 

Max 2374.86 68.45 41.49 8.13 19.43 

Average 769.80 15.82 7.52 1.35 4.08 

Standard 

Deviation 

479.81 12.99 7.00 1.73 4.52 

Median 628.28 12.35 5.39 0.57 2.40 

Kurtosis 2.37 6.58 13.89 4.89 4.19 

Skewness 1.42 2.22 3.30 2.07 2.01 

 

4.2.5) Questionnaire 

A number of users that participated in the driver efficiency analysis conducted, took part 

in the online survey, which was administered by OSeven Telematics. The questions that 

are most related to the present research are: 
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1) Which year did you obtain your driving license? 

2) How many years have you been driving? 

4) How many km do you drive per year? 

5) Do you own the vehicle you most frequently use? 

6) How much is your gas consumption while driving the vehicle? 

7) In how many accidents have you been involved as a driver (either with your 

responsibility or not) to date? 

8) In how many accidents have you been involved as a driver (either with your 

responsibility or not) during the last 3 years? 

9) In how many accidents have you been involved as a driver with injury/injuries of any 

of the drivers/passengers (either with your responsibility or not) to date? 

10) In how many accidents have you been involved as a driver with injury/injuries of any 

of the drivers/passengers (either with your responsibility or not) during the last 3 

years? 

11) In how many accidents have you been involved as a driver with material damage 

only (either with your responsibility or not) to date? 

12) In how many accidents have you been involved as a driver with material damage 

only (either with your responsibility or not) during the last 3 years? 

13) How many driving fines have you received for road traffic violations during the last 3 

years? 

14) What is your country of residence? 

15) What is your gender? 

16) What is your age? 

17) What is your education? 

18) What is your profession? 

 

Based on the questions 2) and 7) a new variable is created to account for the number of 

accidents occurred to date per 10 years of driving. To acquire a better picture on the 

distribution of the drivers participated in the online survey, the following figures 4.29 and 

4.30 are provided: 
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Figure 4.29: Histogram of the i) average number of accidents occurred to date/ year of driving ii) years 

of driving experience iii) gender distribution and iv) age distribution of the drivers that answered to the 

questionnaire and travelled in urban road type (from left to right). 

 

 

Figure 4.30: Histogram of the i) average number of accidents occurred to date/ 10 years of driving ii) 

years of driving experience iii) gender distribution and iv) age distribution of the drivers that answered to 

the questionnaire and travelled in rural road type (from left to right). 

 

As expected, since most drivers in both road type samples are common, both 

distributions appear to be similar. The majority of the drivers have a driving experience 

of more than 15 years and less than one accident per 10 years. It also appears that 

approximately the 25% of participants are females and that 50% of the sample belong to 

the 30-40 age range.  
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Chapter 5: Implementation and Results 

In this chapter, analysis conducted is presented step by step and the results arising are 

described and explained. For the sake of brevity, the number of harsh acceleration 

events, the number of harsh braking events, the seconds of mobile usage and the 

seconds of driving over the speed limit will be referred as HA, HB, MU and SP 

respectively.  

Before proceeding to this stage of the doctoral research, data are filtered and prepared 

so that they meet the requirements set and they can be imported in the DEA models 

developed. Data filtering are performed in Python programming language and several 

scripts are written for this reason. In each step of the analysis, a different database is 

used and to this end, the initial database obtained should be filtered. For instance, to 

perform the analysis required for the temporal evolution of driving efficiency, it is 

necessary to obtain a specific number of each driver’s last trips.  

DEA improvement algorithms are also performed in Python programming language. 

Python packages used include pandas and numpy for numeric calculations and 

transformations, scipy that features quickhull algorithm, pulp for linear programming 

problem construction and scikit-learn for machine learning k-means clustering. More 

details on the algorithm implementation are given below. Coding is applied using 

Pycharm IDE Community edition, for Python & Scientific development. The computer 

used for the computation time estimation is an Intel® Core™ i7 CPU K 875 @ 2.93GHz 

× 8 featuring a 2.0 GiB Ram memory running on Ubuntu 16.04 LTS. More details on the 

algorithmic implementation are given below.  

5.1) Large-scale data investigation 

As defined in the methodological steps, in this step of the analysis it is examined whether 

or not the sum of metrics is proportionally increased to the sum of distances.  

One of the fundamentals of CRS DEA that cannot be overlooked is that the inputs are 

increasing linearly to outputs. It is therefore essential to investigate the evolution of driving 

metrics in time, compared to distance travelled, not only in total but also in each moving 

window examined. Additionally, the amount of adequate driving data sample that should 

be collected for each driver is estimated in this step to ensure the significance of the 

results arising. As mentioned above, for the analysis of the total driving behaviour as well 

as in moving window considered for the temporal analysis of driving efficiency, driving 

metrics should be linearly increased to distance travelled in order to apply CRS DEA. 

Therefore, the amount of data collected for each driver should be exceeding the minimum 

amount of data found that is required in each time step and in total.  

The statistical analysis using the data collected from the smartphone was conducted to 

determine the driving distance at which the rate of the driving indicators converges to a 
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stable index and therefore DEA can be applied in each time step and no more data are 

required to be collected in total. In this research the magnitude of change measurement 

in a time series is employed which is decreasing over distance (km) as the specific 

magnitude converges on its average rate. At the same time, this means that the rate at 

which an event (number of harsh acceleration/ braking events, seconds of mobile phone 

usage, seconds driving over the speed limits per 100 km) occurs also converges to its 

average rate e.g. the average rate of harsh acceleration events for the specific driver 

(average number of harsh acceleration events). For each driver and after each trip that 

took place, the above metrics were calculated by diving the total number of occurred 

events by the total distance driven thus far, constructing thus a time series of average 

events per km. The mathematical formulation for calculating the convergence index ( iCI

) of the event rate is given in the methodological approach chapter.  

A moving average of the magnitude iCI  is calculated for all participants. The moving 

window considered is 40 trips and it is deemed to be within acceptable margins when the 

average change measurement for the moving window of 40 trips and for at least 200 km 

is less or equal to 5% (0.05). The reason of choosing 40 trips and 200 km is that all drivers 

included in the analysis should had driven at least 40 trips that approximately equals the 

typical monthly number of trips for a driver assuming that each driver drives in average 2 

trips of 5 km a day for 5 working days a week. Considering approximately one month for 

monitoring and assessing a driver’s behaviour is deemed a period long enough for 

capturing the short-term changes in driver’s behaviour and short enough for ignoring the 

long-term changes in driver’s behaviour that will be captured in the analysis of temporal 

evolution of driving efficiency.  

The value 5% reflects the per mille change in measured change of the respective harsh 

event rate i.e. the moving average is attempting to capture the time after which the 

average per mille change is steadily less than 0.05. The reason why this value was 

selected can be better explained using figure 5.1.  

 

 

Figure 5.1: The evolution of the average cumulative speeding event rate per 100 km and convergence 

index over distance (km) for two drivers whose speeding behaviour is (a) converged (b) non-converged 

 

Figure 5.1a and 5.1b demonstrates the evolution of the average cumulative speeding 

event rate per 100 km and the convergence index of two individual drivers of a 758km 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

130 

and 239km total driving distance respectively. Τhe blue line refers to the average 

cumulative speeding event rate per 100 km and the orange line to the convergence index. 

The blue and the orange line are plotted on the primary Y-axis and the secondary Y-axis, 

respectively. It is evident that in figure 5.1a the driver’s behaviour is gradually converging 

after approximately 270km of driving as the average cumulative speeding events per 100 

km and the average convergence index are not significantly altered from that time and 

after. On the other hand, it can be said from figure 5.1b that the driver’s convergence 

index and the average cumulative speeding event rate is not converged since the 

average cumulative speeding event rate is fluctuating and the convergence index is 

significantly increased over 0. The same analysis was conducted for all drivers and the 

optimum value for average measurement change was found to be (should probably use 

median value as measurement) around 5%. In addition to that, this value was chosen 

because it can be considered a secure low per km change to draw statistically significant 

conclusions.  

For each metric, the procedure described above was implemented to find whether a 

driver’s behaviour is converged or not and what is the required distance to reach that 

point. For the total sample of converged drivers, the analysis per each metric recorded 

was conducted for four different value range categories, which were defined by the three 

percentiles of 25%, 50% and 75% of the converged drivers’ sample. This categorization 

is implemented to enable the investigation of necessary recording time for drivers of 

different value ranges 1, 2, 3 and 4.  

The results of the analysis conducted are presented in the following section. The number 

of necessary kilometres for the examined metrics to converge are plotted with the 

respective metric value for each road type in figures 5.2, 5.3 and 5.4 in order to observe 

any obvious trend or correlation between these two magnitudes. In addition, tables 5.1, 

5.2 and 5.3 provide some descriptive statistics of the metric values recorded and the 

distance travelled to convergence by users per value range category in each road type.  

5.1.1) Urban 

Figure 5.2 illustrates the distance in km that is required for each driver’s behaviour to 

converge based on the cumulative average of the HA, HB, MU and SP in urban road 

type. To begin with, it is difficult to draw a clear conclusion from the scatter plots, which 

showed that there is no apparent data trend for all metrics. Especially for HA and SP per 

100km, distance required for convergence appears to be lower than the other two metrics 

no matter what the value range of the metrics is. Οn the other hand, MU and HB per 

100km are more random in terms of the required distance and scatter points do not tend 

to concentrate in lower distance values. Nevertheless, as distance required for 

convergence increases, MU value range decreases.  
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Figure 5.2: Required distance (km) for each driver’s behaviour to converge based on the cumulative 

average per 100 km of HA, HB, MU and SP in urban road type 

 

Table 5.1 also confirms that there is no correlation between required distance and the 

range of values for the metrics recorded. Therefore, their cumulative average does not 

affect the distance required to acquire a clear picture for an individual driver. Nonetheless, 

there appears to exist a weak positive correlation between HA and required distance, 

which shows that the more aggressive/ risky a driver is, the more he/she should be 

monitored in order to be assessed.  

 

Table 5.1: Correlation matrix between HA, HB, MU and SP and required distance for each driver’s 

behaviour to converge in urban road type 

 Distanceurban 

haurban 0.210 

hburban -0.017 

mobileurban -0.072 

speedingurban -0.036 
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Table 5.2: Descriptive statistics of metric values and distance (*100km) per percentile range category in 

urban road type 

Metric Percentile range 
Metric descriptive statistics Distance to convergence 

Average St. Dev Min Max Average Median St. Dev 

HA 

0% – 25% 8.18 2.61 - 11.61 3.89 3.09 1.77 

25% – 50% 15.92 2.8 11.61 20.54 3.99 3.36 2.08 

50% – 75% 25.01 2.48 20.54 30.14 4.15 3.22 2.46 

75% – 100% 43.23 10.92 30.14 - 5.26 5.19 2.93 

HB 

0% – 25% 3.05 1.26 - 4.95 5.15 4.78 1.79 

25% – 50% 6.17 0.69 4.95 7.32 4.08 3.35 1.55 

50% – 75% 8.6 0.83 7.32 10.61 5.58 4.31 3 

75% – 100% 15.65 3.12 10.61 - 4.69 3.41 2.48 

MU 

0% – 25% 204 101 - 332 5.59 4.07 3.95 

25% – 50% 495 78 332 606 4.4 3.47 1.74 

50% – 75% 799 111 606 1041 4.43 3.81 2.47 

75% – 100% 2063 994 1041 - 4.93 3.66 3.1 

SP 

0% – 25% 727 194 - 947 4.89 3.39 3.08 

25% – 50% 1081 67 947 1198 3.43 2.93 1.23 

50% – 75% 1402 119 1198 1594 3.78 3.12 1.88 

75% – 100% 1919 318 1594 - 4.55 3.48 2.87 

 

Table 5.2 illustrates the descriptive statistics of each metric and distance per percentile 

range category that resulted from the analysis performed regarding the required distance 

to driving behaviour convergence. It is clear that for almost all metrics, performing the 

analysis for drivers of higher and lower percentile value range does not provide an extra 

value since there is no apparent trend as the metric range increases. The only exception 

might be HA, which presents a slight positive trend in required distance. All these 

observations were also highlighted in table 5.1 and figure 5.2, which lead to the 

conclusion that different sampling periods are not required for drivers of different 

percentile value range. This is probably because drivers of different percentile value 

ranges present similar standard deviation values as appears in figure 2 and therefore it 

does not take more distance for their driving characteristics to converge to their average 

level. Only drivers of the 75-100% percentile value range present a significantly higher 

standard deviation, which could probably be attributed to the fact that outlier metrics’ 

values exist in this specific range.  

As for the characteristics per driving risk level (percentile value range), more risky drivers 

perform 43.23 and 15.65 harsh acceleration and braking events per 100km whereas less 

risky drivers perform 8.18 and 3.05 harsh acceleration and braking events per 100km on 

average respectively. On the other hand, less risky drivers use their mobile phone 
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approximately for 204 sec/ 100km and drive over the speed limits for 727 sec/ 100km. 

Finally, risky drivers demonstrated a speed limit violation of 1919 sec/ 100km on average 

and a 2063 sec/ 100km mobile usage.  

It is highlighted that the maximum median value of distance to convergence is selected 

for the determination of the required sampling distance since compared to the average 

value the specific statistical measure ignores the outlier values that are likely to exist in 

the sample. The maximum median distance value of the table is taken into consideration 

because all metrics should have converged to their cumulative average in order to claim 

that a) the driving sample acquired is adequate and b) the input/ output ratio is relatively 

constant to perform DEA analysis. This ensures that enough data are taken into 

consideration for the analysis even in the case of initially underestimating the required 

sampling distance due to other factors such as biased sample acquisition etc.  

According to table 5.2, HA appears to be the most critical metric for the determination of 

the required sampling distance. It can be noticed that the maximum value of the adequate 

distance for the relevant metric to converge in the table appears for the percentile range 

75-100% of HA. The maximum median distance value is found to be 519km, which is 

approximately equal to 75 trips in urban road. Initially, the average distance per trip and 

consequently the number of required trips that each driver should perform to reach the 

distance of 519km is calculated. The median value of all users for this variable is 

estimated to be around 75. This is the length of the moving window used in the driver 

efficiency analysis to create the time series of driving efficiency in rural road type. The 

median value is preferred instead of the average value for the same reasons stated above 

for the determination of the required sampling distance.  

5.1.2) Rural 

Figure 5.3 illustrates the distance in km that is required for each driver’s behaviour to 

converge based on the cumulative average of the HA, HB, MU and SP in rural road type. 

It is difficult to draw a clear conclusion from the scatter plot of SP, which showed that 

there is no apparent data trend. For the rest of the metrics recorded, there is a weak 

negative correlation between the metric value and the distance to convergence. This 

indicates a weak negative data trend, which is confirmed both from figure 5.3 and from 

table 5.3. The interpretation of this is that the higher the metric value, the lower the 

distance required to be collected from a driver to acquire a clear picture regarding his/her 

driving behaviour and that as distance required for convergence increases, metrics 

values decrease. As for SP per 100km, it appears to be more random in terms of the 

required distance and scatter points do not tend to concentrate in lower metric values.  

As illustrated in the graphs, more risky drivers require to be monitored for less kilometres 

for their behaviour to converge. This is observed in most graphs, as there are almost no 

drivers with a high cumulative average of metrics among those that require a higher 

distance for their behaviour to be converged. This is unclear only in the SP graph where 

drivers seem to have a more random trend. This is probably because much less distance 

is required for most drivers to obtain a clearer picture on their SP behaviour.  
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Figure 5.3: Required distance (km) for each driver’s behaviour to converge based on the cumulative 

average per 100 km of the following metrics in rural road type: (a) Number of harsh acceleration events, 

(b) Number of harsh braking events, (c) Seconds of mobile usage and (d) Seconds of driving over the 

speed limit 

 

Table 5.3 also confirms that there is a weak negative correlation between required 

distance and all metric values apart from SP, which shows that the more risky a driver is, 

the less he/she should be monitored in order to be assessed. Therefore, the value of 

SP’s cumulative average does not affect at all the distance to convergence required to 

be collected for an individual driver.  

 

Table 5.3: Correlation matrix between HA, HB, MU and SP and required distance for each driver’s 

behaviour to converge in rural road type 

 Distancerural 

harural -0.249 

hbrural -0.265 

mobilerural -0.227 

speedingrural -0.089 
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Table 5.4: Descriptive statistics of metric values and distance (*100km) per percentile range category in 

rural road type 

Metric Percentile range 
Metric descriptive statistics Distance to convergence 

Average St. Dev Min Max Average Median St. Dev 

HA 

0% – 25% 3.69 1.7 - 6.42 5.07 4.31 2.19 

25% – 50% 8.8 1.33 6.42 10.79 4.05 3.76 1.34 

50% – 75% 13.58 1.98 10.79 17.02 4.99 4.17 2.7 

75% – 100% 27.27 11.04 17.02 - 3.49 3.36 0.85 

HB 

0% – 25% 2.05 0.84 - 3.15 5.2 4.39 2.21 

25% – 50% 4.35 0.67 3.15 5.6 4.29 4.03 1.26 

50% – 75% 6.92 0.69 5.6 8.28 4.89 4.40 2.21 

75% – 100% 13.54 7.16 8.28 - 3.89 3.60 1.87 

MU 

0% – 25% 85 48 - 157 6.3 5.79 2.61 

25% – 50% 263 50 157 371 4.85 4.42 2.09 

50% – 75% 511 92 371 747 5.01 4.48 1.92 

75% – 100% 1334 684 747 - 4.11 3.62 1.66 

SP 

0% – 25% 454 170 - 745 4.48 3.99 1.89 

25% – 50% 851 74 745 970 4.44 3.97 2.21 

50% – 75% 1142 112 970 1315 4.19 3.88 1.72 

75% – 100% 1526 181 1315 - 4.25 3.56 1.95 

 

Table 5.4 illustrates the descriptive statistics of each metric and distance per percentile 

range category that resulted from the analysis performed regarding the required distance 

to driving behaviour convergence. There exists a weak negative trend for all metrics 

besides SP, but it remains unclear whether or not an extra value is provided to the results 

arising when performing the analysis separately for less and more risky drivers. 

Therefore, this should be further investigated in future research. The only exception is 

SP, which presents no apparent trend in required distance. All these observations were 

also highlighted in table 5.3 and figure 5.3, which lead to the conclusion that different 

sampling periods are likely to be required for drivers of different driving risk level. This is 

probably because behaviour of typical and less risky drivers fluctuates more before it 

converges and therefore they need to be monitored more so as their driving 

characteristics have converged to their average level. Apparently, this is not the case in 

urban road since there is no obvious trend as the level of metrics increases. This is 

attributed to the fact that drivers are more volatile on the specific road type and as a 

result, the amount of data required to be collected is not strongly related to the 

aggressiveness of each driver. On the other hand, more risky drivers are likely to have a 
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more steady, risky though, behaviour. Again, drivers of the 75-100% percentile value 

range present a significantly higher standard deviation, which could probably be 

attributed to the fact that outlier metrics’ values exist in this specific range.  

As for the characteristics per driving risk level, more risky drivers perform 27.27 and 13.54 

harsh acceleration and braking events per 100km whereas less risky drivers perform 3.69 

and 2.05 harsh acceleration and braking events per 100km on average respectively. On 

the other hand, less risky drivers use their mobile phone approximately for 85 sec/ 100km 

and drive over the speed limits for 454 sec/ 100km. Finally, risky drivers demonstrated a 

speed limit violation of 1526 sec/ 100km on average and a 1334 sec/ 100km mobile 

usage.  

For the same reasons as in urban roads, the maximum median value of distance to 

convergence is selected for the determination of the required sampling distance. 

According to table 5.4, HB and MU appear to be the most critical metrics for the 

determination of the required sampling distance. It can be noticed that the maximum 

value of the adequate distance to converge for MU in the table appears for the percentile 

range 0-25% of HA. The maximum median distance value is found to be 579km, which 

is approximately equal to 81 trips in rural road. As in urban road analysis, the average 

distance per trip and consequently the number of required rural trips that each driver 

should perform to reach the distance of 579km is calculated. The median value of all 

users for this variable is estimated to be around 81. This is the length of the moving 

window used in the driver efficiency analysis to create the time series of driving efficiency 

in rural road type. The median value is preferred instead of the average value for the 

same reasons stated above for the determination of the required sampling distance.  

5.1.3) Highway 

Figure 5.4 illustrates the distance in km that is required for each driver’s behaviour to 

converge based on the cumulative average of the HA, HB, MU and SP in rural road type. 

As in rural road type, it is difficult to draw a clear conclusion from the scatter plot of SP, 

which shows no apparent data trend. For the rest of the metrics recorded, a weak 

negative correlation exists between the metric value and the distance to convergence. 

Specifically for MU, this trend seems to be even weaker. This data trend is also confirmed 

both from figure 5.4 and from table 5.5. The interpretation of this is that the higher the 

metric value, the lower the distance required to be collected from a driver to acquire a 

clear picture regarding his/her driving behaviour and that as distance required for 

convergence increases, metrics values decrease. As for SP per 100km, it appears to be 

more random in terms of the required distance and scatter points do not tend to 

concentrate in lower metric values.  

As illustrated in the graphs, more risky drivers require to be monitored for less kilometres 

for their behaviour to converge. This is observed in most graphs, as there are almost no 

drivers with a high cumulative average of metrics among those that require a higher 

distance for their behaviour to be converged. This is unclear only in the HA and the SP 

graph where drivers seem to have a more random trend. This is noticed in all road types 

and leads to the conclusion that SP metric is the least critical when estimating the 
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sampling distance required. This is probably because SP behaviour is more random and 

therefore more monitoring is required for most drivers to obtain a clearer picture.  

 

 

Figure 5.4: Required distance (km) for each driver’s behaviour to converge based on the cumulative 

average per 100 km of the following metrics in highways: (a) Number of harsh acceleration events, (b) 

Number of harsh braking events, (c) Seconds of mobile usage and (d) Seconds of driving over the 

speed limit 

 

Table 5.5 also confirms that there is a weak negative correlation between required 

distance and all metric values apart from SP, which shows that the more risky a driver is, 

the less he/she should be monitored in order to be assessed. It appears that this 

correlation is weaker when it comes to MU. Therefore, the value of SP’s cumulative 

average does not affect at all the distance to convergence required to be collected for an 

individual driver.  

 

Table 5.5: Correlation matrix between HA, HB, MU and SP and required distance for each driver’s 

behaviour to converge in highways 

 Distancehighway 

hahighway -0.223 

hbhighway -0.227 

mobilehighway -0.147 

speedinghighway -0.069 
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Table 5.6: Descriptive statistics of metric values and distance (*100km) per percentile range category in 

highways 

Metric Percentile range 
Metric descriptive statistics Distance to convergence 

Average St. Dev Min Max Average Median St. Dev 

HA 

0% – 25% 0.74 0.29 - 1.1 6.78 5.85 4.4 

25% – 50% 1.26 0.12 1.1 1.54 6.39 6.05 2.34 

50% – 75% 1.87 0.24 1.54 2.3 6.07 6.11 2.42 

75% – 100% 3.77 2.12 2.3 - 5.93 5.29 2.89 

HB 

0% – 25% 0.36 0.12 - 0.56 7.05 5.92 4.13 

25% – 50% 0.83 0.1 0.56 0.97 7 5.62 3.76 

50% – 75% 1.15 0.13 0.97 1.38 5.72 6.06 1.74 

75% – 100% 2.05 0.64 1.38 - 5.42 4.72 2.51 

MU 

0% – 25% 35 20 - 66 7.22 5.92 4.68 

25% – 50% 101 18 66 135 6.23 4.98 2.85 

50% – 75% 174 26 135 223 5.64 5.40 1.96 

75% – 100% 455 206 223 - 5.33 4.45 3.49 

SP 

0% – 25% 193 124 - 346 6.1 5.50 2.85 

25% – 50% 505 91 346 641 6.49 5.92 3.92 

50% – 75% 807 100 641 950 6.66 6.01 2.95 

75% – 100% 1168 249 950 - 5.44 4.64 2.41 

 

Table 5.6 illustrates the descriptive statistics of each metric and distance per percentile 

range category that resulted from the analysis performed regarding the required distance 

to driving behaviour convergence. The main picture seems to be similar to that acquired 

from the analysis on rural road type. There exists a weak negative trend for all metrics 

besides SP, but it remains unclear whether or not an extra value is provided to the results 

arising when performing the analysis separately for less and more risky drivers; this 

should be further investigated in future research. Again, the exception is SP that presents 

no apparent trend in required distance. All these observations were also highlighted in 

table 5.5 and figure 5.4, which lead to the conclusion that different sampling periods are 

likely to be required for drivers of different driving risk level. This is probably because 

behaviour of medium and less risky drivers fluctuates more before it converges and 

therefore they need to be monitored more so as their driving characteristics have 

converged to their average level. As mentioned above, this is apparently not the case in 

urban road since there is no obvious trend as the level of metrics increases. Again, this 

is attributed to the fact that drivers are more volatile on the specific road type and as a 

result, the amount of data required to be collected is not strongly related to the 
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aggressiveness of each driver. On the other hand, more risky drivers are likely to have a 

more steady, risky though, behaviour. In contrast to the results found in the other two 

road types, drivers of the 25-50% and especially the 0-25% percentile value range 

present a significantly higher standard deviation, which could probably be attributed to 

the fact that more randomness exists in this specific range.  

As for the characteristics per driving risk level, more risky drivers perform 3.77 and 2.05 

harsh acceleration and braking events per 100km whereas less risky drivers perform 0.74 

and 0.36 harsh acceleration and braking events per 100km on average respectively. On 

the other hand, less risky drivers use their mobile phone approximately for 35 sec/ 100km 

and drive over the speed limits for 193 sec/ 100km. Finally, more risky drivers showed a 

speed limit violation of 1168 sec/ 100km on average and a 455 sec/ 100km mobile usage. 

Metrics of all percentile value ranges across all different metrics are found to be 

significantly lower than those found in the other two road types.  

For the same reasons as in the other two road types, the maximum median value of 

distance to convergence is selected for the determination of the required sampling 

distance. According to table 5.6, HA and HB appear to be the most critical metrics for the 

determination of the required sampling distance. It can be noticed that the maximum 

value of the adequate distance to converge for MU in the table appears for the percentile 

range 50-75% of HA. The maximum median distance value is found to be 611km, which 

is approximately equal to 106 trips in highways. As in urban road analysis, the average 

distance per trip and consequently the number of required rural trips that each driver 

should perform to reach the distance of 611km is calculated. The median value of all 

users for this variable is estimated to be around 106. This the length of the moving window 

that should be used in the driver efficiency analysis to create the time series of driving 

efficiency in rural road type. Unfortunately, this value exceeds the number of trips (100) 

that are collected for the driver efficiency analysis in highways and therefore this analysis 

cannot be performed in the specific road type.  

The driving efficiency problem can be therefore dealt as a constant returns-to-scale 

(CRS) DEA problem since the required sampling distance is defined so that the sum of 

all metrics (inputs) recorded for each driver changes proportionally to the sum of driving 

distance (output) in each moving window examined and in total.  

Taking into account the literature review conducted, the data collected and all the 

peculiarities of the DEA technique, it is concluded that safety efficiency index may be 

defined using the number of harsh acceleration and braking events, the seconds of 

mobile usage and the seconds of driving over the speed limits as inputs and the distance 

travelled as output. This is the key-step connecting the “safety efficiency index estimation” 

and “benchmarking” part of this doctoral research. It constitutes a substantial step for 

moving forward with the DE analysis, determining the DEA inputs and outputs in such a 

way to i) be a scientifically sound formulation of the DEA technique and ii) represent 

driving safety efficiency and therefore the relative driving risk.  
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5.2) Trip efficiency analysis 

5.2.1) Multiple input-output DEA 

Overall, the three approaches (Standard, RBE and CH DEA) are tested for 7 different 

scenarios, i.e. for 100, 500, 1000, 2500, 5000, 7500 and 10088 DMUs, the results of 

which are presented in the following section.  

The amount of computational memory required to perform the Convex Hull DEA (CH 

DEA) approach is notably high. Quickhull algorithm applied herein does not support 

medium-sized inputs in 9-D and higher, which is the limitation of the present study. This 

is the reason why the authors choose to test their models only for six inputs and three 

outputs in order to create a convex hull problem of 9-D which can be calculated as 

described in the previous section (every DEA input is divided by every DEA output). Three 

outputs and six inputs are examined, instead of two or four for instance, for the results to 

be easily explained from a transportation engineering perspective. The combinations of 

the number of harsh acceleration and braking events, seconds driving over the speed 

limit and seconds used the mobile phone per road type with distance per road type were 

used to create 6 different DEA models. Nonetheless, only harsh acceleration and braking 

per road type with distance per road type (DEA model type 1) is chosen to be presented 

herein to avoid chattering. All models provided similar results and therefore conclusions 

drawn can be generalized regardless of the variables chosen in the model. The 

specifications of the models implemented are shown in Table 5.7.  

In every scenario tested, results showed that CH DEA method yielded exactly the same 

results as the other two approaches tested in terms of the most efficient DMUs 

identification, the lamdas and theta values estimation, the peers’ determination and the 

efficient level of inputs and outputs calculation for each DMU. This is a weighty outcome 

because for the first time tests proved the efficacy of the proposed methodology for 

performing a multiple input and output CH DEA.  
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Table 5.7: Inputs and outputs of DEA models used in trip efficiency analysis 

DEA Model 

type 
Set of Inputs used Set of Outputs used 

1 

1) number of harsh acceleration events in urban road 

2) number of harsh acceleration events in rural road 

3) number of harsh acceleration events in highway 

4) number of harsh braking events in urban road 

5) number of harsh braking events in rural road 

6) number of harsh braking events in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

2 

1) number of harsh acceleration events in urban road 

2) number of harsh acceleration events in rural road 

3) number of harsh acceleration events in highway 

1) total seconds of mobile phone usage in urban road 

2) total seconds of mobile phone usage in rural road 

3) total seconds of mobile phone usage in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

3 

1) number of harsh acceleration events in urban road 

2) number of harsh acceleration events in rural road 

3) number of harsh acceleration events in highway 

1) total seconds of speed limit violation in urban road 

2) total seconds of speed limit violation in rural road 

3) total seconds of speed limit violation in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

4 

1) number of harsh braking events in urban road 

2) number of harsh braking events in rural road 

3) number of harsh braking events in highway 

1) total seconds of mobile phone usage in urban road 

2) total seconds of mobile phone usage in rural road 

3) total seconds of mobile phone usage in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

5 

1) number of harsh braking events in urban road 

2) number of harsh braking events in rural road 

3) number of harsh braking events in highway 

1) total seconds of speed limit violation in urban road 

2) total seconds of speed limit violation in rural road 

3) total seconds of speed limit violation in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

6 

1) total seconds of mobile phone usage in urban road 

2) total seconds of mobile phone usage in rural road 

3) total seconds of mobile phone usage in highway 

1) total seconds of speed limit violation in urban road 

2) total seconds of speed limit violation in rural road 

3) total seconds of speed limit violation in highway 

1) total distance driven in urban road 

2) total distance driven in rural road 

3) total distance driven in highway 

 

5.2.2) Computational time reduction 

Results illustrated in table 5.8, indicate a superiority of the proposed method over the 

standard and RBE DEA approaches in terms of computation time. As anticipated, CH 
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DEA approach significantly outperformed the other two especially for samples of a higher 

scale. Results are presented not only as absolute values but also as percentages of 

improvement, in order for the results to be representative regardless of a computer’s 

performance.  

As anticipated, computation time appears to be approximately linearly increased in CH 

DEA method as the time required for each LP to be solved depends only on the number 

of the efficient DMUs found in the first step of the process. The number of used DMU in 

the LP in each iteration is kept constant ( eN  plus the reference DMU in each iteration) 

and as a result, the total time is proportionally increased to the total number of DMUs. It 

should be noted at this point that the results arising show that the difference in 

computation time is increased as the number of DMUs is increased. Therefore, 

comparing scenarios that include a higher number of DMUs would not add more value in 

this research since the point is to a) investigate the results arising from the application of 

a multiple inputs and outputs CH DEA and b) apply it on transport data.  

In the specific DEA problem presented in table 5.8, the density of the efficiency DMUs is 

found to be very low which reduces the computation time considerably since each of the 

10073 LPs (a total of 10088 trips minus 15 efficient) that needs to be solved has only 16 

(15 efficient plus 1 reference DMU in each LP) DMUs. RBE was also confirmed to perform 

faster than standard approach especially for larger datasets. Nonetheless, the 

percentage of running time improvement over the standard DEA approach is kept 

constant aside from the sample size. On the other hand, RBE is found to be significantly 

slower than CH DEA; ranging between 33.33% and 99.97% from 100 to 10088 DMUs 

respectively. It is evident that for small-scale samples of less than 500 DMUs the 

computational time gain is not worthwhile and probably standard approach should be 

preferred.  

Finally, standard approach and RBE is proved to be a non-feasible option for analysing 

large-scale data using DEA which need several days (more than 40 and 12 days 

respectively) of processing on a conventional computer. This implies that alternative 

solutions such as the one examined in this paper should be further investigated and 

appraised especially when it comes for analysing large-scale data with DEA. The efficacy 

of the CH DEA algorithm investigated here, in terms of running time, provides 

encouraging insights for future enhancements on DEA addressing the issue of reducing 

its computation time. All solutions examined herein are exact solutions of the problem 

and it would be interesting to investigate on the potential of improving running time using 

heuristic and meta-heuristic algorithmic solutions, which provide an approximate solution 

to the problem. Of course, in this case it would also be important to investigate whether 

the approximate solution given is satisfactory.  
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Table 5.8: Computation time for seven scenarios 

 
Computation time (sec) CH DEA % computation time 

improvement over 

RBE DEA % 

computation time 

improvement over 

Standard DEA No of DMUs 
Standard DEA 

Approach 

RBE DEA Convex Hull 

DEA 

Standard DEA 

Approach 

RBE DEA 

100 11 6 4 63.64% 33.33% 45.45% 

500 477 169 21 95.60% 87.57% 64.57% 

1000 3250 1121 41 98.74% 96.34% 65.51% 

2500 44435 15570 94 99.79% 99.40% 64.96% 

5000 398485 123986 180 99.95% 99.85% 68.89% 

7500 1400909 444498 231 99.98% 99.95% 68.27% 

10088 3519372 1089731 314 99.99% 99.97% 69.04% 

* Inputs = ['ha_urban', 'ha_rural', 'ha_highway'], Outputs = ['distance_urban', 'distance_rural', 'distance_highway'] 

 

Running time results are also illustrated in figure 5.5; convex hull results are plotted in 

the secondary axis because computation time showed that convex hull significantly 

outperforms the other two approaches tested and therefore demonstration would not be 

distinguishable.  

 

 

Figure 5.5: Computation time of the three methodologies implemented 
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5.2.3) Efficient level of DEA inputs and outputs 

Table 5.9 shows lambdas and theta for ten (first nine non-efficient trips plus one efficient 

trip) trips of the DEA model type 1, where iL  stands for the lamda coefficient of the efficient 

itrip  that acts as a peer for the trip examined each time. For the purpose of brevity, not 

all lambdas and thetas calculated are presented herein. For instance, in the first row of 

the table where DEA is solved for 1trip , the value of the theta coefficient is 0.008332 (less 

efficient) and the lamda coefficients 745L , 4403L , 5293L  are equal to 0.014510, 0.008332, 

2.222700 respectively. The efficient level of inputs for 1trip  can be calculated as the 

product sum of the lamdas and the input values of each of the identified peers whereas 

to find the efficient level of outputs for the same trip, each output value should be divided 

by theta value. Again, taking 1trip  as example, the efficient level of urbanha  can be estimated 

using formula (4) presented in the methodological approach: 

 

1 745 4403 5293745 4403 5293 level of  urban urban urban urbanEfficient ha ha ha ha          

1
0.015*27 0.008*0.26 2.223*0.32 1.11urbanha      

 

On the other hand, the efficient level of e.g. tan urbandis ce  is calculated from formula (5) 

presented in the methodological approach: 

 

1 1 1 level of tan tan /urban urbanEfficient dis ce dis ce theta   

1
tan 587 / 0 7044. 4008urbandis ce    
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Table 5.9: Lamdas, thetas, real and efficient level of metrics (distance (km) and ha per road type) for the first 9 non-efficient trips (DMUs) and one efficient trip 

 Real level of metrics 
 Lamdas of peers: 

Trip No 
Efficient level of metrics 

Trip 

No 

distanceurban distancerural distancehighway haurban harural hahigway Theta 745 4403 5293 9493 distanceurban distancerural distancehighway haurban harural hahigway 

1 587 1105 612 133 77 2 0.008332 0.014510 0.008332 2.222700 - 70444 132617 73458 1.11 0.65 0.02 

2 428 751 439 128 18 9 0.021543 0.085333 0.096945 1.334662 - 19852 34840 20362 2.76 0.39 0.19 

3 142 266 147 69 64 7 0.002526 - 0.008839 0.536261 0.000183 56400 105471 58273 0.17 0.16 0.02 

4 567 1059 587 117 78 8 0.007910 0.008943 0.031639 2.120794 - 71624 133841 74185 0.93 0.62 0.06 

5 489 917 503 28 65 1 0.021047 - 0.010524 1.841262 0.025249 23224 43566 23902 0.59 1.38 0.02 

6 723 1353 745 55 83 4 0.015964 - 0.031928 2.721888 0.016139 45261 84767 46694 0.88 1.33 0.06 

7 488 896 508 155 38 6 0.013056 0.054085 0.039169 1.716472 - 37396 68613 38898 2.02 0.50 0.08 

8 375 693 389 156 55 8 0.007112 0.024599 0.028447 1.355048 - 52732 97453 54682 1.11 0.39 0.06 

9 797 1489 831 168 70 4 0.012218 0.040842 0.024436 2.955081 - 65212 121905 67989 2.06 0.86 0.05 
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*Inputs = ['haurban', 'harural', 'hahighway', 'hburban', 'hbrural', 'hbhighway'], Outputs = ['distanceurban', 'distancerural', 'distancehighway'] 
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5.3) Driver efficiency analysis 

This subchapter describes the analysis performed on a driver level including the temporal 

evolution of driving efficiency.  

As mentioned earlier in the methodological approach chapter, large-scale driving data 

were selected from the initial database of 171 drivers based on some criteria. The first 

criterion chosen was that all drivers should have travelled at least 50 more trips than the 

number of trips required so as the total distance per road type is securely higher than the 

minimum distance found in the previous step of the sample quantification. This procedure 

of drivers’ selection also aims to result to the maximum number of drivers possible. On 

the top of that, all drivers should have positive mileage on all three types of road network. 

In addition to that, drivers with a zero sum of input attributes (i.e. harsh acceleration, 

braking, speed limit violation, mobile phone usage are all equal to zero) are eliminated 

from the sample because this is a DEA limitation. This procedure resulted to 100 drivers 

in urban and rural road type who met these requirements and were used in the analysis 

conducted whereas the rest of the drivers were eliminated from this study. Drivers’ 

elimination resulted to only 18 drivers in highways, which was considered a very low 

number of participants for the analysis to be conducted. The total number of trips that 

took place by each of the drivers chosen was 230 for urban and 150 for rural roads 

constructing thus a large database of 23,000 trips in urban and 15,000 in rural. From 

those drivers, 43 urban and 39 rural drivers has answered the questionnaire 

administered.  

5.3.1) Models’ specification and sample used 

As explained above, DEA models representing driving safety efficiency in urban and rural 

types are developed with multiple inputs and one output. The critical process required for 

input and output selection as well as the pitfalls that might arise from it are discussed in 

the methodological approach chapter. The form of the inputs and outputs used in the 

analysis is described in Chapter 3 and the variables along with their description are given 

in table 4.2. As shown, metrics used as inputs are the number of harsh braking and 

accelerations events, seconds driving over the speed limit and seconds used the mobile 

phone, while metric used as output is distance travelled.  

Each driver is deemed a DMU with an aggregate performance for the entire monitoring 

period. His driving behaviour is considered equivalent to the sum of the driving 

characteristics that were recorded for the period examined. For instance, the total 

distance travelled in urban network is equivalent to the sum of the distance travelled in 

urban network in each ijtrip  (where i is the index of idriver  and j the index of jtrip  of idriver ) 

by the specific idriver  ( iDMU ). In general, the same applies for all indicators of idriver , which 

are calculated aggregately as shown in (20):  
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1

iN

i ijj
indicator indicator


               (20) 

recorded , (1, )j itrip j N   that took place by idriver . As described above, each driver is 

treated as a distinct DMU to be analysed in DEA and therefore the linear program 

constructed (see (1)) has a number of variables (
i ,

) that is equal to the number of 

drivers plus the efficiency for 0driver . The number of constraints on the other hand is equal 

to the sum of a) the number of inputs ( 0 0        ), b) the number of outputs (

0Y y  ) and c) the number of drivers ( 0i  ). The DEA procedure described by (1) is 

followed separately for each of the two different road types (urban, rural) as described in 

table 3.3. As mentioned above, no model was developed for highway road type because 

there were not enough users to be analysed.  

 

Table 3.3: Inputs and Outputs of the DEA models used in driver efficiency analysis 

DEA models Urban Rural 

Set of Inputs used 

1) haurban 

2) hburban 

3) speedingurban 

4) mobileurban 

1) harural 

2) hbrural 

3) speedingrural 

4) mobilerural 

Set of Outputs used 1) distanceurban 1) distancerural 

 

As shown in chapter 3, table 3.4 summarizes the sample used in this specific analysis for 

urban and rural road type. It is not feasible to perform the analysis for highways since 

there are only 18 drivers of the data_sample_1 that have the required total distance and 

number of trips; for only 7 out of which, questionnaire data are available. Even if the 

analysis was performed with the specific drivers’ sample, the time series would not be 

long enough to ensure the significance of the results. The two last columns of table 3.4 

represent a) the number of participants that have at least as many trips required in “No 

of trips” column and b) the number of participants that have at least as many trips required 

in “No of trips” column and have also responded to the questionnaire administered.  

 

Table 3.4:  Number of drivers participated in the analysis of the temporal evolution of driving efficiency in 

each road type 

Road type No of trips Required moving 

window (trips)  

No of participants of 

the data_sample_1 

No of participants of the 

data_sample_2 

Urban 230 75 100 43 

Rural 150 82 100 39 

Highway 150 116 18 7 
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5.3.2) DEA model illustration 

It is noted that only models incorporating two-inputs/ one output or one-input/ two outputs 

(the number of dimensions should be equal to 3) can be visualized in 2D figures and 

therefore, models of table 3.3 cannot be illustrated. Nonetheless, in order to acquire a 

better picture of the DEA outcomes, two models in urban and rural type are developed 

that account for drivers’ aggressiveness (the number of harsh acceleration and braking 

events occurred are considered) and their results are presented in figure 5.6. It is evident 

that there are only two efficient DMUs for urban and rural road, which confirms the results 

of the DEA LPs. In each subplot of figure 5.6, tan /x xdis ce ha  and tan /x xdis ce hb  is plotted in 

axis Y and X respectively along with the envelopment line accounting for the efficiency 

frontier. Extending the line joining the origin and idriver , it crosses the efficiency frontier at 

a point where virtual 
'

idriver  is created which represents the optimal performance which 

the specific idriver  can achieve. The two points that comprise the start and end of the line 

that the virtual 
'

idriver crosses are called the peers of the idriver  examined.  
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Figure 5.6: Efficiency frontier of drivers’ aggressiveness per road type 

 

The closer a idriver  is to the efficiency frontier, the higher his/her efficiency index is. The 

influence of outliers to the DEA solution is obvious since most drivers appear to be near 

the origin. Nonetheless, the solution remains reliable, as the efficiency index calculated 

is comparable to that of the rest of the drivers set. The scope of this paragraph is to 

explain the DEA results visualized in figure 5.6 and not to present the models’ outcome. 

This is the reason why further details of the models’ results illustrated in the figure are 

not given.  
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5.3.3) Driving efficiency classification 

The results of DEA are the efficiency index i  and coefficients i  for each driver. This 

allows for the classification of the whole set of drivers to most efficient, weakly efficient 

and non-efficient. Since the absolute value of the efficiency index cannot be somehow 

interpreted unless it is compared to the efficiency index of the rest of the drivers set, the 

percentiles of the drivers set’s i  are used to classify drivers. The percentile thresholds 

specified was 25% and 75%, which separate the subsets of non-efficient and weakly 

efficient as well as weakly efficient and most efficient DMUs respectively. For each of the 

data_sample_1 and the data_sample_2, the median of the attributes of each class arising 

is shown in Table 5.10 where the models per urban and rural road type are presented 

based on the inputs that were used in each model. From here on, for brevity purposes 

class 1 drivers will be referred to as most efficient drivers despite the fact that only drivers 

with unit efficiency lie on the efficiency frontier; class 2 and 3 drivers will be referred to as 

weakly efficient and non-efficient drivers.  

For the better understanding, the 5th column of table 5.10 shows the driving attributes of 

the 2nd class of the data_sample_1 of 100 drivers who have driven in urban road type 

and whose efficiency’s percentiles are between 25-75%. Results are presented as the 

driving efficiency, the number of harsh acceleration and braking events occurred, the 

number of seconds for driving over the speed limits and the number of seconds using the 

mobile phone per 100 kilometres driven.  

Main characteristics of drivers efficiency classes 

As expected, for all road network and sample type models, the median of the attributes 

is reducing while shifting to a class of higher efficiency. The difference between classes 

1 and 2 is found to be less significant for 
ruralmobile  and slightly less significant for 

urbanmobile  of both the data_sample_1 and data_sample_2. This result indicates that 

drivers of both road types (and especially rural road) have similar behaviour in terms of 

the mobile usage and therefore mobile usage is not a critical factor when measuring 

driving efficiency using DEA. In other words, the conclusion that can be drawn is that the 

overall driving safety profile of a less risky driver in urban and rural road is not 

considerably influenced by the driver’s mobile usage. A possible explanation of this 

phenomenon is either the fact that drivers of all classes use the mobile phone 

approximately the same or DEA’s sensitivity to outliers, which means that the model 

might sometimes be influenced by the extreme values of other inputs or outputs when 

estimating a DMU’s efficiency e.g. low number of speeding or mobile usage seconds. In 

either case, mobile phone distraction should be examined separately.  

Another observation for the data_sample_1 is that the number of harsh events occurring 

in rural road is higher than in urban and that the number of harsh acceleration events 

occurred in all road types is at least twice as much as the number of harsh braking events. 

For instance, in urban roads, the number of harsh acceleration events ranges from 8.82 

to 21.49 per 100km while the number of harsh braking events from 3.68 to 9.64 for most 

efficient to non-efficient drivers. This difference becomes larger in rural road. The same 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

151 

difference between urban and rural road types is noticed for mobile usage and speeding 

as well except from the most efficient drivers who tend to use the mobile phone in urban 

as much as in rural road. A similar observation is made for the data_sample_2 as well.  

In general, it is concluded that mobile usage in urban road is limited to approximately 5, 

3.5 and 2.5 minutes per 100km of driving for non-efficient, weakly efficient and most 

efficient drivers respectively whereas the respective amount of speed limit violation is 

20.5, 14.5 and 6. As for the rural road type, mobile usage road is approximately 9.5, 7 

and 3 minutes per 100km of driving for non-efficient, weakly efficient and most efficient 

drivers respectively whereas the respective amount of speed limit violation is 26, 16.5 

and 12.  

Observing the shift between efficiency classes in urban road, the move from class 1 to 2 

is mainly affected by the number of harsh acceleration and braking events and hardly by 

mobile phone usage while the time driving over the speed limits plays a more important 

role when moving from class 2 to 3. As for rural road, speeding mainly affects the shift 

from class 1 to 2 whereas the number of harsh acceleration events and mobile phone 

usage mostly influences the move from class 2 to 3.  

 

Table 5.10: Driving characteristics of the efficiency groups per 100km and per road and sample type 

Sample 

type 

Road 

type 

No of 

drivers 

Driving 

characteristics 

Efficiency classes 

Class 1: 0 - 25 % 

percentile 

Class 2: 25 - 75 % 

percentile 

Class 3: 75 - 100 % 

percentile 

d
at

a_
sa

m
p

le
_1

 

U
rb

an
 

100 

efficiency 0.22 0.36 0.61 

ha 21.49 11.82 8.82 

hb 9.64 5.31 3.68 

mu 316 205 141 

sp 1243 878 355 

R
u

ra
l 

100 

efficiency 0.24 0.42 0.90 

ha 34.11 24.06 11.30 

hb 14.92 9.16 5.42 

mu 529 419 165 

sp 1564 1004 708 

d
at

a_
sa

m
p

le
_2

 

U
rb

an
 

43 

efficiency 0.21 0.38 1.00 

ha 39.26 21.71 9.98 

hb 16.38 8.07 4.19 

mu 751 553 100 

sp 1892 965 477 

R
u

ra
l 

39 

efficiency 0.28 0.44 1.00 

ha 23.04 11.86 7.49 

hb 9.28 5.21 3.16 

mu 316 305 160 

sp 1423 939 378 

 

The noticeable difference in the data_sample_2 is that 
urbanmobile  in class 1 and 2 of 

drivers is higher than 
ruralmobile  and that 

urbanspeeding  is higher than
ruralspeeding  in class 1 

and 3 of drivers and slightly higher in class 2 of drivers. This difference might be due to 
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the lower number of participants in the data_sample_2 and therefore a larger sample 

should be exploited to further investigate it.  

As for the shift between efficiency classes in urban road, moving from class 1 to 2 is 

mainly affected by the number of harsh acceleration and braking events and hardly by 

the time driving over the speed limits while mobile phone usage plays a more important 

role when moving from class 2 to 3. The number of harsh acceleration and braking events 

are also the most influencing factors for shifting between classes 1 and 2 in rural road, 

whereas the move from class 2 to 3 is mainly affected by mobile phone usage; speeding 

factor seems to equally affect both shifts from class 1 to 2 and from class 2 to 3. It is a 

matter of great importance to identify these parameters in order to provide significant 

targeted macroscopic recommendations for further improvement to a certain group of 

drivers whose safety efficiency is known.  

Regarding the median driving efficiency of each efficiency class, the efficiency of class 3 

is equal to 1.00 in both road types examined and therefore it is evident that there is a 

high density of efficient drivers in the data_sample_2, which is probably due to the lower 

number of drivers. It is mentioned earlier in the literature review that when the ratio of the 

sum of inputs and outputs to the total number of DMUs is decreased to 1, the number of 

the efficient DMUs is increased. In the case examined herein, this may lead to the 

conclusion that a higher number of efficient drivers, than it actually exists, is found to exist 

in the data_sample_2 and therefore results arising might be slightly biased. This should 

be further investigated in the future in order to shed more light on it.  

Figure 5.7 is a histogram that shows the number of drivers of the data_sample_1 that fall 

into each efficiency range in urban and rural road types. It is conspicuous that the driving 

efficiency of most drivers is concentrated in the 0.2-0.6 efficiency range in both road types 

and that only a small percentage of drivers fall into the upper and lower ranges. This is 

probably because most efficient drivers have significantly higher efficiency and 

consequently the rest of the drivers’ efficiency is relatively estimated to be much lower. 

On the other hand, since driving efficiency is relatively estimated, it can be concluded 

that drivers of the 0.4-0.6 efficiency range are likely to be drivers of average risk. With 

regards to the 0.2-0.4 efficiency range, this group should be further investigated to 

distinguish between average and high risk drivers.  



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

153 

 

Figure 5.7: Number of drivers of data_sample_1 in each efficiency range for urban and rural road types 

 

Figure 5.8 is a histogram that shows the number of drivers of data_sample_2 that fall into 

each efficiency range in urban and rural road types. Obviously, figures 5.7 and 5.8 have 

similar characteristics in terms of the drivers’ distribution. Again, most drivers are 

concentrated in the 0.2-0.6 efficiency range in both road types and only a small 

percentage of drivers fall into the upper and lower ranges. The difference noticed in figure 

5.8 is that there is a higher number of drivers in the 0.8-1 range probably because of the 

decreased ratio of the sum of inputs and outputs to the number of participants, a 

parameter that was mentioned earlier in details. In general, the examination of a different 

class discretization (e.g. class 1: 0-33.3%, class 2: 33.3-66.6%, class 3: 66.6-100%) is 

proposed for investigation in the future.  
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Figure 5.8: Number of drivers of data_sample_2 in each efficiency range for urban and rural road types 

 

5.3.4) Efficient level of inputs and outputs 

Table 5.11 shows lambdas and theta for the first twelve (eleven non-efficient drivers plus 

one efficient driver) drivers of the DEA models of table 3.1 in urban road, where iL  stands 

for the lamda coefficient of the efficient idriver  that acts as a peer for the driver examined 

each time. For the purpose of brevity, not all lambdas and thetas calculated are presented 

herein. For instance, in the first row of the table where DEA is solved for 1driver , the value 

of the theta coefficient is 0.581 (less efficient) and the lamda coefficients 34L , 40L , 42L  are 

equal to 0.52, 0.14, 0.06 respectively. The efficient level of inputs for 1driver  can be 

calculated as the product sum of the lamdas and the input values of each of the identified 

peers whereas to find the efficient level of outputs for the same driver, each output value 

should be divided by theta value. Again, taking 1driver  as example, the efficient level of 

urbanha  can be estimated using formula (4) presented in the methodological approach: 

 

1 12 34 40 4212 34 40 42 level of  urban urban urban urban urbanEfficient ha L ha L ha L ha L ha          

1
0*329 0.52 242 0.14 86 0.06 366 159.8urbanha          
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Unfortunately, the exact calculations of 
1urbanha  are not provided since only the first 12 

drivers are shown in the table and therefore the 
34urbanha , 

40urbanha  and 
42urbanha  are not shown. 

On the other hand, the efficient level of e.g. tan urbandis ce  is calculated from formula (5) 

presented in the methodological approach: 

 

1 1 1 level of tan tan /urban urbanEfficient dis ce dis ce theta   

1
tan 1868 / 0. 328 145 .31urbandis ce    

 

As stated previously, a driver (DMU) is deemed to have achieved the efficient level when 

it reaches unit efficiency. It should be highlighted though, that a driver should reach either 

the efficient level of inputs or the efficient level of outputs in order to become efficient and 

not both at the same time. Of course, if a driver achieves the efficient level of both inputs 

and outputs it will become the most efficient driver and, therefore, it will define a new 

efficiency frontier and act as a peer for the rest of the drivers (given that no other driver 

will achieve the same). It is also obvious from the table that the most efficient drivers of 

the sample are drivers 12driver , 34driver , 40driver  and 42driver  who act as peers for the rest 

of the driving sample. As expected, most peers do not act as peers for all drivers but most 

drivers have a portion of the most efficient drivers as their peers. It is also expected that 

all drivers that have unit efficiency such as 12driver , have a real and efficient level of 

metrics that is equal for all metrics.  

Based on the above, it can be concluded that the required change of each driving attribute 

that was taken into consideration in order for a driver to shift either to the efficient frontier 

or to another driving class can be estimated. This can be achieved by solving the 

optimization problem for a specific input or output given the target efficiency (

BDriving  Efficiency ), which is the upper or the lower limit of the class that the driver is 

shifting in case of efficiency decrease or increase respectively.  
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Table 5.11: Lamdas, thetas, real and efficient level of metrics (distance (km), ha, hb, speeding (sec), mobile (sec)) in urban road for the first 12 drivers (DMUs) 

 
Real level of metrics  

Lamdas of peers: 
Driver No 

Efficient level of metrics 

Driver 
No 

distanceurban haurban hburban speedingurban mobileurban Theta 12 34 40 42 distanceurban haurban hburban speedingurban mobileurban 

1 1868 326 134 21712 9954 0.581 - 0.52 0.14 0.06 3214.3 159.8 77.9 12617.9 5784.7 

2 2456 574 85 27049 13974 0.696 - 0.19 0.40 0.20 3526.5 154.8 59.2 18838.2 9732.1 

3 1634 709 509 15888 42817 0.391 0.79 - 0.20 - 4182.6 277.0 78.1 6206.9 10434.2 

4 2219 233 181 27052 12421 0.637 - 0.23 0.31 0.18 3481.0 148.5 59.1 17244.6 7917.9 

5 4223 1088 309 37825 29581 0.613 0.30 1.16 0.47 - 6887.3 417.6 189.5 23192.7 18137.9 

6 2773 652 251 25829 25887 0.529 0.60 0.51 0.30 - 5245.3 344.7 128.8 13654.8 13685.4 

7 2086 265 149 20880 14036 0.619 - 0.52 0.28 0.04 3371.9 163.9 79.2 12917.2 8683.2 

8 1789 460 323 17185 5960 0.656 - 0.75 - 0.01 2728.0 184.3 98.1 11269.8 3908.5 

9 1630 184 82 30801 8955 0.528 - - 0.21 0.22 3085.0 97.2 30.8 14784.6 4731.5 

10 808 266 95 9985 6562 0.443 0.11 0.24 0.04 - 1824.6 97.2 42.1 4421.6 2905.8 

11 3012 913 152 21604 43562 0.585 0.72 - 0.83 - 5149.6 308.3 88.9 12636.1 23107.5 

12 1462 329 92 5074 7781 1.000 1.00 - - - 1462.0 329.0 92.0 5074.0 7781.0 

* Inputs = ['haurban', 'hburban', 'speedingurban', 'mobileurban'], Output = ['distanceurban'] 
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5.3.5) Evolution of driving efficiency 

After driving efficiency is estimated for the total recording period, the next step is to 

estimate the characteristics of driving efficiency evolution for each driver. The temporal 

evolution of average driving efficiency is investigated using different databases of metrics 

accumulated over different timeframes. Based on the above mentioned DEA input/ output 

combinations, exactly the same models (models of table 3.3), as in the previous step of 

the analysis, are developed in each moving window. As mentioned above, for each model 

the cumulative metrics monitored during the period examined are used as inputs and 

outputs in the DEA models developed. As a result, a different database is created in each 

step of the moving window and a new DEA model is developed respectively to estimate 

driving efficiency in the specific step and consequently the temporal evolution of total 

driving efficiency.  

Time series created from this process are decomposed to acquire volatility, trend and 

stationarity. The ADF and KPSS tests are performed for unit root and stationarity 

respectively. When the null hypothesis of both the ADF and KPSS test is rejected for a 

time series, then it is considered fractionally integrated and presents long memory. In this 

case, an ARFIMA model is applied to estimate the order d  of the time series, which 

takes values in the  1,1  region, close to 0 for stationary time-series and close to 1 for 

unit-root time series. Finally, time series trend is acquired by estimating the coefficient b 

of the linear regression model that best fits the time series data (slope).  

The sample analyses conducted, determined a moving window of 75 and 81 trips long in 

urban and rural respectively in which driving performance is estimated to create the 

necessary time series. Table 3.4 summarized the sample used in this specific analysis 

for each road type. For the reasons explained above, analysis is not performed for 

highways. Finally, it is highlighted that the analyses are performed separately for the 

samples with and without available questionnaire data to compare the clusters arising 

and their characteristics. This procedure will evaluate the potential of driving safety 

efficiency benchmarking without having any knowledge on the personal information (age, 

gender, accident record etc.) of the user that is being benchmarked.  

Indicatively, figure 5.9, 5.10, 5.11 and 5.12 illustrates seven time series of the urban 

data_sample_1, the rural data_sample_1, the urban data_sample_2 and the rural 

data_sample_2 respectively. It is obvious that several different driving patterns exist since 

the fluctuation of the time series differs between one another. It can be inferred that the 

drivers who are least efficient in total, also appear to be least volatile among the rest. The 

most efficient drivers also appear to be less volatile but not as much as the latter. On the 

other hand, medium efficiency drivers are the most volatile among the drivers sample. 

This is probably because in order to maintain either a very high or low efficiency level, 

efficiency cannot fluctuate that much because it will approximate the average efficiency. 

Nonetheless, this does not affect the entire picture of the time series since the index 

values of all the other time series are relatively estimated at that time point or period.  
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It is also evident that there are some common local minimum and maximum for most of 

them which is attributed to existing efficiency outlier at these time points or periods. These 

actually represent a time point or period when the most efficient drivers increases or 

decreases their driving metrics significantly and since efficiency is benchmarked, this 

results in an equally significant drop or increment in the efficiency of the other drivers. 

This might not have an impact on drivers’ efficient index, as it still remains equal to one, 

and therefore it is not always visualized in the following graphs.  

 

 

Figure 5.9: Efficiency time series of the urban data_sample_1 

 

 

Figure 5.10: Efficiency time series of the rural data_sample_1 
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Figure 5.11: Efficiency time series of the urban data_sample_2 

 

 

Figure 5.12: Efficiency time series of the rural data_sample_2 

 

Volatility 

The methodology how volatility of driving efficiency is estimated is provided in the relative 

chapter. The statistical characteristics of this measure are illustrated in table 5.12. It 

appears that although there is a higher range of volatility in rural road type, the average 

is approximately the same in both road and sample types except from the data_sample_2 

of rural road that is slightly higher than the rest. Based on driving volatility’s definition, it 

is inferred that when it is equal to 0, a driver demonstrates a solid performance throughout 

his/her monitoring. Nonetheless, since estimated efficiencies are rounded in the 10th 

decimal, this may happen only in the case of unit efficiency. As a result, drivers with 

steady unit efficiency exist only in rural road since the minimum value of volatility in urban 

road is higher than 0. On the other hand, rural road sample includes users with a more 

alterable behaviour, which is evident from maximum volatility that is twice as much as in 

urban road.  
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Table 5.12: Descriptive statistics of the driving efficiency volatility of the drivers’ sample 

Sample type data_sample_1 data_sample_2 

Road type Urban Rural Urban Rural 

Min 0.022 0.000 0.012 0.000 

Max 0.152 0.379 0.144 0.384 

Average 0.119 0.111 0.116 0.148 

Standard Deviation 0.021 0.055 0.026 0.059 

Median 0.123 0.095 0.122 0.144 

Kurtosis 7.245 6.393 6.724 7.282 

Skewness -2.388 2.102 -2.402 1.763 

 

Since the kurtosis value is approximately the same for all road and sample types, the 

distribution’s tail is also similar. The fact that it is positive indicates a "heavy-tailed" 

distribution for all types with outliers. The negative skewness value of the urban sample 

of both sample types indicates that the distribution’s left tail is longer, compared to the 

right, whereas the positive skewness value of the rural sample testifies the opposite.  

Trend 

The methodology how trend of driving efficiency is estimated is provided in the relative 

chapter. The statistical characteristics of this measure are illustrated in table 5.13. The 

average trend is observed to be approximately the same between the two road types of 

the data_sample_1 despite the fact that median trend is diverged. This indicates the 

existence of high outlier trend values in urban road and low outlier trend values in rural 

road that influence the average trend value.  

 

Table 5.13: Descriptive statistics of the driving efficiency trend (*10-3) of the drivers’ sample 

Sample type data_sample_1 data_sample_2 

Road type Urban Rural Urban Rural 

Min -4.56 -8.79 -3.23 -5.84 

Max 4.09 8.46 4.41 6.80 

Average 0.68 0.66 0.74 0.43 

Standard Deviation 1.25 2.69 1.42 2.43 

Median 0.51 0.80 0.49 0.33 

Kurtosis 3.820 3.696 1.629 1.610 

Skewness -0.222 -0.550 0.370 0.02 

 

This is also testified by the high kurtosis value that exist in both road types of the same 

sample. The high positive kurtosis also indicates a "heavy-tailed" distribution. The 

negative skewness value of both road types of the data_sample_1 indicates that the 

distribution’s left tail is longer, compared to the right, whereas the positive skewness 

value of the data_sample_2 testifies the opposite. The trend value range and the 
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standard deviation of rural road seems to be twice as much as those of the urban road. 

It is noted that the measure illustrated in table 5.13 is efficiency trend *10-3.  

Stationarity 

The methodology how trend of driving efficiency is estimated is provided in the relative 

chapter. The statistical characteristics of this measure are illustrated in table 5.14. 

Observing the number of differences that is required for a time series to become 

stationary, it is evident there are no urban road users whose driving behaviour is 

stationary. On the other hand, the relative number in rural roads is low for data_sample_1 

but significantly higher for data_sample_2.  

 

Table 5.14: Number of differences required for the driving efficiency time series of the drivers’ sample to 

become stationary 

Sample type data_sample_1 data_sample_2 

Road type Urban Rural Urban Rural 

N
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s 0 0 5 0 15 

1 97 93 41 22 

>1 2 1 2 1 
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1 1 0 1 

 

For all road and sample types, the number of fractionally integrated time series of driving 

efficiency is negligible, indicating thus a clear picture concerning time series stationarity. 

As expected, the number of required differences is higher than 1 only for an insignificantly 

low number of users.  

5.3.6) Drivers clustering 

Using a k-means machine learning algorithm, drivers clustering is performed afterwards 

based on total driving efficiency, volatility, trend, stationarity of the time series arising as 

well as on the questionnaire data collected from the data_sample_2. The questions 

concerning the number of driving experience and the number of total accidents to date 

were the questionnaire data exploited in the clustering approach. These two questions 

were combined into one variable representing the total number of accidents per 10 years 

of driving and is presented in this form below. Driving characteristics of each cluster arose 

are analysed and conclusions drawn are presented. To prevent the results from being 

influenced by the outliers, all variables are normalized before used as inputs in the k-

means clustering algorithm.  
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The optimal number of clusters is determined using the elbow method. Figure 5.13 is 

representative of the elbow method figures created for each combination of road and 

sample type in order to find the number of clusters. In most cases, the elbow of the graph 

appears to exist at k = 3 or 4 indicating that the optimal number of clusters should be 

chosen between these two values. After several clustering tests performed using both 

numbers as k, it was found that in average, when k is set to 4, some clusters formed 

include a significantly the number of users (e.g. 2) and therefore there is a high probability 

that the results obtained would be biased. As a result, the number k of clusters is set to 

3, which is rational considering the sample size used in this study.  

 

 

Figure 5.13: Elbow method that determines the optimal number of clusters 

 

It is noted that after the analysis of the time series conducted in the previous step, 

stationarity is not selected to be included in the final clustering procedure since three out 

of four driver groups have similar characteristics (number of differences required to 

become stationary is 1) and therefore it is likely not to play an important role. Nonetheless, 

clustering was also performed including stationarity and results obtained showed that 

there was no influence of stationarity on the clusters arising.  
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Main results of drivers’ clusters 

Apart from the main attributes based on which clustering is performed, tables 5.15, 5.16, 

5.17 and 5.18 present the number of drivers included in each cluster as well as the 

number of the drivers of data_sample_2 included in data_sample_1. This is necessary 

since accident data were available only for a portion of the drivers included in the 

clustering approach and therefore results concerning this type of data are indicatively 

presented to examine the average driving risk of the cluster resulting. This column is 

omitted from the data_sample_2 results since corresponding data are available for all 

drivers of the sample.  

 

Table 5.15: Macroscopic characteristics of the urban data_sample_1 

 Trend (*10-3) Volatility Rating 
Accidents/ 10 years 

of driving experience 

Number 

of drivers 

Number of 

drivers of the 

data_sample_2 

C
lu

st
er

 1
 (

ty
p

ic
al

) 

Min -1.045 0.066 0.122 0.000 

79 32 

Max 1.686 0.152 0.725 0.300 

Average 0.516 0.123 0.340 0.109 

Standard 

Deviation 
0.534 0.013 0.108 0.090 

Median 0.486 0.124 0.328 0.096 

Kurtosis 0.303 4.969 0.944 -0.693 

Skewness -0.123 -1.438 0.713 0.525 

C
lu

st
er

 2
 (

u
n

st
ab

le
) 

Min 2.032 0.066 0.448 0.000 

13 6 

Max 4.085 0.141 1.000 0.250 

Average 3.006 0.119 0.673 0.090 

Standard 

Deviation 
0.628 0.022 0.206 0.078 

Median 3.067 0.125 0.608 0.077 

Kurtosis 0.334 -1.815 -2.281 -2.548 

Skewness 0.209 -1.278 0.732 1.571 

C
lu

st
er

 3
 (

ca
u
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o

u
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Min -4.557 0.022 0.367 0.000 

8 5 

Max 0.322 0.122 1.000 0.125 

Average -1.512 0.080 0.746 0.059 

Standard 

Deviation 
1.530 0.038 0.263 0.051 

Median -0.937 0.090 0.813 0.080 

Kurtosis -1.027 0.925 -1.154 3.344 

Skewness -1.053 -0.385 -0.237 -0.204 
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Table 5.15 reveals the macroscopic characteristics of the urban data_sample_1 clusters 

that resulted from the model developed. Cluster 1 presents a very low positive trend 

compared to the rest of the clusters formed showing thus a slight tendency of these 

drivers to improve their driving behaviour. The volatility of their behaviour also seems to 

be medium to high and therefore an instability exists in behaviour. Drivers of this cluster 

also feature an average low total efficiency value, which shows a poor average behaviour. 

Finally, a low to medium accident frequency is observed in the partial data obtained for 

some of the cluster’s drivers. All the above along with the high number of drivers included 

in the specific cluster, lead to the conclusion that this cluster mainly represent the typical 

driver. In other words, the behaviour of the users is the typical/ expected and is 

represented by the average or median values of the driving characteristics.  

As for cluster 2, it features a medium positive efficiency trend indicating an overall 

improvement trend. This positive instability is also confirmed by the medium to high 

volatility presented. This cluster’s drivers also have a medium average rating which along 

with the low accident frequency and all the aforementioned demonstrate that this cluster 

is comprised from drivers with less risky behaviour and a constant trend of improvement.  

Drivers of cluster 3 present a medium negative trend and a low to medium behavioural 

volatility. They also feature a medium to very high average driving efficiency confirmed 

by the low accident frequency. Consequently, this cluster includes the most safety 

efficient drivers of the sample and the negative trend is probably because of the fact that 

it is extremely rare for a driver to be highly efficient and steadily improved at the same 

time.  

Table 5.16 reveals the macroscopic characteristics of the urban data_sample_2 clusters 

that resulted from the model developed. As in the data_sample_1, cluster 1 also presents 

a very low positive trend compared to the rest of the clusters formed showing thus a slight 

tendency of these drivers to improve their driving behaviour. The volatility of their 

behaviour also seems to be medium and therefore an instability exists in behaviour. 

Drivers of this cluster also feature an average low total efficiency value, which shows a 

poor average behaviour. Finally, a low accident frequency is observed in the partial data 

obtained for some of the cluster’s drivers. All the above along with the higher number of 

drivers included in the specific cluster, lead to the conclusion that this cluster is similar to 

cluster 1 of the data_sample_1 and again, it mainly represent the typical driver.  

Drivers of cluster 2 feature a low - medium positive trend indicating an improvement trend 

in general. This is also confirmed by the medium volatility presented, which testifies the 

existing positive instability. This cluster’s drivers also have a low average rating and a 

significantly high accident frequency. All the aforementioned demonstrate that this cluster 

is comprised from drivers with the most risky behaviour of the sample that have a low 

trend of improvement that can partially be attributed to the fact that there is no room for 

further deterioration of their behaviour.  
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Table 5.16: Macroscopic characteristics of the urban data_sample_2 

 Trend (*10-3) Volatility Rating Accidents/ 10 years 

of driving experience 

Number 

of drivers 
C

lu
st

er
 1

 (
ty

p
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) 

Min -3.230 0.104 0.122 0.000 

25 

Max 1.396 0.144 1.000 0.150 

Average 0.093 0.124 0.368 0.067 

Standard 

Deviation 
0.998 0.010 0.171 0.052 

Median 0.382 0.123 0.366 0.069 

Kurtosis 3.916 -0.694 6.216 -1.360 

Skewness -1.780 0.028 1.875 0.045 

C
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er

 2
 (
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Min 0.136 0.081 0.159 0.167 

10 

Max 3.168 0.141 0.501 0.300 

Average 1.151 0.118 0.324 0.230 

Standard 

Deviation 
0.833 0.017 0.111 0.045 

Median 1.091 0.122 0.326 0.230 

Kurtosis -2.013 -1.146 1.811 -2.224 

Skewness 1.310 -0.858 0.122 0.008 
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Min -0.219 0.012 0.466 0.000 

8 

Max 4.413 0.136 1.000 0.093 

Average 2.225 0.087 0.877 0.046 

Standard 

Deviation 
1.772 0.044 0.186 0.038 

Median 2.941 0.098 1.000 0.057 

Kurtosis 2.419 0.851 -1.040 -1.365 

Skewness -0.398 -0.600 -1.586 -0.240 

 

As for drivers of cluster 3, they present a medium negative trend and a low behavioural 

volatility. They also feature a significantly high average driving efficiency combined by a 

low accident frequency. As also shown in the data_sample_1, this cluster is likely to 

represent the most safety efficient drivers of the sample.  

Table 5.17 shows the macroscopic characteristics of the rural data_sample_1 clusters 

arising from the analysis performed. Cluster 1 presents a low positive trend compared to 

the rest of the clusters formed showing thus a slight tendency of these drivers to improve 

their driving behaviour. A medium behavioural volatility also appears and as a result, an 

instability exists in behaviour. Drivers of this cluster also feature an average low total 

efficiency value, which shows a poor average behaviour. Finally, a low to medium 

accident frequency is demonstrated in the partial data obtained for some of the cluster’s 

drivers. All the above along with the high number of drivers included in the specific cluster, 

lead to the conclusion that this cluster mainly represent the typical driver. In general, this 
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cluster is very much alike cluster 1 obtained from the cluster analysis performed in urban 

roads.  

Drivers of cluster 2 present a high negative trend and a high behavioural volatility. Despite 

the fact that they also feature a medium to high average driving efficiency, a medium to 

high accident frequency is observed. Consequently, this cluster includes drivers with a 

medium to high efficiency, present a significant deterioration of their behaviour while 

being monitored and show a medium to high accidents per year of experience value. This 

is the most important difference observed between the clustering results obtained from 

the analyses of the data_sample_1 of the two road types. The latter could probably be 

attributed to the fact that accident data are available only for 3 out of 12 drivers included 

in the specific cluster.  

 

Table 5 17: Macroscopic characteristics of the rural data_sample_1 

 Trend (*10-3) Volatility Rating 
Accidents/ 10 years 

of driving experience 

Number 

of drivers 

Number of 

drivers of the 

data_sample_2 

C
lu

st
er

 1
 (

ty
p

ic
al

) 

Min -1.987 0.048 0.127 0.000 

72 27 

Max 3.375 0.228 0.664 0.300 

Average 0.764 0.099 0.363 0.117 

Standard 

Deviation 
1.040 0.035 0.120 0.094 

Median 0.778 0.091 0.356 0.105 

Kurtosis -0.639 2.144 -1.806 - 

Skewness -0.252 1.437 0.410 0.455 

C
lu

st
er

 2
 (

u
n

st
ab

le
) 

Min -8.785 0.072 0.323 0.050 

12 3 

Max -1.545 0.379 1.000 0.214 

Average -4.288 0.155 0.716 0.147 

Standard 

Deviation 
2.530 0.088 0.246 0.070 

Median -3.811 0.125 0.685 0.176 

Kurtosis 0.412 2.323 -0.250 -0.644 

Skewness -0.824 1.490 -0.042 -1.363 

C
lu

st
er

 3
 (

ca
u

ti
o

u
s)

 

Min 0.000 0.000 0.483 0.000 

16 9 

Max 8.455 0.306 1.000 0.143 

Average 3.904 0.133 0.847 0.064 

Standard 

Deviation 
2.573 0.072 0.160 0.048 

Median 4.295 0.115 0.880 0.056 

Kurtosis -0.712 1.167 -0.268 -0.962 

Skewness 0.398 0.789 -0.802 0.256 
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As for cluster 3, it features a high positive efficiency trend indicating an overall 

improvement trend. This positive instability is also confirmed by the medium to high 

volatility presented. This cluster’s drivers also have a high average rating which along 

with the low accident frequency and all the aforementioned demonstrate that this cluster 

is comprised from drivers with less risky behaviour and a constant trend of improvement. 

This cluster is also very similar to the third cluster that results from the analysis of the 

data_sample_1 in urban roads.  

 

Table 5.18: Macroscopic characteristics of the rural data_sample_2 

 Trend (*10-3) Volatility Rating Accidents/ 10 years 

of driving experience 

Number 

of drivers 

C
lu

st
er

 1
 (

ty
p

ic
al

) 

Min -5.837 0.091 0.174 0.000 

19 

Max 2.298 0.193 0.598 0.143 

Average -0.282 0.147 0.382 0.060 

Standard 

Deviation 
1.911 0.027 0.118 0.049 

Median 0.334 0.147 0.374 0.065 

Kurtosis 2.344 -0.213 -0.684 -1.331 

Skewness -1.469 -0.173 0.203 0.059 

C
lu

st
er

 2
 (

u
n

st
ab

le
) 

Min -5.069 0.077 0.205 0.150 

11 

Max 1.820 0.384 1.000 0.300 

Average -0.583 0.148 0.465 0.223 

Standard 

Deviation 
1.750 0.078 0.212 0.048 

Median -0.240 0.129 0.389 0.222 

Kurtosis 3.168 8.497 2.510 -1.366 

Skewness -1.449 2.757 1.401 0.057 

C
lu

st
er

 3
 (

ca
u

ti
o

u
s)

 

Min 0.000 0.000 0.826 0.000 

9 

Max 6.804 0.308 1.000 0.143 

Average 3.155 0.150 0.951 0.064 

Standard 

Deviation 
2.073 0.078 0.061 0.048 

Median 2.894 0.144 1.000 0.056 

Kurtosis -0.319 2.043 -0.071 -0.962 

Skewness 0.465 0.220 -1.019 0.256 

 

Table 5.18 reveals the macroscopic characteristics of the rural data_sample_2 clusters 

that resulted from the model developed. As in the data_sample_1, cluster 1 has barely 

no trend compared to the rest of the clusters formed presenting a steady behaviour 

throughout monitoring. The volatility of their behaviour also seems to be medium to high 

and therefore an instability exists in behaviour. Drivers of this cluster also feature an 
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average low total efficiency value, which shows a poor average behaviour. Finally, a low 

accident frequency is observed in the partial data obtained for some of the cluster’s 

drivers. All the above along with the higher number of drivers included in the specific 

cluster, lead to the conclusion that this cluster is similar to cluster 1 of the data_sample_1 

and once again, it mainly represent the typical driver.  

As for drivers of cluster 2, they present a low negative trend and a medium behavioural 

volatility. They also feature a significantly low average driving efficiency combined by a 

high accident frequency. All the aforementioned demonstrate that this cluster is 

comprised of drivers with the most risky behaviour of the sample that have a low trend of 

behavioural deterioration. The only difference compared to the data_sample_2 of the 

urban road is that drivers of this cluster retain a steadily low performance throughout the 

complete recording period.  

Drivers of cluster 3 feature a high positive trend indicating an improvement trend in 

general. This is also confirmed by the medium to high volatility presented, which testifies 

the existing positive instability. This cluster’s drivers also have a high average rating and 

a significantly low accident frequency. As also shown in the data_sample_1, this cluster 

is likely to represent the most safety efficient drivers of the sample. The only difference 

from cluster 3 of the urban road is that it features a positive instead of a negative efficiency 

trend.  

 

Table 5.19: Qualitative characteristics of the drivers' clusters 

Sample 

type 

Road 

type 
Cluster Trend (*10-3) Volatility Efficiency 

Accidents/ 10 years 

of driving experience 

d
at

a_
sa

m
p

le
_1

 

U
rb

an
 1 (typical) very low positive medium - high low low - medium 

2 (unstable) medium positive medium - high medium low 

3 (cautious) medium negative low - medium medium - high low 

R
u

ra
l 

1 (typical) low positive medium low low - medium 

2 (unstable) high negative high medium - high medium - high 

3 (cautious) high positive medium - high high low 

d
at

a_
sa

m
p

le
_2

 

U
rb

an
 1 (typical) very low positive medium low low 

2 (unstable) low - medium 

positive 

medium low high 

3 (cautious) medium negative low high low 

R
u

ra
l 

1 (typical) barely no trend medium - high low low 

2 (unstable) low negative medium low high 

3 (cautious) high positive medium - high high low 

 

As for the necessity of having prior information on driving accident data of the drivers, 

those data seem to affect only the second cluster of the most unstable drivers, which 

incorporates drivers that are both less safety efficient and unstable. The forming of the 

other two clusters is not significantly influenced by the existence of these data. The 
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qualitative characteristics of the clusters arising for each sample and road type are 

aggregated and illustrated in table 5.19.  

Driving characteristics of the resulting clusters 

Table 5.20 demonstrates the driving characteristics of the drivers’ clusters As expected, 

for both sample type models of the urban road, the median of the attributes is reducing 

while shifting to a class of higher efficiency. The only exception to that is 
urbanspeeding  of 

the third cluster of the data_sample_1, which is the highest value of the cluster instead 

of being the lowest. At this point, it should be highlighted that the cluster analysis 

performed take into account a variety of factors apart from driving efficiency and 

therefore, despite the fact that the specific cluster demonstrates the highest median 

efficiency among the three resulted, it includes some drivers whose safety efficiency is 

not high. The fact that drivers of this cluster feature a constant behavioural improvement 

is probably indicative that they are likely to enhance their speeding behaviour in the 

future. This is probably not very clear for clusters 1 and 2 of the data_sample_2 since the 

median driving efficiency is similar. Nonetheless, the clusters that present the highest 

efficiency also feature the lowest driving attributes. As for the rural data_sample_1, this 

rule applies only for the 
ruralmobile  and 

ruralspeeding .  

It is also observed that for all sample and road types the number of harsh acceleration 

events is higher than the number of harsh braking events occurred. Additionally, the 

number of harsh events occurring in rural road is lower than in urban for cluster 1 that 

represents the typical driver. The same difference between urban and rural road types is 

noticed for mobile usage and speeding of cluster 1 as well.  

As for the clusters of the data_sample_2 that include drivers with a high number of 

accidents per year of experience, they both feature the highest number of harsh 

acceleration and braking events among all other clusters and the highest number of 

seconds of mobile usage and speeding at rural road. Nonetheless, the relative urban 

road cluster shows a level of mobile usage and speeding that is close to the highest one. 

The fact the urban road cluster of more risky drivers does not present the highest level 

for these two characteristics could be attributed to the fact that the data_sample_2 used 

is not very large. Therefore, a larger sample should be exploited to investigate more the 

specific issue.  

The clusters of the cautious drivers of the data_sample_2 demonstrate a significantly 

lower level of driving characteristics for all metrics considered. This finding is validated 

by the results of the efficiency analysis conducted in subchapter 5.3.3, which indicates 

that the specific cluster resulted from the clustering process of the data_sample_2 also 

represents the cautious drivers. This is also the case for the data_sample_1 except from 

urbanspeeding , which appears to be the highest among the three clusters and from 
ruralha  and 

ruralhb  that are slightly higher than the respective lowest value of the other two clusters. 

This probably implies the high value of incorporating the accident per year variable into 

the clustering procedure when trying to form a cluster of safety efficient drivers. To this 

end, it is suggested to use a larger dataset and investigate further on which variables 
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should be included in the clustering approach of an data_sample_1 (i.e. without acquiring 

the accident history of the drivers).  

As mentioned above, the second cluster represents the unstable drivers of the sample. 

The data_sample_2 demonstrates an approximately equal or slightly higher level of 

driving characteristics for the metrics considered, which along with the fact that the 

accidents per year variable and the driving efficiency is high and low respectively, leads 

to the conclusion that the second cluster formed introduces drivers with non-steady and 

poor driving behaviour. Consequently, it can be inferred that the most risky drivers also 

tend to present a low trend of efficiency change and a low volatility value.  

 

Table 5.20: Driving characteristics of the drivers’ clusters per 100km and per road and sample type 

Sample 

type 

Road 

type 

No of 

drivers 

Driving 

characteristics Cluster 1 (typical) 
Cluster 2 

(unstable) 

Cluster 3 

(cautious) 

d
at

a_
sa

m
p

le
_1

 U
rb

an
 

100 

efficiency 0.33 0.61 0.81 

ha 26.75 17.20 6.89 

hb 10.05 7.30 3.44 

mu 499 165 60 

sp 1095 619 1240 

R
u

ra
l 

100 

efficiency 0.36 0.69 0.88 

ha 14.97 6.36 9.65 

hb 7.59 3.09 3.61 

mu 234 285 86 

sp 988 923 347 

d
at

a_
sa

m
p

le
_2

 U
rb

an
 

43 

efficiency 0.37 0.33 1.00 

ha 22.05 41.26 14.13 

hb 8.10 15.39 5.28 

mu 653 481 82 

sp 1349 1140 436 

R
u

ra
l 

39 

efficiency 0.37 0.39 1.00 

ha 12.35 19.24 5.74 

hb 6.66 6.84 2.46 

mu 316 380 149 

sp 1125 1149 415 

 

Regarding the data_sample_1, it is clear that the second cluster represents highly volatile 

drivers that introduce a medium positive (urban road) or negative (rural road) trend. 

Nevertheless, drivers of this cluster show a safety efficiency that is between that of the 

other two clusters of the typical and cautious drivers or lower. This is also confirmed by 

the metrics recorded and illustrated in table 5.20 and seems to be a valid observation 
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since cautious drivers should maintain a low level of metrics to remain at the specific 

cluster, which requires a behaviour that is less volatile. It is noticeable that the number of 

drivers included in the first cluster is significantly higher than the rest, especially for the 

data_sample_1, and accordingly, the driving characteristics of the clusters arising might 

not be totally representative. This remains to be addressed in the future.  

As a general observation, the driving efficiency index of each cluster goes along with the 

level of its metrics. This validates the methodology proposed in the previous step for the 

estimation of each driver’s safety efficiency. It is also shown here that the driving 

efficiency and the metrics recorded present a significant difference between the sets of 

the typical and the cautious drivers. There is a minor divergence from this rule in the case 

of 
urbanspeeding , which, as mentioned above, is attributed either to the sample size or to the 

absence of the accidents per year of driving experience variable.  

5.4) Results summary 

The most important findings of this research are summarized below: 

1) A different sampling kilometrage is required for each a) road type, b) driving metric and 

c) driving aggressiveness to accumulate enough data to obtain a clear picture of a 

driver’s behaviour and perform DE analysis.  

2) There is no significant metric that appears to be critical for the determination of the 

required amount of data to be recorded in highways.  

3) More risky drivers need less monitoring in rural road and highways.  

4) A new methodological approach is proposed for estimating the efficient level of inputs 

and outputs of each trip as well as for the identification of the least efficient trips.  

5) The integration of DEA with the convex hull algorithmic approach yielded significantly 

better results than the rest of the approaches tested.  

6) A new methodological approach is provided for driving efficiency evaluation as well as 

for estimating the efficient level of inputs and outputs of each driver.  

7) Mobile usage is not a critical factor when measuring driving efficiency using DEA.  

8) The number of harsh acceleration events occurred in all road types is at least twice as 

much as the number of harsh braking events.  

9) The shift between efficiency classes is mainly affected by different driving metrics in 

urban and rural road.  

10) Regarding the analysis of the efficiency time series arising, it appears that although 

there is a higher range of volatility in rural road type, the average is approximately the 

same in both road and sample types except from the data_sample_2 of rural road that 

is slightly higher than the rest.  
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11) The average trend is observed to be approximately the same between the two road 

types despite the fact that median trend is diverged.  

12) Stationarity is not included in the final clustering procedure since three out of four 

driver groups have similar characteristics and therefore it would not play an important 

role.  

13) The clustering analysis performed resulted to three driving groups of a) the typical 

drivers, b) unstable drivers and c) cautious drivers.  

14) Prior information on driving accident data seems to affect only the form of the second 

cluster of the most unstable drivers, which incorporates drivers that are both less 

safety efficient and unstable.  
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Chapter 6: Conclusions 

6.1) Overview  

The main objective of this PhD is to provide a methodological approach for driving safety 

efficiency benchmarking on a trip and driver basis using data science techniques. It 

also investigates the way to achieve this by defining a safety efficiency index based on 

travel and driving behaviour metrics collected from smartphone devices. The driving 

characteristics of each emerging efficiency group is discussed and the main driving 

patterns are identified. One of the most significant DEA’s weaknesses, i.e. the significant 

time required for processing large-scale data, is overcome by employing computational 

geometry techniques. Furthermore, the present doctoral research proposes a 

methodological framework for identifying the least efficient trips in a database and for 

estimating the efficient level of metrics that each non-efficient trip should reach to become 

efficient. Finally, this dissertation’s objective is to study the temporal evolution of driving 

efficiency and identify the main driving patterns and profiles of the driver groups formed.  

The research questions raised are: 

1) How well can driving safety efficiency be benchmarked? Can data science techniques 

and large-scale data provide sufficient answers?  

2) What are the temporal evolution characteristics of driving efficiency? What do the 

drivers’ groups formed represent?  

3) What is the required amount of driving data that should be collected for each driver?  

4) How can the least efficient trips of a database be identified?  

The general methodological framework applied to answer these questions is illustrated 

in figure 1.1. There are two data sources where data are derived from a) a database of 

drivers who participated in a naturalistic driving experiment in which data where recorded 

using the smartphone device of each participant and b) the questionnaire administered 

to a proportion of the participants. After data are collected, the factors representing driving 

efficiency in terms of safety are specified based on literature review conducted. After it 

is examined that a) adequate data is collected from each participant taken into 

consideration in this research and b) the driving metrics and distance recorded are 

proportionally increased and their ratio does not significantly change while monitored 

kilometres are accumulated, these factors are used as inputs and outputs for the DEA 

models developed. Consequently, trip and driver efficiency analysis is implemented per 

road type following the detailed description given below. The results obtained from the 

trip efficiency analysis are exploited mainly to reduce processing time for the driver 

efficiency analysis where the evolution of driving efficiency through time is investigated 

and secondarily to assess the practicability of providing a methodology for less efficient 

trip identification. The results of driver and driving efficiency evolution investigations are 

combined to perform cluster analysis on a driver level. For each driving cluster that 
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results from this procedure, the typical driving characteristics of the drivers that belong to 

it are examined and presented.  

Exhaustive literature review takes place as a first step, covering an overview of road 

safety and accidents and the fields driving behaviour and risk, driving characteristics, 

driving efficiency parameters (distraction, aggressiveness, etc.), naturalistic driving 

experiments, data envelopment analysis methodology, potential improvements on large-

scale data analysis and its applications on transport engineering and driving efficiency. 

As we move forward, UBI aims to assign insurance premiums to the respective accident 

risk of each individual driver based on travel and driving behavioural characteristics. 

Therefore, drivers should reduce their annual mileage and improve their driving 

behaviour. To achieve this, information about driving traits e.g. number of harsh braking 

and acceleration events, time of driving over the speed limits, road type etc. should be 

included in driver’s evaluation. As a result, it is essential to develop a model that 

incorporates both distance travelled and the rest of the behavioural characteristics in 

order to evaluate driving risk. By developing DEA models that take into account these 

two categories of characteristics, this study aims to examine the applicability of such 

models.  

According to past research, naturalistic driving experiments are considered more 

appropriate for driving behaviour evaluation because behaviour is recorded under normal 

driving conditions and without any influence from external parameters. On the other hand, 

it is very important to determine the amount of data required to obtain a complete picture 

for each driver, where the rate of those metrics described above per km travelled 

converges to a stable value. It is found that the most significant human factors recorded 

by smartphone devices and were found to affect driving risk are mobile phone 

distraction, speed limit exceedance and the number of harsh braking and acceleration 

events occurred while driving.  

To the best of the author’s knowledge, this doctoral research is the first effort made to 

estimate and assign a relative safety efficiency index to each driver of a sample by 

exploiting distance travelled and several driving behaviour metrics that result from 

microscopic driving behaviour data recorded from smartphone devices.  

Literature review revealed that it is significant to study the potential of benchmarking 

driving safety efficiency using microscopic driving data collected from smartphone 

devices. Literature review revealed that it is necessary to study driving behaviour on a 

greater extent and shed more light on the evaluation of driving safety behaviour and the 

factors influencing it. Therefore, there should be an attempt to address this certain issue 

by proposing a methodological framework based on data science techniques for 

evaluating driving characteristics. The model that will be developed should incorporate 

several driving behaviour metrics allowing for the multi-criteria analysis of driving 

efficiency. It is also found important to address the problem of the large computation time 

required for a DEA algorithm and methodologically speaking, it is momentous to test the 

effectiveness of the implementation of a DEA and convex-hull algorithm combination in 

a multiple inputs and outputs settings for large-scale driving data.  

The second step of the methodology is data collection and preparation, which includes 

an extended description of how the OSeven platform works including the recording, 
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collection, storage, evaluation and visualization process of driving behaviour data using 

smartphone applications and advanced machine learning (ML) algorithms as well as a 

description of the questionnaire administered. Furthermore, database is further 

processed and prepared to be imported in the final data analysis conducted afterwards. 

This preparation is made using Python programming language, which is suitable for 

large-scale data analysis.  

All indicators, which are received directly from the OSeven system, are analysed and 

filtered to retain only those indicators that will be used as inputs and outputs herein for 

the DEA problem. Data filtering and DEA improvement algorithms are performed in 

Python programming language and several scripts are written for this reason. Data used 

in this research are anonymized before provided by OSeven so that driving behaviour of 

each participant cannot be connected with any personal information. The approach 

followed in this study aims to identify driving behaviours and patterns and the factors 

influencing them and not to explain the causality between behaviour and other factors 

such as age, gender, occupation etc. or describe the distribution of the driving sample 

collected.  

For the purposes of this doctoral research, a sample of 171 drivers participated in the 

designed experiment that endured 7-months and a large database of 49,722 trips is 

collected from the database of OSeven. For each individual part of the analysis 

conducted herein, a part of this database is exploited because of the different 

requirements of each analysis. All drivers chosen to be included in the large-scale data 

investigation part of the analysis should had driven at least for 10 hours and 40 trips that 

approximately equals the typical monthly number of trips for a driver assuming that each 

driver drives 2 trips of 15 minutes a day for 5 working days a week. As for the trip 

efficiency analysis, a part of the sample of eighty-eight (88) drivers is used, which equals 

to 10,088 trips. Finally, for the purposes of the driver efficiency analysis, driving data from 

100 and 100 drivers were selected for the analysis conducted in urban and rural road 

respectively. The total number of trips that took place by each of the drivers chosen was 

230 for urban and 150 for rural roads constructing thus a large database of 23,000 trips 

in urban and 15,000 in rural. From those drivers, 43 urban and 39 rural drivers have 

answered the questionnaire administered.  

The investigation of the adequate amount of data to be included in the analysis and the 

evolution of the metrics/ distance ratio takes place as a next step. This step is essential 

in order to specify the exact amount of data that should be used in the analysis and is 

neither deficient nor excessive. A deficient amount of data would lead this research to 

uncertain or unreasonable results while an excessive amount of data would significantly 

increase required processing time.  

It is concluded that the driving efficiency problem can be dealt as a constant returns-to-

scale (CRS) DEA problem since the required sampling distance is defined so that the 

sum of all metrics (inputs) recorded for each driver changes proportionally to the sum of 

driving distance (output) in each moving window examined and in total. This step also 

defines the moving window time step and concludes that the highway road type cannot 

be included in the analysis because only a short number of participants has been 

recorded for more than the respective kilometres found.  
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Taking into account the literature review conducted, the data collected and all the 

peculiarities of the DEA technique, it is concluded that safety efficiency index may be 

defined using the number of harsh acceleration and braking events, the seconds of 

mobile usage and the seconds of driving over the speed limits as inputs and the distance 

travelled as output. This is the key-step connecting the “safety efficiency index estimation” 

and “benchmarking” part of this doctoral research. It constitutes a substantial step for 

moving forward with the DE analysis, determining the DEA inputs and outputs in such a 

way to i) be a scientifically sound formulation of the DEA technique and ii) represent 

driving safety efficiency and therefore the relative driving risk.  

Trip efficiency analysis is conducted thereafter to determine the best performing 

technique among those tested and to develop a methodology for identifying the least 

efficient trips that exist in a certain trip database. Standard DEA, RBE DEA and convex 

hull DEA are tested and compared on the basis of required processing time. Convex hull 

algorithm combined with DEA outperforms the other two methodologies tested. This is a 

critical step that enables the reduction in required running time for all consequent steps 

engaged with DEA modelling. Furthermore, a convex hull DEA algorithm is implemented 

when both inputs and outputs are more than one. Lastly, a methodological approach is 

proposed for less efficient trip identification and efficient level of driving metrics estimation 

based on the safety efficiency index defined above.  

Driver efficiency analysis is performed to examine the potential of clustering drivers and 

identify the main driving characteristics of each cluster arose. First, the total driver 

efficiency of the total recorded period is estimated for each driver based on the safety 

efficiency index defined.  

The evolution of average driving efficiency over time is also investigated using different 

databases, accumulated over different timeframes from the beginning of recording time 

until the end of each timeframe. For the time window of each time step examined, the 

total driving efficiency of that period is estimated. The time series that results is studied 

and decomposed in its main components, stationarity and trend. Using a k-means 

machine learning algorithm, drivers clustering is performed afterwards based on total 

driving efficiency, volatility, trend, stationarity of the time series arising as well as on the 

questionnaire data collected from the data_sample_2. The questions concerning the 

number of driving experience and the number of total accidents to date were the 

questionnaire data exploited in the clustering approach. The efficiency time-series 

created is analysed and results are exploited for driver clustering, which lead to the 

recognition of the main driving profiles. The optimal number of clusters is determined 

using the elbow method. Driving characteristics of each cluster arose are analysed and 

conclusions drawn are presented below.  
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6.2 Main contributions 

This doctoral dissertation: 

1) Makes use of an innovative smartphone data collection system and develops a 

valuable methodology for large-scale data investigation.  

2) Provides a cutting-edge methodological framework for evaluating driving safety 

efficiency on trip and driver basis based on data science techniques.  

3) Quantifies the driving data that should be collected when evaluating driving 

behaviour in terms of safety.  

4) Provides insights on the main driving behaviour profiles that exist and discusses 

their characteristics.  

6.2.1) Large-scale data investigation methodology and the innovative 

smartphone data collection system 

In this research, the optimization technique of DEA is applied, which is mainly used so 

far in operational research. DEA is a linear programming technique and as such, it is 

performing relatively fast on small-scale databases but much slower when it comes to 

large-scale data. This thesis is also dealing with the problem of data science techniques 

that can be applied in real transportation problems as the one examined, to deal with the 

problem driving efficiency benchmarking using DEA. Consequently, the performance of 

DEA methodology for large-scale data as well as the potential of applying an improved 

DEA approach with certain techniques (RBE, Convex Hull) to yield the same optimal 

solution in less time is examined herein.  

To this end, a multi-dimensional convex hull technique incorporating multiple inputs and 

outputs is combined with DEA and applied on driving data. To the best of the authors’ 

knowledge, no effort has been made previously to combine the computational geometry 

procedure of convex hull with DEA for reducing the running time of a large-scale DEA 

problem that features multiple inputs and outputs. The scenarios that were taken into 

consideration for testing included sets of 100, 500, 1000, 5,000 and 10,088 trips and 

compared based on running time of each of the algorithms applied. To test the efficiency 

of the proposed approach, a driving data sample of 10,088 trips, collected using the 

smartphone devices of 88 drivers, was exploited for the purpose of this study with the 

ultimate goal of identifying the efficient level of inefficient trips as well as the least efficient 

trips, based on driving behaviour. This verifies that the convex hull technique 

outperforms the rest in terms of the required processing time.  

Moreover, the large-scale driving data collected are investigated through statistical 

methods in order to specify the certain amount of driving data that should be collected 

for each driver in each road type. This research succeeds in quantifying the need for 

driving data collection through smartphone devices when it comes to driving behaviour 

evaluation using DEA methods. The need for specifying this amount emerges from the 

fact that collecting either excessive or deficient driving data can be risky because it might 



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

178 

lead to excessive computational effort when it comes to large-scale data or to non-

significant conclusions, respectively. It is essential for researchers nowadays to allocate 

available resources efficiently due to the emerging necessity of expensive big data 

computations. As we move on to the big data era, it becomes extremely important to 

address this issue because of the enormous costs that result from the data computations. 

On the other hand, it is momentous to be capable of exploiting this vast amount of 

information collected and draw non-biased conclusions from it without having to include 

more or less information than necessary.  

For this purpose, the present research exploits large-scale driving data from a 

sophisticated data collection system 171 drivers participated to the designed experiment 

during a 7-months timeframe and a large database of 49,722 trips is acquired. Driving 

behaviour variables collected include distance travelled, acceleration, braking, speed and 

smartphone usage. The required monitoring period at which the driving behaviour metrics 

rate of each driver converges to a stable value is determined by the statistical methods 

used.  

On the top of these, this study makes use of data that were collected using an innovative 

approach that is based on a smartphone application. This is an approach that is 

becoming popular nowadays and is considered a fair solution for collecting data in 

naturalistic driving experiments. It is also a comparatively less expensive approach, 

which is very important because it could easily be used in a real case scenario.  

These two approaches combined, constitute the innovation of this doctoral research in 

terms of the large-scale data handling. The added value of this doctoral research is that 

it presents how the dimensionality of large-scale data can be reduced and valuable 

conclusions can be drawn from them without putting too much computational effort or 

losing information during this procedure.  

6.2.2) Methodological framework for evaluating driving safety efficiency 

Another important contribution of this research is that it suggests a new approach for the 

benchmarking of the driving efficiency of a trip. The methodology to estimate a trip’s 

efficiency index, identify its “peers”, and therefore, determine its efficient level of inputs 

and outputs is provided. The efficiency level of a trip is defined as the maximum value of 

inputs (e.g. the maximum number of harsh acceleration/ braking events that should 

occur) or the minimum value of outputs (the minimum distance that should be travelled) 

that should be reached for a trip to become efficient. Finally, the methodological steps for 

the identification of the least efficient trips in a database are provided, which would be a 

valuable finding for a driving recommendation system.  

This paper also provides an innovative solid framework for benchmarking drivers’ 

safety efficiency based on DEA. A database of 100 drivers in urban and rural road was 

exploited and combinations of several driving analytics collected served as inputs and 

outputs of DEA models for the estimation of a comparative driving safety efficiency index 

for each driver in the sample. Efficiency is examined in terms of speed limit violation, 

driving distraction from mobile phone usage, aggressiveness and overall safety on urban, 
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rural and highway roads and in an overall model. An additional value of the methodology 

proposed is that it provides the potential to recognize the efficient peers of a driver within 

a driving sample, which enables the estimation of the optimal level of inputs and outputs 

that each driver should reach to shift to the efficiency frontier or should pass to become 

even more efficient.  

Based on this methodological framework, it is inferred that the change that is required in 

each driving attribute that was taken into consideration for a driver to shift either to the 

efficiency frontier or to another driving class can also be estimated. This can be 

achieved by solving the optimization problem for a specific input or output given the target 

efficiency (
BDriving  Efficiency ), which is the upper or the lower limit of the class that the 

driver is shifting in case of efficiency decrease or increase respectively.  

6.2.3) Driving data quantification for driving behaviour evaluation 

This dissertation concludes that the methodological approach for the determination of 

the required driving data sampling distance depends on the scope of the research 

methodology that will be applied. In other words, the statistical principles of the 

methodological approach that will exploit the driving data collected determine the 

statistical rules that will be specified to estimate the amount of required data. In this 

research, the adequate sampling distance to perform DEA using large-scale driving data 

is investigated and suggestions are made.  

An equally important conclusion is that the adequate amount of driving data is decreased 

as the driving metrics (for all metrics except speeding) increase, at least for rural road 

and highways. This means that the more aggressive a driver becomes, the less 

monitoring is required to acquire a clear picture about his/ her driving patterns. This is a 

rational conclusion since the level of metrics of a driver with an average level of metrics 

may fluctuate a lot within a wide range whereas this is not possible for an aggressive 

driver whose behaviour has to fluctuate within a relatively high level of metrics in order 

for his/ her average level of metrics to be high. Nevertheless, this is not strongly indicated 

from the results arising and therefore it should be further investigated.  

Results also demonstrated that a different type of metric is critical for the determination 

of the required amount of data that should be recorded in each road type. This shows 

that driving behaviour is significantly different in highways from the other two road types 

and therefore there is not a specific driving metric that requires significantly higher 

distance for convergence compared to the rest. The most critical driving metrics found to 

be the number of harsh acceleration events occurred in urban road and highway and the 

seconds of mobile usage in rural roads.  

Additionally, it appears that a different data amount is necessary to be collected 

depending on the road type examined. Indicatively, the sampling distance suggested by 

the outcomes of this research are 519km for urban, 579km for rural and 611km for 

highways. Despite the fact that the above values are of the same order of magnitude, 

they are likely to be affected by the longer distance travelled, which results from the higher 

driving speed in each road type. This argument is also reinforced by the lower level of 
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metrics recorded when moving from an urban to an inter-urban environment. Therefore 

it would be arbitrary to directly conclude that this difference is due to the longer distance 

required for the metrics to be converged and should be further examined.  

6.2.4) Main driving profiles and their characteristics 

Findings pointed towards a potential for classifying driving sample based on the drivers’ 

relative safety efficiency identified. Drivers were divided into three categories (non-

efficient, weakly efficient and most efficient) based on the 25% and 75% percentile 

thresholds specified. The highlights of the analysis conducted for each category indicated 

considerable differences in driving characteristics between inefficient drivers and the 

classes of weakly efficient and most efficient drivers with the difference of the two latter 

to be less significant. The number of harsh braking events appeared to be 2-3 times less 

than that of the harsh acceleration events in all road types. The seconds of speeding 

followed by the number of harsh braking and acceleration events were identified as the 

key factors for safety efficiency index estimation. On the other hand, mobile usage is not 

found to be a critical factor in safety efficiency benchmarking probably because DEA is 

providing a relative estimation of driving efficiency and at the same time, the difference 

in the seconds of mobile usage between different classes is not found to be significant. 

Another very important finding is probably that the shift between efficiency classes is 

mainly affected by different driving metrics in urban and rural road.  

The temporal dynamics of driving efficiency are investigated in this study, which also 

specifies the moving time window in which each driver is benchmarked. It is shown that 

despite the fact that drivers retain a steady driving behaviour for a certain period, there 

exists dynamic major shifts in systematic behaviour within a long-term period. The 

analysis of the efficiency time series arising showed that although there is a higher range 

of volatility in rural road type, the average is approximately the same in both road and 

sample types except from the data_sample_2 of rural road that is slightly higher than the 

rest. Apparently, drivers present a more volatile behaviour when driving in rural road, 

which is likely to imply a higher number of different driving patterns in the specific road 

type and something that is also confirmed by the higher sampling distance required.  

Furthermore, the average trend is observed to be approximately the same between the 

two road types despite the fact that median trend is differentiated significantly. This 

indicates the existence of higher outlier trend values in urban road, which probably 

indicates that the temporal evolution of driving behaviour is more sensitive in the changes 

made in driving metrics and therefore it is easier and quicker for drivers to become more 

or less efficient. This is also reinforced by the fact that driving metrics in urban road are 

higher than those in rural road. Finally, studying stationarity demonstrated that three out 

of four driver groups have similar characteristics and therefore it would not play an 

important role in the final clustering procedure where this attribute is not included.  

All the above lead to the conclusion that when driving efficiency is benchmarked using 

DEA, the sample should be assessed on a regular basis to identify any alterations made 

in the efficiency frontier, which will result in a change in the ranking of the drivers. As a 

result, drivers should be continuously monitored and re-evaluated to capture these 
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shifts and provide personalized advice on how their behaviour could be improved in the 

future.  

Clustering analysis performed resulted to three driving groups, which mainly represent 

the typical drivers, the unstable drivers and the cautious drivers. The main common 

attribute between all clusters of cautious drivers is the high driving efficiency index and 

the low value of the accident per year value regardless of whether or not it was included 

as a factor in the cluster analysis. On the other hand, all clusters of the typical drivers 

feature a high driving efficiency index and an insignificant low positive trend indicating a 

steadily poor driving behaviour. Finally, the unstable drivers of the second cluster present 

a medium to high volatility, which is found to be the only common characteristic between 

them. The rest of the clusters show similar characteristics in all attributes.  

Finally, prior information on driving accident data seems to affect only the form of the 

second cluster of the most unstable drivers, which incorporates drivers that are both less 

safety efficient and unstable. This is extremely promising for driving behaviour literature 

since it implies that it is feasible to study massive anonymous datasets for which no 

personal data are provided and produce equally significant and not biased outcomes.  

6.3) Research innovation and impact 

The innovation of this study lies on the several different research questions answered 

herein. First of all, this doctoral dissertation contributes towards the understanding of 

driving safety efficiency benchmarking, and therefore driving risk, using data science 

techniques applied on large-scale data. The way in which it is feasible to perform 

benchmarking of driving efficiency based on travel and driving behaviour metrics 

collected from each trip on a driver basis is studied in the present research. Moreover, a 

new methodological approach is provided for estimating the efficient level of inputs and 

outputs that each driver should reach to become efficient in terms of safety. To the best 

of the author’s knowledge, this is the first research that contributes towards the efficiency 

measurement on a driver’s level using microscopic large-scale driving data. Furthermore, 

metrics that reveal information about different driving risk category (aggressiveness, 

distraction, etc.) are exploited altogether to estimate driving safety efficiency, which 

constitutes the methodological innovation of this dissertation.  

This thesis is also dealing with the problem of data science techniques that can be applied 

on real transportation problems as the one examined, to deal with the problem driving 

efficiency benchmarking using the optimization technique of DEA, which is mainly used 

so far in operational research. Consequently, the potential of applying a DEA 

methodology of improved performance on large-scale data with certain techniques (RBE, 

Convex Hull) to yield the same optimal solution in less time is examined herein. Moreover, 

the large-scale driving data collected are investigated through statistical methods in order 

to specify the certain amount of driving data that should be collected for each driver in 

each road type. These two approaches combined, constitute the innovation of this 

doctoral research in terms of the large-scale data handling. The added value of this 

doctoral research is that it presents how the dimensionality of large-scale data can be 
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reduced and valuable conclusions can be drawn from them without putting too much 

computational effort or losing information during this procedure. On the top of these, this 

study makes use of data that were collected using an innovative approach that is based 

on a smartphone application.  

Moreover, one of the innovations of the methodology proposed is that there is no need 

to assign weights to the input variables. This is extremely significant since no weight 

specification is required, which is very handy when there is no prior knowledge of the 

weights that should be assigned to each of the attributes used. This is the case in the 

specific study as well, since the weights that could be assigned to each of the driving 

metrics considered (e.g. number of harsh events, seconds driving over the speed limits) 

are under investigation in literature.  

It is also very important that this research recognizes the main characteristics of the 

driving safety efficiency groups arising from the improved DEA methodology performed, 

because this sets the ground for the in-depth study on driving efficiency based on 

microscopic driving characteristics. Finally, this dissertation studies the time evolution of 

driving efficiency and reveals the characteristics of the driving profiles arose. This may 

assist in the acquisition of a clearer picture regarding the most significant factors that 

increase accident risk and therefore accident probability as well as towards the provision 

of more representative and personalized information to drivers for further driving 

behaviour improvement. To this end, optimization and machine learning techniques are 

combined.  

The impact of this dissertation is that its results can be exploited to provide feedback to 

drivers on their total driving efficiency and its evolution, whenever an inefficient trip 

performed, as well as the deviation of their trip efficiency from their overall efficiency. Both 

are valuable findings since they could potentially be embedded in a platform that provides 

feedback and recommendations to users regarding their driving behaviour. The results 

arising could also be used by a smartphone application to advise drivers regarding their 

driving efficiency either overall or per road type. Drivers could be advised on the driving 

characteristics that need further improvement to become less risky or every time that an 

inefficient trip takes place to be further improved. It can also be exploited as an innovative 

approach to measure the efficiency of a database that includes a vast number of trips, 

on a trip level. This constitutes a very significant contribution since driving safety 

efficiency measurement is highly correlated with driving risk, which means that this can 

potentially affect the accident probability of a driver. As a result, the exploitation of this 

study’s results can lead to a reduction in the total number of accidents.  

The fact that this research recognizes the main characteristics of the resulting driving 

safety efficiency groups from the analysis performed is very important, since more 

personalized feedback can be provided to users, which could be proved more influential. 

Nonetheless, results indicated that since the temporal evolution could be steep, drivers 

should be continuously monitored and re-evaluated to capture these shifts and provide 

personalized advice on how their behaviour could be improved in the future. Overall, it 

can be said that the results of this dissertation present a considerable opportunity for road 

safety, as both trips and drivers could be classified into different efficiency categories 

(such as efficient, less efficient, non-efficient) and further evaluate their main 
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characteristics in terms of traffic risk, aggressiveness, eco-driving etc. Finally, all the 

aforementioned can serve as a recommendation system’s service that provides the 

appropriate stimuli to drivers to improve their behaviour. To this end, gamification policies 

based on this approach such as competitions, learning goals and awards could contribute 

to this scope.  

Finally, findings could also be useful for developing insurance pricing schemes based on 

driving usage or characteristics i.e. Pay-How-You-Drive driving insurance schemes, a 

policy that also conduces to the further enhancement of behaviour and, therefore, driving 

risk reduction.  

6.3) Future challenges 

The most important suggestion for future research is probably the exploitation of a larger 

driving sample. This will assist towards the acquisition of a clearer picture regarding the 

relationship between the number of harsh acceleration events and seconds of speeding 

and the total driving duration at which those metrics converge. It is significant to know 

more about the relationship between the aggressiveness of a driver and the necessary 

monitoring distance or time and as a result, this should be further investigated. The same 

applies for the safety efficiency estimation as well, where DEA analysis showed that 

models’ results become more representative of the average characteristics of each class 

as more trips and drivers are aggregated. Apart from that, as the sample grow bigger the 

high proportion of efficient DMUs to the total number DMUs is reduced. In this case 

though, data analysis requires quicker implementations and therefore further research is 

needed towards improving the implementation of the algorithms to overcome the 

dimensionality limitation of the quick hull implementation used in this study, so as the 

algorithm can incorporate input and output matrices of higher dimensions.  

Further research should centre to larger samples of trips with a representative sample of 

drivers population for which more demographic data etc. can be collected. The recent 

trend in driving data collection and analysis is to collect anonymized data from larger 

samples in contrast with the classic studies, which used to design driving experiments 

that collect data from a sample the personal details of which, such as demographics etc. 

are known. Both approaches have several drawbacks and benefits e.g. the fact that the 

results of a research that has exploited data that cannot be connected with any personal 

information cannot be generalized in the population. It is therefore important to somehow 

bridge the gap between these two approaches and retain the advantages of both. This 

could potentially be achieved by many means such as obtaining larger samples to respect 

representativeness, collect data from many countries of which drivers have different 

driving characteristics etc. This should be the objective of future research as well.  

Another important research question raised at this point is whether future research should 

focus on the investigation of the macroscopic or microscopic behaviour of drivers. 

Although these two paths are seemingly different, they are likely to be equally useful in 

determining the variety of driving behaviour patterns. The macroscopic approach would 

suggest constructing all possible driving profiles and study behavioural shifts among them 
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over longer time periods. On the other hand, microscopic analysis would focus on the 

spatial analysis of the time series of the driving metrics collected from each trip and would 

therefore suggest the opposite i.e. to concentrate on how everyday driving behaviour 

could be classified as risky or less risky. In any case, future research should focus on the 

comparison of the results arising from trip and driver efficiency analysis of each driver to 

evaluate the representativeness of the results. This is probably where the key to this 

answer lies.  

Other DEA’s limitations should also be addressed which among others include DEA’s 

sensitivity to outliers and to drivers with zero input attributes that in the present study had 

to be eliminated from the sample. This is something that has probably affected the time 

series creation since efficiency is estimated in each time step by comparatively estimating 

driving efficiency. As a result, when outliers appear, time series might be “pushed” 

upwards or downwards. It would be very interesting to be capable of comparing driving 

efficiency even between those drivers that appear to have zero driving metrics recorded. 

Nonetheless, the solution to this problem could be given by incorporating more driving 

metrics in the DEA models, which is strongly recommended in the future.  

Apparently, not all metrics capturing safety behaviour of a driver have been included in 

this research and an attempt to do this would probably lead to even stronger models. 

Finally, a higher number of driving metrics such as headways, eye movement, 

drowsiness, lane changing etc. that are also significantly influencing accident risk should 

be used to test whether or not the driving behaviour models are improved. These metrics 

could be recorded by a variety of different data sources such as cameras, eye-tracking 

devices, radars, LiDARs, on-board-diagnostic devices (OBD), smartphones etc. It is 

noted though that most of these data collection methods are relatively expensive to use 

and this is why smartphone is considered a fair solution for collecting data in naturalistic 

driving experiments.  

The study of the dynamic evolution of driving efficiency raises also the question of how 

much and how rapidly driving profiles are altering over time. It is a matter of great 

significance to shed light on this issue since the classification of the drivers based on 

these characteristics would lead to enhanced recommendations to users and therefore 

to a further reduction of total driving risk. For this purpose, stationarity should also be 

studied using a different methodological approach since it is deemed to play an important 

role in the form of the configuration of the final clustering procedure.  

Another recommendation made for future research is study the prediction of drivers’ total 

driving efficiency index or cluster in a set of consecutive periods, applying time-series 

analysis on the existing time-series of driving efficiency. The way to estimate the level of 

inputs and outputs that each driver should reach to shift to the cluster of best and most 

improved drivers that resulted from the analysis of the temporal evolution of driving 

efficiency.  

It is also very important to collect the official accident record of each driver participating 

in the experiment instead of the stated number of accidents. This would probably lead to 

results that are more accurate since it is likely that some drivers might have not recalled 

the correct number of crashes they have been involved in, especially when it comes to 

older drivers with a large driving experience.   
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Appendix I 

The papers produced from this doctoral dissertation as well as the chapter of the 

dissertation they are related to are illustrated in figure 1.  

 

 

Figure 1: PhD related papers 
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Tables 1, 2 and 3 illustrate the publications produced thus far regardless of the relation 

to the specific PhD to scientific journals, international conferences and Greek 

conferences, respectively. Table 4 illustrates all conference presentations made without 

full paper review.  

 

Table 1: List of scientific journal publications 

Year Role Name Journal Status Chapter 

2018 Author 
“Public opinion on usage-based motor insurance 
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Travel 

Behaviour and 

Society 

Published - 

2017 Author 
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Accident 

Analysis & 

Prevention 

Published 2.2 

2017 Co-author 

“Road, Traffic, and Human Factors of Pedestrian 

Crossing Behavior: Integrated Choice and Latent 

Variables Models.” 

Transportation 

Research 

Record 

Published - 

2014 Co-author 
“Factors Influencing Freeway Traffic Upstream of an 

Incident” 

Advances in 

Transportation 

Studies 

Published - 

2014 Author 
“Improving short-term traffic forecasts: to combine 

models or not to combine?” 

IET Intelligent 

Transport 

Systems 

Published - 

2018 Co-author 
“Detecting road safety offenders through smartphone 

data: The case of mobile phone use while driving” 
Safety Science Under Review - 

2018 Author 
“Driving Efficiency Benchmarking Using Smartphone 

Data” 

Transportation 

Research Part 

C: Emerging 

Technologies 

Under Review 5.3 
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Table 2: List of international conference publications 

Year Role Name Conference Status Chapter 

2018 Co-author 
“Exploring Weather Effects on Powered-Two-

Wheeler Safety on Urban Arterials in Athens”. 
hEART Published - 

2018 Co-author 
"Analysis of Driving Behaviour Characteristics 

on the basis of Smartphone Data." 

Transport Research 

Arena 
Published - 

2018 Author 
"Comparative Evaluation of Driving Efficiency 

Using Smartphone Data." 

Transportation 

Research Board 
Published 5.3 

2017 Co-author 
"Monitoring distraction through smartphone 

naturalistic driving experiment" 

International Naturalistic 

Driving Research 

Symposium 

Published - 

2017 Co-author 
”Willingness - to - Pay for Usage-Based Motor 

Insurance” 

Transportation 

Research Board 
Published - 

2017 Co-author 
”Συσχέτιση Χαρακτηριστικών 

και Επιδόσεων Ασφάλειας του Οδηγού” 

International Congress 

on Transportation 

Research in Greece 

Published - 

2017 Co-author 

”Συσχέτιση Δεδηλωμένης και 

Αποκαλυφθείσας Συμπεριφοράς του Οδηγού 

με Χρήση των Διαγνωστικών Στοιχείων του 

Οχήματος” 

International Congress 

on Transportation 

Research in Greece 

Published - 

2016 Author 
“About new innovative insurance schemes: 

pay as/ how you drive.“ Transportation 

Research Procedia, 14, 362-371. 

Transport Research 

Arena 
Published 2.2 

2016 Co-author 

“Star rating driver traffic and safety behavior 

through OBD and smartphone data 

collection.” 

International Conference 

on Artificial Intelligence 

and Intelligent Transport 

Systems 

Published - 

2016 Co-author 

"Road, Traffic, and Human Factors of 

Pedestria3n Crossing Behavior: Integrated 

Choice and Latent Variable Models." 

Transportation 

Research Board 
Published - 

2019 Author 
“Investigating the Temporal Evolution of 

Driving Safety Efficiency Using Data Collected 

from Smartphone Sensors” 

Transportation 

Research Board 
Published 5.3 

2019 Co-author 
“Quantifying the Necessary Amount of Driving 

Data for Driving Behavior Assessment” 

Transportation 

Research Board 
Published - 
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2019 Author 
“Hybrid Data Envelopment Analysis for Large-

Scale Smartphone Data Modeling” 

World Conference on 

Transport Research 

Under 

review 
5.2 

2019 Author 

“Investigation of the correlation between 

stated and revealed driving behaviour using 

data collected from on-board diagnostics 

(OBD) devices” 

World Conference on 

Transport Research 

Under 

review 
- 

2019 Author 
“Investigating the Correlation between Driver's 

Characteristics and Safety Performance” 

World Conference on 

Transport Research 

Under 

review 
- 

2019 Author 
“Driving speed model development using 

driving data obtained from smartphone 

sensors” 

World Conference on 

Transport Research 

Under 

review 
- 

 

Table 3: List of Greek conference publications 

Year Role Name Conference Status Chapter 

2019 Author 

“Quantifying the Need for Driving Data 

Collection in Driving Behaviour Assessment 

Using Smartphone Data” 

PanHellenic Road 

Safety Conference  
Accepted 5.1 

2019 Author 

“Harsh manoeuvers investigation using 

naturalistic driving experiment data collected 

from smartphone devices” 

PanHellenic Road 

Safety Conference 
Accepted - 

 

Table 4: List of international conference presentations 

Year Role Name Published in Chapter 

2016 Co-author 
“Willingness to pay for innovative vehicle 

insurance schemes.” 

World Conference on Injury 

Prevention and Safety 

Promotion 

- 

2015 Co-author “Bicycle Traffic Rules Survey.” 

Meeting of the international 

traffic safety data and 

analysis group (IRTAD) 

- 

2015 Co-author 

“Star rating driver traffic and safety behaviour 

through OBD and smartphone data 

collection.” 

International Symposium on 

Road Safety Behaviour 

Measurements and 

Indicators 

- 
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Table 5 illustrates the list of journals at which the author is a reviewer.  

 

Table 5: List of reviewing journals 

Since Role Journal 

2016 Reviewer 

PROMET – Traffic & Transportation 

Scientific Journal on Traffic and 

Transportation Research 

2018 Reviewer 

Transportation Research Part C: Emerging 

Technologies 

An International Journal 

2018 Reviewer IET Intelligent Transport Systems 

2018 Reviewer 
Transportation Research Record: 

Journal of the Transportation Research Board 

 

  



Doctoral dissertation of Tselentis I. D.: Benchmarking Driving Efficiency using Data Science Techniques applied on 

Large-Scale Smartphone Data 

200 

Appendix II 

The questionnaire administered to a proportion of the participants of this research is 

illustrated below. It is highlighted that the questionnaires were collected by OSeven, they 

were connected with user-IDs and the final questionnaire data were provided for this 

research in an anonymized format.  
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