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ABSTRACT 1 
The objective of this paper is to provide a solid framework for the comparative evaluation of 2 
driving efficiency based on Data Envelopment Analysis (DEA). The analysis considers each driver 3 
as a Decision Making Unit (DMU) and aims to provide a relative efficiency measure to compare 4 
different drivers based on their driving performance. The last is defined based on a set of driving 5 
analytics (e.g. distance travelled, speed, accelerations, braking, cornering and smartphone usage) 6 
collected using an innovative data collection scheme, which is based on the continuous recording 7 
of personalized driving behavior analytics in real time, using smartphone device sensors. Efficiency 8 
is examined in terms of speed limit violation, driving distraction, aggressiveness and safety on 9 
urban, rural and highway road and in an overall model. DEA models are identifying the most 10 
efficient drivers that lie on the efficiency frontier and act as peers for the rest of the non-efficient 11 
drivers. The proposed methodological framework is tested on data from fifty-six (56) drivers during 12 
a 7-months driving experiment. Findings help distinguish the most efficient drivers from those that 13 
are less efficient. Moreover, the efficient level of inputs and outputs that should be reached by each 14 
one of the less-efficient and non-efficient drivers to switch to the efficiency frontier and become 15 
efficient is identified. Results also provide a potential for classification of the driving sample based 16 
on drivers’ comparative efficiency. The main characteristics of the most and less efficient drivers 17 
are consequently analyzed and presented herein. The impact of this methodology lies on the fact 18 
that most common inefficient driving practices are identified (aggressive, risky driving etc.) and 19 
driving behavior is comparatively evaluated and analyzed.  20 
 21 
Keywords: Driving Behavior, Driving Efficiency, Data Envelopment Analysis, Smartphone Data  22 
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INTRODUCTION 1 
Measuring driving efficiency has been the focus of many studies in driving behavior literature in 2 
the past (1, 2, 3) From a traffic safety perspective, it is a matter of great significance to identify the 3 
parameters that influence driving behavior and therefore traffic risk. Several studies have been 4 
carried out regarding mobile phone usage distraction and methodologies for collecting and 5 
analyzing (4) driving behavior data. The most common methodology applied included driving 6 
simulators (5, 6), questionnaires (2) combined with simulators and naturalistic driving experiments 7 
(7,8), while the most common method of monitoring driving measures included recorders that 8 
relate to the car engine (9,10) and smartphones (11).  9 
 Regarding mobile phone usage while driving, literature has shown that it has a significant 10 
effect on driver behavior. Cell phone use causes drivers to have higher variation in accelerator 11 
pedal position, drive more slowly with more variation in speed and report a higher level of 12 
workload (12) regardless of conversation difficulty level. Drivers tend to select larger vehicle 13 
spacing (13), and longer time headways (14) suggesting possible risk compensatory behavior (12, 14 
15). Furthermore, the participants' reaction times (16) increase significantly when conversing, but 15 
no benefit of hands-free units over handheld units on rural roads/motorways were found (17, 18). 16 
Thus, with regards to mobile telephones, the content of the conversation was far more important 17 
for driving and driver distraction.  18 
 Speeding is also recognized as one of the most important factors in driving risk since it 19 
influences the accident probability (e.g. decreased reaction distance, loss of control) as well as the 20 
crash impact. According to (19) speeding has been a contributory factor in 10% of the total 21 
accidents and more than 30% in fatal accidents. According to (20, 13) the probability of a crash 22 
involving an injury is proportional to the square of the speed, the probability of a serious crash is 23 
proportional to the cube of the speed and the probability of a fatal crash is related to the fourth 24 
power of the speed. Moreover, (21) depicts the relationship between speed and driving risk via an 25 
exponential curve, showing that the driving risk is not proportional to the speed.  26 
 Harsh acceleration, harsh breaking and harsh cornering events are three significant 27 
indicators for driving risk assessment (22, 23) especially for evaluating driving aggressiveness. 28 
This is because they are strongly correlated with unsafe distance from adjacent vehicles, possible 29 
near misses, lack of concentration, increased reaction time, poor driving judgement or low level of 30 
experience and involvement in situations of high risk (e.g. marginal takeovers). The correlation 31 
between HA and HB events with driving risk has been highlighted in the scientific papers published 32 
by (4, 23) and it has been widely recognized by the insurance and telematics industry.  33 
 Driver’s efficiency on a microscopic level has been studied in a great extent but never by 34 
making use of DEA techniques. This paper proposes a methodological framework to address the 35 
issue of measuring driver’s efficiency and categorize the drivers of the sample used in three groups 36 
i.e. non-efficient, weakly efficient, most efficient. The main characteristics of each group are 37 
presented in order to draw important conclusions on the features of each driving group and provide 38 
recommendations for drivers on how to improve their driving efficiency. For the purposes of this 39 
study, drivers will be considered as DMUs, which is deemed to be rational since a driver is a unit 40 
that makes decisions for a given mileage range about the number of events occurring and the time 41 
of mobile phone usage and speed limit violation. Driving attributes (metrics and distance recorded) 42 
will be considered the inputs and outputs of the DEA program. More details on the structure of the 43 
DEA implemented will be given below.  44 
 The concept of DEA is to minimize inputs (input-oriented model) or maximize the outputs 45 
of a problem (output-oriented model). More specifically in the case study examined herein, a driver 46 
should either drive more kilometers maintaining the same number of harsh braking or accelerating 47 
events or reduce the number of harsh braking/accelerating events for the same mileage. The same 48 
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applies to the rest of the metrics recorded for each driver. From a road safety perspective, increasing 1 
mileage increases crash risk (4) and, therefore, an input-oriented DEA program is being developed 2 
aiming to minimize inputs (recorded metrics) maintaining the same number of outputs (recorded 3 
distance). Although a trip cannot literally behave as a decision making unit, it can be evaluated as 4 
a DMU and, therefore, it will be considered as such for the purpose of this research. This is deemed 5 
to be a correct assumption on a trip basis since a) all variables used are continuous quantitative 6 
variables as those used in previous DEA studies (24, 25, 26, 27) and b) a driver should reduce his 7 
mileage (4) and the frequency of some of his driving characteristics such as harsh acceleration and 8 
braking, mobile phone usage and speeding (4, 28, 29). The proposed methodology is applied to a 9 
real-life case study of 34,060 recorded trips collected from fifty-six (56) drivers. More details on 10 
the procedure are given below.  11 
 12 
DATA ENVELOPMENT ANALYSIS: BRIEF THEORY AND APPLICABILITY TO 13 
DRIVING EFFICIENCY 14 
The terms “efficiency” and “productivity” are widely used in economics and refers to the optimal 15 
way a production unit can make use of its available resources (30). More specifically (31), a 16 
Decision-Making Unit (DMU) is “technically efficient” when the amount of outputs produced is 17 
maximized for a given amount of inputs, or for a given output the amount of inputs used is 18 
minimized. Thus, when a DMU is technically efficient, it operates on its production frontier and 19 
therefore DMUs lie on the efficiency frontier. Based on the assumptions that will be stated below, 20 
in this study drivers are considered as DMUs and DEA applicability on the field of driver’s 21 
assessment based on microscopic behavioral characteristics is investigated.  22 
 Efficiency can be defined as the ratio of input and output in a theoretical scenario of units 23 
that have a single input and output but in a real case scenario where typical organizational unit have 24 
multiple and incommensurate inputs and outputs a more scientific approach is needed. Data 25 
Envelopment Analysis (DEA) is an approach for efficiency and productivity analysis of production 26 
units with multiple inputs to produce multiple outputs mostly used thus far in business, economics, 27 
management and health. The rationale for using DEA is its applicability to the multiple input–28 
output nature of DMUs provision and the simplicity of the assumptions underlying the method. It 29 
is a methodology of several different interactive approaches and models used for the assessment of 30 
the relative efficiency of DMU and for the assessment of the efficiency frontier. It assists in drawing 31 
important conclusions on operational management of the efficient and inefficient units.  32 
 DEA is a technique of mathematical programming problem with minimal assumptions that 33 
determines of a unit’s efficiency based on its inputs and outputs, and compares it to other units 34 
involved in the analysis. It is a data-oriented methodology that effects performance evaluations and 35 
other conclusions drawn from the analysis directly from the observed data. The efficiency of a 36 
DMU is comparatively measured and analyzed relatively to the rest of the DMUs considering that 37 
all DMUs lay on or below the efficiency frontier. No assumption is required about functional form 38 
(e.g. a regression equation, a production function, etc.) or the statistical distribution of data sample 39 
and as a result DEA is classified as a non-parametric method. It is a frontier analysis, a process of 40 
extremities, not driven by central tendencies in contrast to all statistical procedures. Each DMU is 41 
analyzed separately and the real and optimal performance that can be achieved for each unit is 42 
estimated.  43 
 DEA has become one of the most popular fields in operations research, with applications 44 
involving a wide range of context (32). It has been applied in great extent in literature (24, 33, 25) 45 
to measure and compare the productivity performance of a group of DMUs. It is one of the most 46 
popular fields in operations research (33, 34) to say the least. (35) presented the ample possibilities 47 
for using DEA for evaluating among others the performance of banks, schools, university 48 
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departments, farming estates, hospitals and social institutions, military services and entire 1 
economic systems. Since the introduction of CCR model (36) in 1978, the number of publications 2 
where DEA is implemented has exponentially grown. DEA has also been implemented in transport 3 
fields in assessing public transportation system performance (26), as well as traffic safety studies 4 
(27, 37) where it was proved to be equally useful as in the fields stated above.  5 
 DEA is a non-parametric approach that does not require any assumptions about the 6 
functional form of a production function and a priori information on importance of inputs and 7 
outputs. DEA allows each DMU to choose the weights of inputs and outputs which maximize its 8 
efficiency. The DMUs that achieve efficiency equal to unit are considered efficient while the other 9 
DMUs with efficiency scores between zero and unit are considered as inefficient. The first DEA 10 
model proposed by (36) is the CCR model that assumes that production exhibits constant returns 11 
to scale i.e. outputs are increased proportionally to inputs. DEA models can also be distinguished 12 
based on the objective of a model; that can be either outputs maximization (output-oriented model) 13 
or inputs minimization (input-oriented model).  14 
 It is assumed that this study should adopt an input-oriented (IO) DEA model, since the 15 
objective is to minimize the number of harsh accelerations, harsh brakings etc. that occur per 16 
driving distance unit rather than to maximize driving distance for given metrics since the latter 17 
would increase the exposure of a driver and therefore driving risk. It is also implicitly assumed that 18 
the driving efficiency problem is a constant returns to scale (CRS) problem and that the sum of all 19 
metrics (inputs) recorded such as the number of harsh accelerations and brakings occurred in each 20 
tripi changes proportionally to the sum of driving distance (output).  21 
 Let us use X and Y to represent the set of inputs and outputs, respectively. Let the subscripts 22 

i and j to represent particular inputs and outputs respectively. Thus xi represents the 𝑖𝑡ℎ input, and 23 

yj represent the 𝑗𝑡ℎ output of a DMU. The input-oriented CCR model evaluates the efficiency of 24 

𝐷𝑀𝑈𝑜 by solving the following (envelopment form) linear program (38) and its mathematical 25 
formulation is formulated as:  26 
 27 

𝑚𝑖𝑛θ𝛣 28 
 29 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:  30 

(1) 31 

θ𝛣 ∗ 𝑥𝑜– 𝑋 ∗ 𝜆 ≥ 0 32 
𝑌 ∗ 𝜆 ≥ 𝑦𝑜 33 
𝜆𝑖 ≥ 0 ∀ 𝜆𝑖 ∈ 𝜆 34 
 35 
where 𝜆𝑖 is the weight coefficient for each 𝐷𝑀𝑈i that is an element of set λ, X is the set of Inputs, 36 

Y is the set of Outputs and 𝜃𝐵 is a scalar representing the efficiency of reference 𝐷𝑀𝑈𝑜. The 37 
objective function of this linear programming problem (DEA) is min θι i.e. minimize the efficiency 38 

of 𝐷𝑀𝑈𝑖 (in this case 𝑡𝑟𝑖𝑝i). In order to benchmark the efficiency of all trips (of each DMU) of the 39 
database, this linear programming problem should be solved for each 𝐷𝑀𝑈𝑖 (i.e. each 𝑡𝑟𝑖𝑝i).  40 
 41 
EXPERIMENTAL DATA COLLECTION 42 
An integrated system for recording, collection and storage of driving behavior data using 43 
smartphone applications and advanced Machine Learning algorithms developed by OSeven 44 
Telematics. The system developed integrates a data collection, transmission and processing 45 
procedure using Smartphones, the main features of which are outlined in the next paragraphs.  46 
  47 
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Data recording and transmission from smartphone 1 
 2 
Α developed mobile App is employed for the purposes of this study to record user’s behaviour 3 
exploiting the hardware sensors of the smartphone device and a variety of APIs to read sensor data 4 
and transmit it to a central database. Recorded data come from various smartphone sensors and 5 
data fusion algorithms provided by Android (Google) and iOS (Apple). The frequency of the data 6 
recording varies depending on the type of the sensor with a minimum value of 1Hz.  7 
 After the end of the trip, all recorded data are transmitted to the central database via a Wi-8 
Fi network or cellular network based on the user preference. After data is stored in the cloud server 9 
for central processing and data reduction, it is converted into meaningful behavioral and safety 10 
related indicators as a result of big data handling and processing. This is achieved by using the two 11 
Big data processing methods which include two families of techniques, Big Data mining techniques 12 
and Machine Learning (ML) algorithms.  13 
 Machine learning methods (filtering, clustering and classification methods) are used to 14 
clean the data from existing noise and errors, and to identify repeating patterns within the data. The 15 
methods applied allow for data filtering and outlier detection, data smoothening, speeding regions, 16 
harsh acceleration events, harsh braking events, harsh cornering events, mobile usage, risky hours 17 
driving and driver or passenger recognition. Subsequently, these data patterns will be processed by 18 
means of big data mining techniques, to calculate the necessary parameters and derive behaviour 19 
indicators to be used in the analysis.  20 
 After the ML process is completed, a variety of different indicators are calculated that are 21 
useful to the evaluation of driving behavior. These indicators are divided into two distinct 22 
categories, risk exposure and driving behavior indicators. The main risk exposure indicators are 23 
total distance travelled, driving duration, type(s) of the road network used, time of the day driving, 24 
combined with other data sources. The main driving behavior indicators are speeding, mobile 25 
phone use, number and severity of harsh events such as harsh braking, harsh acceleration and harsh 26 
cornering.  27 
 Aggregated Data are analyzed and filtered to retain only those indicators that will be used 28 
as inputs and outputs for the DEA problem. The procedure how inputs and outputs are selected will 29 
be described in the next section. Data filtering and DEA improvement algorithms are performed in 30 
Python programming language and several scripts are written for this reason. Python packages used 31 
include Pandas and Numpy for numeric calculations and transformations and Pulp for linear 32 
programming problem construction. More details on the algorithm implementation are given 33 
below.  34 
 35 
Experiment design 36 
 37 
A naturalistic driving experiment is implemented in this research by recording personalized driving 38 
behaviour analytics in real time, exploiting data collected from smartphone device sensors using a 39 
smartphone application developed by OSeven Telematics. Two hundred and thirty six (236) drivers 40 
participated in the designed experiment that took place between 25/08/2016 and 04/04/2017 and a 41 
large database of 50,741 trips was created. The first criterion chosen by the authors for specifying 42 
the driver’s sample were adopted from study (39) which proved that sampling less than 100 driving 43 
hours per driver does not result in a reliable measure for analyzing driving patterns and changes in 44 
the behavior of drivers over time. On the top of that, all drivers should have positive mileage on all 45 
three types of road network. The third criterion was that drivers with zero input attributes (i.e. zero 46 
harsh acceleration, braking, speed limit violation, mobile phone usage) should be eliminated from 47 
the sample, which is a limitation of DEA. The business equivalent of a zero input could be a factory 48 
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that is producing a product without making use of any material and/or workforce, which practically 1 
cannot occur. For the same reason, harsh cornering events were finally eliminated as a DEA input 2 
as in most cases there are no such events in highways and therefore results would not be 3 
comparable. This procedure resulted to 56 drivers who fulfilled these 3 criteria and were kept for 4 
the analysis that was conducted and 180 drivers were eliminated from this study. The total number 5 
of trips that took place by the 56 drivers chosen was 34,060 constructing thus a large database.  6 
 7 
IMPLEMENTATION AND RESULTS 8 
 9 
Input and output Selection  10 
 11 
Models representing driving behavior in all road types and in total are developed with multiple 12 
inputs and outputs. A critical process for DEA is input and output selection. Thus, selection process 13 
should be linked to the conceptual specifications of each problem. Several issues that should be 14 
taken into consideration before applying DEA to a dataset are discussed in (40). One of the pitfalls 15 
is that the efficiency score might be miscalculated when input and output variables are in the form 16 
of percentiles and/or ratios simultaneously with raw data (41). Taking this into account the specific 17 
data used in this study are metrics recorded in the form of raw data i.e. the number of harsh 18 
brakings, harsh accelerations, harsh cornerings, seconds driving over the speed limit and seconds 19 
used the mobile phone and not as ratios or percentiles e.g. percentage of distance driving over the 20 
speed limit. Literature review revealed that all these indicators are influencing the most accident 21 
risk that is the reason why they are used in the models implemented. All indicators along with 22 
distance travelled by drivers are recorded per road type (urban, rural, highway) and in total e.g. 23 
number of harsh accelerations that occurred in urban road, time violating speed limits etc. Variables 24 
used in the analysis along with their description are shown in Table 1.  25 
  26 
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TABLE 1: Variables recorded during the experiment 1 
 2 

Variable name Variable short description 
ℎ𝑎𝑋 number of harsh acceleration events in X road type 

ℎ𝑎𝑢𝑟𝑏𝑎𝑛 number of harsh acceleration events in urban road 

ℎ𝑎𝑟𝑢𝑟𝑎𝑙 number of harsh acceleration events in rural road 

ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 number of harsh acceleration events in highway 

ℎ𝑏𝑋 number of harsh braking events in X road type 

ℎ𝑏𝑢𝑟𝑏𝑎𝑛 number of harsh braking events in urban road 

ℎ𝑏𝑟𝑢𝑟𝑎𝑙 number of harsh braking events in rural road 

ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦 number of harsh braking events in highway 

𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑋 total seconds of speed limit violation in X road type 

𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 total seconds of speed limit violation in urban road 

𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 total seconds of speed limit violation in rural road 

𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 total seconds of speed limit violation in highway 

𝑚𝑜𝑏𝑖𝑙𝑒𝑋 total seconds of mobile phone usage in X road type 

𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 total seconds of mobile phone usages in urban road 

𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 total seconds of mobile phone usage in rural road 

𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 total seconds of mobile phone usage in highway 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 total distance driven in X road type 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 total distance driven in urban road 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑢𝑟𝑎𝑙 total distance driven in rural road 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 total distance driven in highway 

 3 
The driver is deemed to be a DMU with an aggregate performance for the entire monitoring period. 4 
Moreover, his driving behavior is considered equivalent to the sum of the driving characteristics 5 
that were recorded for the period examined. For instance, the total distance travelled in urban 6 

network is equivalent to the sum of the distance travelled in urban network in each 𝑡𝑟𝑖𝑝𝑖𝑗 (where i 7 

is the index of 𝑑𝑟𝑖𝑣𝑒𝑟𝑖 and j the index of 𝑡𝑟𝑖𝑝𝑗 of 𝑑𝑟𝑖𝑣𝑒𝑟𝑖) by the specific 𝑑𝑟𝑖𝑣𝑒𝑟𝑖 (𝐷𝑀𝑈𝑖). In 8 

general, the same applies for all indicators of 𝑑𝑟𝑖𝑣𝑒𝑟𝑖, which are calculated aggregately as shown 9 
in the following formula (2): 10 
 11 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 = ∑ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑗
𝑁𝑖
𝑗=1                                                                                                (2) 12 

 13 

recorded ∀ 𝑡𝑟𝑖𝑝𝑗, 𝑗 ∈ (1, 𝑁𝑖) that took place by 𝑑𝑟𝑖𝑣𝑒𝑟𝑖. As described above, each driver is treated 14 

as a distinct DMU to be analyzed in DEA and therefore the linear program constructed (see 15 
equation (1)) has 70 variables (𝜆𝑖, 𝜃𝐵) that is equal the number of drivers plus the efficiency for 16 

𝑑𝑟𝑖𝑣𝑒𝑟𝑜. The number of constraints on the other hand is equal to the sum of a) the number of inputs 17 
(𝜃𝛣 ∗ 𝑥𝑜– 𝑋 ∗ 𝜆 ≥ 0) b) the number of outputs (𝑌 ∗ 𝜆 ≥ 𝑦𝑜) and c) the number of drivers (𝜆𝑖 ≥ 0). 18 
The DEA procedure described by equation (1) is followed separately for each of the three different 19 
road types (urban, rural, highway) and aggregately in an overall model as described in Table 2.  20 
  21 
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TABLE 2: Inputs and Outputs of DEA models used 1 
 2  

Per road type model Overall model  

Set of Inputs 

used 

Set of 

Outputs 

used 

Set of Inputs used Set of Outputs used 

Model 

type 1 
1) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑋 1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 

1) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

2) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

3) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 

2) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑢𝑟𝑎𝑙 

3) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

Model 

type 2 
1) 𝑚𝑜𝑏𝑖𝑙𝑒𝑋 1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 

1) 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

2) 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

3) 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 

2) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑢𝑟𝑎𝑙 

3) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

Model 

type 3 

1) ℎ𝑎𝑋 

2) ℎ𝑏𝑋 
1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 

1) ℎ𝑎𝑢𝑟𝑏𝑎𝑛 

2) ℎ𝑎𝑟𝑢𝑟𝑎𝑙 

3) ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

4) ℎ𝑏𝑢𝑟𝑏𝑎𝑛 

5) ℎ𝑏𝑟𝑢𝑟𝑎𝑙 

6) ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 

2) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑢𝑟𝑎𝑙 

3) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

Model 

type 4 

1) ℎ𝑎𝑋 

2) ℎ𝑏𝑋 

3) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑋 

4) 𝑚𝑜𝑏𝑖𝑙𝑒𝑋 

1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 

1) ℎ𝑎𝑢𝑟𝑏𝑎𝑛 

2) ℎ𝑎𝑟𝑢𝑟𝑎𝑙 

3) ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

4) ℎ𝑏𝑢𝑟𝑏𝑎𝑛  

5) ℎ𝑏𝑟𝑢𝑟𝑎𝑙 

6) ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦  

10) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛  

11) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

12) 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

13) 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

14) 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

15) 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 

2) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑢𝑟𝑎𝑙 

3) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

 3 
This results to 16 different models of which 12 are per road type and 4 overall. The variables’ 4 
combinations for structuring the four models of each category was based on literature review. 5 
Model 1 and 2 represents the speed limits violation and mobile phone distraction. Model 3 6 
incorporates the three most significant explanatory driving indicators for driving aggressiveness, 7 
while model 4 is the overall model that includes all traffic safety parameters found in literature 8 
review and accounts for the overall safety profile of the driver.  9 
 Figure 1 illustrates the results of model 3 per road type where as it appears there is only one 10 
efficient DMU for urban and rural road, whereas for highway there are two, which confirms the 11 
results of the DEA LPs. In every plot of Figure 1, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋/ℎ𝑎𝑋 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋/ℎ𝑏𝑋 is plotted 12 
in axis Y and X respectively along with the envelopment line accounting for the efficiency frontier. 13 
Extending the line joining the origin and 𝐷𝑀𝑈𝑖, it crosses the efficiency frontier at a point where 14 

virtual 𝐷𝑀𝑈𝑖
′ is created which represents the optimal performance which the specific 𝐷𝑀𝑈𝑖 can 15 

achieve. The closer a DMU is to the efficiency frontier, the higher its efficiency index is. In urban 16 
and rural road subplots, the influence of outliers to the DEA solution is obvious since most DMUs 17 
appear to be near the origin. Nonetheless, the solution still remains reliable as the efficiency index 18 
calculated is comparable to that of the rest of the DMU set. It should be highlighted that models 19 
incorporating two-inputs/ one output or one-input/ two outputs can only be visualized in 2-D 20 
figures.  21 
 22 
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 1 
 2 
FIGURE 1: Efficiency frontier of drivers aggressiveness per road type 3 
  4 
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Drivers sample classification 1 
 2 
The results of DEA are the efficiency index 𝜃𝛣 and coefficients 𝜆𝑖 for each DMU (driver). This 3 
allows for the classification of the whole set of DMUs to most efficient, weakly efficient and non-4 
efficient. Since the absolute value of the efficiency index cannot be somehow interpreted unless it 5 
is compared to the efficiency index of the rest of the DMU set, the percentiles of the DMU set’s 6 
𝜃𝛣 are used to classify drivers. The percentile thresholds specified was 25% and 75%, which 7 
separate the subsets of non-efficient and weakly efficient as well as weakly efficient and most 8 
efficient DMUs respectively. The average of the attributes of each class arising, weighted on the 9 
distance (for harsh acceleration and braking) or driving time (for speeding and mobile usage) 10 
travelled by each driver, are shown in Table 3 where the models per type, road type and overall are 11 
presented based on the inputs that were used in each model. For brevity purposes, from here on 12 
class 1 drivers will be referred to as most efficient drivers despite the fact that only drivers with 13 
unit efficiency lie on the efficiency frontier.  14 
 For instance, in model Rural3 (representing model 3 of rural road type) the average harural 15 
and hbrural per 100 km travelled (hax, hbx are the inputs of model 3 for every road type as shown in 16 
table 2) of each class are illustrated. For better understanding, results are presented as a percentage 17 
of driving time for speeding and mobile usage and as events per 100 kilometers driven for harsh 18 
acceleration and braking.  19 
 20 
Main characteristics of drivers efficiency classes 21 
 22 
As expected for models 1, 2 and 3 in every road type the average of the attributes is reducing while 23 
a driver becomes more efficient. The reason why this is not valid for model 4 of urban and rural 24 
road types is probably because a) while the number of inputs and outputs increases, the number of 25 
efficient DMUs are increasing as well, especially for small scale samples as the one examined a 26 
which renders the classification of the DMUs to be more difficult and less accurate since many 27 
DMUs have unit efficiency and b) of DEA’s sensitivity to outliers, which means that the model 28 
can sometimes be influenced by the extreme values of other inputs or outputs e.g. low values of 29 
speeding or mobile usage when estimating a DMU’s efficiency.  30 
 Another observation is that the number of harsh events occurring in urban road is extremely 31 
higher than in rural and highway and that the number of harsh events in rural road is higher than in 32 
highway. The same is noticed for mobile usage but not for speeding where apparently drivers of 33 
all classes tend to drive over the speed limits in rural and highway at least the same or more than 34 
in urban. As for model 4 of all road types it should be highlighted that for a specific class some 35 
attributes appear to be increased compared to model 1, 2 or 3 and this is attributed to the fact that 36 
more parameters are taken into account in the model that might affect the final configuration of 37 
each class.  38 
 In general, it can be concluded from model 1 that speed limit violation does not fluctuate 39 
and is limited to less than 6.5% of driving time for most efficient drivers in all road types whereas 40 
for non-efficient drivers it ranges from 20% to over 32%. As for the set of weakly efficient drivers 41 
speed limit exceedance is around 12% - 14%. In terms of mobile usage distraction, it appears that 42 
non-efficient drivers use their mobile phone significantly more than the other two classes averaging 43 
at 16% while most efficient drivers use it less than 1.5% in average. Finally, weakly efficient group 44 
of drivers make mobile usage of less than 7%.  45 
  46 
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TABLE 3: Driving characteristics of efficiency groups per road type and overall 1 
 2 

 Efficiency classes 

Model 1: 0 - 25 % percentile 2: 25 - 75 % percentile 3: 75 - 100 % percentile 

U
rb

a
n

 

1 
20.08 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 11.95 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 6.51 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

2 
19.48 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 6.80 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 2.31 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

3 45.97 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

17.38 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

27.40 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

8.99 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

10.71 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

5.08 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

4 

41.06 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

16.75 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

17.77 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

15.79 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

22.85 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

8.43 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

6.78 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

13.02 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

24.72 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

6.81 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

4.05 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

8.66 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

R
u

ra
l 

1 
23.79 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 14.21 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 6.33 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

2 
15.10 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 5.69 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 1.64 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

3 23.65 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

11.43 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

14.28 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

6.96 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

6.36 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

3.00 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

4 

20.31 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

8.71 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

10.28 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

20.58 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

12.32 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

6.26 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

6.51 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

14.49 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

13.62 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

7.13 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

4.81 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

8.97 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

H
ig

h
w

a
y
 

1 
32.39 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 13.06 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 3.98 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

2 12.34 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 3.73 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 0.74 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

3 
3.40 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

1.67 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

1.74 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

1.02 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

0.98 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

0.49 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

4 

2.80 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

1.61 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

5.40 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

29.31 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1.91 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

1.05 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

5.61 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

13.08 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

1.24 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

0.50 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

3.92 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

7.01 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

O
v
er

a
ll

 

1 

17.12 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

21.25 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

24.24 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

12.50 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

14.41 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

14.26 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

8.37 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛 

8.48 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙 

9.72 % 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

2 

17.07 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

13.30 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

9.75 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

7.22 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

5.99 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

4.37 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

3.89 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑢𝑟𝑏𝑎𝑛 

2.85 % 𝑚𝑜𝑏𝑖𝑙𝑒𝑟𝑢𝑟𝑎𝑙 

2.05 % 𝑚𝑜𝑏𝑖𝑙𝑒ℎ𝑖𝑔ℎ𝑤𝑎𝑦 

3 

36.94 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

19.26 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

3.12 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

12.42 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

9.33 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

1.44 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

30.09 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

16.26 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

1.76 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

10.34 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

7.36 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

0.95 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

17.13 ℎ𝑎𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

8.46 ℎ𝑎𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

1.32 ℎ𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

7.87 ℎ𝑏𝑢𝑟𝑏𝑎𝑛/100𝑘𝑚 

4.85 ℎ𝑏𝑟𝑢𝑟𝑎𝑙/100𝑘𝑚 

0.87 ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦/100𝑘𝑚 

4 - - - 

 3 
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It is also noticeable from model 3 that drivers of all ranges of aggressiveness have a 2-3 times 1 
larger number of harsh acceleration than braking events per 100km of driving. For instance, in 2 
urban roads, the number of harsh acceleration events ranges from 11 to 46 per 100km while the 3 
number of harsh braking events from 5 to 17.4 for most efficient to non-efficient drivers. The 4 
ranges become narrower for rural and highway. In terms of traffic safety, the conclusion that can 5 
be drawn from model 4 is that the overall driving profile of a “safer” driver in urban and rural road 6 
is not considerably influenced by the driver’s number of harsh events since it is much higher than 7 
in model 3 where it accounts for aggressiveness. On the other hand, in highway, mobile usage and 8 
speeding seems to be significantly higher than model 1 and 2 whereas the number of harsh 9 
acceleration and braking events appears to be more critical since they are kept at a much lower 10 
level. The same is observed in highways for weakly efficient drivers but not for non-efficient who 11 
tend to have a lower mobile usage rate than in model 2, which accounts for distraction. 12 
Additionally, weakly efficient drivers in urban and rural road have a lower average number of harsh 13 
acceleration event and in average, the same driving characteristics for the rest of the attributes 14 
investigated. Finally, for non-efficient drivers of urban and rural road, it was found that all driving 15 
attributes were reduced compared to model 1, 2 and 3 probably due to the interaction among 16 
variables.  17 
 As stated above, as the number of inputs and outputs increases while the number of DMUs 18 
remains low, the number of efficient DMUs that are found to be efficient is radically increased. 19 
This is the case of the overall model, model 4, where 38 drivers with unit efficiency were found 20 
and this is the reason why the authors did not consider it to be significant enough to be presented.  21 
 When considering all road types together in table 3, in terms of speeding percentages a 22 
greater tolerance is noticed for drivers to be characterized as most efficient or weakly efficient than 23 
in per road type models, which appear to be from slightly in class 2 rural to more than 100% more 24 
in class 3 highway model. The same is observed for model 2 and 3 as well for class 2 and 3 drivers 25 

except for ℎ𝑏ℎ𝑖𝑔ℎ𝑤𝑎𝑦 which are slightly lower in the overall model. On the other hand, non-efficient 26 

drivers have lower speeding percentages in all road types and especially in highway where the 27 
difference is higher. The same can be highlighted for model 2 and 3 in highway.  28 
 29 
Efficient level of inputs and outputs for non-efficient drivers 30 
 31 
After DEA LPs of (1) are solved and the efficiency index 𝜃𝛣 and coefficients 𝜆𝑖 are estimated for 32 
each DMU the efficient level of inputs and outputs at which each DMU could optimally reach can 33 
be calculated. The efficient level of inputs for trip 1 can be calculated as the product sum of the 34 
lamdas and the input values of each of the identified peers whereas to find the efficient level of 35 
outputs for the same DMU, each output value should be divided by theta value. Considering 36 
𝑑𝑟𝑖𝑣𝑒𝑟𝑖 as the reference DMU and a set of 𝑚 drivers, where 𝑚 ∈ ℕ as his peers, the efficient level 37 
of e.g. ℎ𝑎𝑢𝑟𝑏𝑎𝑛 can be estimated using following formula (3):  38 
 39 

Efficient Level of ℎ𝑎𝑢𝑟𝑏𝑎𝑛𝑖
=  ∑ 𝜆𝑗 ∗𝑚

𝑗=1 ℎ𝑎𝑢𝑟𝑏𝑎𝑛𝑗
                                                                       (3) 40 

 41 
Τhe efficient level of e.g. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛 is calculated from formula (4): 42 
 43 

Efficient Level of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛𝜄
=  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑏𝑎𝑛ι

/𝑡ℎ𝑒𝑡𝑎𝜄                                                       (4) 44 

 45 
It should be noted that a DMU achieves its efficient level by reaching the efficient level of either 46 
its inputs or outputs. Additionally, a DMU is deemed to have achieved the efficient level when it 47 
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reaches unit efficiency. For the purpose of brevity, lamdas and thetas calculated are not presented 1 
herein.  2 
 3 
DISCUSSION 4 
This paper provides an innovative solid framework for benchmarking and evaluation of drivers’ 5 
efficiency based on Data Envelopment Analysis (DEA). Data exploited were collected from 6 
smartphone device sensors, which continuously recorded real time personalized information on 7 
driving behavior from a sample of fifty-six (56) drivers during 7-months. Combinations of driving 8 
analytics collected are taken into consideration for driving assessment, including distance travelled, 9 
speed, accelerations, braking and smartphone usage, which serve as inputs and outputs in DEA to 10 
calculate a comparative efficiency index for each driver in the sample. Efficiency is examined in 11 
terms of speed limit violation, driving distraction, aggressiveness and safety on urban, rural and 12 
highway road and in an overall model. An additional value of the methodology proposed is that it 13 
enables the estimation of the optimal level of inputs and outputs that should be reached by each 14 
driver to become efficient.  15 
 The impact of this methodology lies also on the fact that a potential for classifying driving 16 
sample based on drivers’ comparative efficiency is identified. Drivers were divided into three 17 
categories (non-efficient, weakly efficient and most efficient) based on the 25% and 75% percentile 18 
thresholds specified. The highlights of the analysis conducted for each category indicated 19 
considerable differences in driving characteristics between inefficient drivers and the classes of 20 
weakly efficient and most efficient drivers with the difference of the two latter to be less significant. 21 
Concerning aggressiveness, harsh braking events appeared to be 2-3 times less than harsh 22 
acceleration events in all models indicating a higher significance of this attribute for a driver to be 23 
characterized as aggressive. The same observation is made for harsh acceleration events in overall 24 
safety models (model 4) of all road types where percentage of speeding and mobile usage was 25 
identified as key factors for safety efficiency index estimation.  26 
 Further research should center to larger samples of trips with a representative sample of 27 
drivers population. It is a fact that models become more representative of the average 28 
characteristics of each class as more trips and drivers are aggregated. As the sample grow bigger 29 
the high proportion of efficient DMUs to the total number DMus will be reduced. Other DEA’s 30 
limitations should also be addressed which among others include DEA’s sensitivity to outliers and 31 
that drivers with zero input attributes should be eliminated from the sample.  32 
 33 
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