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Abstract 

In the present Doctoral thesis, we develop and present the Cosimulated Iterative Spatial 

Resampling (C-ISR) method for stochastic solution of the inverse problem of hydrofacies 

characterization in a groundwater flow system and we establish the theoretical and 

mathematical background of the method. The development of the method stems from the 

need to characterize the geological formations before any other geostatistical estimation of 

hydrological parameters, due to the complexity of soil types as natural entities. The spatial 

distribution of hydrofacies could be estimated first by classical geostatistical simulations, such 

as Boolean methods, Sequential indicator simulation (SIS) and truncated Gaussian simulation 

(TGS) or Plurigaussian simulation (PGS), then they are populated with heterogeneous hydraulic 

and transport parameters.  

However, the solution of the inverse problem is considered the most efficient practice 

to model the structure of hydrofacies while the physical law governing the groundwater flow 

system is taken into account. The parameters of the physical law, such as hydrofacies 

distribution, are defined by optimizing the response of the system while solving the physical 

law (forward problem), compared to the observations of a physical variable such as the 

hydraulic head. In most cases, the inverse problems are ill-posed, which means they have not a 

unique solution, the solutions do not depend continuously on data, or a solution does not exist.  

Moreover, the solutions of the problem may be affected significantly by small changes in the 

observations and cause large variations in the parameters estimation, making the system ill-

conditioned. So, the limited number of observations and the nature of system may impose 

difficulties in solving an inverse problem.   

Thus, the inverse problem is a classical optimization problem when the system of 

equations is linear, where the best-unbiased estimator can be found by the minimization of a 

least squares error criterion. In ill-conditioned or ill-posed problems, the objective is not only to 

find an unbiased estimator, but also one with a stable behavior. In weakly linear or non-linear 

systems, the objective function is linearized and iterative gradient methods are applied to find 

the estimator. However, the iterative process of optimization in those cases is often a 

demanding task with high computational cost, while gradient methods can get stuck at local 
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optima. Therefore, the use of stochastic methods allowing the sampling of model space, such 

as the Markov chain Monte Carlo (McMC) methods, is often preferable.  

McMC methods are often used under the Bayesian perspective in solving the inverse 

problem. In Bayesian inference, the prior information is updated iteratively as new members 

are added to the chain. The members of the chain constitute the final a-posteriori distribution 

of the parameters. The McMC instead of Monte Carlo methods preferentially visit the model 

space where the posterior density is high, even if the dimension of the model space is large. 

The implementation of McMC requires the definition of a transition kernel from an accepted 

model to a new model, a criterion to accept a member in the chain and a criterion to interrupt 

the chain.  

In this work, we adopt the iterative spatial resampling (ISR) technique as the transition 

kernel, either when the objective is to sample the posterior distribution of parameters or to 

reach an optimal solution. In sampling the posterior, the candidate models must be 

independent of the last accepted member of the chain, while the criterion of Metropolis-

Hastings or Mosegaard and Tarantola (1995) could be used to accept a model to the chain.  In 

the case of optimization, we adopt the implementation of independent Markov chains to reach 

an optimal solution. A candidate model is accepted in a chain when its likelihood is better than 

the last member of the chain, while the interruption of the chain is stochastic with the 

probability to interrupt becoming higher when the likelihood of a candidate model is high. This 

way, bias with the opposite direction is introduced to the samples of the posterior. Thus, an 

approach to posterior distribution is achieved. This mechanism reaches an optimal solution 

avoiding a large number of geostatistical simulations and forward problem solutions.  

The novelty of the C-ISR algorithm is the iterative use of cosimulation between 

hydrofacies and the reference data as an auxiliary variable, in order to gradually improve the 

path to the optimal solution within a constantly improving Markov chain. Cosimulation for 

modeling a discrete variable such as the hydrofacies distribution has not been applied in 

inversion yet, due to the nonlinearity relation between the response variable and unknown 

parameters. In most cases, the response variable is used as indirect data to evaluate the prior 

models and drive the search path. The C-ISR method exploits the available information on the 

relationship between hydrofacies and the physical variable, to produce valid realizations by 

using cosimulation. More specifically, our method is based on the approach that, 
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instantaneously, the Normal scores transformed hydrological measurements can be correlated 

with the Gaussian variable of hydrofacies, through a linear coregionalization model, although 

the underground flow problem is not linear. The approach is used repeatedly within a Markov 

chain, while the members of the chain result from an iterative spatial resampling transition 

kernel. In this case, apart from their indirect use for inversion, groundwater pressure 

measurements are used directly, in order to evaluate the prior geological model of the 

subsurface. This, results in a narrower and more informed prior distribution, due to the support 

of the reference variable. The effectiveness of our method is demonstrated by an example 

application on a synthetic underdetermined inverse problem in aquifer characterization. The 

results show that the C-ISR method is faster and more accurate as compared to plain ISR. 
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Περίληψη  

Στθν παροφςα διδακτορικι διατριβι αναπτφςςουμε και παρουςιάηουμε τθ μζκοδο 

Cosimulated Iterative Spatial Resampling (C-ISR) για τθν ςτοχαςτικι επίλυςθ του αντίςτροφου 

προβλιματοσ το οποίο ςχετίηεται με τον χαρακτθριςμό των υδρογεωλογικϊν φάςεων του 

υπεδάφουσ και κζτουμε το κεωρθτικό και μακθματικό υπόβακρο τθσ μεκόδου.  

Η ανάπτυξθ τθσ μεκόδου βαςίςτθκε ςτθν ανάγκθ του χαρακτθριςμοφ των 

υδρογεωλογικϊν φάςεων του υπεδάφουσ πριν από τον προςδιοριςμό/εκτίμθςθ άλλων 

υδρογεωλογικϊν παραμζτρων, όπωσ τθσ υδραυλικισ αγωγιμότθτασ, του πορϊδουσ και τθσ 

ηϊνθσ κορεςμοφ. Η πολυπλοκότθτα τθσ γεωλογικισ διαδικαςίασ, οι φυςικζσ και χθμικζσ 

αντιδράςεισ, όπωσ επίςθσ θ δυςκολία αναπαράςταςθσ τθσ υδραυλικισ αγωγιμότθτασ ωσ 

ςυνεχοφσ μεταβλθτισ (Matheron, 1967; Emsellem and De Marsily, 1971), κακιςτοφν 

απαραίτθτθ τθ μοντελοποίθςθ των υδρογεωλογικϊν φάςεων εκ των προτζρων. Επιπλζον, ο 

χαρακτθριςμόσ των πετρωμάτων είναι πάγια πρακτικι ςτισ γεωλογικζσ μελζτεσ ςε ςχζςθ με 

άλλεσ παραμζτρουσ όπωσ θ αγωγιμότθτα και αυτό οδθγεί ςε πιο ακριβι προςδιοριςμό τθσ 

χωρικισ κατανομισ των φάςεων, αφοφ υπάρχει μεγαλφτερθ διακεςιμότθτα δεδομζνων.   

Η χωρικι κατανομι των υδρογεωλογικϊν φάςεων μπορεί να εκτιμθκεί με κλαςικζσ 

μεκόδουσ γεωςτατιςτικισ προςομοίωςθσ όπωσ οι Boolean μζκοδοι, θ Sequential indicator 

simulation (SIS) και θ truncated Gaussian simulation (TGS) ι Plurigaussian simulation (PGS). Στθ 

ςυνζχεια άλλεσ υδρογεωλογικζσ παράμετροι μποροφν να προςδιοριςτοφν. Η προςομοίωςθ  

τθσ χωρικισ κατανομισ των υδρογεωλογικϊν φάςεων μπορεί να γίνει πιο ακριβισ, 

λαμβάνοντασ υπόψθ βοθκθτικζσ μεταβλθτζσ μζςω από κοινοφ προςομοίωςθσ, όπωσ για 

παράδειγμα τθν υδραυλικι πίεςθ, κακϊσ ςυχνά υπάρχουν διακζςιμα δεδομζνα τθσ πίεςθσ ςε 

υδρογεωλογικζσ λεκάνεσ ενδιαφζροντοσ. Ωςτόςο, θ από κοινοφ προςομοίωςθ απαιτεί τθ 

γνϊςθ τθσ ςυςχζτιςθσ μεταξφ των φάςεων και τθσ βοθκθτικισ μεταβλθτισ, ενϊ δεν 

αξιολογείται θ πικανοφάνεια των παραμζτρων, καταλιγοντασ ζτςι ςε μθ αποδεκτζσ λφςεισ. 

Κατά κανόνα, παρά το πλικοσ των εκάςτοτε διακζςιμων δειγμάτων από γεωτριςεισ, ο 

αρικμόσ αυτόσ δεν είναι ποτζ αρκετόσ για τθν επίτευξθ τθσ επικυμθτισ ακρίβειασ ςτθν 

απεικόνιςθ του υπεδάφουσ. 

Η πιο ςφγχρονθ πρακτικι αντιμετϊπιςθ του προβλιματοσ αυτοφ, είναι θ επίλυςθ του 

φυςικοφ νόμου που διζπει το φαινόμενο μεταφοράσ ροισ (ευκφ πρόβλθμα) υποκζτοντασ ότι 
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οι παράμετροι του ςυςτιματοσ είναι γνωςτζσ, ενϊ ςτθ ςυνζχεια γίνεται θ ρφκμιςι τουσ. Η 

πρακτικι αυτι είναι γνωςτι ωσ επίλυςθ του Αντίςτροφου Προβλιματοσ, κακϊσ οι 

υδρογεωλογικζσ φάςεισ αντιμετωπίηονται πλζον ωσ παράμετροι ενόσ ςυςτιματοσ και θ 

φυςικι μεταβλθτι (π.χ. υδραυλικι πίεςθ) ωσ τυχαία μεταβλθτι. Στο αντίςτροφο πρόβλθμα, οι 

μετριςεισ τθσ φυςικισ μεταβλθτισ και θ απόκριςθ του φυςικοφ νόμου χρθςιμοποιοφνται για 

τθν κατανόθςθ τθσ ςυμπεριφοράσ των παραμζτρων και του προςδιοριςμοφ τουσ.  

Αν και θ πρακτικι του προςδιοριςμοφ των φάςεων είναι πιο αποτελεςματικι 

επιλφοντασ το αντίςτροφο πρόβλθμα κακϊσ χρθςιμοποιείται μία επιπλζον πλθροφορία, 

δθλαδι ο φυςικόσ νόμοσ, μία ςειρά από άλλα προβλιματα δθμιουργοφνται ςτα οποία οι 

ερευνθτζσ καλοφνται να δϊςουν απαντιςεισ. Πιο ςυγκεκριμζνα, τα αντίςτροφα προβλιματα 

είναι ςυνικωσ αςκενϊσ/κακϊσ τεκειμζνα (ill-posed), δθλαδι επιδζχονται από καμία λφςθ ζωσ 

άπειρεσ λφςεισ.  Επίςθσ, τα αντίςτροφα προβλιματα μπορεί να είναι μθ επιλφςιμα εξαιτίασ 

τθσ υπολογιςτικισ ακρίβειασ και τότε χαρακτθρίηονται ωσ αςτακι ςυςτιματα (ill-conditioned 

systems). Τα προβλιματα αυτά δθμιουργοφνται κυρίωσ λόγω του περιοριςμζνου αρικμοφ 

δειγμάτων τθσ φυςικισ μεταβλθτισ αλλά και τθσ φφςθσ του ςυςτιματοσ.  

Στθν περίπτωςθ που το ςφςτθμα εξιςϊςεων είναι γραμμικό, το αντίςτροφο πρόβλθμα 

είναι ζνα κλαςςικό πρόβλθμα βελτιςτοποίθςθσ, ςτο οποίο ο βζλτιςτοσ αμερόλθπτοσ εκτιμθτισ 

των παραμζτρων μπορεί να δοκεί από το κριτιριο των ελαχίςτων τετραγϊνων. Στθν 

περίπτωςθ γραμμικϊν αςκενϊν ι αςτακϊν ςυςτθμάτων, πζραν από τθν αναηιτθςθ ενόσ 

αμερόλθπτου εκτιμθτι,  αντικείμενο είναι θ εφρεςθ ενόσ εκτιμθτι ο οποίοσ μπορεί να είναι 

μερολθπτικόσ αλλά να δίνει πιο δυνατζσ ι ςτακερζσ λφςεισ ςτο ςφςτθμα των εξιςϊςεων. Στθν 

περίπτωςθ (αςκενϊσ) μθ γραμμικϊν ςυςτθμάτων, θ αντικειμενικι ςυνάρτθςθ 

γραμμικοποιείται και θ διαδικαςία εφρεςθσ του βζλτιςτου εκτιμθτι γίνεται επαναλθπτικά με 

τουσ αλγόρικμουσ κλίςθσ.  

Η επαναλθπτικι διαδικαςία εφρεςθσ τουσ βζλτιςτου εκτιμθτι ςτισ περιπτϊςεισ 

αςκενϊσ μθ γραμμικϊν ςυςτθμάτων ι τελείωσ μθ γραμμικϊν ςυςτθμάτων ςυχνά είναι μία 

επίπονθ διαδικαςία με μεγάλο υπολογιςτικό κόςτοσ (μεγάλοσ αρικμόσ παραμζτρων), ενϊ 

είναι πολφ πικανό το αποτζλεςμα του βζλτιςτου εκτιμθτι να αναφζρεται ςε ζνα τοπικό 

βζλτιςτο τθσ αντικειμενικισ ςυνάρτθςθσ. Για τον λόγο αυτό θ χριςθ ςτοχαςτικϊν μεκόδων 

που επιτρζπουν το ςυςτθματικό δειγματιςμό του πεδίου τιμϊν των παραμζτρων, όπωσ οι 
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μζκοδοι Markov chain Monte Carlo, είναι προτιμότερθ, ξεπερνϊντασ τα προβλιματα των 

αιτιοκρατικϊν ι άλλων ςτοχαςτικϊν μεκόδων.  

Στθν αντιςτροφι του προβλιματοσ οι μζκοδοι McMC χρθςιμοποιοφνται ςυνικωσ ςε 

ςυνδυαςμό με τθ ςτατιςτικι κατά Bayes, δθλαδι θ εκ προοιμίου (a-priori) κατανομι των 

παραμζτρων ανακεωρείται επαναλθπτικά όςο νζα μζλθ προςτίκενται ςτθν αλυςίδα. Τα μζλθ 

τθσ αλυςίδασ αποτελοφν δείγματα τθσ μεταγενζςτερθσ (a-posteriori) κατανομισ των 

παραμζτρων. Οι μζκοδοι McMC ζχουν τθν ικανότθτα να «επιςκζπτονται» το χϊρο των 

παραμζτρων όπου θ πυκνότθτα τθσ μεταγενζςτερθσ κατανομισ είναι μεγάλθ ακόμα και όταν ο 

χϊροσ των παραμζτρων είναι πολλϊν διαςτάςεων.   

Η εφαρμογι των McMC απαιτεί τον οριςμό ενόσ πυρινα μετάβαςθσ από το ζνα μζλοσ 

τθσ αλυςίδασ ςε ζνα υποψιφιο μζλοσ, ενόσ κριτθρίου επιλογισ των μελϊν τθσ αλυςίδασ και 

ενόσ κριτθρίου για να διακοπεί θ αλυςίδα. Ο κακοριςμόσ των παραπάνω κριτθρίων πρζπει να 

είναι τζτοιοσ ϊςτε τα μζλθ τθσ αλυςίδασ να είναι ανεξάρτθτα μεταξφ τουσ και να αποτελοφν 

δείγματα τθσ a-posteriori κατανομισ. Η διακοπι τθσ αλυςίδασ ςυνικωσ εξαρτάται από τον 

επικυμθτό αρικμό των δειγμάτων και τον διακζςιμο χρόνο για τθν υλοποίθςθ τθσ αλυςίδασ.  

Στθ παροφςα διατριβι, τα υποψιφια μζλθ τθσ αλυςίδασ δθμιουργοφνται με 

γεωςτατιςτικι προςομοίωςθ και με τυχαίο χωρικό δειγματιςμό του αμζςωσ προθγοφμενου 

μζλουσ τθσ αλυςίδασ και των a-priori δεδομζνων, δθλαδι ζνα προςαρμοςμζνο αλγόρικμο 

Gibbs Sampling. Όταν ο ςτόχοσ τθσ ζρευνασ είναι ο οριςμόσ τθσ πρότερθσ κατανομισ, τότε ζνα 

υποψιφιο μζλοσ τθσ αλυςίδασ κρίνεται βάςει του κριτθρίου που χρθςιμοποιείται ςτον 

αλγόρικμο Metropolis-Hastings ι του κριτθρίου που προτείνεται από τουσ Mosegaard and 

Tarantola (1995). Τα υποψιφια μζλθ τθσ αλυςίδασ πρζπει να κρίνονται αφοφ ζχει επιτευχκεί θ 

ανεξαρτθςία τουσ από το προθγοφμενο μζλοσ τθσ αλυςίδασ.  

Στθν περίπτωςθ που ο ςτόχοσ είναι θ εφρεςθ ενόσ βζλτιςτου εκτιμθτι, υιοκετοφμε τθν 

υλοποίθςθ ανεξάρτθτων Μαρκοβιανϊν αλυςίδων, ενϊ κάκε μζλοσ τθσ αλυςίδασ γίνεται 

αποδεκτό εφόςον θ πικανοφάνειά του είναι μεγαλφτερθ από το προθγοφμενο μζλοσ τθσ 

αλυςίδασ. Αυτό οδθγεί ςτθν επιλογι μερολθπτικοφ δείγματοσ τθσ φςτερθσ κατανομισ, αφοφ 

τα τελευταία μζλθ κάκε αλυςίδασ που αποτελοφν τθν κατανομι ζχουν προκφψει με υψθλι 

πικανοφάνεια. Η διακοπι κάκε αλυςίδασ γίνεται με ςτοχαςτικό κριτιριο, ςτο οποίο θ 

πικανότθτα διακοπισ τθσ αλυςίδασ αυξάνεται όςο θ πικανοφάνεια των μελϊν μίασ αλυςίδασ 

αυξάνεται. Με αυτόν τον τρόπο προκφπτει ζνα μερολθπτικό δείγμα τθσ a-posteriori κατανομισ 



8 
 

αλλά με αντίκετθ κατεφκυνςθ τθσ μερολθψίασ που ειςάγεται με τθν επιλογι των μελϊν κάκε 

αλυςίδασ. Έτςι, επιτυγχάνεται μία προςζγγιςθ τθσ φςτερθσ κατανομισ. Αυτόσ ο μθχανιςμόσ 

οδθγεί ςτθν εφρεςθ του βζλτιςτου εκτιμθτι αποφεφγοντασ ζναν μεγάλο αρικμό 

γεωςτατιςτικϊν υλοποιιςεων και τθσ επίλυςθσ του ευκζωσ προβλιματοσ.  

Σε προθγοφμενεσ μελζτεσ οι οποίεσ χρθςιμοποιοφν τισ μεκόδουσ McMC, δεν 

λαμβάνεται υπόψθ θ ςυςχζτιςθ τθσ φυςικισ μεταβλθτισ και των παραμζτρων για τθν 

παραγωγι των γεωςτατιςτικϊν υλοποιιςεων. Σε αυτι τθν περίπτωςθ, οι μετριςεισ τθσ πίεςθσ 

του υπόγειου νεροφ χρθςιμοποιοφνται μόνον εμμζςωσ, για τθν αξιολόγθςθ των πρότερων 

γεωλογικϊν μοντζλων του υπεδάφουσ. Ο περιοριςμόσ αυτόσ οφείλεται ςτθν μθ γραμμικι 

ςυςχζτιςθ μεταξφ υδραυλικϊν μετριςεων και παραμζτρων του υπεδάφουσ. Ωσ εκ τοφτου, οι 

ευρζωσ γνωςτζσ μζκοδοι των από κοινοφ kriging και από κοινοφ προςομοίωςθσ που 

βαςίηονται ςτθν γραμμικι εκτίμθςθ, δεν μποροφν να χρθςιμοποιθκοφν απευκείασ, γιατί 

καταλιγουν ςε μθ αποδεκτζσ λφςεισ. Αντίκετα, θ μζκοδοσ C-ISR εκμεταλλεφεται τθν 

πλθροφορία των μετριςεων τθσ φυςικισ μεταβλθτισ για τθν παραγωγι των γεωςτατιςτικϊν 

υλοποιιςεων. 

Πιο ςυγκεκριμζνα, θ μζκοδοσ ςτθρίηεται ςτθν προςζγγιςθ ότι, ςτιγμιαία, οι 

μεταςχθματιςμζνεσ ςε Normal Scores υδρογεωλογικζσ μετριςεισ, μποροφν να ςυςχετιςτοφν 

με τθν Γκαουςιανι μεταβλθτι των υδρογεωλογικϊν φάςεων, μζςω γραμμικοφ μοντζλου 

ςυμμεταβλθτότθτασ, παρότι το πρόβλθμα τθσ υπόγειασ ροισ δεν είναι γραμμικό. Η 

προςζγγιςθ αυτι γίνεται επαναλθπτικά εντόσ μιασ Μαρκοβιανισ αλυςίδασ, τθσ οποίασ τα 

μζλθ προκφπτουν χρθςιμοποιϊντασ ωσ πυρινα μετάβαςθσ ζναν επαναλθπτικό χωρικό 

δειγματιςμό του προθγοφμενου μζλουσ. Στθν περίπτωςθ αυτι, οι μετριςεισ τθσ πίεςθσ του 

υπόγειου νεροφ, εκτόσ από τθν ζμμεςθ χριςθ τουσ για τθν επίλυςθ του αντίςτροφου 

προβλιματοσ, χρθςιμοποιοφνται και άμεςα, για τθν υλοποίθςθ των πρότερων γεωλογικϊν 

μοντζλων του υπεδάφουσ. Με τον τρόπο αυτό προκφπτει μια ςτενότερθ και πιο ενθμερωμζνθ 

πρότερθ κατανομι, λόγω τθσ ςυνδρομισ τθσ μεταβλθτι αναφοράσ.  

Η αποτελεςματικότθτα τθσ μεκόδου αποδεικνφεται από τθν εφαρμογι τθσ ςε ζνα 

ςυνκετικό παράδειγμα υπο-οριςμζνου αντίςτροφου προβλιματοσ για τον χαρακτθριςμό ενόσ 

υδροφόρου ορίηοντα (Εικόνα 0.1).  
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Εικόνα 0.1: Η πραγματικι κατανομι των φάςεων ςτον υδροφόρο ορίηοντα (αριςτερά). Οι 

τιμζσ αναφοράσ και οι μετριςεισ τθσ πίεςθσ (δεξιά).  

Η μζκοδοσ C-ISR ςυγκρίνεται με τθν ISR μζκοδο χωρίσ τθ χριςθ τθσ από κοινοφ 

κατανομισ των υδρογεωλογικϊν φάςεων και τθσ πίεςθσ, ενϊ για τισ υλοποιιςεισ 

χρθςιμοποιείται θ Plurigaussian προςομοίωςθ. Από τα αποτελζςματα προκφπτει ότι θ C-ISR 

είναι πιο γριγορθ μζκοδοσ κακϊσ από τισ 250 ανεξάρτθτεσ αλυςίδεσ Markov που 

δθμιουργικθκαν, το ευκφ πρόβλθμα επιλφκθκε 28914 φορζσ ζναντι 48390 ςτθν περίπτωςθ 

τθσ ISR (Εικόνα 0.2).  

 

 

 

Figure 0.2: Η ςφγκλιςθ 50 τυχαίων ανεξάρτθτων αλυςίδων των μεκόδων C-ISR και ISR. 
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Επιπλζον, θ C-ISR κατζλθξε ςε πιο ακριβείσ προβλζψεισ ζχοντασ μζςθ τετραγωνικι ρίηα 

ςφάλματοσ (RMSE) 0,0383 ζναντι 0,0537 για τθν ISR (Εικόνα 0.3).  

 

 

Figure 0.3: Ο χάρτθσ του RMSE από 250 ανεξάρτθτεσ αλυςίδεσ τθσ C-ISR (a) και ISR (b). 

 

Επίςθσ, θ βζλτιςτθ λφςθ τθσ C-ISR ζφταςε ςε 85,69% ποςοςτό ομοιότθτασ των 

υδρογεωλογικϊν φάςεων με τθν πραγματικότθτα ζναντι του 81,76% ομοιότθτασ τθσ ISR 

(Εικόνα 0.4). Τα αντίςτοιχα μζςα ποςοςτά ομοιότθτασ από τισ 250 αλυςίδεσ είναι 80,82% 

ζναντι 71,04%. 

 

 

Figure 0.4: Ο βζλτιςτοσ εκτιμθτισ των φάςεων τθσ C-ISR (a) και ISR (b) μετά από 250 

ανεξάρτθτεσ αλυςίδεσ. 
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1 Introduction 

1.1 Statement of the Problem  

Numerical modeling of groundwater flow and mass transport are important tools for predicting 

the behavior of a hydrogeological system. Nevertheless, in order to produce reliable hydrologic 

predictions, parameter values that determine the response of the model must be appropriately 

chosen for a specific aquifer. Direct measurements of hydrologic parameters, however, are 

scarce and fraught with uncertainty. The scarcity of direct measurements of the hydrologic 

parameters has been long ago recognized as a major impediment to the use of groundwater 

models and to their full utilization (Frind and Pinder, 1973). 

To address this problem of parameter uncertainty, hydrologic models can be used in 

applications “opposite” or “inverse” to their original use, i.e., parameter values are treated as 

system unknowns and are determined by extracting information from observations of system-

response variables (Kitanidis and Vomvoris, 1983). The procedure is conveniently called inverse 

problem-solving. However, the subsurface reservoir is normally very heterogeneous due to 

complex geologic processes and physical and chemical reactions, which makes model 

parameter identification a demanding task. On the other hand, a crucial issue is that the 

problem of specifying conductivity in every block from sparse head observations is 

underdetermined, i.e., there are many solutions that are consistent with the data. The 

ambiguity is largely due to the scarcity of the data but is also inherent in the mathematics of 

typical inverse problems: a small range of values in the observed head is consistent with a 

larger range of conductivity values (Kitanidis, 2007). This characteristic is known as ill-

posedness and results in non-uniqueness in the solution of the inverse problem (see also 

section 3.23). 

Numerous deterministic and stochastic methods have been proposed to overcome the 

ill-posedness of the inverse problem and specify the hydraulic conductivity in an aquifer field. 

 Over the recent years, researchers have developed novel approaches to solve the problem by 

inverting directly for the spatial distribution of hydrofacies, instead of conductivity. Admittedly, 

specifying the hydrofacies distribution is a more efficient and direct way to predict the behavior 
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of a hydrogeological system (see literature review). But, there are problems with this approach, 

since facies is a categorical variable and is a challenge to incorporate it in the geostatistical 

formalism. And, apart from all complications, the “curse of dimensionality” adds in computer 

time and complexity in general.  

Taking all the above in account, the present work lies in the McMC category of methods 

and attempts to solve the facies inversion problem by selectively sampling a chain of successive 

models driven by cosimulation with the response variable. 

1.2 Objectives 

The main goal of this research is to develop a method for direct inversion of the spatial 

distribution of hydrofacies, using geostatistical information such their covariance, the 

proportions and their contacts and to deal with the theoretical and practical difficulties arising 

in this approach in the non-linear case. For this scope, we use the Plurigaussian simulation, one 

of the recently developed facies modeling methods in geostatistics. 

Our original idea is to exploit the information resulting from the response of the 

hydrological model not only as likelihood function, as the most researches in Bayesian 

perspective propose, but also as a linear approximation of the association between the state 

variables. This association can be expressed by their experimental cross-variogram and it is 

embedded in the prior ensemble by cosimulation with the reference variables.  

An objective of this study is to build the theoretical background behind the proposed 

method and explain the effectiveness of cosimulation, which is the basic characteristic of our 

method, by comparing it to a similar procedure without cosimulation.  

1.3 Innovation 

Cosimulation for modeling a discrete variable such as the facies distribution has not been 

applied in inversion yet, due to the nonlinearity relation between the response variable and 

unknown parameters. In most cases, the response variable is used as indirect data to evaluate 

the prior models and drive the search path.  
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The cosimulation of facies and the hydrological response variable using iterative spatial 

resampling as transition kernel is used in hydrology for the first time. Our method creates an 

important sampling effect that steers the process to selected areas of the prior facies 

distribution. The results demonstrate the effectiveness of our method producing a better 

approximation of the facies spatial variability and, at the same time, less computation cost than 

other methods.  

The straightforwardness of implementation, the simplicity of tuning the initial 

parameter and the requirement of less amount of information (hard data), in combination with 

the accuracy, the computational cost in large scale-problems and the realistic facies 

reproduction that honors production data, make C-ISR perform better than other methods. 

1.4 Structure 

This work contains six chapters in total. Chapter 1 introduces the reader to the general inverse 

problem in groundwater modeling and analyzes the objectives and the innovation of this 

research as previously stated.  In the next section, the fundamental topics of inverse problem 

are presented followed by an extended literature review, while the developments of previous 

works that guided our research are finally presented. Chapter 2 explains the most common 

methods in geostatistical simulation for discrete variables and presents the theoretical basis of 

Plurigaussian simulation in detail. Moreover, the basic outlines of multivariate analysis in 

geostatistics, such as cokriging, the linear coregionalization model, and Cosimulation are given. 

Chapter 3 focuses on the general discrete inverse problem using the least square criterion to 

solve underdetermined and overdetermined optimization problems, while the regularized 

estimator in ill-conditioned systems is explained. Furthermore, the theory of the transition from 

the deterministic to the stochastic solution of the inverse problem and the solution of the non-

linear problem with deterministic iterative algorithms that use the least square criterion as the 

objective function is presented. In Chapter 4, the Bayesian formulation of linear and non-linear 

inverse problems is established and the Monte Carlo and McMC methods to sample the 

posterior distribution are presented. The C-ISR method (Valakas and Modis 2015; Valakas and 

Modis 2016), which is the main achievement of this work,  is presented in Chapter 5, explaining 

the outline, the kernel transition, the role of cosimulation and the detailed algorithm of the 

method. The effectiveness of the proposed approach is demonstrated by an example 
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application on a synthetic underdetermined inverse problem in aquifer characterization. Finally, 

the conclusions and contribution of the study are summarized in Chapter6. The last chapter 

details the progress achieved towards the objectives and suggests plans for future research.  

1.5 Literature Review 

1.5.1 Inverse Problem Approaches in Groundwater Modeling 

In recent decades, numerous methodologies have been proposed to solve the inverse problem 

in groundwater modeling, with the general aim to estimate the spatial distribution of hydraulic 

conductivity in an aquifer field. A review of the most recently proposed methods can be found 

in Carrera et al. (2005). Because of the inherent difficulties associated with the estimation of 

spatial functions from limited and imperfect data, the crux of the problem is how to 

parameterize the distributed parameter system (Emsellem and De Marsily, 1971; Neuman, 

1973; Gavalas et al., 1976), that is, how to transform the question into a well-posed estimation 

problem. In general, the principal conceptual differences among available methods lie in the 

parameterization (Kitanidis, 1995). 

Certain formalisms (e.g., Tikhonov and Arsenin, 1977; Guidici et al., 1995; Tikhonov et 

al., 1997) focus on finding a single solution to the inverse problem by minimizing the error 

between model results and measurements. This is done by imposing restrictions, or by making 

assumptions about available information, such as that head is measured without error at every 

node of the model. Such methods have appeal in practice only when sufficient information is 

truly available (Kitanidis, 2007). 

Stochastic methods, on the other hand, use statistical conditioning in which the 

covariance between parameters and system-response variables is utilized to condition the 

parameter values, using measurements information. By representing the spatial parameter 

function with a random field, the idea is that although the exact value is not known, one should 

be able to identify an interval that contains the true value with a high degree of assurance. In 

general, stochastic methods do not adopt the classic statistical but rather the Bayesian view, 

where the probabilities represent a state of knowledge or available information (Christakos, 

1990). The idea is that the unknown function, such as the conductivity over a region, is 
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modeled as a random function (RF) mainly because there is insufficient information to model it 

as deterministic, rather than because repeated measurements indicate a statistical regularity. 

Many stochastic parameter estimation methods employ geostatistical models to define 

the spatial distribution (structure) of conductivity (e.g., Kitanidis and Vomvoris, 1983; Hantush 

and Marino, 1997; Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008), under the 

assumption that aquifer conductivity in regional systems can generally be described using such 

models (Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1985; Carrera et al., 2005). 

There are difficulties, anyhow, in the representation of conductivity as a continuous variable. 

Matheron (1967) had already pointed out that conductivity is not a point but a set function, 

while Emsellem and De Marsily (1971) concluded that conductivity is a parameter with no 

punctual value but with an average in a region of a given size. In this line, the usual continuous 

and multi-Gaussian methods have shown that they do not allow modeling a sufficiently wide 

range of connectivity patterns for the high (or low) permeable structures (Journel and Alabert 

1990; Zinn and Harvey 2003; Renard et al., 2005; Kerrou et al., 2008; Renard 2007). To 

overcome this problem, Fienen et al. (2008) propose an interactive zonation method, where 

candidate zones are implied from the data and are evaluated using cross-validation and expert 

knowledge.  

An alternative is to use a two-step approach in which, first, the geological facies are 

modeled, and second, they are populated with heterogeneous hydraulic and transport 

parameters. This approach is flexible and allows modeling structures at different scales 

(Mariethoz et al., 2009). Therefore, before the geostatistical estimation of a soil property such 

as conductivity, the knowledge of geological formation should take into account, due to the 

complexity of soil types as natural entities (Ibáñez and Saldaña, 2008; Modis and Sideri, 2013).  

In general, deterministic models for structure identification, such as graphical methods 

(Doveton, 1986), neural networks methods (Rogers et al., 1992) and fuzzy neural networks 

methods (Chang et al., 1997), have limitations and may introduce larger bias and uncertainty 

than an inappropriate choice of facies hydraulic parameters (Ye et al., 2004; Lu and Robinson, 

2006). On the other hand, stochastic models have been found to be effective in overcoming the 

above problems. Following this approach, Winter and Tartakovsky (2000 and 2002) provide a 

general framework for modeling flow and transport in high heterogeneous porous media 

consisting of multiple materials, by quantifying uncertainty in both spatial arrangement of 
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geological facies and hydraulic properties within each facies. Guadagnini et al. (2004) utilize 

stratigraphic and sedimentological data to reconstruct the spatial extent of the aquitard zone 

applying indicator geostatistical techniques, in order to solve the equations for ensemble 

moments of hydraulic head. Mariethoz et al. (2009) assess contaminant migration, applying the 

truncated plurigaussian method that allows integrating a geological conceptual model (using a 

lithotype rule) within the framework of a mathematically consistent stochastic model.  

Instead of inverting for conductivity, a more efficient approach is to solve the inverse 

problem directly on the hydrofacies distribution. This tactic allows for simultaneous estimation 

of the optimum aquifer structure from geological or geophysical data and hydrologic response 

measurements in a single step. In this line, Chen and Rubin (2003) propose a Bayesian model 

for lithofacies estimation, assimilating geophysical data through a likelihood function. Liu (2005) 

generates geological facies maps using Plurigaussian simulation in order to solve the problem of 

automatic history matching of facies and explore the gradient method and the ensemble 

Kalman filter (EnKF) method, after the parameterization of the geostatistical model. Harp et al. 

(2008) follow a genetic meta-algorithm to select between equiprobable structure realizations 

according to a fitness criterion, while Mariethoz et al. (2010a) employ an iterative spatial 

resampling procedure to steer the search for solutions among simulated images that preserve 

the same spatial structure. Furthermore, Cardiff and Kitanidis (2009) developed a flexible, yet 

sensitive to the initial guess framework for defining zone boundaries using the level set 

method.  

1.5.2 Bayesian Perspective and McMC inversion 

In a Bayesian perspective, the terminology is different.  Ill-posedness is not defined anymore 

and the question can be phrased as whether the likelihood of the data is sufficient or not to 

constrain the posterior distribution to be different from the prior. Thus, the solution to a 

Bayesian inverse problem is an a posteriori probability density. Using sampling methods, the 

goal is to generate a sample from the posterior, such that statistics consistent with the 

posterior distribution can be inferred. 

Yet, in addition to the classical optimization methods, a possible approach for the 

solution to inverse problems is the use of Markov chain Monte Carlo (McMC) techniques (Zhou 

et al., 2014). This is an alternative way to achieve the same results without resorting to a 
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deterministic optimization setup, but rather sampling a multivariate probability distribution 

that converges to the posterior. McMC methods generate model realizations that match the 

state observations while reproducing some prior statistics and obey Bayes’ rule. It is noted that 

these requirements are only partly fulfilled by most gradient-based optimization techniques 

(Gomez- Hernandez et al., 1997; Mariethoz et al., 2010a). Thus, McMC techniques, which are 

mainly prior driven approaches, do not produce models with zero prior probability. 

Howbeit, the use of informative priors in a Bayesian context has been a crucial issue of 

disagreement (Jaynes, 1985; Scales and Sneider, 1997; Mosegaard, 2011). Some authors 

suggest that the use of prior information may bias the solution of an inverse problem in an 

unwanted way. On the other hand, non-informative priors may lead to unsolvable problems or 

to solutions with high uncertainty (Hansen et al., 2012). Different a priori priors, that is, 

probability distributions that are somehow justified by the nature of the uncertainty of a 

situation, are many times found. But this subject is a matter of philosophical controversy, with 

the Bayesians divided into two schools: "objective Bayesians," who believe that such priors are 

justified in many useful cases and "subjective Bayesians" who believe that in practice the priors 

usually represent subjective judgments that cannot be justified (Williamson 2010). Objective 

prior means a state of knowledge coming from a logical inference and the strongest arguments 

for objective Bayesianism were given by Jaynes (2003) based on the principle of maximum 

entropy, which says that a belief function should be a probability function, from all those that 

are calibrated to evidence. 
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2 Geostatistical Simulation of Categorical Variables  

2.1 Introduction 

The solution of a physical system (e.g. groundwater flow transport) requires detailed 

knowledge of the physical parameter spatial distribution (e.g. hydraulic conductivity). The 

spatial distribution of the parameter may be estimated by interpolation methods, such as 

kriging. The stochastic solution of a physical system requires more than one realization of the 

spatial parameter (random field) to incorporate its structural uncertainty, which is reflected in 

its response. Such realizations of the parameter set can be generated by a geostatistical 

simulation.  The parameters may concern either continuous variables or categorical variables, 

for example, hydraulic conductivity and rock type respectively. General, the continuous 

variables have an infinite number of values, while categorical variables contain a finite number 

of categories or distinct groups. 

Various approaches of geostatistical simulation have been developed to generate these 

realizations. Approaches to simulate continuous variables include the turning bands method 

(Journel, 1974), spectral methods (Borgrnan et al., 1984; Gutjahr, 1989), lower upper (LU) or 

Cholesky decomposition (Alabert, 1987; Davis, 1987), sequential Gaussian simulation (Journel, 

1989), and fractal approaches (Hewett and Behrens, 1990). For categorical variables, the 

approaches include Boolean methods (Serra, 1982; Jeulin, 1987; Chautru, 1989), Sequential 

indicator simulation (Journel and Alabert, 1989) and truncated Gaussian simulation or 

Plurigaussian simulation (Matheron et al. 1987; Galli et al. 1994; Amstrong, 2011), while 

Genetic algorithms (Whitley, 1994) and simulated annealing (Kirkpatrick et al., 1983; Deutsch 

and Journel, 1992) are used for both continuous and categorical variables.  

The implementation of a geostatistical simulation requires specification of a multivariate 

probability model for the spatial process. Then, the algorithm produces equiprobable (equally 

likely to be drawn) realizations of a random field in order to capture the attributes of the 

phenomenon (Deutsch and Journel, 1997; Chiles and Delfiner, 1999; Modis and Sideri, 2013). 

However, the probability density values of the realizations are different in general.  
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In the next sections, we present the sequential simulation process and we focus on 

Sequential indicator simulation (SIS), and Plurigaussian simulation (PGS), which are widely used 

to model discrete or categorical variables.  

2.2 Sequential Conditional Simulation 

The aim of sequential conditional simulation is to produce realizations that honor the sample 

data as well as the spatial covariance of the attributes being simulated.  Thus, in order to 

reproduce a realization, the simulated values are conditioned to the sample data along with the 

previous simulated values. The sequential process requires the definition of a random path by 

which all query points are visited sequentially. Thus, the realizations are different due to the 

path randomness and the conditioned simulated values. 

Let  𝐳1, 𝐳2,… , 𝐳𝜈  be the random variables of interest at the locations 𝐱1, 𝐱2,… , 𝐱𝜈 , 

where ν is the query points, then the ν-dimensional probability density function (pdf) of a RF 

𝑓𝜈(𝐳1, 𝐳2 ,… , 𝐳𝜈) can be decomposed as the product of one dimensional marginal and a series of 

one dimensional conditional densities: 

𝑓𝜈 𝐳1, 𝐳2 ,… , 𝐳𝜈 = 𝑓1 𝐳1 𝑓1|1 𝐳2 𝐳1 𝑓1|2 𝐳3 𝐳1, 𝐳2 ⋯𝑓1|𝜈−1 𝐳𝜈  𝐳1,… , 𝐳𝜈−1  (2.1)  

After generating the first simulated value 𝐳1 the next simulated value 𝐳2 will be generated by 

the conditional distribution 𝑓1|1 𝐳2 𝐳1 . The process continues until one generates a value from 

𝑓1|𝜈−1 𝐳𝜈  𝐳1 ,… , 𝐳𝜈−1 . At the end of the process, the simulated values in the realization are a 

sample of 𝑓𝜈(𝐳1, 𝐳2,… , 𝐳𝜈). The above mathematical formulation is referred to as sequential 

simulation process while in sequential conditional simulation, the sample data are also taken 

into account by conditional distributions.  

2.3 Sequential Indicator Simulation 

The concept of SIS is based on indicator kriging, an algorithm which is widely used to transform 

a continuous random field 𝐳 𝐱  to a binominal random function with values 0 and 1 in order to 

produce probability and risk maps (Journel, 1983). The coding of a datum into either 1 or 0 

depends upon its relationship to a cut-off value, 𝐳k . For a given value 𝐳 𝐱  
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𝐈 𝐱, 𝐳𝑘 =  
1     if 𝐳 𝐱 > 𝐳𝑘
0    if 𝐳 𝐱 < 𝐳𝑘

  (2.2)  

where 𝐱 are the spatial coordinates of the random variable. After this non-linear 

transformation, an indicator variogram can be modeled. The multivariate indicator kriging 

involves calculating and modeling multiple indicator variograms at a set of k thresholds 

covering the whole range of 𝐳 𝐱 . Multivariate indicator kriging is used in the same manner for 

a categorical variable such as geological facies, in order to produce estimation maps of this 

variable (e.g. each facies is transformed into 0 or 1 at every sample point, then the indicator 

variogram is calculated and modeled for each facies). After the modeling of variograms and 

cross-variograms, indicator kriging proceeds in the same manner as ordinary kriging: the results 

of coordinate queries (unsampled points) are obtained by kriging the indicator variables. The 

values are generally between 0 and 1 representing the probability of occurrence of a specific 

category at the particular coordinates.  By the definition of probability, the acquired values 

must lie in the interval [0,1]. This relation may not be satisfied because the kriging estimate is a 

non-convex linear combination of conditioned data. Goovaerts (1997, pp. 399-400) lists the 

ways to avoid the violation and possible corrections to be applied to overcome this problem.   

Implementation of the previous process under the (multivariate) indicator kriging 

modeling is referred to as SIS. The steps of SIS algorithm can be described as follows: 

1. Chose a random location and perform indicator kriging for each category: Taking 

into account the conditioned data (sample data for the first query point), apply 

indicator kriging to estimate k probabilities of occurrence. 

2. Correct these probabilities to sum to 100%. 

3. For each category draw a simulated value from the Gaussian distribution with mean 

and variance the respective values from indicator kriging.   

4. Define a cumulative distribution of categories using any ordering of the k categories. 

Then, k intervals are drawn and the probability of category occurrence lies in these 

intervals. For example, [0, P1], (P1, P1 + P2],… , (P1 + P2 +⋯+ P𝑘 , 1], where the 

index of probability identifies the category.  

5. Draw a random value P𝑢  from the uniform distribution 𝑼(0,1). The interval in which 

P𝑢  falls determines the simulated category.  
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6. Add the simulated value to the conditioning data and repeat the step one until all 

query points are simulated. When all query points are simulated, a full realization is 

reproduced. Multiple realizations are reproduced by repeating the above steps and 

defining different random paths. 

2.4 Truncated Gaussian and Plurigaussian Simulation 

2.4.1 The idea of Plurigaussian Simulation 

Over the recent years, TGS is increasingly used in geological modeling where categorical 

variables such as rock facies occur. A sequential ordering of facies allows the researchers to 

define a simple lithotype rule. For example, the sand is followed by shaly sandstone then shale. 

Plurigaussian is simply an extension of TGS and allows for more complicated types of contacts 

between facies in order to produce a much wider range of geological patterns. TGS or PGS is an 

alternative method to SIS, in order to overcome the lack of geological realism and incorporate 

geological knowledge on the simulated field.  

The idea behind the TGS is to represent the facies using a secondary continuous 

Gaussian RF at every point of the research area and then convert it to facies using the lithotype 

rule. The proportions of facies are used as prior information to define the thresholds of that 

Gaussian distribution. The thresholds can be calculated by the space facies proportions occupy 

in the distribution. In the case of PGS, more than one independent Gaussian distributions are 

defined either to represent more complicated contact relationships between facies or to 

identify an anisotropic behavior of facies contacts in space. 

2.4.2 Theoretical formulation 

Consider a standard Gaussian RF 𝐙 𝐱  where 𝒙 ∈ 𝑹𝟑, with variogram 𝛾(𝐡). Let  𝐷1,… ,𝐷𝑘  be a 

partition of 𝑹 into 𝑘 disjoint subdomains. A categorical random field with 𝑘 categories (facies) 

is obtained by putting 

 𝐱 ∈ 𝐑𝟑, 𝐈 𝐱 = 𝑖, if and only if 𝐙 𝐱 ∈ 𝐷𝑖  (2.3)  

while the indicator random field for each facies 𝐹𝑖  is defined as: 
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 𝐱 ∈ 𝐑𝟑, 𝐈𝐹𝑖 𝐱 =  
1 if 𝐈 𝐱 = 𝑖
0 otherwise

  (2.4)  

The choice of the partition  𝐷1,… ,𝐷𝑘  has implications on the spatial relationships between 

the facies, as it defines the permissible contacts between pairs of facies and also allows 

reproducing the chronological ordering of the facies (Armstrong et al., 2011). Practically, in 

order to transform between the Gaussian RF and the facies indicators, a proper set of 𝑘 − 1 

truncation thresholds 𝑡𝑖  has to be defined so as: 

𝐈𝐹𝑖 𝐱 = 1 𝑡𝑖−1 ≤ 𝐙 𝐱 ≤ 𝑡𝑖 (2.5)  

The thresholds are in increasing order 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑖−1 ≤ 𝑡𝑖 ≤ 𝑡𝑖+1 ≤ ⋯ ≤ 𝑡𝑘−1 . 

 Approximating the proportion of a particular facies 𝐹𝑖  at point x by the probability of having 

this facies 𝐹𝑖  at that point x: 

𝑃𝐹𝑖 𝐱 = P facies at point 𝐱 = 𝐹𝑖 = 𝐄 𝐈𝐹𝑖(𝐱)  (2.6)  

We assume that the facies at location  x, 𝐹(𝐱) can be described as a function of the Gaussian RF 

by the following relation: 

𝐹 𝐱 =  𝑐𝑖𝐈𝐹𝑖 𝑖𝑠𝑇𝑟𝑢𝑒(𝑡𝑖−1 ≤ 𝐙 𝐱 ≤ 𝑡𝑖)

𝑘

𝑖=1

 (2.7)  

where 𝑘 is the number of distinct facies, 𝑐𝑖  is the value of the parameter in facies 𝑖 and IsTrue() 

is a function which returns 1 if its argument is true and 0 otherwise. More Gaussian variables 

could also be added according to facies spatial associations (Armstrong et al., 2011). 

Due to equation 2.4, we have:  

𝑃 𝐱 = 𝐆 𝑡i − 𝐆(𝑡i−1) (2.8)  

where 𝐆(𝑡) is the cumulative distribution function (cdf) for the standard normal distribution 

𝑵(0,1). As the proportions of each facies are known experimentally, one has just to invert this 

relationship to deduce the thresholds: 

𝑡𝑖 = 𝐆−1  𝑃𝐹1
 𝐱 + 𝑃𝐹2

 𝐱 +⋯+ 𝑃𝐹𝑘  𝐱   (2.9)  
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2.4.3 The Plurigaussian algorithm 

 First, one has to infer the variogram of 𝐙 by using the indicator variograms and the proportions 

of each facies, plus a truncation rule. The proportions of each facies are calculated based on the 

observations. The lithotype rule is usually based on available data. In practice, information 

concerning this rule might also be obtained by in situ inspection, or it might be in the form of 

empirical knowledge in the wider area.  The model variogram of 𝐙, which represents the facies 

distribution, can be determined by a trial and error procedure, using for example the program 

VMODEL (Emery and Silva, 2009). The criterion of this procedure is the optimal fit of the 

simulated facies variograms to the observed ones. After the definition of model variogram of 𝐙, 

the Gibbs sampler (see section 4.2.2.2) can be used to generate gaussian values at sample 

points that have the right covariance and belong to the right intervals. Then, any conditional 

simulation can be used to generate a realization conditional to gaussian values at sample 

points. At the end of the process, the Gaussian values of the realization are converted to facies.  

2.5 Multivariable Simulation 

2.5.1 Introduction 

Most natural phenomena involve multiple RFs at spatial locations with possible dependencies 

between them. Considering the cross-correlation of RFs, the spatial estimation of a RF is 

improved. Numerous examples exist either between continuous or categorical variables, such 

as the relationship between the groundwater flow transport and hydraulic conductivity or the 

correlation between the facies, respectively. As is explained in previous sections, the 

categorical variables can be also represented by Gaussian RFs. In spatial statistics, the best 

linear unbiased estimator (BLUE) taking into account two or more spatial RFs is referred to as 

cokriging estimator, which is based on the extension of kriging estimation. The term kriging and 

cokriging is reserved for linear regression using data on the same and different attributes, 

respectively.  In the next sections, we present the basic outlines of cokriging, the linear 

coregionalization model, and cosimulation, a simulation procedure that produces realizations 

taking into account the correlation between the RFs. 
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2.5.2 Cokriging 

Let 𝐙1 =  𝐳11 ,… , 𝐳1𝛼  and 𝐙2 =  𝐳21 ,… , 𝐳2β  two spatial RFs at locations 𝐗1 =  x11 ,… , x1𝛼  

and 𝐗2 =  x21 ,… , x2𝛽  respectively. The estimation of dependent variable 𝒛1 according to the 

explanatory (independent) variable 𝒛2 at a query point xq  is considered a linear combination of 

both RFs at the sample points: 

𝐳 1𝑞 =  λ1𝑖𝐳1𝑖

𝛼

𝑖=1

+ λ2𝑗𝐳2𝑗

𝛽

𝑗=1

 (2.10)  

where λ1𝑖  and λ2𝑗   are the cokriging weights that must be defined and assigned to 𝐳1𝑖  and 𝐳2𝑗  

respectively. Then, the error of estimation can be defined by the difference between the 

estimated and the unknown random variables at query points. Even if the multivariate 

distribution of the error of estimation is unknown, it is possible to describe certain moments of 

the linear combination of equation 2.10, such as the mean and the variance, by knowing certain 

moments of the random variables involved in the combination. In order the estimation to be 

unbiased, two conditions must be satisfied: The sum of λ1𝑖  equals to 1 and the sum of λ2𝑗  

equals to 0. Moreover, the weights must be such that the error variance is the smallest 

possible. The minimization of error variance in cokriging estimation can be faced as a classical 

optimization problem with two constrains of unbiassedness. The optimization problem of the 

cokriging system requires the definition of  𝐙1-auto-covariance, 𝐙2-auto-covariance and the 

cross-covariance between the RFs 𝐙1 and 𝐙2. 

2.5.3 Linear Model of Coregionalization 

In cokriging estimation, it is clear that the variograms of the two random variables should be 

known (be modeled) and the cross-variogram should be defined. The auto- and cross-

variograms may be defined by the linear model of coregionalization (LCM), a method in which 

all the direct and cross-variograms are derived from linear combinations of m basic direct 

variograms. In contrast to other coregionalization models, the LCM is often used in practice 

(Chiles and Delfiner, 1999; Wackernagel, 2003) due to its simplicity and versatility. 

In order to define the LCM, the individual variograms must be constructed using the 

same basic models as follows: 
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𝛾z1
 𝐡 = 𝑢0𝛾0 𝐡 + 𝑢1𝛾1 𝐡 +⋯+ 𝑢𝑚𝛾𝑚 𝐡  

𝛾z2
 𝐡 = 𝑣0𝛾0 𝐡 + 𝑣1𝛾1 𝐡 +⋯+ 𝑣𝑚𝛾𝑚  𝐡  

𝛾z1z2
 𝐡 = 𝑤0𝛾0 𝐡 + 𝑤1𝛾1 𝐡 +⋯+ 𝑤𝑚𝛾𝑚  𝐡  

(2.11)  

where u, v and w are coefficients, possible negative and m is the number of variograms used to 

define the coregionalization model.  

In matrix notation, the above equation can be rewritten as: 

 
𝛾z1

𝛾z1z2

𝛾z1z2
𝛾z2

 =  
𝑢0 𝑤0

𝑤0 𝑣0
 𝛾0 𝐡 +  

𝑢1 𝑤1

𝑤1 𝑣1
 𝛾1 𝐡 +⋯+  

𝑢𝑚 𝑤𝑚
𝑤𝑚 𝑣𝑚

 𝛾𝑚  𝐡  (2.12)  

The coefficients must be chosen so that all the matrices in the above equation are positive 

definite in order to ensure the linear model of coregionalization is also positive definite, thus: 

𝑢𝑗 > 0 ,𝑣𝑗 > 0 ,  𝑢𝑗𝑣𝑗 > 𝑤𝑗𝑤𝑗  for all j from 0 to m. 

Due to the non-uniqueness of the solution (different coefficients may result in the same 

variogram model), it is very difficult to design a completely automated process. Thus, usually 

the basic models are first chosen by the practitioner and then only the coregionalization 

matrixes need to be determined based on the experimental data (Emery, 2010). More 

particularly, a trial and error procedure can be applied to conclude infer the coefficients of 

LCM: First, calculate the sample cross-variogram between the two variables and propose the 

coregionalization coefficients. Then, test if the model of coregionalization fits satisfactory with 

the sample cross-variogram.  

Another important thing is that in order to calculate the experimental cross-variogram, 

it is necessary to have information on both variables at the same locations. As a result, in a 

heterotopic data configuration, as is the usual case in practical applications, it is not possible to 

infer the cross-variogram. Instead, in such a situation, one could krige the unknown locations 

and then use this set of data to compute the experimental cross-variograms. 

2.5.4 Cosimulation 

Cosimulation is a simulation process that allows the integration of different types of data. Verly 

(1993) proposes the Sequential Gaussian Cosimulation (SGC), a cosimulation method that 

overcomes the difficulties of previous approaches to incorporate correlations between 

variables, by the generation of independent realizations of these interest variables. SGC is a 
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simple extension of SGS that combines sequential simulation and cokriging to generate 

realizations of several continuous variables simultaneously.  

The implementation of SGC requires the assumption of multinormality of RFs. 

Therefore, the RFs are transformed to normal scores and it is supposed that they are jointly 

Gaussian. Next, the auto- and cross-variograms of normal scores are calculated and a 

coregionalization model is fitted.  At the final step, cosimulation uses cokriging to compute an 

estimate of the primary variable at a query point from surrounding actual and simulated values 

and also using nearby values of the secondary variable. In this way, different realizations are 

generated using various random paths, keeping the correlation between the RFs. The pdf of 

cosimulation can be written as: 

𝑓𝜈 𝐳1,1, 𝐳1,2,… , 𝐳1,𝛼 |𝐳2,1, 𝐳2,2,… , 𝐳2,𝛽 = 

= 𝑓1 𝐳1,1|𝐳2,1, 𝐳2,2,… , 𝐳2,𝛽 𝑓1|1 𝐳1,2 𝐳1,1, 𝐳2,1, 𝐳2,2,… , 𝐳2,𝛽 ∙ 

∙ 𝑓1|2 𝐳1,3 𝐳1,1, 𝐳1,2, 𝐳2,1, 𝐳2,2,… , 𝐳2,β ⋯ ∙ 𝑓1|𝛼−1 𝐳1,𝛼  𝐳1,1, . . , 𝐳1,α−1, 𝐳2,1, 𝐳2,2,… , 𝐳2,β  

(2.13)  

where 𝐳1,𝑖  is the dependent variable and 𝐳2,𝑗  the explanatory variable while the α and β 

indicate the number of query points for variables 𝐳1 and the number of known points (or 

nearby estimated points)  𝐳2. 

Alternative algorithms of SGC have been proposed in order to overcome difficulties of 

SGS such the modeling of cross-variograms (Almeida and Frykman, 1994), the assumption of 

stationarity (Chambers et al., 1994) and the transformation of RFs to normal scores (Soares, 

2001).  

Emery and Silva (2009) present a hybrid model to cosimulate continuous and categorical 

variables. Their proposal faces the limitations of previous studies (Freulon et al., 1990; Dowd, 

1994 and 1997; Bahar and Kelkar, 2000) to incorporate the information between the 

continuous and categorical variables in realizations.  
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3 The General Discrete Inverse Problem  

3.1 Introduction 

The study of a physical system can be divided into (i) the parameterization of the system, (ii) 

the forward modeling and (iii) the inverse modeling. Parameterization of a system means the 

definition of the parameters that describe the physical system completely, while the forward 

modeling is the solution of a physical law that governs the system and allows to make 

predictions of the physical variable for given parameter values. Inverse modeling uses the 

response of the physical variable to infer the actual values of the model parameters.  

The discrete inverse problem involves a finite number 𝑛 of nested subunits and data at 

𝑝 points allowing the analysis of the system. In mathematical notation, the model of the 

physical system under study g with boundary conditions u can be described by the parameters 

of the system such as a parameter set m = {m1, …, mn} and their spatial coordinates x over a 

time t. Then, the forward solution of the system is: 

𝐝 = 𝐠 𝐱, 𝑡,𝐮;𝐦  (3.1)  

In geosciences, the objective of inverse problem is to estimate the spatial distribution of 

the parameters m and their moments over the time, using all the available data such as the 

physical law, moments and possible measurements of parameters as soft data, but also 

measurements of state variables (e.g. head measurements) as hard data. 

For simplicity, given a set of observations of a physical variable d = {d1, .., dp}, the 

equation 3.1 can be written:  

𝐝 = 𝐠 𝐦1,… ,𝐦n  (3.2)  

The function g maps the 𝑛 parameters to the 𝑝 measurements of the physical variable. 

This way, the discretized model space M is mapped into the space of observations D. The 

simplest way to achieve this is to consider that M is mapped in D linearly. Different criteria 

may be used for the fitting of the estimated parameter set to the physical system. In the next 

section, we focus on the least squares criterion, however, it is noted that an alternative one is 
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the least absolute difference of error which is more robust in outliers but more difficult to work 

with it (Woodbury et al., 1987).  

3.2 The Least Squares Criterion 

In the linear case, equation 3.1 can be written as: 

𝐝obs = 𝐆𝐦 (3.3)  

where 𝐆 is a 𝑝 x 𝑛 known linear operator: 

𝐆 =  

𝐺11 ⋯ 𝐺1𝑛

⋮ ⋱ ⋮
𝐺p1 ⋯ 𝐺𝑝𝑛

  (3.4)  

Solving the equation 3.3, the perfect case is to find a parameter set that fits the data exactly. 

This is achieved when the number of observations equals with the number of unknown 

parameters (𝑝 =  𝑛) and the parameters are independent (e.g. any column of 𝐆 cannot be 

written as a linear combination of the other columns). Mathematically, it means that the 

number of observations must be equal to the rank of matrix 𝐆. Then, a unique solution to the 

system of linear equations 3.3 can be found, which fits the observations exactly. However, this 

is impossible in most real applications and practitioners must estimate a parameter set that fits 

the observations adequately. In the general case, the expression of estimated parameter set is: 

𝐦 =  𝐆−g𝐝obs  (3.5)  

where 𝐆−g  the is the generalized inverse matrix of 𝐆 which maps the observations to the space 

of M.  The simplest method to estimate the parameter set is the ordinary least squares (OLS) 

regression. OLS is a method to evaluate the optimum parameter set by minimizing the sum of 

square differences between the measurements and the response of the system.  

3.2.1 Overdetermined Optimization Problem 

In classical linear optimization problems, the number of observations is larger than the rank of 

𝐆 matrix (𝑝 > 𝑟 >  𝑛), or, larger than the number of parameters (𝑝 >  𝑛) in the case where 

these parameters are independent. In this case, the system of linear equations is inconsistent 
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and is referred as overdetermined. More specifically, 𝐝obs  is not a linear combination of the 

columns of 𝐆, hence the equality sign of equation 3.3 is violated and it is used to be written as: 

𝐝obs ≅ 𝐆𝐦 (3.6)  

Then, we are looking for an estimation of parameter 𝐦  which has the minimum least square 

error. The equation 3.6 is written as: 

𝐝obs = 𝐆𝐦 + 𝐞 (3.7)  

where 𝐞 is random noise known as residual and m is a deterministic but unknown parameter 

set. The objective function to be minimized is:    

𝐒 𝐦 =  𝐝obs − 𝐆𝐦  
𝑇 𝐝obs − 𝐆𝐦   (3.8)  

Setting the expanded derivative of the objective function equal to zero, we have (see Appendix 

A.4):  

𝐦 =  𝐆T𝐆 −1𝐆T𝐝obs  (3.9)  

Moreover, it should be shown that the second order derivative of the objective function 

(Hessian) is positive definite (𝐆T𝐆 > 0) in order to prove the estimated 𝐦  is the minimum of 

the objective function.  

The problem is explained geometrically in Figure 3.1. The plane is an n-dimensional 

subspace of D and it represents all possible vectors Gm, which constitute the range R(𝐆) of 𝐆, 

or the column space of 𝐆. The vector 𝐆𝐦  is the orthogonal projection of 𝐝obs  in the column 

space of 𝐆 and the residual 𝐞 =  𝐝obs − 𝐆𝐦   is vertical to 𝐆𝐦 . It is noted that projection 

ensures the minimum distance between two vectors in a Euclidean space. Due to the 

orthogonality of 𝐆T  and  𝐝obs − 𝐆𝐦  , the inner product of them equals to zero. Therefore, the 

best OLS estimation of m can be written as: 

Normal Equation: 𝐦 =  𝐆T𝐆 −1𝐆T𝐝obs  (3.10)  

It is noted that 𝐦  solves exactly the equation 3.3 when the linear system is consistent. 

Also, considering the mean of the estimator:` 

E 𝐦  = E  𝐆T𝐆 −1𝐆T𝐝obs  =  𝐆T𝐆 −1𝐆TE 𝐝obs   (3.11)  
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=  𝐆T𝐆 −1𝐆TE 𝐆𝐦+ 𝐞 =  𝐆T𝐆 −1𝐆T𝐆𝐦 +  𝐆T𝐆 −1𝐆TE 𝐞 = 𝐦 

Thus,  𝐦  is referred as BLUE of m.  

 

 

Figure 3.1: The geometrical interpretation of overdetermined least squares estimation. When 

𝑛 < 𝑝, the range of 𝐆 is a subspace of data space D, so we can have no exact solution to 

𝐝obs = 𝐆𝐦. We then solve 𝐆T 𝐝obs − 𝐆𝐦  = 0 to find 𝐦  with the smallest error.  

 

The equation 3.10 implies that the matrix 𝐆T𝐆 is nonsingular. This happens only when the 

column rank of matrix 𝐆 equals the number of parameters to be estimated (all parameters are 

linearly independent), so we call the problem purely overdetermined. Then, we can find a 

unique estimator 𝐦  with the minimum least square error and the generalized inverse matrix of 

𝐆 is:  

𝐆−g ≡  𝐆T𝐆 −1𝐆T  (3.12)  

 

  



39 
 

3.2.2 Underdetermined Optimization Problems 

Unlike the previous case, most geoscientifical optimization problems are underdetermined: the 

number of linearly independent unknown parameters (column rank of 𝐆) is larger than the 

number of observations (𝑟 > 𝑝).  

 

Figure 3.2: The geometrical interpretation of underdetermined least squares. When 𝑛 > 𝑝 and 

𝑟 > 𝑝, the range of 𝐆 covers the entire data space, so we can find infinite solutions to 

𝐝obs = 𝐆𝐦. We may, then, reasonably choose the minimum norm solution (m1). 

 

Thus, the system of linear equations 3.3 has infinite solutions and we should add a-priori 

information to obtain a unique solution. A possible a-priori information is our expectation that 

the estimator is the simplest one (Menke, 1984, pp. 49).  The Euclidean length 𝐦 T𝐦  is a 

quantity that identifies the simplicity of the solution. Among the solutions, we consider that the 

best solution is the solution with minimum length. The optimization problem now is to find the 

minimum length of m with the constrain that it fits the data exactly. It is proven (see Appendix 

A.5) that the best OLS solution in this case is: 

𝐦 = 𝐆T 𝐆𝐆T −1𝐝obs  (3.13)  

The generalized inverse matrix of 𝐆 of the solution m is now:  



40 
 

𝐆−g  ≡ 𝐆T 𝐆𝐆T −1 (3.14)  

3.2.3 Ill-conditioned, Ill-posed systems and regularization 

Ill-conditioned linear systems are defined as those which are unsolvable due to limits on 

computational precision. In practice, the generalized matrix 𝐆−g  cannot be computed because 

𝐆𝐆T  is a singular or nearly singular matrix. This happens when the condition number of 𝐆, 

which is the ratio of its largest and smallest singular values, is very large. Intuitively, the 

solution of the linear system will magnify any noise in the data. The system is thus affected 

significantly by small changes in the observations, which cause large variations in the estimator 

of the parameter set.  

Well-posed systems are defined as those which the solution exists, it is unique and it 

depends continuously on data after the definition of Hadamard (1923). Problems that are not 

well-posed are termed ill-posed. A well-posed problem may be ill-conditioned due to precision 

or a well-conditioned problem and vice versa.  

The objective in these problems is not only to find an unbiased estimator, but also one 

with a stable behavior (e.g. the estimator will be a good one even if a small change occurs on 

the observations). In other words, the estimator should have reduced variance. A common 

practice to do this is by shrinking its coefficients (model parameters) by a constant factor. This 

kind of regularization introduces bias in the estimator in the form of extra information and is 

added to the objective function as a penalty term. The interpretation of the above 

regularization is based on the acceptance that the more complex the estimator, the more is 

specialized on the particular measurements. But if the result of estimation is overfitting, then 

this effect should be penalized. The regularized objective function is expressed as: 

𝐒 𝐦 =  𝐆𝐦 − 𝐝obs  
2 + 𝜆𝐦 2 (3.15)  

where 𝜆 controls the amount of shrinkage of the parameter length. After the minimization of 

the objective function, the resulting estimator, also known as ridge estimator (Hoerl and 

Kennard, 1968; 1970a; 1970b), is written as:    

𝐦 ridge =  𝐆T𝐆 + 𝜆𝐈 −1𝐆T𝐝obs  (3.16)  
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where I is 𝑝 x 𝑝 identity matrix. In practice, the inclusion of a shrinkage parameter makes the 

problem non-singular. In the above equation, bias is introduced by the term 𝜆𝐈: the estimator is 

not penalized when 𝜆 is zero, while, with large values of 𝜆, the parameters are heavily 

constrained.  

The regularized objective function can also be formulated into the following constrained 

optimization problem: 

min 𝐆𝐦 − 𝐝obs  
2 

subject to 𝐦 2 < 𝑐 ,  

where 𝑐 is a positive value. 

(3.17)  

The two optimization problems have the same solution when 𝑐 = 𝐦 ridge
2 . Then, the value of 𝑐 

is the radius of the circle in Figure 3.3 as explained below. 

In a more statistical view, the regularized objective function (3.15) expresses the 

sources of errors in the model prediction. The errors can be divided into errors due to bias and 

errors due to the model (parameter) variance, while 𝜆 is the adjustment parameter of bias-

variance tradeoff. The geometric interpretation of this dilemma is depicted in Figure 3.3.  The 

estimators into the inner ellipses have a smaller residual sum of squares (RSS) and RSS is 

minimized at OLS estimate in the center. The circle in the middle indicates the penalty term. 

The optimal point is one which is a common point between ellipse and circle and gives a 

minimum value for the above function as well. 

 

Figure 3.3: Geometric interpretation of bias-variance tradeoff.   
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3.3 Statistical Aspects of Least squares  

3.3.1 Weighted Least Squares and Maximum Likelihood Estimation 

If we consider that the observations 𝐝obs  are not perfect measurements but rather they 

possess white noise (i.e. random errors 𝐞𝑗  independent of each other with zero mean and 

variance 𝜎j
2), it is reasonable to weight the squared observation errors according to their 

variance.  A squared error with small variance indicates a more accurate observation and thus it 

is weighted heavier than others.  

In this case, the error weighting matrix is: 

𝐖D =  

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑝

  (3.18)  

If 𝐂D  is the positive definite and symmetric matrix 𝐖D
T𝐖D  used to weight the squared errors, 

then the objective function to be minimized in the overdetermined case becomes:    

𝐒 𝐦 =  𝐝obs − 𝐆𝐦  
𝑇𝐂D

−1 𝐝obs − 𝐆𝐦  
 

(3.19)  

Then, the OLS estimator is given by the expression (see Appendix A.6): 

𝐦 w =  𝐆T𝐂D
−1𝐆 −1𝐆T𝐂D

−1𝐝obs  (3.20)  

where 

𝐂D
−1 =

 
 
 
 
 
 

1

𝜎1
2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝜎p
2 
 
 
 
 
 

 (3.21)  

But, adding random errors to the observations, transforms them to random variables 

and their pdf’s are used to define the joint distribution that characterizes the solution space. 

Working on a sample of size 𝑝 (𝐝1 ,𝐝2,… ,𝐝𝑝), each random variable 𝐝𝑗  belongs 

to𝑓 𝐝obs |𝐦w and now the objective is to find the parameter set that maximizes the equation: 
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𝐿 𝐦𝑤 ;𝐝obs  =  𝑓 𝐝𝑗 |𝐦w 

p

i=1

 (3.22)  

In this case, L is known as the likelihood function, because it measures the most likely model as 

parameterized by m and 𝐝obs . Under the assumption that the errors are independently 

distributed and 𝐞𝑗~𝑵(0,σ𝑗
2), substitution leads to: 

𝑓 𝐞 =  
1

 2π𝑝  𝐂D 
exp −  

1

2
 𝐞 − 𝟎 𝑇𝐂D

−1 𝐞 − 𝟎   

=  
1

 2π𝑝  𝐂D 
exp −  

1

2
 𝐝obs − 𝐆𝐦 

𝑇𝐂D
−1 𝐝obs − 𝐆𝐦  

 

(3.23)  

where  𝐂D  is the determinant of 𝐂D . 

Thus, the distribution of 𝐝obs  parameterized by m is 𝑵(𝐆𝐦,𝐂D). 

The objective now is to maximize the equation: 

𝐿 𝐦;𝐝obs  =   
1

 2πσ𝑗
2

exp −  
 𝐝𝑗 −  𝐆𝐦 𝑗  

2

2σ𝑗
2  

𝑝

𝑗=1

 

(3.24)  

The maximization of the likelihood is equivalent to the minimization of the exponent 

 𝐝obs − 𝐆𝐦 
𝑇𝐂D

−1 𝐝obs − 𝐆𝐦 , which is the objective function of the weighted least squares 

criterion in 3.19 above. That is, the maximum likelihood estimate of the model parameters is 

simply the weighted least squares solution, where the weighting matrix is the inverse of the 

covariance matrix of the data. If the data are uncorrelated with equal variance, then the 

maximum likelihood solution coincides to the simple least squares solution. 

If the linear problem is underdetermined, there may be infinite solutions to the least 

squares inverse, as seen in section 3.2.2. To solve this underdetermined problem, a priori 

information can be added that causes the distribution of the data to have a well-defined peak. 

In this case, the solution is given by: 

𝐦w = 𝐆T𝐂D
−1 𝐆𝐂D

−1𝐆T −𝟏𝐝obs  (3.25)  
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3.3.2 A-priori information in regularization 

Prior information on the observations in the form of weights may also be used in ill-conditioned 

systems (3.2.3). Weighting the observations, the ridge estimator is written as: 

𝐦 w =  𝐆T𝐂D
−1𝐆+ 𝜆𝐈 −1𝐆T𝐂D

−1𝐝obs  (3.26)  

In a similar way, weights on parameters (𝐖M ) could also be used if prior information exists 

about them.  In this case, the regularized objective function is written:  

𝐒d,m =  𝐝obs − 𝐆𝐦  
T𝐂D

−1 𝐝obs − 𝐆𝐦  + λ𝐦 T𝐂M
−1𝐦  

(3.27)  

and the regularized estimator resulting from minimizing the above objective function is: 

𝐦 w =  𝐆T𝐂D
−1𝐆+ 𝜆𝐂M

−1 −1𝐆T𝐂D
−1𝐝obs  (3.28)  

where 𝐂M  is the positive definite and symmetrical matrix 𝐖M
T𝐖M . 

Furthermore, we have seen in underdetermined problems (section 3.2.2), that the 

objective is to find the solution with the minimum length; that is to say, we use the information 

that the length of parameters should be close to zero. However, possible prior knowledge of 

the length of parameters could be used instead, even if the resulting estimator will not have 

the minimum length parameter set. For example, an a-priori set of parameters 𝐦pr  can be used 

to express a desirable length instead of the one close to zero. This practice is adopted mainly in 

ill-conditioned systems when a-priori information is crucial in order to solve complex problems. 

In this case, the regularized objective function can be written: 

𝐒d,m =  𝐝obs − 𝐆𝐦  
T𝐂D

−1 𝐝obs − 𝐆𝐦  + λ 𝐦pr −𝐦  T𝐂M
−1 𝐦pr −𝐦   

(3.29)  

The regularized estimator is now (see Appendix A.7): 

𝐦 w = 𝐦pr +  𝐆T𝐂D
−1𝐆+ λ𝐂M

−1 −1𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦

pr   (3.30)  

We note that the equation 3.30 can also be written as: 

𝐦 w = 𝐦pr + 𝐂M𝐆
T 𝐆𝐂M𝐆

T + 𝐂D 
−𝟏 𝐝obs − 𝐆𝐦

pr   (3.31)  

after the matrix inversion identity (see Appendix A.3): 
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𝐂M𝐆
T 𝐆𝐂M𝐆

T + 𝐂D 
−𝟏

=  𝐆T𝐂D
−1𝐆+ λ𝐂M

−1
 
−1
𝐆T𝐂D

−1 (3.32)  

Due to the computation efficiency, the equation 3.31 is preferable when the number of 

observations 𝑝 is smaller than the number of parameter set 𝑛, since the demanding 

computation of  𝐂M
−1 is avoided.  

Technically, the existence of prior knowledge about the measurements and the 

parameter set is helpful in order to derive the generalized inverse matrix. In a deterministic 

view of least squares, a conceptual problem is how to define the weights, since observations 

and parameters are not treated as random variables. However, equations hold anyway and 

weighting can be seen as an implementation of our expertise on the system, without the 

assumption of randomness. 

3.4 Nonlinear least squares 

In nonlinear problems, the estimator or the solution is obtained by an iterative process, 

using either a deterministic or a stochastic method. In deterministic methods, the objective 

function is linearized (weakly nonlinear case) around a parameter set 𝐦∗ and a gradient 

method is chosen to produce a sequence of iterates 𝐦𝑖 . The minimization of the objective 

function requires such a sequence of iterates 𝐦𝑖 , for which the corresponding sequence of 

objective function values is monotonically decreasing. A positive definite second order 

derivative of the objective function (Hessian) guarantees the condition of decreasing of 

objective function values between two neighborhood parameter sets. Among the gradient 

methods, the Newton method is the only well-defined method because it uses directly the 

Hessian to produce the sequence of iterates 𝐦𝑖 . The Newton method approximates locally the 

objective function with a quadratic form at each 𝐦𝑖  and the minimization of the approximated 

objective function is done at that point. All the other gradient algorithms aim to emulate the 

local convergence properties of Newton’s method.  

The gradient methods work by following the steps described in the flow chart of Figure 

3.4. The first partial derivative of the objective function at a given parameter set 𝐦𝑖  indicates 

the gradient or the slope of the objective function at 𝐦𝑖 . In order to find the next parameter 

set closer to the global minimum of the objective function, an opposite direction from the 

gradient should be followed defining the search direction sd. An important component of the 
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gradient methods is the step size 𝐚𝑖  to be taken in the indicated direction. Different algorithms 

to choose the step size have been proposed producing various modified gradient methods. A 

small step will increase the convergence time, while a large step won’t guarantee that the 

objective function, given the new parameter set, will be closer to the global minimum. 

The number of iterations also depends on the stopping criteria of the algorithm is used. 

Using a threshold as tolerance, the algorithm stops if the tolerance is crossed. A very small 

tolerance increases the computation cost of the estimation while a large tolerance produces a 

large error in the estimation. Usually, the tolerance is the value that the iterations converge or 

the difference between successive estimations is not significant. 

 

 

Figure 3.4: Generic diagram of gradient methods. 

The computation of Jacobian or sensitivity matrix is necessary for gradient methods and 

useful due to the fact that it involves important information about the reliability of both state 



47 
 

variables and model parameters. Jacobian can be obtained by the direct derivation of physical 

model with respect to the model parameters, or by adjoint state method and finite differences. 

An analytical discussion and comparison of these methods can be found in Carrera et al. (1990) 

and Carrera and Medina (1994). Generally, the choice of the appropriate method depends on 

the nature of the physical law and the available information on variables involved. It should be 

noticed that the direct or finite difference method requires the solution of the forward problem 

𝑛 + 1 times, while the adjoint method requires 𝑝 + 1 forward runs. Therefore, adjoint state 

method is preferred when the number of observations (𝑝) is smaller than the model 

parameters (𝑛).  

More particularly, in the case of non-linear least squares problems, the objective of the 

iterative process is to find a parameter set in the hyperplane which is tangential to the surface 

of error (Figure 3.5). The slope of tangent plane is described by the Jacobian 𝐆𝑖  of error 

function 𝐫 𝐦 = 𝐝obs − 𝐠 𝐦 , where 𝐠 𝐦𝑖  is the solution of the forward model using the 

parameter set 𝐦𝑖 .  The new parameter set 𝐦𝑖+1
 in the tangent plane should correspond to the 

point of the data space that is closest to the origin. This is a generalization of the linear case 

(Figure 3.1) where the image of g was a hyperplane embedded in the data space. Using Taylor 

series, a first order approximation of 𝐫 𝐦  around 𝐦𝑖
 is written as: 

𝐫 𝐦𝑖 + 𝛅t ≈ 𝐝obs − 𝐠 𝐦
𝑖 − 𝐆𝑖𝛅𝐭 (3.33)  

The desirable parameter set 𝐦𝑖+1
 in the tangent plane can be found by the projection of the 

origin to the tangent plane. Then, the product 𝐆𝑖
T𝛅𝐭 𝐫 𝐦

𝑖 + 𝐆𝑖𝛅t  equals to zero. 
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Figure 3.5: Geometric interpretation of an un-weighted (𝐂D = 𝐈) nonlinear least squares 

problem. The error function 𝐫 𝐦  defines a surface in Rp (here p = 3 ). The solution to the least 

squares problem is the point on the surface that is closest to the origin O. At the point 𝐫 𝐦𝑖  

the surface is locally approximated by the tangent plane spanned by the columns of 𝐆𝑖 .The 

point on the tangent plane closest to the origin is found by the orthogonal projection of the 

negative error r(𝐦𝑖): 𝐆𝑖𝛅t = 𝐆𝑖 𝐆𝑖
T𝐆𝑖 

−1
𝐆𝑖

T −𝐫 𝐦𝑖  . 

 

It results that: 

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 
−1
𝐆𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖   (3.34)  

Where 𝐆𝑖  is a matrix with the derivatives of g with respect to 𝐦 at ith iteration (Jacobian or 

Sensitivity matrix):  

𝐆𝑖 =

 
 
 
 
 
 
∂𝐠1(𝐦)

∂𝐦1
𝑖

⋯
∂𝐠1(𝐦)

∂𝐦n
𝑖

⋮ ⋱ ⋮
∂𝐠𝑝(𝐦)

∂𝐦1
𝑖

⋯
∂𝐠𝑝(𝐦)

∂𝐦n
𝑖  
 
 
 
 
 

 (3.35)  

The above method is known as Gauss-Newton method and the same result can be derived 

by linearly approximating the vector of functions 𝐫, using Taylor's theorem (see Appendix A.8). 
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The Gauss-Newton method can be considered as an approximation of the Newton method, 

which uses the second derivative of forward model: 

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 − 𝐇𝑖
T𝐂D

−1  𝐝obs − 𝐠 𝐦
𝑖   

−1

𝐆𝑖
T𝐂D

−1  𝐝obs − 𝐠 𝐦
𝑖   (3.36)  

where 𝐇𝑖  is the Hessian matrix 𝑛 x 𝑛 or the second-order partial derivatives of forward model: 

𝐇𝑖 =

 
 
 
 
 
 
∂2𝐠 𝐦 

∂𝐦1
𝑖 2 ⋯

∂2𝐠 𝐦 

∂𝐦1
𝑖 ∂𝐦𝑛

𝑖

⋮ ⋱ ⋮
∂2𝐠 𝐦 

∂𝐦𝑛
𝑖 ∂𝐦1

𝑖 ⋯
∂2𝐠 𝐦 

∂𝐦𝑛
𝑖 2

 
 
 
 
 
 

 (3.37)  

In the first parenthesis of the equation 3.36, the first term is more important than the second 

one, which is close to zero either because the error is very small, or the matrix 𝐇𝑖  has very small 

values due to the quasi-linearity of the forward model. Assuming that the second term equals 

to zero, the method is an approximation of Newton method as mentioned before. 

By the same process, the optimal solution of the objective function 𝐒d,m  in the case of 

an ill-conditioned system is (see Appendix A.9): 

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 + λ𝐂M
−1 

−1
𝐆𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖𝐦
𝑖  (3.38)  

But, while in the linear case one step is needed to obtain the ridge estimator and the parameter 

𝜆 is defined once, in nonlinear estimation Levenberg (1944) and Marquardt (1963) propose the 

parameter 𝜆 could be modified according to the improvement of estimation. Small values of 𝜆 

result in a Gauss-Newton method while large values of 𝜆 result in a gradient descent update.     

In strongly nonlinear problems the gradient methods usually get stuck at local optima 

depending on the starting parameter set 𝐦0, therefore the choice of 𝐦0 is an important factor 

for the convergence of the sequence of iterates. Gradient descent methods have better 

convergence than the Gauss-Newton method when the initial estimation is far than the 

optimum while the Gauss-Newton method is more efficient close to the optimum. Therefore, 

the Levenberg–Marquardt algorithm is preferable. The Newton method is more effective than 

both gradient descent and Gauss-Newton methods in complicated forward problems. However, 

the computation of Hessian matrix may be a demanding task with high computational cost and 

therefore the quasi-Newton methods are preferred, where the Hessian is approximated in 
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terms of the first derivative of forward model and an appropriate step size is chosen to derive 

the new estimation parameter set (e.g. Fletcher, 1987; Bonnans et al., 2006). Carrera and 

Neuman (1986) propose a combination of quasi-Newton and conjugate gradient methods. 

Their algorithm has much smaller computation cost than other gradient methods, however, 

they conclude that the Levenberg-Marquardt method is the most robust one. 

In order to overcome the above problems of gradient methods, alternative stochastic 

methods have been proposed such as the simulated annealing, McMC and genetic algorithms 

GAs. All these methods are also iterative but perform a stochastic search for the optimal 

solution instead.  

Simulated annealing is an optimization method which allows to a certain degree the 

move from a better point of the objective function to a worse one in order to escape from local 

optima. The probability of accepting a move decreases as the values of objective function 

increase; therefore it can be seen as a time inhomogeneous Markov chain. However, simulated 

annealing can also be modeled as time-homogeneous Markov chain. In this case, the number of 

iterates is not accounted in the transition probability from one state to another. McMC 

algorithms use a probabilistic rule to select the next candidate model in a chain. As explained in 

the next sections, apart from searching for an optimal solution, McMC methods are also 

appropriate for sampling the posterior distribution.  

Finally, heuristic methods have been developed such as GAs in order to search for global 

optima. GAs mimic the process of natural evolution (Holland, 1975; Goldberg, 1989). More 

specific, a random population of candidate solutions is evolved toward better solutions 

iteratively. In each iterate, a new population is generated by the previous and it is called as 

generation. The mechanic to produce a new generation based on the evaluation (using an 

objective function) of the individuals of the previous generation known as chromosomes. The 

chromosomes of the previous generation with the best fitness are chosen to produce the next 

generation by applying genetic operations (mutation and crossover).The fundamental 

difference between GAs and other stochastic methods is that GAs work with a population of 

candidate solutions while the other methods try to optimize an initial estimation.  Furthermore, 

McMC methods use probabilistic rules to sample the posterior distribution while the objective 

of GAs is to find global optima. 
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4 Bayesian framework for inversion 

4.1 Bayes’ rule in a physical system 

In a probabilistic formulation, the observations, the response variable 𝐝 = 𝐠(𝐦) and the 

parameter set of a system are considered as random variables and symbolized as 𝐝obs , 𝐝|𝐦 

and 𝐦 respectively. The vector of 𝐝obs  is considered as the response from a particular 

parameter set, which has to be estimated. As mentioned in section 3.3.1, the distribution of 𝐝 

given 𝐦 can be defined by assuming a known error distribution of the observations. Now, we 

also consider that the parameter set has a known prior distribution 𝑓 𝐦 . Then, according to 

Bayes’ rule, which is based on the definition of conditional density, the a-posteriori distribution 

of the parameters is defined as: 

𝑓 𝐦|𝐝 =
𝑓 𝐝|𝐦 𝑓 𝐦 

𝑓 𝐝 
 (4.1)  

where 𝑓 𝐝|𝐦  is the likelihood of data and 𝑓 𝐦  is the prior distribution of the parameter set. 

Repeating the calculation of equation 4.1 for different parameter sets coming from their prior 

pdf, the result is the construction of the a-posteriori distribution of 𝐦. The denominator has a 

constant value for different parameter sets and ensures that the posterior density adds up to 

one and therefore is called normalization constant. Since the denominator is constant, equation 

4.1 can be written as:   

𝑓 𝐦|𝐝 ∝ 𝑓 𝐝|𝐦 𝑓 𝐦  (4.2)  

Then, the best estimator of 𝐦 is the estimator that maximizes the a-posteriori probability 

𝑓 𝐦|𝐝 . Therefore this method is called Maximum A-posteriori Probability (MAP).  

 The Bayesian approach to be applied differs according the available prior information 

and the objective of the research. In optimization problems, researchers often use strong 

informative priors, while weakly informative priors are used to generate realizations in order to 

sample the posterior distribution.    
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Generally, in the Bayesian framework for inversion, the proposed parameter sets are 

evaluated by both their prior pdf and their likelihood, while in the maximum likelihood method 

of section 3.3.1, all the proposed parameter sets are considered equiprobable. 

4.1.1 Linear theory with Gaussian prior  

Assuming that the response variable is related with the parameter set with a linear 

equation: 𝐝 = 𝐆𝐦 + 𝐞 , where 𝐆 is a known linear operator and 𝐞 is a random variable 

following a Gaussian distribution with zero mean and covariance 𝐂D . In the Bayesian 

formulation, the vector of 𝐝obs  is considered as the response from a particular realization of a 

parameter set to be estimated. Thus, we assume that 𝐝~𝑵 𝐝obs ,𝐂D . Since we know the prior 

distribution 𝑓 𝐦  we can generate a realization of 𝐦 and the corresponding response values 

𝐝 =  𝑑1,𝑑2,… ,𝑑𝑝  where each random variable 𝑑𝑗  belongs to 𝑓 𝑑𝑗 ;𝐦 .  

Theoretically, the prior and the likelihood could have any form. However, it is a common 

practice to choose a prior for which the posterior has the same algebraic form as the prior. This 

practice results in a more convenient calculation of the posterior distribution and this prior is 

called a conjugate prior. Assuming that the prior distribution of 𝐦 is Gaussian with mean 𝐦pr  

and covariance 𝐂M , we can write:  

𝐦 = 𝐦pr + 𝐯  (4.3)  

with 𝐯 the error of the prior 𝐦, independently distributed with 𝐯~𝑵(0,𝐂M ) and 𝐂M  a 𝑛 x 𝑛 

known spatial covariance matrix of 𝐦 (i.e., expected variabilities given by the variogram under 

the geostatistical approach). Thus, the posterior probability is proportional to: …  

𝑓 𝐦|𝐝 ∝ 𝑓 𝐝|𝐦 𝑓 𝐦  

∝ exp  𝐆𝐦− 𝐝obs  
T𝐂D

−1 𝐆𝐦− 𝐝obs   ∙ exp  𝐦 −𝐦p𝐫 T𝐂M
−1 𝐦 −𝐦p𝐫    

(4.4)  

It is obvious that the posterior distribution has a Gaussian form. The maximization of 

posterior is equivalent to the minimization of the exponent of equation 4.4. it results that: 

𝐦 = 𝐦pr + 𝐂M𝐆
T 𝐆𝐂M𝐆

T + 𝐂D 
−𝟏 𝐝obs − 𝐆𝐦

pr   (4.5)  

 A basic difference from the formulation of section 3.3.2 is that the regularized term (the 

second term of the objective function) in equation 3.30 acts as a correction term in the 

estimation of least squares, while in the Bayesian framework the response of the system is 
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evaluated in a probabilistic form. Therefore, the ridge estimation method (regularized least 

square method) and MAP method do not necessarily yield the same estimates for the 

parameter set. 

4.1.2 Non-linear theory with Gaussian prior 

 In non-linear cases where the likelihood can be considered locally Gaussian, the model 

function is linearized around the 𝐦pr  parameter set. The posterior distribution is approximately 

Gaussian and its maximization point is given by: 

𝐦 = 𝐦pr +  𝐆T𝐂D
−1𝐆+ 𝐂M

−1 −1𝐆T𝐂D
−1 𝐝obs − 𝐠 𝐦

pr    (4.6)  

In the above estimation we assumed that the distance between the mean of the posterior and 

the mean of the prior distribution is sort enough so as the objective function between these 

points can be considered linear, however, this is not often the case. Under these circumstances, 

the estimation should be done iteratively. In a Bayesian updating scheme, the previous 

estimation that maximizes the posterior, together with its covariance, becomes the new mean 

and covariance of the prior distribution. Then we can replace the usual Bayes’ rule  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ prior ∙ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

with 

𝑟𝑒𝑣𝑖𝑠𝑒𝑑 ∝ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∙ 𝑛𝑒𝑤 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

The 𝑖 + 1 estimation of the iterative process is:  

𝐦 𝑖+1 = 𝐦 𝑖 −  𝐆𝑖
T𝐂D

−1𝐆𝑖 + 𝐂M
−1 

−1
𝐆𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖   (4.7)  

where 𝐠 𝐦 𝑖  is the response of 𝐦 𝑖  parameter set.  

However, if the linearization between 𝐦 𝑖+1 and 𝐦 𝑖  is not acceptable but the objective 

function is still quasi-linear, the right strategy is to obtain an intermediate parameter set 𝐦 𝑖+1 

for which the linearization will still be acceptable. A possible 𝐦 𝑖+1 may be found by the 

maximization of the likelihood 𝐿 𝐝i;𝐦  alone (Tarantola, 1994, pp.75).  The posterior 

distribution can be written: 
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𝑓 𝐦 𝑖+1|𝐝 ∝ exp   𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 
𝑖 −𝐦 𝑖+1)− 𝐝obs  

T
𝐂D
−1 𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 

𝑖 −

𝐦 𝑖+1)− 𝐝obs   ∙ exp   𝐦 𝑖+1 −𝐦 𝑖 
T
𝐂M
−1 𝐦 𝑖+1 −𝐦 𝑖    

(4.8)  

The next estimation can then be found by the minimization of the exponent (see Appendix 

A.10): 

𝐦 𝑖+1 = 𝐦 𝑖 +  𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1 𝐆 𝑖

T𝐂D
−1 +  𝐝obs − 𝐠 𝐦 

𝑖+1 −𝐆 𝑖 𝐦 
𝑖 −𝐦 𝑖+1   (4.9)  

The above equation is also written (see Appendix A.10): 

𝐦 𝑖+1 = 𝐦 𝑖+1 +  𝐆 i
T𝐂D

−1𝐆 i + 𝐂M
−1 

−1
 𝐆 i

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖  + 𝐂M
−1(𝐦 𝑖 −𝐦 𝑖+1)  (4.10)  

4.2 Sampling the Posterior distribution 

4.2.1 Monte Carlo Methods  

In most cases, the probability distribution in the model space is not so simple and analytic 

techniques cannot be used to characterize it. Then, the more general way for solving the 

inverse problem would be the systematic exploration of the model space comparing all possible 

combinations of parameters, either when the objective is to sample the model space of 

posterior distribution or to find the set of parameters optimizing the forward solution. But 

generally, this practice is not applicable due to the computing and time costs, especially in high 

dimensional problems. Even if this was feasible, other problems would arise due to the non-

uniqueness of the solution. Other consequences of ill-posedness could be that a solution would 

not exist or would be instable with regard to small variations in the input data (Carrera and 

Neuman, 1986). 

Instead of taking all possible parameter combinations, we can sample the model space 

randomly. These practices are generally called Monte Carlo methods. The use of Monte Carlo 

methods for the solution of inverse problems was initiated by Keilis-Borok and Yanovskaya 

(1967) and Press (1968 and 1971) and concerned only uniform sampling of a model space, 

without taking a Bayesian approach (i.e. the conditional distribution between the previous and 

the current realization is not taken into account). In an optimization context, Burton and 
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Kennett (1972), Worthington et al. (1972 and 1974), Biswas and Knopoff (1974), Goncz and 

Cleary (1976), Burton (1977), Mills and Fitch (1977), Jones and Hutton (1979), Ricard et al. 

(1989), Jestin et al. (1994) and Kennett (1998) used uniform random search techniques in 

geophysical inversion, again without taking into consideration the Bayesian principles. In 

general, the use of Monte Carlo methods in well-designed random explorations allows avoiding 

entrapment in local maxima and thus solving complex optimization problems. 

Yet, in complex prior model distributions with large-dimensional spaces, uniform 

sampling is insufficient because of their “emptiness”. In these cases, the process can be 

improved by importance sampling, rejection sampling, or McMC methods like the Metropolis 

algorithm and Gibbs sampling.  

4.2.2 McMC Methods 

As previously mentioned, large-dimensional spaces may be under-sampled due to their 

emptiness. If not appropriately modified, Monte Carlo methods sparsely sample the model 

space and, thus, the local maxima of the posterior distribution (Mosegaard and Tarantola 

1995). McMC techniques preferentially visit the model space where the posterior density is 

high. The basic idea behind these methods is to perform a random walk that normally would 

sample some prior probability distribution and then, using a probabilistic rule to modify the 

walk by accepting or rejecting samples in such a way that the produced samples are 

representative of the target distribution. 

In inversion problems, McMC techniques generate candidate models from the prior 

distribution and use an acceptance criterion to reject or not the candidate model, under the 

consideration of a likelihood function. A candidate model 𝐦∗ in a Markov Chain is generated by 

modifying the previous model 𝐦𝑖 , after addition of a random perturbation. The asymptotic 

behavior of a Markov Chain is governed by its transition kernel, that is, the probability density 

function of the transition from a model 𝐦𝑖  to a new model 𝐦∗. 

4.2.2.1 Metropolis- Hastings algorithm  

The Metropolis algorithm (Metropolis et al., 1953) is the mostly used McMC method that 

allows the analysis of nonlinear inverse problems with complex prior information and data with 

an arbitrary noise distribution. In the Metropolis algorithm, the transition probability from a 
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model 𝐦𝑖  to a new model 𝐦𝑖+1 is symmetric  𝑓 𝐦𝑖+1 𝐦𝑖 = 𝑓 𝐦𝑖  𝐦𝑖+1   resulting to a 

simpler acceptance ratio.  

Hastings (1970) proposed a more general form of Metropolis algorithm where the 

transition probability does not have to be symmetric. In the Metropolis-Hastings algorithm, the 

distribution of the conditional variable 𝐦𝑖+1|𝐦𝑖  is considered known or it is feasible to 

generate a realization of that distribution. Early examples of determination of posterior 

probabilities for an inverse problem by means of Metropolis sampler are given by Boiden 

Pedersen and Knudsen (1990) and Koren et al. (1991). Using the Metropolis-Hastings algorithm 

in high dimensional spaces, it is difficult to draw samples from a suitable proposal distribution 

and, thus, a large proportion of the proposed samples are being rejected. Τhe acceptance ratio 

to approve a proposed sample 𝐦∗ as the next member 𝐦𝑖+1
 of a Markov chain is: 

𝑃 𝐦∗ =
𝑓 𝐦𝑖  𝐦∗ 𝑓(𝐦∗)

𝑓 𝐦∗ 𝐦𝑖 𝑓(𝐦𝑖)
 (4.11)  

This ratio is compared to a random number u from Uniform distribution U(0,1) and if the ratio 

is larger than u, the proposed sample becomes the next member of Markov chain, otherwise, 

the transition does not take place. Accepting a candidate in a Markov chain means that this 

parameter set is a realization of the unknown posterior distribution 

In an inverse problem where the solution of a forward problem takes place, the 

acceptance ratio to approve a proposed sample 𝐦∗ to be the next member 𝐦𝑖+1 of a Markov 

chain can be rewritten as: 

𝑃 𝐦∗ =
𝑓 𝐦∗ 𝐦𝑖 ,𝐝 

𝑓 𝐦𝑖  𝐦∗,𝐝 
=
𝑓 𝐦𝑖 ,𝐝 𝐦∗ 𝑓 𝐦∗ 

𝑓 𝐦∗,𝐝 𝐦𝑖 𝑓 𝐦𝑖 
 

=
𝑓 𝐦𝑖  𝐦∗ 𝑓 𝐝|𝐦∗ 𝑓 𝐦∗ 

𝑓 𝐦∗ 𝐦𝑖 𝑓 𝐝 𝐦𝑖 𝑓 𝐦𝑖 
=
𝑓 𝐦𝑖  𝐦∗ 𝑓(𝐦∗|𝐝)

𝑓 𝐦∗ 𝐦𝑖 𝑓(𝐦𝑖 |𝐝)
 

(4.12)  

Mosegaard and Tarantola (1995) propose that if the candidates can be generated from the 

prior distribution directly without necessarily evaluating 𝑓 𝐦𝑖  𝐦∗  anywhere, the acceptance 

ratio can be written: 

𝑃 𝐦∗ =
𝑓(𝐝|𝐦∗)

𝑓(𝐝|𝐦𝑖)
=
𝐿(𝐦∗)

𝐿(𝐦𝑖)
 

(4.13)  
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The above ratio allows always the transition from 𝐦𝑖  to 𝐦∗ when the likelihood of 𝐦∗ is larger 

than the likelihood of 𝐦𝑖 , in a different case the candidate sample is accepted with probability 

𝑃 𝐦∗  as a member of the Markov chain. They also use probabilistic rules in order to gradually 

perturb a current model to another one, while the actual shape of prior distribution need not 

be known. However, the incorporation of geostatistical information of the parameter set helps 

to reproduce sequential candidates from the prior distribution and, thus, to create a McMC 

without evaluating the probability of transition.  

4.2.2.2 Gibbs Sampler 

Geman and Geman (1984) developed the Gibbs sampler in image reconstruction, another 

popular McMC sampling technique which avoids proposing samples that are likely to be 

rejected, while at the same time is better in means of computational cost. In Gibbs sampler, the 

proposed sample is generated using parameter information from current and previous states.  

Gibbs sampler is often used in geostatistical simulation to reproduce realizations that 

preserve the spatial structure of a RF. For example, it is used in Plurigaussian simulation as it 

was referred in section 2.4.3. In this manner, the iterative algorithm of Gibbs sampler is written 

as: 

𝐦1
𝑖+1~𝑓 𝐦1

𝑖+1|𝐦2
𝑖 ,… ,𝐦𝑛

𝑖   

𝐦2
𝑖+1~𝑓 𝐦2

𝑖+1|𝐦1
𝑖+1,𝐦3

𝑖 ,… ,𝐦𝑛
𝑖   

⋮ 

𝐦𝑗
𝑖+1~𝑓 𝐦𝑗

𝑖+1|𝐦1
𝑖+1,… ,𝐦𝑗−1

𝑖+1 ,𝐦𝑗+1
𝑖 ,… ,𝐦𝑛

𝑖   

⋮ 

𝐦𝑛
𝑖+1~𝑓 𝐦𝑛

𝑖+1|𝐦1
𝑖+1,… ,𝐦𝑛−1

𝑖+1   

(4.14)  

 

where the index symbolizes the number of iteration (state) and the exponent identifies the 

discretized parameters. Following a random path of subunits, different realizations are 

reproduced.      



58 
 

4.2.2.3 Dependent samples in McMC 

A disadvantage of McMC is that the samples are correlated and they do not correctly reflect the 

posterior distribution, therefore the convergence of the chain must be reached before 

performing any sampling to reproduce samples of the posterior distribution. Another option to 

create independent samples is to make large jumps from one to another member of the 

Markov chain. In the usual case where the number of model parameters and thus the number 

of manifold dimensions is high, a systematic exploration of the prior model space is not possible 

because the number of required points grows too rapidly with the dimension of the space, 

while most of these models will have near zero probability. Therefore, sampling has to be done 

by making small jumps, using a random walk. However, this kind of sampling does not produce 

independent samples. Then, if the samples of the prior distribution presented to the Metropolis 

algorithm are not independent, the samples of the posterior distribution produced will not be 

independent too (Tarantola, 2005, pp. 52). To overcome this problem, Mosegaard and 

Tarantola (1995) suggest keeping only one model every μ samples as it is explained in section 

5.1.2.  
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5 Using informative priors in facies inversion: The case 

of C-ISR method. 

5.1 The McMC structure in C-ISR method 

5.1.1 Kernel Transition: Iterative spatial resampling 

Different transition kernels have been proposed in previous studies to generate Markov chains 

applied to spatially dependent variables. Oliver et al. (1997) create a McMC walk by updating 

one grid node of a simulated realization at each step. Fu and Gomez‐Hernandez (2008) improve 

the efficiency of the method by updating many grid nodes at the same time, introducing the 

Blocking McMC (BMcMC) method that induces local perturbations by successively re-simulating 

a whole block of the realization.  

Mariethoz et al. (2010a) propose a similar algorithm to Gibbs sampler and they call it 

Iterative Spatial Resampling (ISR). Hansen et al. (2012) present the theoretical background for 

using the method and argue that ISR is a special type of Sequential Gibbs sampler. The idea 

behind the ISR is to condition the j subunit in 𝑖 + 1 iteration only with a particular random 

sample of subunits (1,… , 𝜈) of previous state 𝑖. Thus, the 𝑗 query value of subunit using ISR 

algorithm is: 

𝐦𝑗
𝑖+1~𝑓 𝐦𝑗

𝑖+1|𝐦1
𝑖 ,… ,𝐦𝜈

𝑖   
(5.1)  

Hansen et al. (2008) and Hansen et al. (2012) use a more general approach which can be 

expressed as: 

𝐦𝑗
𝑖+1~𝑓 𝐦𝑗

𝑖+1|,𝐦1
𝑖+1,… ,𝐦𝑗−1

𝑖+1,𝐦1
𝑖 ,… ,𝐦𝜈

𝑖   
(5.2)  

In fact, in sampling the posterior distribution, the defined transition probability of Gibbs 

sampler can be used in a chain to generate candidates from the previous accepted member, 

while the sequential simulation is used.  Hansen et al. (2008), Mariethoz et al. (2010a) and 

Hansen et al. (2012) agree to perturb the next state model by using a subset of model 

parameters 𝑟 of the current state in order to generate the next candidate state.  In case of ISR, 

the transition probability 𝑓 𝐦𝑖+1 𝐦𝑖  can be decomposed as the product of a series of one 

dimensional conditional densities:  
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𝑓 𝐦𝑖+1 𝐦𝑖 = 𝑓1|𝜈(𝐦1
𝑖+1|𝐦1

𝑖 ,…𝐦ν
𝑖 )⋯𝑓𝑛 |𝜈(𝐦𝑛

𝑖+1|𝐦1
𝑖 ,…𝐦ν

𝑖 ) 
(5.3)  

Also, another type of conditional re-simulation in the framework of McMC algorithm is the 

work of Irving and Singha (2010) which integrates different sources of information to solve the 

inverse problem. 

In this work, since the aim is to condition on the state measurements, we use ISR to 

create a chain of dependant realizations by obtaining a random subset 𝑟𝑖  of each member 

model 𝐦𝑖  and impose it as conditioning data to generate the next candidate model 𝐦∗. 

Representing the parameter set m by a RF 𝐊 𝐱 , the perturbation mechanism 𝑓 𝐦∗ 𝐦𝑖  of the 

chain works as follows: 

1. Generate an initial model 𝐦1 =  𝐤1
1 𝐱1 ,… ,𝐤𝑛

1  𝐱𝑛   as a realization of the RF 

𝐊 𝐱  discretized on a grid with n nodes, using a geostatistical simulation 

algorithm and evaluate its likelihood 𝐿 𝐦1 .  

2. Iterate on 𝑖: 

a. Select randomly a subset 𝑟𝑖 =  𝐤1
𝑖  𝐱1 ,… ,𝐤𝑟

i  𝐱𝜈   of the previous model, 

where 𝜈 is the number of conditioning data to generate the next candidate 

model 𝐦∗. 

b. Generate a proposal realization 𝐦∗ using the same geostatistical simulation 

and under the conditioning data 𝑟𝑖 .   

c. Evaluate 𝐿 𝐦∗ . 

d. Accept or reject the candidate model 𝐦∗. If accept, set 𝐦𝑖+1 = 𝐦∗. 

The performance of the method depends on the criterion for candidate model selection and 

the time of chain interruption. The number of conditioning data should be enough to permit a 

certain dependency between two members of the chain, but this number cannot be too high, in 

order to avoid artifacts in the simulation. The measurements, if any, are added to the subset 𝑟 

in each iteration. 

It is also noted that, even though in this work we apply ISR with two-point statistics, its 

principal is not associated with a specific simulation method or a certain type of spatial 

variability (Mariethoz et al. 2010a). 
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5.1.2 ISR for Optimization 

As it is explained in the previous chapter, sampling the posterior using McMC techniques raises 

two important issues:  

a) the criterion to accept a state model as a member of a chain  

b) and the criterion to accept a model as a member of the posterior ensemble.  

Mosegaard and Tarantola (1995) propose the acceptance ratio of a chain member can be 

represented by equation 4.12. Concerning the second issue, they suggest keeping only one 

model every μ samples. In this way, they ensure uniform sampling of posterior distribution and 

thus their modified algorithm can also be used for finding the optimal solution of an inverse 

problem. Since there are samples available from the posterior distribution, one can find 

between the samples, the parameter set that maximizes this distribution. Yet, Hansen et al. 

(2012) explain that the Sequential Gibbs sampler cannot be used for optimization problems in a 

Bayesian sense, because the actual prior probability of a given model cannot be computed and 

evaluated, thus the samples maximize the likelihood and not the posterior distribution. 

Mariethoz et al. (2010a) propose an alternative procedure for optimization by applying 

ISR and using independent Markov chains. Their algorithm accepts a model in a chain only if his 

likelihood is larger than the likelihood of previous model: 

𝐿 𝐦∗ ≥  𝐿 𝐦𝑖  
(5.4)  

 This tactic leads to having samples biased toward high fits and thus coming from a more 

biased prior 𝑓+ 𝐦  in each iteration, which is nevertheless a subset of the prior 𝑓 𝐦 . As a 

bias correction, they propose to interrupt a chain in a stochastic criterion inspired by the 

rejection sampling method (Von Neumann, 1951) with probability 

𝑃 𝐦∗ =
𝐿 𝐦∗ 

𝐿 𝐦 max
 (5.5)  

where 𝐿 𝐦 max  denotes the highest likelihood value (constant).  The interruption control takes 

place in each iteration and the probability to interrupt the chain increases as the likelihood of 

the candidate model increases. Therefore, a second bias is introduced but in opposite direction.  
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The equation 5.5 essentially describes an "accept only improvements" process. The 

resulting chain is a stochastic search for a single calibrated model. Taking independent chains, 

the global maximum will eventually be reached after an infinite number of iterations. 

The main difference between the two approaches is that Mosegaard and Tarantola 

(1995) propose an algorithm whose purpose is to generate a ‘sample’ of the posterior 

distribution. Mariethoz et al. (2010a) propose a method that generates a selection of models 

that fit the data and the prior information. Then, this collection of models provides a good 

approximation to the posterior. In an optimization context, this mechanism performs an 

importance sampling effect, since the objective is to find a realization that maximizes the 

posterior distribution and not to sample it.  

5.1.3 Likelihood Function 

When sampling the posterior or searching for an optimal solution, it is necessary to define a 

criterion of goodness of fit, either to accept a model in a chain or as a stopping mechanism for 

search algorithms. The criterion of goodness of fit may be the likelihood function as it is 

expressed in equation 3.24 (L2 norm). In groundwater literature, other norms have also been 

used. For example, errors can be quantified as the absolute value of the difference between 

measured and computed values (L1 norm). Furthermore, a regularized function (see chapter 2) 

can be used.  

In this work, we use the L2 norm as a measure of goodness of fit which can be also 

expressed as: 

𝐿 𝐦 ∝ exp 
1

𝑝𝜎2
  𝐠𝑗 (𝐦) − 𝐝𝑗  

2

𝑝

𝑗=1

  
(5.6)  

where 𝑝 is the number of measurements of the response variable, 𝐠𝑗 (𝐦) is the solution of 

forward model at the points of measurements, 𝜎2 is the total “noise” variance and corresponds 

to the sum of epistemic and measurements errors. The variance is assumed to be the same for 

all 𝑝 data values. 
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5.2 The C-ISR Method 

5.2.1 The act of cosimulation 

 As seen in the previous sections, when inverting under the McMC framework, the 

measurements of a physical variable (e.g. hydraulic measurements) can only be used as indirect 

data to evaluate the prior models and drive the search path. This inconvenience is due to the 

nonlinearity relation between the measurements of physical variable and unknown 

parameters. On the other hand, well-known cokriging and cosimulation rely on a linear 

predictor approach and use covariance and cross-covariance functions derived from a first-

order approximation, therefore they often result in unacceptable solutions when the 

multivariate distribution of integrated variables is not Gaussian (Yeh et al., 1995 ).  

Under the framework of the C-ISR method, although the problem is not linear, we use 

cosimulation with the reference data as the auxiliary variable, in order to improve the search 

path in the Markov chains (Valakas and Modis 2015; Valakas and Modis 2016). More 

specifically, each proposed model 𝐦∗
 is produced by cosimulating the underlying Gaussian 

variable Z, which represents the facies distribution, with the normal scores transformation N of 

the reference variable. The realizations so produced belong to a more confined set than in the 

original prior, that is, the prior described solely by the underlying Gaussian variogram. Our 

method relies on the approximation that, temporally, the 𝑝 x 1 vector N of normal scores 

transformed hydrologic measurements is related to Z assuming a linear coregionalization 

model. Thus, a narrower and more informative prior to that of equation 5.3 is created here by 

utilization of the reference variable, as seen in equation 5.7. 

𝑓 𝐦𝑖+1 𝐦𝑖 ,𝐝obs  =

= 𝑓1|𝑟(𝐦1
𝑖+1|𝐦1

𝑖 ,…𝐦𝑟
𝑖 , d1 ,… , d𝑝)⋯𝑓𝑛 |𝑟(𝐦𝑛

𝑖+1|𝐦1
𝑖 ,…𝐦r

𝑖 , , d1,… , d𝑝) (5.7)  

Moreover, the addition of cosimulation to the ISR algorithm gives the ability to relate 

the prior distribution to the reference variables, thus enforcing the generation of more 

probable models. This, in a way, enables accounting for the probability of a model. Considering 

the limitations of ISR algorithm in section 5.1.2 (Hansen et al. 2012), the C-ISR method with its 

narrowing effect can actually be used as a Bayesian optimization tool. 
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5.2.2 The C-ISR algorithm 

In order to obtain one sample by an interrupted Markov chain, we design an ever‐improving 

Markov chain that accepts new members under condition 5.4. The chain should be interrupted 

following the stochastic stopping criterion 5.5. Symbolizing with 𝛏 ∙  the function returns the 

discretized variable (facies), the C-ISR algorithm is accomplished in the following steps: 

1. Generate an initial model 𝐦1 =  𝛏 𝐳1
1 𝐱1  ,… , 𝛏 𝐳𝑛

1 𝐱𝑛    as a realization of the 

RF Z(x), discretized on a grid with n nodes, using a geostatistical cosimulation 

with the normal scores transformed reference variable and evaluate its 

likelihood L(m1).  

2. Iterate on 𝑖: 

a. Select randomly a subset 𝑟𝑖 =  𝛏 𝐳1
1 𝐱1  ,… , 𝛏 𝐳𝑟

1 𝐱𝑟    of the previous 

model, where 𝑟 is the number of conditioning data to generate the next 

candidate model 𝐦∗. 

b. Generate a proposal realization 𝐦∗ using the same geostatistical 

cosimulation and under the conditioning data 𝑟𝑖 .   

c. Evaluate 𝐿 𝐦∗ . 

d. If 𝐿 𝐦∗ ≥ 𝐿 𝐦𝑖  accept the candidate model 𝐦∗ and set 𝐦𝑖+1 = 𝐦∗. 

e. Decide whether or not to interrupt the chain: 

i. Compute 𝑃 𝐦∗ = 𝐿 𝐦∗ /𝐿 𝐦 max  

ii.  Draw u in U[0,1] 

iii. If u ≤ 𝑃 𝐦∗  interrupt the chain, else continue the chain using 𝐦𝑖+1 

Hence, the above means of successive linearizations is used to transfer from one model 

to another at each step of the optimization procedure in every Markov chain. The approach 

works by creating an importance sampling effect (Stordal and Elsheikh, 2015) that steers the 

process to selected areas of the prior and thus improving convergence. Therefore, by the 

incorporation of indirect data to narrow the prior distribution, our approach promises to allow 

the full utilization of measurements in achieving the best possible site characterization. The 

effectiveness of the proposed formulation is shown next, using a synthetic example. 
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5.3 Validation of the C-ISR algorithm 

5.3.1 Materials and methods 

The effectiveness of cosimulation is demonstrated by means of a synthetic aquifer example 

using a pump test. A simple two-dimensional synthetic flow system is set up for that purpose 

and finite element software package COMSOL™ 3.4 (COMSOL Multiphysics User’s Guide, 2005) 

being controlled via a MATLAB™ 7.8 script, has been employed. We consider a square zone of 

side 100 m in a confined 2D aquifer, with a given spatial distribution of four distinct facies 

discretized in 100x100 nodes, as shown in Figure 5.1a. The hydraulic conductivity values of 10-

3.5 (m/s), 10-4.5 (m/s), 10-5.5 (m/s) and 10-6.5 (m/s) are assigned to facies A, B, C and D, 

respectively. Using this spatial structure of facies as the reference, we can produce the 

hydraulic head observations required in our example. A pumping well injecting 0.001 (m3/s) is 

set at the left lower corner of the field and another pumping well extracting 0.001 (m3/s) at the 

right upper corner of the field (Figure 5.1b).  

The hydraulic potential governing the flow through the aquifer zone and the 

surrounding area can be represented by the 2D pressure head 𝐇 𝐊 𝐱   distribution, which 

obeys Darcy’s Law: 

∇ −𝐊(𝐱)∇𝐻 = 𝑄  ∇ −𝜉 𝐙(𝐱) ∇𝐻 = 𝑄 and 𝐻 = 𝑏𝑢 𝐱  on model boundary u, 

where 𝐊 𝐱  is the spatial hydraulic conductivity,  𝐙(𝐱) is a standard Gaussian RF representing 

facies distribution and  𝑄 (m3/s) represents aquifer recharge or discharge. Considering the 

change in the head due to pumping and applying superposition principle, we derive the 

following equation for 𝛿𝐻: 

∇ −𝛏 𝐙(𝐱) ∇𝐇 = 𝑞 and 𝛿𝐻 = 0, on model boundary u,   

where q represents sources and sinks due to pump test. The modeling domain’s boundary u is 

assumed to be a square of side 12,000 m, where any effects of pumping are negligible. Also, the 

area outside the square zone is considered to have roughly constant hydraulic conductivity 10-5 

(m/s). We used different mesh sizes inside and outside the central zone, COMSOL’s normal size 

triangular mesh for the interior where the calculations need to be more accurate and coarse 

size triangular mesh for the exterior.    
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Figure 5.1: True facies distribution in aquifer zone and the facies observations with circles (left). 

The reference heads and head observations with black crosses (right). 

 

Prior information on the aquifer structure consists of a set of 16 facies observations. 

Using this information together with the 9 head measurements as shown in Figure 5.1, we 

explored the performance of the C-ISR in comparison ISR using a classical geostatistical 

simulation, such as SIS. Firstly, we run 150 independent Markov chains and the results 

presented in Valakas and Modis (2015). We demonstrated that our method is faster, more 

reliable and explores more effectively the prior space avoiding entrapment in local maxima. 

Consequently, we compared our method with the ISR using TGS, a geostatistical simulation 

method more effective than SIS. This thesis presents only the results of the last comparison. For 

the TGS and cosimulation we use the algorithms by Emery (2007) and Emery and Silva (2009), 

respectively. 

For both the C-ISR and ISR approaches, we ran 250 independent Markov chains. We 

used the likelihood function of equation 5.6 with ς = 0.05 m, which can reasonably correspond 

to the total head measurements error. The supremum value of 𝐿 is set to 0.607, which, 

according to the above equation, corresponds to a RMSE of 0.05. Larger likelihood values might 

cause undue delays and seriously affect the performance of the process. The percentage of 

resampled nodes to generate the next candidate model 𝐦∗ is set to 1% (𝑟 = 10).  
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5.3.2 Variography 

For the needs of TGS, a standardized Gaussian variable Z with the characteristics of 

Figure 5.2 was defined. Using the proportions of each facies which were calculated based on 

the observations and the truncation rule which is assumed to be known a priori, an exponential 

model with a sill of 1 and isotropic range of 49 m was adopted for Z according to the procedure 

described in section 2.4.3.  

 

 

Figure 5.2: Truncation rule, showing contact relationship, proportions and Gaussian thresholds 

associated with the facies. 

 

Considering the state variable, the head measurements were first transformed into 

Normal scores on which variogram analysis would be performed. A Gaussian model with a sill of 

1 and isotropic range of 41.5 m was used to represent the transformed data.  

The last step is to define a linear coregionalization model between the underlying 

Gaussian variable Z and Normal scores of head observations N. Since, as seen in Figure 5.1, we 

have an heterotopic data configuration, we krige the unknown locations of N and then we use 

the new dense set of data to infer the experimental cross-variogram. Finally, according to 

section 2.5.3 we obtain a coregionalization model of the form: 

 
𝛾ZZ 𝛾ZN

𝛾ZN 𝛾NN
 =  

0.6949 0.1311
0.1311 0.0248

 exp⁡(49 m) +  
0.3051 −0.5451
−0.5451 0.9752

 gaus(41.5 m) 
(5.8)  

The experimental, model and cross-variogram of the underlying Gaussian variable and 

the transformed heads are displayed in Figure 5.3. A graphical comparison between true 

experimental variograms and variograms derived from the underlying Gaussian and the 

coregionalization models respectively is shown in Figure 5.4. It is apparent that the fitting is 

satisfactory. 
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Figure 5.3: Sample (points) and linear model of coregionalization (solid lines) between 

underlying Gaussian variable Z and Normal scores transformed reference data N. 

 

 

 

Figure 5.4: Experimental and model variograms of facies indicators. 
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5.3.3 Results and Discussion 

The main advantage of C-ISR method is the reduction of computational and timing costs 

in order to approximate the a-posteriori distribution. More specifically, the forward model is 

solved 28914 times using C-ISR against 48390 runs using ISR. Figure 5.5 shows the evolution of 

50 randomly selected optimizations under the two approaches. The average slope of the curves 

on the left is higher, showing that C-ISR converges faster. The black line indicates the 

convergence of the chain for which the optimal solution is achieved among the 250 

independent chains for each method. Generally, the average number of evaluations (solution of 

forward model) for each chain is 116 for C-ISR versus 194 for ISR, while the average number of 

accepted models in a chain is 9.9 and 8.3 for C-ISR and ISR respectively. Furthermore, the 

likelihood of the posterior models produced by C-ISR is better, as seen from the ending points 

of the ensemble lines in Figure 5.5a, compared to those of Figure 5.5b.   

 

 

 

Figure 5.5: Convergence of 50 randomly selected individual optimizations for C-ISR (a) and ISR 

(b). 

In order to demonstrate the precision of hydraulic head predictions, we set up Figure 

5.6 showing the average RMSE (250 chains) for the two methods. The RMSE is calculated by the 

solution of forward model at the center of the blocks and the true spatial distribution of 

hydraulic head. It is apparent that C-ISR method produces more accurate hydraulic head 

predictions across the spatial field, while the RMSE average is higher at top-right corner for 

both methods. The distribution in Figure 5.7 shows that even if the two approaches produce on 

average similar RMSE, the incorporation of cosimulation in C-ISR helps to avoid entrapment to 
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local maxima, as seen by the right tail of ISR distribution.  Also, the left tail of C-ISR distribution 

is longer, indicating that this method produces more possible solutions of forward problem.  

 

 

Figure 5.6: Average RMSE map for C-ISR (a) and ISR (b). 

 

 

Figure 5.7: RMSE distribution of posterior samples for C-ISR (green) and ISR (black). 

 

Both methods produced accepted realizations while keeping the spatial structure of 

reality for each facies, as shown by the experimental variograms of a random subset of the 

posterior ensembles in Figure 5.8. The reduced variability of models in the case of C-ISR reveals 

a narrower prior due to conditioning to heads. A post-processing of the posterior ensembles is 

shown in Figure 5.9. Comparing to Figure 5.1a, it is apparent that the probability of occurrence 

of each facies resembles more the reality in the case C-ISR method. This is an indication that 

the posterior space is properly covered.  
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Figure 5.8: Experimental variogram of 50 accepted realizations for each facies in C-ISR (a) and 

ISR (b). The red dots show the experimental variogram of reality. 
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Figure 5.9: Probability of occurrence of the four facies in C-ISR (a) and ISR (b). 
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Figure 5.10: Accepted realizations for C-ISR (a) and ISR (b). 
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A set of realizations in both cases can be visualized in Figure 5.10. According to Figures 

5.9 and 5.10, the C-ISR method produced posterior members which reveal the spatial 

homogeneity of reality in contrast with ISR. In order to evaluate the reliability of the two 

methods, we calculated the probability of positive hit for each block of spatial field. From 250 a-

posteriori members, it results that C-ISR has more positive hits and it is more efficient in 

preserving the shapes of existing formations inside the investigated area, as it is depicted in 

Figure 5.11. The intense green color indicates probability close to one, while intense red color 

probability close to zero.  C-ISR fails to indicate the facies C (cyan color in Figure 5.1a) at top-

right corner with precision, but the probability of occurrence is not zero, as it is detected in 

Figure 5.9a for facies C. An explanation could be that the positive hits of ISR at the blocks where 

C-ISR fails, occur due to the excessive spatial heterogeneity induced by this method and thus its 

weakness to preserve the shapes of existing formations. 

 

 

Figure 5.11: Probability of positive hit for C-ISR (a) and ISR (b). C-ISR preserves shapes better. 

 

The main objective of the synthetic example was to demonstrate the properties of C-ISR 

and find the optimal solution of determined inverse problem. Figure 5.12 shows the best 

resulting models of facies distribution reached by C-ISR and ISR respectively, after the 250 

individual optimizations. Compared to the true facies field (Figure 5.1a), C-ISR results in a much 

better approximation (85.69% similarity) than ISR (81.76% similarity). A brief summary of the 

two algorithms performance is shown in Table 5.1. Taking into consideration the evidence of 

the results, we summarize that the C-ISR method improves the search path of optimal solution 
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reducing the computational and timing costs, leads to more precise estimations of parameters, 

produces realizations which preserve the shapes of existing formations and results in an 

optimal solution closer to the reality.  

 

 

C-ISR ISR 

Min RMSE 0.0383 0.0537 

Similarity ratio when min RMSE 0.8569 0.8176 

Average  similarity ratio 0.8028 0.7104 

Total number  of evaluations 28914 48390 

Average number  of evaluations for each chain 115.656 193.56 

Average number of accepted models  for each chain 9.9 8.3 

Table 5.1: Summary performance of the two algorithms.  

 

 

Figure 5.12: Optimal results for facies prediction from C-ISR (a) and ISR (b) after 250 individual 

optimizations. Similarity to true facies is 85.69% and 81.76% respectively. 
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6 Conclusions and future research 

6.1 Conclusions 

Aquifer characterization is a demanding task and requires modeling of physical properties such 

as saturation, porosity and permeability. In addition, geological formations (e.g. facies 

identification) should be taken into account before any physical forecasting. Deterministic and 

stochastic methods using a two-step approach in which, first, the geological facies are modeled, 

and second, they are populated with heterogeneous hydraulic parameters, have lower 

performance in general. Inverse methods, on the other hand, use more information on the 

reservoir behavior, such as the governing physical law and the system response variables.  

Solving the inverse problem for hydrofacies is the right strategy before the aquifer 

characterization; however inverse modeling encounters important difficulties in 

implementation due to the ill-posedness and the complex spatial heterogeneity of hydrological 

systems. Also, practical issues arise either due to discretization or non-linearity when applying 

deterministic methods (e.g. gradient methods), or due to CPU time and speed performance 

when applying stochastic methods.  

In this thesis, we developed a stochastic method (C-ISR) to solve the inverse problem 

and overcome the previously mentioned difficulties.  Our method narrows the prior distribution 

of parameters and produces improved proposal realizations in McMC optimization under the 

Bayesian framework for inversion. This is achieved by using cosimulation with the system 

response data. The algorithm of C-ISR is based on ISR kernel and relies on the approximation 

that, temporally, the vector of normal scores transformed hydrologic measurements are 

related to the underlying Gaussian variable of the facies, assuming a linear coregionalization 

model. This process of successive linearizations acts as an importance sampling effect and 

speeds up convergence of the Markov chains. 

The effectiveness of cosimulation is illustrated by a synthetic aquifer inversion example, 

using a pump test. We apply C-ISR vs. ISR based solely on TGS. The results of 250 individual 

optimizations for both approaches show that C-ISR needs less forward model runs and, as a 
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result, is faster. Also, it is more reliable since it produces smaller RMSE and explores more 

effectively the prior space avoiding entrapment in local maxima. 

6.2 Research limitations 

The performance of the C-ISR method has been evaluated in a realistic synthetic example 

supposing different degrees of prior information. Although the effectiveness of C-ISR has been 

demonstrated, more synthetic examples should be examined using different formulations. For 

instance, the C-ISR performance should be evaluated using more complicated types of contacts 

between facies.  Moreover, it should be examined how the data availability (sampled facies or 

head measurements) and their spatial distribution affect the method. 

The benefit of using synthetic data is that every possible geological structure could be 

represented. Nevertheless, synthetic examples cannot mimic reality. Though practically 

difficult, C-ISR should be evaluated in a real case study in order to investigate other advantages 

or disadvantages of the method.  

Moreover, C-ISR was basically evaluated in an optimization context, assuming that it could be 

used also to sample the a-posteriori distribution of parameters in order to investigate more 

parameters properties space. However, this should be more thoroughly examined by applying 

C-ISR in a more focused algorithm, using for example the acceptance ratio of candidate models 

and keeping only one model every μ samples, as it is proposed by Mosegaard and Tarantola 

(1995) and it has been discussed in previous sections.  

The limitations of the present research associate to the high computational and time 

cost that is demanded by the solution of forward model. The use of independent chains in 

order to find the optimal solution, gives the opportunity to solve the optimization problem in 

parallel computing. Therefore, we suggest the implementation of the C-ISR algorithm to be 

done in an open-source software environment, such as the R Project for Statistical Computing. 

The use of open-source software gives the ability to run the simulations on cloud computing 

platforms, such as Amazon’s Web Services. Cloud computing offers flexible capacity, speed, 

agility and increases the computing performance, as the iterations can be run in parallel 

processors.  
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6.3 Suggestions for future research 

Future research might focus on extending the concept of C-ISR to the direction of multiple point 

statistics (MPS). It has been shown (Mariethoz et al. 2010a) that the ISR kernel is not associated 

with a specific simulation method or a certain type of spatial variability. Hence, a natural 

extension would be to investigate the integration of cosimulation with the reference variable, 

in MPS methodology.  

The MPS method has been recently developed mainly to simulate hydrofacies, without 

taking into account the solution of the inverse problem (e.g. Chugunova and Hu 2008; Feyen 

and Caers 2006; Huysmans and Dassargues 2009; Michael et al. 2010; Renard 2007). Most 

applications focus on the effectiveness of the method in relation to traditional techniques such 

as Indicator Kriging and Plurigaussian simulation. It has also been applied to solve the inverse 

problem (Alcolea and Renard 2010; Caers and Hoffmann 2006; Ronayne et al. 2008). Moreover, 

Mariethoz et al. (2010b) highlighted the benefits of the ISR method by solving the inverse 

problem in MPS. In this context, it is the first time where MPS is proposed for the solution of 

the inverse problem by taking into account the covariance between the parameters and the 

reference variable, as in the case of the C-ISR algorithm. This way, the Markov chain 

convergence rate is expected to increase, reducing time and computer cost, while the spatial 

distribution of the underground structures is expected to be more accurately represented than 

in all previous methods. 
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Appendix A: Mathematical Notes 

A.1 General Rules of Matrices  

 

A.1.1: Let A is p x n, C n x n and B n x q matrices, then 

 𝐀𝐁𝐂 T = 𝐂T𝐁T𝐀 

A.1.2: Let C is a symmetric matrix then 

𝐂 = 𝐂T  

A.1.3: Let y a p x 1 vector, b a vector n x 1 and A a p x n matrix then 

𝐲T𝐀𝐛 =  𝐲T𝐀𝐛 T = 𝐛T𝐀T𝐲 

A.2 Derivatives of Matrices and Vectors  

 

A.2.1: 
∂

∂𝐛
𝐲T𝐀𝐛 = 𝐀T𝐲 

A.2.2: 
∂

∂𝐛
𝐛T𝐀𝐛 =  𝐀+ 𝐀T 𝐛 

A.2.3: 
∂

∂𝐛
 𝐲 − 𝐀𝐛 T𝐖 𝐲 − 𝐀𝐛 = −2𝐀T𝐖 𝐲 − 𝐀𝐛  
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A.3 Matrix Inversion Identity 

Let 𝐂M  and 𝐂D , n x n and p x p positive-definite matrices. Also, let G is p x n matrix. Then 

𝐂M𝐆
𝐓 𝐆𝐂𝐌𝐆

𝐓 + 𝐂𝐃 
−1 =  𝐆𝐓𝐂D

−𝟏𝐆+ 𝐂M
−𝟏 

−𝟏
𝐆𝐓𝐂D

−𝟏 

Proof 

Beginning from the expression  𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐆T  and multiplying the second term 

with 𝐂D
−1𝐂D  we have: 

 𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐆T =  𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐆T𝐂D
−1𝐂D  

= 𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐂D  

Similarly, multiplying the second term with 𝐂M
−1𝐂M  we have: 

 𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐆T =  𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐂M
−1𝐂M𝐆

T  

=  𝐆T𝐂D
−1𝐆+ 𝐂M

−1 𝐂M𝐆
T  

Since the left-hand sides of the above equations are identical, then: 

𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐂D =  𝐆T𝐂D
−1𝐆+ 𝐂M

−1 𝐂M𝐆
T  

Since 𝐂D  and 𝐂M  are positive-definite matrices, it follows that  𝐆𝐂M𝐆
T + 𝐂D  and 

 𝐆T𝐂D
−1𝐆+ 𝐂M

−1  are both nonsingular positive-definite matrices. Multiplying the two 

hands of above equation by   𝐆T𝐂D
−1𝐆+ 𝐂M

−1 −1, we have: 

 𝐆T𝐂D
−1𝐆+ 𝐂M

−1 −1𝐆T𝐂D
−1 𝐆𝐂M𝐆

T + 𝐂D = 𝐂M𝐆
T  

Multiplying the two hands of above equation by  𝐆𝐂M𝐆
T + 𝐂D 

−1, we have: 

 𝐆T𝐂D
−1𝐆+ 𝐂M

−1 −1𝐆T𝐂D
−1 = 𝐂M𝐆

T 𝐆𝐂M𝐆
T + 𝐂D 

−1 
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A.4  Least Squared Estimation in Overdetermined Problems: 

The minimization of objective function   

𝐒 𝐦  =  𝐝obs − 𝐆𝐦  
T 𝐝obs − 𝐆𝐦   

is given by 

𝐦 =  𝐆T𝐆 −1𝐆T𝐝obs  

 

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦 
 𝐝obs − 𝐆𝐦  

T 𝐝obs − 𝐆𝐦  = 0 

−2𝐆T 𝐝obs − 𝐆𝐦  = 0  

𝐦 =  𝐆T𝐆 −1𝐆T𝐝obs  

In order to prove the estimated 𝐦  is the minimum, it should be shown that the second 

order derivative of objective function (Hessian) is positive definite:  

𝜕2

𝜕𝐦 2
𝐒 𝐦  = 2𝐆𝐓𝐆 

This is a positive definite matrix, since G has full rank. It is noted that the above solution 

use the fact that the inverse of 𝐆𝐓𝐆 exists. 
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A.5  Least Squared Estimation in Underdetermined Problems 

The solution of constrained optimization problem  

min𝐦T𝐦 

subject to 𝐝obs − 𝐆𝐦 = 𝟎 

is  

𝐦 = 𝐆T 𝐆𝐆T −1𝐝obs  

 

Proof 

Minimization with constraints can be done with Lagrange multipliers λ. 

𝑺 𝐦;𝛌 =  𝐦T𝐦− 𝛌T 𝐝obs − 𝐆𝐦  

Taking the derivative of the objective function: 

𝜕

𝜕𝐦
𝑺 𝐦;𝛌 = 2𝐦−𝐆Τ𝛌 

The first term results from Α.2.2 property and the second term from Α.2.1 property. 

Also, 

𝜕

𝜕𝛌
𝑺 𝐦;𝛌 = 𝐝obs − 𝐆𝐦 

Setting the derivatives to zero we get: 

𝐦 =
1

2
𝐆T𝛌 and 𝐝obs = 𝐆𝐦 

 

Then  

𝐝obs =
1

2
𝐆𝐆T𝛌   𝛌 = 𝟐 𝐆𝐆T −𝟏𝐝obs  

 

Therefore  𝐦 = 𝐆T 𝐆𝐆T −1𝐝obs  

 We note that the above solution use the fact that the inverse of 𝐆𝐓𝐆 exists. 
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A.6 Weighed Least Square Estimation in Overdetermined Problems: 

The minimization of objective function 

𝐒 𝐦  =  𝐝obs − 𝐆𝐦  
T𝐂D

−1 𝐝obs − 𝐆𝐦   

is given by 

𝐦 =  𝐆T𝐂D
−1𝐆 −1𝐆T𝐝obs  

 

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦 
 𝐝obs − 𝐆𝐦  

T𝐂D
−1 𝐝obs − 𝐆𝐦  = 0 

−2𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦  = 0  

𝐦 =  𝐆T𝐂D
−1𝐆 −1𝐆T𝐝obs  

In order to prove the estimated 𝐦  is the minimum, it should be shown that the second 

order derivative of objective function (Hessian) is positive definite:  

𝜕2

𝜕𝐦 2
𝐒 𝐦  = 2𝐆𝐓𝐂D

−1𝐆 

This is a positive definite matrix, since G has full rank and 𝐂D  is positive-definite matrix. 

It is noted that the above solution use the fact that the inverse of 𝐆𝐓𝐂D
−1𝐆 exists. 
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A.7 Regularized Weighted Least Square Estimation in Overdetermined Problems: 

The minimization of objective function: 

𝐒 𝐦  =  𝐝obs − 𝐆𝐦  
T𝐂D

−1 𝐝obs − 𝐆𝐦  + λ 𝐦pr −𝐦  T𝐂M
−1 𝐦pr −𝐦   

is given by 

𝐦 = 𝐦pr +  𝐆T𝐂D
−1𝐆+ 𝛌𝐂M

−1 −1𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦

pr   

 

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦 
 𝐝obs − 𝐆𝐦  

T𝐂D
−1 𝐝obs − 𝐆𝐦  + λ 𝐦pr −𝐦  T𝐂M

−1 𝐦pr −𝐦  = 0  

−2𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦  − 2λ𝐂M

−1 𝐦pr −𝐦  = 0   

𝐆T𝐂D
−1𝐆𝐦 +  λ𝐂M

−1 𝐦 −𝐦pr  = 𝐆T𝐂D
−1𝐝obs  

Subtracting the term 𝐆T𝐂D
−1𝐆𝐦pr  to the left and right hand of the above equation we 

have: 

𝐆T𝐂D
−1𝐆 𝐦 −𝐦pr  +  λ𝐂M

−1 𝐦 −𝐦pr  = 𝐆T𝐂D
−1𝐝obs − 𝐆

T𝐂D
−1𝐆𝐦pr   

 𝐆T𝐂D
−1𝐆+  λ𝐂M

−1  𝐦 −𝐦pr  = 𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦

pr    

𝐦 = 𝐦pr +  𝐆T𝐂D
−1𝐆+ λ𝐂M

−1 −1𝐆T𝐂D
−1 𝐝obs − 𝐆𝐦

pr   

In order to prove the estimated 𝐦  is the minimum, it should be shown that the second 

order derivative of objective function (Hessian) is positive definite:  

𝜕2

𝜕𝐦 2
𝐒 𝐦  = 2𝐆𝐓𝐂D

−1𝐆+ λ𝐂M
−1 

This is a positive definite matrix, since G has full rank and 𝐂D  and 𝐂M  are positive-

definite matrices. It is noted that the above solution use the fact that the inverse of 

𝐆𝐓𝐂D
−1𝐆+ λ𝐂M

−1 exists. 
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A.8  Nonlinear Weighted Least Square Estimation: 

The minimization of objective function: 

𝐒 𝐦𝑖+1 =  𝐝obs − 𝐠(𝐦𝑖) − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖  

T

𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖   

is given by   

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 
−1
𝐆𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖   

 

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦𝑖+1
 𝐝obs − 𝐠(𝐦𝑖) − 𝐆𝑖 𝐦

𝑖+1 −𝐦𝑖  
T

𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖  

= 0   

−2𝐆𝑖
T𝐂D

−1  𝐝obs − 𝐠 𝐦
𝑖 − 𝐆𝑖 𝐦

𝑖+1 −𝐦𝑖  = 0  

𝐆𝑖
T𝐂D

−1𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖 = 𝐆𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖    

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 
−1
𝐆𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖   

In order to prove the estimated 𝐦𝑖+1 is a minimum, it should be shown that the second 

order derivative of objective function is positive definite: 

𝜕

𝜕 𝐦𝑖+1 2
𝐒 𝐦𝑖+1 = 2𝐆𝑖

T𝐂D
−1𝐆𝑖  

This is a positive definite matrix, if 𝐆𝑖  has full rank and 𝐂D  and 𝐂M  are positive-

definite matrices. It is noted that the above solution use the fact that the inverse of 

𝐆𝑖
T𝐂D

−1𝐆𝑖  exists. Finally, the  𝐦𝑖+1 is a better solution than the previous if 𝐒 𝐦𝑖+1 <

𝐒 𝐦𝑖  
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A.9 Regularized Weighted Nonlinear Least Square Estimation: 

The minimization of objective function: 

𝐒 𝐦𝑖+1 =  𝐝obs − 𝐠(𝐦𝑖) − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖  

T

𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖  

+ λ𝐦𝑖+1T
𝐂M
−1𝐦𝑖+1 

is given by   

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 + λ𝐂M
−1 

−1
𝐆𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖𝐦
𝑖  

 

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦𝑖+1
 𝐝obs − 𝐠(𝐦𝑖) − 𝐆𝑖 𝐦

𝑖+1 −𝐦𝑖  
T

𝐂D
−1  𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖  

+ λ𝐦𝑖+1T
𝐂M
−1𝐦𝑖+1 = 0  

−2𝐆i
T𝐂D

−1  𝐝obs − 𝐠 𝐦
𝑖 − 𝐆𝑖 𝐦

𝑖+1 −𝐦𝑖  + 2λ𝐂M
−1𝐦𝑖+1 = 0   

𝐆𝑖
T𝐂D

−1𝐆𝑖 𝐦
𝑖+1 −𝐦𝑖 + λ𝐂M

−1𝐦𝑖+1 = 𝐆𝑖
T𝐂D

−1  𝐝obs − 𝐠 𝐦
𝑖   

Subtracting the term 𝐆𝑖
T𝐂D

−1𝐆𝑖𝐦
𝑖  to the left and right hand of the above equation we 

have: 

 𝐆𝑖
T𝐂D

−1𝐆𝑖 + λ𝐂M
−1  𝐦𝑖+1 −𝐦𝑖 = 𝐆𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖𝐦
𝑖   

𝐦𝑖+1 = 𝐦𝑖 +  𝐆𝑖
T𝐂D

−1𝐆𝑖 + λ𝐂M
−1 

−1
𝐆𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦

𝑖 − 𝐆𝑖𝐦
𝑖  

 

In order to prove the estimated 𝐦𝑖+1 is a minimum, it should be shown that the second 

order derivative of objective function is positive definite: 

𝜕

𝜕 𝐦𝑖+1 2
𝐒 𝐦𝑖+1 = 2𝐆𝑖

T𝐂D
−1𝐆𝑖 + λ𝐂M

−1 

This is a positive definite matrix, if 𝐆𝑖  has full rank and 𝐂D  and 𝐂M  are positive-

definite matrices. It is noted that the above solution use the fact that the inverse of 
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𝐆𝑖
T𝐂D

−1𝐆𝑖 + λ𝐂M
−1 exists. Finally, the  𝐦𝑖+1 is a better solution than the previous if 

𝐒 𝐦𝑖+1 < 𝐒 𝐦𝑖 . 

 

A.10 Quasi linear Bayesian Estimation: 

The minimization of objective function: 

𝑆 𝐦 𝑖+1 =  𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 
𝑖+1 −𝐦 𝑖+1)− 𝐝obs  

T
𝐂D
−1 𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 

𝑖+1 −𝐦 𝑖+1) − 𝐝obs  

+  𝐦 𝑖+1 −𝐦 𝑖 
T
𝐂M
−1 𝐦 𝑖+1 −𝐦 𝑖  

is given by   

𝐦 𝑖+1 = 𝐦 𝑖 +  𝐆 𝑖
T𝐂D

−1𝐆 𝑖 + 𝐂M
−1 

−1
𝐆 𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦 

𝑖 + 𝐆 i(𝐦 
𝑖 −𝐦 𝑖+1)  

Proof 

Setting the expanded derivative of the objective function equal to zero and using the 

A.2.3 property, we have: 

𝜕

𝜕𝐦𝑖+1
 𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 

𝑖+1 −𝐦 𝑖+1)− 𝐝obs  
T
𝐂D
−1 𝐠 𝐦 𝑖+1 + 𝐆 i(𝐦 

𝑖+1 −𝐦 𝑖+1)

− 𝐝obs  +  𝐦 𝑖+1 −𝐦 𝑖 
T
𝐂M
−1 𝐦 𝑖+1 −𝐦 𝑖 = 0  

2𝐆 𝑖
T𝐂D

−1 𝐠 𝐦 𝑖+1 + 𝐆 i 𝐦 
𝑖+1 −𝐦 𝑖+1 − 𝐝obs  + 2𝐂M

−1 𝐦 𝑖+1 −𝐦 𝑖 = 0  

𝐆 𝑖
T𝐂D

−1 𝐠 𝐦 𝑖+1 − 𝐆 i𝐦 
𝑖+1 − 𝐝obs  + 𝐆 𝑖

T𝐂D
−1𝐆 i𝐦 

𝑖+1 + 𝐂M
−1 𝐦 𝑖+1 −𝐦 𝑖 = 0   

𝐆 𝑖
T𝐂D

−1𝐆 i𝐦 
𝑖+1 + 𝐂M

−1 𝐦 𝑖+1 −𝐦 𝑖 = 𝐆 𝑖
T𝐂D

−1 𝐝obs − 𝐠 𝐦 
𝑖+1 + 𝐆 i𝐦 

𝑖+1  

Subtracting the term 𝐆 𝑖
T𝐂D

−1𝐆 𝑖𝐦 
𝑖  to the left and right hand of the above equation we 

have: 

 𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1  𝐦 𝑖+1 −𝐦 𝑖 

= 𝐆 𝑖
T𝐂D

−1 𝐝obs − 𝐠 𝐦 
𝑖+1 + 𝐆 i𝐦 

𝑖+1 − 𝐆 𝑖
T𝐂D

−1𝐆 𝑖𝐦 
𝑖     

 𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1  𝐦 𝑖+1 −𝐦 𝑖 = 𝐆 𝑖

T𝐂D
−1 𝐝obs − 𝐠 𝐦 

𝑖+1 −𝐆 𝑖𝐦 
𝑖 + 𝐆 i𝐦 

𝑖+1   

𝐦 𝑖+1 = 𝐦 𝑖 +  𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1 𝐆 𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖+1 −𝐆 𝑖 𝐦 
𝑖 −𝐦 𝑖+1   

Also, instead to subtract the term 𝐆 𝑖
T𝐂D

−1𝐆 𝑖𝐦 
𝑖 , but extending the above equation, we 

have: 
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𝐆 𝑖
T𝐂D

−1𝐆 i𝐦 
𝑖+1 + 𝐂M

−1𝐦 𝑖+1 − 𝐂M
−1𝐦 𝑖 = 𝐆 𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖+1  + 𝐆 𝑖
T𝐂D

−1𝐆 i𝐦 
𝑖+1    

𝐆 𝑖
T𝐂D

−1𝐆 i 𝐦 
𝑖+1 −𝐦 𝑖+1 + 𝐂M

−1𝐦 𝑖+1 − 𝐂M
−1𝐦 𝑖 = 𝐆 𝑖

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖+1   

And now, subtracting the term 𝐂M
−1𝐦 𝑖+1 to the left and right hand of the above 

equation we have: 

𝐆 𝑖
T𝐂D

−1𝐆 i 𝐦 
𝑖+1 −𝐦 𝑖+1 + 𝐂M

−1𝐦 𝑖+1 − 𝐂M
−1𝐦 𝑖 − 𝐂M

−1𝐦 𝑖+1

= 𝐆 𝑖
T𝐂D

−1  𝐝obs − 𝐠 𝐦 
𝑖+1  − 𝐂M

−1𝐦 𝑖+1   

 𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1  𝐦 𝑖+1 −𝐦 𝑖+1 = 𝐆 i

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖+1  + 𝐂M
−1(𝐦 𝑖+1 −𝐦 𝑖)  

𝐦 𝑖+1 = 𝐦 𝑖+1 +  𝐆 i
T𝐂D

−1𝐆 i + 𝐂M
−1 

−1
 𝐆 i

T𝐂D
−1  𝐝obs − 𝐠 𝐦 

𝑖+1  + 𝐂M
−1(𝐦 𝑖+1 −𝐦 𝑖)  

In order to prove the estimated 𝐦 𝑖+1 is a minimum, it should be shown that the second 

order derivative of objective function is positive definite: 

𝜕

𝜕 𝐦 𝑖+1 2
𝐒 𝐦 𝑖+1 = 𝐆 𝑖

T𝐂D
−1𝐆 i + 𝐂M

−1 

This is a positive definite matrix, if 𝐆 i  has full rank and 𝐂D  and 𝐂M  are positive-

definite matrices. It is noted that the above solution use the fact that the inverse of 

𝐆 𝑖
T𝐂D

−1𝐆 i + 𝐂M
−1 exists. Finally, the  𝐦 𝑖+1 is a better solution than the previous if 

𝐒 𝐦 𝑖+1 < 𝐒 𝐦 𝑖 . 
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Appendix B: English – Greek Dictionary of Terms  

 

Α adjoint method  ςυηυγισ μζκοδοσ 

 ambiguity αμφιςθμία, αςάφεια 

 a-posteriori distribution / information μεταγενζςτερθ ι φςτερθ κατανομι / 

πλθροφορία 

 a-priori distribution / information εκ προοιμίου ι πρότερθ κατανομι / 

πλθροφορία 

 auxiliary variable βοθκθτικι μεταβλθτι 

B bias  μερολθψία 

 bias–variance tradeoff ςυμβιβαςμόσ μεταξφ μερολθψίασ – διαςποράσ 

C coefficient ςυντελεςτισ  

 computational precision υπολογιςτικι ακρίβεια 

 conjugate prior distribution ςυηυγισ πρότερθ κατανομι 

 consistent ςυνεπισ 

 convergence time χρόνοσ ςφγκλιςθσ 

 coregionalization model μοντζλο ςυμμεταβλθτότθτασ 

 correlation ςυςχζτιςθ 

 cosimulation από κοινοφ προςομοίωςθ  

 covariance ςυνδιακφμανςθ 

 cross-variogram ςυν-βαριογράμμα 
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 cumulative distribution function  ακροιςτικι ςυνάρτθςθ κατανομισ 

D determinant ορίηουςα 

 deterministic solution αιτιοκρατικι επίλυςθ 

 discrete problem διακριτό  πρόβλθμα 

E error function ςυνάρτθςθ ςφάλματοσ 

 Euclidean length Ευκλείδειο μικοσ  

F finite differences πεπεραςμζνεσ διαφορζσ 

 first order approximation πρϊτθσ τάξθσ προςζγγιςθ  

 forward problem ευκφ πρόβλθμα 

 full rank μζγιςτθ τάξθ 

G generalized inverse matrix γενικευμζνοσ αντίςτροφοσ πίνακασ 

 genetic algorithm γενετικοί αλγόρικμοι 

 geoscientifical  γεωεπιςτθμικόσ  

 global minimum ολικό ελάχιςτο 

 gradient methods μζκοδοι κλίςθσ 

 groundwater flow system ςφςτθμα υπόγειασ ροισ 

H Hessian matrix Εςςιανόσ πίνακασ 

 heuristic methods ευρετικζσ μζκοδοι 

 hydrofacies υδρογεωλογικζσ φάςεισ 

I ill-conditioned system αςτακζσ ςφςτθμα (εξιςϊςεων) 

 ill-posed system αςκενϊσ τοποκετθμζνο ςφςτθμα 
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 importance sampling δειγματιςμόσ ςπουδαιότθτασ  

 inconsistent αςυνεπισ 

 independent samples ανεξάρτθτα δείγματα 

 infinite solutions άπειρεσ λφςεισ 

 informative prior distribution πλθροφορθμζνθ ι ενθμερωμζνθ πρότερθ 

κατανομι 

 inner product εςωτερικό γινόμενο 

 interpolation method μζκοδοσ παρεμβολισ 

 inverse problem αντίςτροφο πρόβλθμα 

J Jacobian matrix Ιακωβιανόσ πίνακασ 

 join distribution από κοινοφ κατανομι 

Κ kernel transition πυρινασ μετάβαςθσ 

L least squares criterion  κριτιριο ελαχίςτων τετραγϊνων 

 likelihood πικανοφάνεια 

 local optima τοπικά ακρότατα 

M maximum likelihood estimation εκτίμθςθ μζγιςτθσ πικανοφάνειασ 

 monotonically decreasing μονότονα φκίνουςα 

 mutation  μετάλλαξθ 

N nonlinear linear least squares μθ-γραμμικά ελάχιςτα τετράγωνα 

 nonsingular  μθ ιδιόμορφοσ 

 norm μζτρο, νόρμα 

 Normal distribution Κανονικι κατανομι 
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 normalization constant ςτακερά κανονικοποίθςθσ 

O objective function αντικειμενικι ςυνάρτθςθ  

 operator τελεςτισ 

 optimal solution βζλτιςτθ λφςθ 

 optimization βελτιςτοποίθςθ 

 ordinary least squares ελάχιςτα τετράγωνα 

 overdetermined problem υπερ-κακοριςμζνο πρόβλθμα 

 overfitting υπερπροςαρμογι  

P penalty term παράγοντασ ποινισ 

 perturbation  διατάραξθ 

 positive definite  κετικά οριςμζνοσ 

 probability density function ςυνάρτθςθ πυκνότθτασ πικανότθτασ 

 projection   προβολι 

Q quadratic form τετραγωνικι μορφι 

 quasi-linear οιονεί-γραμμικόσ, ςχεδόν γραμμικόσ  

R random noise τυχαίοσ κόρυβοσ 

 realization υλοποίθςθ 

 regularization κανονικοποίθςθ  

 resampling επαναδειγματιςμόσ  

 residual   κατάλοιπο  

 residual sum of squares άκροιςμα των τετραγϊνων των ςφαλμάτων  
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 response  απόκριςθ 

 ridge estimator αμφικλινισ εκτιμθτισ 

S sensitivity matrix πίνακασ ευαιςκθςίασ  

 sequences of iterates ακολουκίεσ επαναλιψεων 

 shrinking ςυρρίκνωςθ  

 simulated annealing method μζκοδοσ προςομοιωμζνθσ ανόπτθςθσ 

 singular matrix ιδιόμορφοσ πίνακασ 

 span (a space) παράγω (ζναν χϊρο) 

 state variable μεταβλθτι κατάςταςθσ 

 stochastic  method /solution ςτοχαςτικι μζκοδοσ / επίλυςθ 

 stopping criterion κριτιριο τερματιςμοφ ι διακοπισ 

 system  parameterized  παραμετροποιθμζνο ςφςτθμα 

T tangent plane εφαπτόμενο επίπεδο 

 threshold  κατϊφλι 

 tolerance ανοχι 

 truncated Gaussian simulation αποκομμζνθ Γκαουςιανι προςομοίωςθ 

U unbiased estimator αμερόλθπτοσ εκτιμθτισ 

 underdetermined problem υπο-κακοριςμζνο πρόβλθμα 

V variance διακφμανςθ ι διαςπορά 

 weighted least squares ηυγιςμζνα ελάχιςτα τετράγωνα 

W white noise λευκόσ κόρυβοσ 
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