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Abstract

In the present Doctoral thesis, we develop and present the Cosimulated lIterative Spatial
Resampling (C-ISR) method for stochastic solution of the inverse problem of hydrofacies
characterization in a groundwater flow system and we establish the theoretical and
mathematical background of the method. The development of the method stems from the
need to characterize the geological formations before any other geostatistical estimation of
hydrological parameters, due to the complexity of soil types as natural entities. The spatial
distribution of hydrofacies could be estimated first by classical geostatistical simulations, such
as Boolean methods, Sequential indicator simulation (SIS) and truncated Gaussian simulation
(TGS) or Plurigaussian simulation (PGS), then they are populated with heterogeneous hydraulic

and transport parameters.

However, the solution of the inverse problem is considered the most efficient practice
to model the structure of hydrofacies while the physical law governing the groundwater flow
system is taken into account. The parameters of the physical law, such as hydrofacies
distribution, are defined by optimizing the response of the system while solving the physical
law (forward problem), compared to the observations of a physical variable such as the
hydraulic head. In most cases, the inverse problems are ill-posed, which means they have not a
unique solution, the solutions do not depend continuously on data, or a solution does not exist.
Moreover, the solutions of the problem may be affected significantly by small changes in the
observations and cause large variations in the parameters estimation, making the system ill-
conditioned. So, the limited number of observations and the nature of system may impose

difficulties in solving an inverse problem.

Thus, the inverse problem is a classical optimization problem when the system of
equations is linear, where the best-unbiased estimator can be found by the minimization of a
least squares error criterion. In ill-conditioned or ill-posed problems, the objective is not only to
find an unbiased estimator, but also one with a stable behavior. In weakly linear or non-linear
systems, the objective function is linearized and iterative gradient methods are applied to find
the estimator. However, the iterative process of optimization in those cases is often a

demanding task with high computational cost, while gradient methods can get stuck at local



optima. Therefore, the use of stochastic methods allowing the sampling of model space, such

as the Markov chain Monte Carlo (McMC) methods, is often preferable.

McMC methods are often used under the Bayesian perspective in solving the inverse
problem. In Bayesian inference, the prior information is updated iteratively as new members
are added to the chain. The members of the chain constitute the final a-posteriori distribution
of the parameters. The McMC instead of Monte Carlo methods preferentially visit the model
space where the posterior density is high, even if the dimension of the model space is large.
The implementation of McMC requires the definition of a transition kernel from an accepted
model to a new model, a criterion to accept a member in the chain and a criterion to interrupt

the chain.

In this work, we adopt the iterative spatial resampling (ISR) technique as the transition
kernel, either when the objective is to sample the posterior distribution of parameters or to
reach an optimal solution. In sampling the posterior, the candidate models must be
independent of the last accepted member of the chain, while the criterion of Metropolis-
Hastings or Mosegaard and Tarantola (1995) could be used to accept a model to the chain. In
the case of optimization, we adopt the implementation of independent Markov chains to reach
an optimal solution. A candidate model is accepted in a chain when its likelihood is better than
the last member of the chain, while the interruption of the chain is stochastic with the
probability to interrupt becoming higher when the likelihood of a candidate model is high. This
way, bias with the opposite direction is introduced to the samples of the posterior. Thus, an
approach to posterior distribution is achieved. This mechanism reaches an optimal solution

avoiding a large number of geostatistical simulations and forward problem solutions.

The novelty of the C-ISR algorithm is the iterative use of cosimulation between
hydrofacies and the reference data as an auxiliary variable, in order to gradually improve the
path to the optimal solution within a constantly improving Markov chain. Cosimulation for
modeling a discrete variable such as the hydrofacies distribution has not been applied in
inversion yet, due to the nonlinearity relation between the response variable and unknown
parameters. In most cases, the response variable is used as indirect data to evaluate the prior
models and drive the search path. The C-ISR method exploits the available information on the
relationship between hydrofacies and the physical variable, to produce valid realizations by

using cosimulation. More specifically, our method is based on the approach that,



instantaneously, the Normal scores transformed hydrological measurements can be correlated
with the Gaussian variable of hydrofacies, through a linear coregionalization model, although
the underground flow problem is not linear. The approach is used repeatedly within a Markov
chain, while the members of the chain result from an iterative spatial resampling transition
kernel. In this case, apart from their indirect use for inversion, groundwater pressure
measurements are used directly, in order to evaluate the prior geological model of the
subsurface. This, results in a narrower and more informed prior distribution, due to the support
of the reference variable. The effectiveness of our method is demonstrated by an example
application on a synthetic underdetermined inverse problem in aquifer characterization. The

results show that the C-ISR method is faster and more accurate as compared to plain ISR.






Mepiinym

Itnv mapovoa &udaktoplky Satplfry avamtuoocoupe Kol Toapouctaloupe T UEB0SO
Cosimulated Iterative Spatial Resampling (C-ISR) yla Tnv otoXaoTIK €miAucn tou avtiotpodou
TPOPBANUATOG TO OTOLO OXETIIETAL UE TOV XOPOKTNPLOMO TwV USpOyewAOYIKWY GACEWY TOU

unedadoug Kat BEtoupe To BewpnTIKO Kol padnuatiko umopabpo tng pebodou.

H avamtuén tng pebodou Paociotnke otnv avaykn TOU XOPOAKINPLOMOU TWwV
vdpoyswAoylkwv Gacsewv Tou UMESAPOUC TPV anmd Tov TPOCoSLopPLoUO/ekTiunon AAAwWvV
USPOYEWAOYLKWY TIAPAUETPWY, OMWE TNEG USPAUAIKNG aywyLULOTNTACG, TOU TIopwdoug Kal TNG
{wvng kopeopol. H moAumAokotnta TNG YewAOYIKNG Sladlkaoiag, oL GUOLKEG KoL XNMLKEC
avTIOpAoEL;, OMWC €Tion¢ n SuokoAla avamapAoTacnG TNG USPAUAIKAG OYWYLHLOTNTAC WG
ouvexoug petaPAntic (Matheron, 1967; Emsellem and De Marsily, 1971), kaBiotouv
anapaitntn ™ povieAomnoinon Twv USpoyewAoyLlkwV GACEWV €K TWV TPOTEPWY. EmutAéov, o
XOPOKTNPLOUOG TWV TETPWHUATWY €(vVal TIAYLA TIPAKTIKI) OTI YEWAOYIKEC LEAETEG O OXEON HE
AAAEG TIOPAPETPOUC OTIWG N AYWYLHOTNTA KAl aUTO obnyel og o akpLpr mMpoodloplopd TG

XWPLKAG KATAVOUNG TwV PpAacewv, adol urtapxel peyalutepn dtabeoipotnta SeSopévwy.

H xwplk Katavopr twv uSpoyewWAOYIKWY GACEWV UMOPEL va eKTIUNOEL e KAQOLKEG
HEBOSOUC YEWOTATLOTIKNAG MPOoopoiwong onwg ot Boolean péBodol, n Sequential indicator
simulation (SIS) kat n truncated Gaussian simulation (TGS) ) Plurigaussian simulation (PGS). Ztn
OUVEXELXL AAAEC USPOYEWAOYIKEC TIAPAUETPOL UIMOPOUV Vol tPoodloplotouv. H mpocopoiwaon
NG XWPLKAG KOTOVOUAG Twv udpoyewAoylkwv ¢Aacewv Hmopel va yivel 1o akpfng,
AapBavovtag umoyn BondBnTikEC UETAPANTEC HEOW QMO KOWOU TPOCOUOLWONG, OMwE yla
napadelypa tnv uSpauALKA Tieon, kaBwg cuxva umtapyouv dlabéoiua dedopéva Tng ieong o
UOpPoyEWAOYLKEG Aekaveg evlladépovtoc. QoTtdoo, N amd Kool TPOCOoUoiwaon amaltel T
Yvwon Tng OoUuoXETong MeTaty twv ddcewv Kalt tng Pondntikng petapAntig, evw &ev
afloloyeital n mBavodpavelo TWV TMOPAUETPWY, KATAANYOVTAC £TOL O UN AMOSEKTEC AUCELC.
Katd kavova, mapd to mANBo¢ Twv €KAOTOTE SLOBECIUWY SEYUATWY Ao YEWTPHOELS, O
0plOUOC autog Oev elval TOTE QPKETOC ylo TNV emitevén ¢ emBupntng akpifelag otnv
amelkovion tou unedagdouc.

H 1o oUyxpovn MPOKTLKH QVILLETWTILON ToU MPoBARMATOC auToU, eival n emilucn tou
¢duoikoU vopou mou SLEmeL To pavopevo petadopdg pong (euBU mpoPAnua) umobETovtag OtTL
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Ol TIOPAETPOL TOU CUOTAMOTOC £(vVal YVWOTEG, EVW OTN CUVEXELA YiveTal n puBuLon toug. H
TMPAKTIKA auth eival yvwot) w¢ emiluon tou Avtiotpodou MpoPfAnuatog, kabwg ot
LVOpPOYEWAOYLIKEG PAoELG avTIpeTwTi{ovTal MAEOV WG TOPAUETPOL €VOG OCUCTAUATOC KAl N
duokn petaBAntn (m.x. udpavAikn Tieon) wg Tuxaia petafAnTr. Zto aviiotpodo nMpPoBAnua, ot
UETPNOELG TNG GUOLKAG HETABANTAG Kal N amokplon tou puolkol VOUOU XPNOLUOTIOLoUVTOL Yia

TNV KOTAVONON TNG CUMTEPLPOPAG TWV TIAPAUETPWY KOL TOU TIPOCTSLOPLOOU TOUG.

Av KalL n TPOKTIKA Tou TPocodloplopol Twv ¢GACEWV E€lval TIO OIMOTEAECUATLIKN
eMAVOVTOG To avtiotpodo TPOPANUa kKabBwg xpnolpomoleital pia emutAéov mAnpodopia,
dnAadn o puokog vopog, pia oslpd amd aAla mpofAnuata Snuoupyolvtal oto omoia ol
EPEUVNTEC KaAouvTal va SWoouV amavinoels. Mo cUyKeKPLUEVA, Ta avtioTtpoda tpofArRuata
elvatl ouvnBweg aoBevwe/kakwe teBeipéva (ill-posed), SnAadn emibExovral anod Kapio AVon €wg
anelpeg AVoels. Emiong, ta avtiotpoda mpoBAnpata pnopet va eival pun emtAvopa e€attiog
NG UTIOAOYLOTIKNC akpiBelag kat tote xapaktnpilovral w¢ aoctadn cvotrnuata (ill-conditioned
systems). Ta mpoBARuata autd dnuloupyolvial Kupiwg AOyw TOU TEPLOPLOMEVOU apLOuoU

Selypatwy NG duokng LeTaPANTAG 0AAG Kal TNG $UONE TOU CUCTHUATOC.

TNV NEPLMTWOoN MoU To cUOTNHA EELCWOEWV Elval YPAUULKO, TO avtiotpodo MpofAnua
elval éva kAaoolkd mpoBAnua BeAtiotonoinong, oto omoilo o BEATLOTOG APEPOANTITOC EKTLUNTAG
TWV TIOPAUETPWVY Hmopel v 600el amd TO KPLTAPLO TwV gAaxloTwv TETpAyWVWY. TNV
TEPUMTWON YPAUULKWY a0Bevwv 1 actabwv cuoTnUATwWY, TEPAV amod TNV avalntnon &vog
OUEPOANTITOU EKTLUNTH, OVTLKEIMEVO €lval n eUPEON €VOC EKTLUNTH O Omoiog umopel va eival
HEPOANTTIKOC aAAQ va Sivel o Suvatég ) otaBepég AUOELG 0TO CUOTNHA TWV EELOWOEWV. ITNV
neptmtwon  (acBsvwg) HUn YPOUMLIKWY  CUCTNMATWY, N QVIKEWWMEVIKA  ouvaptnon
VPO ULKOTIOLELTAL KOt N Stadikaoio eUpeon ToUu BEATIOTOU EKTLUNTH YIVETOL EMAVAANTITIKA UE

TOUG aAyopLBuoug KAlong.

H emavaAnmuikn Swodikaoia €Upeong Ttoug PBEATIOTOU EKTLUNTH OTIC TIEPUTTWOELG
000EVWG 1N YPAUUKWY CUCTNHATWY 1 TEAEIWS UN YPOUMLIKWY CUOTNUATWY ouxvA €ival pia
enimovn Stadikaoio Pe PeYAAO UTIOAOYLOTIKO KOOTOC (HEYAAOC aplOUOG TMOPAUETPWY), EVW
elval moAU mBavo to amotéAecpa Tou PBEATIOTOU eKTLUNTA va avadEpeTal o €va TOTILKO
BEATLOTO TNG QVTLKELUEVIKNAG ouvaptnong. Mo tov Adyo autd n xprion oToXaoTkwv UeBOdwv

TIOU ETUTPETIOUV TO CUOCTNHOTIKO SELYUATIONO TOU TESIOU TIHWV TWV TAPAUETPWY, OTWE OL



uEBodot Markov chain Monte Carlo, sival mpotipuotepn, emepvwvtag ta TPOPANUATA TWV

QULTLOKPATIKWY 1} GAAWV OTOXAOTIKWY HEBOSwWV.

Itnv avtotpodn tou mpoPAnuatog ot pEBodol McMC xpnotpomnolovvial cuvnbwg oe
ouvluaOoUO LE TN OTOTLOTIKA Katd Bayes, dnAadn n ek mpootluiou (a-priori) katavoun twv
TIAPAUETPWY avaBewpeltal emavaAnmTikd 600 véa UEAN mpootiBevtal otnv aAucida. Ta péAn
¢ aAuoibag amotelolv Oelypato TG HeTAyevEOTEPNG (a-posteriori) Katavopng Twv
napapétpwy. Ot péBodol McMC €xouv TNV KAVOTNTO VO «ETLOKETITOVIALY TO XWPO TWV
TIAPOHETPWY OTIOU N TIUKVOTNTA TNE LETAYEVEOTEPNG KATAVOUNG Elval LeyAAn akopa Kot 6tav o

XWPOG TWV MOPAMETPWV Elval TTOAWV SLAOTACEWV.

H edappoyn twv McMC amalttel Tov oplopo evog mupnva petafaong and to éva péAoG
NG aAuoidag oe éva umoPrdlo HENOG, EVOC KpLtnpiou emAoyng Twv HEAWV TG aluaoidag Kot
€VOG Kpltnplou yla va Stakomel n aluoida. O KaBopLoUOG TWV MAPATIAVW KPLTNPLWV TIPEMEL va
elval Tétolog wote ta PéEAN NG aluaoidag va eivat avetaptnta HeTafl TOUG KOl VO OITOTEAOUY
Selypata tng a-posteriori katavoung. H dtakomn tng aAvcidag ocuvnBwg eéaptatal amod tov

EMBUUNTO aPLOUO TWV SelypdTwyV Kal tov SlabBéaipo xpovo yla Tnv uAomoinon tng aAuaoidac.

Jtn mnapovoa OSwatpfn, ta umoyndwa PEAN TNC aAuvoidag Snuioupyouvtal HE
VEWOTATLOTIKA TIPOCOMOLWOoN KAl PE TUXOLO XWPLKO SELYUATIONO TOU QPECWS TTPONYOUUEVOU
pHEAOUC tTNg aAucidag kot Twv a-priori Sedopévwy, SnAadn €va MPOoOpPUOCUEVO aAyoplOuo
Gibbs Sampling. Otav o otdx0¢ TN¢ £peuvag €ival 0 OPLOUOG TNG TPOTEPNG KATAVOLNG, TOTE Eval
vroPndlo péAog tng aAucidag Kpivetal PAceL TOUu KpLtnplou TOU XPNOLUOTOLE(TOL OTOV
aAyoplBuo Metropolis-Hastings | tou kpttnplou mou mpoteivetal and toug Mosegaard and
Tarantola (1995). Ta untoyrdla péAN tng ahucidag mpémet va kpivovtot adou €xel emuteuxBel n

ave€aptnoia Toug ano to mPonyoupEeVo LEAOG TNG aAuacidag.

JTNV MEPLTTTWON TIOU 0 OTOXOG ELvaL N EUPEON €VOG BEATLOTOU EKTLUNTH, ULOBETOUUE TNV
vAomoinon avefaptntwv Mapkoflavwv oAvcibwv, evw kaBe pélog tng aAucidag yivetal
amodekto epooov n mbavodaAveld Tou eival HEYOAUTEPN ATMO TO TPONYOUUEVO UEAOG TNG
aAvcibag. Autd odnyel otnv emloyn pepoAnmrikol delypatog ¢ VOTEPNG KATAVOUNG, adou
Ta teAevtala PEAN KaBe aluoidag mou amoTeEAOUV TNV KATAvoun €xouv TpokUPeL pe uPnAn
mbavodavela. H Swakomr kdBe aAucidag yilvetal HE OTOXOOTIKO KPLTHPLO, OTO OMoio n
rmbavotnta Slakomng tng aluoidag avéavetal 6co n mBbavodavela TwV HEAwV piag alvuoidag

avéavetal. Me auTtov Tov TPOTO MPOKUTITEL EVal LEPOANTITIKO Selya TNG a-posteriori KATAVOUNG



oANG pe avtiBetn katevBuvon NG pepoAnPlag mou eloAyeTaL PE TNV €TUAOYH TwV HEAWV KAOe
oAvoibag. ETol, emITUYXAVETAL Piot TPOCEyyLlon TNG UOTEPNG KOTOVOUNG. AUTOG O UNXAVLIOUOG
odnyel otnv elpeon Tou PEATIOTOU EKTLUNTH omodevyoviag €vav HeEYalo aplbuo

YEWOTATLOTLKWY UAOTIOLOEWVY KoL TNG ETAUONG TOU EUOEWG TIPOPBANLATOG.

e TPONYOUUEVEG MEAETEG OL OTOIEG Xpnolgomoolv TG pueBodoug McMC, bev
AapBavetal umoPn n ouoxEtwon NG GUOIKAG HETAPBANTAG KOL TWV TOPAUETPWY Yyl TNV
TIAPAYWYr TWV YEWOTATIOTIKWY UAOTIOLNOEWV. Z€ AUTA TNV MEPLTTWON, OL LETPHOELG TNG TIEONG
TOU UTIOYELOU VEPOU XPNOLUOTIOLOUVTAL POVOV EUMECWC, Yl TNV afloAdynon Twv MPOTEPWV
YEWAOYIKWY MOVTEAWV Tou umnedddous. O MEPLOPLOPOEC AUTOG OdeINETAL OTNV UN YPOUMLKN
OUOXETLON UETAEY USPOUALKWY LETPOEWV KAl TIOPAUETPWY TOU UTtedadouc. Q¢ ek TouToU, Ol
EUPEWG YVWOTEG MEBOSOL Twv amod kowoU kriging kal amd KoOwoU TPOCOWOolwoNng Tou
Baoilovtal otnv Ypapulk €KTipnon, 6ev pmopouv va xpnolpomnotnBouv ameubeiag, ylati
KATOAYOUV O€ M omodektéC AUoelg. AvtiBeta, n péBodog C-ISR ekpetalevetal tnv
TANpodopia TWV HETPNCEWV TNG PUOLKNG LETABANTAG YLA TNV TOPAYWYH TWV YEWOTATIOTIKWY

vAomoloewv.

Mo ouykekpluéva, n HEBOSoOC otnpiletal otnv Tpoo€yylon OTL, OTyuwoia, ot
puetaoxnuatiopéveg o€ Normal Scores uSPOYEWAOYIKEG UETPAOELS, UTTOPOUV VO CUCXETLOTOUV
hue tnv Fkaouowovr PeTaPANTH TwV USPOYEWAOYIKWY GACEWY, HECW YPOUULKOU HOVTEAOU
OUMMETAPANTOTNTAC, TAPOTL TO TPOBANUO TNG UMOyelag pong Oev eival ypappko. H
TIPOCEYYLON QUTH YLVETAL €MAVOANTITIKA €VIO¢ pLlag MapkoBlavig aAucidag, tng omolag ta
HEAN TPOKUTITOUV XPNOLUOTIOLWVTOG WE TUpNva HETABAONG €vov EMAVAANTTIKO XWPLKO
OELYUOTIONO TOU TIPONYOUUEVOU UEAOUG. TNV MEPLMTWON AUTH, Ol HETPACELS TNG TEONG TOU
UTIOYELOU VEPOU, E€KTOC QMO TNV €UUECN XPron TOUC yla TNV €MAUCn TOU aviiotpodou
MPOPBARUATOC, XpNOLUOTOLOUVTAL KOL AUECQ, YL TNV UAOTOLNON TWV TPOTEPWY YEWAOYIKWV
HOVTEAWV TOoU unebadoug. Me Tov TPOTO AUTO TIPOKUTITEL L0l OTEVOTEPN KOL TILO EVNUEPWHEVN
nMpoTEPN Katavoun, Adyw tn¢ ouvdpoung tng LetafAnth avadopdg.

H amoteAeopatikotnta t¢ HeBodou amodslkvieTal amd TNV edappoyn tng o €va
OUVOETIKO TtapAdELya UTIO-OPLOUEVOU avTioTpodou TPORANUATOG YLO TOV XOPAKTNPLOUO EVOG

vbpododpou opilovta (Ewkova 0.1).
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Ewkova 0.1: H mpayuoatikn koatoavour twv ¢acewv otov udpododpo opilovta (aplotepad). Ot

TIUEG avapopAC KOL OL LETPNOELG TNG Ttieong (6€€La).

H nébBobdog C-ISR ouykpivetatl pe tnv ISR péBodo xwpic tn xprion tng amd Kowou
KOTOVOUNG Twv UudpoyewAoylkwv ¢GACEWV Kol TNG TEONG, €VW Yyl T UAOTIOLOELG
Xpnotlomnoleitatl n Plurigaussian mpocopoiwon. Ano ta amoteAéopata mpokumtetl otL n C-ISR
elvat mo ypnyopn MpEBodog kobBwg amd Tg 250 ave€aptntec aluoide¢ Markov TmoOU
dnuoupynOnkav, to euBUL MPOPANUa emAUBNKe 28914 dopég Evavtl 48390 otnv mepimtwon
¢ ISR (Ewova 0.2).

Evaluations Evaluations
1] 200 400 [i1]1] gon 1] 200 400 aon gon

Figure 0.2: H cUykAlon 50 tuxaiwv aveédptntwyv aAucidwv twv pebodwv C-ISR kat ISR.



ErtutAéov, n C-ISR katéAnée oe mio akplBeic mpoPALY LS £xovTag PEON TETPAYWVLKN pila
odaipatoc (RMSE) 0,0383 £vavtt 0,0537 yia tnv ISR (Ewkdva 0.3).

C-ISR ISR

¥ (m)
¥ ()

50
B

Figure 0.3: O xaptng tou RMSE amnd 250 avefaptnteg aluoideg tng C-ISR (a) kat ISR (b).

Emiong, n BéAtiotn Avon tng C-ISR é€dtace oe 85,69% mMOOCOOTO OUOLOTNTOG TWV
UOPOYEWAOYIKWY GACEWV HE TNV TMPOYHOTIKOTNTA €vavil Tou 81,76% opolotntag tng ISR

(Ewkova 0.4). Ta avtiotola HéEoa TOCOOTA opolotnTag amo T 250 aAuvoideg eival 80,82%
gvavtl 71,04%.

C-ISR ISR
a0 50
X
E 0 £ 0
50 i 50 -
50 ] 50 -60 0 50
x i i)
a b

Figure 0.4: O BéAtotog ekTLUNTAG Twv ¢doewv tng C-ISR (a) kot ISR (b) peta amo 250
ave€aptnteg aluoidec.
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1 Introduction

1.1 Statement of the Problem

Numerical modeling of groundwater flow and mass transport are important tools for predicting
the behavior of a hydrogeological system. Nevertheless, in order to produce reliable hydrologic
predictions, parameter values that determine the response of the model must be appropriately
chosen for a specific aquifer. Direct measurements of hydrologic parameters, however, are
scarce and fraught with uncertainty. The scarcity of direct measurements of the hydrologic
parameters has been long ago recognized as a major impediment to the use of groundwater

models and to their full utilization (Frind and Pinder, 1973).

To address this problem of parameter uncertainty, hydrologic models can be used in
applications “opposite” or “inverse” to their original use, i.e., parameter values are treated as
system unknowns and are determined by extracting information from observations of system-
response variables (Kitanidis and Vomvoris, 1983). The procedure is conveniently called inverse
problem-solving. However, the subsurface reservoir is normally very heterogeneous due to
complex geologic processes and physical and chemical reactions, which makes model
parameter identification a demanding task. On the other hand, a crucial issue is that the
problem of specifying conductivity in every block from sparse head observations is
underdetermined, i.e., there are many solutions that are consistent with the data. The
ambiguity is largely due to the scarcity of the data but is also inherent in the mathematics of
typical inverse problems: a small range of values in the observed head is consistent with a
larger range of conductivity values (Kitanidis, 2007). This characteristic is known as ill-
posedness and results in non-uniqueness in the solution of the inverse problem (see also

section 3.23).

Numerous deterministic and stochastic methods have been proposed to overcome the
ill-posedness of the inverse problem and specify the hydraulic conductivity in an aquifer field.
Over the recent years, researchers have developed novel approaches to solve the problem by
inverting directly for the spatial distribution of hydrofacies, instead of conductivity. Admittedly,

specifying the hydrofacies distribution is a more efficient and direct way to predict the behavior
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of a hydrogeological system (see literature review). But, there are problems with this approach,
since facies is a categorical variable and is a challenge to incorporate it in the geostatistical
formalism. And, apart from all complications, the “curse of dimensionality” adds in computer

time and complexity in general.

Taking all the above in account, the present work lies in the McMC category of methods
and attempts to solve the facies inversion problem by selectively sampling a chain of successive

models driven by cosimulation with the response variable.

1.2 Objectives

The main goal of this research is to develop a method for direct inversion of the spatial
distribution of hydrofacies, using geostatistical information such their covariance, the
proportions and their contacts and to deal with the theoretical and practical difficulties arising
in this approach in the non-linear case. For this scope, we use the Plurigaussian simulation, one

of the recently developed facies modeling methods in geostatistics.

Our original idea is to exploit the information resulting from the response of the
hydrological model not only as likelihood function, as the most researches in Bayesian
perspective propose, but also as a linear approximation of the association between the state
variables. This association can be expressed by their experimental cross-variogram and it is

embedded in the prior ensemble by cosimulation with the reference variables.

An objective of this study is to build the theoretical background behind the proposed
method and explain the effectiveness of cosimulation, which is the basic characteristic of our

method, by comparing it to a similar procedure without cosimulation.

1.3 Innovation

Cosimulation for modeling a discrete variable such as the facies distribution has not been
applied in inversion yet, due to the nonlinearity relation between the response variable and
unknown parameters. In most cases, the response variable is used as indirect data to evaluate

the prior models and drive the search path.
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The cosimulation of facies and the hydrological response variable using iterative spatial
resampling as transition kernel is used in hydrology for the first time. Our method creates an
important sampling effect that steers the process to selected areas of the prior facies
distribution. The results demonstrate the effectiveness of our method producing a better
approximation of the facies spatial variability and, at the same time, less computation cost than

other methods.

The straightforwardness of implementation, the simplicity of tuning the initial
parameter and the requirement of less amount of information (hard data), in combination with
the accuracy, the computational cost in large scale-problems and the realistic facies

reproduction that honors production data, make C-ISR perform better than other methods.

1.4 Structure

This work contains six chapters in total. Chapter 1 introduces the reader to the general inverse
problem in groundwater modeling and analyzes the objectives and the innovation of this
research as previously stated. In the next section, the fundamental topics of inverse problem
are presented followed by an extended literature review, while the developments of previous
works that guided our research are finally presented. Chapter 2 explains the most common
methods in geostatistical simulation for discrete variables and presents the theoretical basis of
Plurigaussian simulation in detail. Moreover, the basic outlines of multivariate analysis in
geostatistics, such as cokriging, the linear coregionalization model, and Cosimulation are given.
Chapter 3 focuses on the general discrete inverse problem using the least square criterion to
solve underdetermined and overdetermined optimization problems, while the regularized
estimator in ill-conditioned systems is explained. Furthermore, the theory of the transition from
the deterministic to the stochastic solution of the inverse problem and the solution of the non-
linear problem with deterministic iterative algorithms that use the least square criterion as the
objective function is presented. In Chapter 4, the Bayesian formulation of linear and non-linear
inverse problems is established and the Monte Carlo and McMC methods to sample the
posterior distribution are presented. The C-ISR method (Valakas and Modis 2015; Valakas and
Modis 2016), which is the main achievement of this work, is presented in Chapter 5, explaining
the outline, the kernel transition, the role of cosimulation and the detailed algorithm of the

method. The effectiveness of the proposed approach is demonstrated by an example
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application on a synthetic underdetermined inverse problem in aquifer characterization. Finally,
the conclusions and contribution of the study are summarized in Chapter6. The last chapter

details the progress achieved towards the objectives and suggests plans for future research.

1.5 Literature Review

1.5.1 Inverse Problem Approaches in Groundwater Modeling

In recent decades, numerous methodologies have been proposed to solve the inverse problem
in groundwater modeling, with the general aim to estimate the spatial distribution of hydraulic
conductivity in an aquifer field. A review of the most recently proposed methods can be found
in Carrera et al. (2005). Because of the inherent difficulties associated with the estimation of
spatial functions from limited and imperfect data, the crux of the problem is how to
parameterize the distributed parameter system (Emsellem and De Marsily, 1971; Neuman,
1973; Gavalas et al., 1976), that is, how to transform the question into a well-posed estimation
problem. In general, the principal conceptual differences among available methods lie in the

parameterization (Kitanidis, 1995).

Certain formalisms (e.g., Tikhonov and Arsenin, 1977; Guidici et al., 1995; Tikhonov et
al.,, 1997) focus on finding a single solution to the inverse problem by minimizing the error
between model results and measurements. This is done by imposing restrictions, or by making
assumptions about available information, such as that head is measured without error at every
node of the model. Such methods have appeal in practice only when sufficient information is

truly available (Kitanidis, 2007).

Stochastic methods, on the other hand, use statistical conditioning in which the
covariance between parameters and system-response variables is utilized to condition the
parameter values, using measurements information. By representing the spatial parameter
function with a random field, the idea is that although the exact value is not known, one should
be able to identify an interval that contains the true value with a high degree of assurance. In
general, stochastic methods do not adopt the classic statistical but rather the Bayesian view,
where the probabilities represent a state of knowledge or available information (Christakos,

1990). The idea is that the unknown function, such as the conductivity over a region, is
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modeled as a random function (RF) mainly because there is insufficient information to model it

as deterministic, rather than because repeated measurements indicate a statistical regularity.

Many stochastic parameter estimation methods employ geostatistical models to define
the spatial distribution (structure) of conductivity (e.g., Kitanidis and Vomvoris, 1983; Hantush
and Marino, 1997; Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008), under the
assumption that aquifer conductivity in regional systems can generally be described using such
models (Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1985; Carrera et al., 2005).
There are difficulties, anyhow, in the representation of conductivity as a continuous variable.
Matheron (1967) had already pointed out that conductivity is not a point but a set function,
while Emsellem and De Marsily (1971) concluded that conductivity is a parameter with no
punctual value but with an average in a region of a given size. In this line, the usual continuous
and multi-Gaussian methods have shown that they do not allow modeling a sufficiently wide
range of connectivity patterns for the high (or low) permeable structures (Journel and Alabert
1990; Zinn and Harvey 2003; Renard et al., 2005; Kerrou et al., 2008; Renard 2007). To
overcome this problem, Fienen et al. (2008) propose an interactive zonation method, where
candidate zones are implied from the data and are evaluated using cross-validation and expert

knowledge.

An alternative is to use a two-step approach in which, first, the geological facies are
modeled, and second, they are populated with heterogeneous hydraulic and transport
parameters. This approach is flexible and allows modeling structures at different scales
(Mariethoz et al., 2009). Therefore, before the geostatistical estimation of a soil property such
as conductivity, the knowledge of geological formation should take into account, due to the

complexity of soil types as natural entities (Ibafiez and Saldafia, 2008; Modis and Sideri, 2013).

In general, deterministic models for structure identification, such as graphical methods
(Doveton, 1986), neural networks methods (Rogers et al., 1992) and fuzzy neural networks
methods (Chang et al., 1997), have limitations and may introduce larger bias and uncertainty
than an inappropriate choice of facies hydraulic parameters (Ye et al., 2004; Lu and Robinson,
2006). On the other hand, stochastic models have been found to be effective in overcoming the
above problems. Following this approach, Winter and Tartakovsky (2000 and 2002) provide a
general framework for modeling flow and transport in high heterogeneous porous media

consisting of multiple materials, by quantifying uncertainty in both spatial arrangement of
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geological facies and hydraulic properties within each facies. Guadagnini et al. (2004) utilize
stratigraphic and sedimentological data to reconstruct the spatial extent of the aquitard zone
applying indicator geostatistical techniques, in order to solve the equations for ensemble
moments of hydraulic head. Mariethoz et al. (2009) assess contaminant migration, applying the
truncated plurigaussian method that allows integrating a geological conceptual model (using a

lithotype rule) within the framework of a mathematically consistent stochastic model.

Instead of inverting for conductivity, a more efficient approach is to solve the inverse
problem directly on the hydrofacies distribution. This tactic allows for simultaneous estimation
of the optimum aquifer structure from geological or geophysical data and hydrologic response
measurements in a single step. In this line, Chen and Rubin (2003) propose a Bayesian model
for lithofacies estimation, assimilating geophysical data through a likelihood function. Liu (2005)
generates geological facies maps using Plurigaussian simulation in order to solve the problem of
automatic history matching of facies and explore the gradient method and the ensemble
Kalman filter (EnKF) method, after the parameterization of the geostatistical model. Harp et al.
(2008) follow a genetic meta-algorithm to select between equiprobable structure realizations
according to a fitness criterion, while Mariethoz et al. (2010a) employ an iterative spatial
resampling procedure to steer the search for solutions among simulated images that preserve
the same spatial structure. Furthermore, Cardiff and Kitanidis (2009) developed a flexible, yet
sensitive to the initial guess framework for defining zone boundaries using the level set

method.

1.5.2 Bayesian Perspective and McMC inversion

In a Bayesian perspective, the terminology is different. Ill-posedness is not defined anymore
and the question can be phrased as whether the likelihood of the data is sufficient or not to
constrain the posterior distribution to be different from the prior. Thus, the solution to a
Bayesian inverse problem is an a posteriori probability density. Using sampling methods, the
goal is to generate a sample from the posterior, such that statistics consistent with the

posterior distribution can be inferred.

Yet, in addition to the classical optimization methods, a possible approach for the
solution to inverse problems is the use of Markov chain Monte Carlo (McMC) techniques (Zhou

et al., 2014). This is an alternative way to achieve the same results without resorting to a
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deterministic optimization setup, but rather sampling a multivariate probability distribution
that converges to the posterior. McMC methods generate model realizations that match the
state observations while reproducing some prior statistics and obey Bayes’ rule. It is noted that
these requirements are only partly fulfilled by most gradient-based optimization techniques
(Gomez- Hernandez et al., 1997; Mariethoz et al., 2010a). Thus, McMC techniques, which are

mainly prior driven approaches, do not produce models with zero prior probability.

Howbeit, the use of informative priors in a Bayesian context has been a crucial issue of
disagreement (Jaynes, 1985; Scales and Sneider, 1997; Mosegaard, 2011). Some authors
suggest that the use of prior information may bias the solution of an inverse problem in an
unwanted way. On the other hand, non-informative priors may lead to unsolvable problems or
to solutions with high uncertainty (Hansen et al., 2012). Different a priori priors, that is,
probability distributions that are somehow justified by the nature of the uncertainty of a
situation, are many times found. But this subject is a matter of philosophical controversy, with
the Bayesians divided into two schools: "objective Bayesians," who believe that such priors are
justified in many useful cases and "subjective Bayesians" who believe that in practice the priors
usually represent subjective judgments that cannot be justified (Williamson 2010). Objective
prior means a state of knowledge coming from a logical inference and the strongest arguments
for objective Bayesianism were given by Jaynes (2003) based on the principle of maximum
entropy, which says that a belief function should be a probability function, from all those that

are calibrated to evidence.
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2 Geostatistical Simulation of Categorical Variables

2.1 Introduction

The solution of a physical system (e.g. groundwater flow transport) requires detailed
knowledge of the physical parameter spatial distribution (e.g. hydraulic conductivity). The
spatial distribution of the parameter may be estimated by interpolation methods, such as
kriging. The stochastic solution of a physical system requires more than one realization of the
spatial parameter (random field) to incorporate its structural uncertainty, which is reflected in
its response. Such realizations of the parameter set can be generated by a geostatistical
simulation. The parameters may concern either continuous variables or categorical variables,
for example, hydraulic conductivity and rock type respectively. General, the continuous
variables have an infinite number of values, while categorical variables contain a finite number

of categories or distinct groups.

Various approaches of geostatistical simulation have been developed to generate these
realizations. Approaches to simulate continuous variables include the turning bands method
(Journel, 1974), spectral methods (Borgrnan et al., 1984; Gutjahr, 1989), lower upper (LU) or
Cholesky decomposition (Alabert, 1987; Davis, 1987), sequential Gaussian simulation (Journel,
1989), and fractal approaches (Hewett and Behrens, 1990). For categorical variables, the
approaches include Boolean methods (Serra, 1982; Jeulin, 1987; Chautru, 1989), Sequential
indicator simulation (Journel and Alabert, 1989) and truncated Gaussian simulation or
Plurigaussian simulation (Matheron et al. 1987; Galli et al. 1994; Amstrong, 2011), while
Genetic algorithms (Whitley, 1994) and simulated annealing (Kirkpatrick et al., 1983; Deutsch

and Journel, 1992) are used for both continuous and categorical variables.

The implementation of a geostatistical simulation requires specification of a multivariate
probability model for the spatial process. Then, the algorithm produces equiprobable (equally
likely to be drawn) realizations of a random field in order to capture the attributes of the
phenomenon (Deutsch and Journel, 1997; Chiles and Delfiner, 1999; Modis and Sideri, 2013).

However, the probability density values of the realizations are different in general.
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In the next sections, we present the sequential simulation process and we focus on
Sequential indicator simulation (SIS), and Plurigaussian simulation (PGS), which are widely used

to model discrete or categorical variables.

2.2 Sequential Conditional Simulation

The aim of sequential conditional simulation is to produce realizations that honor the sample
data as well as the spatial covariance of the attributes being simulated. Thus, in order to
reproduce a realization, the simulated values are conditioned to the sample data along with the
previous simulated values. The sequential process requires the definition of a random path by
which all query points are visited sequentially. Thus, the realizations are different due to the

path randomness and the conditioned simulated values.

Let zq,%Z,,..,Z, be the random variables of interest at the locations x4,X5, ..., X,,
where v is the query points, then the v-dimensional probability density function (pdf) of a RF
1y (21,2, ..., Z,) can be decomposed as the product of one dimensional marginal and a series of

one dimensional conditional densities:
f (21,23, ...,2,) = fi (Zl)f1|1(zz|Z1)f1|2(z3|z1, Z;) "'f1|v—1(zvlzl; s Zy_1) (2.1)

After generating the first simulated value z; the next simulated value z, will be generated by
the conditional distribution fj1(z;|z,). The process continues until one generates a value from
fiv-1(Zy 124, ..., Z,_1). At the end of the process, the simulated values in the realization are a
sample of f,(z{,Zy, ...,Z,). The above mathematical formulation is referred to as sequential
simulation process while in sequential conditional simulation, the sample data are also taken

into account by conditional distributions.

2.3 Sequential Indicator Simulation

The concept of SIS is based on indicator kriging, an algorithm which is widely used to transform
a continuous random field z(x) to a binominal random function with values 0 and 1 in order to
produce probability and risk maps (Journel, 1983). The coding of a datum into either 1 or 0

depends upon its relationship to a cut-off value, z. For a given value z(x)
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1020 = () ita0 < 22)
where X are the spatial coordinates of the random variable. After this non-linear
transformation, an indicator variogram can be modeled. The multivariate indicator kriging
involves calculating and modeling multiple indicator variograms at a set of k thresholds
covering the whole range of z(x). Multivariate indicator kriging is used in the same manner for
a categorical variable such as geological facies, in order to produce estimation maps of this
variable (e.g. each facies is transformed into 0 or 1 at every sample point, then the indicator
variogram is calculated and modeled for each facies). After the modeling of variograms and
cross-variograms, indicator kriging proceeds in the same manner as ordinary kriging: the results
of coordinate queries (unsampled points) are obtained by kriging the indicator variables. The
values are generally between 0 and 1 representing the probability of occurrence of a specific
category at the particular coordinates. By the definition of probability, the acquired values
must lie in the interval [0,1]. This relation may not be satisfied because the kriging estimate is a
non-convex linear combination of conditioned data. Goovaerts (1997, pp. 399-400) lists the

ways to avoid the violation and possible corrections to be applied to overcome this problem.

Implementation of the previous process under the (multivariate) indicator kriging

modeling is referred to as SIS. The steps of SIS algorithm can be described as follows:

1. Chose a random location and perform indicator kriging for each category: Taking
into account the conditioned data (sample data for the first query point), apply

indicator kriging to estimate k probabilities of occurrence.
2. Correct these probabilities to sum to 100%.

3. For each category draw a simulated value from the Gaussian distribution with mean

and variance the respective values from indicator kriging.

4. Define a cumulative distribution of categories using any ordering of the k categories.
Then, k intervals are drawn and the probability of category occurrence lies in these
intervals. For example, [0,P;], (P, P, +P,],...,(Py + P, + -+ P, 1], where the

index of probability identifies the category.

5. Draw a random value P, from the uniform distribution U(0,1). The interval in which

P, falls determines the simulated category.
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6. Add the simulated value to the conditioning data and repeat the step one until all
query points are simulated. When all query points are simulated, a full realization is
reproduced. Multiple realizations are reproduced by repeating the above steps and

defining different random paths.

2.4 Truncated Gaussian and Plurigaussian Simulation

2.4.1 The idea of Plurigaussian Simulation

Over the recent years, TGS is increasingly used in geological modeling where categorical
variables such as rock facies occur. A sequential ordering of facies allows the researchers to
define a simple lithotype rule. For example, the sand is followed by shaly sandstone then shale.
Plurigaussian is simply an extension of TGS and allows for more complicated types of contacts
between facies in order to produce a much wider range of geological patterns. TGS or PGS is an
alternative method to SIS, in order to overcome the lack of geological realism and incorporate

geological knowledge on the simulated field.

The idea behind the TGS is to represent the facies using a secondary continuous
Gaussian RF at every point of the research area and then convert it to facies using the lithotype
rule. The proportions of facies are used as prior information to define the thresholds of that
Gaussian distribution. The thresholds can be calculated by the space facies proportions occupy
in the distribution. In the case of PGS, more than one independent Gaussian distributions are
defined either to represent more complicated contact relationships between facies or to

identify an anisotropic behavior of facies contacts in space.

2.4.2 Theoretical formulation

Consider a standard Gaussian RF Z(x) where x € R3, with variogram y(h). Let (Dy, ..., D) be a
partition of R into k disjoint subdomains. A categorical random field with k categories (facies)

is obtained by putting

Vv x € R3,1(x) = i,if and only if Z(x) € D, (2.3)

while the indicator random field for each facies F; is defined as:
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1ifIx) =i

Vx €R3 I () =
X F l(x) {0 otherwise

(2.4)

The choice of the partition (Dy, ..., D;) has implications on the spatial relationships between
the facies, as it defines the permissible contacts between pairs of facies and also allows
reproducing the chronological ordering of the facies (Armstrong et al.,, 2011). Practically, in
order to transform between the Gaussian RF and the facies indicators, a proper set of k — 1

truncation thresholds t; has to be defined so as:

X)) =1t <Z(X) <t (2.5)

The thresholds are inincreasingordert; <t; < <t; 1 <t <tjy1 << t)_1.
Approximating the proportion of a particular facies F; at point x by the probability of having
this facies F; at that point x:

Pp (x) = P(facies at pointx = F;) = E{IFi x)} (2.6)
We assume that the facies at location x, F(X) can be described as a function of the Gaussian RF
by the following relation:

k

F(x) = Z cilpisTrue(t;_1 < Z(x) <t;) 2.7)
i=1

where k is the number of distinct facies, c; is the value of the parameter in facies i and IsTrue()
is a function which returns 1 if its argument is true and 0 otherwise. More Gaussian variables

could also be added according to facies spatial associations (Armstrong et al., 2011).

Due to equation 2.4, we have:
P(x) = G(t;) — G(ti-1) (2.8)

where G(t) is the cumulative distribution function (cdf) for the standard normal distribution
N(0,1). As the proportions of each facies are known experimentally, one has just to invert this

relationship to deduce the thresholds:
ti = G (Pr, (%) + Pr,(®) + - + P, (X)) 2.9)

30



2.4.3 The Plurigaussian algorithm

First, one has to infer the variogram of Z by using the indicator variograms and the proportions
of each facies, plus a truncation rule. The proportions of each facies are calculated based on the
observations. The lithotype rule is usually based on available data. In practice, information
concerning this rule might also be obtained by in situ inspection, or it might be in the form of
empirical knowledge in the wider area. The model variogram of Z, which represents the facies
distribution, can be determined by a trial and error procedure, using for example the program
VMODEL (Emery and Silva, 2009). The criterion of this procedure is the optimal fit of the
simulated facies variograms to the observed ones. After the definition of model variogram of Z,
the Gibbs sampler (see section 4.2.2.2) can be used to generate gaussian values at sample
points that have the right covariance and belong to the right intervals. Then, any conditional
simulation can be used to generate a realization conditional to gaussian values at sample

points. At the end of the process, the Gaussian values of the realization are converted to facies.

2.5 Multivariable Simulation

2.5.1 Introduction

Most natural phenomena involve multiple RFs at spatial locations with possible dependencies
between them. Considering the cross-correlation of RFs, the spatial estimation of a RF is
improved. Numerous examples exist either between continuous or categorical variables, such
as the relationship between the groundwater flow transport and hydraulic conductivity or the
correlation between the facies, respectively. As is explained in previous sections, the
categorical variables can be also represented by Gaussian RFs. In spatial statistics, the best
linear unbiased estimator (BLUE) taking into account two or more spatial RFs is referred to as
cokriging estimator, which is based on the extension of kriging estimation. The term kriging and
cokriging is reserved for linear regression using data on the same and different attributes,
respectively. In the next sections, we present the basic outlines of cokriging, the linear
coregionalization model, and cosimulation, a simulation procedure that produces realizations

taking into account the correlation between the RFs.
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2.5.2 Cokriging

Let Z; = (z11, ..., Z14) and Z, = (z21, ...,zzﬁ) two spatial RFs at locations X; = (X11, -, X14)
and X, = (x21, ...,xzﬁ) respectively. The estimation of dependent variable z; according to the
explanatory (independent) variable z; at a query point X, is considered a linear combination of

both RFs at the sample points:

a B
714 = Z A1iZq; + Z A2 Zy; (2.10)
i=1 =1

where A1; and A,; are the cokriging weights that must be defined and assigned to z; and z,;
respectively. Then, the error of estimation can be defined by the difference between the
estimated and the unknown random variables at query points. Even if the multivariate
distribution of the error of estimation is unknown, it is possible to describe certain moments of
the linear combination of equation 2.10, such as the mean and the variance, by knowing certain
moments of the random variables involved in the combination. In order the estimation to be
unbiased, two conditions must be satisfied: The sum of A;; equals to 1 and the sum of A;;
equals to 0. Moreover, the weights must be such that the error variance is the smallest
possible. The minimization of error variance in cokriging estimation can be faced as a classical
optimization problem with two constrains of unbiassedness. The optimization problem of the
cokriging system requires the definition of Z;-auto-covariance, Z,-auto-covariance and the

cross-covariance between the RFs Z; and Z,.

2.5.3 Linear Model of Coregionalization

In cokriging estimation, it is clear that the variograms of the two random variables should be
known (be modeled) and the cross-variogram should be defined. The auto- and cross-
variograms may be defined by the linear model of coregionalization (LCM), a method in which
all the direct and cross-variograms are derived from linear combinations of m basic direct
variograms. In contrast to other coregionalization models, the LCM is often used in practice

(Chiles and Delfiner, 1999; Wackernagel, 2003) due to its simplicity and versatility.

In order to define the LCM, the individual variograms must be constructed using the

same basic models as follows:
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Yoy (W) = uoyo(h) + ugyy (h) + - + wp v (h)
yzz(h) = UOVO(h) + U1 (h) e ol 7 (h) (2.11)
V2,2, (h) = WOVO(h) + w1y, (h) T+t Wi Vm (h)

where u, v and w are coefficients, possible negative and m is the number of variograms used to

define the coregionalization model.

In matrix notation, the above equation can be rewritten as:

[ - V)Z/ZZ] = [5,(; ZS]YO(h) + [:;11 :ﬂm(h) 4+t [:,Tn V;;n])/m(h) (2.12)

YZ122

The coefficients must be chosen so that all the matrices in the above equation are positive
definite in order to ensure the linear model of coregionalization is also positive definite, thus:

Y >O,vj >0, Uv > ww, for all j from 0 to m.

Due to the non-uniqueness of the solution (different coefficients may result in the same
variogram model), it is very difficult to design a completely automated process. Thus, usually
the basic models are first chosen by the practitioner and then only the coregionalization
matrixes need to be determined based on the experimental data (Emery, 2010). More
particularly, a trial and error procedure can be applied to conclude infer the coefficients of
LCM: First, calculate the sample cross-variogram between the two variables and propose the
coregionalization coefficients. Then, test if the model of coregionalization fits satisfactory with

the sample cross-variogram.

Another important thing is that in order to calculate the experimental cross-variogram,
it is necessary to have information on both variables at the same locations. As a result, in a
heterotopic data configuration, as is the usual case in practical applications, it is not possible to
infer the cross-variogram. Instead, in such a situation, one could krige the unknown locations

and then use this set of data to compute the experimental cross-variograms.

2.5.4 Cosimulation

Cosimulation is a simulation process that allows the integration of different types of data. Verly
(1993) proposes the Sequential Gaussian Cosimulation (SGC), a cosimulation method that
overcomes the difficulties of previous approaches to incorporate correlations between

variables, by the generation of independent realizations of these interest variables. SGC is a
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simple extension of SGS that combines sequential simulation and cokriging to generate

realizations of several continuous variables simultaneously.

The implementation of SGC requires the assumption of multinormality of RFs.
Therefore, the RFs are transformed to normal scores and it is supposed that they are jointly
Gaussian. Next, the auto- and cross-variograms of normal scores are calculated and a
coregionalization model is fitted. At the final step, cosimulation uses cokriging to compute an
estimate of the primary variable at a query point from surrounding actual and simulated values
and also using nearby values of the secondary variable. In this way, different realizations are
generated using various random paths, keeping the correlation between the RFs. The pdf of

cosimulation can be written as:

ﬁ;(zl,p 212 o Z1,¢|22,1, 22,2, ---,Zz,ﬂ) =
= fi(z1112Z21, 222, ) Z2,[>’)f1|1(zl,2|Z1,1: 221,222+ Z2) " (2.13)
'f1|2(zl,3|11,1' 213,231,237, .., Zz,s) 'f1|a—1 (Zl,a |Z1,1: v Zig-1221,22 ), ., Zz,s)

where z;; is the dependent variable and z; the explanatory variable while the a and 6

indicate the number of query points for variables z; and the number of known points (or

nearby estimated points) z,.

Alternative algorithms of SGC have been proposed in order to overcome difficulties of
SGS such the modeling of cross-variograms (Almeida and Frykman, 1994), the assumption of
stationarity (Chambers et al., 1994) and the transformation of RFs to normal scores (Soares,

2001).

Emery and Silva (2009) present a hybrid model to cosimulate continuous and categorical
variables. Their proposal faces the limitations of previous studies (Freulon et al., 1990; Dowd,
1994 and 1997; Bahar and Kelkar, 2000) to incorporate the information between the

continuous and categorical variables in realizations.
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3 The General Discrete Inverse Problem

3.1 Introduction

The study of a physical system can be divided into (i) the parameterization of the system, (ii)
the forward modeling and (iii) the inverse modeling. Parameterization of a system means the
definition of the parameters that describe the physical system completely, while the forward
modeling is the solution of a physical law that governs the system and allows to make
predictions of the physical variable for given parameter values. Inverse modeling uses the

response of the physical variable to infer the actual values of the model parameters.

The discrete inverse problem involves a finite number n of nested subunits and data at
p points allowing the analysis of the system. In mathematical notation, the model of the
physical system under study g with boundary conditions u can be described by the parameters
of the system such as a parameter set m = {my, ..., m,} and their spatial coordinates x over a

time t. Then, the forward solution of the system is:

d =g(x,t,u;m) (3.1)

In geosciences, the objective of inverse problem is to estimate the spatial distribution of
the parameters m and their moments over the time, using all the available data such as the
physical law, moments and possible measurements of parameters as soft data, but also
measurements of state variables (e.g. head measurements) as hard data.

For simplicity, given a set of observations of a physical variable d = {d, .., dp}, the

equation 3.1 can be written:

d=g(my,.., m,) (3.2)
The function g maps the n parameters to the p measurements of the physical variable.
This way, the discretized model space M is mapped into the space of observations @D. The
simplest way to achieve this is to consider that M is mapped in D linearly. Different criteria

may be used for the fitting of the estimated parameter set to the physical system. In the next

section, we focus on the least squares criterion, however, it is noted that an alternative one is
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the least absolute difference of error which is more robust in outliers but more difficult to work

with it (Woodbury et al., 1987).

3.2 The Least Squares Criterion

In the linear case, equation 3.1 can be written as:

dObS = Gm (33)

where G is a p x n known linear operator:

G =

Gill ves Gln]
oo (3.4)

Gp1 Gy
Solving the equation 3.3, the perfect case is to find a parameter set that fits the data exactly.
This is achieved when the number of observations equals with the number of unknown
parameters (p = n) and the parameters are independent (e.g. any column of G cannot be
written as a linear combination of the other columns). Mathematically, it means that the
number of observations must be equal to the rank of matrix G. Then, a unique solution to the
system of linear equations 3.3 can be found, which fits the observations exactly. However, this
is impossible in most real applications and practitioners must estimate a parameter set that fits

the observations adequately. In the general case, the expression of estimated parameter set is:
m = G 8d,,, (3.5)

where G78 the is the generalized inverse matrix of G which maps the observations to the space
of M. The simplest method to estimate the parameter set is the ordinary least squares (OLS)
regression. OLS is a method to evaluate the optimum parameter set by minimizing the sum of

square differences between the measurements and the response of the system.

3.2.1 Overdetermined Optimization Problem
In classical linear optimization problems, the number of observations is larger than the rank of
G matrix (p > r > n), or, larger than the number of parameters (p > n) in the case where

these parameters are independent. In this case, the system of linear equations is inconsistent
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and is referred as overdetermined. More specifically, d s is not a linear combination of the
columns of G, hence the equality sign of equation 3.3 is violated and it is used to be written as:
d,,s = Gm (3.6)
Then, we are looking for an estimation of parameter m which has the minimum least square
error. The equation 3.6 is written as:
dObS =Gm-+e (37)

where e is random noise known as residual and m is a deterministic but unknown parameter

set. The objective function to be minimized is:
S(m) = (dgps — GMM)" (d,ps — Gi) (3.8)

Setting the expanded derivative of the objective function equal to zero, we have (see Appendix

A.4):
= (G'G) G dps (3.9)

Moreover, it should be shown that the second order derivative of the objective function
(Hessian) is positive definite (GT G > 0) in order to prove the estimated 1 is the minimum of

the objective function.

The problem is explained geometrically in Figure 3.1. The plane is an n-dimensional

subspace of @D and it represents all possible vectors Gm, which constitute the range ®R(G) of G,

or the column space of G. The vector Gm is the orthogonal projection of d,,; in the column
space of G and the residual e = (d,,; — Gm) is vertical to Gm. It is noted that projection
ensures the minimum distance between two vectors in a Euclidean space. Due to the
orthogonality of GT and (d,,; — Gfi), the inner product of them equals to zero. Therefore, the

best OLS estimation of m can be written as:
Normal Equation: m = (GTG)™1Gd, (3.10)

It is noted that m solves exactly the equation 3.3 when the linear system is consistent.

Also, considering the mean of the estimator:”
E{f} = E{(G"G)"'G"dobs } = (G'G) " GTE(dops) (3.11)
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= (G"G)'G'E{Gm + e} = (G"G)"'G"Gm + (GTG) " 'G"E{e} = m

Thus, M is referred as BLUE of m.

Model Space = M (n)

parameter 1

parametet n
E

N o ~God

w3 - obs
colimiry_ #© .

domain of G

Figure 3.1: The geometrical interpretation of overdetermined least squares estimation. When

n < p, the range of G is a subspace of data space @, so we can have no exact solution to

d,,s = Gm. We then solve G' (d,p; — Gii)= 0 to find i with the smallest error.

The equation 3.10 implies that the matrix GTG is nonsingular. This happens only when the
column rank of matrix G equals the number of parameters to be estimated (all parameters are
linearly independent), so we call the problem purely overdetermined. Then, we can find a
unique estimator m with the minimum least square error and the generalized inverse matrix of

G is:

G 8= (G"G)'GT (3.12)
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3.2.2 Underdetermined Optimization Problems

Unlike the previous case, most geoscientifical optimization problems are underdetermined: the
number of linearly independent unknown parameters (column rank of G) is larger than the

number of observations (r > p).

- Gm

\ *-.,_ range of G

Figure 3.2: The geometrical interpretation of underdetermined least squares. When n > p and
r > p, the range of G covers the entire data space, so we can find infinite solutions to

d,,s = Gm. We may, then, reasonably choose the minimum norm solution (m;).

Thus, the system of linear equations 3.3 has infinite solutions and we should add a-priori
information to obtain a unique solution. A possible a-priori information is our expectation that
the estimator is the simplest one (Menke, 1984, pp. 49). The Euclidean length m'm is a
guantity that identifies the simplicity of the solution. Among the solutions, we consider that the
best solution is the solution with minimum length. The optimization problem now is to find the
minimum length of m with the constrain that it fits the data exactly. It is proven (see Appendix

A.5) that the best OLS solution in this case is:
m = G"(GG") ' dops (3.13)

The generalized inverse matrix of G of the solution m is now:
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G ¢ =GT(GGM)! (3.14)

3.2.3 lll-conditioned, Ill-posed systems and regularization

lll-conditioned linear systems are defined as those which are unsolvable due to limits on
computational precision. In practice, the generalized matrix G™8 cannot be computed because
GGT is a singular or nearly singular matrix. This happens when the condition number of G,
which is the ratio of its largest and smallest singular values, is very large. Intuitively, the
solution of the linear system will magnify any noise in the data. The system is thus affected
significantly by small changes in the observations, which cause large variations in the estimator

of the parameter set.

Well-posed systems are defined as those which the solution exists, it is unique and it
depends continuously on data after the definition of Hadamard (1923). Problems that are not
well-posed are termed ill-posed. A well-posed problem may be ill-conditioned due to precision

or a well-conditioned problem and vice versa.

The objective in these problems is not only to find an unbiased estimator, but also one
with a stable behavior (e.g. the estimator will be a good one even if a small change occurs on
the observations). In other words, the estimator should have reduced variance. A common
practice to do this is by shrinking its coefficients (model parameters) by a constant factor. This
kind of regularization introduces bias in the estimator in the form of extra information and is
added to the objective function as a penalty term. The interpretation of the above
regularization is based on the acceptance that the more complex the estimator, the more is
specialized on the particular measurements. But if the result of estimation is overfitting, then

this effect should be penalized. The regularized objective function is expressed as:
S(m) = (Gr’l\l - dobs )2 + ﬂ.l/'l‘\l2 (3_15)

where A controls the amount of shrinkage of the parameter length. After the minimization of
the objective function, the resulting estimator, also known as ridge estimator (Hoerl and

Kennard, 1968; 1970a; 1970b), is written as:

rﬁridge = (GTG + Al)_lGTdobs (3.16)
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where I is p x p identity matrix. In practice, the inclusion of a shrinkage parameter makes the
problem non-singular. In the above equation, bias is introduced by the term Al: the estimator is
not penalized when A is zero, while, with large values of A, the parameters are heavily

constrained.

The regularized objective function can also be formulated into the following constrained

optimization problem:
min(Gm — d, )2

: =2
subjecttom” < c, (3.17)

where c is a positive value.

The two optimization problems have the same solution when ¢ = ﬁifidge . Then, the value of ¢

is the radius of the circle in Figure 3.3 as explained below.

In a more statistical view, the regularized objective function (3.15) expresses the
sources of errors in the model prediction. The errors can be divided into errors due to bias and
errors due to the model (parameter) variance, while A is the adjustment parameter of bias-
variance tradeoff. The geometric interpretation of this dilemma is depicted in Figure 3.3. The
estimators into the inner ellipses have a smaller residual sum of squares (RSS) and RSS is
minimized at OLS estimate in the center. The circle in the middle indicates the penalty term.
The optimal point is one which is a common point between ellipse and circle and gives a

minimum value for the above function as well.

I:.ZILS estimator

b

mridge.., .

Figure 3.3: Geometric interpretation of bias-variance tradeoff.
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3.3 Statistical Aspects of Least squares

3.3.1 Weighted Least Squares and Maximum Likelihood Estimation

If we consider that the observations d,,; are not perfect measurements but rather they

possess white noise (i.e. random errors €; independent of each other with zero mean and
variance ajz), it is reasonable to weight the squared observation errors according to their
variance. A squared error with small variance indicates a more accurate observation and thus it

is weighted heavier than others.

In this case, the error weighting matrix is:

oy 0
D [0 GJ (3.18)

If Cp is the positive definite and symmetric matrix W Wy, used to weight the squared errors,

then the objective function to be minimized in the overdetermined case becomes:
S(m) = (dobs - Gfﬁ)TC];1 (dobs - Gfﬁ) (3.19)

Then, the OLS estimator is given by the expression (see Appendix A.6):

i, = (G'Cy'G) ' GTCp dys (3.20)
where
L o]
-
Gl=|: - 1 | (3.21)
0 . _J
l of

But, adding random errors to the observations, transforms them to random variables
and their pdf’'s are used to define the joint distribution that characterizes the solution space.
Working on a sample of size p(d;,dy,..,d,), each random variable d; belongs

tof (d,ps |[m,, )and now the objective is to find the parameter set that maximizes the equation:
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p
L(mw; dobs) = nf(d] |mw) (3.22)
i=1

In this case, L is known as the likelihood function, because it measures the most likely model as
parameterized by m and d,,,. Under the assumption that the errors are independently

distributed and e; ~N(0, csjz), substitution leads to:

1 1
f(e) = ————=cexp <— ~(e-0)Cy' (e~ 0))
V21P|Cp | 2 0
(3.23)
L - d Gm)"Ccyl(d Gm)
= ———exp|— = — Gm — Gm
P |CD | p 2 obs D obs
where |Cp| is the determinant of Cp.
Thus, the distribution of d,,,s parameterized by mis N(Gm, Cp).
The objective now is to maximize the equation:
P 2
1 d — (Gm);
L(m; dobs) = 1_[ exp (_ ( : 2( 2 )1) > (3.24)
j=1 211(5]-2 9 '

The maximization of the likelihood is equivalent to the minimization of the exponent
(dops — Gm)TC51(d,ps — Gm), which is the objective function of the weighted least squares
criterion in 3.19 above. That is, the maximum likelihood estimate of the model parameters is
simply the weighted least squares solution, where the weighting matrix is the inverse of the
covariance matrix of the data. If the data are uncorrelated with equal variance, then the

maximum likelihood solution coincides to the simple least squares solution.

If the linear problem is underdetermined, there may be infinite solutions to the least
squares inverse, as seen in section 3.2.2. To solve this underdetermined problem, a priori
information can be added that causes the distribution of the data to have a well-defined peak.

In this case, the solution is given by:

m,, = G'Cy'(GC, G™) dops (3.25)
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3.3.2 A-priori information in regularization

Prior information on the observations in the form of weights may also be used in ill-conditioned

systems (3.2.3). Weighting the observations, the ridge estimator is written as:

i, = (G'Cy'G + AD'GTChl dyps (3.26)

In a similar way, weights on parameters (Wy) could also be used if prior information exists

about them. In this case, the regularized objective function is written:

Sam = (dobs — GM)"C5? (dgps — GIfA) + A" Cyy' i (3.27)
and the regularized estimator resulting from minimizing the above objective function is:

m, = (G'Cp'G + ACy") ™ G Cp  dops (3.28)
where Cy; is the positive definite and symmetrical matrix Wy, Wy,

Furthermore, we have seen in underdetermined problems (section 3.2.2), that the
objective is to find the solution with the minimum length; that is to say, we use the information
that the length of parameters should be close to zero. However, possible prior knowledge of
the length of parameters could be used instead, even if the resulting estimator will not have
the minimum length parameter set. For example, an a-priori set of parameters mP" can be used
to express a desirable length instead of the one close to zero. This practice is adopted mainly in
ill-conditioned systems when a-priori information is crucial in order to solve complex problems.

In this case, the regularized objective function can be written:

Sam = (dgps — GM)TC5 (dops — GI) + A(mP" — )" Cy7! (mP" — ) (3.29)
The regularized estimator is now (see Appendix A.7):

m, = m" + (G'CyG + ACy)1GTCy(dyys — GmPT) (3.30)
We note that the equation 3.30 can also be written as:

m, = m" + CyG'(GCyG™ + Cp)~1(d,ps — GmPT) (3.31)

after the matrix inversion identity (see Appendix A.3):
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CuG"(GCyG" + cD)_1 =(6"¢p'6 + Ac;ﬁ)_l G'cp! (3.32)

Due to the computation efficiency, the equation 3.31 is preferable when the number of
observations p is smaller than the number of parameter set n, since the demanding

computation of Cy;! is avoided.

Technically, the existence of prior knowledge about the measurements and the
parameter set is helpful in order to derive the generalized inverse matrix. In a deterministic
view of least squares, a conceptual problem is how to define the weights, since observations
and parameters are not treated as random variables. However, equations hold anyway and
weighting can be seen as an implementation of our expertise on the system, without the

assumption of randomness.

3.4 Nonlinear least squares

In nonlinear problems, the estimator or the solution is obtained by an iterative process,
using either a deterministic or a stochastic method. In deterministic methods, the objective
function is linearized (weakly nonlinear case) around a parameter set m* and a gradient
method is chosen to produce a sequence of iterates m‘. The minimization of the objective
function requires such a sequence of iterates m‘, for which the corresponding sequence of
objective function values is monotonically decreasing. A positive definite second order
derivative of the objective function (Hessian) guarantees the condition of decreasing of
objective function values between two neighborhood parameter sets. Among the gradient
methods, the Newton method is the only well-defined method because it uses directly the
Hessian to produce the sequence of iterates m‘. The Newton method approximates locally the
objective function with a quadratic form at each m’ and the minimization of the approximated
objective function is done at that point. All the other gradient algorithms aim to emulate the

local convergence properties of Newton’s method.

The gradient methods work by following the steps described in the flow chart of Figure
3.4. The first partial derivative of the objective function at a given parameter set m’ indicates
the gradient or the slope of the objective function at m‘. In order to find the next parameter
set closer to the global minimum of the objective function, an opposite direction from the
gradient should be followed defining the search direction s4. An important component of the
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gradient methods is the step size a‘ to be taken in the indicated direction. Different algorithms
to choose the step size have been proposed producing various modified gradient methods. A
small step will increase the convergence time, while a large step won’t guarantee that the

objective function, given the new parameter set, will be closer to the global minimum.

The number of iterations also depends on the stopping criteria of the algorithm is used.
Using a threshold as tolerance, the algorithm stops if the tolerance is crossed. A very small
tolerance increases the computation cost of the estimation while a large tolerance produces a
large error in the estimation. Usually, the tolerance is the value that the iterations converge or

the difference between successive estimations is not significant.

Select an initial
parameter set m®

Convergence

. (o]
achieved? P

Compute a
search direction s

Compute
a stepsize al

mi*T=mi+ai- s,

Figure 3.4: Generic diagram of gradient methods.

The computation of Jacobian or sensitivity matrix is necessary for gradient methods and

useful due to the fact that it involves important information about the reliability of both state
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variables and model parameters. Jacobian can be obtained by the direct derivation of physical
model with respect to the model parameters, or by adjoint state method and finite differences.
An analytical discussion and comparison of these methods can be found in Carrera et al. (1990)
and Carrera and Medina (1994). Generally, the choice of the appropriate method depends on
the nature of the physical law and the available information on variables involved. It should be
noticed that the direct or finite difference method requires the solution of the forward problem
n + 1 times, while the adjoint method requires p + 1 forward runs. Therefore, adjoint state
method is preferred when the number of observations (p) is smaller than the model

parameters (n).

More particularly, in the case of non-linear least squares problems, the objective of the
iterative process is to find a parameter set in the hyperplane which is tangential to the surface
of error (Figure 3.5). The slope of tangent plane is described by the Jacobian G; of error
function r(m) = d,ps — g(m), where g(m') is the solution of the forward model using the
parameter set m‘. The new parameter set m:*! in the tangent plane should correspond to the
point of the data space that is closest to the origin. This is a generalization of the linear case
(Figure 3.1) where the image of g was a hyperplane embedded in the data space. Using Taylor

series, a first order approximation of r(m) around m' is written as:

r(m! + 8,) ~ dy,s — g(m') — G;8, (3.33)

The desirable parameter set m!™! in the tangent plane can be found by the projection of the

origin to the tangent plane. Then, the product GiTSt[r(mi) + Gi8t] equals to zero.
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Figure 3.5: Geometric interpretation of an un-weighted (Cp = I) nonlinear least squares

problem. The error function r(m) defines a surface in ® (here p = 3 ). The solution to the least

squares problem is the point on the surface that is closest to the origin O. At the point r(mi)
the surface is locally approximated by the tangent plane spanned by the columns of G;.The

point on the tangent plane closest to the origin is found by the orthogonal projection of the

negative error r(m'): G;8, = Gi(GiTGl-)_lGiT[—r(mi)].

It results that:

m'*t! =m' + (G?CglGi)_lGiTcﬁl (dobs - g(mi)) (3:34)

Where G; is a matrix with the derivatives of g with respect to m at i iteration (Jacobian or

Sensitivity matrix):

[0gi(m)  dg;(m)]
om} om’,
0gp(m)  dg,(m)
om’ om’,

The above method is known as Gauss-Newton method and the same result can be derived

by linearly approximating the vector of functions r, using Taylor's theorem (see Appendix A.8).
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The Gauss-Newton method can be considered as an approximation of the Newton method,

which uses the second derivative of forward model:

-1
mi*+! = mi + (G?calci —HI 5 (dons — g(mi))) GICp" (dovs — g(m")) (3:36)

where H; is the Hessian matrix n x n or the second-order partial derivatives of forward model:

[ 0°g(m) 0*g(m) ]
omi’ om} O,
H; = , 5 , : (3.37)
0°g(m)  9°g(m)
| Om!, dm om’ |

In the first parenthesis of the equation 3.36, the first term is more important than the second
one, which is close to zero either because the error is very small, or the matrix H; has very small
values due to the quasi-linearity of the forward model. Assuming that the second term equals

to zero, the method is an approximation of Newton method as mentioned before.

By the same process, the optimal solution of the objective function S, ;,, in the case of

an ill-conditioned system is (see Appendix A.9):

m+t = mi + (GTC51G; +AC;!) " GTCy!(dyys — g(m') — G;m?) (3.39)

But, while in the linear case one step is needed to obtain the ridge estimator and the parameter
A is defined once, in nonlinear estimation Levenberg (1944) and Marquardt (1963) propose the
parameter A could be modified according to the improvement of estimation. Small values of 4

result in a Gauss-Newton method while large values of A result in a gradient descent update.

In strongly nonlinear problems the gradient methods usually get stuck at local optima
depending on the starting parameter set m®, therefore the choice of m® is an important factor
for the convergence of the sequence of iterates. Gradient descent methods have better
convergence than the Gauss-Newton method when the initial estimation is far than the
optimum while the Gauss-Newton method is more efficient close to the optimum. Therefore,
the Levenberg—Marquardt algorithm is preferable. The Newton method is more effective than
both gradient descent and Gauss-Newton methods in complicated forward problems. However,
the computation of Hessian matrix may be a demanding task with high computational cost and

therefore the quasi-Newton methods are preferred, where the Hessian is approximated in
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terms of the first derivative of forward model and an appropriate step size is chosen to derive
the new estimation parameter set (e.g. Fletcher, 1987; Bonnans et al., 2006). Carrera and
Neuman (1986) propose a combination of quasi-Newton and conjugate gradient methods.
Their algorithm has much smaller computation cost than other gradient methods, however,

they conclude that the Levenberg-Marquardt method is the most robust one.

In order to overcome the above problems of gradient methods, alternative stochastic
methods have been proposed such as the simulated annealing, McMC and genetic algorithms
GAs. All these methods are also iterative but perform a stochastic search for the optimal

solution instead.

Simulated annealing is an optimization method which allows to a certain degree the
move from a better point of the objective function to a worse one in order to escape from local
optima. The probability of accepting a move decreases as the values of objective function
increase; therefore it can be seen as a time inhomogeneous Markov chain. However, simulated
annealing can also be modeled as time-homogeneous Markov chain. In this case, the number of
iterates is not accounted in the transition probability from one state to another. McMC
algorithms use a probabilistic rule to select the next candidate model in a chain. As explained in
the next sections, apart from searching for an optimal solution, McMC methods are also

appropriate for sampling the posterior distribution.

Finally, heuristic methods have been developed such as GAs in order to search for global
optima. GAs mimic the process of natural evolution (Holland, 1975; Goldberg, 1989). More
specific, a random population of candidate solutions is evolved toward better solutions
iteratively. In each iterate, a new population is generated by the previous and it is called as
generation. The mechanic to produce a new generation based on the evaluation (using an
objective function) of the individuals of the previous generation known as chromosomes. The
chromosomes of the previous generation with the best fitness are chosen to produce the next
generation by applying genetic operations (mutation and crossover).The fundamental
difference between GAs and other stochastic methods is that GAs work with a population of
candidate solutions while the other methods try to optimize an initial estimation. Furthermore,
McMC methods use probabilistic rules to sample the posterior distribution while the objective

of GAs is to find global optima.
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4 Bayesian framework for inversion

4.1 Bayes’ rule in a physical system

In a probabilistic formulation, the observations, the response variable d = g(m) and the
parameter set of a system are considered as random variables and symbolized as d,, d|m
and m respectively. The vector of d,, is considered as the response from a particular
parameter set, which has to be estimated. As mentioned in section 3.3.1, the distribution of d
given m can be defined by assuming a known error distribution of the observations. Now, we
also consider that the parameter set has a known prior distribution f(m). Then, according to
Bayes’ rule, which is based on the definition of conditional density, the a-posteriori distribution

of the parameters is defined as:

f(d|m)f(m)

fmid) === @)

where f(d|m) is the likelihood of data and f(m) is the prior distribution of the parameter set.
Repeating the calculation of equation 4.1 for different parameter sets coming from their prior
pdf, the result is the construction of the a-posteriori distribution of m. The denominator has a
constant value for different parameter sets and ensures that the posterior density adds up to
one and therefore is called normalization constant. Since the denominator is constant, equation

4.1 can be written as:

f(m|d) o f(d|m)f(m) (4.2)

Then, the best estimator of m is the estimator that maximizes the a-posteriori probability

f(m]|d). Therefore this method is called Maximum A-posteriori Probability (MAP).

The Bayesian approach to be applied differs according the available prior information
and the objective of the research. In optimization problems, researchers often use strong
informative priors, while weakly informative priors are used to generate realizations in order to

sample the posterior distribution.
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Generally, in the Bayesian framework for inversion, the proposed parameter sets are
evaluated by both their prior pdf and their likelihood, while in the maximum likelihood method

of section 3.3.1, all the proposed parameter sets are considered equiprobable.

4.1.1 Linear theory with Gaussian prior

Assuming that the response variable is related with the parameter set with a linear
equation: d = Gm + e , where G is a known linear operator and e is a random variable
following a Gaussian distribution with zero mean and covariance Cp. In the Bayesian
formulation, the vector of d,¢ is considered as the response from a particular realization of a
parameter set to be estimated. Thus, we assume that d~N(d,,s, Cp). Since we know the prior
distribution f(m) we can generate a realization of m and the corresponding response values

d = (dy,dy, ..., d,,) where each random variable d; belongs to f(d;; m).

Theoretically, the prior and the likelihood could have any form. However, it is a common
practice to choose a prior for which the posterior has the same algebraic form as the prior. This
practice results in a more convenient calculation of the posterior distribution and this prior is
called a conjugate prior. Assuming that the prior distribution of m is Gaussian with mean mP"

and covariance Cy, we can write:
m=m +v (4.3)

with v the error of the prior m, independently distributed with v~N(0,Cy) and Cy anxn
known spatial covariance matrix of m (i.e., expected variabilities given by the variogram under

the geostatistical approach). Thus, the posterior probability is proportional to:

f(m|d) o f(d|m)f(m)

(4.9)
o exp((Gm — dyps )T €5 (GM — dyps ) ) - exp((m — mPT)TCi7t (m — mPT))
It is obvious that the posterior distribution has a Gaussian form. The maximization of

posterior is equivalent to the minimization of the exponent of equation 4.4. it results that:
m = mP" + CyG'(GCyGT + Cp) 1(dyps — GmPT) (4.5)

A basic difference from the formulation of section 3.3.2 is that the regularized term (the
second term of the objective function) in equation 3.30 acts as a correction term in the
estimation of least squares, while in the Bayesian framework the response of the system is
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evaluated in a probabilistic form. Therefore, the ridge estimation method (regularized least
square method) and MAP method do not necessarily yield the same estimates for the

parameter set.

4.1.2 Non-linear theory with Gaussian prior

In non-linear cases where the likelihood can be considered locally Gaussian, the model
function is linearized around the mP" parameter set. The posterior distribution is approximately

Gaussian and its maximization point is given by:
m=m" + (G'C;’G + Cy)1GTCyt (dgps — g(mPY)) (4.6)

In the above estimation we assumed that the distance between the mean of the posterior and
the mean of the prior distribution is sort enough so as the objective function between these
points can be considered linear, however, this is not often the case. Under these circumstances,
the estimation should be done iteratively. In a Bayesian updating scheme, the previous
estimation that maximizes the posterior, together with its covariance, becomes the new mean

and covariance of the prior distribution. Then we can replace the usual Bayes’ rule
posterior « prior - likelihood
with
revised X current - new likelihood

The i + 1 estimation of the iterative process is:
i i _ _ -1 _ i
m'*! =@ - (G/Cy'G; + Cy') G/ Cp' (dobs - g(ml)) (4.7)

where g(ri') is the response of M parameter set.

However, if the linearization between m‘*! and fi' is not acceptable but the objective

function is still quasi-linear, the right strategy is to obtain an intermediate parameter set m‘*!

for which the linearization will still be acceptable. A possible m‘t! may be found by the
maximization of the likelihood L(d;;m) alone (Tarantola, 1994, pp.75). The posterior

distribution can be written:
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F(01+1d) o exp ((g(@"*") + G 0 — ) = doye ) €5 (8(@"*") + G (@' -

(4.8)
ﬁii+1) S )) - exp ((Iﬁi+1 _ Iﬁi)TCI\_/ll (Iﬁi+1 _ I’ﬁl))

The next estimation can then be found by the minimization of the exponent (see Appendix

A.10):
f* =+ (676516 + G )G o' + (v — g() Gy (' — 1)) (4.9)

The above equation is also written (see Appendix A.10):

Mt = @+ (G616 + Cit) (G765 (das — g()) + Gl — @) (4.10)

4.2 Sampling the Posterior distribution

4.2.1 Monte Carlo Methods

In most cases, the probability distribution in the model space is not so simple and analytic
techniques cannot be used to characterize it. Then, the more general way for solving the
inverse problem would be the systematic exploration of the model space comparing all possible
combinations of parameters, either when the objective is to sample the model space of
posterior distribution or to find the set of parameters optimizing the forward solution. But
generally, this practice is not applicable due to the computing and time costs, especially in high
dimensional problems. Even if this was feasible, other problems would arise due to the non-
uniqueness of the solution. Other consequences of ill-posedness could be that a solution would
not exist or would be instable with regard to small variations in the input data (Carrera and

Neuman, 1986).

Instead of taking all possible parameter combinations, we can sample the model space
randomly. These practices are generally called Monte Carlo methods. The use of Monte Carlo
methods for the solution of inverse problems was initiated by Keilis-Borok and Yanovskaya
(1967) and Press (1968 and 1971) and concerned only uniform sampling of a model space,
without taking a Bayesian approach (i.e. the conditional distribution between the previous and

the current realization is not taken into account). In an optimization context, Burton and
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Kennett (1972), Worthington et al. (1972 and 1974), Biswas and Knopoff (1974), Goncz and
Cleary (1976), Burton (1977), Mills and Fitch (1977), Jones and Hutton (1979), Ricard et al.
(1989), Jestin et al. (1994) and Kennett (1998) used uniform random search techniques in
geophysical inversion, again without taking into consideration the Bayesian principles. In
general, the use of Monte Carlo methods in well-designed random explorations allows avoiding

entrapment in local maxima and thus solving complex optimization problems.

Yet, in complex prior model distributions with large-dimensional spaces, uniform
sampling is insufficient because of their “emptiness”. In these cases, the process can be
improved by importance sampling, rejection sampling, or McMC methods like the Metropolis

algorithm and Gibbs sampling.

4.2.2 McMC Methods

As previously mentioned, large-dimensional spaces may be under-sampled due to their
emptiness. If not appropriately modified, Monte Carlo methods sparsely sample the model
space and, thus, the local maxima of the posterior distribution (Mosegaard and Tarantola
1995). McMC techniques preferentially visit the model space where the posterior density is
high. The basic idea behind these methods is to perform a random walk that normally would
sample some prior probability distribution and then, using a probabilistic rule to modify the
walk by accepting or rejecting samples in such a way that the produced samples are

representative of the target distribution.

In inversion problems, McMC techniques generate candidate models from the prior
distribution and use an acceptance criterion to reject or not the candidate model, under the
consideration of a likelihood function. A candidate model m* in a Markov Chain is generated by
modifying the previous model m!, after addition of a random perturbation. The asymptotic
behavior of a Markov Chain is governed by its transition kernel, that is, the probability density

function of the transition from a model m‘ to a new model m*.

4.2.2.1 Metropolis- Hastings algorithm
The Metropolis algorithm (Metropolis et al., 1953) is the mostly used McMC method that
allows the analysis of nonlinear inverse problems with complex prior information and data with

an arbitrary noise distribution. In the Metropolis algorithm, the transition probability from a
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model m’ to a new model m‘*! is symmetric (f(mi+1|mi) = f(mi|mi+1)) resulting to a
simpler acceptance ratio.

Hastings (1970) proposed a more general form of Metropolis algorithm where the
transition probability does not have to be symmetric. In the Metropolis-Hastings algorithm, the
distribution of the conditional variable m‘*!|m’ is considered known or it is feasible to
generate a realization of that distribution. Early examples of determination of posterior
probabilities for an inverse problem by means of Metropolis sampler are given by Boiden
Pedersen and Knudsen (1990) and Koren et al. (1991). Using the Metropolis-Hastings algorithm
in high dimensional spaces, it is difficult to draw samples from a suitable proposal distribution
and, thus, a large proportion of the proposed samples are being rejected. The acceptance ratio
to approve a proposed sample m* as the next member m!*! of a Markov chain is:

_ f(m'[m*)f(m")

PO = () £ (o) 41y

This ratio is compared to a random number u from Uniform distribution U(0,1) and if the ratio
is larger than u, the proposed sample becomes the next member of Markov chain, otherwise,
the transition does not take place. Accepting a candidate in a Markov chain means that this

parameter set is a realization of the unknown posterior distribution

In an inverse problem where the solution of a forward problem takes place, the
acceptance ratio to approve a proposed sample m* to be the next member m‘*! of a Markov
chain can be rewritten as:

_ f(m*|m’,d) _f(m’,d|m")f(m")
f(m'|m*,d)  f(m*,d|m")f(m’)

_ f(m'|m")f(dlm")f(m") _ f(m'|m")f(m*|d)
fm*lm")f(dlm")f(m’)  f(m*|m’)f(m|d)

Mosegaard and Tarantola (1995) propose that if the candidates can be generated from the

P(m*)
(4.12)

prior distribution directly without necessarily evaluating f(mi|m*) anywhere, the acceptance
ratio can be written:

_ f(d|m") _ L(m")

P(m,) = Fdm)) ~ L(m) (4.13)
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The above ratio allows always the transition from m‘ to m* when the likelihood of m* is larger
than the likelihood of m’, in a different case the candidate sample is accepted with probability
P(m*) as a member of the Markov chain. They also use probabilistic rules in order to gradually
perturb a current model to another one, while the actual shape of prior distribution need not
be known. However, the incorporation of geostatistical information of the parameter set helps
to reproduce sequential candidates from the prior distribution and, thus, to create a McMC

without evaluating the probability of transition.

4.2.2.2 Gibbs Sampler

Geman and Geman (1984) developed the Gibbs sampler in image reconstruction, another
popular McMC sampling technique which avoids proposing samples that are likely to be
rejected, while at the same time is better in means of computational cost. In Gibbs sampler, the

proposed sample is generated using parameter information from current and previous states.

Gibbs sampler is often used in geostatistical simulation to reproduce realizations that
preserve the spatial structure of a RF. For example, it is used in Plurigaussian simulation as it
was referred in section 2.4.3. In this manner, the iterative algorithm of Gibbs sampler is written
as:

m{t ~f(m{*m), ..., m})
i+1

~f(m5 ! mitt, ms, ..., m})

, . . . . : (4.14)
111].l+1~]f(m].l+1 Imi*tL, .., m}tll, m, .., m},)

i+1

m;~ f (mg mit L met

where the index symbolizes the number of iteration (state) and the exponent identifies the
discretized parameters. Following a random path of subunits, different realizations are

reproduced.
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4.2.2.3 Dependent samples in McMC

A disadvantage of McMC is that the samples are correlated and they do not correctly reflect the
posterior distribution, therefore the convergence of the chain must be reached before
performing any sampling to reproduce samples of the posterior distribution. Another option to
create independent samples is to make large jumps from one to another member of the
Markov chain. In the usual case where the number of model parameters and thus the number
of manifold dimensions is high, a systematic exploration of the prior model space is not possible
because the number of required points grows too rapidly with the dimension of the space,
while most of these models will have near zero probability. Therefore, sampling has to be done
by making small jumps, using a random walk. However, this kind of sampling does not produce
independent samples. Then, if the samples of the prior distribution presented to the Metropolis
algorithm are not independent, the samples of the posterior distribution produced will not be
independent too (Tarantola, 2005, pp. 52). To overcome this problem, Mosegaard and
Tarantola (1995) suggest keeping only one model every u samples as it is explained in section

5.1.2.
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5 Using informative priors in facies inversion: The case

of C-ISR method.

5.1 The McMC structure in C-ISR method

5.1.1 Kernel Transition: Iterative spatial resampling

Different transition kernels have been proposed in previous studies to generate Markov chains
applied to spatially dependent variables. Oliver et al. (1997) create a McMC walk by updating
one grid node of a simulated realization at each step. Fu and Gomez-Hernandez (2008) improve
the efficiency of the method by updating many grid nodes at the same time, introducing the
Blocking McMC (BMcMC) method that induces local perturbations by successively re-simulating

a whole block of the realization.

Mariethoz et al. (2010a) propose a similar algorithm to Gibbs sampler and they call it
Iterative Spatial Resampling (ISR). Hansen et al. (2012) present the theoretical background for
using the method and argue that ISR is a special type of Sequential Gibbs sampler. The idea
behind the ISR is to condition the j subunit in i + 1 iteration only with a particular random
sample of subunits (1, ...,v) of previous state i. Thus, the j query value of subunit using ISR
algorithm is:

41 TS :
m ' ~f(m*!mi, ..., m}) 5.1)

Hansen et al. (2008) and Hansen et al. (2012) use a more general approach which can be

expressed as:

i+1 i+1 i+1 i+1 i '
m 1 ~f(m* ), mi*, L, mit] mi, .., mb) (5.2)

In fact, in sampling the posterior distribution, the defined transition probability of Gibbs
sampler can be used in a chain to generate candidates from the previous accepted member,
while the sequential simulation is used. Hansen et al. (2008), Mariethoz et al. (2010a) and
Hansen et al. (2012) agree to perturb the next state model by using a subset of model
parameters r of the current state in order to generate the next candidate state. In case of ISR,
the transition probability f(mi+1|mi) can be decomposed as the product of a series of one

dimensional conditional densities:

59



f(m*'m?) = £y, (M mi, ..mi) - £, (i m, ... m}) 53)

Also, another type of conditional re-simulation in the framework of McMC algorithm is the
work of Irving and Singha (2010) which integrates different sources of information to solve the

inverse problem.

In this work, since the aim is to condition on the state measurements, we use ISR to
create a chain of dependant realizations by obtaining a random subset r; of each member

model m’ and impose it as conditioning data to generate the next candidate model m*.

Representing the parameter set m by a RF K(X), the perturbation mechanism f(m* mi) of the

chain works as follows:

1. Generate an initial model m!' = {ki(x;),...,k}(x,)} as a realization of the RF
K(x) discretized on a grid with n nodes, using a geostatistical simulation

algorithm and evaluate its likelihood L(m?).
2. lterateoni:

a. Select randomly a subset 7; = {k}(x1), ..., ki.(x,)} of the previous model,
where v is the number of conditioning data to generate the next candidate

model m*.

b. Generate a proposal realization m* using the same geostatistical simulation

and under the conditioning data 7;.

c. Evaluate L(m™).

d. Accept or reject the candidate model m*. If accept, set m'*! = m*.

The performance of the method depends on the criterion for candidate model selection and
the time of chain interruption. The number of conditioning data should be enough to permit a
certain dependency between two members of the chain, but this number cannot be too high, in
order to avoid artifacts in the simulation. The measurements, if any, are added to the subset r

in each iteration.

It is also noted that, even though in this work we apply ISR with two-point statistics, its
principal is not associated with a specific simulation method or a certain type of spatial

variability (Mariethoz et al. 2010a).
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5.1.2 ISR for Optimization

As it is explained in the previous chapter, sampling the posterior using McMC techniques raises

two important issues:
a) the criterion to accept a state model as a member of a chain
b) and the criterion to accept a model as a member of the posterior ensemble.

Mosegaard and Tarantola (1995) propose the acceptance ratio of a chain member can be
represented by equation 4.12. Concerning the second issue, they suggest keeping only one
model every u samples. In this way, they ensure uniform sampling of posterior distribution and
thus their modified algorithm can also be used for finding the optimal solution of an inverse
problem. Since there are samples available from the posterior distribution, one can find
between the samples, the parameter set that maximizes this distribution. Yet, Hansen et al.
(2012) explain that the Sequential Gibbs sampler cannot be used for optimization problems in a
Bayesian sense, because the actual prior probability of a given model cannot be computed and

evaluated, thus the samples maximize the likelihood and not the posterior distribution.

Mariethoz et al. (2010a) propose an alternative procedure for optimization by applying
ISR and using independent Markov chains. Their algorithm accepts a model in a chain only if his

likelihood is larger than the likelihood of previous model:

L(m*) > L(m') (5.4)
This tactic leads to having samples biased toward high fits and thus coming from a more

biased prior f*(m) in each iteration, which is nevertheless a subset of the prior f(m). As a

bias correction, they propose to interrupt a chain in a stochastic criterion inspired by the

rejection sampling method (Von Neumann, 1951) with probability

_ L(m")

P(m") = m (5.5)

where L(m),,,, denotes the highest likelihood value (constant). The interruption control takes
place in each iteration and the probability to interrupt the chain increases as the likelihood of

the candidate model increases. Therefore, a second bias is introduced but in opposite direction.
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The equation 5.5 essentially describes an "accept only improvements" process. The
resulting chain is a stochastic search for a single calibrated model. Taking independent chains,

the global maximum will eventually be reached after an infinite number of iterations.

The main difference between the two approaches is that Mosegaard and Tarantola
(1995) propose an algorithm whose purpose is to generate a ‘sample’ of the posterior
distribution. Mariethoz et al. (2010a) propose a method that generates a selection of models
that fit the data and the prior information. Then, this collection of models provides a good
approximation to the posterior. In an optimization context, this mechanism performs an
importance sampling effect, since the objective is to find a realization that maximizes the

posterior distribution and not to sample it.

5.1.3 Likelihood Function

When sampling the posterior or searching for an optimal solution, it is necessary to define a
criterion of goodness of fit, either to accept a model in a chain or as a stopping mechanism for
search algorithms. The criterion of goodness of fit may be the likelihood function as it is
expressed in equation 3.24 (L, norm). In groundwater literature, other norms have also been
used. For example, errors can be quantified as the absolute value of the difference between
measured and computed values (L; norm). Furthermore, a regularized function (see chapter 2)

can be used.

In this work, we use the L, norm as a measure of goodness of fit which can be also

expressed as:
P
1 2
L(m) o exp WZ(&' (m) — d;) (5.6)
J:

where p is the number of measurements of the response variable, g;(m) is the solution of
forward model at the points of measurements, ¢ is the total “noise” variance and corresponds
to the sum of epistemic and measurements errors. The variance is assumed to be the same for

all p data values.
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5.2 The C-ISR Method

5.2.1 The act of cosimulation

As seen in the previous sections, when inverting under the McMC framework, the
measurements of a physical variable (e.g. hydraulic measurements) can only be used as indirect
data to evaluate the prior models and drive the search path. This inconvenience is due to the
nonlinearity relation between the measurements of physical variable and unknown
parameters. On the other hand, well-known cokriging and cosimulation rely on a linear
predictor approach and use covariance and cross-covariance functions derived from a first-
order approximation, therefore they often result in unacceptable solutions when the

multivariate distribution of integrated variables is not Gaussian (Yeh et al., 1995 ).

Under the framework of the C-ISR method, although the problem is not linear, we use
cosimulation with the reference data as the auxiliary variable, in order to improve the search
path in the Markov chains (Valakas and Modis 2015; Valakas and Modis 2016). More

*

specifically, each proposed model m* is produced by cosimulating the underlying Gaussian
variable Z, which represents the facies distribution, with the normal scores transformation N of
the reference variable. The realizations so produced belong to a more confined set than in the
original prior, that is, the prior described solely by the underlying Gaussian variogram. Our
method relies on the approximation that, temporally, the p x1 vector N of normal scores
transformed hydrologic measurements is related to Z assuming a linear coregionalization

model. Thus, a narrower and more informative prior to that of equation 5.3 is created here by

utilization of the reference variable, as seen in equation 5.7.

f(mi-H |mi’ dobs) —
i+1

= fijr (my ®7)

lmj, ..mt, dy, ..., d,) - fop (M5 m, ..omi,, dy, ..., d))

Moreover, the addition of cosimulation to the ISR algorithm gives the ability to relate
the prior distribution to the reference variables, thus enforcing the generation of more
probable models. This, in a way, enables accounting for the probability of a model. Considering
the limitations of ISR algorithm in section 5.1.2 (Hansen et al. 2012), the C-ISR method with its

narrowing effect can actually be used as a Bayesian optimization tool.
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5.2.2 The C-ISR algorithm

In order to obtain one sample by an interrupted Markov chain, we design an ever-improving

Markov chain that accepts new members under condition 5.4. The chain should be interrupted

following the stochastic stopping criterion 5.5. Symbolizing with &(-) the function returns the

discretized variable (facies), the C-ISR algorithm is accomplished in the following steps:

1. Generate an initial model m! = {§(z}(x,)), ..., ¥(z (x,))} as a realization of the

RF Z(x), discretized on a grid with n nodes, using a geostatistical cosimulation

with the normal scores transformed reference variable and evaluate its

likelihood L(m,).

2. lterateoni:

®

Select randomly a subset 7; = {§(z](x1)), ..., §(zl(x,))} of the previous
model, where 7 is the number of conditioning data to generate the next

candidate model m*.

Generate a proposal realization m* using the same geostatistical

cosimulation and under the conditioning data ;.

Evaluate L(m").

If L(m") > L(m') accept the candidate model m* and set m*! = m".

Decide whether or not to interrupt the chain:
Compute P(m*) = L(m*)/L(m) .,
Draw u in U[0,1]

If u< P(m*) interrupt the chain, else continue the chain using m*!

Hence, the above means of successive linearizations is used to transfer from one model

to another at each step of the optimization procedure in every Markov chain. The approach

works by creating an importance sampling effect (Stordal and Elsheikh, 2015) that steers the

process to selected areas of the prior and thus improving convergence. Therefore, by the

incorporation of indirect data to narrow the prior distribution, our approach promises to allow

the full utilization of measurements in achieving the best possible site characterization. The

effectiveness of the proposed formulation is shown next, using a synthetic example.
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5.3 Validation of the C-ISR algorithm

5.3.1 Materials and methods

The effectiveness of cosimulation is demonstrated by means of a synthetic aquifer example
using a pump test. A simple two-dimensional synthetic flow system is set up for that purpose
and finite element software package COMSOL™ 3.4 (COMSOL Multiphysics User’s Guide, 2005)
being controlled via a MATLAB™ 7.8 script, has been employed. We consider a square zone of
side 100 m in a confined 2D aquifer, with a given spatial distribution of four distinct facies
discretized in 100x100 nodes, as shown in Figure 5.1a. The hydraulic conductivity values of 10°
2 (m/s), 10*> (m/s), 10™° (m/s) and 10> (m/s) are assigned to facies A, B, C and D,
respectively. Using this spatial structure of facies as the reference, we can produce the
hydraulic head observations required in our example. A pumping well injecting 0.001 (m?/s) is
set at the left lower corner of the field and another pumping well extracting 0.001 (m?3/s) at the

right upper corner of the field (Figure 5.1b).

The hydraulic potential governing the flow through the aquifer zone and the
surrounding area can be represented by the 2D pressure head H(K(x)) distribution, which

obeys Darcy’s Law:

V(-KX)VH) = Q = V(—¢(Z(x))VH) = Q and H = b,(x) on model boundary u,
where K(x) is the spatial hydraulic conductivity, Z(x) is a standard Gaussian RF representing
facies distribution and Q@ (m?/s) represents aquifer recharge or discharge. Considering the
change in the head due to pumping and applying superposition principle, we derive the

following equation for 6H:

V(=§(Z(x))VH) = q and §H = 0, on model boundary u,

where g represents sources and sinks due to pump test. The modeling domain’s boundary u is
assumed to be a square of side 12,000 m, where any effects of pumping are negligible. Also, the
area outside the square zone is considered to have roughly constant hydraulic conductivity 10~
(m/s). We used different mesh sizes inside and outside the central zone, COMSOL’s normal size
triangular mesh for the interior where the calculations need to be more accurate and coarse

size triangular mesh for the exterior.
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Figure 5.1: True facies distribution in aquifer zone and the facies observations with circles (left).

The reference heads and head observations with black crosses (right).

Prior information on the aquifer structure consists of a set of 16 facies observations.
Using this information together with the 9 head measurements as shown in Figure 5.1, we
explored the performance of the C-ISR in comparison ISR using a classical geostatistical
simulation, such as SIS. Firstly, we run 150 independent Markov chains and the results
presented in Valakas and Modis (2015). We demonstrated that our method is faster, more
reliable and explores more effectively the prior space avoiding entrapment in local maxima.
Consequently, we compared our method with the ISR using TGS, a geostatistical simulation
method more effective than SIS. This thesis presents only the results of the last comparison. For
the TGS and cosimulation we use the algorithms by Emery (2007) and Emery and Silva (2009),

respectively.

For both the C-ISR and ISR approaches, we ran 250 independent Markov chains. We
used the likelihood function of equation 5.6 with ¢ = 0.05 m, which can reasonably correspond
to the total head measurements error. The supremum value of L is set to 0.607, which,
according to the above equation, corresponds to a RMSE of 0.05. Larger likelihood values might
cause undue delays and seriously affect the performance of the process. The percentage of

resampled nodes to generate the next candidate model m”* is set to 1% (r = 10).
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5.3.2 Variography

For the needs of TGS, a standardized Gaussian variable Z with the characteristics of
Figure 5.2 was defined. Using the proportions of each facies which were calculated based on
the observations and the truncation rule which is assumed to be known a priori, an exponential
model with a sill of 1 and isotropic range of 49 m was adopted for Z according to the procedure

described in section 2.4.3.

. facies A

facies B

facies C

. facies O

-w g=-155 =007 t,=128 =

Figure 5.2: Truncation rule, showing contact relationship, proportions and Gaussian thresholds

associated with the facies.

Considering the state variable, the head measurements were first transformed into
Normal scores on which variogram analysis would be performed. A Gaussian model with a sill of

1 and isotropic range of 41.5 m was used to represent the transformed data.

The last step is to define a linear coregionalization model between the underlying
Gaussian variable Z and Normal scores of head observations N. Since, as seen in Figure 5.1, we
have an heterotopic data configuration, we krige the unknown locations of N and then we use
the new dense set of data to infer the experimental cross-variogram. Finally, according to

section 2.5.3 we obtain a coregionalization model of the form:

0.3051 —0.5451

Yzz YN 0.6949 0.1311
- A1.
[ ] 05451 0.9752 ]gaus( Sm) | (5g)

vav v~ 101311 0.0248 expi{49 m) + |

The experimental, model and cross-variogram of the underlying Gaussian variable and
the transformed heads are displayed in Figure 5.3. A graphical comparison between true
experimental variograms and variograms derived from the underlying Gaussian and the
coregionalization models respectively is shown in Figure 5.4. It is apparent that the fitting is

satisfactory.

67



Figure 5.3: Sample (points) and linear
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5.3.3 Results and Discussion

The main advantage of C-ISR method is the reduction of computational and timing costs
in order to approximate the a-posteriori distribution. More specifically, the forward model is
solved 28914 times using C-ISR against 48390 runs using ISR. Figure 5.5 shows the evolution of
50 randomly selected optimizations under the two approaches. The average slope of the curves
on the left is higher, showing that C-ISR converges faster. The black line indicates the
convergence of the chain for which the optimal solution is achieved among the 250
independent chains for each method. Generally, the average number of evaluations (solution of
forward model) for each chain is 116 for C-ISR versus 194 for ISR, while the average number of
accepted models in a chain is 9.9 and 8.3 for C-ISR and ISR respectively. Furthermore, the
likelihood of the posterior models produced by C-ISR is better, as seen from the ending points

of the ensemble lines in Figure 5.5a, compared to those of Figure 5.5b.

Evaluations Evaluations
1] 200 400 600 gon 1] 200 400 a0 ann
01 -
% 0.3 -
= 05 4
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Figure 5.5: Convergence of 50 randomly selected individual optimizations for C-ISR (a) and ISR

(b).

In order to demonstrate the precision of hydraulic head predictions, we set up Figure
5.6 showing the average RMSE (250 chains) for the two methods. The RMSE is calculated by the
solution of forward model at the center of the blocks and the true spatial distribution of
hydraulic head. It is apparent that C-ISR method produces more accurate hydraulic head
predictions across the spatial field, while the RMSE average is higher at top-right corner for
both methods. The distribution in Figure 5.7 shows that even if the two approaches produce on

average similar RMSE, the incorporation of cosimulation in C-ISR helps to avoid entrapment to
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local maxima, as seen by the right tail of ISR distribution. Also, the left tail of C-ISR distribution

is longer, indicating that this method produces more possible solutions of forward problem.

C-ISR ISR

¥ (m)
¥ ()

50 0 50
¥ (m)

Figure 5.6: Average RMSE map for C-ISR (a) and ISR (b).
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Figure 5.7: RMSE distribution of posterior samples for C-ISR (green) and ISR (black).

Both methods produced accepted realizations while keeping the spatial structure of
reality for each facies, as shown by the experimental variograms of a random subset of the
posterior ensembles in Figure 5.8. The reduced variability of models in the case of C-ISR reveals
a narrower prior due to conditioning to heads. A post-processing of the posterior ensembles is
shown in Figure 5.9. Comparing to Figure 5.13, it is apparent that the probability of occurrence
of each facies resembles more the reality in the case C-ISR method. This is an indication that

the posterior space is properly covered.
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Figure 5.8: Experimental variogram of 50 accepted realizations for each facies in C-ISR (a) and

ISR (b). The red dots show the experimental variogram of reality.
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Figure 5.9: Probability of occurrence of the four facies in C-ISR (a) and ISR (b).
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Figure 5.10: Accepted realizations for C-ISR (a) and ISR (b).
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A set of realizations in both cases can be visualized in Figure 5.10. According to Figures
5.9 and 5.10, the C-ISR method produced posterior members which reveal the spatial
homogeneity of reality in contrast with ISR. In order to evaluate the reliability of the two
methods, we calculated the probability of positive hit for each block of spatial field. From 250 a-
posteriori members, it results that C-ISR has more positive hits and it is more efficient in
preserving the shapes of existing formations inside the investigated area, as it is depicted in
Figure 5.11. The intense green color indicates probability close to one, while intense red color
probability close to zero. C-ISR fails to indicate the facies C (cyan color in Figure 5.1a) at top-
right corner with precision, but the probability of occurrence is not zero, as it is detected in
Figure 5.9a for facies C. An explanation could be that the positive hits of ISR at the blocks where
C-ISR fails, occur due to the excessive spatial heterogeneity induced by this method and thus its

weakness to preserve the shapes of existing formations.

C{SR

y ()
y ()

Figure 5.11: Probability of positive hit for C-ISR (a) and ISR (b). C-ISR preserves shapes better.

The main objective of the synthetic example was to demonstrate the properties of C-ISR
and find the optimal solution of determined inverse problem. Figure 5.12 shows the best
resulting models of facies distribution reached by C-ISR and ISR respectively, after the 250
individual optimizations. Compared to the true facies field (Figure 5.1a), C-ISR results in a much
better approximation (85.69% similarity) than ISR (81.76% similarity). A brief summary of the
two algorithms performance is shown in Table 5.1. Taking into consideration the evidence of
the results, we summarize that the C-ISR method improves the search path of optimal solution
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reducing the computational and timing costs, leads to more precise estimations of parameters,

produces realizations which preserve the shapes of existing formations and results in an

optimal solution closer to the reality.

C-ISR ISR
Min RMSE 0.0383  0.0537
Similarity ratio when min RMSE 0.8569 0.8176
Average similarity ratio 0.8028 0.7104
Total number of evaluations 28914 48390
Average number of evaluations for each chain 115.656 193.56
Average number of accepted models for each chain 9.9 8.3
Table 5.1: Summary performance of the two algorithms.
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Figure 5.12: Optimal results for facies prediction from C-ISR (a) and ISR (b) after 250 individual

optimizations. Similarity to true facies is 85.69% and 81.76% respectively.
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6 Conclusions and future research

6.1 Conclusions

Aquifer characterization is a demanding task and requires modeling of physical properties such
as saturation, porosity and permeability. In addition, geological formations (e.g. facies
identification) should be taken into account before any physical forecasting. Deterministic and
stochastic methods using a two-step approach in which, first, the geological facies are modeled,
and second, they are populated with heterogeneous hydraulic parameters, have lower
performance in general. Inverse methods, on the other hand, use more information on the

reservoir behavior, such as the governing physical law and the system response variables.

Solving the inverse problem for hydrofacies is the right strategy before the aquifer
characterization; however inverse modeling encounters important difficulties in
implementation due to the ill-posedness and the complex spatial heterogeneity of hydrological
systems. Also, practical issues arise either due to discretization or non-linearity when applying
deterministic methods (e.g. gradient methods), or due to CPU time and speed performance

when applying stochastic methods.

In this thesis, we developed a stochastic method (C-ISR) to solve the inverse problem
and overcome the previously mentioned difficulties. Our method narrows the prior distribution
of parameters and produces improved proposal realizations in McMC optimization under the
Bayesian framework for inversion. This is achieved by using cosimulation with the system
response data. The algorithm of C-ISR is based on ISR kernel and relies on the approximation
that, temporally, the vector of normal scores transformed hydrologic measurements are
related to the underlying Gaussian variable of the facies, assuming a linear coregionalization
model. This process of successive linearizations acts as an importance sampling effect and

speeds up convergence of the Markov chains.

The effectiveness of cosimulation is illustrated by a synthetic aquifer inversion example,
using a pump test. We apply C-ISR vs. ISR based solely on TGS. The results of 250 individual

optimizations for both approaches show that C-ISR needs less forward model runs and, as a
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result, is faster. Also, it is more reliable since it produces smaller RMSE and explores more

effectively the prior space avoiding entrapment in local maxima.

6.2 Research limitations

The performance of the C-ISR method has been evaluated in a realistic synthetic example
supposing different degrees of prior information. Although the effectiveness of C-ISR has been
demonstrated, more synthetic examples should be examined using different formulations. For
instance, the C-ISR performance should be evaluated using more complicated types of contacts
between facies. Moreover, it should be examined how the data availability (sampled facies or

head measurements) and their spatial distribution affect the method.

The benefit of using synthetic data is that every possible geological structure could be
represented. Nevertheless, synthetic examples cannot mimic reality. Though practically
difficult, C-ISR should be evaluated in a real case study in order to investigate other advantages

or disadvantages of the method.

Moreover, C-ISR was basically evaluated in an optimization context, assuming that it could be
used also to sample the a-posteriori distribution of parameters in order to investigate more
parameters properties space. However, this should be more thoroughly examined by applying
C-ISR in a more focused algorithm, using for example the acceptance ratio of candidate models
and keeping only one model every u samples, as it is proposed by Mosegaard and Tarantola

(1995) and it has been discussed in previous sections.

The limitations of the present research associate to the high computational and time
cost that is demanded by the solution of forward model. The use of independent chains in
order to find the optimal solution, gives the opportunity to solve the optimization problem in
parallel computing. Therefore, we suggest the implementation of the C-ISR algorithm to be
done in an open-source software environment, such as the R Project for Statistical Computing.
The use of open-source software gives the ability to run the simulations on cloud computing
platforms, such as Amazon’s Web Services. Cloud computing offers flexible capacity, speed,
agility and increases the computing performance, as the iterations can be run in parallel

processors.
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6.3 Suggestions for future research

Future research might focus on extending the concept of C-ISR to the direction of multiple point
statistics (MPS). It has been shown (Mariethoz et al. 2010a) that the ISR kernel is not associated
with a specific simulation method or a certain type of spatial variability. Hence, a natural
extension would be to investigate the integration of cosimulation with the reference variable,

in MPS methodology.

The MPS method has been recently developed mainly to simulate hydrofacies, without
taking into account the solution of the inverse problem (e.g. Chugunova and Hu 2008; Feyen
and Caers 2006; Huysmans and Dassargues 2009; Michael et al. 2010; Renard 2007). Most
applications focus on the effectiveness of the method in relation to traditional techniques such
as Indicator Kriging and Plurigaussian simulation. It has also been applied to solve the inverse
problem (Alcolea and Renard 2010; Caers and Hoffmann 2006; Ronayne et al. 2008). Moreover,
Mariethoz et al. (2010b) highlighted the benefits of the ISR method by solving the inverse
problem in MPS. In this context, it is the first time where MPS is proposed for the solution of
the inverse problem by taking into account the covariance between the parameters and the
reference variable, as in the case of the C-ISR algorithm. This way, the Markov chain
convergence rate is expected to increase, reducing time and computer cost, while the spatial
distribution of the underground structures is expected to be more accurately represented than

in all previous methods.
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Appendix A: Mathematical Notes

A.1 General Rules of Matrices

Al1l:letAispxn, CnxnandBnxq matrices, then
(ABC)T = C"BTA
A.1.2: Let Cis a symmetric matrix then
c=cC’
A.1.3: Letya px 1vector,bavector nx 71and A a p x nmatrix then
y'Ab = (y"Ab)T = bTATy

A.2 Derivatives of Matrices and Vectors

A2.1: %yTAb =Aly
A2.2: ibTAb =(A+A"b
db
A2.3: % (y — Ab)"W(y — Ab) = —2ATW(y — Ab)
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A.3 Matrix Inversion Identity

Let Cy; and Cp, n x n and p x p positive-definite matrices. Also, let G is p x n matrix. Then

Proof

CuGT(GCGT + Cp) ! = (GTC51G + C51) T GTCy!

Beginning from the expression (GTC51)GCyGT + GT and multiplying the second term
with C51Cp we have:
(GTcyHGeyG™ + GT = (GTCy1)GCy G + GTCylc,
= GTCy1(GCyG™ + Cp)
Similarly, multiplying the second term with C1\711CM we have:
(GT¢cyHGCYGT + GT = (GTCy1)GCY GT + Cy1Cy GT
= (G"Cy'G + CyHCy GT
Since the left-hand sides of the above equations are identical, then:
G'CyH(GCyGT + Cp) = (GTC1G + ) Cy GT
Since Cp and Cy are positive-definite matrices, it follows that (GCyG' + Cp) and

(GTCI;lG + Cl\]l) are both nonsingular positive-definite matrices. Multiplying the two

hands of above equation by (GTC;'G + Cy') ™!, we have:
(GTCylG + ¢ 'GTC 1 (GCy GT + Cp) = Cy GT
Multiplying the two hands of above equation by (GCy G + Cp) 1, we have:

(GTCylG + ¢ 1GTCyt = CyGT(GCy GT + Cp) !
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A.4 Least Squared Estimation in Overdetermined Problems:
The minimization of objective function

S(M) = (dops — GM)" (d,ps — Grid)
is given by

m=(GTG)™1G d,,

Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:
d T R
%(dobs — Gm) (dobs —Gm) =0

-2GT(d,ps — GM) = 0=
m = (GTG)1GTd,
In order to prove the estimated M is the minimum, it should be shown that the second
order derivative of objective function (Hessian) is positive definite:
62
—S(m) = 2G'G
om? (m)
This is a positive definite matrix, since G has full rank. It is noted that the above solution

use the fact that the inverse of GTG exists.
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A.5 Least Squared Estimation in Underdetermined Problems
The solution of constrained optimization problem
minm’m

subjecttod,,s —Gm =0
m = G' (GGT)_ldobs

Proof

Minimization with constraints can be done with Lagrange multipliers A.
S(m;A) = m"m - AT(d,,; — Gm)

Taking the derivative of the objective function:

iS(m; A)=2m-G'A

dm

The first term results from A.2.2 property and the second term from A.2.1 property.

Also,
d
a—)LS(m; A) =d,p,s — Gm

Setting the derivatives to zero we get:

1
m= EGTA and d,, =Gm

Then

1
dops =5GGA= A= 2(GG6) " dops

Therefore m = GT(GGT)~1d,,

We note that the above solution use the fact that the inverse of GTG exists.
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A.6 Weighed Least Square Estimation in Overdetermined Problems:
The minimization of objective function

S(f) = (dps — Gi)"Cy' (dops — G
is given by

m = (G'C;1G)1GTd,,

Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:
4 SNT =1 =
%(dobs — Gim) Cp (dobs —Gm) =0

—2G"Cy1(dyps — Gi) = 0=
m = (G'C51G)1GTd,,
In order to prove the estimated mi is the minimum, it should be shown that the second
order derivative of objective function (Hessian) is positive definite:
62
=\ — 9Te-1
This is a positive definite matrix, since G has full rank and Cp, is positive-definite matrix.

It is noted that the above solution use the fact that the inverse of GTC51G exists.
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A.7 Regularized Weighted Least Square Estimation in Overdetermined Problems:
The minimization of objective function:

S(m) = (dyps — GM)TCy (dyps — GM) + A(mP" — m)TCyl (mP™ — m)
is given by

m=m" + (GTCylG + ACy;H)1GTCh (dyps — GmP)

Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:
% (dobs - Gﬁ\l)TCE1 (dobs - Glﬁ) + }\(mpr - r/ﬁ)TCl;[l (mpr - fﬁ) =0=

—2G"C5 (dgps — Gii) — 2AC (MP" —m) = 0=
GTCylGm + ACy (M — mP") = GTCyld,,,
Subtracting the term GTC51Gmpr to the left and right hand of the above equation we
have:

GTCylG(M — mP") + ACK (M — mP") = G'Cyld,,, — GTChlGmPT =

(GTCylG + ACyH) (M — mP") = GTC5l(dyps — GMPY) =
m = mP + (GTCy'G + ACy' ) 1GTCht (dyys — GMPT)
In order to prove the estimated i is the minimum, it should be shown that the second
order derivative of objective function (Hessian) is positive definite:
62

WS('T‘) = 2GTC;1G + ACy!

This is a positive definite matrix, since G has full rank and Cp and Cy are positive-
definite matrices. It is noted that the above solution use the fact that the inverse of

GTCy1G + ACy! exists.
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A.8 Nonlinear Weighted Least Square Estimation:

The minimization of objective function:
S(ml+1) — (dobs _ g(ml) _ Gi (ml+1 _ ml)) CBl (dobs _ g(ml) _ Gi (ml+1 _ ml))
is given by

mi+tl = mi + (GiTC];lGi)_lGiTCﬁl (dobs - g(mi))

Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:
%(dobs —g(m’) -G (mi+1 - mi))T (e (dobs - g(mi) -G (miH - mi))
=0>
~2GI 5 (dops — g(m) — Gy(m 1 —m')) = 0=
GIC5' Gy (m™*" — m') = 67C5" (dops — g(m')) =

m'* =m + (67C5'6,)” 6T C5' (dops — g(m'))

In order to prove the estimated m*™! is a minimum, it should be shown that the second

order derivative of objective function is positive definite:

mS(mi-ﬂ) = ZG;FCElGl

This is a positive definite matrix, if G; has full rank and Cp and Cy are positive-
definite matrices. It is noted that the above solution use the fact that the inverse of

G/ C;'G; exists. Finally, the m‘*! is a better solution than the previous if S(m'*1) <

S(m')
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A.9 Regularized Weighted Nonlinear Least Square Estimation:
The minimization of objective function:

S(mz+1) — (dobs _ g(ml) _ Gi(ml+1 _ ml)) Cal (dobs _ g(ml) _ Gi(ml+1 _ mz))
is given by

m™*! = m' + (G7C5'G; +ACy") " G C5" (dops — g(m') — G;m")

Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:
e (duns — 80m) — Gt = m)) G5 (s — g(m) ~ G, (m*1 — m"))
+am 1 Cplmitl = 0>
~267C5 (dops — g(m') = G;(m*1 —m')) + 22Cy'm+! = 0=
GI €516y (m*! = m) + ACi m*! = 65" (s — g(m"))

Subtracting the term G?CBlGimi to the left and right hand of the above equation we

have:
(G C5'G; + ACy" ) (mi*! —m') = G €5 (dyps — g(m') — G;m') =

m™*! = m' + (67 C5 G, +ACy!)” 6T Cp (dovs — g(m') — G;m')

In order to prove the estimated m:*™! is a minimum, it should be shown that the second

order derivative of objective function is positive definite:

9]

mS(mH_l) = 2G?C51Gl + }\Clﬁl

This is a positive definite matrix, if G; has full rank and Cp and Cy are positive-

definite matrices. It is noted that the above solution use the fact that the inverse of
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G/ CyG; + ACy! exists. Finally, the mi*! is a better solution than the previous if

S(m™) < s(m').

A.10 Quasi linear Bayesian Estimation:
The minimization of objective function:
o . ~ . T _ . ~ .
S(ml+1) — (g(ml+1) + Gi (ml+1 _ ml+1) _ dobs) CDl(g(mL+1) + Gi (m1+1 _ m1+1) _ dobs)
+ (it — I’ﬁi)TCI\—/ll(Ifﬁi+1 — )
is given by
o o —_~ 4~ PN PSR o ~ .
mt! = w4+ (GGG, + Cy') G Cy' (dops — g(m!) + G, (@' — m'*1))
Proof

Setting the expanded derivative of the objective function equal to zero and using the

A.2.3 property, we have:

9]
omi+1

(0*1) + G R — 1) — dyy ) G (g() + G (@EH — i+
—dgp ) + (R — i) Gl (AL — @) = 0>
2GT cpl(g(mity) + Gy(mit — M) — dgs ) + 2C3 (AT — @) = 0=
Greyt (g(m ) — Gt — doy ) + G/ C3 G + G (! — @f) = 0 =
G/ CylGmi™ + ¢t (mit! — m') = Gf ¢l (doys — g(MT) + Gyt

Subtracting the term (~}?C51(~}ilﬁi to the left and right hand of the above equation we

have:
(GI Gy + Cyt ) (mit! — )
= GiTcﬁl (dobs _ g(n~1i+1) + ’GiﬁiH-l) _ G’;Fc];leilfﬁi =
(GTC31G, + Gy ) (mi*! — diil) = GT Gt (dgps — (M) -Gl + Gmi+!) =
@t =+ (G716, + Cy)GT Gt (dops — () -G, (' — @i *1))

Also, instead to subtract the term G?CBlailﬁi, but extending the above equation, we

have:
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GTCplG M + Clmit! — Clm! = G ¢yt (dobs _ g(ﬁii+1)) +GICy Gt =
GI 316G (it — mi+l) + Cylmi*! — Cylmi = 'G’il‘cal( be g(mz+1))

And now, subtracting the term Cy;'m‘*! to the left and right hand of the above

equation we have:
G/ Cy' G (M — ') + Gt @t — Gyt — Cy'im' !

= GICp" (daps — (A1) ) — €'+ =
(G/ G516, + Gyl (m™! —mi™) = Gl Gy ( obs ~ g(ﬁiﬂ)) +Cy' (A —m) =
@ = fH 4 (G766 + Gt) (G 65" (dops — g(RH)) + Gt R+ — )
i+

In order to prove the estimated m

order derivative of objective function is positive definite:

d

mS(lﬁi-H) = ELTC,;l(}l + Cl\_/ll

This is a positive definite matrix, if G; has full rank and Cp and Cy are positive-

is a minimum, it should be shown that the second

definite matrices. It is noted that the above solution use the fact that the inverse of

G/ CyG; + Cy exists. Finally, the mi‘*! is a better solution than the previous if

S(m*!) < s(m').
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adjoint method
ambiguity

a-posteriori distribution / information

a-priori distribution / information

auxiliary variable

bias

bias—variance tradeoff
coefficient
computational precision
conjugate prior distribution
consistent

convergence time
coregionalization model
correlation
cosimulation

covariance

Cross-va riogram

Appendix B: English - Greek Dictionary of Terms

ouluyng uEbodog
audlonuia, acadela

LETAYEVEDOTEPN N UOTEPN KATOVOUN /

nmAnpodopia

€K TIpooLuiou ) mpdtepn Katavoun /

nmAnpodopia

BonBntikn petaBAntn
puepoAnyia

oUMUBLBaoPOC peTall pepoAndiag — Slaomopag
OUVTEAEOTNAG

UTTOAOYLOTIKI OKpiBeLa
ouluyng mMPOTEPN KATAVOUN
OUVETING

XPOVOG CUYKALONG

HMOVTEAO cUpPETABANTOTNTAC
CUOXETLON

Qo Kowou pooopoiwaon
ouvélakupavon

ouv-Baploypappa
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cumulative distribution function

determinant

deterministic solution

discrete problem

error function

Euclidean length

finite differences

first order approximation

forward problem

full rank

generalized inverse matrix

genetic algorithm

geoscientifical

global minimum

gradient methods

groundwater flow system

Hessian matrix

heuristic methods

hydrofacies

ill-conditioned system

ill-posed system

aBpOoLoTIKH) CUVAPTNON KOTOVORNG
opilovoa

QLTLOKPATLKN Miluon

SLaKkpLtd mPoPAnua

ouvaptnon opAAUAToq
EukAeidelo punkog

TIEMEPACUEVEG SLaPOPES

TPWTING TAENG TTPOCEYYLON

€VBUL MPOPANUA

UEYLOTN TALN

YEVLKEUPEVOG avTioTpodog mivakag
YEVETIKOL aAyopLlBuoL
YEWETILOTNULKOG

OALKO eAdxLOTO

puEBodot kAiong

oUOTNUA UTTOYELOG PONG

Eoolovog mivakac

EUPETIKEG HEBobOL
uVSpoyeWAOYIKEG HATELG

aotaBfég ovotnua (e€lowoswv)

a0Bevwg tormoBeTnuévo cuoTnua
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importance sampling

inconsistent

independent samples

infinite solutions

informative prior distribution

inner product

interpolation method

inverse problem

Jacobian matrix

join distribution

kernel transition

least squares criterion

likelihood

local optima

maximum likelihood estimation

monotonically decreasing

mutation

nonlinear linear least squares

nonsingular

norm

Normal distribution

Selypatiopog onovdaldotnTog
OLOUVETING

avefaptnta delypata
QMELPEG AUOELG

TANPOOPNLUEVN N EVILEPWHEVN TIPOTEPN

KaTavoun

ECWTEPLKO YLVOUEVO

uEBodog napePoAng

avtiotpodo mpofAnua
lakwBlavog mivakag

Qo KOWOoU KOTOVOWN

nupnvag petafaong

KPLTAPLO EAOXIOTWY TETPOYWVWV
mbavodavela

TOTUKA aKkpoOTATA

EKTLUNON pEYLoTNnG BavodaveLag
povotova ¢pBivouvoa

METAAAaEN

UN-YPOLULKA EAGXLOTA TETPAYWVA
un Wopopdog

UETPO, VOpUQ

Kavovikr katavoun
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normalization constant

objective function

operator

optimal solution

optimization

ordinary least squares

overdetermined problem

overfitting

penalty term

perturbation

positive definite

probability density function

projection

guadratic form

guasi-linear

random noise

realization

regularization

resampling

residual

residual sum of squares

otaBepd Kavovikomoinong
OVTLKELUEVLKN) CUVAPTNON

TEAEOTNG

BéAtiotn Alon

BeAtiotomoinon

eA\dxLOTa TETPAYWVA
umep-KaBopLopévo mpoBAnua
UTtEPTIPOCOPLOYH

TIPAYOVTAG TIOWVAG

Swatapaén

BETIKA OpPLOPEVOG

oUVAPTNON TTUKVOTNTAG BavoTnTag
nipofoAn

TETPAYWVLIKN popdn
OLOVE(-YPAUULKOC, OXESOV YPAULLKOC
Tuxaiog B6pufog

vAomoinon

KOvovLKomoinon

EMAVASELYHATIONOG

KataAoumno

AaBpoloua TWV TETPAYWVWY TWV 0PaAUATWY
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response

ridge estimator

sensitivity matrix

sequences of iterates

shrinking

simulated annealing method

singular matrix

span (a space)

state variable

stochastic method /solution

stopping criterion

system parameterized

tangent plane

threshold

tolerance

truncated Gaussian simulation

unbiased estimator

underdetermined problem

variance

weighted least squares

white noise

arnokplon

OUPLKALVAG EKTLUNTAG

nivakag evalodnoiag

akoAouBieg emavaAnPewv
ouppikvwon

UEBOSOG MTPOCOUOLWHEVNC AVOTITNONG
6Lopopdo¢ mivakag

napayw (évav xwpo)

HETABANTH KaTAoTOOoNG

otoxaotikn uEBodog / emihuon
KPLTAPLO TEPUATIOMOU 1 SLAKOTING
TIAPOLLETPOTIOLNUEVO CUOTN A
edamnrtopevo eninedo

KatwdAL

avoxn

QTMOKOUMEVN [KaouoLavr pocopoiwaon
OHEPOANTITOG EKTLUNTAG
uTto-KaBopPLoUEVO TIPOBANU
Stakbpavon n dtaomopa

{UyLoPEVA EAAXLOTO TETPAYWVA

Aeukog Bopufog
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