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Abstract

The land surface temperature (LST) is the skin temperature of the boundary layer be-

tween the Earth’s surface and atmosphere and a key variable in the physics of many

terrestrial biophysical processes. Today the only practical way to acquire LST over

extensive regions on the surface of the Earth is from space using thermal remote sens-

ing. However, due to technical and physical constrains, satellite instruments can-

not provide LST datasets with a spatial and temporal resolution that matches the

characteristic scale of the LST diurnal cycle. A promising solution to this problem

is to increase the spatial resolution of temporally-dense geostationary LST using sta-

tistical downscaling methods that rely on LST disaggregation kernels available at the

desired fine spatial resolution. This thesis contributes to this body of research and

is concerned with the identification of LST disaggregation kernels that perform ro-

bustly over various times-of-day, land covers and landscapes. To that end, this work

demonstrates that multitemporal LST annual climatology data in the form of the an-

nual cycle parameters (ACP)—namely the mean annual LST, the yearly amplitude of

LST, and the LST phase shift from the spring equinox—offer these attributes. Such

LST predictors provide information about the LST spatial distribution at different

times-of-day and their use can improve the downscaled LST (DLST) spatial patterns,

the DLST accuracy and the DLST diurnal range. This thesis also investigates how

LST downscaling, when applied to continuous temporally-dense LST data, affects

the spatiotemporal interrelationships of the DLST. To achieve this, a quarter-hourly,

4 km× 5 km, three-month long LST time series from SEVIRI (Spinning Enhanced

Visible and Infrared Imager) is statistically downscaled to 1 km× 1 km and (i) the

accuracy, reliability, and consistency of the downscaling method; (ii) the shape, size,

and location of the DLST spatial patterns; and (iii) the capability of the DLST time

series to emulate the diurnal and seasonal characteristics of the original LST data

are assessed. The results suggest that the downscaling process can operate consis-

tently and generate DLST data that reproduce the diurnal cycle without any artefacts.

However the results also reveal that LST downscaling can produce DLST time series
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with increased autocorrelation. Finally, to facilitate the analysis of temporally-dense

geostationary LST datasets, this thesis proposes a method for summarising a LST

time series to a set of gap-free climatological cycle parameters that describe both the

diurnal and annual LST cycles. The proposed method is based on the ACP sine-

fitting method and is coupled with a spatiotemporal fusion scheme so as to increase

the coarse spatial resolution of the geostationary ACP. The results suggest that the

derived gap-free parameters are more informative than individual LST images and

can provide an observation-based spatially consistent background for studying and

characterising the thermal behaviour of the surface and also a dataset to support

climate classification at a finer spatial resolution.
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Περίληψη

Η επιφανειακή θερμοκρασία εδάφους είναι η ϑερμοκρασία του επιφανειακού ο-

ριακού στρώματος που διαχωρίζει το έδαφος από την ατμόσφαιρα της Γης.

Η συγκεκριμένη μεταβλητή είναι καθοριστικής σημασίας για πολλές βιοφυσι-

κές διεργασίες της Γήινης επιφάνειας και ο μόνος πρακτικός και οικονομικός

τρόπος μέτρησής της είναι από το ∆ιάστημα με τη χρήση δορυφόρων τηλε-

πισκόπησης. Εξαιτίας τόσο τεχνολογικών όσο και φυσικών περιορισμών, οι

δορυφορικοί ϑερμικοί δέκτες που βρίσκονται σήμερα σε τροχιά γύρω από τη

Γη αδυνατούν να παρέχουν δεδομένα υψηλής χωροχρονικής ανάλυσης, τα ο-

ποία είναι αναγκαία για τη μελέτη του ημερήσιου κύκλου της επιφανειακής

ϑερμοκρασίας εδάφους. Μια πολλά υποσχόμενη λύση που έχει προταθεί για

να ξεπεραστεί αυτό το πρόβλημα, είναι η χρήση γεωστατικών δορυφορικών

δεδομένων υψηλής χρονικής ανάλυσης (1 εικόνα κάθε 15 ή 30 λεπτά της ώ-

ρας) και η ενίσχυση της χαμηλής διακριτικής ικανότητας αυτών (2-6 χλμ.), με

χρήση στατιστικών μεθόδων χωρικής ενίσχυσης. Οι εν λόγω μέθοδοι έχουν

ως στόχο να αναλύσουν τις τιμές επιφανειακής ϑερμοκρασίας εδάφους των

εικονοψηφίδων χαμηλής ανάλυσης στις εικονοψηφίδες υψηλής ανάλυσης που

εμπεριέχονται σε κάθε μια από αυτές. Αυτό γίνεται βάσει επικουρικών δεδο-

μένων υψηλής χωρικής ανάλυσης, τα οποία συσχετίζονται στατιστικά με την

επιφανειακή ϑερμοκρασία εδάφους. Η παρούσα διδακτορική εργασία ανήκει

σε αυτή την ερευνητική περιοχή και εστιάζει στην αναγνώριση επικουρικών

δεδομένων, η χρήση των οποίων δεν περιορίζεται σε συγκεκριμένους τύπους

εδαφοκάλυψης και μορφολογίας ή σε ορισμένες χρονικές στιγμές της ημέ-

ρας. Ως προς αυτό το ζήτημα, η συγκεκριμένη εργασία υποστηρίζει ότι τα

δεδομένα ACP (Annual Cycle Parameters) που αποδίδουν τα κλιματολογικά

χαρακτηριστικά του ετήσιου κύκλου της επιφανειακής ϑερμοκρασίας (δηλαδή

την ετήσια μέση επιφανειακή ϑερμοκρασία, το ετήσιο εύρος της επιφανεια-

κής ϑερμοκρασίας και τη μετατόπιση φάσης ως προς την εαρινή ισημερία)
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προσφέρουν αυτό το πλεονέκτημα. Τα εν λόγω δεδομένα παρέχουν πληροφο-

ρίες για τη χωρική κατανομή της επιφανειακής ϑερμοκρασίας σε διαφορετικές

στιγμές της ημέρας και η χρήση τους μπορεί να βελτιώσει την ακρίβεια και τα

πρότυπα των χωρικά ενισχυμένων δεδομένων, όπως και την εκτίμηση του ημε-

ρήσιου ϑερμοκρασιακού εύρους από αυτά. Η διατριβή αυτή διερευνά επίσης

την επίδραση που έχει η χωρική ενίσχυση στις χωροχρονικές αλληλοσυσχετίσεις

των παραγόμενων δεδομένων, όταν αυτή εφαρμόζεται σε εκτενείς χρονοσει-

ρές. Η μελέτη του συγκεκριμένου ϑέματος γίνεται με χρήση μιας χρονοσειράς

επιφανειακής ϑερμοκρασίας εδάφους από τον ευρωπαϊκό δορυφορικό δέκτη

SEVIRI (Spinning Enhanced Visible and Infrared Imager), η οποία καλύπτει

τρεις μήνες και έχει χρονική ανάλυση ίση με 15 λεπτά της ώρας. Για να

μελετηθεί η επίδραση της μεθόδου στις χωροχρονικές αλληλοσυσχετίσεις των

δεδομένων, η χωρική ανάλυση της χρονοσειράς ενισχύθηκε από 4 χλμ. σε 1

χλμ. και στη συνέχεια εξετάστηκαν: (α) η ακρίβεια, η αξιοπιστία και η συνέ-

πεια της μεθόδου χωρικής ενίσχυσης· (β) το σχήμα, το μέγεθος και η ϑέση των

χωρικά ενισχυμένων ϑερμικών προτύπων· και (γ) η ικανότητα της χρονοσειράς

που προέκυψε να αναπαραγάγει τα χωροχρονικά χαρακτηριστικά (ημερήσια

και εποχιακά) των αρχικών δεδομένων. Τα αποτελέσματα υποδεικνύουν ότι

η χωρική ενίσχυση λειτουργεί αξιόπιστα και ότι παράγει δεδομένα που α-

ποδίδουν τον ημερήσιο κύκλο της επιφανειακής ϑερμοκρασίας χωρίς ϑόρυβο.

Ωστόσο, τα αποτελέσματα υποδεικνύουν επίσης ότι η συγκεκριμένη μέθο-

δος μπορεί να παράγει χρονοσειρές με υψηλή αυτοσυσχέτιση. Το τελευταίο

μέρος της παρούσας διδακτορικής διατριβής εστιάζει στην ανάλυση χρονο-

σειρών επιφανειακής ϑερμοκρασίας από γεωστατικούς δορυφόρους και πιο

συγκεκριμένα στην εξαγωγή κλιματολογικών παραμέτρων που να αποδίδουν

τα χαρακτηριστικά του ετήσιου και του ημερήσιου κύκλου της επιφανειακής

ϑερμοκρασίας. Η προτεινόμενη μέθοδος βασίζεται στη μέθοδο ACP για την ε-

ξαγωγή ετήσιων κλιματολογικών παραμέτρων επιφανειακής ϑερμοκρασίας σε

συνδυασμό με μια μέθοδο χωροχρονικής συγχώνευσης εικόνων, ώστε η χωρική

ανάλυση των τελικών παραγώγων να είναι ενισχυμένη. Τα αποτελέσματα από

την εφαρμογή της προτεινόμενης μεθόδου υποδεικνύουν ότι οι κλιματολογι-

κές παράμετροι που προέκυψαν παρέχουν περισσότερες πληροφορίες για τη

ϑερμική συμπεριφορά της Γήινης επιφάνειας συγκρινόμενες με μεμονωμένες

μετρήσεις επιφανειακής ϑερμοκρασίας, όπως και ότι αποτελούν ένα χωρικά
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συνεχές υπόβαθρο, το οποίο μπορεί να συνδράμει στη μελέτη της Γήινης επι-

φάνειας και στην πιο λεπτομερή χαρτογράφηση του κλίματος της Γης.
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Chapter 1

Introduction

1.1 Land Surface Temperature: A key surface state variable

The Land Surface Temperature (LST; measured in K or ◦C) is the skin temperature of

the boundary layer between the Earth’s surface and atmosphere and a key variable in

the physics of many terrestrial biophysical processes from local through global scales

[1]. It results from the physical interactions between the two systems—particularly

by the exchange of energy and water between Earth’s surface and atmosphere—and

is sensitive to local weather conditions, incoming solar radiation (insolation), land

cover, soil moisture and topography [2, 3, 4]. As such, knowledge of the LST pro-

vides information on the temporal and spatial variations of the surface equilibrium

state [5] and is useful for measuring and modelling several boundary layer variables

(e.g. heat fluxes) and their partitioning across the surface of the Earth [6, 7]. Hence

LST data are of fundamental importance in many fields, among which are meteo-

rology, climatology, hydrology, landscape ecology and urban climate [8, 9, 10, 11,

12, 13]; and an essential parameter in land surface models for diagnosing the Earth

system behaviour, for constraining the model predictions and also as initialisation

and evaluation data [14, 15, 16].

Today the importance of LST is widely recognised by the scientific community

and thus there is a strong need for global, consistent and accurate (±1 K or better)

LST datasets that can adequately characterise the LST spatial distribution and tem-

poral evolution [1, 17]. Given the strong heterogeneity of the Earth’s surface, which

makes the LST to rapidly vary in space and time, the only practical way to acquire

such data is from space using remote sensing [1, 18]. Lillesand et al. [19] broadly

define remote sensing as:
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The science, technology and art of obtaining information about a physi-

cal body, area, or phenomenon through the analysis of data acquired by

a device that is not in contact with the body, area or phenomenon under

investigation.

In Earth science, remote sensing generally refers to the use of images acquired by in-

struments onboard spaceborne and airborne platforms (e.g. satellites and aircrafts)

that sense (i.e measure)—from an overhead perspective—the electromagnetic (EM)

radiation emitted or reflected by the surface of the Earth, so as to derive information

about its land and water surfaces [20]. To that end, using satellite remote sensing, the

LST is inferred from measurements of the surface-emitted EM radiation that are car-

ried out by satellite instruments orbiting the Earth in polar or geostationary orbits.

In this context the LST is defined as:

The mean radiative skin temperature derived from the EM radiation emit-

ted by all the bodies comprising the surface of the Earth into the direction

of the satellite instrument.

The history of retrieving the LST from space observations dates back to the 1970s

and over the years considerable understanding of the physics of this problem has

been achieved [1]. The retrieval of LST from space observations is the subject of the

following section, where the theoretical background of this thesis is provided.

1.2 Retrieval of Land Surface Temperatures from Space

1.2.1 Blackbody Radiation and Spectral Emissivity

All physical bodies1 that comprise the surface of the Earth emit EM radiation. This

is because every body that has a thermodynamic temperature2 above 0 K (equal to

−273.15 ◦C) emits EM radiation due to the random motion3 of its molecules [23,

24]. The amount of energy and the wavelengths at which it is emitted depend on the

temperature of the body and the most effective way to understand this relationship

1In this thesis the terms physical body, or simply body, and physical object, or simply object, are
used interchangeably.

2The thermodynamic temperature is the absolute measure of temperature. It arises from the kinetic
energy of the body’s molecules (it’s zero when these molecules are as close as possible to complete
rest) and for an isothermal body it be directly measured by placing a thermometer in physical contact
with the body [21, 22].

3The random motion of the body’s molecules results in excitation (electronic, vibrational, or rota-
tional) due to collisions that is followed by random emission of EM radiation due to decay [23].
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is by using the theoretical concept of the blackbody [25]. A blackbody is a hypotheti-

cal body that absorbs all the radiation it receives and under thermal equilibrium con-

ditions emits EM radiation with perfect efficiency and with a spectral distribution

(Figure 1.1) that obeys Planck’s law:

Bλ(T ) =
2hc2

λ5
1

ech/λkT − 1
(1.1)

where: Bλ(T ) = blackbody spectral radiance (W m−3 sr−1)

T = thermodynamic temperature (K)

λ = wavelength (m)

h = Planck’s constant (equal to 6.626× 10−34 W s2)

c = velocity of light (equal to 2.9979× 108 m s−1)

k = Boltzmann’s constant (equal to 1.38× 10−23 W s K−1)
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Figure 1.1: Blackbody spectral radiance for various temperatures.

To make this law applicable to real physical bodies, which are not perfect emit-

ters, Eq. 1.1 has to be modified with a wavelength-depended emission efficiency

factor called spectral emissivity (Eq. 1.2). This factor is defined as the ratio of the spec-

tral radiance4 Lλ(T ) emitted by a non-black body at temperature T to the radiation

Bλ(T ) emitted by a blackbody at the same temperature and it is unitless.

ελ(T ) =
Lλ(T )

Bλ(T )
(1.2)

4The spectral radiance is a directional quantity and is the radiant flux (i.e. the radiant energy per
time) per unit solid angle that crosses a differential surface element that is perpendicular to the axis of
the radiation beam. It is usually measured in Wm−2 sr−1 µm−1.
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Under thermal equilibrium at temperature T , the spectral emissivity of a body is

equal to its spectral absorptivity (αλ), i.e. the fraction of the incident radiation of

wavelength λ that it absorbs (for blackbodies αλ = 1):

ελ(T ) = αλ(T ) (1.3)

This equation (Eq. 1.3) is known as Kirchhoff’s law and describes the intimate rela-

tionship between emission and absorption (i.e. good absorbers are good emitters

and vice versa) [26]. Kirchhoff’s law applies for most common terrestrial surfaces

[27] and if coupled with the energy conservation law it can relate a body’s spectral

emissivity to its spectral reflectance (ρλ) [3, 28]. In particular, when EM radiation of

wavelength λ is incident upon a body, a fraction of it is reflected by its surface (ρλ),

while the rest is transmitted through it (τλ) or absorbed by it (αλ). Due to the energy

conservation law these three fractions must sum to 1:

ρλ + τλ + αλ = 1 (1.4)

Hence, for an opaque (i.e. τλ = 0) non-black body, which is in thermal equilib-

rium with its surroundings, the relationship between its spectral emissivity and re-

flectance is:

ρλ + αλ = 1 =⇒ ρλ + ελ = 1 =⇒ ελ = 1− ρλ (1.5)

Overall the spectral emissivity of a body can range from 0 to 1, with 1 signifying

an object with thermal behaviour identical to that of a blackbody and 0 of a perfect

reflector (i.e. a whitebody) [20]. Other types of bodies are the greybodies, where spec-

tral emissivity is constant and less than 1, and the selective radiators, where spectral

emissivity varies as a function of wavelength [23]. The physical bodies comprising

Earth’s surface are mostly selective radiators, where the 8 µm to 14 µm emissivity

ranges between 0.90 and 0.99 (Table 1.1) [29]. Besides wavelength, the emissivity of

real bodies also5 varies with the direction of emission [27]. This is due to the inher-

ent anisotropic6 emissivity of real bodies and the thermal heterogeneity of complex

three-dimensional structures [27].
5In addition to wavelength and emission direction, emissivity also depends on the body’s temper-

ature T . However for the Earth’s environment the dependence on T is usually very small and can be
ignored [30].

6The maximum amount of emitted radiation is perpendicular to the body’s surface and zero tan-
gentially to its surface [6].
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Table 1.1: Average 8 µm to 14 µm emissivity for various materials. Source: [19].

Materials Average emissivity

Clear water 0.98 - 0.99
Healthy green vegetation 0.96 - 0.99
Dry vegetation 0.88 - 0.94
Asphaltic concrete 0.94 - 0.97
Basaltic rock 0.92 - 0.96
Granitic rock 0.83 - 0.87
Dry mineral soil 0.92 - 0.96
Polished metals 0.06 - 0.21

1.2.2 Earth-Emitted Radiation at the Top-of-the-Atmosphere

The Earth’s surface has a skin temperature that typically ranges from 258 K to 318 K

(the climatological mean is 288 K) and thus emits EM radiation [2, 7]. The surface-

emitted radiation covers the thermal infrared (TIR; 4 µm to 50 µm) and far infrared (FIR;

50 µm to 100 µm) wavelengths and is maximum7 at about 10 µm [24]. Depending on

their emissivity and temperature, different objects on the earth’s surface have differ-

ent radiance spectra. Nevertheless, for the 8 µm to 14 µm TIR wavelengths, where

spectral emissivity is mostly uniform and close to unity (Table 1.1), the correspond-

ing spectra resemble very well the spectral radiance of blackbodies. Favourably,

these wavelengths coincide with two major atmospheric windows that allow surface-

emitted TIR radiation to reach the Earth’s top-of-the-atmosphere (TOA) and escape to

space [7]. These atmospheric windows cover the wavelengths between 8.0 µm to

9.2 µm and 10.2 µm to 12.4 µm (Figure 1.2), but clouds8 and increased air pollution

can make them opaque [2, 20].

The TIR radiation emitted over the remaining wavelengths is partially or com-

pletely absorbed by various gases in Earth’s atmosphere, as shown in Figure 1.2

(scattering in TIR wavelengths is negligible [1]). Among these gases the most im-

portant are water vapor (H2O, it absorbs over all TIR wavelength and especially at

6.5 µm), ozone (O3, it absorbs strongly at 9.6 µm) and carbon dioxide (CO2, it ab-

sorbs strongly at 15 µm) and to a lesser extent carbon monoxide (CO), nitrous oxide

7According to Wien’s displacement law, the peak emission wavelengths for 258K, 288K and 318K
are at 11.23µm, 10.06µm and 9.11µm, respectively.

8Clouds absorb much of the surface-emitted TIR radiation and re-emit it downwards almost as
blackbodies [2, 7]. Their emission is in accordance with Stefan-Boltzmann’s law and depends on the
cloud-base temperature. This implies that clouds located higher in the atmosphere, such as Altus
and Cirrus, emit at lower temperatures than clouds located at lower levels of the atmosphere, such as
Stratus and Cumulus [2]. In addition clouds reduce the local amount of incoming solar radiation that
reaches Earth’s surface. This results in spatially varying heating that is manifested as patchy warm
and cool areas in TIR images [23].
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Figure 1.2: Atmospheric transmittance in the 2.5 µm to 14.5 µm spectral region.
Source: [25].

(N2O), methane (CH4) and nitric oxide (NO) [24]. These gases are primarily found in

the lower layers9 of the atmosphere, namely the troposphere (0 km to 10 km) and the

stratosphere (10 km to 50 km), which contain together 99.9% of the atmosphere’s mass

[31]. This implies that the atmospheric absorption of surface-emitted TIR radiation

is strongest at these altitudes [2].

EM radiation is not only emitted by the Earth’s surface but also by all the levels of

the Earth’s atmosphere [2]. The spectral distribution of the emitted radiation follows

Planck’s law (Eq. 1.1) and is consistent with the temperature and spectral emissivity

of each atmospheric level [2, 25]. Quantitatively though, the atmospheric emission

of EM radiation is most important at the troposphere and stratosphere where the

concentration of atmospheric constituents is greatest [2]. The temperature of these

two layers is of similar magnitude to the temperature of the Earth’s surface and thus

the atmospherically-emitted radiation covers the same TIR and FIR wavelengths as

the surface-emitted. In particular, the climatological mean tropospheric temperature

is approximately 288 K near the Earth’s surface and decreases steadily with height

to a temperature of 220 K at the tropopause (at about 10 km), while the stratospheric

temperature is stable from the tropopause to about 20 km and from that altitude it

gradually increases to 270 K at 50 km (i.e. the stratopause) [24].

Even though TIR radiation from the Earth’s surface and atmosphere cover simi-

lar wavelengths, the shape of the corresponding radiance spectra is not the same.

This is because the spectral emissivity of atmospheric gases differs considerably

9The highest concentration of H2O is at the lower part of the troposphere between 0 km to 5 km and
of O3 at the stratosphere between 15 km to 30 km [31, 24]. The %-per-volume concentration of CO2 is
virtually constant up to 60 km [24].
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from that of land materials. In particular, for altitudes below 60 km where local ther-

mal equilibrium (LTE) prevails [31], the atmospheric spectral emissivity is linked to

the corresponding spectral absorptivity (Figure 1.2) by Kirchhoff’s law (Eq. 1.3).

This means that the atmosphere will emit radiation only at the same wavelengths

that it absorbs [32], as Figure 1.3 clearly presents.
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Figure 1.3: Atmospheric emitted radiance spectra (at 288 K) calculated using
MODTRAN-5 radiative transfer code for a zenith path from sea level to space
through a 1976 US Standard Atmosphere model and a water vapour column with
a 1 cm thickness. The dashed grey line corresponds to the emission spectra of a
blackbody at 288 K. Adapted from: [32].

Furthermore, the fact that Earth’s atmosphere emits TIR radiation implies that

the H2O, O3 and CO2 at the various atmospheric levels will not only absorb TIR ra-

diation emitted by the surface but also TIR radiation emitted by other atmospheric

layers that are located at lower or higher altitudes [2]. This process results to a very

complex exchange of TIR radiation in Earth’s atmosphere, where atmospheric TIR

radiation from low altitudes can be absorbed and re-emitted at higher altitudes and

vice versa [25]. Moreover, the emission of TIR radiation at all atmospheric levels

means that additional power is introduced into the surface-emitted radiation beam

as it travels through Earth’s atmosphere [33]. In detail, as a radiation beam of radi-

ance Lλ traverses through a non-scattering atmospheric layer of thickness ds that is

in LTE and has an absorptivity αλ, an emissivity ελ and a temperature Tp, it changes

by the increment dLλ. This incremental change is due to atmospheric absorption

and emission [31] and is equal to:

dLλ = dL
absorption
λ + dLemission

λ =⇒ dLλ = −Lλαλ + ελBλ(Tp) (1.6)
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Because the layer is in LTE, Kirchhoff’s law applies. This implies that the medium’s

spectral emissivity and spectral absorptivity are equal, i.e. ελ = αλ, and thus Eq. 1.6

becomes:

dLλ = [−Lλ +Bλ(Tp)]αλ (1.7)

This equation (Eq. 1.7) is known as Schwarzschild’s equation and shows that, as the

radiation beam propagates through the medium, its spectral radiance will increase

ifBλ(Tp) > Lλ or decrease ifBλ(Tp) < Lλ. Nevertheless, the result of both outcomes

is the beam’s Lλ to approach that of the medium’s [31]. However, for wavelengths

where αλ is low, such as the atmospheric window wavelengths (Figure 1.2) under

dry weather conditions, the increment dLλ is so small that its impact on the beam’s

radiance is minor.

From the above it is clear that the TIR radiation that reaches Earth’s TOA (re-

ferred to as outgoing longwave or terrestrial radiation) is a combination of surface-

emitted and atmospherically-emitted TIR radiation and thus includes spectral fea-

tures from both. In addition, because it originates from levels with different tem-

peratures, its spectral distribution will not resemble that of a blackbody at a single

temperature, but of a mixture of blackbodies over a range of temperature [25]. An

example of an earth-emitted TOA 3 µm to 17.5 µm radiance spectrum is presented

in Figure 1.4a. The data of this figure are from the Nimbus-4 Infrared Interferome-

ter Spectrometer (IRIS) [34] and clearly show the strong absorption of H2O, O3 and

CO2 at 6.5 µm, 9.6 µm and 15 µm, respectively, as well as the high similarity of the

earth-emitted spectra with the reference blackbody curves over the 8 µm to 9.2 µm

and 10.2 µm to 12.4 µm atmospheric windows.

1.2.3 TIR Radiation Measured by Satellites

Satellite sensors measure the TOA TIR radiation along their line of sight in one or

more regions of the EM spectrum [1]. According to §1.2.2, for a cloud-free non-

scattering atmosphere under LTE, the measured 8 µm to 14 µm TOA spectral radi-

ance would be a mixture of surface-emitted and atmospherically-emitted TIR radi-

ation. For these wavelengths, this mixed signal can be decomposed into three key

components [1], namely the surface-emitted radiation, the atmospheric down-emitted

surface-reflected radiation and the atmospheric path-emitted radiation, as presented in

Figure 1.5.



1.2. Retrieval of Land Surface Temperatures from Space 9

280 K

240 K

10

8

6

4

2

0
4 6 8 10 12 14 16 18

200 K

220 K

260 K

300 KCO2O3

H2O

CO2

0

1

IR
3.

9

IR
6.

2

IR
7.

3

IR
8.

7

IR
9.

7

IR
10

.8

IR
12

.0

IR
13

.4b.
S

p
ec

tr
al

R
es

p
o

n
se

F
u

n
ct

io
n

a.

Wavelength (μm)

S
p

ec
tr

al
 R

ad
ia

n
ce

 (
W

 m
-2

 s
r-1

 μ
m

-1
)

Atmospheric windows

Figure 1.4: (a) Example of a 3 µm to 17.5 µm TOA TIR spectrum measured by the
IRIS instrument of Nimbus-4. (b) The normalised spectral response functions of
the eight MSG-SEVIRI TIR spectral bands.

The surface-emitted radiation (component 1 in Figure 1.5) is the primary source of

information in thermal remote sensing [25] and is emitted by the upper layer of the

Earth’s surface. The thickness of this layer varies with wavelength, viewing direc-

tion and surface conditions (e.g. wetness, roughness, level of weathering etc.) and

for TIR wavelengths it is usually a few millimeters [1]. For a viewing zenith angle

(VZA) θ ∈ [0◦, 90◦] and an azimuth angle φ ∈ [0◦, 360◦] (Figure 1.5), the directional

surface-emitted TIR radiance at TOA (Lsurface
λ ) is equal to:

Lsurf
λ (θ, φ) = ελ(θ, φ)Bλ(Ts)τλ(θ, φ, ps → p) (1.8)

In Eq. 1.8 Bλ(Ts) is the blackbody spectral radiance (Eq. 1.1) of the surface, Ts is the

LST, ελ(θ, φ) is the spectral emissivity (Eq. 1.2) for the viewing direction (θ, φ) and

τλ(θ, φ, ps → p) is the spectral transmissivity10 of the atmospheric layer between the

surface of the Earth (at pressure level ps) and the satellite sensor (at pressure level p)

10The spectral transmissivity τλ indicates the ability of a medium (in this case the atmosphere) to
transmit radiation. It is defined on the basis of Beer’s law, which states that as radiation passes through
a medium, its monochromatic irradiance decreases monotonically with path length [31], and is equal
to e−u, where u is the optical depth given by u =

∫ p2
p1
%(p)k(p)dp, % is the density of the absorbing

molecules and kλ the molecules’ mass absorption coefficient (measured in m2 kg−1).
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[27]. The spectral transmissivity adjusts the surface-emitted radiance for atmospheric

attenuation due to absorption and varies with θ and φ [27]. This is because, the path

length that the surface-emitted radiation has to travel so as to reach the satellite

increases with θ (it is minimum at zenith where θ = 0◦), while different azimuth

angles might correspond to different profiles of temperature and humidity in the

atmosphere.

The down-emitted surface-reflected component (component 2 in Figure 1.5) is

the TIR radiation that the atmosphere emits downwards towards the Earth’s surface

and is then reflected by it and transmitted upwards through the atmosphere to the

sensor [25]. The down-emitted radiation arrives to the surface from all the directions

(θ′, φ′) of the hemisphere (obstacles can limit the visible sky) and originates from all

the levels of the atmosphere. Assuming that there is no azimuthal dependence, the

at-surface downwelling spectral radiance (Lat↓λ ) is given by Eq. 1.9 [35].

Lat↓λ = 2

∫ π
2

0

∫ ps

p
Bλ(Tp)

∂τλ(θ′, p→ ps)

∂p
cos θ′ sin θ′dp dθ′ (1.9)

In this equation Tp is the atmospheric temperature at pressure level p and τλ(θ′, p→

ps) the spectral transmissivity of the atmospheric layer between pressure levels p

and ps (the spectral emissivity of the air is not included in Eq. 1.9 because its effect is

already contained in τλ [36]). Assuming that τλ(θ′, p → ps) = τλ(θ, ps → p) [37], the

mean downwelling atmospheric spectral radiance Bλ(Tat↓) for a downward mean

atmospheric temperature Tat↓ can be computed by applying the mean value theorem
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to
∫ ps
p Bλ(Tp)

∂τλ(θ
′,p→ps)
∂p dp [35], which gives:

Bλ(Tat↓) =
1

1− τλ(θ)

∫ ps

p
Bλ(Tp)

∂τλ(θ′, p→ ps)

∂p
dp (1.10)

Solving Eq. 1.10 for
∫ ps
p Bλ(Tp)

∂τλ(θ
′,p→ps)
∂p dp and substituting it in Eq. 1.9, gives the

at-surface downwelling spectral radiance expressed11 as a function of Bλ(Tat↓):

Lat↓λ = 2

∫ π
2

0
[1− τλ(θ)]Bλ(Tat↓) cos θ′ sin θ′dθ′ =⇒ Lat↓λ = [1− τλ(θ)]Bλ(Tat↓) (1.11)

From this radiation only a fraction is reflected by the surface and transmitted through

the atmosphere to the sensor. In detail, the reflected fraction is equal to 1 − ελ

(as discussed in §1.2.1), while the one that is transmitted through the atmosphere

is τλ(θ, φ, ps → p) [27]. Hence, the directional TOA radiance of the down-emitted

surface-reflected radiation is equal to:

Lrefl
λ (θ, φ) = (1− ελ)τλ(θ, φ, ps → p)[1− τλ(θ)]Bλ(Tat↓) (1.12)

This component is generally smaller in magnitude than the surface-emitted compo-

nent (particularly for wavelengths where ελ is close to unity), however on humid

days when the total atmospheric water vapour content is high, its contribution to

the TOA TIR radiance is considerable [38].

The third and last TOA TIR component is the path-emitted radiation, which cor-

responds to the TIR radiation emitted by all the level’s of the Earth’s atmosphere

upward to outer space [1]. The TOA spectral radiance of this component can be

assumed independent of φ [25] and is equal to:

L
path
λ (θ) =

∫ p

ps

Bλ(Tp)
∂τλ(θ, ps → p)

∂p
dp (1.13)

Using the mean value theorem with Eq. 1.13, the path-emitted TOA spectral ra-

diance can be expressed as a function of the mean upwelling atmospheric spectral

radiance Bλ(Tat↑), where Tat↑ is the upward mean atmospheric temperature:

L
path
λ (θ) = [1− τλ(θ)]Bλ(Tat↑) (1.14)

11According to [35], the integration term in the first part of Eq. 1.11 can be solved as:
2
∫ π/2
0

cos θ′ sin θ′dθ′ = (sin θ′)2|π/20 = 1.
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It is important to note that the magnitude of Lpath
λ is greater than that of Lat↓λ (Eq.

1.11). This is due to the vertical heterogeneity of the atmosphere, which under clear

sky conditions, can make the Tat↑ and Tat↓ to differ by up to 5 K [35].

The sum of the surface-emitted, the down-emitted surface-reflected and the path-

emitted components makes the directional TOA spectral radiance (LTOA
λ ) measured

by a satellite sensor from a VZA θ and an azimuth φ (for clarity the variables θ, φ, ps

and p have been omitted from Eq. 1.15) [1]:

LTOA
λ = ελBλ(Ts)τλ︸ ︷︷ ︸

Lsurf
λ (Eq. 1.8)

+ (1− ελ)τλ(1− τλ)Bλ(Tat↓)︸ ︷︷ ︸
Lrefl
λ (Eq. 1.12)

+ (1− τλ)Bλ(Tat↑)︸ ︷︷ ︸
L

path
λ (Eq. 1.14)

(1.15)

In Eq. 1.15 and also in Eqs. 1.8 - 1.14, the variables Bλ, ελ, τλ and Lλ are not

monochromatic quantities (i.e. quantities corresponding to a single discrete wave-

length) but band-effective quantities12 (i.e. quantities corresponding to a finite spec-

tral bandwidth ranging from λ1 to λ2) [1]. This is inevitable because remote sensing

instruments cannot sense EM radiation of discrete wavelengths due to technical lim-

itations [25]. Instead they sense EM radiation over a finite spectral range (called spec-

tral band or spectral channel), with varying sensitivity [1, 25]. For each spectral band

i the variation of sensitivity with wavelength is described by the band’s spectral re-

sponse function fi(λ) (Figure 1.4b) and each band-effective quantity is calculated as

the fi-weighted average presented in Eq. 1.16 (in this equation Xλ is one of the: Bλ,

ελ, τλ and Lλ) [1].

Xi =

∫ λ2
λ1
fi(λ)Xλdλ∫ λ2

λ1
fi(λ)dλ

(1.16)

1.2.4 Methods for Retrieving the LST from Satellite Data

The radiative transfer equation given in Eq. 1.15 is fundamental to the remote sens-

ing of LST. This is because, in principle, the LST can be inferred from Eq. 1.15 by

solving it for the band-effective Planck function Bi(Ts) and then by inverting this

function so as to estimate the LST:

Ts = B−1i

(
Lsurf
i (θ, φ)− Lrefl

i (θ, φ)− Lpath
i (θ)

εi(θ, φ)τi(θ, φ, ps)

)
(1.17)

12The use of band-effective values in Eq. 1.15 requires the spectral quantities to be constant within
the band’s spectral range, which usually holds true since the spectral response functions of most re-
mote sensors are quite narrow [1].
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However, Eq. 1.17 is mathematically underdetermined and unsolvable [1]. This is be-

cause if n TOA radiances are measured in n spectral bands the unknowns will al-

ways be n+1 (i.e. the n spectral emissivities—one for each band—plus the LST) [27].

Hence, to make this problem deterministic one or more of the emissivities must be

known or the Ts and εi have to be solved simultaneously using various constraints

and assumptions [1].

Over the past decades, several methods for retrieving the LST from satellite TIR

data have been developed (Table 1.2). These methods can be divided into two broad

categories, namely the methods where the spectral emissivities are known and the

methods where they are unknown [1]. The LST retrieval methods of the first cat-

egory are the single-channel methods, the multi-channel methods and the multi-

angle methods; while those of the second category are the stepwise methods, the

two-temperature method, the physics-based day/night method, the greybody emis-

sivity method, the temperature emissivity separation (TES) method, the iterative

spectrally smooth TES and the linear emissivity constraint TES (the basic concept

behind each method is given in Table 1.2) [1]. From these the most widely-used are

the single-channel methods, the multi-channel methods and the temperature emissivity

separation method.

The single-channel methods estimate the LST by solving Eq. 1.17 using a pri-

ori knowledge about the band-effective emissivity and the atmospheric quantities

[1]. The emissivity is most usually obtained from the corresponding visible, near-

infrared (VNIR) and shortwave infrared (SWIR) spectral bands using semi-empirical

methods [27], such as the classification-based method, which assumes a constant

emissivity within a particular land cover class (e.g. [39, 40]). The atmospheric infor-

mation on the other hand is retrieved from concurrent and collocated atmospheric

vertical profiles using a radiative transfer model (RTM), such as the MODerate res-

olution atmospheric TRANsmission (MODTRAN) model. These profiles can be ob-

tained from ground-based atmospheric radiosoundings, satellite vertical sounders

or from numerical weather prediction models, which is the most practical option

[1]. Because the acquisition of such data is not easy, empirical single-channel meth-

ods that do not require atmospheric profiles but more easily obtainable variables

such as the near-surface air temperature (Tair) and the water vapor content13 (WVC)

13The WVC is used to approximate the band-effective transmittance using an empirical linear func-
tion that relates them [1].
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Table 1.2: Methods for retrieving the LST from satellite TIR data. Source: [1].

LST Retrieval Method Basic Concept

with known emissivities:
Single-channel Use of Eq. 1.17
Multi-channel or Split-window LST estimated as a combination of the brightness tempera-

tures of two adjacent TIR bands.
Multi-angle The LST is assumed independent of VZA and the atmo-

sphere horizontally uniform and stable.
with unknown emissivities:

Stepwise Two-step algorithms that first retrieve the emissivities us-
ing (semi-) empirical methods and then the LST using a
single-channel, multi-channel or multi-angle method.

Two-temperature By using multiple almost simultaneous acquisitions and as-
suming the emissivity invariant, the number of unknowns
can be reduced and Eq. 1.17 can become solvable.

Physics-based day/night Using daytime and nighttime TIR data, the number of un-
knowns is reduced by assuming that the day/night ελ is
the same.

Greybody emissivity Assuming that the emissivity is independent of wavelength
and using at least two spectral bands the number of un-
knowns can be reduced. This method is better-suited for
hyperspectral data.

TES This method relies on an empirical relationship between the
spectral contrast and the minimum emissivity to increase
the number of equations (equivalent to reducing the num-
ber of unknowns) so that the undetermined retrieval prob-
lem becomes deterministic.

Iterative spectrally smooth TES The best estimates of the LST and LSE should be obtained
when the spectral smoothness of the retrieved LSE is maxi-
mized.

Linear emissivity constraint TES This method assumes that the emissivity spectrum can be
divided into M segments and that the emissivity in each
segment varies linearly with λ.

have also been developed (e.g. [41]). Overall, single-channel methods offer the great

advantage that they can be applied to satellite sensors with only one TIR spectral

band [42]. However, their performance can be poor if the employed spectral emis-

sivity and atmospheric data are inaccurate. In particular a 1% uncertainty in εi can

lead to a 0.4 K LST error [39], while a 0.5%-2.0% uncertainty in the RTM can lead to

a LST error of 0.4 K to 2.0 K [1].

The multi-channel methods, also known as split-window (SW) methods, require

the use of at least two adjacent spectral bands in the 10.2 µm to 12.4 µm atmospheric

window (Figure 1.2) and estimate the LST as a combination of the bands’ brightness

temperatures14 (Tb,i) [1]. Because the difference between the downward and upward

14The brightness temperature Tb,i(θ, φ) is the directional temperature retrieved by equating the mea-
sured spectral TOA radiance with the integral over wavelength of the Planck’s Law (Eq. 1.1) times the
sensor spectral response fi for the spectral band i. In essence, it is the temperature of a blackbody that
would have the same radiance as the TOA radiance actually measured with the satellite sensor [22].
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mean atmospheric temperature in these wavelengths is less than 1 K [24], it can be

assumed that Tat↓ ≈ Tat↑ = Tat and thus Eq. 1.15 for spectral band i = 1 and i = 2

becomes:

LTOA
1 = B1(Tb,1) = ε1B1(Ts)τ1 + (1− τ1)[(1− ε1)τ1 + 1]B1(Tat) (1.18a)

LTOA
2 = B2(Tb,2) = ε2B2(Ts)τ2 + (1− τ2)[(1− ε2)τ2 + 1]B2(Tat) (1.18b)

The objective of the SW method is to eliminate the variable Tat by combining Eqs.

1.18a and 1.18b [24]. The first step to achieve this is by substituting all the instances

of Planck’s radiance function in Eqs. 1.18a and 1.18b with the first order Taylor expan-

sion of Bi(Tj), which is given in Eq. 1.19 (Tj is one of the Tb,1, Tb,2, Ts and Tat) [35,

37].

Bi(Tj) = Bi(T ) +
∂Bi(T )

∂T
(T − Tj) (1.19)

This is an appropriate approximation for the 10.2 µm to 12.4 µm spectral region, since

the relationship between temperature and blackbody spectral radiance for these

wavelengths is almost linear (Figure 1.6) [25]. The application of the Taylor’s ex-

pansion is critical for deriving the SW algorithm because it expresses the radiances

Bi(Tj) in terms of the radiance Bi(T ), where T is fixed (this variable is usually set to

be the Tb,1) [35]. After the linearization of the Bi(Tj) the next step is to combine the

updated Eqs. 1.18a and 1.18b and eliminate Tat. This after some analysis15 gives:

Ts = A0 +A1Tb1 +A2 (Tb1 − Tb1) (1.20)

where Aκ (κ = 1, 2, 3) are the SW coefficients. Eq. 1.20 is a typical formulation

of a linear two-band SW algorithm. Nevertheless, over the years, non-linear SW

algorithms (e.g. [43]) or algorithms that use three or more spectral bands (e.g. [44,

45]) have also been developed. The SW coefficients of Eq. 1.20 are sensor-specific

and pre-determined either by regressing the simulated satellite data with a set of

atmospheres and surface parameters or empirically by comparing the satellite data

against in-situ LST measurements [1]. Over the years different parameterisations

(linear or non-linear) of the Aκ have been proposed that are based on the spectral

response functions of the employed spectral bands, the band-effective emissivities,

15The interested reader is referred to [35], where the mathematical analysis for deriving Eq. 1.20
from Eqs. 1.18a and 1.18b is presented in detail.
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Figure 1.6: The change in blackbody spectral radiance with temperature at 10.5 µm,
11.5 µm and 12.5 µm.

the WVC (used for empirically determining τi) and the VZA [1, 35]. To that end

radiative transfer simulations have shown that the dependance of the Aκ on the

VZA must not be omitted, especially for satellite sensors with large scan swaths,

such as the Moderate Resolution Imaging Spectroradiometer (MODIS) where θ can

range between −55◦ and +55◦ [30]. For this reason the MODIS operational LST

product (i.e. the MOD11 from Terra and the MYD11 from Aqua) uses a generalised

split-window (GSW) algorithm that employs a set of θ-dependent coefficients. These

coefficients have been derived using a regression analysis of RTM simulations for

various values of WVC, lower boundary temperature, and surface temperature [30].

The optimisation of the SW coefficients for θ and WVC has increased the accuracy

of the LST retrieveal considerably, especially for θ > 45◦ and increased WVC values,

but its success still depends on how accurately the band-effective emissivities are

known (for MOD11 and MYD11 they are retrieved using the classification-based

method of [40]).

Finally, the TES algorithm [46], which purpose is to simultaneously retrieve the Ts

and εi from multispectral or hyperspectral thermal data, relies on an empirical re-

lationship between the spectral contrast of emissivity and the minimum emissivity

so as to increase the number of equations and make the retrieval problem determin-

istic [1]. The TES algorithm consists of three modules: the Normalised Emissivity

Module (NEM), the Ratio Module, and the Maximum-Minimum Difference (MMD)

Module; and takes as input the atmospherically corrected16 (for τλ and L
path
i ) TIR

16The required atmospheric quantities can be retrieved from a collocated and concurrent atmospher-
ical vertical profile and a RTM [47], as done for the single-channel methods.
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radiances of i ≥ 3 spectral bands (Lcorr
i , Eq. 1.21).

Lcorr
i = εiBi(Ts)︸ ︷︷ ︸

Ls,i

+(1− εi)Bi(Tat↓) (1.21)

The role of the first module (i.e. the NEM module) is to estimate an initial LST, re-

ferred to as NEM temperature (TNEM), and a εi spectrum [1]. In particular, TNEM (Eq.

1.22) is the maximum temperature retrieved from each spectral band i by inverting

Planck’s law (Eq. 1.1) and using as input (i) a reference emissivity (εmax) and (ii)

the surface-emitted atmospherically-corrected radiance Ls,i, derived from Eq. 1.21

as the difference between Lcorr
i and (1− εmax)Bi(Tat↓) [48].

TNEM = max (Ti) = max

[
c2
λi

[
ln

(
c1εmax

πLs,iλ5i
+ 1

)]−1]
(1.22)

In Eq. 1.22 εmax is 0.99 for vegetated surfaces, snow and water and 0.96 for rocks and

sands [46, 48]; whereas c1 and c2 (known as the first and second radiation constants,

respectively) are equal to c1 = 2hc2 = 1.911× 108 W m−2 sr−1 µm−4 and c2 = ch/k =

1.439× 104 µm K, respectively (see §1.2.1 for explanations). After the calculation of

TNEM, the next operation is the estimation of the NEM emissivities (εNEM
i ) using Eq.

1.23.

εNEM
i =

Ls,i

Bi(TNEM)
(1.23)

The new emissivities are then used to re-estimate Ls,i = Lcorr
i − (1 − εNEM

i )Bi(Tat↓)

and then TNEM [48]. This process is repeated until convergence, which is determined

if the change in Ls,i between two consecutive iterations is less than a predefined

threshold or if the number of iterations exceeds a predefined limit [46]. The NEM

emissivities of the final iteration are then input to the second module of TES (i.e. the

SR module), where they are divided by their average (Eq. 1.24).

βi =
εNEM
i

1
n

∑n
i ε

NEM
i

(1.24)

The derived ratios βi (typically ranging from 0.75 to 1.32 [46]) describe well the shape

of the emissivity spectrum [1] and are used for estimating the actual εi in the third

and last module of TES, i.e. the MMD module. The first operation of the MMD
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module is to calculate the spectral contrast (i.e. the MMD) of the βi using Eq. 1.25.

MMD = max (βi)−min (βi) (1.25)

The derived MMD values are then related to the the minimum emissivity (εmin) of

the data using the empirical power-law relationship of Eq. 1.26, which is also known

as the TES calibration curve [47].

εmin = A1 −A2 MMDA3 (1.26)

The coefficients Aκ (κ = 1, 2, 3) of this equation (Eq. 1.26) are determined by regres-

sion analysis using laboratory and field emissivity spectra from rocks, soils, vege-

tation, water and snow/ice and are sensor specific (Figure 1.7) [46, 48]. The final
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Figure 1.7: The TES empirical power-law relationship between spectral contrast
(MMDA3 ) and minimum emissivity derived from laboratory measurements. The
TES calibration curves for ASTER and MODIS are also included. Adapted from
[47].

operation of TES is the calculation of the emissivities εi and the retrieval of LST. In

detail the emissivities εi are calculated from the εmin and the corresponding βi using

Eq. 1.27:

εi = βi

[
εmin

min (βi)

]
(1.27)

while the LST from the spectral band i∗, for which Eq. 1.27 returned the maxi-

mum emissivity. To that end, the estimation of the LST is performed using Eq.

1.28, which is the inverse form of Planck’s Law (Eq. 1.1). The input to Eq. 1.28

are the corresponding atmospherically-corrected surface-emitted radiance Ls,i∗ =
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Lcorr
i∗ − (1− εi∗)Bi∗(Tat↓) and the TES-derived emissivity εi∗ .

Ts =
c2
λi∗

[
ln

(
c1εi∗

πLs,i∗λ5i∗
+ 1

)]−1
(1.28)

Numerical simulation and field validations have shown that TES retrieves the LST

and the emissivities with an accuracy of about±1.5 K and±0.015, respectively, when

the atmospheric effects are accurately corrected [1, 29]. However, for low spectral

contrast surfaces (e.g. graybodies) the performance of TES can be compromised [48].

1.2.5 Physical Interpretation of Satellite Derived LST

The interpretation of satellite derived LST is not straightforward and depends on the

application and the method of measurement [18]. To that end the key question that

should be considered is: What does the surface-emitted TIR radiance in each picture

element (pixel) of the acquired image matrix represents?

During the data acquisition process, the satellite sensor senses an area on the

ground, which size and shape are determined by the sensor’s instantaneous field-of-

view (IFOV), the VZA, the satellite’s altitude and speed, and the topography of the

scene. If the satellite was stationary the shape of the sensed area (i.e. the projection

of the IFOV on the ground) would be a circle for θ = 0◦ and an ellipse for θ 6= 0◦ (its

size would increase with |θ|). In reality, however, the satellite is never still but moves

forward as it scans the surface of the Earth. This fact makes the area that is actually

sensed to be slightly elongated in the along-track direction and also consecutively

sensed areas to overlap (due to sensor array design there is also an overlap in the

along-scan direction) [49]. The latter is particularly important because it implies

that adjoined pixels are positively spatially autocorrelated and also that the surface

variation of the scene, as represented by the satellite data, is less pronounced than it

is in reality [6, 49].

For each sensed area the satellite sensor gives a single response that is allocated

to the corresponding pixel. This response corresponds to the spectrally (Eq. 1.16),

temporally and spatially weighted average [50] of the upwelling radiation emitted

by the skin surface of all the objects within the sensed area and is influenced by (i) the

location, temperature, shape, size and orientation of each object (in general objects

near the center of the sensed area contribute more than those near the edges [49]); (ii)

their arrangement and heterogeneity; and also (iii) by variations in the topography,
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and the atmosphere [6]. If all the objects within the sensed area are of the same ma-

terial and have the same temperature, then the corresponding pixel is characterised

as homogeneous and isothermal and the sensor response can be related to a blackbody

distribution (Figure 1.1) at the same temperature. On the other hand, if the objects

on the sensed area are of different material and at different temperatures—which

is the most common case—then the corresponding pixel is characterised as hetero-

geneous or mixed and the sensor response cannot be related to a unique blackbody

distribution [22]. This is because the radiance of an ensemble of objects at different

temperatures depends on its temperature distribution and cannot be represented by

a single blackbody at a single temperature that would yield the same radiance at all

wavelengths. Hence, the LST17 of homogeneous and isothermal pixels is equivalent

to the thermodynamic temperature of the sensed surface, while for mixed pixels it is

only an approximation specific to the sensing conditions (i.e. the spectral band, the

VZA, the IFOV etc.) [1, 27].

1.3 Motivation and Problem Statement

The distance between two consecutive pixel centers on the ground is called Ground

Sampling Distance (GSD) and is directly related to the spatial resolution of the im-

age data, i.e. the size of the smallest object that can be reliably detected18 against

a spectrally contrasting background [6]. Based on the spatial resolution, satellite

instruments are classified into four groups: the low or coarse resolution systems

(GSD > 1 km), the moderate resolution systems (0.1 km < GSD < 1 km), and the

high (10 m < GSD < 100 m) and very high (GSD < 5 m) resolution systems. In ad-

dition, satellite instruments are also classified into groups according to the temporal

frequency with which they sense the same location on the surface of the Earth. This

frequency is referred to as satellite revisit time and is controlled by the orbital charac-

teristics of the satellite platform and the engineering of the satellite instrument (e.g.

the swath width). The satellite revisit time can range from several days, to several

hours, to a couple of minutes and determines the temporal resolution of the data.

The spatial and temporal resolution (referred to as observational scale [51]) gov-

erns the information content of the data and determines their usage. This is because,

17In layman’s terms, the LST can be considered as a measure of how hot or cold the surface feels to
the touch.

18For a homogeneous feature to be detected, its size generally has to be equal to or larger than the
resolution cell.



1.3. Motivation and Problem Statement 21

depending on the observation scale, the surface heterogeneity is manifested differ-

ently in the image data. This implies that a physical process may appear homoge-

neous at one observational scale but heterogeneous at another [6]. Hence, to detect

and monitor a terrestrial biophysical process using remote sensing, the spatial and

temporal resolution of the data has to match—or be finer than—the space and time

intervals over which the dominant spatiotemporal patterns of the process emerge

[51]. These space and time intervals are referred to as the characteristic scale of the

process and for LST they are in the order of meters and minutes, respectively [39,

52]. This is because the LST can vary by as much as 10 K over a few meters due to

shadowing and topographic effects; or by several kelvins over a couple of hours due

to the diurnal cycle of energy and water [2]. Hence, to adequately capture the spatial

distribution and temporal evolution of the LST, remote sensing data should have a

high spatial and a high temporal resolution [53]. However, due to technical con-

straints, satellite instruments are unable to provide such data [54]. This is because

the spatial and temporal resolutions are anticorrelated (Figure 1.8 and Table 1.3) and

thus satellite instruments can only provide LST data with either high spatial but low

temporal resolution (e.g. semimonthly acquisitions with a GSD ≤ 120 m); or LST

data with moderate spatial and temporal resolution (e.g. two images per day with a

GSD ≈ 1 km); or LST data with low spatial but high temporal resolution (e.g. half-

hourly acquisitions with a GSD ≥ 3 km). The first two groups (group 1 and 2 in

Figure 1.8) correspond to instruments onboard polar-orbiting sun-synchronous satel-

lites, while the third to geostationary satellites. The former are satellites that orbit the

Earth at altitudes that range from 300 km to 1400 km and pass over a certain area at

the same solar time each time, while the latter are satellites that orbit the Earth above

the equator (at 36 000 km) with an orbital period and direction equal to the Earth’s

rotational period and direction [23]. From these three groups only instruments on-

board geostationary satellites can monitor the diurnal cycle of LST [55]. Hence, it

is highly desirable to explore effective ways for increasing the spatial resolution of

such data. One way to achieve this is by statistically disaggregating the LST to finer

GSD, using information from auxiliary datasets that are available at the desired fine

spatial resolution. This statistical approach is known as LST downscaling (also re-

ferred to as thermal sharpening) and is well-suited for use with LST from geostation-

ary satellite instruments [55, 56]. Since the mid to late 2000s, LST downscaling has

seen significant growth mainly due to the mounting requirements for monitoring
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Figure 1.8: The anticorrelation between the spatial and temporal resolution of var-
ious satellite instruments. Source: the data are from the database of satellites and
sensors of the Faculty of Geo-Information Science and Earth Observation (ITC) of
the University of Twente.

surface evapotranspiration and the urban thermal environment [52]. However, as

the review of Zhan et al. [53] highlights, the development of this research field was

disordered and several issues are still unresolved or poorly understood. The most

important of which is: what auxiliary data should be used as disaggregation kernels

and how they should be configured into sets, considering that their performance

varies with land cover, topography, biome, latitude, season, GSD and time of day

[53]. Besides the identification of more robust disaggregation kernels, another issue

that also requires attention is how downscaling, when applied to continuous tem-

porally dense LST datasets, affects the spatiotemporal interrelationships of the data.

Ideally downscaling schemes should be able to produce downscaled LST (DLST)

accurately and consistently and DLST time series where the diurnal evolution of

the data is artefact-free and synoptic weather effects and seasonal features are re-

produced in greater spatial detail. However, this issue has been so far overlooked

primarily due to the lack of appropriate validation data and evaluation methods.

Nonetheless better understanding is required if LST downscaling methods are to be

used operationally.

Last but not least, research should also focus on the development of methods

for analysing and summarising such voluminous datasets. This is because, due to

the high spatial and temporal resolution, the analysis and use of long DLST time
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Table 1.3: The spatial and temporal resolution of various satellite instruments that
acquire TIR data. Source: the data are from the database of satellites and sensors of
the Faculty of Geo-Information Science and Earth Observation (ITC) of the Univer-
sity of Twente.

Satellite Sensor Orbit Type Spatial Resolution Temporal Resolution

AATSR* Sun-synchronous 1 km 4 times per day
ASTER Sun-synchronous 90 m irregular
AVHRR Sun-synchronous 1 km 4 times per day
Fengyun-VIRR Sun-synchronous 1.1 km 4 days
GOES-R ABI Geostationary 2 km 15 min
GOES Imager Geostationary 4 km 30 min
HyspIRI** Sun-synchronous 60 m 5 days
Landsat-5 TM* Sun-synchronous 120 m 16 days
Landsat-7 ETM+ Sun-synchronous 60 m 16 days
Landsat-8 TIRS Sun-synchronous 120 m 16 days
MODIS Sun-synchronous 1 km 4 times per day
MSG-SEVIRI Geostationary 3 km 15 min
MTI-FCI** Geostationary 2 km 15 min
NPP-VIIRS Sun-synchronous 0.75 km 16 days
Sentinel-3 SLSTR Sun-synchronous 1 km 4 times per day
* Retired Mission
** Future Mission

series is complex, time-consuming and expensive. To that end methods that are

able to summarise the data into a set of spatially distributed parameters that are

representative of the surface’s thermal dynamics are highly desirable. A way to

address this issue is by modelling the diurnal or annual LST cycle and then reducing

the model to a set of key cycle parameters as done in [57, 58] and [59], respectively.

So far only models for either the diurnal or the annual LST cycle have been proposed.

Nevertheless, a method for simultaneously modelling the diurnal and annual cycle

would provide a more complete picture of the Earth’s surface thermal dynamics.

1.4 Thesis Scope and Research Objectives

The broad aim of this thesis is to improve and assess the downscaling of diurnal

LST data from geostationary satellite instruments and also to facilitate the analysis

of temporally dense LST or DLST datasets. In particular, given the research needs

outlined in the previous section, the objectives of this thesis are:

1. to identify LST disaggregation kernels that perform consistently irrespectively

of the time of day and thus are suitable for downscaling diurnal LST acquired

by geostationary satellite instruments;
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2. to investigate if and how well a DLST time series can reproduce the spatiotem-

poral features of the original coarse-scale temporally dense LST; and,

3. to develop a method for simultaneously modelling the diurnal and annual cy-

cle of temporally dense LST or DLST and reducing the model to a set of key

cycle parameters.

To attain these research objectives, LST data from Meteosat-10 Spinning Enhanced

Visible and Infrared Imager (SEVIRI) [60, 61] are used. SEVIRI is the main instrument

onboard the Meteosat Second Generation (MSG) geostationary satellites operated

by the European Organisation for the Exploitation of Meteorological Satellites (EU-

METSAT). It acquires image data of Europe, Africa and South America in eight TIR

spectral bands (Figure 1.4b) every 15 min (the Earth imaging principle of SEVIRI is

presented in Figure 1.9). At the sub-satellite nadir viewpoint (for Meteosat-10 it is

located at 0◦E, 0◦N) the GSD is equal to 3 km and increases with VZA to 4 km over

southern Europe and 6 km over northern Europe. SEVIRI has been designed to pri-

marily serve the meteorological community, but LST downscaling can make SEVIRI

a valuable data source for other disciplines as well.
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Figure 1.9: The Earth imaging principle of MSG-SEVIRI. Adapted from [61].
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1.5 Thesis Outline

This introductory chapter provided the theoretical background for retrieving the

LST from space observations and presented the objectives of this work and what

research needs they address. The remainder of this thesis is organised into four

chapters as follows.

Chapter 2 is concerned with the statistical downscaling of LST. It provides a de-

tailed overview of the state-of-the-art along with a thorough discussion about LST

disaggregation kernels and current limitations. Then the use of multi-temporal ker-

nels derived from LST annual climatology data is proposed and tested on diurnal

SEVIRI data. The evaluation is accomplished by assessing the DLST spatial patterns

(both for daytime and nighttime) and the DLST diurnal temperature range. The

work presented in this chapter has been published in the scientific journal Remote

Sensing as an article titled "Improving the Downscaling of Diurnal Land Surface Temper-

atures Using the Annual Cycle Parameters as Disaggregation Kernels" [62].

Chapter 3 builds upon the findings of Chapter 2 and addresses the second re-

search objective of this thesis. In particular, it describes the downscaling of a SEVIRI

three-month long time series of quarter hourly LST from a GSD of 4 km to 1 km and

assesses the accuracy and consistency of the downscaling method, the formed spa-

tial patterns and the diurnal and seasonal characteristics of the DLST data. This

assessment has been also published in Remote Sensing as an article under the title

"Assessing the Capability of a Downscaled Urban Land Surface Temperature Time Series to

Reproduce the Spatiotemporal Features of the Original Data" [63].

Chapter 4 addresses the third research objective of this work and proposes an

approach for simultaneously modelling the LST diurnal and annual cycle. The pro-

posed approach is based on [59] and is used for summarising Europe’s surface ther-

mal dynamics into a set of 48 LST cycle parameters. Part of the results presented in

this chapter have been published in the scientific journal IEEE Geoscience and Remote

Sensing Letters as an article titled "Mapping the Spatiotemporal Dynamics of Europe’s

Land Surface Temperatures" [64].

Finally Chapter 5 recapitulates and discusses the main findings of this work in

relation to the set research objectives and the identified research needs. To that end

it also outlines the main contributions and suggests future research directions.
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Chapter 2

Statistical Downscaling of

Coarse-Resolution Diurnal LST

2.1 State-of-the-Art and Research Hypotheses

LST downscaling is a statistical method for disaggregating coarse-resolution LST1 to

finer GSD, using auxiliary datasets available at the desired fine resolution [53, 65].

These datasets are referred to as predictors, disaggregation kernels, or scaling factors and

have to be statistically correlated to the LST in order to be effective. A very promising

application field for LST downscaling is the spatial enhancement of geostationary

temporally-dense LST images, so as to produce DLST datasets with high spatial and

temporal resolution.

Fundamentally the downscaling of LST is related to three principal laws, namely

the Bayesian theorem, Tobler’s first law2 of geography, and the surface energy bal-

ance (SEB) equation [67]. The Bayesian theorem provides a general framework for

assimilating data of multiple sources, while Tobler’s first law of geography and

the SEB provide the background for understanding the LST spatial dependencies

and how LST responds to the surface energy cycle. LST downscaling is also based

on four interrelated assumptions. These assumptions are: the assumption of ad-

ditivity, the assumption of separability, the assumption of connectivity and the as-

sumption of convertibility [53, 65]. The first one indicates that the energy flux in-

teractions among pixel components or pixels can be neglected and the second one

that the LST component values are statistically separable. The third assumption,

1Statistical downscaling algorithms can also be used with TIR digital numbers (DN) and radiances.
2Tobler’s first law of geography [66] states that everything is related to everything else, but near things

are more related than distant things. This law provides the foundation for the fundamental concepts of
spatial dependence and spatial autocorrelation.
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i.e. connectivity, indicates that the LST can be predicted from the employed dis-

aggregation kernels, while the fourth assumption, i.e. convertibility, that the spa-

tial/spectral/temporal/angular information of the employed LST predictors can be

combined and used for downscaling LST data.

In general, the workflow of a LST statistical downscaling method consists of

three major operations. The first operation is the upscaling and co-registration of

the fine resolution LST predictors to the coarse resolution LST data. The second op-

eration is the generation of a statistical model on the basis of the coarse resolution LST

data and predictors; and finally, the last operation is the application of this model to

the fine resolution LST predictors so as to generate the DLST data. The employed

empirical model can be linear or nonlinear [65, 67] depending3 mostly on the type

and number of LST predictors used. Zhan et al. [53] discuss that simple regression

tools such as linear and quadratic tools are effective when the predictors’ number

is low, while complex tools such as support vector regression machines (SVM) are

better suited when multiple LST predictors are employed. In principle, the LST is

driven by numerous factors, including the thermal characteristics of the surface (e.g.

heat capacity, thermal inertia), topography, vegetation abundance and vigour, soil

moisture, sky-view factor4, land cover and meteorological conditions [3, 8, 68]; and

usually the relationship between the LST data and the LST predictors is nonlinear

[67]. However, this nonlinearity is so complex [53, 68] that the derivation of explicit

global models is not an easy task5 and hence, even to this date, no strong evidence

that support whether the linearity or nonlinearity performs better, exist [65].

Even more than the applied model, the set of LST predictors are the crucial el-

ement of every LST downscaling method and the key for meeting the connectivity

assumption. This is because the LST predictors indicate the LST distribution in the

fine spatial resolution and drive the empirical model [65]. In general the composition

and selection of appropriate LST predictors should refer to the understood relations

of LST with other biophysical variables and should also consider: the spatial scale;

the landscape heterogeneity and morphology; and the temporal cycle (diurnal or

3For downscaling DN or TIR radiances the nonlinear factors of the atmospheric and emissivity
effects should also be taken into consideration during the selection of a linear or nonlinear statistical
model [65].

4The sky-view factor is the share of the visible sky above a certain observation point. It ranges from
0 to 1, where 1 means that the sky is completely visible.

5Several studies (e.g. [55] and [69]) have used a localisation strategy as a workaround to this issue,
where they divided the image data into several groups of adjacent pixels and using a moving window
they generated a linear statistical model for each one of them.
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annual). The spatial scale is important because the application of a statistical down-

scaling method presupposes that the relationship between the LST data and the pre-

dictors is scale invariant, i.e. it is the same in the fine and coarse spatial resolution

[70]. The landscape heterogeneity and morphology refer mainly to the particular-

ities of a given geographical location that can distort the relationship between the

LST and the biophysical variables used as LST predictors [53], while the temporal

cycle is important because it might render some LST predictors less effective or even

ineffective. For instance the correlation between LST and the Normalised Difference

Vegetation Index (NDVI)—which is a widely-used LST predictor—is stronger dur-

ing daytime than nighttime and during summertime than wintertime (it also drops

as the moisture content of bare soils increases) [71, 72].

In recent literature several LST downscaling methods have been proposed that

utilise various LST predictors, either individually or by combining them into large

sets. Such LST predictors are: vegetation indices (VIs), topography data, impervious

maps and VNIR, SWIR or TIR images. In particular, Kustas et al. [73] utilized the

NDVI with a quadratic regression tool (this method is referred in literature as disTrad:

disaggregation procedure for radiometric surface temperature), whereas Agam et al.

[74] used the fractional vegetation cover with a linear tool and also other variants of

disTrad. Inamdar et al. [68] employed the emissivity for downscaling LST from

the Geostationary Environmental Satellite (GOES), while Essa et al. [75] expanded

the disTrad methodology and tested 15 remote sensing based indices (individually)

as LST predictors (including soil, vegetation and built-up indices). Stathopoulou

and Cartalis [54] enhanced the spatial resolution of Advanced Very High Resolution

Radiometer (AVHRR) LST data using as LST predictors the effective emissivity and

a LST map retrieved from Landsat 5 data, while Dominguez et al. [76] sharpened

simulated ASTER data using the NDVI and the albedo retrieved from airborne high

resolution VNIR data.

Downscaling methods that utilize large sets of LST predictors became available

after 2009 as the review of Zhan et al. [53] reveals. To that end, Zakšek and Oštir

[55] used a LST predictor set comprising VIs, albedo, emissivity, land cover, slope,

aspect, and sky-view factor data to downscale LST images retrieved from SEVIRI,

while Keramitsoglou et al. [56] employed a set of 17 LST predictors that included

topography data, land cover data, VIs and emissivity data in conjunction with a
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SVM tool. Merlin et al. [77] used the fractional photosynthetically active and non-

photosynthetically active vegetation cover for downscaling MODIS thermal data,

while Weng et al. [78] utilised VIs, albedo, emissivity and elevation data to down-

scale GOES LST data. Lastly, Hutengs and Vohland [79] used as LST predictors

VNIR and SWIR surface reflectance data, elevation data and derivatives (i.e. the so-

lar incidence angle and the sky-view factor), and a land cover map with a random

forest regression tool. Even though several LST predictors have been proposed and

tested, there is still no consensus about which LST predictors perform the best and

how they should be configured into sets. This is mainly because none of the above

can perform well over various spatial scales, land covers, landscapes, seasons and

times-of-day [53]. Hence it is highly desirable to identify LST predictors that per-

form robustly irrespectively of spatial scale, surface heterogeneity, surface morphol-

ogy and the temporal cycle. The latter is particularly important when downscaling

diurnal LST, where a robust performance is expected irrespectively of time.

To that end, this thesis hypothesises that LST predictors that provide information

about the LST spatial distribution at different times-of-day can prove especially use-

ful for downscaling diurnal LST. In addition, it also hypothesises that TIR-based LST

predictors can prove quite robust for downscaling LST data. This is because, being

derived from satellite thermal data, they incorporate the location-specific seasonal

thermal response and thus can perform more consistently over various land cover

types and landscapes. To investigate these hypotheses, multi-temporal TIR-based

LST predictors are used in a controlled experiment for downscaling diurnal (daytime

and nighttime) LST. The employed LST predictors are the MODIS LST Annual Cycle

Parameters (ACP) [59], which are a globally available dataset that presents a contin-

uous time-dependent description of the thermal surface behaviour and the thermal

surface characteristics (i.e. the thermal landscape).

2.2 The LST Annual Cycle Parameters

The LST ACP [59, 80] consist of three key parameters that provide a simplified,

cloud-free, time-dependent climatology of the Earth’s annual LST cycle. These pa-

rameters are: the Mean Annual Surface temperature (MAST); the Yearly Amplitude of

Surface Temperature (YAST; set by definition to be ≥ 0 K); and the phase shift of the

peak LST relative to the spring equinox (Theta; is set by definition to range between
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-182.5 and +182.5 days [59]). The physical meaning of MAST, YAST and Theta is

shown in Figure 2.1, which also describes how the ACP are derived from multi-

year LST observations. In particular, the derivation of the ACP is performed on a

Dec.
Apr.

Jan.
Mar.

Feb.
May

Y
A

S
T

MAST

Jul.
Jun.

Aug.
Sep.

Oct.
Nov.

S
pr

in
g

E
qu

in
ox

Theta

ACPmSinemfit

Concurrentmmulti-yearmLST
observationsmfrommamsingle
pixelm

L
S

T
 (

K
)

Figure 2.1: The physical meaning of the LST MAST, YAST and Theta Annual Cycle
Parameters.

pixel-by-pixel basis by stacking the corresponding multi-year LST observations ac-

cording to their acquisition day and then fitting6 a sine model. The MAST, YAST

and Theta are then derived from the sine model as shown in Figure 2.1. In addi-

tion to MAST, YAST and Theta, two more parameters are calculated, namely the

root-mean-square-error (RMSE) of the fit and the number of clear-sky observations

(NCSA) used for the fit. The former can be seen as an integrated measure of the LST

inter-diurnal and inter-annual variability, while the latter as an indicator about the

cloud occurrence frequency [80]. As discussed in [81], the sine model performs very

well over mid-latitude regions where seasons are pronounced. The derivation of the

ACP corresponds to the acquisition time of the satellite data and thus, for multiple

acquisitions within a day, multiple sets of ACP can be generated, i.e. ACP that refer

to morning, noon, afternoon or night hours. The MODIS ACP dataset employed in

this work is available for four times within a day, namely at 01:30, 10:30, 13:30 and

22:30 UTC, which correspond to the overpass times of Terra and Aqua MODIS.

MAST and YAST have already been used as LST predictors in another down-

scaling study, where it was demonstrated that they can be used to bridge large scale

6The interested readers is referred to [59] where more details about the ACP sine fitting process are
provided.
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differences, i.e. in [82] a LST image from SEVIRI with a GSD of 5 km was down-

scaled to 0.1 km. However, the use of the ACP for downscaling diurnal LST data

and its ability to provide information about the LST diurnal fluctuations has not

been assessed, which is the gap that this work addresses.

2.3 Using the ACP as LST Disaggregation Kernels

2.3.1 Research Objective and Experimental Setup

To answer the research hypotheses put forward in §2.1, this work investigates if the

use of multi-temporal MAST, YAST and Theta as LST predictors can increase the per-

formance of downscaling diurnal LST data and in particular if these LST predictors

can improve the estimation of the DLST diurnal range, which is defined here as the

difference between daytime and nighttime DLST data. The study of the DLST diur-

nal range is a strong indicator of how well the downscaling process can reproduce

the diurnal LST cycle and preserve the spatiotemporal interrelationships of tempo-

rally dense LST data. This is a critical issue in the downscaling of geostationary LST

data because it determines the exploitability of the generated DLST data (this issue

is further discussed in Chapter 3). Hence to investigate this issue the controlled

experiment of Figure 2.2 is used.

The basic concept of this experiment is to estimate two 1 km DLST diurnal range

maps using two different sets of LST predictors, the first comprising only static LST

predictors (scheme 1; control) and the second static and multi-temporal (scheme

2), and then to compare them with a reference 1 km LST diurnal range map re-

trieved from independent satellite data (the static predictors are kept the same in

both schemes). The overall goal is to assess the changes induced by the TIR multi-

temporal LST predictors (i.e. the MAST, YAST and Theta) on the DLST data.

The experimental setup presented in Figure 2.2 consists of four major stages. The

first stage is the selection of the cloud-free scenes that will be used for the estimation

of the diurnal range maps. The second stage is the downscaling of the previously

selected coarse-resolution LST images. The third stage is the estimation of the 1 km

daily DLST and reference LST diurnal range maps (daytime minus nighttime), while

the last stage is the comparison and evaluation of the results obtained. Specifically,

the DLST diurnal range maps employed in the evaluation are estimated using Eq.

2.1 and are the average of the daily DLST diurnal range maps estimated in stage
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Figure 2.2: The controlled experiment performed so as to assess the use of MAST,
YAST and Theta for downscaling diurnal LST data.

three. In this equation, n is the number of days used and d the day-of-year (DOY).

mean diurnal DLST range =
1

n

n∑
d=1

(DLSTdaytime
d −DLSTnighttime

d ) (2.1)

Eq. 2.1 is also used for the estimation of the reference LST diurnal range maps using

as input the corresponding daytime and nighttime reference data.

2.3.2 Study area

The study area for this experiment is presented in Figure 2.3. It extends 60 km around

the city of Rome in Italy and covers an area of 10 350 km2. This region is deemed suit-

able for assessing the performance of the ACP as LST predictors because: it includes

both flat and rugged areas; it has a simple coastline; and it includes rural, urban and
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vegetated areas that are relatively homogeneous and confined to certain locations

with easily-identifiable boundaries (approx. land cover percentages: 50%, 40% and

10%, respectively). The elevation of the study area varies from 0 km at the coast to

1.5 km over the Apennine Mountains (over Rome is about 30 m to 120 m).
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Figure 2.3: Rome greater region (Italy) is the study area for downscaling coarse-
resolution SEVIRI LST using the ACP.

2.3.3 LST Data

The primary data (Table 2.1) employed in this study are LST images of Rome Greater

Region acquired during summer 2014 (DOYs: 152 - 243) by Terra and Aqua MODIS

and Meteosat-10 SEVIRI instruments. In particular, the employed MODIS LST data

are the daily 1 km version 5 MOD11A1 and MYD11A1 data products [83], which

are derived from the TIR radiances of MODIS band 31 (10.78 µm to 11.28 µm) and 32

(11.77 µm to 12.27 µm) using a generalized SW algorithm (see §1.2.4 for more details)

[84]. The nominal accuracy of the MODIS LST is 1 K to 2 K and each MOD11A1 /

MYD11A1 data file includes7 two LST images, one corresponding to the daytime

acquisition (for Terra at 10:30 UTC and for Aqua at 13:30 UTC) and one to the night-

time (for Terra at 22:30 UTC and for Aqua at 01:30 UTC).

7Further, information about the viewing time, the VZA and the band-effective emissivity are also
delivered.
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Table 2.1: The employed LST data and LST predictors.

Data Accuracy GSD Map Projection Source

MOD/MYD11A1 v.5 LST 1K to 2K 1km× 1 km Sphere Sinusoidal NASA EOSDISa

SEVIRI LST 1K to 2K 4km× 5 km GEO IAASARS/NOA
SRTM DEM ±6.2m 1km× 1 km Sphere Sinusoidal USGSb

MOD13A2 v.5 (NDVI) ±0.025 1 km× 1 km Sphere Sinusoidal NASA EOSDISa

MOD11A2 v.5 (ε32) 1.9% [88] 1 km× 1 km Sphere Sinusoidal NASA EOSDISa

MCD43B3 v.5 (WSA) <5% 1 km× 1 km Sphere Sinusoidal NASA EOSDISa

ACP - 1 km× 1 km Sphere Sinusoidal UHH CliSAPc

a NASA’s Earth Observing System Data and Information System (EOSDIS).
b United States Geological Survey (USGS).
c University of Hamburg Integrated Climate Data Center.

In addition to the above, SEVIRI LST data concurrent to the acquisition times

of the MOD11A1 and MYD11A1 data products, are also employed (the time devia-

tion between the corresponding MODIS and SEVIRI data is less than 7.5 min which

is not considered a problem). These data have a coarser spatial resolution of ap-

proximately 4 km and were retrieved from the EUMETcast data acquisition station

that the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of

the National Observatory of Athens (IAASARS/NOA) operates. The IAASARS/NOA

system uses an in-house SVM-based LST retrieval algorithm [85, 86] that utilises

as input the cloud-free TIR radiances from the 10.8 µm and 12 µm SEVIRI spectral

bands and emissivity information from the MOD11A2 data product [83]. The evalu-

ation of the employed SEVIRI LST data is discussed in [85] and has been performed

using concurrent and collocated, high quality (accuracy of 1 K to 2 K) independent

Meteosat-10 SEVIRI data from LSA-SAF (Land Surface Analysis Satellite Applica-

tion Facility [87]). The comparison with the LSA-SAF data revealed a mean differ-

ence of −0.19 K, a RMSE of 0.5 K and a Pearson’s correlation coefficient of 99.8%.

2.3.4 LST Predictors

The LST predictors (Table 2.1) used for downscaling the SEVIRI image data are:

altitude data from the Shuttle Radar Topography Mission digital elevation model

(SRTM DEM) [89]; NDVI data from the MOD13A2 data product [90]; emissivity data

from the MOD11A2 data product [83]; 0.3 µm to 0.7 µm white-sky albedo (WSA)

data from the MCD43B3 data product [91]; and the ACP MAST, YAST and Theta

discussed in §2.2 [59]. The SRTM DEM is a near-global, high quality DEM available

free-of-charge at a spatial resolution of 30 m and 90 m (for this work it was upscaled
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to 1 km using a bilinear convolution and then reprojected to the MODIS sinusoidal

map projection). The MOD13A2 is a global 1 km vegetation index product that is

generated every 16 days from MODIS VNIR data. The MOD11A2 and MCD43B3

are also 1 km globally available 16-day data products from MODIS. In particular the

11.77 µm to 12.27 µm band-effective emissivity data (ε32) of the MOD11A2 are esti-

mated using the land cover-based classification method of [40], while the WSA data

of the MCD43B3, by integrating each pixel’s BRDF (Bidirectional Reflection Distri-

bution Function) over all viewing and irradiance directions. Lastly, the LST annual

climatology data employed in this work are the 01:30, 10:30, 13:30 and 22:30 UTC

1 km MAST, YAST and Theta ACP (Figure 2.4) retrieved from a five-year (2009-2013)

time series of MODIS LST data. The selection of the aforementioned LST predictors

is based on the findings of [55], [56], [79], [82], [92] and [93].

01:30 UTC 10:30 UTC 13:30 UTC 22:30 UTC

0 30 km

MAST

YAST

Theta

MAST

YAST

Theta

MAST

YAST

Theta

MAST

YAST

Theta

Min-Max Normalized MAST / YAST / Theta
0 1

Figure 2.4: The 01:30, 10:30, 13:30 and 22:30 UTC MAST (first row), YAST (second
row) and Theta (third row) ACP for Rome greater region in Italy.
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2.3.5 Implementation Details

The experiment discussed in §2.3.1 and presented in Figure 2.2 is performed twice.

The first time studying the mean diurnal range maps between 10:30 and 22:30 UTC

(i.e. the Terra MODIS daytime and nighttime acquisition times) and the second time

between 13:30 and 01:30 UTC (i.e. the Aqua MODIS daytime and nighttime acquisi-

tion times). For the first experiment, which is referred in the text as 10:30 vs. 22:30

UTC analysis, the reference data are retrieved from the employed MOD11A1 data

and for the second (referred in the text as 13:30 vs. 01:30 UTC analysis) from the

MYD11A1 data. The LST predictors of scheme 1 are the NDVI, the SRTM altitude

(H), the ε32, and the WSA, while the TIR multi-temporal of scheme 2 are the MAST,

YAST and Theta.

As with most TIR remote sensing studies an important issue that can influence

the analysis of the LST data is the impact of short-term weather effect [94]. Short-

term weather effects influence the LST and especially the LST spatial patterns, e.g.

a rainfall event can significantly change the emissivity of a region. For this reason

it is advisable to use time series of LST data instead of individual scenes [94]. This

way the results will be more representative for the study area. Hence, to make this

study insusceptible to short-term weather effects, summer 2014 (DOYs: 152-243) was

selected as the study period. The selection of this study period is based on the fol-

lowing four reasons: (i) it can provide a representative dataset for the purpose of this

study; (ii) using LST data from the same year will ensure that the impact of pheno-

logical changes on the LST patterns will be reduced; (iii) the negative correlation of

LST and NDVI, which is vital for the successful downscaling of LST data, is stronger

during summer months [71]; and (iv) using summer data will ensure the availability

of the most cloud-free daytime and nighttime LST data. This is especially impor-

tant since for the estimation of the diurnal range maps cloud-free conditions during

daytime and nighttime are required. In this work only LST and DLST diurnal range

maps with low cloud cover (CC) are employed. In particular 33 scenes are employed

for the 10:30 vs. 22:30 UTC analysis (median CC = 12%) and 28 for the 13:30 vs. 01:30

UTC analysis (median CC = 19%). The DOYs of the selected scenes are presented

in Table 2.2. For consistency reasons the same DOYs are used for the calculation of

the SEVIRI DLST and MODIS LST (i.e. the reference data) diurnal range maps. The

temporal averaging of the DLST diurnal range data using Eq. 2.1 is justified on the

basis that the MODIS data acquisition time is not exactly the same for each satellite
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Table 2.2: The selected DOYs.

Analysis DOY (Year: 2014)

10:30 vs. 22:30 UTC 153, 159, 160, 161, 162, 173, 175, 182, 184, 185, 187, 189, 192, 196,
198, 199, 208, 212, 216, 217, 219, 221, 223, 225, 226, 230, 232, 233,
235, 237, 240, 241, 242

13:30 vs. 01:30 UTC 155, 160, 171, 180, 181, 183, 185, 186, 188, 192, 196, 197, 199, 201,
206, 208, 212, 213, 217, 218, 219, 220, 222, 226, 229, 231, 234, 242

overpass and that would complicate the explanation and the discussion of the re-

sults. Hence, following this approach—even though it adds an additional source of

statistical noise—it makes the performed analysis more straightforward.

Another important issue that can influence the analysis of LST data is thermal

anisotropy [95, 96]. Thermal anisotropy refers to the angular variation of TIR radia-

tion. This effect is stronger during daytime, when shadows are pronounced, and can

make the LST of the same target to vary more than 2 K to 4 K when viewed by dif-

ferent directions (for more details see §1.2.5) [95, 96]. Thermal anisotropy is known

to influence the comparison of LST data [1, 95, 96] and for this reason it is important

to adopt compensation strategies when comparing LST data from different sources,

as is this case. To that end, thermal anisotropy effects are more difficult to handle for

MODIS than SEVIRI. This is because the MODIS VZA can range from −55◦ to +55◦

(the plus sign means the sensor views the area from west, while the minus sign from

the east [97]), while SEVIRI, being onboard a geostationary satellite, acquires data

with a constant VZA and azimuth angle (equal to +50◦ and 18.4◦, respectively, for

Rome greater region). Even though, this issue has attracted considerable attention

in recent years no mature compensation methods are available yet. Nevertheless,

a good practice for controlling this problem is to utilize LST data acquired with a

similar viewing geometry (ideally it should be the same) [1]. This study follows this

approach. In particular the performed analysis is based on the assumption that it

is possible to compare and average LST diurnal range maps from different dates,

provided that they are estimated from daytime and nighttime LST data (of the same

DOY) with highly similar VZAs. In particular, it is assumed that by subtracting the

two LST images (i.e. the daytime minus nighttime) the primary signal remaining is

of the actual LST diurnal change. Following this approach it is possible to exploit

the fact that the VZAs of daytime and nighttime MODIS data from the same DOY

are very similar, as presented in Figure 2.5. In this figure the VZAs of the MODIS
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LST data employed in this work (Table 2.2) are presented. In particular, the daytime-

nighttime MODIS VZA differences for the selected scenes range between 6.5◦ to 10◦

with a median of 8◦.
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Figure 2.5: The VZA of the employed daytime and nighttime LST data retrieved
from (a) Terra MODIS and (b) Aqua MODIS.

2.3.6 LST Downscaling Methodology

The downscaling of the SEVIRI data is based on a multiple linear regression due to

its simplicity and efficiency [53] This type of regression attempts to model the re-

lationship between the LST predictors (i.e. the explanatory variables) and the LST

data (i.e. the response variable) by fitting a linear equation to the observations. The

general form of a multiple linear regression is presented in Eq. 2.2. In this equation

y is the response variable; k is the number of explanatory variables used; A0, . . . , Ak

are the regression coefficients; and x0, . . . , xk are the explanatory variables.

y = A0 +A1x1 +A2x2 + · · ·+Akxk (2.2)

The workflow of the LST downscaling method employed in this work is pre-

sented in Figure 2.6 and consists of three major operations. The first operation is

the upscaling and co-registration of the fine-resolution LST predictors to the coarse-

resolution LST data and the min-max normalization of the LST predictors between 0

and 1 so as to have comparable values (the normalization boundaries used are com-

mon between the 1 km and 4 km version of each LST predictor). The upscaling and

co-registration process is performed using an intermediate 1 km× 1 km grid that as-

signs which 1 km pixels belong to each coarse scale 4 km× 5 km pixel on the basis
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Figure 2.6: The workflow of the employed LST downscaling algorithm.

of their geographical coordinates similar to [55] and [56]. The coarse-resolution LST

predictors are estimated eventually as the mean of all the fine-resolution pixels that

belong to each coarse-resolution cell. The second operation is the development of

the regression model (Eq. 2.2) that describes the relationship between the coarse-

resolution LST data and LST predictors. The derived linear regression model is

global and unique for each image employed. This selection is justified on the fact

that the study area is of limited extent. The third operation of the employed method

is the application of the retrieved regression model to the fine spatial resolution LST

predictors so as to generate the DLST image data. The third operation is coupled

with a DLST adjustment process (i.e. a residual correction) as done in [73, 74, 79, 93].

This process aims to compensate the loss of variability due to the inflexibility of the

linear regression tool and it is based on the difference of the observed and modelled

coarse-resolution LST data. In particular, the residuals (∆Ts) between the modelled

and the observed coarse-resolution LST are calculated using Eq. 2.3 and then incor-

porated to the spatially enhanced LST data using Eq. 2.4. Prior to the application of

Eq. 2.4, the residuals ∆Ts are resampled to the 1 km× 1 km DLST grid. A smoothing

filter is also applied to the resampled ∆T
resampled

s so as to prevent the occurrence of

boxy effects on the DLST data, as suggested in [93]. The DLSTadj are the primary
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output of the employed downscaling method and the main input to Eq. 2.1.

∆Ts = T observed
s − T modelled

s (2.3)

DLSTadj = DLST + ∆T
resampled

s (2.4)

As discussed in the begining of this section, the downscaling method presented

above is employed twice. The first time utilizing as LST predictors the NDVI, the H ,

the ε32, and the WSA (Scheme 1; Eq. 2.5a), and the second time all of the above, plus

MAST, YAST and Theta (Scheme 2; Eq. 2.5b).

DLSTadj = f (H,NDVI, ε32,WSA) (2.5a)

DLSTadj = f (H,NDVI, ε32,WSA,YAST,MAST,Theta) (2.5b)

The overall goal is to use the DLST diurnal range map of scheme 1 as control so as to

assess the performance of MAST, YAST and Theta as LST predictors. The evaluation

of the derived data is based on the RMSE (Eq. 2.6), the Mean-Absolute-Error (MAE,

Eq. 2.7) and Pearson’s Correlation Coefficient (Rho, Eq. 2.8). In these equations X

corresponds to the SEVIRI DLST data and Y to the reference MODIS LST.

RMSE =

√∑n
pxl=1

(
Xpxl − Ypxl

)2
n

(2.6)

MAE =

∑n
pxl=1

∣∣Xpxl − Ypxl
∣∣

n
(2.7)

Rho =
n
∑n

pxl=1

(
Xpxl −X

) (
Ypxl − Y

)√∑n
pxl=1

(
Xpxl −X

)2√∑n
pxl=1

(
Ypxl − Y

)2 (2.8)

The validity of the scale invariance assumption for the employed LST predic-

tors is evidenced in Figure 2.7 where the relationship between the employed 1 km

MODIS and 4 km SEVIRI mean LST data and LST predictors is presented both for

daytime (10:30 UTC) and nighttime (22:30 UTC). In detail, the corresponding 1 km

and 4 km point clouds of Figure 2.7 coincide and have similar shapes and compara-

ble Rho values. Hence, it is assumed that the LST data-predictor relation is consis-

tent for the 1 km and 4 km spatial scales and thus the use of Eq. 2.5a and Eq. 2.5b

for downscaling the SEVIRI data is possible. The moderate-to-high Rho values of

Figure 2.7 (with the exception of Theta, the ε32, and nighttime YAST) also suggest
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Figure 2.7: The relationship between the (a) Altitude; (b) NDVI; (c) ε32; (d) WSA;
(e) MAST; (f) YAST; and (g) Theta and the employed mean 1 km MODIS and 4 km
SEVIRI daytime (10:30 UTC) and nighttime (22:30 UTC) LST data. For each point
cloud the corresponding Pearson’s correlation coefficient is also presented.

that the employed LST predictors provide relevant information to the downscaling

process and thus meet the connectivity assumption [53]. Specifically, the highest

Rho values correspond to MAST, altitude, WSA and NDVI LST predictors and the

lowest to Theta. A change in Rho between daytime and nighttime is also observable,

especially for YAST, WSA and NDVI. Finally, the dependency of the employed LST

predictors is presented in the correlation matrix of Table 2.3. From this table it is ev-

ident that the dependency between the utilized LST predictors is in most cases low.

Nonetheless, a moderate dependency between altitude and NDVI, and YAST (10:30

UTC) and NDVI and WSA is evident; as well as a high association between MAST

(10:30 UTC and 22:30 UTC) and Altitude.
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Table 2.3: The Rho2 matrix of the employed fine-resolution LST predictors. The
subscripts D and N correspond to 10:30 UTC and 22:30 UTC, respectively

H N
D

V
I

ε 3
2

W
SA

YA
ST

D

M
A

ST
D

Th
et

a D

YA
ST

N

M
A

ST
N

Th
et

a N

H 1.00 0.46 0.01 0.50 0.27 0.83 0.01 0.04 0.73 0.01
NDVI 1.00 0.01 0.78 0.57 0.65 0.01 0.18 0.33 0.00
ε32 1.00 0.00 0.02 0.08 0.12 0.03 0.20 0.00
WSA 1.00 0.57 0.70 0.01 0.14 0.34 0.00
YASTD 1.00 0.49 0.00 0.30 0.10 0.06
MASTD 1.00 0.00 0.10 0.61 0.01
ThetaD 1.00 0.16 0.00 0.18
YASTN 1.00 0.00 0.46
MASTN 1.00 0.05
ThetaN 1.00

2.4 Results

2.4.1 Statistical Comparison with Reference Data

Overall the inclusion of MAST, YAST and Theta as LST predictors improved con-

siderably the estimation of the diurnal range from the DLST data (Figure 2.8). In

particular, for the 10:30 vs. 22:30 UTC analysis the RMSE is reduced from 1.4 K for

scheme 1 to 1.0 K for scheme 2, while the MAE from 1.1 K to 0.8 K (Table 3.2). The

corresponding values for the 13:30 vs. 01:30 UTC analysis are for RMSE 2.0 K and

1.6 K, respectively, and for MAE 1.6 K and 1.2 K. The mean difference (bias) with the

reference MODIS data is close to 0 K for all cases.

Table 2.4: Various statistical measures quantifying the difference of the DLST diur-
nal range data with the reference MODIS data.

Measures
10:30 vs. 22:30 UTC 13:30 vs. 01:30 UTC

Scheme 1 Scheme 2 Scheme 1 Scheme 2

Mean Difference (K) −0.1 −0.1 0.2 0.1
MAE (K) 1.1 0.8 1.6 1.2
RMSE (K) 1.4 1.0 2.0 1.6
Rho 0.90 0.95 0.89 0.94
R2 0.81 0.90 0.80 0.88

The similarity of the DLST diurnal range data with the reference data is also

increased with the use of the ACP as LST predictors. Specifically, Rho increased

from 0.90 to 0.95 for the 10:30 vs. 22:30 UTC analysis and from 0.89 to 0.94 for the

13:30 vs. 01:30 UTC analysis (Table 3.2). This is also evident in the scatterplots
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Figure 2.8: Scatterplots of the mean diurnal DLST range (daytime minus nighttime)
versus the reference data for the 10:30 vs. 22:30 UTC analysis ((a) scheme 1 and (b)
scheme 2 data) and the 13:30 vs. 01:30 UTC analysis ((c) scheme 1 and (d) scheme 2
data).

of Figure 2.8, where the point clouds of scheme 2 match better the line of equality

(y = x) than those of scheme 1. Specifically for the 10:30 vs. 22:30 UTC analysis,

the intercept of scheme 1’s linear fit is 3.72 and the slope 0.72, while for scheme 2

the corresponding values are 1.97 and 0.85, respectively. For the 13:30 vs. 01:30 UTC

analysis the intercept and slope are 6.07 and 0.61 for scheme 1, and 4.15 and 0.73 for

scheme 2, respectively.

The use of MAST, YAST and Theta also improved the distribution of the DLST

diurnal range values as Figure 2.9 and Table 2.5 reveal. In detail the distributions of

scheme 2 data are more widespread and match better the reference data in contrast

to scheme 1, which are more condensed over the middle-range values (i.e. the 25th-

75th percentiles). Nevertheless the mean and median values of both scheme 1 and

scheme 2 are almost the same and equal to the reference MODIS data (13 K for the
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10:30 vs. 22:30 UTC analysis and 16 K for the 13:30 vs. 01:30 UTC analysis; Table

2.5).

Table 2.5: The mean, minimum, maximum and 1%, 5%, 25%, 50% (median), 75%,
95% and 99% values of the reference LST and scheme 1 and scheme 2 DLST diurnal
range data. The term Terra refers to the 10:30 vs. 22:30 UTC analysis and the term
Aqua to the 13:30 vs. 01:30 UTC analysis.

Analysis Data
Mean
(K)

Min
(K)

Max
(K)

Percentiles (K)

1% 5% 25% 50% 75% 95% 99%

Terra
Ref. 12.9 1.1 20.1 6.3 7.7 10.3 13.1 15.6 17.4 18.3

Sch. 1 13.0 5.7 21.3 7.9 9.1 11.0 13.1 15.1 16.8 17.9
Sch. 2 13.0 3.3 19.3 7.1 8.5 10.9 13.1 15.4 17.1 18.0

Aqua
Ref. 16.0 1.8 25.7 7.4 9.2 12.7 16.6 19.5 21.8 23.1

Sch. 1 15.9 7.2 25.2 9.6 11.3 13.8 16.3 18.1 20.2 21.2
Sch. 2 16.0 6.6 22.9 9.1 10.7 13.4 16.5 18.6 20.6 21.5
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Figure 2.9: Histograms presenting the distribution of (a) the 10:30 vs. 22:30 UTC
and (b) the 13:30 vs. 01:30 UTC diurnal DLST range in respect to the reference
MODIS data.

The inclusion of the ACP also improved the estimation of the minimum DLST

diurnal range and the 1% and 5% percentiles (Table 2.5). In particular, for the 10:30

vs. 22:30 UTC analysis the minimum dropped from 5.7 K for scheme 1 to 3.3 K for

scheme 2 (the reference is 1.1 K). A similar but not so pronounced improvement is

also observable for the 13:30 vs. 01:30 UTC analysis (from 7.2 K to 6.6 K; Ref.=1.8 K).

However, the inclusion of the ACP as LST predictors did not improve the estimation
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of the 95%, 99% and maximum DLST diurnal range, which deviates for about 1 K to

2 K from the reference data for both schemes.

2.4.2 Analysis of the Spatial Patterns and the Impact of Land Cover and

Altitude

For Rome greater region the most pronounced diurnal DLST range corresponds to

the rural area surrounding the city of Rome (Figures 2.10 and 2.11). Specifically, the

mean rural 10:30 vs. 22:30 UTC DLST diurnal range is 15.9 K for scheme 1 and 16.3 K

for scheme 2 (Ref.= 16.6 K); while the corresponding 13:00 vs. 01:30 UTC values are

18.6 K and 19.1 K, respectively (Ref.=20.5 K). In both cases scheme 2 is closer to

the reference data than scheme 1 (Figure 2.10). The weakest DLST diurnal range

corresponds to the Apennine Mountains. In particular, the reference mean diurnal

range for the Apennines is 10.4 K for the 10:30 vs. 22:30 UTC analysis and 12.4 K for

the 13:00 vs. 01:30 UTC analysis. Both scheme 1 and scheme 2 overestimate these

values by approximately 1.0 K (Figure 2.10).
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Figure 2.10: The mean DLST diurnal range (and standard deviation) for areas cov-
ered by vegetation (over the Apennines), agriculture and urban land cover classes.

For the city of Rome the 10:30 vs. 22:30 UTC DLST diurnal range is 14.7 K for

scheme 1 and 13.6 K for scheme 2 (Ref.= 14.5 K). The corresponding values for the

13:30 vs. 01:30 UTC analysis are 19.1 K and 18.1 K, respectively (Ref.=19.2 K). In

both cases scheme 1 performed slightly better than scheme 2, which underestimated

the reference mean by 1.0 K. Nevertheless the shape of the spatial pattern of Rome’s

built-up is more similar to the reference data in scheme 2 than of scheme 1 (Figure
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2.11). In detail, the thermal spatial pattern of Rome’s urban agglomeration exhibits a

very distinct thermal behaviour due to the Surface Urban Heat Island (SUHI) effect.

This effect is primarily caused by the higher thermal conductivity and heat storage

capacity of impervious surfaces (e.g. concrete and asphalt) [13, 12] and results to

increased urban nighttime temperatures. In this study this effect is evidenced as a

weakening of the DLST diurnal range of Rome and the formation of a very distinct

spatial feature that looks like a hole (Figure 2.11). In particular, Rome’s 10:30 vs.

22:30 UTC diurnal range pattern is presented for schemes 1 and 2 in Figures 2.11h

and 2.11i, respectively. The comparison with the reference data (Figure 2.11g) reveals

that scheme 2 outperformed scheme 1, which underestimated the 10:30 vs. 22:30

UTC DLST change of the city’s eastern part.

The better performance of scheme 2 in respect to scheme 1 in reproducing the

reference LST diurnal range spatial patterns is also observable in the Difference-

from-Reference maps of Figure 2.11. Overall, both scheme 1 and scheme 2 show the

same spatial features: an overestimation (purple colours) over the Apennines and an

underestimation (orange colours) over the rural area surrounding the city of Rome.

However, the magnitude of the differences from the reference data is considerably

greater for scheme 1 than for scheme 2 (the above also applies for the 13:30 vs. 01:30

UTC analysis). The exception is the coastline where both scheme 1 and scheme 2

underestimated its diurnal DLST range. This problem is mainly due to two reasons:

(i) the LST retrieval of coastline pixels which is known to be more error prone due to

emissivity uncertainties [1]; and (ii) the difference in pixel size between SEVIRI and

MODIS, which can result to considerably different samplings over highly heteroge-

neous regions (e.g. coastlines) [39].

The assessment of the obtained DLST diurnal range data concludes with an anal-

ysis of how they change with altitude. In Figure 2.12, the relationship between the

mean DLST diurnal range and altitude is presented. Overall, the curves of scheme 1

and scheme 2 match well with the curve of the reference MODIS data. As expected, a

slight overestimation of the DLST diurnal range for the areas with an altitude greater

than 500 m is evident for both schemes. For the 50 m to 500 m range the results are

substantially better and the DLST data almost match the reference data.
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2.4.3 Similarity of the MODIS LST and SEVIRI DLST time series

Finally, a comparison between the daytime and nighttime MODIS LST (Table 2.2)

and the corresponding SEVIRI DLST datasets is given. Overall the employed data

exhibit a high degree of similarity, with scheme 2 data to perform slightly better than

scheme 1 (Table 3.2). The mean difference (bias) between the 1 km SEVIRI DLST and

MODIS LST data ranges from 0 K to −0.5 K while the RMSE is close to 1.3 K for the

nighttime data and 2.5 K for the daytime data. The standard deviation (σ) of the

MODIS LST and SEVIRI DLST differences is 2.5 K for the 10:30 UTC and 13:30 UTC

data and 1.2 K for the 01:30 UTC and 22:30 UTC data. Rho is equal to approximately

0.9 for all cases. Scheme 2 outperforms scheme 1 at all acquisitions times but the

added value is highest at 01:30 and 10:30 UTC while it is rather little at 13:30 UTC.

Table 2.6: Various statistical measures quantifying the difference of the DLST diur-
nal range data with the reference MODIS data.

Measures
01:30 UTC 10:30 UTC 13:30 UTC 22:30 UTC

Sch. 1 Sch. 2 Sch. 1 Sch. 2 Sch. 1 Sch. 2 Sch. 1 Sch. 2

Bias (K) −0.41 −0.41 −0.46 −0.46 −0.19 −0.16 −0.48 −0.50
σ (K) 1.37 1.00 2.44 2.29 2.70 2.64 1.31 1.14
RMSE (K) 1.43 1.08 2.48 2.33 2.70 2.65 1.40 1.23
Rho 0.87 0.93 0.87 0.89 0.87 0.88 0.89 0.91
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The high similarity of the mean SEVIRI DLST with the MODIS LST data is also

evident in Figure 2.11a-f. Overall the same spatial features are presented in the cor-

responding maps. The most pronounced spatial pattern difference is the nighttime

DLST pattern of Rome of scheme 1, which is due to the weakening of the relationship

between the LST predictors and the nighttime LST data.

2.5 Discussion

The results of this study suggest that the use of MAST, YAST and Theta as LST pre-

dictors improve the downscaling of coarse-scale LST data and also the estimation of

the diurnal range from the DLST data. MAST, YAST and Theta represent the thermal

landscape of a region [59, 80] and can be estimated for various times within a day

(e.g. morning, noon, afternoon and night) depending on the availability of satellite

data. Hence, these LST predictors can be very useful for the downscaling of geosta-

tionary diurnal LST data, which is a more demanding process than the downscaling

of single scenes. This is because the spatiotemporal interrelationships of the LST

data, which are driven by the thermodynamic characteristics of the surface materi-

als; the short-term meteorological conditions; and the diurnal and annual cycle of

heating and cooling, have to be preserved.

In this work MAST, YAST and Theta improved the downscaling of both day-

time and nighttime LST data and also their interrelationship. The former is evident

through the comparison with the corresponding MODIS data and the latter with the

estimation of the DLST diurnal range, which is the main focus of this paper. The

estimation of diurnal thermal differences, (e.g. daytime minus nighttime), is partic-

ularly useful for numerous studies such as: the assessment of regional and global

climate change [98, 99]; the estimation of evapotranspiration [100, 101]; the assess-

ment and monitoring of the SUHI effect [55, 56, 102]; the estimation of crop yield

[103]; and the assessment of excess heat effects to human health [104] (for most of

these studies a LST accuracy of 1 K or better is required [1]). The use of the three ACP

components as LST predictors improved considerably the thermal spatial patterns

of the nighttime data, which were influenced by the weakening of the LST predic-

tor’s relationship with LST [71]. In addition, MAST, YAST and Theta improved the

estimation of the very low DLST values and the overall distribution of the DLST

diurnal range. Usually downscaling schemes tend to be biased in the extreme LST



2.5. Discussion 51

ranges [79], due to the small number of extreme LST pixels and also the presence of

outliers [74].

The inconsistency in the performance of LST predictors, both in respect to time

and location, is another important issue in the downscaling literature [93, 105]. This

is because it complicates or even prohibits the transfer of a downscaling scheme de-

signed for a specific area to another area with different landscape and climatic char-

acteristics [105]. For instance NDVI-based downscaling schemes do not perform

well over complex heterogeneous regions [105] and for this reason alternative ap-

proaches have been proposed, e.g. [79]. Such inconsistencies are also evident when

working with different land cover types. This is because the explanatory power of

a LST predictor varies in respect to land cover. For instance, the impervious surface

cover is more appropriate for downscaling urban LST than NDVI [75] and vice versa.

To that end, MAST, YAST and Theta offer the advantage of a stable performance over

various land cover types, landscapes and climatic conditions. This is because, being

derived from LST data, they incorporate the location-specific variability, e.g. the ef-

fects of topographic shading [59], and also how this variability changes with time

(when multi-temporal MAST, YAST and Theta data are being used). This fact makes

them especially useful for downscaling geostationary diurnal LST data. In addition,

it also implies that the inclusion of YAST, MAST and Theta can help limit the size

of the LST predictor set, which is more practical and performs better as some stud-

ies [82, 93] suggest. However, the good performance of the ACP depends on the

multi-year time series of satellite LST data used for their estimation. Specifically the

employed time series should deliver a sufficient sample size that is not affected by

short weather effects and does not cover substantial changes in the climatic or sur-

face conditions (e.g. a burnt scar) in order to be accurate [59, 80]. Otherwise artefacts

may occur [59].

Another important issue that may prohibit the use of a dataset as LST predictors

is the scale invariance assumption, i.e. the relationship between the LST data and

LST predictors to be the same between the coarse and fine spatial scale [82, 70]. For

NDVI it is known that as the spatial scale becomes finer the near-linear relationship

with coarse-scale LST transforms to a trapezoid and weakens [70]. In this work, the

scale invariance assumption for MAST, YAST and Theta was validated for the 4 km

and 1 km spatial scales. Strong evidence that support the validity of the scale invari-

ance assumption for MAST, YAST and Theta for finer scale resolutions are available
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in [82], where the ACP were used in conjunction with other LST predictors to down-

scale a SEVIRI scene down to 100 m (RMSE = 2.2 K). However, more detailed tests

are still required.

2.6 Concluding Remarks

This chapter discusses the downscaling of geostationary diurnal LST data with the

use of multi-temporal LST predictors and assesses if MAST, YAST and Theta can im-

prove the downscaling performance. The rationale behind this work is that multi-

temporal MAST, YAST and Theta are able to provide information about the spatial

distribution of the LST for different times-of-day and thus improve the estimation

of DLST and DLST diurnal changes, both in terms of magnitude and pattern shape.

The results of this research support the aforementioned hypothesis. The SEVIRI

ACP-based DLST data showed a better similarity and lower RMSE and MAE values

with the reference MODIS data in comparison to DLST data estimated using a set

of only static LST predictors. In addition, the findings of this work suggest that the

ACP improved the DLST spatial patterns—especially for the nighttime data—and

also the distribution of the DLST diurnal range values. Overall, the use of MAST,

YAST and Theta as LST predictors offers many advantages to the downscaling pro-

cess and can prove an important step towards the maturing of this technology. This

is important because at the moment LST downscaling is the main way to obtain LST

data that match the characteristic scale of the LST diurnal cycle.
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Chapter 3

Assessing the DLST

Spatiotemporal Inter-relationships

3.1 Introduction

The downscaling of frequently acquired geostationary LST data has the potential to

compensate the lack of high spatiotemporal LST datasets [55, 56]. To achieve this

goal, the key idea is to retrieve a time series of temporally dense geostationary LST

data (e.g. quarter-hourly SEVIRI data) and then to individually downscale each LST

image to the desired GSD. However, because LST downscaling algorithms by design

do not consider any information from the other LST images, they can potentially

distort the spatiotemporal interrelationships of the time series.

For LST data these interrelationships are especially pronounced and also highly

dependent on the geographic location, the time-of-day and the season [2]. In par-

ticular, under clear-sky and fair-weather conditions the diurnal evolution of the LST

follows a periodic temporal pattern where the LST smoothly increases during day-

time and smoothly decreases during nighttime. Short-term weather effects (e.g.

heatwaves) and seasonal effects (e.g. changes in vegetation phenology) affect this

temporal pattern [106]. In detail the spatiotemporal features caused by short-term

weather effects are evident in the LST time series as brief but pronounced changes in

LST, e.g. a heatwave is recorded as an extreme increase of the LST for a small number

of consecutive days [107, 108]. On the other hand, seasonal effects are more subtle

and only observable when examining long time series, e.g. the gradual cooling from

summer to winter. Short-term and seasonal effects also affect the spatial distribution

of LST. For instance a heatwave can intensify SUHI hotspots [109], while the pheno-

logical cycle of croplands or deciduous forests can affect the shape of the LST spatial
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patterns.

Today there is very little understanding about the impact of LST downscaling

on the spatiotemporal interrelationships of the generated DLST time series. This is

because current research focuses mostly on testing new combinations of regression

tools and LST predictors. In addition, because LST downscaling is rather recent,

there are only very few studies that use DLST datasets so as to monitor an envi-

ronmental variable (e.g. [110]) and thus several limitations may still be unnoticed.

Hence further research is required so as to better understand the impact of this im-

age processing operation on LST time series. This is important if LST downscaling

algorithms are to be used operationally and by non-experts.

3.2 Experimental Setup

3.2.1 Research Objective and Assessments Tests

This chapter is concerned with the impact of LST downscaling on the spatiotempo-

ral interrelationships of long DLST time series. Ideally, LST downscaling algorithms

should produce DLST data accurately and consistently and DLST time series where

the diurnal evolution of the data is artefact-free and synoptic weather effects and sea-

sonal features are reproduced in greater spatial detail. To investigate this research

question, a three-month long time series of quarter-hourly LST is downscaled to a

GSD of 1 km (from a GSD of 4 km× 5 km) and the following three issues are exam-

ined:

1. the accuracy, reliability, and consistency of the downscaling method;

2. the formed DLST spatial patterns, and;

3. the capability of the generated DLST time series to emulate the diurnal and

seasonal characteristics of the original LST time series.

To address each issue a set of relevant key-aims was identified and targeted tests

were devised as discussed below and presented in Table 3.1. These tests are based

either on the LST cross-validation method [1] or the exploitation of the high tempo-

ral resolution of the employed quarter-hourly LST data. The LST cross-validation

method is a widely-used LST evaluation method that can be applied anywhere in
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Table 3.1: The identified key aims for addressing the raised DLST assessment issues
and the proposed evaluation tests.

Issue ID Aim Test

1 a Quantification of the difference be-
tween the DLST and the reference
LST time series.

Statistical measures at the fine reso-
lution (1 km).

1 b Downscaling performance with re-
spect to land cover type.

RMSE spatial distribution.

1 c Downscaling method’s consistency
assessment.

Image-to-image analysis between
DLST and reference LST.

1 d Assessment of DLST when no coin-
cident reference LST are available.

Statistical measures at original reso-
lution (4 km).

2 e Assessment of formed pattern’s
shape, size, and location.

DLST and reference LST Local
Moran Indices (LMI) comparison.

2/3 f Compliance of DLST and original
LST pattern diurnal evolution.

LMI juxtaposition and visual in-
spection.

2/3 g Magnitude of diurnal spatial
change.

Similarity between the first image of
the day and the rest.

2/3 h Smoothness of DLST diurnal spatial
change / Artefact formation due to
ACP’s sudden change.

Similarity between sequential
quarter-hourly images.

3 i Preservation of original radiometry. Min./Mean/Max. LST-DLST value
comparison.

2/3 j DLST potential to emulate the spa-
tial changes due to seasonal effects.

Similarity between sequential im-
ages.

the world on the condition that independent high-quality LST image data are avail-

able [1]. This method is especially advantageous to alternatives, such as the ground-

based temperature-based method, since the availability of ground truth LST data

around the globe is extremely limited [1]. In this assessment study the LST data used

for downscaling are from SEVIRI (see §1.4), while those used for evaluation are from

Terra and Aqua MODIS. Both datasets cover the same time period, i.e. DOYs 152 to

243 (corresponding to June, July and August of 2014; the rationale for selecting these

DOYs is explained in Chapter 2 in §2.3.5) and depict the same study area, i.e. Rome

greater region (Figure 2.3). The SEVIRI data are from the IAASARS/NOA system1

[86] (see §2.3.3 for more details regarding data accuracy), while the MODIS LST are

1The in-house LST retrieval algorithm used by IAASARS/NOA takes as input the cloud-free radi-
ances of the 10.8µm and 12.0µm SEVIRI TIR bands [85, 86]. This algorithm is based on the Automa-
tized Atmospheric Absorption Atlas (4A/OP) radiative transfer model in conjunction with a SVM, and
information from the Thermodynamic Initial Guess Retrieval (TIGR) dataset. In particular at the start
of operation of the IAASARS/NOA system the 4A/OP radiative transfer model and the TIGR dataset
have been synergistically employed so as to generate a dataset of simulated 10.8µm and 12.0µm at-
sensor radiances associated with various LSTs, emissivities and atmospheric conditions. This simu-
lated dataset is employed as training set for the SVM and is essentially the core of IAASARS/NOA
LST retrieval algorithm. In addition to the SEVIRI at-sensor TIR radiances, IAASARS/NOA also re-
quires as input the corresponding emissivity values retrieved from MOD11A2 data product [83].
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the version 5 MOD11A1 and MYD11A1 data products. As discussed in Chapter 2

the two time series have different spatiotemporal characteristic: SEVIRI offers LST

data of Rome greater region with a GSD of 4 km× 5 km 96 times every day (one im-

age every 15 min), whereas MODIS provides 1 km LST data 4 times every day (two

at noon: 10:30 and 13:30 UTC, and two at night: 01:30 and 22:30 UTC; morning and

afternoon data are not available). Moreover, the two satellite instruments view the

study area with different VZA (θ) and azimuth (φ) angles. For SEVIRI θ is constant

and equal to +50◦, while for MODIS it ranges from −55◦ to +55◦ (the plus sign

means the sensor view the area from west, while the minus sign from the east). In

this work only MODIS data acquired with a positive VZA are considered. This is so

as to avoid any comparisons between LST data sampled by opposite directions and

to retain a large enough evaluation dataset. Overall for this work 6470 SEVIRI im-

ages (on average 71 images per day; only images with a< 30% cloud cover are used)

and 92 Terra and Aqua MODIS (47 daytime and 45 nighttime) LST images are used.

The time distribution of the utilised data is presented in Figure 3.1. From this figure

it is clear that the used data are well distributed throughout summer 2014 and also

throughout each day, with some exceptions due to high cloudiness. In most cases

two MODIS images are available for each day, covering sufficiently the time span of

interest (MODIS data are available for 50 of the 90 days covered by this study).

For addressing the downscaling method’s accuracy, reliability and consistency

(issue 1), four major tests (Table 3.1, tests a to d) are used, namely (i) the quantifica-

tion of the SEVIRI DLST and MODIS LST time series differences; (ii) the assessment

of the RMSE spatial distribution; (iii) the estimation of the downscaling method’s

performance on an image-to-image basis; and (iv) the comparison of the generated

DLST data (upscaled to the original coarse resolution) with the corresponding orig-

inal SEVIRI LST data. For quantifying the differences between the 1 km DLST and

reference MODIS LST time series several descriptive statistical measures, namely the

mean difference, the standard deviation, the RMSE (Eq. 2.6), and the Rho (Eq. 2.8)

are calculated. This analysis is performed separately for each one of the four MODIS

overpass times and uses only the MODIS pixels where the LST retrieval accuracy

is equal or better than 1.0 K (the accuracy information is derived from the MODIS

quality assurance layer supplied with each MOD11A1 and MYD11A1 LST product

as discussed in [85]).

In addition to the above, the RMSE spatial distribution is also estimated for each
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Figure 3.1: The time distribution of the employed Summer 2014 SEVIRI and
MODIS LST data.

MODIS overpass time (Table 3.1 test b). This test aims to assess the downscaling per-

formance in respect to land cover type; to highlight the differences between the day-

time and nighttime data; and to identify any regions with persistently high RMSE.

The third test (Table 3.1 test c) concerns the assessment of the methods reliability and

consistency. For this purpose the RMSE and Rho values are estimated separately for

the 47 daytime and 45 nighttime MODIS-coincident DLST data and the consistency

with time is examined. The last test for addressing issue 1 is the comparison of the

generated DLST data with the original coarse resolution SEVIRI LST data (Table 3.1

test d). For this purpose all 6470 SEVIRI images are employed and several statisti-

cal measures are calculated. In particular, the DLST data are upscaled to 4 km using

the pixel-assignment method discussed in §2.3.6 and then divided into 96 groups
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(corresponding to each SEVIRI quarter-hourly acquisition time). For each group the

analysis of the data is based on the distribution of LST differences, the mean differ-

ence, the RMSE, and the Rho statistical measures.

The assessment of the formed DLST spatial patterns (issue 2), is required since

the downscaling method can form unwanted artefacts. To facilitate the assessment

of the spatial thermal patterns the Local Moran Index (LMI) is employed, which is

an established spatial analysis tool for the detection of spatial clusters [111]). The

LMI identifies the prevalent hotspots by comparing individual locations with their

neighbourhood using Eq. 3.1. In Eq. 3.1 zi is the pixel value at location i, n is the

sample number, m2 is an estimate of variance (calculated as
∑

i

(
z2i /n

)
), and wij is

a distance-based weight for the pixel j included in the neighbourhood of pixel i.

The application of the LMI leads to the generation of a new image depicting the

prevalent thermal patterns.

LMIi =
zi
m2

∑
j

(wi,jzj) (3.1)

To assess the formed spatial patterns (Table 3.1 test e), the SEVIRI DLST-derived

LMI images are compared with the corresponding daytime and nighttime MODIS

LMI. Specifically, the three month-mean, MODIS-coincident DLST images are esti-

mated and then employed for calculating the LMI. This is done so as to minimize

the influence of local short-term weather effects. The evaluation of the retrieved

LMI is performed by comparing the location, the shape and the size of the prevalent

thermal clusters with the ones derived from the MODIS data.

Lastly, for addressing the capability of the generated DLST time series to emulate

the diurnal and seasonal characteristics of the original LST time series (issue 3), three

tests are used. The first test concerns the assessment of the spatial pattern diurnal

evolution (Table 3.1 test f). For this test the 6470 SEVIRI images included in each

dataset (i.e. the 4 km LST, and the 1 km and 4 km DLST time series) are divided into

96 groups (according to their acquisition time) and averaged. Then the LMI is calcu-

lated separately for each three-month mean image to minimize the weather effects.

The analysis of the retrieved LMI data is performed in three stages. Firstly, the 1 km

DLST-derived LMI data are juxtaposed with the corresponding 4 km LST-derived

LMI data for assessing the agreement of the corresponding spatial patterns. Then,

the magnitude of the spatial pattern diurnal change (Table 3.1 test g) is examined
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by calculating the Rho between the 00:00 UTC image with each one of the following

95 as shown in Figure 3.2a (the 4 km LST data are used as reference). Finally, the

smoothness of the diurnal DLST pattern evolution is assessed by estimating the Rho

between sequential quarter-hourly images as shown in Figure 3.2b (test h in Table

3.1). In particular, it is assumed that the 15 min SEVIRI data acquisition frequency is

too short for any major spatial pattern change to take place. Hence, the Rho between

sequential quarter-hourly mean LST/LMI data should be close to 1. The impact of

the sudden change of the ACP LST predictors is also assessed using the aforemen-

tioned autocorrelation tests.

Estimation of Rho
between the first
image and the rest

Rho

DLST / LST Time Series

Estimation of Rho
between sequential
images.

Rho Rho Rho Rho Rho Rho Rho Rho Rho

Rho
Rho

Rho
Rho

RhoRho
RhoRhoRhoRhoa.

b.

Figure 3.2: A graphical representation of the autocorrelation tests performed for
assessing the spatiotemporal features of the DLST time series.

For the second test of issue 3, the 1 km mean, minimum, and maximum DLST

values of each generated image are compared with the corresponding 4 km LST val-

ues so as to assess if the original radiometry is preserved (Table 3.1 test i). The third

test focuses on the spatial changes due to seasonal effects (Table 3.1 test j) . In detail,

it is assumed that for a long but finite time period, as the period under study, the

Rho between the first MODIS image (i.e. the one acquired first) and each one of the

rest (in a sequential manner similar to Figure 3.2a) should exhibit a smooth declin-

ing trend. This trend would be due to seasonal effects and the DLST data should

replicate it.

3.2.2 LST Downscaling Methodology

The downscaling of the SEVIRI LST time series used in the above experiments is

performed using the method proposed in [56] and evaluated in [85]. This method

utilises as a regression tool a SVM that is coupled with gradient boosting [112] and is
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selected because it has been designed for use with geostationary diurnal LST data.

The employed SVM is the B-SVR Light SVM [113, 114], which is an implementation

of Vapnik’s SVM [115] for solving the problems of pattern recognition, regression

and learning a ranking function. The SVM is preferred over other regression tools

because it has limited requirements on training dataset size and quality; it is effec-

tive in terms of noise reduction and computation efficiency; and its self-adaptability

makes it better suited to describe the complex relationship that connects the diurnal

LST data with the LST predictors [78, 116]. Gradient boosting is a machine-learning

concept for forming model ensembles by sequentially combining several weak mod-

els into a much stronger one. To achieve this the key idea is, at each iteration, to

train a new model that is maximally correlated with the negative gradient of the loss

function2, associated with the error of the whole ensemble [117]. Here, the employed

form of gradient boosting is an additive formula that minimises the loss function of

the observed coarse resolution LST residuals by appropriately weighting and com-

bining several model runs. In detail, additive gradient boosting fits simultaneously

several base-learner candidates atop some randomly chosen variables, and then se-

lects the best of these models based on the residual sum of squares criterion [117].

In this work the gradient boosting method is used instead of the DLST residual cor-

rection method (Eqs. 2.3 and 2.4 in §2.3.6) utilised in the downscaling method of

Chapter 2.

The workflow of the employed SVM-based downscaling method follows the

standard three-stage procedure discussed in Chapter 2 (i.e. upscaling and coreg-

istration; generation of a regression model; application of this model to the fine res-

olution LST predictors) and is individually applied to each coarse resolution SEVIRI

image. The LST predictors employed in this study are the 14 predictors (Figure 3.3)

used originally in [56] and the 12 MODIS ACP LST predictors used in Chapter 2

(Figure 2.4). The original 14 LST predictor are: topography data, land cover data,

emissivity data and VIs. In particular the topography data are from the SRTM DEM

[89] and consist of the altitude, the slope and four aspect maps (one for each of the

four main directions: North, South, West, and East). The land cover data are from

the GlobCover dataset [118] (aggregated to four major classes, namely: water bod-

ies, urban areas, agricultural areas, and vegetated regions, and then decomposed to

2According to the task at hand, the employed gradient boosting loss function can take many forms,
such as Gaussian, Laplace, Binomial etc. [117].
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Figure 3.3: The employed topography, land cover, emissivity and VIs LST predic-
tors used for downscaling SEVIRI LST data of Rome greater region.

provide percentages of specific land cover for each pixel). The emissivity data are

the 8-day MOD11A2 band 31 (11 µm) and band 32 (12 µm) [83], while the VIs are the

16-day MOD13A2 NDVI and Enhanced Vegetation Index (EVI) VIs [90].

The aforementioned LST predictors correspond to two major categories: the

time-independent (static) predictors and the time-dependent (dynamic) predictors.

The topography data, as well as the land cover maps fall in the first category, while

the rest of the predictors fall in the second category. The time-dependent predictors

are further divided into those that change on a weekly or biweekly basis (i.e. the

emissivity and the VIs) and those that change within a day (i.e. the MAST, YAST

and Theta ACP). Hence, for downscaling the three-month long SEVIRI time series,

the emissivity and the VI LST predictors are updated every 8 and 16 days, respec-

tively; while the ACP are successively changed on a daily basis. In particular, the

Aqua nighttime MAST, YAST and Theta are set in use at 23:30 UTC, the Terra day-

time at 06:00 UTC, the Aqua daytime at 11:30 UTC, and lastly the Terra nighttime

at 17:30 UTC. To that end, the estimation of intermediate ACP from other satellite

data was not possible at this stage, while the option to estimate intermediate MAST,

YAST or Theta as the average of consecutive ACP was not considered as an option

because this would not be valid. The sequential change of the ACP data is expected
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to raise two problems: first the sudden change of the ACP will affect the smooth evo-

lution of the DLST spatial patterns and secondly the use of the night and noon ACP

during morning and afternoon hours will impact the formed DLST spatial patterns

for these time periods. Nevertheless, the inclusion of the ACP is considered signif-

icant because, being derived from fine-resolution thermal data, they can explain a

lot of the LST spatial variation and facilitate the formation of correct DLST spatial

patterns, as shown in Chapter 2. In addition, the use of a large number of diverse

predictors in conjunction with the SVM is expected to minimize the aforementioned

problems (for assessing this issue targeted tests are performed).

For the upscaling and co-registration of the fine-resolution LST predictors to the

coarse-resolution LST data, the pixel assignment method discussed in §2.3.6 is used.

The coarse-resolution LST predictors are then estimated as the mean of the selected

fine resolution pixels that fall inside each coarse-resolution pixel, with the excep-

tion of the slope and aspect data that are re-calculated from the coarse resolution

mean altitude data. Prior to upscaling, all LST predictors are min-max normalized

between -1 and 1 so as to have comparable values and reprojected to a common

1 km× 1 km grid. After the development and application of the regression model a

spatial 3 × 3 averaging filter is also applied to each DLST image so as to make the

generated DLST more physically realistic and also to remove any artefacts.

3.3 Results

3.3.1 Accuracy and Consistency Assessment

The first aim of the evaluation process is to provide an accuracy estimation of the

retrieved SEVIRI DLST data through comparisons with the corresponding MODIS

LST data. The results (Table 3.2 and Figure 3.4) are consistent between day- and

nighttime. The mean difference (bias) is close to 0 K in almost every case, with the

exception of the 10:30 UTC data where the SEVIRI DLST time series is warmer by

1 K. Furthermore, the calculated LST differences are more disperse for daytime (σ of

3 K) than for nighttime (σ of 1 K) data. The superiority of nighttime results, which

is a trend reported in most downscaling works (e.g. [55]), is also evident for RMSE

(3 K for daytime and 1 K for nighttime). Rho is equal to 0.86 for daytime and 0.9 for

nighttime comparisons.
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Table 3.2: Various statistical measures quantifying the difference of the DLST diur-
nal range data with the reference LST data.

Statistical Measures 01:30 UTC 10:30 UTC 13:30 UTC 22:30 UTC

Bias (K) −0.5 1.0 0.0 0.0
σ (K) 1.0 3.0 3.0 1.0
RMSE (K) 1.0 3.0 3.0 1.0
Rho 0.88 0.85 0.86 0.91

22:30 UTC

Median

5%

25%

75%

95%

Mean

8 6 4 2 0 2 4 6 8LST Difference (K)

0 2 4-2-4-8 -6 6 8

13:30 UTC

10:30 UTC

01:30 UTC

Figure 3.4: The distribution of the LST differences between the generated 1 km
DLST and reference LST datasets.

3.3.2 Analysis of the RMSE spatial distribution

The performance of the downscaling process is not the same for every pixel but

depends on land cover type and topography [97]. To assess this issue the spatial

distribution of the RMSE for each MODIS overpass time is presented in Figure 3.5.

From Figure 3.5 it is evident, that every pixel—regardless of land cover type—has a

higher RMSE in daytime than in nighttime, and that the daytime RMSE spatial pat-

terns are considerably more complex than the nighttime (in accordance with [97]).

In particular, the Apennine Mountains daytime and nighttime RMSE values are ap-

proximately 6.0 K and 1.0 K, respectively, making it the most pronounced daytime

spatial feature. For the city of Rome the corresponding RMSE values are 3.5 K and

2.5 K, respectively and it is the most prominent nighttime feature. The rural area

pixels exhibit the lowest RMSE values (2.0 K for daytime and 1.0 K for nighttime).

The particularly high daytime RMSE values over the Apennines (Figure 3.5) are

mostly due to colocation uncertainties [97] and the enhanced effective anisotropy

of rugged terrain [119]. Specifically, the terrain-induced shadows cause differential

heating patterns that increase the spatial heterogeneity of the LST. The enhanced LST

spatial heterogeneity makes the emitting surfaces to differ even more when viewed
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Figure 3.5: The (a) 01:30 UTC; (b) 10:30 UTC; (c) 13:30 UTC; and (d) 22:30 UTC
RMSE spatial distribution.

by different angles, as is the case between SEVIRI and MODIS. Hence, the radiomet-

ric incompatibilities between the same rugged-terrain pixels are more pronounced

and lead to the calculation of higher RMSE values in respect to flat regions. The in-

fluence of shadows on effective anisotropy can also explain why the daytime Apen-

nines RMSE patterns are more pronounced for the 10:30 UTC data than the 13:30

UTC data. In particular, the increase of sun elevation from 50◦ to 70◦ during the

10:30 - 13:30 UTC period implies that the differential heating patterns caused by the

sun-terrain geometric configuration become weaker with time. Hence, their influ-

ence decreases during the 10:30 - 13:30 UTC time period and so do the radiometric

incompatibles between SEVIRI and MODIS for this region.

3.3.3 Assessment of the downscaling method’s stability and consistency

The image-to-image RMSE and Rho values for assessing the downscaling method’s

stability and consistency are presented in the scatterplots and frequency histograms

of Figure 3.6. Specifically, the calculated Rho values are greater than 0.7 for 86 of the

available 92 MODIS-SEVIRI pairs (only for 3 daytime and 3 nighttime images the

Rho was lower than 0.7); and the RMSE is consistently close to 3 K for daytime and
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1 K for nighttime comparisons. Hence, the performance of the downscaling method

is considered consistent.
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MODIS (a) daytime and (b) nighttime data. The corresponding RMSE (vertical)
and correlation coefficient (horizontal) frequency histograms are included for each
plot.

3.3.4 Comparison of SEVIRI 4 km LST and 1 km DLST time series

The hourly distribution of the LST differences between the original 4 km SEVIRI LST

and the upscaled DLST time series is presented in Figure 3.7a, while the correspond-

ing Rho and RMSE values are presented in Figures 3.7b and 3.7c, respectively. The

mean LST difference is close to 0 K for all time spots under study, while the standard

deviation of the LST differences is greatest for the 10:00 - 14:00 UTC time period and

minimum for the 00:00 - 09:00 UTC and the 17:00 - 24:00 UTC time periods. The

RMSE shows a similar pattern: the RMSE is equal to 1 K in the morning hours until

09:00 UTC and then it starts increasing. At 14:00 UTC it reaches its maximum value

(approximately 2 K) and then starts to fall back to 1 K. Rho is close to 0.9-0.95 almost

throughout the day, with the exception of noon when it falls to 0.85. Consequently,

it can be assumed that the performance of the downscaling process during morning

and afternoon hours would not be as good as for night hours but better than noon.

3.3.5 Assessment of Formed DLST Spatial Patterns

In Figure 3.8 the predominant spatial thermal clusters as derived by the 10:30 UTC

and 22:30 UTC MODIS and the corresponding DLST data are presented, respectively
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SEVIRI LST data. The Rho between the first mean (d) LST and (e) LMI image and
the rest (both for 4 km and 1 km). The Rho between sequential mean (f) LST and
(g) LMI images (both for 4 km and 1 km).

(the 13:30 and 01:30 UTC data are similar with the aforementioned). In general, the

same major clusters are present between the MODIS LST and SEVIRI DLST data.

However, none of the DLST images emulate the spatial features visible in the MODIS

LST data with the same sharpness and contrast (they appear somewhat blurry).
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Figure 3.8: The 3-month mean MODIS LMI and SEVIRI 1 km and 4 km LMI images
for (a) 10:30 UTC and (b) 22:30 UTC. The prevalent thermal clusters are highlighted
(tones of blue for SEVIRI and tones of red for MODIS).

The high homogeneity of the DLST data affects the extraction of spatial infor-

mation from the generated data. In this work, the high similarity of adjacent DLST

pixels led to the estimation of larger LMI clusters and higher LMI values, and thus to

the extraction of larger hotspots. This is evident especially for the daytime data (Fig-

ure 3.8a), where the dominant MODIS LMI (orange shapes) and SEVIRI DLST LMI

(blue shapes) hotspots differ in size (Figure 3.8a). For the 22:30 UTC data (Figure

3.8b) the blurriness impact is minor since the nighttime LST values are intrinsically

homogeneous. In general, the nighttime LMI-derived MODIS and SEVIRI hotspots

are similar (Figure 3.8b).
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3.3.6 Assessment of the DLST spatial pattern diurnal evolution

In Figure 3.9 the diurnal evolution of the 4 km LST-derived LMI and the correspond-

ing 1 km DLST-derived LMI is presented. According to the 4 km LMI data the study

area’s diurnal cycle can be perceived as a five-phase cycle. During the first phase

the Apennine Mountains and Rome’s SUHI effect are the prevalent LST spatial fea-

tures (the former remains strong throughout phase 1 and also the entire day, while

the latter weakens with the passage of time). In phase 2 the rural region becomes a

prevalent thermal cluster that is warmer than the city of Rome, and thus an urban

sink phenomenon occurs [120]. In phase 3 the most complex LST patterns occur: at

10:30 UTC the eastern part of Rome forms a well-defined cluster that is warmer than

the western part and stands out from the surrounding rural area, while at 13:30 UTC

the east and west parts of Rome have similar LST values and form a unified cluster

centred over Rome. During phase 4 the LST values start to drop and the rural ther-

mal pattern weakens until it disappears. The cluster corresponding to Rome shrinks

but remains prevalent. In the last phase the predominant spatial patterns are those

induced by the mountainous region and Rome’s SUHI, similar to phase 1 (Figure 3.9,

19:30 and 22:30 UTC). The success of the downscaling process depends on how well

the DLST time series can emulate the characteristics of the aforementioned diurnal

cycle.

In general, the diurnal evolution of the DLST spatial patterns follows the five-

phase cycle discussed above. However, the DLST scheme did not reproduce the

urban sink phenomenon observed at the 4 km 07:30 UTC LMI image (Figure 3.9c).

This is an important issue because it can adversely impact the analysis of the SUHI

diurnal evolution. Another issue observed is that the strength of the diurnal spa-

tial changes is weaker in the generated DLST data than in the original SEVIRI LST

data as Figures 3.7d and 3.7e reveal. Specifically, the phase 2, 3 and 4 Rho values

corresponding to the DLST data are considerably higher than the reference data (red

curves, Figure 3.7). This finding suggests that the increased similarity of the DLST

data made the diurnal cycle changes less pronounced, and thus the generated day-

time and nighttime DLST data more similar. Finally, Figures 3.7f and 3.7g show that

the diurnal evolution of the DLST data is smooth as Rho is equal to approximately 1

for every case. In these figures, at the time spots where the ACP change takes place,

a minor drop of 0.02 (Rho ≈ 0.98) is observable that is considered not important.

Hence, it can be suggested that the use of a large number of LST predictors with a
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SVM was able to compensate the sudden change of LST predictors.

3.3.7 Assessment of the DLST Potential to Emulate LST Temporal Fea-

tures

The last stage of the evaluation process is the assessment of the DLST time series’

potential to emulate the temporal features of the original 4 km LST time series. In

Figure 3.10 the mean, minimum and maximum LST and DLST values for each image

of the original SEVIRI 4 km and the generated 1 km datasets are presented for the

period under study (Summer 2014). The retrieved 4 km LST and 1 km DLST values
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are very similar and form a sine-wave like pattern. These two characteristics suggest

that the DLST data adequately preserved the radiometry of the original data and

thus were capable to retain the smooth increases and decreases of the measured

4 km LST values.
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The long-term seasonal effects on the DLST spatial patterns are studied in Figure

3.11 by estimating the Rho between the first image of each employed dataset (i.e.

the MODIS LST and SEVIRI DLST time series) and the rest (as discussed in §3.2.1

and presented in Figure 3.2a). Specifically, the expected declining Rho trend due to

the seasonal effects is observable only for the daytime data but very weakly (Figures

3.11b-c). For the nighttime data the linear fits (Figures 3.11a-d) are almost horizontal.

This is mostly due to the fact that the utilised data correspond to the same season

of the year. The most interesting observation though concerns the magnitude of the

Rho values obtained. Specifically, the MODIS Rho values are lower (by 0.1 to 0.2)

than the ones derived from the SEVIRI DLST dataset. This observation hints that

the generated DLST spatial patterns are more similar than the measured LST data

(a similar issue was noticed when the daytime and nighttime DLST spatial patterns

were compared in §3.3.6) and that the downscaling process could not represent the

spatial thermal changes as pronouncedly as the measured data could.

01:30 UTC

MODIS LST Linear fitSEVIRI DLST Linear fit

a.

160 170 180 190 200 210 220 230 240

13:30 UTC
b.

22:30 UTC
d.

10:30 UTC
c.

1.0

R
h
o

0.0

0.2

0.4

0.6

0.8

1.0

R
h
o

0.0

0.2

0.4

0.6

0.8

1.0

R
h
o

0.0

0.2

0.4

0.6

0.8

1.0

R
h
o

0.0

0.2

0.4

0.6

0.8

160 180 200 220 240

DOY
160 180 200 220 240

DOY

160 180 200 220 240160 180 200 220 240

Figure 3.11: The Rho between the first 1 km LST/DLST image of each dataset and
the rest.



72 Chapter 3. Assessing the DLST Spatiotemporal Inter-relationships

3.4 Discussion

The downscaling of temporally-dense geostationary LST has the potential to com-

pensate the lack of high spatiotemporal LST time series. To deem the downscaling of

geostationary LST time series successful and capable to capture the spatial and tem-

poral variations of the Earth’s thermal landscape, the generated high spatiotemporal

DLST time series must reproduce the spatiotemporal features of the coarse-scale LST

time series with greater spatial detail. To investigate this issue, this work studied the

accuracy, the correct pattern formation, and the temporal changes of a downscaled

three-month long SEVIRI LST time series depicting the city of Rome in Italy and the

surrounding rural area.

The results suggest that the downscaling process operated in a consistent man-

ner, preserved the radiometry of the original SEVIRI data and generated noon, after-

noon and nighttime spatial thermal patterns that were similar with those present in

the evaluation data. Moreover, the results also suggest that the downscaling of ur-

ban pixels is more challenging than for rural pixels, both for daytime and nighttime

images. Furthermore, the evaluation process showed that the diurnal evolution of

the generated data was smooth but the autocorrelation of the 1 km DLST data was

higher than of the original 4 km LST data. This suggests that the DLST data could not

present subtle spatial thermal changes during the course of a day as pronouncedly

as the measured data could. These findings (even though confined to this study)

reveal a series of issues, that using only conventional DLST evaluating schemes (i.e.

comparisons with independent LST data confined to certain time spots) would re-

main unnoticed. Generalising the aforementioned observations, the assessment of

high spatiotemporal DLST data should consider also the following issues:

• The capability of the DLST data to accurately emulate the diurnal pattern cycle.

• The capability to detect subtle diurnal spatial thermal changes.

• The smoothness of the diurnal evolution of the DLST data.

• The consistent performance of the employed downscaling method.
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3.5 Concluding Remarks

The exploitation of the DLST spatiotemporal inter-relationship for evaluation pur-

poses can overcome some of the limitations posed by the lack of ground truth data

and facilitate the assessment of the issues listed above. Presently, this matter is over-

looked. However, the capability of the downscaling process to accurately emulate

the DLST diurnal cycle values and patterns, and the time series’ temporal charac-

teristics is crucial. This is because these two features ultimately determine the ex-

ploitability of the DLST time series for generating added value products and ser-

vices for the study of the urban thermal environment such as, the estimation of air

temperature, the SUHI analysis, and the heat wave hazard assessment. Besides the

difficulties and the limitations currently faced, the generation of geostationary DLST

time series is an important advancement of thermal remote sensing that has the po-

tential to compensate the lack of LST data that combine high spatial and temporal

resolution.
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Chapter 4

High-Resolution Characterisation

of the LST Temporal Dynamics

4.1 Introduction

Information about the Earth’s LST and its temporal dynamics, including diurnal,

seasonal, annual and inter-annual variations, is key for calculating the exchange of

energy and water between the land and the atmosphere, for mapping the thermal

landscape, and for studying climate change [14, 80, 121]. The LST temporal varia-

tions are driven by the Earth’s diurnal and annual cycles and are conveyed differ-

ently from place to place based on differences in geographic location, topography,

meteorology, and the surface’s ability to conduct, convect and store heat [1, 2, 122].

Accurate knowledge of the LST diurnal and annual temperature cycles (DTC and ATC,

respectively) can lead to better understanding of the surface’s thermal behavior and

its physical properties [58, 59]. Additionally it can also facilitate the identification

and correction of land surface model deficiencies [123].

In recent years, several studies have proposed models that are directly fitted to

satellite-derived LST and approximate either the LST DTC or ATC. The primary

driver of the LST DTC is the rotation of the Earth around its axis, which results in

the alternation between day and night. For this reason, LST DTC models (e.g. [58,

57, 124, 125, 126]) are usually a combination of two functions, the first for modelling

the sun heating effects and the second the LST decay that starts after solar noon.

For instance, in Göttsche and Olesen [58] the LST DTC has been approximated by

a combination of a cosine and an exponential decay function, while in Inamdar et

al. [124] and Duan et al. [125] by a cosine and a hyperbolic decay function. How-

ever, when aerosols and dust are present, the use of a cosine function can result in
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increased errors as demonstrated and addressed in [57]. In contrast to the LST DTC,

the LST ATC is driven by the seasonal variations of the incoming solar radiation (in-

solation). These variations are caused by the Earth’s axial obliquity to the ecliptic,

which results in different LST ATCs for tropical, mid-latitude and polar regions. In

the tropics the annual LST variation is comparably low and has two annual maxima

(at the two equinoxes), whereas in the polar regions the LST ATC has only one max-

imum (at each hemisphere’s summer season [127]). In mid-latitude regions, such as

Europe, the ATC exhibits strong seasonality and has been effectively modelled using

a sine function plus a constant term (e.g. [80, 59, 78, 128, 129, 130]).

An important advantage of LST DTC and ATC models is that they can be reduced

to a set of key cycle parameters (diurnal or annual) like the LST mean, amplitude,

peak time and phase shift (such parameters are the ACP introduced in §2.2). These

model-derived parameters are gap-free, provide a generalised characterisation of

the cloud-free LST dynamics, and are more informative and representative of the

surface’s thermal characteristics than individual LST measurements [59, 57]. The

most accurate DTC models parameterise the LST diurnal cycle using six parameters

(e.g. [57]). This implies that they require at least six LST observations per day as

input, which only geostationary satellites can offer (Figure 1.8). To use DTC models

with LST from polar orbiting satellites (maximum four observations per day), the

users should either employ a less accurate [131] four-parameter model or fix some

of the six parameters as constants [125]. In contrast to DTC models, ATC models can

be fitted to LST data from both geostationary and polar-orbiting platforms without

any changes or assumptions. So far ATC models have only been used with LST

from polar-orbiting platforms (e.g. [80, 59, 78, 128]). Such data offer a fine GSD but

limit the ATC modelling to the satellite overpass times and thus the derived cycle

parameters are only snapshots that refer to certain times-of-day.

Both LST DTC and ATC models are extremely useful and for this reason consid-

erable improvements have been achieved over the last decade. Nonetheless, mod-

elling only the DTC or the ATC, provides an incomplete picture of the LST spa-

tiotemporal dynamics, which vary both as a function of time-of-day and DOY. To

address this gap, further research is required on the development of methodologies

that simultaneously model the DTC and ATC. Such methodologies should result in

cycle parameters that represent the complete diurnal and annual LST dynamics with

adequate spatial and temporal detail. This chapter presents such a method.
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4.2 Materials and Methods

4.2.1 Research Objective and Method Overview

The research objective of this work is to develop a methodology that can be used so

as to characterise the diurnal and annual temporal dynamics of LST with increased

spatial and temporal detail. To achieve this, the workflow presented in Figure 4.1

is proposed. In particular, the key idea is to iteratively fit an ATC model on diurnal

geostationary data and generate several sets of cycle parameters for different times-

of-day (at regular and frequent time intervals). Separately, each set of cycle param-

eters provides only a snapshot of the annual LST dynamics that corresponds to a

certain time-of-day. When combined however, these sets can represent the complete

diurnal and annual LST climatological cycle. This information is what is required for

characterising the LST temporal variation, but because the cycle parameters are de-

rived from geostationary data their GSD is too coarse. Hence, to attain the research

objective set above, the spatial resolution of the derived cycle parameters should be

increased.
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Figure 4.1: Overview of the proposed method for estimating fine-resolution LST
cycle parameters.



78 Chapter 4. High-Resolution Characterisation of the LST Temporal Dynamics

To achieve this, the proposed method uses a spatiotemporal fusion scheme [132].

This image processing operation is used for blending multi-source image data, with

either the desired temporal or spatial resolution, into a single dataset that retains

the desired fine spatial and temporal resolution. The use of a spatiotemporal fusion

algorithm is based on the availability of at least one collocated and concurrent pair

of fine- and coarse-resolution image data and its workflow can be briefly described

as follows: first, the algorithm establishes a relation between the radiometric and

spatial information of the existing fine- and coarse-resolution image pair, and then it

applies this relationship to the available coarse-resolution images so as to complete

the time series of the fine-resolution data. To relate the concurrent and collocated

fine (F ) and coarse (C) resolution images, the algorithm assumes that over a homo-

geneous region a fine and a coarse-resolution pixel acquired at time t0 (F (xi, yj , t0)

andC(xi, yj , t0), respectively) would differ only due to system biases (i.e. sensor cal-

ibration, random noise, difference in SZA and scale, processing methods etc.). Thus

the relationship between F (xi, yj , t0) and C(xi, yj , t0) is:

F (xi, yj , t0) = C(xi, yj , t0) + γ0 (4.1)

where, γ0 is the difference due to system biases. Similarly, for another acquisition

time tκ, Eq. 4.1 can be written as:

F (xi, yj , tκ) = C(xi, yj , tκ) + γκ (4.2)

If the land cover of the target and sensor calibrations have not changed between t0

and tκ, then it can be reasonably assumed that γ0 = γκ = γ. Hence, solving Eq. 4.1

for γ and then substituting it in Eq. 4.2 gives:

F (xi, yj , tκ) = F (xi, yj , t0) + [C(xi, yj , tκ)− C(xi, yj , t0)] (4.3)

Eq. 4.3 is the core idea of spatiotemporal image fusion and shows that the fine-

resolution image at tκ can be predicted from an already known fine-resolution im-

age plus the temporal differences of the corresponding coarse-resolution image data

[132]. It is important to note that Eq. 4.3 holds true only for homogeneous pixels,
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which are very rare (especially at coarse resolutions). To be able to use this method-

ology for heterogeneous pixels, additional information is required [132]. This in-

formation is retrieved from neighbouring pixels and is introduced in Eq. 4.3 as a

spatiotemporal weighting function W :

F (xi, yj , tκ) = F (xi, yj , t0) +Wijk [C(xi, yj , tκ)− C(xi, yj , t0)] (4.4)

Initially spatiotemporal fusion was proposed for use with reflectance data [132] but

it performs well also with TIR remote sensing data, as recently demonstrated in [133,

134, 135]. This work aims to use such a scheme so as to to increase the spatial reso-

lution of the geostationary cycle parameters by blending them with corresponding

cycle parameters retrieved from fine-resolution LST data.

To test and assess the performance of the proposed method, the workflow pre-

sented in Figure 4.1 is applied on cycle parameters derived from SEVIRI LST and

MODIS LST. The study area is Europe and the ATC model used for deriving the cy-

cle parameters is the sine-based ACP model presented in [59, 80] and discussed in

§2.2 of this thesis. The cycle parameters derived from this model are the mean an-

nual LST, the yearly amplitude of LST and the phase shift from the spring equinox,

which are known as MAST, YAST and Theta, respectively (Figure 2.1). Following

this introductory section, the proposed method is thoroughly discussed in §4.2.2

and §4.2.3, where the retrieval of the SEVIRI and MODIS ACP and the devised spa-

tiotemporal fusion scheme are explained, respectively.

4.2.2 ACP Retrieval

Two five-year (2009-2013) time series of LST data are used in this work for retriev-

ing the required ACP. The first is from SEVIRI and the second from MODIS (i.e.

the MOD11A1 and MYD11A1 v.6 LST product). The SEVIRI time series has a tem-

poral resolution of 30 min (it comprises 84,386 LST images) and has been obtained

from Land-SAF that operationally generates, archives and disseminates diurnal LST

of Europe and Africa [87]. Land-SAF’s LST are retrieved on a pixel-by-pixel basis

from the 10.8 µm and 12.0 µm TIR radiances of Meteosat-10 SEVIRI with a nominal

accuracy of 1-2 K [97, 136]. The LST retrieval is performed using a generalised SW

algorithm (see §1.2.4) that takes also as input the land surface emissivity, the atmo-

spheric WVC and the SZA [97]. The GSD of the employed SEVIRI data for mainland
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Europe ranges from approximately 4 km at 35◦ to 6 km at 50◦N. In contrast to the SE-

VIRI LST, the MOD11A1 and MYD11A1 LST are available only for four time during

a day and have a finer GSD of 1 km. These data are disseminated from NASA’s EOS-

DIS and are retrieved from the MODIS band 31 and band 32 TIR radiances using a

similar generalised SW algorithm (see §2.3.3 for data accuracy and properties).

To retrieve the ACP from the SEVIRI and MODIS LST, each time series was di-

vided into n groups according to the LST acquisition time, i.e. for SEVIRI: 00:00,

00:30, 01:00, ..., 23:30 UTC (n = 48) and for MODIS: 01:30, 10:30, 13:30 and 22:30

equatorial crossing time (n = 4). Next the LST data of each group were stacked

according to their acquisition day-of-cycle (d ∈ [1, 2, ..., 365]) and each group’s stack

was fitted with the ATC model of Eq. 4.5. The fitting was performed on a pixel-by-

pixel basis as discussed in [59] using a least square optimization.

T̂s(d) = MAST + YAST sin

(
2π

365
d+ Theta

)
(4.5)

For each LST group, the model fitting was conducted1 on a server with 4 sockets of

AMD Opteron (Abu-Dhabi) 6386 SE (16 cores each, 1.4 to 2.8 GHz) and 256 GB RAM

using an unconstrained nonlinear optimization algorithm (see [59] for details). The

derived ATC models were then reduced to n sets of MAST, YAST and Theta image

data (i.e. 48 for SEVIRI and 4 for MODIS).

For use in the spatiotemporal fusion scheme, the SEVIRI ACP were then repro-

jected from the geostationary satellite view projection to a regular grid of 0.05◦ ×

0.05◦ and corrected for time differences. In particular, because the original land-SAF

LST data are in UTC time (Coordinated Universal Time; tUTC), so are the derived

ACP data. This implies that pixels of the same image correspond to different local

solar times (tsolar) and hence to different phases of the LST diurnal cycle [137]. These

time differences are a function of longitude (Λ) and for mainland Europe they can

range between -0.7 h at 10◦W and +2.0 h at 30◦E (they are 0 over the Greenwich

meridian, ΛGreenwich = 0◦). Hence to address this issue Eq. 4.6 was employed for

converting the tUTC (where tUTC = 00:00, 00:30, 01:00, ..., 23:30 UTC) of each SEVIRI

pixel to the corresponding tsolar values.

tsolar(Λ) = tUTC +
Λ

15◦
(4.6)

1The model fitting was conducted by Dr. Benjamin Bechtel at the Institute of Geography of the
University of Hamburg in Germany.
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Then, using the derived tsolar values, each pixel’s MAST, YAST and Theta were lin-

early interpolated for every 30 min starting from 00:00 local solar time. The result of

this process is a time-consistent set of three SEVIRI data cubes (a MAST, a YAST and

a Theta), where each cube comprises 48 images of half-hourly MAST, YAST or Theta

data.

Finally, in order to establish a common spatial framework between the MODIS

and SEVIRI data, the SEVIRI ACP retrieved at the previous step were re-projected

to the MODIS sinusoidal grid and supersampled to a GSD of 1 km.

4.2.3 Spatiotemporal Fusion of MODIS and SEVIRI ACP

To blend the SEVIRI (S) and MODIS (M ) ACP (either the MAST, YAST or Theta) into

a single high spatiotemporal dataset, the two-pair fusion scheme presented in Fig-

ure 4.2 is used. In particular, for a time-of-day tκ, the proposed scheme utilises two

SEVIRI-MODIS pairs—a daytime and a nighttime—and estimates the correspond-

ing fine-resolution ACP as the average (Eq. 4.7) of the fused images derived from

each pair (Mfus,1 and Mfus,2, respectively).

Mfus(xi, yj , tκ) =
Mfus,1(xi, yj , tκ) +Mfus,2(xi, yj , tκ)

2
(4.7)

The utilised SEVIRI-MODIS pairs—available at t1 and t2—are defined in such a way

that t1 < tκ < t2. Hence, the fused image from the first pair is given by Eq. 4.8a

(corresponds to Eq. 4.4) and the one from the second pair by Eq. 4.8b. The latter is

analogous to Eq. 4.4 and is derived by subtracting the weighted SEVIRI temporal

difference from the MODIS ACP instead of adding it (as done for Eq. 4.8a).

Mfus,1(xi, yj , tκ) = M(xi, yj , t1) +Wij1 [S(xi, yj , tκ)− S(xi, yj , t1)] (4.8a)

Mfus,2(xi, yj , tκ) = M(xi, yj , t2)−Wij2 [S(xi, yj , t2)− S(xi, yj , tκ)] (4.8b)

In this work two daytime and two nighttime SEVIRI-MODIS pairs are available

approximately at 10:30 and 13:30 local solar time and 01:30 and 22:30, respectively.

To select which ones to use, the Rho2 between the corresponding SEVIRI and MODIS

ACP (upscaled to the SEVIRI grid) is calculated and the pairs that provided the

highest values for all three ACP are the ones selected (the same pairs are used for
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Figure 4.2: A graphical representation of the employed two-pair spatiotemporal
fusion scheme. The top line corresponds to the SEVIRI ACP, the mid line to the
MODIS ACP and the bottom line to the output high spatiotemporal ACP dataset.

fusing the MAST, YAST and Theta data). For this study the selected daytime pair

is the 10:30 and the nighttime is the 01:30. Hence for the cases where tκ is < 10:30,

the 01:30 SEVIRI-MODIS pair is assigned as the t1-pair and the 10:30 SEVIRI-MODIS

pair as the t2-pair. For the cases where tκ is > 10:30 the reverse configuration is used.

At 01:30 and 10:30 local solar time the MODIS ACP are included "as is" in the final

dataset, as shown in Figure 4.2, while the remaining 13:30 and 22:30 MODIS ACP

are used for evaluation.

The weights Wij1 and Wij2 in Eqs. 4.8a and 4.8b, respectively, are estimated

separately from each SEVIRI-MODIS pair using a filter operation that is based on a

moving window of sizew. Within the moving window four metrics are calculated in

a pixelwise manner and are then combined into a single weight (i.e. theWij1 for pair

1 and the Wij2 for pair 2). These four metrics are the similarity degree, the euclidean

distance, the scale difference and the ATC difference.

The similarity degree (SDijtpair) is given by Eq. 4.9 and is the absolute difference

between each window pixel and the central pixel (xw/2, yw/2). It is estimated using

information only from the fine-resolution MODIS ACP at tpair (either t1 or t2) and

a small value of SD implies a high degree of similarity with the central pixel [133].

This in turn means that a large weight should be assigned to this pixel.

SDijtpair =
∣∣M(xi, yj , tpair)−M(xw/2, yw/2, tpair)

∣∣ (4.9)
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The euclidean distance metric (EDij) is given by Eq. 4.10 and is used so as to weight

pixels closer to the central pixel more than pixels that are more distant. This is jus-

tified on the basis of Tobler’s first law of geography [66], which implies that nearby

pixels are more similar than distant pixels due to spatial autocorrelation [133].

EDij =

√(
x− xw/2

)2
+
(
y − yw/2

)2 (4.10)

The third metric is the scale difference (ScDijtpair) and is equal to the absolute dif-

ference of the corresponding MODIS and SEVIRI ACP at tpair (either t1 or t2). This

metric is also adopted from [133] and is used as an approximate measure of homo-

geneity between the MODIS and SEVIRI ACP. Like the SD, a small ScD implies a

stronger similarity between the MODIS and SEVIRI ACP, which in turn means that

a large weight should be assigned to this pixel.

ScDijtpair =
∣∣M(xi, yj , tpair)− S(xi, yj , tpair)

∣∣ (4.11)

Lastly, the final metric used is the ATC difference (ADij) between each fine-resolution

window pixel and the central pixel. This metric is calculated from the MODIS ACP

using Eq. 4.12, where T̂s is the modelled LST derived from Eq. 4.5 for a subset of

DOYs given by d = 4 + 15n, where n = 0, 1, ..., 24.

ADij =

√√√√∑24
n=1

[
T̂s(xi, yj , d)− T̂s(xw/2, yw/2, d)

]2
n

(4.12)

Each one of the above metrics is adjusted using an exponential decay function so as

to enhance the contribution of the most similar pixels. The retrieved values are then

rescaled to range between 0 and 1 and to sum to 1. The rescaling is done in order

the four metrics to have comparable values. The aforementioned two processes are

performed using Eq. 4.13, where X is one of the SD, ED, ScD and AD and Aκ is a

parameter for fine-tuning the exponential decay function (after sensitivity analysis

Aκ is set to 6 for SD, 0.3 for ED, 3 for ScD and 3 for AS).

WX(xi, yj) =
e−AκX(xi,yj)∑w2

i=1 e
−AκX(xi,yj)

(4.13)

The last step for calculating the fusion weightsWijtpair is to combine the four weights

derived from Eq. 4.13 into a single weight using Eq. 4.14 (one for each pair), as done
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in [132] and [133]. This equation also ensures that the sum of the weights is always

equal to 1.

Wijtpair =
WSDWEDWScDWAD∑w2

i=1WSDWEDWScDWAD
(4.14)

The fusion weights Wij1 and Wij2 are calculated only from the moving window

pixels that are similar to the central pixel. These pixels are identified using Eqs.

4.15 and 4.16. The first equation is used so as to generate four binary mask for each

MODIS ACP (available at 02:00, 11:00, 13:00 and 22:00), while the second so as to

calculate their intersection (Eq. 4.16). This approach ensures a rigorous selection of

similar pixels (the selection of high quality similar pixels is of paramount importance

for the success of the fusion algorithm [132]) and also that the corresponding fused

MAST, YAST and Theta data are estimated from the same SEVIRI pixels.

MaskACP
ijtpair

=


1 if SDijtpair ≤ mσSD

0 if SDijtpair > mσSD

(4.15)

Maskij =

 4⋂
tpair=1

MaskMAST
ijtpair

 ∩
 4⋂
tpair=1

MaskYAST
ijtpair

 ∩
 4⋂
tpair=1

MaskTheta
ijtpair

 (4.16)

In Eq. 4.15 σSD is the standard deviation of the SD (Eq. 4.9) for all the pixels inside

the moving window and m ∈ (0, 2] is a scale factor for controlling how strict the

selection process should be.

The value of m and the size of the moving window w should be jointly deter-

mined because they have a major impact on the processing time and the fusion

accuracy (e.g. if m and w are too small the algorithm performs faster but it may

not be able to find similar pixels; in contrast if they are too large the algorithm per-

forms slower and it can use low-quality pixels). To identify the optimal m and w

values, a sample of regularly placed pixels (every 15 km) that cover the study area

is extracted from the data and the aforementioned two-pair fusion algorithm is ap-

plied to each one of them separately. In detail the fusion algorithm is executed it-

eratively for various combinations of w = 2r + 1 and m, where r = 2, 4, ..., 28 and

m = 0.25, 0.5, ..., 2. The output ACP are then compared with the corresponding

MODIS reference MAST, YAST, Theta and for each one the Rho2 is calculated. The

r and m values that are finally selected are the ones that are closer to the origin and

give a Rho2 (rounded to the second decimal) that it does not increase by more than
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1% in the next iterations (the same r and m values are used for all three ACP, as

shown in Figure 4.3 for MODIS tile h18v04).

Window Radius (pixels) Window Radius (pixels) Window Radius (pixels)

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

0.5

1.0

1.5

2.0

m

0.6 0.7 0.8 0.9

Rho2

MAST YAST Theta
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Figure 4.3: The results of the sensitivity analysis regarding the selection of parame-
ter m and the window radius r for MAST, YAST and Theta for MODIS tile h18v04.

4.2.4 Biogeographic Analysis of the SEVIRI ACP

To further analyse the SEVIRI ACP it is hypothesised that they form a three dimen-

sional (3D) MAST-YAST-Theta feature space where pixels with similar characteristics

in terms of climate, geography, and land cover populate distinct subspaces. To in-

vestigate this hypothesis the following experiment is performed. Using a systematic

random sampling so as to reduce the impact of spatial autocorrelation, a sample of

MAST, YAST and Theta triads corresponding to various times-of-day is extracted. To

obtain this sample, a regular point grid is used that extends over mainland Europe

and has a cell size of 0.5◦×0.5◦ (Figure 4.4). Then using the European Environmental

Agency’s Biogeographic Regions of Europe dataset (version 2016.1), each grid point

is assigned to a biogeographic region. Europe is divided in eleven biogeographic re-

gions, namely: alpine, anatolian, arctic, atlantic, black sea, boreal, continental, mac-

aronesian, mediterranean, pannonian and stepic that exhibit distinct characteristics

in respect to climate, physical geography, geology, vegetation and land cover. This

analysis focuses only on the atlantic, continental, mediterranean and pannonian re-

gions (Figure 4.4), which together cover more than 85% of the study area (10◦W,

32◦N to 30◦E, 50◦N). For each biogeographic region a sample of 1500 MAST, YAST

and Theta triads corresponding to various times-of-day, is randomly extracted and

mapped in a 3D MAST-YAST-Theta feature space. To assess if the four samples are
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from the same population (and thus the aforementioned hypothesis should be re-

jected) or from different populations, a Kruskal-Wallis non-parametric test with a 1%

significance level is used. The normality of each MAST, YAST, and Theta sample is

also tested using a one-sample Kolmogorov-Smirnov test and an Anderson-Darling

test with a 5% significance level.
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Figure 4.4: The atlantic, continental, mediterranean and pannonian biogeographic
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4.3 Results

4.3.1 The SEVIRI ACP

The derived SEVIRI MAST, YAST and Theta ACP are presented in Figures 4.5, 4.6

and 4.7, respectively. Daytime and nighttime MAST exhibit a clear latitudinal gra-

dient from South to North with a strong impact of topography, as it can be seen

over the Alps and the Carpathian Mountains. At solar noon (tsolar = 12:00) Europe’s

MAST ranges from 270 K to 315 K (mean± σ is 293±6 K), with the highest values to

correspond to the Iberian Peninsula and the lowest to the Alps. At 05:00 local solar

time, which is close to the LST diurnal low, MAST ranges from 258 K to 295 K (mean

± σ is 277± 4 K) and follows a similar spatial distribution, where the southern areas

are hotter than the northern. The difference between the MAST image for tsolar =

12:00 and the one for tsolar = 05:00 reveals that the diurnal amplitude of MAST

decreases as we move north but it is also strongly affected by elevation and land
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cover. For instance, Paris (France) and London (United Kingdom) have a consider-

ably higher MAST diurnal amplitude compared to their surrounding less urbanized

areas. Overall, the MAST spatial patterns are more complex during daytime than in

nighttime and also in southern Europe than in northern. This is because southern

Europe is more arid than the northern and the higher proportion of bare soil and

sparse vegetation areas result to a more heterogeneous LST spatial distribution.

In contrast to MAST, YAST exhibits a longitudinal gradient with enhanced dif-

ferences between the Atlantic coast and inland Europe. Figure 4.6 clearly shows that

the YAST gradient is strongest at the northeastern part of the study area and that

during the day it expands to the west until it reaches its highest peak at approxi-

mately 16:00 local solar time. It then retracts again to the northeast as it can be seen

in Figure 4.6. Even though the Iberian Peninsula is at the westernmost part of Eu-

rope it is also a strong YAST hotspot, much stronger than its neighbouring France.

This is most probably due to its land cover and climate. The highest YAST values

are observed between 08:00 and 17:00 local solar time. For inland Europe, YAST ex-

hibits a local maximum at approximately 09:00 (mean ± σ is 14 ± 3 K) and a global

maximum at approximately 16:00 (16± 3 K). In coastal areas the YAST diurnal curve

exhibits a different shape than inland areas and has only one maximum close to so-

lar noon (tsolar = 12:00). During nighttime YAST is considerably lower than during

daytime. In particular the mean ± σ difference between the 16:00 and 03:30 YAST

is 11± 2 K. Furthermore, the YAST spatial patterns are much smoother in nighttime

than in daytime as it can be clearly seen over Greece, Spain and at the northeast-

ern part of the study area. Similar to MAST, topography also affects YAST but the

corresponding spatial patterns are not as pronounced as they are for MAST.

Theta, which is the third ACP and a measure of the surface’s heat uptake latency,

is presented in Figure 4.7. One of the most interesting findings of this work is that

Theta varies over the day and that it is greatest (in absolute values) during night-

time. In particular, the mean ± σ Theta for the entire study area is −35 ± 5 days at

02:30 local solar time, −24 ± 4 days at 07:30, −25 ± 8 days at 12:30, −22 ± 5 days

at 17:30, and −32 ± 5 days at 22:30. To that end, Figure 4.7 clearly shows that the

diurnal variation of Theta is not the same over Europe but it exhibits pronounced

spatial patterns (both in daytime and nighttime) that are related to land cover, dis-

tance from water bodies, and topography. Overall, the magnitude of Theta (both in

daytime and nighttime) is higher in the Mediterranean Europe than in the Central
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and Eastern Europe, which is probably due to land cover and proximity to the sea

(water has a high heat capacity). To that end, the spatial variability of Theta is also

more heterogeneous over the Mediterranean region, where several clusters of high

and low Theta values can populate an area of limited extend as it can be seen over

the Balkans in Figure 4.7 (at 10:00 local solar time). In Central and Eastern Europe

the spatial distribution of Theta is considerably more uniform and the daytime and

nighttime Theta spatial clusters cover much larger areas. Another interesting ob-

servation is that Theta exhibits the most uniform spatial distribution close to sunrise

and sunset as it can be seen from Figure 4.7 at 07:30 and 17:30 local solar time. Similar

to MAST and YAST, the influence of topography is also evident in Theta. In detail,

Europe’s mountains exhibit large absolute Theta values, which imply that the LST

of mountainous regions peaks later in the year in respect to the rest of Europe. This

observation agrees well with the fact that the peak temperature in alpine regions is

delayed due to the persistence of coldness and the high albedo of snow cover.

Together these three datasets can be used to reconstruct the full annual and diur-

nal LST climatology of each SEVIRI pixel over mainland Europe. An example for a

randomly selected pixel is presented in Figure 4.8.

4.3.2 ACP Feature Space

To assess the information content of the half-hourly SEVIRI ACP data, their differ-

ences among the four primary biogeographic regions of mainland Europe are stud-

ied (Figure 4.4). In particular it is hypothesised that the half-hourly ACP data form a

MAST-YAST-Theta feature space where the atlantic, continental, mediteranean and

pannonian biogeographic regions populate distinct subspace. To that end Figure

4.9 shows that the MAST-YAST-Theta data form a unified cluster where there is a

clear distinction between the atlantic (blue), continental (purple) and Mediterranean

(green) subspaces, while the Pannonian region cluster (red) is partially nested inside

the continental cluster. The position of each cluster is in accordance with the obser-

vations made above using the Figures 4.5, 4.6 and 4.7. In particular, the mediter-

ranean biogeographic region corresponds to a subspace of high MAST and Theta

values but moderate YAST, while the alpine to a subspace of low MAST, moderate

YAST and high Theta (in absolute values). The atlantic region corresponds to a sub-

space of low MAST, YAST and Theta and the continental region to a subspace of low

MAST, moderate Theta but high YAST. For every case the employed Kruskal-Wallis
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Figure 4.8: Combined climatological annual and diurnal LST cycle for an example
SEVIRI pixel over Europe based on the proposed methodology.

test was against the null hypothesis at the 0.01 significance level, which suggests that

the four samples are not from the same ACP population.

4.3.3 Similarity of SEVIRI-MODIS ACP and Accuracy of Fused ACP

The SEVIRI and MODIS ACP used in this work are highly compatible, as evident

in Figure 4.10 and Table 4.1. For MAST, Rho is close to 0.95 for all cases but the

bias, MAE and RMSE statistics are greater for the daytime data than the nighttime

data. In particular the daytime SEVIRI MAST is warmer by about 2.0 K in respect to

the corresponding MODIS MAST (a similar observation is made in [97]), while the

nighttime MAST is colder by approximately 0.6 K. The RMSE and MAE between

the SEVIRI and MODIS daytime MAST are close to 2.3 K and 2.0 K, respectively,

while the corresponding nighttime values are 1.2 K and 0.9 K (Table 4.1). For YAST
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Atlantic Continental PannonianMediterranean

Figure 4.9: The MAST-YAST-Theta 3D feature space for the Atlantic (blue), Conti-
nental (purple), Mediterranean (green) and Pannonian (red) biogeographic regions.

and Theta, the SEVIRI-MODIS ACP differences are minor too. In particular, the

YAST nighttime Rho is approximately 0.94, but it drops to 0.84 for the Terra daytime

data and 0.79 for the Aqua daytime. The corresponding bias, RMSE and MAE are

0.0 K, 0.5 K and 0.4 K, respectively, for the nighttime YAST data and 0.4 K, 1.1 K

and 0.8 K for the daytime data. Theta exhibits also a similar behaviour, where the

statistics of the nighttime data are superior than those from the daytime data. In

particular the nighttime Rho is above 0.9, while the daytime Rho is around 0.87 (see

also Figure 4.10). The Terra and Aqua daytime MAE and RMSE are close to 3.3 and

2.4 days, respectively, while the corresponding nighttime values are 1.4 and 1.9 days,

respectively. Overall the aforementioned results suggest that the SEVIRI and MODIS

ACP are very similar and thus they can be effectively fused into a single dataset.

The performance of the proposed fusion scheme is tested for MODIS tile h18v04

over south-central Europe. This tile is an ideal testbed for evaluating the fusion al-

gorithm, since it covers an area with several land cover classes and terrain types.

To that end Figures 4.11 and 4.12 present the 1 km fused ACP for 13:00 and 22:00
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Figure 4.10: The relationship between the SEVIRI and MODIS ACP for tile h18v04.
For this comparison the MODIS ACP were resampled to the SEVIRI coarse-
resolution grid.

local solar time2, respectively, alongside the corresponding reference MODIS data.

Overall the spatial patterns of the fused daytime and nighttime MAST, YAST and

Theta data are highly similar to the reference ACP. The fusion algorithm was able to

adequately reproduce both major and minor features in the ACP data, such as the

SUHIs of the various cities and the major river basins of Po in Italy and Rhine in Ger-

many (especially pronounced in the corresponding YAST and Theta maps). Linear

features, such as mountain ridges and large rivers, were also reproduced adequately

by the fusion algorithm, as it can be seen over the Alps in Figures 4.11 and 4.12. In

general the algorithm performs robustly over flat areas but it can produce artefacts

over the coastline and also in areas with pronounced topography, such as the the

Alps and the Pyrenees.

2For tile h18v04 the mean solar time of all the MODIS LST observations used for retrieving the ACP
are approximately 02:00 for Aqua nighttime, 11:00 for Terra daytime, 13:00 for Aqua daytime and 22:00
for Terra nighttime.
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Table 4.1: Summary statistics quantifying the difference of the 2009-2013 SEVIRI
and MODIS v.6 ACP for MODIS tile h18v04. The MODIS ACP were resampled to
the SEVIRI coarse-resolution grid.

ACP Data Bias σ RMSE MAE Rho

MAST

Aqua Night −0.4 K 1.0 K 1.1 K 0.7 K 0.96
Terra Day 2.1 K 1.3 K 2.5 K 2.1 K 0.95
Aqua Day 1.6 K 1.5 K 2.2 K 1.8 K 0.94

Terra Night −0.8 K 1.1 K 1.3 K 1.0 K 0.95

YAST

Aqua Night 0.0 K 0.5 K 0.4 K 0.3 K 0.95
Terra Day 0.2 K 0.9 K 1.0 K 0.7 K 0.84
Aqua Day 0.5 K 1.1 K 1.2 K 0.9 K 0.78

Terra Night −0.2 K 0.5 K 0.5 K 0.4 K 0.93

Theta

Aqua Night 0.0 d 1.6 d 1.6 d 1.2 d 0.92
Terra Day −1.8 d 2.9 d 3.5 d 2.4 d 0.88
Aqua Day 0.1 d 3.0 d 3.0 d 2.1 d 0.86

Terra Night −1.2 d 1.7 d 2.1 d 1.6 d 0.91

To assess the accuracy of the fused ACP, several descriptive statistical measures

are used, as shown in Table 4.2. To that end, for MAST the MAE and RMSE are close

to 1.1 K and 1.5 K, respectively, while Rho is 0.97. In respect to the reference MODIS

data, the fused daytime MAST is warmer by 1.7 K, while the nighttime MAST is

colder by −1.1 K. For YAST the fusion algorithm performed better for the nighttime

data than for the daytime data. In particular, the 13:00 RMSE is 0.7 K, while the

22:00 is 0.5 K. The corresponding Rho values are 0.88 and 0.93, respectively, while

the MAE and bias are close to 0.4 K and 0 K, respectively, for both cases. For Theta

the bias, is close to 0, the MAE is close to 1.3 days and the RMSE to 1.7 days. The

Rho for the 13:00 data is 0.92, while for the 22:00 is 0.94. The good performance

of the fusion algorithm is also evident in the scatterplots of Figure 4.13, where the

corresponding point clouds are distributed well over the line of equality (y = x). The

increased MAST bias is caused by SEVIRI and MODIS differences, such as different

VZA and LST retrieval methods, and needs further investigation. In particular the

mean SEVIRI MAST range between 13:00 and 11:00 and 13:00 and 02:00 are 1.8 K and

−15.8 K, respectively, while the corresponding MAST values are 1.4 K and −12.8 K,

which implies that the key assumption that the system biases are constant has to be

reexamined.
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Table 4.2: Summary statistics quantifying the difference of the 2009-2013 fused SE-
VIRI and MODIS v.6 ACP for MODIS tile h18v04.

ACP tsolar Bias σ MAE RMSE Rho

MAST
13:00 1.7 K 1.0 K 1.0 K 1.7 K 0.97
22:00 −1.1 K 0.9 K 1.2 K 1.4 K 0.97

YAST
13:00 0.0 K 0.8 K 0.6 K 0.7 K 0.88
22:00 −0.1 K 0.4 K 0.3 K 0.5 K 0.93

Theta
13:00 −0.4 d 2.1 d 1.6 d 2.1 d 0.92
22:00 0.1 d 1.3 d 1.0 d 1.3 d 0.94

4.4 Discussion

The MAST, YAST and Theta maps of this work present the diurnal and annual dy-

namics of Europe’s LST with increased detail. This information can improve the

current understanding of the thermal behavior of the Earth’s surface and also land

surface models, where the assimilation of LST information has been shown to im-

prove their performance (e.g. [14]). To that end, Yang and Slingo [123] argue, that

prior knowledge of the DTC amplitude and time lag can help identify and correct

model deficiencies, improve model parameterization and also the representation of

the interactions between the surface, the boundary layer, and the free atmosphere.

An advantage of using the ACP methodology to map Europe’s LST dynamics is that

it provides a robust way to handle the high spatiotemporal variability of satellite

LST, which if not properly addressed can lead to erroneous conclusions.

Overall, the MAST and YAST maps of this work are consistent with the estab-

lished understanding of Europe’s temperature gradients, while Theta provides a

more complete picture of the LST peak times. In addition, the SEVIRI ACP data of

this work agrees well with the MODIS ACP presented in [59]. An improvement in re-

spect to the MODIS ACP is that the SEVIRI ACP present the MAST, YAST and Theta

temporal dynamics in full (the MODIS ACP are available only four times within a

day, two at noon and two at night). It has to be noted though, that Theta is the

ACP most difficult to interpret and for this reason further study is necessary. More-

over, the employed two-pair spatiotemporal fusion method proved to be a robust

approach for increasing the spatial resolution of the ACP data, since it achieved

high Rho and low RMSE and MAE values. Future works should test new metrics as

weights, propose post-processing schemes for the removal of artefacts and investi-

gate ways to compensate system biases.
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Figure 4.13: The similarity between the fused and reference ACP for tile h18v04.

This work also suggests that the ACP data form a three dimensional feature space

where areas with similar characteristics in terms of climate, geography, and land

cover populate distinct subspaces. To that end, evidence are provided about the

shape of this feature space and the characteristics of the atlantic, continental and

mediterranean subspaces. The clear distinction between the three biogeographic

subspaces is in line with the findings of Bechtel in [138], where it is shown that

different Köppen climates are related to the ACP. The above further suggest that the

ACP can be used for effective climate classification and thermal landscape mapping,

as initially proposed in [59].

4.5 Concluding Remarks

This chapter proposed a method for reducing the information content of LST time se-

ries into a set of meaningful parameters and presents a series of maps that provide a
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complete picture of Europe’s LST spatiotemporal dynamics and reveal how Europe’s

primary biogeographic regions differ in that respect. To improve the spatial resolu-

tion of the data a two-pair fusion algorithm has been proposed which performed

robustly. The derived ACP data can be used to reconstruct the full annual and di-

urnal LST climatology for each SEVIRI pixel over mainland Europe with increased

spatial resolution. Overall, the results suggest that the derived data can provide an

observation-based, spatially-consistent background for studying and characterising

(at continental scale) the surface’s thermal behaviour and also a dataset to support

climate classification at finer spatial resolution.
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Chapter 5

Conclusions and Future Directions

5.1 Main Findings

This thesis provides new insights into the statistical downscaling of geostationary

LST time series, which can address the lack of high spatiotemporal LST datasets

(Chapters 2 and 3); and advances the methods that analyse and summarise such vo-

luminous datasets using LST cycle models (Chapter 4). The aforementioned three

chapters address the research objectives set in §1.3, as discussed below:

Research Objective 1: to identify LST disaggregation kernels that perform consistently ir-

respectively of time-of-day and thus are suitable for downscaling diurnal LST acquired by

geostationary satellite instruments.

The LST predictors are the most important element of every downscaling scheme,

since they determine the validity of the scale invariance and connectivity assump-

tions. This thesis tested multitemporal LST annual climatology data as LST pre-

dictors and assessed if the employed MAST, YAST and Theta ACP could robustly

downscale daytime and nighttime LST. The underlying rationale is that diurnal ACP

provide information about the LST spatial distribution at different times-of-day and

thus their explanatory power does not vary with time, as is the case for static LST

predictors like NDVI and altitude.

To test this hypothesis a controlled experiment was performed and the downscal-

ing performance of two complementary sets of LST predictors—the first comprising

NDVI, elevation, emissivity and albedo data and the second all of the above plus the

ACP—was assessed. The comparison of the derived DLST suggests that the inclu-

sion of the multitemporal ACP as LST predictors improves the DLST accuracy (both

for daytime and nighttime) and also the DLST spatial patterns in terms of shape, size
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and location. Furthermore, the results of this work show that the ACP can increase

the proportion of the variance that is explained by the derived LST data-predictor

models and that the use of multitemporal ACP as predictors ensures that the LST

interrelationships are replicated more accurately. This is particularly evident in the

assessment of the DLST diurnal range, where the ACP improved the distribution

of the daytime-minus-nighttime DLST values and the shape of the corresponding

spatial patterns.

Furthermore, the land cover analysis of Chapter 2 shows that the ACP can im-

prove the calculation of the DLST diurnal range in urban, rural and vegetated re-

gions and make the spatial distribution of the RMSE more homogeneous. This is

because the ACP, being derived from LST data, incorporate the location-specific vari-

ability and also how this variability changes with time. This in turn implies that they

can perform consistently over various land cover types, landscapes and climatic con-

ditions, which can facilitate the development of LST downscaling schemes that are

not limited to regions with specific landscape and climatic characteristics.

The research findings of Chapter 2 (also published in [62]) contribute to the on-

going debate about what ancillary data should be used as LST predictors and how

they should be configured into sets, considering that their performance depends on

various interdependent factors. In addition, this work provides new insights into the

design of downscaling schemes that are not limited to specific landscapes, times-of-

day and land covers.

Research Objective 2: to investigate if and how well a DLST time series can reproduce the

spatiotemporal features of the original coarse-scale temporally dense LST.

In Chapter 3 a quarter-hourly, 4 km× 5 km, three-month long LST time series was

statistically downscaled to a GSD of 1 km× 1 km and (i) the accuracy, reliability, and

consistency of the downscaling method; (ii) the shape, size, and location of the DLST

spatial patterns; and (iii) the capability of the DLST time series to emulate the diurnal

and seasonal characteristics of the original LST data were assessed. To investigate

these issues, ten assessment tests were used that either compared the DLST data

with corresponding reference data, or exploited the high temporal resolution of the

SEVIRI data so as to assess the DLST spatiotemporal interrelationships.

The image-per-image comparisons with the reference MODIS data revealed that

LST downscaling can indeed perform consistently and reliably and systematically
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provide DLST data with similar RMSE and Rho values. Nevertheless, increased

errors should be expected during daytime hours and over areas with pronounced

morphology, such as urban areas and mountainous regions. This is due to thermal

anisotropy effects and because the LST patterns are more complex and heteroge-

neous in daytime than in nighttime, which further implies that more powerful LST

predictors are required for these times-of-day. Furthermore, the assessment of the

DLST spatial patterns revealed that LST downscaling algorithms can produce di-

urnal DLST data, where the DLST hotspots and coldspots appear/disappear and

expand/contract in a smooth manner during the diurnal cycle. To that end the com-

parison of the DLST patterns with the corresponding reference ones, showed that

the DLST data present the major spatial features at correct locations but with less

detailed shapes. Regarding this issue, the findings of Chapter 2 point out that TIR-

based LST predictors can facilitate the formation of DLST hotspots/coldspots that

have more accurate shapes and sizes.

To assess the spatiotemporal interrelationships of the DLST data, Chapter 3 pro-

posed the use of autocorrelation tests. In particular a series of evaluation tests that

estimate the Rho (i) between sequential images and (ii) between the first image of

the time series and the rest were used. The aim of these tests is to assess the capabil-

ity of the DLST data to emulate seasonal and diurnal features. The results revealed

that the diurnal evolution of the clear-sky DLST was smooth and artefact-free and

that the downscaling algorithm was able to produce DLST data that emulate long-

term trends. Nevertheless the similarity of the DLST was higher than of the ref-

erence data, suggesting that the DLST data cannot represent subtle spatial thermal

changes as pronouncedly as the measured data can. The proposed autocorrelation

tests proved useful in assessing the DLST data and the information content of the

derived DLST time series. It was also realised that other studies (e.g. [139]) have

adopted these tests for evaluating the derived high spatiotemporal DLST data.

The work presented in Chapter 3 (and also published in [63]) is one of the first

assessment studies that is concerned with the downscaling of LST time series and

with the assessment of how LST downscaling can affect—in unforeseen ways—the

information content of the derived datasets. The findings of this work can inform

the development of improved downscaling algorithms and progress the research ef-

forts that are underway so as to make their use operational.
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Research Objective 3: to develop a method for simultaneously modelling the diurnal and an-

nual cycle of temporally dense LST or DLST and reducing the model to a set of key cycle

parameters.

Chapter 4 presents a novel methodology for modelling the diurnal and annual LST

cycle with fine spatial and temporal detail. The proposed method iteratively fits the

ACP sine model to geostationary multitemporal LST and then retrieves the corre-

sponding diurnal MAST, YAST and Theta data. To increase the GSD of the derived

cycle parameters the use of a two-pair spatiotemporal fusion scheme is used that

blends the geostationary ACP with corresponding finer-resolution ACP retrieved

from MODIS. The derived cycle parameters provide a gap-free representation of the

surface’s thermal characteristics and temporal dynamics and can be used for recon-

structing the LST annual and diurnal climatological cycles for every 1 km× 1 km

land pixel.

This work is the first that extracts ACP from temporally-dense geostationary data

(the corresponding results are presented in [64]). The derived MAST, YAST and

Theta data share the same temporal resolution as the original half-hourly LST and

provide a complete picture of how the latitude, the topography, the land cover and

the distance from the sea impact the surface thermal landscape at various times-of-

day. This information can help identify and correct land surface model deficiencies

and also enable the study of how these cycle parameters vary through the day. A

better understanding of these variations can prove useful to climate classification

and also for characterising and generalising the thermal behaviour of similar land

covers, e.g. urban, rural etc. To that end the results presented in Chapter 4 support

this hypothesis and suggest that the derived MAST, YAST and Theta data form a

feature space where areas with similar characteristics in terms of climate, geography,

and land cover populate distinct subspaces.

The employed two-pair spatiotemporal fusion scheme proved to be effective and

robust and was able to reproduce both major and minor spatial features in the fine-

resolution MAST, YAST and Theta data. The selection of similar pixels using infor-

mation from all three ACP proved rigorous and simpler to implement than the land

cover-based approaches currently in use. The employed spatiotemporal weighting

scheme performed also well but further fine-tuning is required so as to compensate

for the artefacts that resulted near the coastline and at regions with pronounced to-

pography, e.g. the Alps. Further research is still required on how to compensate
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the differences between the multisource ACP data that arise due to differences in

the VZA, the acquisition time and the calibration between the two satellite instru-

ments. In this work, these differences made the MAST diurnal variations to differ

between SEVIRI and MODIS which caused the fused MAST data to be warmer than

the corresponding MODIS data during daytime and colder during nighttime. This

observation also hints that the main assumption of spatiotemporal fusion, i.e. that

the difference between the two data sources are systematic, should be reassessed for

the case of SEVIRI and MODIS.

Chapter 4 addresses the final research objective of this thesis and presents a

methodology that can reduce a long LST/DLST time series to a set of cycle param-

eters that represent the surface’s thermal characteristics. These parameters can then

be used to simultaneously model the climatological diurnal and annual cycle of LST.

This work advances the research on time series analysis and provides an effective

approach for handling the pronounced spatiotemporal variability of LST data.

5.2 Contribution to Science and Impact

This thesis provides a solution to the lack of LST predictors that perform consistently

and robustly over various times-of-day, land covers and landscapes and demon-

strates that multitemporal LST annual climatology data offer these attributes. The

use of such versatile all-around predictors makes the configuration of LST predictor

sets simpler and less laborious and the corresponding downscaling schemes not lim-

ited to areas with a specific land cover type or to LST data acquired at certain times-

of-day, as is the case presently. The downscaling of a three-month long diurnal LST

time series confirmed that the production of high spatiotemporal datasets from geo-

stationary LST is feasible and was a step forward in comparison to the state-of-the-

art, where LST downscaling algorithms are tested only on a few carefully-selected

scenes. In particular it provided a more comprehensive view of how downscaling

algorithms can impact the spatiotemporal interrelationships of the LST data—and

consequently the information content of the derived DLST time series—, which us-

ing individual scenes is impossible to assess. To that end this thesis showed that LST

downscaling can result in autocorrelated time series and suggested new evaluation

tests that are not limited by the availability of ground-truth LST data. Furthermore,

this thesis also combined two established methods, namely the ACP retrieval and
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the spatiotemporal fusion, and proposed a new method for simultaneously mod-

elling the climatological diurnal and annual cycle of LST. This is a step forward com-

pared to the state-of-the-art where the LST cycles are modelled separately. To that

end, this work was the first to apply the ACP model to diurnal geostationary data

and revealed in unprecedented spatial and temporal detail how mainland Europe

responds to the heating of the sun and the nighttime LST decay and how Europe’s

biogeographic regions differ in that respect.

The findings of this thesis advance thermal remote sensing and in particular the

research fields of LST disaggregation and LST cycle characterisation. They con-

tribute to the ongoing discussion about "What are the well-behaved kernels and how

should kernels be configured into sets?" (LST Downscaling Open Issue 1, according to

the review of Zhan et al. [53]) and "What role can auxiliary data and models other than

optical images play in benefiting LST downscaling?" (LST Downscaling Open Issue 2)

and help make the use of the ACP as LST disaggregation kernels more wide (along-

side [82]). Furthermore, the research findings of this work can inform practitioners

to select appropriate LST predictors and design downscaling schemes that perform

robustly over extensive heterogeneous areas. This thesis also advances the research

efforts that aim to make LST downscaling schemes operational and for non-experts.

The work on LST cycle characterisation resulted to a new way to exploit data from

geostationary satellites and to a new dataset (i.e. the SEVIRI ACP) that was made

available to the scientific community. To that end the proposed fused ACP overcome

the limitation of the already-released MODIS ACP and can provide a complete set

of ACP LST predictors that is not limited by time gaps, which is currently miss-

ing. To a large extent the findings of this thesis have already been put in good use

and improved the online LST downscaling service of IAASARS/NOA. The research

presented in this dissertation has informed the update of the employed LST predic-

tor set and improved the accuracy of the spatial information of the generated DLST

data. It also helped the service to expand and include new cities with considerably

different climates, land covers and landscapes. The proposed diurnal ACP model

has also been tested with the Tair product that the IAASARS/NOA service also gen-

erates (see [140]) and used for summarising the information of long Tair time series

into climatological datasets that are of more easily manageable and require less stor-

age space.
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5.3 Open Issues and Future Directions

Even though significant improvements have been achieved in the last two datasets,

many challenges related to thermal remote sensing in general and LST downscaling

in particular remain. The most important are:

• The bias of LST/DLST datasets to clear-sky conditions. On average, 60% of the land

surface is covered by clouds, which reduce or block the incoming shortwave

radiation and thus influence the LST. In addition, clouds are usually associated

with other weather phenomena, such as precipitation, which also affect the

surface energy balance and the land surface emissivity. Because clouds block

the surface-emitted TIR radiation, the retrieval of LST over cloud-covered ar-

eas in not possible (instruments measuring the thermal microwave radiation

can overcome this problem). This raises a very important issue in TIR re-

mote sensing, which is that all the available datasets correspond to clear-sky

(i.e. warm) conditions and thus their analysis would always give biased re-

sults. The lack of all-weather LST also impacts LST downscaling by making

the derived LST data-predictor models to apply only for clear-sky conditions.

This implies that if these models are applied to pixels corresponding to cloud-

covered areas the retrieved DLST values will be warmer than they are in real-

ity. To address this issue further research efforts are required on the retrieval

of all-weather LST/DLST.

• The lack of high-quality spectral emissivity data. Presently most emissivity data

are retrieved using classification-based methods. Such approaches are well-

suited for land-cover types such as dense evergreen canopies, lake surfaces,

snow, and soils, which have stable emissivities that are known with high ac-

curacy (usually within 1%). However such data are less reliable over arid

and semi-arid regions and also over urban areas with pronounced morphol-

ogy and heterogeneity. Because the emissivity is key for retrieving LST/DLST

data that meet the 1 K accuracy goal, better land surface emissivity products

are required. A step towards this direction is the forthcoming MOD21 LST and

emissivity data product which is based on TES (see §1.2.4).

• Thermal anisotropy. Thermal anisotropy refers to the angular variation of TIR

radiation and is stronger during daytime than nighttime. Thermal anisotropy
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can make the LST of the same target to vary more than 2 K to 4 K when viewed

by different direction. This can hamper the comparison of LST data retrieved

from different sensors or the use of multi-source LST datasets. Further research

should focus on how to compensate these effects or to propose strategies on

how to properly control them.

• Spatial scale and downscaling to finer spatial resolutions. In general, the success of

LST downscaling is determined by the spatial scale and the ability of the satel-

lite instrument to acquire TIR data that carry the composite effect of various

environmental factors in such a way that it does not prohibit the disaggre-

gation of the LST to finer spatial resolutions. Hence, to ensure a successful

downscaling it is important to understand better how the spatial scale affects

the relationship between the LST and the LST predictors, what effects and en-

vironmental factors dominate each spatial scale, and if spatial scale poses any

limitations on reaching the target spatial resolution. Answering these ques-

tions can inform the selection of LST predictors and and also how to bridge

large scale differences, e.g. downscaling 4 km LST to 0.1 km.

• The inadequate representation of urban 3D features. The morphology of the urban

surface is characterised by a complex three-dimensional structure consisting

of buildings, open spaces, and street canyons. This canyon-block structure is

unique for each city and has a pronounced influence on the urban thermal

environment. Unfortunately, many of these vertical surfaces remain unseen

by the satellite during the data acquisition process. These facets comprise a

significant portion of the active urban surfaces, and thus the resulting two-

dimensional representation of LST/DLST is an incomplete dataset. Hence, the

development of LST/DLST products that describe the true thermal status of

the urban surface is required (e.g. such as the complete urban temperatures [119,

141]). To that end, remotely sensed LST/DLST image data may be able to

provide the basis for the production of such a dataset.

5.4 Outlook

Recent advancements in TIR remote sensing provide the ability to utilise previously

unsuitable Earth Observation datasets to scientific investigations that have special
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requirements in spatial and temporal resolution. Such an advancement is the sta-

tistical downscaling of geostationary LST data, the primary function of which, is to

disaggregate coarse-resolution LST into its finer-resolution components. In addition,

the increasing availability of long global time series of remote sensing data drives the

development of a new generation of methods for time series analysis. The wealth

of information that can be made available can support the development of new data

products, especially over urban areas where the majority of the world population

resides, while the new methods can facilitate the study of past and present events

from local through global scales. To that end the new generation of geostationary

satellites, e.g. the Meteosat Third Generation Flexible Combined Imager (MTG-FCI)

and the Geostationary Operational Environmental Satellite-R Series (GOES-R), offer

increased capabilities that will open new research opportunities for scientists and

researchers.
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