EBviko Metoofio IToAvteyveio

2xoAn Epappoopévov Mabnpoatikov kot Duoikomv
Emotmpov

AvmAopotikn Epyaoia

ITapapetpikn IToAvmAokotnTa Kat
"EAeyxo¢ MovtéAwVv o€ Ppaypeveg
Owoyevereg I' papnuatoyv

ZUyypageag: EmfAénwv:
Avoaotaoiaén EAAN [MTayouptdng Apng

1 OxtwfBpn 2018, ABnva

2
v

‘fj

3

\

(X
oy
HOEVS

Bl

‘ -,
-/*ﬁ'

vP@oros

PO

L3

a

4

. o'
‘I O 3 e
"

S

EBviko Metoofio IToAvteyveio

oAl Egappoopevav Moabnpotikaov
ka1l duoikov Emotmpav
Topeag MaBnpatikwv

‘.5/1
E"Q?é

OtV

o
o
I o5)
o 3
ot ~n

AN
e NS S
3 r s=
w?ﬂf"‘
\}
-'Jr!.a\!mo'os

|

Iapapetpikn IToAvmAokoTnTa Ko
"EAeyxo¢ MovtéAwVv o€ Ppaypeveg
Owoyeveleg I'papnuatoyv

AvmAopotikn Epyaoia

Tng: EmpAénwv:
Avoaotaoiadn EAAN [Tayouptdng Apng

1 OxtwfBpn 2018, ABnva

EykpiOnke ano tnv TpipeAn emrponn:

IMayovptlng Apng Zuppavng Avtoviog Zdyog Xtabng
Enikovpog kaBnynm¢? Koabnynmg! Kabnyntmg?

1 ¥xoA E@appoopévewv Madnuatikov kat duoikov Emotuaov
2 ¥xoA HAektpohdywv Mnyavikov kot Mryavikov YToAoyloTov

ii

Copyright © (2018) Avaotaoiadn EAAN
Me emLAaén TavTOg SIKAOPATOG.

Anayopevetan K&Be avtiypar], amobrkevon Kot Siavopn TG mapoKAT® epyc-
olag yla epmopikovg 0KomouG. Avamapaymyn , armofnKevon Kot SIavopn Yo [eQTTO-
PIKOVC, EKTASEVTIKOVG T} €PELVNTIKOVEG AOYOUG EMTPEMETAL LTIO TNG TTPOVTIOBEDT) OTL
elte anodidete ava@opd 0T0 CLYYpAQEX EiTE TO CLVOSEVETAL OTIO TO TAPAOV KETpIEVO.
Epwtnogig mouv agopolyv T Xpriomn ToL TapOvIog yiX EUTOPIKOVEG OKOTOUG Ba Tipemel
va amevBovovtal 6To ouyypa@éd. Ta CLUTIEPACHATA TTIOL TTAPOLOIALOVTNL AVTIOTOL-
OOV O€ MPOOWTIKN 0T&oT Kot 8ev Ba émpeme va BewpnBel mwg ekMpoowmody v
emionpun otdon tov 16pLHATOC.

iii

iv

ITeptAnyn

Iy mapokdtew SmAopatiky peAetdpe to TpofAnua EAéyxov MovtéAov vmod
[Mapapetpikeg ZuvOnkeg. O KOPLOG 0TOXOG eivar va ipoodioploBet) emidpaon piag
ab&Nong oTig AOYIKEG SLVATOTNTEG SIATUIWONG OTNV TTOAVTTAOKOTNTA TOL EAEYXOL
TOLG AV OE YPAPTHOTA. TOV TOHEX XVTOV LIIAPXOLY 18T KATIOIX AVEEAPTNTA ATTO-
TEAEOPOTA TIOV QAIVETOL VA EMISEIKVOOLV H1A AVTIOTPOP®G VAAOYT OXEOT) OAAG
HOVO o€ Pl SlooONTIKT HopET Kol XWpig mapamdve avdAvor). AT 1) ox€or mpo-
KUTITEL QMO TIG SIAPOPETIKEG TTXPAHETPOLE TIOL Elval amapaiTnTEG ylot VO KOTyo-
prorotjoovy pia Aoyikn oav FPT(= YnoAoyiown vno otaBepn mapapetpo). Ano
TNV HEPLX TV YPOPNHAT®V EMSIOKOVHE VO EKQPATOVHE TO OPLO HETAEL TV OTLY-
HIOTOTIOV OTA OTIOIX O €AEYX0G KAKOEWV 1810TNT®V €ival YPIIYOpOg KOl EKEIVOV 0TX
omoia Sev eival. Ta qUTO TO OTOXO XPNOIHOTOIOVVTIAL ATTOCLVOETELG TV YPaPT)-
HATOV Kol 1810TNTEG TV SIHPOPETIKOV TIAPAHETPOV OOTE Vo Kabiepwbel eite pa
lepapyia petadv toug eite yia va e&axBouv mAnpogopieg yiax to mA0o¢ TV mapape-
TPIKA QPAYHEVOV OTIYHIOTONV. ATIO TNV BE@PNTIKY HEPLX TNG LTTOAOYIOIHOTNTOG
Ba xpnopononBoly MAPAHETPIKE KUKAG®HXTH Y va TipofAe@Bovv TéTolov €idoug
oxéoelg HETaED AOYIK®OV KARCEDV S1AQPOPETIKTG TTEPLYPAPIKIG IKAVOTITOG.

vi

Abstract

In this Thesis we are studying the Model Checking Problem in a Parameterized
Framework. The main objective is to determine the impact of an increment in our
descriptive capabilities to the complexity of the Model Checking Problem over Graphs.
There are some results in the field pointing to an inversely proportional relation
but only as an intuitive notion not properly analyzed. This relation is presented
through the different parameters that must be utilized to classify the Model Checking
Problem for a logic as FPT. From a graph theoretic approach we aim to express the
boundary between instances that can be checked quickly for a property in contrast
with the ones cannot. To prove this relation we are using graph decompositions and
properties of parameters to establish either a hierarchy between them or to derive a
measurement of the cardinality of the bounded instances. From the Computability
side, parameterized circuits are used to predict such relations between logics of
different expressive power.

vii

viii

Evyapiotieg

Ba nBeAa va evyaploow Beppa Tov emPAénwy pov Kopio IMayovptdn kabaog
KOl TO UITOAOLTIX PEAT] TNG EMITPOTIG , KUPLOLG Xupfavn kot Zayo ywx tnv kobo-
onynon kat otpién mov pov TPocEéPepav Ko’ OAN TNV Stapkela TG poondbelng
auTtS. Oa NBeda va ToLg avayvepion akopa To poAo mov énaéav otnv Stapdp-
QOO KAl eEEAEN TNG EMOTNHOVIKTG HOL ava{TNonG. AKOPA TTOAD peydAn BornBeia
HOL TIPOCEPEPAV HECHK OO GL{NTHOEIG KAl GLVEPYAOIEG T PLEAT TOL €pydoTnpiov
Corelab pe npwtepydtn tov KUpLo ZAx0 oL TTAVTH EVOAPPLVE TETOLEG KATAOTAOELG,.
ZUYKEKPIPEVA TIOAD PeYGAO pOAO EMONEE T) CUPHETOXT OV OTNV OHAdA PEAETNG Ao-
YIKIG Kot OLVETI®G B 1BeAa va euxaploTio® OAa Ta HEAT TG Yo K&Be cupBoAn Kot
OULHPBOLAR TOLG, XWPIg aVTEG Bax oL gixe TT&PEL TTOAD TIEPLOGATEPO XPOVO VA PTAOW
0€ OUTK T CLUTIEPACHATAL.

Me Vv mapovoiaon G SUTAOUATIKIG HOU OAOKAT|POVOVTOL Ol TIPOTITUXLOKEG
OTIOLSEG OV TV OTolwV N emTLXia BacileTal KATA Eva PLeyaAO HEPOG OTNV CLHPOAN
aro Toug PiAovg pov. Oa NBeAa Vo TOLG T Eva HEYAAO ELXAPLOTA YO TNV OTAPLEN
OAAG Kol TV amtd OAX Yl TNV TXPOLOIN TOUG TTOL €KOVE KOPHATL TIOL EVXAPLOTO
Ko evilagépov. Télog B BeAa va amevBOVE TNV TEPAOTIO ELYVOHOOGVVI HOL TNV
O1KOYEVELX HOL S10TL ¥a&p1 0TV oTnpién T0uG Sev Ba elya KATAPEPEL TIMOTK OO OAX
aUTA. XApn 0€ QUTOVG Ol WPEG TIOL APLEPWCN CTNV EPELVA NTAV EMAOYH HOL KOl
Ox1 voypéwon 1 avaykodtnta. o OAeg TIg POPEG AOUTOV TIOL 1) GTAOT] TOUG [0V
EMETPEYE TETOLEG EMAOYEC TOVG ELXAPLOTA.

H SovAeix avtn eivon amotéAeopa kKabe ping amod autég Tig GLHPOAEG KAl ouve-
TG €lval aQlepwpEVN o€ GAOLG E0GG.

ix

Ilepreyopeva

KataAoyoc oynuatwy

I EMnviko Keipevo
1 Ewoayoyn

1.1 Hapovoiaon ISedV o v v v o e e e e e e e
1.2 Tiori Tapopetpikdd . . o o o o e o e e e e e e e e e e e
1.3 TotoptkéC ITOPOTNONOELd « « v v v o e e e e e e e e e e e

R H Xvvdptnon Avtailaynd

R.1 Apyw IIepypo@f . . . o o v v oo
R.2 EEESIKEVOT « © v v v e e e e e e e e e e e e
P.3 TIapopeTtpikn TIPOGEYYIOT © « v v o v o e e e e e e e e

I English Text

B Introduction

B.1 IdeaOVerviewl. v v v v v vt e e e e e e
B.2 Why Parameterized?
B.3 Historical NOtes v v v v v o e e e e
4 Parameterized Complexityl
M1 Definitiony v v v v e e e
B2 Parameters. v v v v e e e e e e e e e e
M.3 Hierarchyl o o e
4.4 Parameterized Model Checking
M5 GraphMetricd o o o
5.1 Treewidth
M52 Cliquewidth e
M53 Branchwidth,
“.5.4 Pathwidth
5 Graph minors
B.1 Definitiony v v v v i e e
5.2 Tree Algorithmic Problemd

Xi

xiii

XV

14
18

21

11
12
15
18
18
21
22
24

..........................

5.4 Wagner’s Conjecture ou ..
6 Logics over Graphs

6.1 Propositional Logid

6.1.1 Satisfiability Problems

6.2 First-Order Logid v v v v v v i

6.2.1 Relational Structured

6.2.2 First Order Syntax and Semanticy

6.3 Monadic Second Order Logic of Graphs (MSO)

7 The trade-off function

7.1 Elementary Description
7.2 Refinementd
[7.3 Parameterized Framework

8 Parameter Analysis

B.1 Treewidth
B.2 Cliquewidth
8.3 Branchwidth.
B4 Pathwidth
9 Parameterized Algorithmic Meta-Theorems
0.1 Logics and families of Graphy
0 8
0.1.2 MSO, - Courcelle’s Theorem
0.1.3 MSO{|
0.1.4 Matroid MSO
0.2 Parameter Correlationg
0.3 Combining theResultd
10 Conclusion
10.1 Explaining theresultd
10.2 Further Research
[10.2.1 Fine grained approach
10.2.2 Complexityl v v v v vt e
10.2.3 Logic Metricd
10.2.4 Counting Complexity|.
[1 Property Descriptions v v v vt
12 MatroidMSO
B[DOIPLO

Xii

33
34
35
36
36
37
38

41
41
46
49

53
53
57
60
63

67
67
67
69
71
71
72
74

75
75
76
76
76
76
77
79
79

81

KataAoyog oynpatov

P.1 Tlooootd amd gpaypéva kot k otypiotuna Kétw ond avotnpéd

MOVIKEC OXEOELd . . v v o v e o e e e e e e e 11
R.2 H oyéon HeTaED TOV TOPAUETPMOV TV AOVIKOV KAdoewv A Kol B

OTav n A gival IO eKEPACTIKR amd ™ B 12
P.3 'Eva kOkAopa mov avayvepilet v idwomrtap € Aforkg =2 . . . 19
R.4 M TOAN TOL VEOU KUKA®UATOC TIOL avayvepiler ny idotnta p’ € Al 20
4.1 Other problems parameterized by the size of the solution 10
4.2 A 3CNF fornula is alarge AND of small ORy 13
“.3 A weft 2 depth 5 decision circuit] 14
4.4 A circuit correspontding to a 3SAT problem] 15
1.5 Parameterized Hierarchy| o v v ... 16
4.6 A Tree Decomposition of treewith2 19
“.7 Forbiddenminorsfork =3 20
4.8 All possible graphs of cliquewidth 3 involving vetrices A,B,J ... 21
19 A branch decomposition showing an e-separation. The separation,

the decomposition, and the graph all have width thred 23
1.10 A path decomposition of Pathwidth3 25
4.11 Forbidden Minors of Pathwidth 1. 25
6.1 Parse tree of the example formuld 35
[7.1 Percentage of bounded k instances over strict Logic inclusiond . . . 42
[7.2 The relation between the parameters of logic classes A and B when

[A is of higher expressive powerthan B 44
[7.3 A circuit recognizing a property p € Aforko =2 50
[7.4 The gate of the circuit recognizing property p’ € A 51
B.1 Constructing thenewnoded v v v i . 55
8.2 Reusing labels would causeacircld 56
B.3 First steps of the sequence describing graphs of cliquewidth k. . . . 59
8.4 There are |F(G)| — 3 meaningfulcuty 62
8.5 Filling up nodes with adjacent labeld 64
8.6 We cannot have all combinations of k+1 labels 65
D.1 The parameters studied in chapter§ 73

xiil

Xiv

Meépog I

EAAnviko Ketpevo

XV

Keoaiono 1
Ewcayoyn

Y& aUTO TO Ke@GAao Ba poomabnom va Tapovo1do® TEPIANTITIKA TIOL HE 00N-
YyNoav O€ aUTI TNV TPOCEYYLON KAHOMDG KOl PEPIKA EMXEIPTIHATA Y1 TOUG OTOXOVG
OLTOV TOUG EYXEIPTIHATOG.

1.1 IIapovociaon ISemv

O kOp10¢ OTOXOG TNG TIEPLYPAPTIG KA1 HEAETNG TOL TPOPANHATOG EAEYXOL HOVTE-
Aou dev eivon va mapayBet évag aAyopiBpog mov to AUVeL AmOTEAECTHATIKA OVTE VA
TIEPLYPAPTEL PO TEXVIKT] YIX TNV TIOPAYOYT| TETOV aAyopiBpmv. TovAdyiotov oxt
oTnv apoLod SoLAELX. To TPOPAN A EAEYXOL HOVTEA®V HOG SiVEL Eva TPOTIO VX €K-
epdalovpe opadonomoelg TPoPANpATaV (1] 1010TTOV) KOl VA CUUTIEPATIVOLE PETH
Qo TN HEAETN TOL MANPOYopieg yia T Sopn Toug. ITpdoata 1 HEAETN TOL T PE
HEYaADTEPT KATpOKO AGYO TV e@appoyav Tov o€ formal verifications.

Amo ™V GAAN pEPLA T} BE@PNTIKT| EMOTIHT LTTIOAOYIOTAOV EXEL AVATTUEEL VA TIOAD
HEYAAO EVELAQEPOV TIPOG TIEPLYPAPIKEG AYOPLOHIKEG Bempieg. MECm aLT®V VEX GV
Opla Y1 TNV TTOAVTTAOKOTNTA TOL €AEYXOU 1O10TNTMOV SIATLUTIOVOVTAL [IE XPTOT| TNV
AOY1KIG YAwooag mov givan amapaitntn yla v Statdonwon . ‘Eva peydAo Bripa
o€ autr TNV KatevBovon €yve amo tov R.Fagin 1o 1973 o onoiog anéderée nwg kdbe
1810t o€ 3 SO eivan eAéy&iun oe NP-time.

To pOPANHA EAEYXOL HOVTEAOL oAV SIATUTIOOT] EIVaL TIOAD olAG Ko Sev amontel
KOO €EEIOIKEVEVT] YVMOT). XTO KAAOIKO MAKIO10 0OpileTal wG:

-Model Checking
Input: A Model G and a Property ¢.
Output: ”Yes” iff G F ¢, ”No” otherwise.

AnoBNTIKG TEPIPHEVOLIE TNV VTTOAOYLIOTIKI] TOAVTTAOKOTNTA TOL TIPOBATHATOG
avToL va ov&avetal KaBadg av&dvetal n TOAVTAOKOTNTA pia 1810TNTG (SnAad Ta
oLHPOA Kal 01 KaVOVEG amopaitnTa yia Ty S1tON®oT] NG). AUTO PLOIKA gV OT-
paivel TG aAAa{ovTag TV SIKTON®OT Hio I810TNTAG 1) KAVOVTIAG TNV OKOTLX TIOL0
nepimAokn B aAAGEel v moALTTAOKOTNTH eA€yxou NG To evlagépwv €ykettal
OTNV TOALTTAOKOTITA EAEYXOUL H1AG IS10TNTHG ATV KUTH EKQPALETO OTO EAGY1OTO SU-
vato mAaioto. ‘Evag tpomnog va ekgpaobei auto sivat péco tou pofARHaTog eAEyXoUL

1

HOVTEAOU.

Onwg eaivetal €50 T0 MTHPATIAV® €XEL SVO E10080VC KA GLUVETIWE 1| TTOAVTIAOKO-
T ToL Ba TIPETEL VO EKPPACTEL e KATIOL0 TPOTIO CLVAPTIOEL KAl TV dvo. TIpo-
QOVOG KOBMG KATIO0 TUNHO TNG L0080V HEYXAQVEL I) GUVAPTNOT] TOAVTTAOKOTNTOG
Ba eivan avéovoa. Eotiddovpe €60 0TO VO KPATIHGOVE TNV TOAVTTAOKOTITA YAUNAT
KaBadg Ba av&hvoupe TV pia TAPAUETPO EVAD KPATApE TNV GAAN @paypévn. H mo-
AvmAokoTtnta Aownov Ba e€aptdte Kot amd 1o péyebog Tov HOVTEAOL OAAG Kol TO
XOPOKTNPLOTIKA TNG WO10TNTAG EL0O00V. L€ HIA TIOL0 KOVTIVI] HOTLX GAAX XOXPOKTI)-
PLOTIKG TIEPA ATIO TO HEYEDOG TOL PHOVTEAOL 10WG va elval o0 KATAAANAX Yl TOV
TPOGSIOPIOHO TNG GAYOPIOHIKNG CLHTIEPLPOPAG Tov. ALTO Ba e§nynBel mepotepw
TAPOKAT® KABDG eivar 0 KOPLOG AGYOG TIOL T} TIAPAUETPIKT TIPOCEYYLOT €ival TG00
KATAAANAN Yl oUTH) TNV SOVAELA.

Ot napapetpikol ahyopiBpot kon n Mapapetpikn IToAvmAokdtnta dev eivon Kat-
voupiol atny Kowvotnta g ITAnpogopikng. O1mpadteg S0LAEIEG EeKiviioay Ao TOLG
Downey kdn Fellows otig apyég tov 90. Avutol apyikd mpOTEVAY TIOG T HEAETT TNG
TOALTTAOKOTNTOG TIPOBAN ATV GLUYVE Sev €xel VONUQ va HETPLETL e Bdon TO pE-
yeBog g e10080v. ATo auT TNV 16€a EEKIVNOE Eva TEPAOTIO KOHA EPELVOAG OTO
TOPAHETPIKO TAALO10 IOV aVTol TIPATEIVAY TO OTI0I0 AMESWOE TTOAD XPT|O1HK OTIOTE-
Aéopata 1000 o€ aAyopiBpoug 600 ko o BewpnTikd amoteAéopata. To pOBANpa
€AEYXOL HOVTEAWV OTO 0To10 €y® Bar e0TIGO0W pe Pdom Ta Tapandve opileTal KG:

Parameterized ¢-Model Checking

Input: A Model G and a Property ¢.
Parameter: 1=|p|
Output: ”Yes” iff G F ¢, "No” otherwise.

KoaAd Ba ntav va onpelndel 6o Mg ta xapoKINpOTIKA NG W610TNTAG 1| TOL
HOVTEAOL arvovial acan emitndeg. Oa eEnynbovdv OAa mo10 AVOXAVTIKG OTaV €XEL
KaBepwOel T0 KATAAANAO YVOOTIKO emimedo.

IMa va Satunwbel 1o dvwbev cwota Ba xpnotpononBolv yvoon arnd moAA0VGg

TOHELG. IOt TNV KATNYOPLOTIOINGOT 810THT®V OTA AVTIOTOY! EMIMESA EKPPATTIKIG
Suvapng Ba aglomoroovpe padnpatikni Aoykn kot Oewpia MoviéAwv. Ot akyopi6-
HIKEG TIEPYPOAPEG Kal avaywyEg Ba Sivovtal o€ THpapETPIKO TAXIOI0 KOl GLVETIAOG
éva IpoBANpa yia va xapaktnplobet vrroAoyiolpo Ba mpémel va avikel oty KAGON
FPT(Fixed Parameter Tractable - YrnoAoyiowpo vnéd otaBepn IMapdpetpo) n omoia
elval 1o MapAPETPIKO avVAAOY0 TV €UKOA@V TIpoBANpaTwV. AKOPO GOV EMITAEOV
emyeipnpa Ba a@opolwboly LITAPXOVTA ATMOTEAETHATA OO TNV TXPAHETPIKT Bew-
pia vITOAOYLGHOV..
O anwtepog oKOMAOG €6(EIval va TIPOKLYEL €VX GUVOAO KAVOV®V TIOL VA TIEPLYPA-
(OLV TNV TAPATIAVE CUUTIEPLPOPX HE TETOLO TPOTIO WOTE VA EIVAL EPIKTO VA a&10To1-
nBei 1o oxediaopo aiyopiBpwv. H peAét avt Ba mpoonabrioel va cuoyetioel tnv
TAPAHETPO TIOL Katnyoplomotel pia Aoyikr) o FPT pe v Aoy kAaomn mov givan
QTOPALTNTI Y1 VO EKPPAOEL TNV avtioTtolyn Wiotnta. ‘Eva mapddetypa Statdnwong
€vO¢ TETOL0L AMOTEAETUATOG B pTtopovOE va eivat NG HOPENG:

Av i 1i810mta ¢ aduvvatel va ek@paotel oy Aoyikn kKAdon A T10te n
TAPAHETPOG TIOL €ival amapaitnTn GoTe N ¢ va eivan FPT eivon éva dva

Oplo Yl K&Be mapapeTpo mov katnyoplonotel oav FPT kd&Be 18510t ta
eKQpaoun oty A.

DLOKG LTIAPYEL KATOLX LEPOVOUEVN LTTAPYXOVTX KMOTEAETHAT TIAV® OTNV MO~
POUETPIKT TOALTTAOKOTN T ToU TIpofAnpuatog EAéyxov MoviéAwv ta omoia vTTovo-
OLV TNV OMaPEN LK TETOLG CLOKETIONG AAAX OXL HE €vav eviaio tpomo. Tétoieg
€wvat ot 6ovAeleg Twv Brunno Courcelle yia to Model Checking ae MSO kou Seesse
otnv Suvatotnta ekgpaong FPT anogacionpwv dotitav. [22],[28]. Méxpt ko
NV TPp@ToABHI Aoyikr) SV LTTAPYEL EVTOVI AVAYKT Y TOV @PayHO Tov peyEBoug
TOL poVTEAOL KaB®G OAN N KAdon pmopel va xapaktnplobei wg FPT pe xprion povo
QPAYH®V TAVK OTO UNKOG TV 1010THTwV. KabBag Ba poxwpape oe mowd mepimo-
Keg kKAaoelg wg n Monadic Second Order, 3 Second Order, V Second Order 1| ko n
Second Order yiveton avaykaio va epappooBoiv @paypata Kot oTig 00 €10080VG
ywx va emrtevyBel n emBopnt) moAvmAokotnTa. OAa ovta Ba apopolwBolv pe To
nmAaiolo mov mapovoialetan €8w. T'a va oploBolv KaALTEpH T Tapamave Ba Te-
PLYPa@OLV o€ €va aAyoplBpikd mAaioto. . OTO100ONTOTE HE €0TW KAl TNV EAGYLOTN
eokelwon pe v ITAnpoeopikn Ba €xel KATOWX XOXPAKTNPLOTIKA TPOPANHOTA Kot
TOLG avtioTolyoug aAyopiBpovg katd vovu. Iwg ekppdlovtatl Aomov autd T SVo
HEOQ OO TUTTIKEG 1010TNTEC?

Miua ii0tnta eivor pla paBnpomikn @OpHOLAC TTOL XPNOTHOTOLEL HOONPOTIKA
(Aoyikd) oOpoAa Kot Kavoveg ylo TNV EKQpaoT] Hag 16€ag. Otav autd ta VPBoAx
epUNVEVOVTAL HECH O€ HOVTEAX TOTE N avaTNOTN NG W810TNTAG YiveTanl 0 Oplopag
evog pofBAnpartoc.

IMa apdaderypa 6edopévou evog ouvoAov aplBP®OV « Kat NG oxéong < n 1616-
mta P:

reA:Vye Ajz <y

Ba eppUNVELOTAV MG T IGIOTNTH TIOG TO OTOLXELO X €ivan TO HIKPOTEPO TOL SavOoHa-
106. To avtiotolyo mpoBAnpa Ba Ntav Bpeite to eAdy10TO OTOKEIO TOL A.

To napamave eivar eva oA amAo napddetypa. Kabmg ot 1610tnteg yivovtar oo
TePIMTAOKEG 1| TPOOTIABEIX VO TIG EKPPATOLE XWPIG ”XEPLX” KAl QLOIKT| YAOTOX Yi-
VETOL TIOL0 OTOTNTIKN. MePIKEG POpPEG N AoYIKT| YAwooa Sev paiveTal va givan ap-
ket]. Kot mwg Ba E€poupe av OvTog pio 1810t ta eivat adivato va eEKPPAOTEL o€ pia
AOYIKN] YAOOOO pe autd Ta cOHPBOAX Kol Kavoveg? e autd to onpeio eivan mov Ba
xpnoponolovpe Ehrenfeucht-Fraissé ITaiyvia yia va amaviiiooOLHE aUTH TNV €pQ-
NOT Yot TPOTORABHI Aoy 1] TApAAAXYEG TOVG Yo TTo10 TiEpinMAOKeG. Ot AemTopie-
peleg auT®V Ba yivouy oo {ekaBapeg 0TO aVTIOTOIKO KEPAAXLO.

YTMoBEToVTag TOpa MG KATAQEPAHE VO KATNYOPLOTO|COVHE TIG 1810TNTEG TIOV
HOG EVEIAPEPOLY Y1 HOVTIEAX OTI®WG XOVoAa aplBpav, I'pagnpata, Luvaptioelg,
[Tivakeg, Matroids ,Latices ko1 GAAQ, PHTOPOVHE VX CUUTEPAVOLE OO QLT TNV
KOTNYOPLOTOiNoT KATIO0V KavOva ylx T0 XpOvo Tov pia pnyavi Ba xpelaotel yia
va TG avayvepioel? AtonoOntika Ba motevape 0Tt 600 TO0 SVOKOAO gival va eK-
epacBel o 1810t Ta T000 MO0 XPOVIKG amontnTikn Ba ivan n avayvaoplon g oe
povTéAa. IIpdypaTt OAX T AMOTEAETHATA PEXPL TOPA PAIVOVTAL VO CUHQ®VOLV HE
ot TV 16€a 0AAG Xwpig va eKQOPALOLY TNV HEYRADTEPT] KOl OAIKT| GUHTIEPLPOPH
nov emBovpovpe. H SovAeid Aomov autn Ba eotidoel otny anddelén nwg pio TETola

3

Class Grammar Languages Automaton
Type -0 | Unresticted Recursive Enumerable | Turing Machine
Type -1 | Context Sencitive | Context Sencitive Linear Bound
Type -2 | Context Free Context Free Pushdownd
Type -3 | Regular Regular Finite

[Mivakag 1.1: H Iepapyia Chomsky

OUHTIEPLPOPA LTIAPXEL KAL TIWG TIWE LTTAPXOLV KAl To KATAAANAQ epyaAgia OOTE Vo
yivel a&lonomon.

1.2 Thot Hapoapetpika?

IMa va §00et éva mANpeg emyeipnpa meve oTo THPATIAVE Ba TIPETEL PUOKK VO
nponyndel Pl apKeTE OO AVOAVTIKT] EICAY®YN OTIG BOOKEG KXPYEG TNG TIXPOLLE-
TPIKNG TOALTTAOKOTNTAG. TTapOAa XLTA 10TOPIKA LIIGPYOLV KATIOWX oTHEiar oL B
TIPEMEL VA avapepBOOV TTIPOTOV EEKIVIOOLIE.

H xpoviki} TOAUTTAOKOTNTA Y1 TNV QVAYVAOPLOT) CUVOA®V IO10TNTMOV EXEL HEAETT-
Bel kKot 010 KAAOIKO OAAG KOl OTO TTXPAHETPIKO TTAKIO10. Nwpig akOpa 0TV 10T0-
pia NG TANPOPOPIKNG 1) YAWOG0-0EPNTIKT) TPOGEYYLOT) YA TOV XAPAKTNPLOHO P0G
1810TNTHG Gav LITOAOYIOIUN NTAV aMd TG o0 TOAAG vTooXOpeves. ESw vmdpyet
OH®G €Va TIOAD PEYAAO KEVO HETAED TNG Xp1 oG AOYIKNG YADTGTAG Kot I'pappomik®v
oav HECO EKPPONG. ME TIG YPUHHOTIKEG KL TOV S10X0PLOHO YAwoowv o€ Context
Free, Context Sensitive, Regular kou ta Aownd 1pBe €va 6UVOAO aMOTEAETPAT®Y IOV
OUVESEE TIG AVTIOTOIKEG YADOOEG OE KATIOL0 UTIOAOYLOTIKO HOVTEAO IKAVE VO aVOayVem-
pioel oAOKANpn Vv opdda. H Iepapyio Chomsky cuvoysilel avtd ta anoteAéopata.
Amo) pepid g AOyKig N avaldnTnon Y Ta Opla TG LITOAOYLOTIKTG SOV gixe
éva moto 60oKoAo dpopo. H avtiotoyio peTa&d TV emmeS®V TG TOAVOVUHIKNAG Le-
papxiog Kat NG X 1Epapyiog mAve o€ 1810TNTEG EKPPATHEVEG PHEGO OLYKEKPILEVROV
EVOAAXY®OV TIOCOSEIKTOV €ival €Vag amd TOUG TTO10 CTIHAVTIKOUG AGYOLG VO 10YLPL-
oTel Kaveig i avotnpr ovoyétion TV medinv. To amoTEAETHA KVTO OLOIACTIKA
onpaivel 011 pe Bdon TG anapaitnTeg eVRAAAYEG TOGOSEIKTMV Yl TNV TUTIKT| S10-
TOTI®ON PG 1010TNTAG HTTOPOVE VO CUUTIEPAVOLE EVA AVE OPLO GTOV ATIOPALTNTO
XPOVO Yot TOV €Aeyx0 NG MAve o€ Kamowo povieho. To avtiotpogo Ba Ntav 6T n
yvoon €vog Gve opilov yla Tov €AEYX0 MG 1610TNTAG QEPVEL EMIOTNG KAl EVX ETTL-
Xelpnua ylx v SuvatoTNTo EKEPAOTG TNG 0€ KATO10 €TIMESO NG X KOl GUVETIRG
NG MOAVWVLHIKNG Iepapyiag. H anddei&n yx to mapandve Opeg dev eival Kata-
OKEVOOTIKI KAl OLVETI®G SV Sivel adyopiBpoug yia kabe mepintwon. ZuVeEn®g ma-
POTL TPOHEPK EVOLPEPOVTX T TIAPATIAVG EXOLV TEPLOCOTEPO BewpnTikn a&ia. XtV
TPAYHATIKOTNTA TETOL0L €160VG amoteAéopata eival SUOKoAO va a&lomonBovv. INa
TIAPASELY L

"Evog mpoypappatiotng, o Takng, mpoomnabel av oxedidoeig évav amo-
TEAEOPATIKO OAYOP1OHO TIOL VO avayvapidel i veéa 1810TNTa Téve o
YPO@NHOTA. LTO XEPLA TOL E€XEL €VA OXESIAYPAPHA EVOG aAyopiBpov

4

Kol pe fonfeia amd KAMOov MOTHHOVA TNG Be@pnTIKNG TTANpOQOpPL-
KNG €xel SIATLTOOEL TNV 1810TNTA 0 AoyiKn YA@ooa. Mmopet va xpn-
O1HOTIO)0EL TA TIAPATIAV® Y1 V& 8L av 0 AYOp1BpA¢ Tou eival KATw
amo T0 v Oplo oL TapExeL 1) Bewpla. AvtioTpoa pmopet va det av
n Sttdnwon poag eival BEATIOT WG TTPOG TNV EVOAAAYT] TOCOSEIKTMV.
Ye Kapio Opw¢ amo Tig VO MEPIMTWOELG 1| LIIdpXovoa Bewpia ev Tov
Sivel k&molo epyaleio va oxedidoel évav aAyoplBpio mov va eivan 6vtog
ypriyopog. O0Te o€ epiMTwoT) Tov €xel KAVEL K&molo AdBog Tov divoupe
KATOL0 TPOTIO v cuveyioel.

ITowo givon o MPOPANHA 0TO Mapamave mapadelypa? H anavinon éykeltatl oTo
OTL Kal 01 60V0 HEPLEG TNG L00SLVAHING TIAPAYOLY Gve @paypata. Kot paAlota ta
TIOPAYOLV HE HI KATOAOKELAOTIKO TPOTO. ALTO TIov Bax 118eAe 0 Takn g amd v GAAN
elvan pa eyyonon 6t o aAyopiBpog dev pmopel va yivel KaAOTEPOG 1) Pla eyydnon
ot pmopel va yivel. Ouolaotikd Bédel kKot @paypata. TIpoonadeleg yio v ma-
POYWYT] TIOI0 QLOTNPOV AMOTEAEGHATOV €XOLV Yivel. OMwG avaQEPETHL TAPATIAVR
10 Bewpnpa tov Fagin nwg n 35S0 kaAvmrer v NP ,onpaivel nwg kdbe 1810t ta
ekppdopn oe 350 Ba eivon eAéy&iun oe NP-time kot mwg k&Be 1810tnta eAey&ipn
oe NP time Ba givon ekppaoipn oe 350. Eivat auto BeAtioon ya tov Taxkn? Kotd
KQTTO10 TPOTO VAl GAAG SUOTLYXMC EIPAOTE AKOPN £€0 ATTO T TTAIOIX TOL yPHYOPOU
vroAoylopoL. Oyt povo auTo, aAAG Kol TOAL ElOOTE O€ GVe EPAYHOTA KOl GUVE-
TG Sev Ba PopovoaE Vo €X0VHE KATIOH €yyONOT Y1 TNV KN LTIAPEN KAADTEPOL
aAyopifBpov.

DLOKA EVOG TIPAYHATIKOG TIPOYPAHHATIOTHG TIOL Staf3dlel Ta mapanave, moao-
votata Ba mioteve d1 omoladnmote amodel€n Kot va mapéxel N Bewpia ylo T mo-
pamave Ba elvat TOAD HaKpLE ATIO TNV TIPAYHATIKT] GAYOp1OPIKT KatdoTaon. Ao
TMOAAEG omTIKEG Ywvieg Ba eixe Sikio. Evag KaAOG POYPAHHATIOTG OTAV OVTLHE-
Teniel éva véo mpoBAnpa Ba mpoonabnoel va 1o AVoel maipvovtag vt Oy ToL
TMOAAEG peTafAnTég. Mmopel va tpoomaBr|oel va eAay10TOO o el HETAPBANTEG TTOL T
LTIAPYoLO X Bewpia Sev PTOPEL KOV va EKPPATEL OIS TANB0G eMe&epyacT®V, XOPO,
OUYKEKPIHEVEG SOpEG SedOPEVOV KOl TIOAAG GAAa. TIwg pmopel pia Bewprtikn mpo-
0£yKLOT BaCIOPEVT OTO PNKOG TNG 10050V va TpoPAEYEL TOG0 AemTopEPT) SOLAEL
€181KG OTav N HEAETEG HOABAVOLV XOpa Ve o€ opddeg TPOBANpaTOV?

Mnv Baoteite va pova&ete AEN MITOPEL

AM\G eav 1o Kavate 16 Sev elote amolvta AdavBacpévol. Me oTtox0o TNV TMa-
POYDYT] PEAAOTIKOV KATW QPAYUATOV TIPEMEL VA Yivel TIpooTiaBela var apopotwBel
OAN avtn N €&Tp& MANPoPopia. ATO TETOLEG 16€€G €XOVV TIPOKVYEL TTIOAAEG TIPOTEY-
yioew. [MBavokpatikol aAyopiBpot e€epeuvoiv Tig SLVATOTNTEG TOL TIAPASOCIAKOD
povtéeAov g pnxavng Turing av g emtpanel va Sivel anavtnoelg mov dev eivat
AV 00OTEG. O TIPOCEYYIOTIKOL aAYyOp1BOoL amd TNV GAAN IPOCPEPOLY PEYXAVTE-
peG TaYLTNTEG AAAG Buoiaovtag TNV akpifela plag Avong. Ot mapapeTpikn Bewpia
npoonabel va oxediaael alyopiBpovg mov Ba Tpéxouv” ypryopa Kot pe akpiffeia o€
Hlx TAELOYN@la TV EPIMTTOCE®V. ALTO LAOTIOLELTE L€ TNV A§LOMOINOT) CUYKEKPLLE-
V@V XOPOKTNPLOTIKAV TNG EL.0000VL o€ €va POPANHa. Yo tnv vndbeon 0Tt autd o
XOPOKTNPLOTIKA €IV ppaypéva amod KAmola Hikpr otaBepd(acuoXETIoTn amo To pé-
yeBog g e10060v), eipaate oe BEom va EpypAPOLHE SIASIKAGIEG TTOL TTAPALEVOLY
ypryopeg akopa kot yioo NP-hard npofArpota. H emionun meptypa@r autg g pe-

A€TNG OTOXEVEL VO PEPEL TIOL0 KOVTK TOV GXESIAOHO oAyopiBp@V [E TNV avGALOT| TV
TAPAHETPWV TIOL PTTOPEL va eMMpeGoLY TNV TTOAVTTAOKOTNTA TOLG.

"Evag moA0 KaAOg TpOmog va eE01KEImBEL KAVELG [IE TNV TXPAPETPIKT] TIPOCEYYLOT
glval va Qoavtadetal To VTN HET® TV HOVIEAwV TouG. To oo owkelo povieho
QLOTKA gival Ta YpoEHATA. YTIAPXOLV TTOAAX GAAX €16n pHOVTEA®V OAAG oTnyv TTAN-
POPOPIKT GYESOV TA TTAVTH HTTOPOVY VO EKYPACTOVV HEGO YPOAPNHAT®V. L€ TTOAAEG
TIEPUTTOOELG TA AMOTEAET TR B elvan yio ypagrpata aAAd xapn o€ peAéTeg g Oe-
wplag HOVIEA®V auTd Ta amoteAéopata yevikevovtal. ITapoia autd o TpoBAnpa
MG avadrTnong P W10TNTRG O VA YPAPNHK €ival TTAVTX TTO10 EDKOAO VO KOTO-
vonfeil. AKOLO 0 OpLOPOG OIKOYEVEL®V HOVTEA®V €lval emiong o0 TpoPavig OTav
yiveTon v o€ ypo@UaTo KaBDG HTOPOVHE VX AVTIOTOLX|OOVHE KUTEG TIG OE PO
OULYKEKPLWEVT OTTIKT HOP@T). O OPLOHOG OIKOYEVEIDV YPUPT|HATAOV HE TUTIKK EPYQ-
Aela Ba yivel Moo avaALTIKOG TXPAKAT®.

Mé€oo amo oUTEG TIG TOPATNPNOELG I AVACNTNOT KATK YPXONUATOV yia Tov Takn
naipvel puax GAAN otpooen). ITAéov o1 Bewpntikég amodeielg SuokoAiag oe avtd 10
TAAio10 PTopovV va)AANAETISPOVV E GAAX XAPAKTNPLOTIKK TOL TIPOBATLOTOG TEPK
Q1o TNV TLTIKN SITONWOT) TOL. YTIAPXOLV TTOAAK TTOAD EVOIRQEPOVTH ATTOTEAETHAT
nov emPeBoar@vouy avtn TV SLVATOTNTA ONWG aVTA TV Seese, Courcelle, Oum,
Demain, Grohe kot moAA®V GAA®V. AUVTA TO AMOTEAEGHATA O1 HOVO eVBXppOVOLV
mv StooBnuikn avtlAnyn avtnig g Bewpiag aAAG Kot 6ivovv eQapUOOLHO CLHTIE-
PACHOTA Y10 TNV KATKOKELT] 0AyopiBpwv. T'a va yivel auTtd molo aviiAnmto Ba xpela-
OTOVE P10 ELCAYWYT| TNV LTIAPYXOLOX Bewpia.

Katd v avayvoon and 6o Kot Tépa AOOV og KPATIGOVHE KATH VOU VO TTEVTE
Baowka epwtpata g ITAnpo@opiking

1. TTowog eivat 0 0T0)X0G HOG?

2. Eivol KatdAAnAa ta epyaieio pog?
3. TiunoBéoeig éxovpe Kaver?

4. Eivol autég peaMoTIKES?

5. MmnopoUpe va T TT&HE KAADTEPQ?

Ta mapamave X1 Hovo BonBolv KAV va HEIvel 08 KaADTEPT] EMAQT| HLE QUTA
nov Ba StxBddel aAAd Ko Katd T yvOUT Hov BonBav oe omoladnmote EPELVNTIKT
avadrTnoT 0€ AUTOV TOV TOHEQ.

TéAoG elval 0OOTO va ava@Eépovpe €6® OTL OTNV TTHPATIAVGD AOTA EPWTNHATOV
Kamolog Ba pmopovoe va 1oxLpLoTEl OTL lowg elte TO MpooeyyloTIKO eite To mba-
VOKTOTIKO TAio10 elvan emiong KATdAANAa yio Ty peA€tn pag. loyvel 6t mpdodog
0€ AUTOVG TOLG TOHEIG EIVOL XPT|OTHOG YIX TNV EPELVINTIKI] KOWVOTNTA TNG TTAN|POPO-
PIKIG KO OVTOG TIPOCPEPOLY TOAD XPTOHN EPYOAEIN VI TNV OVTIHETOTION TNG KN
LTTOAOYLOTHOTN TG, OP®G TOLAGYIOTOV TIO TNV SIKI& OV OTTIKT] TOLG AEiMEeTON TO
XOPAKTNPLOTIKO TOL V& €ivat TTOAD KOVTI& 0ToV S1a100nTiKO Tpdmo mov avtiAapfo-
VOHOOTE GOHEG KL YPAPTHOTK. AUTA To TAXIOI 0OQP®OG VOTEPOVV CTNV AMOS00N
TETOLWV XOAPOKTNPLOTIKDV .

Yndpyel TpoOmog Op®G va aAANAeTSpaoovv GAAEG TPpOTEYYioELG e TNV SOLAELX
mov Ba akoAovBroel? LT0 TEAELTAIO KEPAANIO KVTHG TNG epynoiag Ba eEnynow Tov

6

TPOTIO TIOL PTTOPOVV E1TE VX EPUNVELBOVV €lte Vi MEKTABOVV TA AMOTEAETPATH [HOG
He GAAx MAaiota.

1.3 Iotopikég ITapatnproeig

Nawpig oy dekaetia Ttov 80 n épevva APYI0E VX LTIOSEIKVVEL WG N TAPASOT1OKN
TOALTTAOKOTNTA 10W¢ Vo PNV €lval 0 16avIKOG TPOTOG VO AVTIHETOTIOTOOV TIOAAK
TPOPAN HaTa KOt Ol avTioTO0L aAyopiBpoL. Xuykekpipéva, o Vardi mapatipnoe nwg
n eloodog yia to mpoAnpa database-query evaluation amoteAgite ano 0o ocuVioTRO-
0€G, To query Kot TnvPdaon dedopévav. INa npotofadpia queriy, To query evaluation
eivanr P-SPACE-complete, ko ywx fix-point query eivor EXPTIME-complete, aAAQ,
ywx otaBepo query, n moAvnhokotnta né@tel oe LOGSPACE ko PTIME avtiotoya.
Yuykekplpéva, To peyebog g Bdong dev NIV 10 COOTO HETPO Y& TOV TIPOCOL0-
PLOPO TNG MOALTTAOKOTN TG TOL database-query evaluation kot mwg to péyeBog g
TAPAHETPOL pETpOVOE.[41]

Amo autég TG SovAelEg Eekivioe N 16€a TG O ATXPALTNTOG XPOVOC Yl
NP- mAnpn npoBAnpata av kol ekBeTikog lowgv adéxeton BeATiwaoelg
0ToV TpOMo oL Ba mapovoiadetat To ekBeTiko [40].

H mopapetpikr] ToALTAOKOTNTX Kot aAyopiBpiol €xouv avatmuyBel paydaia péoa
OTIG TeAevTaieg Tpeig SekaeTieg. Apontnpia rav n BepeMwikn SovAeid twv Downey
kot Fellows to[36, B7, B8] pe pia oepd and Snpooievoelg e oKomd va Kabiepo-
00UV €V eviaio TAALO10 Kol Vo TRPOLGLACOLY TNV TiponyoLpevn dovAeld toug. Exel
TIPOTOEPPAVIOTNKAV TIOAAEG KAIVOTOHEG 18€€C Y1 TOV OXESIAOHO aAyopiBpmv Kat
TIPOEKLYOV TIOAAK EMEENYNHATIKA XMOTEAETHATH OXESOV Y10t OAEG TIG TIPAKTIKEG TNG
TIAN|POQOPIKT|G.

To npoto eyyxelpidio otov Topea nrav to fifAio:[R.G. Downey and M.R. Fellows.
Parameterized complexity. Monographs in Computer Science. Springer-Verlag, New
York,1999.] Ta emdpeva S0 eyyxepidia epeaviomnkav 1o 2006. Eva jtav to BiAio:
[Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford,
2006] kot To dAAo to PipAio: [J. Flum and M. Grohe. Parameterized complexity
theory. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
Berlin,2006]

Toautoxpova Kot iowg Alyo vopitepa evIEA®S Sia@opeTiKol avpBwot e&epevvou-
oav aveEAPTNTA TNV XPOVIKT] TOAVTTAOKOTNTA TNG XVAYVOPTONG 1810TNT®V OE ypa-
onpota. H moAoidtepn oxetikr] SovAeld ewvat yia to §evépomAdtog yio to omoio 1o
vopitepo amotéAeapa 1o omoio Ba a&lomonbeio € aut Vv epyaciag eivat ekeivo
tov Bodlaender to 1996 [B5]. To mpdBANpa TOL V& XMOPACIOTEL AV €Va YPA@T O
€xel devépomnAdrog k eivan NP-complete if k 0tav 1o k eivar eAevBepo va petafai-
Aetan Ko elye ovQnOnke px dekaetia apyotepa ano toug Arnborg, Corneil,and
Proskurowski to 1987 [29]. Avtoi akopa é8ei&av nwg vrapyel évag O(n 2) al-
yop1Bpog yat o Sevépordartog k mpofAnpa. Ot Robertson ko Seymour [[13] éwoav
tov tpwto FPT (og O(n?)) ahydpiOpo to 1995. O aiydplOpdg toug Pacildtav oo

7

Becdpnpa well-quasi-ordering yia eA&OGOVHX yPAPT HATA KO GUVETIOG TAV HT) KOTO-
OKEVOOTIKOG , [T TIPOPAVTG KOl TiEpLeiye TEPAOTIEG OTAOEPEC.

Tétoleeg SOVAELEC E6TAV EVOLOHN O€ EVAX TIOAD HEYRAO KOO EPELVITOV VX OTPOi-
(QOVLV OTNV TIAPAUETPIKT TTPooEykuot. H avaditnon yla anoteAéopata ano@aoion-
potntag yioo monadic second-order Bewpieg o€ KAGOEIG OMO CLUVOIKOTIKA AVTIKEL-
HEVA KO TIG CUOYETIOELG THG O€ HUTOPOTA EXEL 1O HEYAGAT) KOl eVE1APEPOLOX 10TO-
pla 0nwg propel va avaditnoet kaveig otov Biichi [[1]. TTiBav otata T0 MpwTo omo-
TAETEOPA €lvan §1KO TOUL Kol TOL AMOSUKVELEL TG P YADOOX EIVAL KAVOVIKI] OV Kl
Hovo av givon opioipn oe monadic second-order Aoyikr] (Yl menepacpeveg cupfo-
Aoog1péq). To amotéAeapa opoon o e6® eival puOKG ekél Tou Rabin [14].

O Detleff Seese nNtav o mpa10G MOL LTIEBETE WG KAKTELG YPAPNLAT®V |E ATO-
poolonpeg Bewpieg Ba eivon “mapopoleg” pe dévdpa. [27]. O Seese katdgepe va
anodei&el Mg av pio KAGOT eminedv ypoONUAToV He HEYIoTo Babud < 3 Sev me-
plelye CLYKEKPLPEVR LITO-YpaPHHaTa TOTE B ixe éva opBO Sratpéxov 6€évdpo. Ad
N oTyun mov o Rabin anédeiée v amopaciopodmta Vv monadic second-order
AOYIKNG o€ 8€vEpa, 0 Seese KATAPEPE VO GUUTIEPAVEL TG ALTEG Ol Bewpieg NTav
anoaoiolpeg. Duokd n peBodog tov Rabin dev Ntav moAd vAomowopn. O Seese
ouveyloe va ipooTiaBel va amodei&el g tree-like ypaprpota eivat To 010 TNG ATO-
(QUO1OHOTNTOG.

KegpaAaio 2

H Tvvdaptnon AvrarAayng

AvoAvTtikd i amotovpevn Bewpia Ba Bpebel 010 ayyAOQP®@VO KOPPATL TNG EPYQ-
olog.

Y& auTo 10 KePAAXo B oproBei ko Ba peAenOel 1 aVTOAAXKTIKT OX€0T HETAED
TAPAPETPOV HOVIEAOL KOl TIOXPAHETPOV 1810THTWV OTIWE KVTEG EXOLV TEKUTPL@OEL
vapitepa.

2.1 Apywn Ieprypaon

Méyptl TOpa €xoupie apapeTponooel 1o [pdAnpa eAéyyov MoviéAwv oG tpog
TO PNKOG TNG S10TNTHG KAl WG TIPOG KATOIX SOUIKT| TIHPAPETPO TOV HOVIEAOL TIOV
TIEPIHEVOVE OQV OTLYHIOTLTIOV E10OS0V.

Eipoote €60 €TO1p01 VX SOOOLE TO TPAOTO OO TA AMOTEAECHATA YIX VO EEKL-
VOOV HE T BAOT TV GLAAOYICH®V TIOL EMBVHOVHE VA ATOSEIEOVE.

Oeopnpa 2.1.1. Eotw Aoyiki A e EKPPaOTIK SOVaun x, 1 OMoix TAPAUETPOTION)-
pévn pe ko eivar FPT. Ta kaBe avénon oty ekppaotiky) Svvaun me¢ A vmapyet pia
dopkn mapduetpog k n omoia katnyopiomnoiel Kabe 1610TNTA EKPPAGNUN OTNV EMEKTE-
tauévn A oav FPT ndvw g€ atiypiotona epaypévou k.

To mapandve Beopnpa €xel pio TOAD oA amode1En TAPOHOIX [E EKEIVI] TOL
Bewpripatog KaBa¢ PTopoLje TAVTIX Vo BEMPTICOVE OOV TTAPAHETPO EVA VOU-
HEPO TOL pdaoel To péyeBog g elgddov.

Anddeién. BOa napovoiaoovpe 00 amodeiéelg:

* XWPIG Kav v XPNO1LOTIO|COVHE TNV TIOAPAUETPO ko HTOPOVHE KAT gvBeiav
va opioovpe pia mapapetpo k = g(n) omoo n eivat 1o péyebog tov Movtédov
€10060V. avayKaoTika AoV k classifies A’ as FPT.

+ To Model Checking Problem tg A Ba eivon ké&mowa moAvnidokotntag O* (F'(ko))
omou n ypaen O* 6poug TATP@VLHIKOVGE wg ipog n. H duénon oty Suvapn ék-
epaong ¢ A eivan pia eMEKTROT oL PTopel va epappocBet oe dAeg TG 1610-
mreg ekppdoipeg oty A. Zuvenag vndpyel FPT aAyopiBpog mov ypetdletan
O*(F (ko)) ko propeti va emkaAeiton évav apiBpo h(k) popov yia tov éAeyxo

9

povtéAwv g A’ apkei to h(k) va mapapéver aveédptnto tov n. Kdbe ov-
&non Aowmov oty eKEpacTIKT] SUVAUT Ba epappoobel avaykaoTikd oe Evav
h(k) ap1Bpo bromtwv mg A. tpexoviag dtadoxika tov FPT aAyopiBpo tng
A ywx k@0 pia mao avtég emPefordvovpe Evav Xpovo eKTEAEOTG TO TTOAD
O*(h(k)*)) 10 omoto mapapével FPT.

]

INa va Tap&you e KATO10 ATMOTEAETHA KAADTEPO KO TO TTHPATIAV® Ba TPEMEL Vi
HEAETI|OOLE TN OXEOT TIAXPATIAVE AXHBAVOVTORG LO OYN HOG KOl TIG CUYKEKPIHEVEG
GAAEG OTIG THPUAHETPOVG KOl OTNV EKPPAOTIKN SUVOHT).

M TIp@OTN €pAOTNOT €lval: HTTOPOVHE VA EXOVHE TTANPOPOPIX Yl TNV KATNYO-
PLOTIOINOT] TTHPAPETPWY TIOV AVTIGTOLXOVV O€ KAKTELG YVOOTNG GLYKPIOUNG EKQPPaK-
OTIKNG SUVAUNG?

Opiopog 2.1.1 (Ioyvpotepn). Oa Aépe OTL I} TAPALETPOS X EIVAL LGYVUPOTEPT] ATIO TNV
y av yla dedopévn pia Tipn k 1o mooooTtd oTiypPloTUNI®V TIOU VTIOTOLKO0UV O PPay-
HEVO X amo k w¢ mPog n eival PIKPOTEPO MO €KEIVO TTOL AVTIOTOLKEL O€ PPAYHEVO

y.

Me moto amAd Adyla 1) X givat 1oxLupOTEPN TNG Y v €ivat oo mbavo Otav pHag
800el éva Tuyaio oTyHIOTUTIO ALTO VA €XEL PPAYHEVO Y QIO OTL X.

ATO €60 Ko TTEPX OTAV AVAQEPOVIE TNV TTAPAHETPO PG AOYIKIG KAG-
ong A Ba Bewpovpe TG auTr elval 1) AydTePO 1GYLPT] TTOL LIIAPXEL Y1
avt ™ Aoyikiy KAdon. Auto onpaivel ot n mapapetpog o avtiotoiyet
0TO peyaADTEPO MANB0OG OTIYHIOTUTI®V QPOAYHEVIG TTIXPAHETPOL (XwPig
QLOIKG Vo KaALEBEL OA0 TO CUPTIAV GTIYHIOTOTIWV).

Oeopnpa 2.1.2. Asdopévwv dVo Aoyikdv kKAdoewv A & B pe mv A va éxel oo
HEYGAN ekppaatikn) Suvaun amd v B 10t n mapapetpog mov kabotd mv a FPT
eivan 1oyvpdtepn amo ekeivn mouv kabiotd mv B.

M p@dTN patid otnyv anodeién tov Bewprpatog sivat:

Andéeién. H A etvar vPmAdtepng ekopaoTikng Svvapng amno v B. Zuvenwg kabe
010N T EKQpAo1N o€ B elvan emiong ekppdopn ko oe A. Xapig BAGPN g yevi-
KOTNTOG B Aépie mwg n mapapeTpog x kavel v A FPT ko n y v B.

Visotteg p € B, 1o MCP g (p,x) € FPT agob p € B — p € A — , kot
Vp € AMCP(p,x) € FPT. Zuvenmg av 1 p €ival ekppaoipn o€ B, tdte pmopovpe
QA VO TNV EKYPAOOVE OE A KO VO XPT|OHOTIOI|COVHE TNV AVTIOTOLN TOPALETPO
ywx évav aAyopiBpo FPT. Zuvenwg 0Aeg ot 1610Tnteg TG B pmopovv va avayvopt-
0Bovv oe FPT Oxpvo e xprion g mapapéTpou e A.

'Eote TOpa g 1 TapapeTtpog g B eivat ioyupotepn amod g A. Tote yix kaBe
1616t ™G B 10 m0oooTto otiypiotdonwy érmov to MCP(p,y) Abveton ypriyopa omo
evav FPT aAyopiBpo eivan pikpotepo amo ekeivo Avvetan ypriyopa yia to MCP(p,x)
mGA. L

10

#Bounded k
instances/ A
#Instances

——t—1— -

Expressive

A B C D E Power of
Logic

Zynpa 2.1: [TooooTo and epayHeéVa Katd k oTiyHloTuna KATm amo avoTnpEeG AOYIKEG
OXEOE1g

To mapoandve ov Ko Sikomvel Tig poondbeieg pag oe éva Pabpo akopa dve
Sivel Kamola TANPOEOPIN Y1 TIG GUYKEKPIHEVEG ALEOHEIDOOELS. TTapdAa avTd TAEOV
€XOLE Pl BAOT Y1 VO 10XLPIOTOVHE P10 TTO10 HEYAANG KAIHOKOG GLOYETION TIEPX
aro TNV TETPHPEVN. To KaAO eivar OTL aKOHA BPLOKOHAOTE O€ TTOAD E100YMYIKO 0TG-
010 KOl OLVETIOG SEV EXOVE AKOHN XPNOILOTIO|OEL LTIAPYOLOA YVAOOT TIAV® O €V-
VOLEG IOV HOG OQYOPOLV.

To mapamndve onpaivel HOVO TG OTAV XPTO1HOTIOI0VHE XVATN PG OPLA OTNG YAWTOX
TIOL €fvat amapaitnTn yiax Ty S1tdNeon 810TNT®V TOTE OTAV AUVEAVETAL N EAGYLOTN
duvartr) EKQPAOTIK SUVANN AVOYKXOTIKA TIPETEL VO ”BL01A0TOOV” KATIOIX OTIYH10-
TUTI V1O Vo iapapeivovpie FPT.

H véa mapapetpog Opwg (autn ¢ 1oxvpotepng Aoyikng KAdong) av kou givat
1OXLPOTEPT SEV AVTIOTOLXEL AMAPAITNTA T 181 OTIYHIOTUTIA pE TNV apyiKn. T1a-
VIO €EXOVHE TO KEVO YPAQNHA QUOTKK PPAYHEVO Kol KOWVO Yl K&Oe TapAPETPO Kot
OUVENAOG LIIAPXEL AOYOG VA TNOTEVOVHE TIWG LTIEPXEL TUNHA TOV OTIYHIOTOTI®V TTOV
QVTIOTOLXEL Kot 0TIg 600 TAPAPETPOLS k1, ko PAYHEVEG.ZTNV YEVIKI TIEPIMTOOT) TIO-
poAa auTa evlagepopaote kaBapa ywa cardinality Tov cuVOAOL TIOL €xeL TNV K&Be
TIOPAHETPO PPOYHEVT.

INa pax Aoyikn kKAdon A kot pio mapdpetpo k mov v kabiotd FPT, to
0VVOAO T®V OTIYHIOTOTIWV TIOVL €X0OLV TNV K @paypévn yix KAmolo n Oa
oupPoAileton S 4

E8& kdmolog pmopel v HavTEPEL WG Yo TOAAEG TIAPAHETPOVG HUTTOPOVLE VA
TPoodlopiocovpe 1 €0T® vV Tpoceyyiocovpe to TANBLKO péyeBog (cardinality) tou
S 4. AUTO TiEPX aTO TOAD EVAAPEPOV €ivat KL TIOAD XpTO1p0 ONiw¢ Ba ovpEe Tapa-
Katw. Ynapyovv non kamowx anoteAeopata yi FPT checkable logics mov prnopotv
va eppnvevBolv o€ aUTO TO TAAIO10 PHECO TETOLWV CLYKpioewy. [a mapaderypa Ka-
nolog Ba pmopovae va apyilel var OKEQTETAL TNG OXEOT TIOL B €pTETE VXX €1XAV 0L
napdpetpot mov kévouvv FPT 1ig Aoyikég M SO &M SOs. TIpwtoo BéPara k&voupe

11

FPT instances

Logic Class ~ _5 -
SR

Iynpa 2.2: H oxéon PeTad)d TV TapapETpOV TV AOYIKoV KAGoewv A ko B dtav
n A eivat oo ekQpaoTikt and B

auTd To Brpa TPEMEL va (NTOOLHE KATOWX €yyOnoT yix TNy Lapsn Kot v Ho-
VoSIKOTNTA TNG ALYOTEPO 1OXLPNG TTXPAHETPOL Yo pia Aoyikr). ‘Eva mapadetypa Ba
nTov:

IMa Aoyikn kAdon A kot 8o ta p € A ko éva otiypiotono I, av to
I €xer ppaypévn v k then p is checkable in FPT time. To ohvoAo 0Av
TV OTIYHIOTONV IOV PTopoLV va eAeyxBovv yiax v A oe FPT xpovo
€xouv Vv k opaypévn.

Av €va TETO10 OMOTEAEGHA GEV LTIAPYEL Y1 Pl AOYIKI] KAGOT) TOTE auTni N Sov-
Agwk bev pmopel pexpt twpa v e@appoabet pe évav evBu tpomo. Evtuxmwg vmdpyouvv
TIEPUTTWOELG TIOV LTIAPXOLV TETOLX AMOTEAECHATA KOl pE B&OT auTd PTOPOVHE v
enektaboOpe o€ KAAOELG O1 OTIOieg £XxOLV EAAElPELG. Xe PEPIKEG TTEPUTTOOCELS TO VO
OULOYETIOOVE SOUIKEG TIAPAUETPOUG YPAPTHAT®Y Elval Eva o TIPOG TNV KATAvVO-
non v @LOT TV WEL0THTAV TIOL AVIKOLV OTNV KAGOT oL BEAovpe va eAEyEoupie.
Y& GAAEG TIEPUTTWOELG I OYEOT HETAED TIAPALETPAOV EIVAL EVO GTOLKELD Y1 TNV GXEOT)
HETaEL TV AOYIKOV KAKGCEWV v Kal auTi 1 TAeLp& dev Ba peAetnBel extetapéva
o€ avutn TV epyaoia. H ta§ivopnon tv napapétpwy gival éva moAd peydAo project
OTO OTIOI0 1] KPETNPIA YIVETE TAPAKAT®. METK aMO KATOIX BAOIKA TIPOTA OTOTEAE-
opata Ba €xovpe TNV SLVATOTNTA VA EPUNVEVCOLHE LTIAPXOVOEG SOVLAELEG TAV® O
AOYIKEG.

Op1op0g2.1.2. Ao €66 KA1 TIEPR OTOY AMELOVVOPAGTE GTI GLVAPTNOT) AVTOAAAYTG
1oXVOLV TA TIAPOKAT®:

* Oa ¢ ovpPoAilovpe cav F

* in agreement with the above note for a logic class A the parameter that classifies
A as FPT will be noted k4

12

+ the above parameter will be considered to be the weaker (= least strong)
known one.

* The straightforward relation will be considered to be the one refering to a
parameter that classifies a Logic class as FPT (i.e. the MCP of A is FPT
parameterized by k4)

* The converse relation will be considered to be the one associating a family of
graphs and a checkable logic with a bounded parameter (i.e. if family F has
a checkable logic A then it has bounded £ 4

Some of the results that i will be quoting later on might not be the optimal known
ones. However they might be the most appropriate to cite in this framework. This
doesn’t mean that later ones cannot be also interpreted and utilized. Of course to
ensure optimality there must also exist some short of converse theorem. In the cases
there isn’t there are some extra steps that need to take place in order to return to a
point where we can produce useful results.

PROBLEM: There might exist a case where a converse theorem is not known
for a Logic class. For reference lets say that for class A all properties can be checked
n FPT time with parameter k4. Now we can discriminate two scenarios:

1. A converse does not exist

2. A converse exists but for a parameter £,

In both cases and for completeness purposes we can temporarily accept the
converse parameter to be the one of the right higher Complete for our intent Logic
class. Also there might be a case where only some short of converse is known. Each
one of these cases needs a very small explanation as to how it is going to be treated
in the future.

A small representation of all above cases is represented in the following table

Logic | Related parameter | Converse
A k4 ka
B k’B -
C ke k¢
D - kp
E kg kg

[Tivakag 2.1: Possible Discontinuities

In the above table logic A is considered less expressive than B, B than C and so
on. Lets begin with the second row of the table.

What we know is that the MCP for Logic class B is FPT for kg. What we need
is at least some parameter for witch the Converse holds

Oeopnpa 2.1.3. For Logic B the Converse holds for parameter k 4

Anodeién. B is more expressive than A — Vp € A,p € B. From the converse
theorem of A: If a family of graphs F has a checkable A then it is of bounded
k a.Suppose F has a checkable B. A C B — F has a checkable A — F has a bounded
kA]

13

For the fourth row of table 5.1 we know that for a family of graphs F if D has a
checkable Logic D then F is of bounded kp

What we want is a parameter k that for witch the relation in question holds. L.e.
The MCP of D is FPT parameterized by k.

Oeopnpa 2.1.4. The MCP of D is FPT parameterized by kp,

Andéeién. The MCP of E is FPT parameterized by k. D is less expressive than E
— Vp € D,p € E. Therefore the MCP of D is FPT parameterized by kg]

Regarding the third row the situation gets more complicated in case that the
exact relation between k- & k. is not known. Here it is not enough to know witch
parameter is stronger (is some cases we do not know even that). We need to be able
to decide for each instance I the bound on both parameters if such a value exists.
Again this can only be done by analysis on specific parameters and therefore this is
a part of chapter 6.

Opwopog 2.1.3. In the above context we can distinguish three scenarios.

1. VI instances of bounded k¢, I is of bounded
2. VI instances of bounded %, I is of bounded k¢

3. The exact relation between k¢ & ki, is not known.

for the above we can define as K¢ = stronger(kc, k¢, ko + ki)
the definition of stronger here is enough to cover all scenarios. If for instance
Sc C S¢ then K¢ = k¢.. The rest of the cases can be tested similarly.

Through this trick we can summarize table 5.1 as:

Logic | Related parameter | Converse
A k4 ka
B kp ka
C K¢ Ko
D kg kp
E kg kg

[Mivakag 2.2: AopBwpéveg Acuveyeleg

Ba §00pE MAPAKAT® TIWE YIX CUYKEKPLHEVEG AOYIKEG KO TIAPAPETPOLE O TIAPQi-
Mave mivakag dev €lavt KaBdAov pakpud amo TNy mpaypatkotnta. Puokd o mi-
VOKOG HOVO TIAPOLOTALEL OXETEIG HETAED AOYIWV YA TIG OTIOLEG EEPOVHE AVOTIPES
oxéoelg peTadL Toug.

2.2 E&edikevon

Meypt topa €xel obel amodelln yux pa oG éva Babpo avuotpogws avaioyn
oxéon Heta&h SuvatoTT®V AOYIKNG KOl €DPOG THPAHETPOVL. T VO KATHQEPOLE
VO SOCOVE H1X TTO10 ALOTNPT) TIEPLYPAPT| XPEIR(OPAOTE HOVO o Baoikr) vmdBeon.

AvTr n vnoBeon oyeTileTE [E TNV ATIAVTNGOT OTNV EPAOTNOT:

14

Ti eloodo Ba pmopovoe va €xel avtn N cuvapTNON?
Ba UTOpPOVOE Va EXEL EVAV VIETEPUIVIOTIKO TUTIO?
Tt poBnpotikég 1810t teg Ba eiye?

Kdébe pia amo 1ig mapamndve epwtnoelg yix va amavtn el xpeldletal va KataAd-
Boupe Eva SLAPOPETIKO KOPHATL TNG PUONG TOL TIPOPANHATOG,.

So lets start at the beginning. Suppose that a strict relation exists. How can
we measure such a thing? Reminder here that we are trying to describe the way
expression power in logics interacts with parameters of input instances.

Imagine an F function that as an input there is a variable describing in a way
how expressive a Logic is and as an output we have a quantity that gives some short
of information toward what kind of parameter would correspond to that language.

Its quite obvious early on that F would not be of the short

F(z)=2*+4

or any other continuous function over the real numbers for example.

There are quite a lot of reasons why such a thing wouldn’t work and the first one
i am going to focus on is the fact that in any case the relation i am looking for will
be in any way continuous. Even if we end up with a number as a input the values
this number can be assigned will not be continuous since they have to correspond
to expression power. Lets focus then to the kinds of logics that exist and what kind
of increments are applied form one Expression Power to the other. The way we can
prove if a property is expressible in a Logic has been covered in Chapter 4

1. TIpotaoiakdg Aoyiopog
2. FO Aoy

3. MSO,

4. MSO,

5. SO

In each one of these the difference is some operator, a part of the vocabulary, the
use of Predicates or limitations on them.

One could of course try to associate some number with each one of these.

It is widely known and easily proven that all of the above have countable infinitely
many properties defined in each one. So any measure regarding the cardinality of
the set of properties expressed in each one is irrelevant.

There are some studies on how can someone measure the expressive power of
a language but none relevant enough. Some interesting measure would be to take
into account th length of the expression of a specific properties in each Logic. But
this becomes less useful when the optimal length is reached because even Logics of
higher complexity require the same number of symbols.

15

For now then lets keep the idea of an increment in expressive power happening
through its grammar or it vocabulary. Thankfully for the purpose of this thesis only
strict inclusions are studied and therefore the idea of increment has a one-way interpretation.
In order though for someone to repeat such a process for logics of not strict inclusion
a more detailed study will be needed on this area.

So as proved already the relation exists but it is yet to be determined how tight it
is. We could also try to define it in the opposite direction. Results in this case would
look something like this:

Av pa okoyévela ypa@npatev (ameipn) ivat eA&y&iun ya kabe 1610-
TNTA TNG AOYIKNG A TOTE QLTI 1] OIKOYEVELX EXEL PPAYHEVT] TNV TIAPAE-
0 k.

Now for a finite family of graphs one can argue that all parameters are bounded.
But thankfully i have here a proof that this does not interfere with my work

Oeopnpa 2.2.1. On finite families of graphs a finite set of Logics is always FPT-
checkable.

The trick here is not to actually check all properties in a Logic rather than label
the models that satisfy the property.

Andéeién. Select arandom enumeration of the graphs in the family F. For a all these
graphs we can select an upper bound for each possible parameter that would be of
use in th MC of a Logic. Out parameters would be k.1, k.2,, k;, for our N logics
respectively.

So we define k = maz(kr1)+....4+max(k; N) where the individual parameters
are parsing through all of our models.

k is an upper bound for all individual parameters in all of the graphs of F and
therefore for all Logics in our set the MCP is FPT parameterized by k. [

so we can focus on infinite families of graphs where the bounding of a specific
parameter would come from structural properties and by looking at the definition of
the class.

Could we after producing a bounded parameter result derive on the set of properties
that are checkable on those graphs?

Of course we could! Some results already exist but in a very local scale. In fact
based on the work already presented one can derive such results after giving a closer
look to the existing knowledge over parameters. We will study such paradigms later
on.

The above results are not necessarily the most recent in this area but for the
purpose of parameters of graphs they are more appropriate.

So now if someone finds a infinite family of graphs with bounded treewidth he
can immediately know that there must exist a property expressible in SO Logic but
not in M SO that is not checkable in FPT time for this family.

The above actually is not trivially a necessity but it can be proven. As always
when mentioning the parameter of a Logic class we refer to a relationship of the
form shown in definition

16

Oeaopnpa 2.2.2. Assume logic classes A and B with B having a higher expressive
power than A. If a family of graphs F has parameter k4 of Logic Class A bounded
but kg of Logic Class B unbounded then there exist a property p expressible in B
but not in A that is not checkable in FPT time on F with parameter k.

Amnddeién. Suppose no such property exists i.e. all properties of B are FPT checkable
for F with parameter kp. Therefore Logic B is FPT-checkable for F. But as in the
converse of Courcelle’s theorem given by Seese which is or the form i am assuming
then if a family of graphs has an FPT checkable A Logic then it must have bounded
the corresponding parameter. |

O

ZIy& o1y £XOVHE APXTOEL VO EXOLHE TIOLO CLUTIAYT QMOTEAETpaTa. [a va ou-
voyiooue:

1. Oco av&avoupe TV TOALTAOKOTNTA EKPpacTG Ba pemnel va Buaidlov e TAT-
Bog oTyploTONIGV.

2. AOHIKA XOPOKTNPLOTIKA YPOQNHATOV UTTOPOLV Vo Xpnolponotnfoly yia va
OLUTIEPAVOLLE Tt €160VG 1610TNTEG Bax eivan eAEYEIHEG TAVK O€ aLTA.

3. Me Alyn mapanaviola SOVAELE HTTOPOVHE VO GLUCYXETICOVHE TO XPOVO EKTEAE-
01G €VOG aAyopiBpoL pe TNV amapaitnTn AOYIKN Y1 VO EKQPACOUVHE TNV 1010-

4. Towg va UTTOPECOVHE OTO HEAAOV VX GUOXETIOOVE HE OLYKEKPIHUEVO VIETEP-
HIVIOTIKO TPOTIO TNV AVOXUEVOLEVT HELWOT] OTX OTIYHIOTUTIA LLE TNV XVTIOTOLKN
avénon oe Aoyikr SuvVap.

Finally i will focus on one of the listed questions from further up. Lets just
suppose that we have agreed on a measure that expresses how massive is the expressive
power of logic A. From now this measure will be denoted as .

What can we say about F () ? Technically x is a mapping from all
possible Logics to the real numbers with respect to the following properties:

* VLogicAJ x(A) e R
« iff A is more expressive than B then x(A) > x(B)

Remember that our output is a measure concerning the number of instances that
correspond to a bounded value of k4

Oewpnpa 2.2.3. [() eivat pbivovoa.

Andéeién. dPuoka 1o mapanave Ba xpelaotet anodelén

Vao,y cx >y — F(x) < F(y)

x > y means that logic A, is more expressive than A, = Vp € A,,p € A,

17

Suppose now that f is not decreasing =
dr,yx >y F(z) = F(y)

Avuté Ba oTjpove TG LIAPXOLY ISIOTNTEG EKPPAOHEG O A, IOV HTIOPOVV VO EAEY-
xBovv oe FPT xpovo oe Atydtepa otiypiotona (.S,) 0tav n 1810t ta eEKPpaletat pe
Ta i ovpfoAa oe A, avti yia A,. Auto uokd Ba ofjpowve nwg n &, eivot 16Q-
pOTEPT NG A, TO OTIOIO ElOVL AVTIPAOT] COPPEOVA PE TOV OPLOPOE TNE TIAPAETPOL
AOY1KT|G [

2.3 Tapapetpikn IIpocéyyion

H SovAe1a mov €yel yivel péxpt €6m eivar TpAYHATL TOAD XpHOHT aAA& KaBDG OAeg
o1 amodei&elg yivovtan pe Xprion AOYIKIG OeV EXOVHE KATAOKEVAOEL TAX AVTIOTOLX X KU-
KAopata. Oa tpooniabnoape €6® v To S10pBDOCOVHE AVTO TIPOCPEPOVTAG PEPIKEG
OVOYWYEG HEGO TOL LTIOAOYLOTIKOU HOVTEAOL TNG MOPUHETPIKNG TTOAVTAOKOTNTOG.
As you see above all reductions and proofs take place in a more mathematical
framework. In order to be positively sure that not only the correlation F exists
but all mentioned properties are true i have to translate them in the parameterized
framework.

TN va éekvrjoovye ...

The first result of section 5.1 is theorem 5.5.1. regarding the certainty of an
existent parameter that classifies the MCP of a Logic as FPT.

According to the phrasing of we have to describe the transformation of a
weft O circuit for logic A to a weft 0 circuit for the logic A’.

Of course without knowing the increment it is very difficult to design a specific
circuit the following can be done:

The increment will be of some form of extra symbols, Predicates or rules. Without
any massive assumptions i will use a primitive form of enumeration of these changes.

Andéeién. Note C' the family of circuits that recognizes property p € A. The Logic
A’ will be the set of all properties expressible in A repeated an enumerable infinity
number of times, each time with another aspect of the new rules being applied.
Therefore each property p’ € A’ will be a combination of a property p € A and
expansion from A’ (even if the property in A is an empty string).

Only thing remaining is to describe a parameterized reduction between the circuit
recognizing p to a circuit recognizing p’ where p is the part of p’ in A.

Each one of the changes in A will be represented on a gate of C’. Since C is of
weft 0 each of the gates in C will have an in-degree at most ky = in C each level
contains at most a

g(k) * poly(n) (2.1)

gates.

18

_ N\
7~ K, N
e TN TN TN TN
c) C)) . L) Input level
\\.\.\ IIIIIIII- \ - III|
._\.\ \ - III
W 1y O

(\J C\J (\j Level 1
N S

Eynpa 2.3: Eva KOkKAopa ov avayvepilel v ot ta p € A for kg = 2

* 0 TOPATIAV® AP1BPOG TIPOKVTITEL ATO TO YEYOVOG TG K&Oe eminedo ei-
vau vag k ouvduacpog amo to mponyovpevo. Avt n Stadikaoia Aap-
Bavel HEPOG YO TIEMEPATHEVO TTOAVOVUHTKO apLlBHO POPAOV KX GUVETMG
K&Be TOAN evo emméSov Sev prmopei va eiye mave amo [7.1] e10680ug and
TOAEG TOL T(POTNYOVHEVOL EMUTESOL.

A gate in C’ will always be a rule being applied on a property p (which has its own
weft 0 circuit) or on gates of C’.
We can recursively solve the case where it is applied on gates of C’ by explaining
what happens in gates of C. Similarly with theorem we assign A’ the parameter
ki = g(k) * poly(n).

Now no gate in C” is of unbounded in-degree = C'is of weft 0. O

Oa BEAapie va cuveyicovpe eppnvedoviag to fempnua 7.1.2. Avotuxdg avtd
elvar apkeTd oo SVOKOAO va yivel HEGO KUKAWUAT®V KaBmg dev elvar eDKOAO va
TEPLYPAYOLHE KUKADUATA TIOL SeV BE@POLV TNV TAPAUETPO PPAYHEVT).

Ta anoteAéopata 1oL TVOKO HIopoLV OAa ava eppnvevBolv péco apo-
HOLWV S SIKAC1OV

19

glk |+ poly(n)

|'/ \
f_-\l I/_\" |'/_> P -Z/_jl
Ki N/ ‘/_
¢

r/F-\'u

'\R__,/'

r 4 / !/
Zxnua 2.4: Mo TOAN TOL VEOU KUKA®HATOG TIOL avayvepidel v idiotnta p’ € A

20

Meépog I1

English Text

21

Ke@aiao 3

Introduction

In this Chapter i will try to summarize the reasons that lead me to this approach
among with some basic arguments on the purposes of this attempt.

3.1 Idea Overview

The main objective of defining and studying the Model Checking problem is not
to derive a ”fast” algorithm that solves or describe a technique of generating such
algorithms.At least not in this work.The Model Checking Problem gives us a way
of formulating groups of problems (or properties) and deriving through its study
information about their structure. Recently it has been studied excessively due to the
applications it finds in formal verifications.

On the other end Theoretical Computer Science has developed a very big interest
on descriptive frameworks. Upper bounds on the time an algorithm requires to check
a property are derived from the logic required to define the property. A millstone in
this direction was given by R.Fagin in 1973 proving that each property expressible
in 4 SO is checkable in NP-time.

The Model Checking as a formulation is very simple and does not require any
particular effort towards that end. In the Classical Framework it is defined as:

w-Model Checking
Input: A Model G and a Property .
Output: “Yes” iff G F ¢, ”No” otherwise.

In a intuitive manner we expect the computational complexity of the Model
Checking of a property to increase as the logical symbols required to express the
property, become more complex. Of course that doesn’t mean that expressing a
property using more complex tools will increase the corresponding complexity. What
i am interested in here is the computational cost of properties when they are expressed
in the least complex logical framework. A way to express this is through the Model
Checking Problem (from now on refereed as MCP).

As you can see the MCP has two inputs and therefore its complexity will be
somehow depending on both.It is obvious that the complexity as as function will be
increasing as some part of the input does.My focus is to try and keep the complexity

1

low as i increase one parameter and keep the other one bounded. The resulting
complexity will depend on both the size of the model and the characteristics of the
input property. In a closer look other characteristics of the Model might also be
better for determining behavior towards complexity. This is why a parameterized
framework would be more suitable for our study.

Parameterized Algorithms and Complexity are not new in the Computer Science
community either. The initial work begun by Downey and Fellows in the early 90’s.
They initially proposed that the study of the complexity of various problems is often
not realistic to happen in only terms of size of the input.From that begun a huge
wave of research in the parameterized framework they proposed that resulted in very
usefully results in both Algorithmic and Theoretical directions. The MC problem
which i will be studding in this framework is defined as

Parameterized ¢-Model Checking

Input: A Model G and a Property ¢.
Parameter: 1=|p|

Output: ”Yes” iff G F ¢, ”No” otherwise.

Note here that the characteristics of the property or the model are left vague on
purpose. We will expand on that when the theoretical background has been established.

To formulate the above correctly i am going to utilize knowledge from various

fields. Mathematical Logic and Model Theory are used to categorize properties in the
corresponding levels of expression power. Algorithmic schemes and Reductions will
be given in a parameterized framework.For a problem to be characterized computable
it will need to belong in the class FPT(Fixed Parameter Tractable) which is the
parameterized equivalent of easy problems. Additionally i will try to assimilate all
results with existing knowledge from Computability Theory.
The ultimate purpose is to derive a set of rules describing the above behavior in
a way that could be utilized for the design of algorithms. My approach will try to
mathematically relativize the parameter that classifies a problem as FTP with the
class of logic required to express the corresponding property. An example of such
an accomplishment could be of the form ;

If a property ¢ cannot be expressed in the Logic Class A then the parameter
that classifies ¢ as FPT is an upper bound for each parameter classifying
to FPT a property expressible in A.

Of course there is some amount or pre-existing work on the Parameterized Complexity
of the MC Problem supporting the notion of a such correlation but not in a universal
manner. Such are the work of Brunno Courcelle on the Model Checking for MSO
and of Seesse on the expressibility of FPT decidable properties. [22],[28]. Up until
First Order Logic there is no need for bounds on the Size of the model since the
whole Class can be classified as FPT parameterized by the length of the formula of
the Properties. As we advance in classes such as Monadic Second Order, 4 Second
Order, V Second Order or Second Order there is need for bounds to be applied in
both parameters in order to remain FPT. I will try to interpret these works in the
framework i am presenting. In order to make all the above more well defined i will try

2

to put them in an algorithmic context. Anyone with even the slightest familiarity with
Computer Science will have some characteristic problems and the corresponding
algorithm tat solves it. How is though the problem and the solution associated with
formal properties?

A Property is a mathematical expression that uses logical symbols to express an
idea. When those symbols are interpreted in some model the search for the property
becomes the definition of the problem.

For instance given a Set o of numbers and the relation < the property of P:

reA:Vye A x<y

would be interpreted as the property of x being the smallest number in A. The
corresponding problem would be find the minimum element of A.

This is a very simple example though. As properties become more complex the
notion of expressing them without “hand-waving” and physical language becomes
more demanding. Sometimes the logical language doesn’t seem enough to express
o property. But how do we know that we have reached the edge of expressibility
for the current set of symbols? This is where the Ehrenfeucht-Fraissé Games games
begun to answer this question for First order logic and triggered a similar movement
for higher level logics. These will be explained appropriately in the corresponding
section.

Assuming now we have managed to categorize all properties we can think for
Models such as Sets of Numbers, Graphs, Functions, Matrices, Matroids ,Latices
etcetera can we derive from this characterization some sort of the Time a Machine
will need to recognize given property? Intuition would push us to say that the harder
it is to express e property the more time demanding would be its recognition. In deed
all results this far have ton contradicted this statement but each one independent
of the others without a notion of larger scale behavior. My work will focus on
convincing that such a behavior exists and that there are tools that can give s some
information about it.

3.2 Why Parameterized?

To give a full argument of that we will need of course a much more detailed
introduction to the basic notions of classical and parameterized Complexity Theory.
Nevertheless historically there is some valuable knowledge that can be utilized here.

The Complexity required to recognize sets of properties has been studied this
far in both Frameworks. Early on in the history of computer Science the language
theoretic approach for Computable properties was one of the most promising ones.
Of course here there is a very large gap between the use of Logics or Grammars
as the tool for expression. With Grammars and the separation of Languages into
Context Free, Context Sensitive, Regular etcetera brought results that connected
the corresponding language to the computational model able to recognize the hole
group. The Chomsky hierarchy summaries such relations. From the side of Logic

3

Class Grammar Languages Automaton
Type -0 | Unresticted Recursive Enumerable | Turing Machine
Type -1 | Context Sencitive | Context Sencitive Linear Bound
Type -2 | Context Free Context Free Pushdownd
Type -3 | Regular Regular Finite

[Mivakag 3.1: The Chomsky hierarchy

though the search for the limits of computation has had a more difficult road. The
correspondence between the levels of the Polynomial Hierarchy and the 3 hierarchy
over properties expressed with specific quantifier alterations is one of the most
important reasons to pursue the notion of a strict correlation of the fields. The main
meaning of this correspondence is that based of the alterations of quantifiers needed
to express a property we can acquire an upper bound for the Checking Complexity.
The converse would be that a known complexity for the checking of a property also
provides an argument for its expressibility in one of the levels of the > hierarchy.
The proof of this is not constructive and therefore does not provide algorithms for
each case. Therefore, although extremely interesting the above are more of theoretic
value. In reality those results are very difficult to utilize. For instance:

A Programmer, Joe is trying to design an effective algorithm to recognize
a new property in graphs. On his hands he has a rough drought of the

algorithm and with the help of a Theoretical Computer Scientist he

has also defined the property in a Logical Framework.He can use our

theory and understand form the formulation of the property and check

his algorithm is under the upper bound we provide. Or in the converse

direction he can use the algorithm to check if the formulation is using

minimal quantifier alterations (in the case is algorithm is optimal). In

both cases he cannot know if his algorithm is indeed fast

What was the problem in the above example then? The secret lies in the notion
that both directions of the equivalence produce upper bounds. And in addition the
produce those upper bound in a non constructive way. What Joe would want is a way
to know that his algorithm cannot become more efficient. He wants a lower bound.

Attempts to produce more tight results have been made. As mentioned above by
Fagin 350 captures NP which means that every property expressible in 350 will be
checkable in NP-time and every property checkable in NP time will be expressible
in 350. Is that an improvement for Joe? We are still not providing him with any
lower bounds. In deed the given upper bound is more tight and more elegant but it
would have warned him that a competitor is able to improve the result significantly.

Of course a programmer reading all the above would probably think that in
any case the proof that theory can provide for the existence of an algorithm is
in no way close to the actual discovery. And in many ways he would be right.
A good programmer when facing a problem is going to solve it by taking into
consideration many variables. He can event try to minimize variables that the above
theory can’t even recognize such as number or processors, space, a specific data
structure and many more. How can a theoretic approach based on input length predict

4

such detailed work on a specific problem when the studies are taking place on groups
of problems?

Don’t rush to shout IT CAN’T!

But if you already did then you are not entirely mistaken. In order to provide
Realistic Lower Bounds one must try to capture all this extra information. Many
approaches have come form such ideas. Probabilistic frameworks explore the Computational
power of Traditional Models if allowed to give answers that will not always be
correct. Approximation algorithms also provide fastest results but sacrifice the optimal
solution. The parameterized approach tries to construct algorithms that will be fast
in a majority of the cases. This happens by utilizing specific structural characteristics
of a problem. By considering these characteristics bound by a constant irrelevant of
the size of the input we are able to construct procedures that remain efficient even
for NP-hard problems. The formal definition of this study aims to bring closer the
design of algorithms and the exploration of structural parameters that have an impact
on their complexity.

A very good way for someone to get familiar with the parameterized approach
is to imagine everything through models. In the most intimate form one can imagine
models as graphs. There are many other kinds of models but especially in Computer
Science almost everything is expressible in a graph framework. In many cases our
results will be specifically for graphs but this in not a general rule. Nevertheless
the problem of searching a graph to see if it has a property is always way easier
to comprehend. In addition, defining families is also more intuitive since we can
correspond a group in a specific image. The defining of families of graphs with
formal tools will be analyzed later.

Under this notion our search for ensurement for Joe takes another turn. Now
theoretical proofs over this framework can actually interfere with other aspects of
a problem rather than its formal definition. There are many extremely interesting
results to support this such as Seese, Courcelle, Oum, Demain, Grohe and many
more. These results not only encourage the intuitive notion of this theory but give
applicable examples for algorithm construction. To expand i will need a background
on some theoretic consents.

While reading from now on keep in mind the 5 important questions of Computer
Science Theory.

1. What is the purpose of this approach?

2. Is this tool appropriate for the study of this subject?
3. What kind of assumptions are needed?

4. Are these assumptions realistic?

5. Can we do better?

Those will not only help someone understand the this work but in my opinion
help in the general scientific procedure in this field.

Finlay it is appropriate to mention here that in the above list of questions one
could maybe argue that maybe the approximation framework or the probabilistic
one are more appropriate for such a study. Now of course advances in both of those

areas are very helpful for the society of computer science and also provide powerful
tools to confront intractability. However at least from my perspective they lack the
characteristic of being very close to the intuition of the way we understand structures
and graphs. These intuitive notions are much harder to be transmitted trough said
frameworks.

This doesn’t mean however that no interest exists there. In the final chapter
of this thesis i will describe ways to both interpret results in those framework or
reproduce some of the procedures described later but on classes described through
other frameworks and not logic.

3.3 Historical Notes

Early in the 80’s research pointed out that classical complexity might not be
the ideal framework for some specific problems and corresponding algorithms. In
particular, Vardi pointed out that the input for database-query evaluation consists of
two components, query and database. For first-order queries, query evaluation is P-
SPACE-complete, and for fix-point query it is EXPTIME-complete, but, if you fix
the query, the complexity goes down to LOGSPACE and PTIME correspondingly.
In particular, the size of the database was not the right complexity for database-query
complexity and the size of parameter counted.[41]

Those works initiated the notion the time needed for NP-Complete problems
although exponential might accept improvements in the way the exponential
will present itself.[40]

Parameterized complexity and algorithms have developed rapidly during the last
three decades. Since the fundamental work of Downey and Fellows in[36, 37, 38]
with a series of papers aiming to establish a global framework and present their
previous work, parameterized complexity theory introduced numerous innovative
ideas in algorithmic design and offered insightful results in almost all disciplines of
theoretical computer science.

The first monograph in this field was the book:[R.G. Downey and M.R. Fellows.Parameterized
complexity. Monographs in Computer Science. Springer-Verlag, New York,1999.]
The next two monographs in the field appeared during 2006. One was the book: [Rolf
Niedermeier.Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006]
and the other was the book: [J. Flum and M. Grohe.Parameterized complexity theory.
Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin,2006]

In the same time and ever earlier completely different people studied independently
the time complexity of recognizing parameters in graphs. The oldest relevant is
of course treewidth for which the very first result that this thesis will utilize was
presented by Bodlaender in a 1996 paper [35]. The problem of deciding if a graph
has treewidth k is NP-complete if k is allowed to vary, was discussed a decade later
in Arnborg, Corneil,and Proskurowski and in 1987 [29], those authors also showed
that there was an O(n**+?) for treewidth-k graphs. Robertson and Seymour [[13] gave
the first FPT (it was O(n?)) algorithm in 1995. Their algorithm was based upon the

6

minor well-quasi-ordering theorem, and thus was highly nonconstructive and non-
elementary and had huge constants.

Such works initiated a very large wave of researchers to turn to the parameterized
approach.The study of decidability results for monadic second-order theories of
classes of combinatorial objects and their connections with automata has a long and
interesting history, as can be found in Biichi [[]. Probably the first result is the one
of Biichi who proved that a language is regular iff it is definable by some formula
in monadic second-order logic (of strings). The famous hallmark result here is the
decidability result of Rabin [114].

Detleff Seese was the first to conjecture that classes of graphs with decidable
theories were “similar to trees” [27]. Seese was able to prove that if a class of
planar graphs with maximal degree < 3 avoids certain graphs as induced subgraphs,
then it has a very nice parse tree. Since Rabin had proven the decidability of the
monadic second-order logic of trees, Seese was able to deduce that these theories
were decidable. Of course, Rabin’s method is not very feasible. Seese continued to
pursue his conjecture that tree-like graphs were the boundary of decidability.

KepaAiawo 4

Parameterized Complexity

This chapter is dedicated to present all of the tools i will be using and explain the
most important notions of each theory.

4.1 Definitions

To begin we will present the notions of Parameterized Complexity in corespondance
with Classical Complexity theory.

We are from now on concerned with problems(languages) of two inputs. One is
the instance and one the parameter. When given a representation of an instance we
count on our understanding of the idea it represents to understand it. Similarly when
given a number that represents a parameter and its relation to the instance we are
able to interpret it as a part of the problem. And above all the parameter is considered
bounded and small.

Opwopog 4.1.1 (Parameterized Problem). A parameterization of ¥* is a recursive
function k£ : ¥* — *. A parameterized problem is a tuple (L, k), where . C ¥*
and k is a parameterization of >*.

Our parameter k is defined by this recursive function in order to demonstrate its
relation with each instance. For readability purposes and withought loss of generality
we will consider it to be and integer and therefore our Languages become of the form,
k:¥—N

The above definition is very close to the classical complexity definition of what
we call a Language or Problem. Following that we have to define what is considered
a parameterized fast algorithm.

Opwopog 4.1.2 (The Class FPT). The class of parameterized problems that can be
solved in time

O(f (k) *n)

, where f(k) is computable.

Xnpeiowon. The above definition might alert someone in the sense that it allows
extremely large growth functions regarding the parameter.

9

That is true but in the sense that the parameter is small these increments will
remain bounded by a constant. Another thing the reader might notice is that we
are using the algorithm in a Turing-Machine sense although we haven’t been very
specific on th definition of it. To design algorithms that are in agreement within the
current standards of programing we will be using Turing machines in the classes that
have to do with algorithms.

Now is a good time to give some examples of parameterized problems. In this
framework a problem always comes pared with a parameter. Paired with another
parameter a problem might display a completely different complexity behavior. For
example, consider VERTEX COVER parameterized by k, defined as follows.

k- VERTEX COVER

Input: A Graph G=(V,E)
Parameter: An integer k
Output: ”Yes” if G has a VC of size k, ”No” otherwise.

As you can see we have used here the size of the solution to define our parameter.
Here are some other examples for graph problems that can also be parameterized
similarly.

VERTEX COVER : Vertices cover edges.
Example {b,c,e,g}.

GRAPH LINKING NUMBER :
K, has linking number 1.

c 3

GRAPH GENUS

K, has genus 1 by
putting all lines except
<b,2> on a sphere

and <b,2> on a handle.

Zynpoa 4.1: Other problems parameterized by the size of the solution

In figure 2.1 the problem of graph genus is defined as:
k- GRAPH GENUS

Input: A Graph G=(V,E)
Parameter: An integer k
Output: ”Yes” if G has a genus of size k (that is if it can be embedded in a

surface with k handles, with no edges crossing), ”No” otherwise.

10

For a survery of existing algorithms on the above problems the reader can refer
to the book Fundamentals of parameterized complexity by Downey & Fellows [39]
If we consider the classical versions of the above problems where k is not fixed, they
are all NP-Hard. However each one exhibits some form of parameterized tractability.
Note here that there are two versions of Parameterized Tractability. Uniform and
non-Uniform. The difference is that in the uniform case there exists an algorithm of
the appropriate running time that solves the problem for each k. In the non- uniform
case for each k there exists an FPT algorithm of the appropriate running time but
there is no way to describe the procedure for all k. This is a discrimination that
arises from the attempt to solve specific NP-hard problems. In this approach the
discrimination is not of great importance.

4.2 Parameters

It is already obvious that parameters can be of different power. An easy example
is the minimum and maximum edge degree of a graph. Since always

Maxyg > Ming

we can assume that if a problems is FPT parameterized by Min, it will be FPT
parameterized by Max,. Of course the relationship between parameters will be
described way more explicitly later on but this already gives an image of how can
someone approach a Problem from a parameterized point of view. If say it seems
completely impossible to find an FPT algorithm for a problem one can start thinking
of more strong parameters.

By doing so, someone must be careful not to end up with a solution only because
he choose an extremely strong parameterization. Although the formal definition does
not forbid parameters that are comparable with the input something like this can be
very easily proved to have no scientific interest. Say for instance that someone picks
a parameter that can bound the total input. This is not hard to imagine but lets say
that someone parameterizes a problem by n-1 where n is the size of the input.

Oeopnpa 4.2.1. If for a parameter k 3 an increasing recursive function g(k) such
that n < g(k) then all problems of classical complexity O(f(n)) , f:computable are
FPT parameterized by k.

Anééeién. Pick a problem P of classical complexity O(f(n)). We know that f(n)
is increasing since it is a complexity function.Also n < g(k) — f(n) < f(g(k))
therefore the Complexity of P is upper bound by O(f(¢(k))) and hence in can be
solved in such time.

Since f,g are computable and increasing — f o g is computable and increasing.
The above complexity is of the form

O(f (k) * n°)

and therefore P is FPT. O

11

The correct usage of parameters for each problem is at at all trivial and has
presented a very wide area for research.

There is a very large amount of work focusing on new algorithmic techniques
and tools that utilize all of the above notions and have been very fruitful this far.
Advances in parameterized algorithms have produced a great amount of results that
all are extremely interesting. However my interest is less problem and therefore are
not presented here.

4.3 Hierarchy

Returning to the familiar for us examples we could attempt to parameterize the
Graph Genus problem by the vertex cover of the input graph. Would that result in a
fixed parameter problem? For specific parameters and some specific problems this
question can be answered easily. For problems in P by default all parameterizations
result in FPT algorithms. But in the general case this question is a very complex and
interesting one. The base of course for all arguments towards answering start from
the definition of parameterized reductions.

Opiopog 4.3.1 (Parameterized Reduction). For two parameterized problems (L, k)
, (L', k"). We say that (L, k) reduces to (L', k") through an F'PT-reduction (noted
.L <ppr L) if there exists an algorithm R such that

1. Foreatchz € ¥,z € L & R(x) € I/
2. R is computed by an F'PT-algorithm.
3. k' = g(k), where g : N — N is computable.

If A <ppr Band B <ppr A, we say that A, B are F'PT-equivalent (noted.
A =FPT B)

Using the above definition we can start building a complexity theory. Parameterized
problems in FPT are grouped together on the notion that you can decide the yes-
instances of each one independently without exceeding the time limits of the definition.
Of course for each problem in FPT the algorithm might be of completely different
complexity. And the parameters that reduce each one to FPT are not necessarily
computably bound by each other. The Turing machine model is not able to provide
easily a hardness theory. This will be explained later.

Our complexity theory begins by defining classes of hard problems and describing
relations between them. Of course as mentioned before one problem can be FPT on
one parameterization and not FPT on another. Our parameterized reduction captures
this by requesting the parameter of the new parameterized problem to be at least
computably bound by the old one.

12

Looking at the classical complexity theory we will try to define the TURING
MACHINE ACCEPTANCE in a parameterized framework in order to build up from
there equivalences between problems

SHORT TURING MACHINE ACCEPTANCE

Input: A nondeterministic Turing machine M and a string x.
Parameter: An integer k
Output: ”Yes” if M has a computation path accepting x in < k steps,

”No” otherwise

It seems to us that if one accepts the philosophical argument that TURING
MACHINE ACCEPTANCE is intractable, then the same reasoning would suggest
that SHORT TURING MACHINE ACCEPTANCE is fixed-parameter intractable.
We will soon establish that there are a large number of problems of the same fixed-
parameter complexity as SHORT TURING MACHINE ACCEPTANCE. We believe
that the existence of such a large number of problems of the same fixed-parameter
complexity as SHORT TURING MACHINE ACCEPTANCE gives further weight
to the thesis that SHORT TURING MACHINE ACCEPTANCE is not fixed-parameter
tractable.

The main theorem is an analog of Cook’s theorem. We will first establish some
preliminary results. We will need some definitions. It is convenient to consider a
3CNF formula as a (boolean) circuit. Thus, a 3CNF formula is considered as a circuit
consisting of one input (of unbounded fanout) for each variable, possibly inverters
below the variable, and structurally a large and of small or’s (of size 3) with a single
output line.

Large gates (unbounded fanin) represented by @ Small gates (bounded fanin) represented by O

Zynpoa 4.2: A 3CNF fornula is a large AND of small ORs

The reader should refer to Fig. #.3. We can similarly consider a 4CNF formula
to be a large and of small or’s, where small is defined to be 4. More generally, it is
convenient to consider the model of a decision circuit. This is a circuit consisting
of large and small gates with a single output line, and no restriction on the fanout

13

of gates. For such a circuit, the depth is the maximum number of gates on any path
from the input variables to the output line, and the weft is the large gate depth. More
formally, the weft of a circuit is defined as follows:

Opwopog 4.3.2. Let C be a decision circuit. The weft of C is defined to be the
maximum number of large gates on any path from the input variables to the output
line. (A gate is called large if its fan-in exceeds some prearranged bound. The reader
should note that none of our results depend upon what the bound actually is.)

Let = {C,...,C,,...} be a family of decision circuits. Associated with F is
a basic parameterized language:

Ly = {{(C}, k) : Cy has a weight k satisfying assignment }

Iynua 4.3: A weft 2 depth 5 decision circuit.

For instance, if F is the family of boolean circuits corresponding to propositional
formulas in 3CNF form, then L F corresponds to WEIGHTED 3CNF SATISFIABILITY.
A generalization of the class of circuits corresponding to 3CNF §.3formulas is provided
by the following:

WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY (WCS(t, h))

Input: A weft t depth h decision circuit C

Parameter: A positive integer k

Output: ”Yes” if Does C have a weight k satisfying assignment, "No”
otherwise

Opwopog 4.3.3. Notation will be as follows:

« We will denote by Lg(t, h) the parameterized language associated with the
family of weft t depth h decision circuits.

14

* (Basic hardness class) We define a language L to be in the class W [t] iff L is
fixed-parameter reducible to Lx(t, h) for some h

With the reduction matching the one given in definition The final theorem

XU (x2) X3) (x4)

3SAT ——» \% / \\, JN
/4
©

Zxnpo 4.4: A circuit correspontding to a 3SAT problem.

of ths section will be an analog of cooks theorem that the readen can find the proof
of in [B9]. The theorem is given nevertheless because most of the proofs of chapter
5 are given in a circuit framework and thus it is important for the reader to know the
relation between circuits and Turing machines.

Oeopnpa 4.3.1. (Analog of Cook’s Theorem (1))
The following are complete for W [1]:

* WEIGHTED n-SATISFIABILITY for any fixed n > 2.
* SHORT TURING MACHINE ACCEPTANCE.

So to summarize the class FPT is associated with circuits of 0 weft and a a
constant k to bound the fan-in of the gates. W [1] would be of weft 1 and so on.
The current state of the parameterized hierarchy is given in the following schema:

4.4 Parameterized Model Checking

One of the main themes in descriptive complexity theory is to study the complexity
of problems of the following type:

Given a finite structure A and a sentence ¢ of some logic L, decide if A
satisfies ¢

This problem, which will be called the model-checking problem for L, has several
variants. For example, given a structure A and a formula qb(?) we may want to
compute the set of all tuples @ € A such that A satisfies qﬁ(ﬁ), or we may just
want to count the number of such tuples. Often, we fix the sentence ¢ in advance
and consider the problem :

Given a structure A decide if A satisfies ¢

15

para-XF

para-Af = para-P™F "
.'l. T R
i para-©f = para—PNP[log]
; I :'-
Py FPTP(f (k)] LS

I

para-BH

[

para-DP

I WP
v

FPT = para-P

Zynpo 4.5: Parameterized Hierarchy

Model-checking problems and their variants show up very naturally in various
of applications in computer science such as Database Query Evaluation, Model-
checking in Computer-Aided verification and Constraint Satisfaction Problems.

It is obvious already that proving that the Model-checking problems is FPT
or FLP (= Fixed-Parameter Linear) seems to be a very meaningful statement in
comparison to the notion that the Model-checking problem being in PTIME.

Now as one might predict there are two possible parameters in this quest. The
sentence ¢ and the structure A. Depending on which of these are considered parameters
of the problems and which are fixed we get tree different versions of the MCP of
logic L.

Complexity theory defines its main concepts via acceptance of string languages
by computational devices such as Tuuring Machines. To talk about complexity of
logics on finite structures, we need to encode finite structures and logical formulae as
strings. For formulae we shall assume some natural encoding: for example enc(¢),
the encoding of a formula could be its syntactic tree (represented as a string).

As for structures there are several different ways to encode them. They are all
of course equivalent but given a specific one will make some proofs easier and will
some times provide useful information on the running time of a procedure. Suppose
we have a structure A over a vocabulary o.

LetA ={ay,...,a,}. For encoding a structure we always assume an ordering on
the universe. In some cases the ordering relation is part of the vocabulary and thus
we use it. In others we just choose and arbitrary one. The order in this case will have

16

no effect on the result of algorithms and properties but we need it to be able to talk
of computability and complexity.

We choose for now an order of the universe say a; < ay... < a,. Each k-ary
relation R* will be encoded by a n* — bit string = enc(R*) as follows:

+ Consider an enumeration of all k-tuples over A in the lexicographic order.
* Let a_; be the jth tuple in this enumeration.
« the jth bit of enc(R*) is 1if a; € R* and 0if @, ¢ R*

o contains only relations symbols since a constant can be encoded as a unary
relation containing one element.

If o = {Ry,... R,} then the basic encoding of a structure is the concatenation of
then encodings of said relations. In the circuits computational model the the length
of the input is a parameter of the model and thus the |A| can be easily calculated from
the basic encoding but for Turing machines the size of the input must be known by
the device. For this reason we include in the encoding of A the size of the model as
follows:

enc(A) = 0"« 1« enc(R{') * ... * enc(R,A). (4.1)
The length of the above string is denoted by || A || and is
p .
IA [|= (n+1)+) norrw®
=1

Now that we have an encoding of A we can talk about the complexity of the
model checking problem.

Opwopog 4.4.1. Let K be a complexity class and L a logic.
1. The data complexity of L is K if for every sentence ¢ in L, the language
{enc(A)|A F ¢}
belongs to K.

2. The expression complexity of L is K if for every finite structure A the language

{enc(9)|A F ¢}
belongs to K.

3. The combined complexity of L is K if the language

{enc(9), enc(A)|A F ¢}

belongs to K.

17

Note here that data complexity refers to the complexity of finding all the properties
that hold for a specific structure (size of structured is considered constant and
ignored) while the expression complexity is the problem of recognizing the models
that satisfy a specific property(this is the more common algorithm design notion
that the reader is probably familiar with). The combined complexity represents the
general model problem with which i am focusing on.

The formalization i will follow from now on is :

k -9 MODEL CHECKING FOR ¢

Input: A Graph G=(V,E) and ¢
Parameter: Parameter k + |¢|

Output: ”Yes” if G E ¢, ”No” otherwise

As you see here the general term of structure changes to Graph. Our size N here
denotes the number of nodes and the edge relation is the one and only member of o

From now on all result are given for graphs sine i will be taking into account
specific graph parameters. However through easy transformation processes that can
be fount in [42] all structures and relations can be transformed to graphs with only
the edge relation. What i will be looking for is to derive some rules that correlate the
parameter k with the logic L as to end up with the above problem being in FPT.

A more detailed introduction in pamameterized complexity in Greek can be
found in [48].

4.5 Graph Metrics

In this section i will give the basic definition and results one the graph metrics that
will be necessary for later on. Mainly i will present only metrics that correspond to
specific problems and theorems presented later. The same study can be done for a
variety of others though if they appear to give promises towards descriptive results.

4.5.1 Treewidth

Treewidth is the most popular and old of our different parameters. It was introduced
in the early 70’s from independent researchers but it took the form that we study
today in 1984 by Neil Robertson and Paul Seymour [10] in a series of papers on
graph minors. After that it has been excessively used both in the design of algorithms
and in the theoretical computability theory.

Treewidth is tightly bound to the notion of a tree decomposition. So:

Opiopog 4.5.1. (Tree Decomposition - Treewidth)

1. A Tree decomposition of a graph G=(V,E) is a tree T together with a collection
of subsets 7). (called bags) of V labeled with the vertices x of T such that
UT, = V and the following hold

* For every edge uv of G there is a some x such that u,v € 7T},

+ If y is a vertex of on the unique path in T from x to z then 7, N7, C T,,.

18

2. The width of a tree decomposition is the maximum value of |7, | -1 over all
the vertices of the tree T of the decomposition.

3. The treewidth of Graph G is the minimum width of all thee decompositions
of G.

Zynpa 4.6: A Tree Decomposition of treewith 2

There is a very large amount of results that were produced in the attempt to make
the construction of tree decompositions easier. Here are some that would appear
useful to be considered by the reader in order to understand better the rest of this
thesis. For e graph G = (V, ') and treewith k we know:

1. k >maximum clique size of G

2. In every graph G, there exists a vertex of degree at most tw(G).

Both of these proofs are quite easy and will be given in the appendix. Computing
treewith is NP-complete in the classical framework as shown in 1987 from Arnborg,
Corneil & Proskurowski [29]. It was proved to be FPT on the clasical parameterization
on size of the solution by Bodlaender and Kloks [31]in 1996.

Determining if a problem is FPT is usually done by excluding a specific set
of minors as mentioned before in section 2.4.In the case of families of bounded
treewidth it is quite difficult ti give a specific selection of graphs but there are some
results.

For every finite value of k, the graphs of treewidth at most k may be characterized
by a finite set of forbidden minors. (That is, any graph of treewidth >k includes one
of the graphs in the set as a minor.) Each of these sets of forbidden minors includes
at least one planar graph.

* For k£ = 1, the unique forbidden minor is a 3-vertex cycle graph.

19

* For k£ = 2, the unique forbidden minor is the 4-vertex complete graph K.

* For k = 3, there are four forbidden minors: K, the graph of the octahedron,
the pentagonal prism graph, and the Wagner graph. Of these, the two polyhedral
graphs are planar.

For larger values of k, the number of forbidden minors grows at least as quickly
as the exponential of the square root of k. However, known upper bounds on the size
and number of forbidden minors are much higher than this lower bound.

T 0
O

Zxnpoa 4.7: Forbidden minors for k£ = 3

At the beginning of the 1970s, it was observed that a large class of combinatorial
optimization problems defined on graphs could be efficiently solved by non serial
dynamic programming as long as the graph had a bounded dimension, a parameter
shown to be equivalent to treewidth by Bodlaender (1998). Later, several authors
independently observed at the end of the 1980s that many algorithmic problems
that are NP-complete for arbitrary graphs may be solved efficiently by dynamic
programming for graphs of bounded treewidth, using the tree-decompositions of
these graphs.

As an example, the problem of coloring graph of treewidth k may be solved
by using a dynamic programming algorithm on a tree decomposition of the graph.
For each set X; of the tree decomposition, and each partition of the vertices of
Xi into color classes, the algorithm determines whether that coloring is valid and
can be extended to all descendant nodes in the tree decomposition, by combining
information of a similar type computed and stored at those nodes. The resulting
algorithm finds an optimal coloring of an n-vertex graph in time O(k**°™) x n), a
time bound that makes this problem fixed-parameter tractable.

20

4.5.2 Cliquewidth

In graph theory, the clique-width of a graph G is a parameter that describes the
structural complexity of the graph. it is closely related to treewidth, but unlike treewidth
it can be bounded even for dense graphs.This is quite useful since it appears there
are specific problems that are easy for graphs of bounded treewidth and for dense
graphs. It is defined as the minimum number of labels needed to construct G by
means of the following 4 operations :

« Creation of a new vertex v with color ¢ (noted i(v))
+ Disjoint union of two colored graphs G and H (denoted G & H)

 Joining by an edge every vertex labeled i to every vertex labeled j (denoted
join(i, 7)), where i # j

* (i —j): recolor all vertices i to color j

Opiopog 4.5.2. The smallest number of colors needed to construct G through the
above operations (i.e. as a colored graph classically isomorphic to G) is called the
cliquewidth of G, cw(G).

Graphs of bounded clique-width include the cordgraphs and distance-hereditary
graphs. Although it is NP-hard to compute the clique-width when it is unbounded,
and unknown whether it can be computed in polynomial time when it is bounded,
efficient approximation algorithms for the clique-width are known. Based on these
algorithms and on Courcelle’s theorem, many graph optimization problems that are
NP-hard for arbitrary graphs can be solved or approximated quickly on the graphs
of bounded clique-width.

Zynpa 4.8: All possible graphs of cliquewidth 3 involving vetrices A,B,C

The construction sequences underlying the concept of clique-width were formulated
by Courcelle, Engelfriet, and Rozenberg in 1990 [32] and by Wanke (1994). The
name “clique-width” was used for a different concept by Chlebikova (1992). By
1993, the term already had its present meaning.

Easy results about cliquewidth that may be utilized later are:

1. Cliques have cliquewidth 2.

21

2. If G has bounded treewidth then it has bounded cliquewidth.

3. The complement graph of a graph of clique-width % has clique-width at most
2k

In classical complexity cliquewidth is NP-complete to compute but

4.5.3 Branchwidth

In graph theory, a branch-decomposition of an undirected graph G is a hierarchical
clustering of the edges of G, represented by an unrooted binary tree T with the edges
of G as its leaves. Removing any edge from T partitions the edges of G into two
subgraphs, and the width of the decomposition is the maximum number of shared
vertices of any pair of subgraphs formed in this way. The branchwidth of G is the
minimum width of any branch-decomposition of G.

Officially then:

Opwopog 4.5.3. Let G be a graph on n vertices.

* A branch decomposition of G is a pair (7, 7), where T is a tree with vertices
of degree 1 or 3 and 7 is a bijection from the set of leaves of T to the edges of
G. If e is any edge of the tree T, then removing e from T partitions it into two
subtrees T} and 75.

» This partition of T into subtrees induces a partition of the edges associated
with the leaves of T into two subgraphs G; and G, of G. This partition of G
into two subgraphs is called an e-separation.

* The width of an e-separation is the number of vertices of G that are incident
both to an edge of F; and to an edge of Es; that is, it is the number of vertices
that are shared by the two subgraphs G; and Gs.

* The width of the branch-decomposition is the maximum width of any of its e-
separations. The branchwidth of G is the minimum width of a branch-decomposition
of G.

It is NP-complete to determine whether a graph G has a branch-decomposition
of width at most k, when G and k are both considered as inputs to the problem.[[15]
However, the graphs with branchwidth at most k form a minor-closed family of
graphs,[[12] from which it follows that computing the branchwidth is fixed-parameter
tractable: there is an algorithm for computing optimal branch-decompositions whose
running time, on graphs of branchwidth k for any fixed constant k, is linear in the
size of the input graph.[33]

For planar graphs, the branchwidth can be computed exactly in polynomial time.
This in contrast to treewidth for which the complexity on planar graphs is a well
known open problem. The original algorithm for planar branchwidth, by Paul Seymour
and Robin Thomas, took time O(n?) on graphs with n vertices, and their algorithm

22

Eynpa 4.9: A branch decomposition showing an e-separation. The separation, the
decomposition, and the graph all have width three

for constructing a branch decomposition of this width took time O(n?).This was
later sped up to O(n?)

As with treewidth, branchwidth can be used as the basis of dynamic programming
algorithms for many NP-hard optimization problems, using an amount of time that is
exponential in the width of the input graph or matroid.For instance, Cook & Seymour
(2003) apply branchwidth-based dynamic programming to a problem of merging
multiple partial solutions to the traveling salesman problem into a single global
solution, by forming a sparse graph from the union of the partial solutions, using
a spectral clustering heuristic to find a good branch-decomposition of this graph,
and applying dynamic programming to the decomposition.

Fomin & Thilikos (2006) argue that branchwidth works better than treewidth
in the development of fixed-parameter-tractable algorithms on planar graphs, for
multiple reasons: branchwidth may be more tightly bounded by a function of the
parameter of interest than the bounds on treewidth, it can be computed exactly in

polynomial time rather than merely approximated, and the algorithm for computing
it has no large hidden constants.

Forbidden Minors By the Robertson—Seymour theorem, the graphs of branchwidth
k can be characterized by a finite set of forbidden minors.

1. graphs of branchwidth O are the matchings. The minimal forbidden minors
are a two-edge path graph and a triangle graph.

2. The graphs of branchwidth 1 are the graphs in which each connected component
is a star. The minimal forbidden minors for branchwidth 1 are the triangle

23

graph and the three-edge path graph.

3. The graphs of branchwidth 2 are the graphs in which each biconnected component
is a series-parallel graph. The only minimal forbidden minor is the complete
graph K4 on four vertices.

4. The graphs of branchwidth 2 are the graphs that don’t have as minors the
graph of the octahedron, the complete graph K5, the Wagner graph and the
cube graph

4.5.4 Pathwidth

In the first of their famous series of papers on graph minors, Neil Robertson and
Paul Seymour (1983) define a path-decomposition of a graph G to be a sequence of
subsets X; of vertices of G, with two properties:

» For each edge of G, there exists an i such that both endpoints of the edge
belong to subset X;

* For every three indices: < 7 < k, X; N X, X7

The second of these two properties is equivalent to requiring that the subsets
containing any particular vertex form a contiguous subsequence of the whole sequence.
In the language of the later papers in Robertson and Seymour’s graph minor series,

a path-decomposition is a tree decomposition (X, 7") in which the underlying tree T
of the decomposition is a path graph.

Opwopog 4.5.4. The width of a path-decomposition is defined in the same way as
for tree-decompositions, as max(i)| X;|—1, and the pathwidth of G is the minimum
width of any path-decomposition of G.

The subtraction of one from the size of X in this definition makes little difference
in most applications of pathwidth, but is used to make the pathwidth of a path graph
be equal to one.

Although very similar to treewidth note here that only path graphs and not trees
have a pathwidth of 1.

It is NP-hard to find the pathwidth of arbitrary graphs, or even to approximate it
accurately.[34] However, the problem is fixed-parameter tractable: testing whether
a graph has pathwidth k can be solved in an amount of time that depends linearly
on the size of the graph. Additionally, for several special classes of graphs, such as
trees, the pathwidth may be computed in polynomial time without dependence on k.
Many problems in graph algorithms may be solved efficiently on graphs of bounded
pathwidth, by using dynamic programming on a path-decomposition of the graph[2].

Forbidden Minors The property of having pathwidth at most p is, itself, closed
under taking minors: if G has a path-decomposition with width at most p, then the
same path-decomposition remains valid if any edge is removed from G, and any
vertex can be removed from G and from its path-decomposition without increasing

24

\ P
a b C *|*

{ bcde
/// o ™.

d e N def B

1

— h \‘.
g f ANy dgf 7///"

(a) (b)

Zynpo 4.10: A path decomposition of Pathwidth 3

Zxnpa 4.11: Forbidden Minors of Pathwidth 1

the width. Contraction of an edge, also, can be accomplished without increasing

the width of the decomposition, by merging the sub-paths representing the two
endpoints of the contracted edge. Therefore, the graphs of pathwidth at most p can
be characterized by a set X, of excluded minors.

Although X, necessarily includes at least one forest, it is not true that all graphs
in X, are forests: for instance in figure 4.5.4, X1 consists of two graphs, a seven-
vertex tree and the triangle K3.

However, the set of trees in X, may be precisely characterized: these trees are
exactly the trees that can be formed from three trees inX,,~1 by connecting a new
root vertex by an edge to an arbitrarily chosen vertex in each of the three smaller
trees. For instance, the seven-vertex tree in X; is formed in this way from the two-
vertex tree (a single edge) in Xy. Based on this construction, the number of forbidden
minors in Xp can be shown to be at least (p!)2.The complete setX, of forbidden
minors for pathwidth-2 graphs has been computed and it contains 110 different
graphs.

25

26

KepaAaio 5

Graph minors

5.1 Definitions

In this course, a graph is given by a set V, whose elements are called vertices,
and a set E whose elements, called edges of the graphs, are distinct subsets of size
2 of V. According to the usual vocabulary, this means that our graph will always be
simple and without loops. Unless specified, V will always be a finite set. For a graph
G, V(G) will always denote its set of vertices, E(G) its set of edges. Very often we
will write xy instead of x, y for an edge of G.

A vertex v is a neighbor of a vertex u if uv E(G). The neighborhood of u,
denoted N(u) is the set of neighbors of u. Its degree, denoted d(u) is the cardinality
of its neighborhood. The maximum degree of a graph is usually denoted A. A graph
with no edges will be called a stable set, or independent set, and a graph will all
possible edges between its vertices a clique, or complete graph. The complete graph
onn vertices is usually denoted K ,,. The path P isa graph with V' (P;) = x1, o, .. ., x4,
withedgesE=z;,z; + 1,1 <i:<k-1.

The vertices x; and xy are called the endpoints of the path. If we add the edge
x, o1 to P k then the resulting graph is the circle on k vertices, denoted Cj.

5.2 Tree Algorithmic Problems

Consider the following problem of connectivity.

k-DISJOINT PATH

Input: A graph G, an integer k and two subsets of vertices A and B of size
k

Output: TRUE if there exists k vertex disjoint paths from A to B

This problem is a very classical one, and Ford-Fulkerson Algorithm tells us that
this is solvable in time O((k|E(G)|) (classical Ford-Fulkerson Algorithm is for edge
disjoint path in the directed case, but it is easy to reduce our case to this one). The
maximum value k corresponds to a minimum vertex cut separating A and B and is
a classical result of Menger.

Oeopnpa 5.2.1. Let x and y be distinct vertices of a graph G. Then the minimum

27

number of vertices whose deletion separates x from y is equal to the maximum
number of internally disjoint paths between x and y.

Now consider the smilingly similar problem.

k-DISJOINT ROOTED PATH PROBLEM

Input: A graph G, an integer k, and two subsets of vertices X =
{z1,29,...,2pand Y = {y1,y2, ..., Yr}

Output: TRUE if there exists disjoint paths Py, P, ..., Pk, such that P is
a path from x; to y;

This kind of problem in a more general form is know as commodity flow problem
and has many applications. With k part of the input, this problem is NP-complete,
even restricted to the class of planar graphs. Nevertheless, in the Graph Minor series
of papers, Robertson and Seymour proved a polynomial algorithm for fixed k. This
result is extremely difficult and relies and techniques and notions that will be illustrated
in this course.

Oeopnpa 5.2.2. The k-disjoint path problem can be solved in time O (f (k).n 3

(Robertson-Seymour, [19])

The result has been improved to quadratic time by Kawabayarashi, Kobashi and
Reed ([]). Let us see an algorithmic consequence of this result related to topological
minor detection.

Opwopog5.2.1. A graph H is topological minor of a graph G if there exists a injective
mapping f from V(H) to V(G) such that for each edge uv of H, there exists in G a
path P uv connecting f (u) and f (v) in G with the property that all these path are
internally disjoint.

Example. Describe the graphs that do not contain the following graphs as topological
minors : K3, K 3, K 4. A natural algorithmic problem is then the following.

TOPOLOGICAL H-MINOR DETECTION
Input: A graph G and a graph H
Output: TRUE if H is a topological minor of G, FALSE otherwise

The problem is NP-complete if H is part of the input, but if H but if H is fixed,
then this problem was proven to be polynomial by Robertson and Seymour.

Oeopnpa 5.2.3. Let H be a fixed graph. There exists a polynomial time algorithm
to decide whether H is a topological minor of a given graph G.

Anddeién. Let f: V(H) — V(G) be an injection (note there are polynomially many
such objects), we want to decide if there exists disjoint paths in G between the f (v)
corresponding to edges of H. To do that, we replace each vertex f (v) by d H (v)
copies of f (v) (having the same neighbours). Now, for k = |E(H)|, solving the k-
Rooted Disjoint Path Problem for these sources clearly solves the desired question.

O

28

The complexity of this algorithm is hence O(f(k) * n*), where k is the size
of H, and n the size of G. It is therefore polynomial for every fixed k. In 2010,
Grohe, Kawabarayashi, Marx, and Wollan proved a stronger result, that this can be
done inO(f(k) * n®) which is FPT. In particular, the previous theorem implies that
any family of graphs that is defined with forbidding a FINITE family of graphs as
topological minors is polynomially testable. One such family is very well known, it
is the family of planar graphs, as was proven by Kuratowski in 1930.

Oewpnua 5.2.4. (Kuratowski,1930) A graph G is planar if and only if it does not
contain K5 or K3 3 as a topological minor.

The crucial fact here is not that planar graphs are defined by a certain list of
forbidden topological minors, this is easy (why?), it is the finiteness of this list that is
non trivial. The central result of Robertson and Seymour theory is that many different
graph properties can be characterized by a finite list of forbidden substructures, and
hence get polynomial time recognition algorithm. Of course, one does not need the
difficult of Robertson and Seymour to prove that planar graphs are polynomially
recognizable, there even exists linear time algorithm to do that. Nevertheless, we
will see later that there are instances of such recognition problem for which the only
proof of polyniomiality was obtained through their results.

5.3 Minors

Minors are defined through three operations on a graph G (at the end of each line
the notation for the resulting graph).

1. Remove a vertex v (and all its incident edges) : G v
2. Remove an edge e (but not its end vertices) :G ¢

3. Contract an edge e = zy, which means remove x and y, add a new vertex z
whose neighborhood is the union of the neighborhoods of = and y (without
putting any loop on z) : G/e.

A contraction G/e is topological if one of the endpoints of e has degree 2. Its
inverse is the subdivision operation which consists in removing an edge =y, adding
a new vertex z, and adding the edges zz and zy.

Opwopog 5.3.1. Let G and H be two graphs.

* His an induced subgraph of G if H is obtained from G by the repeated use of
rule 1.

» His a subgraph of G if H is obtained from G by the repeated use of rule 1 and
2.

* His a spanning subgraph of G if H is obtained from G by the repeated use of
rule 2.

29

* His a minor of G if H is obtained from G by the repeated use of rule 1,2 and
3.

* His a topological minor of G is H is a minor of G and every contraction used
was topological.

Recall that the largest integer k such that G has a complete graph (resp. independent
set) on k vertices as an (induced) subgraph, is called the clique number (resp. independence
number) of G, denoted c.n(G) (resp. i.n(G)). Due to a classical result of Karp ([15]),
deciding if a graph has c.n(G) > k or not (similarly for i.n(G)) is an NP-hard problem.

The following definition gives an alternate form of minors that is often useful.

Opwopog 5.3.2. Let G and H be two graphs, and denote V(H) = {v1,...,v,}.
Then H is a minor of G if and only if there exists p connected and disjoint subgraphs

G, ..., G, of G such that for every edge (v;v;) of H, there exists an edge between
G,L' and Gj.

Let us mention here that high density implies the existence of a large minor.
There exist theorems with better bounds, but we are only interested here in the fact
that such a bounds exists.

Osopnpa 5.3.1. Every graph with average degree at least 2" %contains K, as a
minor.,

AnéSeién. By induction onr. Let G be a graph of average degree at least 22, There-
fore |[E(G)|/|V(G)| > 2"3. Let H be minimal amongst all minors of G such that
|E(H)|/|V(H)| > 2"3. It implies that when one contracts an edge in H, one must
loose at least 23 edges (otherwise the inequality would still be satisfied, and H
would not be minor minimal). Hence, for any xy edge of H, x and y have at least
2773 common neighbors. In other words, if x is a vertex in H, then the minimum
degree in its neighborhood is at least 2" , so by induction it contains a K,_, minor,
which yields with x the desired K r minor. [

Letus discuss now the difference between minors and topological minors. Topological
minors are special kind of minors but of course the converse is not true : a graph G
can contain H as a minor, but not as a topological minor. However When H is of
small maximum degree, this is true.

Another very useful result is of course the following by Robertson and Seymour
[11]

5.4 Wagner’s Conjecture

Opwopog 5.4.1. A class of graphs C is said to be minor closed if for every graph
G € C and every minor Hof G, H € C.

Opwopog 5.4.2. If C is a minor closed class of graphs, a graph G is a bound for C if
G is not in C but every strict minor of G is.

30

Oecaopnpa 5.4.1. Let C be a minor closed class, and X be its (possibly infinite) set
of bounds. Then, G € C' < G does not contain any graph of X as a minor

We are now ready to state the celebrated conjecture formulated by Wagner in
1937:

Oeopnpa 5.4.2. A minor closed class of graph is defined by a finite list of forbidden
minors.

The above means that for a minor closed class you can easily check if a graph
is in it by checking all of the graphs minors for one of the given finite list of forbidden
ones. Now this is extremely important for most of the theorems that will be mentioned
in chapter 7.

Let us mention here that high density implies the existence of a large minor;
there exists theorems with better bounds, but we are only interested here in the fact
that such a bounds exists.

Opropog 5.4.3. The set of forbidden minors(F¢) for a class of graphs Cwill be called
obstructions. A graph belongs to C if and only if it does not contain (as a minor)
any graph in F¢

Let us discuss here what can these obstructions be. For a given minor closed
class C, a graph H is said to be a bound if G is not in C but every strict minor of G
is. Note that if H is a bound, since it is not in C it must contain any obstruction so
it must be itself an obstruction. The following easy theorem tells us that the set of
bounds is in fact a sufficient set of obstructions.

Oeaopnpa 5.4.3. Let C be a minor closed class, and B be its (possibly infinite) set
of bounds. Then G € C'if and only if G does not contain any graph of X as a minor.

Anddeién. If H not in the class then either it is minimal or it contains H, not in
the class.We can repeat the argument, and since there exists no infinitely decreasing

sequence of graphs, every graph not in the class admits one of the bound as a minor.
O

(This uses the fact that there exists no infinite decreasing sequence of graphs for
the minor order - such partial orders are called well founded.)

As said before, it implies that testing if a certain graph G belongs to C is exactly
testing if G contains one of the minor-minimal graphs with respect to C.

Therefore, testing if a certain graph G belongs to C is exactly testing if G contains
one of the minor-minimal graphs with respect to C.

Here is a table describing the set of minor-minimal graphs for certain classes.

Graph Class | Minor Minimal Graphs
Forests Triangle
Union of paths Triangle, Claw
Planar K5 & K373
Toric > 16629 (but finite)

31

So another way of stating Wagner conjecture would be to say : Every minor
closed class of graphs has a finite set of bounds. Note that by definition one bound
cannot be the minor of another. Using the terminology of partially ordered sets, they
form an anti-chain : a set of pairwise not comparable elements. So a way to prove
Wagner conjecture would be to prove that there exists no infinite anti-chain for the
minor relation on graphs. In fact this equivalent as we will show now.

Opwopog 5.4.4. A partial order 4 defined on a set X is a well quasi order (WQO)
if there is no infinite decreasing sequence and no any infinite anti-chain.

A infinite sequence that is either decreasing or an anti-chain will always be called
a bad sequence. A wqo is hence defined as a partial order with no bad sequences.
Note that in the case of graphs, there cannot be an infinite decreasing sequence, so
the only possible bad sequence would be an infinite anti-chain.

Oeopnpa 5.4.4. Wagner’s conjecture is equivalent to say that the class of all graphs
with the minor relation is a wqo.

Amnddeién. Assume that the minor relation is a wqo. consider a class C that is minor
closed. Let F- be the class of graphs minimally (for the minor relation) not in C.
Then F, is an anti-chain, so it is finite, and it is easy to see that G is in C if and
only if G does not contain any graph in F» as a minor. Now assume that Wagner’s
conjecture is true. Assume there exists a bad sequence of graphs GG,,. Let C be the
class that do not contain any of the G n as a minor. It is minor closed, hence there
exists a finite list (H;) such that G is in C iff it does not contain any of the H i as
a minor. So every (G; must contain one of these graphs as a minor. By pigeonhole
principle, there exists GG; and G that contain the same H,. But conversely, H, is not
in C so by definition it must contain one of the (G, as a minor. by transitivity, this
contradicts the fact that the (z,, form an anti-chain.

O

32

Ke@aAaio 6

Logics over Graphs

The most important classical time and space complexity classes, such as PTIME,
NP, or PSPACE, have clean definitions in terms of resource-bounded Turing machines.
It is well-known (though still surprising) that most natural decision problems are
complete for one of these classes; the consequence is a clear and simple complexity
theoretic classification of these problems. However, if more refined complexity
issues such as approximability, limited nondeterminism, or parameterizations are
taken into account, the landscape of complexity classes becomes much more unwieldy.
This means that the natural problems tend to fall into a large number of apparently
different classes. Furthermore, these classes usually do not have straightforward
machine characterizations, but can only be identified through their complete problems.

Logic can serve as a tool to get a more systematic understanding of such classes.
The basic results of descriptive complexity theory [43] show that all of the standard
classical complexity classes have natural logical characterizations. For example,
Fagin’s Theorem characterizes NP as the class of all problems that can be defined in
the fragment 3! of second-order logic. One advantage that such logical characterizations
have over machine characterizations is that they allow for more fine tuning. For
instance, one may ask which problems can be defined by a 31 -formula whose first-
order part only contains universal quantifiers. While for decision problems in NP
such restrictions do not lead to any remarkable new classes, there are interesting
classes of NP- optimization problems obtained by restricting syntactic definitions
this way. The best-known of these classes is Papadimitriou and Yannakakis’ MAXSNP.

This approach seems to open the door to an endless variety of syntactically
defined complexity classes, but fortunately it turns out that a fairly limited number of
syntactic forms suffices to define those classes that have natural complete problems.
Remarkably, these syntactic forms tend to be similar even in different application
domains.

In this chapter, we provide the necessary prerequisites from mathematical logic
and review some basic facts about the complexity of propositional, first-order, and
second-order logic.

33

6.1 Propositional Logic

Formulas of propositional logic are built up from a countable infinite set of propositional
variables by taking conjunctions, disjunctions, and negations. The negation of a
formula «v is denoted by —«.. Besides the normal binary conjunctions and disjunctions,
it will be useful to explicitly include conjunctions and disjunctions over arbitrary
finite sequences of formulas in our language (instead of just treating them as abbreviations).
The normal binary conjunctions of two formulas «, 3 are called small conjunctions
and are denoted by (aA3). Similarly, binary disjunctions are called small disjunctions
and are denoted by V.

Conjunctions over finite sequences (;)i € I of formulas are called big conjunctions
and are denoted by /\, ;;. Here I may be an arbitrary finite nonempty index set.
Disjunctions over finite sequences of formulas are called big disjunctions and are
denoted by \/. A formula is small if it neither contains big conjunctions nor big
disjunctions. Of course, every formula is equivalent to a small formula, but the
precise syntactic form of formulas is important. For example, the formulas

/\iandl/\g/\g/\4/\5
i [5]

Propositional variables are usually denoted by the uppercase letters X, Y, Z,
and propositional formulas by the Greek letters «, 3,7, 0, A(Ais specifically used
for literals). A literal is a variable or a negated variable.

The class of all propositional formulas is denoted by PROP. For ¢t > 0,d > 1,
we inductively define the following classes I'; ; and A, ; of formulas:

Log={MA. . AXJc € [d], A1, ..., Act literals YA g = { V.. . VAJc € [d], A1, ..., Ac © literals }

And:

Fiv1a= {/\ 0| I finite nonempty index set, and ; € Ny gVi € I} Nyy14 = {\/ ~il I finite nonen

2.1 is the class of all formulas in conjunctive normal form, which we usually
denote by CNF. For d > 1, 1,d is the class of all formulas in d-conjunctive normal
form, which we often denote by d-CNF. Similarly, 5, 1 is the class of all formulas
in disjunctive normal form (DNF), and ; 4 the class of all formulas in d-disjunctive
normal form (d-DNF). If o« = A;_; /. Aij is a formula in CNF, then the disjunctions
V; ,, ij are the clauses

A formula « is in negation normal form if negation symbols occur only in front
of variables. A formula « is positive if it contains no negation symbols, and it is
negative if it is in negation normal form and there is a negation symbol in front of
every variable. Each formula of propositional logic has a parse tree, which may
formally be defined as a ”derivation tree” in the grammar underlying the formula
formation rules. For example, the parse tree of the I'; 3 -formula

AV (X8 ¥o) A Z))

i€2(] je[3]

is displayed in Fig. 5.1l

34

Zxnpoa 6.1: Parse tree of the example formula

6.1.1 Satisfiability Problems

For each class A of propositional formulas or (Boolean) circuits, we let Sat(A)
denote the satisfiability problem for formulas or circuits in A. For example, Sat(3-
CNF), that is, Sat(1, 3), is the familiar 3-satisfiability problem, and Sat(CIRC) is the
satisfiability problem for circuits, which we denoted by Circuit-Sat in the previous
chapter. p-Sat(A) is the parameterization by the number of variables of the input
formula, a problem which we considered in the introductory chapter for the class of
all propositional formulas. It is well known that Sat(A) is NP-hard for every class
A D TI'l,3 and that Sat(Aj) is in polynomial time. p-Sat(A) is fixed-parameter
tractable for every class A of formulas whose membership problem is fixed-parameter
tractable. So for now, the parameterized problems p-Sat(A) are not particularly interesting.

However, for now the following version of the satisfiability problem is much
more important; it is the decision problem associated with the optimization problem
that tries to maximize (or minimize) the number of variables set to true in a satisfying
assignment. The weight of an assignment V is the number of variables set to true.
A formula « is k-satisfiable, for some nonnegative integer k if there is a satisfying
assignment V : var(o) — { true, false} for a of weight k. We often identify an
assignment V : var(«) — {true, false} with the set {X|V(X) = true}. For any
class A of propositional formulas, the weighted 3 satisfiability problem for A is
defined as follows:

p-WSat(A)
Input: ac€Aandk € N.
Output: Decision whether « is k-satisfiable

We consider the parameterized weighted satisfiability problem for A:

35

p-WSat(A)

Input: acAandk € N.
Parameter: an integer k
Output: Decision whether « is k-satisfiable

It is known that WSat(2-CNF) and WSat(CIRC) and hence WSat(A) for all
polynomial time decidable classes A of formulas or circuits containing 2-CNF are
NP-complete; thus all these problems are equivalent under polynomial time reductions.
This equivalence does not seem to carry over to the parameterized problems and fpt-
reductions.

Oeopnpa 6.1.1. For d > 1, the problem p — W Sat(I', 4) for formulas in A that are
positive, that is, that contain no negation symbols, is fixed-parameter tractable.

From which with trivial work found in [45] we can derive.

©edpnpa 6.1.2. For every d > 1, the problem p — W Sat(A3) is fixed-parameter
tractable.

6.2 First-Order Logic

6.2.1 Relational Structures

A (relational) vocabulary 7 is a set of relation symbols. Each relation symbol R
has an arity (noted arity(R)) > 1. A structure A of vocabulary 7, or 7 -structure
(or simply structure), consists of a set A called the universe and an interpretation
RA C A*#y(R) of each relation symbol R € 7. We synonymously write @ R“ or
R*bara to denote that the tuple bara € A**¥(%) belongs to the relation R4.

We only consider nonempty finite vocabularies and finite structures,
that is, structures with a finite universe. The arity of 7 is the maximum
of the arities of the symbols in 7.

Hapadewypa 6.2.1. (Graphs). Let 7¢,.4,,, be the vocabulary that consists of the binary
relation symbol E. A directed graph may be represented by a 7¢yqpn Structure G =
(G, E%). An undirected graph, or just graph, may be represented by a 7;.4,n,-Structure
G in which the edge relation E“) is symmetric. We always assume graphs and
directed graphs to be loop-free, that is, we assume the edge relation to be irreflexive.

Unless we want to emphasize in some situations that we view a graph G as an
{ E'}-structure, we continue to denote the vertex set of a graph G by V and the edge
set by E (instead of G and E(G)). We usually denote undirected edges in set notation
(as in {v, w}).

IMapadeypa 6.2.2. (Circuits). Let 7¢;,.. be the vocabulary consisting of the binary
relation symbol E and unary relation symbols OUT, AND, OR, NEG, IN, TRUE,
FALSE. A (Boolean) circuit may be represented by a 7¢;...-structure C, where:

36

 (C, E%)) is a directed acyclic graph.

« OUTY® contains exactly one node, and this node has out-degree 0 (the output
node)

The sets AND® , OR® , NEG® form a partition of the set of all nodes of in-
degree at least 1 (the and-nodes, or-nodes, and negation nodes, respectively). Nodes
in NEG® have in-degree 1. The sets IN® , TRUE® ,FALSEC form a partition
of the set of all nodes of in-degree O (the input nodes and the nodes computing the
Boolean constants true and false, respectively).

6.2.2 First Order Syntax and Semantics

We fix a countably infinite set of (individual) variables. Henceforth, we use the
letters x, y, . .. with or without indices for variables. Let 7 be a vocabulary. Atomic
formulas of vocabulary 7 are of the form z = y or R(x; ...x,), where R is r-ary
and z4,...,x,,,y are variables.

First-order formulas of vocabulary 7 are built from the atomic formulas using:

* the Boolean connectives —, A, V

+ existential and universal quantifiers 3,V

The connectives — and <+ are not part of the language, but we use them as
abbreviations:

¢—= ¢ for 2oV and ¢ < for (¢ — O) N (P — @)

By free(y) we denote the set of free variables of ¢, that is, the set of variables
x with an occurrence in ¢ that is not in the scope of a quantifier binding x. A
sentence is a formula without free variables. We write ¢(z1, ..., ;) to indicate
that ¢ is a first-order formula with free() C {z1, ..., z)}. We also use the notation
©(x1, ...,) to conveniently indicate substitutions. For example, if () is a formula,
then ((y) denotes the formula obtained from ¢(x) by replacing all free occurrences
of x by y, renaming bound variables if necessary.

To define the semantics, for each first-order formula (1, . . ., 2) of vocabulary
7 and each 7-structure A we define a relation ¢(A) C A k inductively as follows:

o if p(xq,...,25) = Rryy ... x4 with i1, .. ir € [k] then
o(A) == {(ay,...,ax) € A¥(as, ..., a,) € R}

Equalities are treated similarly

o(xr, .. xk) = (@i, .) AT, - - Tym) with i1, 6l §1,.000 jm €

@(A) = (a1,...,ax) € A¥|(aw, ..., aq) € Y(A), and (a1, ..., a;m) € (A).

The other connectives are treated similarly.

37

o If
o(x1, ... x) = g (z4y, - .., xy) with il, ... il € [k + 1], then

(a1, ... 1) € A¥ thereexistsan ajyy € A suchthat (a, ..., aq) € P(A)
Universal quantifiers are treated similarly.

The definition also applies for k = 0; in this case,ip(A) is either the empty set
or the set consisting of the empty tuple. If p(xy,...,x) is a formula and A a
structure of a vocabulary 7 that does not contain all relation symbols occurring
in p(xy,...,zx), then we let p(A) := @ We usually write A F p(z1,...,2%)
instead of (a1, ..., ax) € p(A).If ¢ is a sentence, we simply write A F ¢ instead of
¢(A) # & and say that A satisfies ¢ or A is a model of ¢. Note that for a sentence
 the condition ¢ (A)# @ just means that ¢(A) contains the empty tuple.

Hapadewypa 6.2.3. Recall that 7¢,..,, = { £’} and that we represent directed graphs
and graphs as T¢yqpn -structures G = (G, EY)
Letk > 1 and consider the following formula:

vl (21, ..., 2) = VyVz(Ery — \/ (vi=yVua=2)).
1€[k]

Then for every graph G and every tuple (a1, ...,a;) € G* < {a;,...ax}, isa
vertex cover of G. A bit sloppily, we will say that the above formula defines the set
of all vertex covers of at most k elements of a graph.” Let

vey = Jxy .. Fag(/\ z; # xj ANvcg(x, ..., xE))
1<i<j<k

Then a graph G satisfies the sentence vc k if and only if G has a vertex cover of
k elements.

6.3 Monadic Second Order Logic of Graphs (MSO)

One of the most important milestones of the arrea of algorithmic meta-theorems
that will be revised later was Courcelle’s theorem appearing in [23, 22] for the first
time. It will later be a very important part of the paradigms of this thesis.

The syntax of the second-order monadic logic of graphs includes the logical connectives
A, V, —, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers
V., d that can be applied to these variables, and the five binary relations:

1. u € U, where u is a vertex variable and U is a vertex set variable.
2. d € D, where d is an edge variable and D is an edge-set variable.

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation
is that the edge d is incident on the vertex u.

38

4. adj(u,v), where u and v are vertex variables and the interpretation is that u
and v are adjacent vertices.

5. Equality for vertices, edges, sets of vertices and sets of edges.

We will use lowercase letters for vertices or edge variables and uppercase letters
for variables representing sets of edges or sets of vertices.

Mapaderypa 6.3.1. (Hamiltonicity) A graph G is Hamiltonian if and only if it has
a spanning cycle. the edges of G can be partitioned into two sets red and blue such
that:

» Each vertex has exactly two incident red edges, and

* The subgraph induced by the red edges is a connected spanning subgraph of
G.

In developing the M .S, formula that expresses the property of Hamiltonicity, we
will represent the set of red edges by the variable R and the set of blue edges by the
variable B. The exact formula is given in example

Actually, this language is sometimes referred to in the literature as the extended
monadic second-order language, and the logic the extended monadic second-order
logic or M S, logic (e.g. Arnborg [2], Seese [28], and Arnborg, Lagergren, and Seese
[8]). This is because we are looking at a two-sorted structure with predicates for
edges and vertices plus an incidence relation. Another natural language has only
vertex symbols and one must use binary relations for edges. Following Courcelle,we
call this one-sorted logic the 1/.S; logic. Naturally, the monadic second-order theories
are different. M S, also allows for multiple edges whereas M .S; does not. Clearly
there are properties definable in //.SO, that are not expressible in M/ SO,

Further on in chapter 7 we will see another version of MSO the Matroid MSO.
The analytic definitions of that are not given here since they are a bit out of the scope
of the current section. One can find more details in appendix [2.

39

40

Keoaiono 7

The trade-off function

In this chapter the trade-off relation is defined and studied with respect to the
fields that have been explained already.

7.1 Elementary Description

This far we have parameterized the model checking problem with respect to the
length of the property to be checked and the k as a parameter regarding the structural
properties of the input instance.

Without further ado here follows a rough shape of the desired result.

Oeopnpa 7.1.1. Assume a logic class A of expressive power x that parameterized by
ko is FPT. For every increment on the expressive power of A there exist a structural
parameter k, that classifies the Model Checking Problem of all properties expressible
in A as FPT on instances of bounded k.

The above theorem has a very trivial proof similar to theorem and as always
by accepting that parameterizing by a number that can bind the size or the input is
on the table.

Anddeién. There are two ways to derive a proof:

* Without the use of parameter &y we can immediately define k = g(n) where n
is the size of the input model for the Model-Checking of A’. k classifies A’ as
FPT.

« The Model Checking Problem of A will be of some complexity O*(F'(ko))
where the notation O* is ignoring any polynomial terms of measure n. The
increment of the expressive power is an expansion that can be applied to all
the properties expressible in A. So there is an FPT algorithm that requires
O*(F(ko)) and can me called an h(k) number of times for the model checking
of A’ as long as h(k) remains irrelevant of n. We can pick for h(k) a function
for which

h(k,) > nis true ¥n

41

By doing so we ensure that the running time of the Model-Checking problem
of A’ will be bound by O*(h(k)*°)) which is still FPT.

]

In order to produce some better result we must study the above relation with
respect both to the generality of the parameters and the relationships between them.

So the first question of interest would be : Can we extract information towards
the relationship of the parameters by looking at the relationship between expressibility
classes?

Opiopog 7.1.1 (Stronger). We will say that a parameter x is stronger than a parameter
y if given a fixed k the percentage of instances that have x bounded by k is smaller
than the percentage of instances that have y bounded by k.

In simple words x is stronger than y if it is more likely given a random input to
end up with an instance of bounded y than a bounded x.

From now on when mentioning a parameter of a Logic Class we assume
that this parameter is the the weakest we can find for this class. Meaning
that it is the one corresponding to the largest amount of instances without
covering the hole universe.

Oeaopnpa 7.1.2. Given two logic classes A and B and if A has a higher expressive
power than B then the parameter that classifies A as FPT is stronger than the
parameter that classifies B as FPT.

#Bounded k
instances / A
#instances

-

| I — -

Expressive

A B C D E Power of
Logic

Zynpoa 7.1: Percentage of bounded k instances over strict Logic inclusions

a trivial first look into the above theorems proof could be:

Amnddeién. If A is of higher expressive power than B then all properties definable
in B are also definable in A. Without loss of generality we can say that parameter x
classifies A as FPT and y classifies B.

42

V properties p € B, the MCP for (p,x) € FPT sincep € B - p € A — , and
Vp € AMCP(p,x) € FPT. Therefore if p is expressible in B, we can simply express
it using A and use the corresponding parameter for an FPT algorithm. So if A is of
higher expressive power than B then all properties in B can be solved in FPT time
using the parameter of A. Our definition of stronger requires to assume a smaller
percentage of instances to have bounded the stronger parameter.

Suppose now that the parameter y of B is stronger than x of A. That means
that for each property of B the amount of instances of the MCP(p,y) that we can
solve efficiently with an FPT algorithm with parameter y is smaller than the amount
we would solve if we expressed p in A and used the FPT algorithm that solves the
MCP(p,x) in A. L

]

Now of course although the above is a start it doesn’t really give any information
rather than just supporting the argument that there might be a larger scale correlation
besides the trivial one. I have not presented yet any information towards how can
someone either utilize existing knowledge on this field or at least use some process
to produce results.

The above only means that while using strict bounds on language needed to
express a property, when a property needs more expression power you need to
sacrifice an amount on instances to maintain the MCP in FPT.

The new parameter though (of the more expressive complexity class) even if
it requires a stronger parameter does not necessarily associate the parameter with
the same instances. Of course the empty graph as a input will always be part of all
graphs bounded by a random parameter k and therefore there is reason to believe
that in most cases there is a part of the universe of instances that given two different
parameters k1, ko will have them both bounded. But in the general case we are just
interested on the cardinality of the set that has each parameter bounded.

For a logic class A and the parameter k that classifies A as FPT the set
of instances that have the parameter bounded by k on an input of size n
will be called S4

One here might guess that depending on the parameter we can actually determine
or approximate the cardinality of S4. This is not only very interesting but also
quite useful. There are some results regarding FPT checkable logics that can be
interpreted in this framework and start relativizing the results.For instance one could
start arguing on the relationship of the parameters that classify as FPT M SO, &M SO,.
Another thing one must keep in mind is that in order to properly relativize the
parameters we must know that each one of them is tightly bound to the Logic class.
An example would be

If A is a logic class then for p € A and an instance I, if I has bounded
k then p is checkable in FPT time. And all the set or instances that can
be checked in FPT time for a property in A all have the parameter k
bounded.

43

FPT instances

Logic Class - _S“il
7 3NN

Zynpoa 7.2: The relation between the parameters of logic classes A and B when A is
of higher expressive power than B

If no such result exists for a logic class then the above cannot be applied in a
straightforward way. Thankfully there are cases where such results exist and in the
absence of such we can think of workarounds. In some cases correlating structural
parameters of graphs is a step towards understanding the nature of the properties that
led to them. In other cases the relationship between the parameters is the only clue
towards the relationship of the Logics although that is a topic not studied extensively
here. The parameter classification is a very large project and i have started an attempt
on it in chapter 6. After some basic results are presented, there is space for interpreting
affected existing works.

Opiopog 7.1.2. From now on when referring to this function the following apply:
* The trade-off function will be noted as f

* in agreement with the above note for a logic class A the parameter that classifies
A as FPT will be noted k4

* the above parameter will be considered to be the weaker (= least strong)
known one.

* The straightforward relation will be considered to be the one refering to a
parameter that classifies a Logic class as FPT (i.e. the MCP of A is FPT
parameterized by k4)

* The converse relation will be considered to be the one associating a family of
graphs and a checkable logic with a bounded parameter (i.e. if family F has
a checkable logic A then it has bounded % 4

Some of the results that i will be quoting later on might not be the optimal known
ones. However they might be the most appropriate to cite in this framework. This
doesn’t mean that later ones cannot be also interpreted and utilized. Of course to

44

ensure optimality there must also exist some short of converse theorem. In the cases
there isn’t there are some extra steps that need to take place in order to return to a
point where we can produce useful results.

PROBLEM: There might exist a case where a converse theorem is not known
for a Logic class. For reference lets say that for class A all properties can be checked
n FPT time with parameter k4. Now we can discriminate two scenarios:

1. A converse does not exist
2. A converse exists but for a parameter k',

In both cases and for completeness purposes we can temporarily accept the
converse parameter to be the one of the right higher Complete for our intent Logic
class. Also there might be a case where only some short of converse is known. Each
one of these cases needs a very small explanation as to how it is going to be treated
in the future.

A small representation of all above cases is represented in the following table

Logic | Related parameter | Converse
A ka k4
B kg -
C ke k¢
D - kp
E kg kg

ITivakag 7.1: Possible Discontinuities

In the above table logic A is considered less expressive than B, B than C and so
on. Lets begin with the second row of the table.

What we know is that the MCP for Logic class B is FPT for k. What we need
is at least some parameter for witch the Converse holds

Oeopnpa 7.1.3. For Logic B the Converse holds for parameter k 4

Amnddeién. B is more expressive than A — Vp € A,p € B. From the converse
theorem of A: If a family of graphs F has a checkable A then it is of bounded
k 4.Suppose F has a checkable B. A C B — F has a checkable A — F has a bounded
ka O

For the fourth row of table 5.1 we know that for a family of graphs F if D has a
checkable Logic D then F is of bounded kp

What we want is a parameter k that for witch the relation in question holds. L.e.
The MCP of D is FPT parameterized by k.

Oeopnpa 7.1.4. The MCP of D is FPT parameterized by kg

Andéeién. The MCP of E is FPT parameterized by kg. D is less expressive than E
— Vp € D,p € E. Therefore the MCP of D is FPT parameterized by kg]

45

Regarding the third row the situation gets more complicated in case that the
exact relation between ko & k(. is not known. Here it is not enough to know witch
parameter is stronger (is some cases we do not know even that). We need to be able
to decide for each instance I the bound on both parameters if such a value exists.
Again this can only be done by analysis on specific parameters and therefore this is
a part of chapter 6.

Opwopog 7.1.3. In the above context we can distinguish three scenarios.
1. VI instances of bounded k¢, I is of bounded £,
2. VI instances of bounded k¢, I is of bounded k¢
3. The exact relation between ko & k¢ is not known.

for the above we can define as K¢ = stronger(kc, k¢, ko + ki)
the definition of stronger here is enough to cover all scenarios. If for instance
Sc C Si then K¢ = k.. The rest of the cases can be tested similarly.

Through this trick we can summarize table 5.1 as:

Logic | Related parameter | Converse
A k4 ka
B kg ka
C Ko Ke
D kg kp
E kg kg

I[Tivakag 7.2: Corrected Discontinuities

We will see further on that the above table is not actually very far from the reality.
Of course this table only summarizes relations between logics for which we know
strict inclusion properties.

7.2 Refinements

This far i have only given proof on the existence of a somewhat inversely function
between parameters and Logics. Lets assume though for the sake of argument that
this function could be further determined.

What kind of input and output would it have?
Could it be some deterministic description?

What kind of mathematical properties would it have?

46

Each of the above is accompanied with understanding an aspect of the nature of
the problem.

So lets start at the beginning. Suppose that a strict relation exists. How can
we measure such a thing? Reminder here that we are trying to describe the way
expression power in logics interacts with parameters of input instances.

Imagine an F function that as an input there is a variable describing in a way
how expressive a Logic is and as an output we have a quantity that gives some short
of information toward what kind of parameter would correspond to that language.

Its quite obvious early on that F would not be of the short

F(z)=2*+4

or any other continuous function over the real numbers for example.

There are quite a lot of reasons why such a thing wouldn’t work and the first one
i am going to focus on is the fact that in any case the relation i am looking for will
be in any way continuous. Even if we end up with a number as a input the values
this number can be assigned will not be continuous since they have to correspond
to expression power. Lets focus then to the kinds of logics that exist and what kind
of increments are applied form one Expression Power to the other. The way we can
prove if a property is expressible in a Logic has been covered in Chapter 4

1. propositional logic
2. FO logic

3. MSO,

4. MSO,

5. SO

In each one of these the difference is some operator, a part of the vocabulary, the
use of Predicates or limitations on them.

One could of course try to associate some number with each one of these.

Itis widely known and easily proven that all of the above have countable infinitely
many properties defined in each one. So any measure regarding the cardinality of
the set of properties expressed in each one is irrelevant.

There are some studies on how can someone measure the expressive power of
a language but none relevant enough. Some interesting measure would be to take
into account th length of the expression of a specific properties in each Logic. But
this becomes less useful when the optimal length is reached because even Logics of
higher complexity require the same number of symbols.

For now then lets keep the idea of an increment in expressive power happening
through its grammar or it vocabulary. Thankfully for the purpose of this thesis only
strict inclusions are studied and therefore the idea of increment has a one-way interpretation.
In order though for someone to repeat such a process for logics of not strict inclusion
a more detailed study will be needed on this area.

So as proved already the relation exists but it is yet to be determined how tight it
is. We could also try to define it in the opposite direction. Results in this case would
look something like this:

47

If a family of graphs is checkable for all properties in Logic A then the
family of graphs has a bounded parameter k.

Now for a finite family of graphs one can argue that all parameters are bounded.
But thankfully i have here a proof that this does not interfere with my work

Oewpnua 7.2.1. On finite families of graphs a finite set of Logics is always FPT-
checkable.

The trick here is not to actually check all properties in a Logic rather than label
the models that satisfy the property.

Amnddeién. Select a random enumeration of the graphs in the family F. For a all these
graphs we can select an upper bound for each possible parameter that would be of
use in th MC of a Logic. Out parameters would be k.1, k.2,, kz, for our N logics
respectively.

So we define k = max(kp1)+....4+max(k; N) where the individual parameters
are parsing through all of our models.

k is an upper bound for all individual parameters in all of the graphs of F and
therefore for all Logics in our set the MCP is FPT parameterized by k. U

so we can focus on infinite families of graphs where the bounding of a specific
parameter would come from structural properties and by looking at the definition of
the class.

Could we after producing a bounded parameter result derive on the set of properties
that are checkable on those graphs?

Of course we could! Some results already exist but in a very local scale. In fact
based on the work already presented one can derive such results after giving a closer
look to the existing knowledge over parameters. We will study such paradigms later
on.

The above results are not necessarily the most recent in this area but for the
purpose of parameters of graphs they are more appropriate.

So now if someone finds a infinite family of graphs with bounded treewidth he
can immediately know that there must exist a property expressible in SO Logic but
not in M SO that is not checkable in FPT time for this family.

The above actually is not trivially a necessity but it can be proven. As always
when mentioning the parameter of a Logic class we refer to a relationship of the
form shown in definition

Oeaopnpa 7.2.2. Assume logic classes A and B with B having a higher expressive
power than A. If a family of graphs F has parameter k4 of Logic Class A bounded
but kg of Logic Class B unbounded then there exist a property p expressible in B
but not in A that is not checkable in FPT time on F with parameter kp.

Amnddeién. Suppose no such property exists i.e. all properties of B are FPT checkable
for F with parameter kp. Therefore Logic B is FPT-checkable for F. But as in the
converse of Courcelle’s theorem given by Seese which is or the form i am assuming
then if a family of graphs has an FPT checkable A Logic then it must have bounded
the corresponding parameter. |

]

48

As we are slowly getting somewhere let me summarize progress made this far.

1. While increasing expression power one must sacrifice an amount of instances.

2. Structural Characteristics of graphs can be used to determine what kind of
properties are checkable form them.

3. With a little bit of further study we can correlate the times an algorithm runs

4. There might be a way to relativize the increment in expression power with the
decreasing of number of instances.

Finally i will focus on one of the listed questions from further up. Lets just
suppose that we have agreed on a measure that expresses how massive is the expressive
power of logic A. From now this measure will be denoted as .

What can we say about F () ? Technically x is a mapping from all
possible Logics to the real numbers with respect to the following properties:

* VLogicAd x(A) e R
« iff A is more expressive than B then x(A) > x(B)

Remember that our output is a measure concerning the number of instances that
correspond to a bounded value of k4

Oewpnua 7.2.3. [() is decreasing.
Amnddeién. We need to prove that

Vao,y cx >y — F(x) < F(y)

x > y means that logic A, is more expressive than A, = Vp € A,,p € A,
Suppose now that f is not decreasing =

Jryx >y F(x) = F(y)

That would mean that there are properties p expressible in A, that can be checked in
FPT time in less instances (S,) when p is expressed in A, than when expressed in
A,. That would mean that %, is stronger than k, which is a contradiction according
to definition 5.1.2 [

7.3 Parameterized Framework

Although the work done this far is quite enlightening it lacks a certain amount of
specific definitions and results. To continue further without worry for results being
not definite enough there is some work to be done.

As you see above all reductions and proofs take place in a more mathematical
framework. In order to be positively sure that not only the correlation F exists
but all mentioned properties are true i have to translate them in the parameterized
framework.

49

To begin...

The first result of section 5.1 is theorem 5.5.1. regarding the certainty of an
existent parameter that classifies the MCP of a Logic as FPT.

According to the phrasing of we have to describe the transformation of a
weft 0 circuit for logic A to a weft O circuit for the logic A’.

Of course without knowing the increment it is very difficult to design a specific
circuit the following can be done:

The increment will be of some form of extra symbols, Predicates or rules. Without
any massive assumptions i will use a primitive form of enumeration of these changes.

Andéeién. Note C' the family of circuits that recognizes property p € A. The Logic
A’ will be the set of all properties expressible in A repeated an enumerable infinity
number of times, each time with another aspect of the new rules being applied.
Therefore each property p’ € A’ will be a combination of a property p € A and
expansion from A’ (even if the property in A is an empty string).

Only thing remaining is to describe a parameterized reduction between the circuit
recognizing p to a circuit recognizing p’ where p is the part of p’ in A.

n
.'J"
RN
Ve .
/ Ifo \"..‘
| A |
{ - "/’r__q.\"- r’f o \‘-_ .-/’ a ,rr’ __""‘._
¢))L) e () Input level
\\.\.\ II:."I \ "‘-II:,L._____M__-_.-- II'I
\'_\ I."III \ I.'II .-"""---,‘____‘__-_‘-‘ ,'I
‘ ' ‘ ' h““"'"-..L '

hﬁ' (\‘J (\) Level 1
N AN _/

Zynpa 7.3: A circuit recognizing a property p € A for kg = 2

Each one of the changes in A will be represented on a gate of C’. Since C is of
weft 0 each of the gates in C will have an in-degree at most ky = in C each level

contains at most a
g(k) * poly(n) (7.1)
gates.

* the above number is a result of each level being composed of k combinations
of the previous one. This process only happens for finite polynomial

over n steps and therefore each gate of a level cannot have more than

7.1 inputs from gates of the previous one.

50

A gate in C’ will always be a rule being applied on a property p (which has its own

weft O circuit) or on gates of C’.
We can recursively solve the case where it is applied on gates of C’ by explaining

what happens in gates of C. Similarly with theorem we assign A’ the parameter
Ky = g(k) x poly(n).

glkJ* poly(n)
."'
] AN i
4 ™
N N Y TN
p ___ B C! o ____""--\
. ey
TN
(|
s S

Yynuoa 7.4: The gate of the circuit recognizing property p’ € A’
Now no gate in C” is of unbounded in-degree = C'is of weft 0. U
The immediate next thing we need to interpret is theorem [7.1.2. But this is not
something that could be described through circuits due to the fact that circuits do

not take into account instances that do no have the parameter bounded.
However the results of table 7.2 can all be interpreted through similar procedures.

51

52

Kepaiao 8

Parameter Analysis

In this chapter the graph metrics we defined in section 4.5 will be studied autonomously
at first and later in contrast with each other. Here i will try to start the needed work
in order for the previous chapter’s results to be interpreted in specific structures.

8.1 Treewidth

As follows from the definition what is the most important thing to determine
treewidth (noted form now on as tw) is the tree decomposition. This will be also the
base of the following calculations.Since tree decompositions are heavily counting on
labels our graphs will also be labeled, undirected ones. Our purpose is to determine
at least approximately how massively bounding tw by k will affect the number of
instances is size n. Si

For starters we will use the following which are considered trivial.

« The complete graph of size n has (}}) = n * (n — 1)/2 edges
+ In total there exist 2"*("~1)/2 possible subsets of these edges and each one
corresponds to a different labeled graph.

Opopog 8.1.1. For handiness purposes i will use form now on the term 7} to
describe the number of graphs of size n and treewidth equal to k.

Note here that even if 7}, is deterministically described it will not mean that we
have a way to give an upper bound on n depending only on k. This study is focusing
on number of instances and not specific ones.

If a graph is of bounded tw k then there exists a tree decomposition where the
maximum number of nodes in labels is k& + 1.

in order to produce a first result we will need the following:

Opwopog 8.1.2. A smooth tree decomposition is one for which each bag has k+1
nodes and all the neighboring bags have k common nodes.

Ocopnpa 8.1.1. For all tree decomposition of tw k there exist a smooth one of tw
k.

53

Amnddeién. Given a tree decomposition of size k a smooth one can be constructed by
applieng the following in each edge(p.q) of the tree decomposition.

1. if X,, € X, then contract pq and let the bag be X,. Similarly if X, € X,
2. if X}, ¢ X, but | X,| < k + 1 take any node from X, and add it to X,

3. if | X,| = |X,|+k+1and | X, — X,| > 1 then interpolate new bags between
them.

O

So! using the above we say that when having a graph of size we are now looking
for the ones that have a smooth tree decomposition of tw k. This means that we need
to determine how many different tree decompositions of tw k exist over a set of n
nodes.

We can also use the following theorem by Bodlaender[?] :

Oewpnpa8.1.2. If T'is a smooth decomposition of G then T contains exactly |V (G)—
k| nodes.

The proof of this will be gives through the following procedure.

Each bag here is a set of £ + 1 nodes since T is smooth. And each node can pick
from a pool of n nodes

So as a first result we know that the graphs of tw k are at most

n \IV(©G)-H
(k + 1) @1

Now of course when considering bounded by k tw we are not focusing on the
tree decompositions of tw exactly k. But b using the above even a graph without
edges will be mapped to a tree decomposition of tw k we are safe this far.

Now we need to make sure that on the number of (1) we are taking into account
valid tree decompositions. That means we need to subtract from (1) a number of all
the trees that are not actually tree decompositions of their labels.

We have |V (G) — k| bags and we want all of them to have k common label nodes
with their neighbors. So Lets construct one X, at random by inserting & nodes on
the label. In equation (1) we where construction the other by inserting at random £,
on the next one etcetera. Now for each one of its adjacent ones we have to choose

k“) that will be duplicated and can only replace one of the X, node with one of
the |V (G) — k — 1| remaining. So far the construction of each one of the new nodes
we are always picking (“/") from the existing neighbor and adding one more label
that must not be already in use.

In the above figure for each new bag k labels must remain same. When choosing
the k labels that would be reused we are safe since we are only expanding on the
existing tree and therefore the new labels since they existed on a valid bag will not
have to be the reason for any new edges besides the one with the parent node.

When choosing the new label that will be added to the bag we must be very
careful. If the new label is in use somewhere in the tree adding it on the new node
would cause a circle B.1.

54

Zynpoa 8.1: Constructing the new nodes

Suppose we are construction node :. If we are construction node i there are 7 — 1
nodes already in the tree decomposition and we have to choose one of them as the
parent of our current node This however will not contribute to the total number since
we are not actually interested in what order each bag node will be added to the tree
decomposition. We can pick at random the k labels that will be reused from the
previous node and we have to also pick the new label from the ones that have not
been used. Note here that Since we are adding the ¢ — th node in the tree we have
used so far ¢ — 1 extra labels. So right now in our tree there are used

ktii=1,.. ., |V(Q)| —k—1

which means there are left |V (G)| — k — i to choose from.

The product for all i would give us the number of all possible smooth tree decompositions
of twk =T).

Now since all tree decompositions of tw k have a smooth one the number here
will be an upper bound for 75

(1)

V(G)|—k-1

o () v -k-i -

-y M ver-i-a-

=1

55

/ o LUy ’u|-<+1l}
X,=
| S
{ulg u2" uk"'l} .._,-'II -
\\“ - ~- S - -) —
TTeellL X yd)
T T : {u,uye U} ,-:
/// h AN \ .
; X2= ™ B
| {ul ‘u2”" ‘ul-(+l } |
. P //)’
Zynpa 8.2: Reusing labels would cause a circle
V(G e
[<‘k (+ 1>’> s (k+)WVEO=D (V@) = k= 1)% (8.2)

As you will see the above seems to be very accurate since we can test it on easy
cases. For instance:
On cliques were k=n-1 we have :

(6.2) = (:gggi:) V(@) % (0)! =

1x1x1=1

Which is exactly the number of graphs of size |V (G)| with tw |V(G)| = 1 (Kjv(a)|)
So right now we have the following:

V(G e
T, < T} = (k (+ 1)) s (k+ D)V V(@) — k= 1)%

The above then can be translated into an upper bound for graphs of bounded k by
calculating the sum over all k.

k
2 (] N 1) j+)OI V(@) - k= 1) 8.3)

Jj=1

56

Our first approximation about the number of size n graphs with bounded by k tw

was :
IV(G)—k|
n
R
(1)

Result B.3 is obviously much better witch can be shown through trivial calculations.
To summarize then about treewidth we have that form all possible graphs of size
n only B.2 are of tw bounded by k hence the quantity:

k
> (V) G+ 0O v - - 1

—\j+1
(")

As shown in the following diagram for some usual cases of real world input and in
order to be able to relativize with other graph metrics later on.

(8.4)

8.2 Cliquewidth

In the search for cliquewidth one will notice from the definition that there in no
such thing as a clique decomposition or something similar as to the one existing with
treewidth. Cliquewidth originates from a constructive process focused on generating
the original graph. This means that we cannot use the same teqnique or a similar one
to find an upper bound to the quantity of instances of cliquewidth bounded by k.

The same trivial equations apply for the whole of graphs of V' (G) = n nodes.

As shown in section 4.5 cliques are of cliquewidth 2 as are very few other graphs.

Now the reader must keep in mind intuitively that the more we deviate from a
clique of size n the larger the cliquewidth of the graph gets.

Now as per the definition there are four kinds of operations one can use to
produce a graph. We are comparing for a graph of V() nodes and therefore we
can derive the following:

« There will be exactly V'(G) in total node creations (easily since we end up
with this much nodes in the graph)

* There will be exactly V(G) — 1 disjoint union operations (a very short proof
of this is given in the appendix)

* There will be at most n — 1 recoloring operations (worst case = every recolor
operation causes the change of color of exactly one node).

* There will be at most k * (k — 1)/2 connection operations

Now of the create operations the first two must necessarily happen first since
none of the rest can can take place when less than 2 nodes exist in the graph.

What i am going to do is i am going to try to produce an upper bound for the
total number of possible graphs of cliquewidth k by counting how many sequences
of the above operations can take place.

57

Now as i said we have cliquewidth k and therefore can utilize k colors in the
creation of the graph. However i do not want to discriminate between lets say a pink
and a blue clique of size n. Therefore since i am demanding V' (G) — 1 recoloring
operations in means that in the end i will be left with a graph of a unique color. In
the flowing relations this will be translated to the mathematical property that when
choosing a color for a new vertex we can pick from £ colors. This is not of course
the case. What actually matters is that each time we select the color of eyther an
existin or a not existing one. So:

Opiopog 8.2.1. From now on:

* The number of graphs of cliquewidth at most £ will be noted as C,

+ The percentage of graphs of cliquewidth at most k£ will be noted as pj,

To begin giving some upper bounds :
There will be n vertex creations in the construction. When in a new number of
vetrices we have to take into account the graphs concerning this many edges. There

are (!V(G)‘)’izl...n

ways to pick i vetrices from the final |V (G)| that will exist in the graph.

For each one of them now we can perform a number of the other operations given
in the definition. Since i am counting possible graphs per number of nodes involved
disjoint union are not counted as will be resulting in a change of the number of
vetrices studied. For the rest though we can say:

1. Each create operation correspond to an initial choice of color for the vertex
created. the number of colors is k but as explained above this results in 2
possible choices (existing or not existing color)

2. Each connect operation has at most (g) possible inputs.

3. each recolor operation has at most £ — 1 possible inputs.

Now we are close to a first result.

Before a final solution is given i will explain a final point. The above operations
have been left free to have as possible input any number of the colors and such.
However the reader will probably notice that in many cases there are not yet k
colors in the graph yet. A closer look though will reveal that by not determining the
sequence in which the disjoint union operations took place we can at least assume
for the purposes of an upper bound that all above combinations are allowed and the
way they will be arranged is given by their input.

For a number of nodes ng There are

“_ (\v;f)!) Y (o= 1) [@](s)

_ (\V(GH) (2) % (ng — 1) % (k) & (8.5)

no

58

OP1: create(a,1) OPZ2:create(b,4) OP3:join(a,b)

First color is irrelevant 2 choices (existing or not color)

Zynpa 8.3: First steps of the sequence describing graphs of cliquewidth k

k
The numbers (ng — 1) * (’2“) () correspond to the possible choices on can make
when using the recolor or the connect operations. Summing for all ng up to k we

will have a first result:

2

< (IV(Z_G)I)@)*(|1/(G| 1) (’;) g (8.6)

The above result seems very reasonable since for £ = 2 it count all cliques with
size up to n plus some extra graphs of small cliquewidth per vertex number

V(G)]
k=2=c < Z <|V<Z.G>’> « ([V(G)| - 1)?

Notice that in the above numbers while computing the sum for all 7, i replaced
¢ with n in term corresponding to choices over recoloring and connection operations.
This is because in the total number for ¢;, even smaller cliques and graphs are considered
as part of a graph of n vetrices in total depending on the disjoint union operations.
This means that a recolor or connect operation can indeed have as an input any of
these vetrices.

Note here that the uper bound for small |V (G)| is very loose because of the
generalizations made in order to construct a unified result. However after not much
increment in n (which is after all the case we are interested in the bounds become
way more realistic) Much to our luck result B.6 can now be further analyzed as
follows:

V(G

- v (5) ey (VO

(n —1)% % 2"

Now as a final result we can describe the number p;. defined in the beginning of

59

this section:
V(@)

k ‘ 2
(V(G) =1+ (5 « (W(z-G)|>

i=0
Pr < NG (8.7)

8.3 Branchwidth

We have seen this far how one can derive upper bounds on the number of graphs
that have some specific parameter bounded. In this attempt i tried to utilize some
part of the definition to construct an somewhat loose numeration of possible cases.
In the case of Branchwidth unfortunately such techniques will not do. As seen in
the definition the branch decomposition all of the decompositions have the same
structure (a tree with |[E(G)| leaves). The only thing that changes over this structure
is which edge of the original graph will be matched to each leave. Then the branchwidth
is calculated by checking on each one of the branch decompositions for a specific
quantity.

Facing this problem i will try to approach this matter from a different angle.

Suppose that we are in possession of a graph G of branchwidth k. This means
that on all of its branch decompositions all of its possible separators are of size at
most k. In is branch decompositions that would mean that one each on every one of
them for every inner edge of the decomposition at most k vertex labels will exist in
both sides of the cut. Now in order to be able to produce specific numbers we define:

Opwopog 8.3.1. For a graph G=(V,E)
* The number of graphs with size n of a branchwidth k will be denoted Bj
» The percentage over all possible graphs will be denoted as py
Now some easy first useful facts are:

Oeopnpa 8.3.1. If T is the branch decomposition of graph G=(V,E) then the branch
decomposition has exactly E(G) leaves and exactly 2 x |E(G)| — 3 edges

Anodeién. We will first construct a binary tree from the decomposition:

1. Choose arbitrarily a vertex u
2. Hang the hole tree from vertex u

3. Delete vertex u from T

Now we have a tree T’ that is binary (for each inner node of the decomposition one
node has assumed the role of the father for the other 2) with |E(G)| — 1 leaves.

For T’ we know tat the number of inner nodes is (| £(G)—1)—1 = |E(G)|-2 =
T’ currently has

2x (|E(G)]) — 3nodes. = T" has2 * (|[E(G)|) — 4

edges (this is an elementary result)
As a final step we re-add vertex u to T’ and the number of edges changes only
by one giving a total of 2 x (|E/(G)|) — 3 edges. O

60

So now we know that given a Branch decomposition there are 2 * (| E(G)|) — 3
possible places we can cut the tree.

Since our initial graph G is of Branchwidth k no matter where we cut we will
end up with two subgraphs that share < labels.

I will to inversely construct from these facts a way to derive possibilities of
origination.

So for a graph that we have the information that its branchwidth is k we know that
there is optimal branch decomposition (e.i the one resulting in a max e-separation of
size k). Lets try to count then all the graphs of n vetrices that would result in a such.

Lets for starters see what happens if there is only one edge of the decomposition
T that reaches the number of k common label nodes for each side.

By cutting there we end up with two trees 77 &75 for that contain in n, &n, labels
respectively. For the labels of 7, we know that k£ 4+ 1 must be shared with the labels
of Tl.

So in such a case we have

(zabezsqvm)\))

E+1

possible different graphs that such a could have originated from.

To intuitively understand the above i am mostly trying to the graphs that have
exactly one e-separation of branchwidth £ + 1 and counting all the different vetrices
that could be a part of it. Since i am looking for an upper bound the largest quantity
that labels(|V (T})|) could have is |V (G)| — k — 1. If it contained more labels then
it couldn’t possibly share £ + 1 with the other side 75 So: for a graph containing
exactly one e-saparation of branchwidth k; we have the upper bound:

(|V(G; |+—1k - 1))

How many such e-separations can we have? Well as proved earlier we can cut
the decomposition in 2 * (| E(G)|) — 3 many places. But! quite a lot of them would
not be eligible. We know that even branchwidth 1 separations did not originate form
cuts made to edges that had leaves as one endpoint. Since the labels that correspond
to such a cut are 2 the separation number would be 1 in all cases. Since branchwidth
is computed as the maximum number of all such cuts these cases should not be
counted. The leaves are of course | F(G)| and therefore we are left with |E(G)| — 3
meaningful cuts.

And of course trivialy E(G) is bound by (IV{*)!). So when choosing an eligible
graph that could result in a branch decomposition of branchwidth k we are also
making a choice on which of the inner nodes of T the large e-separation took place.

We could have each one of those positions to actually be a large e-separation and
for each one we have B.§ choices for the possible shared labels.

(VO g (VO ©9)

2 kE+1

Now there is one extra bound we can derive. If a Graph G has branchwidth k and
n vetrices then we can derive an upper bound for E(G). This is very important since

61

I ~ I<’- bC \\]

- it
Not eligible cut
S abels(T)=3

.,

labels(T,)=5

Zynpa 8.4: There are | E(G)| — 3 meaningful cuts

our current result is growing very fast exactly becase of all the possible edges in G.
So i am looking for the largest number of edges (because i want an upper bound)
that if only one more edge is added the graph cannot have a branchwidth k.

It is very easy to prove as a first step that all graphs that have a minimum degree
of k + 2 cannot have a branchwidth of k. Therefore i am looking for the number of
edges in the most complete graph of minimum degree k£ + 1. Now it very easy to
say that this graph since is it the more complete would only have one vertex of k + 1
degree. All the other vetrices would have maximal allowed degree.

So the lonely edge u has k+1 neighbors. Those are the only vetrises that are
allowed to connect with all the others in the graph.

The |V (G)| — k — 2 remaining can form a clique innerly and will be connected
with the neighborhood of u but not u. So in total we have

(|V(G)|—k—2);(|V(G)|—k_3)+(k+1)*(n—1)—

(k+1)*k
2

The last term is due to the edges between the vetrices of N(u) being counted twice
in the previous term.

Now we can count the common labels in both size of the cuts for every possible
combination of cuts and for every possible number of cuts. We can now summarize

all thatup to :
a—3
B, < V(G)| —k—1 . af?)
k+1 - 7

1=

62

and

G fi’()

IN

Pk

_ (W(k)-!—lk 1) + 2077

(")
Te above is a very accurate result since it can be verified for small values of n
and k.

(8.10)

8.4 Pathwidth

Pathwidth is another metric on graphs tightly associated with a decomposition. In
this case its a Path decomposition as presented in 2.5. Following from the definition
we can produce easily a trivial result.

If the graph is of pathwidth k& then the largest of its nodes will contain & + 1
labels. To make things easier on a first attempt we can assume that all nodes contain
this much labels. We can even do that deterministically using the following steps:

1. Decide a start and an end for the path decomposition and enumerate the nodes
accordingly

2. starting from node 0 follow the decomposition until a node with k£ + 1 labels
is reached.

3. pick a label and add it to all neighbor (as far as the next k£ 4 1 node or the end
of the path) nodes that contain less than £ + 1 nodes.

4. repeat until all nodes in the path contain k£ + 1 labels

The above procedure is efficient and will produce a valid path decomposition.
A specific label will only appear in a connected subpath of the decomposition. In
figure B.4 we see how on can reuse labels of nodes. Here we do not have the property
of smooth tree decompositions as we had in treewidth but we can still produce some
results.

Opiopog 8.4.1. The number of graphs G with |V (G)| nodes and k pathwidth will
be denoted as P

The above seems very similar to the treewidth case since we again could construct
bags of size k + 1

Before we start applying tighter bounds on the number of decompositions we can
have a first estimation of P, Without knowing yet how many nodes are in the path
decomposition that an upper bound of the number of possible path decompositions.

There can be V(@)
(VN @

63

U u

\ U1,1’u2,1"" Uy ulz’uz,z’"' k+12 Bt St k11
\ / \\\-... /’/ \\ S/
\ . \\
/ N\ / N/ N\
ul 1’u2 v ukl"uk+12 \ u121u221 uk21uk+12 — ul 1’u2,1"" ’uk+1.2_;‘
\ / \ /N /
< — -{'_.// ™~ ___,/

Zxnpa 8.5: Filling up nodes with adjacent labels

many nodes on the path decomposition.

In no case of course all of the above are acceptable path decompositions.By
choosing k + 1 vetrices of the original graph (with an arbitrary enumeration of its
vetrices) we will positively end up with a situation where:

* There exists a bag B, which contains labels w;, u;, u.
* There exist a bag B,, which contain labels u;, u; but not uy,
* There exist a bag B3 which contain labels u;, u;, but not u;

This can be easily shown if one considers that for the number of nodes in the
path decomposition we requested all possible unique combinations of £ + 1 labels.
So for a short proof:

Amnddeién. Say that all bags that contain label u; have been connected through a path
graph. We can pick two different labels from two non consecutive bags of this path
graph. Such labels will always exist since on each new node of the graph at least
one new label will appear. Focusing on those two labels no say (uy, u}) there will
be a case in the later on bags to be added to the path graph were they will appear in
the same set of labels (i.e. a new bag) since all sets that contain labels u; have been
used already the above holds [

In the above case all of these bags must be connected but there is no way that
this is done through a path graph.

64

Zxnpa 8.6: We cannot have all combinations of k+1 labels

So even though the above is not tight we do know that no more than

(yv(G)\) ("
k+1
exist.

We can however produce better results. The first thing we will use is the following:

Oeopnpa 8.4.1. For a path decomposition graph P over a graph G of |V (G)| nodes
there will be at most |V (G)| — k bags in T.

The proof of this follows from the similar result about treewidth in section 6.1.
Only difference here is that although there is no proof that the bags will have k
common labels we can accept this numbers as an upper bound since for the construction
of a new bag at least one label changes and the old one can never be used again.

Now we can summarize a similar result only for a slightly smaller percentage of
graphs:

IV (G)|—k—1 1
T = (Z(fl))) Ul (k;‘)*(|V(G)| ki) = (8.12)
Notice how the only difference with the similar treewidth result is that in the
treewidth case there was for each new bag ¢ a multiplicative i to express the number
of choices for a parent bag of the current one. In our case no such term exists since
the resulting graph must be a path one.
We can head forward now and calculate the final result which is

k

> (V) et 0O < v - k- 1y

J+1

This clearly not only results in less graphs of bounded pathwidth than bounded
treewidth k but also maintains the good properties of B.3 over low k.
To calculate the final percentage we have the similar case of

22(3+1) G+)M V(@) - - 1!

pr < NG (8.13)

65

66

Kepaioo 9

Parameterized Algorithmic
Meta-Theorems

In this chapter all the work done above will be brought together in order to describe
independent results as part of this larger framework. There are some Logic classes
that have been studied and associated with a parameter already. For these logics with
or without strict inclusion relationships between them i will be explaining how the
trade-of function described in chapter 5 works.

9.1 Logics and families of Graphs

Note here that the existence of such theorems is the reason for the initiation of
this hole approach. Existing results regard the following classes:

9.11 FO

In this section, we investigate the complexity of the problems Eval(FO) and the
MC(FO)which are respectively:

Opiopog 9.1.1. Let ® be a class of formulas.

* The evaluation problem for @ is the following problem:

EVAL()
Input: A structure A and a formulag € ®.
Output: ¢(A)

* And the Model Checking would be the above but restricted to the decision
version:

MC(®)
Input: A structure A and a formulag € .
Output: Decide whether ¢(A) holds.

A crucial parameter is the width of a first-oder formula ¢, which we define to be
the maximum number of free variables of a subformula of ¢. The width is trivially

67

bounded by the total number of variables appearing in ¢, and, of course, by the
length of ¢.

Oewpnpa 9.1.1. Eval(FO) and MC(FO) can be solved in time O(|¢| * |A|*-w),
where w denotes the width of the input formula .

Amnddeién. The recursive definition of ¢(A) immediately gives rise to a recursive
algorithm. Observe that for a formula ¢ (1, . . . , 2), computing ¢(A) from the immediate
subformulas of ¢ requires time O(wx|A|"). For example, suppose that ¢(z1, . .., xy) =
Y(Ti1s - i) AX (X1, - -, xgs), where {iy, ..., 4 }U{j1,..., s} = [k]. Suppose
that {iy,...,4,} cap{j1,...,Js} = l1,. .., ;. We sort the tuples in the relations ¢)(A)

and x(A) lexicographically by the components /1, . . . , [;(based on an arbitrary order

of the underlying universe A). Then we ’join’ the two sorted lists to obtain ¢(A).

If we use bucket sort, the sorting requires time O(t * |A|™**{"} k). Joining the two
lists requires time O(w * | A|*). Since the number of sub-formulas of a formula ¢ is
bounded by |¢|, this algorithm achieves the claimed time bound. [

Iopwopa. Let k > 1, and let FO* denote the fragment of FO consisting of all
formulas with at most k variables. Then Eval(FO*) and MC(F O¥) can be solved in
polynomial time.

To be absolutely precise here, we have to add O(|enc(A)

|) to the running time.This is because the whole input has to be read to extract
the relevant parts and build the appropriate data structures used by the algorithm
described above.

Actually, it can be proved that MC(F'O?) is complete for PTIME under logarithmic
space reductions. Occasionally, we are interested in the restrictions of the problem
to a fixed formula ¢.

Ilopwopa. For every first-order formula @, the eval(¢) and MC(¢) problems can be
solved in polynomial time:

This result can be strengthened. It is not hard to see that the problem MC(¢)
belongs to the circuit complexity class uniform-ACj.
Let us turn to the complexity of the model-checking problem.

Oeaopnpa 9.1.2. The following hold:

* Foreveryt > 1, the problem MC(X;) is complete for the t-th level %, of the
polynomial hierarchy.

* MC(FO) is complete for PSPACE

The proof for the above is not in the spectrum of this analysis. However we can
see how the above are not very useful in the case that one is building an algorithm
that check a FO logic property. To that end we know:

Oedpnpa 9.1.3. Fix [> 0. Then the model-checking problem for FO on structures
of bounded by k degree is fixed-parameter linear.

68

The proof of the above can be found in [42]. An effective algorithm is presented
where all structures up until a bounded by 1 integer are evaluated over the property
in FPT time.

Can one prove a similar result for FO queries on arbitrary structures?

The answer is most likely no, assuming some separation results in complexity
theory. In fact, these results show that even fixed-parameter tractability is very
unlikely for arbitrary structures. Nevertheless, fixed-parameter tractability can be
shown for some interesting classes of structures.

Oeopnpa 9.1.4. [26] If C is a minor-closed class of graphs which does not include
all the graphs, then model-checking for FO on C is fixed-parameter tractable.

The proof of the above is derived from the following facts. H is an excluded
minor of a class of graphs Cif no G C has H as a minor. If such an H exists, then
C is called a class of graphs with an excluded minor.

 If C is a minor-closed class of graphs, membership in C can be verified in
Ptime [13]

 If Cis aPtime-decidable class of graphs with an excluded minor, then checking
Boolean FO queries on C is fixed-parameter tractable ([46]).

IMopiopa. Model-checking for FO on the class of planar graphs is fixed-parameter
tractable.

Anddeién. Planarity is a property with the finite set of obstructions being = { K5, K3 5}

o} holds. [

So finally we are in possession of a parameter (vertex degree) that defines the
instances that the Model-Checking Problem of FO is tractable over.

The corresponding percentage for |V (G)| = n and k the bound of the vertex
degree is: The most full graph of degree bound by k is a k-canonical graph of n
vetrices. Therefore all the possible graphs of degree bound by k are:

n*k
2 2 9.1

9.1.2 MSO0O, - Courcelle’s Theorem

Courcelle’s Theorem is a logic-based meta-theorem for establishing that various
graph-theoretic properties are decidable in linear FPT time, when the parameter is
input graph treewidth. Similar results were obtained independently by Borie, Parker
and Tovey [9].

Courcelle’s Theorem has the form:

If the property of interest is expressible in MS 2 logic, then, parameterizing
by the treewidth of the input, it can be determined in linear FPT time
whether the graph has the property.

69

More formally:

Oeopnpa 9.1.5. If F is a family of graphs described by a sentence in second-
order monadic logic, then F has finite index in the large universe of t-boundaried
graphs.

In the language of logic, we consider structures that satisfy the relevant formulae.
Here the structures are graphs and we say that G F ¢ for a formula ph: if the
interpretation of ¢ in G is true.

TW p-Model Checking for ¢

Input: A graph G = (V,E), and Property .
Parameter: tw(G)=t+ |¢]

Output: ”Yes” iff G F ¢, ”No” otherwise.

The main theorem means that this problem is linear time FPT. Later, we will
look at a theorem of Seese which is something of a converse.

Andéeién. We outline the idea of the proof.

1. Given a graph G, compute, in linear time, its tree decomposition, consisting of
atree T and a set B, for each node t of T This can be done thanks to Bodlaender
[B5]. Since the treewidth is fixed, say k, each B; is of size at most k + 1, and
thus all the graphs generated by B; ’s can be explicitly enumerated.

2. This allows us to express MSO quantification over the original graph G in
terms of MSO quantification over T. Thus, we are now in the setting where
MSO sentences have to be evaluated over trees.

3. The above can be done in linear FPT time: Suppose we have a sentence ¢ and
a structure A (string or tree). We convert ¢ into a deterministic automaton.
This can be done thanks to the theorems of Buchi [[1]] A language is definable
in MSO iff it is regular. and : A set of trees is definable in MSO iff it is reqular.
due to Thatcher and Wright [44]

4. Evaluate the formula over the constructed automaton.

Following the above steps one can evaluate in linear FPT time any M SO, formula.
O

Anothem more detail proof of this that describes an aglorithm for doing the
above can be found in the book of Downey and Fellows [39]

Detlef Seese proved a converse to Courcelle’s Theorem. Note that this is extremely
important as it fullfils a situation as the one described in the first row of table [7.1]

Oeopnpa9.1.6. (Seese [28]) Suppose that F is any family of graphs with a decidable
monadic second-order (M SO,) logic. Then, there is a number n such that for allG €
F, the treewidth of G is less than n.

Notice the very interesting dichotomy from linear time decidability: the monadic
second-order logic of bounded treewidth graphs to the undecidability of the monadic
second-order logic for families of graphs failing to have a bound on the treewidth.

70

913 MSO,

The material on Courcelle’s Theorem and Seese’s Theorem both looked at the
M S, logic based on the two-sorted language with predicate symbols for edges,
vertices, and incidence. As we mentioned earlier, there is a long history concerning
the basic monadic second-order logic where we have no predicate for edges but need
binary relations for these objects. Now, the expressive power changes.

Naturally, the methods we have used for Courcelle’s M S, Theorem still work.
Seese [28] was able to prove the following theorem

Oeopnpa 9.1.7. If a class of planar graphs has a decidable M SO, theory, then
that class has uniformly bounded treewidth.

This is somewhat of an analogous of theorem [7.1.3.
The decisive lemma is the following.

Anppa 9.1.8. Let K be any class of graphs such that for every planar graph H there
is a planar G K with H < minor G. Then, the monadic second order (M SO,)
theory of K is undecidable.

The principle difficulty in the proof is then to prove that M/ SO, interpretability
occurs. This is quite intricate and heavily relies on planarity to be able to interpret
the class of grids of size n into the class as minors. We refer the reader to [28] for
details. Subsequently, Courcelle and others have extended Theorem to much
wider classes of graphs. In particular, Courcelle and Oum have Seese’s M .S, theorem
extended to M .S via the notion of cliquewidth, a width metric with a similar parse
language to treewidth, as we saw in chapter 6. That is, Courcelle and Oum prove the
following.

Oeaopnpa 9.1.9. (Courcelle and Oum [24]) If a set of directed or undirected graphs
has a decidable M SO, theory (even with the addition of the “even cardinality”
predicate), then it has bounded cliquewidth.

9.14 Matroid MSO

The analytical definition of Matroid MSO is given in the appendix [2. It is quite
similar with the definition of simple MSO but it allows of elements of countably
infinite cardinality in a Structure.

The idea that a graph is tree-like if it can be decomposed entirely across small
separations can be extended to algebraic structures, and, in particular, matroids using
algebraic independence instead of topological separation as the central decomposition
criteria. This programme was initiated by Hlinény and Whittle [[17, 18], and is part
of a long-term program to generalize the Graph Minors Project of Robertson and
Seymour (the originators) to an analogous matroid structure theory (and associated
FPT algorithmic methods). In the setting of matroid theory, matroid branchwidth
is easier and more natural to define than the matroid analog of treewidth. In the
definition of branchwidth for graphs, the key idea in the representation of the separation
properties is to make a data-structure for the graph, where the edges of the graph (the
essential elements of topological connectivity), are in one-to-one correspondence

71

with the leaves of a ternary tree.In the setting of matroids, we need an analog of the
notion of topological separation, and this is provided by the rank of a set of vectors,
a measure of algebraic linear independence of the set of vectors. The connectivity
or width function is

AMA) =r(A)+r(E\A)-r(E)+1

, where r is the rank function of the matroid. A separation can be defined in the
same way as for graphs, and this results in a partition of the set E of matroid elements
into two subsets A and B = E'\ A. The branchwidth of a graph and the branchwidth
of the corresponding graphic matroid may differ. For instance, the three-edge path
graph and the three-edge star have different branchwidths, 2 and 1, respectively,
but they both induce the same graphic matroid with branchwidth 1. Mazoit and
Thomassé showed also that for graphs that are not forests, the branchwidth of the
graph is equal to the branchwidth of its associated graphic matroid.

Robertson and Seymour conjecture that the matroids representable over any
finite field are well-quasi-ordered by matroid minors, analogously to the Robertson-
Seymour theorem for graphs. So far, this conjecture has been proven only for the
matroids of bounded branchwidth. It is possible to prove a version of Courcelle’s
Theorem for matroids of bounded branchwidth. The syntax consists of variables for
matroid elements and predicates e € F' where F is a variable for sets of elements, and
indep(F) which is true if and only if F is an independent set. The above description
is clearly more expressive than that of MSO.

Oeopnpa 9.1.10. (Hlinény [119]) Let F be a finite field and ¢ a sentence of MMS,
matroid monadic second order logic as described above. Suppose that the n element
matroid M is given a vector representation over F together with a branch decomposition
of width k. Then there is a linear FPT algorithm (in F, ¢, k) deciding whether M F .

9.2 Parameter Correlations

For the parameters studied in Chapter 6 and utilized in the section there are some
results that instead of describing how strong they are as parameter describe a set of
bounds between them. These bounds are more suitable for expressing the impact of
changes in one parameter to the others. Such relations contain very useful info that
can be utilized in the parametric algorithm design but they are less important in the
comparison of expressive power.

We can say for the following:

Pathwidth Since path-decompositions are a special case of tree decompositions,
the pathwidth of any graph is greater than or equal to its treewidth. We can deduce
easily therefore that for a graph G:

tw(G) < pw(G)
There is not yet an upper bound for pathwidth in measurement of treewidth.

72

Cliquewidth The graphs of treewidth w have clique-width at most 3 * 2**, The
exponential dependence in this bound is necessary: there exist graphs whose clique-
width is exponentially larger than their treewidth.[21] In the other direction, graphs

of bounded clique-width can have unbounded treewidth; for instance, n-vertex complete
graphs have clique-width 2 but treewidth n — 1. However, graphs of clique-width k
that have no complete bipartite graph K,t as a subgraph have treewidth at most

3 % k % (t—1)—1. Therefore, for every family of sparse graphs, having bounded
treewidth is equivalent to having bounded clique-width.

Branchwidth Having bounded branchwidth imposes strong structure on a graph.
As we will see branchwidth imposes a 1/3 -approximation over treewidth.

Oeopnpa 9.2.1. (Robertson and Seymour) Suppose that bw(G) > 1. Then
bw(G) < tw(G) +1 < [3/2 % bw(G)]
. the proof is thanks to Hlinény, Oum, Seese, and Gottlob [20]
In conclusion we can say that according to the above the most strict parameters

are treewidth and branchwidth. The relationship between them is not definitive though.
The following diagram describes our known relations:

pathwidth

f

branchwidth

\3 9"9

treeW|dth

cw<3*x2™1

cliguewidth

Zynpa 9.1: The parameters studied in chapter 6

An exactly inverse situation holds over how strong each parameter is. As seen in
chapter 6 each one has been tied with an upper bound. This situation is reproducing
the fact that the more strong a parameter is and the more aspects of graphs structural
properties it bounds the less instances are expected to correspond to a specific value
of it.

73

9.3 Combining the Results

A summary on results in this sector are presented on the following table. Each
row corresponds to a Logic among with the paired parameter that classifies is as
FPT. Each row consecutively corresponds to two theorems. In some cases both are
known while in others only one is. The expressive power grows as we continue
to lower rows. Each one of those increments therefore according to theorem
should lead to a stronger parameter i.e a parameter that when for an input of size
n coresponds to a smaller percentage of instances of bounded k. The above claim
holds for the bounds that are given i chapter 6 for the parameters appearing here.

FPT Checkable Logic | Parameter Proof Converse

FO degree Seese [26] -

MSO, cliquewidth | - Courcelle & Oum [24] |
M5S0, treewidth Courcelle [22] | Seese [28]

MMSO branchwidth | Hlinény [[19] -

[Mivakag 9.1: A summary of the existing works over this framework.

The percentages of each parameter for input size n and the parameter bounded by
k are given in summary bellow in table NEW. The it is obvious to notice from those
the impact of the inversely proportional between expression power and parameter
power described in section 5.1.

74

Kepaiaio 10

Conclusion

10.1 Explaining the results

In full scope now one can use table ?? to utilize meta-knowledge of a problem to
help him choose the correct parameter for solving the problem efficiently.

For instance while checking a property p one could be absolutely sure that there
exists a parametrized algorithm that runs in FPT time and recognizes property p.
Now the programmer has an extra tool that he can take advantage of while designing
algorithms. Now his resources can be spend in finding the optimal solution or a fast

one instead of searching blindly for an existing one. An example of such use could
be:

HMapadeypa 10.1.1. For the property of Hamiltonicity: In developing the M .S,
formula that expresses the property of Hamiltonicity, we will represent the set of
red edges by the variable R and the set of blue edges by the variable B.

JRIABVuVv{part(R, B)Adeg(u, R) =2 Aspan(u,v, R)AYxVy3IW (con(u,v, W, R)}

where span, deg and part are described in the appendix [1].

The above logic is M SO, and therefore Hamiltonicity is FPT parameterized by
treewidth. However the above expression is minimal(there is no M SO, equivalent)
and therefore Hamiltonicity is at least W[1]-hard parameterized by cliquewidth -
even if no such reductions or algorithms exist yet.

In addition the results can be used in reverse. An unknown relationship between
logics will have an impact on the relevant running time of each ones Model-checking.
Therefore some short of comparison between them can arise just by looking at the
running times of algorithms that recognize the properties of each one. This might
seem trivial but in the world of formal verifications where there is need for a minimal
usage of expansions over a specific logic such results can be utilized massively. For
instance by checking what kind of processes over inputs run in a machine one could
derive what kind of parameter bounds all of them. Consecutively they could request
a machine that is designed to be compatible with the respectable logic.

75

10.2 Further Research

Besides the obvious expansion of such research that is to analyze more Logic
Classes in a way as done in this thesis there are many other ways this framework
could be expanded.

10.2.1 Fine grained approach

For starters the existing(and further) work in parameters could be explored in a
fine grained manner. We could try checking changes in the complexity of a problem
while remaining FPT. What would happen for instance to a problem when parameterized
by many parameters each one stronger than the last while even the weakest is enough
for an FPT time. Through such search we could learn even more about the nature of
parameters and the limits of computation over bounded universes.

This of course requires a solid framework of parameterized fine grained reductions
that would be able to capture discrimination of complexity inside the FPT class
among with a reduction that would not allow to the changing of parameters to ”’jump”
between said discriminations. This is a third way of regarding the model checking
problem, this time by requesting a FPT running time and toggling the parameterization
between known efficient ones.

10.2.2 Complexity

The reason that this whole work took place over clases defined through logic is no
other that the fact that they are the most proximate to the tools needed to relate with
a computational model. Language-theoretic approaches to complexity are one of the
most popular and effective areas of computer science. That said this is no reason to
study the parameterised time requirements of classes of problems defined by other
means.

Those could be classes appearing in the approximations framework or the probabilistic
one. There is no one forbiding for isntace all efficient approximable problems to also
be FPT parameterized through lets say degree(this is just an example, it is not true).
It is way harder of course to categorize the structural properties of approximable
problems but an interesting point could be made in defense of such a thought (
interesting results in this direction are those of C. Bazgan [[16], L. Cai [30] and L.
Cai, J. Chen [25])

Furtherer the results of chapter 6 could be utilized to produce probabilistic schemes
for the recognizing the membership in a family of graphs. Such a thought is exremely
young and one can find some interesting works from M. Muller [47].

10.2.3 Logic Metrics

A very interesting work could be done in continuation of chapter 5 regarding the
way of measuring the expression power of a logic. For the above work to make
valid points it is important to be able to compare such power. Of course in the strict
inclusion case this is not of the same importance but as seen already from existing

76

work and even more noticeable when considering extensions that is not always the
case. Serious theoretical and applied work could take place in search for a proper
way to express how “massive” is a class of properties.

10.2.4 Counting Complexity

We plan to explore the parameterized complexity of various counting problems,
focusing to hard problems with easy decision (in the parameterized sense), such as
the problem of counting cycles and paths of length % in both directed and undirected
graphs, which parameterized by £, is #1//[1]-complete, while the decision version is
FPT [B]. We will try to draw analogies to similar studies in the classical complexity
setting [4]; to this end we aim to employ recent logical descriptions of such counting
problems [5]. Another related direction would be to study the parameterized complexity
of counting problems that have easy decision in the classical setting, such as those
contained in the complexity class TotP [4] and other related complexity classes [7];
to this end one may use recent completeness results for TotP [§].

77

78

Appendix

.1 Property Descriptions

The descriptions of conn, span, deg and part are given here :
* part(R,B) :Ve(e e RVeec B)A—(e€ RAe € B),

* deg(u,R)=2:3el,e2-(el = e2) Ainc(el, u) Ninc(e2,u) Ael RAe2 RA
—(Jel, e2,e3, (el = e3) A—(e2 = e3) ANinc(ei,u) ANei € R fori € 1,2,3),

* span(u, v, R) : IV, Wpart(V,W)Au e V Av e W — (e, z,yinc(e,) A
incle,y) N\t e VANye WAe€R,

« conn(x,y, W,R):GV1, V2 CV[VIUV2 =VAVINV2=gAx € VIAy €
V2] — Jr € RIpdqp € V1 Aq € V2 Aince(r,p) Ainc(r, q)

.2 Matroid MSO

Definition of matroid MSO logic: First, we present basic definition concerning
monadic second-order logic.

Opropog .2.1. We assume two countably infinite set of variables: element variables
and set variables. Element variables are denoted by lower-case letters, set variables
are denoted by upper-case letters. Matroid monadic second order formulas are
defined inductively as follows:

* If z and y are element variables, then x = y is a formula.

« If x is an element variable and X is a set variable, then z € X and = € cl(X)
are formulas.

* If ¢ is a formula, then —¢ is a formula.
* If ¢ and ¢ are formulas, then ¢ A 1) is a formula.
* If ¢ is a formula and x is an element variable, then Jz¢ is a formula.

 If ¢ is a formula and X is an element variable, then X is a formula.

79

80

BipAwoypagia

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Buchi. Weak second-order arithmetic and finite automata. Z. Math. Log. Grundl.
Math. 6, 66-92 (1960)

Arnborg, Stefan (1985), “Efficient algorithms for combinatorial problems on
graphs with bounded decomposability — A survey”, BIT, 25 (1): 2-23

Jorg Flum, and Martin Grohe, The Parameterized Complexity of Counting
Problems, SIAM J. Comput., 33(4), 892-922 (2004).

Aris Pagourtzis, and Stathis Zachos, The Complexity of Counting Functions
with Easy Decision Version, In Proc. MFCS 2006, Lecture Notes in Computer
Science 4162, pp. 741-752, Springer-Verlag, (2006).

Marcelo Arenas, Martin Munoz, and Cristian Riveros. Descriptive complexity
for counting complexity classes. In Logic in Computer Science (LICS), 2017
32nd Annual ACM/IEEE Symposium on, pages 1-12. IEEE, 2017.

Eleni Bakali, Aggeliki Chalki, Aris Pagourtzis, Petros Pantavos, Stathis Zachos.
Completeness Results for Counting Problems with Easy Decision. In Proc.of
Algorithms and Complexity, 10th International Conference, (CIAC 2017), pp.
55-66 (2017).

Evangelos Bampas, Andreas-Nikolas Gobel, Aris Pagourtzis, Aris Tentes:
On the connection between interval size functions and path counting.
Computational Complexity 26(2): 421-467 (2017).

S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable
graphs. J. Algorithms 12(2), 308-340 (1991)

R. Borie, G. Parker, C. Tovey, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed
graph families. Algorith- mica 7, 555-581 (1992)

[10] Robertson, Neil; Seymour, Paul D, (1984), ”Graph minors III: Planar tree-

width”, Journal of Combinatorial Theory, Series B, 36 (1): 49-64,

[11] Neil Robertson and P.D. Seymour. Graph minors. XX. wagner’s conjecture.

Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004.

[12] Robertson, Neil; Seymour, Paul D, ”Graph minors. X. Obstructions to tree-

decomposition”, Journal of Combinatorial Theory, 52 (2): 153-190,

81

[13] N. Robertson, P. Seymour, Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B 63(1), 65-110 (1995)

[14] M. Rabin, Decidability of second-order theories, and automata on infinite trees.
Trans. Am.Math. Soc. 141, 1-35 (1969)

[15] Seymour, Paul D. & Thomas, Robin (1994), ”Call routing and the ratcatcher”,
Combinatorica, 14 (2): 217-241,

[16] C. Bazgan, Schémas d’approximation et complexité paramétrée, Rapport de
stage de DEA d’Informatique & Orsay, Université Paris-Sud, 1995

[17] P. Hlinény, G. Whittle, Matroid tree-width. Eur. J. Comb. 27, 1117-1128
(2006)

[18] P Hlinény, G. Whittle, Addendum to “Matroid treewidth”. Eur. J. Comb. 30(4),
1036-1044 (2009)

[19] P. Hlinény, Branch-width, parse trees, and monadic second-order logic for
matroids. J. Comb. Theory, Ser. B 96(3), 325-351 (2006)

[20] P. Hlinény, S.-I. Oum, D. Seese, G. Gottlob, Width parameters beyond
treewidth and their applications. Comput. J. 51(3), 326-362 (2008)

[21] Corneil, Derek G.; Rotics, Udi (2005), ”On the relationship between clique-
width and treewidth”, STAM Journal on Computing, 34 (4): 825-847

[22] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs. Inf. Comput. 85(1), 12-75 (1990)

[23] B. Courcelle, On context-free sets of graphs and their monadic second-order
theory, in Graph-Grammars and Their Application to Computer Science 3rd
International Workshop, Warrenton, Virginia, USA, December 2-6, 1986, ed.
by H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld. LNCS, vol. 291 (Springer,
Berlin, 1987), pp. 133-146

[24] B. Courcelle, S. Oum, Vertex-minors, monadic second-order logic, and a
conjecture of Seese. J. Comb. Theory, Ser. B 97(1), 91-126 (2007)

[25] L. Cai, J. Chen, On fixed-parameter tractability and approximability of NP
optimization problems. J. Comput. Syst. Sci. 54(3), 465-474 (1997)

[26] D. Seese, Linear time computable problems and first-order descriptions. Math.
Structures Comput. Sci., 6(6):505-526, 1996.

[27] D. Seese, Entscheidbarkeits- und Interpretierbarkeitsfragen monadischer
Theorien zweiter Stufe gewisser Klassen von Graphen, PhD thesis, Humboldt-
Universitat, Berlin, 1976

[28] D. Seese, The structure of models of decidable monadic theories of graphs.
Ann. Pure Appl. Log. 53(2), 169-195 (1991)

82

[29] Arnborg, S. Corneil, D. Proskurowski, A. (1987), ”Complexity of finding
embeddings in a k-tree”, STAM Journal on Matrix Analysis and Applications, 8
(2): 277-284,

[30] L. Cai, Fixed parameter tractability and approximation problems, Project
report, June 199

[31] H. Bodlaender, T. Kloks, Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms 21(2), 358-402 (1996)

[32] Courcelle Bruno, Engelfriet Joost, Rozenberg, Grzegorz (1993), ”Handle-
rewriting hypergraph grammars”, Journal of Computer and System Sciences,
46 (2): 218-270,

[33] Bodlaender, Hans L.; Thilikos, Dimitrios M. (1997), ”Constructive linear time
algorithms for branchwidth”, Proc. 24th International Colloquium on Automata,
Languages and Programming (ICALP ’97), Lecture Notes in Computer Science,
1256, Springer-Verlag, pp. 627-637

[34] Bodlaender, Hans L.; Gilbert, John R.; Hafsteinsson, Hjdlmtyr; Kloks, Ton
(1992), ”Approximating treewidth, pathwidth, and minimum elimination tree
height”, Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science, 570, pp. 1-12

[35] A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25(6), 1305-1317 (1996)

[36] Rod Downey, Michael Fellows, Fixed-parameter tractability and completeness.
III. Some structural aspects of the W-hierarchy, in: Complexity Theory,
Cambridge Univ. Press,Cambridge, 1993, pp. 191-225

[37] Rod G. Downey, Michael R. Fellows, Fixed-parameter tractability and
completeness. I. Basic results, SIAM J.Comput. 24 (4) (1995) 873-921.

[38] Rod G. Downey, Michael R. Fellows, Fixed-parameter tractability and
completeness II: On completeness for W[1], Theoret. Comput. Sci. 141 (1-2)
(1995) 109-131

[39] Rodney G. Downey r Michael R. Fellows Fundamentals of Parameterized
Complexity, Texts in Computer Science, p 386-341 Springer 2013

[40] M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of
NP- Completeness (Freeman, San Francisco, 1979)

[41] M. Vardi, The complexity of relational query languages (extended abstract),
in Proceedings of 14th ACM Symposium on Theory of Computing (STOC
’82), San Francisco, California, USA, May 5-May 7, 1982, ed. by H. Lewis, B.
Simons, W. Burkhard, L. Landweber (ACM, New York, 1982), pp. 137-146.

[42] Leonid Libkin Elements in Finite model theory. Texts in theoretical Computes
Science Springer 2004

83

[43] N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

[44] J. Thatcher and J. Wright. Generalized finite automata theory with an ap-
plication to a decision problem of second-order logic. Mathematical Systems
Theory, 2 (1968)

[45] J. Flum - M. Grohe Parameterized Complexity Theory, Texts in computer
Science. Springer pp 69-72

[46] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-
checking. SIAM Journal on Computing 31 (2001), 113-145.

[47] M. Miiller. Parameterized Randomization. PhD thesis, Albert-Ludwigs-
Universit at Freiburg im Breisgau, 2008.

[48] Stathis Zachos Computability and Complexity Notes. Athens 2017

84

	Κατάλογος σχημάτων
	I Ελληνικό Κείμενο
	Εισαγωγή
	Παρουσίαση Ιδεών
	Γιατί Παραμετρικά?
	Ιστορικές Παρατηρήσεις

	Η Συνάρτηση Ανταλλαγής
	Αρχική Περιγραφή
	Εξειδίκευση
	Παραμετρική Προσέγγιση

	II English Text
	Introduction
	Idea Overview
	Why Parameterized?
	Historical Notes

	Parameterized Complexity
	Definitions
	Parameters
	Hierarchy
	Parameterized Model Checking
	Graph Metrics
	Treewidth
	Cliquewidth
	Branchwidth
	Pathwidth

	Graph minors
	Definitions
	Tree Algorithmic Problems
	Minors
	Wagner’s Conjecture

	Logics over Graphs
	Propositional Logic
	Satisfiability Problems

	First-Order Logic
	Relational Structures
	First Order Syntax and Semantics

	Monadic Second Order Logic of Graphs (MSO)

	The trade-off function
	Elementary Description
	Refinements
	Parameterized Framework

	Parameter Analysis
	Treewidth
	Cliquewidth
	Branchwidth
	Pathwidth

	Parameterized Algorithmic Meta-Theorems
	Logics and families of Graphs
	FO
	MSO2 - Courcelle's Theorem
	MSO1
	Matroid MSO

	Parameter Correlations
	Combining the Results

	Conclusion
	Explaining the results
	Further Research
	Fine grained approach
	Complexity
	Logic Metrics
	Counting Complexity

	Property Descriptions
	Matroid MSO

	Βιβλιογραφία

