NATIONAL TECHNICAL UNIVERSITY OF ATHENS
MASTER IN GEOINFORMATIC

POMHOEVS .

Jal
nvppopos

G

Ship Detection in Satellite Images With Deep Learning
and
a Pythonic Interface on a Hadoop HDFS Platform

MASTER THESIS

Nikolaos G. Peppes

Supervisor : Mitrou Nikolaos

Professor N.T.U.A

Athens, October, 2018

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
MASTER IN GEOINFORMATIC

wet
[
R
24w &
Vo
APOMHBEVS .
A 5
nNVPPOPos

Ship Detection in Satellite Images With Deep Learning
and
a Pythonic Interface on a Hadoop HDFS Platform

MASTER THESIS

Nikolaos G. Peppes

Supervisor : Mitrou Nikolaos

Professor N.T.U.A

Approved by the three-member commitee of inquiry at 26™ October 2018.

Nikolaos Mitrou
Professor N.T.U.A

Dimitris Argialas
Professor N.T.U.A

Marinos Kavouras
Professor N.T.U.A

Athens, October ,2018

Nikolaos G. Peppes

Master In Geoinformatics National Technical University of Athens

Copyright © Nikolaos G. Peppes, 2018.
All rights reserved.

The author is the first owner of the copyright in the original material which they create. Any
subsequent reproduction of a copyright owner’s property can only take place with permissions.
Taking even a small except of someone else’s intellectual property and including it in your thesis
(print or digital) must be permitted in law if your work is not to infringe on anyone else’s rights.

«If you want to choose the pleasure of growth, prepare yourself for some pain»
Irvin D. Yalom

ABSTRACT

Big Data terminology indicates the massive or complex sets of data, in
comparison with conventional “small” datasets, in a way that trditional
processing operations are inefficient to manage them. Big Data ecosystems
help making more accurate analysis, higher quality decision-making, higher
operational effectiveness, cost minimizations and decreased risks for the
infrastructures. Big Data combines extremely large volume, great velocity of
changes and diversity of data and forms, offering greater capability of
extensions.

Hadoop is an open-source framework that permits processing over big data
as well as archiving them in a distributed environment across computer
complex using programming models in an understandable way. It is
constructed to be escalated from a single server to thousands of them or
computer machines, where regional computation and storage processes
comes forward. Hadoop is a Java Software that operates with thousands of
nodes with gigabyres or even petabytes of data maintaining data-intensive
distributed applications.

Hadoop is composed of two crucial components: HDFS (Hadoop Distributed
File System) which is located on top of the filesystems of the fundamental
operating systems, and MapReduce, a framework that offers the capability of
distributed processes, by splitting the application into smaller operational
chunks, in such a way that any node in the cluster can execute (or re-execute
each of) them.

Convolutional Neural Networks (CNN) are the leading architecture in Deep
Learning that are used for Image Processing Techniques. Convolutional
Neural Networks are a category of Neural Networks seen to be more
promising when working on image data. They work on images in a manner
similar to the human brain: by finding smaller details and then working their
way up to more abstract features.

The objective of the present master thesis is the deployment of a Hadoop
Distributed File System Interface using the Python Programming Language
to highlight the advantages of Big Data Technology. Following this scope,
we develop an Artificial Intelligence Application using Deep Learning
Technology, which detects ships in satellite images, using all the
fundamental tools of Hadoop Ecosystem, in a user-friendly manner.

Chapter 1 provides an introduction to Big Data and the Hadoop Ecosystem.
Chapter 2 presents a revision of the theoretical framework that is used for
the processing of Hadoop, Hbase and Deep Learning Applications. In
Chapter 3 and Chapter 4 described is the development procedure of a
pythonic interface for interaction with the Hadoop Distributed File System
(HDFS) and the Hbase environment, respectively. Chapter 5 presents a deep
learning framework, capable of detecting ships in satellite images. The
thesis is concluded in Chapter 6, where some proposals for future research,
based on the state of the art at this research field, are suggested.

Key Words

Hadoop, Hbase, HDFS, MapReduce, Artificial Intelligence, Deep Learning,
Big Data, Neural Networks, Image Recognition, Satellite Images,
Convolutional Neural Networks, Python, hdfs3, Happybase.

Acknowledgements

This project would not have been possible without the support of many people. I would like
to thank my adviser, Nikolaos Mitrou, who helped me make some sense of the confusion by
offering his valuable advice and guidance. Finally, thanks to my parents, my sister Christina
and my girlfriend Evgenia who stand by me during this long process, always offering
support, courage and love.

Nikolaos G. Peppes
October 2018

Table of Contents

L. INErOAUCHION . 12
1.1 MOBIVATION. o 12
0 o - | 1P 13
L. 3 OUECOMIE. e 13

2. Theoretical FrameWOrK.o 15
2.1 The Big Data PhenOmMENON.......couuiiiiiiiece e 15
2.2 Types Of Big Data....cceu e 16
2.3 Differences between Big Data and Traditional Data Sources................. 16
2.4 Apache Hadoop Ecosystem: An Open Source Big Data Project.............. 17
2.5 Data Storage and Analysis Problems...........oooiiiiiii e 17
2.6 RDBMS and Hadoop Databases......ccovviiiiiiii e 18
2.7 The Apache Hadoop Project........ccciiiiiiiiii e 19
2.8 Deep Learning: A Sub-field of a Broader Family of Machine Learning....20
2.9 Machine Learning and Intelligence........ccoooiiiiiiicicie e, 21
2.10 The ‘deep’ term in Deep Learning......ccocuuiiiuiiieiiiiieieeeee e 21

3. Hadoop With Python.... ... 25
3.1 Hadoop Distributed File System (HDFS)......ccccoviiiiiiiieeee, 25
3.2 Overview of HDFS Architecture.......cooiiiiiii e 25
3.3 Hadoop Distributed File System Ecosystem Configuration.................... 26
3.4 Working with HDFS using Python Programming Language.................... 29

4. HBase Infrastructure Development..........cooiiiiiiiiiiiii e 37
4.1 Limitations of the Traditional Databases.............cccooiiiiiiiiiii e, 37
4.2 Architecture Of HBasSe......oouuiiiiii e 37
4.3 Comparison Between HBase and RDBMS...........ccooiviiiiiiiniineieeee 38
4.4 Interaction with HBase by Developing a Pythonic Interface.................. 39

5. Ship Detection In Planet Satellite Imagery Using Deep Learning................ 47
5.1 Application DesCription.......ccouu i 47
5.2 Ship Detection Dataset Parameters. ..o 47
5.3 Convolutional Neural Network Architecture........cc.ccooiviiiiiiiiiiinen, 49
5.5 Prediction RESUILS... ... 52
5.6 Visualization of Prediction ReSUILS..........cooueiiiiiiii e 53

6. CONCIUSIONS . et e e s et e e e e e e e e enas 59

APPENDIX A. TIEPIAHWH. ..o 60

APPENDIX B. Interaction Between HDFS and DL Model...........c.ccooeviiiiiiiennennes 64

REFERENCES. .. .cu ittt ettt e e et e e e et e e e e e e e e 68

Table of Figures

Figure 1. The Three V Description of Big Data........ccccceeeverriieriieeniienieniiesieeieesieseieee e 15
Figure 2. Hadoop EcOSyStem SUD-PrOjJectS........ccccueeiueirieriieiniinieete et 20
Figure 3. Artificial Intelligence, Machine Learning and Deep Learning relation................. 20
Figure 4. Machine Learning Programming Paradigm...........ccccccevvteriieinienneeniienniennieeieene 21
Figure 5. Deep representations learned by a digit-classification model.............c.c.ccocueenneen. 22
Figure 6. Parametrization of neural network using its weights..........c.ccccevvervircieniencenieennee. 22
Figure 7. Measurement of network’s output quality using loss function.............ccccccvveenneee. 23
Figure 8. Loss score is used as a feedback signal to adjust weights..........ccccceeeveerieeneennnen. 23
Figure 9. HDFS Cluster ATChiteCUTIE.cccvireiierieeiienieecieente et esreeveeseesreesaaesseesseeesssnes 26
Figure 10. HDFS INitialiZation..........coocteriitriieriieeieeeest ettt e e 27
Figure 11. YARN INitialiZation.......cccccuerruiirierieinieeieeeieeieestesieeseesaeeseveessereeessneesnsnneees 28
Figure 12. Java Virtual Machine Process Status Tool (JPS)........cccocceimiiriiiiiniiiiiniieeeieenn. 28
Figure 13. NameNode Overview Using Web User Interface Communication..................... 29
Figure 14. Hadoop UI Defaults TCP POItS........ccceeveriereenienieneeieetesteneeseeseesaeseesaeeee s 29
Figure 15: Connection to HDFS Cluster using IP 192.168.0.10.........cccccctereverrieerceencieennnnen 31
Figure 16. List of the Contents Files and Destination Folders in Root of HDFS................. 31
Figure 17: Create New Direction in HDFS........cooooiiiiiiiiiieeeeeee e 31
Figure 18: Getting Information for Path called ‘/shipsnet’...........ccccceeercierienervieneeesiennen. 32
Figure 19. Getting Information for Path called ‘/scenes’..........ccecceeverrciirnieniieerieenieecieeens 33
Figure 20. Import Unstructured Data from Local to HDFS.........cccceceviiniriienieenieeeeeeen, 33
Figure 21. Retrieve Unstructured Data from HDFS to Local.........ccccoceevviiriieincniienniieenen. 34
Figure 22. Batch Data Import from Local to HDFS.........cccccoviriiniiiinieeeeeeeeteeie e 34
Figure 23. Change of Owner and Group on a Path or a File..........cccccoevenviiiniiniieninnieeee, 35
Figure 24. Change of Permissions on a Path or a File........ccccceccevieviniiininnieniieeieeieeeen, 35
Figure 25. HBase ATChItECIUTE.ccceeriieieeiieeieerite et et e ete et ereeeeesteesseessseesaeesseneaesnnnes 38
Figure 26. HBase Table SChema..........ccccoveiiiieiiiiniiieeteeeeteee ettt 40
Figure 27. HBase Master and Slave InitialiZation...........ccccceevverrieenierieeniieeieenieeeesieeneenns 40
Figure 28. HBase Master Web User-Interface............coceveevverieneenienieneeenieeseeesieeseeesnees 41
Figure 29. HBase Slave Web User-Interface...........ccoceevveriiieniensieenieniienieeieeseeeseeesee e 41
Figure 30. Remote Connection to HBase HOSt........cccccceiiiiiiiiiiniiiiiiiiiiceeeeeeeeeeeeeee 42
Figure 31. List of All Available Tables in HBase..........ccccccueriirrieinieniiiiriecieeeeeieesiee e 42
Figure 32. Regions and Column Families Infos for a Specific Table............ccccceercuerruennnen. 42
Figure 33. Existence, Creation and Delete of Tables into HBase..........cccccceevevieeriveeennnnenn. 43
Figure 34. Storing and Deleting Data in HBase Table...........cccccoovirniiniinniiinienieeeieeeee 44
Figure 35. Basic Functions for Retrieving Specific Values from HBase Table.................... 44
Figure 36. Full Table Scan Iteration............cccocueeuierieiiieenieeieeeteeeete ettt 45
Figure 37. Batch Storage in HBase Table..........cccoccverviiinieiiieenieeiececeieeiee et 45
Figure 38. Storage Direction of Dataset on Hadoop Distributed File System...................... 48
Figure 39. ‘Ship’ Class Sample IMages.........cccceeriiriierrieniieenienieeeeeieeseeeesereeeseeeeesneeee s 48
Figure 40. ‘Non-Ship’ Class Sample IMages..........ccccecerrieriierieniieiienieestee et 49
Figure 41. Appropriate Libraries for Ship Detection Network Configuration...................... 49
Figure 42. Typical Structure of Convolutional Neural Network...........cccecceveeviercieneeniennnen. 50
Figure 43. Model's Hidden Layer Configuration OUtpUL.........c.ccccvereieeneenrierneerieeeeeieeennnnes 51
Figure 44. Ship Detection Learning Process Configuration.............cecceeeveeeveerreeeneesneennnnen. 52
Figure 45. Model Compilation & Prediction Results of Ships Detection Application......... 52
Figure 46. Accuracy and Loss Plots Between Training and Validation Data............c.......... 53
Figure 47. Save Keras Models into HDFS for Future Load.........ccccceeeveenierrieinieniienienneenns 53
Figure 48. Visualizations of ‘Ships’ Labels Predictions..........ccccceceevervienernensieneenienieneene 54

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.

Visualizations of ‘Non-Ships’ Labels Predictions...........cccceceevcveerrciieeinieeennnenn. 54
Searching on Satellite Images of Bays for Ships Existence...........cccceeeeeuveeennnee. 55
Creation of Output Storage Direction into HDFS.........cccccoeviiniiieinniiieinieeeee, 55
Inporting of Output Data into HDFS.........cccceeiiiiiieiiecieeciecieeeeeie e 56
Searching for Directory Contents in HDFS..........cccccceviiiiiiinienniirieeieeiee e 56
Ship Detection Model using Hadoop Ecosystem Interaction Schema................ 57
Interaction Between HDFS and Compilation Process........c.ccceecveevveeriennieeennnnn. 64
Model Weights Re-Looad from HDFS.........ccccceoiiiiiniiieiecieeceeceeee e 65
Retrieve Satellite Image and Make Prediction Process..........ccccceevveerriveernneennne 66

Output Results Stored into HDFS DirecCtory........cccceeeeveeecieeeeieeeeesciieeeeeeeveeenns 67

10

Chapter 1
Introduction

11

1. Introduction

The world has turned into information society that highly relies on data. Great amount of
data production in an increasing rate was caused by the rise of diversity among network
platforms, digital conversions by a massive number of procedures, evolution on wearable,
portable devices and miscellaneous categories of sensors. Since information systems
generate enormous amounts of records every minute, every second, it seems the world is
reaching the level of data overload. It is obvious now, that for processing such volumes of
data, an enormous capacity of storage and computing resources is required. Whereas the
growth of capacity is limited by evolution of hardware and technologies, the growth of the
data volume is in fact unlimited.

Governments, businesses and education operations, even lifestyle, has been affected from
the rapidly usage and growth of the Internet. Nowadays, the high rate and the variety of the
types of data that is daily produced exceed the traditional data storage methods. Over the
past two decades, every scientific (and not only) field generated an amazing production of
data establishing this way new pathways to social learning. Analysing and manipulating
these datasets, can help infrastructures, organizations and businesses on taking decisions in a
right as well as competitive way.

In the beginning, infrastructures adopted transaction processes that naturally were composed
and working with Relational Data Base Management Systems (RDBMS) and simple data
analysis methods via Structured Query Language (SQL) queries for their daily procedures
for planning and decision making purposes. The expansion of the data, and more
importantly the unstructured form of it rendered traditional types of storage inadequate to
handle and manipulate these types, as a result making more important the requirement for
new storage techniques and analytic methods on the field of big data.

1.1 Motivation

Discussions on a set of related topics mentions that the growth of data is unlimited. What
the world is going to do about the data overload, which seems unstoppable? How to handle
and process all data? How can it be possible to retrieve the relevant information, within a
specified time? What is the balance between cost of retrieval and value of information?

Additionally to the above challenges is the requirement to manipulate and visualize the
information in such a way that the result is comprehensive and understandable.

Adopting new technologies requires to process, discover and analyse these massive datasets
that cannot be dealt while working with traditional types of databases architectures due to
the lack of capacity resources in terms of computation and storage [1].

An important challenge for the present and the future is related to storage and fetch
processes among a heavy quantity of structured and unstructured data within a desirable
time interval. Traditional storage methods reveal many limitations on manipulation and
processing at the huge amount of data, which forced to the appearance of the Big Data
terminology[2]. Internet technology evolution caused a great boost on big data field, as the
collection and sharing of the data in a raw format became easier. Storage, process and
manipulation of the above type of huge volume of data consists the main scope of Big Data
field, in accordance with minimum time delay and high precision.

12

1.2 Goals

The Big Data Phenomenon, which is characterised by rapid growth of volume, variety and
velocity on data information assets, thrives the paradigm shift in analytical data processing.

The aim of the current master thesis is the deployment of a user-friendly Hadoop Ecosystem
interface using the Python Programming Language in order to highlight the advantages of
Big Data Technology. Following this scope, an Artificial Intelligence Application was
developed using Deep Learning Technology, a sub-field of machine learning, which detects
ships in satellite images, using all the fundamental tools of Hadoop ecosystem in a user-
friendly way.

1.3 Outcome

The scope of the thesis is dedicated to experimentation and deployment of a Hadoop
Interface and a Deep Learning application, which detects ships on images received from
satellites, displaying port highlights including ships and docks. This way, we use a lot of
utilities of Hadoop in order to manipulate the appropriate datasets for the deep-learning
model.

The first (theoretical) part of the thesis summarises the state-of-art of this problem, defines
the drivers and consequences of Big Data Phenomenon, and introduces paths for
manipulation of Big Data, Hadoop Ecosystem and Deep Learning techniques.

The practical part of the thesis summarises the development in Hadoop environment, usage
of common properties with RDBMS, manipulation of Hbase as an alternative approach to
column-oriented database, and finally fully exploitation of their capabilities, along with the
prediction results of a Deep Learning application. The experiment demonstrates the
application of selected methods that are discussed in the theoretical part. The first part of the
experiment includes generic operations for data storage and retrieval in a Hadoop platform,
while the second part defines the model and applies its results in appropriate testing
datasets.

13

Chapter 2
THEORETICAL FRAMEWORK

14

2. Theoretical Framework

Over the last years, around 90% of the total data was produced extensively and rapidly,
making the ‘Big Data’ terminology the most widespread one in businesses across many
industry sectors. Chapter 2 focused on the advantages of big data in addition to Hadoop
Ecosystem and Deep Learning Technologies.

2.1 The Big Data Phenomenon

Big Data, Business Analytics and Data Mining terminologies are frequently used as
advanced analysing tools among infrastructures that come along with huge data sources.
The Big Data term is differentiated from the other two when more complex interchanges
and bigger data quantities demand distinguished technologies and approaches.

According to Doug Laney (2003), the Big Data description includes the ‘three-V’ definition
(Volume, Velocity and Variety), a term which is illustrated in Figure 1.

e Volume: Giants bulks of information data sized up to terabytes even zettabytes.
e Velocity: Large amounts of data with high speed and refresh proportion.

e Variety: Data can show up in diverse types of structure: structure data, as database
tables for example, semi-structured data as JSON or XML forms and unstructured
data, as images, videos and audio formats (etc).

Volume

Data Size

Data
Complexity

Fiqure 1. The Three V Description of Big Data
(Copyright 1995-2015 GRT Corporation)

According to Gartner (2012) : «Big Data is high-volume, high-velocity and/or high variety
information assets that demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision making and process automation. While big data
certainly involves having a lot of data, big data does not refer to data volume alone. What it
means is that you are not only getting a lot of data. It is also coming at you fast, in complex
format and by a variety of sources» [1].

15

2.2 Types of Big Data

There is a big amount of traditional data that has been used for a long time among
businesses, companies and organizations. At this moment, new types of data are captured
alongside with the highly increased development of new database environment fields, such
as:

e Text data: One of the most commonly used types of data, where specific patterns are
extracted from texts for further analytical procedures.

e Web data: Diverse types of data are collected in a high rate from web sources, as
searching results, reading reviews and advertisement results. Consequently, customer
segmentation and focused advertisement can be improved.

e Social network data: Nowadays, social network applications, as Facebook, Twitter,
Instagram and WhatsUp implement network analysis, which can provide important
information, such as customers interests, targeted advertising and/or real-time
information sharing process.

e Time and location data: Wi-Fi compatible devices, GPS, Mobile Phones as well as
other related types of smart devices, set time and location related data as an
increasing ‘Big Data origin’ during recent years. The manipulation of the time and
location data from the companies can provide time and location services, as weather
applications, but the information sensitivity and the user privacy must be protected
from unauthorized accesses.

e Smart grid and sensor data: At the time being, Internet of Thing (IoT) technology
provides a huge amount of informations from sensors used in cars, industries,
meteorological stations even on forests (as an example are used for fire detection
purposes), supplying by this way more efficient methods for analysis and problem
diagnosis procedures.

Holding and manipulating a big amount of data series provides the capability of combine
the output results from variant sources.

2.3 Differences between Big Data and Traditional Data Sources

Following Bill Frank’s book ‘Taming the big data tidal wave’, there are some crucial
differentiations among big data and conventional (traditional) data sources [2].

Big data consists of new types of data format, compared to traditional data sources
commonly used so far among businesses and organizations. Higher data speed and
frequency requirements highlight the necessity of the existence of a more analytic and
efficient level of data manipulation. The capability of analysis procedures on big data
sources consists a great tool for any user, where variant actions can be accomplished on it,
reaching in an extensive data mining process.

Furthermore, the massive generation of semi-structured and unstructured data over the
recent years, defined an additional difference between big and traditional data, based on the
type of data that is being processed by each type of source.

Structured data is a type of a standardized information data format with specified data fields
and labels. Some structured data examples are files that hold relational databases or
spreadsheets informations.

16

On the other hand, unstructured data formats does not contain a specific or pre-defined
structure, resulting in difficulties during analysis or processing. Some basic examples of
unstructured data are audio, video and photos formats, presentations or e-mail messages.

Semi-structured data defined a different data type between structured and unstructured data
that it does contains some structure, making by this analyse and manipulation processes
more feasible. XML files and Not Only SQL (NoSQL) records are some representative
examples of semi-structured data.

2.4 Apache Hadoop Ecosystem: An Open Source Big Data Project

According to Gartner: «Big Data necessitates a new type of data management, which bears
the trademark of highly scalable, massively parallel and cost-effective» [1],[3].

In 2014, one of the largest installed Hadoop cluster was operating at 455 petabytes. Till
then, neither any data warehouse nor a parallel relational database architecture had even
approach this numbers. Hadoop’s performance increases when unstructured data format,
such as video, audio or photo, is processed [4].

It is important to be clarified that new technology approaches, such as Hadoop, are not
intended to completely replace but work alongside with relational databases systems,
meeting the desirable spot for a hybrid-parallel platform, which will come through
structured data handling in combination with large datasets of unspecified structure, acting
as unstructured data.

The Hadoop ecosystem is regularly appointed to compromise with big data processes
containing a lot of elements from the stack below:

e Amazon Web Service, known as AWS, for infrastructure (in the cloud)
e Apach Hadoop Distributed File System, known as HDFS, for distributed file system
e MapReduce or Spark for distributed programming model
e HBase or Cassandra for non-relational distributed database management system
e Hive for execute SQL on top of Hadoop
e Mahout for Machine Learning and math library, on top of MapReduce
¢ R for data analytincs and visualization
Most of the widely used analytical techniques fall into one of the following categories:
e Statistical methods, forecasting, regression analysis
e Database querying
e Database warehouse

e Machine learning and data mining

2.5 Data Storage and Analysis Problems

As Tom White mentioned in his book ‘Hadoop:The Definitive Guide (2009)’, a main
problem occurs when: «the storage capacities of hard drive disks have expanded massively
over the years, access speeds—the data rate which can be read from drive shave not kept up.

17

One typical drive from 1990 could store 1370 MB of data and keep a transfer speed of 4.4
MB/s, thus someone could read all the data from a full drive in around five minutes. Almost
twenty (20) years later one terabyte drives consists the norm, while the transfer speed is
almost at 100 MB/s, spending more than two and a half hours to completely read the data
off the disk» [5], [6].

By combining a lot of pieces of hardware, the probability of failure in any of them becomes
much higher. A replication process, where replicas of the used data are generated is
frequently used, nowadays.: duplicated parts of the data are backed-up by the system in case
of failure, resulting in copies ready for use at any time or circumstance.

Another main problem consists of the required combination of one disk’s data read
alongside with existing data from any other hard disk source. The combination of data
received from miscellaneous distributed systems or disk origins in a correct way, consists of
one of the leading challenges for data storage and analysis problems. MapReduce provides a
programming model that summarises a complete read and write disk output, converting it
into a computation process over sets of keys and values. MapReduce has also reliability
built-in processes, as Hadoop Distribituded File System (HDFS).

This constitutes Hadoop’s main advantage: a reliable shared storage and analysis system,
where Hadoop Distributed File System (HDFS) implements storage processes and
MapReduce provides analysis process capabilities. These two process capabilities are
Hadoop’s kernel, even if a decent number of components also exists [5],[6].

2.6 RDBMS and Hadoop Databases

Seek time is improving slower than transfer rate. Seeking process describes the movement
of the disk’s head to a distinct place to read or write data, demonstrates the latency, whereas
associates the transfer rate to a specific disk bandwidth.

The domination, by seeks, of the data access patterns results in longer periods of time
demand during read and/or write processes over larger datasets or parts of them, whilst
increase the disk transfer rate. Contrarily, the usage of a traditional B-Tree for the update
procedure on a small proportion of records in a conventional database, provides better
results. MapReduce is more efficient than B-Tree, for the updating process on the majority
of a database, by implementing sort/merge functions to rebuild the database [8].

Hadoop’s MapReduce is appropriate for problems that require the manipulation of the entire
dataset, in a batch fashion, especially for ad hoc analysis. An RDBMS is pretty good for
implementing queries, deletes or updates, where the dataset has been pointed to allocate
low-latency recovery and update times on a small quantity of data. Applications where the
data is written once, and read many times are coordinated better with MapReduce, whereas
a relational database is good for datasets that are frequently updated [9].

Another contrast between MapReduce and an RDBMS is related to the structure of the
datasets that they operate on. MapReduce performs much better on unstructured or semi-
structured data, since it is designed to interpret the data during processing time, while
relational data is designed to keep its purity, and get rid of redundancy.

Table 1 figures the comparison between relational databases and MapReduce :

18

Data Size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times = Write once, read many times
Structure Static schema Dynamic schema
Integrity | High Low

Scaling NonLinear Linear

Table 1. Comparison between RDBMS and Hadoop

As relational databases begin integrating and mixing some of the ideas from MapReduce
and, in the other direction, as higher-level query languages embed in MapReduce make
MapReduce systems become more convenient to traditional database programmers.

2.7 The Apache Hadoop Project

Hadoop consists of a combination of sub-projects, that are hosted by the Apache Software
Foundation and are responsible for distributed computing. Even if, Hadoop is acknowledged
for MapReduce and its distributed file system, called HDFS, the other components provide
equivalent services, as they are structured on the core to add higher-level abstractions.

Figure 2 describes some major components of the Apache Hadoop Ecosystem [7]:

e Core: A set of components and interfaces for distributed file systems and general I/O
procedures.

e Avro: A data serialization system appropriate for efficient and continuous data
storage.

e MapReduce: A distributed data processing model and execution environment that
runs on large clusters of commodity machines.

e HDFS: A distributed file system that runs on large clusters of commodity machines
responsible for storage processes.

e Pig: A data flow language that runs on Hadoop Distributed File System clusters
responsible for executions and analysis procedures on very large datasets.

e Hbase: A distributed, column-oriented database responsible for underlying storage,
as well as queries and batch implementation processes.

e ZooKeeper: An embedded service implementation that provides fundamentals
which can be used for building distributed applications.

e Hive: A distributed data warehouse that provides the capability of querying process
on the dataset by the usage of a query language based on SQL.

¢ Chukwa: A distributed data collection and analysis system that uses HDFS for
storage procedures data in HDFS and MapReduce for analysis processes.

19

Pig Chukwa Hive HBase

MapReduce HDFS Kezgger

Core Avro

Fiqure 2. Hadoop Ecosystem sub-projects
(Copyright 2015, Tom White, Hadoop: The Definitive Guide, 4 Edition)

2.8 Deep Learning: A Sub-field of a Broader Family of Machine
Learning

Artificial Intelligence (AI), machine learning and deep learning technologies arise in an
increasingly way in many articles, publications as well as practical applications. We
frequently hear about a future that will contain intelligent chat-bots, self-driving cars, and
virtual assistants, where human jobs will be inadequate and the most parts of economic
activities will be handled by robots or Al agents. The recognition of the noise signal, is
critical, for a machine-learning engineer or data scientist, in order to highlight any alteration
among the existing Al application releases [10].

Figure 3 defines the relationship between Artificial Intelligence, Machine Learning and
Deep Learning environments.

Adtificial
intelligence

Machine
learning

Deep
learning

Figure 3. Artificial Intelligence, Machine Learning
and Deep Learning relation

(Copyright 2015, Francois Chollet, Deep Learning with Python)

20

2.9 Machine Learning and Intelligence

In conventional programming models, data and rules are imported and combined into them,
while answers are extracted as output results. On the other hand developing and
implementing machine learning models, require data as well as answers as input, while
processing them, results in rule extraction. Later, these rules can be re-applied in order to re-
produce original answers on new datasets. Figure 4 displays input and output flows
processes during a Machine Learning Model execution.

Rules —— .
Classical

Data — = programiming

= ANSWEers

Data —=
Machine Rules

Answers — learning

Figure 4. Machine Learning
Programming Paradigm

(Copyright 2015, Francois Chollet, Deep Learning with Python)

A machine-learning training process takes place by the execution of a specific programming
implementation. It is developed with a massive amount of cases suitable for a specific
assignment. As an illustration, someone may desire to automate the process for tagging
pictures. He, could generate a machine-learning algorithm with many cases of pictures that
are previously tagged by humans, where the system would learn statistical rules for
combining specific tags to distinct pictures.

Machine learning technology inclines to deal with large as well complex datasets for which
classical statistical analysis such as Bayesian would be infeasible. As a result, machine
learning, and especially deep learning theory is based on discipline where regularly, rules
and ideas are demonstrated experimentally than theoretically [21].

2.10 The ‘deep’ term in Deep Learning

Deep learning consists of a new path on learning conditions from data which focus on
learning consecutive layers of additional delegations. The ‘Deep’ term in ‘Deep Learning’
terminology represents the defined number of layers that are partly responsible for the
construction of the model which will result in further manipulation process of the data. In
other words, the ‘Deep’ term represents the exact depth of the model. Modern deep learning
models frequently contain tens or even hundreds of consecutive layers, meanwhile other
machine learning model approaches tend to focus on learning processes that use one or two
representation layers of the datasets.

The above mentioned representation layers usually implement learning as part of models
called neural networks. The ‘Neural’ term in ‘Neural Network’ terminology is related to
neurobiology. Some of the basic approaches in deep learning were grown partially by
drawing ideas during analysis over specific sections of the brain. Nevertheless deep learning
are not models of the brain but a mathematical framework that provides learning
representations from the data [21].

21

The aim of the existence of layer representations is to discover a suitable method of data
representation in order to accomplish a machine learning task. The situation of what a layer
performs to its input data is stored in the layer’s weights, which practically are a batch of
numbers.

Layer 1 Layer 2 Layer 3
representations representations representations

Layer 4
representations
(final output)

Original
input

WO~ ba W=

Layer 1 La;r 2 Layer 3 Layer 4

Fiqure 5. Deep representations learned by a digit-classification model
(Copyright 2015, Francois Chollet, Deep Learning with Python)

Approximately, the implementation of conversion process by a layer is configured by its
stored weights, well-known as the parameters of a layer. The ‘learning’ term denotes the
decision making process of a set of values for the weights among all layers in a deep
learning network, in a way that it will correctly determine inputs to their associated outputs.
Many times, a deep neural network model may contain a massive amount of parameters
consisting the pre-mentioned proceedings as a time-consuming work.

Input X
t
N Layer
Goal: finding the (data transformation)
right values for x,{ i
these weights
- Layer
(data transformation)
i

Predictions
v
Figure 6. Parametrization of neural network

using its weights
(Copyright 2015, Francois Chollet, Deep Learning with Python)

The loss function of the network, still known as the objective function is responsible for
receiving the prediction results of the model network and calculating a distance score,
describing this way the deviation of the output/predicted results that the model generated
from the expected results or, in other words specifying the error that the model performed

22

during the estimation process. The purpose of the specific function is the regulation of the
output of a deep learning model (or generally the output of a neural network).

Input X
- Layer
(data transformation)
. Layer
(data transformation)

Predictions True targets
Y Y

Loss score

Figure 7. Measurement of network’s
output quality using loss function

(Copyright 2015, Francois Chollet, Deep Learning with Python)

The responsibility of the optimizer function is the maximization or the minimization of the
loss function, by using its gradient. The weights of the network delegate random values, so
that the network executes a sequence of arbitrary conversions. Practically, the network’s
output is far from what it should ideally be, while the loss score is also high. After every
training loop, the weights are approaching the correct values, while the loss score is
decreasing. As far as the loss function is minimized the output results comes closer to the
expected results.

Input X
- Layer
(data transformation)
- Layer
(data transformation)

Predictions True targets
Y Y

Loss score

Figure 8. Loss score is used as a feedback
signal to adjust weights

(Copyright 2015, Francois Chollet, Deep Learning with Python)

23

Chapter 3
HADOOP WITH PYTHON

24

3. Hadoop With Python

Chapter 3 introduces and describes the core concepts of Hadoop Distributed File System
(HDFS) using Python Library, hdfs3, which is a slight python envelopment situated on the
C/C++ programming language and libhdfs3 library, supplying direct access on both from
Python.

Hdfs3 is a Python package, that provides a Python client library, allowing Hadoop’s
Filesystem (HDFS) to be accessed in programmatic way, from Pythonic Interfaces or
applications, using all the built-in commands.

3.1 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System, known as HDFS, is a Java-base distributed, portable and
expandable filesystem constructed for spanning large clusters of servers. HDFS designation
is based on GFS, Google’s File System [7]. HDFS can occupy a large amount of data, so as
to grant access to many clients across network, while its storage capability on very large
files, in a reliable and scalable way, makes it excel to other similar distributed filesystems.

Usage of a block-structured filesystem accomplished the ability on HDFS to save a massive
amount of data, regularly up to petabytes. Files are separated into blocks with fixed size that
can be stored among installed-machine-clusters. Generally, files gathered from a various
number of blocks, that are not included totally, on a one and only host.

HDFS provides trustworthiness by replicating imported data on block-files and distributing
duplicated files over the cluster. During Hadoop installation and configuration every fixed-
size created block exists three times on the cluster, as replication factor during configuration
process equalled to three. Block-level replication enables data restoration and availability
even if the any of the machine may fail.

3.2 Overview of HDFS Architecture

The architecturel of HDFS is expressed by two main processes: a process established as the
Master Node (or NameNode), which keeps the important metadata information for the
operation of filesystem, and one or more Slave Node (DataNode) processe(s), that used for
the storage of the block files. The Master and SlaveNode (NameNode and DataNode)
processes can implement on a single host, but for HDFS clusters generally preferred, a
dedicated server executing the MasterNode’s processes whilst one up to thousands of hosts
executing the SlaveNode process [11],[12],[13].

The MasterNode (or NameNode) is the most major and necessary host in HDFS. For any
given file in hdfs masternode knows not only the list of blocks, but also the location of
blocks. The metadata informations for the whole filesystem, filenames that includes the
location of every block, file as well as file grants and permissions, is collected from it. The
MasterNode stores the entire metadata information structure in memory, in order to succeed
fast access to it, so needs larger memory in comparison with SlaveNodes machines. The
replication factor of blocks, is tracked from MasterNode protecting from data loss during
machine failures. Because the MasterNode constitutes a single point of failure, a common
used recovery strategy is the usage of a secondary MasterNode to regenerate snapshots of
the primary NameNode’s memory structures, limiting by this way the risk of data loss in a
possible MasterNode failure[5].

25

SlaveNodes (or DataNodes) defined as the machines that physically store the blocks within
HDFS, which they named so, because each node holds the actual data for the cluster.
SlaveNodes are typically commodity machines with large storage capacities. Each
SlaveNode knows the list of blocks it is responsible for, whilst does not care about the other
blocks or SlaveNodes. HDFS operation continues normally, even if a SlaveNode fails, the
lost blocks are replicated from the MasterNode, ensuring that the minimum replication
factor demand comes along with every distributed block.

Figure 9 illustrates the mapping of files to blocks in the NameNode, and the storage of
blocks and their replicas within the DataNodes.

HDFS ARCHITECTURE

Name Node I Backup Node |

Data Node Data Node Data Node Data Node

I o [| = 1] o | | i o | s

B B B E

Fiqure 9. HDFS Cluster Architecture

(Copyright, Lavish Jain, Hadoop 2.x (HDFS and YARN features))

3.3 Hadoop Distributed File System Ecosystem Configuration

HDFS provides redundant storage for big data by storing that data across a cluster of cheap,
unreliable computers, thus extending the amount of available storage capacity that a single
machine alone might have. However, due to the networked nature of a distributed file
system, HDFS configuration is more complex that traditional file systems.

Hadoop cluster architecture is responsible used for high computing operations and
estimations, whilst is more effective when it separated into a decent total of files with big
size. During the development of the Deep Learning Application, which detects ships across
satellite images (subject deployment in Chapter 5), we stored a modest number of images to
train our Al model, into HDFS folder destinations, using a Pythonic programming interface
that includes all the built-in functions of HDFS ecosystem.

As mentioned in, above, 3.2 paragraph, Hadoop clusters are comprised of three different
node types: master nodes, worker nodes, and client nodes.

Master nodes oversee the following key operations that comprise Hadoop: storing data in
the Hadoop Distributed File System (HDFS) and running parallel computations on that data
using MapReduce. The NameNode relates HDFS with the data storage operations, while the
JobTracker supervises and relates data’s parallel processing using MapReduce capabilities.

26

Worker nodes arises the majority of virtual machines and accomplishes the job of data
storage and computation executions. Each worker node runs both a DataNode and
TaskTracker service that communicates with, and receives instructions from their
MasterNodes(s). The TaskTracker service is supplementary to the JobTracker and the
DataNode to the NameNode.

Client nodes contains Hadoop framework installations with the appropriate cluster
configurations, although are neither master nor worker nodes. Client nodes obligation is to
surrender MapReduce jobs expressing the way that data should be processed, and after that
displays the outputs of the job when processing just after completion.

In order to store and process data, firstly we need to complete the deployment of the Hadoop
distribution cluster. All implementations and experiments are based on Hadoop cluster. As
the scope of the current Master Thesis is not the installation of Hadoop Environment, there
was not extensive reporting for the installation process, but only for the most important
points to understand the (virtual) Hadoop infrastructure.

For our experimental research, was chosen a client-server architecture, using Oracle’s
virtual machine (server side) to create a Hadoop cluster in a pseudo-distributed operation,
which runs all modes in one system, but on separate Java Virtual Machines (JVM)
environments, in order to simulate, the preferred from enterprises way, Fully-Distributed
Mode where each master and slave service running in separate system and different JVM.
During research process, Hadoop 2.7.3 and Java 8 releases were selected, installed and
configured in the way of the pre-mentioned Pseudo-Distributed mode.

With reference to the above virtual cluster installation included a memory of 3000 MB and
storage capacity of 100 GB. Shell scripts are used for starting related Hadoop Daemons,
while SSH is also needed to be installed on (each) host.

Replication factor set to three (3), as well as a data block kept the default size of 64 MB.

Both NameNode and DataNodes started at the IP:192.168.0.10 and logging to the defined
path, while a secondary NameNode took place, to secure redundancy methods in case of
failure, on the primary NameNode.

Figure 10 illustrates the initialization of HDFS into the virtual cluster.

duser@test-virtualBox:~S start-dfs.sh

Starting namenodes on [192.168.0.10]

192.168.0.10: starting namenode, logging to fusr/local/hadoop-2.7.3/1logs/hadoop-
duser-namenode-test-VirtualBox.out

ocalhost: starting datanode, logging to Jusr/local/hadoop-2.7.3/logs/hadoop-hdu
ser-datanode-test-virtualBox.out
Starting secondary namenodes [0.8.08.0]
0.0.0.0: starting secondarynamenode, logging to fusr/local/hadoop-2.7.3/logs/had
op-hduser-secondarynamenode-test-virtualBox.out

Fiqure 10. HDFS Initialization

Subsequently, the initialization of Yet Another Resource Negotiator (or YARN), one of
Apache Hadoop's core components, which is responsible for distributing system resources
to the miscellaneous applications running in a Hadoop Cluster and scheduling tasks to be
performed among distinct cluster nodes, executed as shown in figure 11.

27

duser@test-VirtualBox:~$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to fusr/local/hadoop/logs/yarn-hduser-resourc

anager-test-VirtualBox.out
ocalhost: starting nodemanager, logging to /usr/local/hadoop-2.7.3/logs/yarn-hd
ser-nodemanager-test-VirtualBox.out

Fiqure 11. YARN Initialization

Using Java Virtual Machine Process Status Tool (JPS), a command to examine the operation
process of the entire Hadoop daemons as NameNode, DataNode, ResourceManager,
NodeManager. As Pseudo-Distributed operation was selected, all the daemons seems to run
on the same cluster, but on different JVM environments.

duser@test-VirtualBox:~5 jps
NodeManager
NameNode
HQuorumPeer
SecondaryNameNode
ResourceManager

4 HMaster
DataNode
ThriftServer

4 HRegionServer
Jdps

Figure 12. Java Virtual Machine Process Status Tool
(JPS)

Hadoop’s daemons make usage of a small quantity of ports over TCP protocol, to interact
among themselves, whilst thers ports are directly listened to users, via HTTP or Java client.

Initially, by hitting the URL http://<IP>:50070 , where the <IP> equals to IP of the Hadoop
cluster’s NameNode, cluster’s overview is illustrated on the screen, where choosing the
“DataNodes” tab results the outputs of them. In our occasion, NameNode’s IP set to
192.168.0.10, during configuration process.

Figure 13 shows NameNode’s overview using Web User Interface communication from a
remote client.

28

< C @ Notsecure 192.168.0.10:50070/dfshealth.htmlittab-overview

Summary

NameNode Journal Status

sssssssssssssssssssssss

Figure 13. NameNode Overview Using Web User Interface Communication

The default Hadoop ports are as follows:

HDFS Namenode 50070 dfs.http.address

Datanodes 50075 dfs.datanode.http.address

Secondarynamenode 50080 dfs.secondary.http.address
Backup/Checkpoint node 50105 dfs.backup.http.address

Jobracker 50030 mapred.job.tracker.http.address
Tasktrackers 50080 mapred.task.tracker.http.address

Fiqure 14. Hadoop UI Defaults TCP Ports

3.4 Working with HDFS using Python Programming Language

Interaction with HDFS is primarily performed through a command-line interface who have
used POSIX interfaces on Unix or Linux, using command process called ‘hdfs’. The ‘hdfs’
command follows the below syntax:

$ hdfs COMMAND [-option <arg>]

,where the funionality usage of HDFS will be instructed from the “COMMAND” argument,
the option argument is named from the specific option field and the closing “arg” field can
receive one or more arguments that are specified for the selected option.

Additionally, there is an HTTP interface to HDFS, as well as a programmatic interface
written in Java.

The main scope of this Master Thesis is the contribution to the current state of interaction
between Hadoop Distributed File System (HDFS) and the average user. In order to achieve

29

the above approach, we created an interface using Python Programming Language, that
includes the basics interactions with HDFS.

Nowadays, python includes variant deployments such Jython, scripted in Java language for
Java Virtual Machine: IronPython scripted in C# , and PyPy version scripted in RPython
and interpreted into C. Most of these modules are free, open-source software and most of
them are implemented on community development models.

Some important advantages while programming and executing in Python involve:
e Appearance of 3" Party Modules
e Wide Range of Supported Libraries
e Open Source Development and Huge Community
e FEasy Learning
¢ Available Foundation Support
e Suitable Data Structures
e Speed and Productiviness

In the direction of creating a Deep Learning API, which detects possible ships positions into
satellite images (more details in chapter 5) and highlight usage and availability of a Big
Data Ecosystem, such as Hadoop, we created a (data) warehouse of unstructured data,
which contains images of ships to train the model, json files with all the essential
informations and also port images which they has to be scanned, using deep-learning API,
and lead us to the desired results [14].

All of the usual file system operations are available to the user, such as creating directories,
moving, removing and copying files, listing directories and modifying permissions of files
on the cluster. The required script development took place using Spyder environment an
open source cross-platform Integrated Development Enviroment (IDE) for scientific
programming executions and implementations using Python language. Spyder integrates an
amount of conspicuous packages in the scientific Python stack, inclusive of NumPy, SciPy,
Matplotlib, Pandas, Ipython, SymPy and Cython, as well as other open source packages. It
is released under the MIT license.

Many of the familiar commands for interaction with the file system show up, specified as
arguments to the hadoop fs command as flag arguments in the Python style—that is, as a
single dash (—) supplied to the command. Secondary flags or options to the command are
specified with additional Python style defined functions delimited by including the initial
command.

An important note is that the hdfs command execution occurs by adopting the permissions
of the specific system user, running under a (specific) command, each time. The subsequent
instances are exexuted run from a user named ‘hduser’ on a group named ‘hadoopgroup’.

The initial step is the (remote) connection to the HDFS cluster, which in our occasion
obtained IP 192.168.0.10.

30

IPython console (=] (3

(| Console 2/A X rE-1
Enter the IP of the HDFS Host:192.168.0.16 -
hdfs://192.168.0.18:9808, Connected

Fiqure 15: Connection to HDFS Cluster using IP 192.168.0.10

Next step is the usage of a function, called ‘root()’, for listing the contents and folder
destinations of the user’s home directory on HDFS equivalent to ‘Is’ argument in linux
terminal. The output result of the called function is a list with all contents in a uni-code
string format.

IPython console & X

(4| Console 1/A X -1

In [4]: root()

Out[4]:
[u"/f/Downloads',
u'//hbase',
u'/fison_files',
u'/fscenes’,
u'//shipsnet’,
u'/fftmp',
u'ffuser',
u'ffzip_files']

Fiqure 16. List of the Contents Files and Destination Folders in Root of HDFS

Home directories within HDFS are stored in /user/$SHOME directory, where $HOME define
during installation process. From the previous example with listing root’s contents , can be
recognized that any /user_type directory does not currently exist. To create any type of a
/user_type directory within HDFS, we use a function called mkdir that includes ‘mkdir()’
command. Giving the direction name, the pythonic function place it on the desired
destination (root or any other that already exists).

IPython console (= ()

(| Console2/A X -

In [4]: mkdir()
Enter the name of the directory:

Fiqure 17: Create New Direction in HDFS

As can be seen in figure 16, HDFS home direction (root) contains a number destination
folders, which created using mkdir function. Information about files or destination folders
can be received using a function called ‘info()’, with output results in dictionary format.

31

Giving the desired destination (or file), we received a diversity of informations for the folder
such as:

¢ Folder Name, folder owner and group

¢ Kind of content (directory or file), encryption and size infos

¢ Replication factor and number of block size

¢ Permissions of the specific file

e Used and non-used capacity in combination with HDFS system

¢ Information about containing files in the current path

Figure 18 outputs the results of the above function usage for the path called ‘shipsnet’. We
can collect a lot of interesting informations about this directory, as well as about its contents.
This directory contains all the ships images, used for the development of Deep Learning
API, for ships recognition and detection in satellite images.

IPython console (=
[q| Console /A X -3

L T i O e

In [8]: infol)

Getting information for path:shipsnet

{u'size': 0, u'encryption_info': MNone, u'kind': u'directory', u'group':
u'supergroup', u'name’': u'fuser/hduser/shipsnet', u'replication': @, u'last_mod':
1536566697, u'owner': u'hduser', u'last_access': @, u'block_size': @,
u'permissions': 493}

Information about HDFS System

{'percent-free': 97, 'used': 731267072, 'capacity': 29457772544}

Size of files in specific path

{u" fuser fhduser/shipsnet/

B__20170613_180813_1817__ -122.32825317730496_37.73690411330002.png": 9523, u'/
user fhduser fshipsnet/

1_20176822_181223_©f31__ -122.3458815140148 37.75720170286299.png"': 9953, u'/

user fhduser /shipsnet/
=] PTR1IHTIA A0I1ET AGAD 1779 TCLITA4AI0OTTOOCA 27 TORCITTRIAAEDACE mma' = AQ400 TR

Figure 18: Getting Information for Path called ‘/shipsnet’

Path called ‘scenes’ contains all the satellite port images, which scan every time to detect for
ship existence or not, path ‘json_files’ , all json files with the required informations, path
‘zip_files’ all used data in compression format. Finally, after hbase installation, for which an
extended reference takes place in chapter 4, a destination folder called ‘hbase’ contains all
the used data in the appropriate format.

32

IPython consale =

[Console 2/A X >
In [6]: infol() A

Getting information for path:/scenes

{u'size': @, u'encryption_info': Wone, u'kind': u'directory', u'group':
u'supergroup', u'name': u'fscenes', u'replication': ®, u'last_mod': 15365663860,
u'owner': u'hduser', u'last_access': @, u'block_size': @, u'permissions': 493}
Information about HDFS System

{'percent-free': 97, 'used': 731267128, 'capacity': 29457772544}

Size of files in specific path

{u'/scenesfsfbay_1.png': 9217261, u'/scenes/sfbay_3.png': 9892258, u'/scenes/
sfbay_2.png': 11321167, u'/fscenes/sfbay_4.png': 4795384, u'/scenes/1lb_3.png':
7832450, u'/fscenes/1b_2.png': 9416350, u'/scenes/1lb_1.png': 7212897, u'/scenes/
1b_4.png': 8454487}

Fiqure 19. Getting Information for Path called ‘/scenes’

Following directory creation for the current user, data is available for transmission through
the user’s HDFS home directory with the usage of put command. This command copies a
specified from the local file system on HDFS. During interface development, a function
called ‘importing()’ created for writing files to the distributed file system without removing
the local copy. Current command asks for the (complete) local and distributed file
destination.

IPython console (= (3
[Console2/A X -3

In [6]: importing()
Source Directory:/home/hduser/Downloads/scenes/1b_1.png

HDFS Destination:/scenes|
Figure 20. Import Unstructured Data from Local to HDFS

On the opposite, data can also be replicated from HDFS to the local filesystem using the get
command. This command copies existing file from HDFS destination to the local
filesystem. Function called ‘retrieve()’.

33

IPython console (=)

[Console 2/A X -
. gST = STr{raw_Lnput{ UEsTination:)) 3
hdfs.get(src, dst)

In [8]: retrieve()
HDFS Directory:/scenes

Destination: /home/hduser /Downloads/scenes/1lb_1.png

Fiqure 21. Retrieve Unstructured Data from HDFES to Local

On many occasions, such as during the current Deep Learning API development, observed
the need of batch processing. During this process, large datasets get as inputs all at once,
resulting in large process and write outputs between two destinations.

Batch processing is the execution of a series of jobs in a program on a computer without
manual intervention (non-interactive). Strictly speaking, it is a processing mode: the
execution of a series of programs each on a set or "batch" of inputs, rather than a single
input. Hadoop’s MapReduce is the best framework for processing data in batches.

As long as, scope of the thesis is the development of a Pythonic interface between local
system and HDFS, two functions that import and retrieve data in batches were created.
Along these lines, the successful import of a whole dataset of 4000 satellite images of ships,
from local to HDFS and vice versa, took only a few milliseconds.

Figure 22 demonstrates the function that implements batch imports, called
‘batch_im_cmd()’, whilst the opposite function, called ‘batch_retr_cmd()’. Both of them
works in the same way, as ‘importing’ and ‘retrieve’ functions, which mentioned above.

IPython console =]
(7| Console 2/A X Y

In [18]: batch_im_cmd()
Local Directory:/home/hduser/Downloads/scenes

HDFS Destination:/scenes

Figure 22. Batch Data Import from Local to HDES

As mentioned earlier, HDFS has POSIX-like file permissions. Three types of permissions
are defined: read (r), write (w), and execute (X). These permissions indicate the access
levels for the owner, the group, and any other system users. For directories, the execute
permission allows access to the contents of the directory, however, execute permissions are
ignored on HDFS for files. Read and write permissions in the context of HDFS specify who
can access the data and who can append to the file. Permissions are expressed during the
directory listing command Is . Each mode has 10 slots. The first slot is a d for directories,
otherwise a — for files. Each of the following groups of three indicates the ‘rwx’ permissions
for the owner, group, and other users, respectively. There are several HDFS shell commands

34

that allow to manage the permissions of files and directories, namely the familiar chmod ,
chgrp ,and chown commands.

Function called ‘chown()’ changes the owner and the group of a path or file.

IPython console () (¢
[Console 2/A X -3
In [12]: chown() =

Enter the name of the path:/scenes
Enter owner name:hduser

Enter group name:|

Figure 23. Change of Owner and Group on a Path or a File

Function called ‘chmode()’ changes the permissions of a path or file, using an octal
representation of the flags to set for the permission triple.

IPython console =
ml Console B/A X -3

In [4]: chmode()
Enter the name of the path:/scenes

Enter the mode for the file:777|
Figure 24. Change of Permissions on a Path or a File

An important issue with file permissions on HDFS consists the identity definition of the
client, that is created by the username and groups of the process operating across HDFS,
which means that remote clients can create arbitrary users on the system. These permissions,
therefore, should only be used to prevent accidental data loss and to share file system
resources between acknowledged users, not as a security mechanism.

These are the most important functions that were created during the development of the
pythonic interface between an average user and HDFS environment. Besides of these,
interface includes a number of additional functions that provides more interaction
capabilities and operations such as:

¢ ‘remove()’ function that deletes directories and/or contents

¢ ‘move()’ function that move a file from a path to another

¢ ‘read()’ function that returns the contents of a stored file on HDFS
e ‘du()’ which represents disk usage for the files on a path

e ‘set_repl()’ function that instructs HDFS to set the replication for the given file or
path

35

Chapter 4

HBase Infrastructure
Development

36

4. HBase Infrastructure Development

HBase, actually, consists Hadoop’s database where data access on real-time along with
scalability capabilities are implemented. HBase designation was positioned on the BigTable
architecture, a database was dispatched by Google. HBase scopes in the deployment of an
environment which stores and process Big Data with ease. It is an open source, distributed
with a numerous versions database model that adopts NoSQL (Not Only SQL) architecture.
It can be applied on the local file systems and on HDFS. Furthermore, parallel process of
Big Data among Hadoop clusters can be implemented using MapReduce. An additional
important feature consists the combination of storage in conjunction with parallel computing
, by using a specified configuration process to manipulate [15].

4.1 Limitations of the Traditional Databases

As Bloor mentioned: «With the development of the Internet technology, especially the Web
2.0 applications, like Facebook, and Twitter, the data processing technology has to face the
problem of the changes in data amount, data structures, and the processing requirements. All
these changes and problems have brought great challenges to the traditional RDBMS,
mainly reflected in three respects» (Bloor, 2003).

Nowadays, conventional databases cannot adjust to the various types of data structures due
to the large amounts of semi-structured and unstructured data, for instance, the emails, web
pages, images and videos, which cataclysm network. RDBMS are initially composed for
structured data, where is not easy to achieve manipulation processes between derived data in
an efficient way. Furthermore traditional databases are unable to manage the highly
coexisting writing operations. It is commonly approved between new websites formats the
necessity to produce dynamic web pages to display the data, like the social updates,
corresponding to the customized features, when the users activities as the output result data
into the database. There is a huge differential point between the traditional static pages and
the modern pages. The conventional relational database is not good at the high concurrency
writing operation as well as are inadequate to handle rapid alterations on network traffic and
data types[16].

Pre-mentioned alterations require the ability of a powerful extensibility in the hardware and
data structure construction of the database recognized as one of the major vulnerabilities of
the RDBMS.

4.2 Architecture of HBase

Hbase positioned on the primary storage of HDFS, implementing the MapReduce model to
for data processes, and collaboration with the ZooKeeper [17],[18].

According to Figure 25, HBase Architecture contains the following four key components:

37

HRegionServer

HRegionServer

HRegion HRegion

Store (MemStore)

MemStore
StoreFile

HFile |

Store (MemStore
StoreFile }

HFile

StoreFile

¥ Y T = (N A "~ DFS
[Illlll]\l\lll\l\\lHl\l]lll'" Glient [||||1|||||I\]1|\||1|[||||'" Client

0oopOo IZ“SLSD noooyD | ooogoo | Noosgo
000000 || Dooooo [*ooodoo || coodoo ooco
000000 || 000000 || 000000 || Oooooo || c6ooog

DataNode DataNode DataNode DataNode DataNode
e St = e

Hadoop

Fiqure 25. HBase Architecture
(Copyright 2015, Lars George, HBase:The Definitive Guide)

e HBase Client: Main user of the HBase, which handles operations side by side
HMaster and read/write processes with HRegionServer.

e HMaster: Is responsible for importing, deleting, and quering the data. It adapts the
HRegionServer load balance and the Region distribution to confirm that the Region
will go ahead to the next available Region when any HRegionServer failure may
occurs. An HBase environment can initiate a mechanism with a backup Hmaster to
avoid possible failures.

e ZooKeeper: Can supply distributed colalboration, configuration functions as long as
synchronization. The ZooKeeper regulates all the clusters of HBase that includes the
HMaster position and HRegionServer condition information by manipulating the
existing data.

e HRegionServer: Is responsible for reading and writing queries administration and
executing the equivalent processes on HDFS for the users.

4.3 Comparison Between HBase and RDBMS

HBase databases are frequently in correlation with the conventional RDBMS due to the
different approach on implementation structure and execution results. HBase and RDBMS
can put in place of each other in some specific circumstances[15].

HBase composed as a distributed database system where the fundamental warehouse storage
deposition employs the Hadoop Distributed File System and does not require severe
obligations concerning the hardware platform.

The major differences between these two contrasting types of databases consists the
operation structure alongside with the designation purpose [19].

e Hardware Requirements: RDBMS is row-oriented meaning that during the reading
process, the users are required to pass the whole data even if they examine only few

38

columns revealing the necessity of greater, higher performed and more expensive
hardware to encounter the desired results. Oppositely, HBase, is a new column-
oriented database format which grants easier access to the data with equivalent
aspects following in better data connection speed results. HBase perform higher
proceeding results due to its column-oriented construction. Meantime, HBase can be
implemented on a broad amount of low-cost hardware machines whilst can also
maintain high performance levels.

e Extensibility: HBase due to the parallel processing capability of HDFS, can expand
the extensibility by simply running the RegionServer. On the other hand RDBMS is
capable of a limited extensibility at the time that does not hold up the architecture
ability of importing node.

e Reliability: During possible failure on storage nodes of RDBMS data could
completely lost, even if master-slave model can provide a degree of safety.
Meanwhile, in HBase as a result of the distributed architecture among MasterNode
and SlaveNodes and the existence of (distributed) replicas, highly reliability is
provided.

¢ Difficulty in Use: Compared to RMDBS, HBase interaction is still at an early boost
stage where the advanced developments processes are more rare resulting in high
HBase interaction difficulty. Nevertheless, the evolution of Hadoop technology,
highlights hot-spots of HBase during data processing which could subscribe to a
possible popularity increment of HBase advantages.

Situated on the above comparison between these two database systems, it becomes clear the
RDBMS is applicable for the plurality of small-scale data operation cases. At the other hand
HBase can be acknowledged as an ideal solution when the data production approaches a
really huge or giant amount of information.

4.4 Interaction with HBase by Developing a Pythonic Interface

Chapter 4 focuses on the representation of HBase environment, one of the core parts of
Hadoop ecosystem environment. As Gardner’s analyst Merv Adrian said «Anyone who
want to keep data within HDFS environment and want to do anything other that brute-force
reading of the entire file system (with MapReduce) needs to look at HBase. For random
access, you need to have Hbase». HBase offers rapid reads and writes, randomly, that are
impossible to be manipulated by Hadoop, as long as RDBMS. In such a manner, finds
extensive application capability in commercial enterprise.

HBase is a column-oriented, distributed as well as NoSQL database sits on top of HDFS. All
rows in HBase are always sorted in lexicographical way by using their row key. Placing in
order in lexicographical sequence, each key related on a binary level, from left to right, byte
by byte.

Data stored in HBase is grouped into tables. Conceptually, a table consists of a collection of
rows and columns. Each row in HBase database has an exclusive row key and multiple
column keys. The values are correlated with column keys. Client can create an arbitrary
number of columns using new column attribute on the fly. As Columns in HBase defined the
correlation between the column family name and column qualifier (called also column key
or attribute), separated by colon: column family: column qualifier. Figure 26 illustrates the
basic schema of HBase table.

39

Row Key

Column Family: qualifier

A

/

Cell Value Column qualifier

Figure 26. HBase Table Schema
(Copyright 2015, Bikash Agrawal, Analysis of Large Time-Series in Open-TSDB)

Creating an HBase table instance is time consuming. Because each instance of HTable
includes examination of the META-table to confirm if the table already exists and is
enabled. So, it is always better to reuse the HTable instance and close the HTable instance
after completion of the task. The META and ROQOT tables are internal system tables. The
ROQT table keeps list of all regions in the META-table whereas the META-table maintains
a record of the whole regions in the system.

HBase provides a Java API for client interaction. In combination with the aid of Thrift
server and Python language bindings, HBase can be accessed in web services, quite easily
and in a user-friendly way.

The development of a user-friendly interface that embeds all the basics-read, write and
delete-operations of HBase, as of any common (relational) database, and manipulates the
input data was held by using Python. During a data manipulation process, we used all the
required information about Chapter’s 5 API, such as labels of images, scene id, longitude
and latitude coordinates, as well as API’s prediction results, such as possible coordinates
positions of the ships, on the satellite images.

HappyBase is a suitable Python development library to communicate with Apache Hbase. It
is appropriate for HBase setups, and comes along with an application to interact with HBase
database. HappyBase includes the Python Thrift library to interact with HBase by making
usage of HBase’s Thrift gateway, that is pre-installed into newest releases of HBase [20].

HBase installation process was also implemented in Pseudo-Distributed mode, where all the
master(HBase Master) and slave (Regionservers) daemons run on the same machine, using
Hadoop Distributed File System (HDFS), at 192.168.0.10.

starting master, logging to fusr/local/hbase/logs/hbase-hduser-master-test-virtu
alBox.out

ocalhost: starting regionserver, logging to fusrflocal/hbase/bin/../logs/hbase-
duser-regionserver-test-virtualBox.out

Fiqgure 27. HBase Master and Slave Initialization

HBase still initializes a web user interface (UI) giving a lot crucial attributes and
informations. By default, a UI is implemented on the master host at port 60010. After HBase
configuration, we set the browser at http://192.168.0.10:60010, to display master’s home
summary page to connect and retrieve a diversity of informations related to HBase cluster,
such as list of tables, running operations or informations about the group of nodes.

40

& C @ Notsecure | 192.168.0.10:60010/master-status

BESHSSE Home TobeDetals Locallogs Loglevel Debugdump MeticsDump HBaseC

Backup Masters

ServerName Port Start Time

Total:0

Tables

Catalog Tables

2table(s) in set. [Details]

Table Name Online Regions Description

Ships CNN 1 ‘Ships_CNN', {NAME => ‘Ships_Info', BLOOMFILTER => NONE', VERSIONS => ', TTL => "1, BLOCKCACHE => Talse’}
airports 1 “airports’, {NAME =>info’}
Tasks

Stow Al Moniored sk R Show AllRPC Handler Tasks

No tasks cumrently running on this node.

Software Attributes

Attribute Name Value Description

HBase Version 0.98.0-hadoop2, 1565492 HBase version and revision

HBase Compiled Thu Feb 6 16:4657 PST 2014, apurtell When HBase version was compiled and by whom
Hadoop Version 220, 11529768 Hadoop version and revision

Hadoop Compiled 2013-10-07T06:28Z, hortonmu When Hadoop version was compiled and by whem
Zookeeper Quorum localhost2181 Addresses of all registered ZK servers. For more, see zk dump.
HBase Root Directory hdfs://192.168.0.10:9000/nbase Location of HBase home directory

HMaster Start Time Sat Oct 06 22:34:08 EEST 2018 Date stamp of when this HMaster was started
HMaster Active Time Sat Oct 06 22:34:09 EEST 2018 Date stamp of when this HMaster became active
HBase Cluster ID eabff962-d516-ded4-a58e-8d4fbd2i23ba Unique identifier generated for each HBase cluster
Load average 4.00

Average number of regions per regionserver. Naive computation.

Figure 28. HBase Master Web User-Interface

HBase region servers Ul is initialized at 60030, giving a lot of crucial informations, as
grants permissions for currently used servers, existence of region server tables even report
for the active regions. Following cluster’s initialization, must be confirmed the enrolment

among all the region and the master server, as well as that HBase and Hadoop are indeed
running the correct version.

& > C ® Notsecure | 192.168.0.10:60030/rs-status

H=ESE Home Llocallogs Lloglevel Debugdump MeticsDump HBase Co

Server Metrics

efles Queues Block Cache

Regquests Per Second Num. Regions Block locality Slow HLog Append Count
0 4 100 (1]

Tasks
show i Moniorea Tasks (R Sfow Al RPC Hander Tasks Show

No tasks curently running on this node.

Regions

Region Name Start Key End Key

Ships_CNN,.1536577035407.a4800e9714b4319ad620d3ch8457ceds.

hbase:meta,.1.1588230740

airports, 1526982651575. 8639134,

hbase: 1 14.21851c1445. 12.

Region names are matle of the containing table’s name, a comma, the Start key, a comma, and & randomly generated region d. To llustrate, the region named

domains apache. org, 5464829424211263407 is party to the table domains, has an id of 5464829424211263407 and the first key in the region is apache.org. The hbase-meta ‘table is an
internal system table (or ‘catalog’tables in db-speak). The hbase:meta tabie keeps a list of all regions in the system. The empty key is Used to denote table start and table end. A region with
an empty start key is the first region in a table. If region has both an empty start and an empty end key, its the only region in the table. See HBase Home for further explication

Software Attributes

Attribute Name Value Description

HBase Version 0.98.0-hadoop2, 11565492 HBase version and revision

HBase Compiled Thu Feb 6 16:46:57 PST 2014, apurtell When HBase version was compiled and by whom
Zookeeper Quorum localhost:2181 Addresses of all registered 2K servers

Cop [Muts Coprocessors currently loaded by this regionserver
RS Start Time Sat Oct 06 22:34:07 EEST 2018 Date stamp of when this region server was started

Fiqgure 29. HBase Slave Web User-Interface

41

The initial step is the (remote) connection to the HBase, which in our occasion obtained IP
192.168.0.10, by creating a new Connection instance. Meanwhile, a new socket connection
to the Thrift server (which is located into HBase configuration) established, supplying by
this way the main entry point to interact with HBase.

IPython console () ()
(| Console 3/A X -~ 5
Enter the IP of HBase Host:1592.168.8.10 =

Fiqure 30. Remote Connection to HBase Host

After the creation of a connection instance, we created a function called ‘main()’, to list the
available tables. Figure 31 displays the results made from the usage of the above function.
The HBase filesystem includes a table called ‘Ships_ CNN’, which accommodates all the
necessary informations, before and after the creation of API in Chapter 5.

IPython console (5
[y Console 1/A X -1
In [3]: main() a

Out[3]: ['Ships_CHNN', "airports']

Fiqure 31. List of All Available Tables in HBase

Using the ‘table_info()’ function, a lot informations about regions and column families of a
specific table can be retrieved.

IPython console (= (3
(| Console 3/A X -]

In [3]: table_ info()

Enter the name of the table you are searching:Ships_CHNN

{'ships_Info': {'max_versions': 3, 'bloom_filter_vector_size': @, 'name':
"Ships_Info:', 'bloom_filter_type': 'NONE', 'bloom_filter_nb_hashes': 8,
"time_to live': -1, '"in_memory': False, 'block cache enabled': False,
"compression': "NONE'}}

[{'name': 'Ships_CNN,,1536577035407.a480be9714b43f9a4620d3cb9457ceds. ',
"server_name': 'test-VirtualBox', 'port': 668208, 'end_key': '', 'version': 1,
"start_key': '", 'id': 1536577035407}]

Fiqure 32. Regions and Column Families Infos for a Specific Table

The most usually applied methods for database system administration tasks like creating,
dropping, enabling and disabling tables, were also implemented as part of the interface
development.

Many times, an instance creation between the client and the thrift server may close,
resulting in the demand of a new connection establishment of a table. Interaction with non-
existing tables later may return errors. By using ‘exist_table()’ we can check if a table

42

already exists or not, while the ‘create_table()’ function creates a new one. On the other
hand ‘del_table()’ completely deletes an existing table.

IPython console =
[y Console 6/A X -3
In [8]: exist_table() =

Enter the name of the table you are searching:Ships_CHNN
Table name Ships CNN already exists

In [9]: create_table()
Enter the name of the table you are searching:Ships_CNN_Test

Enter column family name:Test
Creating table Ships CNN_Test with col family as Test

In [18]: del_table()

Enter the name of the table you are searching:Ships_CNN_Test
Deleting table Ships CNN_Test

In [11]: |
Fiqgure 33. Existence, Creation and Delete of Tables into HBase

The structure of a HBase table includes column families with column qualifiers, also
consisting of a value and a timestamp. Meanwhile column families and qualifiers are
specific approaches in the HBase data model, are most commoly implemented all at once,
during interaction and manipulation processes alongside the data.

To store a single cell of data in a table, the ‘store_values()’ function was created. For an
existing table connection, this function asks for family name and quality, row key number
and value. Function ‘del_row()’ implements the opposite operation: given a preferred
(existing) row key number, it deletes the corresponding registration.

IPython console (&)
[y Console 4/A X Y

Y

In [9]: store_values()

Enter the name of the table you are searching:Ships_CNN
Enter column family name:ships

Enter column quality:infos

Enter wvalue:Non-ship

Enter Row key:40881

43

In [11]: del_row()
Enter the name of the table you are searching:Ships_CHNN

Enter Row key:48001
Figure 34. Storing and Deleting Data in HBase Table

The function to retrieve data from a table is called ‘retrieve_row()’, while ‘retrieve_rows’
returns specific rows, selected by the user. In the example below, we used ‘retrieve_row()’,
with row key number equals to 56. Ships_Info is the column family, Longitude, Latitude,
Labels and Scenes ID column qualities in addition to the corresponding values.

IPython console (=]
[| Console 4/A A -

In [13]: retrieve_row()

Enter the name of the table you are searching:Ships_CNN

Enter Row Key:56

{'Ships_Info:Longtitude': '37.7283639541', 'Ships_Info:Latitude': '-122.333777341', 'Ships_Info:Labels': '1",
'Ships_Info:Scene_IDs': '20171217_181637_1832'}

In [14]: retrieve_rows()

Enter the name of the table you are searching:Ships_CNN

Enter Row number:1510

Enter Row number:15

Enter Row number:1660

Enter Row number:1
|

Enter Row number:3999

('151@', {'Ships_Info:Longtitude': '37.8077278072', 'Ships_Info:Latitude': '-122.334394063', 'Ships_Info:Labels': '@',
'Ships_Info:Scene_IDs': '20170716_180815_183a'})

('15", {'Ships_Info:Longtitude': '37.7580383438', 'Ships_Info:Latitude': '-122.335929375', 'Ships_Info:Labels': '1',
'Ships_Info:Scene_IDs': '20170903_181304_10841"1})

('10@@', {'Ships_Info:Longtitude': '37.8114062888', 'Ships_Info:Latitude': '-122.334599614', 'Ships_Info:Labels': '@',
'Ships_Info:Scene_IDs': '20161218_180844_0e26'})

('1', {'ships_Info:Longtitude': '37.7491755587', 'Ships_Info:Latitude': '-122.332228663', 'Ships_Info:Labels': '1'",
'Ships_Info:Scene_IDs': '20170705_180816_1083e'})

('3999"', {'Ships_Info:Longtitude': '37.6985572101', 'Ships_Info:Latitude': '-122.495313877', 'Ships_Info:Labels': '@",

'Ships_Info:Scene_IDs': '20180206_184438_1043'1})
Fiqgure 35. Basic Functions for Retrieving Specific Values from HBase Table

Additionally, due to the purpose of getting data informations from specific rows ids (or
keys) all rows in the table executing a full table scanner, implemented through the ‘scan()’
function. Full table scans are prohibitively expensive in practice, so, using more restricted
scan processing, such as using ‘retrieve_rows()’ function that pre-mentioned, to make more
selective range queries, are always preferred.

44

IPython console @®
[| Console 4/A X & 8

In [16]: scan()

Enter the name of the table you are searching:Ships_CNN

('e', {'Ships_Info:Longtitude': '33.7380372592', 'Ships_Info:Latitude': '-118.225469433', 'Ships_Info:Labels': '1',
'Ships_Info:Scene_IDs': '20180708_180909_6f47'})

('1", {'ships_Info:Longtitude': '37.7491755587"', 'Ships_Info:Latitude': '-122.332228663', 'Ships_Info:Labels': '1',
'Ships_Info:Scene_IDs': '20170705_180816_103e'})

('18', {'Ships_Info:Longtitude': '37.7286473953', 'Ships_Info:Latitude': '-122.336089791', 'Ships_Info:Labels': "1',
'Ships_Info:Scene_IDs': '20170166_1808851_60e30'})

('18@', {'ships_Info:Longtitude': '37.7356394938', 'ships_Info:Latitude': '-122.338921365"', 'Ships_Info:Labels': '1',
'Ships_Info:Scene_IDs': '20170910_181216_108108'})

('1080', {'Ships_Info:Longtitude': '37.8114062888', 'Ships_Info:Latitude': '-122.334599614', 'Ships_Info:Labels': '@’',
'Ships_Info:Scene_IDs': '20161218_180844_6e26'})

('1081', {'Ships_Info:Longtitude': '37.7473208549', 'Ships_Info:Latitude': '-122.134401353', 'Ships_Info:Labels': 'a@’',
'Ships_Info:Scene_IDs': '20170585_181257_0ez2f'})

('18@2', {'Ships_Info:Longtitude': '37.70803086968', 'Ships_Info:Latitude': '-122.137785581', 'Ships_Info:lLabels': '@’,
'Ships_Info:Scene_IDs': '28170585_181258_0e2f'})

('18@3', {'Ships_Info:Longtitude': '37.6492024666', 'Ships_Info:Latitude': '-122.095719038', 'Ships_Info:lLabels': ‘@',
'Ships_Info:Scene_IDs': '20170905_181215_6f12'})

('1084', {'Ships_Info:Longtitude': '37.8206724662', 'Ships_Info:Latitude': '-122.387929566', 'Ships_Info:Labels': '@’',
'Ships_Info:Scene_IDs': '20170917_190616_6f3c'})

('1885', {'Ships_Info:Longtitude': '37.7292356283', 'Ships_Info:Latitude': '-122.395151369', 'Ships_Info:Labels': '@’",
'Shins Tnfn:Srene TNe': '?A17A91A 1R121A 1ATA' 1Y b

Figure 36. Full Table Scan Iteration

Methods such as ‘store_values()’ or ‘del_row()’ are not adequate when the import or delete
operations includes a numerous size of dataset. The ‘batch_hbase()’ function does creates a
group of instances involving put (and/or delete) method, where the total alterations number
are directed back to the server in a distinct round-trip. Executing this function, a number of
4000 information row key numbers were stored into Ships_CNN table in one go. Figure 37
illustrates function’s usage, where column-families and qualities were asked, while values
retrieved from a specific source (numpy table, json file).

IPython console e
[Console 4/A X -
In [18]: batch_hbase()

Enter the name of the table you are searching:Ships_CHN

Enter column family name:Ships_Info

Enter column quality: Labels.|

Fiqure 37. Batch Storage in HBase Table

45

Chapter 5

Ship Detection In Satellite
Imagery Using Deep Learning

46

5. Ship Detection In Planet Satellite Imagery Using Deep
Learning

Chapter 5 highlights the Hadoop Distributed File System (HDFS) functionality in
conjunction with the development of a Deep Learning Application that classifies and detects
ships using planet satellite imagery, which captured at San Francisco Bay.

The Hadoop Distributed File System (HDFS) is used as a storage warehouse, by creating
specific directories, where the dataset includes ships exported from planet satellite imagery,
essentially for using and testing the API’s functionality, as long as the extracted detection
results, such as ships detection on satellite images, predictions results, are stored. The
Pythonic interfaces that were presented in chapters 3 and 4 are used for the specific purpose
of interaction.

5.1 Application Description

Satellite imagery provides unique insights into various markets, including agriculture,
defence and intelligence, energy, and finance. New commercial imagery providers, such as
Planet, are using constellations of small satellites to capture images of the whole Earth every
day.

This overwhelming growth of imaginary datasets increases the efficiency on visual
examinations, where the necessity for machine learning and computer vision algorithms
become more important to make automation and analysis processes more suitable. Dataset
created in the point of detecting the location of large-sized ships in satellite images.

5.2 Ship Detection Dataset Parameters

The dataset is comprised of images of ships exported from Planet satellite imagery collected
over the San Francisco and San Pedro Bays areas of California. There, 4000 images, 80x80,
3-channel format (RGB images), labelled with either a "ship" or "no-ship" classification, are
contained. Ships images were collected from the Planet.com along with full-frame visual
products.

By providing a zip-format directory called shipsnet.zip that contains the entire dataset as
.png ship image. Each individual image filename follows a specific format: ‘label-scene id-
longitude-latitude.png’ format, where:

e label: Representation values of one (1) or zero (0) corresponds to the "ship" or "no-
ship" class.

e Scene id: Combined with the Planet application helps to find the entire scene, as the
one and only identifier of the Planet Scope.

¢ Longitude & latitude: Coordinates of the image. Their values are split by the usage
of an underscore.

Additionally, the dataset is formatted as a JSON text file called shipsnet.json where data,
label, scene_id, and location lists are included.

47

The whole dataset was stored and manipulated using the Hadoop Distributed File System
(HDFS) pythonic interface, which was introduced in chapter 3. Using the pythonic interface
application three new storage directories were created-called-‘shipsnet’, ‘scenes’ and
‘json_files’, where images of ships or non ships images, San Francisco and San Pedro Bay
images and JSON formatted file were stored,respectively. Furthermore, the ‘zip_files’
directory, includes the entire dataset. Using the ‘retrieve()’ function, which was also
mentioned in chapter 3, we download the data from HDFS, speeding up the process, since
there in no longer necessity for data loading in local computer, in order to train and validate
our model (Reference on Appendix A).

IPython console (&

[| Console /A X TR

In [4]: root()

Out[4]:
[u'//Downloads',
u'//hbase"',
u'ffjson_files',
u'/fscenes',
u'/fshipsnet',
u'//tmp',
u'/ffuser’',
u'/ffzip_files']

Fiqure 38. Storage Direction of Dataset on Hadoop Distributed File System

Every pixel among 4000 images is listed as 19200 integers inside the data. The first 6400
entries includes the red channel, following 6400 the green, and last 6400 the blue channel.
Image storage set up in row-oriented sequence where the first 80 entries of the array consists
the red channel values of the first row of the image.

The ‘ship’ class includes 1000 images that are center-oriented on the body of a single ship
with different sizes, and atmospheric conditions. Example images from this class are
illustrated in figure 39.

48

The "non-ship” class includes 3000 images: first 1000 entries consists of a randomly
collected samples of different land displays (such as water, buildings) that do not contains
any piece or part of a ship. Following 1000 includes just a piece of ship, when, the last 1000
images have previously been mislabelled by machine learning models, typically caused by
bright pixels or strong linear features. Example images from this class are shown below.

SR W
(é"

i{?.'i‘!h’ a&vs f

Fiqure 40. ‘Non-Ship’ Class Sample Images

5.3 Convolutional Neural Network Architecture

The Keras library is a high-level module for building neural networks. Specifically, Keras is
a powerful as well as simple Python library for deep learning construction. During ship
detection network configuration, a mass number of libraries were used: numpy, a library
responsible for elements storage into arrays for specific processes, matplotlib for graphics
display, PIL for images manipulation and some also Kera’s included, appropriate for model
compilation, such as Sequential for model initialization in a sequence way between each
layer, Conv2D, MaxPooling2D, Flatten, Dropout and Dense for the linear stack creation,
which is referred below.

14 import numpy as np

15 from matplotlib import pyplot as plﬂ

16 from keras.models import Sequential

17 from keras.layers.core import Flatten, Dense, Dropout, Lambda
18 from keras.layers.convolutional import Conv2D, MaxPooling2D

19 from keras.optimizers import Adam, SGD

260 from PIL import Image, ImageDraw

Fiqgure 41. Appropriate Libraries for Ship Detection Network Confiquration

The Keras Sequential Model usually consists of a linear stack of layers. The most
commonly used structure of Convolutional Neural Networks (CNN) is composed of three
different types of layers.: Convolutional, Pooling or fully connected. Each layer type has
different rules with respect to forward and error backward signal propagation [23]. CNNs
typically uses multilayer preceptron structures: an input layer, some hidden layers as well as
an output layer.

Figure 42 illustrates the above structure: Feature extraction part, is used for combinations of
convolutional and pooling layers, when classification part is using fully connected layers, to
output the results.

49

T s
re maps featurd, hoaps
fin

featy
\ ‘ 5 e

input feature maps feature maps
\ 12x 32 28 %28 Ax 14\ ‘;K\\ e
8

3 :}\ oA A\ § 8,
2 '\ u’\ Avek & 1
C‘\ ’_- “ \ wonmvolut

55 |

'\ comvolutidn
" subsampling, S L \
2 o s
\-. W -
\ 5x5 \‘! b 7% Bl }: \
| convolution __ subsampling NGO
feature extraction classification

Fiqure 42. Typical Structure of Convolutional Neural Network

(Copyright, Piyush Rai, Deep Learning: Models for Sequence Data)

For the present ‘Ship Detection Application’, a usual Convolutional Neural Network that
(CNN) was used, involving four major steps:

e Convolution step

¢ Pooling step

¢ Flattening step

e Full Connection step

Convolutional Neural Network needs to bear in mind the exact input shape that have to
expect, which in our occasion equals to 80X80X3, as our images are of size 80X80 pixels
and uses 3 channels (RGB format). A ‘relu()’ function was selected as the activation
function for the first four (4) layer, which is suitable to repair problems that are appeared
with dying rectified linear units, by helping network learn into new decision edges.

Convolution implement on the training images takes place by the convolutional layers. As
pre-mentioned above, CNN’s Model hidden layers are composed from 4 convolutional
layers, approved to learn more complex representations, prevented from data under-fitting.
Convolutional layers uses 32 filters, where every filter is in the shape of 3X3 due to the
intake defined as a 80X80 pixel coloured image in a RGB format and the layer used rectifier
function for handling and manipulating processes. Convolution layers are two-dimensional
(2d), as the images are two-dimensional pixel data arrays [24],[25].

Following to each convolutional layer, there are four max-pooling layers, which performs
the pooling operation using a max-pooling function, because of the necessity to distinguish
the maximum pixel for each district of interest.

The pooling layer performs a pooling process, where following convolutional operation,
outputs multiple feature maps per image and pooling operation runs on this output,
collecting these by the usage of a 2X2 matrix to minimize the pixel loss while getting a
precise region around feature locations.

The output from the last pooling layer was flattened from the two-dimensional (2d) array
into a one-dimensional (1d) array, which-after that-was fed into the feed-forward neural
network accepting 4096 values array.

50

The output from pooling layer was finally flattened to get a one-dimensional (1d) single
vector, which was then fed to the hidden layer just like in simple feed-forward network
introduced before, needed for the two-class classification. Output layer consists of a dense
layer configured with a sigmoid function for binary classification process.

Furthermore, a dropout layer was added to overcome possible over-fitting problems.
Dropout randomly turns off a fraction of neurons during the training process, causing
reductions of the reliance on the training set by some amount. The specific number of
neurons which are important to be deactivated is determined by a hyper-parameter equalled
to 0.25 that was set during configuration process. Through this process the model keeps in
memory the fitting (working) data without taking account of unused neurons.

Figure 43 illustrates the compilation process for the current ship detection model, using
‘add()’ function to import the beyond mentioned hidden layers.

model=Sequential()

model.add(Conv2D{kernel_size=(5,5),activation="relu",padding="same",filters=100, input_shape=(80,80,3)))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(®.25))

model.add(Conv2D{kernel_size=(5,5),activation="relu",padding="same" ,filters=100))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(®.25))

model.add(Conv2D{kernel_size=(5,5),activation="relu",padding="same" ,filters=100))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(®.25))

model.add(Conv2D{kernel_size=(5,5),activation="relu",padding="same" ,filters=100))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(®.25))

model.add({Flatten())
model.add(Dense(512, activation="relu')})
model.add(Dropout(®.25))

model.add(Dense(1,actiuaticn='sigroicr))

Figure 43. Model's Hidden Layer Configuration Output

Subsequently, model’s compilation takes place, using a function called ‘compile()’. Some
important configuration informations during model compilation (training) consists the
learning process parameters configuration: The batch size, which is responsible for the
division of the model in a fixed (batch) size, anyone of them receiving a steady number of
images to train. For the avoidance of memory errors, usage of batch sizes in the power of
two (2) in addition to specified sizes affordable by computer’s RAM can lead to better
results:during our model compilation process, batch size number which was selected was
128 (7" power of 2). As Optimizer, for maximization activation of the model , Stochastic
Gradient Descent (SGD) was used in order to train the CNN, due to its indication for this
kind of networks. Validation split was used was 0.2, which means that 20% of the total
dataset, was randomly picked as validation data, for validation processes usage. As loss
function, ‘categorical crossentropy’ was selected, in the way that one-hot encoded used,
during images labels conversion. Finally, training epochs (or iterations) indicates the total
number that the network is trained. Network was trained for 12 epochs, meaning the specific

51

number of times iterations go through the training set. Usage of ‘fit() function outputs (the
possibility to use) history objects, while model suits to the data. Calling ‘summary()’
function offers the ability to visualize important informations about pre-constructed model.

model.compile(loss="categorical_crossentropy',
optimizer="=sgd",
metrics=["'accuracy'])

model.summary()

history = model.fit(x, v, batch_Size:lzﬁL epochs=12, validation_split=08.2)
Fiqure 44. Ship Detection Learning Process Configuration

5.5 Prediction Results

After the implementation of learning/training process, using ‘fit()’ function, the model on
ships satellite images, by using pre-mentioned parameters, as long as observing the training
accuracy and loss functions results, concluded that the model output, for the previous
mentioned, number of epochs the training accuracy is 98,52% and the training loss is
enough low, almost 4,38%, while validation accuracy is 99,14% and validation loss 3,26%.

Train on 17280 samples, validate on 4320 samples

Epoch 1/12

17280/17280 [==============================] - 1735 10ms/step - loss: 0.1759 - acc: 0.9315 - val_loss: €.1420 -
val_acc: ©.9519

Epoch 2/12

17280/17280 [==============================] - 1755 10ms/step - loss: 0.10085 - acc: 0.9628 - val_loss: 0.1464 -
val_acc: 0.9491

Epoch 3/12

17280/17280 [==============================] . 2035 12ms/step - loss: 0.0892 - acc: 0.9668 - val_loss: €.6932 -
val_acc: 0.9694

Epoch 4/12

17280/17280 [==============================] - 1965 11ms/step - loss: 0.87%4 - acc: 0.9709 - val_loss: 0.8%64 -
val_acc: 0.9688

Epoch 5/12

17280/17280 [==============================] . 1925 1ims/step - loss: 0.0728 - acc: 0.9737 - val_loss: ©.6933 -
val_acc: ©.9699

Epoch 6/12

17280/17280 [==============================] - 184s 11lms/step - loss: 0.08660 - acc: 0.9771 - val_loss: ©.8993 -
val_acc: 0.9683

Epoch 7/12

17280/17280 [==============================] - 1995 12msfstep - loss: 0.0606 - acc: 0.9795 - val_loss: 0.0474 -
val_acc: ©.9850

Epoch 8/12

17280/17280 [==============================] - 1955 11ms/step - loss: 0.0584 - acc: 0.9794 - val_loss: 0.0645 -
val_acc: 0.9782

Epoch 9/12

17280/17280 [==============================] - 1955 1ims/step - loss: B0.8553 - acc: 0.9800 - val_loss: 0.0560 -
val_acc: ©.9819

Epoch 18/12

17280/17280 [==============================] - 1875 11ms/step - loss: 0.8511 - acc: 0.9826 - val_loss: €.6621 -
val_acc: 0.9782

Epoch 11/12

17280/17280 [==============================] - 213s 12ms/step - loss: 0.0476 - acc: 0.9836 - val_loss: 0.0542 -
val_acc: 0.9806

Epoch 12/12

17280/17280 [============================== . 2075 12ms/step - loss: 0.0438 - acc: 0.9852 - val_loss: €.6326 -
val_acc: ©.9914

Fiqure 45. Model Compilation & Prediction Results of Ships Detection Application

Evaluating the performance of the model on the test set, it is obvious that both validation
loss and accuracy are in harmonic synchronization with the corresponding training

52

characteristics leading to the conclusion that the model was not over-fitted. It is approved
that model's efficiency improved by the time that the loss test process was almost equal
compared to training loss, as the first (validation) is reduced throughout the epochs, while
the gap between training and validation accuracy was eliminated.

0.9%

0.98

097

(=]
o
o

accuracy

0.95

094

0.93

model accuracy

= frain
test

2

4 B
epoch

B

10

loss

0.18

016

014

012

0.10

0.08

0.06

0.04

model loss

_\\

frain
test

—

b

:

3

5
epoch

8 10

Fiqure 46. Accuracy and Loss Plots Between Training and Validation Data

Accuracy and Loss Plots (Figure 46) along with Predictions results are stored in ‘Predictions
Weights’ directory into HDFS, in order to be available at any moment a new prediction
process needs to be made, without neccessity of model retrain. Saving Keras models in
HDF5 (.h5) format-optimal for saving multidimensional arrays of numbers-files economize
days, even weeks of model (re)training.

B®
T

IPython console

(| Console 1/A A

In [11]:

In [11]: importing()

Source Directory:/ship_detection_weigths.h5

HDFS Destination:/Prediction Weights/ship_detection_weigths.hsS

In [12]: hdfs.1s('/Prediction Weights')
out[12]: [u'/Prediction Weilghts/ship_detection_weigths.h5']

Fiqgure 47. Save Keras Models into HDF'S for Future Load

5.6 Visualization of Prediction Results

After the completion of training process, evaluating neural network consists the last step. In
this case, we tried to get a glimpse of well your model performs by picking 10 random
images from validation data and receiving, as label, the predicted result.

53

Ship Detection Ship Detection Ship Detection Ship Detection Ship Detection

Ship Detection Ship Detection Ship Detection Ship Detection

Fiqure 48. Visualizations of ‘Ships’ Labels Predictions

MNon-ship detection Non-ship detection Non-ship detection Non-ship detection Non-ship detection

Non-ship detection

Fiqure 49. Visualizations of ‘Non-Ships’ Labels Predictions

Looking at a random sample of twenty (20) images into the validation data, we assured that
predicted labels of the earlier trained model are quite close to the real labels, confirming by
this way, the accuracy of the current model.

Except of making predictions on ships or non-ships labels, on images, current algorithm also
searches on real captured bays satellite images for ship detection into these. HDFS storage
directory called ‘scenes’ includes 8 Planet satellite images, from bays areas, captured from
San Francisco and San Pedro. Figure 50 illustrates the prediction results during satellite
image scanning, using previous model prediction results. White, rectangle patches used for
highlighting possible hotspots of ships detection.

54

o 500 1000 1500 2000 2500

Figure 50. Searching on Satellite Images of Bays for Ships Existence

Contributing with Hadoop Distributed File System, by using pythonic interface application,
a newly storage direction, called ‘Prediction Output Results’, was created.

IPython console (& (%

] Console 5/A X -3

rs

In [4]: root()

out[4]:
[u'f/Downloads',
u'/fPrediction Output Results',
u'f/hbase',
u'ffison_files',
u'f/scenes',
u'f/shipsnet',
u'f/tmp',
u'ffuser',
u'ffzip_files']

In [5]: mkdir()

Enter the name of the directory:/Prediction Output Resultﬂ
Fiqure 51. Creation of Output Storage Direction into HDFS

Output results brought out from the previous model were stored, from local to HDFS, using
‘importing function()’.

55

IPython console =6

[y Console 5/A X -1
In [8]: -

In [8]: importing()

Source Directory:/Downloads/Ships Detection Results on sfbay3.png

HDFS Destination:/Prediction Output Results/Ships Detection Results on sfbay.png
In [9]: importinag()

Source Directory:/Downloads/Ships Detection Results.png

HDOFS Destination:/Prediction Output Results/Ships Detection Results.png

In [18]: importing()

Source Directory:/Downloads/Ships Detection Results 2.png

HDFS Destination:/Prediction Output Results/Ships Detection Results Z.png
Fiqure 52. Inporting of Output Data into HDFS

IPython console () (3¢)
[y Console 5/A X >
In [13]: =

In [13]: dir_cont()

Choose Directory:/Prediction Output Results

Out[13]:

[u'/Prediction Output Results/Ships Detection Results Z.png',
u'/Prediction Output Results/Ships Detection Results on sfbay.pna',
u'/Prediction Output Results/Ships Detection Results on sfbay3.png',
u'/Prediction Output Results/Ships Detection Results.png']

Figure 53. Searching for Directory Contents in HDFS

The above figures depicts the HDFS pythonic interface application in combination with
‘Ships Detection’ application deployment. For the sake of the example, HDFS storage
application inputs necessary datasets for the development of the model, while output
prediction results were also saved in HDFS, to an additional specified directory, showing the
interaction process between a big data platform and deep-learning technology.

Figure 54 gives an explanatory illustration schema where Hadoop Distributed File System
(HDFS) and HBase Database Ecosystem interact both each other, as long as with Ship
Detection (Deep Learning) Application, which was developed and implemented.

56

NHOND
-ngan

Ve
' HDFS
‘ — } |
Ship Detection with Deep Learning .
Using Hadoop Ecosystem Backup NameNode
Application Schema !
| ‘
- | Metadata
I i r (Name, Replicas,
- ! block 1D}
Region 1 Region 2 Region 3 | .
(N I e B I O 0 IR
|
Table Distribution Table Distribution ! IDownloads
P N | /Prediction OUpUt Results
[——) - \ MetaData 1 hbase
. fjson_files
i (RKDW Ships_Info Image_Info | | Operations I l!sct?nes
. ey ~ B . I Ishipsnet
! (ID) | . Jtmp
| | Longitude | Latitude Labels Scenes_ID Images | ! 1 Juser
M M . izip_files
| | 0 [33.7380372 |-118.22546) 1 20180708 _180909_047 | | |
|:| 1 [37.7491755 | -122.33222 L 20170705 _180816_103e | |
g A !
|5 gl 3 i Block
| .- Operations
I . | 3999 |37.6985572 | -122.49531 o 20180206 184438 1043 I I i
N — = n
| *._ HRegion 71 i v
! o — — — — — — — — — — — — — DataNode 1
N e _/ i Wite
etaData -
T Operations | I:I |:|
HMaster EE— Zookeeper ! |:|
- Read
|
|
Keras CNN - . -
Processes Construcion | Replication Replication
e = -—
B -EEeNs | DataNode 2
Prediction _— - DataNode 3
Resullts Prediction 1
Resullts 1
|
|
|

N

Fiqure 54. Ship Detection Model using Hadoop Ecos;stem Interaction Schema

57

Chapter 6
Conclusions

58

6. Conclusions

Big data is becoming extremely widespread among IT Research and Development projects.
Big data technology is already present also in a wide range of enterprises, infrastructures
and organizations for solving practical every-day problems. At the same time, the rate of big
data generation and development increases in a tremendous manner.

The current master thesis, after an overview of the big data landscape, introduced the core
technology of the Hadoop Ecosystem where a massive number of applications and
development processes already exist. Hadoop is the most commonly used and
acknowledged framework for big data processings in an efficient and expandable way. It’s a
reliable, exceptionally scalable, error tolerant as well as profitable solution that supports
cluster distribution computing and the manipulation of petabytes of data on a massive
amount of nodes. Hadoop is composed of two main components, HDFS and MapReduce,
and it is a recommended method for storing and processing of semi-structured or
unstructured data. Industry leading organizations such as Google, Yahoo, and Facebook
approved and selected the Hadoop’s environment framework.

HBase is a column-oriented database constructed on the Hadoop Platform, capable of
offering several advantages in comparison with conventional row-oriented databases.
RDBMS fails in scaling data efficiently as well in a cost effective way, despite their
partitioning and parallel processing capabilities. At the same time, RDBMS comes along
with structured data and is proven inadequate for handling unstructured one, which is
commonly used by high-tech applications as smart-phones, and social networking websites.

The Python programming language comes along with a high number of implementation
examples and a large amount of standard libraries covering a wide range of technology
fields. Using Python, the interaction with the Hadoop Distributed File System and the
HBase environment can be more efficient and comfortable for the decent user, by creating
appropriate programming interfaces, in this specific easy to learn and powerful
programming language, which is used in many scientific projects, as well as in machine
learning, hacking and web developing fields.

The main scope of this Thesis is the contribution to the current state of interaction between
the Hadoop Distributed File System (HDFS) and the average user, by creating an interface
for the basic interaction with HDFS, using the Python Programming Language. Towards this
end, a user-friendly interface that embeds all the basic operations of HBase was developed
and showcased for handling the data required by a Deep Learning application. More
specifically, the application is about detecting possible ship positions within satellite images
by using a deep neural network of layers. Training the network requires a pretty large
amount of imagery data, labelled as ‘ship’ or ‘non-ship’, while its full deployment for real
use purposes meets the Big Data characteristics. In our thesis, we demonstrated how to
store, retrieve and use this data in the Hadoop-HBase ecosystem. Using our experimentation
results, we conclude that Hadoop and HBase offer adequate stability, expandability and
latency in a huge amount of data manipulation. The matter of contention relevant to stability
of Hadoop and HBase is being investigated by many developers in more recent releases.

Future work includes construction and benchmarking of machine learning algorithms on
infrastructures that tend to or already manipulate artificial intelligence applications fed by
big data.

59

APPENDIX A. NEPIAHWYH

Ta peydda dedopéva €xouv yivel 18iaitepa Sradedopeéva oTig KaBNpEPIVEG SpaCTNPIOTNTEG
HEYAA®V OpPYOVIOHQV Kl eTiyelprioewyv. To péyefog tov peydAwv dedopévav Kat touv pubpon
avénong toug eival tepdotio. H texvoloyia peydAwv dedopévav eivar Béfao ot Ba
XTUTINOEL CUVTOHQA TNV TIOPTA KABE eMiyelpnoNg Kot Opyaviopov o€ KaBe Topéa.

H opoloyiax twv peydAov dedopévav agopd peydAeg 1 MOAOTIAOKEG SOpHEG SeSopévav
TETOLEG WOTE Ol TAPASOTINKEG EQAPOYEC emeepyaaiog Sedopévav elval avemapkeig yiax tnv
QVTIHETOMOT TouG. Ta 0IKOoLOTHHATH PeYGAwY dedopévmv Suvatal va Bonbrnoovv otnv
akpiéatepn avaAvon,) AUN KoAOTEPOV amo@doewv, 0T BeATioon TG AEITOLPYIKIG
QMOTEAECHATIKOTNTOG, TNV EANYIOTONOINGT] TOV KOGTOUG KAl TV AMEIAQV YIX TNV EKAOTOTE
popon emyeipnong. [epthapfavouvy TepAoTIO OYKO, LYNAT] TOXVOTNTA KOl EKTACTHN TIOIKIALX
SeSOPEVOV KOl HOPO®V.

Ta Xvvehiktikd Nevpovika Aiktva (Convolutional Neural Networks 1 CNN) eivor n
KOpLOXIX QapXITEKTOVIKY] OTn Pabid pabnon mov xpnolgomoieital yuix TG TEXVIKES
ene&epyaoiag €KOV®V. AOLAELOLV OE EIKOVEG HE TPOTO TPOHOI0 HE TOV avOp@OIIVO
EYKEPAAOD: HE TNV €E€VPEOT HIKPOTEPWV AEMTOUEPEIDV KOl EMEITA 0€ LYNAOTEPA eMimeda
TIPOG TILO QPTPTHEVA XAPAKTNPLOTIKA.

IKkomog TG TapoLong SUMAMHOTIKNG epyociag ywx To ‘Alatpnpoatikd TIpdypappoa
Metantuyiokov Emovdav (AIIME) TeomAnpo@opikng’ omoteAel N eyKATAOTOON KOl T
avantuén evog ovotnpatog NoSQL (Not Only SQL) Bdoewv dedopévav. To avotnpa cutod
elvan éva Sraovvdedepévo avotnpa apyeiwv, pe Vv ovopaoia Hadoop Ecosystem, mou
amookomel otnv avdadelén evog framework avolytod Aoylopikoy (open source) To 0mOi0
SwayepiCeton v eme&epyacia kot v amobnkevon epappoyav peyoAwv dedopévav (big
data applications) oe ovotpata tOnov ovumAéypatog (cluster). H Hadoop pmopeil va
Saxelplotel MOALTIOIKIAOLG TUTIOLG-GOUNHEVEY Kol HN-0€60EVAOV-KAL OTTOTEAEL TO KEVTIPO
TOV TEXVOAOYI®V HeYdAwv SeSopévav, ol omoieg vmootnpilovy TANBOPK €POPHOYDV
ovpnepAapBavopevav G e§0puéng dedopévmY, avaADoewV e TIPOBAEYN KOl HNYXAVIKNG
padnong (data mining, predictive analytics and machine learning).

To owoovotnpa Hadoop eival Tto mMO €UpémG AMOSEKTO Kol XPTOHOTOIOVHEVO TAKIGLO
aVOLYTOU KOOIKA Yl TOV LTOAOYIOHO HEYAAWV OVOAVTIKQV SeSOHEVOV O€ €va €DKOAX
KAMPOKQOOHO TiepBaAAov, mov emTpénel v omobrnkevon ko enedepyacio peyGAwv
dedopévov ge €va KOTOvePnHévo TEPBGAAOV CUUTAEYHATWV LTIOAOYIOT®V
XPNOHOTIOI®VTOG OMAK HOVTEAX TIPOYPAHHATIOHOD. 'Exel oxedlaoTel yio va emekTeiveTan amo
éva S1aKOHIOTH O YXIMASEG PNYaveg, TOo KaBéva amod To OMoix TPOCPEPEL TOTIKOVG
vroAoylopovg kot amoBrkevorn. To Hadoop eivon éva Aoylopikod Java mou vmootnpilet
KOTOVEUNHEVEG EQOAPHOYEG HE PeEYOAN évtaor SeSopévav Kol Asrtovpyel pe ytAddeg
KOpPoug éwg ko petabytes dedopévav. Ta 600 peydda koppatix tov Hadoop eivatl to
HDFS, 10 obotpa tov Hadoop mou tpéxel MAve OmoO T& CLOTHHATA OPXEIOV T®V
UTTOKEIHEVAOV AEITOLPYIKOV CLOTNHAT®V Kol T0 MapReduce, éva Katavepnpévo mAaiolo
ene&epyaaiag, 0oL N eQappoyT| Slapeiton o€ TOAAX PIKPAX KOPPATIH epyaaiag, KaBéva amd
To omoia pmopel va eKTEAEITOL 1] EKTEAEITOl €K VEOU O€ OTMOLOVENMOTE KOMPO TOL
OLUTAEYHaTOG. Alxxelpiletanl TOAD KAAX TNV amoBnKeLoT Kol TV avdAuon Hn SOpNHEVOV
dedopévav. To Hadoop eivanl pia Sokipaopévn Avon oto mepilBdAAov mapaywmyng Kot €xet
eykpiBel amd kKopueaiovg opyaviapolg 0nwg to Google, to Yahoo kot to Facebook.

60

[Ma v avantuén mg amapaitnng SEMaQng YiveTal Xprion TG YAOCCAG TPOYPAHLATIGHOV
Python mpokepévouv va avadelyBovv ta mAeovektpata g TexvoAoyiag MeyaAng
KAipokag (Big Data Technology). £t ouvexela, avamtiocovpe pio epappoyn Texvntig
Nonpootvng mov xproiponolei texvoloyia BabBeidg Mdabnong (Deep Learning), n omoia
aviyveLel Aol 0e SOPLPOPIKEG EIKOVEG, XPTOHOTIOIOVING OAX Ta PaOKG epyoAeia TOL
owoovotnpatog Hadoop (Hadoop Ecosystem), pe @IAKO 1tpog To XprjoTn TpoTmo.

Yy napovoa epyaoia €yve avantuén evog aiyopiBpov Pabidg pdbnong (deep learning),
TIOL AVIKEL OTNV KATNyopia TV €QopHoy®V HNXavikng pabnong (machine learning) ko
avayvopilel v vrapén moinv and §opLPOPIKEG e1KOVEG Alpaviwy. TIpog To okomo avtd
gywve xpnon poag BipAodnkng vymAov emmédov ypappévn oe Python, v Keras.

O mnyég dedopévmv (data sources), ylo v €Qoppoyn Tov aAyopiBpov, anobnkévovtal oe
€va Katavepnpévo obotnpa apyeiwv tov Hadoop, yvwotd wg HDFS (Hadoop Distributed
File System), 1o omoio amoteAel vronpdypappa avtod. To HDFS dvvaton va Sratnpei moAv
HEYGAO OYKOo OeSopéVaV IPOCPEPOVTHG EVKOAOTEP Tipdofaon. H amobrikevon autod tou
OyKouL Yivetal o€ TOAAEG pnyaveg (servers) ‘in redudant fashion’, ®ote va pmopet va yivel n
S100WOT) TOL CLOTNHATOG ATIO eVOEXOHEVEG aMMAELEG O€ TtepimTwon PAKSNG.

EmmAéov yiveton ¥prjon HIOG OVOLXTNG, HN OXEOIXKNG, KATaveunpévng Paong dedopévwv
ypappévng oe Java, n omoia Stapopeabnke petd to Bigtable g Google, avamtoxBnke wg
pépog tov €pyov Apache Software Foundation, tov Apache Hadoop, ko Aetrtouvpyei mave
ano 1o HDFS noapéyovtag duvatotnteg Bigtable yix Hadoop. H Baon avutn eivon nj Hbase.
Ye autny, anobnkevovtal TOAAG Sedopéva Twv data sources, TOL XPNOLOTIOIOVVTOL TIPLV KO
Kata v avantuén tov mpoavapepBéviog Deep Learning Algorithm, 6nwg labels infos,
longitudes,latitudes, scene id’s Twv eKOvwV, KABOC Kol KATOMV TG LAOTOINGNG QULTOV,
OTIWG TIVOKEG TIOL TIEPLEXOLV T ATOTEAETHATA TNG TIPOPAEYNG KAl T B&pn KATAVOHNG Yl
KGOe pixel TV elkdvVLV.

[To ovykekppéva, N SIMAGUATIKY €pyacia amoTeAsital amd o Mopakdte pépn: Katomy
¢ eykatdotaong tov Hadoop Ecosystem, oe yevdo-katavepnpévn Aettovpyia (pseudo-
distributed mode), og évav €1kovikd S1aKop10TH (Server), Tov TPEXEL O€ P10 EIKOVIKT HNYAVT|
(virtualbox), pe Aettovpywkd ovotpa Ubuntu 16.04, kd&vovpe TG KATAAANAEG
TIAPAHETPOTIOOELG KA1 TNV APYIKOTIOI0VE BéTovTag To o€ Aettovpyia pe TP 192.168.0.10.

Y1 ouvéxela €xel yivel avamtuén KAtGAANA®V GUVOPTNOEDV TIPOYPAUHATOG (Scripts), pe
oKOTIO TNV Slena@r], 1éoo pe To HDFS, 660 kot tnv Hbase. H avantuén twv scripts €yve o€
HI a0 TIG TIAEOV QVEPXOUEVEG YADOOEG TIPOYPUHHATIOHOL, TV Python, pe v xpnon
KatdAAnAwv BifAobnkav. Mo cvykekppéva: T v aAAnAenidpaon kot v Sayeipion
tov HDFS, 1600 péow touv Sakopiot (server), 600 Kl AMOPOKPUOHEV HET® EVOG XPTOTH)-
neAdrn (client), eywve xpnon g PipAodnkng hdfs3 (open source), pe v dnuiovpynBeioa
eapopyn va divel mAnBopa emAoy®v, ONWG:

e Yuvéeon oto HDFilesystem, pe xprion g katdAAnAng IP ko Port Ameikovion twv
TIEPLEXOPEVOV TOL ToOot (/), Twv @akéAwv (destination folders) avtol kot twv
TIEPLEXOHEVMV TOVG

® Am68001 OLYKEKPIHEVOV SIKawpAT®V (permissions) oe xproteg (users) ki op°
(groupusers), MOTE VA €XOVV OLYKEKPIHEVEG SLVATOTNTEG AVAYVWONG, EYYPAPNG N
ektéAeong (read, write, execute)

61

e Avvatotnta Snpiovpyiag véwv Sadpopav/oakéAwv eviog tov HDFS, apeidpoun
HETH@OPA OAOKANP®OV QakéA®wV T opxeiwv amd tov server otov client (ku
AVTIOTPOP®E), WOTE va TipaypatonotnBoiv ta {rovpeva tasks (mavta AapBdavovton
LTTOYT Ta permissions mov €yovv doBel oToV EKAOTOTE USer)

e Avvatotnta avayveong apxelov, amevbeioag amo v HDFS, pe okomd v
TIPAYLOTOTIOINOT| GUYKEKPIHEVROV AVOAVCEDV

Evtog tov HDFS dnpiovpyoiviat Eexmplotol AKEAOL IPOOPIGHOV, TIOL TIEPLEXOLV:

e Tig ewkdveg mov Ba xpnoipomnonBovv yia v eknaidevon (training) tov povtéAou
avayvopLong Aol o€ S0PLPOPIKEG EIKOVEG

e Apyeia JSON (JSON Files), mov mepiéxouvv T1¢ HaQKEG TANPOPOpPieg TOL HOVTEAOUL,
Ta omoia armoBnKevoOVTIOL 0TV CLVEXELX O€ TIVOKEG evTog NG Hbase

e AmoteAéopata g ta&vopnong (classification) twv eikdévwv, TOL TPOKVIITOLYV KOG
QTOPPOLN TOL OAYOPLOHOL (EIKOVEG TIOL E10AYOLE GTOV OAYOPLIOHO Kl OmMo@aiveTal
€av elval 1 oyt mAolo, €V TIPOKEILEV®)

® AOpPLPOPIKEG EIKOVEG MAVIGV, TIOL €x0uV ‘capwBel” avd pixel ki éxouv amotumwdet
ta mBava onpeia, mov Ppiokovial mAolx, €VIOG QUT®V, HE TNV €QPAPLOYN TOL
aAyopiBpov

AvtioToa, pE TO TIPONYOLHEVO, €ylve avamtuén evog application script, pe okomd tnv
oAMnAenidpaon kou Vv Swaxeipion pe v NoSQL Pdaon dedopévav Hbase.
Xpnowonownke &ava pia open source library, n happybase v0.98, n omoia &ivet
avtioToa:

¢ Avvatotnta oVvéeong otnyv Hbase, mov Bpioketon eykateotnpévn oty MAELPE TOUL
dlokopoTn (server)

® ATEIKOVION TOV MEPIEXOHEVOV TIVAK®V (tables) avtrg

® AuvatoTnTo amOS00TG CLYKEKPIHEVAOV SIKALOUAT®V, OTOV EKACTOTE XPrOTH, YO TOV
EKAOTOTE THVOKX

e Anuuovpyia Kot Siaypa@r] MVAK®V, EL00Yy®YN Kal Slaypaen TIHOV € aLToVG, KaB®Gg
Kot 1 dvvatotnta padikng anddoong (batches) tipmv dedopévav, yiax StagopeTikd
column families, akOpa K1 €vtog Tov 10V mivaka

e Yapwon kKol SuvaToTNTa aVAKINONG TV O0ed0pévey, BAON OULYKEKPIHEV®V
Kpltnpiwv (rows, columns, column families, timestamps)

To teAevtaio TPHAHK TNG SUTAWUOTIKNG €pyaciag. OMwG ava@epOnKe Kal TPOTYOUHEV®G,
TIEPLEXEL EVOV OAYOPIOHO aVOYVOPLOTG EIKOV®V TTAOIOV G SOPLPOPIKEG EIKOVEG, KABMC Kat
mv mbavotnta vMapéNg MAoiwv ot gkoveg Aipaviev. T v vAomoinon tov povtéAov
€ylve ypnion KatdAAnAwv datasets amo ekdveg mov €xouvv AneBsl amd SopuEdpoug Ki
amelkoviCouv A0 EVTOG AIHAVIOV KO KOATIGV.

62

Katomyv g dnpovpyiag Tov poviéAov Babidg Mdabnong (deep learning) amoBnkedovpe ta
amoteAéopata evtog g Hbase, yia mbavr mepaitépw avaAvon Kot Xpro1OTOI00|E EIKOVEG
nmholwv, ®ote va yivel emaAnBevon twv amoteAeopdtov. Ta amoteAéopata Svvatal va
amoBnkevBovv oe e101kég Stadpopég, eviog tov HDFS. TéAog, kdvoupe eloaywyr] KATOIwV
S0PLPOPIKAOV EIKOVOV AHAVIOV Kol KOATIOV, OTIOL HE TN XpNon KAtaAAnAwv aAyopiBpwv
0ApP®ONG TNG EIKOVAG, EPAPHOLOVHE T amoTeAéopaTa Tov AAyopiBpov Babeidg Mabnong
(deep learning algorithm) ko amewkovidovpe mBaveg mpoAEPelC.

To ke@aAawo 1 mapéyel pla eloaywyn ota MeydAa AeSopéva kot 610 OIKOGOOTNHA TNG
Hadoop. Xto 2° Ke@AAAo avaMTOOCETAL PI0 EMOKOMNOT ToL BewpnTikod vToB&dpov oL
xpnowonoteitar ya 1ig Siepyaoieg twv epappoywv twv Hadoop, HBase kou Babidg
MaBnong (Deep Learning). Xta ke@ahawa 3 Kat 4 eptyp&Qovtal o1 Siepyacieg avamtuéng
Hl TAXTQOpHOG Semaeng pe ta mepiBdArovia twv Hadoop ko HBase avtiotoika, pe
Xpron ¢ yAwooog mpoypappatiopot Python. To keeaiawo 5 mpoteivel v Snpovpyia
evog mhaoiov Pabeidg pabnong, pe v duvatdTNTA €VIOMOHOL TAOIWV 0 SOPLEOPIKEG
EIKOVEG, HE OKOTO TNV oAANAemidpaon kot TNV avadel§n g €PUPUOCTIKOTNTHG TV
OlEMOPQV TIOL avamTuxOnkav ota Kepahoa 4 kot 5. H mapodoo HETOMTUXIOKT] SITA@HOTIKY
EPYOCIOt CUUTIVKVMOVETAL OTO KEQAAALO 6, OTTOL SiVOVTOL KATIOIEG TIPOTAOELS YA HEAAOVTIKN
€PeELVA, BaolopEVEG OTNV €EENEN TV TEXVOAOYLQOV, GTOLG AVWOEV TOELG.

Aé&erg KAsrdua

Hadoop, Hbase, HDFS, MapReduce, Texvnt| Nonpooovvn, BabBsid Mabnon,
Meyaia Agbdopéva, Nevpovika Aiktva, Avayvopion Eikovag, Aopu@opilkég
elkoveg, Xvvepyatika Nevpwvikd Aiktva, Python, hdfs3, Happybase.

63

APPENDIX B. Interaction Between HDFS and DL Model

The specific appendix is devoted to the implementation part where the interaction between
Ship Detection Algorithm and HDFS occurs.

As pre-mentioned in chapter 5, Ship Detection Application interact with HDFS, in order to
retrieve datasets, such as during configuration and compilation process, or store data for
future usage such as weights data, indispensable, when model needs to be loaded to avoid a
new-time consuming-re-train process.

Figure 55 displays the interaction process, where ‘retrieve()’ function downloads model’s
dataset, which is converted in JSON format, that includes the whole requisite data for
training process. After dataset is fetched from HDFS directory, data is converted from list to
array format, using numpy library, to pass the whole data into model’s input for train and
validation process intentions in the most suitable way, using the architecture that constructed
and displayed in previous chapters. Images reshaped at 80X80 pixels (as referred in chapter
5.2), a sample of these are figured out into three (3) different channels and finally are
imported into network.

Name v Type Size Value

Host str 1 192.168.08.6
Port int 1 9808
X uints (4000, 3, se, sp) LL[[82 89 91 ... 89 84 83]

oo I8 91 89 ... 101 87 871
blue_spectum uints (88, 80) [[97 57 98 ... 98 94 96]

e 97 95 ... 101 100 1621

data dict 4 {'scene_ids':['20180708_1809089_6f47', '20170705_188816_183e', '2018871 ..
dataset dict 4 {"scene_ids':['2P180708_180909_0f47', '20170705_180816_103e', '2018871 ..
dst_data str 1 fhome/nikospps/shipsnet.json

[f_ o0 14/ 166 1am__os ool

Variable explorer | File explorer Help
IPython console

., | Console 1/A B mre
HDFS direction:/json_files/shipsnet. json

Destination:/home/nikospps/shipsnet. json
Out[9]: <matplotlib.image.AxesImage at @x7f6b4f12c958=

o o

N- Y Y
o . o
L]

& ™ &
50 d s 50 4 vk
- S
© La ° Nty L. b
70 70
T T 7 T T T — T 7 T T T —
0 10 220 3 4 5 6 70 0 10 20 30 4 5 & 70

Fiqure 55. Interaction Between HDFS and Compilation Process

64

With regard to use the model repeatedly, without spending time during training process, we
saved the weights into HDFS directory called ‘Prediction Weights’ (chapter 5). Applying the
same function, we get back hdf5 format file and load the weights, the architecture, training
configuration as well as the results from the optimizer. As follows, we return to the training
state where we stopped. Retrieving back, loading and displaying the summary of the
architecture of the model which was pre-trained exposed in figure 56.

Name ~ Type Size Value
Host str 1 192.168.0.10
Port int 1 ELLL] 2

variable explorer | File explorer Help

IPython console E3]

0, | Console 1/A B rE- .

HDFS direction:/Prediction Weights/ship_detection_weigths.hS

Destination: /home/nikospps/ship_detection_weigths.hS

Layer (type) Output Shape Param #
z:;;zd_l (Conv2D) (None, 86, 80, 32) 896
max_pooling2d_1 (MaxPooling2 (None, 40, 48, 32) <]
dropout_1 (Dropout) (None, 40, 48, 32) 2]
conv2d_2 (Conv2D) (None, 40, 40, 32) 9248
max_pooling2d_2 (MaxPooling2 (None, 20, 20, 32) [¢]
dropout_2 (Dropout) (None, 20, 20, 32) a
conv2d_3 (Conv2D) (None, 20, 20, 32) 82976
max_pooling2d_3 (MaxPooling2 (None, 10, 18, 32) 2]
dropout_3 (Dropout) (None, 1@, 18, 32) a
conv2d_4 (Conv2D) (None, 16, 10, 32) 82976
max_pooling2d_4 (MaxPooling2 (None, 5, 5, 32) 6]
dropout_4 (Dropout) (None, 5, 5, 32) <]
flatten_1 (Flatten) (None, 868) 2]
dense_1 (Dense) (None, 2) 1662

Total params: 177,698
Trainable params: 177,698
Non-trainable params: @

Fiqure 56. Model Weights Re-Load from HDFS

PIL library (reference to chapter 5) is used for images loading and manipulation. During
ship detection process over satellite images, the necessity of loading from HDFS, converting
into array format and scanning for further validation process and prediction results is
important. Using the above function, we download a random image from ‘scene’ direction
called ‘sfbay.png’, save it in an array format and scanning over it, making predictions using
model’s weights that reloaded above. Figure 57 illustrates the specific operation, which after
image download bay satellite image from HDFS directory makes the appropriate predictions
and defines possible ship positions, point them out using white patches.

65

Name ¥ Type Size Value

Host

Part

str 1 192.168.0.10

int 1 9A0Aa =

Variable explorer | File explorer Help

IPython console ®

3, | Console 1/ B T

HDFS direction:/scenes/sfbay.png

Destination:/home/nikospps/sfbay.png

0

100 1

200 4

300 4

400 1

500 4

PR |
400 |
800
800
1000
1200

1400

o s 1000 1500 0 = {;

200 400 &00 800 <

Fiqure 57. Retrieve Satellite Image and Make Prediction Process

Apart from download processes, pythonic interaction platform also offers storage
capabilities for output results, for further manipulation and analysis. With refer to figures
48-53 on chapter 5, prediction results were stored to a directory called ‘Prediction Output
Results’.

& C @ Notsecure | 192.168.0.10:50070/explorerhtml#/Prediction%200utput%20Results b4 e

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

IPrediction Output Results Gol
Permission Owner Group Size Last Modified Replication Block Size Name
“TWXTWXTWX hduser supergroup 151.9 KB 10/19/2018, 2:00:07 PM 3 64 MB Ships Detection Results 2.png
-TWXTWXTWX hduser supergroup 1003.39 KB 10/19/2018, 1:59:29 PM 3 64 MB Ships Detection Results on sfhay.png
“TWXTWXTWX hduser supergroup 1003.39 KB 10/11/2018, 1:50:57 AM 3 64 MB Ships Detection Results on sfbay3.png
-TWXTWXTWX hduser supergroup 167.66 KB 10/19/2018, 1:59:51 PM 3 64 MB Ships Detection Results.png

Hadoop, 2016.

Figure 58. Output Results Stored into HDFS Directory

66

REFERENCES

[1] Xiaomeng,S (2012). Introduction to Big Data. Norway: NTNU. 2-11.

[2] Padberg, M (2015). Big Data and Business Intelligence: a data-driven strategy for e-
commerce organizations in the hotel industry. Twente: University of Twemte. 57.

[3] Wu, S (2015). Big Data Processing With Hadoop. Finland: Turku University. 45.

[4] Prajapati, V (2013). Big Data Analytics with R and Hadoop. Birmingham: Packt
Pubisihing. 222.

[5] White, T (2009). Hadoop: The Definitive Guide. USA: O’Reilly Media, Inc. 503.

[6] Bengfort, B,; Kim, J (2016). Data Analytics with Hadoop. USA: O’Reilly Media, Inc.
270.

[7] Radtka, Z,; Miner, D (2016). Hadoop With Python. USA: O’Reilly Media, Inc. 63.

[8] Kalicky, A (2013). High Performance Analytics. Prague: Charles University in Prague.
73.

[9] Jia, B (2010). Data Acquisition in Hadoop System. Norway: University of Stavanger. 45.

[10] Petsas, K (2016). Study of technologies/research systems for big scientific data
analytics. Piraeus: University of Piraeus. 74.

[11] Subhash Raste, K (2014). Big Data Analytics - Hadoop Performance Analysis. USA:
San Diego University. 55.

[12] Suurna, E (2014). Data analytics on the example of cluster computing framework
Apache Spark. Tallinn: Tallinn University of Technology. 65.

[13] Fox, E (2017). Clustering and Topic Analysis Final Report. USA: Virginia Polytechnic
Institute and State University. 50.

[14] Continuum Analytics (2018). hdfs3 Documentation. 3rd ed. USA: Continuum
Analytics. 17.

[15] George, L (2011). HBase: The Definitive Guide. USA: O’Reilly Media, Inc. 523.

[16] Dimiduk, N,; Khurana, A (2013). HBase in Action. USA: Manning Publications Co.
334,

[17] Spaggiari, JM,; O’Dell, K (2016). Architecting HBase Applications: A Guidebook for
Successful Development and Design. USA: O'Reilly Media, Inc. 231.

[18] Agrawal, B (2013). Analysis of large time-series data in OpenTSDB. Norway:
University of Stavanger. 62.

[19] Bolsterlee, W (2016). HappyBase. 3rd ed. USA: MIT License. 29.
[20] Chollet, F (2018). Deep Learning with Python. USA: Manning Publications Co. 362.

[21] Roig Mari, C (2016). Deep Learning Architectures For Computer Vision. Barcelona:
Universitat Politecnica de Catalunya. 40.

[22] Claesson, L,; and Hansson, G (2017). Deep Learning Methods and Applications.
Sweden: Chalmers University of Technology. 94.

67

[23] Luberg, KK (2018). Human Body Poses Recognition Using Neural Networks with
Class Based Data Augmentation. Tartu: University of Tartu. 47

[24] Serra, X (2017). Face recognition using Deep Learning. Catalonia: Polytechnic
University of Catalonia. 78.

68

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Outcome

	2. Theoretical Framework
	2.1 The Big Data Phenomenon
	2.2 Types of Big Data
	2.3 Differences between Big Data and Traditional Data Sources
	2.4 Apache Hadoop Ecosystem: An Open Source Big Data Project
	2.5 Data Storage and Analysis Problems
	2.6 RDBMS and Hadoop Databases
	2.7 The Apache Hadoop Project
	2.8 Deep Learning: A Sub-field of a Broader Family of Machine Learning
	2.9 Machine Learning and Intelligence
	2.10 The ‘deep’ term in Deep Learning

	3. Hadoop With Python
	3.1 Hadoop Distributed File System (HDFS)
	3.2 Overview of HDFS Architecture
	3.3 Hadoop Distributed File System Ecosystem Configuration
	3.4 Working with HDFS using Python Programming Language

	4. HBase Infrastructure Development
	4.1 Limitations of the Traditional Databases
	4.2 Architecture of HBase
	4.3 Comparison Between HBase and RDBMS
	4.4 Interaction with HBase by Developing a Pythonic Interface

	5. Ship Detection In Planet Satellite Imagery Using Deep Learning
	5.1 Application Description
	5.2 Ship Detection Dataset Parameters
	5.3 Convolutional Neural Network Architecture
	5.5 Prediction Results
	5.6 Visualization of Prediction Results

	6. Conclusions
	APPENDIX A. ΠΕΡΙΛΗΨΗ
	APPENDIX B. Interaction Between HDFS and DL Model
	REFERENCES

