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ABSTRACT

Big  Data  terminology  indicates  the  massive  or  complex  sets  of  data,  in
comparison  with  conventional  “small”  datasets,  in  a  way  that  trditional
processing  operations  are  inefficient  to  manage  them.  Big  Data  ecosystems
help  making  more  accurate  analysis,  higher  quality  decision-making,  higher
operational  effectiveness,  cost  minimizations  and  decreased  risks  for  the
infrastructures.  Big Data combines  extremely large volume, great  velocity  of
changes  and  diversity  of  data  and  forms,  offering  greater  capability  of
extensions.

Hadoop  is  an  open-source  framework  that  permits  processing  over  big  data
as  well  as  archiving  them  in  a  distributed  environment  across  computer
complex  using  programming  models  in  an  understandable  way.  It  is
constructed  to  be  escalated  from  a  single  server  to  thousands  of  them  or
computer  machines,  where  regional  computation  and  storage  processes
comes  forward.  Hadoop  is  a  Java  Software  that  operates  with  thousands  of
nodes  with  gigabyres  or  even  petabytes  of  data  maintaining  data-intensive
distributed applications.
Hadoop is  composed of  two crucial  components:  HDFS (Hadoop  Distributed
File  System)  which  is  located  on  top  of  the  filesystems  of  the  fundamental
operating systems, and MapReduce, a framework that offers the capabili ty of
distributed  processes,  by  splitt ing  the  application  into  smaller  operational
chunks, in such a way that  any node in the cluster  can execute (or re-execute
each of) them.

Convolutional  Neural  Networks  (CNN)  are  the  leading  architecture  in  Deep
Learning  that  are  used  for  Image  Processing  Techniques.  Convolutional
Neural  Networks  are  a  category  of  Neural  Networks  seen  to  be  more
promising  when  working  on  image  data.  They  work  on  images  in  a  manner
similar  to the human brain: by finding smaller details  and then working their
way up to more abstract features. 

The  objective  of  the  present  master  thesis  is  the  deployment  of  a  Hadoop
Distributed  File  System  Interface  using  the  Python  Programming  Language
to  highlight  the  advantages  of  Big  Data  Technology.  Following  this  scope,
we  develop  an  Artificial  Intelligence  Application  using  Deep  Learning
Technology,  which  detects  ships  in  satell ite  images,  using  all  the
fundamental  tools of Hadoop Ecosystem, in a user-friendly manner.

Chapter 1  provides  an  introduction  to  Big  Data  and the  Hadoop Ecosystem.
Chapter  2  presents  a  revision  of  the  theoretical  framework  that  is  used  for
the  processing  of  Hadoop,  Hbase  and  Deep  Learning  Applications .  In
Chapter  3  and  Chapter  4  described  is  the  development  procedure  of  a
pythonic  interface  for  interaction  with  the  Hadoop  Distributed  File  System
(HDFS) and the Hbase environment,  respectively.  Chapter 5  presents a deep
learning  framework,  capable  of   detecting  ships  in  satell ite  images .  The
thesis  is  concluded  in  Chapter 6 ,  where  some proposals  for  future  research,
based on the state of the art  at this research field,  are suggested.  
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1. Introduction
The world has turned into information society that highly relies on data. Great amount of
data production in an increasing rate was caused by the rise of diversity among network
platforms, digital conversions by a massive number of procedures, evolution on wearable,
portable  devices  and  miscellaneous  categories  of  sensors.  Since  information  systems
generate enormous amounts of records every minute, every second, it seems the world is
reaching the level of data overload. It is obvious now, that for processing such volumes of
data, an enormous capacity of storage and computing resources is required. Whereas the
growth of capacity is limited by evolution of hardware and technologies, the growth of the
data volume is in fact unlimited. 

Governments, businesses and education operations, even lifestyle, has been affected from
the rapidly usage and growth of the Internet. Nowadays, the high rate and the variety of the
types of data  that is daily produced exceed the traditional data storage methods. Over the
past two decades, every scientific (and not only) field generated an amazing production of
data establishing this  way new pathways to social  learning.  Analysing and manipulating
these datasets, can help infrastructures, organizations and businesses on taking decisions in a
right as well as competitive way.

In the beginning, infrastructures adopted transaction processes that naturally were composed
and working with Relational Data Base Management Systems (RDBMS) and simple data
analysis methods via Structured Query Language (SQL) queries for their daily procedures
for  planning  and  decision  making  purposes.  The  expansion  of  the  data,  and  more
importantly the unstructured form of it rendered traditional types of storage inadequate to
handle and manipulate these types, as a result making more important the requirement for
new storage techniques and analytic methods on the field of big data.

1.1 Motivation

Discussions on a set of related topics mentions that the growth of data is unlimited. What
the world is going to do about the data overload, which seems unstoppable? How to handle
and process all data? How can it be possible to retrieve the relevant information, within a
specified time? What is the balance between cost of retrieval and value of information?

Additionally  to the above challenges  is  the requirement  to  manipulate  and visualize the
information in such a way that the result is comprehensive and understandable.

Adopting new technologies requires to process, discover and analyse these massive datasets
that cannot be dealt while working with traditional types of databases architectures due to
the lack of capacity resources in terms of computation and storage [1]. 

An  important  challenge  for  the  present  and  the  future  is  related  to  storage  and  fetch
processes among a heavy quantity of structured and unstructured data within a desirable
time  interval.  Traditional  storage  methods  reveal  many  limitations  on  manipulation  and
processing at  the huge amount of data,  which forced to the appearance of the Big Data
terminology[2]. Internet technology evolution caused a great boost on big data field, as the
collection  and sharing of  the  data  in  a  raw format  became easier.  Storage,  process  and
manipulation of the above type of huge volume of data consists the main scope of Big Data
field, in accordance with minimum time delay and high precision.
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1.2 Goals

The Big Data Phenomenon, which is characterised by rapid growth of volume, variety and
velocity on data information assets, thrives the paradigm shift in analytical data processing. 

The aim of the current master thesis is the deployment of a user-friendly Hadoop Ecosystem
interface using the Python Programming Language in order to highlight the advantages of
Big  Data  Technology.  Following  this  scope,  an  Artificial  Intelligence  Application  was
developed using Deep Learning Technology, a sub-field of machine learning, which detects
ships in satellite images, using all the fundamental tools of Hadoop ecosystem in a user-
friendly way.

1.3 Outcome

The  scope  of  the  thesis  is  dedicated  to  experimentation  and  deployment  of  a  Hadoop
Interface and a Deep Learning application, which detects ships on images received from
satellites, displaying port highlights including ships and docks. This way, we use a lot of
utilities of Hadoop in order to manipulate  the appropriate  datasets  for the deep-learning
model.  

The first (theoretical) part of the thesis summarises the state-of-art of this problem, defines
the  drivers  and  consequences  of  Big  Data  Phenomenon,  and  introduces  paths  for
manipulation of Big Data, Hadoop Ecosystem and Deep Learning techniques. 

The practical part of the thesis summarises the development in Hadoop environment, usage
of common properties with RDBMS, manipulation of Hbase as an alternative approach to
column-oriented database, and finally fully exploitation of their capabilities, along with the
prediction  results  of  a  Deep  Learning  application.  The  experiment  demonstrates  the
application of selected methods that are discussed in the theoretical part. The first part of the
experiment includes generic operations for data storage and retrieval in a Hadoop platform,
while  the  second  part  defines  the  model  and  applies  its  results  in  appropriate  testing
datasets. 
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Chapter 2 

THEORETICAL FRAMEWORK
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2. Theoretical Framework
Over the last years, around 90% of the total  data was produced extensively and rapidly,
making the ‘Big Data’ terminology the most widespread one in businesses across many
industry sectors. Chapter 2 focused on the advantages of big data in addition to Hadoop
Ecosystem and Deep Learning Technologies.

2.1 The Big Data Phenomenon

Big  Data,  Business  Analytics  and  Data  Mining  terminologies  are  frequently  used  as
advanced analysing tools among infrastructures that come along with huge data sources.
The Big Data term is differentiated from the other two when more complex interchanges
and bigger data quantities demand distinguished technologies and approaches.

According to Doug Laney (2003), the Big Data description includes the ‘three-V’ definition
(Volume, Velocity and Variety), a term which is illustrated in Figure 1.

 Volume: Giants bulks of information data sized up to terabytes even zettabytes.

 Velocity: Large amounts of data with high speed and refresh proportion.

 Variety: Data can show up in diverse types of structure: structure data, as database
tables for example, semi-structured data as JSON or XML forms and unstructured
data, as images, videos and audio formats (etc).

(Copyr ight  1995-2015 GRT Corporat ion)

According to Gartner (2012) : «Big Data is high-volume, high-velocity and/or high variety
information assets that demand cost-effective, innovative forms of information processing
that  enable  enhanced  insight,  decision  making  and  process  automation.  While  big  data
certainly involves having a lot of data, big data does not refer to data volume alone. What it
means is that you are not only getting a lot of data. It is also coming at you fast, in complex
format and by a variety of sources» [1].
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2.2 Types of Big Data

There  is  a  big  amount  of  traditional  data  that  has  been  used  for  a  long  time  among
businesses, companies and organizations. At this moment, new types of data are captured
alongside with the highly increased development of new database environment fields, such
as:

 Text data: One of the most commonly used types of data, where specific patterns are
extracted from texts for further analytical procedures. 

 Web data: Diverse types of data are collected in a high rate from web sources, as
searching results, reading reviews and advertisement results. Consequently, customer
segmentation and focused advertisement can be improved.

 Social network data: Nowadays, social network applications, as Facebook, Twitter,
Instagram and WhatsUp implement network analysis, which can provide important
information,  such  as  customers  interests,  targeted  advertising  and/or  real-time
information sharing process.

 Time and location data: Wi-Fi compatible devices, GPS, Mobile Phones as well as
other  related  types  of  smart  devices,  set  time  and  location  related  data  as  an
increasing ‘Big Data origin’ during recent years. The manipulation of the time and
location data from the companies can provide time and location services, as weather
applications, but the information sensitivity and the user privacy must be protected
from unauthorized accesses.

 Smart grid and sensor data: At the time being, Internet of Thing (IoT) technology
provides  a  huge  amount  of  informations  from  sensors  used  in  cars,  industries,
meteorological stations even on forests (as an example are used for fire detection
purposes), supplying by this way more efficient methods for analysis and problem
diagnosis procedures.

Holding and manipulating a big amount of data series provides the capability of combine
the output results from variant sources.

2.3 Differences between Big Data and Traditional Data Sources 

Following  Bill  Frank’s  book  ‘Taming  the  big  data  tidal  wave’,  there  are  some  crucial
differentiations among big data and conventional (traditional) data sources [2].

Big  data  consists  of  new  types  of  data  format,  compared  to  traditional  data  sources
commonly  used  so  far  among  businesses  and  organizations.  Higher  data  speed  and
frequency  requirements  highlight  the  necessity  of  the  existence  of  a  more  analytic  and
efficient  level  of  data  manipulation.  The  capability  of  analysis  procedures  on  big  data
sources consists a great tool for any user, where variant actions can be accomplished on it,
reaching in an extensive data mining process.

Furthermore,  the  massive  generation  of  semi-structured  and  unstructured  data  over  the
recent years, defined an additional difference between big and traditional data, based on the
type of data that is being processed by each type of source.

Structured data is a type of a standardized information data format with specified data fields
and  labels.  Some  structured  data  examples  are  files  that  hold  relational  databases  or
spreadsheets informations.
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On the other hand, unstructured data  formats does not contain a specific  or pre-defined
structure,  resulting in difficulties during analysis or processing. Some basic examples of
unstructured data are audio, video and photos formats, presentations  or e-mail messages.

Semi-structured data defined a different data type between structured and unstructured data
that it  does contains some structure,  making by this analyse and manipulation processes
more feasible.  XML files  and Not Only SQL (NoSQL) records  are  some representative
examples of semi-structured data.

2.4 Apache Hadoop Ecosystem: An Open Source Big Data Project

According to Gartner: «Big Data necessitates a new type of data management, which bears
the trademark of highly scalable, massively parallel and cost-effective» [1],[3].

In 2014, one of the largest installed Hadoop cluster was operating at 455 petabytes. Till
then, neither any data warehouse nor a parallel  relational database architecture had even
approach this  numbers.  Hadoop’s  performance increases  when unstructured data  format,
such as video, audio or photo, is processed [4].

It is important  to be clarified that new technology approaches, such as Hadoop, are not
intended  to  completely  replace  but  work  alongside  with  relational  databases  systems,
meeting  the  desirable  spot  for  a  hybrid-parallel  platform,  which  will  come  through
structured data handling in combination with large datasets of unspecified structure, acting
as unstructured data.

The  Hadoop  ecosystem  is  regularly  appointed  to  compromise  with  big  data  processes
containing  a lot of elements from the stack below:

 Amazon Web Service, known as AWS, for infrastructure (in the cloud)

 Apach Hadoop Distributed File System, known as HDFS, for distributed file system

 MapReduce or Spark for distributed programming model

 HBase or Cassandra for non-relational distributed database management system

 Hive for execute SQL on top of Hadoop 

 Mahout for Machine Learning and math library, on top of MapReduce

 R for data analytincs and visualization

Most of the widely used analytical techniques fall into one of the following categories:

 Statistical methods, forecasting, regression analysis

 Database querying

 Database warehouse

 Machine learning and data mining

2.5 Data Storage and Analysis Problems

As  Tom  White  mentioned  in  his  book  ‘Hadoop:The  Definitive  Guide (2009)’,  a  main
problem occurs when: «the storage capacities of hard drive disks have expanded massively
over the years, access speeds—the data rate which can be read from drive shave not kept up.
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One typical drive from 1990 could store 1370 MB of data and keep a transfer speed of 4.4
MB/s, thus someone could read all the data from a full drive in around five minutes. Almost
twenty (20) years later one terabyte drives consists the norm, while the transfer speed is
almost at 100 MB/s, spending more than two and a half hours to completely read the data
off the disk» [5], [6].

By combining a lot of pieces of hardware, the probability of failure in any of them becomes
much  higher.  A replication  process,  where  replicas  of  the  used  data  are  generated  is
frequently used, nowadays.: duplicated parts of the data are backed-up by the system in case
of failure,  resulting in copies ready for use at any time or circumstance.

Another  main  problem  consists  of  the  required  combination  of  one  disk’s  data  read
alongside  with existing  data  from any other  hard disk source.  The combination  of  data
received from miscellaneous distributed systems or disk origins in a correct way, consists of
one of the leading challenges for data storage and analysis problems. MapReduce provides a
programming model that summarises a complete read and write disk output, converting it
into a computation process over sets of keys and values. MapReduce has also reliability
built-in processes, as Hadoop Distribituded File System (HDFS). 

This constitutes Hadoop’s main advantage: a reliable shared storage and analysis system,
where  Hadoop  Distributed  File  System  (HDFS)  implements  storage  processes  and
MapReduce  provides  analysis  process  capabilities.  These  two  process  capabilities  are
Hadoop’s kernel, even if a decent number of components also exists [5],[6].

2.6 RDBMS and Hadoop Databases

Seek time is improving slower than transfer rate. Seeking process describes the movement
of the disk’s head to a distinct place to read or write data, demonstrates the latency, whereas
associates the transfer rate to a specific disk bandwidth.

The domination,  by seeks,  of  the  data  access  patterns  results  in  longer  periods  of  time
demand during read and/or write processes over larger  datasets  or parts  of them, whilst
increase the disk transfer rate. Contrarily, the usage of a traditional B-Tree for the update
procedure  on  a  small  proportion  of  records  in  a  conventional  database,  provides  better
results. MapReduce is more efficient than B-Tree, for the updating process on the majority
of a database, by implementing sort/merge functions to rebuild the database [8].

Hadoop’s MapReduce is appropriate for problems that require the manipulation of the entire
dataset, in a batch fashion, especially for ad hoc analysis. An RDBMS is pretty good for
implementing queries, deletes or updates, where the dataset has been pointed to allocate
low-latency recovery and update times on a small quantity of data. Applications where the
data is written once, and read many times are coordinated better with MapReduce, whereas
a relational database is good for datasets that are frequently updated [9]. 

Another  contrast  between MapReduce and an RDBMS is related to  the structure of the
datasets that they operate on. MapReduce performs much better on unstructured or semi-
structured  data,  since  it  is  designed  to  interpret  the  data  during  processing  time,  while
relational data is designed to keep its purity, and get rid of redundancy.

Table 1 figures the comparison between relational databases and MapReduce :

18



Traditional RDBMS Hadoop (MapReduce)

Data Size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times Write once, read many times

Structure Static schema Dynamic schema

Integrity High Low

Scaling NonLinear Linear
Table 1. Comparison between RDBMS and Hadoop

As relational databases begin integrating and mixing some of the ideas from MapReduce
and, in the other  direction,  as higher-level  query languages embed in MapReduce make
MapReduce systems become more convenient to traditional database programmers.

2.7 The Apache Hadoop Project

Hadoop consists of a combination of sub-projects, that are hosted by the Apache Software
Foundation and are responsible for distributed computing. Even if, Hadoop is acknowledged
for MapReduce and its distributed file system, called HDFS, the other components provide
equivalent services, as they are structured on the core to add higher-level abstractions. 

Figure 2 describes some major components of the Apache Hadoop Ecosystem [7]:

 Core: A set of components and interfaces for distributed file systems and general I/O
procedures.

 Avro:  A data  serialization  system  appropriate  for  efficient  and  continuous  data
storage.

 MapReduce: A distributed data processing model and execution environment that
runs on large clusters of commodity machines.

 HDFS: A distributed file system that runs on large clusters of commodity machines
responsible for storage processes.

 Pig:  A data  flow language that  runs on Hadoop Distributed File  System clusters
responsible for executions and analysis procedures on very large datasets.

 Hbase: A distributed, column-oriented database responsible for underlying storage,
as well as queries and batch implementation processes.

 ZooKeeper:  An  embedded  service  implementation  that  provides  fundamentals
which can be used for building distributed applications.

 Hive: A distributed data warehouse that provides the capability of querying process
on the dataset by the usage of a query language based on SQL.

 Chukwa:  A distributed  data  collection  and  analysis  system that  uses  HDFS for
storage procedures data in HDFS and MapReduce for analysis processes.
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(Copyright 2015, Tom White, Hadoop: The Definitive Guide, 4 Edition)

2.8 Deep Learning:  A Sub-field  of  a  Broader Family  of  Machine
Learning

Artificial  Intelligence  (AI),  machine learning and deep learning technologies  arise in an
increasingly  way  in  many  articles,  publications  as  well  as  practical  applications.  We
frequently hear about a future that will contain intelligent chat-bots, self-driving cars, and
virtual assistants,  where human jobs will  be inadequate and the most parts of economic
activities will be handled by robots or AI agents. The recognition of the noise signal, is
critical, for a machine-learning engineer or data scientist, in order to highlight any alteration
among the existing AI application releases [10]. 

Figure  3  defines  the  relationship  between Artificial  Intelligence,  Machine  Learning  and
Deep Learning environments.

(Copyright 2015, Francois Chollet, Deep Learning with Python)
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2.9 Machine Learning and Intelligence

In conventional programming models, data and rules are imported and combined into them,
while  answers  are  extracted  as  output  results.  On  the  other  hand  developing  and
implementing machine learning models,  require  data  as well  as answers as input,  while
processing them, results in rule extraction. Later, these rules can be re-applied in order to re-
produce  original  answers  on  new  datasets.  Figure  4  displays  input  and  output  flows
processes during a Machine Learning Model execution.

(Copyright 2015, Francois Chollet, Deep Learning with Python)

A machine-learning training process takes place by the execution of a specific programming
implementation.  It  is  developed  with  a  massive  amount  of  cases  suitable  for  a  specific
assignment.  As an illustration,  someone may desire  to automate the process for tagging
pictures. He, could generate a machine-learning algorithm with many cases of pictures that
are  previously  tagged  by  humans,  where  the  system  would  learn  statistical  rules  for
combining specific tags to distinct pictures.

Machine learning technology inclines to deal with large as well complex datasets for which
classical  statistical  analysis  such as  Bayesian would be  infeasible.  As a  result,  machine
learning, and especially deep learning theory is based on discipline where regularly, rules
and ideas are demonstrated experimentally than theoretically [21].

2.10 The ‘deep’ term in Deep Learning

Deep learning consists  of  a  new path on learning conditions  from data  which focus  on
learning consecutive layers of additional delegations. The ‘Deep’ term in ‘Deep Learning’
terminology  represents  the  defined  number  of  layers  that  are  partly  responsible  for  the
construction of the model which will result in further manipulation process of the data. In
other words, the ‘Deep’ term represents the exact depth of the model. Modern deep learning
models frequently contain tens or even hundreds of consecutive layers, meanwhile other
machine learning model approaches tend to focus on learning processes that use one or two
representation layers of the datasets. 

The above mentioned representation layers usually implement learning as part of models
called neural networks. The ‘Neural’ term in ‘Neural Network’ terminology is related to
neurobiology.  Some  of  the  basic  approaches  in  deep  learning  were  grown partially  by
drawing ideas during analysis over specific sections of the brain. Nevertheless deep learning
are  not  models  of  the  brain  but  a  mathematical  framework  that  provides  learning
representations from the data [21].
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The aim of the existence of layer representations is to discover a suitable method of data
representation in order to accomplish a machine learning task. The situation of what a layer
performs to its input data is stored in the layer’s weights, which practically are a batch of
numbers. 

(Copyright 2015, Francois Chollet, Deep Learning with Python)

Approximately, the implementation of conversion process by a layer is configured by its
stored weights, well-known as the parameters of a layer. The ‘learning’ term denotes the
decision  making process  of  a  set  of  values  for  the weights  among all  layers  in  a  deep
learning network, in a way that it will correctly determine inputs to their associated outputs.
Many times, a deep neural network model may contain a massive amount of parameters
consisting the pre-mentioned proceedings as a time-consuming work.

(Copyright 2015, Francois Chollet, Deep Learning with Python)

The loss function of the network, still known as the objective function is responsible for
receiving  the  prediction  results  of  the  model  network  and  calculating  a  distance  score,
describing this way the deviation of the output/predicted results that the model generated
from the expected results or, in other words specifying the error that the model performed
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Figure 5. Deep representations learned by a digit-classification model

Figure 6. Parametrization of neural network
using its weights



during the estimation process. The purpose of the specific function is the regulation of the
output of a deep learning model (or generally the output of a neural network).

 

(Copyright 2015, Francois Chollet, Deep Learning with Python)

The responsibility of the optimizer function is the maximization or the minimization of the
loss function, by using its gradient. The weights of the network delegate random values, so
that the network executes a sequence of arbitrary conversions. Practically,  the network’s
output is far from what it should ideally be, while the loss score is also high. After every
training  loop,  the  weights  are  approaching  the  correct  values,  while  the  loss  score  is
decreasing. As far as the loss function is minimized the output results comes closer to the
expected results.

 

(Copyright 2015, Francois Chollet, Deep Learning with Python)
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Figure 7. Measurement of network’s
output quality using loss function 

Figure 8. Loss score is used as a feedback
signal to adjust weights 



Chapter 3 

HADOOP WITH PYTHON
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3. Hadoop With Python
Chapter 3 introduces and describes the core concepts of Hadoop Distributed File System
(HDFS) using Python Library, hdfs3, which is a slight python envelopment situated on the
C/C++ programming language and libhdfs3 library, supplying direct access on both from
Python.

Hdfs3  is  a  Python  package,  that  provides  a  Python  client  library,  allowing  Hadoop’s
Filesystem  (HDFS)  to  be  accessed  in  programmatic  way,  from  Pythonic  Interfaces  or
applications, using all the built-in commands.

3.1 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System, known as HDFS, is a Java-base distributed, portable and
expandable filesystem constructed for spanning large clusters of servers. HDFS designation
is based on GFS, Google’s File System [7]. HDFS can occupy a large amount of data, so as
to grant access to many clients across network, while its storage capability on very large
files, in a reliable and scalable way, makes it excel to other similar distributed filesystems.

Usage of a block-structured filesystem accomplished the ability on HDFS to save a massive
amount of data, regularly up to petabytes. Files are separated into blocks with fixed size that
can be stored among installed-machine-clusters.  Generally,  files gathered from a various
number of blocks, that are not included totally, on a one and only host.

HDFS provides trustworthiness by replicating imported data on block-files and distributing
duplicated files over the cluster. During Hadoop installation and configuration every fixed-
size created block exists three times on the cluster, as replication factor during configuration
process equalled to three. Block-level replication enables data restoration and availability
even if the any of the machine may fail.

3.2 Overview of HDFS Architecture

The architecturel of HDFS is expressed by two main processes: a process established as the
Master  Node  (or  NameNode),  which  keeps  the  important  metadata  information  for  the
operation of filesystem, and one or more Slave Node (DataNode) processe(s), that used for
the  storage  of  the  block  files.  The  Master  and  SlaveNode  (NameNode  and  DataNode)
processes can implement  on a single host,  but for HDFS clusters  generally  preferred,  a
dedicated server executing the MasterNode’s processes whilst one up to thousands of hosts
executing the SlaveNode process [11],[12],[13].

The MasterNode (or NameNode) is the most major and necessary host in HDFS. For any
given file in hdfs masternode knows not only the list of blocks, but also the location of
blocks.  The metadata informations  for the whole filesystem, filenames that includes  the
location of every block, file as well as file grants and permissions, is collected from it. The
MasterNode stores the entire metadata information structure in memory, in order to succeed
fast access to it, so needs larger memory in comparison with SlaveNodes machines. The
replication factor of blocks, is tracked from MasterNode protecting from data loss during
machine failures. Because the MasterNode constitutes a single point of failure, a common
used recovery strategy is the usage of a secondary MasterNode to regenerate snapshots of
the primary NameNode’s memory structures,  limiting by this way the risk of data loss in a
possible MasterNode failure[5].
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SlaveNodes (or DataNodes) defined as the machines that physically store the blocks within
HDFS,  which  they  named  so,  because  each  node  holds  the  actual  data  for  the  cluster.
SlaveNodes  are  typically  commodity  machines  with  large  storage  capacities.  Each
SlaveNode knows the list of blocks it is responsible for, whilst does not care about the other
blocks or SlaveNodes. HDFS operation continues normally, even if a SlaveNode fails, the
lost  blocks  are  replicated  from the  MasterNode,  ensuring  that  the  minimum replication
factor demand comes along with every distributed block.

Figure 9 illustrates the mapping of files to blocks in the NameNode, and the storage of
blocks and their replicas within the DataNodes.

   

(Copyright, Lavish Jain, Hadoop 2.x (HDFS and YARN features))

3.3 Hadoop Distributed File System Ecosystem Configuration

HDFS provides redundant storage for big data by storing that data across a cluster of cheap,
unreliable computers, thus extending the amount of available storage capacity that a single
machine  alone  might  have.  However,  due  to  the  networked nature  of  a  distributed  file
system, HDFS configuration is more complex that traditional file systems.

Hadoop  cluster  architecture  is  responsible  used  for  high  computing  operations  and
estimations, whilst is more effective when it separated into a decent total of files with big
size. During the development of the Deep Learning Application, which detects ships across
satellite images (subject deployment in Chapter 5), we stored a modest number of images to
train our AI model, into HDFS  folder destinations, using a Pythonic programming interface
that includes all the built-in functions of HDFS ecosystem. 

As mentioned in, above, 3.2 paragraph,  Hadoop clusters are comprised of three different
node types: master nodes, worker nodes, and client nodes. 

Master nodes oversee the following key operations that comprise Hadoop: storing data in
the Hadoop Distributed File System (HDFS) and running parallel computations on that data
using MapReduce. The NameNode relates HDFS with the data storage operations, while the
JobTracker supervises and relates data’s parallel processing using MapReduce capabilities.
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Worker  nodes  arises the majority  of  virtual  machines  and accomplishes  the job of data
storage  and  computation  executions.  Each  worker  node  runs  both  a  DataNode  and
TaskTracker  service  that  communicates  with,  and  receives  instructions  from  their
MasterNodes(s).  The  TaskTracker  service  is  supplementary  to  the  JobTracker  and  the
DataNode to the NameNode.

Client  nodes  contains  Hadoop  framework  installations  with  the  appropriate  cluster
configurations, although are neither master nor worker nodes. Client nodes obligation is to
surrender MapReduce jobs expressing the way that data should be processed, and after that
displays the outputs of the job when processing just after completion.

In order to store and process data, firstly we need to complete the deployment of the Hadoop
distribution cluster. All implementations and experiments are based on Hadoop cluster. As
the scope of the current Master Thesis is not the installation of Hadoop Environment, there
was not extensive reporting for the installation process, but only for the most important
points to understand the (virtual) Hadoop infrastructure.

For  our  experimental  research,  was  chosen  a  client-server  architecture,  using  Oracle’s
virtual machine (server side) to create a Hadoop cluster in a pseudo-distributed operation,
which  runs  all  modes  in  one  system,  but  on  separate  Java  Virtual  Machines  (JVM)
environments, in order to simulate,  the preferred from enterprises way, Fully-Distributed
Mode where each master and slave service running in separate system and different JVM.
During research process,  Hadoop 2.7.3 and Java 8 releases  were selected,  installed  and
configured in the way of the pre-mentioned Pseudo-Distributed mode. 

With reference to the above virtual cluster installation included a memory of 3000 MB and
storage capacity of 100 GB. Shell scripts are used for starting related Hadoop Daemons,
while SSH is also needed to be installed on (each) host. 

Replication factor set to three (3), as well as a data block kept the default size of 64 MB.

Both NameNode and DataNodes started at the IP:192.168.0.10 and logging to the defined
path, while a secondary NameNode took place, to secure redundancy methods in case of
failure, on the primary NameNode. 

Figure 10 illustrates the initialization of HDFS into the virtual cluster.

Subsequently,  the  initialization  of  Yet  Another  Resource  Negotiator  (or  YARN),  one  of
Apache Hadoop's core components, which is responsible for distributing system resources
to the miscellaneous applications running in a Hadoop Cluster and scheduling tasks to be
performed among distinct cluster nodes, executed as shown in figure 11.
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Using Java Virtual Machine Process Status Tool (JPS), a command to examine the operation
process  of  the  entire  Hadoop  daemons  as  NameNode,  DataNode,  ResourceManager,
NodeManager. As Pseudo-Distributed operation was selected, all the daemons seems to run
on the same cluster, but on different JVM environments.

Hadoop’s daemons make usage of a small quantity of ports over TCP protocol, to interact
among themselves, whilst thers ports are directly listened to users, via HTTP or Java client.

Initially, by hitting the URL http://<IP>:50070 , where the <IP> equals to IP of the Hadoop
cluster’s  NameNode,  cluster’s  overview is  illustrated  on the screen,  where choosing the
“DataNodes”  tab  results  the  outputs  of  them.  In  our  occasion,  NameNode’s  IP set  to
192.168.0.10, during configuration process. 

Figure 13 shows NameNode’s overview using Web User Interface communication from a
remote client.
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Figure 11. YARN Initialization

Figure 12. Java Virtual Machine Process Status Tool
(JPS)



The default Hadoop ports are as follows:

3.4 Working with HDFS using Python Programming Language

Interaction with HDFS is primarily performed through a command-line interface who have
used POSIX interfaces on Unix or Linux, using command process called ‘hdfs’. The ‘hdfs’
command follows the below syntax:

$ hdfs COMMAND [-option <arg>]

,where the funionality usage of HDFS will be instructed from the “COMMAND” argument,
the option argument is named from the specific option field and the closing “arg” field can
receive one or more arguments that are specified for the selected option.

Additionally,  there is  an HTTP interface  to  HDFS, as well  as  a  programmatic  interface
written in Java.

The main scope of this Master Thesis is the contribution to the current state of interaction
between Hadoop Distributed File System (HDFS) and the average user. In order to achieve
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Figure 13. NameNode Overview Using Web User Interface Communication

Figure 14. Hadoop UI Defaults TCP Ports



the above approach,  we created an interface  using Python Programming Language,  that
includes the basics interactions with HDFS.

Nowadays, python includes variant deployments such Jython, scripted in Java language for
Java Virtual Machine:  IronPython scripted in C# , and PyPy version scripted in RPython
and interpreted into C. Most of these modules are free, open-source software and most of
them are implemented on community development models.

Some important advantages while programming and executing in Python involve:

 Appearance of 3rd Party Modules

 Wide Range of Supported Libraries

 Open Source Development and Huge Community

 Easy Learning 

 Available Foundation Support

 Suitable Data Structures

 Speed and Productiviness

In the direction of creating a Deep Learning API, which detects possible ships positions into
satellite images (more details in chapter 5) and highlight usage and availability of a Big
Data  Ecosystem,  such as  Hadoop,  we created  a  (data)  warehouse  of  unstructured  data,
which  contains  images  of  ships  to  train  the  model,  json  files  with  all  the  essential
informations and also port images which they has to be scanned, using deep-learning API,
and lead us to the desired results [14].

All of the usual file system operations are available to the user, such as creating directories,
moving, removing and copying files, listing directories and modifying permissions of files
on the cluster.  The required script development took place using Spyder environment an
open  source  cross-platform  Integrated  Development  Enviroment  (IDE)  for  scientific
programming executions and implementations using Python language. Spyder integrates an
amount of conspicuous packages in the scientific Python stack, inclusive of NumPy, SciPy,
Matplotlib, Pandas, Ipython, SymPy and Cython, as well as other open source packages. It
is released under the MIT license. 

Many of the familiar commands for interaction with the file system show up, specified as
arguments to the hadoop fs command as flag arguments in the Python style—that is, as a
single dash ( – ) supplied to the command. Secondary flags or options to the command are
specified with additional Python style defined functions delimited by including the initial
command. 

An important note is that the hdfs command execution occurs by adopting the permissions
of the specific system user, running under a (specific) command, each time. The subsequent
instances are exexuted run from a user named ‘hduser’ on a group named ‘hadoopgroup’.

The initial  step  is  the (remote)  connection  to  the  HDFS cluster,  which in  our  occasion
obtained IP 192.168.0.10.
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Next  step  is  the  usage  of  a  function,  called  ‘root()’,  for  listing  the  contents  and folder
destinations  of the user’s home directory on HDFS equivalent  to ‘ls’ argument  in linux
terminal. The output result of the called function is a list with all contents in a uni-code
string format.

Home directories within HDFS are stored in /user/$HOME directory, where $HOME define
during installation process. From the previous example with listing root’s contents , can be
recognized that any /user_type directory does not currently exist. To create any type of a
/user_type directory within HDFS, we use a function called mkdir that includes ‘mkdir()’
command.  Giving  the  direction  name,  the  pythonic  function  place  it  on  the  desired
destination (root or any other that already exists).

As can be seen in figure 16, HDFS home direction (root) contains a number destination
folders, which created using mkdir function. Information about files or destination folders
can be received using a function called ‘info()’, with output results in dictionary format.
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Figure 16. List of the Contents Files and Destination Folders in Root of HDFS

Figure 15:  Connection to HDFS Cluster using IP 192.168.0.10

Figure 17: Create New Direction in HDFS



Giving the desired destination (or file), we received a diversity of informations for the folder
such as:

 Folder Name, folder owner and group

 Kind of content (directory or file), encryption and size infos

 Replication factor and number of block size

 Permissions of the specific file 

 Used and non-used capacity in combination with HDFS system

 Information about containing files in the current path

Figure 18 outputs the results of the above function usage for the path called ‘shipsnet’. We
can collect a lot of interesting informations about this directory, as well as about its contents.
This directory contains all the ships images, used for the development of Deep Learning
API, for ships recognition and detection in satellite images.

Figure 18: Getting Information for Path called ‘/shipsnet’

Path called ‘scenes’ contains all the satellite port images, which scan every time to detect for
ship existence or not, path ‘json_files’ , all json files with the required informations, path
‘zip_files’ all used data in compression format. Finally, after hbase installation, for which an
extended reference takes place in chapter 4, a destination folder called ‘hbase’ contains all
the used data in the appropriate format.
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Following directory creation for the current user, data is available for transmission through
the user’s HDFS home directory with the usage of put command. This command copies a
specified from the local file system on HDFS. During interface development,  a function
called ‘importing()’ created for writing files to the distributed file system without removing
the  local  copy.  Current  command  asks  for  the  (complete)  local  and  distributed  file
destination.

On the opposite, data can also be replicated from HDFS to the local filesystem using the get
command.  This  command  copies  existing  file  from  HDFS  destination  to  the  local
filesystem. Function called ‘retrieve()’.
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Figure 19. Getting Information for Path called ‘/scenes’

Figure 20. Import Unstructured Data from Local to HDFS



On many occasions, such as during the current Deep Learning API development, observed
the need of  batch processing. During this process, large datasets get as inputs all at once,
resulting in large process and write outputs between two destinations. 

Batch processing is the execution of a series of jobs in a program on a computer without
manual  intervention  (non-interactive).  Strictly  speaking,  it  is  a  processing  mode:  the
execution of a series of programs each on a set or "batch" of inputs, rather than a single
input. Hadoop’s MapReduce is the best framework for processing data in batches.

As long as, scope of the thesis is the development of a Pythonic interface between local
system and HDFS, two functions  that  import  and retrieve data  in batches  were created.
Along these lines, the successful import of a whole dataset of 4000 satellite images of ships,
from local to HDFS and vice versa, took only a few milliseconds.

Figure  22  demonstrates  the  function  that  implements  batch  imports,  called
‘batch_im_cmd()’,  whilst  the opposite  function,  called  ‘batch_retr_cmd()’.  Both of them
works in the same way, as ‘importing’ and ‘retrieve’ functions, which mentioned above.

As mentioned earlier, HDFS has POSIX-like file permissions. Three types of permissions
are defined: read ( r ), write ( w ), and execute ( x ). These permissions indicate the access
levels for the owner, the group, and any other system users. For directories, the execute
permission allows access to the contents of the directory, however, execute permissions are
ignored on HDFS for files. Read and write permissions in the context of HDFS specify who
can access the data and who can append to the file. Permissions are expressed during the
directory listing command ls . Each mode has 10 slots. The first slot is a d for directories,
otherwise a – for files. Each of the following groups of three indicates the ‘rwx’ permissions
for the owner, group, and other users, respectively. There are several HDFS shell commands
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Figure 21. Retrieve Unstructured Data from HDFS to Local

Figure 22. Batch Data Import from Local to HDFS



that allow to manage the permissions of files and directories, namely the familiar chmod ,
chgrp ,and chown commands. 

Function called ‘chown()’ changes the owner and the group of a path or file.

Function  called  ‘chmode()’ changes  the  permissions  of  a  path  or  file,  using  an  octal
representation of the flags to set for the permission triple.

An important issue with file permissions on HDFS consists the identity definition of the
client, that is created by the username and groups of the process operating across HDFS,
which means that remote clients can create arbitrary users on the system. These permissions,
therefore,  should  only  be used  to  prevent  accidental  data  loss  and to  share  file  system
resources between acknowledged users, not as a security mechanism.

These are the most important functions that were created during the development of the
pythonic  interface  between  an  average  user  and  HDFS environment.  Besides  of  these,
interface  includes  a  number  of  additional  functions  that  provides  more  interaction
capabilities and operations such as:

 ‘remove()’ function that deletes directories and/or contents

 ‘move()’ function that move a file from a path to another

 ‘read()’ function that returns the contents of a stored file on HDFS

 ‘du()’ which represents disk usage for the files on a path

 ‘set_repl()’ function that instructs HDFS to set the replication for the given file or
path
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Figure 23. Change of Owner and Group on a Path or a File

Figure 24. Change of Permissions on a Path or a File



Chapter 4 

HBase Infrastructure
Development
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4. HBase Infrastructure Development
HBase,  actually,  consists  Hadoop’s  database  where  data  access  on real-time  along with
scalability capabilities are implemented. HBase designation was positioned on the BigTable
architecture, a database was dispatched by Google. HBase scopes in the deployment of an
environment which stores and process Big Data with ease. It is an open source, distributed
with a numerous versions database model that adopts NoSQL (Not Only SQL) architecture.
It can be applied on the local file systems and on HDFS. Furthermore, parallel process of
Big Data among Hadoop clusters  can be implemented using MapReduce.  An additional
important feature consists the combination of storage in conjunction with parallel computing
, by using a specified configuration process to manipulate [15].

4.1 Limitations of the Traditional Databases

As Bloor mentioned: «With the development of the Internet technology, especially the Web
2.0 applications, like Facebook, and Twitter, the data processing technology has to face the
problem of the changes in data amount, data structures, and the processing requirements. All
these  changes  and  problems  have  brought  great  challenges  to  the  traditional  RDBMS,
mainly reflected in three respects» (Bloor, 2003). 

Nowadays, conventional databases cannot adjust to the various types of data structures due
to the large amounts of semi-structured and unstructured data, for instance, the emails, web
pages, images and videos, which cataclysm network. RDBMS are initially composed for
structured data, where is not easy to achieve manipulation processes between derived data in
an  efficient  way.  Furthermore  traditional  databases  are  unable  to  manage  the  highly
coexisting writing operations. It is commonly approved  between new websites formats the
necessity  to  produce  dynamic  web  pages  to  display  the  data,  like  the  social  updates,
corresponding to the customized features, when the users  activities as the output result data
into the database. There is a huge differential point between the traditional static pages and
the modern pages. The conventional relational database is not good at the high concurrency
writing operation as well as are inadequate to handle rapid alterations on network traffic and
data types[16]. 

Pre-mentioned alterations require the ability of a powerful extensibility in the hardware and
data structure construction of the database recognized as one of the major vulnerabilities of
the RDBMS.

4.2 Architecture of HBase

Hbase positioned on the primary storage of HDFS, implementing the MapReduce model to
for data processes, and collaboration with the ZooKeeper [17],[18].

According to Figure 25, HBase Architecture contains the following four key components:
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(Copyright 2015, Lars George, HBase:The Definitive Guide)

 HBase  Client:  Main  user  of  the  HBase,  which  handles  operations  side  by  side
HMaster and read/write processes with HRegionServer.

 HMaster: Is responsible for importing, deleting, and quering the data. It adapts the
HRegionServer load balance and the Region distribution to confirm that the Region
will go ahead to the next available Region when any HRegionServer failure may
occurs. An HBase environment can initiate a mechanism with a backup Hmaster to
avoid possible failures.

 ZooKeeper:  Can supply distributed colalboration, configuration functions as long as
synchronization. The ZooKeeper regulates all the clusters of HBase that includes the
HMaster  position  and HRegionServer  condition  information  by manipulating  the
existing data.

 HRegionServer:  Is responsible for reading and writing queries administration and
executing the equivalent processes on HDFS for the users.

4.3 Comparison Between HBase and RDBMS

HBase databases are frequently in correlation with the conventional  RDBMS due to the
different approach on implementation structure and execution results. HBase and RDBMS
can put in place of each other in some specific circumstances[15]. 

HBase composed as a distributed database system where the fundamental warehouse storage
deposition  employs  the  Hadoop  Distributed  File  System  and  does  not  require  severe
obligations concerning the hardware platform. 

The  major  differences  between  these  two  contrasting  types  of  databases  consists  the
operation structure alongside with the designation purpose [19].

 Hardware Requirements: RDBMS is row-oriented meaning that during the reading
process, the users are required to pass the whole data even if they examine only few
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columns revealing the necessity of greater, higher performed and more expensive
hardware  to  encounter  the  desired  results.  Oppositely,  HBase,  is  a  new column-
oriented  database  format  which  grants  easier  access  to  the  data  with  equivalent
aspects  following in  better  data  connection  speed results.  HBase perform higher
proceeding results due to its column-oriented construction. Meantime, HBase can be
implemented  on a  broad amount  of  low-cost hardware machines  whilst  can also
maintain high performance levels. 

 Extensibility: HBase due to the parallel processing capability of HDFS, can expand
the extensibility by simply running the RegionServer. On the other hand RDBMS is
capable of a limited extensibility at the time that does not hold up the architecture
ability of importing node.

 Reliability:  During  possible  failure  on  storage  nodes  of  RDBMS  data  could
completely  lost,  even  if  master-slave  model  can  provide  a  degree  of  safety.
Meanwhile, in HBase as a result of the distributed architecture among MasterNode
and  SlaveNodes  and  the  existence  of  (distributed)  replicas,  highly  reliability  is
provided.  

 Difficulty in Use: Compared to RMDBS, HBase interaction is still at an early boost
stage where the advanced developments processes are more rare resulting in high
HBase  interaction  difficulty.  Nevertheless,  the  evolution  of  Hadoop  technology,
highlights hot-spots of HBase during data processing which could subscribe to a
possible popularity increment of HBase advantages.

Situated on the above comparison between these two database systems, it becomes clear the
RDBMS is applicable for the plurality of small-scale data operation cases. At the other hand
HBase can be acknowledged as an ideal solution when the data production approaches a
really huge or giant amount of information.

4.4 Interaction with HBase by Developing a Pythonic Interface

Chapter 4 focuses on the representation of HBase environment,  one of the core parts of
Hadoop ecosystem environment.  Αs Gardner’s  analyst  Merv Adrian  said  «Anyone who
want to keep data within HDFS environment and want to do anything other that brute-force
reading of the entire file system (with MapReduce) needs to look at HBase. For random
access, you need to have Hbase». HBase offers rapid reads and writes, randomly, that are
impossible  to  be manipulated  by Hadoop, as long as RDBMS. In such a  manner,  finds
extensive application capability in commercial enterprise.

HBase is a column-oriented, distributed as well as NoSQL database sits on top of HDFS. All
rows in HBase are always sorted in lexicographical way by using their row key. Placing in
order in lexicographical sequence, each key related on a binary level, from left to right, byte
by byte. 

Data stored in HBase is grouped into tables. Conceptually, a table consists of a collection of
rows and columns. Each row in HBase database has an exclusive row key and multiple
column keys. The values are correlated with column keys. Client can create an arbitrary
number of columns using new column attribute on the fly. As Columns in HBase defined the
correlation between the column family name and column qualifier (called also column key
or attribute), separated by colon: column family: column qualifier. Figure 26 illustrates the
basic schema of HBase table.
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(Copyright 2015, Bikash Agrawal, Analysis of Large Time-Series in Open-TSDB)

Creating  an  HBase  table  instance  is  time  consuming.  Because  each instance  of  HTable
includes  examination  of  the  META-table  to  confirm  if  the  table  already  exists  and  is
enabled. So, it is always better to reuse the HTable instance and close the HTable instance
after completion of the task. The META and ROOT tables are internal system tables. The
ROOT table keeps list of all regions in the META-table whereas the META-table maintains
a record of the whole regions in the system.

HBase provides a Java API for client  interaction.  In combination with the aid of Thrift
server and Python language bindings, HBase can be accessed in web services, quite easily
and in a user-friendly way. 

The development  of  a  user-friendly  interface  that  embeds  all  the basics-read,  write  and
delete-operations of HBase, as of any common (relational) database, and manipulates the
input data was held by using Python. During a data manipulation process, we used all the
required information about Chapter’s 5 API, such as labels of images, scene id, longitude
and latitude coordinates, as well as API’s prediction results, such as possible coordinates
positions of the ships, on the satellite images.

HappyBase is a suitable Python development library to communicate with Apache Hbase. It
is appropriate for HBase setups, and comes along with an application to interact with HBase
database. HappyBase includes the Python Thrift library to interact with HBase by making
usage of HBase’s Thrift gateway, that is pre-installed into newest releases of HBase [20].

HBase installation process was also implemented in Pseudo-Distributed mode, where all the
master(HBase Master) and slave (Regionservers) daemons run on the same machine, using
Hadoop Distributed File System (HDFS), at 192.168.0.10.

HBase  still  initializes  a  web  user  interface  (UI)  giving  a  lot  crucial  attributes  and
informations. By default, a UI is implemented on the master host at port 60010. After HBase
configuration, we set the browser at http://192.168.0.10:60010, to display  master’s home
summary page to connect and retrieve a diversity of informations related to HBase cluster,
such as list of tables, running operations or informations about the group of nodes. 
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Figure 27. HBase Master and Slave Initialization

Figure 26. HBase Table Schema



HBase region servers UI is initialized at  60030, giving a lot  of crucial  informations,  as
grants permissions for currently used servers, existence of region server tables even report
for the active regions. Following cluster’s initialization, must be confirmed the enrolment
among all the region and the master server, as well as that HBase and Hadoop are indeed
running the correct version.
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Figure 29. HBase Slave Web User-Interface

Figure 28. HBase Master Web User-Interface



The initial step is the (remote) connection to the HBase, which in our occasion obtained IP
192.168.0.10, by creating a new Connection instance. Meanwhile, a new socket connection
to the Thrift server (which is located into HBase configuration) established, supplying by
this way the main entry point to interact with HBase.

After the creation of a connection instance, we created a function called ‘main()’, to list the
available tables. Figure 31 displays the results made from the usage of the above function.
The HBase filesystem includes a table called ‘Ships_CNN’, which accommodates all the
necessary informations, before and after the creation of API in Chapter 5.

Using the ‘table_info()’ function,  a lot informations about regions and column families of a 
specific table can be retrieved. 

The most usually applied methods for database system administration tasks like creating,
dropping,  enabling and disabling tables,  were also implemented  as  part  of the interface
development.

Many  times,  an  instance  creation  between  the  client  and  the  thrift  server  may  close,
resulting in the demand of a new connection establishment of a table. Interaction with non-
existing  tables  later  may return  errors.  By using  ‘exist_table()’ we can check if  a  table
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Figure 31. List of All Available Tables in HBase

Figure 32. Regions and Column Families Infos for a Specific Table

Figure 30. Remote Connection to HBase Host



already exists or not, while the ‘create_table()’ function creates a new one. On the other
hand ‘del_table()’ completely deletes an existing table.

The  structure  of  a  HBase  table  includes  column  families  with  column  qualifiers,  also
consisting  of  a  value  and  a  timestamp.  Meanwhile  column  families  and  qualifiers  are
specific approaches in the HBase data model, are most commoly implemented all at once,
during interaction and manipulation processes alongside the data.

To store a single cell of data in a table, the ‘store_values()’ function was created. For an
existing table connection, this function asks for family name and quality, row key number
and  value.  Function  ‘del_row()’ implements  the  opposite  operation:  given  a  preferred
(existing) row key number, it deletes the corresponding registration.
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Figure 33. Existence, Creation and Delete of Tables into HBase



The function to retrieve data from a table is called ‘retrieve_row()’, while ‘retrieve_rows’
returns specific rows, selected by the user. In the example below, we used ‘retrieve_row()’,
with row key number equals to 56. Ships_Info is the column family, Longitude, Latitude,
Labels and Scenes ID column qualities in addition to the corresponding values.

Additionally,  due to the purpose of getting data informations from specific rows ids (or
keys) all rows in the table executing a full table scanner, implemented through the ‘scan()’
function. Full table scans are prohibitively expensive in practice, so, using more restricted
scan processing, such as using ‘retrieve_rows()’ function that pre-mentioned, to make more
selective range queries, are always preferred.
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Figure 34. Storing and Deleting Data in HBase Table

Figure 35. Basic Functions for Retrieving Specific Values from HBase Table 



Methods such as ‘store_values()’ or ‘del_row()’ are not adequate when the import or delete
operations includes a numerous size of dataset. The ‘batch_hbase()’ function does creates a
group of instances involving put (and/or delete) method, where the total alterations number
are directed back to the server in a distinct round-trip. Executing this function, a number of
4000 information row key numbers were stored into Ships_CNN table in one go. Figure 37
illustrates function’s usage, where column-families and qualities were asked, while values
retrieved from a specific source (numpy table, json file). 
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Figure 37. Batch Storage in HBase Table

Figure 36. Full Table Scan Iteration



Chapter 5

Ship Detection In Satellite
Imagery Using Deep Learning
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5. Ship Detection In Planet Satellite Imagery Using Deep
Learning
Chapter  5  highlights  the  Hadoop  Distributed  File  System  (HDFS)  functionality  in
conjunction with the development of a Deep Learning Application that classifies and detects
ships using planet satellite imagery, which captured at San Francisco Bay. 

The Hadoop Distributed File System (HDFS) is used as a storage warehouse, by creating
specific directories, where the dataset includes ships exported from planet satellite imagery,
essentially for using and testing the API’s functionality, as long as the extracted detection
results,  such  as  ships  detection  on  satellite  images,  predictions  results,  are  stored.  The
Pythonic interfaces that were presented in chapters 3 and 4 are used for the specific purpose
of interaction.

5.1 Application Description

Satellite  imagery  provides  unique  insights  into  various  markets,  including  agriculture,
defence and intelligence, energy, and finance. New commercial imagery providers, such as
Planet, are using constellations of small satellites to capture images of the whole Earth every
day.

This  overwhelming  growth  of  imaginary  datasets  increases  the  efficiency  on  visual
examinations,  where the necessity  for machine learning and computer  vision algorithms
become more important to make automation and analysis processes more suitable. Dataset
created in the point of detecting the location of large-sized ships in satellite images.

5.2 Ship Detection Dataset Parameters 

The dataset is comprised of images of ships exported from Planet satellite imagery collected
over the San Francisco and San Pedro Bays areas of California. There, 4000 images, 80x80,
3-channel format (RGB images), labelled with either a "ship" or "no-ship" classification, are
contained. Ships images were collected from the Planet.com along with full-frame visual
products.

By providing a zip-format directory called shipsnet.zip that contains the entire dataset as
.png ship image. Each individual image filename follows a specific format: ‘label-scene id-
longitude-latitude.png’ format, where:

 label: Representation values of one (1) or zero (0) corresponds to the "ship" or "no-
ship" class.

 Scene id: Combined with the Planet application helps to find the entire scene, as the
one and only identifier of the Planet Scope. 

 Longitude & latitude: Coordinates of the image. Their values are split by the usage
of an underscore.

Additionally, the dataset is formatted as a JSON text file called shipsnet.json where data,
label, scene_id, and location lists are included.
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The whole dataset was stored and manipulated using the Hadoop Distributed File System
(HDFS) pythonic interface, which was introduced in chapter 3. Using the pythonic interface
application  three  new  storage  directories  were  created-called-‘shipsnet’,  ‘scenes’  and
‘json_files’, where  images of ships or non ships images, San Francisco and San Pedro Bay
images  and  JSON  formatted  file  were  stored,respectively.  Furthermore,  the  ‘zip_files’
directory,  includes  the  entire  dataset.  Using  the  ‘retrieve()’  function,  which  was  also
mentioned in chapter 3, we download the data from HDFS, speeding up the process, since
there in no longer necessity for data loading in local computer, in order to train and validate
our model (Reference on Appendix A).
 

Every pixel among 4000 images is listed as 19200 integers inside the data. The first 6400
entries includes the red channel, following 6400 the green, and last 6400 the blue channel.
Image storage set up in row-oriented sequence where the first 80 entries of the array consists
the red channel values of the first row of the image.

The ‘ship’ class includes 1000 images that are center-oriented on the body of a single ship
with  different  sizes,  and  atmospheric  conditions.  Example  images  from  this  class  are
illustrated in figure 39.
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Figure 38. Storage Direction of Dataset on Hadoop Distributed File System

Figure 39. ‘Ship’ Class Sample Images



The  "non-ship"  class  includes  3000  images:  first  1000  entries  consists  of  a  randomly
collected samples of different land displays (such as water, buildings) that do not contains
any piece or part of a ship. Following 1000 includes just a piece of ship, when, the last 1000
images have previously been mislabelled by machine learning models, typically caused by
bright pixels or strong linear features. Example images from this class are shown below.

5.3 Convolutional Neural Network Architecture

The Keras library is a high-level module for building neural networks. Specifically, Keras is
a powerful as well  as simple Python library for deep learning construction.  During ship
detection network configuration, a mass number of libraries were used: numpy, a library
responsible for elements storage into arrays for specific processes, matplotlib for graphics
display, PIL for images manipulation and some also Kera’s included, appropriate for model
compilation, such as Sequential for model initialization in a sequence way between each
layer, Conv2D, MaxPooling2D, Flatten, Dropout and Dense for the linear stack creation,
which is referred below.

 

The  Keras  Sequential  Model  usually  consists  of  a  linear  stack  of  layers.  The  most
commonly used structure of Convolutional Neural Networks (CNN) is composed of three
different types of layers.: Convolutional, Pooling or fully connected. Each layer type has
different rules with respect to forward and error backward signal propagation [23]. CNNs
typically uses multilayer preceptron structures: an input layer, some hidden layers as well as
an output layer.

Figure 42 illustrates the above structure: Feature extraction part, is used for combinations of
convolutional and pooling layers, when classification part is using fully connected layers, to
output the results. 
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Figure 40. ‘Non-Ship’ Class Sample Images

Figure 41. Appropriate Libraries for Ship Detection Network Configuration



(Copyright, Piyush Rai, Deep Learning: Models for Sequence Data)

For the present ‘Ship Detection Application’, a usual Convolutional Neural Network that
(CNN) was used, involving four major steps:

 Convolution step

 Pooling step

 Flattening step

 Full Connection step

Convolutional Neural Network needs to bear in mind the exact input shape that have to
expect, which in our occasion equals to 80X80X3, as our images are of size 80X80 pixels
and  uses  3  channels  (RGB  format).  A ‘relu()’ function  was  selected  as  the  activation
function for the first four (4) layer, which is suitable to repair problems that are appeared
with dying rectified linear units, by helping network learn into new decision edges.

Convolution implement on the training images takes place by the convolutional layers.  As
pre-mentioned  above,  CNN’s  Model  hidden  layers  are  composed  from 4  convolutional
layers, approved to learn more complex representations, prevented from data under-fitting.
Convolutional layers uses 32 filters, where every filter is in the shape of 3X3 due to the
intake defined as a 80X80 pixel coloured image in a RGB format and the layer used rectifier
function for handling and manipulating processes. Convolution layers are two-dimensional
(2d), as the images are two-dimensional pixel data arrays [24],[25].

Following to each convolutional layer, there are four max-pooling layers, which performs
the pooling operation using a max-pooling function, because of the necessity to distinguish
the maximum pixel for each district of interest. 

The pooling layer performs a pooling process, where following convolutional  operation,
outputs  multiple  feature  maps  per  image  and  pooling  operation  runs  on  this  output,
collecting these by the usage of a 2X2 matrix to minimize the pixel loss while getting a
precise region around feature locations. 

The output from the last pooling layer was flattened from the two-dimensional (2d) array
into a one-dimensional  (1d) array,  which-after that-was fed into the feed-forward neural
network accepting 4096 values array.
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Figure 42. Typical Structure of Convolutional Neural Network



The output from pooling layer was finally flattened to get a one-dimensional (1d) single
vector, which was then fed to the hidden layer just like in simple feed-forward network
introduced before, needed for the two-class classification. Output layer consists of a dense
layer configured with a sigmoid function for binary classification process.

Furthermore,  a  dropout  layer  was  added  to  overcome  possible  over-fitting  problems.
Dropout  randomly  turns  off  a  fraction  of  neurons  during  the  training  process,  causing
reductions  of  the reliance  on the  training  set  by some amount.  The specific  number  of
neurons which are important to be deactivated is determined by a hyper-parameter equalled
to 0.25 that was set during configuration process. Through this process the model keeps in
memory the fitting (working) data without taking account of unused neurons.

Figure 43 illustrates  the compilation process for the current ship detection model,  using
‘add()’ function to import the beyond mentioned hidden layers.

Subsequently, model’s compilation takes place, using a function called ‘compile()’.  Some
important  configuration  informations  during  model  compilation  (training)  consists  the
learning  process  parameters  configuration:  The batch  size,  which  is  responsible  for  the
division of the model in a fixed (batch) size, anyone of them receiving a steady number of
images to train. For the avoidance of memory errors, usage of batch sizes in the power of
two (2) in addition to  specified  sizes affordable  by computer’s  RAM can lead to better
results:during our model compilation process, batch size number which was selected was
128 (7th power of 2). As Optimizer, for maximization activation of the model , Stochastic
Gradient Descent (SGD) was used in order to train the CNN, due to its indication for this
kind of networks. Validation split was used was 0.2, which means that 20% of the total
dataset,  was randomly picked as validation data,  for validation processes usage.  As loss
function,  ‘categorical  crossentropy’ was selected,  in the way that one-hot encoded used,
during images labels conversion. Finally, training epochs (or iterations) indicates the total
number that the network is trained. Network was trained for 12 epochs, meaning the specific
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Figure 43. Model's Hidden Layer Configuration Output



number of times iterations go through the training set. Usage of ‘fit() function outputs (the
possibility  to  use)  history  objects,  while  model  suits  to  the  data.  Calling  ‘summary()’
function offers the ability to visualize important informations about pre-constructed model.

5.5 Prediction Results

After the implementation of learning/training process, using ‘fit()’ function, the model on
ships satellite images, by using pre-mentioned parameters, as long as observing the training
accuracy  and  loss  functions  results,  concluded  that  the  model  output,  for  the  previous
mentioned,  number  of  epochs  the  training  accuracy  is  98,52% and  the  training  loss  is
enough low, almost 4,38%, while validation accuracy is 99,14% and validation loss 3,26%.

Evaluating the performance of the model on the test set, it is obvious that both validation
loss  and  accuracy  are  in  harmonic  synchronization  with  the  corresponding  training
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Figure 45. Model Compilation & Prediction Results of Ships Detection Application

Figure 44. Ship Detection Learning Process Configuration



characteristics leading to the conclusion that the model was not over-fitted. It is approved
that model's efficiency improved  by the time that the loss test process was almost equal
compared to training loss, as the first (validation) is reduced  throughout the epochs, while
the gap between training and validation accuracy was eliminated. 

Accuracy and Loss Plots (Figure 46) along with Predictions results are stored in ‘Predictions
Weights’ directory into HDFS, in order to be available at any moment a new prediction
process needs to be made,  without neccessity of model retrain.  Saving Keras models in
HDF5 (.h5) format-optimal for saving multidimensional arrays of numbers-files economize
days, even weeks of model (re)training.

5.6 Visualization of Prediction Results

After the completion of training process, evaluating neural network consists the last step. In
this case, we tried to get a glimpse of well your model performs by picking 10 random
images from validation data and receiving, as label, the predicted result.
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Figure 47. Save Keras Models into HDFS for Future Load

Figure 46. Accuracy and Loss Plots Between Training and Validation Data



Looking at a random sample of twenty (20) images into the validation data, we assured that
predicted labels of the earlier trained model are quite close to the real labels, confirming by
this way, the accuracy of the current model.

Except of making predictions on ships or non-ships labels, on images, current algorithm also
searches on real captured bays satellite images for ship detection into these. HDFS storage
directory called ‘scenes’ includes 8 Planet satellite images, from bays areas, captured from
San Francisco and San Pedro. Figure 50 illustrates the prediction results  during satellite
image scanning, using previous model prediction results. White, rectangle patches used for
highlighting possible hotspots of ships detection. 
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Figure 49. Visualizations of ‘Non-Ships’ Labels Predictions

Figure 48. Visualizations of ‘Ships’ Labels Predictions



Contributing with Hadoop Distributed File System, by using pythonic interface application,
a newly storage direction, called ‘Prediction Output Results’, was created. 

Output results brought out from the previous model were stored, from local to HDFS, using
‘importing function()’.  
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Figure 50. Searching on Satellite Images of Bays for Ships Existence

Figure 51. Creation of Output Storage Direction into HDFS



The above figures depicts  the HDFS pythonic interface application in combination with
‘Ships  Detection’ application  deployment.  For  the  sake  of  the  example,  HDFS storage
application  inputs  necessary  datasets  for  the  development  of  the  model,  while  output
prediction results were also saved in HDFS, to an additional specified directory, showing the
interaction process between a big data platform and deep-learning technology.

Figure 54 gives an explanatory illustration schema where Hadoop Distributed File System
(HDFS) and HBase Database Ecosystem interact  both each other,  as  long as  with Ship
Detection (Deep Learning) Application, which was developed and implemented.
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Figure 53. Searching for Directory Contents in HDFS

Figure 52. Inporting of Output Data into HDFS
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Figure 54. Ship Detection Model using Hadoop Ecosystem Interaction Schema



Chapter 6

Conclusions 
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6. Conclusions 
Big data is becoming extremely widespread among IT Research and Development projects.
Big data technology is already present also in a wide range of enterprises, infrastructures
and organizations for solving practical every-day problems. At the same time, the rate of big
data generation and development increases in a tremendous manner.

The current master thesis, after an overview of the big data landscape, introduced the core
technology  of  the  Hadoop  Ecosystem  where  a  massive  number  of  applications  and
development  processes  already  exist.  Hadoop   is  the  most  commonly  used  and
acknowledged framework for big data processings in an efficient and expandable way. It’s a
reliable,  exceptionally scalable,  error tolerant  as well as profitable  solution that supports
cluster distribution computing and  the  manipulation of petabytes of data on a massive
amount of nodes. Hadoop is composed of two main components, HDFS and MapReduce,
and  it  is  a  recommended  method  for  storing  and  processing  of  semi-structured  or
unstructured  data.  Industry leading organizations  such as  Google,  Yahoo,  and Facebook
approved and selected the Hadoop’s environment framework.

HBase  is  a  column-oriented  database  constructed  on  the  Hadoop  Platform,  capable  of
offering  several  advantages  in  comparison  with  conventional  row-oriented  databases.
RDBMS  fails  in  scaling  data  efficiently  as  well  in  a  cost  effective  way,  despite  their
partitioning and parallel processing capabilities. At the same time, RDBMS comes along
with  structured  data  and  is  proven  inadequate  for  handling  unstructured  one,  which  is
commonly used by high-tech applications as smart-phones, and social networking websites.

The Python programming language comes along with a high number of implementation
examples and a large amount  of standard libraries covering a wide range of technology
fields.  Using  Python,  the  interaction  with  the  Hadoop  Distributed  File  System and  the
HBase environment can be more efficient and comfortable for the decent user, by creating
appropriate  programming  interfaces,  in  this  specific  easy  to  learn  and  powerful
programming language, which is used in many scientific projects, as well as in machine
learning, hacking and web developing fields. 

The main scope of this Thesis is the contribution to the current state of interaction between
the Hadoop Distributed File System (HDFS) and the average user, by creating an interface
for the basic interaction with HDFS, using the Python Programming Language. Towards this
end, a user-friendly interface that embeds all the basic operations of HBase was developed
and  showcased  for  handling  the  data  required  by  a  Deep  Learning  application.  More
specifically, the application is about detecting possible ship positions within satellite images
by using  a  deep neural  network  of  layers.  Training  the  network  requires  a  pretty  large
amount of imagery data, labelled as ‘ship’ or ‘non-ship’, while its full deployment for real
use purposes meets  the Big Data characteristics.  In our thesis,  we demonstrated how to
store, retrieve and use this data in the Hadoop-HBase ecosystem. Using our experimentation
results,  we conclude  that  Hadoop and HBase offer  adequate  stability,  expandability  and
latency in a huge amount of data manipulation. The matter of contention relevant to stability
of Hadoop and HBase is being investigated by many developers in more recent releases.

Future work includes construction and benchmarking of machine learning algorithms on
infrastructures that tend to or already manipulate artificial intelligence applications fed by
big data.
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APPENDIX A. ΠΕΡΙΛΗΨΗ

Τα μεγάλα δεδομένα έχουν γίνει ιδιαίτερα διαδεδομένα στις καθημερινές δραστηριότητες
μεγάλων οργανισμών κι επιχειρήσεων. Το μέγεθος των μεγάλων δεδομένων και του ρυθμού
αύξησής  τους  είναι  τεράστιο.  Η  τεχνολογία  μεγάλων  δεδομένων  είναι  βέβαιο  ότι  θα
χτυπήσει σύντομα την πόρτα κάθε επιχείρησης και οργανισμού σε κάθε τομέα.

Η  ορολογία  των  μεγάλων  δεδομένων  αφορά  μεγάλες  ή  πολύπλοκες  δομές  δεδομένων
τέτοιες ώστε οι παραδοσιακές εφαρμογές επεξεργασίας δεδομένων είναι ανεπαρκείς για την
αντιμετώπισή τους. Τα οικοσυστήματα μεγάλων δεδομένων δύναται να βοηθήσουν στην
ακριβέστερη ανάλυση,  τη λήψη καλύτερων αποφάσεων,  στη βελτίωση της  λειτουργικής
αποτελεσματικότητας, την ελαχιστοποίηση του κόστους και των απειλών για την εκάστοτε
μορφή επιχείρησης. Περιλαμβάνουν τεράστιο όγκο, υψηλή ταχύτητα και εκτάσιμη ποικιλία
δεδομένων και μορφών.

Τα  Συνελικτικά  Νευρωνικά  Δίκτυα  (Convolutional  Neural  Networks  ή  CNN)  είναι  η
κορυφαία  αρχιτεκτονική  στη  βαθιά  μάθηση  που  χρησιμοποιείται  για  τις  τεχνικές
επεξεργασίας  εικόνων.  Δουλεύουν  σε  εικόνες  με  τρόπο  παρόμοιο  με  τον  ανθρώπινο
εγκέφαλο: με την εξεύρεση μικρότερων λεπτομερειών και έπειτα σε υψηλότερα επίπεδα
προς πιο αφηρημένα χαρακτηριστικά.

Σκοπός  της  παρούσας  διπλωματικής  εργασίας  για  το  ‘Διατμηματικό  Πρόγραμμα
Μεταπτυχιακών  Σπουδών  (ΔΠΜΣ)  Γεωπληροφορικής’ αποτελεί  η  εγκατάσταση  και  η
ανάπτυξη ενός συστήματος NoSQL (Not Only SQL) βάσεων δεδομένων. Το σύστημα αυτό
είναι  ένα  διασυνδεδεμένο  σύστημα αρχείων,  με  την  ονομασία  Hadoop  Ecosystem,  που
αποσκοπεί  στην ανάδειξη  ενός  framework ανοιχτού  λογισμικού  (open source)  το οποίο
διαχειρίζεται την επεξεργασία και την αποθήκευση εφαρμογών μεγάλων δεδομένων (big
data  applications)  σε  συστήματα  τύπου  συμπλέγματος  (cluster).  Η  Hadoop  μπορεί  να
διαχειριστεί πολυποίκιλους τύπους-δομημένων και μη-δεδομένων-και αποτελεί το κέντρο
των  τεχνολογιών  μεγάλων  δεδομένων,  οι  οποίες  υποστηρίζουν  πληθώρα  εφορμογών
συμπεριλαμβανομένων της εξόρυξης δεδομένων, αναλύσεων με πρόβλεψη και μηχανικής
μάθησης (data mining, predictive analytics and machine learning).

Το  οικοσύστημα  Hadoop  είναι  το  πιο  ευρέως  αποδεκτό  και  χρησιμοποιούμενο  πλαίσιο
ανοιχτού  κώδικα  για  τον  υπολογισμό  μεγάλων  αναλυτικών  δεδομένων  σε  ένα  εύκολα
κλιμακώσιμο  περιβάλλον,  που  επιτρέπει  την  αποθήκευση  και  επεξεργασία  μεγάλων
δεδομένων  σε  ένα  κατανεμημένο  περιβάλλον  συμπλεγμάτων  υπολογιστών
χρησιμοποιώντας απλά μοντέλα προγραμματισμού. Έχει σχεδιαστεί για να επεκτείνεται από
ένα  διακομιστή  σε  χιλιάδες  μηχανές,  το  καθένα  από  τα  οποία  προσφέρει  τοπικούς
υπολογισμούς  και  αποθήκευση.  Το  Hadoop  είναι  ένα  λογισμικό  Java  που  υποστηρίζει
κατανεμημένες  εφαρμογές  με  μεγάλη  ένταση  δεδομένων  και  λειτουργεί  με  χιλιάδες
κόμβους  έως  και  petabytes  δεδομένων.  Τα  δύο  μεγάλα  κομμάτια  του  Hadoop  είναι  το
HDFS,  το  σύστημα  του  Hadoop  που  τρέχει  πάνω  από  τα  συστήματα  αρχείων  των
υποκείμενων  λειτουργικών  συστημάτων  και  το  MapReduce,  ένα  κατανεμημένο  πλαίσιο
επεξεργασίας, όπου η εφαρμογή διαιρείται σε πολλά μικρά κομμάτια εργασίας, καθένα από
τα  οποία  μπορεί  να  εκτελείται  ή  εκτελείται  εκ  νέου  σε  οποιονδήποτε  κόμβο  του
συμπλέγματος. Διαχειρίζεται πολύ καλά την αποθήκευση και την ανάλυση μη δομημένων
δεδομένων. Το Hadoop είναι μια δοκιμασμένη λύση στο περιβάλλον παραγωγής και έχει
εγκριθεί από κορυφαίους οργανισμούς όπως το Google, το Yahoo και το Facebook.
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Για την ανάπτυξη της απαραίτητης διεπαφής γίνεται χρήση της γλώσσας προγραμματισμού
Python  προκειμένου  να  αναδειχθούν  τα  πλεονεκτήματα  της  Τεχνολογίας  Μεγάλης
Κλίμακας (Big Data Technology).  Στη συνέχεια,  αναπτύσσουμε μια εφαρμογή Τεχνητής
Νοημοσύνης που χρησιμοποιεί  τεχνολογία  Βαθειάς  Μάθησης (Deep Learning),  η οποία
ανιχνεύει  πλοία σε δορυφορικές  εικόνες,  χρησιμοποιώντας όλα τα βασικά εργαλεία του
οικοσυστήματος Hadoop (Hadoop Ecosystem), με φιλικό προς το χρήστη τρόπο.

Στην παρούσα εργασία έγινε ανάπτυξη ενός αλγορίθμου βαθιάς μάθησης (deep learning),
που ανήκει  στην κατηγορία των εφαρμογών μηχανικής  μάθησης (machine learning)  και
αναγνωρίζει την ύπαρξη πλοίων από δορυφορικές εικόνες λιμανιών. Προς το σκοπό αυτό
έγινε χρήση μιας βιβλιοθήκης υψηλού επιπέδου γραμμένη σε Python, την Keras.

Οι πηγές δεδομένων (data sources), για την εφαρμογή του αλγορίθμου, αποθηκέυονται σε
ένα κατανεμημένο σύστημα αρχείων του Hadoop, γνωστό ως HDFS (Hadoop Distributed
File System), το οποίο αποτελεί υποπρόγραμμα αυτού. Το HDFS δύναται να διατηρεί πολυ
μεγάλο όγκο δεδομένων προσφέροντας ευκολότερη πρόσβαση. Η αποθήκευση αυτού του
όγκου γίνεται σε πολλές μηχανές (servers) ‘in redudant fashion’, ώστε να μπορεί να γίνει η
διάσωση του συστήματος από ενδεχόμενες απώλειες σε περίπτωση βλάβης.

Επιπλέον γίνεται  χρήση μιας  ανοιχτής,  μη σχεσιακής,  κατανεμημένης  βάσης δεδομένων
γραμμένης σε Java, η οποία διαμορφώθηκε μετά το Bigtable της Google, αναπτύχθηκε ως
μέρος του έργου Apache Software Foundation, του Apache Hadoop, και λειτουργεί πάνω
από το HDFS παρέχοντας δυνατότητες Bigtable για Hadoop. Η βάση αυτή είναι η Hbase.
Σε αυτήν, αποθηκεύονται πολλά δεδομένα των data sources, που χρησιμοποιούνται πριν και
κατα  την ανάπτυξη του προαναφερθέντος  Deep Learning Algorithm,  όπως  labels  infos,
longitudes,latitudes,  scene  id’s  των εικόνων,  καθώς  και  κατόπιν  της  υλοποίησης  αυτού,
όπως πίνακες που περιέχουν τα αποτελέσματα της πρόβλεψης και τα βάρη κατανομής για
κάθε pixel των εικόνων.

Πιο συγκεκριμένα, η διπλωματική εργασία αποτελείται από τα παρακάτω μέρη: Κατόπιν
της εγκατάστασης του Hadoop Ecosystem, σε ψευδο-κατανεμημένη λειτουργία (pseudo-
distributed mode), σε έναν εικονικό διακομιστή (server), που τρέχει σε μια εικονική μηχανή
(virtualbox),  με  λειτουργικό  σύστημα  Ubuntu  16.04,  κάνουμε  τις  κατάλληλες
παραμετροποιήσεις και την αρχικοποιούμε θέτοντας το σε λειτουργία με IP 192.168.0.10.

Στη συνέχεια έχει  γίνει  ανάπτυξη κατάλληλων συναρτήσεων προγράμματος (scripts),  με
σκοπό την διεπαφή, τόσο με το HDFS, όσο  και την Ηbase. Η ανάπτυξη των scripts έγινε σε
μια  από  τις  πλέον  ανερχόμενες  γλώσσες  προγραμματισμού,  την  Python,  με  την  χρήση
κατάλληλων βιβλιοθηκών. Πιο συγκεκριμένα: Για την αλληλεπίδραση και την διαχείριση
του HDFS, τόσο μέσω του διακομιστή (server), όσο κι απομακρυσμένα μέσω ενός χρήστη-
πελάτη (client), έγινε χρήση της βιβλιοθήκης hdfs3 (open source), με την δημιουργηθείσα
εφαμοργή να δίνει πληθώρα επιλογών, όπως:

 Σύνδεση στο HDFilesystem, με χρήση της κατάλληλης IP και Port Απεικόνιση των
περιεχομένων  του  root  (/),  των  φακέλων  (destination  folders)  αυτού  και  των
περιεχομένων τους

 Απόδοση συγκεκριμένων δικαιωμάτων (permissions) σε χρήστες (users) κι ομάδες
(groupusers),  ώστε να έχουν συγκεκριμένες  δυνατότητες ανάγνωσης, εγγραφής ή
εκτέλεσης (read, write, execute)
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 Δυνατότητα δημιουργίας  νέων διαδρομών/φακέλων  εντός  του  HDFS, αμφίδρομη
μεταφορά  ολόκληρων  φακέλων  ή  αρχείων  από  τον  server  στον  client  (κι
αντιστρόφως), ώστε να πραγματοποιηθούν τα ζήτουμενα tasks (πάντα λαμβάνονται
υπόψη τα permissions που έχουν δοθεί στον εκάστοτε user)

 Δυνατότητα  ανάγνωσης  αρχείων,  απευθείας  από  την  HDFS,  με  σκοπό  την
πραγματοποίηση συγκεκριμένων αναλύσεων

Εντός του HDFS δημιουργούνται ξεχωριστοί φάκελοι προορισμού, που περιέχουν:

 Τις εικόνες που θα χρησιμοποιηθούν για την εκπαίδευση (training) του μοντέλου
αναγνώρισης πλοίων σε δορυφορικές εικόνες

 Αρχεία JSON (JSON Files), που περιέχουν τις μαζικές πληροφορίες του μοντέλου,
τα οποία αποθηκεύονται στην συνέχεια σε πίνακες εντός της Hbase

 Αποτελέσματα της ταξινόμησης (classification) των εικόνων, που προκύπτουν ως
απόρροια του αλγόριθμου (εικόνες που εισάγουμε στον αλγόριθμο κι αποφαίνεται
εάν είναι ή οχι πλοίο, εν προκειμένω)

 Δορυφορικές εικόνες λιμανιών, που έχουν ‘σαρωθεί  ανά pixel κι έχουν αποτυπωθεί  
τα  πιθανά  σημεία,  που  βρίσκονται  πλοία,  εντός  αυτών,  με  την  εφαρμογή  του
αλγόριθμου

Αντίστοιχα,  με  το  προηγούμενο,  έγινε  ανάπτυξη  ενός  application  script,  με  σκοπό  την
αλληλεπίδραση  και  την  διαχείριση  με  την  NoSQL  βάση  δεδομένων  Hbase.
Χρησιμοποιήθηκε  ξανά  μια  open  source  library,  η  happybase  v0.98,  η  οποία  δίνει
αντίστοιχα:

 Δυνατότητα σύνδεσης στην Hbase, που βρίσκεται εγκατεστημένη στην πλευρά του
διακομιστή (server)

 Απεικόνιση των περιεχομένων πινάκων (tables) αυτής

 Δυνατότητα απόδοσης συγκεκριμένων δικαιωμάτων, στον εκάστοτε χρήστη, για τον
εκάστοτε πίνακα

 Δημιουργία και διαγραφή πινάκων, εισαγωγή και διαγραφή τιμών σε αυτούς, καθώς
και η δυνατότητα μαζικής απόδοσης (batches) τιμών δεδομένων, για διαφορετικά
column families, ακόμα κι εντός του ίδιου πίνακα

 Σάρωση  και  δυνατότητα  ανάκτησης  των  δεδομένων,  βάση  συγκεκριμένων
κριτηρίων (rows, columns, column families, timestamps)

Το  τελευταίο  τμήμα  της  διπλωματικής  εργασίας.  όπως  αναφέρθηκε  και  προηγουμένως,
περιέχει έναν αλγόριθμο αναγνώρισης εικόνων πλοίων σε δορυφορικές εικόνες, καθώς και
την πιθανότητα ύπαρξης πλοίων σε εικόνες  λιμανιών.  Για  την υλοποίηση του μοντέλου
έγινε  χρήση  κατάλληλων  datasets  από  εικόνες  που  έχουν  ληφθεί  από  δορυφόρους  κι
απεικονίζουν πλοία εντός λιμανιών και κόλπων.
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Κατόπιν της δημιουργίας του μοντέλου Βαθιάς Μάθησης (deep learning) αποθηκεύουμε τα
αποτελέσματα εντός της Hbase, για πιθανή περαιτέρω ανάλυση και χρησιμοποιούμε εικόνες
πλοίων,  ώστε  να  γίνει  επαλήθευση  των  αποτελεσμάτων.  Τα  αποτελέσματα  δύναται  να
αποθηκευθούν σε ειδικές διαδρομές, εντός του HDFS. Τέλος, κάνουμε εισαγωγή κάποιων
δορυφορικών εικόνων λιμανιών και κόλπων, όπου με τη χρήση κατάλληλων αλγορίθμων
σάρωσης της εικόνας, εφαρμόζουμε τα αποτελέσματα του Αλγόριθμου Βαθειάς Μάθησης
(deep learning algorithm) και απεικονίζουμε πιθανές προβλέψεις.

Το κεφάλαιο 1 παρέχει μια εισαγωγή στα Μεγάλα Δεδομένα και  στο Οικοσύστημα της
Hadoop. Στο 2ο κεφάλαιο αναπτύσσεται μια επισκόπηση του θεωρητικού υποβάθρου που
χρησιμοποιείται  για  τις  διεργασίες  των  εφαρμογών  των  Hadoop,  HBase  και  Βαθιάς
Μάθησης (Deep Learning). Στα κεφάλαια 3 και 4 περιγράφονται οι διεργασίες ανάπτυξης
μια πλατφόρμας διεπαφής με τα περιβάλλοντα των Hadoop και HBase αντίστοιχα, με τη
χρήση της γλώσσας προγραμματισμού Python.  Το κεφάλαιο 5 προτείνει την δημιουργία
ενός πλαισίου βαθειάς μάθησης, με την δυνατότητα εντοπισμού πλοίων σε δορυφορικές
εικόνες,  με  σκοπό  την  αλληλεπίδραση  και  την  ανάδειξη  της  εφαρμοστικότητας  των
διεπαφών που αναπτύχθηκαν στα κεφάλαια 4 και 5. Η παρούσα μεταπτυχιακή διπλωματική
εργασία συμπυκνώνεται στο κεφάλαιο 6, όπου δίνονται κάποιες προτάσεις για μελλοντική
έρευνα, βασισμένες στην εξέλιξη των τεχνολογιών, στους άνωθεν τομείς. 

Λέξεις Κλειδιά
Hadoop,  Hbase,  HDFS,  MapReduce,  Τεχνητή  Νοημοσύνη,  Βαθειά  Μάθηση,
Μεγάλα  Δεδομένα,  Νευρωνικά  Δίκτυα,  Αναγνώριση  Εικόνας,  Δορυφορικές
εικόνες,  Συνεργατικά Νευρωνικά Δίκτυα,  Python, hdfs3, Happybase.  
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APPENDIX B. Interaction Between HDFS and DL Model

The specific appendix is devoted to the implementation part where the interaction between
Ship Detection Algorithm and HDFS occurs.

As pre-mentioned in chapter 5, Ship Detection Application interact with HDFS, in order to
retrieve datasets, such as during configuration and compilation process, or store data for
future usage such as weights data, indispensable, when model needs to be loaded to avoid a
new-time consuming-re-train process.  

Figure 55 displays the interaction process, where ‘retrieve()’ function downloads model’s
dataset,  which  is  converted  in  JSON format,  that  includes  the  whole  requisite  data  for
training process. After dataset is fetched from HDFS directory, data is converted from list to
array format, using numpy library, to pass the whole data into model’s input for train and
validation process intentions in the most suitable way, using the architecture that constructed
and displayed in previous chapters. Images reshaped at 80X80 pixels (as referred in chapter
5.2),  a  sample  of  these are  figured out  into three  (3)  different  channels  and finally  are
imported into network.

64

Figure 55. Interaction Between HDFS and Compilation Process



With regard to use the model repeatedly, without spending time during training process, we
saved the weights into HDFS directory called ‘Prediction Weights’ (chapter 5). Applying the
same function, we get back hdf5 format file and load the weights, the architecture, training
configuration as well as the results from the optimizer. As follows, we return to the training
state  where  we  stopped.  Retrieving  back,  loading  and  displaying  the  summary  of  the
architecture of the model which was pre-trained exposed in figure 56.

 

PIL library (reference to chapter 5) is used for images loading and manipulation. During
ship detection process over satellite images, the necessity of loading from HDFS, converting
into  array  format  and  scanning  for  further  validation  process  and  prediction  results  is
important. Using the above function, we download a random image from ‘scene’ direction
called ‘sfbay.png’, save it in an array format and scanning over it, making predictions using
model’s weights that reloaded above. Figure 57 illustrates the specific operation, which after
image download bay satellite image from HDFS directory makes the appropriate predictions
and defines possible ship positions, point them out using white patches.
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Figure 56. Model Weights Re-Load from HDFS



Apart  from  download  processes,  pythonic  interaction  platform  also  offers  storage
capabilities for output results, for further manipulation and analysis.  With refer to figures
48-53 on chapter 5, prediction results were stored to a directory called ‘Prediction Output
Results’.
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Figure 58. Output Results Stored into HDFS Directory 

Figure 57. Retrieve Satellite Image and Make Prediction Process
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