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Abstract 
 

The purpose of this thesis is to develop a real-time vessel performance analysis system to 
evaluate the condition of ships with respect to their clean hull and clean propeller condition. 
During operation, the vessel will experience an increase of resistance due to several factors, 
linked to the sailing conditions. Added wave resistance, wind resistance, shallow water effect 
and trim are examples of parameters, which affect the power (energy) needed to propel the 
vessel. Any increase in resistance will result to the increase of fuel consumption and thus the 
increase of harmful emissions to the environment. A robust monitoring and analysis system 
can be used as a supporting tool to decisions related to actions aiming to improve performance. 
The performance evaluation is based on a vessel-specific model which takes into account 
operational and weather condition, trying to assess and estimate power needed to overcome all 
resistance components, while assuming a clean hull and propeller.  

The current thesis is based on the analysis of data, logged through the automated data 
transmission system of sensors’ onboard a 319,000 tdw VLCC managed by Maran Tankers 
Management Inc. Through mapping of these parameters to the output target (the shaft power 
measured by a torque meter) the model is generated. 

The goal of the developed system is to investigate the potential use of Artificial Neural 
Networks (ANNs) in estimating the power needed to propel the vessel in any given operational, 
environmental and loading condition, assuming a clean hull and clean propeller condition. 
Multi-layer perceptron (MLP) networks, were selected to model the vessel’s behaviour.  

The increasing amount of data transmitted to shore is creating the opportunity to develop 
systems based on information that until recently was not available. ANNs and in particular, 
MLPs, are an effective way to process this information. The results indicate that such an 
approach could be successfully applied, giving the potential to approximate complex non-linear 
regression problems, based on a reliable set of measured data.  
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I. Motivation & Introduction 

A. Introduction 
The international shipping industry is responsible for the carriage of about 80-90% of world 
trade by volume and more than 70% by value, making seaborne trade a vital mode of transport 
supporting global economy and growth (ICS, 2015). Shipping is an international industry 
subject to a global regulatory framework aiming to ensure safety and environmental protection. 

In the recent years a lot of shipping companies as well as charterers, involved in long time 
chartering gain interest in monitoring the performance of their vessels, in order to reduce their 
maintenance and operational costs. The past years, the high fuel oil price and the potential 
savings of a good management of the vessel was the key to a successful operation. In our days, 
with the low freights, a good performing vessel could make the difference to a beneficial deal 
for all parties. 

The competitive environment, the overcapacity of the industry, as well as the rocketing of oil 
price in the period 2004-2014, as demonstrated at the graph below, made stakeholders agree 
that the monitoring, evaluation and optimization of ship performance play a vital role in the 
profitability of the business. 

 
Figure I-1 West Texas Intermediate(WTI or NYMEX) crude oil prices per barrel. (Macrotrends, n.d.) 

Energy efficiency is achieved primarily through well-planned and properly managed ship 
operations with the continuous commitment of the onshore as well as the onboard personnel. 
To make it successful, the energy management and the performance monitoring and evaluation 
should exceed the mere implementation of the rules and regulation and aim for the 
minimization of energy consumption, with sophisticated systems based on business, as well as 
physical models. 

 
Efforts from international organizations (European Environment Agency, International 
Maritime Organization, etc.) to increase environmental awareness and reduce emissions and 
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energy consumption had a vast impact in the improvement of the regulatory background of 
shipping industry. Shipping offers a substantially lower carbon intensity than the other freight 
modes, in terms of emissions and fuel consumption. Results derived in the framework of the 
third IMO GHG study are presented in the following table, where CO2e describes the 
combination of CO2, CH4 and N2O gases emitted. 

Third IMO GHG Study 2014 CO2 

Year Global CO2 

Total 
shipping 

% of 
global 

International 
shipping 

% of 
global 

2007 31,409 1,100 3.50% 885 2.80% 
2008 32,204 1,135 3.50% 921 2.90% 
2009 32,047 978 3.10% 855 2.70% 
2010 33,612 915 2.70% 771 2.30% 
2011 34,723 1,022 2.90% 850 2.40% 
2012 35,640 938 2.60% 796 2.20% 

Average 33,273 1,015 3.10% 846 2.60% 
Third IMO GHG Study 2014 CO2e 

Year GlobalCO2e 

Total 
shipping 

%of 
global 

International 
shipping 

%of 
global 

2007 34,881  1,121 3.20% 903 2.60% 
2008 35,677  1,157 3.20% 940 2.60% 
2009 35,519  998 2.80% 873 2.50% 
2010 37,085  935 2.50% 790 2.10% 
2011 38,196  1,045 2.70% 871 2.30% 
2012 39,113  961 2.50% 816 2.10% 

Average 36,745  1,036 2.80% 866 2.40% 
 

Table I-1 a) Shipping CO2 emissions compared with global CO2 emissions(values in million tons) and b) Shipping GHGs (in 
CO2e) compared with global GHGs (values in million tons) (IMO, Reduction of GHG Emissions from Ships, 2014) 

However, additional measures have been taken for the further improvement of the energy 
efficiency of ship related operations, to achieve a level of efficiency near the current industry 
leaders within each ship type and trade. This topic, has been discussed in detail in a number of 
IMO working groups as well as Marine Environmental Protection Committees (MEPC). 
Shipping industry has improved in terms of emissions intensity, however the increasing 
demand of global trade and volume of transferred goods, drove to an increase in absolute terms 
of greenhouse gases emitted, as demonstrated at the graph below. 
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Figure I-2 :  Change in CO2 emissions and CO2 intensity per type of vessel between 2013 to 2015 (Naya Olmer, 2017)  

 

A lot of initiatives have been taken to push shipping towards a more efficient and environment 
friendly industry. This policy resulted in major changes in the design process and in the 
operation of vessels, with a great impact at the emissions density. However, the increasing 
number of vessels and the increase in their size in order to cover the rising demand of seaborne 
trade and transportation, resulted in an increase of the total mass of emissions (Naya Olmer, 
2017).  

Due to the large number of different parties involved, a complex and competing regulatory 
background has been established, which could be separated to international rules (IMO), 
international but region specific (European Union, European Environment Agency), national 
(flag state, flag administrations, United States Environment Protection Agency, United States 
Coast Guard), state (California’s Air Resources Board), subnational-regional (San Pedro Bay 
country) as well as local (Port-Port State) legislation. 

In this chapter, we will focus on Chapter 4 of MARPOL Annex VI, part of IMO regulations, 
the international convention for prevention of pollution from ships, and then specifically 
explain the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan 
(SEEMP) and Energy Efficiency Operational Indicator (EEOI) using the relevant IMO 
guidelines. 

The referred Annex is dealing with air pollution from ships and the aim of its revision, is to 
progressively reduce globally the emission of pollutant gases, such as Sulphur oxides (SOx), 
Nitric oxides (NOx), particulate matters and carbon dioxide (CO2). A schematic representation 
of the major events taken place the last twenty years, in order to drive shipping into a more 
environmental friendly and energy efficient regulatory framework, is presented. 
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Figure I-3 : IMO energy efficiency regulatory activities (IMO, Ship Energy Efficiency Regulations and Related 
Guidelines, 2016) 

 

The revised edition of MARPOL Annex VI, which will be in effect from 1st of January 2020, 
will reduce the global Sulphur cap from the current 3.50% m/m (mass/mass) to 0.50% m/m in 
areas other than ECAs. This will affect directly shipping and oil market, as fuel of “better” 
quality and more expensive distill products will be required from the refineries. Big 
investments will be made, either by the refineries, which will alter their production and supply 
chain, in order to comply with the market demand, as shipping is the main consumer of heavy 
fuel oil, a byproduct of refineries production chain, or by ship owners in order to acquire 
technologies that could result in emissions equivalent to a low Sulphur content fuel by burning 
heavy oil distills.   

 Also, in the framework of the progressive reduction in NOx emissions of marine engines, 
vessels constructed on or after 1st of January 2016 have to comply with the stringent “Tier III” 
emission limits compared to the “Tier II” limits for vessels constructed on or after 1st of January 
2011. 
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As for the greenhouse gases (GHG), CO2, regulatory background is more complex. MARPOL 
Annex VI introduced two mandatory mechanisms as energy efficiency standards for ships, 
which aim to improve ship design and operation in terms of emissions related to global 
warming. These regulatory mechanisms are: 

 Energy Efficiency Design Index (EEDI), for new ships; 

 Ship Energy Efficiency Management Plan (SEEMP), for all ships. 
Additionally, one non-mandatory, element has been introduced by IMO, which is intended to 
act as an indicator of the overall operational energy efficiency. 

 Energy Efficiency Operational Indicator (EEOI). 

 
1. Energy Efficiency Design Index (EEDI) 

 

EEDI is an index related to the mass of CO2 generated by the vessel in order to fulfill its 
transport work (tons-mile), calculated for a specific operational condition. IMO regulated limits 
to this index based on vessel type and size, intending to drive ship technologies to more energy 
efficient solutions over time. According to Chapter 4 of MARPOL Annex VI, this index is 
applied to all ships of 400 gross tonnage or greater, of the following types:  

 Bulk carrier 

 Gas carrier (none LNG carriers) 

 Tanker 

 Container ship 

 General cargo ship 

 Refrigerated cargo ship 

 Combination carrier 

 Ro-Ro cargo ships (vehicle carrier) 

 Ro-Ro cargo ships 

 Ro-Ro Passenger ship 

 LNG carrier 

 Cruise passenger ships (having non-conventional propulsion) 

As IMO is an international organization, all vessels engaged in international routes should 
comply to its standards. Regulation 21 specifies the methodology for calculation of the required 
EEDI and all relevant details. The regulatory limit of the Index, is calculated by the use of the 
reference lines and the use of the corresponding reduction factor linked to the implementation 
phase of the regulation, applied to the corresponding reference line per ship type. 
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The reference line is calculated by the following equation, 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐸𝐸𝐷𝐼 = 𝑎 ∙ 𝑏  

where, 

b: ship capacity 

a & c: parameters for determination of EEDI reference value for each ship type, included in 
the Regulation 21[Resolution MEPC. 203(62) and MEPC.251(66)] 

ReferenceEEDI: Reference value of EEDI 

 Reduction factors, or CO2 reduction levels are established in order to gradually reduce the 
intensity of CO2 emissions in four stages, following and supporting technological and 
operational innovation. Owners, ship designers and yards are free to choose the technologies 
to satisfy the EEDI requirement in the designed operational condition. The concept of EEDI is 
the progressive reduction of the corresponding Index limit through the years, after assessing 
technologies available at the market, which for the time being has 4 phases. 

Phase 0, 0% reduction factor, data collection 2013-2015;  
Phase 1, 10% reduction factor: 2015-2020; 
Phase 2, 15% or 20% reduction factor depending vessel type and size: 2020-2025; 
Phase 3, 30% reduction factor: 2025 
Reduction factor is applied on the corresponding EEDI reference line of the vessel type and 
deadweight (DWT) as following: 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐸𝐸𝐷𝐼 = (1 −
𝑋

100
) ∙ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐸𝐸𝐷𝐼 

Where,  

X: is the reduction factor of the implementation phase.  

RequiredEEDI: The regulatory limit of the ship’s EEDI, which the attained EEDI must not 
exceed.  
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A graphical representation of the different stages is demonstrated below. 

 
Figure I-4 : Reduction factors (IMO, Ship Energy Efficiency and Related Guidelines, 2016) 

The attained EEDI is a vessel specific Index, provided by the yard, as part of the official 
documents of the ship, which demonstrates the equivalent CO2 emissions on the designed 
operational condition. 

𝐴𝑡𝑡𝑎𝑖𝑛𝑒𝑑𝐸𝐸𝐷𝐼 =
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐶𝑂  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑤𝑜𝑟𝑘
 

The equivalent CO2 emissions are calculated for the estimated power at the design condition 
and the corresponding Specific Fuel Consumption (SFC) of every engine at that specific load 
and the conversion to gCO2 emission is achieved by factors linked to fuel type. The effect of 
shaft motors or any innovative technologies used for power generation or technologies assisting 
propulsion or increasing propulsion efficiency are taken into account at the calculation of 
EEDI. Transport work is estimated by the capacity of the vessel at the design condition 
multiplied by the design speed of the vessel. Vessel type specific factors as well as, factors for 
vessels engaged at special trade routes (e.g. ice class vessels) and weather correction factors 
are inserted at the calculation stage. The detailed formula for EEDI and the definition of all 
factors included is demonstrated at (IMO, Resolution MEPC.245(66), 2014) . To fulfill EEDI 
requirement, the final attained EEDI must be equal or less than the required. 

2. Ship Energy Efficiency Management Plan (SEEMP) 
 

SEEMP, on the other hand, is a management tool as per MARPOL Annex VI Regulation 22, 
which establishes a mechanism for ship operators, ship-owners and crew to improve the energy 
efficiency of their vessels during their operational lifecycle. As a mechanism, is not as strict as 
EEDI and covers a wide range of different operational conditions including geographical 
parameters and commercial profile.  
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In most companies, it forms part of the ship’s Safety Management System (SMS) and the 
Environmental Management System (EnMS), which is defined by the International Safety 
Management Code (ISM Code).  

SEEMP’s implementation is recommended to be developed in a manner of limited on-board 
administrative burden, as much as possible, and be managed by the onshore personnel and the 
systems of the company. The purpose of its implementation is not to establish limits or 
baselines, but to develop procedures and drive the company’s policy to manage the on-going 
and long run environmental performance of vessels. It is a dynamic document, based on 
continuous updating and improvement of the performance system and feedback for every 
particular vessel. Evaluation and future energy improvement measures are produced by 
comparing the company’s baseline-goals with its actual performance. Additional measures, in 
order to fulfill company’s goals and improve the effectiveness of the already implemented 
measures are identified by this process. Continuous monitoring of the progress in the 
optimizing process creates an energy efficiency awareness policy among all parties (IMO, Ship 
Energy Efficiency and Related Guidelines, 2016). 

3. Energy Efficiency Operational Indicator (EEOI) 
 

As mentioned earlier, EEOI is a voluntary measure by the current regulations. However, it is 
recommended as an “energy efficiency performance indicator” during the operational phase of 
the ship and can be used to monitor the overall ship energy performance. The main goal of this 
indicator is to enable monitoring and evaluate efficiency and effects of any changes made to 
the vessels’ operation in order to assist stakeholders in collecting information on the outcome 
of such variation and experience in a wider range of ship’s operational profile. 

EEOI, similarly defined as EEDI, represents the mass of emissions of carbon dioxides per unit 
of cargo-mile transport service and is advocated to be used as an indicator of a monitoring tool, 
included in the SEEMP, covering the wide range of energy efficiency and emission control 
through the real life cycle and operation of any vessel (IMO, MEPC.1/Circ.684, 2009). 

The basic expression for EEOI for any voyage is defined as: 

𝐸𝐸𝑂𝐼 =
∑ (𝐹𝐶 ∙ 𝐶 )

𝑚 ∙ 𝐷
 

Where,  
j is the fuel type; 
FCj is the mass of the consumed fuel of j type at the particular voyage; 
CFj is the fuel mass to CO2 mass conversion factor for the j type fuel; 
mcargo is the cargo carried (tons) or work done (number of TEU or passengers), or gross tons 
for passenger ships; 
D is the distance in nautical miles corresponding to the cargo carried or work done. 
Similarly defined, the average of the indicator for a period or for a number of voyages can be 
obtained. This average is expressing the operational efficiency of the subject vessel for the 
specific time period EEOI is calculated. 
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The concept and main goal of this indicator, is that a ship could reduce its consumption using 
a system that could evaluate parameters, which affect its efficiency, and quantify the impact of 
each, to the overall result. 

EEOI, is based on an easy to implement, easy to use methodology on an overall efficiency 
basis.  

Recently, a discussion has been raised (Bertram, 2017) that a new indicator is necessary to 
trace the effect of the roughness of the hull and propeller surface, along with other parameters, 
on the consumption, taking into account the loading and operational condition. 

The approach of a new indicator, focusing at the vessel’s technical particulars, is to keep track 
of the energy efficiency of the ship and identify the operational parameters that cause any 
apparent deviation (Gregory Grigoropoulos, 2012). 

 
 

B. International Standards 
 

In addition to complying with the regulatory framework, market leading companies in order to 
be more competitive and attractive to charterers apply measures to harmonize their 
management with International Standards as ISO 14001 or/and ISO 50001. Environmental 
Management System or Energy Management System in case of ISO 50001 contain ship-
specific procedures and measures similar to what is requested for SEEMP. Their goal is to 
monitor and control vessel performance based on feedback features, identify improvement and 
assist decision making when necessary, on a stricter manner. As a result, monitoring of 
operational-environmental efficiency is treated as an integral element of vessel management. 

 

1. ISO 14001-Environmental Management 
 

The latest revision of ISO 14001:2015 specifies the requirements for an environmental 
management system that an organization can use to enhance its environmental performance. It 
is intended for use by an organization seeking to manage its environmental responsibilities in 
a systematic manner that contributes to the environmental pillar of sustainability. 

ISO 14001:2015 helps companies achieve the intended outcomes of its environmental 
management system, which provide value for the environment, the organization itself and 
interested parties. Consistent with the organization's environmental policy, the intended 
outcomes of an environmental management system include: 

 enhancement of environmental performance; 
 fulfilment of compliance obligations; 
 achievement of environmental objectives. 
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ISO 14001:2015 is applicable to any organization, regardless of size, type and nature, and 
applies to the environmental aspects of its activities, products and services that the organization 
can either control or influence considering a life cycle perspective. ISO 14001:2015 does not 
state specific environmental performance criteria, but acts as a supporting tool to improve 
performance of the company and fulfill its commitment to systematically improve 
environmental management. Claims of conformity to ISO 14001:2015, are not acceptable 
unless all its requirements are incorporated into an organization's environmental management 
system and fulfilled without exclusion (ISO, Environmental Management, 2015). 

 

2. ISO 50001-Energy Management 
 

Enhancing energy efficiently helps organizations save money and contributes to conserve 
resources and tackle climate change. ISO 50001 supports organizations to use energy more 
efficiently, through the development of an energy management system (EnMS). Application 
of such standards contributes to more efficient use of energy, to enhance competitiveness and 
to reduce greenhouse gas emissions and any other environmental impact related. Compliance 
with ISO requirement is used as a certification of an organization’s energy management 
system. It does not establish absolute requirements for energy performance beyond the 
commitments in the energy policy of the organization and its obligation to comply with 
applicable legal requirements and other market based requirements. In the framework of ISO 
50001, the identification of the variables affecting energy performance and the selection of the 
parameters that can be monitored and influenced by the organization need to be documented, 
reported, verified and included at the energy management system. Design and procurement 
practices for equipment, systems, processes and personnel that contribute to energy 
performance should be applied according the ISO 50001 standards. 

This International Standard is applicable to any organization wishing to ensure that it conforms 
to its stated energy policy and wishing to demonstrate this to others, such conformity being 
confirmed either by means of self-evaluation and self-declaration of conformity, or by 
certification of the energy management system by an external organization (ISO, Energy 
Management, 2011). 

 

3. ISO 19030-Ships and Marine Technology -Measurement of changes in 
hull and propeller performance 

 

This standard guideline focuses on the measurement of ship’s parameters and on their 
contribution to the performance of the subject vessel. Hull and propeller performance, which 
will be the subject of this study, refers to the relationship between the condition of a ship’s 
underwater hull and propeller and the power required to move the vessel through water at any 
required given speed. Measurement of changes of the performance of a specific vessel over 
time makes it possible to indicate the impact of its current condition and supports maintenance 
decisions, such as hull cleaning and propeller polishing, or repair and retrofit activities.   
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The goal of this standard is to prescribe and define practical methods for measuring changes of 
a specific hull and propeller performance and set of relevant performance indicators. The three 
parts of this ISO standard are: 

 Outline general principles for the measurements of change in hull and propeller 
performance and define a set of indicators, which support company’s decision 
on the mentioned matter; 

 Define the default method of measuring changes in performance and calculating 
the set indicators. It also provides guidance on the expected accuracy of each 
performance indicator; 

 Outline alternatives to the default method and the result of such in overall 
accuracy and applicability of the standards. 

The general principles and methods that a monitoring system, certified with ISO 19030 should 
follow covers a variety of requirements addressing measurement equipment, handling of 
information, procedures and methodologies which are generally available and recognized 
internationally in shipping industry. 

 

C. Other requirements 
 

Another very crucial requirement for tanker vessels, like the VLCC tanker used for the current 
thesis, is the Tanker Management and Self-Assessment (TMSA), which was introduced by the 
Oil Companies International Marine Forum (OCIMF). Compliance with its high standards on 
safety and environmental management is of great importance for management companies and 
operators in order to be attractive to major charterers. The latest revision of TMSA, TMSA 3, 
refers to Environmental and Energy Management at the element 10. TMSA is divided into four 
stages of compliance, which are the indicators of the overall self-assessment procedures. The 
stages of element 10 are described below (OCIMF, 2017): 

The first stage requires the identification of all sources of marine and atmospheric emissions 
attributable to the company and vessel’s activities and the procedures followed to minimize 
emissions by controlling their sources and ensure that they are always within permitted levels 
as per the international regulations (IMO).  

The second stage requires the monitoring of key parameters, which could be the overall daily 
fuel oil consumption, speed, condition of the vessel, trim and the weather condition the ship 
faces. For the second stage, a voyage by voyage basis is enough for compliance. For the 
selected parameters, a procedure which establishes baselines and measures used to improve the 
environmental performance, monitoring and evaluation procedures should be included at the 
vessel’s environmental management plan. 

In order to comply with the third stage of the element 10 of TMSA, specific emission reduction 
targets are set, after the evaluation of their impact to the environment. Performance 
improvement on the building process are also taken into account for this stage. Hull 
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optimization, use of energy saving devices and upgrade of the equipment (e.g. LED lights, 
variable frequency drives on heavy power consumers) are evaluated. 

For the fourth and stricter stage, a demonstration of used technology to enhance energy 
efficiency is required. These technologies include major modifications or upgrades at the 
design stage, which could include emerging coating technologies, upgrade on the machinery 
equipment, waste energy recovery systems or a better engine design and optimization on the 
operational condition of the vessel (de-rate of main engine), or the use of alternative energy 
efficient fuel are taken into account. Equipment used to increase the hydrodynamic 
performance (ducts, bulb rudders, pre-swirl stators, propeller boss cap fins, etc.), are also 
included as measures to improve the environmental performance of the vessel. Another aspect 
of this stage of compliance, is the real time performance monitoring and comparative analysis 
of the ship and the periodical evaluation and benchmarking of it, as well as the evaluation of 
the technologies used and applied to the vessel. Measures to achieve and evaluate the 
environmental and energy efficiency goals, defined by the company are crucial for a 
compliance of this stage. The most important part of compliance of this stage is to quantify and 
deliver an estimation of the impact of the technologies used, in achieving the set goals. 

 

D. Performance Monitoring and Analysis Systems  
 

In order to fulfill the market trend in monitoring and analysis of ship’s performance, a number 
of systems of variable complexity and matureness have been developed, signifying an attempt 
to address the loosely defined problem of ship performance. In this chapter a review of the 
problem’s parameters and the types and characteristics of different systems is given, with the 
aim to ascertain the required set of data and the required improvement in the collection and 
processing of them, towards an advanced performance monitoring and analysis system (PMA).  

The scope of performance monitoring systems is to provide assistance to the operator and the 
involved stakeholders (e.g. charterers), in order to understand and evaluate, in any given period, 
the capabilities of the vessel in terms of speed range she can obtain, the respective power 
needed, the corresponding fuel consumption, as well as ship’s behaviour in any foreseen state 
of loading and weather conditions. These aspects can benefit operators to reach a more 
economical operation and increase the available information for all involved stakeholders, 
leading to correct business decisions and developments. Knowing and managing fuel 
efficiency, documenting efforts, and quantifying improvements is part of what running a 
performance monitoring and analysis system have to cover. Investigating the benefits of dry 
docking or hull cleaning, propeller polishing as well as retrofits in some cases, quantifying 
efficiency of paint system (and paint application) is also part of the outcome.  

When the capabilities of the vessel are known and the performance of the vessel is evaluated 
at different stages of its life and in different conditions, the quality of any investment, like anti-
fouling paints, modifications or the effect of maintenance events (hull cleaning, propeller 
polish, dry dock) can be assessed. The economically optimum interval, or the condition in 
which a maintenance event is beneficial, can be defined and the economic penalties and delays 
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can be identified and evaluated in order to improve voyage planning and management of the 
vessel by the assessment of hull condition. 

If all performance affecting parameters are measured simultaneously at frequent intervals, a 
large database becomes available which can be used to design an optimization system. Trim, 
draft, autopilot and engine settings in different environmental conditions are examples of areas 
that can be optimized (Hasselaar, 2010). Moreover, with the availability of an accurate speed-
power demand curve that represents the actual capabilities of a vessel, the most optimum 
service speed can be determined based on the total expenditure. Also, with the availability of 
prompt and reliable information of the vessel’s sailing performance, the ship’s crew would be 
able to obtain an immediate understanding of the impact of their actions. 

As a response to regulations and global pressures caused by environmental concerns on ship 
operators, classification societies have introduced notations (green certificates) concerning ship 
efficiency and pollution reduction on the design stage, which certify that the vessel’s design 
and equipment are eco-friendly and give a competitive market advantage (e.g. ‘Environmental 
Passport for Design (EP-D)’ (DNVGL, 2018)). Shipbuilders deliver their newly built vessels 
following their trials on the basis of calm water and reference is therefore often made to 
empirical correction factors to include service conditions. The availability of a continuous 
performance monitoring system allows better assessment and evaluation of emissions and 
environmental impact, and helps in obtaining an environmental notation. The introduction of 
CO2 indexing schemes described in previous chapter (EEOI or other indicators) for ships also 
require continuous monitoring to accurately index a ship on a scale. 

Continuous performance monitoring and assessing of ship’s condition, is a very valuable input 
in order to have an accurate charter party description, as the performance of the vessel is not 
the same over its life cycle and adjustments should be made in order to avoid conflicts with the 
charterer and minimize performance and speed claims. The speed and fuel consumption 
warranties in charter party agreements are imprecise in engineering terms and reflect the 
evidential difficulties that arise in dispute when it is not known whether inefficient ship 
performance is caused by adverse weather conditions or a poorly maintained vessel. When the 
ship’s capabilities and ship performance can be determined irrespective of environmental or 
loading conditions and with higher precision, agreements can be defined more precisely 
(Hasselaar, 2010). 

In the current framework, described above, the aim of this thesis is to investigate the feasibility 
of developing a detailed ship performance monitoring and analysis system for typical merchant 
ships, in our case a VLCC tanker in order to assess ship performance. The ultimate goal of such 
a system, would be to provide an assessment and evaluation of hull and propeller condition and 
aid in the reduction of power needed for the propulsion of the vessel, by proper maintenance. 
Monitoring power demand of the vessel is linked with a positive impact on the fuel oil 
consumption as well as environmental pollutants of ships. Within this framework, the specific 
objectives of this thesis are to: 

• review the state of art of performance monitoring and analysis 

• identify factors that influence ship performance  
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• develop a methodology to convert performance to ‘standard’ conditions 

• evaluate the developed system and the conclusions made by the methodology used 

The elements in which the model is based will be presented briefly below and discussed in 
detail in following chapters. 

 

1. Ship’s Resistance 
 

A ship’s resistance is influenced by a variety of factors. The problem of moving the ship over 
water either in good or bad weather conditions involves the proportions and shape or form of 
the hull, the size and type of propulsion plant, and the system to transform this power to 
effective thrust. Power delivered to the shaft and then to vessel’s propeller is used to overcome 
ship’s total resistance produced by its relative movement through water and air, and result in 
maintaining a requested speed. 

Total resistance consists of many sources-resistances, which can be divided into categories 
(Lewis, 1988). 

A streamlined body moving in a straight horizontal line at a constant speed, deeply immersed 
in an unlimited fluid, presents the simplest case of resistance. Since there is no free surface 
effect, there is no wave formation and therefore no wave-making resistance.  

For a non-ideal fluid, pressure differences will be created through the length of the vessel, with 
high pressures observed at the forward part and lower pressure at the back, inducing an 
opposing force in the direction of movement. 

 
Figure I-5 Flow around a submerged body (Lewis, 1988) 

Another source that creates resistance is that vessels sail on the free surface of the water. 
Moving on the free surface creates a wave field. The energy contained and the energy needed 
to maintain such wave field is provided by the vessel propulsion power. This force is known 
as wave making resistance (Politis & Tzabiras, Ship Resistance and Propulsion (in Greek)). 
The resulting resistance corresponds to the drain of energy into the wave system, which spreads 
out astern of the ship and has to be continuously recreated.  Wave resistance is lower for low 
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speeds and increases at high speeds. In principle, it defines a speed barrier, so that further 
increase in ship’s propulsion power is converted and consumed by the waves generated. 
Normally, represents 8-25% of total resistance for low-speed ships.  

 
Figure I-6 : Resistance components (F.Molland, 2017) 

 

During the operation, the condition of the ship differs from the calm water and clean hull 
condition in which the above analysis is applicable. Marine organisms and barnacles will grow 
on the surface of the hull, which means that the vessel no longer has a smooth surface. In 
addition, performance of the vessel can be influenced by shallow water, adverse currents, 
strong wind, as well as sea conditions, wave amplitude and frequency, that could have a great 
impact in the overall performance. 

Frictional resistance increases over time, as fouling and initial roughness increases. An attempt 
to limit this factor of resistance is made by the use of anti-fouling hull paints to prevent marine 
organisms’ attachment on the hull and slow down their growth. This component, is of great 
importance, as frictional resistance represents a considerable part (often equal to 70-90%) of 
total resistance for low-speed ships with blunt shape such as bulk carriers and tankers (MAN, 
2016). 

Paints containing TBT (tributyl tin) as their principal biocide, which dominated a big market 
share of the seagoing merchant vessels, have been banned as toxic. This decision made by IMO 
(IMO, Anti-fouling Systems, 2002), pushed to other alternative solution as copper or iron based 
paint, or silicon-silyl acrylate paints.  

Weather effect, can be described by two main sources of resistance.  

Added wave resistance is the element of resistance linked to the vessel sailing in a seaway, 
related with the action of waves on the hull as well as with the induced ship motions. Waves 
can be distinguished in wind generated and gravity waves and swells. Wave characteristics are 
affected by a variety of factors, as wind speed and duration, water depth, currents etc. Waves 
appear in an irregular form and their characteristics are usually described by a wave energy 
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spectrum, which is time- and space-dependent (Mandel, 1989). A ship’s motions and 
accelerations as well as its propulsion power requirements are dependent on its hydrodynamic 
characteristics at the given loading condition and the actual environmental conditions at the 
given time and area of operation. 

Waves approaching a vessel can cause significant increase of the added resistance, firstly by 
the diffraction effect of the hull on the encountered waves and secondly, from the indirect effect 
of the pitching, heaving and rolling motions caused by the waves. As an aftereffect, the required 
rudder action, in order to correct vessel’s course may contribute to a further increase (Mandel, 
1989). 

Diffraction resistance is dominant in wave regions where the waves are short compared to 
vessel length. On the other hand, motion related resistance, is the primary component of wave 
added resistance caused by wave lengths comparable to the vessel’s length. For longer waves, 
it is observed that the vessel responds by following the wave motion and limiting the related 
resistance factor. 

Wind Resistance, depends upon the vessel’s apparent speed and upon the area and the shape 
of the upper body, exposed to wind forces (Lewis, 1988). 

Even a ship sailing in calm weather (no incident waves or wind) experiences an air resistance 
component due to its speed. Wind blowing at any given condition, combined with vessel’s 
speed over the ground, produce the relative wind speed and direction that an observer onboard 
the ship can experience. The true wind, is termed to be the wind which is generated due to 
natural causes and exists at a point above sea, without the interaction to any object, in our case 
the vessel. The relative or apparent wind is the vectorial summation of the velocities of the true 
wind and the vessel’s speed over ground. Relative wind generates a force which is usually 
called air resistance and it varies according to the vessel’s speed and shape of the above water 
part. Wind resistance is primarily linked to the force over the transverse area of the vessel and 
on eddy-making phenomena that produce a pressure difference over the object (Lewis, 1988; 
A.F. Molland, 2003). 

Shallow water effect can be divided into two parts. The first is an increase in the resistance of 
the vessel, due to the increased velocity of the surrounding water, resulting in an addition 
sinkage of the hull and thereby an increase of the wetted surface, which leads to additional 
frictional resistance. The second element of shallow water effect, is that in limited water depth, 
the ship-generated wave pattern changes, which in turn results in a wave resistance 
modification.  
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Figure I-7: Schlichting’s chart for calculating reduction in speed in shallow water (Lewis, 1988) 

Trim effect, owing to the change in pressure distribution around the hull, dependent on the 
condition of operating and speed of the vessel. At low speeds the increased draft aft makes the 
stern virtually fuller, with a consequent increase in form and separation resistance, whereas at 
high speeds this is more than offset by the reduction in wave-making due to the finer entrance 
in the trimmed condition (Lewis, 1988; Mandel, 1989). However, trim effect cannot be defined 
accurately and the resistance link to it is a difficult problem to solve. 

Resistance due to steering, indicates the resistance contribution of the drag and lift force due 
to rudder angle. Rudder is acting as a foil at ship’s wake, creating pressure differences between 
sides. The total resistance due to the rudder consists of the drag of the rudder itself plus the 
extra drag that the rudder creates when it is turned (Aas-Hansen, 2010). 

Sea currents, are a result of many environmental, geographical and physical parameters. 
Especially in coastal areas, current speed and direction may vary considerably with depth and 
depend on tidal and global currents, wind and wave condition over a period of time. The 
variations in current depending on the distance from the sea surface make the definition of the 
mean current, the ship’s underwater hull experiences difficult (Hasselaar, 2010). A speed log 
installed at the bottom of a ship, measuring the speed of the water relative to the bottom of the 
hull, indicate the actual speed experienced by the ship. Often more than one speed logs are 
recommended, to be placed at different positions to avoid and easily spot any log malfunctions. 

2.  Propulsion 
Typically, in early stages of the design process, propeller and vessel’s hull are treated 
separately, however the interaction of those two elements is of great importance to understand 
and evaluate the relevant characteristics and interaction effects. For a given propeller with 
known sectional characteristics, performance and efficiency can be evaluated by engineering 
tools, by calculating thrust, torque and induced velocities at points on the lifting line, as well 
as lift and drag forces. 

While the hull is towed or advancing, an area of high pressure over the stern is formed, which 
has a resultant forward component reducing resistance. However, on a self-propelled vessel, 
the pressure over that area is reduced by the action of the rotating propeller, accelerating the 
water inflow, and simultaneously reducing pressure, which results on the reduction of the 
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forward component and an increase of the resistance. Thus, the thrust needed to propel the 
vessel is greater the thrust measured at the resistance test. This loss of thrust, expressed as a 
fraction of the bare hull resistance over the needed thrust to advance, is called thrust deduction 
factor. 

Typically, the propeller is located behind the ship, thus, the hull shape influences the flow 
towards the propeller. The propeller is working in water, which has been disturbed by the 
presence of the hull and the shape of the stern, which in general, has acquired a forward motion 
in the same direction as the ship. The frictional drag of the hull causes a following current, 
which increases in velocity towards the stern and produces a wake having a considerable 
forward velocity relative to the surrounding water, dependent mainly on the roughness of the 
surface, the area where friction is developed and the relative speed of the vessel to the water 
surrounding it. Also, the streamline flow, past the hull, causes an increase of pressure around 
the stern, where the streamlines are closing in and leading to the propeller, according to 
Bernoulli’s law. When propeller is running, the rotation and the developed thrust of the 
propeller, accelerates the water ahead of it and as a result lowers the pressure even more and 
increases the velocity around the stern. Both effects, augment the resistance of the ship above 
the towing resistance of the bare hull. The velocity field generated is called the wake, and the 
result of it, is that the propeller is not advancing relatively to the water at the same speed as the 
ship, but at some lower speed depending on the wake field. The speed in which the propeller 
is advancing, is called advance speed. Difference between the uniform inflow velocity field of 
the propeller operating in open water from the field experienced by the propeller due to the 
presence of the hull and its rotation, leads to a variation of the propeller efficiencies. Additional 
components, which influence the propeller, are the vessel’s wave system and the wave system 
of the sea, which alter the velocities in the propeller plane  

Modelling of flow around a marine propeller’s unsteady free wake motion has been formulated 
by (Politis G. K., 2003). Effective wake is an important parameter to determine the required 
power, but the corresponding effective wake field cannot be directly measured. Computational 
approaches considering the ship and the working propeller interaction are in theory able to 
compute the influence of the propeller on the wake, but it is difficult to separate the inflow on 
the propeller, the induced velocities and their interaction.  

 

3. Data Acquisition 
 

After describing the more important parameters influencing a ship’s performance, a review of 
the input needed and the data collection methods are presented at the current chapter. Accurate 
data and a robust data acquisition and transmission system is the pillar of a functional 
performance system. 

For a number of parameters, the limitation regarding accuracy is determined by the 
characteristics of the sensors, or the tools used to calculate them by the environmental 
conditions and in many case of the implementation method and the way of calibration. 
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Commonly, readings are averaged over a time frame in order to be easy to handle and use for 
the performance analysis. 

Data collection methods can be separated in two main categories; manual input and automatic 
collection using sensors and other sources of data. In order to comply with ISO standards 
19030-part 2 explained above, automatic collection is needed as the minimum data acquisition 
rates cannot be attained by manual input, as shown in the table below. 

 

  Parameter Minimum data acquisition rate 

Primary 
parameters 

Speed through water every 15 seconds (0.07 Hz) 

Delivered power every 15 seconds (0.07 Hz) 

Secondary 
parameters 

Shaft revolutions every 15 seconds (0.07 Hz) 

Relative wind speed and 
direction every 15 seconds (0.07 Hz) 

Speed over ground and 
ship heading every 15 seconds (0.07 Hz) 

Rudder angle every 15 seconds (0.07 Hz) 

Water depth every 15 seconds (0.07 Hz) 

Static draught fore and 
aft Whenever loading condition changes 

Water temprature every 15 seconds (0.07 Hz) 

Table I-2 : ISO 19030-2-Minimum data acquisition rate (ISO, Ships and marine technology-Measurement of 
changes in hull and propeller performance, 2016) 

 
a) Manual data logging 

 

Every merchant vessel is required to keep a daily logbook to monitor fuel consumption, engine 
performance, navigation and loading condition as well as other important parameters. Engine 
and deck logbooks are traditionally filled once a day or on a 4 hours’ interval (every watch) 
and reported to onshore management every day in noon report, as an average of the day. The 
number of variables logged, depends on the requirements and policy of the shipping company 
and the capabilities of system used. A typical form of telegram-noon report can be seen below, 
with the main parameters reported (distance covered, speed, shaft revolution per minute, 
delivered power, weather conditions, fuel consumption etc.). 
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Figure I-8 : Typical Telegram Report Form (DANAOS, 2018) 

Often, logbooks and noon reporting are used for performance monitoring due to the fact that 
they are already implemented for reporting to the onshore personnel and management and the 
continuous update of vessel’s records. As a result, by the use of these data, there is no extra 
cost for data acquisition for the company. However, performance monitoring requires a higher 
level of accuracy and a higher frequency interval than abstract logbooks can provide. The 
sources of inaccuracy of the manual data logging method, as noted by (Hasselaar, 2010) could 
be: 

 Uncertainty in the used instrumentation. In order to avoid the impact of a bad 
calibrated instrument, critical monitoring equipment is often duplicated and 
crew states from which source data is acquired and define any source of 
variation between them. 

 Wrong data collection protocol. A time lag of the local time of the vessel and 
the UTC time used from onshore personnel in order to evaluate performance is 
causing differences in data synchronization. 

 Insufficient training. For the parameters reported from visual observations, e.g. 
weather condition, inaccuracies due to human element cause inconsistencies.  

 Inaccurate data collection. Certain parameters must be averaged to be reported. 
Wrong averaging, spot measures and even big variation in these parameters 
through the day (period of reporting) could result in a poor data collection. 

 Limited logging frequency. Workload of officers on duty limits the careful 
monitoring of parameters reported.  

 Errors in data entry. Experience indicates that abstract logbooks contain data 
inconsistencies and unrealistic parameters report 

Using manual data logging, may include uncertainties and limited data recording, but it is based 
on already known procedures and instruments. It requires minimum investment in devices and 
measuring tools as well as limited training of crew and onshore personnel, as they are already 
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familiar with the procedures of reporting. These characteristics, make manual data logging and 
the respective performance systems easy to implement and attractive to a low cost philosophy. 

 

b) Automatic data logging 
 

On the other hand, with the introduction of wireless data transmission and the development in 
satellite communication, data could be transferred to office electronically and automatically 
without any involvement of the crew. A data acquisition system interconnected to all necessary 
devices can store and transfer all monitored parameters to office. A fair implementation of such 
a system could contribute significantly to the improvement of data quality and frequency and 
potentially comply with ISO 19030. A combination of different data sources is often necessary 
and should be carefully implemented in order to avoid mismatch of the set of data. 

Continuous monitoring allows signal validation, filtering and averaging for increased accuracy 
and reliability. 

Uncertainty and errors in data entry are described and documented by sensors characteristics. 

Malfunction of sensors could be spotted by onshore personnel designated to the PMA system. 

Automatic data collection allows real time analysis and feedback on vessel operation. 

Upgrading of vessel’s voyage storage recorders or equipment with similar technology and in 
deep investigation on the transmission systems could result in a continuous and accurate history 
representation of parameters, which will be used for the performance monitoring and analysis 
system. 

This kind of implementation, requires in most cases a fair investment in high quality measuring 
devices, as well as, data acquisition and transmission systems. Maintenance procedures and 
training of personnel is essential to reassure the continuous and accurate measurements. 

Over the past years, many advances have been made in data collection systems, utilizing 
automatic data acquisition systems for on-board and ashore analysis. However, since most 
commercial PM&A systems are black boxes, whereby the operator or the management 
company cannot get full insight in how data is collected, conditioned or analysed, it is difficult 
to comment on their characteristics and algorithms, resulting in many cases in questioning the 
reliability of their key performance indicators (KPIs). Thus, many shipping companies use, in 
many cases additionally, their own methodologies for data collection and performance 
monitoring. 
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4. Performance analysis methods 
 

A variety of published methods for performance analysis are used or developed for shipping. 
Most of the performance monitoring system products in the market use a combination of them 
in order to do the analysis. Their goal is to determine a methodology to convert data received 
by a variety of sensors and other sources to a standard condition, in which evaluation is feasible. 
However, they can be divided in the following categories, based on the main method used to 
perform such analysis: 

 Methods using regression & trend analysis over time.  
 

Long-term analysis by deriving trends is a simple approach to performance monitoring, but 
efficient in identifying changes over time. These models can be implemented without requiring 
in-depth knowledge of the hydrodynamic characteristics of the vessel which in some cases is 
difficult to acquire. The assumption is that these characteristics could be ignored, if we apply 
proper grouping and filtering, in a long term analysis. Trend analysis, however, relies on the 
availability of large amount of high quality data collected consistently. The main problem of 
this kind of analysis, is the high scatter of points, caused by varying environmental conditions 
and changes in parameters not taken into account, such as small differences in draft. This 
problem results in high uncertainty margins and could affect decision making in extent. 

Example of such a system is BMTSMART, which uses trend analysis on monitored parameters 
forming KPIs for supporting management and maintenance decisions in respect to vessels’ 
main particulars and physical models (Sea Trial).  

“Fleet & Vessel Performance Management (FVPM) solutions provide sophisticated 
data collection, data display and data analysis services to support optimal decision-making 
that helps ship owners and operators to better manage the performance of fleets and vessels. 
This is achieved through a simple four-step approach: Measure, Manage, Analyse, Action.” 
(BMT, 2018) 
 

 Statistical methods using techniques to account for parameters variation 

The accuracy of these methods depend on the suitability and efficiency of the statistical model 
used. The advantage of a complex statistical model is that it can produce results without an 
extended physical baseline, based on experimental data, which may be difficult or expensive 
to obtain. However, the risk of a system which fails to represent reality is high. Also, ignoring 
the physical mechanisms of related physical phenomena affects in some extend the quality of 
the outcome. 

Marorka is an operational data collection system-application, which identifies variations of the 
input parameters over a period. Sampling period is crucial in order to define valid reference 
lines and in most cases it is suggested to have an approximate 6 months of data collection prior 
delivering any analysis. 



Motivation & Introduction 

Estimation of the Propulsion Power of a VLCC Tanker Based on Operational Data  
32 

 

“Data management includes powerful analysis tools. These are used for graphically 
trending and comparing real-time operational values over a period of time. As a result, the 
crew can locate focus areas for improving energy efficiency and for saving fuel.” (Marorka, 
2018) 

 
 
 
 Sophisticated algorithms and machine learning tools. 

This method, successfully implemented already in a variety of industry sectors, has entered 
now the shipping sector. The variety and complexity (many of them with non-linear 
characteristics) of the physical problems an in deep performance analysis faces, is a difficult 
task to solve for any system. Companies that provide systems using sophisticated algorithms 
and machine learning claim that with an accurate setup and the use of the physical background 
of the problem, they could estimate with satisfactory accuracy a vessel’s performance. 
However, the setup of the different problems, as well as the dependence of these problems on 
factors affecting various resistance components and the connection between such factors are a 
difficult task for any software engineering company, specialized in marine energy 
management. While these type of systems are still immature, it is a state of the art technique 
with a high possibility for improvement in the years to come. 

Such a system, which was originally developed for cruise ships and now has widen its market 
range is Eniram. Eniram’s first product was oriented towards trim optimization of cruise ships 
and the estimation of various loads. 

“We use the advanced mathematical models in the Eniram Insight Factory to 
create insights for each vessel – for example, how to achieve optimal trim to save fuel, 
exact RPMs to reach port just-in-time, or when to schedule a hull cleaning.” (Eniram, 
2018) 

 

 Deterministic performance analysis 

Performance analysis by using hydrodynamic characteristics and deterministic solutions to 
physical problems, accounting for changes in environmental and operational conditions was 
introduced many years ago. Assessing performance by this way requires a large set of 
experimental data and hydrodynamic calculations, in order to cover and estimate the 
performance of the vessel in the variable environment in which it will operate. Tests in this 
extend are very rare to be found in the environment of a shipping company. Negative aspects 
of this method are the high cost and computational power demand, as well as that it is time 
consuming. As a result, very few companies could perform an analysis using this method. 

An example of such a system based on extended sea trials, model tests, auto-propulsion tests, 
propeller open-water experiments and various advanced computational fluid dynamics 
calculations is the Maersk Ship Performance System (MSPS), a product of the former Maesrk 
Maritime Technology (MMT), now part of Maersk Fluid Technology, which is intended only 
for the internal use of Maersk group of companies. 
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Another system of this philosophy, is Hellintec’s Ship Efficiency Monitoring Toolkit (SEMT). 
SEMT is a Ship Specific performance tool, based on a model specifically prepared for every 
ship. The preparation of the system requires engineering information, depending on the 
applicable modules such as detailed hull model, including characteristics such as transom, bulb, 
superstructures and rudder details, propeller geometry and its characteristics (non-dimensional 
thrust and torque curves versus the advance ratio), main engine details and operational data 
from the engine manufacturers’ shop test results, ship specific model tank tests results and sea 
trial results. 

“SEMT is a software package designed to assist Ship Operators monitor and 
optimize the Performance, Fuel Consumption and Greenhouse Gas Emissions of 
vessels.” (Hellintec, 2018) 

 

To sum up, there are a lot of systems available in the market using several approaches, with 
each one of them resulting to different accuracy and procurement cost. The basic principles 
and data collection differ. For advanced systems, automatic logging and evaluation of data is 
required. Proper filtering and grouping of results is a crucial stage of the implementation of 
any system. Validation of data, evaluation and follow up of any performance index chosen for 
the monitoring of changes over time, will help to identify the contributing parameters of any 
deviation.  

Balancing cost, accuracy and evaluating investment needed per system is a multivariable 
problem affecting system selection and business decisions. 
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II. Neural Networks 

 
A. Overview 

 

Today’s computers have increased dramatically their capabilities. They can perform 
complicated and enormous amount of calculations, handle vast data sets and complex control 
tasks. However, till recently, there were classes of problems which could not be processed by 
the computers, but for which the solution could be easily found by the human brain. The 
computational power needed to solve these problems made this computing option inefficient 
and in most cases, logical assumptions were made in order to estimate sufficiently, via an 
analytic equation. Examples of problems that a human brain can process much more efficiently 
than the computers, are character recognition, image interpretation or text reading. These kinds 
of problems have in common that it is difficult to derive a suitable algorithm to fit them 
perfectly. Unlike computers, the human brain can adapt to new situations and enhance its 
knowledge by learning. It is capable to deal with incorrect or incomplete information and still 
reach a satisfying result. This is possible through adaption and logical simplification of the 
problem, while evolving or learning new abilities (Smith, 1997).  

A relatively new approach to address these classes of problems is the fast growing machine 
learning concept. Artificial Neural Networks (ANN), as one specific category of this group of 
approaches, are simplified models of the central nervous system of the human brain and consist 
of intense interconnected neural processing elements. They are inspired by the function of 
human brain and its way of processing information. The model of the neural processing 
elements is nerve cells. A human brain consists of about 1011 of them. All functions are carried 
out in a parallel-distributed way, by non-linear processing units connected between them, 
called neurons.  

The development of artificial neural networks began approximately 70 years ago but early 
successes were overshadowed by rapid progress in computing. The first milestone, was the 
work of Warren McCulloch and Walter Pitts, who created a computational model for neural 
networks based on mathematics and algorithms called threshold logic (Pitts, 1943). This model 
paved the way for neural network research to split into two approaches. One approach focused 
on biological processes in the brain while the other focused on the application of neural 
networks to artificial intelligence. However, claims made for capabilities of early models of 
neural networks started casting doubts on the entire field and slowed down the research on that 
field. One of the first complete, but still immature application of the hierarchical object 
recognition system, which belongs in the area of machine learning mentality, was 
Neocognitron by (Fukushima, 1980). This application was oriented to recognizing stimulus 
patterns based on the geometrical similarity of their shapes without affecting their positions. 
Recent renewed interest in neural networks can be attributed to several factors. Training 
techniques have been developed for the more sophisticated network architectures that are able 
to overcome the shortcomings of the early, simple neural networks, which could not perform 
on a complex multi variable non-linear problem. High-speed digital computers make the 
simulation of neural processes feasible. Technology is now available to produce fairly strong 
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and specialized hardware equipment, which could address the demand of computational power 
to support neural networks. Access to huge data bases and the need to monitor numerous 
parameters on any scientific field or industrial application, made clear that a need for an 
approach that could process this vast amount of information is needed in order to advance in 
the forthcoming years. The promising future of machine learning application, attracted the 
interest of computer scientists and engineers around the globe. Colossal companies, like 
Google, started investing in such projects. Simple examples of such applications using 
Artificial Intelligence, are text recognition as a feature of Google Translate or Apple’s “Siri” 
voice search.  In this framework, this thesis focuses on a “data analysis” approach of modelling 
complex, non-linear problems linked to vessel performance and the estimation of the power 
needed to propel a ship in in-service condition, taking into consideration its’ loading, service 
and weather condition.    

 

B. Artificial Neural Network architecture and philosophy 
 
As mentioned above, Artificial Neural Network (ANN) are computing systems vaguely 
inspired by the interconnected neurons of the biological neural networks, arranged in layers 
communicating with each other through neural synapses, which “learn” to perform tasks by 
considering observed examples and input parameters with unknown impact in the final output. 
The procedure used to perform the learning process is called a learning algorithm, the function 
of which is to modify the synaptic weights of the network’s components in order to attain the 
desired design objective. To achieve good performance, neural networks employs massive 
interconnection of simple computing cells referred to as “neurons” or processing units (Haykin, 
1999). Each connection, like the synapses in a biological brain, can transmit a signal from one 
artificial neuron to another. An artificial neuron that receives a signal can process it and then 
signal additional artificial neurons connected to it. Each connection between artificial neurons 
is called “edge”. Typically, the artificial neurons and edges are linked to a weight that adjusts 
their impact as the learning process proceeds. 

 

Figure II-1 Artificial Neural Network – Architecture of a multi-layer perceptron 
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 Based on the arrangement of neurons and layers created, an Artificial Neural Network could 
be characterized as single-layer or multi-layer network. The first type of networks contains 
only one layer of neurons as its output layer, while the second has “hidden” layers between the 
input and the output layer, not visible to the end user. Different layers may perform different 
kinds of transformations on their inputs. Signals travel from the first layer (the input layer), to 
the last layer (the output layer), possibly after traversing the layers’ multiple times. With 
respect to the kind of their neural synapses, networks may be characterized as feed-forward or 
recurrent. The data in feed-forward networks flow in only one direction, starting from the input 
layer and continue through the network to the final, output layer. In feed-forward networks, as 
the one demonstrated at Figure II-1, the neurons or nodes are organized in layers. Connections 
are only allowed between neurons of different layers directed towards the network’s output 
layer. Connections between neurons of the same layer or in the opposite direction than the one 
described is prohibited. However, the developer has the option to contain connection only to 
neighbouring layers (first order networks) or to define and permit connections between all 
layers, in respect to the limitation the feed-forward network has. The first layer of the network 
is the input layer, which is constructed according to the data input form. This layer does not 
include neurons with processing ability. It only forwards the inputs to other neurons (uj). The 
output layer, is the last layer and provides the final output of the network. Layers in between 
are called hidden, because they are not “visible” to the end user. Recurrent networks give the 
option to the developer to perform at least one feedback interconnection, which links the output 
of a neuron, or a group of them, with the input of another neuron, placed in the same or in the 
previous layer (Haykin, 1999). In many cases, the organization into layers is completely 
dropped. For example, a recurrent network may consist of a single layer of neurons with each 
neuron feeding its output signal back to the inputs of all the other neurons. The presence of 
feedback loops has a profound impact on the learning capability of the network and on its 
performance. Moreover, the feedback loops involve the use of particular branches composed 
of unit-delay elements which result in a nonlinear dynamical behaviour, assuming that the 
neural network contains nonlinear units. Each neuron connection or “edge” is done by directed 
communication links, which includes an associated weight (wij) to each input signal. The 
weights represent the information and the magnitude of it used in any given processing unit – 
neuron. Each neuron has an internal state, called activation or activity level, which is a function 
of the inputs it receives. In the common format and neural network architectures every neuron 
broadcasts its output signal to several other neurons. However, different transfer functions 
could be applied to each layer connection.  
The equation representing the processing ability of each neuron is shown below. 
 

𝒂𝒋
𝒊 = 𝒈(∑ 𝜣𝒊𝒌

𝒋
∙ 𝒙𝒊𝒌)  Equation II-1 

Where,  

𝑎  , is the “activation” of unit i, in layer j 

𝛩  , is the matrix of weights controlling function mapping from layer j to layer j+1, of the 

unit i placed in any layer k 

𝑥 , is the signal input of the input unit i placed in any layer k 

And g is the activation function of the layer or the processing unit (i.e. sigmoid, linear etc) 
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As a result, it is easy to conclude that if a network has sj units in layer j and sj+1 units in layer 
j+1, then Θj will be dimensioned as sj+1×( sj(+1)), where +1 is added if we add a bias at the 
input signal 

There are three main categories of transfer functions commonly used. The simplest of them is 
linear. By using linear transfer function, the neuron’s input is a linear function of the weighted 
input parameters-signals. Linear transfer function is commonly used for the transmission of the 
signal of the output layer. The simple graphic representation of this kind of transfer function 
is: 
 
 

 

Figure II-2 Linear transfer function (MathWorks, Matlab toolbox, 2018) 

 
An alternative approach is the use of binary functions and limits (also known as hard limit 
function). At this category the network generates a threshold, where, when signals fail to pass, 
these signals are discarded and not taken into account at the processing stage or given 
significantly different “weight”. 

 
Figure II-3, Hard limit (MathWorks, Matlab toolbox, 2018) 

 

 
 Last category is the sigmoid functions. Functions included in this category are continuous, 
differentiable monotone and usually set by default (or the user) in the range of [0; 1] or [-1; 1] 
domain. Examples of functions of this category are, sigmoid (tan sigmoid) function, logistic 
sigmoid function and Elliot sigmoid. The equations of these functions are given below: 
 

Tan-Sigmoid Transfer function   𝒚𝒌 =
𝟐

𝟏 𝒆 𝝀𝒖𝒌
− 𝟏 Equation II-2 
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Figure II-4, Tan-Sigmoid Transfer function (MathWorks, Matlab toolbox, 2018) 

Log-Sigmoid Transfer function  𝒚𝒌 =
𝟏

𝟏 𝒆 𝝀𝒖𝒌
 Equation II-3 

 
Figure II-5, Log-Sigmoid Transfer Function (MathWorks, Matlab toolbox, 2018) 

 
Elliot sigmoid Transfer function, takes an S-by-Q matrix of S N-element net input column 
vectors and returns an S-by-Q matrix A of output vectors, where each element of N is squashed 
from the interval [-inf; inf] to the interval [-1; 1] with an “S-shaped” function (MathWorks, 
MathWorks Documentation, 2018).Other functions and their graphic representation can be 
found at (MathWorks, Matlab toolbox, 2018).The innovative and fundamental feature of 
Artificial Neural Networks is their ability to learn and adjust themselves to the given problem. 
ANNs derive its computing power through its massive parallel distributed structure and its 
ability to generalize sufficiently, when the characteristics of the network are well designed and 
trained effectively. The definition of generalization, which is the ability that make this approach 
innovative and attractive, refers to the ability of producing reasonable outputs for inputs not 
encountered during training procedure. These two data processing capabilities make it possible 
for the neural networks to “solve” complex problems with unknown analytic explanation, by 
decomposing into a number of relatively simpler tasks, which are distributed through the 
processing units-neurons. The use of machine learning approach and especially neural 
networks, offer some useful properties. In back-propagation learning techniques, we typically 
use an algorithm to compute the synaptic weights based on a set of data-examples. The learning 
process could be viewed as a fitting problem, considered as a non-linear input-output mapping. 
This point of view, allows us to evaluate generalization as the effect of a good nonlinear 
interpolation of the input data, as simplifying this approach is. However, when a networks 
needs too many input-output examples to define the free parameters and result in an acceptable 
response, then there is a risk the network “memorized” training data. This becomes a problem 
when the network is adjusted to follow any change present to the set, even noise, which is a 
feature of the training data but do not reflect in the underlying function that is to be modelled. 
This “malfunction” is referred to as overfitting or overtraining. When a network is over trained, 
it loses the ability to generalize between similar input-output patterns. 
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The interconnection of nonlinear neurons, would result in a nonlinear approach to any given 
problem. Thus the non-linearity of the model is distributed through the network’s components. 
Nonlinearity is a highly important property, particularly if the physical mechanism responsible 
for generation of the input signal is inherently nonlinear. 
 Each example consists of a unique input signal and its corresponding output. By the use of this 
set of data, either randomly picked through the data set, or defined by the developer-user, the 
synaptic weights of the networks are modified as free parameters to minimize a cost function 
selected, which represents the difference between the desired response and the response of the 
network produced by the input signal in accordance with an appropriate statistical criterion. 
Training process is repeated for many examples in the set, for a number of times, until the 
networks converge to a steady state where there are no further significant changes in the 
synaptic weights and free parameters. The repeating process of using training examples, 
reapplied to the network is made by distributing the set in a different random order and evaluate 
the impact of the reapplied data to the networks characteristics and predicting ability. Thus, the 
network learns from the examples by constructing an input-output mapping for the given 
problem. Such an approach brings to mind the study of nonparametric statistical inference, 
which is a branch of statistics dealing with model-free estimation (Geman, 1992). The term 
“nonparametric” is used to signify the fact that no a priori assumptions are made on the 
statistical model for the input data. Based on the used training principle, networks can be 
divided in three categories; unsupervised, supervised and reinforcement learning. In the 
unsupervised learning, the networks is trying to classify and find a pattern through the input 
data, without any external information (Ben Krose, 1996). In supervised learning, the network 
links a series of input and output pairs in order to generate a function, which connects these 
parameters. In reinforcement learning approach, the network evaluates and rewards its 
performance through mapping of input-output data in order to minimize a cost function or a 
performance indicator (Haykin, 1999). 
 
Neural networks have the capability to adjust their synaptic weights in respect to changes in 
the surrounding environment. This contributes to ease the adjustment on minor changes in the 
operating environmental conditions over the initial environment the network was trained with. 
This property is crucial when operating at a nonstationary statistics environment, while the 
network has the ability to change its synaptic weights in real time, ensuring the stability of the 
system and making its performance robust over the nonstationary environment. However, 
trying to implement this approach by an inexperienced developer-user, could result in an 
adaptive system with short time constants which may change rapidly and therefore tend to 
change the responses to disturbances and noise, causing the degradation of system’s 
performance. To use the adaptive property of neural networks, the principal time constants 
should be long enough to avoid and ignore noise and random disturbances but yet short enough 
to respond to meaningful changes in the input and environment (Grossberg, 1987). 
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C. Feed-forward Multi-Layer Perceptron 
  
One of the most common and widely used machine learning tools, used for regression or pattern 
recognition, in which we focus in the current thesis, is the feed-forward multi-layer perceptron 
(MLP). The Perceptron concept was introduced and described by Frank Rosenblatt (Rosenblatt, 
1958). Back then, training a multi-layer network based on large sets of example and data could 
not be possible. However, a preparatory discussion and a description on the way perceptron 
could work and be beneficial, was made. Basic principles and future development were 
described efficiently, as a result it is fair to say that this approach to model human brain 
functions is one of the milestones of future development of MLPs and machine learning, in 
general. Following the definitions given, in feed forward MLPs, data flow in only one direction, 
starting from the input layer and continue through the network to the final, output layer. MLPs 
consist of an input layer composed by a number of nodes equal to the number of input 
parameters, one or more hidden layer(s) and an output layer consisting of a number of nodes 
equal to the dimensions of the output data. The number of nodes in each hidden layer(s) could 
be adjusted at the needs of the developer and the given problem. Every node except nodes of 
the input layer is a neuron with a differentiable activation function that uses an input signal and 
by processing it, generates an output signal. Although it was known since 1960’s that MLPs 
are not limited to linearly separable problems, a big question remained for many years, which 
slowed down their development. The weight selection and optimization process was unknown. 
The question needed to be answered was, how the algorithm could determine the nodes where 
the error could be attributed to, as well as the process with which the system could determine 
and evaluate the error at any hidden node and how to train the network to an optimum by 
altering specific weights of “problematic” nodes. 
 
 

1. Training principles 
 

A very important parameter to define, that impacts greatly the performance of the constructed-
developed Artificial Neural Network, is the selection of the training algorithm, with which the 
weight of every connection is adjusted to the training set of data. The training of these networks 
is accomplished by the use of a back-propagation philosophy, which is a supervised learning 
method, as it is described in previous chapters. The training algorithm is used to train the 
network to recognize impact of every signal to the output of any processing unit as well as 
mapping of a certain input to a specified output value. The philosophy of this kind of training 
consists of two main stages. Firstly, the input signal is transferred through all neurons and 
layers and the output signal is generated based on that input and the weights as defined, prior 
inputting the data to the network. When the output of the network is generated, the system 
performs the evaluation of the network’s response. This is done through a cost (or error) 
function, usually by the use of mean square error (or other), in order to identify the deviation 
between the actual responses of the network and the desired output target and evaluate 
network’s performance. Then the first stage is finished and the system proceeds to the second 
stage. At this stage the outcome of the evaluation and the deviation measured are transferred 
backwards in order to change the synaptic weights accordingly, so that the cost function is 
decreased. This procedure is repeated until the network reaches the desired performance level 
(if possible), after n iterations. The optimum value of each individual weight is different for 
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each vector of the training set therefore, an estimation of the true change of the network’s 
correspondence due to the modification of the weights, based on minimizing a given cost 
function over the entire or the validation training set is calculated. 

Considering a neuron j being fed by a set of function signals produced by the previous layer, 
the induced local field uj(n) produced by the input of the activation function to this 
corresponding neuron j is therefore 

𝒖𝒋
𝒏 = ∑ 𝒘𝒊𝒋(𝒏)𝒚𝒊(𝒏)𝒎

𝒊 𝟏  Equation II-4 

Where, m is the total number of input signals transmitted to the neuron j, the 𝑤  is the 

corresponding weight of the i input to the j neuron and 𝑦 (𝑛) is the function signal inserted as 
input to neuron j , by the corresponding output of the neuron i of the previous layer. 

Hence, with the use of this input signal, the function signal 𝑦 (𝑛) of the processing unit-neuron 

j appearing as output of the neuron at the n iteration is 

𝒚𝒋
𝒏 = 𝝋𝒋(𝒖𝒋

𝒏) Equation II-5 

In each iteration n the any-backpropagation algorithm applies a correction 𝛥𝑤 (𝑛) to the 

synaptic weights, which is proportional, in most of the algorithms, to the partial derivative of 
a cost function.  

 Examples of cost functions are given below. 

𝑬(𝜣) =
𝟏

𝒎
∑

𝟏

𝟐
(𝒅𝒌(𝒎) − 𝒚𝒌(𝒎))𝟐 𝒎

𝟏   Equation II-6 

Another cost function mostly used for pattern recognition and classification problems is the 
logistic cost function: 

𝑱(𝜣) = −
𝟏

𝑴
∑ ∑ 𝒅𝒌𝒎 𝒍𝒐𝒈(𝒚𝒌) + (𝟏 − 𝒅𝒌𝒎) 𝒍𝒐𝒈(𝟏 − 𝒚𝒌)𝑲

𝒌 𝟏
𝑴
𝒎 𝟏 +

𝝀

𝒎
∑ ∑ ∑ 𝜣𝒊𝒋

𝒍 𝟐𝒔𝒍 𝟏
𝒋 𝟏

𝒔𝒍
𝒊 𝟏

𝑳 𝟏
𝒍 𝟏  

Equation II-7 

 

Where,  

Θ, is the matrix of weights controlling function mapping 

k,is the number of neuron in the layer 

m, is the number of input-output neuron patterns  

dk, is the desired or target output of the k neuron and  

yk, is the actual output of the k neuron 

Θ, regularization parameter 

For evaluating the impact of the adjustment of weights and conclude to a network with 
sufficient accuracy and avoid performing numerous loops without having a significantly better 
performance, the system is performing a gradient check. The gradient descent learning rule, 
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commonly used, known as delta rule, is applied during the learning process for the adjustment 
of weights.  The evaluation of the weight correction is given by an equation similar to the 
definition of gradient and represents a sensitivity factor, determining the direction of search in 
the weight matrix for each synaptic weight. 

𝜟 = −𝜼
𝝏𝑱(𝜣)

𝝏𝜣
 , Equation II-8 

Where, 

η, is the learning rate parameter, which control the rate of change of the weights and biases 

J, is the cost function (in this case logistic cost function)  

Θ, is the matrix of weights controlling function mapping 

However, a key factor involved in the calculation of the weight adjustment is the computation 
of the error signal 𝑒 (𝑛), of the neuron’s output. When the neuron is located at the output node, 

the calculation of the corresponding error signal is easy, as the network is supplied with a 
desired, target response. In case of a neuron located at any hidden layer, the problem is more 
complicated. The hidden neurons are not directly linked to a desired response, so they “share” 
responsibility for any error made at the final output. The important and complex part, is to 
know how to penalize or reward hidden neurons based on their response for their share of 
responsibility. As a result, the error signal should be determined recursively in terms of the 
error signal of all the neurons to which a hidden neuron is directly connected. This problem is 
known as the credit-assignment problem, described at (Haykin, 1999).  

 

 For the training of MLPs back-propagation algorithms are used. In this study a number of 
different algorithms were tested in order to conclude at the training procedure that would result 
in the best possible predictive characteristics. The cost function used for all the cases was mean 
square error.  It is very difficult to know which training algorithm will be the fastest for a given 
problem. It depends on many factors, including the complexity of the problem, the number of 
data points in the training set, the number of weights and biases in the network, the error goal, 
and whether the network is being used for pattern recognition (discriminant analysis) or 
function approximation (regression). Back-propagation is a specific technique for 
implementing gradient descent in weight space for feedforward multilayer networks. The 
principle of it, is to efficiently compute partial derivatives of an approximating function 
𝐹(𝒘, 𝒙), in respect to all elements of the adjustable weights, of the weight matrix 𝒘, for a given 
input vector of parameters 𝒙. Specifically, consider an MLP with an input layer of m0  nodes, 
two hidden layers, one output signal and as a result one neuron in the output layer (as the 
majority of networks used for this study). The weights are ordered in the 𝒘  weight matrix, by 
layer, then by neuron in each layer and then by the synapses within a neuron. As defined before 

𝑤 (𝑛) denotes the synaptic weight from a neuron i of the l-1 layer, to a neuron j of the l layer, 

at the n iteration. The goal is to evaluate the derivatives of the function 𝐹(𝒘, 𝒙), in respect to 
all elements of the weight matrix 𝒘 for a given input vector 𝒙  of m0 parameters. The multilayer 
perceptron is also parameterized through its architecture, meaning the number of nodes-
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processing units located in each layer. To define this, we will insert one more parameter A, 
which should be interpreted as a symbol linked to the architecture rather than a variable. Now 

consider 𝐴  , denote the part of the architecture extending from the input layer to any node in 

layer l. As a result, in respect of the activation function φ of the node 

 𝑭(𝒘, 𝒙) = 𝝋 𝑨𝒋
𝒍 , Equation II-9 

Following this, the partial derivatives of the approximation function, according to (Haykin, 
1999) could be written as  

𝝏𝑭(𝒘,𝒙)

𝝏𝒘𝒊𝒌
𝒍 = 𝝋′(𝑨𝒊

𝒍)𝝋(𝑨𝒌
𝒍 𝟏) Equation II-10 

If we assume that we are computing the derivatives of layer l = 3, the equation could be 
rewritten as 

𝝏𝑭(𝒘,𝒙)

𝝏𝒘𝒊𝒌
𝟑 = 𝝋′(𝑨𝒊

𝟑)𝝋(𝑨𝒌
𝟐) Equation II-11 

𝝏𝑭(𝒘,𝒙)

𝝏𝒘𝒊𝒌
𝟐 = 𝝋′(𝑨𝒊

𝟑)𝝋′(𝑨𝒌
𝟐)𝝋(𝜜𝒋

𝟏)𝒘𝒊𝒌
𝟑  Equation II-12 

𝝏𝑭(𝒘,𝒙)

𝝏𝒘𝒋𝒊
𝟏 = 𝝋′(𝑨𝒊

𝟑)𝝋′(𝑨𝒋
𝟏)𝒙𝒊 ∑ 𝝋′(𝜜𝒌

𝟏)𝒘𝒊𝒌
𝟑 𝒘𝒌𝒋

𝟐
𝒌  Equation II-13 

Where φ΄ is the partial derivative of nonlinear activation function φ, with respect to its input 
vector 𝐱 consisting of 𝑥 , input signals. Another aspect of the training process crucial for the 
performance of the training procedure is the evaluation of the sensitivity of the approximating 
function 𝐹(𝒘, 𝒙), with respect to any change of any element of the weight matrix-vector 𝒘. 
The sensitivity of 𝐹(𝒘, 𝒙),  in respect to an element w of the weight vector is defined as  

𝑺𝒘
𝑭 =

𝝏𝑭/𝑭

𝝏𝒘/𝒘
 Equation II-14 

a) Jacobian Matrix in Artificial Neural Network Training 
 

Considering a function 𝒇: 𝑅 → 𝑅 , taking as input a vector 𝒙 ∈ 𝑹𝒏 and producing as output 
a vector 𝒚 = 𝒇(𝒙) ∈ 𝑹𝒎  , the Jacobian matrix is the matrix of all first-order partial derivatives 
of the vector-valued function. Then the Jacobian, is the matrix of 𝑚 × 𝑛 dimensions, defined 
as given below 

𝐽 =
𝜕𝑓

𝜕𝑥
 , 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑎𝑠  𝐽(𝑥 , … , 𝑥 ) =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦

𝜕𝑥
…

𝜕𝑦

𝜕𝑥
⋮ ⋱ ⋮

𝜕𝑦

𝜕𝑥
…

𝜕𝑦

𝜕𝑥 ⎦
⎥
⎥
⎥
⎤

 

Equation II-15 

For any Multi-Layer Perceptron, given a matrix 𝒘 of the synaptic weights and biases (free 
parameters), defined and ordered as described, let assume N to be the total number of examples 
used for the training of the network. Using the previously described methodology, we can 
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compute a set of partial derivatives of the approximating function 𝐹(𝒘, 𝒙) in respect to any 
element of the matrix 𝒘, for any input example set x(n) in the training set. Repeating this 
procedure for all examples in the set will result in a N –by–W matrix consisting of the partial 
derivatives of any set of example and weight. This output matrix is called the Jacobian 𝐉 ,of the 
MLP evaluated at the x(n) training set. Each n row is ordered in such way, to represent the 
Jacobian of a particular n example of the set. The Jacobian matrix provides information 
regarding how well the network corresponds and indicates its generalization capabilities. A 
neural network training could be intrinsically ill-conditioned, meaning that the training or the 
constructed network is poor, leading to a Jacobian matrix that is almost rank deficient. If a 
number p of columns is almost collinear, then it is expected that the singular values of a p-1, 
would be relatively small. An ill-conditioned network means that the algorithm obtained only 
partial information of the possible search directions, causing long and inefficient training. The 
rank of a matrix equals to the number of linearly independent columns or rows, whichever is 
the smallest. We can assume that the Jacobian is rank-deficient if its rank is less than the 
minimum of N or W (S. Saarinen, 1993).  

 

b) Hessian Matrix in Artificial Neural Network Training 
 

Suppose 𝒇: 𝑅 → 𝑅, is a function taking as input a vector 𝒙 ∈ 𝑹𝒏 and outputting a scalar 
𝒇(𝒙) ∈ 𝑹  ; if all second partial derivatives of  𝒇 exist and are continuous over the domain of 
the function, then the Hessian matrix H of 𝒇 is a square n×n matrix, defined and arranged as 
follows 

𝐻 =
𝜕 𝑓

𝜕𝑥 𝜕𝑥
 , 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑎𝑠  𝐻(𝑥 , … , 𝑥 ) =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕 𝑓

𝜕𝑥
…

𝜕 𝑓

𝜕𝑥 𝜕𝑥
⋮ ⋱ ⋮

𝜕 𝑓

𝜕𝑥 𝜕𝑥
…

𝜕 𝑓

𝜕𝑥 ⎦
⎥
⎥
⎥
⎥
⎤

 

Equation II-16 

For any Multi-Layer Perceptron, given a matrix 𝒘 of the synaptic weights and biases (free 
parameters), the Hessian matrix of the cost function E(𝐰), denoted by H, is defined as the 
second derivative of the cost function with respect to the weight vector 𝒘, as shown below 

𝑯 =
(𝒘)

𝒘
 Equation II-17 

Computation of the Hessian matrix is important in the study and design of Neural Networks, 
as the eigenvalues of it are linked to the dynamics of the back-propagation learning, as they 
have a profound influence on the convergence properties of the networks algorithm and the 
inverse of the matrix provides a basis and insight of simplifying the network via identifying 
insignificant synaptic weights (Haykin, 1999). Usually the composition of the eigenvalues of 
the Hessian matrix of the error function, trained by a back-propagation algorithm consists of a 
small number of large and small eigenvalues and the majority of them are concentrated at the 
range of medium sized eigenvalues. Wide variation of the second derivatives computed in the 
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Hessian matrix could be observed over different layers. Commonly, the second derivatives of 
the first or lower layer are smaller than the last layer’s, indicating that the synaptic weight is 
learning and adjusting slowly at the first hidden layer compared to the fast learning of the last 
(hidden) layer. Another aspect that influence training and the performance of the outcome 
network is the correlation between elements of the input vector and the possible correlation 
between induced neuronal output signals, which results in poor generalization properties and 
overfitting. In order to reduce learning time, the use of non-zero mean inputs should be avoided. 
Thus, in most networks, a signal vector 𝒙 applied in the first hidden layer is processed in such 
way that for each element of the vector, the mean value is removed, before its application to 
the following layers. However, in the following layers, depending on the activation function 
used, the output signal of each neuron could be restricted to a non-zero mean interval. Suppose 
that a non-symmetrical (over zero) activation function is selected, as the logistic (log-sigmoid), 
resulting at a restricted output to the interval [0, 1]. This results in a systematic bias on the input 
of the neurons located at the following layer. A way to overcome this issue, is to use a 
symmetric activation function, in order to re-arrange the interval over a range in which the 
mean could be zero. For example, applying a hyperbolic tangent function over the previous 
logistic function will allow values to range between positive and negative over the interval [-
1, 1]. This is important for large networks with a lot of connection and synapses, in order to 
yield faster convergence. 

2. Training Algorithms 
 

a) Levenberg-Marquardt backpropagation 
 

Levenberg-Marquardt backpropagation algorithm is often used as a first training function 
because usually it is the fastest algorithm in the Matlab toolbox and is highly recommended as 
a first-choice supervised algorithm. However, it usually, depending on the problem, requires 
more memory than other algorithms. (MathWorks, MathWorks Documentation, 2018). 
Levenberg-Marquardt backpropagation algorithm uses the Jacobian matrix and determinant for 
the calculations, which assumes that the performance (or cost function) is a mean or sum 
squared errors. 

The Levenberg-Marquardt algorithm was designed to approach second-order training speed 
without having to compute the Hessian matrix. When the performance function has the form 
of a sum or mean of squares (as is typical in training feedforward networks), then the Hessian 
matrix and its gradient can be approximated and computed as: 

𝑯 = 𝑱𝑻𝑱  Equation II-18 

g = 𝐉𝐓𝐞  Equation II-19 

Jacobian matrixes contain first derivatives of the network errors with respect to the weights 
and biases, and e is a vector of network errors. The Jacobian matrix can be computed through 
a standard backpropagation technique, which is less complex than computing the Hessian 
matrix and as a result faster. Techniques that could accelerate the convergence of the algorithm 
and the principles of Marquardt algorithm are described by M.T.Hagan (Hagan & Menhaj, 
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1994). The algorithm uses the following update, using the described approximation to Hessian 
matrix: 

𝒙𝒌 𝟏 = 𝒙𝒌 − [𝑱𝑻𝑱 + 𝝁𝑰]𝑱𝑻𝒆  Equation II-20 

Where, e is a vector of network errors. 

When the scalar µ is zero, the eq. II-19 𝒙𝒌 𝟏 = 𝒙𝒌 − [𝑱𝑻𝑱 + 𝝁𝑰]𝑱𝑻𝒆   is just Newton’s method, 
using the approximate Hessian matrix. On the other hand, when μ is large, the same equation 
becomes gradient descent with a small step size. Newton’s method efficiency increases its 
accuracy while the error reduces, so the aim is to shift towards Newton’s method as quickly as 
possible, when the e vector errors are small enough. Thus, µ is decreased after each successful 
step (reduction in performance function-better performance) and is increased only when a 
tentative step would increase the performance function. In this way, the performance function 
is always reduced at each iteration of the algorithm. The original description of the Levenberg-
Marquardt algorithm is given in (Marquardt, 1963). In Marquardt’s original work a maximum 
neighbourhood method was developed in order to perform an optimum interpolation between 
the Taylor series method, which faces reduced performance because of the diverge of the 
successive iterates and the gradient (steepest-descent) methods of which their performance is 
slowed down due to the slow converge after the first few iterations. The application of this 
algorithm appears to be the fastest method for training moderate-sized feedforward neural 
networks (up to several hundred weights). 

b) Resilient Backpropagation 
 

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These 
functions are often called “squashing” functions, because they compress an infinite input range 
into a finite output range. Sigmoid functions are characterized by the fact that their slopes must 
approach zero as the input gets large. This causes a problem when you use steepest descent to 
train a multilayer network with sigmoid functions, because the gradient can have a very small 
magnitude and, therefore, cause small changes in the weights and biases, even though the 
weights and biases are far from their optimal values. The purpose of the resilient 
backpropagation training algorithm is to eliminate these harmful effects of the magnitudes of 
the partial derivatives. To overcome the disadvantages of pure gradient-descent, this method 
performs a local adaption of the weight changes according to the behaviour of the error 
function. The adaption process is not affected by the size of the derivatives (Riedmiller & 
Braun, 1992). Only the sign of the derivative can determine the direction of the weight update; 
the magnitude of the derivative has no effect on the weight update. The size of the weight 
change is determined by a separate update value. The update value for each weight and bias is 
increased or decreased by a delta factor according to the sign of the derivative of the 
performance function of two successive iterations. If the sign of the derivative continues to be 
the same for a number of iterations the magnitude of the weight change increases, in order to 
improve the performance of the network faster. The approach of computing local learning 
scheme, which modifies each weight according to the sign of the partial derivative of the weight 
matrix reduces the number of learning steps in comparison to the original gradient-descent 
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procedure. Another useful feature of this approach, is that the algorithm robust response against 
the choice of initial, random or predefined parameters.   

 

 

c) Gradient - Descent Algorithms 
 

This group of backpropagation algorithms adjust the weights in respect to the steepest descent 
direction (negative of the gradient). This is the direction in which the performance function is 
decreasing most rapidly. In the case of the standard gradient descent algorithms the weights 
and biases are updated following this method, whereas the learning rate remains constant. An 
alternative is achieved by adjusting the learning rate of the back-propagation, in order to adapt 
the local curvature of the error surface. The concept is to increase learning rate when the error 
decline, as long as the stability of the network is ensured. An aspect that may improve further 
their learning time is to take into account the momentum of the error function, aiming to avoid 
local minimum areas and converge faster to the global minimum. A common problem this 
group of algorithms face is that they depend on the starting point. Meaning that, by one 
direction minimization process followed by these algorithms, not imply necessary that the 
function is minimized on the weight space. A graphic representation of the described procedure 
and problem is presented. 

 
Figure II-6 Gradient Descent Algorithm  

Where  𝐉 , in this case is the logistic cost function and 𝜃 , are the weight matrixes of n iteration. 

The weights are updated following the equation:  𝜃 = 𝜃 − 𝑎
𝑱
  Equation II-21 

Where 𝑎 is the learning rate of the given iteration. 

It turns out that, although the function decreases most rapidly along the negative of the gradient, 
this does not necessarily produce the fastest convergence. In the conjugate gradient algorithms, 
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a search is performed along conjugate directions, which produces generally faster convergence 
than steepest descent directions. Such approach is described by (Moller, 1993) , where a 
conjugate gradient method (scaled conjugated gradient – scg), which avoids the repeating line 
search per iteration in order to scale each step size is presented. In most of the training 
algorithms a learning rate is predefined to determine and limit the magnitude of every step of 
the weight update. In most of the conjugate gradient algorithms, the step size is adjusted at each 
iteration. A search is made along the conjugate gradient direction to determine the step size, 
which minimizes the performance function along that line. Some search functions are best 
suited to certain training functions, although the optimum choice can vary according to the 
specific application. An appropriate default search function is assigned to each training 
function, but this can be modified by the developer. Conjugate direction methods follow the 
same general optimization strategy but choose the search direction and the step size more 
carefully by using information from the second order approximation. 

 

d) BFGS Quasi-Newton Backpropagation 
 

BFGS Quasi-Newton Backpropagation is an alternative to the conjugate gradient methods 
based on Newton’s method for faster optimization. The equation representing the method’s 
computation step is  

𝒙𝒌 𝟏 = 𝒙𝒌 − 𝑨𝒌
𝟏 𝒈𝒌   Equation II-22 

Where, 𝑨𝒌
𝟏 is the Hessian matrix of second order derivatives of the performance index at the 

given values of the weights and biases of any iteration. Newton’s method converges faster than 
the conjugate gradient method when the error becomes relatively small. However, computing 
Hessian matrix for feedforward neural networks is a complex and computationally expensive 
process which results in slowing down the training. To overcome this problem and “avoid” 
repeating the computation of the Hessian matrix, there is a class of algorithms that is based on 
Newton’s method, but which does not require calculation of second derivatives in each 
iteration. These are called quasi-Newton (or secant) methods. Their approach is to update an 
approximate Hessian matrix at each iteration of the algorithm. The update is computed as a 
function of the gradient. The quasi-Newton method that has been most successful in published 
studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. One of the first attempt 
to generate a sequence of approximations to the inverse of the Hessian matrix was given by 
(Shanno, 1970). An improved approach on BFGS is described by (Nawi, R.Ransing, & 
S.Ransing, 2016) where the approach claims that improves the training efficiency of standard 
backpropagation algorithm by adaptively modifying the initial search direction, with a resulted 
effect on 15% reduction on the required iterations to converge. Another approach to a modified 
BFGS algorithm was given in (Yuan, 1990). In this approach the author claims to satisfy the 
quasi-Newton condition via an interpolation condition in which the gradient value of the local 
quadratic model matches the objective function of the previous iterate. This modified approach 
on BFGS algorithm preserves the global and local super-linear converge properties of the 
algorithm. Compared to the conjugate gradient method, this category of algorithms requires 
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more computation power in each iteration and more storage, however it generally converges in 
fewer iterations. The computed Hessian approximation must be stored and as a result due to its 
dimensions (n×n, where n is equal to the number of weights and biases) this makes BFGS 
inefficient for very large networks. 

 

e) One Step Secant Method 
 

To address the inherent problem of BFGS algorithm requiring more storage and computation 
in each iteration than the conjugate gradient algorithms, there is need for a secant 
approximation with smaller storage and computation requirements. The one step secant (OSS) 
method is an attempt to bridge the gap between the conjugate gradient algorithms and the quasi-
Newton (secant) algorithms. This algorithm does not store the complete Hessian matrix; it 
assumes that at each iteration, the previous Hessian was the identity matrix. This has the 
additional advantage that the new search direction can be calculated without computing a 
matrix inverse. This algorithm requires less storage and computation per epoch than the BFGS 
algorithm. It requires slightly more storage and computation per epoch than the conjugate 
gradient algorithms. It can be considered a compromise between full quasi-Newton algorithms 
and conjugate gradient algorithms. This method as described by (Battiti, 1992), responds 
sufficient for the on line first order backpropagation even in large-scale classification problems, 
however for high precision mapping its result may be questionable. 

 

f) Bayesian regularization backpropagation 
 

Bayesian regularization backpropagation algorithm is a network training function that updates 
the weight and bias values according to Levenberg-Marquardt optimization. It minimizes a 
combination of squared errors and weights, and then determines the correct combination so as 
to produce a network that generalizes well. The process is called Bayesian regularization. The 
limitation of it lies in the method this algorithm uses. In order to calculate the Jacobian matrix, 
the performance function should be either mean or sum of squared errors. Therefore, networks 
trained with this function must use either the mean square error or the sum of square error 
performance function. Also due to the same limitation, Bayesian regularization 
backpropagation algorithm can train any network as long as its weight, net input, and transfer 
functions have derivative functions. Bayesian regularization minimizes a linear combination 
of squared errors and weights. It also modifies the linear combination so that at the end of 
training the resulting network has good generalization qualities. This algorithm takes place 
within the Levenberg-Marquardt algorithm, while the computation of the derivatives and the 
Jacobian matrix is done according to the equation and methodology described at II.C.2.a).. The 
adaptive value μ, is increasing until the change monitored, results in a reduced performance 
index. Then, the change is applied to the network and the factor μ is decreased. This process 
penalizes over flexible and over complex models, which over fit training data, and helps detect 
poor underlying assumptions in learning models. (MacKay, A practical Bayesian Framework 



Neural Networks 

Estimation of the Propulsion Power of a VLCC Tanker Based on Operational Data  
50 

 

for Backpropagation Networks, 1992) The concept is that this procedure reassures that the 
learning model matches to the given problem.  

 

3. Division of data set 
 

The data available for the training and design of the network is usually divided initially, into 
three mutually exclusive sets. Further training of the network can be done, in the basis of a new 
set of data compliant and valid for the given problem. Attention should be given to the 
generalization properties of the network, while over training, complex and over sensitive 
weight updates could result in poor fit of the network to the problem. The three sets in which 
available data is usually divided are: 

 Training set. This set is used in order to update and optimize the synaptic weights and 
biases of the network, in the basis of minimizing the applied cost function. 

 Validation set. This set is used for the tuning and evaluation of free parameters as it is 
used for comparison between networks with different characteristics, in terms of 
weights and free parameters. 

 Test set. This set is used in order to map network’s predictive ability and generalization 
properties. This data set is applied after the training of the network and do not affect 
any of the properties of the network. 

The common practice, known as holdout validation, is to select training, validation and test set 
as a percentage of the data available. There is also another way of selecting a validation set, 
usually used for small datasets; the k-fold validation. This scheme divides the available data in 
k disjoint folds. Subsequently, trains the algorithm k times using each time a different fold as 
the validation set and the remaining as training set. After each passing the corresponding 
validation error is calculated. The validation error of the network is equal to the average of all 
calculated validation errors. The number of the folds k is user defined (Margari, 2017). 
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III. Data acquisition and processing 

 

A. Vessel Particulars-General information 
 

The vessel used for the purpose of this study is a 319,000 TDW VLCC of a modern design, 
delivered to Maran Tankers Management Inc. in 2016. Following company’s policy, the 
subject vessel is equipped with innovative systems promoting better performance and energy 
efficiency. Equipment and design innovations relevant to this study are the installation of a 
Mewis duct and a bulbous rudder, which increase vessel’s propulsion efficiency. The hull is 
optimized for the estimated operational profile. A vertical stamp bow design (no bulbous bow) 
was selected as it is proven to be more efficient for the range of speeds the vessel is expected 
to sail and results in better performance over the wave spectrum it is expected to face based on 
the trading route the vessel was designed for, according to a study made by the yard. Below a 
table of vessel’s particulars is presented. 

 
Length O.A. 336.00 m 
Length B.P. 330.00 m 
Breadth (molded) 60.00 m 
Depth (molded) 30.50 m 
Draft Design (molded) 20.80 m 
Draft Scantling (molded) 22.50 m 

Table 3: Particulars 

The propulsion plant is a de-rated ultra-long stroke diesel engine. 

 

B. Data Selection 
 

In the Performance Monitoring and Analysis Systems chapter we analysed the components 
affecting vessel’s performance, as well as the parameters linked to each physical problem. It 
has become clear that accurate data, obtained automatically with a high rate of data acquisition 
is one of the most important requirements for in deep performance monitoring. The quality of 
the collected data depends on the data conditioning characteristics, sensor characteristics and 
maintenance, environment of the sensor, and the behaviour of the vessel. One aspect equally 
important to the rate of data acquisition is data quality. In our case, data quality is of great 
importance, as we do not use any predefined equations or analytical connection to evaluate 
vessel performance, but we rely on the training of a network. In this approach, as described at 
the previous chapter (Feed-forward Multi-Layer Perceptron), the importance of the data 
collected and their properties, as well as the physical and statistical connection between the 
variables is crucial. The correct selection of input parameters, that fulfil in the best possible 
way the above required properties, could make a huge difference in the predicting abilities of 
the network. Dimensionality reduction is an important step in data analysis, because it can help 
improve model accuracy and network’s performance, improve interpretability, and prevent 
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overfitting. As a result, choosing only the parameters, which include all the information needed 
to define the problem and avoid inserting signal with low or none information could result in a 
much better outcome. As a result, balancing correlation between input-signals and connection 
of each of them to the physical problem, keeping in mind how to keep network’s properties 
balanced are things that need to be under consideration. 

 

Keeping all this in mind, we proceed to the selection of parameters based on the physical 
problems we want to address. As discussed above, the selection of parameters is a crucial part 
of the modelling, as it heavily affects the neural network’s properties. In the following, the 
different resistance components are presented. The analysis of the different parameters 
contributing to each resistance component, lead us to the selection of the input vector, which 
we believe describes sufficiently our problem. 

 

1. Calm water Resistance 
 

Calm water resistance of the clean hull and propeller (no fouling or deformation), as described 
in I.D.1, consists of two main components, frictional and pressure resistance. However, 
propelling the vessel with its propulsion plant, alters the calm water resistance, as the pressure 
field changes due to the running propeller and the interaction of the propeller with the ship’s 
hull. 

Typically, the total resistance of the hull, based on the resistance towing test, is described by a 
coefficient: 

𝑪𝑻 =
𝑹

𝟏

𝟐
𝝆𝑺𝑽𝟐

  , Equation III-1 

Where,  

R is the measured resistance force 

ρ is the fluids density 

S is the wetted surface 

And V is the speed  

The effect of the interaction of propeller and hull is demonstrated by the self-propulsion test. 
For this analysis, we used the results of such tests, in addition to the sea trial, in order to produce 
a baseline power curve in calm water for the vessel in question. These data are commonly 
available for design draft and ballast condition, as well as in some cases, scantling draft. For 
different draft an approximation is suggested (ISO, Ships and marine technology-Measurement 
of changes in hull and propeller performance, 2016), based on a corresponding speed, 
approximated by the ratio between the different displacements. Reference data from the closest 
available displacement curve shall be used as baseline and the remaining variation is suggested 
to be corrected by the Admiralty formula, shown below: 
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𝑽𝟐 = 𝑽𝟏
𝜟𝟏

𝟐/𝟑

𝜟𝟐
𝟐/𝟑

𝟏
𝟑

 Equation III-2 

This approximation is not accurate, but is oriented to focus in small draft difference between 
the actual and the reference draft. For conditions where, the hydrodynamic characteristics 
change, the submerged geometry is different, or the relation of speed and displacement for the 
specific ship type is not valid, this approximation is inaccurate. 

The approach used for this evaluation is based on an approximation methodology, aiming to 
balance the weight matrix of the neural network. The vessel in question is a VLCC, with 
relatively high frictional resistance compared to other resistance components. Frictional 
resistance is proportionate to the wetted surface and related to the speed. The big advantage of 
the neural network approach, is that it is not necessary to know any physical relation between 
parameters, as long as all the necessary parameters are inserted in the network. Based on this 
property of the neural network, we assume that the problem is well dimensioned by inserting 
the following parameters. 

 Speed  

 Wetted surface 

 Water density 

For the above in order to reduce the input dimensions we proceed as following.  

 Speed is inserted as a parameter 

 Wetted surface is assumed well dimensioned as a function of draft, trim and list, as the 
network is trained by operational data of the subject vessel. 

 Water density is not taken into account, because the variation of it is low and during 
the preliminary testing, using it as an input parameter increased noise and did not 
increase prediction accuracy of the network. 

 

2.  Added wave resistance 
 

This component is related with the action of waves on the hull as well as with the induced ship 
motions. As described, it can be attributed to several physical phenomena. Added wave 
resistance commonly is decomposed to resistance due to motions induced by the waves and the 
energy loses due to reflection of short length waves. 

 
Figure III-1 Added wave resistance decomposition 
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 However, the interaction of those two components is creating a complex problem, difficult to 
describe and analyse. For short incident waves, the principle component of added wave 
resistance is the reflection of waves.  

 
Figure III-2 reflection/diffraction of waves 

For waves of medium length, similar to the length of the vessel, the main part of added wave 
resistance is related to radiation. Radiation is produced by the induced motions of the vessel 
(primarily heaving and pitching, and secondarily rolling) due to the seaway.  

 
Figure III-3 Radiation 

For very long waves, it is assumed that the vessel follows the wave pattern with less impact to 
the added wave resistance. In our case, we can safely assume that in most of its lifetime the 
principle component of added wave resistance is related to the reflection and diffraction of 
waves, as the length of the vessel is 330m (between perpendiculars) and it is not likely to face 
waves of this length. However, our approach is not restricted to model only one of this physical 
phenomena. Liu S. conducted research on the modelling of the added wave resistance in respect 
to vessel’s particulars and condition (S. Liu, 2015). Commonly, the added wave resistance is 
estimated through wave characteristics and a number of parameters related to the vessel’s 
response, hydrodynamic and seakeeping characteristics. As a result, we can conclude that for 
a given loading condition, wave added resistance may be expressed as follows: 

𝑹𝒂𝒘 = 𝒇(𝑽𝒔, 𝑯𝒔𝒘, 𝒂𝒘, 𝑻𝒔𝒘, 𝑯𝒔𝒔, 𝒂𝒔, 𝑻𝒔) Equation III-3 

Where, 

𝐕𝐬 , is the speed of the vessel 

𝐇𝐬𝐰, is the significant wave height of the wind generated waves 

𝐚𝐰, is the angle of incidence of wind generated waves 

𝐓𝐬𝐰, the peak period of the wind generated waves spectrum 

𝐇𝐬𝐬, is the significant wave height of swell waves, long low frequency waves 

𝐚𝐬 , is the angle of incidence of swell waves 

𝐓𝐬, is the period of long low frequency swell waves 
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3. Wind Resistance 
 

As described, wind resistance depends upon the vessel’s apparent speed and upon the area and 
the shape of the upper body, exposed to wind forces. The resistance force can be estimated by 
the equation (ISO, Ships and marine technology-Measurement of changes in hull and propeller 
performance, 2016): 

𝑹𝒓𝒘 =
𝟏

𝟐
𝝆𝜶𝒗𝒓𝒘

𝟐 𝑨𝒄𝒙(𝝍𝒘𝒓)Equation III-4 

Where, 

ρα , is air density 

vrw , is the relative wind speed at the reference height 

A, is the transverse projected area in current loading condition 

Cx , is the wind resistance coefficient, dependent on the wind direction of the relative wind 

 ψwr , is the relative wind direction at the reference height 

The wind force coefficient CX can be found by wind tunnel tests on a particular ship model or 
by various approximation models. The two semi empirical models commonly used, when wind 
tunnel tests are not available, which comply with the ISO 19030 and ISO 15016 requirements 
are Isherwood and Fujiwara. The measured wind will have to be corrected for the height of the 
anemometer placement on board the ship. The wind is varying in strength with height and the 
wind resistance models used are to a certain reference height. The wind velocity variance with 
height can be corrected by (15016, 2015) 

𝑽𝒘(𝒛𝒓𝒆𝒇) = 𝑽𝑾(𝒛) ∙
𝒛𝒓𝒆𝒇

𝒛

𝟏

𝟕
Equation III-5 

Where,  

𝐕𝐖, is the measured wind velocity 

𝐳, is the height of the anemometer 

𝐳𝐫𝐞𝐟, is the reference height used in the wind resistance model as described in the subject ISO 
15016 

 For this study, wind resistance coefficient computed by wind tunnel tests are available. 
However, due to the small impact of wind resistance as part of the total resistance of the subject 
vessel, inserting all these parameters as an input to the neural network resulted in poor 
network’s performance and increased noise, as the weights of these parameters are relatively 
small and the weight matrix becomes unbalanced. To avoid this effect, only relative wind 
speed, measured at the anemometer, and the relative direction of wind is used. This includes 
the assumption that wind resistance component is well dimensioned through these two 
parameters in addition to the loading condition and operational parameters already inserted and 
the fact that the network is trained with service data. 
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4. Shallow water effect 
 

As described, shallow water effect consists of two basic components, the added resistance due 
to the increased sinkage and dynamic trim when sailing in shallow water and the added 
resistance due to the change of wave patterns. An approximation of speed loss due to these 
effects, is given in the work of (Lackenby, 1963): 

∆𝑽𝒔

𝑽𝒔
= 𝟎. 𝟏𝟐𝟒𝟐

𝑨𝑴

𝒉𝟐 − 𝟎. 𝟎𝟓 + 𝟏 − 𝒕𝒂𝒏𝒉
𝒈𝒉

𝑽𝒔
𝟐

𝟏/𝟐
for  

𝑨𝑴

𝒉𝟐 ≥ 𝟎. 𝟎𝟓 Equation III-6 

Where,  

∆𝐕𝐬, is the speed loss due to shallow water 

𝐕𝐬, is the vessel’s speed  

𝐀𝐌, is the midship section area under the current water line 

𝐡, is the water depth 

In the framework of this thesis, due to the trading pattern of the vessel is was decided to filter 
out the period when the vessel was sailing in shallow water as it is a very short period of time 
compared to the overall sailing time. The filtering was done based on the condition of the above 
equation, but for 𝐀𝐌, of the design draft. 

 

5. Trim effect 
 

Trim is known to alter the calm water resistance of the vessel by altering the flow and the 
pressure field. It also has an impact at the inflow of the propeller. However, due to design 
limitations of the subject vessel at each condition the range of available trims is relatively small. 
Trim is inserted as an input parameter, along with other parameters, which are related to its 
effect, like speed and draft. The neural network is relating these parameters with all the 
corresponding synapses weights included and correlate these input parameters of the input 
vector to the final predicted power. 

 

6. Steering effect 
 

Steering effect indicates the resistance contribution of the drag force due to rudder angle, and 
the lift produced by the rudder when leading to a yaw angle, since the ship will counteract the 
lift from the rudder. An approach to the rudder induced resistance is given by (Kijima, 1990). 
Due to the complexity of this approximating calculation and the fact that is oriented for 
standard rudder geometries, it is selected to use the rudder indicator reading and all the other 
parameters related, which are already included at the input vector of the neural network, and 
let the network approximate their effect and synapses. The computation of the impact of 
steering could have been done separately, however the rudder of the subject vessel is not of 
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conventional design, as except of its different geometry it has a rudder bulb attached, which is 
design to improve the outflow of the propeller.   

 

C. Data logging sensors on-board and other data acquisition sources 
 

Following is the list with the data acquired at the initial stage: 

1. Speed through water (log) Doppler – Echo Sounder 
2. Rudder indicator 
3. RPM, torque meter readings and computed shaft power 
4. Wind anemometer (relative wind speed and direction)  
5. Position signal from GPS  
6. Vessel’s heading through the Gyrocompass 
7. Draft (dynamic) at aft forward & amid ship starboard and port / computing trim and list 
8. Air and sea water temperature  
9. Weather provider 

i. Significant wave weight 
ii. Wind-wave direction 

iii. Swell significant wave weight 
iv. Swell direction  
v. Swell period 

Sensors type and accuracy are described below. Examples of their use are analysed. 

 

1. Speed through water (log) – Echo Sounder 
 

a) Speed through water (log) 
 

The speed through water (log) is a crucial source for data in the performance calculation. The 
accuracy of the sensor depends on the calibration and on the manufacturer specifications. An 
offset between speed log readings and the actual speed, over a significant period of time, will 
indicate the need for calibration. Accuracy of speed log used, when calibrated and well 
maintained, is stated by the manufacturer to be ±1% or 0.1 knot, whichever is greater. However, 
a series of factors could influence the measurements. Measurement of the speed through water 
depends on acoustic reflection from solid particles in the water. In extremely clear water the 
variation on the quantity of scatters may affect signal return. A common problem, attributed to 
poor design, in most cases, is the presence of aeration at the area, where the transducer is 
placed. Aerated water under the transducer may reflect sound energy which could erroneously 
be interpreted as sea bottom returns. Sailing in heavy weather may be an additional source of 
this effect as it creates non-laminar flow around the transducer. By placing the transducer near 
the bow the effect of non-laminar flow is reduced considerably.  
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b) Echo Sounder 
 

Two sensors are installed on the ship – one at the forward section and one at the aft, 
approximately below the accommodation. The frequency ranges for the sensor are in the 
interval from 50 to 320 kHz and the measuring accuracy is in the order of 2.5% of the measured 
depth, accomplished by 3 beams. The echo sounder is used in confined waters for navigational 
purposes, for which the echo sounder frequency is set to 50 kHz. At this frequency the sea bed 
detection level is around 90-150 m depending on sea water salinity and temperature.  

 

2. Rudder Indicator 
 

The electric rudder angle indicator equipment is used for measuring and monitoring the actual 
rudder angle. The rudder indicator measures the rudder angle continuously and the measuring 
accuracy is usually below the range of +/- 0.5° at common angles and +/- 1.5° at hard over 
rudder. The rudder angle indicating system is composed of one transmitter and one or more 
receivers. The transmitter is installed in the steering gear room and connected to the rudder 
through a lever and a coupling rod. The transmitter is designed to rotate by four times the actual 
angle of the rudder turned though a gear mechanism. This makes the pointer scale on the dial 
turn by four times as much as the actual rudder angle, for easy and correct readout. 

 

3. RPM, torque meter readings and computed shaft power 
 

Shaft power meter is an instrument for continuous measurement of torque, revolutions, and as 
a result power on a rotating shaft. The technology used for this purpose is strain gauges, 
arranged on a ring, placed on the shaft. The instrument consists of an aluminium ring part 
clamped on the shaft, before the intermediate bearing, a stationary unit located next to the shaft 
and a terminal junction box for the transmission of the signal and power connection. Shaft ring 
contains additional electronic components for signal processing, while serving as a protection 
for the strain gauges. According to manufacturer, the induced instrument’s accuracy is +/- 0.5% 
over torque and power, while the accuracy of the shaft’s revolutions is measured at +/- 0.1%. 
The basic principle with which this arrangement works is that any deformations of the strain 
gauges are transferred into voltages deviation, which determine the strain on the shaft. The 
typical torque measurements on a propeller shaft are in the order of 330 micro strains and the 
strain gauges are able to detect changes in the order of 1.5 micro strains. 

 

4. Wind anemometer (relative wind speed and direction) 
 

The anemometer provides wind direction and speed signals simultaneously from a signal 
transmitter. The wind anemometer is a helicoid propeller type with a vane for direction 
measurement. The wind direction is detected as a rotating angle of the vertical tail-fin (vane) 
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and a body with respect to the stationary part, transmitter to the synchro motor type transmitter, 
and read from the rotating angle of the synchro motor receiver. The wind speed is measured by 
the helicoid propeller, while it is translated to a voltage by the generator added converter which 
is directly coupled to the propeller and the voltage is rectified and directly read on a voltmeter, 
calibrated in instantaneous wind speed. The anemometer should be placed as high as possible 
and located on an area, on which to avoid interaction with the sea surface or any structure that 
could result in altering the air flow. The measuring accuracy provided by the manufacturers is 
in the order of +/- 0.3 m/s or 1% of the wind speed and +/- 3° of the wind direction, in common 
arrangements. 

 

5. GPS 
 

The GPS gives information about the speed of the vessel. The speed, via GPS, is measured 
above ground whereas the speed measured by the ship’s log is speed through water. In cases 
where the ship is not subject to any set and drift caused by current, the two measured speeds 
should be similar. Thus, GPS speed is also very useful, in order to identify log speed, or speed 
through water malfunction. 

 

6. Gyrocompass 
 

The gyrocompass determines the vessel’s heading using gyro sphere in respect to true north. 
The heading could be used in combination to the wind anemometer to calculate true wind speed 
and directions based on relative measurements on-board. The compass is connected to the 
autopilot which steers the ship when sailing. The autopilot keeps the ship’s course as set by the 
navigator correcting for any environmental disturbances from waves, wind and currents, as 
well as the ship’s sailing conditions. Rudder commands from the autopilot usually are given 
partly based on settings applied by the navigator and partly by a mathematical model of the 
ship programmed in the autopilot. To achieve the most economical steering for the vessel it is 
essential that settings given to the autopilot are in accordance with weather and load conditions. 

 

7. Draft readings 
 

Draft information can be given as manual input at the start of each leg or via sensors on-board. 
In our case, sensors using pressure readings at various areas of the vessel’s bottom are used to 
compute drafts at different longitudinal and transverse positions. During sailing the draft 
information is updated continuously, with the same frequency as the other automatically logged 
parameters and is validated at port through calculating the loading at still water. 
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D. Data preparation 
 

Practically all signals from sensors on-board ships contain outliers and must be filtered before 
they are further processed. Outliers occur due to electrical noise, errors in data transmission, 
incorrect readings from sensors, poor calibration, or due to other issues. Data preparation 
involves retrieving, compiling, filtering and validating of collected data, in order to provide a 
structure, format and quality suitable for further processing. Identifying malfunction on any 
step of this process enables us to act correctively and rectify the error source if the data are 
found invalid. A common problem often faced is drifting of sensors (e.g. torque meter), which 
cannot be identified by an error in data collection, however it results in an incorrect description 
of the vessel’s condition. They can be identified using statistical techniques such as the 
Chauvenet’s criterion, suggested in (ISO, Ships and marine technology-Measurement of 
changes in hull and propeller performance, 2016), Peirce’s Criterion or median filter or by 
means of cross validation with other parameters.  The Chauvenet’s and Peirce’s criterion (Ross 
2003), which both base the rejection of outliers on a statistical probability, are found not 
satisfactory in transient conditions. An advanced method to improve system monitoring 
reliability and multi sensors fusion, applicable to marine performance systems is described by 
(Lajic, Fault - Tolerant Onboard Monitoring and Decision Support Systems, 2010). During 
periods of transit, ship performance should not be logged for performance monitoring. In order 
to identify these periods, a number of parameters must be continuously monitored and these 
periods should be identified by calculating the rate of change in some basic parameters. During 
this study filtering and validation problem is not addressed. Data retrieval, compiling, 
validation, and outliers filtering is done prior receiving the data for this study. A basic filtering 
is applied only at the data used for training, based on rate of change of shaft’s RPM. The format 
of the data received is demonstrated in a graphic form in the Figure III-4, plotted on an hourly 
interval. 

 
Figure III-4:Live data 

Vessel Name 
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E. Parameters selected for Neural Network input vector 
 

As discussed in previous chapter (II. Neural Networks) inputting parameters which contain the 
same information, or correlate with other parameters, result in reducing neural network’s 
ability to generalize and lead to overfitting. In order to limit this effect, a preliminary evaluation 
was done. The evaluation of the input signals was done by creating and plotting a matrix of 
scatter plots of the data input, grouped by the loading condition of the vessel (ballast, design 
laden, scantling) in order to identify correlated parameters. Each individual set of axes in the 
presented figure contains a scatter plot of a column of data against another column of data. The 
plotting is divided in different sets of input parameters, based on their category, and clustered 
according to the loading condition. Red points are categorized as ballast condition, blue as the 
design draft and black cluster consists of the data at scantling draft. 

 
Figure III-5 : Loading condition parameters 

From the above graph, is can be observed that trim is heavily correlated with draft, as the design 
constrain of a fully submerged propeller at ballast condition is only fulfilled for trims above 
3m. Also, for the subject vessel an optimization test from the yard and another third party, 
concluded that trim at the range of 3.5 meters at the normal ballast speeds is the optimum and 
as a result the vessel is usually operating at this trim range. For laden and especially close to 
scantling condition, trim is more difficult to change due to the greater momentum to change 
trim and the draft limitation. Similar optimum trim analysis concluded that from the possible 
achievable trims, trim by the bow of 0.5 meters results in the minimum calm water resistance 
at the design draft. For the purpose of this study, keeping all three of the above parameters 
(draft, trim and list) is selected. In order to avoid the heavy effect of the draft to the predicted 
shaft power (SHP), demonstrated at the above graph, calm water resistance and sea trials, were 



Data acquisition and processing 

Estimation of the Propulsion Power of a VLCC Tanker Based on Operational Data  
62 

 

used to establish a base load which was subtracted from the measured shaft power. With this 
approach the impact of the draft to the predicted “added” power is reduced.  

 
Figure III-6 Operational parameters 

As expected we can observe the strong relation of the delivered shaft power with the rpm of 
the vessel, concluding that including rpm as an input parameter will result in unbalancing the 
network and dominating the prediction. As a result, it was decided to exclude rpm from the list 
of input parameters. It is useful to note that all the data used for the initial training are extracted 
for known conditions, where the vessel’s hull and propeller are good. The period used is 
selected to be the first two months after delivery of the vessel and a few voyages 
(approximately two months of sailing) after the first underwater hull inspection and 
propeller polishing (7 months after delivery). The inspection’s findings were that no fouling 
was observed on the hull and the propeller was polished back to the Rupert scale A. A minimal 
change at rpm and power relation, which is expected as the hull and propeller are getting fouled, 
would reduce dramatically the ability of the network to evaluate vessel’s condition. This effect 
led us to exclude rpm from the input parameters vector, however it was used to identify periods 
of change, which should necessarily be excluded from the training set as they do not represent 
a normal operational condition that the network should be trained with. It is extremely crucial 
to narrow training data to steady and normal operational condition, where the hull and propeller 
are clean, in order to train sufficiently and avoid creating with poor generalization capabilities.  
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Figure III-7 : Weather condition parameters 

Unfortunately, it so happened that the weather condition and especially relative wind speed, on 
ballast and design draft was limited to a short range, in contrast with the observations at the 
scantling draft. This could mean that the generalization capabilities of the network at these 
drafts may not be very good at significantly different weather condition as the synaptic weights 
are not trained in similar conditions. An additional training set, maybe required, however this 
could be evaluated at a later stage. 

After assessing the correlation between the parameters, we conclude at the below list of 
parameters used for the model. 
 

1. Speed through water (log) Doppler – Echo Sounder 
2. Rudder indicator 
3. Wind anemometer relative wind speed  
4. Wind anemometer relative direction 
5. Average draft (starboard and port) at amid ship 
6. Trim 
7. List 
8. Significant wave weight 
9. Swell significant wave weight 
10. Swell direction  
11. Swell period 
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IV. Implementation of the Artificial Neural Networks 

 

The development of the Artificial Neural Networks for the approximation of the required shaft 
power for any given loading and weather condition assuming clean hull and propeller was 
carried out using MatLab. MatLab is a multi-paradigm numerical computing environment and 
proprietary programming language developed by MathWorks, widely used in numerical 
analysis, allowing matrix manipulations, plotting of functions and data, implementation of 
algorithms, creation of user interfaces, and interfacing with programs written in other 
languages, including C, C++, C#, Java, Fortran and Python.  

Cleve Moler started developing MATLAB in the late 1970s (Moler, 2018). He designed it to 
give his students access to LINPACK and EISPACK without having to learn Fortran. It soon 
spread to other universities and found a strong audience within the applied mathematics 
community. Jack Little, an engineer, was learned about the development of MATLAB at its 
primary form, during a visit Moler made to Stanford University in 1983. Recognizing its 
commercial potential, he joined with Moler and Steve Bangert. They rewrote MATLAB in C 
and founded MathWorks in 1984 to continue its development. 

Except from a library of functions and a compiler, MATLAB includes numerous toolboxes 
specially designed for specific applications and analyses. One of these toolboxes is focusing 
on machine learning and Artificial Neural Networks. This function library assists the user to 
design, adjust and develop Multi-Layer Perceptron networks, providing a powerful tool for 
managing and handling networks.  

Starting with the initial selection of input parameters-vector as described previously, 
developing the network consists of the determination of a number of network’s particulars and 
parameters. Concluding to the MLP that fits best the problem is a vague process. Different 
division of the dataset to the subsets (training set, test set, validation set) as well as the initial 
weights given to the weight synapses are affecting the resulting network and its performance. 
Each configuration examined in the current study is determined by the following network and 
design parameters:  

 The training algorithm used 

 The transfer functions used in each layer of every developed network 

 The number of hidden layers 

 The number and type of neurons allocated in each layer  

 Learning rate at the training process or in some cases of algorithms even the 
training rate of each iteration. 

Starting the evaluation of networks and narrowing the number of the above parameters, in order 
to conclude slowly to the MLP that suits better the problem, an evaluation of the training 
algorithms was initially done. This approach was selected due to the observation that the 
selection of the training algorithm affects significantly the network’s prediction capabilities 
and generalization properties. This trial approach started by testing the training algorithms on 
a number of architectures, six per algorithm defined by the number of neurons in each of the 
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two layers. The decision to use two hidden layers was made during the preliminary stage as the 
architecture with one hidden layer was evaluated as simple and architectures with three or more 
hidden layer were too complicated and seem to generalize poorly compared to the networks 
with two hidden layers. The training rate for the algorithms, which are determined by their 
learning rate, was left constant at the suggested value, for the initial evaluation. Typically, the 
transfer functions used were, for the input layer to the first hidden layer the hyperbolic tangent 
sigmoid transfer function, followed by a linear transfer function connecting first hidden layer 
to the second. Lastly, as commonly used at MLPs the transfer function used for the connection 
of the second (and last) hidden layer to the output layer was again selected to be a linear transfer 
function. This set of transfer functions was selected according to a quick evaluation on the 
Levenberg-Marquardt algorithm, which is the fastest algorithm of the below tested. However, 
tests with different sets of transfer functions were made for different algorithms, in order to 
evaluate if this assumption is affecting significantly the performance of the neural networks 
trained. A way of comparing networks with different parameter values is to assess their 
performance by measuring the error on an unknown data set by similar cross-validation 
techniques. The evaluation was made based on the mean square error performance (cost) 
function of the validation set. The algorithms tested, are listed below: 

 Levenberg-Marquardt backpropagation 

 Resilient Backpropagation 

 Gradient - Descent Algorithms 
o Scaled Conjugate Gradient 
o Conjugate Gradient with Powell/Beale Restarts 
o Fletcher-Powell Conjugate Gradient 
o Polak-Ribiére Conjugate Gradient 
o Variable Learning Rate Backpropagation 

 BFGS Quasi-Newton Backpropagation 

 One Step Secant Method 

 Bayesian regularization backpropagation 

A detailed description of the tested algorithms is given at II.C.2 “Training Algorithms” 
chapter. 

The initial evaluation of the training algorithms is presented at the following table. The 
values presented demonstrate the properties of the best performing network based on each 
algorithm, over a regularized output and target set. The following results, led us to select 
Bayesian regularization backpropagation algorithm as the primary algorithm. In the course 
of this study, alternative algorithms with acceptable initial results have been tested, 
however, Bayesian regularization backpropagation performed better at all stages. This 
result is in accordance with the study of (Foresee & Hagan, 1997). The issue studied at this 
paper, was the use of Bayesian regularization to prevent overfitting in neural network 
training as developed by David MacKay. The significant drawback of this method is that it 
requires the computation of the Hessian matrix of the performance index. This results in an 
extended training time period and increases the required computational power compared 
with other algorithms. A brief overview of the training time needed depending on the 
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selected algorithm is given at (MathWorks, 2018).The Bayesian regularization algorithm 
generally works best when the network inputs and targets are scaled so that they fall 
approximately in the range [−1,1]. To fulfil this requirement, which improves further the 
performance of a network, all parameters (input and output), were scaled to fit this range. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 

 

Figure IV-1:Graphic representation of the initial algorithm selection 

In this stage the selection of the backpropagation method-algorithm is made. A demonstration 
of the different algorithms and the different network’s architectures tested is given in the Figure 
IV-1. The networks consist of 11 nodes at the input layer (11 parameters selected as input 
signal) and 1 node at the output layer, as the value that we want to predict is only one, the shaft 
power needed for a given set of input signals. At this stage we allow the number of nodes at 
the hidden layers to vary on a short range. As demonstrated, the nodes at the first hidden layer 
vary from 8 to 10 and at the second hidden layer from 4 to 5. At this stage all possible 
combinations of training algorithms and different architectures demonstrated at the Figure 
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backpropagation 
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Scaled Conjugate 
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IV-1, were tested. Sets of networks trained with the same training algorithm, but with different 
architectures were made. Then, a comparison between the best performing networks of each 
set is done, in order to conclude in the algorithm, which fits best on our problem. The best 
performing network of each training algorithm set is selected automatically, through an 
assessment of the generalization characteristics. This evaluation, is based on the network of 
each set with the maximum regression value and the minimum mean square error, evaluated 
over the same validation set. 

 

Table IV-1 : Training algorithms evaluation 

At this table the performance of the best network of each training algorithm is presented. The 
evaluation is done based on the minimum cost function error (Mean Square Error is selected 
as the cost function) in addition to the best regression characteristics at the validation set. The 
regression value describes how the predicted values fit at the targeted diagonal, while the 
slope describes the deviation of the angle from the diagonal (45 deg or the line 𝑦 = 𝑥). 
Lastly, offset of regression describes the parallel deviation of the fitted line to the 𝑦 = 𝑥 
target. 

The input consists of the 11 parameters selected, described in the previous chapter, while the 
output is the predicted power. The goal is to have a predicted power as close as possible to the 
power measured by the torque meter and produce a network that makes predictions close to the 
diagonal at the full range of power and input parameters. 

Regression over the training and test set, for the best performing network of the Table IV-1 is 
demonstrated below. 

Training Algorithms Regression values  Slope of 
Regression 

Offset of 
Regression 

Mean Square 
Error 

Levenberg-Marquardt 
backpropagation 

8.53E-01 7.59E-01 1.75E-02 5.79E-04 

Resilient 
Backpropagation 

8.25E-01 7.04E-01 2.34E-02 6.28E-04 

Scaled Conjugate 
Gradient 

6.63E-01 4.51E-01 4.06E-02 1.10E-03 

Conjugate Gradient with 
Powell/Beale Restarts 

6.34E-01 4.47E-01 4.59E-02 1.20E-03 

Fletcher-Powell 
Conjugate Gradient 

7.46E-01 5.48E-01 3.31E-02 9.09E-04 

Polak-Ribiére Conjugate 
Gradient 

6.67E-01 4.29E-01 4.37E-02 1.10E-03 

Variable Learning Rate 
Backpropagation 

5.22E-01 2.92E-01 5.35E-02 1.30E-03 

BFGS Quasi-Newton 
Backpropagation 

5.85E-01 3.48E-01 4.66E-02 1.40E-03 

One Step Secant Method 5.35E-01 3.35E-01 4.65E-02 1.30E-03 
Bayesian regularization 
backpropagation 

9.34E-01 8.89E-01 9.30E-03 2.72E-04 
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Figure IV-2 : Bayesian regularization backpropagation algorithm regression characteristics over the training and the test 

set 

Regression over the validation set was done externally (after completing the training process) 
and the Figure IV-3 demonstrates the performance of a neural network, trained with the 
Bayesian regularization backpropagation algorithm, over a set that was not used for the 
training, thus it is in a way a demonstration of the generalization properties of the network. For 
each of the neural networks generated, the corresponding regression values and mean square 
error were calculated and evaluated at the course of the selection of well performing networks. 
Mean square error as demonstrated, represents the difference between the output values of the 
neural network and the targeted (measured) values. On the other hand, the regression value is 
an indicator of the relationship between the target outputs and the network’s outputs. The 
regression value ranges between one and zero, where one corresponds to an exact linear 
relationship (𝑦 = 𝑥 ) between output and target values and zero to a non-fitting scatter.  

R represents the proportion of variation in the response value compared to the target. It is 

defined as: 𝑅 = 1 − , where SSE is the sum of squared errors given by the equation 𝑆𝑆𝐸 =

∑ (𝑦 − 𝑡 )  and SST is the sum of squared values. 
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Figure IV-3: Bayesian regularization backpropagation algorithm Regression characteristics over the validation set 

Where, data1 is the output of the trained network (prediction) and data2 is the measured values 
for the specific data set. 

 
 

A. Improving Neural Network’s Generalization and Avoiding Overfitting 
 

The main problem that occurs during neural network training is overfitting. Addressing this 
problem, we focused on the generalization properties of different neural networks. Networks 
memorize the training examples, but the issue is their ability to generalize to new situations. 
Using Bayesian regularization backpropagation algorithm to train them, improved significantly 
the performance of the network’s addressing this matter. One method for improving network 
generalization is to use a network that is just large enough to provide an adequate fit. The larger 
network used, the more complex the functions the network can create. If a small enough 
network is used, it will not have enough power to over fit the data. However, identifying the 
network’s architecture that is large enough to address the problem, while it is not too large to 
over fit is a complex task. An attempt to address this issue was done by (Hagan M. H., 1996). 
Unfortunately, it is very difficult to know beforehand how large a network should be for a 
specific application. To demonstrate this, a network was trained with the Bayesian 
regularization backpropagation algorithm, but with a significantly large number of neurons per 
layer. The computation time required was greater than the time needed to train “ordinary” 
networks, about 10-15 x time compared with Levenberg - Marquardt backpropagation 
algorithm. Networks architecture is presented in the Figure IV-4. 
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Figure IV-4: Neural Network Architecture (overfitting demonstration) 

The above network, consists of two layers, with 45 and 25 neurons respectively. The input and 
the output parameters as well as the training and validation set, are the same as the one used 
for all previous networks. The transfer functions selected are: Elliot sigmoid from the first 
hidden layer to the second, log sigmoid from the second hidden layer to the output layer and a 
linear function to connect the output layer to the final output.  

As expected the neural network started to “memorize” the data and produced a very accurate 
prediction over the set of data it was trained with. The error on the training set is almost zero.  

 
Figure IV-5: Error at the training set(overfitting demonstration) 

However, for the validation and the test set the results were not so good. An overview can be 
seen at the following graphs.  
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Figure IV-6: Regression (overfitting demonstration) 

Regression at the trained data is almost perfect. On the other hand, at the test set, the network 
is not performing well.  

At the validation set, regression characteristics are r= 0.7150, m=0.8415 and b=0.0107. 
Where, r  is the regression value, m is the slope of regression and b is the offset of regression. 
Mean square error over the validation set was calculated to be mse=0.006, which is above the 
range of the other networks trained with the Bayesian regularization algorithm.  
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Figure IV-7: Regression over the validation set (overfitting demonstration) 

A simpler way to improve generalization, which will be addressed later in this study, especially 
when caused by noisy data or a small dataset, as in our case (2085x11 input data set matrix), is 
to train multiple neural networks and average or weight their outputs. To demonstrate this, the 
mean square error of their average output is compared to the lowest mean square error of the 
networks trained in each case. This is especially helpful for a small, noisy dataset, especially, 
in conjunction with the Bayesian Regularization training algorithm. This approach is described 
by (Dan Cireşan, 2012) in the framework of a classification problem. As stated, averaging the 
outputs generalizes just as well or even better on the unseen test set or on a validation set. 
 
 

B. Implementation of Bayesian regularization backpropagation algorithm 
 
At this paragraph different networks are presented. Bayesian Regularization training algorithm 
was used for training, as the performance of the networks trained with this algorithm is 
significantly better than any other algorithm tested at this given problem. The networks 
developed, consist of two hidden layers with a variable number of neuron in each. Neurons at 
the first layer vary from 5 to 20, as the second layer consists of 2 up to 10 neurons. The number 
of the neurons located at each layer was decided, based on two main reasons. Firstly, more 
complex networks require significantly more computational power and secondly, the effect of 
overfitting in more complex networks (as the one demonstrated) is significant. Different 
transfer functions were tested in order to rank them and select the most suitable architecture. 
As described above, the method chosen to rank them was the mean square error of the average 
of their output. The validity of this decision will be clear after the further investigation which 
will be demonstrated at a following stage.   
A summary with the mean square error of the average output of the different set of networks 
(with varying transfer functions) is presented in the Table IV-2. 
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Transfer 
function 

Elliot 
sigmoid 

Log 
sigmoid 

Linear Tan sigmoid  

Elliot sigmoid 1.42E-04 1.42E-04 1.63E-04 1.40E-04 

Log sigmoid 1.77E-04 1.43E-04 1.77E-04 1.46E-04 

Linear 1.66E-04 1.59E-04 8.56E-04 1.64E-04 

Tan sigmoid  1.44E-04 1.46E-04 1.75E-04 1.55E-04 

 

Table IV-2 : MSE of the average output of networks with different activation functions 

To demonstrate the improvement of the prediction by the use of the average of outputs, we will 
focus on the best set of networks in terms of mean square error of the above table.  The 
minimum mean square error can be observed at the set of networks, using the Elliot sigmoid 
transfer function to activate the second hidden layer and the Tan sigmoid function to activate 
the output layer, as shown at the networks’ representation graph below. 
 

  
 Figure IV-8 : Set of Neural Networks Architecture(Elliot sigmoid – tan sigmoid ) 

As expected the mean square error over the training set is decreasing as the complexity of the 
network is increasing. 
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Figure IV-9: Mean Square error (regularized) over the training set (Elliot sigmoid – Tan sigmoid) 
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However, when calculating the same error over the validation set, the outcome is different.

 

 
Figure IV-10: Mean Square error over the validation set (Elliot sigmoid – Tan sigmoid) 

At the above graphs, the effect of overfitting is demonstrated. For more complex networks the 
prediction of the network for data that were not used for training, is poor. The same can be 
observed also from the R values. 
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Figure IV-11: Regression value over the validation set (Elliot sigmoid – Tan sigmoid) 

From the set of neural networks developed with Elliot sigmoid and tan sigmoid as activation 
function for the first and the second hidden layer respectively, the best generalization 
characteristics (least mean square error and maximum R) is accomplished by the network 
consisting of 8 neurons at the first layer and 9 neurons at the second hidden layer. The 
evaluation of the generalization characteristics is done by calculating the mean square error 
and the regression over the validation set. 

𝑀𝑆𝐸 = 1.99𝑒 − 04 , 𝑅 = 0.947. 

On the other hand, when averaging the output of all networks included in the set, the outcome 
is: 

𝑀𝑆𝐸 = 1.63𝑒 − 04 , 𝑅 = 0.996. 

By selecting the best preforming networks of the set and averaging, the result improved further. 

𝑀𝑆𝐸 = 1.35𝑒 − 04 , 𝑅 = 0.997. 
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The criteria applied for the selection of the best performing networks are the following: 

 Mean Square Error, on the validation set, of each individual network to be less than 
4.00𝑒 − 04 

 While regression value, on the validation set, (of each individual network) to be greater 
than 0.94. 

 

An interesting observation based on this set of neural networks is that while each independent 
network contains noise characteristics, the prediction of the average output of the Elliot 
Sigmoid & Tan Sigmoid set of networks is one of the best tested. This could possibly be 
attributed to the random error effect, which is decreased when averaging a number of networks’ 
output. 

Following the same analysis, the results of the second best performing neural network set is 
presented below. The activation functions used are the Elliot sigmoid and Log sigmoid 
functions respectively.  

The results over the training set are similar. 

 

 
Figure IV-12: Mean Square error (regularized) over the training set (Elliot sigmoid – Log sigmoid) 
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Mean square error over the validation set is presented in Figure IV-13. 

 

 
Figure IV-13: Mean Square error over the validation set (Elliot sigmoid – Log sigmoid) 
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Regression values: 

 

 
Figure IV-14: Regression value over the validation set (Elliot sigmoid – Log sigmoid) 

 

Best performing single neural network: 

𝑀𝑆𝐸 = 1.93𝑒 − 04 , 𝑅 = 0.948. 

Averaging the output of all networks included in the set, 

𝑀𝑆𝐸 = 1.60𝑒 − 04 , 𝑅 = 0.996. 

Selected networks of the set, following the criteria described previously, 

𝑀𝑆𝐸 = 1.33𝑒 − 04 , 𝑅 = 0.997. 
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Figure IV-15 Predicted versus Measured power (validation set) 

At the above graph the prediction of the set of selected neural networks versus the measured 
power by the torque meter are plotted. 
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V. Application- Fouling Identification 

Firstly, to demonstrate the accuracy of the system, a graph with the time history of the measured 
power versus the prediction, over the initial data imported (training, test and validation) is 
presented in Figure V-1, as well as a graph of the regression over the validation set in Figure 
V-2. The prediction is done through averaging the output of selected networks, with different 
architectures, selected based on their performance over the validation set, following the criteria 
described at the previous chapter. The network set, from which the best performing networks 
were selected, consists of 308 different networks, all trained with the Bayesian Regularization 
Backpropagation algorithm, designed with an Elliot sigmoid activation function at the first 
hidden layer and a Log sigmoid activation function at the second hidden layer. Networks differ 
at the number of nodes assigned to each hidden layer. At the first hidden layer the number of 
nodes vary in the range of 4 to 25, while at the second layer they vary from 2 to 15. All possible 
combinations were tested. The resulting set of selected networks is not defined, as the selection 
is done through complying with the criteria applied. The criteria, as described previously, are 
the following. Firstly, the Mean Square Error of each individual networks at the validation set 
should be less than 4.00e-04, while regression value, on the validation set, (of each individual 
network) must be greater than 0.94. 

 
Figure V-1: Predicted versus Measured power (data history used for modelling) 
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Figure V-2: Predicted versus Measured power Regression (validation data) 

Regularized Mean Square Error, as presented at the previous chapters, for the current set of 
networks is: 8.7357𝑒 − 05 , and the regression value is  𝑅 = 0.996. The Mean Square error 
after restoring the output to the original units (kW) is 𝑀𝑆𝐸 = 5.4598𝑒 + 04 (normalization is 
necessary for training and processing of data and if the developer do not define the method, 
every algorithm has its default normalization process). It is useful to note that the subject vessel 
has an engine with a Maximum Continuous Rating (MCR) of 25,330 kW and the normal 
operating load is between 8,000 - 18,000 kW.  

Following is the error histogram of the validation set (error unit in kW): 

 
Figure V-3: Error Histogram (validation data) 
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To evaluate their potential use, the models were tested at two vessels of the same class (VLCCs 
with the same hull) managed by Maran Tankers Management Inc.  

Firstly, the resulting model was used to evaluate the performance of vessel A (vessel used for 
developing the model) and its current condition. A random laden leg of 10 days’ duration has 
selected. This leg was made, approximately 2 years after the delivery. The evaluation is in line 
with the results of the underwater inspection(s), where no significant fouling has been observed 
(less than 5% of the vertical sides’ area, covered with light slime). 

 
Figure V-4: Power estimation compared with the measured shaft power - Performance evaluation 

As demonstrated at the graph above, the deviation of the predicted power compared with the 
power measured by the torque meter is minor. Below a graph with a set of indicative parameters 
is presented to describe the conditions in which the vessel was sailing. 

 
Figure V-5: Input parameters – Performance evaluation 
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It can be observed that the prediction is correlated strongly with the speed, thus, the deviation 
of speed as an input parameter creates a deviation at the prediction value.  

 
Figure V-6: Power% - Performance evaluation 

At the period of evaluation, the vessel performed at average 5% worse than the model, as shown 
above, with a median value of 4.2%. Values in this range are expected and treated as normal 
due to the degradation of the hull and propeller performance. 

Another demonstration of the use of the developed system is given on a sister VLCC, vessel 
B, with the same hull and equipment as the one used for this study. When the hull and propeller 
are clean, the vessel performs according to the model.  

Vessel B was inspected and found relatively clean, approximately 2 months prior sailing to a 
high fouling risk area. Unfortunately, the vessel remained idle waiting to load for 3 weeks. 
After sailing, an increase in the power needed to propel the vessel was observed. The predicted 
power for the given operational and environmental conditions, compared to the real time shaft 
power measured by the torque meter is presented in the Figure V-7. 
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Figure V-7 : Demonstration of fouling identification – Performance evaluation 

At the above graph, the first vertical black lines represent the end of the first sea passage, before 
idling, followed by the leg after idling, where, the last part, after the second black vertical line, 
corresponds to the leg after cleaning. 

Taking into account this evaluation, an off-schedule inspection was arranged and the vessel 
was found fouled (fully covered) up to the ballast waterline with moderate to heavy fouling 
(heavy slime-grass) and the company’s decision was to take action. After hull cleaning and 
propeller polishing the vessel managed to sail according to the model (third part of the above 
graph). This evaluation, demonstrates a useful implementation of machine learning and its 
benefits as well as the promising aspects of these kind of technologies. 

The data used for this comparison are almost unfiltered and without any pre-processing. As a 
result, the parameters of the input vector are noisier than the data set used for training. 
Calibration of the instruments is also an issue, as it differs between the two vessels. The time 
series of the indicative parameters of the external conditions are presented in Figure V-8. 
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Figure V-8: Demonstration of fouling identification - Input parameters – Performance evaluation 

Unfortunately, the unexpected high speed - signal fluctuation, induce an error and a similar 
fluctuation at the predicted power. However, the impact of fouling is significant and easy to 
observe. A method to increase reliability and to tackle the issue of fluctuating signals of key 
parameters, in our case the speed through water signal, is addressed in studies made by (Lajic, 
2018) and (Hansen, Blanke, & Adrian, 2010). 
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VI. Conclusion and Recommendations 

The purpose of this work was to investigate, and develop a performance module for the 
prediction of the shaft power needed to propel the vessel at any given external conditions, when 
assuming clean hull and clean propeller condition. This study is based on auto logged data of 
a VLCC. The data for the training, test and validation of the networks’ accuracy, were obtained 
by the sensors on-board the vessel and weather data provided by weather data providers. The 
acquired dataset used for the design and development of the network was carefully selected in 
order to reassure that all sensors were fully functional, the vessel was under normal operational 
conditions representing accurately its operational profile and that the condition of its hull and 
propeller was good. The input vector of the MLPs consist of the following parameters: 

1. Speed through water (log) Doppler – Echo Sounder 
2. Rudder indicator 
3. Wind anemometer relative wind speed  
4. Wind anemometer relative direction 
5. Average draft (starboard and port) at amid ship 
6. Trim 
7. List 
8. Significant wave weight 
9. Swell significant wave weight 
10. Swell direction  
11. Swell period 

A pre-processing of the data was done prior receiving the data sets used for developing the 
model. The purpose of pre-processing is to remove outliers of the sensors raw (high frequency) 
readings. Filters have been determined to establish cases where the vessel was sailing at steady 
state conditions, avoiding transient loads. 

Multi-layer perceptrons were trained and evaluated in three stages of trials. In the first stage, 
the activation functions were held constant and the network’s neurons composition and 
arrangement was free to vary on a limited range. An investigation was made, to decide the 
training algorithms that fit best to the given problem. After concluding to the most probable, 
best performing algorithms, we proceed to the second stage, where, the network’s neurons 
composition and arrangement was tested on a bigger range of alternatives and all possible 
different sets of activation functions were tested. This process resulted in the determination of 
the network with the best prediction capabilities. The third stage was the evaluation of a 
different method, where the final prediction was not extracted from a single network but it was 
computed as the average output of a number of well preforming networks.  

The resulting system, consisting of a varying number of networks proved efficient in predicting 
the power needed to propel the vessel. The generalization properties of this approach were 
significantly better.  

The conclusion drawn by the current work, is that an approach to a complex and non-linear 
regression problem, such as the estimation of the vessel’s shaft power, is feasible via the use 
of Artificial Neural Networks, when modelled appropriately.  
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The modelling in this thesis, was in principle done via a selection of parameters related to the 
physical problems in question. However, correlation between variables can be observed. 
Limiting the correlation between the input parameters can improve the prediction capabilities 
and reduce the risk of an oversensitive network. Data validation and data fusion is an aspect 
that would improve such implementations as the same information could be acquired through 
a combination of a different set of sources and sensors of varying accuracy. An in deep research 
of this scope would possibly result in a better performing system. The correlation between 
variables, in this case, was visualized by principal components analysis of the input matrix. An 
alternative and most likely more accurate approach to model added wave resistance and the 
corresponding power could be determined by measuring vessel’s responses. Inserting as input 
parameters, the readings of motion sensors (accelerometers) if available, instead of (or 
additionally to) weather data provided by third parties would increase the frequency of the 
input and would describe in a better way the sailing condition of the vessel. However, installing 
such equipment of sufficient accuracy and maintaining it properly, is rarely found in merchant 
shipping. Also, developing different modules for the different loading conditions (ballast-
laden) may improve the accuracy of the resulting system. Approaches with different machine 
learning techniques are also applicable and promising. Radial basis function networks, support 
vector machines, principal components analysis and self-organizing maps, are the most 
promising among the big range of machine learning tools and methodologies. A method to 
increase reliability of the performance system and to tackle the issue of fluctuating signals of 
key parameters is addressed by (Lajic, 2018) and (Hansen, Blanke, & Adrian, 2010). 

Machine learning can be also used to approximate the effect of other phenomena, when detailed 
studies are not available. Estimating the effect of trim over a range of speeds and drafts can be 
investigated if the required data to address the problem are available. A number of other 
mapping or regression problems could be investigated through the scope of Artificial Neural 
Networks, given the required tools and data to address them. Overall, applications based on 
machine learning, given the amount of data available, are feasible and promising solutions.  
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