
i

Creating a virtual environment and scenarios
for studying human robot collaboration

Δημιουργία εικονικού περιβάλλοντος και
σεναρίων για την μελέτη συνεργασίας

ανθρώπου ρομπότ

Κοντραζής Δημήτριος-Πέτρος

Σχολή Μηχανολόγων Μηχανικών

5 Ιούλιου 2018

 ii

Ευχαριστίες
Θα ξεκινήσω λέγοντας ότι με αυτήν την διπλωματική κατάφερα να ανακαλύψω
τι μου αρέσει να κάνω, ενώ πριν ήμουνα στο χάος. Ίσως βρήκα ένα δρόμο που
είχα χάσει αφότου μπήκα στην σχολή.

Για αυτό το λόγο θα ήθελα να ευχαριστήσω κατ’ αρχάς τον επιβλέποντα μου
Επ. Καθηγητή Δ. Ναθαναήλ, ο οποίος μου ανέθεσε τη διπλωματική εργασία με
βάση πρώτα κάτι που θα άρεσε σε εμένα. Επίσης για το γεγονός ότι ήταν εκεί
καθ’ όλη τη διάρκεια εκπόνησης της και μου έδειξε ότι για να επιτύχεις ένα
μεγάλο έργο πρέπει να το σπας σε πολλά μικρά κομμάτια καθώς και για το ότι
ήταν σε θέση και πρόθυμος να επιβλέπει κάθε κομμάτι.

Ένα μεγάλο ευχαριστώ στον Κ. Γκίκα όπου χάρις σε αυτόν μπόρεσε ένα
περιβάλλον το όποιο ήταν ασύνδετο και απείχε από την πραγματικότητα να
έχει πραγματικές αναλογίες.

Επιπλέον στον Λ. Ψαράκη ο όποιος σχεδίασε τα σενάρια, βοήθησε σε πολλά
πιλοτικά τεστ και ήταν το άτομο το όποιο βοήθησε περισσότερο και με την
υπομονή του τέσταρε τα σενάρια της διπλωματικής ώστε τελικά να καταλήξει
να δουλεύει σωστά, καθώς και στο γεγονός ότι με βοήθησε να φτιάξω τις
αναλογίες ώστε να έχουμε μια ρεαλιστική απεικόνιση.

Τέλος στον φίλο μου Α. Μουρελάτο ο οποίος ήταν πάντα εκεί για να
επιδιορθώσει το hardware όταν παρουσιαζόντουσαν προβλήματα καθώς και
για το γεγονός ότι με βοήθησε να εισάγω τον άνθρωπο μέσα στο εικονικό
περιβάλλον. Ο Α. Μουρελάτος μαζί με τον Β. Γιαγκλίση έκαναν το περιβάλλον
πιο ρεαλιστικό προσπαθώντας να φτιάξουν την απόκριση του χεριού καθώς
και τη φυσικότητα του.

Τέλος θα ήθελα να ευχαριστήσω όλο το εργαστήριο για την καλή διάθεση και
την προθυμία του. Ίσως τελικά εκεί που δουλεύεις το πιο σημαντικό δεν είναι
το τι κάνεις αλλά με ποιους είσαι…

iii

Περίληψη

Η εικονική πραγματικότητα είναι σήμερα πιο προσιτή σε περισσότερους
ανθρώπους από ό, τι στο παρελθόν και υπήρξε πεδίο έρευνας τα προηγούμενα
χρόνια, καθιστώντας προσομοιώσεις όλο και πιο ρεαλιστικές.

Σκοπός της διατριβής μας είναι να δημιουργήσουμε ένα σενάριο σε μια
φουτουριστική πραγματική κατάσταση εργασιακού περιβάλλοντος, όπου ένας
άνθρωπος και ένα ρομπότ συνεργάζονται μαζί για να ολοκληρώσουν ένα
καθήκον στο μικρότερο δυνατό χρονικό διάστημα, λαμβάνοντας υπόψη τις
διαδικασίες ασφαλείας, οπότε ο παίκτης κάνει την καλύτερη δυνατή
προσπάθεια να αποφύγει το ρομπότ.

Σε αυτή τη διατριβή, θέλουμε να κάνουμε τον παίκτη να αισθάνεται πιο
ασφαλής μέσα από διαφορετικές διαδικασίες σεναρίου. Πρώτον, θέλουμε να
ελέγξουμε πώς ο παίκτης είναι σε θέση να συνεργαστεί χωρίς εξωτερική
βοήθεια και ενώ στα επόμενα δυο σενάρια θα υπάρχει.

Στο δεύτερο σενάριο, ένας έγκυρος τρόπος για να είναι ο παίκτης πιο άνετος
γινα να δουλέψει με ένα ρομπότ είναι το ρομπότ να πηγαίνει πιο αργά όταν
βρίσκεται σε κάποια κοντική ακτίνα με τον παίκτη, καθιστώντας ετσι την
αποφυγή του ρομπότ ευκολότερη.

Στο τελευταίο σενάριο υποδεικνύουμε τις μπάλες που πρόκειται να πάρει το
ρομπότ, καθιστώντας το ακόμα πιο εμφανές και πιο βολικό για τον χρήστη και
ως αποτέλεσμα να εμφανίζεται ως το πιο ασφαλές από τα προηγούμενα,
επειδή μέρος της διαδρομής του ρομπότ αποκαλύπτεται στον Παίκτη.

iv

Executive Summary

Virtual reality is nowadays more accessible to more people than previous and
it has been a field of research in the previous years, rendering real world
simulations more and more realistic.

The purpose of our thesis is to create a scenario in a futuristic real working
environment situation, where a human and a robot are collaborating together
to accomplish a task in the least possible time, taking into consideration the
safety procedures, thus the player making the best effort trying to avoid the
robot.

In this thesis, we want to make the player feel safer through different scenario
procedures. First, we want to test how the player is able to co-operate without
any external help and external help will be provided in the next two scenarios.

In the second scenario, a valid way to make the player feel more comfortable
with working with a robot is to make the robot go slower when in a certain
proximity with the Player’s, thus making it appear safer to the user and being
able to avoid the robot easier.

In the last scenario, we indicate the balls the robot is about to pick up, making
it even more profound to the user and expecting this scenario to be the most
convenient for the user and appear as the safest of the previous ones, since a
part of the robot’s path is revealed to the Player.

 v

Contents
A. Table of figures ... vii

1. Introduction ... 1

2. Theoretical Background: VR and Human-Robot collaboration in VR 2

 2.1. VR .. 2

 2.2. VR in Robotics .. 2

 2.3. Immersive VR with First Person integrated body parts 3

 2.4. Human-robot collaboration in Virtual Reality 5

3. Our custom motion tracking system .. 6

 3.1. Hardware/Wearable ... 6

 3.2. MPU 9250 ... 6

 3.3. Arduino Nano ... 7

4. Programming Languages (Environments) .. 10

 4.1. Unity .. 10

 4.2. Unity is used for real world simulations .. 10

 4.3. Unity can use CAD data for real time development. 11

 4.4. Unity can be used for medical simulations and training 12

5. Creating the environment ... 14

 5.1. Robotic Animation .. 14

 5.1.1. Robotic arm ... 14

 5.1.2. Rigging ... 14

 5.1.3. The task of picking.. 15

 5.1.4. Environment .. 17

 5.2. Describing the Unity 3d Environment ... 17

 5.2.1. Programming in unity ... 17

 5.2.2. Using our virtual arm .. 18

5.2.2.1 Upgrading from previous version to the current one 18

 5.2.3. Describing the Setting .. 20

 5.2.3.1 Robot-Balls Interaction ... 22

 5.2.3.2 Human-Balls Interaction ... 26

 5.2.3.3. Robot-Human Interaction .. 29

 vi

 5.2.3.4. Balls-Conveyor belt Interaction.. 31

 5.2.4.5. Metrics .. 32

6. Adjusting the setting ... 34

7. Scenarios .. 36

 7.1. Configuration Test .. 36

 7.2. Scenario 1 – Base .. 37

 7.3. Scenario 2 – Prevention .. 38

 7.4. Scenario 3 – Anticipation .. 38

8. Testing the environment with users .. 39

9. Conclusions and further development .. 40

 9.1 Future testing scenarios ... 40

 References ... 42

 Codes Appendix ... 45

 vii

A. Table of figures
Figure 1. Mpu 9250 ... 6
Figure 2 . Arduino Nano .. 7
Figure 3. Whole Circuit .. 7
Figure 4 Whole Circuit mounted on a person’s arm .. 8
Figure 5. Unity logo ... 10
Figure 6. Simulating Real world Scenarios aka Road Scene (Image taken from
Unity Website) .. 11
Figure 7. Importing Real Cad models into Unity (Image taken from Unity
Website) .. 12
Figure 8. Simulating Real world scenario; Medical operation (Image taken from
Unity Website) .. 13
Figure 9. Modifying the Robot .. 15
Figure 10. Whole robot animation for picking up a ball 16
Figure 11. Hangar and the inside of our environment 17
Figure 12. Previously used Arduino Controlled Arm .. 19
Figure 13. The Unity script that is able to control the Humanoid’s aka User’s arm
 ... 20
Figure 14. Whole setting ... 21
Figure 15. Focusing only on the balls and the robot .. 22
Figure 16. Scripts and Components attached to the ball; controlling most
elements in the scenario ... 23
Figure 17. Robot and ball Colliders ... 23
Figure 18. Robot picks up a Ball .. 24
Figure 19. Animator Component; Logic behind the robot’s movement 25
Figure 20. Animator Component Tree .. 26
Figure 21. Player picking up a ball .. 27
Figure 22. Yellow balls picked up by Player, Red are picked up by Robot 28
Figure 23. Robot Colliders ... 29
Figure 24. Animation tree of Conveyor Belt ... 31
Figure 25. The animation of the ball going through the Conveyor belt 32
Figure 26. Calibrated Arduino ... 35

 viii

1

1. Introduction
The last 5 years VR technologies have become more and more available to
people. They were first used in gaming and videos, thus making the experience
more thrilling but its scientific value came to light these years.

Now it is widely used in many research fields, the most common one being the
medical. Our field of interest is ergonomics and to be more specific human-
robot collaboration, where the human and the machine work together to
compliment their abilities.

 The future factory suggests that there is no separation between automated
and manual workstations thus robots and humans collaborate optimally.

Our thesis presents a simple task, where the Player and the robotic arm have
to pick up some balls from a table and place them in an conveyor belt, as it
would appear to be sent onto a different part of the factory, for a different
procedure.

The Player will be able to control his in-game arm through Arduino sensors and
the arm’s movement will imitate the user’s with enough precision to be
considered realistic enough.

Our robotic arm is an ABB robotic arm with movement capabilities of 6 degrees
of freedom, our robotic arm does not have physical properties, since it is only
used for simulation purposes and the model is rigged, thus even animation can
fully describe its movement with accurate precision to a real working robot.

In our thesis we plan on testing the hypothesis that there are ways that can
make a working environment safer and also more efficient, thus we measure
the number of collisions with the robot and the time the experiments last, thus
measuring as a total the efficiency of our working environment.

 2

2. Theoretical Background: VR and Human-Robot
collaboration in VR
In the theoretical background we present related research concerning VR, VR
in robotics and Human-Robot collaboration in VR.

2.1. VR

The term Virtual reality (VR) refers to a computer-generated environment in which
the user can perceive, feel and interact in a manner that is similar to a physical place.
This is achieved by combining stimulation over multiple sensory channels—such as
sight, sound and touch—with force-feedback, motion tracking, and control devices. In
an ideal VR system, the user would not be able to distinguish an artificial environment
from its physical counterpart. Whilst none of the current VR systems would be able to
pass this criterion, significant advances in the perceptual fidelity of virtual
environments have been achieved over the last few years. VR now have become a
topic of interest also in the scientific community has been a valuable tool for
scientific community. Giuseppe Riva et al.(2016) developed a virtual reality
setting that can help patients confront their problems in a controlled and safe
setting, change their life through VR with meaningful experiences. Antoniou
Stratos et al.(2016) wanted to introduce innovative learning frameworks to
secondary education, using virtual reality to attract young students at
manufacturing by developing a learning process in a CAVE system. Anouk Keizer
et al.(2016) used VR on anorexic patients in order to see if they can experience
ownership of their virtual body if their virtual body movements is identical to
the real one. The previous examples are some fields of interest that virtual
reality is a major component and they revolve around it.

2.2. VR in Robotics
Prior work in robotics includes various explorations of the value of VR for robot
simulation. Burdea et al.(1999) provides a survey of the applications of VR in
robotics. Tang and Yamada(2011) developed a robotics system for a
construction robot using virtual reality. They then conducted experiments
which confirmed that their method was superior in operability, safety and
reduction of stress than the conventional visual display. Belousov et al.(2001)
created a virtual control environment for robot teleoperation via internet.
Having the working environment of the robot and the robot itself displayed in
a dynamic, 3D virtual environment instead of the physical environment allowed
suppressed time delay inherent in IP networks and accelerated work efficiency
for the operator. Safaric et al.(2003) developed a training system involving
usage of virtual robots to provide an inexpensive and safe method for

 3

enterprises to train their employees. They then conducted experiments and
confirmed the method to be viable, cheap and efficient. Kawasaki et al.
proposed a virtual robot teaching method based on hand manipulability for
multi-fingered robots, and demonstrated its effectiveness through a pick-and-
place experiment. Last but not least, Oliver Liu et al.(2017) proved that
interacting with a robot in virtual reality is far more realistic than interacting
with it in just a laptop screen and it improves task performance.

2.3. Immersive VR with First Person integrated body parts
Avatar body representation and control in VEs allows for many types of
research in various fields such as game development, H-R collaboration,
training, medical rehabilitation, ergonomics, etc. Examples of such research
include: Lange et.al (2011), used the PrimeSense depth sensor technology (also
utilised in the Microsoft Kinect) to develop and evaluate a game-based
rehabilitation tool for the balanced training of adults after neurological injury.
Wittmann et. al (2015) developed a VR therapy game that continuously
estimates the patient’s arm reachable three-dimensional (3D) workspace based
on Inertial Measurement Units (IMUs). Luo et. al (2011), created an interactive
VR system for both arm and hand rehabilitation utilising both optical linear
encoders (OLEs) and IMUs. Osumi et. al (2017) developed a quantitative
method to measure movement representations of a phantom upper limb, and
investigated whether short-term neurorehabilitation with a VR system would
restore voluntary movement representations and alleviate phantom limb pain
(PLP), using a combination of the Microsoft Kinect and Leap Motion. Merians
et. al (2009) developed a complex system capable of exercising the arm and
hand together or in isolation, providing for both unilateral and bilateral hand
and arm activities in three-dimensional space. The system incorporated
CyberGlove instrumented gloves for hand tracking and a CyberGrasp
exoskeleton for haptic effects in a number of VR simulations. Moreover, MRI
imaging was used to observe the engaged areas of the brain, in order to test
the feasibility of using VE-based sensory manipulations to recruit select
sensorimotor networks. All of the above research yielded encouraging results
regarding the rehabilitation of patients, as well as gaining positive feedback
from both patients and clinicians, thus demonstrating the applicability of
combining motion tracking technologies and VR environments for
rehabilitation purposes, and especially for offering a solution for the at-home
rehabilitation of patients, in an enjoyable environment. Heidicker et. Al (2017)
studied the effect of avatar appearance and motion control on communication
and interaction in social virtual reality scenarios within immersive VEs. To that
end, three different types of avatar in different VEs were compared. The results

 4

demonstrated that motion control of avatar bodies plays an important role in
the sense of presence within the VE, with full body avatars with full motion
control exhibiting the best results regarding co-presence and behavioural
interdependence. It is worth noting however that avatars consisting of head
and hands with motion control showed better results than complete avatar
bodies with pre-defined animations. A question left open for future research by
the paper was how many and which body parts have to be visible to reproduce
or even surpass that degree of co-presence. Specifically regarding the field of
Ergonomics/Human Factors, by studying the relationship between an avatar
body and the person operating it, it is possible to draw valuable conclusions
regarding issues such as:

 x The correlation between avatar body control and task effectiveness in a VE .

x The user’s ability to assimilate a virtual representation of their body with their
real-world body image.

x The ability to subsequently incorporate this representation into their body
schemas.

For example, Kilteni et.al (2013) observed that subjects’ behavioral and
movement patterns within a VE can change depending on the visual aspects of
an avatar body within said VE, by simulating a drumming task with avatar bodies
of different skin tones and clothing. Moreover, it was observed that a stronger
body ownership illusion corresponded with a greater behavioral change of the
subjects. Slater et.al (2010) studied the illusion of ownership of an avatar body
different than the subjects’ physical one, demonstrating that a virtual female
body that appears to substitute the male subjects' own bodies was sufficient to
generate a body transfer illusion. In a different study, Kilteni et. al (2012)
studied the ability of subjects to incorporate an avatar body exhibiting
asymmetries in comparison to their physical one into their body schemas. This
was achieved by creating elongating one the users’ virtual arms to up to 4 times
their normal length, and using questionnaire scores and defensive withdrawal
movements in response to a threat to measure the degree of ownership of that
arm experienced by the users. Results showed that users experienced a sense
of ownership towards the elongated limb and were able to adapt their
responses to this unnatural body image. That illusion did decline, however, with
the length of the virtual arm, especially when the virtual arm exceeded three
times the length of the physical one. Won et al. presented congruent results by
examining the concept of “homuncular flexibility”—the idea that humans can
learn to control bodies different from their own by changing the relationship
between tracked and rendered motion. To that end, the researchers conducted

 5

two different experiments. In one, the movements of the upper and lower limbs
of the users real and virtual were remapped, making the physical arms control
the virtual legs and vice versa, or attributing far increased range-of-motion to
the virtual legs than the arms. In the other, a third arm was added to the avatar
body, controlled by the rotation of the users’ physical arms. The results of both
experiments demonstrated that subjects were able to adapt their body
schemas to the virtual bodies’ capabilities, quickly learning how to utilise their
more flexible limbs in the first experiment and their “third arm” in the second
one to achieve better performance in tasks when compared to “normal” body
representations.

2.4. Human-robot collaboration in Virtual Reality
Human-Robot Collaboration (HRC) in production engineering is a research topic
for which Augmented Reality (AR) and VR have provided interfaces that,
respectively, expands the quantities of features that operators can watch in
their field of view or replace it completely with a virtual world. Typical industrial
production applications span from manufacturing process simulation, which
are able to provide real time enhanced information used for inspection or with
focus on training, to collaborative factory planning during product design or
redesign. In fact, VR can be used for collaborative (re)designing of production
systems when analyzing and evaluating changes prior to implementation. This
makes possible to prevent costly design mistakes. Even though some works
have considered the human factor as part of the industrial process and adjusted
the VR to accurately include the operator movements in the simulation, it is
often the case that the operator experiences the VR/AR only from a static
position, e.g. standing still or seated, where the input sensors are located.
Patrick Ruckbert et al. (2017) wanted to simulate an assembly process with a
manufacturing robot using virtual reality in order to increase immersion and to
increase flexibility and adaptivity which are key elements of any production
process. Luigi Gammieri et al. (2016) believed that safety is a key element to
many manufacturing environments, so virtual reality would be an effective tool
that is capable of simulating such complex systems with a high level of
immersion, so they modeled a kinematic model of a robot that was able to
reproduce safe behavior on the real robot and as well as to train operators.
Szabolcs Suto et al. (2016) created a simulated environment of a real working
space and the purpose would be to digitalize the human’s movement in virtual
reality so that collisions would not happen in reality. This will give the possibility
to stop the robot in time, or to be able to generate a collision free path in real
time.

 6

3. Our custom motion tracking system

 3.1. Hardware/Wearable
The motion tracking system that was used in this thesis was constructed by a
previous thesis in our lab by Antreas Mourelatos.It is a custom build system
capable of tracking the human arm beginning from the shoulder and including
the palm.

It is consisted of 3 MPU 9250 IMUs connected to an Arduino nano with 24AWG
wires and a mounted fingerless glove and elbow patch.The system is very
reliable, inexpensive and since it is small it does not obstruct the user’s
movement.In the next paragraph we briefly describe the main components of
our system.

3.2. MPU 9250
The MPU 9250(see Figure 1), produced by InvenSense, is a 9-axis Motion
Processing UnitTM (MPU), meaning that it combines an accelerometer,
gyroscope and magnetometer for position, orientation and acceleration
tracking. It additionally contains an embedded Digital Motion Processing (DMP)
unit, which can acquire the data from these sensors, process those utilising data
fusion algorithms, and return position and orientation information. A breakout
board of the chip was used to better facilitate prototyping and connection to
the Arduino. The board, also denotes the IMU’s X and Y axes. The Z axis can be
inferred from these by the right-hand rule.

Figure 1. Mpu 9250

 7

3.3. Arduino Nano
For this project, a version of the Arduino Nano v3.0 board (see Figure 2), was
used as a host processor device, to capture IMU measurements and process
them, in order to calculate the orientation and movements of the user’s arm.
The board was powered through a Micro-USB connection with a PC. The same
connection was used to exchange data with the computer via the serial monitor
included in the Arduino software, which allows simple textual data to be sent
to and from the board. The Arduino receives data from the three MPU 9250
IMUs utilizing I2C communication through the A4 (SDA) and A5 (SCL) pins. I2C
communication is supported by the appropriate libraries. The Arduino
Integrated Development Environment (IDE) was used for writing the code used
in the project and uploading it to the processor

Figure 2 . Arduino Nano

The circuit(see Figure 3):

Figure 3. Whole Circuit

 8

And the final Configuration mounted on a person’s hand(see Figure 4):

Figure 4 Whole Circuit mounted on a person’s arm

 9

One sensor (IMU 1) was placed of the dorsal surface of the palm, approximately
over the third metacarpal bone.

 One sensor (IMU 2) was placed on the dorsal surface of the forearm, over the
wrist joint.

 One sensor (IMU 3) was placed on the dorsal surface of the upper arm, over
the elbow joint.

Using the abovementioned system our Players are able to control a humanoid
avatar in the environment we created, that appears to have physical properties,
in order to appear more appealing to the player and feel more immersed and
as well as to use these models to create a more realistic and more precise
approach maybe to a whole body motion capture system that maybe will lead
to make whole body immersive experiences that can simulate even more
complex scenarios.

 10

4. Programming Languages (Environments)

4.1. Unity
In this thesis we use as our main programming environment the powerful open
Source language called Unity(see Figure 5) in order to make the scenarios as
described below.

Figure 5. Unity logo

Unity is a game engine and it is mostly used to make games for all platforms but
its uses have expanded over the last years, since the wide use of VR, many
“serious games” have arrived and the use of such software has been widely
used and upgraded.

4.2. Unity is used for real world simulations.

Given the costs and limitations in gathering real-world data, it is natural to
consider replacing or augmenting it with synthetic data generated by a game
engine such as Unity. Due to recent advances in graphics hardware, rendering,
and advent of virtual and augmented reality, the Unity Engine has evolved into
a complete 3D modeling tool, able to generate highly photo-realistic
simulations. This has been noticed by both industry and academia, and many
projects have been developed to take advantage of Unity’s simulation
capabilities. One of the most recognized projects is SYNTHIA.

Developed entirely on Unity by The Computer Vision Center (CVC) at
Universitat Autónoma de Barcelona (UAB), the project focuses on creating a
collection of synthetic images and videos depicting street scenes in a diverse
range of episode variations.

http://synthia-dataset.net/)
http://www.cvc.uab.es/
http://www.cvc.uab.es/

 11

CVC has been pioneering computer vision research for the past 20 years and its
SYNTHIA dataset has become a seminal source for those working on
autonomous vehicles perception systems.

For Vision Zero, Unity joined forces once again with CVC to provide the City of
Bellevue with the best technology and expertise available.

Through imagery and 3D models provided by the City of Bellevue(see Figure 6),
and leveraging the integration of Otoy’s OctaneRender with Unity Engine,
CVC took on creating a set of scenes that can be leveraged to improve both the
training and the evaluation of the computer vision models built by Microsoft.

Figure 6. Simulating Real world Scenarios aka Road Scene (Image taken from Unity Website)

4.3. Unity can use CAD data for real time development.
Unity today is used across many industries beyond gaming, including
aerospace, architecture, automotive, construction, gambling,
transportation, manufacturing, medical, and more. The benefits of using
real-time in these industries include accelerating innovation through
better design collaboration, developing VR and AR training to improve
training outcomes, and creating immersive experiences that increase
engagement and drive higher sales.

https://blogs.unity3d.com/2017/12/14/available-now-octanerender-for-unity/

 12

Industry professionals are increasingly seeing the value of bringing real-
time into their workflows, recognizing its potential to completely
transform the way products and experiences are conceived and built.
Despite the fact that forward-thinking individuals in these industries have
made great strides to bring real-time into their creation processes, they
have encountered persistent challenges, particularly when it comes to
preparing or importing large CAD assemblies for real-time
development(see Figure 7).

Figure 7 Importing Real Cad models into Unity (Image taken from Unity Website)

4.4. Unity can be used for medical simulations and training.

Since virtual reality immersed, many companies have developed environments
where new potential doctors can be trained using real life scenarios, this
medical training can include scenarios and real world procedures that may be
impossible or extremely expensive to recreate in real world. Companies such as
Biofight VR, Osso VR and Archvirtual offer such environments(see Figure 8).

 13

Figure 8 Simulating Real world scenario; Medical operation (Image taken from Unity Website)

 14

5. Creating the environment

5.1. Robotic Animation
As mentioned above, this thesis is about creating a ‘’serious game’’ where a
human and a robot have to work together to finish a task. This task is about
picking up balls from a table and then putting them in another one. The human
and robot are placed opposite to each-other and share the same workspace.
This picking task was explicitly conceived as the main challenge for the human
subject is to perform fast manipulations while at the same time paying
attention not to collide his arm with the robot.

The rigging of the robot was not part of the thesis, since through extensive
search a model was found, that was already rigged and it would be easily
modified in order to fit our purpose.

5.1.1. Robotic arm
The robot is an ABB robot which is modelled in blender and it is rigged. Rigging
is generally used to add control to objects, for the purpose of animation.

The rigging is made with the inverse kinematics of the model, so its movement
is natural, smooth and it is not different from a real robot, so it is safe to assume
that it can be used in real working environment simulation.

5.1.2. Rigging
Rigging is practically a skeleton that is bound to the 3D mesh of the object we
are using. The model rig is like a real skeleton and it is made of joints and bones,
so that the animated object can be moved to the desired pose.

x Joint Hierarchy

In order for a rig to work properly, the bones and joints must follow a
logical hierarchy. When setting up a character's skeleton, the first joint
you place is called the root joint. Every subsequent joint will be connected
to the root either directly, or indirectly through another joint.

x Forward Kinematics

Forward kinematics (FK) is one of two basic ways to calculate the joint
movement of a fully rigged character. When using FK rigging, any given
joint can only affect parts of the skeleton that fall below it on the joint
hierarchy.

 15

x Inverse Kinematics

Inverse Kinematics (IK) rigging is the reverse process from forward
kinematics and is often used as an efficient solution for rigging a
character's arms and legs. With an IK rig, the terminating joint is directly
placed by the animator, while the joints above it on the hierarchy are
automatically interpolated by the software. IK is most appropriate when
the animation calls for a terminating joint to be placed very precisely.

5.1.3. The task of picking
In order to make a realistic task, the robot has to be able to pick the balls in a
similar manner concerning each ball, so animating the robot was rather simple.

Figure 9 Modifying the Robot

The picture above(see Figure 9) shows the initial setting of our robot as it was
downloaded from blender forum.This six digrees of freedom (dpf) robotic arm
is rigged and its inverse kinematics are calculated moving just the end effector
thus making the motion planning simple.

We continue by changing the setting so that we will be able to place our balls.

We add a table and a “Cylinder”. The purpose of the table is to hold and place
our balls.Τhe cylinder will be used as our Placeholder where the player will have
to let the item he/she is currently holding in to.

The table’s position to the robot is placed in such a way so that the player can
reach the end of the table by fully extending his arm. Respectively the robot’s
position to the table is such so that it can reach the end and not be extremely
close to the player’s face, thus making it seem dangerous.

https://www.lifewire.com/how-to-prepare-your-model-for-3d-printing-2109

 16

In order to create our animation we used the Animation window in blender.
This is achieved by dragging the arrow from the robot End-effector to the point
where we want our robot to be.

Then in the Action editor we created the states for the robotic arm.

Τhe First state is the idle state, where the robot is static, we need that state, as
we are going to see later, as a base line action for the robot. This state will be
referred to as the starting and ending state of our animation procedure thus
saving us time and making the movement and the transition more realistic.

The Second state of the animation is about picking up the balls we intend to
place in our experiment. We start by moving the robot’s end effector to our
desired position on the table.

The whole process of the robot that seems to pick up a ball is shown on the
picture shown below(see Figure 10), the example presented is about picking up
the first ball.

Figure 10 Whole robot animation for picking up a ball

Then we proceed by dragging down the End effector’s arrow as a
representation of a robot grabbing a ball. This the act could be accomplished
both in unity and blender;, but we preferred to execute it in Unity in order to

 17

be able to change it more easily, since most animations are hard-coded and are
very difficult to change.

For each ball the whole animation procedure lasts about 180 frames or
approximately about 7 seconds. Throughout the animation the robot positions
are exact in order to make the whole animation realistic and constant, since we
do not want any inconsistency with its movement.

The last animation we created is the movement the robot is performing when
hitting the player. The robot makes a jittery move to show the player that is
being hit and to give feedback to the player. Due to high frame action sequence,
it is impossible to

show this animation, in pictures, since only the final product of this animation
gives us the effect we want.

We choose to animate the robot’s arm movement, not to program it since it is
efficient and very easy to make.

5.1.4. Environment

In order to make the scene more realistic for the user, and make him feel like
he/she is inside a manufacturing plant we chose to locate it in an industrial
hangar(see Figure 11) taken from the blender library.

Figure 11 Hangar and the inside of our environment

5.2. Describing the Unity 3d Environment

5.2.1. Programming in unity
Unity as aforementioned is a game engine, which is used for more than just
games, since it is easy to use and its libraries are updated constantly, making it
very easy to use.

 18

The programming language we mostly use is C#.

The fundamental building blocks of unity:

x GameObjects

Every kind of content in Unity begins with a GameObject. Any object in
your game is a GameObject: characters, lights, special effects, props–
everything.

GameObjects can’t do anything on their own. To actually become something,
you need give a GameObject properties, which you do by adding Components.

x Components

Components define and control the behavior of GameObjects they are
attached to.

Components examples are : Rigidbody , Scripts , Colliders , Colors.

x Variables

Components have any number of editable properties that can be tweaked via
the Inspector window in the editor, and/or via script. In the above example,
some properties of the light are range, color and intensity.

Unity’s built-in Components are very versatile, but you will soon find you need
to go beyond what they can provide to implement your own gameplay logic.
Using scripts, you can implement your own game logic and behaviour by simply
applying them to the game objects.

Your script Components will allow you to do many things: trigger game events,
check for collisions, apply physics, respond to user input, and much, much
more.

5.2.2. Using our virtual arm

5.2.2.1 Upgrading from previous version to the current one
Using knowledge from a previous thesis (Mourelatos 2017), we created a
jointed arm for the purposes of the experiment, controlled by the signal from
the three IMUs on the user’s arm. This arm was created using simple capsule
and sphere objects found(see Figure 12) in the Unity Game Engine, since our
focus was directed more towards it being capable of accurately capturing the
movements of the user than to it being aesthetically pleasing or realistic. Each

 19

capsule represents a segment of the arm (palm, forearm, and upper arm), and
each sphere one of the arm’s joints (wrist, elbow and shoulder). The signal from
each IMU controls the position and orientation of the arm’s corresponding
joint—the IMU mounted on the upper arm controls the shoulder, the one
mounted on the forearm controls the elbow, and the one on the palm controls
the wrist. The capsules and spheres are connected via parent-child object
relations starting from the shoulder and moving down to the palm. This way the
movement of the virtual arm corresponds to the movement of the user’s arm
in the real world—for example, if the user rotates their forearm about the
elbow, the wrist and palm move as well, but if the user simple flexes or extends
their wrist while keeping the rest of the arm immobile, the same movement will
occur on the virtual arm.

Figure 12 Previously used Arduino Controlled Arm

In order to control the avatar’s right hand we need a script that is able to read
the Arduino’s serial data. This was achieved by using the Oculus_motion
Control script which is able to read the input from the 3 mpu’s in the Arduino
and serialize it. The data from the Arduino is basically the arm’s rotation and it
is expressed in Quartenions.Τhe script reads that data, separates it with
commas and the output is given as rotation coordinates to the humanoid’s arm.
The data is not read in the primarily function of unity which is Update(), since
when the Arduino and the Oculus rift mask are connected together, Unity
choses to read the data first from Oculus thus making the Arduino data lag. For
this reason we used a thread that reads parallel το Oculus our serial data.

In order to control properly our humanoid we have to change the structure of
its tree to match the previous version of our controlled arm. Thus we created 3
empty GameObjects :

x Shoulder
x Elbow

 20

x Wrist

They are the objects that receive our data. The script controlling the arm is
attached to Shoulder GameObject.

The abovementioned script (see Figure 13) enables to control the humanoid’s
arm as it was our own, following the user’s physical movement and making it
relatively realistic, with a latency that is acceptable and can be ignored.

Figure 13 The Unity script that is able to control the Humanoid’s aka User’s arm

5.2.3. Describing the Setting
The setting consists of multiple objects including the Robotic arm, the balls, the
conveyor belt and the basket(see Figure 14)

 21

Figure 14 Whole setting

We are going to describe each element, its importance and last but not least
the logic that makes everything work.

The default setting consists of these elements :

x Robot-Balls Interaction
x Human-Balls Interaction
x Robot-Human Interaction
x Balls-Conveyor belt Interaction

Metrics

 22

5.2.3.1 Robot-Balls Interaction

Figure 15 Focusing only on the balls and the robot

The first we were able to create is a logic behind the robot’s animation, the
robot has to be able to pick up the balls(see Figure 15) by a specific order and
since it is a collaborative task the balls have to be close to the balls the Player
has to pick.

In order to be easier for us, we set our balls as a prefab with a script attached
to them.

The script is called Balls_Colliders_Grabbing_Scenario#, where # is the
number of the scenario currently playing and its purpose is multifunctional.

First of all, each ball has a Rigidbody Component attached to it and a sphere
collider.

 23

Figure 16 Scripts and Components attached to the ball; controlling most elements in the
scenario

The Rigidbody Component and the Sphere Collider(see Figure 16,17) are the
most important components for our interactions. The Collider in each
component is indicated by the green shaped area.

Figure 17 Robot and ball Colliders

 24

We want the robot to be able to pick up each ball when moving downwards, so
we also add a sphere collider to the robot’s End effector.

The Rigidbody component is crucial for our objects because the function
OnCollisionEnter(), in order to detect a collision needs the bodies that collide
have a Rigidbody. The Rigidbody component have the disadvantage that it adds
physics to our objects, thus it can fall through the table or slide through it, so in
order to avoid this we freeze our object’s position and rotation.

With this procedure and using the Function OnCollisionEnter(), Unity detect
when the bounds of the sphere collider of the robot touches the Sphere Collider
of the ball and then the ball is attached to the robot’s End effector by creating
a Parent-Child relation between the two objects. The ball’s position is carefully
placed slightly below the robot in order not to pass through the robot avoid
making it unrealistic to the user. As we can see from the previous image the
My_Object, Ball is attached to the grabber and follows its movement using the
Follow_Up transform.

As a result the final product of the following logic, the robot when colliding with
a ball (see Figure 18) and grabs it.:

Figure 18 Robot picks up a Ball

In order for the robot to be able to take the different array of balls we need to
put some logic to the robotic arm, so we attach to it the Animator Component(
see Figure 19).

 25

Figure 19 Animator Component; Logic behind the robot’s movement

The logic behind the order of the balls is for the Player and the robot to be able
to interact with our balls.

The balls that the robot is able to interact with are predetermined to us but it
is not known to the Player interacting with it.

In the first two scenarios the order for the balls to be picked up are the following
:

x 1
x 9
x 10
x 13
x 16
x 8
x 18
x 15
x 17

The rest 9 balls are left for the player to pick them, but also in a particular order.

So the animation logic for the balls is made in the animator Component adding
each state (see Figure 20).

 26

Figure 20 Animator Component Tree

The Animator Component is accessed both by the Scripts previously
mentioned and it is attached to the balls and the Script that is attached to the
End effector.

The robot when starting the scenario is in idle position, this state is the starting
position and the stopping position of our robot, this is because we don’t want
the robot to start moving immediately when the scenario is starting, but we
want it to start when we trigger an event, such as pressing a button and
grabbing a ball.

5.2.3.2 Human-Balls Interaction

With the move of our right arm we can move the right arm of our humanoid in
real time with no latency. We want to be able to pick up our balls when our
hand is on them and when a left click is pressed. This is done by the previously
mentioned script Balls_Colliders_Grabbing_Scenario#. We added a Box
Collider in our Humanoid’s hand and a Transform called Guide in front of our
hand.

This time we didn’t use the function OnCollisionEnter(), because this function
is called the exact time the collision happens and the left click of the player must
be instantaneous, this is very difficult even impossible to happen.

 27

We need the player to be able to grab the ball when the collider intersect each
other, in order to do that we use a condition that is called ballColider bounds
intersect with handCollider, this is done by the following command :

x ballCollider.bounds.Intersects(handCollider.bounds) ;

When a left click is pressed which is achieved by :

x Input.GetMouseButtonDown(0);

The ball follows the hand’s movement, according to a Parent-Child relation,
similarly with the robot. The Parent-Child transform has a particular problem,
the ball’s scale, which is the Child is relative to the Parent’s, which is the player’s
arm, so due to different sizes, it changes. In order to keep the original scale we
need to rescale it, matching our starting scale.

Last but not least, we don’t want our ball to pass through the player’s hand and
seem unphysical, thus we add a Guide transform in front of our hand which
shows the position of our ball when is picked up by the player(see Figure 21).

Figure 21 Player picking up a ball

The previous picture shows the position of the guide relative to the Player’s
hand and how the ball is attached to the player’s arm when he picks it up.

In order to be a collaborate task, the Player and the robot have to pick different
balls from our robot. The balls to be picked have different color, a bright yellow

 28

color and it is indicated by a script called Color_Indicator and it is attached to
the empty GameObject of Balls which is Parent of all our balls in our setting.

Each ball is a GameObject with a different tag, as a result we can easily find each
ball. Color_Indicator script does exactly what is name say, it indicates for the
player which ball is to be picked up next. The way it is done is by looking for
GameObjects with specific tag and in order to be in a consecutive order the
previously tagged objects needs to empty.

The player has to only grab the balls in the order that is indicated by the script
in order to successfully complete the scenario.

Figure 22 Yellow balls picked up by Player, Red are picked up by Robot

The Yellow balls are the balls to be picked up by the player while the Red balls
by the Robot (see Figure 22). Last but not least, there is a delay between each
ball that is highlighted in order not to confuse the Player with the immediate
change.

The balls are strategically put in such a way, in order to mix the path of the
Player and the robot, since if the order was not determined the player would
pick the balls that would be more convenient or close to him/her and it would
be very difficult for a collision to happen, since the robot will be easily ignored.
After the first set of balls is finished, another set appears with a little delay in
order to have more stable metrics in our scenario.

The second set of balls is pictured below with the player picking them up with
different order than before, the same applies to the robot. (See Table 1)

 29

Set 2

Player Robot
3 11
15 16
2 10
8 9
5 12
14 7
13 17
6 18
4 2

Table 1 : The balls the robot and the player have to grab.

5.2.3.3. Robot-Human Interaction

Perhaps the most important state of our Thesis is the Robot-Human interaction,
what will happen when the robot End effector and human arm collide in such a
task.

We want to ensure that the robot will make a reaction when in touch with the
human arm. So in the robotic arm we add 3 Colliders covering the whole arm,
up until the back of the robot (see Figure 23).

Figure 23 : Robot Colliders

 30

We want for the Player to understand when he is touching our robot. So we
need to give feedback when he does so. There are 3 types of impact that are
used in our scenarios :

x Visual feedback (2 types)
x Audio feedback

The first visual feedback concerns the robot animation, when the player
accidentally touches the robot, it jitters making it appear like it’s being hit.

This is done in the Animator Component and when the GameObjects Hand and
Player are colliding a trigger called “move”, is instantiated and the robot makes
the jittery move and then stops, it then follows a logic procedure that is about
whether is holding a ball or not.

When it is holding a ball and the robot return to its position and its first action
is to put the ball intro place and continue grabbing the remaining balls.

The Any State states that wherever the robot is, if it is hit by the Player it has to
change its course of action and follow the procedure described above.

The second visual feedback is a commonly used in videogames, to indicate that
the Player is being hit, which is a camera shake.

The CameraShake_Scenario# script is attached to hand of the Humanoid.

When the collision happens, it triggers. It takes as input, the main camera’s, in
our situation, the two main camera’s positions which is indicated by the Prefab
OVRCameraRig, then it moves the cameras inside a unit sphere by a random
value, changing their positions only for a fraction of time, as a result when the
shake value is 0, they return to their initial positions, which are saved before
the shaking happens. Last but not least, a parameter is added called
ShakeStrenght which indicate how much will the camera move inside the unit
sphere. The Shake parameter is used to show how much time will the shaking
last.

This is done by the command :

x cam_VR.transform.localPosition = originalPosition +
(Random.insideUnitSphere * shake);

Last but not least, we need an Audio feedback when we touch the robot. The
audio is a warning sound that it triggers when the collision happens.

 31

5.2.3.4. Balls-Conveyor belt Interaction

When the robot or the player grab a ball and drag it in the box which is side to
the table the GameObject ball, is destroyed and it disappears, this is used as the
condition for the Color_Indicator script in order to indicate the next ball, but
a consecutive indication without really showing where the ball goes confuses
the Player and it makes him that the ball he put into the Cylindrical shape just
transferred and appeared as the next ball.

We want to give the user the impression that after putting his ball in the
Cylindrical shape it is physically transferred somewhere.

We want to make the ball look like it slides throughout our conveyor belt, the
way we do that is by adding an extra ball to our setting which is hidden from
the Player’s field of vision.

This ball is called Moving_Ball and it is along with our conveyor belt the final
touches to the setting of the first and second scenarios.

The ball has the Animator Component attached to it and a simple animation
logic, which is triggered when the Player or the robot puts a ball into the
cylindrical shape.

Figure 24 Animation tree of Conveyor Belt

The animator’s logic is pretty simple since it only uses one trigger that fires as
mentioned above(see Figure 24).

 32

Figure 25 The animation of the ball going through the Conveyor belt

It is important to notice that the conveyor belt isn’t moving neither does it have
an animation, this is because the ball animation that shows that the ball is
moving, it is easier to accomplish and it makes the player think that the
conveyor belt is working.

The final position creates the illusion that the ball falls through the basket.

Τhe abovementioned animation (see Figure 25) is miscellaneous for our
environment but it is important because it created the illusion that a certain
work is to be made, so it makes the player understand the environment as most
immersive.

5.2.4.5. Metrics

In this thesis we want to count the number of times the Player collides with the
robot and the time when the collision happens. This is done by creating a script
called UI_Timer. We put this script in the GameManager along with a Text
component.

 33

In GameManager we also attach another script called
Counting_Script_Scenario#, which continuously checks if the balls of the
robot is less than the player’s if so, the robot stats automatically and wait for
the player to continue his/her task.

The purpose of this script is to start a timer when an action happens. As a result
we are able to capture the time of the collision when it happens.

Another problem that we faced is the previously mentioned 3 Colliders on the
robotic arm, due to the way Unity works and the fact that the colliders are too
close to each other, each collision happening at the same time could be counted
for more than once. As result the metrics would be ruined leading to a lot more
collisions than it really happened.

In order to fix this problem we used a delay time in our script
CameraShake_Scenario#, this delay time is expressed in frames and what it
really does is that it stops the script from writing multiple times the collision
number.

Last but not least, in order to keep track of our metrics we need a function that
can write on a .txt file this is done by creating a new void called
WriteToLogFile.

 34

6. Adjusting the setting
The player must feel immersed to the environment he is in, so we need to adjust
its setting, adjusting the setting in order to feel more realistic to each subject
was tested multiple times and through trial and error multiple errors were
nullified.

The first problem that appeared during the development of the software is the
user to be able to grab all the balls in the table. When we first used the
Humanoid, the player with fully extended arm was not able to grab, so
adjustments were made. First of all, we moved the setting; robot, balls, table,
conveyor belt in a position that is relative to the Player’s position, in order for
the fully extended arm to reach the boundaries but when we first started the
pilot test another immediate problem arose; the fact that even though the full
extended arm seem to reach the end of table, due to Arduino errors and
miscalculations, it would not be able to pick the balls in the third row from the
player’s perspective, so we confronted that problem by carefully elongated the
Player’s arm, while keeping the relations, trying to be realistic. This elongation
resulted in a right arm which was bigger than the left one but since the player
could not use the left one, he/she do not noticed any difference between them
and as a result the elongation eliminated another complication that occurred
during pilot testing the fact that the player would lean forward in order to grab
the balls in the first row.

We wanted to make the Player feel the grabbing of the balls more natural, so
in order to accomplish that, with the help of the colleague Antreas Mourelatos
and Vaggelis Giagglisis. They managed to design a pushable button that is
integrated with the whole Arduino circuit, the button is placed in the palm of
the hand, thus the picking task seeming natural, in order for us to use that
button, we needed to adjust the script controlling the humanoid arm from
Oculus_motion_Controller to ThreadMotion_Control_3MPU’S in order to
receive the button as input, as well as change codes where we utilized the
mouse as input.

Another problem that appeared during pilot testing is the fact that the player is
confused when he/she placed the ball and another one popped up
immediately; thus confusing the player and makes him/her think that the ball
teleported, in order to fix that error we simply added a little countdown timer
when the next ball will appear about 200ms.

One of the most difficult problems to solve in gaming and in visual
environments is the fact that the Arduino controlled arm of the humanoid
passes through the table and through the balls, despite the colliders. This is due

 35

to fact that it travels at such high speed so that it teleports between frames, so
unity cannot detect the collisions and as a result it pass through our objects and
thus making unity unable to render it, including our balls and table. The fact
that the table is transparent to the movement of the Player and it doesn’t block
it from running through it is a huge problem, since we are inclined to find the
best possible way around, the Player will choose instead of moving his/her
virtual hand across the table to move it underneath it since it will be easier to
complete the task, thus avoiding the robot all the time without any real
interaction happening or referring to any real life situation.

Another problem is the Arduino calibration. The Arduino must first be
calibrated in order to be placed into the human arm. The calibration is achieved
using Lego bricks in order to keep its position stable for a few seconds (see
Figure 26).

Figure 26 Calibrated Arduino

Αfter calibrating to the right extent, it is mounted on the Player’s arm.

Another problem of the calibration is that each time it has a deviation when it
is mounted on a person’s arm. So in order to solve both the technical problems
of the table and the problem of it being too low or high in front of us we propose
a solution.

Before starting the game we explain to our Player to sit in a chair with a desk in
front of him. The physical table is used in order to counter the Arduino’s
calibration, we move the setting in the edit mode during the playing mode so
that both the calibration and the fact that our hand pass through is fixed and
the player cannot avoid the robot, just by moving his/her hand below the table.

 36

The result of this adjustment is that the Player is moving his/her arm in the
physical table and it also moves in the scenario in the virtual table, being unable
to pass through it, thus making it realistic.

7. Scenarios
Our thesis consists of three scenarios and a configuration test, each one serving
its purpose and will be described below. For each of these scenarios Arduino
must be calibrated separetively and we need to adjust our setting relevant to
the calibration.

7.1. Configuration Test

Before we start any of our experiments we need to show our Players how to
interact with our environment, so a configuration test is made, much like a
tutorial in every game.

The configuration test is the simpler than our 3 scenarios and it just contains
the very basic features of our scenarios, that is the balls, the robot and the
Cylindrical object that we put our balls.

This scene only contains 5 balls and when the game is starting the player must
grab each one and put it in the Cylindrical object. The second use of this
scenario is for the player to acknowledge how a collision sounds like and how it
seems to the Player.

The player move his/hers physical hand and as a result also move his/hers
virtual arm. He is instructed to grab the ball in front of him, there are only 5
balls, the Player grabs the ball by hovering his hand in the ball as described
above and clicking the left click of his mouse. After grabbing the first yellow
colored ball, he/she is told to put it in the cylindrical object as described above,
this is done similarly by moving the ball in the Collider bounds of the Cylindrical

 37

object and again left click is pressed. When he/she does this procedure the ball
is destroyed and the animation with the ball moving in conveyor belt and
dropping in the basket is playing to show that he correctly put the ball in the
right place.

After repeating this procedure 5 times for each of the ball he/she then must
touch the robot with his/her hand in order to feel and see how a collision
sounds like and the response of the robot during the collision. This will help
him/her understand how to know that a collision has been made.

7.2. Scenario 1 – Base

The first scenario of our thesis, is called base and it is the simplest scenario of
the 3. In the first scenario, the robot’s behavior, is dependent to the player’s
movements, thus being said that the robot will follow the pace of the Player
without being able to surpass him. Now the setting is also different from the
configuration and even from the initial setting, since many differences were
made in order to be able to make an easy configurable set of experiments.

A new element is added to these scenarios, which is not described in the pre-
test development scene, the element is a red button. The button’s purpose is
to restart the robot, when a collision happens, since we want the robot to
follow the player’s movement, the robot completely stops and so it is required
for the player to press the button in order for it to continue grabbing the balls.

The idea behind these types of scenarios is to test the collaboration in a
futuristic factory where humans and robotic arms are able to work together in
a production line, so in these scenarios, each scenario’s purpose is to for the
player and the robot to finish the task in the least time possible, under the
umbrella of safety.

Another new element of these scenarios is that a new game condition is used,
we presume that the task is requires both the robot’s ball and the player’s in
order to continue, then if the Player hits the robot and the robot stops, then
the player’s ball which was highlighted will be unmarked and as a result, the
player would not be able to continue picking up the next ball.

In the first scenario, we assume the hypothesis that since there is no indication
where the robot is going, the player would collide with it many more times,
than the next two scenarios where the would be safety measures to prevent
collisions from happening.

 38

Another element of these scenarios is that two set of balls are used in order to
make the experiment last more and have a more complete image about the
collisions of the user.

7.3. Scenario 2 – Prevention

In this scenario all parameters remain the same as the base scenario but one
crucial change is made; the robot now slows down by a significant amount
when it is in close proximity with the Player.

This procedure is done with relative ease, thus by adding three more colliders
that are scaled in bigger dimensions in order to create an area, which is
supposed to set the bounds that slows the robot movement.

We expect in this scenario, that the collisions would diminish in relation with
the first scenario.

7.4. Scenario 3 – Anticipation

The third scenario is another child of the base but in this scenario, we want to
increase the safety of the working environment by indicating now to the player,
where the robot is going next, an easy way to accomplish that is by indicating
the next ball the robot is about to pick, the robot’s ball is indicated by a color
that resembles the robot, so that the user would be able to easy distinguish the
differences between them.

In this scenario, we expect both that the Player would avoid the robot most of
the times, in comparison to the other 2.

 39

8. Testing the environment with users
In order to be able to make the abovementioned changes we ran a couple of
tests with multiple users. The first couple of test which was pilot determined
the changes.

When we ran the abovementioned scenarios through multiple users we
received the following data(See Table 2,3).

Subject Collisions

Base Prevention Anticipation

Maria 2 4 4

Petros 6 0 3

Antreas 7 1 0

Eva 10 5 4

Katerina 3 5 2

Giannis 6 4 5

Table 2 : Number of Collisions in the three scenarios

Subject Time

Base Prevention Anticipation

Maria 1:53 2:11 1:51

Petros 1:59 1:58 1:58

Antreas 2:14 1:59 1:54

Eva 2:38 2:30 2:18

Katerina 2:11 2:26 2:04

Giannis 2:06 2:25 2:17

Table 3 : Total time when completing each scenario

The above sample which only consists of 5 subjects shows that the prediction
about fewer collisions both in prevention and anticipation is valid, most of the
users avoided the robot most of times in these scenarios.

 40

9. Conclusions and further development
From the previous data it can be concluded the following(see table 4).

 Base Prevention Anticipation
Collision Number 5.57 3.2 3
Time (Min :
Seconds)

2:10 2:15 2:07

Table 4 : Mean number of collisions and total mean time of the five players

The anticipation scenario proved the safest of the three as well as the scenario
executed at the least possible time, making it thus the most efficient. Another
conclusion that can be extracted from running the scenarios is that our
environment was stable and did not impose any problem; all test subjects were
able to run it smoothly without having any physical or software problem during
gameplay. As a result, it can be concluded that scenarios like this can be
implemented and as a result many more can be created to test a variety of
different human – robot collaboration hypotheses relevant for future real world
collaboration settings.

9.1 Future testing scenarios
The environment that we created for this thesis can be expanded for further
use or even become the baseline for more advanced scenarios. A more
advanced scenario is to create an environment where the player can use both
arms in order to interact with objects, thus providing a more realistic simulation
of real world human robot collaboration. The player would be able to control
both arms and lean forward, greatly improving the player’s feeling of immersion
and subsequently the ecological validity of the experimental environment. The
above development could form the baseline for more elaborated scenarios
such as in a more complex assembly line where the human-robot co-operation
will engage the full upper body of the player, but also whole body movement
in space. Examples of such tasks are various assembly tasks in the automobile
and aerospace manufacturing industries, where it is critical to combine human
perceptual sensitivity and decision making with robot precision and load
manipulating capacity.

 Another possible way to upgrade the work is to upgrade the simulator
environment with a software like VR robotics simulator, where many different
types of predefined robotic arms and manufacturing processes can be
simulated. In such an environment the user would able to interact with more

 41

than one virtual object, thus creating a robust tool that would simulate with
high immersion a real world manufacturing plant for inexpensive training and
safety training for future employees.

 42

References
Antoniou S., Rentzos L., Mavrikios D., Georgoulias K., Mourtzis D., Chryssolouris
G. (2016) A Virtual Reality Application to Attract Young Talents to
Manufacturing.

F. Caputo, A. Greco, E. D’Amato, I. Notaro, Spada S.(2016),On the use of
Virtual Reality for Human Centered workplace design, Portuguese Conference
on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal.
G. C. Burdea, “Invited review: the synergy between virtual reality androbotics,”
IEEE Transactions on Robotics and Automation, vol. 15,no. 3, pp. 400–410,
1999.

Giuseppe R., Cristina B., Rosa B., Fabrizia M.,Azucena G.P., Soledad Q., Silvia S.,
Claudia R., Antonios D., Daniela V., Stefano T., and Andrea G. (2015) Presence-
Inducing Media for Mental Health Applications.

Heidicker, P., Langbehn, E., & Steinicke, F. (2017, March). Influence of avatar
appearance on presence in social VR. In 3D User Interfaces (3DUI), 2017 IEEE
Symposium on (pp. 233-234). IEEE.

Hongyi L., Lihui W. (2017) An AR-based Worker Support System for Human-
Robot Collaboration,27th International Conference on Flexible Automation and
Intelligent Manufacturing, FAIM2017,27-30 June 2017, Modena, Italy.

Karakikes M. (2017). Development and Evaluation of a Wearable Motion
Tracking System, to Support Hand-Tool Design, Diploma Thesis, National
Technical University of Athens.

Kilteni, K., Bergstrom, I., & Slater, M. (2013). Drumming in immersive virtual
reality: the body shapes the way we play. IEEE transactions on visualization and
computer graphics, 19(4), 597-605.

Kilteni, K., Normand, J. M., Sanchez-Vives, M. V., & Slater, M. (2012). Extending
body space in immersive virtual reality: a very long arm illusion. PloS one, 7(7),
e40867.

Lange, B., Suma, E. A., Newman, B., Phan, T., Chang, C. Y., Rizzo, A., & Bolas, M.
(2011, July). Leveraging unencumbered full body control of animated virtual
characters for game-based rehabilitation. In International Conference on
Virtual and Mixed Reality (pp. 243-252). Springer, Berlin, Heidelberg.

Liu O., Rakita D., Mutlu B., and Gleicher M.(2016) Understanding Human-
Robot Interaction in Virtual Reality.

 43

Luigi G., Marco S., Luigi P., Giuseppe D.G., Philipp K. (2016) Coupling of a
redundant manipulator with a virtual reality environment to enhance human-
robot cooperation, 10th CIRP Conference on Intelligent Computation in
Manufacturing Engineering - CIRP ICME '16.

Luo, Z., Lim, C. K., Chen, I. M., & Yeo, S. H. (2011). A virtual reality system for
arm and hand rehabilitation. Frontiers of Mechanical Engineering, 6(1), 23-32.

Matsas, E. & Vosniakos, GC. (2015). Design of a virtual reality training system
for human–robot collaboration in manufacturing tasks. Int J Interact Des Manuf
(2017) 11: 139.

Merians, A. S., Tunik, E., & Adamovich, S. V. (2009). Virtual reality to maximize
function for hand and arm rehabilitation: exploration of neural mechanisms.
Studies in health technology and informatics, 145, 109.

Osumi, M., Ichinose, A., Sumitani, M., Wake, N., Sano, Y., Yozu, A., & Morioka,
S. (2017). Restoring movement representation and alleviating phantom limb
pain 62 through short‐term neurorehabilitation with a virtual reality system.
European journal of pain, 21(1), 140-147.pp. 1878–1883.

R. Belousov, R. Chellali, and G. J. Clapworthy, “Virtual reality tools for internet
robotics,” in Robotics and Automation, 2001. Proceeding 2001 ICRA. IEEE
International Conference on, vol. 2. IEEE, 2001,

R. Safaric, S. Sinjur, B. Zalik, and R. M. Parkin, “Control of robot arm with virtual
environment via the internet,” Proceedings of the IEEE, vol. 91, no. 3, pp. 422–
429, 2003.

Ruckbert P., Wohlformm L.,Tracht K.(2017),Implementation of virtual reality
systems for simulation of human-robot collaboration, 6th International
Conference on Through-life Engineering Services,TESConf 2017,7-8
November,Bremen,Germany.

Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person
experience of body transfer in virtual reality. PloS one, 5(5), e10564.

Suto S., Forgo Z.,Ferenc T.(2016),Simulation Based Human Robot Co-
working,10th International Conference Interdisciplinary in Engineering,INTER-
ENG,2016.

Wittmann, F., Lambercy, O., Gonzenbach, R. R., van Raai, M. A., Höver, R., Held,
J., ... & Gassert, R. (2015, August). Assessment-driven arm therapy at home
using an IMU-based virtual reality system. In Rehabilitation Robotics (ICORR),
2015 IEEE International Conference on (pp. 707-712). IEEE.

 44

X. Tang and H. Yamada,(2011)“Tele-operation construction robot
controlsystem with virtual reality technology,” Procedia Engineering, vol. 15,pp.
1071–1076,2011

 45

Codes Appendix
In this section we put the codes for the base scenario, the other two scenarios
have the at most part the same coding but with a few small changes.

Balls_Colliders_Grabbing

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Balls_Colliders_Grabbing_Base_ : MonoBehaviour {

 //bool to check if the player holds a ball
 public static bool playerIsHolding = false;
 //objects to be used
 public GameObject m_MyObject, m_NewObject,grabber,box;
 //colliders for the collisions
 Collider m_Collider, m_Collider2,m_Collider3,box_collider;
 //grabbing transforms
 public Transform guide,Follow_Up;
 Transform m_transform;
 public Animator anim,ballAnim;
 Vector3 originalPos;
 //color of the next object
 Color32 nextObject = new Color32(7,201,25,255);
 public static float referencingTime;
 //colliders that slow down the robot animation
 //public Collider J10slowCollider,J11slowCollider,J12slowC
ollider;
 //counts the balls to be grabbed by the player in order to
 check the robot
 public static bool beAbleToPickUpNextBall = true;
 //οριζουμε τα 3 κυρια objects για τα collisions και για κα
θε object βρισκουμε το collider του ετσι ώστε να γίνονται grab
 καθε φορα

 void Start()
 {
 //anim bool for the button we need that to be true, th
e button is pressed when starting
 anim.SetBool ("Restart", true);
 anim.SetBool ("Start", false);

 //Check that the first GameObject exists in the Inspec
tor and fetch the Collider
 if (m_MyObject != null)
 m_Collider = m_MyObject.GetComponent<Collider> ();
 m_transform = m_MyObject.GetComponent<Transform> ();

 46

 originalPos = m_transform.position;

 //Check that the second GameObject exists in the Inspe
ctor and fetch the Collider
 if (m_NewObject != null)
 m_Collider2 = m_NewObject.GetComponent<Collider> (
);

 //checks if the robot component is empty or not
 if (grabber != null)
 m_Collider3 = grabber.GetComponent<Collider> ();

 if (box != null)
 box_collider = box.GetComponent<Collider> ();

 }

 void OnCollisionEnter(Collision col)
 {
 if(col.gameObject.tag == "box" && m_Collider.GetCompon
ent<Renderer>().material.color != nextObject)
 {
 BallDestroyed ();
 }

 }

 void Update()
 {
 if (referencingTime > 0) {
 referencingTime -= Time.deltaTime;
 if (referencingTime < 0) {
 referencingTime = 0;
 }
 }
 //determines the animation speed
 anim.speed = 1.3f;

 //If the first GameObject's Bounds enters the second G
ameObject's Bounds, output the following and the ball must hav
e the Yellow color in order for the user to grab it
 if (m_Collider.bounds.Intersects (m_Collider2.bounds)
&& ThreadMotCont3MPUS.buttonState == 0 && playerIsHolding == f
alse && m_Collider.GetComponent<Renderer> ().material.color ==
 nextObject)
 {
 PlayerBallGrabbing ();

 } else if ((m_Collider.bounds.Intersects (m_Collider3.

 47

bounds)) && m_Collider.GetComponent<Renderer> ().material.colo
r != nextObject)
 {
 RobotGrabsBall ();
 }

 //Player puts the ball in the desired position, meanin
g the Cylindrical object
 else if (m_Collider.bounds.Intersects (box_collider.bo
unds) && ThreadMotCont3MPUS.buttonState == 0 && playerIsHoldin
g == true)
 {
 PlayerLetsBallDown ();
 }

 //when the player finishes the robot grabs all remaini
ng balls
 if (CameraShake_Base_.Test1 == true) {
 if (GameObject.FindGameObjectWithTag ("ball_7") ==
 null) {
 anim.SetBool ("Start", true);
 } else if (GameObject.FindGameObjectWithTag ("ball
_17") == null) {
 anim.SetBool ("Start", false);
 }
 }

 //test 2
 else if (CameraShake_Base_.Test1 == false) {
 if (GameObject.FindGameObjectWithTag ("ball_4") ==
 null) {
 anim.SetBool ("Start", true);
 } else if (GameObject.FindGameObjectWithTag ("ball
_1") == null) {
 anim.SetBool ("Start", false);
 }
 }

 //ball returns to original position when a click is pr
essed
 /*if (Input.GetMouseButtonDown (1)) {
 gameObject.transform.parent = null;
 m_transform.position = originalPos;
 isHolding = false;
 }*/

 }
 //Triggers when the robot touches the box and destroys the
 ball

 48

 void BallDestroyed()
 {

 Destroy (gameObject);

 //triggers the robot-ball animation
 anim.SetBool ("holdingBall", false);

 // triggers the conveyor belt animation
 ballAnim.SetTrigger ("move");

 }

 //Triggers when Player touches the ball and as a result gr
abs it
 void PlayerBallGrabbing()
 {

 anim.SetBool ("Start", true);

 referencingTime = 30f;

 //Player grabs the ball
 transform.SetParent (m_NewObject.transform, true);
 transform.localScale = new Vector3 (0.07f, 0.07f, 0.07
f);
 m_transform.position = guide.position;
 Destroy (GetComponent<Rigidbody> ());

 //isHolding is for checking if the player has a ball c
an grab only one ball
 playerIsHolding = true;

 }

 //The robot grabs a ball
 void RobotGrabsBall()
 {
 transform.SetParent (grabber.transform, true);
 m_transform.position = Follow_Up.position;
 anim.SetBool ("holdingBall", true);
 }

 //Player destroys the ball by putting it in the Cylindrica
l object
 void PlayerLetsBallDown()
 {
 Destroy (m_MyObject);
 playerIsHolding = false;

 49

 ballAnim.SetTrigger ("move");
 }

}

Camera_Shake_Base

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System.IO;

public class CameraShake_Base_ : MonoBehaviour {

 float shakeStrength = 0.01f;
 float shake = 0f;
 public static int colCounter = 0;
 //the second set of balls which is inactive
 public GameObject ballsTest2;
 public Vector3 originalPosition;
 public Animator anim;
 public OVRCameraRig cam_VR;
 public Text timer;
 //this bool is for proceeding to each test
 bool robotFinish1 = false,humanFinish1 = false,robotFinish
2 = false,humanFinish2 = false;
 //this stops the player from colliding before grabbing a b
all
 public static bool start = false;
 public AudioClip robotCol;
 //dealy time to stop multiple collisions to be written in
the log
 public static float delayTime = 0;
 //Test 1 is for starting the next set of balls
 //collisionStart detects the collision and reminds the oth
er scripts
 public static bool Test1 = true,collisionStart = false;
 public Collider forearmCollider,j10col,j11col,j12col;

 void Start()
 {
 //originalPosition = cam_VR.transform.position;
 GetComponent<AudioSource>().playOnAwake = false;
 GetComponent<AudioSource>().clip = robotCol;
 anim.SetInteger ("Counter", 0);
 }

 50

 void Update()
 {

 if (delayTime > 0) {
 delayTime -= Time.deltaTime;
 if (delayTime < 0) {
 delayTime = 0;
 }
 }
 cam_VR.transform.localPosition = originalPosition + (R
andom.insideUnitSphere * shake);
 shake = Mathf.MoveTowards (shake, 0, Time.deltaTime *
shakeStrength);
 if (shake == 0) {
 cam_VR.transform.localPosition = originalPosition;
 }

 //timer when ending each task
 if (GameObject.FindGameObjectWithTag ("ball_17") == nu
ll && Test1 == true)
 {
 if (robotFinish1 == false) {
 WriteToLogFile ("Robot Finishes First set at"
+ " " + timer.text.ToString ());
 robotFinish1 = true;
 }
 }
 //timer when second task is finished
 else if (GameObject.FindGameObjectWithTag ("ball_1") =
= null && Test1 == false)
 {
 if (robotFinish2 == false) {
 WriteToLogFile ("Robot Finishes Second set at"
 + " " + timer.text.ToString ());
 robotFinish2 = true;
 start = false;
 anim.SetInteger ("Counter", 18);
 anim.SetBool ("Start", false);
 }
 }
 //same here
 if (GameObject.FindGameObjectWithTag ("ball_7") == nul
l && Test1 == true)
 {
 if (humanFinish1 == false)
 {
 WriteToLogFile ("Player Finishes First set at"

 51

 + " " + timer.text.ToString ());
 humanFinish1 = true;
 }
 }
 //same here
 else if (GameObject.FindGameObjectWithTag ("ball_4") =
= null && Test1 == false)
 {
 if (humanFinish2 == false) {
 WriteToLogFile ("Player Finishes Second set at
" + " " + timer.text.ToString ());
 WriteToLogFile("Robot remaining balls are " +
(9 - Counting_Script_Base_.ballsRobot).ToString());
 humanFinish2 = true;
 }
 }

 if (GameObject.FindGameObjectWithTag ("ball_7") == nul
l && GameObject.FindGameObjectWithTag ("ball_17") == null && T
est1 == true)
 {

 WriteToLogFile ("Next set of balls starting " + ti
mer.text.ToString ());
 ballsTest2.SetActive (true);
 Test1 = false;
 anim.SetInteger ("Counter", 9);
 anim.SetBool ("Start", false);

 }

 if (forearmCollider.bounds.Intersects (j10col.bounds)
&& delayTime == 0f && start == true) {
 HumanRobotCollision ();
 }else if (forearmCollider.bounds.Intersects (j11col.bo
unds)&& delayTime == 0f && start == true) {
 HumanRobotCollision ();
 }else if (forearmCollider.bounds.Intersects (j12col.bo
unds) && delayTime == 0f && start == true) {
 HumanRobotCollision ();
 }
 //The input comments are used in order to test new sce
nario elements if they are working or not, don't erase them
 /*if(Input.GetKeyDown(KeyCode.Q))
 {
 shake = shakeStrength;
 }*/

 52

 /*if (Input.GetKeyDown (KeyCode.Space))
 {
 start = true;
 WriteToLogFile("Robot remaining balls are " + (9 -
 Counting_Script_Base_.ballsRobot).ToString());
 }*/

 /*if (Input.GetKeyDown (KeyCode.T))
 {
 Debug.Log ("CollisionNumber" + " " + colCounter +
" " + "time" + " " + timer.text);
 WriteToLogFile ("CollisionNumber" + " " + colCount
er.ToString() + " " + "time" + " " + timer.text.ToString());
 }*/

 }

 void OnCollisionEnter(Collision other)
 {

 if ((other.gameObject.tag == "End Effector" || other.g
ameObject.tag == "Robot") && start == true && delayTime == 0f)
{
 HumanRobotCollision ();
 }
 else if (other.gameObject.tag == "ball_2" && Test1 ==
true) {
 start = true;
 WriteToLogFile ("New Player : Base" + " " + System
.DateTime.Now.ToString ("G"));
 }

 }

 void WriteToLogFile(string message)
 {
 try{
 using (System.IO.StreamWriter logFile = new System
.IO.StreamWriter(@"C:\Users\MaSys\Desktop\Vr data backup\14-
06-2018\Giannos\DataFileBase.txt", true))

 {
 logFile.WriteLine(message);
 }
 using (System.IO.StreamWriter logFile2 = new Syste
m.IO.StreamWriter(@"C:\Users\MaSys\Desktop\Vr data backup\14-
06-2018\Giannos\DataFileBase.txt", true))

 53

 {
 logFile2.WriteLine(message);
 }
 }catch{
 Debug.LogError("Change Path, data is not written,
find the path VR data and the Back Up");
 }

 }

 //self explanatory
 void HumanRobotCollision()
 {
 //triggers the shake animation
 anim.SetTrigger ("move_back");
 shake = shakeStrength;
 colCounter++;
 delayTime = 0.8f;

 //Debug.Log ("CollisionNumber" + " " + colCounter + "
" + "time" + " " + timer.text);
 WriteToLogFile ("CollisionNumber" + " " + colCounter.T
oString () + " " + "time" + " " + timer.text.ToString ());

 //sets Animation to starting mode and it is needed to
press the button
 GetComponent<AudioSource> ().Play ();
 anim.SetBool ("Restart", false);

 //stops the balls from turning yellow
 Balls_Colliders_Grabbing_Base_.beAbleToPickUpNextBall
= false;

 //checks the collision
 CameraShake_Base_.collisionStart = true;
 }
}

Button_Press_Base

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Button_Press_Base_ : MonoBehaviour {

 public AudioClip buttonPress;

 54

 public Collider handCol,buttonCol;
 Color redColor;
 Color brightRed = new Color(255f,0f,0f,255f);
 public Animator anim;

 // Use this for initialization
 void Start () {

 GetComponent<AudioSource>().playOnAwake = false;
 GetComponent<AudioSource>().clip = buttonPress;
 redColor = GetComponent<Renderer> ().material.color;
 GetComponent<Renderer> ().material.color = redColor;

 }

 void Update()
 {
 if (handCol.bounds.Intersects(buttonCol.bounds) && Thr
eadMotCont3MPUS.buttonState == 0 && Balls_Colliders_Grabbing_B
ase_.playerIsHolding == false && GetComponent<Renderer>().mate
rial.color == brightRed)
 {

 //animation parameters change when pushing the but
ton
 anim.SetBool ("Restart", true);

 // sees if the robot has a ball and automatically
starts
 if (anim.GetBool ("holdingBall") == true) {
 anim.SetBool ("Start", true);
 }

 GetComponent<AudioSource> ().Play ();
 GetComponent<Renderer> ().material.color = redColo
r;

 //set the conditions when the button is pressed
 //condition1
 Balls_Colliders_Grabbing_Base_.beAbleToPickUpNextB
all = true;

 //condition2
 CameraShake_Base_.collisionStart = false;

 }
 else if (CameraShake_Base_.collisionStart == true && C
ameraShake_Base_.start == true)

 55

 {
 GetComponent<Renderer> ().material.color = brightR
ed;
 }
 }
}

Counting_Script_Base

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Counting_Script_Base_ : MonoBehaviour {

 public Animator anim;
 public static int ballsRobot=0,ballsPlayer=0;

 // Update is called once per frame
 void Update () {

 if (ballsRobot < ballsPlayer) {
 anim.SetBool ("Start", true);
 } else if (ballsRobot >= ballsPlayer && Balls_Collider
s_Grabbing_Base_.referencingTime == 0) {
 anim.SetBool ("Start", false);
 }

 if (CameraShake_Base_.Test1 == true)
 {

 if (GameObject.FindGameObjectWithTag ("ball_17") =
= null) {
 ballsRobot = 9;
 anim.SetInteger ("Counter", 9);
 } else if (GameObject.FindGameObjectWithTag ("ball
_15") == null) {
 ballsRobot = 8;
 anim.SetInteger ("Counter", 8);
 } else if (GameObject.FindGameObjectWithTag ("ball
_18") == null) {
 ballsRobot = 7;
 anim.SetInteger ("Counter", 7);
 } else if (GameObject.FindGameObjectWithTag ("ball

 56

_8") == null) {
 ballsRobot = 6;
 anim.SetInteger ("Counter", 6);
 } else if (GameObject.FindGameObjectWithTag ("ball
_16") == null) {
 ballsRobot = 5;
 anim.SetInteger ("Counter", 5);
 } else if (GameObject.FindGameObjectWithTag ("ball
_13") == null) {
 ballsRobot = 4;
 anim.SetInteger ("Counter", 4);
 } else if (GameObject.FindGameObjectWithTag ("ball
_10") == null) {
 ballsRobot = 3;
 anim.SetInteger ("Counter", 3);
 } else if (GameObject.FindGameObjectWithTag ("ball
_9") == null) {
 ballsRobot = 2;
 anim.SetInteger ("Counter", 2);
 } else if (GameObject.FindGameObjectWithTag ("ball
_1") == null) {
 ballsRobot = 1;
 anim.SetInteger ("Counter", 1);
 }

 if (GameObject.FindGameObjectWithTag ("ball_7") ==
 null) {
 ballsPlayer = 9;
 } else if (GameObject.FindGameObjectWithTag ("ball
_14") == null) {
 ballsPlayer = 8;
 } else if (GameObject.FindGameObjectWithTag ("ball
_5") == null) {
 ballsPlayer = 7;
 } else if (GameObject.FindGameObjectWithTag ("ball
_6") == null) {
 ballsPlayer = 6;
 } else if (GameObject.FindGameObjectWithTag ("ball
_3") == null) {
 ballsPlayer = 5;
 } else if (GameObject.FindGameObjectWithTag ("ball
_12") == null) {
 ballsPlayer = 4;
 } else if (GameObject.FindGameObjectWithTag ("ball
_11") == null) {
 ballsPlayer = 3;
 } else if (GameObject.FindGameObjectWithTag ("ball
_4") == null) {

 57

 ballsPlayer = 2;
 } else if (GameObject.FindGameObjectWithTag ("ball
_2") == null) {
 ballsPlayer = 1;
 CameraShake_Base_.start = true;
 }
 }
 else if(CameraShake_Base_.Test1 == false)
 {
 ballsRobot = 0;
 ballsPlayer = 0;

 if (GameObject.FindGameObjectWithTag ("ball_1") ==
 null) {
 ballsRobot = 9;
 anim.SetInteger ("Counter", 18);
 } else if (GameObject.FindGameObjectWithTag ("ball
_18") == null) {
 ballsRobot = 8;
 anim.SetInteger ("Counter", 17);
 } else if (GameObject.FindGameObjectWithTag ("ball
_17") == null) {
 ballsRobot = 7;
 anim.SetInteger ("Counter", 16);
 } else if (GameObject.FindGameObjectWithTag ("ball
_7") == null) {
 ballsRobot = 6;
 anim.SetInteger ("Counter", 15);
 } else if (GameObject.FindGameObjectWithTag ("ball
_12") == null) {
 ballsRobot = 5;
 anim.SetInteger ("Counter", 14);
 } else if (GameObject.FindGameObjectWithTag ("ball
_9") == null) {
 ballsRobot = 4;
 anim.SetInteger ("Counter", 13);
 } else if (GameObject.FindGameObjectWithTag ("ball
_10") == null) {
 ballsRobot = 3;
 anim.SetInteger ("Counter", 12);
 } else if (GameObject.FindGameObjectWithTag ("ball
_16") == null) {
 ballsRobot = 2;
 anim.SetInteger ("Counter", 11);
 } else if (GameObject.FindGameObjectWithTag ("ball
_11") == null) {
 ballsRobot = 1;
 anim.SetInteger ("Counter", 10);
 }

 58

 if (GameObject.FindGameObjectWithTag ("ball_4") ==
 null) {
 ballsPlayer = 9;
 } else if (GameObject.FindGameObjectWithTag ("ball
_6") == null) {
 ballsPlayer = 8;
 } else if (GameObject.FindGameObjectWithTag ("ball
_13") == null) {
 ballsPlayer = 7;
 } else if (GameObject.FindGameObjectWithTag ("ball
_14") == null) {
 ballsPlayer = 6;
 } else if (GameObject.FindGameObjectWithTag ("ball
_5") == null) {
 ballsPlayer = 5;
 } else if (GameObject.FindGameObjectWithTag ("ball
_8") == null) {
 ballsPlayer = 4;
 } else if (GameObject.FindGameObjectWithTag ("ball
_2") == null) {
 ballsPlayer = 3;
 } else if (GameObject.FindGameObjectWithTag ("ball
_15") == null) {
 ballsPlayer = 2;
 } else if (GameObject.FindGameObjectWithTag ("ball
_3") == null) {
 ballsPlayer = 1;
 }
 }
 }
}

Color_Indicator_Base

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Color_Indicator_Base_ : MonoBehaviour {

 Renderer[] ballRenderer;
 Color previousColor;
 Color32 nextObject = new Color32(7,201,25,255);
 float delayTime = 0;

 // Use this for initialization

 59

 void Start () {
 ballRenderer = GetComponentsInChildren<Renderer>();
 previousColor = GetComponentInChildren<Renderer> ().ma
terial.color;
 }

 void Update()
 {
 if (delayTime > 0) {
 delayTime -= Time.deltaTime;
 if (delayTime < 0) {
 delayTime = 0;
 }
 }
 try {
 if (GameObject.FindGameObjectWithTag ("ball_2") !=
 null && delayTime == 0) {
 ballRenderer [1].material.color = nextObject;
 delayTime = 0.65f;

 }
 if(Balls_Colliders_Grabbing_Base_.beAbleToPickUpNe
xtBall == true)
 {
 if (GameObject.FindGameObjectWithTag ("ball_4"
) != null && GameObject.FindGameObjectWithTag ("ball_2") == nu
ll && delayTime == 0) {
 ballRenderer [3].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_11") != null && GameObject.FindGameObjectWithTag ("ball_4")
 == null && delayTime == 0) {
 ballRenderer [10].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_12") != null && GameObject.FindGameObjectWithTag ("ball_11"
) == null && delayTime == 0) {
 ballRenderer [11].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_3") != null && GameObject.FindGameObjectWithTag ("ball_12")
 == null && delayTime == 0) {
 ballRenderer [2].material.color = nextObje

 60

ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_6") != null && GameObject.FindGameObjectWithTag ("ball_3")
== null && delayTime == 0) {
 ballRenderer [5].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_5") != null && GameObject.FindGameObjectWithTag ("ball_6")
== null && delayTime == 0) {
 ballRenderer [4].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_14") != null && GameObject.FindGameObjectWithTag ("ball_5")
 == null && delayTime == 0) {
 ballRenderer [13].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_7") != null && GameObject.FindGameObjectWithTag ("ball_14")
 == null && delayTime == 0) {
 ballRenderer [6].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 }
 else if(Balls_Colliders_Grabbing_Base_.beAbleToPic
kUpNextBall == false)
 {
 if(Balls_Colliders_Grabbing_Base_.playerIsHold
ing == false)
 {

 if (GameObject.FindGameObjectWithTag ("bal
l_4") != null && GameObject.FindGameObjectWithTag ("ball_2") =
= null && delayTime == 0) {
 ballRenderer [3].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_11") != null && GameObject.FindGameObjectWithTag ("ball
_4") == null && delayTime == 0) {
 ballRenderer [10].material.color = pre

 61

viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_12") != null && GameObject.FindGameObjectWithTag ("ball
_11") == null && delayTime == 0) {
 ballRenderer [11].material.color = pre
viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_3") != null && GameObject.FindGameObjectWithTag ("ball_
12") == null && delayTime == 0) {
 ballRenderer [2].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_6") != null && GameObject.FindGameObjectWithTag ("ball_
3") == null && delayTime == 0) {
 ballRenderer [5].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_5") != null && GameObject.FindGameObjectWithTag ("ball_
6") == null && delayTime == 0) {
 ballRenderer [4].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_14") != null && GameObject.FindGameObjectWithTag ("ball
_5") == null && delayTime == 0) {
 ballRenderer [13].material.color = pre
viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_7") != null && GameObject.FindGameObjectWithTag ("ball_
14") == null && delayTime == 0) {
 ballRenderer [6].material.color = prev
iousColor;
 }
 }
 }

 } catch {
 }
 }
}

Color_Indicator_Set2_Base

 62

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Color_Indicator_Set2_Base_ : MonoBehaviour {
 Renderer[] ballRenderer;
 Color previousColor;
 Color32 nextObject = new Color32(7,201,25,255);
 float delayTime = 0;

 // Use this for initialization
 void Start () {
 ballRenderer = GetComponentsInChildren<Renderer>();
 previousColor = GetComponentInChildren<Renderer> ().ma
terial.color;
 }

 void Update()
 {
 if (delayTime > 0) {
 delayTime -= Time.deltaTime;
 if (delayTime < 0) {
 delayTime = 0;
 }
 }
 try {

 if(Balls_Colliders_Grabbing_Base_.beAbleToPickUpNe
xtBall == true)
 {
 if (GameObject.FindGameObjectWithTag ("ball_3"
) != null && delayTime == 0) {
 ballRenderer [2].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_15") != null && GameObject.FindGameObjectWithTag ("ball_3")
 == null && delayTime == 0) {
 ballRenderer [14].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_2") != null && GameObject.FindGameObjectWithTag ("ball_15")
 == null && delayTime == 0) {
 ballRenderer [1].material.color = nextObje
ct;

 63

 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_8") != null && GameObject.FindGameObjectWithTag ("ball_2")
== null && delayTime == 0) {
 ballRenderer [7].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_5") != null && GameObject.FindGameObjectWithTag ("ball_8")
== null && delayTime == 0) {
 ballRenderer [4].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_14") != null && GameObject.FindGameObjectWithTag ("ball_5")
 == null && delayTime == 0) {
 ballRenderer [13].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_13") != null && GameObject.FindGameObjectWithTag ("ball_14"
) == null && delayTime == 0) {
 ballRenderer [12].material.color = nextObj
ect;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_6") != null && GameObject.FindGameObjectWithTag ("ball_13")
 == null && delayTime == 0) {
 ballRenderer [5].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 else if (GameObject.FindGameObjectWithTag ("ba
ll_4") != null && GameObject.FindGameObjectWithTag ("ball_6")
== null && delayTime == 0) {
 ballRenderer [3].material.color = nextObje
ct;
 delayTime = 0.65f;
 }
 }
 else if(Balls_Colliders_Grabbing_Base_.beAbleToPic
kUpNextBall == false)
 {
 if(Balls_Colliders_Grabbing_Base_.playerIsHold

 64

ing == false)
 {
 if (GameObject.FindGameObjectWithTag ("bal
l_3") != null && delayTime == 0) {
 ballRenderer [2].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_15") != null && GameObject.FindGameObjectWithTag ("ball
_3") == null && delayTime == 0) {
 ballRenderer [14].material.color = pre
viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_2") != null && GameObject.FindGameObjectWithTag ("ball_
15") == null && delayTime == 0) {
 ballRenderer [1].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_8") != null && GameObject.FindGameObjectWithTag ("ball_
2") == null && delayTime == 0) {
 ballRenderer [7].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_5") != null && GameObject.FindGameObjectWithTag ("ball_
8") == null && delayTime == 0) {
 ballRenderer [4].material.color = prev
iousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_14") != null && GameObject.FindGameObjectWithTag ("ball
_5") == null && delayTime == 0) {
 ballRenderer [13].material.color = pre
viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_13") != null && GameObject.FindGameObjectWithTag ("ball
_14") == null && delayTime == 0) {
 ballRenderer [12].material.color = pre
viousColor;
 }
 else if (GameObject.FindGameObjectWithTag
("ball_6") != null && GameObject.FindGameObjectWithTag ("ball_
13") == null && delayTime == 0) {
 ballRenderer [5].material.color = prev
iousColor;
 }

 65

 else if (GameObject.FindGameObjectWithTag
("ball_4") != null && GameObject.FindGameObjectWithTag ("ball_
6") == null && delayTime == 0) {
 ballRenderer [3].material.color = prev
iousColor;
 }
 }
 }
 } catch {
 }
 }
}

ThreadMotion_Control_3MPU’S

using UnityEngine;
using System.Collections;
using System.IO.Ports;
using System.Threading;

public class ThreadMotCont3MPUS : MonoBehaviour {

 public GameObject joint1,joint2,joint3;
 public float ardW, ardX, ardY, ardZ;
 public int mpu;
 public string dataFromArduino;
 private bool shouldExit = false;
 string[] sInput = new string[6] {"0", "0", "0", "0", "0" ,
"0"};
 public static int buttonState=1;
 //public Vector3 axis=Vector3.zero;
 //public float angle;

 SerialPort mySerialPort = new SerialPort ("COM4", 9600);

 Quaternion quat1= new Quaternion(1,0,0,0);
 Quaternion quat2= new Quaternion(1,0,0,0);
 Quaternion quat3= new Quaternion(1,0,0,0);

 void Start ()
 {

 Thread myThread = new Thread (new ThreadStart (ThreadW
orker));
 myThread.Start();
 mySerialPort.Open ();

 66

 }

 void Update ()
 {
 if (mySerialPort.IsOpen == true) {
 if (sInput.Length == 6) {
 mpu = int.Parse (sInput [0]);
 ardW = float.Parse (sInput [1]);
 ardX = float.Parse (sInput [2]);
 ardY = float.Parse (sInput [3]);
 ardZ = float.Parse (sInput [4]);
 buttonState = int.Parse (sInput [5]);

 if (mpu == 1) {
 quat1.w = ardW;
 quat1.x = ardY;
 quat1.y = -ardZ;
 quat1.z = -ardX;
 } else if (mpu == 2) {
 quat2.w = ardW;
 quat2.x = ardY;
 quat2.y = -ardZ;
 quat2.z = -ardX;
 } else if (mpu == 3) {
 quat3.w = ardW;
 quat3.x = ardY;
 quat3.y = -ardZ;
 quat3.z = -ardX;

 }

 if (buttonState == 0) {
 joint1.GetComponent<Renderer> ().material.
color = Color.black;
 } else if (buttonState == 1) {
 joint1.GetComponent<Renderer> ().material.
color = Color.white;
 }

 //joint1.GetComponent<Renderer> ().material.co
lor = Color.black;

 joint1.transform.rotation = quat1;
 joint2.transform.rotation = quat2;
 joint3.transform.rotation = quat3;

 }

 67

 } else {
 Debug.Log ("Connect the serial Port");
 }

 }
 void ThreadWorker ()
 {
 while (shouldExit == false) {
 try{
 dataFromArduino = mySerialPort.ReadLine ();
 sInput = dataFromArduino.Split (',');
 }catch(System.Exception){
 }
 }
 }

 void OnApplicationQuit()
 {
 mySerialPort.Close ();
 shouldExit = true;
 }
}

UI_Timer

using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class UI_Timer : MonoBehaviour {

 public Text timerLabel;

 private float startTime = -1;

 void Update() {
 float time = startTime >= 0 ? UnityEngine.Time.time -
startTime : 0;

 var minutes = time / 180; //Divide the guiTime by sixt
y to get the minutes.
 var seconds = time % 60;//Use the euclidean division f
or the seconds.
 var fraction = (time * 100) % 100;

 //update the label value

 timerLabel.text = string.Format ("{0:00} : {1:00} : {2

 68

:000}", minutes, seconds, fraction);

 if (Input.GetKeyDown (KeyCode.Space)) {

 startTime = UnityEngine.Time.time;

 }

 /*if (Input.GetKeyDown(KeyCode.Space))
 {
 if (Time.timeScale == 1)
 {
 Time.timeScale = 0;
 }
 else
 {
 Time.timeScale = 1;
 }*/
 }

 }

