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“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein
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Acceleration of BEM using CUDA/GPU programming with application to
marine renewable energy extraction

by Panagiotis Koutsogiannakis

In the present thesis a biomimetic flapping-foil device is studied for the exploitation
of marine renewable energy resources. As a first approximation, the lifting body is
submerged far from the free surface, neglecting the interaction with the additional
boundary. The device is semi-activated, i.e. a pitching motion is enforced and a
heaving motion is induced by an alternating lift, produced in the presence of the
current. For this purpose a Boundary Element Method (BEM) in its 3-dimensional
version is applied. A Morino-type Kutta condition is imposed on the trailing edge
and, by linearizing the trailing vortex sheet dynamics, a simplified wake model is
used. However, the motion of the body and the initial shape of the wake are not
linearized. The present method, after enhancement and further verification, can be
applied to the design and control of such biomimetic devices extracting energy from
waves and tidal currents nearshore.

The performance of various integration quadratures for the calculation of singu-
lar integrals emerging in BEM are also investigated. Simple Gauss-Lobatto and
Newton-Cotes quadratures, of arbitrary order, are embedded in an adaptive rou-
tine, enabling the treatment of singularities associated with the single/double layer
potential induction factors. Different partitioning schemes are examined and the
Richardson extrapolation technique is used to accelerate the convergence of the re-
cursive quadrature routine. The developed numerical integration method is able
to evaluate efficiently integrals with multiple singularities on N-dimensional hyper-
cubes.

The in-house GPU-accelerated computational code, developed by E.S. Filippas, is
reprogrammed, by using object-oriented programming, extending the method to
solve the problem of the semi-activated system. The parallelization parameters that
affect performance are determined and a mixed precision arithmetic scheme is used
to optimize the performance of the algorithm. The concepts of polymorphism and
inheritance, incorporated in object-oriented programming, encourage the extension
of the solver to treat different problems with similar structure in an elegant manner.
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Chapter 1

Introduction

1.1 Marine energy

Marine currents can have many causes [38]. They can be wind-driven, due to the
wind stress on the sea. Along the coast, the movement of water is restricted by the
seabed and the coasts and the sea surface rises, creating a pressure gradient that
forces the water mass to move producing gradient currents. Moreover, waves can
cause mass transport, a second order effect, that can increase the current velocity
rapidly with wave height. Tides also contribute to the ocean currents and will be
examined more in the next section. Finally, temperature and salinity gradients are
related to the great oceanic currents, like the Golf Stream, that are responsible for
most deep water movement and the energy transported by them is responsible for
the climate conditions in many parts of the world.

The hydrokinetic energy of the currents consists most of the energy found in the sea
and is a resource that can be tapped in the upcoming future.

1.1.1 Tidal currents

Tidal currents are a major part of the total currents of the Earth’s oceans and in
many regions, the effect of tidal currents is intense. For example, in the North Sea
the measured velocity of tidal currents can reach 5.0m/sec (Pentland Firth) [40]. A
case study shows that the potential annual power production in the UK, from tidal
energy, could be as high as 27700GWh [57], which is equal to 1.6% of the total energy
consumption in the country for the year 2017 [18].

Tidal currents are a component of the wave motion produced primarily by the rel-
ative motion of the Earth and the Sun and Moon and the respective gravitational
pull of the oceanic water mass. The primary constituents of tidal currents are the
principal lunar and solar semidiurnal cycles, which have periods of 12h 25min and
12h respectively. The tides are more evident when Earth, Moon and Sun are aligned
(spring tides) and milder when the Sun, Earth and Moon form a right angle (neap
tides), as the effect of the gravitational pull of the Moon partially cancels out with
the effect of the Sun.
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U U

(a) (b)

FIGURE 1.1: Horizontal (a) and vertical (b) axis turbine design.

1.1.2 Types of marine energy extraction systems

Various devices have been proposed in the last years to exploit these energy reserves.
These systems can be either classical turbines or unconventional systems, such as
flutter vanes, the use of piezoelectric materials, vortex induced vibrations, oscillating
hydrofoils and sails [29]. In the following paragraphs the turbines and the nature
inspired oscillating hydrofoils will be introduced, as they present the most viable of
the proposed designs.

Turbines

Turbine systems consist of rotating blades that drive the rotor of a generator. Based
on the rotation axis position relative to the flow velocity, the turbines can be de-
scribed to be of the horizontal or vertical axis kind. The most common design is the
horizontal axis turbine that resembles classical wind turbines, with the rotation axis
being parallel to the flow velocity vector. In contrast, the vertical configuration has
blade elements that rotate perpendicular to the flow.

The popularity of the horizontal axis devices can be attributed to the fact that this
configuration exhibits higher efficiency than vertical systems, due to the fact that the
underlying mechanism is based on lift forces, while vertical axis turbines are based
on drag forces. Khan et al. [29] discusses the different hydrokinetic energy conver-
sion methods and the techno-economic parameters for the choice of the turbine rotor
configuration. In figure 1.1 these two principal designs are presented.

Horizontal axis turbine systems suffer from the Betz limit [21], independently pub-
lished by Betz [7], Lanchester [33] and Joukowsky [26]. The limit prohibits the
turbines to harness more than 16/27 of the power available in the water passing
through the cross-section of the device. For the horizontal configuration the cross-
section area would be the area occupied by the rotating propeller. This limit was
corrected by Garrett and Cummins [21] to account for the constraint of the flow in
a channel and the ratio of coverage of the channel cross-section with turbines. Gar-
rett and Cummins [20] also note that the coverage of the channel with turbines in
practice will be limited by navigational and ecological reasons.

Turbine farms have been proposed to extract the energy of tidal currents (e.g. [36,
14]). Vennell [66] has studied the efficiency of turbine farms placed inside a channel
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and reports that with as many as 15 rows of turbines occupying 20% of the current
cross-section in a strait a farm will only make 40% of the tidal energy available.

Concerning the horizontal axis turbines, Batten et al. [5] have conducted experi-
ments with a scaled model in a cavitation tunnel. From their results, it can be con-
cluded that the power coefficient of the turbine varies significantly with the cur-
rent velocity (Vbg) and the tip speed ratio (TSR). The maximum power coefficient
reported was 0.45 for TSR = 5.5 and Vbg = 1.73m/s.

One of the most recent effort to commercialize this technology is a joint venture
between International Power, Morgan Stanley and Atlantis Resources Corporation
[3]. The MeyGen Project, as it is called, is proposed to operate for 25 years, off the
northern coast of Scotland, and will generate about 400MW of power. The aim of the
first phase of the project is to assess their environmental impact and provide a proof
of concept for future development.

Despite the benefits of turbine devices for power extraction, the impact of marine
turbines on the marine ecology can be significant. Bryden et al. [10] argue that by
extracting 10% of the energy flux in a channel, the velocity of the current will be
decreased by 3%. Increasing the energy extraction will further reduce the velocity of
the flow potentially producing major complications to the local marine environment.
Neill et al. [45] studied the effect of turbines on sediment transport on the seabed
and developed a numerical model for predictions. Their research concluded that the
change in sediment transportation dynamics can affect the topography of the seabed,
not only near the turbine or the turbine farm, but as far as 50km away. The sediment
that is being transferred from one location to another contains microorganisms that
could possibly affect the biodiversity of the remote regions. Furthermore, changes
of the sea floor shape and reduction of current velocity can alter the flow patterns of
the currents on a large scale, disturbing the living organisms that depend on them
and limiting the overall available power for extraction.

The tips of turbine blades can reach high speeds (more than 12-15 m/s [69]), gen-
erating noise that will disturb wildlife. Also, the high speed of the blades, together
with the significant fraction of the current cross-section area they occupy, raises con-
cerns that blades could hit aquatic animals that use the currents to move. If this
happens, not only will the animals be in danger, but also damage will be inflicted to
the turbine, adding to the maintenance cost.

Biomimetic approaches

Bio-mimicry is innovation inspired by nature and has become popular in the design
disciplines mainly because people are looking for more sustainable ways to manage
their activities. Living organisms have evolved for 3.8 billion years to adapt to their
environments. Many ideas have been tested in nature and those that work survived
till today. So, it would be wise to look in nature for potential solutions to technolog-
ical problems.

Many commercial bio-mimetic devices have been proposed to harvest energy from
waves such as the Pelamis Wave Energy Converter [35] and the Oyster Wave Energy
Converter [23], but today none of them succeeded to make the technology scalable
and financialy reasonable. This means that more research is needed in order for this
technology to mature and be more affordable and reliable. Recently the company
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FIGURE 1.2: Fish propulsive motion.

BPS launched a wave generator named bioWAVE [9] that operates like the Oyster
Wave Energy Converter.

Devices that can harness the power of currents have also been inspired by nature.
Flapping foils, that are being used as propulsors, are modeled after the tail fins of
marine animals. In the next section, devices that use oscillating foils for energy ex-
traction will be examined in more detail. These devices operate in the same way
as flapping foils, with the only difference being the phase between the heaving and
pitching motions.

1.1.3 Oscillating foils for marine energy harvesting

Fishes and other aquatic species, like dolphins and whales, have developed unique
ways to propel themselves through water. They move their tail fin in a flapping mo-
tion to produce thrust. This motion can be so efficient that led British zoologist Sir
James Gray to state in 1936 that the power dolphins can produce through their mus-
cular system does not suffice for the acceleration and velocities observed in nature.
This is known in literature as the Gray’s paradox.

The flapping oscillation combines a pitching motion with a heaving motion of the
foil. The primary mechanism for the generation of thrust or drag by an oscillating
foil is the generation of a wake of vortices behind the foil. Koochesfahani [32] visual-
izes the pattern of vortices on the wake of a flapping foil and shows a jet-like effect.
This mechanism is known to aerodynamicists since the early decades of aviation
and Von Karman and Burgers [67] explained the effect mathematically. By analyz-
ing both experimentally and computationally the motion patterns of the wings of
insects in flight, Birch and Dickinson [8] and Shyy and Liu [61] report that the lift of
flapping foils can be enhanced by a secondary mechanism of leading edge vortices
(LEV). Zhu and Peng [74] explain, that for high angles of attack, the LEV interacts
with the foil creating an area of low pressure on the upper face of the wing. In con-
trast with the fllaping foil, an oscillating foil would produce a jet in the opposite
direction lowering the hydrokinetic energy of the flow.
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FIGURE 1.3: Motion of an oscillating foil for energy harnessing.

FIGURE 1.4: Wake vortex formation behind a flapping foil [58].

For the design of a ship, this technology can find application in the reduction of
resistance due to waves and/or as the main propulsor of the ship (e.g. [60, 64, 52]).
Politis and Tsarsitalidis [53] have studied the effect the planform shape has on thrust
characteristics of flapping-foil propulsors. They used a BEM simulation to examine
fish-like foils.

The idea to use an oscillating foil to extract energy from currents is not new. McK-
inney and DeLaurier [39] have proposed in 1981 a device to harvest energy by oscil-
lating wings and some first experiments were conducted by DeLaurier and Harris
[13] the year after. Parametric studies have been performed (e.g. [31, 25, 73]) to map
the performance of the power extraction for different pitching amplitudes and oscil-
lation frequencies. Huxham et al. [25] report a maximum efficiency of 23.8% in their
experiments.

Many researchers argue that energy harvesters utilizing oscillating foils can be more
efficient than rotary turbines as they are not governed by the Betz limit (e.g. [12,
72]). This is attributed to the fact that oscillating foils can take advantage of the
unsteadiness of the flow and vortex dynamics. For example, Kinsey and Dumas [30]
have reported a 59.9% efficiency for two oscillating foils in a tandem configuration.
For foils in tandem configuration the efficiency can reach asymptotically values as
high as 0.9 [27], while the equivalent for value for turbines is 0.66 [72].

Furthermore, Filippas et al. [16] have shown that the energy extraction can increase
significantly when operating under waves and they report a maximum power effi-
ciency of 53.5% for a single foil with pitching amplitude of 25o and motion parame-
ters tuned appropriately to take advantage of the wave. It is significant to note that
the ability of the oscillating foil devices to harness energy from both currents and
waves gives them an advantage over turbines, where disturbances in the uniformity
of the flow can affect negatively the performance of the system.

Kinsey and Dumas [31] have introduced the term "feathering limit" to denote the
transition from propulsion to energy extraction. This transition is depicted in figure
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FIGURE 1.5: Feathering limit for power extraction [31]. Here χ is
the feathering parameter: χ = θ0

tan−1(H0γ/Vbg)
and f ∗ is the reduced

frequency defined in chapter 2.

(a) (b)

FIGURE 1.6: Two different designs of oscillating foil energy har-
vesters. Type (a) is a linear actuator, while type (b) is a rotary actuator.

1.5. This means that there is an area of operating conditions where the efficiency of
the energy harvesting system is negative and therefore more energy is added to the
current rather than extracted and the device operates more like a thruster.

Two designs for oscillating foil energy harvesters have been proposed, with the dif-
ference found on the way the foil’s motion is constrained. In the first design the
foil moves linearly in the heaving direction, while in the other design the foil is con-
strained to move in a circle by a lever and produces torque on the axis of rotation. In
literature the first design is mostly studied, but the latter design may be simpler to
realize and find commercial use.

Depending on the degrees of freedom of the heaving and pitching motions of the
foil the oscillating foil devices can be categorized as fully-activated, semi-activated
and passive. Fully-activated devices enforce both heaving and pitching motions,
semi-activated devices enforce only the pitching motion, and passive devices allow
the foil to move by itself. Passive devices can be more efficient than other formats,
but maintaining correct operation may be difficult. In the present work the semi-
activated oscillating foil will be studied. In chapter 2 the mathematical formulation
of the problem will be presented. In chapter 5 the derived method will be validated
and the device operational characteristics will be evaluated.

The impact of oscillating foil energy converters on the marine environment has not
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been studies in depth yet. It can be said, though, that these devices operate at lower
frequencies, reducing the noise footprint of the device and the impact on marine
wildlife, compared to the classical turbines. Also, collisions with animals will be less
frequent and the consequences less severe.

1.2 Numerical methods for lifting flows

The first methods concerning flows with circulation induced by foils begun to emerge
in the 1920s. The first approach was to find an analytical solution to the problem,
with the most noteworthy results being the thin airfoil theory developed by Munk
[44] for his work at NACA. The idea behind the theory is the separation of the foil’s
shape (the "mean camber line") and the foil’s varying thickness. The theory was en-
riched by Glauert [22] and an unsteady version of it was developed by Theodorsen
and Sears [46]. These methods relied on a conformal transformation of the complex
plane and are not suitable for 3D problems. A theory for 3D foils was formulated by
Scherer to study oscillating foils [59].

Of course, this method has some serious limitations imposed by the assumptions
made to achieve an analytical solution. The foil under consideration must be thin as
the solution ignores the variable thickness across the chord and the shape of the foil
cannot be complex. Furthermore, the solution is linearized and as a consequence the
results obtained by the thin airfoil theory are not satisfactory in areas where non-
linear effects are important.

Advances in computer technology since the 1970s facilitated the use of numerical
methods to solve engineering problems. This technological progress lead to the de-
velopment of various numerical methods for resolving fluid flows, creating the field
of Computational Fluid Dynamics (CFD). Such methods can be categorized as Field
Methods, that require discretization of the entire domain of the problem and Bound-
ary Element Methods (BEM), that only require discretization of the boundary of the
domain.

Regarding Field Methods, many approaches have been proposed for CFD, such as
the Finite Element Method (FEM), Finite Difference Method (FDM) and Finite Vol-
ume Method (FVM). As the numerical resolution of computers cannot capture both
small scale effects, such as turbulence, and large scale effects the Navier-Stokes equa-
tions are averaged for a time period longer than the time scale of the turbulent mo-
tion, producing the Reynold’s Averaged Navier-Stokes equations (RANS). There are
many commercially available CFD solvers that can solve a large variety of prob-
lems, but for niche applications they may exhibit poor performance in comparison
with dedicated software.

While field methods demand discretization of the problem domain, BEM reduces
the problem by one dimension, needing calculations only for the boundaries. This
renders the solution of the problem computationally cheaper. On the other hand, the
BEM needs knowledge of a fundamental solution of the flow’s field equation. Such
a solution is not required by other methods that perform calculations on the entire
domain of the problem. The use of BEM is widespread for the solution of potential
flow problems where a fundamental solution is known.



8 Chapter 1. Introduction

One of the first publications on the use of BEM for fluid flow problems is that of Hess
and Smith [24]. They refer on their method as the Panel Method, as the boundary el-
ements used are flat quadrilaterals. This method is capable of solving steady poten-
tial flows around 3D objects of arbitrary geometry. Morino [43] derived a Boundary
Element Method for unsteady flows. In his publication he discusses the wake geom-
etry and motion and the constraints that must apply to the trailing edge to eliminate
the pressure jump through it.

In chapter 2 the Boundary Element Method will be used for the calculation of hy-
drodynamic forces acting on the foil.

1.3 General purpose parallel computing on GPUs

In recent years there have been significant technological advancements related to
GPUs. GPUs evolved from simple graphics accelerator units to more complex de-
vices, ready to perform trillions of calculations every second. Therefore, GPUs emerge
as an interesting alternative to CPUs for solution of scientific problems. This use
of GPUs is commonly known as General-Purpose computing on Graphics Process-
ing Units (GPGPU). GPUs can provide more computational power for less electrical
power consumption than CPUs, rendering them ideal for intensive computational
tasks. For example, an NVidia GTX Titan X has 11 TFLOPS of single precision (FP32)
performance, consuming 250 Watts nominal power, while an Intel Core i7-8700K has
61.4 GFLOPS FP32 and consumes 86.2 Watts of power. This means a rating of 44
GFLOPS/Watt for the NVidia GPU and 0.71 GFLOPS/Watt for the Intel CPU.

There are two kinds of GPUs concerning their memory type. The first category in-
cludes those GPUs that share a part of the main system memory (RAM) with the
CPU and have no dedicated memory. These GPUs, while compact, have perfor-
mance issues as the main system memory is not optimized for GPUs. The second
category is constituted by GPUs that have dedicated memory on their board. GPUs
of this kind are discrete from the CPU and communicate with the rest of the system
via the PCIe bus standard. The GPUs used for all the work presented in this The-
sis are of the latter kind and therefore the term GPU will be used from this point
forward to refer to GPUs with dedicated memory.

Modern GPUs have large memory spaces allowing them to store data for complex
problems on the device, lowering the PCIe bus communication bandwidth used.
This can potentially eliminate communication bottlenecks and speed up the appli-
cation significantly. The data can be loaded once on the GPU and after the execution
of the application the results can be retrieved. In this maner, the CPU stays free of
any computational load and can be used for other tasks.

For general purpose computing on GPUs there are two Application Programming
Interfaces (APIs) that can be used. The first is called OpenCL (Open Computing
Language) that allows the programmer to write the same code for all different pro-
cessors on a machine. While this ability to standardize software development across
devices with very different architectures is appealing to programmers, it can have
an impact on performace due to the way it is implemented. The second solution
is the CUDA API developed by NVidia for the GPUs of the same brand. CUDA is
optimized for NVidia GPUs and as a result offers higher performance. Technolo-
gies like OpenCL and CUDA ease the programming of a modern GPU and reduce
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• cuBLAS 6.5 on K40m, ECC ON, input and output data on device
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FIGURE 1.7: cuBLAS ZGEMM operation performance comparison
with Intel MKL library [48].

the development time. In this manner, the process of writing parallel programs for
GPUs get simplified and the code becomes easier to maintain.

1.3.1 GPUs for scientific simulations

Only in recent years GPUs have reached a level of versatility to be able to run general
codes. Simulation algorithms should be able to achieve the highest performance
possible on a machine, as they tend to be time intensive. So, by offloading the time
consuming parts of the algorithm to a co-processor that can quickly process the tasks
at hand the computation time gets significantly lower. Most algorithms used to solve
physical systems, like FEM, BEM, SPH and more, are massively parallelizable and
therefore can efficiently be adapted to the GPU pipeline, which historically has been
evolved for graphics rendering.

Of course, a large amount of simulation data must be transferred to the GPU in
order to be accessed by the co-processor. Today’s GPUs can achieve high transfer
rates between the RAM and the GPU memory and the data can be stored in the ever
growing GPU memory and cached in the co-processor chip, for great performance
benefits.

Many libraries and software exist that utilize GPUs to accelerate the computation
process and achieve higher performance standards that scientific research demands.
NVidia provides a BLAS implementation for GPUs of the same brand (cuBLAS and
cuSPARSE), as well as a system solver package (cuSolver), for free. Other libraries
provided by NVidia include cuRAND for random number generation, cuFFT for
Fast Fourier Transforms, cuDNN consisting of primitives for deep neural networks
and Thrust containing a collection of parallel algorithms and data structures.
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T hru st Pe rform ance  vs. In te l T BB

Performance may vary based on OS version and motherboard configuration

• Thrust v1.7.2 on K40m, ECC ON, input and output data on device

• TBB 4.2 on Intel IvyBridge single socket 12-core E5-2697 v2 @ 2.70GHz
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Chapter 2

Mathematical Formulation

In this chapter the semi-activated oscillating foil energy harvesting device is studied
and the problem is described in a mathematically formal way. The device under
study is performing a combined pitching and heaving motion underwater.

The foil geometry is defined by a cross-section profile along the span (s) and the
chord (c). The cross-section of the foil and the chord can be constant along the span
or variable. For the first part of chapter 5, where simulation results are presented,
the cross-section of the foil and the chord are constant along the span and next the
effects of a skewed foil and variable chord are studied.

The pitching motion (θ(t)) is enforced on the hydrofoil rotating it around a body-
fixed axis on the camber line, at a distance a from the leading edge. In this work a
current is considered creating a background velocity field with constant magnitude
with direction from the leading edge to the trailing edge of the foil and perpendic-
ular to the axis of rotation. The heaving motion (h(t)) is induced by the pitching
motion, changing the angle of attack of the flow, translating the foil vertically. In this
way a circulation of water is created around the foil producing lift. Depending on
the angle of attack the lift will be pointing upwards or downwards. This excitation
force makes the foil perform a vertical heaving oscillation.

With right choice of pitching motion parameters, such as frequency, amplitude and
profile, a heaving oscillation will occur that maximizes the power output of the de-
vice. These parameters should be carefully picked in order to avoid large angles of
attack that will stall the foil, decreasing the lift produced.

Oscillating foil energy harvesting devices usually operate near the sea bed. For the
purposes of this thesis, it is assumed that the foil operates in an infinite domain,
ignoring the ground effect. A study on the ground effect can be found in [75]. A flat
sea bed can be considered by using a symmetrical (with respect to the sea bottom)
Green function.

c
a

θ

FIGURE 2.1: Schematic of the foil.
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k
b

m

FIGURE 2.2: Device schematic.

In literature a device that produces rotary motion can also be found (e.g. [25]). The
evaluation of the present method is done with both models. The mathematical for-
mulation for both types of devices is similar. For the sake of simplicity only the
linear actuator model will be described in the next sections.

The mathematical problem is composed by the Boundary Value Problem (BVP) of
the lifting flow, and the Initial Value Problem (IVP) describing the motion of the foil
along the heaving direction.

2.1 The semi-activated oscillating foil energy harvesting de-
vice

The semi-activated oscillating foil energy harvesting device with prescribed pitching
motion is modeled by a damped oscillator described by the equation

mḧ + bḣ + kh = FL(t) (2.1)

where m is the mass of the hydrofoil, b is the damping coefficient, modeling the
energy generator, k is the spring coefficient, representing the elastic mount and FL
is the lift generated by the oscillating foil. The lift (FL) depends upon the heave
position and the respective time derivative (ḣ), introducing an implicit nonlinearity
to the problem.

The pitch of the foil is given as a periodic function of time. Here a sinusoidal profile
will be assumed

θ(t) = θ0sin(ωpt) (2.2)

where θ0 is the amplitude of the pitching motion and ωp is the angular frequency.
The frequency f =

ωp
2π of the oscillation is often associated with the non-dimensional

quantity called the Reduced Frequency ( f ∗) so that

f ∗ =
f c

Vbg
(2.3)

In order to optimize the operation of the device, the parameter space {θ0, f ∗} can be
searched. Further investigation of the pitch profile in time can be conducted in the
context of the design of a control system for the device.
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The power consumed for the pitching motion is

Pconsumed(t) = M(t)θ̇(t) (2.4)

where M(t) is the moment produced by the pitching motion.

The power produced by the generator is

Pproduced(t) = bḣ2(t) (2.5)

The mean net power generated by the system in one period of the heaving motion
is [71]

P̄ =
1
T

t+T∫
t

[
bḣ2(t)−M(t)θ̇(t)

]
dt (2.6)

and the efficiency of energy harvesting is

η =
P̄

1
2 ρU3

∞Yps
(2.7)

where Yp is the difference between the highest and lowest points of the heaving mo-
tion, s is the span of the foil, and 1

2 ρU3
∞Yps is the incoming flow kinematic energy

flux. In literature Yp is defined either as the difference between the highest and low-
est points of the pitching axis or as the difference between the highest and lowest po-
sitions of any point of the foil. In this work the second approach is adopted, because
it allows for better comparison with devices that have very different characteristics,
i.e. turbines.

In the case of a device with rotating oscillation the angle of the shaft can be described
by the differential equation

Iϕ̈ + bϕ̇ + kϕ = MH(ϕ, ϕ̇) (2.8)

where MH is the torque produced on the rotating shaft due to the hydrodynamic
forces.

The heaving amplitude is then given by the relation

h = Rsin(ϕ) (2.9)

where R is the length of the lever. The power produced by the device is then

Pproduced(t) = bϕ̇2(t) (2.10)

2.2 Computing the lift of the foil with the Boundary Element
Method

The foil geometry disturbs the flow and creates circulation around the wing. This
circulation produces a pressure differential between the two sides of the foil and
thus a lifting force is generated.
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FIGURE 2.3: Domain of the lifting flow problem

In this section it will be demonstrated how the velocity field around the foil can be
found using the Boundary Element Method. Next, a relation to link the velocity
field with the pressure field will be derived and the lift produced will be evaluated
by integrating the pressure on the foil surface.

2.2.1 The lifting flow problem

The hydrofoil is performing an unsteady motion, submerged in an infinite fluid do-
main D ⊆ R3 on a background velocity field (Vbg). The flow of the fluid is assumed
to be incompressible and irrotational. The boundary (∂D) of the domain D is com-
posed by the hydrofoil surface (∂DB) and the upper and lower side of the wake
(∂DW+ and ∂DW− respectively). The boundary (∂D) is considered smooth every-
where, except for the trailing edge.

The total velocity field (VT) of the fluid at a point x ∈ D is composed of the known
background field (Vbg) and the unknown disturbance velocity field (V) caused by
the hydrofoil.

VT = Vbg + V (2.11)

The equation of mass conservation states that

∇VT = 0 (2.12)

and the equations of motion are

DVT

Dt
= g− ∇p

ρ
(2.13)

where D
Dt (·) denotes the material derivative operator

D
Dt

(·) = ∂(·)
∂t

+ VT∇(·) (2.14)

and g denotes the acceleration of gravity that will be ignored for the purposes of the
present work. Under the assumption of weakly rotational flow, the potential of the
disturbance velocity field (Φ) can be defined as

∇Φ = V (2.15)

The potential is by definition smooth in the entirety of D. On the boundary ∂D the
potential is defined by its trace Φ∗ to allow for discontinuities through it. For a point
r on the boundary ∂D the trace of the potential is defined as

Φ∗(r) = lim
δ→0

Φ(r + vδ) (2.16)



2.2. Computing the lift of the foil with the Boundary Element Method 15

where v is a vector non-tangent to the surface of the boundary and δ is a small pa-
rameter. Defining the potential on the boundary in terms of the trace lets potential
have different values on the two sides of the wake, while keeping the potential con-
tinuous in the entire domain D.

For the potential flow the equation of mass conservation 2.12 becomes

∆Φ(x) = 0, x ∈ D (2.17)

where

∆(·) = ∂2

∂x2
1
+

∂2

∂x2
2
+

∂2

∂x2
3

(2.18)

is the Laplace operator. This equation represents the conservation of mass for irro-
tational, incompressible and inviscid fluids.

By integrating the equations of motion, following a similar procedure as the one
found in [4, Ch. 6, p. 382], the approximate Bernoulli’s principle for weakly rota-
tional flows can be derived. Using the identity

1
2
∇(u · u) = u · ∇u + u×ω (2.19)

where ω = ∇× u is the rotational velocity of the fluid and assuming no exterior
force fields (g = 0), equation 2.13 becomes

∂VT

∂t
−VT × (∇×VT) +

1
2
∇(VT ·VT) +

∇p
ρ

= 0 (2.20)

By substituting VT with the right hand side of equation 2.11 and using the irrota-
tional property of ∇Φ

∇× (∇Φ) = 0 (2.21)

equation 2.20 becomes

∂(∇Φ + Vbg)

∂t
+

1
2
∇(∇Φ)2 +

1
2
∇V2

bg +∇(∇Φ ·Vbg)

−∇Φ× (∇×Vbg)−Vbg × (∇×Vbg) +
∇p
ρ

= 0 (2.22)

By rewriting the equations of motion for the background velocity field only

∂Vbg

∂t
+

1
2
∇V2

bg −Vbg × (∇×Vbg) +
∇pbg

ρ
= 0 (2.23)

and subtracting it from equation 2.22 we get

∂∇Φ
∂t

+
1
2
∇(∇Φ)2 +∇(∇Φ ·Vbg)−∇Φ× (∇×Vbg) +

∇p
ρ

= 0 (2.24)

Here the rotational term ∇Φ× (∇× Vbg) can be ignored under the assumption of
weakly rotational flow and pbg is considered zero. After some algebraic manipula-
tion the equation above can be rewritten as

∇
[

∂Φ
∂t

+
1
2
(∇Φ)2 +∇Φ ·Vbg +

p
ρ

]
= 0 (2.25)



16 Chapter 2. Mathematical Formulation

and by integrating 2.25 along a curve in D

∂Φ
∂t

+
1
2
(∇Φ)2 +∇Φ ·Vbg +

p
ρ
= f (t) (2.26)

where f is a function of time only due to equation 2.25. This term can be eliminated
from the right hand side of 2.26 by redefining the potential as

Φ̃ = Φ +

t∫
t0

f (τ)dτ (2.27)

giving the final form of the Bernoulli’s principle for weakly irrotational flows

∂Φ
∂t

+
1
2
(∇Φ)2 +∇Φ ·Vbg +

p
ρ
= 0 (2.28)

Boundary Conditions

On the foil, the fluid cannot enter the body, giving the no entrance boundary condi-
tion on the body boundary (∂DB)

∇nB Φ =
(
V(x)−Vbg

)
· nB, x ∈ ∂DB (2.29)

where nB is the unit normal vector to the boundary surface1and V(x) = V0 + ω ×
R(x), with V0 denoting the velocity of the center of rotation, ω the angular velocity
of the body rotating around the pitching axis and R(x) the relative pozition of point
x from the pitching axis.

At infinite distance from the hydrofoil the disturbance field vanishes and only the
background field is left

lim
∥x∥→∞

∇Φ = 0 (2.30)

The wake of the hydrofoil is modeled as a free shear layer surface (∂DW). The wake
as a free surface cannot carry loading, giving the constraint

p+ = p− (2.31)

where the plus (+) sign denotes the upper side of the layer and the minus (-) sign the
lower. This constraint is termed the dynamic boundary condition. In addition the
two sides of the free shear layer are not allowed to separate, giving the kinematic
boundary condition. This condition states that the velocity vector components per-
pendicular to the boundary surface on both sides of the free shear layer are the same

nW∇Φ+ = nW∇Φ− ⇔ nW(∇Φ+ −∇Φ−) = 0 (2.32)

where nW is the normal to the wake vector1.

1The normal to the boundary surface vectors are considered pointing towards the interior of D.
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Using the approximate Bernoulli’s theorem for unsteady weakly rotational flow 2.28
we can write for the pressure difference p+ − p− that

p+ − p−

ρ
= −∂(ϕ+ − ϕ−)

∂t
− 1

2
(∇Φ+ +∇Φ−)(∇Φ+ −∇Φ−)− (∇Φ+ −∇Φ−)Vbg

(2.33)
Setting

µ = ϕ+ − ϕ− (2.34)

as the potential jump on the wake and satisfying both 2.31 and 2.32 it can be shown
that on the wake

Dµ

Dt
= 0 (2.35)

Due to the dynamic boundary condition the wake surface should move with the
flow. In the present work a simplified wake model is used [54]. The wake geometry
is specified by the movement of the trailing edge (TE) of the hydrofoil and is moving
according to the background velocity Vbg.

As the foil moves the wake is expanded adding one more unknown quantity to the
problem. That is the potential jump at the trailing edge (µ(TE)). Therefore, for
the closure of the mathematical problem one more condition is needed. In order to
eliminate infinite values of the spatial rate of change of the physical quantities the
pressure on the two sides of the trailing edge must be the same. This condition is
known as the Pressure-Kutta condition.

In the present work a Morino-type Kutta condition will be used, demanding conti-
nuity of the velocity at the TE. Mathematically this is written as

µ(TE) = Φ+(TE)−Φ−(TE) (2.36)

The Morino-type Kutta condition is derived from the more general pressure-type
Kutta condition, demanding pressure continuity through the TE, under the assump-
tion of linearized quasi-steady flow.

2.2.2 The Boundary Integral Equation

Given the Green’s second formula and denoting with ∂G
∂n the derivative of the func-

tion G in the direction of the normal to the boundary unit vector n, the following
equation stands∫
D

(G(x; y)∆Φ(y)−Φ(y)∆G(x; y))dV(y) =
∫

∂D

(G(x; y)
∂Φ(y)

∂n
−Φ(y)

∂G(x; y)
∂n

)dS(y)

(2.37)
where G(x; y) is the fundamental solution (Green function) of the Laplace operator,
at a point y, satisfying the condition

∆G(x; y) = −δ(x− y) (2.38)
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where δ denotes the Dirac delta function with the property∫
D

u(y)δ(x− y)dV(y) = u(x) (2.39)

This is the sampling property of the Dirac delta function.

As we seek a solution of the Laplace problem 2.17 and using equation 2.38, equation
2.37 becomes

Φ(x) =
∫

∂D

(G(x; y)
∂Φ(y)

∂n
−Φ(y)

∂G(x; y)
∂n

)dS(y) (2.40)

The above results allows us to represent the solution of the BVP in the entire domain
D as a function of the values on the boundary. The first term of the integral equation
2.40 is called the single layer potential and the second double layer potential.

For the 3-dimensional domain D ⊂ R3 the fundamental solution G is

G(x; y) = − 1
4π ∥x− y∥ (2.41)

and the partial derivative in the direction of the normal to the boundary vector ∂G
∂n is

∂G(x; y)
∂n

= n · ∇G(x; y) =
n · (x− y)

4π ∥x− y∥3 (2.42)

By splitting the boundary into the surface of the foil (∂DB) and the upper and lower
side of the wake (∂DW+ and ∂DW− respectively) so that ∂D = ∂DB ∪ ∂DW+ ∪ ∂DW− ,
equation 2.40 becomes

ΦB(x) =
∫

∂DB

(G(x; y)
∂ΦB(y)

∂n
−ΦB(y)

∂G(x; y)
∂n

)dS(y)

+
∫

∂DW+

(G(x; y)
∂ΦW+(y)

∂n
−ΦW+(y)

∂G(x; y)
∂n

)dS(y)

+
∫

∂DW−

(G(x; y)
∂ΦW−(y)

∂n
−ΦW−(y)

∂G(x; y)
∂n

)dS(y)

(2.43)

Applying the same process on a point near the boundary ∂DB and taking the limit
as the point x gets closer to the boundary

1
2

ΦB(x) =
∫

∂DB

(G(x; y)
∂ΦB(y)

∂n
−ΦB(y)

∂G(x; y)
∂n

)dS(y)

+
∫

∂DW+

(G(x; y)
∂ΦW+(y)

∂n
−ΦW+(y)

∂G(x; y)
∂n

)dS(y)

+
∫

∂DW−

(G(x; y)
∂ΦW−(y)

∂n
−ΦW−(y)

∂G(x; y)
∂n

)dS(y)

(2.44)
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FIGURE 2.4: Discetization of the boundary.

The 1/2 term in equation 2.44 occurs when the point of interest approaches the
boundary surface, as the support of the Dirac delta function becomes a hemisphere
in the interior of D.

From 2.44 and using the boundary conditions 2.29 and 2.32 the boundary integral
equation to calculate the potential on the surface of the foil is derived.

1
2

ΦB(x) +
∫

∂DB

ΦB(y)
∂G(x; y)

∂n
dS(y) =

∫
∂DB

(V(y)−Vbg) · nBG(x; y)dS(y)

−
∫

∂DW

µW(y)
∂G(x; y)

∂n
dS(y)

(2.45)

where µW = ΦW+ −ΦW− is the potential jump on the wake.

2.2.3 Discretization of the BIE

Initially the geometry of the boundaries ∂DB and ∂DW is approximated with the aid
of bilinear elements (Ωi) (see appendix A). On each bilinear element the potential is
considered constant. So, for the NB panels of the foil and the NW panels of the wake,
and with appropriate numbering of them, the potential and its normal derivative
are:

ΦB(xi) = ΦBi, at panel i, i = 1(1)NB (2.46)
µW(xi) = µWi, at panel i, i = 1(1)NW (2.47)
∂ΦB(xi)

∂n
=

∂ΦBi

∂n
=
[
(VB −Vg) · nB

]
i = gi, at panel i, i = 1(1)NB (2.48)

Using the collocation method, equation (2.45) is required to be satisfied for a finite
number of collocation points {Pi : i = 1(1)NB} on ∂DB. Here the collocation points
are taken to be the centers of the bilinear elements. Then, the discretized BIE is
written

NB

∑
j=1

(
δij

2
+ Bij

)
ΦBj =

NB

∑
j=1

(Aij)gj +
NF

∑
j=1

(−Bij)µWj (2.49)
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for all Pi, where δij is Kronecker’s delta and (Aij) and (Bij) are the induced potential
factors at collocation point Pi due to a unit source and doublet distribution, at panel
j, respectively.

The induction factors are defined as

Aij =
∫
Ωj

G(Pi; yj)dS(yj) (2.50)

Bij =
∫
Ωj

∂G(Pi; yj)

∂n
dS(yj) (2.51)

The integrands of the diagonal elements (Aii) and (Bii) have no finite value at point
Pi when it coincides with η. For the evaluation of these elements an adaptive method
will be used together with a fast quadrature (see chapter 3 for more details on the
computation of the above integrals).

The strip of wake elements adjoin to the trailing edge is called the Kutta strip. The
geometry of these elements is constant on the body fixed reference frame. The role
of this special strip is to direct the dipole intensity (µ) according to the flow charac-
teristics near the trailing edge.

The Morino condition must be satisfied on the collocation points adjoin to the trail-
ing edge. Denoting these collocation points with the subscript k+ for the upper side
and k− for the lower side, the Morino condition can be written as

µWk = ΦBk+ −ΦBk− (2.52)

Equations (2.49) and (2.52) can be written together as

NB

∑
j=1

(
δij

2
+ ∑

k+
δk+,jBk+,j −∑

k−
δk−,jBk−,j + Bij

)
ΦBj =

NB

∑
j=1

(Aij)gj + ∑
j=1(1)NF

(−Bij)µWj

(2.53)
By solving the above system of equations the values of the potential on Pi are found.
The potential anywhere in the domain D can be calculated by discretizing the equa-
tion 2.43, as follows

Φi =
NB

∑
j=1

(Aij)gj +
NB

∑
j=1

(−Bij)ΦBj +
NF

∑
j=1

(−Bij)µWj (2.54)

2.2.4 Computing velocities on boundaries

Assuming that the potential on the boundary is known, and by using equation (2.15),
the disturbance velocity can be computed. As the potential gradient is calculated on
a curvilinear coordinate system on the boundary surface the following transforma-
tion will be used to calculate potential gradient with respect to the global coordinate
system

∂Φ
∂xi

=
∂Φ
∂ej

∂ej

∂xi
(2.55)

where repeating indices indicate summation, and ej is the curvilinear coordinate
system on the surface at the point where the velocity will be calculated. e1 and e2 are
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the directions tangent to the boundary surface and e3 is the direction normal to the
boundary and pointing outwards from the body. The local curvilinear coordinate
system is body fixed, meaning that it moves along with the boundary. Also, for the
BIE described above, the potential is expressed in terms of it’s trace. For the trace
potential differential, the following is true

dΦ∗ = ∇Φ ·
(

∂x
∂e1

de1 +
∂x
∂e2

de2 +
∂x
∂t

dt
)
+

∂Φ
∂t

dt (2.56)

For e1, e2 = const, (2.56) can be written as

dΦ∗ = ∇Φ · ∂x
∂t

dt +
∂Φ
∂t

dt (2.57)

or
dΦ∗

dt
= ∇Φ · ∂x

∂t
+

∂Φ
∂t

= ∇Φ ·VB +
∂Φ
∂t

(2.58)

For t = const, (2.56) can be written as

dΦ∗ = ∇Φ ·
(

∂x
∂e1

de1 +
∂x
∂e2

de2

)
= ∇Φ · ds (2.59)

for a displacement vector ds tangent to the surface. By definition the differential of
the trace of potential on the boundary is

dΦ∗ = ∇Φ∗ · ds (2.60)

By subtracting (2.60) from (2.59) we get

(∇Φ−∇Φ∗) · ds = 0 (2.61)

meaning that (∇Φ−∇Φ∗) is a vector normal to the surface. Therefore, the gradient
of the potential can be written as

∇Φ = ∇Φ∗ + (n∇Φ) · n (2.62)

The velocities are calculated using a second order central finite differences scheme
as

u1
P =

1
2

(
ΦE −ΦP

d(P, E)
+

ΦP −ΦW

d(W, P)

)
(2.63)

u2
P =

1
2

(
ΦN −ΦP

d(P, N)
+

ΦP −ΦS

d(S, P)

)
(2.64)

where d(·, ·) is the Euclidean distance between two points

d(A, B) =
√
(x1

A − x1
B)

2 + (x2
A − x2

B)
2 + (x3

A − x3
B)

2 (2.65)

and the subscripts P, N, W, S and E denote the points seen on figure 2.6. The super-
scripts 1 and 2 on the velocities denote the components of the velocity parallel to the
directions e1 and e2 respectively.
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FIGURE 2.5: Geometric representation of the relation between the po-
tential gradient and its trace.
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FIGURE 2.6: Grid used for velocity calculations. The points N,W,S
and E are named after the four cardinal directions North, West, South

and East.
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The gradient of the trace potential on the body-fixed 3D coordinate system is then

∇Φ∗ =

u1
P

u2
P

0

 (2.66)

The velocity u3
P is zero because of the no entrance boundary condition on the body

surface, as the velocity is expressed on the body-fixed curvilinear coordinate system.

The boundary (∂DB), defined in this chapter, is in general a closed boundary. In the
case of the foil discretization, however, it is possible to not model the side surfaces
of the wing tips, without losing too much information. This simplification produces
an open boundary with edges at the wing tips. The trailing edge is also considered
an edge of the boundary, as the sharp corner would make it difficult to evaluate the
potential derivative with a central difference scheme. So, in the case of calculating
velocities on an element at the edge of the boundary, a higher order finite differ-
ence scheme is used in the direction that the aforementioned methodology cannot
be used. For example, to compute the velocity on a collocation point near the "east-
ernmost" edge of the boundary the following scheme is used.

u1
P =

Φ∗W2 − 4Φ∗W1 + 3Φ∗P
3d(P, W1)− d(W1, W2)

(2.67)

where W1, W2 are the points one and two places respectively away from point P in
the "west" direction. On the opposite edge of the boundary the equation becomes

u1
P =
−Φ∗E2 + 4Φ∗E1 − 3Φ∗P
3d(P, E1)− d(E1, E2)

(2.68)

where E1, E2 are the points one and two places respectively away from point P in the
"east" direction.

Correction for non-orthogonal local basis

If the cross-section of the foil varies in the spanwise direction, the local coordinate
system on collocation points is not orthogonal. In this more general case the velocity
on the foil surface can be calculated using the covariant derivative of the potential

∇Φ∗ = ei ∂Φ∗

∂qi
(2.69)

where qi is the basis on the local coordinate system and the vectors ei form the con-
travariant basis. For the unit vectors ei along the local coordinate system axes, the
contravariant basis is given by

ei =
ej × ek√

g
(2.70)

where
√

g = e1 · (e2 × e3) and (i, j, k) is a cyclic permutation.
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2.2.5 Calculation of pressure on a boundary point

To calculate the pressure on the surface of the hydrofoil, the unsteady version of the
Bernoulli’s equation 2.28 is used. Using equations (2.58) and (2.62) the pressure can
be evaluated from the BEM results as

p
ρ
= −dΦ∗B

dt
+∇Φ∗B · (VB −Vg)−

1
2
(∇Φ∗B)

2 +
1
2
[n · (VB −Vg)]

2 (2.71)

The pressure coefficient can be found as

Cp =
p

1
2 ρU2

=

{
−dΦ∗B

dt
+∇Φ∗B · (VB −Vg)−

1
2
(∇Φ∗B)

2 +
1
2
[n · (VB −Vg)]

2
}

/
1
2

U2
(2.72)

2.2.6 Calculation of force and moment on the hydrofoil

The force can be calculated as the surface integral of the pressure on the body surface

F = −
∫∫
∂DB

pnBdS (2.73)

and the moments as
M =

∫∫
∂DB

p(x− xre f )× nBdS (2.74)

The non-dimensional lift and drag coefficients are defined respectively as

CL(t) =
L(t)

1
2 ρU2cs

(2.75)

and

CD(t) =
D(t)

1
2 ρU2cs

(2.76)

Also, the power coefficient is defined

CP(t) =
P(t)

1
2 ρU3cs

(2.77)

2.3 Fluid-Structure interaction

As mentioned previously, the foil performs a heaving motion expressed as a linear
oscillation. The mounting system is modeled by a spring and the energy generator is
modeled by a damper. This oscillator is driven by the lift generated by the hydrofoil.
In order to solve the problem numerically, a method to couple the hydrodynamic
part of the problem with the oscillation has to be designed.
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In the works [74] and [51] such a method is presented. An iterative scheme is used
to compute the heaving velocity of the foil.

Here a method to solve the non-linear equation of the oscillator will be presented
combining the Crank-Nicholson method for differential equations and the Newton’s
method for non-linear equations, in order to produce a stable and fast method for
the solution of the nonlinear system.

2.3.1 Nonlinear driven oscillator

The oscillation is governed by the rule

mḧ + bḣ + kh = FL(h, ḣ) (2.78)

where FL(h, ḣ) is the lifting force acting on the foil, as shown in equation 2.1.

By setting

x =

(
h
ḣ

)
the equation above can be written as the system of equations

P =

{
mẋ2 + bẋ1 + kx1 = FL(x1, x2)

ẋ1 = x2

or in a matrix form

[
b m
1 0

]
ẋ =

[
−k 0
0 1

]
x +

(
FL
0

)
and setting

M =

[
b m
1 0

]
and

S =

[
−k 0
0 1

]
the equation becomes

Mẋ = Sx +
(

FL
0

)
= f (x)

Also by the Crank-Nicolson method with no spatial derivatives the equality that has
to be satisfied at a given timestep is

Mẋt+1 =
1
2
[ f (xt+1) + f (xt)]
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where t denotes the previous timestep and t + 1 the current timestep. By approxi-
mating the time derivative of x as

˙xt+1 =
1

∆t
(xt+1 − xt)

the system becomes

U(xt+1) = M(xt+1 − xt)− ∆t
2
(Sxt+1 + Ft+1

L + f (xt)) (2.79)

The appearance of the lifting force in U introduces an implicit nonlinearity that can
be treated using the Newton’s method.

For a system of equations the value of the next iteration is obtained by the solution
of the system

J( f (xn)) · (xn+1 − xn) = − f (xn) (2.80)

where x is a vector and J( f (xn)) is the Jacobian matrix of the function f . The Jacobian
matrix is defined for a function f as

J( f ) =


∂ f1
∂x1

. . . ∂ f1
∂xm

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xm

 (2.81)

Therefore, at each iteration the new heave position is calculated by the solution of
the system

J(U)(xt+1
n+1 − xt+1

n ) = −U(xt+1
n )

2.3.2 Half oscillator

In the special case that the mass of the foil is considered small, the inertial term of
equation 2.1 vanishes, reducing the system above to the single equation

bḣ + kh = FL(h, ḣ) (2.82)

This case will be used to compare the results of the present method with Zhu et al.
[75], as they consider the mass of the foil small compared to the added mass due
hydrodynamic effects.

Discretizing in time and approximating the time derivative of heave with an implicit
Euler scheme the equation becomes

b
ht+1 − ht

∆t
= −kht+1 + FL(ht+1,

ht+1 − ht

∆t
) = f (ht+1) (2.83)
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Also, by the Crank-Nicolson method, the equality that has to be satisfied at a given
timestep is

b
ht+1 − ht

∆t
=

1
2
( f (ht+1) + f (ht)) (2.84)

or

U(ht+1) = ht+1 −
bht + ∆t

2 FL(ht+1, ht+1−ht

∆t ) + ∆t
2 f (ht)

b + ∆t
2 k

= 0 (2.85)

and

ḣt+1 =
ht+1 − ht

∆t
(2.86)

Again the Newton’s method is used to calculate the new heave position. At each
iteration the new heave position is calculated as

ht+1
n+1 = ht+1

n − U(ht+1
n )

U′(ht+1
n )

where the derivative of U is

U′(ht+1
n ) = 1− ∆t

2(b + ∆t
2 k)

dFL

dh
(ht+1

n ,
ht+1

n − ht
n

∆t
)

and dFL
dh can be approximated as

dFL

dh
(ht+1

n ,
ht+1

n − ht
n

∆t
) =

FL(ht+1
n + ϵ, ht+1

n +ϵ−ht
n

∆t )− FL(ht+1
n − ϵ, ht+1

n −ϵ−ht
n

∆t )

2ϵ

where ϵ is a small positive real number.
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Chapter 3

Calculation of induction factors

For the method derived in chapter 2 the performance (execution time and accuracy)
of the algorithm depends on the robustness of the calculation of the induction fac-
tors. In this chapter the integration techniques used in the present work for the
calculation of induction factors will be discussed.

Initially, simple quadratures will be presented for one-dimensional domains, along
with an adaptive algorithm for recursive integration of subintervals. Next, the adap-
tive algorithm will be extended for surface integrals and generalized for arbitrary
number of dimensions.

3.1 Simple quadratures

There are many families of integration quadratures. Here the Gauss-Legendre, Newton-
Cotes and Gauss-Lobatto quadratures will be reviewed. In the most general case, a
quadrature rule can be given by the formula

I f =

1∫
−1

f (x)dx ≈
n

∑
i=1

wi f (xi) (3.1)

where xi are the evaluation nodes of the function f and wi are weights. Both the
nodes and the weights are dependent of specific methods.

With a simple change of variable the quadrature can evaluate the integral on any
interval D = [a, b] as follows:

b∫
a

f (x)dx =
b− a

2

1∫
−1

f
(

b− a
2

x +
a + b

2

)
dx (3.2)

A quadrature can be either open or closed. When the evaluation nodes include the
boundaries of the integration interval (x0 = a and xn = b) the quadrature is consid-
ered closed, while when the interval [x0, xn] does not coincide with the interval D
the quadrature is said to be open.
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3.1.1 Gauss-Legendre Quadrature

The Gauss-Legendre quadrature is mentioned here for completeness, as it can effi-
ciently evaluate integrals of well-behaving functions. That is the case for the evalu-
ation of induced potential on a collocation point afar from the boundary element.

The weights for the Gauss-Legendre quadrature are given by the formula [1, p. 887]

wi =
2

(1− x2
i )[P

′
n(xi)]2

(3.3)

where Pn are the Legendre polynomials normalized so that Pn(1) = 1. The Legendre
polynomials are the polynomial solutions to the Legendre differential equation

d
dx

[
(1− x2)

dPn(x)
dx

]
+ n(n + 1)Pn(x) = 0 (3.4)

One useful expression for the Legendre polynomials is given by Rodrigues [56]:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n (3.5)

The nodes xi of the quadrature are given by the roots of Pn. It must be noted that the
Gauss-Legendre quadrature is open, as the values of Pn are either -1 or 1 at x = −1
and 1 at x = 1.

The Gauss-Legendre quadrature is able to integrate exactly polynomials of order
2n− 1 [1, p. 888].

3.1.2 Newton-Cotes Quadrature

The Newton-Cotes Quadratures are a useful family of numerical integration tech-
niques. The general formula for the Newton-Cotes quadratures (NCQ) is the fol-
lowing

∫ b

a
f (x)dx =

n

∑
i=1

wi f (xi),

where

wi =
∫ b

a
li(x)dx

are the weights corresponding to the nodes

xi = a + (i− 1)
b− a
n− 1

and li are the Lagrange basis polynomials. In the general form for an n-point NCQ
the weights can be found by the formula
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wi = Hn,i=r+1 =
(−1)n−r

r!(n− r)!

∫ n

0
t(t− 1) · · · (t− r + 1)(t− r− 1) · · · (t− n)dt

referenced from [70].

The NCQs can be divided into the two categories of Closed and Open NCQs. Newton-
Cotes formulas are considered "closed" if the entire interval [x0 = a, xn = b] is in-
cluded in the fit, and "open" otherwise.

Although these methods of integration are useful for most applications, they tend to
be unstable for large n, as they can suffer from Runge’s phenomenon, where the error
grows exponentially for large n. Stable Newton-Cotes formulae can be constructed
using least-square approximation instead of interpolation.

3.1.3 Gauss-Lobatto Quadrature

The Gauss-Lobatto quadrature (GLQ) is a Gaussian quadrature with weighting func-
tion W(x) = 1 in which the endpoints of the canonical interval [-1,1] are included in
a total of n nodes, giving r=n-2 free nodes ([68]). Nodes are symmetrical about the
origin, and the general formula is

∫ 1

−1
f (x)dx = w1 f (−1) + wn f (1) +

n−1

∑
i=2

wi f (xi).

The free nodes xi for i = 2, ..., n− 1 are the roots of the polynomial P′n−1(x), where
P(x) is a Legendre polynomial. The weights of the free nodes are

wi = −
2n

(1− x2
i )P′′n−1(xi)P′m(xi)

=
2

n(n− 1)[Pn−1(xi)]2
,

and of the endpoints are

w1,n =
2

n(n− 1)
.

The error term of the quadrature is given by

E = −n(n− 1)322n−1[(n− 2)!]4)
(2n− 1)[(2n− 2)!]3

f (2n−2)(ξ) (3.6)

The GLQ integrates exactly polynomials of degree 2n− 3 or less, as can be deduced
from the error term.

Here the interval of integration is [-1,1] but every interval [a,b] can be scaled and
translated appropriately to fit exactly the interval [-1,1]. Of course, the integrand f
must be multiplied with the scale factor.

To calculate the nodes of the quadrature, the roots of the polynomial P′n−1(x) must
be found first. The zeros of P′n−1 are the same as those of the associated Legendre
polynomial P1

n(x) through the relation
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P1
n(x) =

√
x2 − 1P′n(x)

One can then approximate the zeros of P1
n(x) in terms of the successive zeros of the

Bessel function J1(x). Mitchels ([41]) proposed the approximation

xn,k = cos


j1,k√

(n− 1/2)2 +
(

π2−4
4π2

)


where j1,k is the k-th zero of the Bessel function. Using a Newton-Raphson iterative
process one can refine the place of the nodes as shown below.

(xn,k)i+1 = (xn,k)i −
P′n−1(xn,k)i

P′′n−1(xn,k)i

3.2 Adaptive integration

The main idea behind the adaptive quadrature is the recursive subdivision of the
integration interval (D). A simple quadrature is used to obtain a first estimate (Q) of
the integral. Next, the interval is partitioned to m subintervals Di = [ai, bi], i=1(1)m
such that D = ∪Di and the simple quadrature is used on each subinterval. Then, the
first estimation is compared to the sum of the subinterval estimations to determine
the convergence. This procedure is repeated on every subinterval until a conver-
gence criterion is satisfied.

Lyness [37] studied an adaptive quadrature based on the simple Simpson’s (1-4-1)
rule. He proposed an accurate convergence criterion and modified the quadrature
to include a term for convergence acceleration.

Gander and Gautschi [19] present an adaptive quadrature based on the four-point
Gauss-Lobatto rule with two successive Kronrod extensions. In that paper special
attention is given on the convergence criterion of the adaptive routine.

The basic procedure for the adaptive quadrature is presented in algorithm 1. The
adaptive routine takes as first arguments the integration interval [a, b] and the inte-
grand function f . Next, there are two parameters that control the algorithm. The
tolerance (tol) determines when the algorithm is considered to have converged from
one recursion level to the next. The maximum recursion depth (maxDepth), the
adaptive routine is allowed to reach, determines the maximum allowable refinement
of the integration interval. When the routine takes many recursions to converge it
can affect the performance and setting a cap at the recursion level can improve the
time needed for the operation by sacrificing some precision. Other arguments of the
adaptive routine are the simple quadrature used internally (quadr) and the approx-
imation of the integral on a coarser subdivision of the integration domain (Q).

Closed quadrature rules are preferred, as the integrand function evaluations for the
first node of the first subinterval and the last node of the last subinterval at a given
recursion are known from the upper recursion level. Therefore, Gauss-Legendre and
open Newton-Cotes quadratures are not optimal choices for this application.
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Algorithm 1 Adaptive quadrature recursive algorithm

1: procedure ADAPTIVEROUTINE(a, b, f, m, tol, maxDepth, quadr, Q)
2: for i = 1(1)m do
3: ai ← a + b−a

m (i− 1)
4: bi ← a + b−a

m i
5: Si ← quadr(ai, bi, f )

6: S←
m
∑

i=1
Si

7: if (|S-Q| < tol OR maxDepth==0) then return S
8: else
9: for i = 1(1)m do

10: Qi ← AdaptiveRoutine(ai, bi, f , m, tol
m , maxDepth− 1, quadr, Si)

11: return
m
∑

i=1
Qi

...

... ... ... ...
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FIGURE 3.1: m-division strategy.

3.2.1 Partitioning scheme and termination criterion

For the adaptive routine to work optimally, the partitioning scheme must be selected
carefully. Uniform bisection and trisection of the interval have been studied and tri-
section is proven to be better [62]. Berntsen et al. [6] discuss a nonuniform 3-division.
Their proposed algorithm estimates the width of a difficulty and divides the interval
according to the width and the location of the difficulty. They report a 50% reduction
in the work needed for the evaluation of integrals of singular functions.

In the present work a general uniform m-division is studied. The interval is divided
in m equal parts and the performance is evaluated in order to choose the best parti-
tioning scheme for the adaptive integrator in the case of the single and double layer
integrals found in BEM.

The convergence criterion can be absolute or relative to a "characteristic length" of
the domain. Here an absolute criterion is used to test the convergence.

3.2.2 Richardson extrapolation

The Richardson extrapolation is a technique to increase the convergence rate of a
numerical method with no additional function evaluations.

As stated by Richardson and Gaunt [55] an approximation of the actual value of an
unknown function f (x) at a point x is

ϕ(x, h) = f (x) + h f1(x) + h2 f2(x) + h3 f3(x) + ... (3.7)
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where the functions f1, f2, f3... are usually unknown.

If there is a numerical method (A) that can produce a result with accuracy of order k
for a step h, the actual value of the function will be

f (x) = A(x, h) + hk+1 fk+1(x) + hk+2 fk+2(x) + ... (3.8)

or using the Big O notation

f (x) = A(x, h) + hk+1 fk+1(x) + O(hk+2) (3.9)

By using two different values for the step h that are connected with the relation

h2 =
h1

t
(3.10)

where t in the case of the adaptive integration routine is equal to m. For the two
different step sizes equation (3.13) becomes

f (x) = A(x, h1) + hk+1
1 fk+1(x) + O(hk+2

1 ) (3.11)

f (x) = A(x,
h1

t
) +

(
h1

t

)k+1

fk+1(x) + O(hk+2
1 ) (3.12)

By multiplying equation 3.12 by tk+1 and subtracting 3.11 we get

f (x) =
tk+1A

(
h1
t

)
− A(h1)

tk+1 − 1
+ O(hk+2) (3.13)

For the Gauss-Lobatto quadrature of order n the truncation error of the approxima-
tion is O(h2n−2) (see eq. 3.6) and for the adaptive routine with m uniform subdi-
visions at each recursion level the convergence can be accelerated by applying the
Richardson extrapolation as

I f =
m2n−2GLQn

(
h1
m

)
− GLQn(h1)

m2n−2 − 1
+ O(h2n−1

1 ) (3.14)

The above equation can be rewriten as

(I f − GLQn

(
h1

m

)
)(m2n−2 − 1) = GLQn

(
h1

m

)
− GLQn(h1) (3.15)

and by replacing (I f − GLQn

(
h1
m

)
) by the error ϵ we get the termination condition

|GLQn

(
h1

m

)
− GLQn(h1)| < ϵ(m2n−2 − 1) (3.16)
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FIGURE 3.2: Interval subdivision for a function with singularity at
x = 0 for m = 2.

3.3 Treatment of singularities

The adaptive routine will automatically create denser partitions around a singular-
ity. The function near a singularity cannot be approximated correctly by the classes
of functions considered in producing the Gauss-Lobatto and Newton-Cotes quadra-
tures, and as a result the method will not converge for the current recursion level
and will continue one level lower, subdividing the domain even more.

In figure 3.2, the uniform bisection of the integration integral is drawn for an inte-
grand function that displays a singularity at x = 0. The interval is refined near the
singularity, where the accuracy of the quadrature used does not suffice to evaluate
the integral correctly.

3.4 Surface integrals

To compute a surface integral, there are two levels of integration that are required,
one outer integration and one inner. To evaluate a singular surface integral it is
important to have a very good approximation of the inner integral, as this is the
integral that bears the singularity. Then, the outer integration can be done by a
less accurate routine. In this way the benefits of accuracy and robustness of the
intricate routine used for the inner integration are combined with the great speed
of the simpler routine of the outer integration. Finally a fast routine for evaluating
singular surface integrals is produced.

3.5 N-Dimensional

The adaptive routine can be generalized for integration over N-dimensional do-
mains. By passing an adaptive integrator of (N-1) dimensions as an integrand func-
tion for the N-dimensional integrator and giving the N-th element of the position
vector as a parameter, the routine will perform integrations recursively on all di-
mensions.

It is apparent that as the number of dimensions increases, the computational com-
plexity will increase exponentially. Therefore, even if it is possible to integrate in any
number of dimensions, this is practically unachievable.



36 Chapter 3. Calculation of induction factors

3.6 Performance

In this section the adaptive routine will be used to compute the single and double
layer potential terms. In order to compare the results, analytical methods for the
calculation of the double and single layer integrals will be presented. Next, the con-
vergence of the adaptive quadrature will be tested for different recursion levels.

3.6.1 Analytical methods

Induced potential of constant source and dipole distribution on flat bilinear ele-
ment

The analytical solution to the induced factor calculation for a flat quadrilateral with
constant source or doublet distribution can be found in [28, Chapters 10.4.1 and
10.4.2]. Note that in this solution the z axis must be perpendicular to the plane of the
quadrilateral. For the source distribution the solution is

Φ =
−σ

4π

{[
(x− x1)(y2 − y1)− (y− y1)(x2 − x1)

d12
ln

r1 + r2 + d12

r1 + r2 − d12

+
(x− x2)(y3 − y2)− (y− y2)(x3 − x2)

d23
ln

r2 + r3 + d23

r2 + r3 − d23

+
(x− x3)(y4 − y3)− (y− y3)(x4 − x3)

d34
ln

r3 + r4 + d34

r3 + r4 − d34

+
(x− x4)(y1 − y4)− (y− y4)(x1 − x4)

d41
ln

r4 + r1 + d41

r4 + r1 − d41

]
− |z|

[
tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)
+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)
+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)
+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]}
(3.17)

where

d12 =
√
(x2 − x1)2 + (y2 − y1)2 (3.18)

d23 =
√
(x3 − x2)2 + (y3 − y2)2 (3.19)

d34 =
√
(x4 − x3)2 + (y4 − y3)2 (3.20)

d41 =
√
(x1 − x4)2 + (y1 − y4)2 (3.21)
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FIGURE 3.3: Geometry of a flat quadrilateral with constant doublet
distribution and the equivalent vortex ring.

m12 =
y2 − y1

x2 − x1
(3.22)

m23 =
y3 − y2

x3 − x2
(3.23)

m34 =
y4 − y3

x4 − x3
(3.24)

m41 =
y1 − y4

x1 − x4
(3.25)

and

ri =
√
(x− xi)2 + (y− yi)2 + z2 i = 1, 2, 3, 4 (3.26)

ei =(x− xi)
2 + z2 i = 1, 2, 3, 4 (3.27)

hi =(x− xi)(y− yi) i = 1, 2, 3, 4 (3.28)

For the dipole distribution the solution is

Φ =
µ

4π

[
tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)
+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)
+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)
+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
(3.29)
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Induced potential of constant unit strength dipole distribution on non-flat bilin-
ear element

The induced potential from a dipole distribution on a bilinear element surface to a
point P can be calculation by evaluating the surface integral

Φ =
1

4π

∫
A

n
r
r3 dS(Q) (3.30)

where

A: the quadrilateral element’s area

n: the normal vector at the center of the element

r: the vector from point Q to point P, and

r: the magnitude of r (r = xP − xQ and r = ||r||)

As stated by Thermos [63], it can be observed that, if there was a sink of unit strength
at point P, the sink flow rate through A would be the same as the potential we want
to evaluate.

Q(A) = − 1
4π

∫
A

n
xQ − xP

r3 dS(Q) = Φ (3.31)

The sink flow rate through the element’s area is the same as the flow rate through
the area of a sphere with unit radius and center the point P and bounded by the pro-
jection of the edges of the bilinear element on the sphere surface. Then, the induced
potential is easily calculated as

Φ =
∫

S(c=xP,r=1)

−1
4π

xQ − xP

r3 dS = − 1
4π

∫
S

r−2dS = − α

4π
→ ± α

4π
(3.32)

where α is the solid angle of the element. To evaluate the solid angle one can divide
the bilinear element into two elements with three vertices each, as shown in figure
??. The three vertices of each element along with the point P form a tetrahedron
whose solid angle with respect to point P is known and equal to

αtetrahedron = 2π − ϕ1 − ϕ2 − ϕ3 (3.33)

where ϕ1, ϕ2 and ϕ3 are the angle between the different planes of the faces of the
tetrahedron with common vertex the point P. The solid angle of the bilinear element
will be the sum of the solid angles of the two tetrahedrons and finally the induced
potential is

Φ =
α1 + α2

4π
(3.34)

It should be noted that this method can yield an analytical solution only if the point
P is not inside the region defined by the simplified geometry and the real geometry
of the element. In the case that the evaluation point is in this region the result will
have wrong sign.
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3.6.2 Test cases

In the present work two bilinear elements will be studied. The first (A) is flat with
nodes {X1 = (−1,−1, 0)T, X2 = (−1, 1, 0)T, X3 = (1, 1, 0)T, X4 = (1,−1, 0)T}.The
induced potential will be evaluated on points along the line z = 0, passing through
the elements, for z ∈ [−1, 1].

The second (B) is slightly distorted with nodes {X1 = (−1,−1,−0.25)T, X2 = (−1, 1,
0.25)T, X3 = (1, 1,−0.25)T, X4 = (1,−1, 0.25)T}. The evaluation points belong to
the line that passes from the center of the element and is normal to it. The line is
parametrized by the parameter t, that denotes the distance from the center of the
element.

For more information on the geometry of the bilinear elements see appendix A.

The tolerance is set to machine precision to allow the algorithm to reach the recursion
limit.

3.6.3 Convergence

Figures 3.4 to 3.9 show the convergence and the time needed to calculate the inte-
grals, for the single and double layer induction factors for case A, and figures 3.10 to
3.12 show the convergence and the time needed to calculate the integrals for the dou-
ble layer potential, for case B. The outer integration in both test cases is performed
by the GLQ with 3 nodes (GLQ3).

For case A, the inner integral was evaluated by the GLQ with 3 and 11 nodes (GLQ3
and GLQ11) and the NCQ with 5 nodes (NCQ5). The NCQ5 method was systemat-
ically faster than the GLQs, for low recursion depths but the error was higher than
that of GLQ11. In the case that more recursion depths were needed the speed advan-
tage of the NCQ becomes insignificant and the GLQ11 shows faster convergence.

For case B, the GLQ3 and GLQ11 were tested, together with the seven-node GLQ
(GLQ7). In this case the GLQ7 and GLQ11 showed similar performance with a small
trade-off of accuracy and speed between the two.
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FIGURE 3.4: Convergence of GLQ to exact solution of single layer
induced potential for increasing recursion depths.
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FIGURE 3.5: Calculation time for single layer induced potential with
GLQ for increasing recursion depths.
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FIGURE 3.6: Convergence of GLQ to exact solution of double layer
induced potential for increasing recursion depths.
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GLQ for increasing recursion depths.
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FIGURE 3.8: Comparison of calculated single and double layer induc-
tion factors by the GLQ3 with analytical solution [28, Chapters 10.4.1

and 10.4.2].
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FIGURE 3.9: Comparison of calculated single and double layer induc-
tion factors by the GLQ11 with analytical solution [28, Chapters 10.4.1

and 10.4.2].
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FIGURE 3.10: Comparison of calculated double layer induction fac-
tors by the GLQ with analytical solution [63], for distance t = 6 from

the center of the distorted bilinear element.
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FIGURE 3.11: Comparison of calculated double layer induction fac-
tors by the GLQ with analytical solution [63], for distance t = 6 from

the center of the distorted bilinear element.
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Chapter 4

GPU implementation

In this chapter we will focus on the implementation of the BEM on NVidia GPUs. For
this purpose the Compute Unified Device Architecture (CUDA) will be examined
to determine the best programming practices for the problem at hand. The code
produced by the present work is an extension of the code developed by E. S. Filippas
during his PhD studies [15]. The code was reprogrammed using object-oriented
programming.

The GPUs share many features with modern CPUs, but have some differences that
make GPUs more robust for some numerical algorithms. The GPU core is inferior
to a CPU core in terms of performance and complexity, as the cores of the GPU are
slower and simpler on hardware level. This means a CPU core can deliver more
FLOPS than a single GPU core. On the other hand, contemporary GPUs can have
thousands of cores, giving them a significant performance boost when executing
parallel code. The independent calculations of the parallel algorithm are distributed
across all the cores and as a result the independent calculations can be executed
simultaneously. If an algorithm can be rewritten as a parallel one, it can benefit from
the high core count of the GPU.

In order to create software that is efficient, it is of high importance to study the
architecture of the hardware it will run on. In the next section the design aspects of
a typical NVidia GPU will be discussed and the details of the GPUs used to test the
code will be examined.

Information about NVidia GPUs in the next sections is derived from the CUDA C
PROGRAMMING GUIDE [49] and the whitepapers for the specific GPU architec-
tures used.

For the implementation of the method described in Chapter 2 the cuBLAS and cu-
SOLVER libraries were used for matrix-vector, matrix-matrix operations and linear
system solvers. In addition, the jsonpp open-source library was used to read the
simulation parameters written using the Javascript Object Notation. The use of this
format allows the parameters to be human readable.

4.1 GPU architecture

For our testing purposes two different GPUs were used. The first is the NVidia
GeForce GTX 650 Ti BOOST, using the GK106 Kepler compute architecture, and the
second is the GTX 1050, using the GP107 Pascal architecture. In later sections the
two architectures will be discussed.
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In order to understand the different architectures, a general overview of Nvidia’s
GPU design should be described first. The design of the GPU was historically driven
by the content creation industry and many features of the modern GPU are a result
of the effort to increase the functionality of the hardware and adapt it to the graphics
generation pipeline. Nowadays, the paradigm of GPU design has shifted to include
the general purpose computing community, with many features dedicated to com-
plex mathematical tasks.

In the following section the building blocks of a GPU application will be discussed
in order to better understand the structure of the device. The data presented are
true for GPUs of compute capability (CC) 2.x and above. Older GPUs had slight
variations of this general model, such as the division of warps in two half-warps.

4.1.1 Threads, Blocks and Grids

The basic unit to processing is the thread. The thread can be perceived as a set of
instructions to be executed by the assigned core. A GPU, as any other processing
unit, can handle a fixed maximum number of threads at a time. This maximum
number of threads is determined by the capabilities of the GPU and cannot be more
than the number of available cores.

The threads are organized in groups called blocks. A block cannot contain more than
1024 threads, and the optimal number of threads per block are determined by the de-
mand in registers a thread has, the number of cores available and the nature of the
algorithms used. When a kernel is launched the user sets the number of threads in a
block and the number of blocks. This structure of blocks and threads is referred to as
a grid. The grid and the blocks can be 1D, 2D or 3D, with different number of dimen-
sions having advantages in different cases. The threads are assigned a unique ID in
the block they belong and the blocks in the grid for easier identification, facilitating
the access of thread specific data and the execution of thread specific instructions.

The instruction execution model adopted by NVidia for their GPUs is that of "Sin-
gle Instruction Multiple Data" (SIMD). The threads of a block are grouped together
in "warps" of 32 threads. The threads belonging to a warp must execute the same
instruction simultaneously, but the data onto which the threads operate can differ.
This model of instruction execution is ideal for massively parallel applications and
the simplicity of the hardware implementation allows for greater efficiency and en-
hanced performance. On the other hand, the SIMD model can have some drawbacks
in certain applications. For example, when an if statement is introduced in the appli-
cation and differentiates the execution flow of the threads in the same warp to two
blocks, the threads executing the second block will stall until the threads executing
the first block have finished, affecting the performance significantly.

More specifically, in the case of adaptive integration an if statement is used to check
the convergence and exit the recursion as seen in chapter 3. This means the threads
of the induction factors calculation kernel that converge fast will wait for the threads
with more demanding tasks. For this reason, the calculation of the singular integrals
in the diagonal of the induction factors matrix were calculated separately.
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4.1.2 Streams

To improve concurrency, NVidia added streams to the programming model of CUDA.
A stream is a sequence of operations that execute in issue-order on the GPU. In this
way, two or more different kernels can run simultaneously on the GPU and the op-
erations from different streams may be interleaved. This means that in the case that
a kernel call does not saturate the GPU computational capacity, some operations can
be executed concurrently to reduce the total time needed for the total operation.

4.1.3 General Architecture of modern NVidia GPUs

As previously mentioned, the GPU may have thousands of cores. In order for the
GPU to assign tasks to each of them efficiently the cores are organized in Streaming
Multiprocessors (SMs) and the SMs are grouped in Graphics Processing Clusters
(GPCs).

Each SM also contains Special Function Units (SFUs) used to evaluate some com-
mon mathematical functions. The SFUs only support single precision floating point
arithmetic at the moment. Functions evaluated with SFUs are approximations and
have limited precision as documented in ([49], table 7) and therefore are not fit for
scientific work. NVidia provides a Math API that implements the C Math library for
the GPU.

The SM also contains Texture Units or Texture Mapping Units (TMUs) responsible
for transformations of bitmap texture images, such as rotation, resize and distortion.
The TMUs are used in graphics applications to map textures on a given 3D geometry.
For general purpose computing those hardware modules can be used to apply trans-
formations to data. Also the interpolation of data is implemented in TMU hardware,
rendering them suitable for approximating arbitrary functions with data tables.

The tasks are assigned to cores by the warp schedulers. Each SM can have multiple
warp schedulers. The warp scheduler can dispatch two independent instructions
per warp simultaneously.

FIGURE 4.1: Warp scheduler and instruction dispatch units issuing
instructions to warps
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4.1.4 Memory types

There are many different types of memory available to a GPU program, each with
advantages for various applications. Based on thread visibility, memory spaces can
fit in one of the following three categories:

• Per-thread private local memory

• Per-block shared memory

• Per-application context global memory

FIGURE 4.2: Memory hierarchy and layers [50].

FIGURE 4.3: Hierarchy of threads, blocks, and grids, with corre-
sponding per-thread private, per-block shared, and per-application

global memory spaces [50].
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128 bytes global memory

16 threads (Half-warp)

FIGURE 4.4: Example of efficient global memory access pattern.

x1 y1 z1 x2 y2 z2 x3 y3 z3 xn yn zn...

x1 y1 z1x2 y2 z2xn yn zn... ... ...{
access of sequential

memory addresses from

sequential threads

access of spaced memory

adderesses from sequential threads

FIGURE 4.5: Example of two different models for storing elements of
a vector array.

Global memory

The global memory is the main memory of the GPU, accessible by all the threads.
The read or write operations from or to the global memory are expensive in time,
taking some hundreds of clock cycles.

The GPU coalesces the load and store operations issued by threads within a warp to
the global memory into as few transactions as possible, minimizing the device main
memory bandwidth requirements. The warp perceives the global memory space as
a series of 32, 64, or 128-byte partitions of data addresses that can be accessed in one
operation. Therefore, when the addresses of the data to be read or written by the
warp are spread in as few of these memory chunks as possible the access time will
be optimal. While the access pattern is crucial for older GPUs, newer models allow
more flexible access patters, such as the arbitrary access order within a warp as seen
in figure 4.4.

For example, when storing the elements of a 3D-vector array, as is the boundary
geometry in BEM, the programmer can choose to store the elements of each vector
together in triplets or store the elements in one direction of all the vectors together
(see fig. 4.5). In order to make a choice the memory access patterns should be ex-
amined. In the first case, the memory addresses that must be accessed in order to
get the first elements of each vector from threads with sequential IDs are spaced so
that there are two memory addresses between the elements. In the second case the
memory addresses are sequential. As an effect, the width of the memory partition
that has to be accessed by the first implementation is three time as long as the one
needed in the second implementation. If there are enough registers available for all
the active threads, the global memory access will happen only the first time the data
are needed and then stored in the register file, reducing the latency significantly the
next time the specific data are needed.
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Shared memory

The shared memory is part of the same memory space as the L1 cache, giving it the
same performance. Shared memory can be accessed by all the threads in the same
block, allowing to exchange data between them. The size of the memory space where
shared memory and L1 cache reside can be split between them based on the pro-
grammer’s preferences. The programmer can usually select during runtime between
modes that are different for different architectures. For example, for the GK110 Ke-
pler architecture, out of the 64KB memory space, the programmer can select to split
it as 48KB/16KB, 16KB/48KB or 32KB/32KB of shared memory and L1 cache [50].

The shared memory can be randomly accessed by the threads of the same block. It
can be used to share common data among threads, eliminating the need to compute
mentioned data for each thread separately or using the slow global memory. Spe-
cial care should be taken to avoid data races and for that reason synchronization of
threads should be implemented in the application when needed.

Local memory

The local memory is accessible by only one thread and it is part of the same memory
space as the global memory. It is usually used when the demand of registers is
high and cannot be satisfied by the hardware. As it is evident, the local memory
is characterized by slow read and write operations and the same access patterns as
the global memory. The local memory is structured in the way that minimizes the
number of memory partitions a warp accesses, as the optimal standard dictates. The
access of the local memory is accelerated by the L1 and L2 cache.

4.1.5 Special memory types

There exist two special memory types in a GPU, the texture memory and the con-
stant memory. Initially, they were designed to store textures and constants, for
graphics generation. Both constant and texture memory are referred to as read-only
memories and are cached on chip. Of course, while these memory types are opti-
mized for specific uses, when there is a cache miss they are very slow as the data
must be read from the device global memory.

Texture memory

Texture memory is a special type of memory that resides in the device global mem-
ory space. An interesting feature of the texture memory is that it can be linearly
interpolated in hardware. This means that given an non integer memory address
the value returned by the access operation is the linear combination of the two val-
ues nearest to the "address" given.
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FIGURE 4.6: Performance results of the Unified memory access
(UMA) version of the Rodinia1benchmarks normalized to the non-

UMA version [34].

Constant memory

Constant memory also resides in the device global memory. It is optimized for when
a warp of threads requires access to the same memory address. When this condition
is not satisfied, the performance decreases significantly as the access is serialized.

4.1.6 CPU-GPU communication

Unified memory address space

Nvidia has introduced the unified memory technology to facilitate the development
of HPC codes. This technology allows the use of RAM and device memory (even
for multiple GPUs) in a unified address space that hides the data migration from
and to the RAM. The data transfer is managed by the CUDA API and as a result the
programmer does not need to devote time into optimizing this process accelerating
development.

4.1.7 GK106 Kepler Architecture

The GK106 die consists of 3 GPCs, two containing 2 SMs and one with one SM, as
seen in figure 4.7. Each SM has 192 cores, 32 SFUs, 32 LD/ST modules, 16 texture
units and 4 warp schedulers.

4.1.8 GP107 Pascal Architecture

The GP107 die consists of 2 GPCs, containing 3 SMs each, as seen in figure 4.8. Each
SM has 128 cores, 16 SFUs, 16 LD/ST modules, 8 texture units and 4 warp sched-
ulers. The GTX 1050 model uses the GP107 architecture but has one SM inactive,
with a total of 640 cores.

1Rodinia [11] is a benchmarking suite to measure the performance of different heterogeneous com-
puter architectures and program design.
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FIGURE 4.7: GK106 Kepler architecture.

FIGURE 4.8: GP107 Pascal architecture.
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4.2 Parallelization techniques for GPUs

The parallel algorithms can be divided into two categories, based on hardware lim-
itations. The memory bounded algorithms are those that saturate the bandwidth of
the memory bus, demanding higher data transfer speeds from the memory to the
ALU than the hardware can handle. As a result the ALU must wait several clock
cycles idle, while the needed data are fetched and consequently the execution time
is negatively affected. In case of such an algorithm special attention must be paid
during the programming phase to minimize the access to the memory.

The other category is that of computationally intensive algorithms. These algorithms
require a lot of computations with a small amount of data. This means the memory
access time is small compared to the computation time and therefore the perfor-
mance of the algorithm is impacted only by the number of floating point operations
needed to complete the task.

Performance wise, the manner one has to program a GPU application and things
one has to be cautious about depend on whether the algorithms used are memory
bounded or computationally intensive.

4.3 The Algorithm

In algorithm 2 the time marching procedure is presented. First, the parameters of
the simulation are determined by reading the configuration and job files. In the
configuration file, parameters concerning the GPU and the precision are defined.
In the job file there are parameters that define the foil geometry, the temporal and
spatial discretization and the oscillation.

Second, the geometry is initialized and discretized. Here the bilinear elements of the
foil are generated and the elements of the Kutta strip are created.

For each timestep the wake is moved according to the background velocity field and
expanded by one element near the Kutta strip. Next, the state of the foil (position
and velocity) are approximated by the means of an implicit Euler scheme, the hy-
drodynamic force acting on the foil is calculated and the validity of equation 2.79 is
checked. If equation 2.79 does not hold, the Newton Method is used to refine the
state so that the equation is satisfied within a small tolerance. Finally the values of
the time derivatives is calculated and the results are appended on the result file.

On the right hand side of the linear system (2.53) there are terms that don’t change
over time for a rigid boundary and terms that depend on previous timesteps. This
means that the constant terms can be calculated when initializing the geometry and
update only the values of the terms needed. The terms that need to be changed are
these related with the moving wake and should be calculated on each timestep and
each iteration of the Newton Method.

4.4 Parallelization of BEM

Concerning the Boundary Elements Method, most of the calculation in a step of
the solution are independent of one another. The computation of matrices A and B
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Algorithm 2 Time marching algorithm

1: procedure TIME MARCHING

2: initializeSimulationParameters()
3: initializeGeometry()
4: initializeDtN()
5: for i = 1(1)Ntimesteps do
6: moveWake()
7: expandWake()
8: S[i]← approximateStateWithImplicitEulerMethod(S[i− 1])
9: F ← calculateForce(S[i])

10: e← calculateError(F)
11: while e ≥ tolerance do
12: S[i]← refineStateWithNewtonMethod(S[i])
13: F ← calculateForce(S[i])
14: e← calculateError(F)
15: updateTimeDerrivatives()
16: writeTimestepResultsToFile()

Algorithm 3 DtN matrix initialization algorithm

1: procedure INITIALIZEDTN
2: for i = 1(1)DoF do
3: for j = 1(1)DoF do
4: if i == j then
5: Aij ← slIntegrate<double>(Elementi, CollocationPointj)
6: Bij ← dlIntegrate<double>(Elementi, CollocationPointj)
7: else
8: Aij ← slIntegrate<float>(Elementi, CollocationPointj)
9: Bij ← dlIntegrate<float>(Elementi, CollocationPointj)

10: N ← getNeumannData()
11: LHS← 0.5 · I + B
12: RHS← A · N
13: DtN ← LHS−1 · RHS

Algorithm 4 Hydrodynamic force calculation algorithm

1: procedure CALCULATEFORCE(S)
2: updateElementsPosition(S)
3: updateNeumannData(S)
4: updateDtN()
5: D ← getDirichletData()
6: Ḋ ← calculatePotentialTimeDerivative(D)
7: V ← calculateVelocities(D)
8: P← calculatePressure(Ḋ,V)
9: F ← calculateForce(P)

Algorithm 5 DtN update algorithm

1: procedure UPDATEDTN
2: LHS← LHSinit + morinoTerms()
3: RHS← RHSinit + wakeTerms()
4: DtN ← LHS−1 · RHS
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in equations 2.50 and 2.51 respectively need only the geometry of the foil and are
independent among the elements, and as a result they can be executed in parallel
without any complication. Figure 4.14 shows the speed-up a GPU can produce for
the computation of the discrete Dirichlet to Neumann (DtN) map for the most de-
manding application of double-precision arithmetic. It can be seen that the time for
parallel execution on the GPU can be more that 44 times lower than the single thread
execution on the CPU.

4.5 Algorithm optimization and hardware awareness

4.5.1 GPU occupancy

In order to achieve the maximum computational capacity of the GPU all the avail-
able CUDA cores must be used. There are many parameters that must be determined
to accomplish the maximum occupancy of the GPU [2].

First of all, the workload of the threads within a block must be balanced. This means
that the threads should take the same time to finish the scheduled work. If some
threads need more time to execute, at the end of the kernel there will be less active
warps, using only a subset of the cores.

The same is true about the unbalanced workload of blocks within a grid. In this
case, limiting the size of the blocks and distributing the workload to more blocks
will increase the efficiency of the algorithm, because new blocks will be launched as
the previous ones will finish their execution.

Another issue that can have an impact on the occupancy is when too few blocks
are launched. If the number of blocks launched is less than the maximum number
of blocks that can run simultaneously across all SMs then the occupancy is limited.
The maximum number of blocks that can run at once on the GPU is called a "full
wave". When a kernel is launched with more blocks that a full wave then the blocks
that cannot fit into an SM will be scheduled for after another block has finished.

Moreover, each thread of a block will use the registers available to that block. This
means that the limited register file must be adequate for all the threads of the block.
To achieve this the block size may need to be decreased or the register count per
thread my be limited at compilation.

Finally, the last wave of operations scheduled may be partial and thus limit the oc-
cupancy. This means that for a problem that needs the last wave to be full, if other
resources are adequate, the GPU will be used more efficiently than a problem that
will not occupy completely the GPU for the final block executions. Of course, this is
inevitable and generally in large problems the last wave takes a small portion of the
total time as it can be seen in figure 4.11.

Taking into consideration all the above effects, the size of the block and the number
of registers allocated to each thread should be determined for the hardware the code
is run on. To determine these factors, the NVidia occupancy calculator can be used.
For the card with compute capability (CC) 6.1, to achieve maximum warp occupancy
on each SM (64 warps/SM), the register count for each thread are limited to 32. As
it can be observed in figure 4.10 this value is the maximum number of registers that
does not decrease the number of warps that can run simultaneously. Then, a set
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FIGURE 4.9: Effect of block size and register count per thread on GPU
occupancy for CC=6.1.

of block sizes that maximize the occupancy can be found and the block size of 128
threads is chosen for 1D block and 256 threads for 2D blocks. The number of blocks
is then enough to occupy all the SMs. In the developed code no shared memory is
used and therefore it’s effect on occupancy will not be examined.

In figure 4.11 the effect of the number of degrees of freedom introduced to the prob-
lem of building the Induced Factors Matrix on the last wave size is presented. The
number of threads launched is the number of DoFs squared (equal to the number
of elements in the matrix). It can be seen that for a small problem size, the aver-
age utilization of the GPU can become low and, as the problem becomes bigger, the
utilization asymptotically approaches the ideal value.

4.5.2 Mixed precision arithmetic

Most commercial GPUs have more cores capable of single precision operations than
double precision. This leads to a higher total throughput of single precision calcu-
lations, meaning that the same problem can be solved faster using single precision
floating point arithmetic. For example, the NVidia Pascal architecture SM has 128
FP32 (single-precision) cores but only 4 FP64 (double-precision) cores.

Furthermore, storing large matrices in single precision can reduce significantly the
memory usage of the software. In this way, larger problems can be solved entirely
on the GPU without the need of data transactions between the RAM and the device
memory.

Of course some calculations (e.g. multiplication of a very large number with a small
one) need double precision in order to be evaluated correctly. So, a mixed precision
arithmetic scheme should be devised to achieve the best performance possible.
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FIGURE 4.12: Execution time comparison and relative error for dou-
ble and mixed precision on GTX 650 Ti BOOST graphics card. The

results are compared to the analytical solution [42].

In the present work, the mixed precision scheme is implemented as proposed by
Trompoukis [65] for a data intensive CFD application and used for a compute-intensive
BEM method by Filippas [15]. In the case of the Boundary Element Method, the cal-
culation of the singular integrals, for the diagonal elements of matrices A and B,
that appear in the evaluation of the self-induced potential demand double-precision
arithmetic. The results are then converted to single-precision and stored together
with the induced potential factors calculated with single-precision arithmetic. The
solution of the linear system is then performed in single-precision.

Extensive use of templates allows for fine control over precision. In this way a pre-
cision scheme can be found that balances computation time and solution error. In
figure 4.12 the execution times and the error for double precision and mixed preci-
sion arithmetic are compared. For the error evaluation, the results are compared to
the analytical solution [42]. From those figures can be inferred that for an insignifi-
cantly greater error mixed precision can decrease execution times threefold.

4.5.3 Integrators

The BEM algorithm is parallelized in a coarse level and thus the adaptive integra-
tion routine is not parallelized. Newer GPU architectures allow for recursive kernel
launching, making the parallelization easy. But executing the adaptive algorithm on
multiple GPU threads would not give a considerable advantage. Such an algorithm
would recursively launch new kernels of small size adding a significant amount of
overhead to the process.

It should be noted that in order for the adaptive integration to work properly the
stack size of the GPU must be increased to accommodate as many recursion levels
as needed by the adaptive routine.

Functors were used to define the integrant functions. In this way the user can eas-
ily define an integrant function with parameters as is the case of the Green func-
tions. Also, functors allow the definition of nested integrators. This means that one
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FIGURE 4.13: Profile of computation time for calculation of potential
on an ellipsoid on GTX 650 Ti BOOST.

integrator can be used as the integrant function of another integrator allowing to
evaluate 2D surface integrals easily without re-implementing the integrators.

For the calculation of self-induction factors, a semi-analytical method was used.

4.6 Performance analysis

The most time consuming operations in the solver are the calculation of the induc-
tion factors and the solution of the produced system of equations. In figure 4.13 the
time needed to execute each operation is plotted against the number of degrees of
freedom. It can be observed that for a few degrees of freedom the solution of the
system takes slightly more time. As the problem size increases the calculation of
induction factors becomes the most demanding operation, taking 58% of the total
time. This means that the effort to augment the performance of the implementation
should be concentrated on developing faster techniques for the calculation of the
induction factors. One such method is to approximate far-field interactions by point
sources and dipoles rather than distributions (see the Fast Multipole Method [47]).

Due to the use of an adaptive algorithm for integration, a performance penalty is
introduced, as some threads will integrate near-field induction factors and other
threads will integrate far-field induction factors. The integrant of the single and
double layer integrals become increasingly singular when the evaluation point ap-
proaches the surface of source or dipole distribution. As a result, the adaptive rou-
tine will converge more slowly for the calculation of near-field induction factors
making the thread execution time range heavily. When threads of each category are
placed in the same warp the block execution time will be the maximum of the exe-
cution times of the threads in the block, making the faster threads become idle until
all threads have finished. This problem can be partially tackled by sorting thread
IDs based on the distance of the evaluation point from the surface. In this approach,
however, extra computation time is needed to sort the threads.
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FIGURE 4.14: Comparison of CPU (Intel i5-4670 3.4GHz) single-
thread performance with GPU (NVidia GTX 650 Ti BOOST) parallel

performance for the calculation of potential on an ellipsoid.

In order to evaluate the performance of the GPU code, the execution times of CPU
and GPU implementations for the calculation of the potential on an ellipsoid are
compared as seen in figure 4.14.
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Chapter 5

Numerical Results

5.1 Convergence study

It is customary to begin the numerical study by proving the convergence of the
method as both spatial and temporal discretization becomes finer. For this purpose,
numerical experiments can be conducted for a foil in steady motion. The foil starts
moving smoothly in the forward direction with a constant angle of attack and re-
tains a constant velocity (U) for ten chord lengths of forward motion. In figure 5.1
the position of the foil and it’s velocity are plotted against time. The velocity of the
foil is given by the formula

u(t) = U(1− e− f t2
) (5.1)

where t is the time and f is a filter parameter taken equal to 2.

Next, for the spatial convergence the foil was discretized in grids of N elements
per dimension for N = {8, 16, 32, 64}. The convergence of the non-dimensional
coefficients CL, CD and CM can be observed in figure 5.2.

The same procedure was followed with time discretization. The simulation was
repeated with timesteps ∆t = {0.025, 0.05, 0.01, 0.1, 1}sec. The convergence of the
non-dimensional coefficients CL, CD and CM as the timesteps become smaller can be
observed in figure 5.3.

In figure 5.4 the convergence of the Morino-type Kutta condition to the Pressure-
type is shown as the motion of the foil becomes steady.

In figure 5.5 the convergence of the efficiency of the oscillating foil is shown for the
case of AR = 10, c = 1, NACA0005 cross-section, a/c = 0.5, f ∗ = 1/π, Vbg = 1,
θ0 = 10o, b = πρcsVbg, k = 0 and m = 0.
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FIGURE 5.1: Motion of foil for the convergence study for f = 2 and
U = 1. Time step is ∆t = 0.04sec.
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5.2 Validation of present method with experimental data

In this section the experiment described on [25] is replicated with a computer model
and the results are compared with the original experiment. In this way, the accuracy
of the method presented in chapter 2 is tested and the limitations of it can be shown.

The hydrofoil is attached vertically, at about 1/4th of its chord, to the end of an arm
of 0.3m length, that is free to rotate around the other end. The lift and drag of the
foil create a moment at the axis of rotation of the arm and a sensor is placed at the
shaft to measure this moment. The hydrofoil section has the NACA0012 geometry
with span equal to s = 0.34 meters and chord c = 0.1 meters. The aspect ratio of
the foil is therefore AR = 3.4. Care was taken to place the edges of the foil near
the ceiling and floor of the water tunnel in order to reduce the tip vortices. This is
an attempt to reduce the 3D effects on the flow and increase the efficiency of the
oscillation. Two identical torque transducers are used to measure the torque needed
for the pitching motion and for the torque exerted on the rotation axis of the arm by
the hydrodynamic forces acting on the foil. A dashpot is placed on the arm shaft to
dampen the motion and act like a generator.

Following the design of the experiment above a series of numerical simulations was
performed. In figure 5.6 the heaving amplitude of the pitch center of the foil is plot-
ted for different reduced frequencies and various pitching amplitudes (ranging from
10 deg to 60 deg). The foil used in the simulations is of large aspect ratio to counter-
act the effect the plates near the wingtips have on the wake. A deviation from the
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experiment is apparent but it is expected as the method described in chapter 2 con-
siders only a perfect fluid with irrotational flow and applies the Morino condition
on the TE. For large pitching amplitudes the response of the foil seems to continue
increasing at a constant rate using the present method. In reality, in large angles of
attack there would be flow separation occurring near the foil, a phenomenon that
decreases the lifting potential of the foil.

For the reduced frequency f ∗ = 0.1 the curve produced with the method presented
in 2 is very close to the experimental curve. That is because more information about
the initial phase difference between the heave and pitch motions was given. Fur-
thermore, the observed angle of attack was lower for this frequency and increased
as the frequency became higher or lower.

For other reduced frequencies the phase difference was chosen by trial and error.
The phase difference between the heave and pitch motions is important because any
deviation from the correct value will introduce asymmetries in the hydrodynamic
forces between the different phases of the oscillatory motion of the wing, affecting
the behavior of the oscillating mechanism. To reduce these asymmetries a spring
could be used to return the foil on the desired orbit, something not used in the ex-
periment.

An attempt to reduce this deviation is made by the use of empirical corrections. The
drag of the foil can be corrected for the skin friction resistance including the effect of
the angle of attack. To achieve this, the drag coefficient of the foil can be increased
by the term

cr =
0.0858

[log10Re− 1.22]2
+ cα(Re)α2 (5.2)

where Re = Vbgc/v is the Reynolds number of the experiment, v is the kinematic
viscosity of the water and α is the effective angle of attack. This coefficient will
increase the drag of the foil for higher values of α and as a result reduce the total
torque on the shaft, limiting the heaving amplitude.

In figure 5.6 the corrected curves are plotted against the curves without corrections.
It can be seen that for reduced frequencies f ∗ = 0.025, 0.2 the correction yields the
desired result, but it is apparent that better and more detailed model should be used
the incorporate viscous effects into the simulation. Furthermore, to acchieve more
accurate results the pressure-Kutta condition should be imposed on the trailing edge
of the foil.

The torque produced by the hydrodynamic forces exerted on the foil for one nu-
merical experiment are shown in figure 5.8 as a function of time along with the cor-
responding power output. These quantities are compared with the data provided
by Huxham et al. [25]. It is apparent that the power produced in the experiment is
significantly higher that the results for the real aspect ratio of the foil. The output
power increases in relation with the aspect ratio. At AR = 10 it can be observed the
same effect as that of the plates near the wing tips at the experiment.
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FIGURE 5.8: Torque output and power output timeseries between
the present method and the experiments conducted by Huxham et al.

[25] for f ∗ = 0.1, α0 = 50o and Vbg = 0.5.

5.3 Validation of fluid-structure interaction

Here the device examined consists of a foil moving linearly, instead of moving on
a circle constrained by the arm as it was in the experiment described above. It is
easier to examine a device like this because the initial phase between the heave and
pitch positions do not introduce asymmetries in the heave oscillation. This mean
that there is one less parameter that determines the quality of the simulation.

The results are compared with the numerical experiments of Zhu et al. [75]. The
mass of the foil is ignored for the sake of comparison. In figures 5.9 to 5.11 the
heaving amplitude, the power extraction and the efficiency of the device is drawn
as a function of reduced frequency. The simulations were performed for foils of
different aspect ratios and compared with the 2D and 3D results of Zhu et al. [75].
In these runs, the pitch amplitude is equal to 10o and the damper coefficient is b =
πρcsVbg, that is value that yields the theoretical maximum power extraction. The
chord of the foil is c = 1 and the current velocity is Vbg = 1. The power is normalized
to the theoretical maximum power Pmax = π

8 ρcsV3
bgθ2

0 [75].
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While the heaving response of the foil is the same as the one reported by Zhu et
al. [75], the power extraction and the efficiency of the foil with the present method
presentd differences as the frequency of the oscillation is becoming higher. This
could be attributed to the Morino condition and the linearised wake dynamics.

5.4 Optimization and comparison with turbines

In order to compare the oscillating foil energy converter to the more traditional tur-
bines in terms of energy conversion efficiency a suitable performance index should
be devised. The oscillating foil sweeps a cross-section area (Asw) equal to the area
define by the maximum and minimum positions of the foil and the span of the de-
vice. Similarly, the turbines occupy a space equal to the area the blades sweep. This
difference is shown in figure 5.13. Therefore, the power extracted by each device
can be normalized by the power available for harnessing in the sweep area, yielding
comparable performance indices

PI =
P̄net

1
2 ρV3

bg Asw
(5.3)

It is important that the height of the area swept by the oscillating foil is measured as
the difference of the uppermost and lowermost points of the total motion of the foil,
taking into consideration the pithing motion, and not only the heaving motion. In
figure (5.12) the difference between the two definitions is shown. The performance
of the foil is much lower when the pitching motion is taken into account.
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For the oscillating foil device the sweep area can be calculated as

Asw = (hmax − hmin)s (5.4)

where hmax and hmin are the maximum and minimum heaving positions of any point
on the surface of the foil. For the turbine the sweep area is

Asw = π
D2

4
(5.5)

where D is the diameter of the blades.

As the heaving amplitude of the oscillating foil changes with the different parame-
ters of the pitching motion and the damping coefficient, it is essential to perform a
study to find the optimal set of parameters (that maximize the performance index),
before attempting any comparison with the turbines. In figures 5.14 and 5.15 the
performance index for the oscillating foil is plotted against the damping coefficient
and the frequency for different positions of the pitching axis (a/c) from the leading
edge, for a rectangular NACA0005 foil. In the following simulations, the values of
the different parameters are c = 1, Vbg = 1, AR = 10, θ0 = 10, 25. The mass of the
foil is ignored and the spring coefficient is set to zero. The simulations are performed
for reduced frequencies in the range f ∗ = 0.08− 0.80 and damping coefficient in the
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FIGURE 5.14: Parametric study of performance index of oscillating
foil for θ0 = 10o and a/c = [0, 0.25, 0.5, 0.75, 1].

range b
πρcsVbg

= 0− 10. In this way it is found that the best performing configura-

tion is at f ∗ = 0.11, b
πρcsVbg

= 1.46 and a/c = 0.5 for a pitching amplitude of 25
degrees. The performance index for this configuration is PImax = 0.126. The results
are qualitatively similar to those of Zhu et al. [75] and confirm the proposed region
of maximum power extraction.

The Performance index of the oscillating foil increases monotonically with the pitch
amplitude (see fig. 5.16) and confirms the observations of Filippas et al. [16] about
the present method. The method described in Chapter 2 can give reliable results at
small angles of attack and as a result the pitching amplitude has to be constrained at
a maximum of 25 degrees. Here it should be noted that in literature the maximum
performance is reported to be at about 75 degrees [31]. It is also apparent that a
higher aspect ratio will increase the performance index slightly.

Further optimization of the oscillating foil can be done on other parameters, such as
the planform and spanwise chord distribution. As the parameter space that needs to
be searched for the maximum performance index is getting larger, optimization al-
gorithms can be used. In the present study the foil will be skewed symmetrically by
an angle θskew and the spanwise chord distribution will be considered linear, taking
the value cmid at the middle of the foil and the value ctip at the wing tip. For these
values the chord ratio can be defined as CR =

ctip
cmid

. The aspect ratio (AR = s/cmid)
will be kept constant at 5 and the pitch amplitude at 25 degrees. The oscillation fre-
quency (f) and the damping coefficient (b) will be those maximizing the performance
index in the case shown in figure 5.15.

The effect of the skew and the chord ratio on the performance of the foil is presented
in figure 5.19. As the chord ratio approaches 1 the performance index increases
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monotonically. The simulation data show that a rectangular planform is the optimal
shape for the foil.

Figure 5.20 shows the effect of the skew and the chord ratio on the performance
when the pitching axis is at a/c = 0. In this configuration, the power production
limit is for about 18 degrees of sweep angle. This results is explained by the fact that
the distance between the center of hydrodynamic forces and the center of rotation of
the foil are larger, compared to the case shown in figure 5.19, and thus, the device re-
quires more power in order to counteract the hydrodynamic moments and maintain
the pitching motion.

In literature an optimized horizontal axis turbine can be found to have a perfor-
mance index of about 0.4− 0.5 in ideal environmental conditions [5], about 4-5 times
higher than the oscillating foil device. Of course for environmental concerns this
advantage may not be observed in practice, as researchers suggest a 10% energy
absorptions from the current as a safe limit for minimizing the impact to the local
marine ecosystem (see ch. 1). Moreover, investigation of multiple foils in tandem
configuration [27] have shown that the overall power coefficient of an oscillating foil
farm can reach asymptotically values higher than 0.9 for 15 foils in tandem or more.
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Chapter 6

Conclusion and Future work

In the present work a study of the semi-activated oscillating foil marine energy ex-
tracting device was conducted. For this purpose, a GPU-accelerated solver was pro-
grammed using the Boundary Element Method, with the aid of the code developed
by Filippas [15], for hydrodynamic calculations and a coupling algorithm for the
fluid-structure interactions. The algorithm was accelerated by calculating the induc-
tion factors in parallel using the CUDA C/C++ API and the integrations were eval-
uated with an adaptive quadrature routine. In order to study the whole range of
parameters the present method should be extended or another method (CFD,FEM)
should be used to capture the involved phenomena more accurately.

The present Boundary Element Method extensively uses numerical integration to
calculate the induction factors. To reduce the number of integrations, the Fast Mul-
tipole Method (FMM) can be used [47]. When the boundary elements are far from
the evaluation point, the source and dipole distribution on the elements can be ap-
proximated by a single point source or doublet.

One aspect of the oscillating foil energy harvester that has not yet been investigated
in depth is the effect the planform has on the efficiency of the device. All the stud-
ies so far use foils of rectangular planform. In the present work skewed foils were
studied yielding low efficiency for high angles of skew, but further investigation is
needed in order to verify this result and find the optimal geometry.

When the device described in the present work operates in real environmental con-
ditions the optimal operating point may vary. To always approach the best perfor-
mance of the foil, a robust control system has to be designed. Simulink provides a
great suite for control system design and testing. In order to integrate the code de-
veloped for the purposes of this thesis into Simulink it is useful to make the solver
compatible with the FMI protocol for co-simulation, that has recently begun being
supported by Mathworks. The FMI protocol defines some routines that must be
available in any simulation model to be able to communicate correctly with other
models and programs. Therefore, the developed solver can become the plant model
for a controller designed in Simulink. The simulation of the foil dynamics can be
offloaded to a remote machine and communicate the results to the machine running
Simulink via the local network, as the communication speed will not be the main
bottleneck.
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Appendix A

Bilinear element geometry

The bilinear element is a patch surface bounded by the four line segments connecting
the four vertices of the element, as seen in the figure A.1. The exact geometry of the
surface is given by the relation

x(u, v) = xnNn(u, v), i = 1, 2, 3 (A.1)

where repeating indices denote sumation over the index variable, and Nn are the
shape functions

N1(u, v) = 0.25(1− u)(1− v) (A.2)
N2(u, v) = 0.25(1 + u)(1− v) (A.3)
N3(u, v) = 0.25(1 + u)(1 + v) (A.4)
N4(u, v) = 0.25(1− u)(1 + v) (A.5)

The curvilinear coodrinate system created by the parametrization of the curve is

e1(u, v) =
∂x
∂u

(A.6)

e2(u, v) =
∂x
∂v

(A.7)

e3(u, v) = e1 × e2 (A.8)

FIGURE A.1: Bilinear element element geometry
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A descrete boundary consisted of bilinear elements has C0 continuity every where
and C1 continuity within each element.



85

Appendix B

Further study of the flow around
the foil

B.1 Span-wise effects

In figure (B.1) the spanwise distribution of the lift is plotted for different timeframes
of a period and for aspect ratios AR = [3.4, 10, 20, 50], for the device of Huxham et al.
[25]. It is apparent that the lift distribution tends to become constant along the span
of the wing for high values of the aspect ratio.
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FIGURE B.1: Distribution of the lift on the foil in the spanwise di-
rection for aspect ratios AR = 3.4, 10, 20, 50 at reduced frequency

f ∗ = 0.10.
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Appendix C

Efficiency of biomimetic foil shape

The developed code can be used to examine the performance characteristics of com-
plex geometries. Such examples are the flippers of dolphins and whales. Here the
performace of the humpback whale (megaptera novaeangliae) flipper is examined.

Fish and Battle [17] have studied the geometry of the humpback whale’s flipper,
from a hydrodynamic point of view. For the animal examined in their study, the
flipper had an aspect ratio of 6.1 and an elliptical planform. Also, the outer 1/3rd
of the wing was swept backwards by 19 degrees. The thickness to chord ratio
varies along the flipper with an average of 0.22-0.23. They also report that the cross-
section of the flipper is streamlined and near the midspan resembles the design of
the NACA634 − 021 foil.

In figure C.2 the flipper is compared with an engineerd wing of the same aspect ratio
and constant spanwise chord and thickness distribution. The damping coefficient is
1.46, that of the optimal foil (see 5). The chord of the foil is taken to be 1m and the
thickness equal to 22% of the chord, as it is the average of the whale flipper. In figure
C.3 the performance of the foil is drawn for a range of frequencies and dampening
coefficients. The performance index of the whale flipper is slightly lower than that
of the foil (about 1%). The maximum efficiency is observed at the same frequency
for both geometries and the overall shape of the performance index curves remains
similar.

It is obvious that the geometry of the flipper is complex and does not give an ad-
vantage in performance. Further analysis can be performed with biomimetic foils
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FIGURE C.1: Humpback whale flipper planform. Data drawn from
[17].
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FIGURE C.2: Comparison of humpback whale flipper [17] as a os-
cillating foil marine energy harvester with a foil of constant cross-

section.

inspired from other species, i.e. dolphins. In order to make a better comparison de-
formation of the flipper troughout the motion should be taken into account, some-
thing that the current version of the software does not allow.
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