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“Those who are inspired by a model other than Nature,
a mistress above all masters,

are laboring in vain.”

Leonardo Da Vinci
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Abstract
Flapping wings located beneath or to the side of the hull of the ship are investigated as un-
steady thrusters, augmenting ship propulsion in waves. The main arrangement consists of
horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch,
while rotation about the wing pivot axis is actively controlled. Moreover, the performance of
oscillating foils in the presence of waves and currents is studied for the exploitation of com-
bined renewable marine energy sources in nearshore and coastal regions. The system oper-
ates as a semi-activated biomimetic energy device, with imposed pitching motion and induced
heaving motion in incident waves and flow. In addition to uniform currents, vertically sheared
currents are also considered. In the present thesis, aiming at the detailed investigation of the
free-surface effects, a novel method has been developed for the hydrodynamic analysis of 3D
foils operating beneath the free surface and undergoing heaving (vertical) and pitching (rota-
tional) oscillations while moving with a constant forward speed.

Mathematical formulation is based on the theory of incompressible, inviscid unsteady poten-
tial flow, assuming that the rotational part of the flow is restricted in the trailing vortex sheets
emanating from sharp edges; e.g. the trailing edge in the case of a foil. The motion and the ge-
ometry of the body are allowed to be general, thus no linearisation has been applied. The fully
nonlinear boundary conditions are imposed on the free-surface boundary and an efficient ap-
proach is developed for the treatment of oblique nonlinear waves. No smallness assumptions
are made, that is, the present approach is a non-perturbative one. The instantaneous angle of
attack is influenced by the foil oscillatory motion and by the incident waves. At a first stage of
development we consider moderate submergence and relatively low speeds, permitting us to
approximately neglect breaking of waves and cavitation. The calculation of generalised forces
is obtained by pressure integration, without any further assumption.

The application of Green’s formula on the body boundary and the exact free-surface boundary
leads to a weakly singular Boundary Integral Equation (BIE) for the unknown boundary fields.
For the numerical solution we use a potential based boundary element method (BEM) and
a collocation method, obtaining the discretised BIE. The latter after discretisation will be used
for the construction of the discretised extended Dirichlet-to-Neumann (DtN) operator that will
serve as an algebraic constraint to the equations of the dynamic system, that will be constructed
from the free-surface boundary conditions and the Kutta condition. A curvilinear finite differ-
ence method (CUFDM), in variable, non Cartesian and non orthogonal coordinate systems,
together with the DtN operator, are exploited to express the potential, included in free-surface
conditions and the Kutta condition, in terms of the dynamic variables of the problem. The
dynamic variables are the free-surface potential and elevation and the potential jump (dipole)
intensity at the Kutta strip. The classical time-stepping free-wake analysis in unbounded do-
main is extended to include the effects of additional boundaries. The evolution of the unknown
dynamic variables is obtained by time integration and a novel time-marching scheme is devel-
oped for that purpose. Finally, the total solution can be constructed using that information, the
DtN operator, the discretised form of the representation theorems and the time history of other
known functions.
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For the numerical solution of the 3D, unsteady and nonlinear problem an efficient GPU ac-
celerated boundary element method (BEM) is proposed. A computational code is developed,
exploiting parallel programming techniques and general purpose programming on graphics
processing units (GPGPU), using the CUDA C/C++ application programming interface (API).
It is illustrated that the performance of the GPGPU computational code, both in terms of time
and space complexity, is substantially higher than the performance of corresponding serial or
parallel Central Processing Unit (CPU) codes, implemented by exploiting resources of similar
cost.

The present work is structured as follows. We begin in Chapter 1 with a historic review con-
cerning biomimetic wing systems augmenting ship propulsion in waves and oscillating foils
operating as a semi-activated biomimetic energy device in incident waves and flow, together
with the motivation for the present study and research. Novel contributions of the present
thesis are illustrated and an introductory section is dedicated to the GPU implementation.

Subsequently, in Chapter 2, unsteady lifting bodies in an unbounded domain are studied. We
assume that the body and the wake boundaries remain in adequately large distance from the
other boundaries (free-surface, bottom, lateral walls, shore etc). Moreover, no linearisation is
performed in wake dynamics and the evolution of the wake is obtained in the context of a
time-stepping method. Numerical results, concerning convergence, stability and efficiency of
the proposed method and the developed GPU code are shown and discussed. The interesting
problem of efficient thrust production using biomimetic flapping-foil systems is numerically
investigated. The present method is applied to obtain numerical estimations of basic hydro-
dynamic quantities such as lift and thrust coefficient, over a range of motion parameters, in-
cluding reduced frequency, Strouhal number, maximum angle of attack and aspect ratio. Our
analysis indicates that significant efficiency is achieved under optimal operating conditions.
The present method and the GPU code could serve as a useful and efficient tool for the assess-
ment, preliminary design and control of the studied efficient marine propulsion system and
the reduction of fuel-oil consumption.

Then, in Chapter 3, the method is extended to study the effect of the free-surface boundary and
the interaction with the trailing vortex sheet. The modeling includes finite depth effects. We
begin with the definition of the unsteady initial boundary value problem (IBVP) problem in
a partially bounded domain (Sec.3.2). For simplicity in the description of the present method,
and especially concerning the treatment of the free-surface conditions (including the conditions
at infinity), we will start our presentation with the boundary integral formulation in the case
of non-lifting flow around a body of smooth but arbitrary geometry, undergoing general mo-
tion (Sec.3.4). This problem contains, as cases of special interest, the wave-resistance problem
due to constant-speed forward motion and the enforced radiation problem due to body oscil-
lations. Then, in Sec.3.5, the whole methodology is extended to model the case of a flapping
foil in forward motion beneath the free-surface radiating waves, giving special attention to the
treatment of the discretised form of pressure-type Kutta condition and free-surface boundary
conditions. The problem of thrust production using biomimetic flapping-foil systems beneath
the free-surface including wave-making resistance and finite depth effects is numerically in-
vestigated. The importance of free-surface and 3D effects, nonlinearity as well as the superior
performance of the developed GPU code, are illustrated.

In the last part of the present work (Chapter 4), the method and the developed GPU code, is
extended in cases of lifting flows beneath the free surface and in fully nonlinear waves. That
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problem is presented in Sec.4.2. Although, the problem of the system could be treated by the
method presented in Chapter 3 using a classical numerical wave tank, a more efficient ap-
proach is selected and in that direction a method is developed and presented in Sec.4.3 and
in Sec.4.4. The importance of nonlinearity and the performance of the developed GPU code
in the case of 3D foils in oblique waves, are also illustrated. The problem of augmentation
of the ship’s main propulsion in waves is studied in Sec.4.5.3. The present work can be ex-
ploited for the design and optimum control of biomimetic systems extracting energy from sea
waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship
responses offering dynamic stabilization. Moreover, a semi-activated biomimetic energy de-
vice, with imposed pitching motion and induced heaving motion in harmonic incident waves
and flow is proposed and a feasibility study is conducted in Sec.4.5.4. The present method
can be applied to the design and optimum control of such biomimetic systems operating in
the nearshore/coastal region and extracting energy from waves in the presence of ambient
currents.



Περίληψη 
 
Βιομιμητικά συστήματα τύπου παλλόμενων πτερυγίων τοποθετημένα στη γάστρα του πλοίου 
εξετάζονται ως μη μόνιμοι προωστήρες, για τη υποβοήθηση της κύριας πρόωσης του πλοίου 
σε κυματισμούς. Επιπρόσθετα, εξετάζεται η απόδοση βιομιμητικού συστήματος σε 
κυματισμούς και ρεύματα για την εκμετάλλευση θαλάσσιας ενέργειας στην παράκτια ζώνη. 
Στην παρούσα εργασία αναπτύσσεται υπολογιστικό υδροδυναμικό μοντέλο για τη 
προσομοίωση του ανωτέρω συστήματος σε μη γραμμικούς προσπίπτοντες κυματισμούς, 
λαμβάνοντας υπόψη τις επιδράσεις της ελεύθερης επιφάνειας.  
 
Η μαθηματική μοντελοποίηση στηρίζεται στη θεωρία ασυμπίεστης, μη συνεκτικής, μη 
μόνιμης ροής με δυναμικό, με την υπόθεση ότι η στροβιλότητα περιορίζεται στα 
ακολουθούντα φύλλα στροβιλότητας που παράγονται από αιχμηρές ακμές, όπως η ακμή 
εκφυγής του πτερυγίου. Η κίνηση και η γεωμετρία του σώματος είναι γενικές και δεν έχει 
εφαρμοστεί κάποια γραμμικοποίηση. Οι πλήρως μη γραμμικές συνοριακές συνθήκες 
ικανοποιούνται στο σύνορο της ελεύθερης επιφάνειας και μία αποδοτική μεθοδολογία 
αναπτύσσεται για την μελέτη σωμάτων σε προσπίπτοντες μη γραμμικούς κυματισμούς. Η 
γωνία πρόσπτωσης του πτερυγίου επηρεάζεται από τις κινήσεις του σώματος και από τους 
κυματισμούς. Στην παρούσα μοντελοποίηση δε λαμβάνουμε υπόψη τις επιδράσεις θραύσης 
του κύματος και της σπηλαίωσης, αφήνοντας τη μελέτη των συστημάτων σε αυτές τις 
συνθήκες για μελλοντική εργασία. Ο υπολογισμός των γενικευμένων δυνάμεων γίνεται με 
ολοκλήρωση των πιέσεων στο σύνορο του σώματος χωρίς περαιτέρω παραδοχές.   
 
Εφαρμόζεται το θεώρημα αναπαράστασης του δυναμικού (Green's formula) για την παραγωγή 
μιας ασθενώς ιδιόμορφης συνοριακής ολοκληρωτικής εξίσωσης. Για την επίλυση 
χρησιμοποιείται μέθοδος συνοριακών στοιχείων (boundary element method, BEM) βασισμένη 
στο δυναμικό, σε συνδυασμό με τεχνική ταξιθεσίας (collocation). Προκύπτει έτσι η 
διακριτοποιημένη εκδοχή της συνοριακής ολοκληρωτικής εξίσωσης, που χρησιμοποιείται για 
την έκφραση του τελεστή Dirichlet-to-Neumann (DtN), που αποτελεί έναν περιορισμό στις 
εξελικτικές εξισώσεις του δυναμικού συστήματος. Οι τελευταίες παράγονται από τις 
συνοριακές συνθήκες στην ελεύθερη επιφάνεια και τη συνθήκη Kutta στην ακμή εκφυγής. 
Παρουσιάζεται μία μέθοδος πεπερασμένων διαφορών (curvilinear finite difference method, 
CUFDM) σε καμπυλόγραμμα συστήματα συντεταγμένων. Η μέθοδος αυτή και ο τελεστής 
DtN, αξιοποιούνται για να εκφραστεί το δυναμικό, που εμφανίζεται στις εξισώσεις της 
ελεύθερης επιφάνειας και στη συνθήκη Kutta, σαν συνάρτηση των δυναμικών μεταβλητών του 
προβλήματος, που είναι το δυναμικό στην ελεύθερη επιφάνεια, η ανύψωσή της, καθώς και το 
άλμα δυναμικού (ένταση διπόλων) στη λωρίδα Kutta. Παρουσιάζεται ένα μοντέλο μη 
γραμμικού όμορου που λαμβάνει υπόψη τις επιδράσεις των επιπρόσθετων συνόρων και των 
κυματισμών. Η εξέλιξη των δυναμικών μεταβλητών προκύπτει με αριθμητική ολοκλήρωση 
του παραπάνω συστήματος ενώ τα λοιπά πεδία μπορούν να υπολογιστούν από τη χρονική 
ιστορία και τις τιμές των συνοριακών μεγεθών χρησιμοποιώντας το θεώρημα αναπαράστασης 
και τον τελεστή DtN. 
 
Για την αποδοτική υλοποίηση της αριθμητικής μεθοδολογίας αναπτύσσεται υπολογιστικός 
κώδικας, αξιοποιώντας τεχνολογίες παράλληλου προγραμματισμού σε κάρτα γραφικών 
(General-Purpose Computing on Graphics Processing Units - GPGPU), χρησιμοποιώντας τη 
γλώσσα προγραμματισμού CUDA C/C++. Καταδεικνύεται η ότι απόδοση του GPU κώδικα 
είναι ουσιωδώς καλύτερη από αυτή που θα είχε αντίστοιχος, σειριακός ή και παράλληλος, 
CPU κώδικας υπολογιστικής ρευστομηχανικής (computational fluid dynamics, CFD), 



χρησιμοποιώντας πόρους αντίστοιχου κόστους με αυτούς που χρησιμοποιήθηκαν στη 
συγκεκριμένη εργασία.     
 
Η παρούσα εργασία δομείται ως εξής. Στο εισαγωγικό κεφάλαιο ξεκινάμε με μία επισκόπηση 
της ερευνητικής εργασίας σχετικά με τους προωστήρες ταλαντούμενων πτερυγίων για την 
υποβοήθηση της πρόωσης πλοίου σε κυματισμούς και τα ταλαντούμενα πτερύγια για την 
εκμετάλλευση ενέργειας από κύματα και ρεύματα. Επίσης, παρουσιάζεται ο σκοπός και το 
κίνητρο καθώς και η συνεισφορά της παρούσας μελέτης και έρευνας. Στη συνέχεια 
παραθέτουμε βασικές παρατηρήσεις πάνω στην υλοποίηση του παράλληλου GPU κώδικα. 
 
Ακολούθως, στο Κεφάλαιο 2, μελετάται το πρόβλημα μη μόνιμης ροής με άνωση γύρω από 
σώματα με έμφαση σε τρισδιάστατα παλλόμενα πτερύγια που εξετάζονται ως μη μόνιμοι 
βιομιμητικοί προωστήρες. Υποθέτουμε ότι το σώμα και το σύνορο του ομόρρου βρίσκονται σε 
μεγάλη απόσταση από τα υπόλοιπα σύνορα (ελεύθερη επιφάνεια, πυθμένας, παράπλευρα 
σύνορα). Η μη γραμμική δυναμική του φύλλου στροβιλότητας συμπεριλαμβάνεται στη 
μοντελοποίηση χωρίς απλοποίηση και η εξέλιξη του φύλλου στροβιλότητας γίνεται στο πεδίο 
του χρόνου (time-stepping free-wake analysis). Αριθμητικά αποτελέσματα σχετικά με τη 
σύγκλιση την ευστάθεια και την απόδοση του σχήματος και του παράλληλου GPU κώδικα 
παρουσιάζονται και σχολιάζονται. Εξετάζεται το πρόβλημα της πρόωσης πλοίου με 
προωστήρες ταλαντούμενων πτερυγίων, και παρουσιάζονται αποτελέσματα σχετικά με τους 
συντελεστές ώσης, άνωσης καθώς και την εξέλιξη της κατανομής της πίεσης πάνω στο σώμα,  
για ένα εύρος των παραμέτρων κίνησης όπως είναι η reduced frequency, ο αριθμός Strouhal, η 
γωνία πρόσπτωσης και ο λόγου επιμήκους και συγκρίνονται με άλλες μεθόδους. Η ανάλυσή 
μας καταδεικνύει πως σημαντική απόδοση μπορεί να επιτευχθεί κάτω από βέλτιστες 
καταστάσεις λειτουργίας. Η ανάλυσή καταδεικνύει πως μπορεί να επιτευχθεί σημαντική 
απόδοση κάτω από βέλτιστες καταστάσεις λειτουργίας. Η παρούσα μέθοδος και ο GPU 
κώδικας μπορεί να χρησιμοποιηθούν σαν χρήσιμα εργαλεία για την μελέτη, την προκαταρτική 
σχεδίαση και τον έλεγχο τέτοιων συστημάτων για την αποδοτική πρόωση πλοίων και την 
εξοικονόμηση ενέργειας. 
 
Στη συνέχεια, στο Κεφάλαιο 3, η μέθοδος επεκτείνεται έτσι ώστε να λαμβάνονται υπόψη οι 
επιδράσεις της ελεύθερης επιφάνειας με στόχο τη μελέτη των βιομιμητικών συστημάτων 
κοντά στην ελεύθερη επιφάνεια δίνοντας έμφαση στην αλληλεπίδραση της με τον ομόρρου 
των πτερυγίων. Λαμβάνονται υπόψη και η επιδράσεις του πυθμένα. Ξεκινάμε με τη διατύπωση 
του μη μόνιμου προβλήματος αρχικών και συνοριακών τιμών γύρω από ανωστικά σώματα στο 
μερικώς φραγμένο χωρίο (Παράγραφος 3.2). Για απλότητα στην περιγραφή της παρούσας 
μεθόδου και ιδιαίτερα όσο αφορά τη διαχείριση των συνθηκών ελεύθερης επιφάνειας της 
θάλασσας (συμπεριλαμβανομένων των συνθηκών στο άπειρο), στην Παράγραφο 3.4, 
παρουσιάζουμε τη διατύπωση του προβλήματος, στα πλαίσια της θεωρίας ολοκληρωτικών 
εξισώσεων, για την περίπτωση ροών χωρίς κυκλοφορία γύρω από σώματα ομαλής, αλλά 
γενικής γεωμετρίας που εκτελούν γενική κίνηση. Το πρόβλημα αυτό σχετίζεται με την 
κυματογένεση από τις κινήσεις του σώματος και συμπεριλαμβάνει δύο υποπροβλήματα 
ιδιαίτερου ενδιαφέροντος, το πρόβλημα αντίστασης κυματισμού και το πρόβλημα 
ακτινοβολίας λόγω των ταλαντωτικών κινήσεων του σώματος. Στη συνέχεια, στην Παράγραφο 
3.5, η μεθοδολογία επεκτείνεται στην περίπτωση παλλόμενων πτερυγίων σε πρόσω κίνηση 
κάτω από την ελεύθερη επιφάνεια, δίνοντας έμφαση στη διαχείριση της συνθήκης Kutta και 
των συνοριακών συνθηκών στην ελεύθερη επιφάνεια. Εξετάζεται η παραγωγή ώσης από 
βιομιμητικούς προωστήρες κάτω από την ελεύθερη επιφάνεια, λαμβάνοντας υπόψη την 
αντίσταση κυματισμού και τις επιδράσεις του πυθμένα. Καταδεικνύεται η σημασία των 
επιδράσεων ελεύθερης επιφάνειας και τρισδιάστατων φαινομένων, και παρουσιάζεται η 
απόδοση του GPU κώδικα.      



Στο τελευταίο μέρος της παρούσας εργασίας (Κεφάλαιο 4), η μέθοδος και ο GPU κώδικας 
επεκτείνεται για το πιο περίπλοκο πρόβλημα της ροής γύρω από μη μόνιμα ανωστικά σώματα 
κοντά στην ελεύθερη επιφάνεια της θάλασσας και σε κυματισμούς. Το πρόβλημα αυτό θα 
μπορούσε να αντιμετωπιστεί με τη μέθοδο που παρουσιάζεται στο Κεφάλαιο 4, εάν τα 
παράπλευρα σύνορα μοντελοποιούσαν έναν αριθμητικό κυματιστήρα (numerical wave tank 
approach). Στην παρούσα εργασία αναπτύσσεται μία αποδοτική μέθοδος που παρουσιάζεται 
στις Παραγράφους 4.3 και 4.4. και καταδεικνύεται η σημασία των επιδράσεων ελεύθερης 
επιφάνειας και τρισδιάστατων φαινομένων, καθώς και η απόδοση του GPU κώδικα σε μη 
γραμμικούς κυματισμούς που προσπίπτουν στο σώμα από διάφορες διευθύνσεις σε σχέση με 
τη διεύθυνση κίνησης του σώματος.   
 
Στη συνέχεια μελετάται το πρόβλημα της υποβοήθησης της πρόωσης του πλοίου σε 
κυματισμούς (Σχήμα 1.α) στην Παράγραφο 4.5.3. Η κύρια διάταξη αποτελείται από οριζόντιο 
πτερύγιο που κινείται με τη σταθερή πρόσω ταχύτητα του πλοίου και παράλληλα εκτελεί 
κατακόρυφη ταλαντωτική κίνηση λόγω της κατακόρυφης ταλάντωσης και προνευτασμού του 
πλοίου σε κυματισμούς, ενώ η περιστροφική ταλάντωση του πτερυγίου γύρω από τον άξονά 
του ελέγχεται ενεργητικά. Πιο συγκεκριμένα, θεωρούμε πως το σύστημα πλοίο - 
ταλαντούμενο πτερύγιο προωστήρας λειτουργεί σε κυματισμούς που περιγράφονται από 
φάσμα συχνότητας, που αντιπροσωπεύει συγκεκριμένη κατάσταση θάλασσας, λαμβάνοντας 
υπόψη τη σύζευξη μεταξύ της δυναμικής της γάστρας και του παλλόμενου πτερυγίου. Η 
παρούσα μέθοδος μπορεί να χρησιμοποιηθεί για το σχεδιασμό και τον έλεγχο βιομιμητικών 
συστημάτων για την εκμετάλλευση της ενέργειας των κυματισμών με σκοπό την υποβοήθηση 
της πρόωσης πλοίων, με ταυτόχρονη ελάττωση των ανεπιθύμητων αποκρίσεων και βελτίωση 
της δυναμικής ευστάθειας.  
 
Τέλος, εξετάζεται βιομιμητικό σύστημα ταλαντούμενου πτερυγίου για την συνδυασμένη 
εκμετάλλευση ενέργειας από κύματα και ρεύματα στην παράκτια ζώνη και παρουσιάζονται 
στοιχεία για την απόδοση του. Η μοντελοποίηση περιλαμβάνει τις επιδράσεις ενός μη μόνιμου 
ανομοιόμορφου πεδίου υποβάθρου. Πιο συγκεκριμένα, εξετάζονται ημι-ενεργητικά και 
αυτοδιεγειρούμενα συστήματα ταλαντούμενων πτερυγίων, με εξαναγκασμένη περιστροφική 
κίνηση και διεγειρόμενη μεταφορική ταλάντωση σε προσπίπτοντες κυματισμούς και ροή κάτω 
από την ελεύθερη επιφάνεια της θάλασσας και σε γενική βαθυμετρία. Η παρούσα μέθοδος 
μπορεί να χρησιμοποιηθεί για το σχεδιασμό και τον έλεγχο βιομιμητικών συστημάτων για την 
εκμετάλλευση των παραπάνω ανανεώσιμων πηγών ενέργειας.     
  
Η εργασία ολοκληρώνεται με τη διατύπωση συμπερασμάτων και προτάσεων για μελλοντική 
έρευνα πάνω στα θέματα που εξετάστηκαν.       
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List of Notation

Against each entry is the page at which the notation is introduced.

General:

b 24 The normal to the body boundary derivative of the
potential corresponding to the known Neumann data
on the body boundary; i.e. ∂nB Φ = ∇Φ. In the case
of lifting bodies in waves b is the normal derivative of
the corrector potential; see e.g. Eq.4.19.

Ox1x2x3 23 Basic earth-fixed Cartesian coordinate system. In un-
dounded domain it is located at the initial position of
the body. When the problem includes free surface it is
located at the calm free-surface level.

Oxb1xb2xb3 23 Auxiliary boundary-fixed Cartesian coordinate sys-
tem. In unbounded domain it is located on the mov-
ing body boundary. When the problem includes non-
linear free surface there is an dditional auxiliary sys-
tem located on x1 = 0, x2 = 0 and the x3 is defined by
the specific location of the total free-surface elevation.

{e1(ξ, η), e2(ξ, η)} 47 The base of the curvilinear boundary-fixed coordinate
system. In general, it is neither Cartesian nor orthog-
onal, also, it is variable with respect to the parame-
ters (ξ, η) and e1, e2 are not of unit length. In the case
of a nonlinear problem with freely deformable wake
and free-surface boundaries the base is also variable
in time and its construction is part of the solution, in-
troducing an implicit nonlinearity to the problem.

Time derivatives:

∂t(·) 57 Rate of change with respect to an earth-fixed (iner-
tial) observer (i.e. with regard to an inertial reference
frame).

Dt(·) 25 Material derivative, based on the mean total velocity
Vm

W = 0.5(∇Φu
T +∇Φl

T), on the trailing vortex sheet;
i.e. Dt(·) = ∂t(·) + Vm

W · ∇(·).
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dt(·) 58 Time derivative of functions defined on the body
boundary, with respect to a reference frame, moving
with the body velocity at the specific point; it holds
that dt(·) = ∂t(·) + VB · ∇(·). It is essentially simi-
lar with the material derivative defined on the wake
boundary.

Domain and boundaries:

D 23 Domain of definition of the problem.

∂D 22 Boundary of the problem. It is the union of all other
boundaries.

∂DB 23 Body boundary. In general, the boundaries that repre-
sent the body, the wake, the Kutta strip, the free sur-
face and the bottom are denoted using the subscripts
B, W, K, F and H, respectively.

∂DK 34 The Kutta strip is part of the wake boundary ∂DW at
the vicinity of the sharp edge of a lifting body. It is
used for the numerical implementation of Kutta con-
ditions in the context of a BEM.

∂(∂D) 39 It is used to denote the integration domain of the Biot-
Savart line integral in the calculation of induced veloc-
ities from an open surface ∂D or a boundary element.
Moreover it denotes the sharp edge where the Kutta
condition is applied.

D 23 Closure of D; i.e. D = D ∪ ∂D.

xB, xTE 26 Boundary variable denoting points on the body and
the trailing edge, respectively. In general, with sub-
scripts B, W, K, F, H we denote points on the body, the
wake, the Kutta strip, the free surface and the bottom,
respectively.

x, xF 80 In general, the space variable x refers to a point of
the domain D and x = {x1, x2, x3}. In the case that
it refers to a point on the free-surface boundary. In
the present nonlinear semi-Lagrangian surface track-
ing approach the free-surface elevation is a function
defined on a horizontal plane. Therefore, for points
on the free-surface boundary it holds that x = {xF, η}
and xF = {x1, x2}.

Analytical Formulation:

VG 23 Unsteady background field velocity in unbounded
domain.

V 23 Unknown disturbance field velocity in unbounded
domain.
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Φ 23 In unbounded domain it is the unknown disturbance
potential field in D. In nonlinear problems beneath
the free surface it is the unknown total potential.

∇Φ 46 In unbounded domain it is the unknown disturbance
velocity field in D; i.e. ∇Φ = VG + V. In nonlinear
problems beneath the free surface it is the unknown
total velocity.

ΦB 23 Limiting boundary value on ∂DB. In general, with
subscripts B, W, K, F, H we denote boundary values
on the body, the wake, the Kutta strip, the free surface
and the bottom, respectively.

µW , Φu
W , Φl

W 25 µW denotes the potential jump (the dipole intensity)
on the wake; i.e. µW = Φu

W − Φl
W . In general, the

superscripts u, l are used to denote wake’s upper and
lower side respectively.

µK 34 µW denotes the potential jump (the dipole intensity)
on the Kutta strip.

FPK(·) 60 Pressure-type Kutta condition operator in unbounded
domain.

FPK
f s (·) 81 Pressure-type Kutta condition operator for lifting

flows around bodies in problems that include a free-
surface boundary.

Spatial discretisation, the DtN and the dynamical system:

x0 30 Collocation points defined on the boundary. The inte-
gration points are simply denoted with x.

NF, NB, NK, NW(t) 101 Number of elements and collocation points of the
boundaries of free surface, body, Kutta strip and
wake, respectively. The number of panels on the wake
increases in time because the length of the wake in-
creases too.

f , s, i, j, k, w 101 Collocation-point and element indices that corre-
spond to specific boundaries and belong to the follow-
ing subsets of N:
f , s ∈ {0, 1, ..., NF − 1}, i, j ∈ {0, 1, ..., NB − 1},
k ∈ {0, 1, ..., NK − 1}, w ∈ {0, 1, ..., NW(t)− 1}

Spot
ij , Dpot

ij 32 Induction factors representing the potential at collo-
cation point i induced by a unit source and a dipole
distribution respectively, at element j. That notation is
adopted for the problem in unbounded domain.
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D
pot
B , Spot

B ,Dpot
B,K,

D
pot
B,W(t)

35 Potential induction-factor matrices, with S denoting
source or single-layer integrals, and with D denot-
ing dipole or double-layer integrals. That notation
is adopted for the problem in unbounded domain.
To be more precise the induction-factor matrices are
2nd-order systems that contain potential induction fac-
tors. For more details on systems see Sec.2.5.1.3. They
model body to body (B), Kutta strip to body (B,K) and
wake to body (B,W) interactions. D

pot
B,W(t) is the only

one that must be updated at every timestep.

A
pot
F,B(t),B

pot
F,B(t),

D
pot
F,B,K(t),D

pot
F,B,W(t)

101 Potential induction-factor matrices for lifting flows
around bodies beneath the free surface. They model
interaction between free-surface and body (F,B), free-
surface, body and Kutta strip (F,B,K), free-surface
body and wake (F,B,W). For the free-surface and body
interactions, the notation A and B is adopted, instead
of S and D, because each system contains both source
and dipole induction factors. All of them that must be
updated at every timestep.

ΦF, NF, ΦB, b, µW 101 Vectors containing the values of piecewise constant
functions defined on the panels, at various parts of
the boundary. To be more precise, they are 1st-order
systems; for more details see Sec.3.5.2 and Sec.2.5.1.3.

G,Z,P(t) 36 2nd-order systems used in the construction of DtN
operator in unbounded domain. They model body
to body, Kutta strip to body and wake to body in-
teractions, respectively. They are calculated using
the induction-factor matrices. For rigid foils in un-
bounded domain P(t) is the only one that must be up-
dated at every timestep.

Velocity calculation and curvilinear finite difference method:

∂n(·) 24 Normal to the boundary derivative of a function de-
fined on the boundary; e.g. for the potential we have
∂nΦ = ∇Φ · n, where n is the unit normal vector on
the boundary. It is simply called normal derivative.
The differentiation is applied with respect to the in-
tegration point x. Sometimes subscripts are used to
denote the kind of the boundary; e.g. the expression
∂nB Φ is used for the normal to the boundary velocity
of the fluid.

∂n0(·) 38 Normal to the boundary derivative of a function de-
fined on the boundary; e.g. ∂nΦ = ∇0Φ · n, where n
is the unit normal vector on the boundary. The dif-
ferentiation is applied with respect to the collocation
point x0.
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∂s(·) 37 The notation ∂s(·) = n×∇(·) is adopted for the dif-
ferentiation of a scalar field on the surface of a bound-
ary. The surface differentiation is applied with respect
to the integration point x.

∂s0(·) 37 The notation ∂s0(·) = n×∇0(·) is adopted for the dif-
ferentiation of a scalar field on the surface of a bound-
ary. The surface differentiation is applied with respect
to the collocation point x0.

∂sΦ× n 46 The tangential velocity on a boundary. That vector has
covariant and contravariant components denoted by
(∂sΦ× n)i and (∂sΦ× n)i, respectively. Sometimes in
the present work the tangential velocity is convenient
to be denoted as Vt = ∂sΦ× n.

Vt1|1,D(x0|1),
Φ|1

49 In the expression Vt1|1 = D(x0|1) ·Φ|1, the curvilinear
finite difference operator D is defined. It is applied on
the discretized potential boundary field Φ, for the cal-
culation of the discretised field that represents the ξ-
wise component of the tangential velocity (Vt1|1). The
notation |1 illustrates that the collocation points x0|1
and the other data are stored in the GPU memory fol-
lowing ξ-wise numbering; i.e. the data located along
the curvilinear direction of e1 are stored sequentially.

Vt2|2,D(x0|2),
Φ|2

51 In the expression Vt2|2 = D(x0|2) ·Φ|2, the curvilinear
finite difference operator D is defined. It is applied on
the discretised potential boundary field Φ, for the cal-
culation of the discretised field that represents the η-
wise component of the tangential velocity (Vt2|2). The
notation |2 illustrates that the collocation points x0|2
and the other data are stored in the GPU memory fol-
lowing η-wise numbering; i.e. the data located along
the curvilinear direction of e2 are stored sequentially.

(Vt2|2)T 51 The transpose of the 2nd-order system Vt2|2 that repre-
sents the η-wise component of the tangential velocity
discretised field. The operation Vt2|1 = (Vt2|2)T re-
arranges the velocity data to be stored in the memory
following ξ-wise numbering.

Svel
ij , Dvel

ij 53 Induction factors representing the velocity at colloca-
tion point i induced by a unit source and a dipole dis-
tribution respectively, at element j.

Svel
B ,Dvel

B 53 Velocity induction-factor matrices, with S denoting
source velocity integrals, and with D denoting dipole
integrals. To be more precise they are 2nd-order sys-
tems that contain velocity induction factors. For more
details on systems see Sec.2.5.1.3.
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Notation for the analysis of rigid bodies in waves:

The notation adopted for the specific treatment of the problem in the case of
incident fully non-linear waves as described in Chapter 4 is presented in the
following list:

Φ 122 The exact solution of the problem of lifting flows
around bodies beneath the free-surface and in nonlin-
ear waves.

ΦI , ΦNI−1 122 The total wave potential at the specific-time itera-
tion I and at the last specific-time iteration NI−1.
At a specific time t, a finite number of NI itera-
tions are performed, until the total wave potential
at the current iteration ΦI converges to the solu-
tion Φ of the fully nonlinear problem, as follows
Φ(x; t) ≈ limI→NI ΦI(x; t) = ΦNI−1(x; t). The termi-
nology specific-time iterations refers to the iterations
performed at a given timestep for the treatment of the
implicit nonlinearity of the problem.

Φ0
0, φcor

I 122 The initial-guess potential and the corrector potential
are the terms of the representation of the total wave
potential at specific-time iteration I; i.e. ΦI(x; t) =
Φ0

0(x; t) + φcor
I (x; t), I ∈N.

φcor
NI−1 122 The corrector potential at the last specific-time itera-

tion NI−1. The representation of the total potential at
the last iteration is as follows ΦNI−1(x; t) = Φ0

0(x; t) +
φcor

NI−1, the initial guess potential remains constant dur-
ing the specific-time iterative process.

∂nB φcor
NI−1 123 The normal to the boundary derivative of the correc-

tor potential at the last specific-time iteration NI−1.
ηcor

NI−1 124 The corrector free-surface elevation at the last specific-
time iteration NI−1.

∂DF,NI−1(t) 124 The total free-surface boundary at the last specific-
time iteration NI−1. In general, with subscript NI−1,
are denoted the boundaries, the fields and the opera-
tors at the last specific-time iteration NI−1.

FPK
f s,NI−1(·) 124 Pressure-type Kutta condition operator for lifting

flows around bodies beneath the free-surface and in
waves written in terms of the representation pre-
sented in Sec.4.3.
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A
pot
F,B,NI−1(t),

B
pot
F,B,NI−1(t),

D
pot
F,B,K,NI−1(t),

D
pot
F,B,W,NI−1(t)

128 Potential induction-factor matrices for lifting flows
around bodies beneath the free surface and in waves,
at the last specific-time iteration NI−1. They model
interaction between free-surface and body (F,B), free-
surface, body and Kutta strip (F,B,K), free-surface
body and wake (F,B,W). For the free-surface and body
interactions, the notation A and B is adopted, instead
of S and D, because each system contains both source
and dipole induction factors. All of them that must
be updated at every timestep. Their specific-time-
iteration values (e.g. A

pot
F,B,I) change also during the

specific-time iterations until they take their final val-
ues (e.g. A

pot
F,B,NI−1) at the last specific-time iteration

when I = NI−1.
φcor

F,NI−1, φcor
B,NI−1 128 Discretised Dirichlet data on the free-surface bound-

ary and the body boundary, respectively. The values
are at the last specific-time iteration NI−1. Concerning
their structure, they are 1st-order systems containing
the discretised corrector potential field, defined as fol-
lows: φcor

F,NI−1 = {φcor
F,NI−1,s}, φcor

B,NI−1 = {φcor
B,NI−1,j}.

µcor
K,NI−1, µcor

W,NI−1 128 Discretised Dirichlet data on the Kutta strip and the
wake boundary, respectively. The values are at the last
specific-time iteration NI−1. Concerning their struc-
ture, they are 1st-order systems containing the dis-
cretised field that represents the corrector potential
jump (dipole intensity); i.e. µcor

K,NI−1 = {µcor
K,NI−1,k} and

µcor
W,NI−1 = {µcor

W,NI−1,w}.
Ncor

F,NI−1, b 128 Discretised Neumann data on the free-surface bound-
ary and the body boundary, respectively. The values
are at the last specific-time iteration NI−1. Concern-
ing their structure, they are 1st-order systems contain-
ing the discretised field that represents the normal to
the boundary derivative of the corrector potential; i.e.
Ncor

F,NI−1 = {∂nφcor
F,NI−1,s} and b = {bj}.

GNI−1(t),ZNI−1(t),
PNI−1(t)

128 2nd-order systems used in the construction of DtN
operator in waves at the last specific-time iteration
NI−1. They model body to body, Kutta strip to body
and wake to body interactions, respectively. They are
calculated using the induction-factor matrices. All
of them must be updated at every timestep. Their
specific-time-iteration values (e.g. GI) change also
during the specific-time iterations until they take their
final values (e.g. GNI−1) at the last specific time itera-
tion when I = NI−1.
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Chapter 1

Introduction

In the present introductory chapter, we begin with a brief historic review on biomimetic sys-
tems, such as flapping-wing propulsors and oscillating wing energy converters, inspired by
aquatic and volant organisms, called also aerohydrobionts (Rozhdestvensky and Ryzhov 2003).
These systems, as we will demonstrate, are ideally suited for converting directly environmental
(sea wave) energy to useful thrust for ships and other marine vehicles. Moreover, flapping-foil
systems can be used as novel hybrid energy converters for energy extraction from both tidal
currents and waves, nearshore. We will present the basic effort that has been put in this direc-
tion, as well as the recent ideas and the contribution of the present thesis in those topics.

1.1 Augmenting ship propulsion in waves using biomimetic
flapping-foil systems

Biomimetic propulsors is the subject of extensive investigation, since they are ideally suited
for converting directly environmental (sea wave) energy to useful thrust. In addition, in re-
cent years, requirements and inter-governmental regulations related to vehicle technology for
reduced pollution and environmental mitigation (e.g. Kyoto treaty and enactment of Energy
Efficiency Design Index, EEDI, Energy Efficiency Operational Indicator, EEOI and North Amer-
ican Emission Control Area Regulations, ECA, for ships) have become strict, and immediate
response to transportation greening has been recognized to be an important factor concerning
global warming and climate change. The contribution of cargo ships in global pollution has
been recognized as one of the most important factors (Colvile et al. 2001; Flannery 2005), taking
also into account the bad fuel quality of seagoing vessels in relation to other modes of transport.
Indeed, images and data available from satellites (MARINTEK et al. 2000) reveal that large ar-
eas around the main sea-ocean shipping lines are almost permanently covered by clouds with
large concentrations of pollutants from ships’ engines. In this direction, current studies ex-
amine - among other issues - the optimization of propulsive efficiency of ships operating in
realistic sea states, taking into account added resistance effects, see e.g. Belibassakis (2009) and
Belibassakis et al. (2013b). We note that in moderate and severe sea conditions, due to waves,
wind and other reasons, ship propulsion energy demand is commonly increased well above
the corresponding value in calm water for the same speed, especially for bow/quartering seas.
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Figure 1.1: Ship hull equipped with flapping wing(s) located at a forward station. Detailed view
of the flapping wing, which oscillates vertically (shown by a solid arrow) and around its pivot axis

(shown by a dashed arrow), is included in the subplot.

On the other hand, evolution of aerohydrobionts, through millions of years of natural selec-
tion/optimization, arrived to the flapping wing as their single propulsion system. The main
difference between a biomimetic (flapping wing) propulsor and a conventional propeller is that
the former absorbs energy by two independent motions, the heaving and the pitching motion,
while for the propeller there is only rotational power feeding. Actually, research and devel-
opment concerning flapping foils and wings, supported by extensive experimental evidence,
theoretical and numerical analysis, has shown that such systems at optimum conditions could
achieve high thrust levels; see, e.g. Triantafyllou et al. (2000), Triantafyllou et al. (2004), Von
Ellenrieder et al. (2008), Taylor et al. (2010) and Politis and Tsarsitalidis (2014).

In real sea conditions, the ship undergoes moderate or higher-amplitude oscillatory motions,
due to waves. In this case the ship motions, especially the vertical to the free surface plane,
could be exploited for providing one of the modes of combined/complex oscillatory motion
of a biomimetic propulsion system, free of cost; see Fig.1.1. This idea has already been ex-
ploited by other scientists. More specifically, the initial attempts focused on using passively
flapping wings underneath the ship hull, to transform energy stored in ship motions to useful
propulsive thrust with simultaneous reduction of ship motions. In such cases pitching motion
is induced by a spring loaded by the unsteady wing pressure distribution. In the following we
will present a brief literature review on the subject, while Rozhdestvensky and Ryzhov (2003),
Naito and Isshiki (2005) and Bowker (2018) could be good references for a more detailed re-
view.

The first published attempt was in 1895 by Herman Linden who filed a British patent for a
wave powered boat (Burnett 1979). Linden’s 13 ft long boat named Autonaut, moved against
the waves with a speed of three to four miles per hour, powered purely by wave-energy. The
boat was equipped with two underwater steel plates, one at the bow and one at the stern.
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Figure 1.2: Jakobsen equipped fishing research vessel Kystfangst, owned by the Institute of Fishery
Technology Research, with a bulbous bow and two foils on each side of the bow.

Figure 1.3: Fishing vessel equipped with flapping foil to improve propulsion in waves (Terao and
Isshiki 1991).

Latter, Jakobsen (1981) performed experiments in Norwegian Hydrodynamics Laboratories
(today MARINTEK) in Trondheim, Norway with a model boat of length 1.02 m, at a speed of
1.15 m/s in harmonic head sea waves of waveheight 0.13 m and wave period 1.2 s. Froude-
scaled to full scale, this is equivalent to a 40 m long ship propelling itself forward solely by
wave power in head sea waves of height 5.2 m at a speed of 14 kn. The speed in following
waves was about 15% lower. The model had spring-regulated wings, one above the bow,
and another beneath the stern. Furthermore, Jakobsen and his Wave Control Company used
combinations of two and four foils. A maximum speed of six knots was recorded on one
occasion. He also, latter, by gaining a funding from Norwegian Government, equipped the
fishing research vessel Kystfangst, owned by the Institute of Fishery Technology Research,
with two horizontal foils on the bow, see Fig. 1.2. Fuel savings of about 15-20% were obtained
in a wave height of 3 m using the foils at speeds of 4-8 knots (Berg 1985). However, the project
was terminated due to structural problems.
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Figure 1.4: Russian research fishing vessel equipped with flapping foil (Nikolaev et al. 1995).

Similar problem concerning wave energy extracting systems has been studied by Isshiki (1982).
In the latter work, a 2D model, treating the problem of an oscillating hydrofoil in water waves
was developed, extending Wu (1971) theory by introducing a free surface effect, and applied to
the investigation of the possibility of wave devouring propulsion. Terao (1982) also worked on
the same direction. Isshiki’s work has been further extended both theoretically and experimen-
tally by Isshiki and Murakami (1984) where the basic concept of passive type wave devouring
capability of an oscillating hydrofoil was studied. Furthermore, Grue et al. (1988) developed a
theory for a two-dimensional flat plate near the free surface using a frequency-domain integral
equation approach, where unsteady foil motions and wave devouring capabilities were illus-
trated. Predictions from the above theoretical model were found to be in good agreement with
the experimental measurements by Isshiki and Murakami (1984) for both head and following
waves. However, at lower wave numbers there were systematic discrepancies between theory
and experimental results attributed to nonlinear and free surface effects which were not fully
modeled.

Terao and Isshiki (1991) performed full scale tests on with a 15.7 m long fishing vessel; see
Fig.1.3. The projected hydrofoil area was 7.4% of the ship’s waterline area. Using the bow foil
not only managed to reduce pitching motion and bow slamming, but also a speed increase was
achieved in waves.

In 1995, the full-scale tests of a 174 ton Russian research fishing vessel Nikolaev et al. (1995),
equipped with a wing device for extracting sea wave energy, showed that such a device could
increase the engine power up to 45–87% and reduce ship’s motions by a factor of 2–2.5, see
Fig.1.4.

More recently, in 2008, the longest known voyage by a wave-powered boat took place. A wave-
propulsion mechanism, designed by Terao, was equipped to Suntory Mermaid II catamaran;
see Fig.1.5. In this way, Japanese sailor and environmentalist Kenichi Horie, sailed from Hon-
olulu, Hawaii, to the Kii Channel, Japan (Geoghegan 2008) in 110 days with pure wave energy,
which was longer than planned, due to unusually good weather and calm seas. In the
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Figure 1.5: The Suntory Mermaid II which sailed from Hawaii to Japan in 2008 (Geoghegan 2008).

Figure 1.6: Terao and Sakagami (2013) equipped an small autonomous boat, for ocean measure-
ments, with a wave devouring propulsion system (WDPS).

same direction Terao and Sakagami (2013) equipped an autonomous small boat, for ocean mea-
surements, with a wave devouring propulsion system (WDPS), i.e. a dual-fin system at the
stern for experimental research and full-scale applications; see Fig.1.6. Furthermore, Bøckmann
and Steen (2016) performed experiments with a model equipped with a foil below the hull for
motion reduction and thrust production in waves, achieving 60% reduction of the resistance in
waves with additional reduction 42% and 45% of vessels’ heaving and pitching motions,
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Figure 1.7: Bøckmann (2015) performed experiments with a model equipped with a foil below the
hull for motion reduction and thrust production in waves.

(a)

(b)

Figure 1.8: Photo of the experimental platforms exploited in the work of Bowker (2018) for the (a)
towing tank and the (b) free-running experiments of flapping-foil wave powered vessels.
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respectively; see Fig.1.7. Moreover, Huang et al. (2016) proposed an Eco-Ship empowered with
active flapping foils exploiting wave propulsion and studied that system experimentally con-
duction free-running model tests, reporting speed improvement up to 6.24% and significant
energy extraction. Recently, Bowker (2018) studied numerically and experimentally the dy-
namics of a flapping-foil wave powered vessel, focusing on wave propelled unmanned surface
vehicles (USVs). They offered design guidance for flapping foil wave powered vessels, and
proposed a method to simultaneously control forward speed and recover wave energy and
they also conducted free running forward speed experiments. They also reported that an in-
creasing interest in wave-powered vessels after 1980s and an almost twofold increase in that
research activity since 2005. Moreover, an extensive literature review on wave-powered USVs
can be found in the aforementioned reference. More recently, Bøckmann et al. (2018) estimated
the fuel savings for a general cargo ship employing retractable bow foils. They observed that
fuel savings were shown to decrease when installed power increases but remain at significant
level when the ship advances at full speed. They also demonstrated the importance of accu-
rate thrust calculations in the estimation of fuel savings, illustrating that simulations with the
proposed 3D nonlinear method and other high fidelity CFD tools are necessary.

Finally, in the field of computational fluid dynamics (CFD), De Silva and Yamaguchi (2012) ex-
amined in detail the possibility of extracting energy from gravity waves for marine propulsion,
by numerically studying a two-dimensional oscillating hydrofoil using the commercial soft-
ware Fluent. The overall results suggest that actively oscillating-foil systems in waves, under
suitable conditions, have the possibility to recover the wave energy rendering these systems
applicable to marine unsteady thrusters. In the work of Liu et al. (2016), an Unmanned Wave
Glide Vehicle (UWGV) which is driven only by wave energy, is proposed. An arrangement of
six 2D tandem asynchronous flapping foils was studied via turbulent CFD simulations. More
recently, Liu et al. (2018) worked with using the commercial software Fluent and examined
the propulsion performance of flexible flapping foils with prescribed deformations in regular
waves reporting that flexibility could enhance the propulsive performance increase the wave
energy extraction.

Figure 1.9: The case vessel with wavefoils deployed from work Bøckmann et al. (2018) were fuel
savings from the wave-foils were estimated.
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Figure 1.10: (a) Ship hull equipped with a flapping wing located below the keel, T = 2.8 m at a
forward station. (b) Same hull with a vertical flapping wing located below the keel, at the midship
section. Geometrical details of the flapping wings are included in the upper subplots. The main
flow direction relative to the flapping wings is indicated using a blue arrow. Black arrows indicate
linear oscillatory motion and red ones the actively controlled (pitching) motion of the wing about
its pivot axis, for which only a quite small amount of energy is provided (Belibassakis and Politis

2013).

More specifically, ongoing research work of the laboratory of Ship and Marine Hydrodynamics
of the School of Naval Architecture and Marine Engineering of National Technical University of
Athens implemented in the context of the project BIO-PROPSHIP (http://www.arion.naval.
ntua.gr/biopropship), is focused on the hydrodynamic analysis of flapping wings located
beneath the ship’s hull, operating in random motion; see Fig.1.10. The wing(s) undergo a
combined transverse and rotational oscillatory motion, while the ship is steadily advancing in
the presence of waves, modeled by directional spectrum. The present system is investigated
as an unsteady thrust production mechanism, augmenting the overall propulsion system of
the ship. In the first arrangement; see Fig.1.10(a), the horizontal wing undergoes a combined

http://www.arion.naval.ntua.gr/biopropship
http://www.arion.naval.ntua.gr/biopropship
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vertical and angular (pitching) oscillatory motion, while traveling at constant forward speed.
The vertical motion is induced by the random motion of the ship in waves, essentially due
to ship heave and pitch, at the station where the flapping wing is located. Wing pitching
motion is controlled as a proper function of wing vertical motion and it is imposed by an
external mechanism. A second arrangement of a vertical oscillating wing-keel, located beneath
the ship’s hull, is also considered; see Fig1.10(b). The transverse motion is induced by ship
rolling and swaying motion in waves. The angular motion of the wing about its pivot axis,
is again properly controlled based on the ship rolling motion in order to produce thrust, with
simultaneous generation of significant antirolling moment for ship stabilization.

Politis and Politis (2014) proposed a simple actively controlled enforced pitch motion, based
on the (irregular) history of wing’s vertical oscillation. In order to produce thrust, a flapping
foil performs a complex motion that can be decomposed to a linear and a rotational oscilla-
tion, while it advances with the ship’s forward speed. In Belibassakis and Politis (2013), wing’s
linear oscillation is provided by ship’s irregular motion in rough sea, to be more specific by
vessel’s heaving and pitching, at the exact station that the system is located. On the other
hand, foils rotation is actively controlled on the basis of its vertical motion and it is externally
enforced with low cost. They introduced a method for the coupling of ship dynamics with
unsteady flapping wing hydrodynamics using linear seakeeping analysis in conjunction with
unsteady lifting-line theory and non-linear 3D panel methods. First stage numerical calcula-
tions reveal that wave energy can be extracted from ship motions by flapping-foil propulsors
with concurrently reducing ship’s unwanted responses, enhancing in this way its stability and
the conditions of traveling.

Focusing in the importance of the effects associated with the interaction of the foil with the
sea waves and the free surface boundary, Filippas and Belibassakis (2014) developed a two
dimensional time domain boundary element method, in order to study the performance of a
hydrofoil that undergoes unsteady motions in the proximity of the free surface and in harmonic
waves. The free-surface boundary conditions were linearised. The extension of that method
in three dimensions and in the fully nonlinear problem is part of the present work. Validation
of the method has been done through comparison of calculations against linear theory, CFD
numerical methods and experiments. Moreover, the significance of the effects of the freely
moving boundary over the foil is underlined. Finally, it is demonstrated that the system’s
performance in harmonic-wave conditions is very promising.

Furthermore, in Sec.4.5.3 and in Belibassakis and Filippas (2015), aiming at the investigation
of the performance of the system in more realistic irregular waves that corresponds to specific
sea states, enriched that time-domain method, so as to be able to handle with random mo-
tions in random waves, coupling also the ship hull dynamics with foil hydrodynamics, in the
same manner as Belibassakis and Politis (2013) suggested. In this way they studied various
parameters of the ship-foil system in realistic sea condition, including the effects of foils finite
submergence.

Finally, in the work of the author Filippas (2015), the aforementioned method is applied, so as
to examine a pair of roll-stabilization wings, located at the side of the hull, for energy extraction
from the waves and thrust production purposes. The fins gain their linear oscillation (heaving)
from ship pitching and heaving responses in irregular waves, while the wing’s rotation (pitch-
ing) is properly controlled with respect to its vertical motion history, producing positive thrust
and augmenting ship’s overall propulsion.
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1.2 Energy extraction from waves and currents nearshore

Interaction of water waves with inhomogeneous currents in variable bathymetry regions is
important for a variety of engineering applications, including effects of waves on structures,
coastal management and harbor maintenance, as well as design and development of systems
for exploitation of marine renewable energy resources. Extensive analysis concerning wave-
current interaction in the nearshore and coastal regions have been presented by Peregrine
(1976), Jonsson (1990), Soulsby (1990), Thomas and Klopman (1997). Recent information can
also be found in the corresponding sections of reviewing articles; Battjes (2006), Cavaleri et al.
(2007).

For the prediction of wave-seabed-current interaction, coupled-mode models have been re-
cently developed, with application to the propagation/scattering of water waves over variable
bathymetry regions, in the presence of spatially varying currents, extending previous simpli-
fied mild-slope/mild shear models that are applicable to cases of slowly varying bathymetry
and current; Belibassakis et al. (2011). Also, the problem of transformation of the directional
spectrum of an incident wave system over a region of strongly varying three-dimensional bot-
tom topography is further studied in Belibassakis et al. (2014), where also the accuracy and
efficiency of the coupled-mode method is tested, comparing numerical predictions against ex-
perimental data and calculations by the phase-averaged model SWAN (Booij et al. 1999). In
the case of slowly varying environmental currents, where the vertical structure of the bound-
ary layer in the nearshore and coastal region could occupy the entire depth, as in the case
of tidal currents, the wave - vorticity interaction, is known to have a significant influence on
wave dynamics. In this direction various models for surface waves, interacting with vertically
sheared current, have been developed; see, e.g., Kirby (1984), Nwogu (2009), Touboul et al.
(2016) and the references cited there. Moreover, multimodal extensions of the mild-slope mild-
shear model (Touboul et al., 2016), taking into account the effects of evanescent modes, have
been recently presented by Belibassakis et al. (2017). Finally, in the work Belibassakis et al.
(2019) extended mild-slope models, able to model opposing shearing currents, are compared
and exploited to study Bragg scattering of waves in the presence of currents, over rippled
bathymetry.

The mutual existence of waves with currents in nearshore regions offers a motivation for com-
prehensive investigation of such resources, and the development of hybrid technological de-
vices, based on biomimetic systems (see e.g., http://www.biopowersystems.com/biostream.
html, and Fig.1.11). The latter could be found useful for the efficient exploitation of this type of
combined marine renewables, enhancing the power extraction which is important especially in
areas characterized by low wave potential. Recent research and development results, concern-
ing flapping-wing systems, supported also by extensive experimental evidence and theoretical
analysis, have shown that such systems, operating under conditions of optimal wake forma-
tion, could achieve high levels of efficiency; see e.g. Triantafyllou et al. (2000), Read et al.
(2003), Triantafyllou et al. (2004), Schouveiler et al. (2005), Rozhdestvensky and Ryzhov (2003)
for extensive review. However, the complexity of kinematics of flapping wings necessitates the
development of sophisticated power transmission mechanisms and control devices, as com-
pared to the standard hydrodynamic systems, such as water turbines and marine propellers.

http://www.biopowersystems.com/biostream.html
http://www.biopowersystems.com/biostream.html
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Figure 1.11: The bioSTREAM biomimetic system for exploitation of current flow energy, proposed
by BioPower.

Novel biomimetic systems based on oscillating foils could be found useful for the efficient
exploitation of combined wave and current marine renewables enhancing the power extrac-
tion which is important in areas characterized by lower wave potential coexisting with cur-
rents. Alternative biomimetic designs including flapping-foil devices have also been stud-
ied (see e.g., http://www.esru.strath.ac.uk/EandE/Web_sites/05-06/marine_renewables/
technology/oschydro.htm).

The idea to use a flapping foil to extract energy from currents is not new. McKinney and
DeLaurier (1981) have proposed a device to harvest energy by oscillating wings, while first
experiments were conducted by DeLaurier and Harris (1982). In the last decade, biomimetic
flapping foil devices have been extensively studied as flow energy converters; for a detailed
review see Xiao and Zhu (2014). In the majority of these works the foil is considered in an
infinite domain and the current flow as the only source of environmental energy, ignoring
the effects of free surface and incident waves. Xiao and Zhu (2014) classified those studies into
three categories with respect to the activation mechanism of the flapping foil. The first category
includes systems with prescribed rotational (pitching) and translatory (heaving) oscillatory
motions of the foil, the second category includes semi-activated systems with forced pitching
motion and induced heaving oscillations and the last one includes self-sustained systems with
induced motions at both degrees of freedom. The majority of the studies belong to the first
category, while semi-activated and self-sustained systems have not been explored extensively
even though the semi-activated systems seem to be a more feasible approach in practice.

Concerning semi-activated systems, Shimizu et al. (2008) and Peng and Zhu (2009) using Navier-
Stokes solvers studied the performance of a flapping foil as a current energy converter. More-
over, the system was studied in the potential-flow framework by Zhu et al. (2009) using 2-D
thin-foil theory and 3-D BEM. The study demonstrated that 3-D effects would decrease the ab-
sorbed power while ground effect could minimize that loss. Parametric studies supported by
numerical models mapped the power extraction performance for different pitching amplitudes

http://www.esru.strath.ac.uk/EandE/Web_sites/05-06/marine_renewables/technology/oschydro.htm
http://www.esru.strath.ac.uk/EandE/Web_sites/05-06/marine_renewables/technology/oschydro.htm
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Figure 1.12: A laboratory-scale model of a semi-activated flow-energy harvesting device Huxham
et al. (2012).

and oscillation frequencies; see, e.g., Kinsey and Dumas (2008), Zhu (2011). Also, experimental
studies were conducted by Huxham et al. (2012) at small scale in a water tunnel with promising
results. In a recent work Wu et al. (2015) two auxiliary smaller hydrofoils were employed to en-
hance the performance of the main oscillating foil energy converter by employing mechanisms
of induced vortex interaction. Although, a few works concerning semi-activated systems have
been published, there exists an important limitation, the assumption that the incident current
flow is uniform and steady, which is an oversimplification, as also reported by Xiao and Zhu
(2014), because tidal currents occurs with nonuniform vertical structure and moreover interact
with free-surface gravity waves and varying bathymetry.

The effects of incoming waves have been considered in studies of flapping foil propulsion and
thrust augmentation. It has been demonstrated that flapping foil thrusters operating in waves,
while traveling at constant forward speed, are very efficient, and could be exploited for aug-
menting the overall ship propulsion in waves by directly converting kinetic energy from ship
motions to thrust; see, e.g., Belibassakis and Politis (2013), Politis and Politis (2014), Belibas-
sakis and Filippas (2015), Bøckmann and Steen (2016), Bowker (2018). In previous works poten-
tial based panel methods and CFD tools have been developed for the hydrodynamic analysis
of these systems, including the effects of the free surface. Predictions are found to be in agree-
ment with other methods and experimental data; Filippas and Belibassakis (2014), De Silva and
Yamaguchi (2012). Also, it has been demonstrated that significant energy can be extracted by
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the system, and industrial initiatives have appeared for developing the flapping foil system for
wave energy extraction and thrust production (see, e.g., http://www.arion.naval.ntua.gr/
biopropship and http://www.seaspeed.co.uk/news/wave-foil-developments). More details
on that interesting subject have been presented in Sec.1.1.

Recent results confirmed by experimental evidence illustrate that flapping foils as tidal energy
devices could be an attractive alternative to conventional turbines. Many researchers argue
that energy harvesters utilizing flapping foils can be more efficient than rotary turbines as
they are not prohibited by the Betz limit; see, e.g., Garrett and Cummins (2007), Dabiri (2007),
Young et al. (2014). The above limit does not allow the turbines to harness more than 59.3%
of the incident power. Kinsey and Dumas (2012) have reported a 59.9% efficiency for two
flapping foils in a tandem configuration. Furthermore, in Sec.4.5.4 and in the work Filippas
et al. (2018) the flapping foil operating in waves and sheared current in coastal environment is
studied, showing that the energy extraction can be significantly increased. In particular, with
appropriate control of motion parameters to take advantage of extra power offered by the wave
an efficiency of 53.5% is achieved, for a single foil with 25◦ pitching amplitude.

To be more specific, Sec.4.5.4 is focused on the investigation of oscillating hydrofoils in the pres-
ence of waves and sheared currents, examined as biomimetic systems for extraction and ex-
ploitation of this kind of marine renewables in nearshore regions, operating as semi-activated
wave and flow energy device. The pitching motion of the foil is appropriately tuned in or-
der to develop heaving forces, due to alternating lift, and drive the hydraulic generator. The
hydrodynamic analysis is based on the coupled-mode model, presented by Belibassakis et al.
(2017), for the propagation of waves in the presence of sheared currents, in conjunction with
time domain Boundary Element Methods (BEM) for the disturbance lifting flow developed by
the hydrofoil, in variable bathymetry. The effect of the wavy free surface and variable bottom
topography are taken into account through the satisfaction of the corresponding boundary con-
ditions. It is indicated that significant energy can be extracted, and that the power gain from
the waves increases well above the maximum values predicted for the system in nonuniform
flow.

1.3 Main original contributions

In the context of the present PhD thesis a) a time-domain boundary element method (BEM) and
b) a high performance computing (HPC) code are developed and c) employed for the study
of novel biomimetic systems, with application to ship and marine hydrodynamics exploiting
renewable energy resources to enhance the efficiency and the performance of the systems. In
the sequel, the main original contributions are presented, categorised to innovations related
to a) the numerical method, b) the computational code and c) the application. A short CV
containing a list of the most significant publications is included at the end of the thesis.

1.3.1 Innovations in the numerical method

Our effort aims to the hydrodynamic analysis of lifting flows around solid bodies of arbitrary
geometry, performing general unsteady motion, in a fluid bounded by the free surface and the

http://www.arion.naval.ntua.gr/biopropship
http://www.arion.naval.ntua.gr/biopropship
http://www.seaspeed.co.uk/news/wave-foil-developments
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general-shaped bottom, in the presence of periodic (linearised or nonlinear) or more general
free-surface gravity waves. The method and the computational code can be 2D or 3D and
linearised in various levels or fully nonlinear with respect to a) the geometry of the body b) the
motions, the evolution of the c) free surface and d) the trailing vortex sheet and the incident
waves. In specific cases, the additional effects of shear currents and general bathymetry are
included in the modeling.

In the work of Zhu et al. (2006), implemented in the context of a collaboration between Mas-
sachusetts Institute of Technology (MIT) and the University of California, San Diego (UCSD),
the effects of the free-surface, in the unsteady motion of a foil without incident waves are pre-
sented. To be more specific, the free-surface effects on an underwater three-dimensional foil
undergoing constant translation and periodic oscillation using a hybrid computational implic-
itly coupled method. In this approach, for the fluid motion around the foil potential flow is
assumed and a BEM is used for the solution. The shed vorticity is represented as a shear
layer originated from the trailing edge, while the linearised free-surface waves are resolved
by a spectral algorithm. Moreover, in the recent work Xu et al. (2017), the 2D version of our
method, presented in Filippas and Belibassakis (2014), is extended to treat flapping hydrofoils
beneath the free-surface including weakly nonlinear 5th-order Stokes incident waves.

Via the present PhD thesis, the research team of the project BIO-PROPSHIP (http://www.
arion.naval.ntua.gr/biopropship), proceed a few steps forward, by implementing a) a fully
non-linear formulation, b) including nonlinear oblique incident waves with c) the coupling be-
tween the free-surface and the lifting body-wake dynamics, implemented in a strong explicit
manner.

The direct coupling is obtained as follows. The kinematics of the problem are exploited to set
up a linear boundary integral constraint and the dynamics of the free-surface, the evolution of
the wake and the pressure-type Kutta condition are used to set up the dynamical-system equa-
tions. The reformulation of the initial boundary value problem (IBVP) to a boundary integral
formulation is performed and the extended1 Dirichlet-to-Neumann (DtN) operator is obtained
in the form of a weakly singular boundary integral equation (BIE). The spatially discretised
form of the dynamic system and the extended DtN is obtained by means of BEM, collocation,
curvilinear finite difference method (CUFDM), obtaining in this way a system of 1st-order (spa-
tially and temporarily) nonlocal differential equations, with explicit and implicit nonlinearities,
with a linear algebraic constraint. A time-steeping method is then implemented, based on the
time integration of the nonlinear constrained system of evolution equations. High-order multi-
step time-integration schemes, that belong to the family of Runge Kutta methods for 1st-order
systems, are exploited for the solution. Explicit high-order methods, with extended stability
manifold, are used in general, while implicit schemes, that are theoretically A-stable, are se-
lected when the system is stiff, implemented via a Newton-Raphson general iterative scheme,
with the Jacobian calculated numerically with 2nd-order central finite differences. The special
treatment of the implicit and the explicit nonlinearities is presented in detail at the correspond-
ing sections and will not be discussed here.

In the studied cases, small differences in calculated integrated quantities were observed be-
tween present method and CFD analysis which are attributed to viscosity effects. The present
method is able to provide good predictions, at least in the examples that are characterized by

1The classical DtN operator is extended to lifting flows beneath the free-surface. The extended form include
the effect of the trailing vortex sheet and the Kutta strip.

http://www.arion.naval.ntua.gr/biopropship
http://www.arion.naval.ntua.gr/biopropship


1.3. Main original contributions 15

small and moderate angles of attack, where leading edge separation and dynamic-stall effects
are not significant. It is worth noting, that the computational cost of the present boundary
element method is order(s) of magnitude less, rendering our approach quite competitive and
efficient, especially for initial design, optimization and active control development.

1.3.2 Innovations in the computational code and its performance

The software development is implemented using for its backend, general-purpose computing
on graphics processing units (GPGPU), exploiting the programming language CUDA2 C/C++.
The frontend of the software is implemented using programming language MATLAB3. More-
over, the design of a user interface and a reference manual has been initiated, however that
task is left as a subject for future work. In the present work, the simulations are performed
in a GTX1080 Nvidia GPU, with 2560 single precision cores and 8GB available device random
access memory (DRAM), while for the programming of the computational code the version 8
of CUDA is used. The HPC GPU-accelerated computational code that is developed, enables us
to study efficiently the spatial and temporal grid independence of the numerical method and
to perform systematic investigation of complex, coupled, nonlinear and unsteady phenomena
even at the cases when the simulation duration is necessary to extend over many periods. It is
worthwhile to mention that the performance of the computational code, both in terms of time
and space complexity, is substantially higher than the performance of a corresponding serial
or parallel CPU-BEM code (and even higher in the case of a viscous CFD code), implemented
by exploiting resources of similar cost. Moreover, due to the the specific numerical treatment
of the problem (see also Sec.1.3.1), the truncation of the horizontally infinite domain using a
PML, the exploitation of mixed precision arithmetics and the proper handling of induction-
factor matrices (see the discussion bellow Eq.2.25), the present GPGPU computational code is
very efficient in terms of space complexity. To be more specific, in the present case where free-
surface discretisation is required the memory demand from the VRAM is only 0.1GB higher in
comparison with the infinite domain case. This is crucial if we consider the limited amount of
memory available even in modern GPUs.

1.3.3 Innovations in the applications

The present work features a few original contributions to the field of applied ship and ma-
rine hydrodynamics. It is demonstrated that the proposed method can be exploited for the
design and optimisation, efficient operation, assessment and control of novel systems, that are
inspired by nature and are designed to exploit renewable energy resources enhancing their ef-
ficiency or performance. Particularly, a specific lifting body that is thoroughly studied in the
present thesis is the flapping foil. Novel applications of flapping-foil biomimetic systems, to-
gether with the main original contributions of the present work, are discussed in the following
subsections.

2To be more specific, CUDA (compute unified device architecture) is a parallel computing platform and appli-
cation programming interface (API) model, created by Nvidia.

3To be more specific, MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment
and proprietary programming language, developed by MathWorks.
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1.3.3.1 The flapping foil as an efficient main propulsion system and the concept of the
wave-augmented biomimetic propulsor

That novel biomimetic system, that is inspired by the aquatic locomotion of hydrobionts as
it is demonstrated in Chapter 2 and in other references from the literature (Rozhdestvensky
and Ryzhov, 2003; Taylor et al., 2010; Triantafyllou et al., 2000, 2004; Tsarsitalidis, 2015; Von
Ellenrieder et al., 2008) , can be applied for the efficient propulsion of marine vehicles. More-
over, remaining in the context of ship hydrodynamics and performance enhancement, that sys-
tem is studied as an efficient wave-augmented unsteady main propulsor; for more details see
Sec.4.5.2, Filippas and Belibassakis (2014). Our analysis indicates that significant efficiency is
achieved under optimal operating conditions and the free surface effects cannot be neglected.
In the presence of waves the thrust coefficient is observed to raise well above its value in in-
finite domain, with maximum gain reaching 20%, for appropriate selection of the parameters.
The present method could serve as a useful tool for the assessment, preliminary design and
control of the studied system, extracting energy from sea waves for marine propulsion.

1.3.3.2 The wavefoil for the augmentation of ship main propulsion in waves

Our interest is mainly focused to biomimetic flapping foils (wavefoils4) operating as innova-
tive auxiliary propulsion systems, augmenting ship main propulsion in waves; see Sec.1.1 and
Sec.4.5.3, the state-of-the-art reviews Rozhdestvensky and Ryzhov (2003), Naito and Isshiki
(2005) and the original-research articles Belibassakis and Politis (2013), Belibassakis and Filip-
pas (2015), Filippas (2015), Bøckmann and Steen (2016) and Bowker (2018). Numerical results
concerning thrust and power coefficients are presented, indicating that significant thrust can
be produced under general operating conditions. The present work can be exploited for the
design and optimum control of such systems extracting energy from sea waves for augment-
ing marine propulsion in rough seas, with simultaneous reduction of ship responses offering
dynamic stabilization.

1.3.3.3 Biomimetic flapping-foils as combined marine energy extraction devices nearshore

The aforementioned application initially attracted the entirety of our efforts and attention.
However, later the set of our scientific interests was enriched by the inclusion another po-
tential application of the oscillating-foil biomimetic systems, i.e. the utilization of combined
renewable energy resources, such as tidal currents and waves, nearshore; see e.g. Sec.1.2 and
Sec.4.5.4, the state-of-the-art review Xiao and Zhu (2014) and the original-research articles Zhu
and Peng (2009), Huxham et al. (2012), Filippas et al. (2018). Results are presented concern-
ing the performance of the system in both waves and nonuniform currents, for a wide range
of parameters, including cases where the wave frequency is different from the pitching fre-
quency of the hydrofoil. It is indicated that significant energy can be extracted, and that the
power gain from the waves increases well above the maximum values predicted for the sys-
tem in uniform flow. The present method can be applied to the design and optimum control

4The terminology wavefoil is introduced in the recent PhD thesis of Bøckmann (2015), whose main original
contribution was the experimental study of the system. Another recent experimental study on the specific subject
can be found in Bowker (2018)



1.4. Implementation of the GPGPU computational code 17

of such biomimetic systems operating in the nearshore/coastal region and extracting energy
from waves in the presence of ambient currents.

1.4 Implementation of the GPGPU computational code

For the efficient implementation of the numerical algorithm, a computational code is devel-
oped, exploiting parallel programming techniques and general purpose programming on graph-
ics processing units (GPGPU), using the CUDA C/C++ application programming interface
(API). One of the GPUs exploited in the present work is the Nvidia GTX1080, based on the
GP104 Pascal architecture with 2560 single precision cores and 8GB available VRAM. For the
development of the code the cuBLAS and cu-SOLVER libraries were used for matrix-vector,
matrix-matrix operations and linear system solvers. Moreover the version 8.0 of CUDA is
used. In the sequel we briefly present a few aspects of the present GPGPU code and useful
guidelines on the GPGPU programming

The present numerical method can be characterised as compute-intensive, due to the compu-
tationally demanding calculation of the singular integrals required for the construction of the
induction-factor matrices. A mixed precision arithmetic scheme (Trompoukis, 2012) is used to
optimise the performance of the algorithm and is implemented in the context of object-oriented
programming using templates; see e.g. Horton (2014). The exploitation of of mixed precision
arithmetic reduces the total number of global memory accesses increasing the parallel effi-
ciency of the GPU code without compromising the accuracy of the solution. Most commercial
GPUs have more cores capable of single precision operations than double precision. This leads
to a higher total throughput of single precision calculations, meaning that the same problem
can be solved faster using single precision floating point arithmetic. For example, the NVidia
Pascal architecture SM has 128 FP32 (single-precision) cores but only 4 FP64 (double-precision)
cores. Furthermore, storing large matrices in single precision can reduce significantly the mem-
ory usage of the software. In this way, larger problems can be solved entirely on the GPU
without the need of data transactions between the RAM and the device memory. Of course
some calculations need double precision in order to be evaluated correctly. So, a mixed pre-
cision arithmetic scheme should be devised to achieve the best performance possible. In case
of the Boundary Elements Method, the calculation of the singular integrals, for the diagonal
elements of the induction-factor matrices, that appear in the evaluation of the self-induced po-
tential demand double-precision arithmetic. The results are then converted to single-precision
and stored together with the induced potential factors calculated with single-precision arith-
metic. The solution of the linear system is then performed in single-precision. Extensive use of
templates allows for fine control over precision. In this way a precision scheme can be found
that balances computation time and solution error. In Sec.2.10.2 the execution times and the
error for double precision and mixed precision arithmetic are compared.

Of the utmost importance is the proper design of the GPU grid. This is crucial in the case of
data-intensive processes where the proper storage and transfer of the data affects significantly
the simulation time. However it is still important in the present case of compute-intensive
method when it comes to the development of an elegant, comprehensive code and its perfor-
mance. To be more specific, the basic processing unit is the thread. The thread can be perceived
as a set of instructions to be executed by the assigned core. A GPU, as any other processing unit,
can handle a fixed maximum number of threads at a time. This maximum number of parallel
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threads is determined by the capabilities of the GPU and is limited by the number of available
cores. The threads are organized in groups called blocks. A block cannot contain more than
1024 threads, and the optimal number of threads per block are determined by the demand in
registers a thread has, the number of cores available and the nature of the algorithms used.
When a kernel is launched the user sets the number of threads in a block and the number of
blocks. This structure of blocks and threads is referred to as a grid. The grid and the blocks can
be 1D, 2D or 3D, with different number of dimensions having advantages in different cases.
For example, for the calculation of induction factor matrices, the GPU-BEM code developer
will find it easier and more intuitive to use 2D grids and blocks. In order to facilitate the access
to specific data and the execution of specific instructions, the thread is assigned a unique ID
withing the block. Similarly, the blocks are assigned a unique ID within the grid. Therefore, by
combining the two IDs, each thread in the global grid can be identified by a unique number.

The instruction execution model adopted by Nvidia for their GPUs is that of "Single Instruction
Multiple Data" (SIMD). The threads of a block are grouped together in "warps" of 32 threads.
The threads belonging to a warp must execute the same instruction simultaneously, but the
data onto which the threads operate can differ. This model of instruction execution is ideal for
massively parallel applications and the simplicity of the hardware implementation allows for
greater efficiency and enhanced performance. On the other hand, the SIMD model can have
some drawbacks in certain applications. For example, when an "if" statement is introduced
in the application and differentiates the execution flow of the threads in the same warp to
two blocks, the threads executing the second block will stall until the threads executing the
first block have finished, affecting the performance significantly. According to the SIMD same
instructions on different data are performed simultaneously and not different instructions on
different data. However, as denoted in Sanders and Kandrot (2010): "there is yet another class
of parallelism to be exploited on Nvidia graphics processors. This parallelism is similar to the
task parallelism that is found in multithreaded CPU applications. Rather than simultaneously
computing the same function on lots of data elements as one does with data parallelism, task
parallelism involves doing two or more completely different tasks in parallel". Although in
the present problem the calculation a) of single and b) double layer induction-factor matrices
require essentially different instructions, we have used pointers to functions and a 3D grid
to perform simultaneously that two distinct compute-intensive parts of the algorithm. An
alternative could be the implementation of the computational code exploiting streams; more
details can be found in the aforementioned reference.

Moreover, special attention should be given to the above considering also the number of reg-
ister the GPU-kernels require, aiming to the maximization of the achieved occupancy during
the execution of the kernel. In order to achieve the maximum computational capacity of the
GPU, all the available CUDA cores must be used. There are many parameters that must be
determined to accomplish the maximum occupancy of the GPU Achieved Occupancy. First of
all, the workload of the threads within a block must be balanced. This means that the threads
should take the same time to finish the scheduled work. If some threads need more time to
execute, at the end of the kernel there will be less active warps, using only a subset of the cores.
The same is true about the unbalanced workload of blocks within a grid. In this case, limiting
the size of the blocks and distributing the workload to more blocks will increase the efficiency
of the algorithm, because new blocks will be launched as the previous ones will finish their
execution. Another issue that can have an impact on the occupancy is when too few blocks are
launched. If the number of blocks launched is less than the maximum number of blocks that
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can run simultaneously across all streaming multiprocessors (SMs) then the occupancy is lim-
ited. The maximum number of blocks that can run at once on the GPU is called a "full wave".
When a kernel is launched with more blocks that a full wave then the blocks that cannot fit
into an SM will be scheduled for after another block has finished. Moreover, each thread of
a block will use the registers available to that block. This means that the limited register file
must be adequate for all the threads of the block. To achieve this the block size may need to be
decreased or the register count per thread my be limited at compilation. Taking into consider-
ation all the above effects, the size of the block and the number of registers allocated to each
thread should be determined for the hardware the code is run on. To determine these factors,
the NVidia occupancy calculator can be used. For a GTX1080 GPU with compute capability
6.1, to achieve maximum warp occupancy on each SM, the register count for each thread is
limited to 63, due to the limited register file.

The other problem that arises during implementation is memory coalescence. In order to max-
imize the efficiency of the algorithm, the right data-structures should be chosen in order for
threads of a warp running in parallel to access data that are spread in an as small as possible
memory interval. In this way, we can take advantage of the hardware and use the complete
bandwidth of the GPU memory.

For the proper summation and storage of data that are calculated simultaneously atomic op-
erations are exploited. To be more specific, the "atomicAdd" function whose double precision
version is supported by the the version 8.0 of CUDA, is used. In this way the calculation of
the right hand ride of the DtN operator and the multiplication of that matrix with the corre-
sponding vector of singularity intensity, as well as the calculation of the free-wake velocities is
implemented in an efficient manner both in terms of time and space complexity.

In the case of frequent communication between GPU (device) and CPU (host), the proper se-
lection of method for the storage and transfer of data is important. In the present case the
backend of the software is executed in GPU and therefore a minimum amount of data is trans-
fered between the device and the host. For this reason, the conventional memory management
functions "cudaMalloc" and "cudaMemcpy" are used for the allocation and transfer of data,
respectively. However, in the case of more frequent CPU-GPU communication or in the case
of shared memory Multi-GPU systems (Cabezas et al., 2015) the alternative offered by zero-
copy techniques and the unified memory should be examined. To be more specific, Nvidia has
introduced the unified memory technology to facilitate the development of HPC codes. This
technology allows the use of RAM and device memory (even for multiple GPUs) in a unified
address space that hides the data migration from and to the RAM. The data transfer is man-
aged by the CUDA API and as a result the programmer does not need to devote time into
optimizing this process accelerating development.

The performance of the GPGPU computational code, both in terms of time and space com-
plexity, is substantially higher than the performance of corresponding serial or parallel Cen-
tral Processing Unit (CPU) codes, implemented by exploiting resources of similar cost. That
argument is supported by performance analysis and benchmarking between serial CPU and
parallel GPU calculations in Sec.2.10.2, Sec.2.10.3, Sec.3.4.5.2, Sec.3.5.3.4, Sec.4.5.1 and Sec.4.5.2.





21

Chapter 2

Unsteady lifting bodies in unbounded
domain

2.1 Summary

The present chapter is dedicated to the problem of unsteady lifting bodies in unbounded do-
main. We assume that the body and the wake boundaries remain in adequately large distance
from the other boundaries (free-surface, bottom, lateral walls, shore etc) so as to be able to
ignore the interaction with them. The effects of an unsteady non-uniform background field,
that could model weakly rotational fields lying on the background (ship wake, incident waves,
non-uniform current etc), are also included in the formulation. Mathematical formulation is
based on the theory of incompressible, inviscid, potential flow, assuming that the rotational
part of the flow is restricted in the trailing vortex sheets emanating from sharp edges; e.g. the
trailing edge in the case of a foil. The motion and the geometry of the body are general, thus
no linearisation has been applied. The body contour is modeled as a surface of potential dis-
continuity. In the present chapter the body motion is prescribed, however the method has been
extended to solve problems that include free motions of finite degrees of freedom; see e.g. the
problem of the semi-activated foil in Sec.4.5.4. The studied lifting-flow problem has unsteady
character and a vortex sheet, with spatially variable vorticity, is generated from the trailing
edge of the hydrofoil, modeled as a surface of potential discontinuity too. The dynamics of
the wake are not linearised and the evolution of the wake is obtained in the context of a time-
stepping method. To be more specific, we have developed two versions of the wake model, one
based on the linearization of the trailing vortex sheet dynamics and another that includes fully
nonlinear free-wake analysis. Both models lead to similar results in the region of interest to
the problem and therefore the first simplest scheme which demands also lower computational
cost is more efficient and suitable for application at the present problem. Also a Pressure-type
and a Morino-type Kutta conditions are compared demonstrating that the first gives more ac-
curate results concerning both pressure distribution and integrated loads. The formulation of
the problem is based on the potential theory and the boundary integral equations (BIE). For
the numerical solution of the 3D, unsteady and nonlinear problem an efficient (in terms of
both time and space complexity) GPU-accelerated boundary element method (BEM) is devel-
oped, based on a formulation that is direct with respect to the potential. The calculation of
generalised forces is obtained without any further assumption by pressure integration. The
latter is calculated using an approximate Bernoulli equation, capable to treat weakly nonlinear
background flows.
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We begin with the definition of the unsteady initial boundary value problem (IBVP) problem
in infinite domain. The pressure-type Kutta condition will serve for the construction of the
dynamical system equation and the other kinematic boundary conditions will provide appro-
priate constraints. The application of Green’s formula for the representation of the potential
from its boundary values will be used to obtain a weakly singular Boundary Integral Equation
(BIE), that will serve after discretisation as an algebraic constraint. Derivation of representa-
tion theorem and BIE and also the treatment of the singular integrals that appear have been
discussed in Filippas (2013), Politis (2011b). In the next, we describe the way we can obtain
the aforementioned algebraic constraint that is a DtN operator via discretisation of the BIE.
We use a boundary element method (BEM) for the spatial discretisation obtaining a discre-
tised BIE that satisfies an approximate form of the boundary condition on the body’s contour
through collocation. Then the method for the velocity calculation with the representation the-
orem and a curvilinear finite difference method (CUFDM), in variable, non Cartesian and non
orthogonal coordinate systems is presented. A thorough description of the free-wake model
follows, for the treatment of the implicit nonlinearity that is introduced by the wake dynamics.
That approach is based on the velocity representation theorem supported with desingularisa-
tion techniques and is implemented efficiently in the context of GPGPU programming. Also,
an approximate Bernoulli’s equation, for the calculation of pressure is derived by integrating
Euler’s equations for incompressible flows. That theorem is exploited for the derivation of
the pressure-type Kutta condition. Exploiting the latter dynamic condition we proceed to the
construction of a system of (spatially and temporarily) nonlocal differential equations, with
explicit and implicit nonlinearities, with a linear algebraic constraint. Next, a method for time
integration is presented.

Concerning numerical results and applications, the interesting problem of efficient thrust pro-
duction using biomimetic flapping-foil systems is investigated. The predictability of the method
and its limitations, concerning the problem of a flapping-foil propulsor, are investigated through
comparison with experimental measurements from the literature while the importance of 3D
effects and nonlinearity as well as the superior performance of the developed GPU code, are
illustrated. The present method is applied to obtain numerical estimations of basic hydrody-
namic quantities such as the lift and thrust coefficients, over a range of motion parameters,
including reduced frequency, Strouhal number, maximum angle of attack and aspect ratio.
Our analysis indicates that significant efficiency is achieved under optimal operating condi-
tions. The present method and the GPU code could serve as a useful and efficient tool for the
assessment, preliminary design and control of the studied efficient marine propulsion system.

2.2 Definition of the unsteady lifting problem

Consider a lifting body performing unsteady motion on a non-uniform unsteady background
field and in unbounded domain. Practically, the assumption of unbounded domain is adequate
when the body remains at large distance from additional boundaries (free-surface, bottom,
lateral walls, shore etc). The domain of definition of the problem is an open semi-bounded
domain D(t) ⊆ Rn (where n = 2, 3) with boundary ∂D(t) which is supposed to be smooth
everywhere except at trailing edge. The problem is time dependent including moving with
prescribed motion boundaries or free-boundaries, therefore the domain of definition and most
of the boundaries are variable in time. The unsteady foil is represented by a moving boundary
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∂DB(t), whose motion is prescribed. Another boundary ∂DW(t), that represents the trailing
vortex sheet, is generated from the trailing edge. The basic reference frame is earth-fixed and
a corresponding Cartesian coordinate system Ox1x2x3 is defined. However, another auxil-
iary boundary-fixed frame of reference will be exploited in some cases and a corresponding
Cartesian coordinate system1 Oxb1xb2xb3 is defined. The total velocity field ∇Φ(x; t) (where
x ∈ D, t ∈ R+

0 ) consists of the unsteady background velocity2 VG(x; t) which is assumed to be
known and the disturbance velocity V(x; t) due to the presence of the body and its wake. We
assume that the disturbance flow is irrotational and thus a velocity potential Φ(x; t) can be de-
fined as a twice continuously differentiable function in D(t), with ∇Φ = V. Also the limiting
boundary value3 of potential, denoted by ΦB(x; t), is defined on the boundary.

To proceed, let ∂D(t) denote the boundary and A a point on it. Let also (ξ, η) denote variable,
non Cartesian and non orthogonal curvilinear coordinates4 on ∂D. Then, in the case of moving
boundary, we can describe boundary surface ∂D as

rA(ξ, η; t) = rA[x(ξ, η; t)]. (2.1)

The limiting boundary value of Φ on ∂D is denoted by the function ΦB, defined by:

ΦB(ξ, η; t) .
= lim

δ→0
Φ[rA(ξ, η; t) + nA(ξ, η; t)δ; t]], (2.2)

where δ is a small parameter and nA a unit vector which is not tangent to ∂D at A (Politis,
2011b). Thus function ΦB has a domain of definition the surface ∂D and equals the limiting
value of Φ(x; t) as r → A ∈ ∂D. In the most general case, as we have mentioned, the function
Φ(x; t) can be discontinuous through the boundary.

In order to evaluate the total velocity field we need to solve the problem for the unknown
disturbance potential field Φ(x; t), thus in the following we will present the mathematical for-
mulation for the disturbance field.

1In the present case the boundary-fixed Cartesian coordinate system is located on the moving body boundary.
When the problem includes nonlinear free surface another boundary-fixed system is defined. The latter is located
on x1 = 0, x2 = 0 and the x3 is defined from the calculated total free-surface elevation, introducing to the problem
an implicit nonlinearity.

2The background field could model the ship wake where the propeller, rudder of flapping foil propulsor oper-
ates, for example at the design of wake adapted propulsors; the wake of a bluff body, when arrays of devices are
considered. It could also be a first approximation of the unsteady free surface wave field, when devices interacting
with waves are studied in the context of an unbounded domain formulation, assuming that the distance from the
free surface is adequate enough and emphasising to the effect of the velocity field and not to the interaction with
the free surface.

3The limiting boundary values or simply boundary values are defined with a specific limiting process. In this
way, each Φ is made by definition to be continuous in the D (i.e. in closure of D), even if it is discontinuous
through the boundary, like in the case of the trailing vortex sheet, where ΦB has different values as we approach
the boundary from the upper or the lower side. In the present work, the subscripts B, W, K, F, H denote boundary
values on the body, the wake, the Kutta strip, the free surface and the bottom, respectively.

4In the case of lifting bodies with foils (e.g. foils, rudders, propeller foils), not necessarily of trapezoidal plan-
form, ξ defines the chordwise curvilinear direction and η the spanwise direction. In the case of trailing vortex
sheets emanating from trailing edges, the curvilinear directions of ξ and η are defined in order to smoothly ex-
tend the bound curvilinear coordinate system beyond the trailing edge.
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The governing equation is the Laplace equation

∆Φ(x; t) = 0, x ∈ D, (2.3)

which represents the conservation of mass for incompressible and irrotational fluid.

Also, the boundary condition on the body

∂nB Φ(x; t) = [VB(x; t)−VG(x; t)] · nB(x; t) .
= b(x; t), x ∈ ∂DB, (2.4)

where the directional derivative is denoted as

∂nΦ(x; t) = ∇Φ(x; t) · n. (2.5)

The boundary condition in Eq.(2.4), is the Neumann type, no entrance condition, which ensures
that the fluid particles follows the body surface and not penetrate into it. The second term in
Eq.(2.4) is the background-field velocity on the body contour.

We treat the above as an initial value problem and we assume that the potential and its deriva-
tives vanish at large distance from the body

lim
r(x|xB0)→∞

Φ(x|xB0; t) = 0, lim
r(x|xB0)→∞

∇Φ(x|xB0; t) = 0, r(x|xB0) = ‖x− xB0‖2. (2.6)

In the above equations, VB denotes the velocity on body boundary at the point xB ∈ ∂D, n is
the unit normal to the boundary vector pointing in D and ‖·‖2 is the Euclidean norm while
xB0 is a characteristic point on the body boundary, e.g. the origin of the body-fixed coordinate
system.

Furthermore, dynamic and kinematic boundary conditions should be satisfied on the wake
∂DW . The dynamic boundary condition

pu
W(x; t) = pl

W(x; t), x ∈ ∂DW , (2.7)

mandates that a free shear layer cannot carry loading and thus the pressure at the both sides of
it should be the same.

The kinematic boundary condition

∂nW Φu
W(x; t) = ∂nW Φl

W(x; t), x ∈ ∂DW , (2.8)

demands that the upper and the lower side of the shear layer cannot be separated to two dis-
tinct surfaces, thus the normal to the surface velocity is continuous through ∂DW . The super-
scripts u, l are used to denote the wake’s upper and lower side respectively, while the indices
B, W are used to denote values of the potential field and its derivative at the body surface and
the wake of the foil, respectively.

Using Eq.(2.7) and Eq.(2.8) in conjunction with the following approximate form of Bernoulli’s
equation (whose derivation is presented in Sec. 2.7)

p(x; t)
ρ

+ ∂tΦ(x; t) +
1
2
[∇Φ(x; t)]2 + VG(x; t)∇Φ(x; t) = 0, x ∈ D, (2.9)
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(a)

(b)

Figure 2.1: Comparison of different wake models: (a) 3D free wake model (b) 2D frozen and free
wake models.

we obtain

DtµW(x; t) = 0, x ∈ ∂DW , (2.10)

where µW = Φu
W − Φl

W denotes the potential jump (the dipole intensity) on the wake and
Dt(·) = ∂t(·) + Vm

W · ∇(·) is the material derivative, based on the mean total velocity Vm
W =

0.5(∇Φu
T + ∇Φl

T), on the trailing vortex sheet. The above relation states that ∂DW evolves
in time, as a material curve (when mean velocity is considered5) and its exact motion is a
part of the solution, introducing an implicit nonlinearity and increasing the complexity of the
problem and the computational effort for the solution; see Fig.2.1a. In the present work the
later difficulty is tackled by means of general-purpose computing on graphics processing units
(GPGPU). Another possibility is the application of a simplified wake model, based on the as-
sumption that the generated vortex sheet emanates parallel to the bisector of the trailing edge
and has the shape of trailing edge’s path; see the dashed line in Fig.2.1b. In this way, the free
wake dynamics are linearized, simplifying the problem and providing satisfactory predictions

5In the present work in order to obtain a tool to predict the vortex sheet dynamics we follow the approach pre-
sented in Politis (2004). In the latter work, the author states that Eq.(2.10) is "an equivalent form of the Helmholtz
dynamic equations for the case of free vortex sheets" in terms of µ. However, the argument that the vortex sheet
and dipole intensity evolves in time with the mean velocity, is quite heuristic and a more rigorous discussion of
the vortex sheet equation can be found in the work of Marchioro and Pulvirenti (2012). In the aforementioned
work, authors state clearly that a complete rigorous argument is not trivial and they provide a relevant discussion
in Sec.6.3. Moreover, in Saffman (1992) authors state that the argument "vortex sheets move with the fluid and are
composed of the same fluid particles" is "inadequate", because "it assumes that the proof of the Helmholtz laws
commutes with the limiting process which gives the vortex sheet. Also, the proof of Kelvin’s circulation theorem,
which provides an alternative approach to the Helmholtz laws, depends upon the velocity being continuous and
is incomplete in the presence of vortex sheets".
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in the case of low and moderate unsteadiness; more details can be found in Filippas and Be-
libassakis (2014). A similar wake model, assuming that the generated components of the wake
remain where shed, has also been described and used by La Mantia and Dabnichki (2009, 2011,
2012, 2013). Detailed analysis of different wake modes has been done by Politis (2016), demon-
strating their range of applicability as well as their limitations, concluding that "in the range of
the Strouhal numbers where natural flyers and swimmers operate, the frozen wake model can
be an attractive alternative for preliminary force predictions". Both models have been included
in the computational code we develop and are compared in Sec.2.10.

In the lifting case, enforcement of the Kutta condition is required in order to fix the circulation
at each time instant. A possible choice is a Morino-type version of the Kutta condition (Morino
and Kuo, 1974) , which permits direct calculation of vorticity transport to the wake, expressed
in terms of the potential jump at the trailing edge.

lim
ξ→ξTE

(Φu
B[xB(ξ, η); t]−Φl

B[xB(ξ, η); t]) = lim
ξ→ξTE

µW [xW(ξ, η); t],

xB ∈ ∂DB, xW ∈ ∂DW and xTE ∈ ∂DB ∪ ∂DW , (2.11)

Morino condition at the steady case is compatible with Kutta–Joukowski hypothesis that no
vortex filament exists at the trailing edge, see also Mohammadi-Amin et al. (2012) and Morino
and Gennaretti (1993). Morino-type Kutta condition can be derived from pressure-type Kutta,
under the assumption of linearized quasi-steady flow; see e.g. Politis (2011b) or Filippas (2013).
However, this approximation would lead to an overestimation of the thrust at high Strouhal
numbers, while a significant pressure jump is calculated as the trailing edge is approached;
similar findings have also been reported by other authors; see, e.g., Bose (1992). On the other
hand, application of the pressure-type Kutta condition has been recently criticized by La Man-
tia and Dabnichki (2009), stating that there is no experimental evidence supporting the notion
that the pressure difference at the trailing edge, especially for unsteady motion of high fre-
quency and large amplitude, ought to be equal to zero; see the detailed discussion and justifi-
cation of this approach in the aforementioned reference and in La Mantia and Dabnichki (2011).
Moreover, in Politis (2011a) a mixed-type Kutta condition is proposed. That idea is inspired by
the observation that at higher loadings, imposition of a pressure-type condition at blade tips
occasionally leads to a destruction of the shear layer geometry at those regions. According to
this approach a Morino condition is applied near the tips of the foil and a pressure-type con-
dition at the remaining trailing edge region. Leaving this interesting subject to be investigated
in detail in future research, in the present work, apart from the simple Morino condition that
is also included at the computational code as an alternative, a non-linear (quadratic), pressure-
type Kutta condition, requiring zero pressure difference at the trailing edge, is imposed as
follows

lim
ξ→ξTE

FPK[xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (2.12)
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where the operator FPK(·) is defined as follows

FPK[xB(ξ, η); t] =
{

∂t(Φu −Φl) +
[
0.5(∇Φu +∇Φl)

+0.5(Vu
G + Vl

G)
]
· (∇Φu −∇Φl + Vu

G −Vl
G)− 0.5

[
(Vu

G)
2 − (Vl

G)
2
]}

.

(2.13)

The above form of pressure-type Kutta condition, that is appropriate for the treatment of
lifting flows in a weakly rotational background field, can be derived using the approximate
Bernoulli’s theorem on the body at upper and lower sides of trailing edge. To be more specific
see Secs. 2.7 and 2.8 and the derivation of Eqs.(2.116 & 2.117).

2.3 Boundary Integral Formulation

Applying Green’s theorem to the infinite domain lifting problem (Filippas 2013; Kress et al.
1989; Politis 2011a) we obtain an integral representation for the potential in D in terms of the
potential Φ (dipole intensity6) and its normal derivative ∂nΦ7 (source intensity) on the bound-
ary.

ΦB(x0; t) = ΦJ(x0; t) +
∫

∂DB(t)

∂nΦB(x; t)G(x0|x)−ΦB(x; t)∂nG(x0|x) ds(x)

+
∫

∂Du
W(t)

∂nΦu
W(x; t)G(x0|x)−Φu

W(x; t)∂nG(x0|x) ds(x)

+
∫

∂Dl
W(t)

∂nΦl
W(x; t)G(x0|x)−Φl

W(x; t)∂nG(x0|x) ds(x), (2.14)

where

ΦJ(x0; t) =

0, x0 ∈ D.

sign(r·n)
2 ΦB(x0; t), x0 ∈ ∂DB.

(2.15)

The second branch of Eq.(2.15) is known as jump relation for the potential induced by a dipole
distribution (Kress et al., 1989) and reveals the nature of potential field that is defined in D

6In general on ∂D it holds that µ = Φ+ −Φ−, where "+" corresponds to the one side of the boundary and "−"
to the other. In the case of boundaries like the wake that model potential discontinuities no special explanation is
needed, because the limiting boundary value of the potential is defined on both sides. Contrarily, in the case of
body boundary, bottom and free surface the limiting boundary value of the potential is defined only at the side
of D. In those cases a "virtual flow" is considered in Rn \D. That flow in the simplest case is chosen to have zero
velocity everywhere and therefore the potential is constant and can be chosen to be zero; i.e. µ = Φ+. For more
details on that topic see e.g. Politis (2011b).

7In the above relations the gradient∇(·) is applied with respect to the integration point x and ∂n(·) = n · ∇(·).
Moreover, the notation ∂n0(·) = n · ∇0(·) will be used when the gradient is applied with respect to the control
point x0; see e.g. the representation theorem of the velocities Sec.2.5.1.
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Figure 2.2: Potential field induced by constant-strength doublet distribution (double layer poten-
tial) on a straight-line panel.

Figure 2.3: Potential field induced by constant-strength source distribution (single layer potential)
on a straight-line panel.

with the introduction of its limiting boundary value on ∂D via Eq.(2.2). In general, a field de-
fined in this way is continuous up to the boundary, but can be discontinuous through it. This
is the case of the potential induced by a distribution of dipoles located on a part of ∂D. To be
more specific, when approaching the boundary from the side where the normal to the bound-
ary unit vector points the trace of the potential can be calculated by Eq.(2.15) with sign "+",
while approaching from the other side is leading to sign "−", introducing a jump at the po-
tential through the boundary, that equals the dipole intensity distributed at the specific point.
This is the meaning of notation sign(r · n). The above discussion explains the reason why the
potential induced by a dipole distribution is termed double layer potential, see Fig.2.2. On the
contrary the potential induced by a source distribution is continuous through the boundary
and is termed single layer potential, see Fig.2.3.

Moreover ∂Du
W and ∂Dl

W are the upper and the lower sides of the shear layer respectively
defined using a branch cut (Fig.2.4). Introduction of the wake surface of potential discontinuity
and the use of branch cut, permit the existence of finite circulation Γ around the lifting body,
body, that is required for lift generation according Kutta-Joukowski theorem, see e.g. Moran
(2003), Batchelor (2000) or Kundu et al. (2008).
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Figure 2.4: Introduction of a branch cut that permits the existence of circulation around lifting
bodies without breaking irrotationality of the flow.

In the above relation we have used Green’s function, consisted of the fundamental solution of
2D/3D Laplace equation and its normal to the boundary derivative

G(x0|x) =


1

2π ln r(x0|x), D ⊆ R2,

− 1
4π

1
r(x0|x)

, D ⊆ R3,
(2.16)

∂nG(x0|x; t) =


− 1

2π
r(x0|x)·n(x;t)
[r(x0|x)]2

, D ⊆ R2,

− 1
4π

r(x0|x)·n(x;t)
[r(x0|x)]3

, D ⊆ R3,
(2.17)

with
r(x0|x) = x0 − x, r(x0|x) = ‖x0 − x‖2. (2.18)

The above functions represent source and dipole singularities respectively. The first term in
the integral is the potential induced at x0 from a source with intensity ∂nΦ(x) located on the
boundary at x, while the second term represents similarly the effect of normal to the boundary
dipole with intensity Φ(x). In this way the whole information for the potential in the domain
D is stored on the boundary ∂D whose dimension is of one order lower. Therefore, if the
boundary value of the potential and the derivative on the boundary are known, using Green’s
formula Eqs.(2.14, 2.15) we can evaluate potential everywhere in D.

Replacing body boundary condition Eq.(2.4) and wake kinematic condition Eq.(2.8) into the
representation theorem on the boundary Eqs.(2.14, 2.15), we obtain the following Fredholm
2nd kind, weakly singular integral equation

1
2

ΦB(x0; t) +
∫

∂DB(t)

ΦB(x; t)∂nG(x0|x) ds(x)

=
∫

∂DB(t)

b(x; t)G(x0|x) ds(x)−
∫

∂DW(t)

µW(x; t)∂nG(x0|x) ds(x), x0 ∈ ∂DB(t),

(2.19)
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where µW = Φu
W − Φl

W denotes the potential jump or the dipole intensity on the wake. Re-
ferring to a specific chordwise section (not necessarily flat), the potential jump at the trailing
edge equals the instantaneous value of circulation around the hydrofoil section. This is demon-
strated as follows

ΓB(t) =
∫

∂DB,section(t)

∇ΦB(x; t)G(x0|x) ds(x) = Φu
B(xTE; t)−Φl

B(xTE; t) = µB(xTE; t). (2.20)

One the one hand, according to Kelvin’s theorem, at every time instant the change of ΓB around
the body must be balanced by the change of ΓW around the wake; see also Fig.(2.4). On the
other hand, Kutta condition Eq.(2.11) or Eqs.(2.12, 2.13) introduces a connection between the
wake potential jump and the body potential jump at the vicinity of trailing edge. In unsteady
problems both ΓB and µB vary in time leading to the production of alternating forces on the
body. Considering the above arguments and the fact that the wake ∂DW is a material curve that
travels with the flow and that the same thing happens with µW that is initially generated at the
trailing edge in the sense of Eq.(2.10), we conclude that dipole intensity µW is not constant
along ∂DW , contrary to the steady case (Moran, 2003). Therefore in unsteady lifting flows the
dipole intensity varies along the wake and represents the history of circulation on the body.
In general, information concerning the flow motion is stored in values of µW on ∂DW and the
presence of the wake introducing a memory effect which is represented by the last integral at
Eq.(2.19).

Before we continue, it is important to take a closer look to the integrals appeared in the BIE
(Eq.2.19). Since x0 ∈ ∂D there is a point at the domain of integration where x0 = x and therefore
r = 0. At this point the right hand side integrals become infinite and bear no meaning in the
usual Riemann sense. Those integrals are called singular and can be determined as the limit
of a well defined regular integral. The integrals appeared in Eq.(2.19) are weakly singular;
i.e. informally speaking, the rate of blow up equals the rate that differential surface/arc ds
tends to zero. The definition of weakly singular or Cauchy principal value8 integrals as the
limit of a well defined integral have been presented in Politis (2011b) and in Filippas (2013).
More extended and rigorous studies in singular integrals can be found in the literature; see e.g.
Muskhelishvili (1953), Mikhlin (2014), Polyanin and Manzhirov (2008).

The weakly singular boundary integral equation Eq.(2.19), together with Morino-type Kutta
condition Eq.(2.11) or pressure-type Kutta conditions Eqs.(2.12, 2.13), provide us with a sys-
tem of equations for the unknown boundary fields ΦB on the body and µW at the vicinity of
trailing edge. The above system of equations can be solved numerically after the appropri-
ate discretisation, implemented with a boundary element method (BEM) and collocation; for
more details see e.g. Politis (2004) and Filippas (2013). Furthermore, in the most interesting
case of pressure-type Kutta condition, that includes a partial time derivative of the unknown
potential, numerical solution of the system can be achieved following

8Cauchy principal value integrals appear in the representation theorem of the velocity, which is necessary for
the calculation of the velocity field and the implementation of the free wake model (Sec.2.6)
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Figure 2.5: Spatial discretisation via approximation of the boundary with boundary elements and
of the trace functions with piecewise constant distributions as well as approximate satisfaction of

the BIE by applying a collocation scheme in (a) 2D and in (b) 3D.

two different paths. Either by time integration, where Kutta condition is treated as a dynamic
system and BIE as an algebraic constraint (Sec.2.8.2) or using a finite difference method (FDM)
for the temporal discretisation of Kutta condition. In the later case, BIE and Kutta condition are
treated similarly forming a non-linear algebraic system. In the case of Morino condition, that is
simply a linear algebraic equation, a linear system of equations is just formed and solved and
no temporal discretisation on the Kutta condition is necessary (Filippas 2013; Politis 2011a). A
detailed discussion of the different approaches is presented in Anevlavi (2019).

2.4 Spatial discetisation - DtN construction

The spacial discretisation mainly9 consists of the following approximations10 of the analytical
model (see also Fig.2.5):

• Concerning the geometry, a C0 representation of the boundary is used as follows:

– in 2D formulation, following a low-order panel method, the body contour is re-
placed by a closed polygonal line, and NB denotes the number of panels. The trail-
ing vortex sheet is also approximated by an open polygonal line composed of NW(t)
panels, whose number increases in time.

– in 3D formulation, the boundary is approximated using bilinear-quadrilateral ele-
ments.

9Another approximation, that will not be mentioned here, can be applied to the surface gradient operator on
the body contour in order to calculate efficiently tangential velocities; see Sec.(2.5.2) and Sec.(2.8).

10The method described in the present manuscript and the developed computational code, make use of bilinear-
quadrilateral elements, piecewise constant distributions and collocation. However, the generalisation to a higher
order approach is straightforward, due to the efficient (of arbitrary order and GPU-accelerated) numerical calcu-
lation of the factors. Therefore, it is left as a very interesting subject for future work to extend our method and
code to higher (arbitrary nth) order, or even to a meshless spline-based (probably isogeometric) approach (Cottrell
et al., 2009; Ginnis et al., 2014; Takahashi and Matsumoto, 2012).
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• Concerning the representation of the functions on the boundary, the potential, its nor-
mal derivative and the potential jump at each time step, are approximated by piecewise
constant distributions, as follows:

ΦB(x; t) = ΦBi(t), at body element i, i = 0, 1, ..., NB − 1,
∂nΦB(x; t) = ∂nΦBi(t) = bi(t), at body element i, i = 0, 1, ..., NB − 1,
µW(x; t) = µWw(t), at wake element w, w = 0, 1, ..., NW(t)− 1. (2.21)

As demonstrated in the end of Sec.2.3 the dipole intensity varies along the wake and
represents the history of the time dependent circulation on the body. Therefore in the
unsteady case, in the context of a low order approximation, a piecewise constant dipole
distribution is required, contrary to the steady case where a constant distribution is used.

• Finally, following a collocation scheme, the BIE (Eq.2.19) is satisfied in a finite number
of points (or control points) and in order to avoid singularities the centroids11 of the
panels have been chosen as collocation points. In the present case, that we deal with a
Neumann problem, the BIE must be satisfied in NB collocation points so as to balance the
NB unknown values of ΦBi that are required in order to represent the unknown trace of
the potential on the body boundary in the context of our approximation.

In the present manuscript the numbering begins with zero to be in compliance with the de-
veloped CUDA C/C++ code. A fundamental element of programming in C/C++ is the usage
of pointers that store the memory address of the object they pointing to. Arrays are imple-
mented using pointers and pointer incrementation. To be more specific, an array of objects is
constructed by allocating a specific amount of space in RAM (or VRAM) and the address of the
first element of the array is stored in a pointer p. In order to obtain/store12 data from/at the
address that corresponds to the first element of the array (with index 0) we must dereference
∗(p + 0), for the second element (with index 1) we must dereference ∗(p + 1), for the (i + 1)th

element (with index i) we must dereference ∗(p + i); where ” ∗ ” in C/C++ is the dereference
operator.

To proceed, the discretised form of Eq.(2.19) is as follows

NB−1

∑
j=0

(
δij

2
+ Dpot

ij )ΦBj(t) =
NB−1

∑
j=0

Spot
ij bj(t)−

NW(t)−1

∑
w=0

Dpot
iw (t)µWiw, i = 0, ...NB − 1 (2.22)

where δij is Kronecker’s delta and the quantities Spot
ij and Dpot

ij are induction factors and repre-
sent the potential13 at collocation point i induced by a unit source and a dipole distribution14,

11In 3D formulation, bilinear-quadrilateral elements are not flat surfaces and the centroid is calculated in the
curvilinear space.

12When obtaining data with ∗p at the right hand side of an assignment operation (a statement that contains the
op= assignment operator), that expression is a r-value; i.e. refers to the data value that is stored at the address in
memory that p points to. When storing data to the address that p points to, the expression ∗p is at the left hand
side of the assignment operation and is l-value, i.e. refers to the memory location which identifies an object. For
more details on pointers, r-values and l-values; see e.g. Horton (2007, 2014).

13The upper index pot indicates that the present integrals are potential induction-factors. Using a unified nota-
tion in Sec.2.5.1.3 we will introduce the velocity induction-factor integrals using the upper index vel.

14Potential induced by a source distribution located on a boundary is continuous through the boundary, con-
trary to the potential induced by a dipole distribution. For this reason the first is well known as single layer
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Figure 2.6: Definition of Kutta strip ∂DK as a transitional region between the bound surface (body
boundary) and the free surface (trailing vortex sheet). Discretisation of Kutta strip and representa-

tion by NK boundary elements.

respectively, at element j, defined as follows

Spot
ij =

∫
element j

G(xi|x) ds(x), (2.23)

Dpot
ij =

∫
element j

∂nG(xi|x) ds(x). (2.24)

In general, the above integrals could be evaluated numerically. In the present work, in 2D
case, where a low order BEM is applied, analytical evaluation is possible. In 3D case, a combi-
nation of semi-analytical, numerical, and analytical calculations, depending to the strength of
singularity, is applied.

Following Politis (2011a,b, 2016), we proceed to the introduction of Kutta strip in order to treat
Kutta condition and the transition from the bound surface (i.e. the body boundary) to the free15

shear layer; see also Fig.(2.6) and Politis (2011b). Until this point, the boundary of D consists of
the body boundary and the trailing vortex sheet i.e. ∂D = ∂DB ∪ ∂DW . In ∂DW at the vicinity
of trailing edge there is a transitional region where the trailing vortex sheet transform from a
free surface to a bound surface. In the sequel that region will be termed Kutta strip and will
be denoted by ∂DK and with ∂DW we will denote the remaining free boundary. Moreover, in

potential and the second as double layer potential, for more details see the discussion bellow Eq.(2.15), Politis
(2011b) or Kress et al. (1989).

15The terminology free and bound surfaces demonstrate the fact that, on the one hand the motion of body
boundary (or even deformation) is governed by a non-hydrodynamic law (for example absence of motion, pre-
scribed motion, finite/infinite degrees of freedom equation of motion of a rigid/deformable body), on the other
hand shear layer motion is free, in the sense that it is a material surface moving and deforming with the fluid ve-
locity. Another example of bound surface, from the field of coastal engineering and the modeling of water waves,
is the rigid or even deformable bottom. Examples of free surfaces are the interface of the sea and air (called sim-
ply free surface in the modeling of water waves), or interface surfaces of non-mixing fluids and the vapor-liquid
interface in gravitating flows.
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the discretised model, in 2D case, Kutta arc will be approximated by a single panel, in 3D case,
Kutta strip is approximated by NK boundary elements distributed in the direction of span (i.e.
curvilinear direction of η). Therefore, the discretised form of Eq.(2.19) becomes

NB−1

∑
j=0

(
δij

2
+ Dpot

ij )ΦBj(t) =
NB−1

∑
j=0

Spot
ij bj(t)

−
NK−1

∑
k=0

Dpot
ik µKik(t)−

NW(t)−1

∑
w=0

Dpot
iw (t)µWiw, i = 0, ...NB − 1. (2.25)

Concerning the time dependence of the various quantities in Eq.(2.25), the Dirichlet Φ(t) and
Neumann b(t) data on the body boundary are time dependent, due to the arbitrary motion of
the body and to the action of the unsteady background field. Concerning now the potential
jump on the wake, from the Eulerian point of view16 it is variable in time, however, from the
Lagrangian point of view, with respect to a reference frame moving with fluid particles at the
wake, it is not variable in time. The notation used in the present paragraph is essential for the
derivation of the solution algorithm and the implementation of the computational code that
includes a Lagrangian-based algorithm for the assessment of the wake. To be more specific,
at an arbitrary timestep, Kutta strip ∂DK obtains dipole intensity µK, that is stored in specific
address in memory. At the next timestep, Kutta strip location and dipole intensity data are
copied to the end of the dynamic array that is allocated in the heap to store ∂DW-data. Imple-
menting in this way, an efficient Lagrangian based algorithm for the vorticity transportation
on the wake, in the sense of Eq.(2.10). In this way, during the time marching process, the size
of the device17 memory allocated for the ∂DW-data increases18, nevertheless the content of the
addresses that are allocated to store dipole intensity on the wake remains constant. For this
reason µ in Eq.(2.25) is presented as time invariant corresponding to a constant quantity at the
code during the time-marching process. In contrast µK(t)19 at the Kutta strip is time dependent
and its integral corresponds to the change in circulation around the foil. Moreover, the time

16In the whole manuscript, when writing analytically (non-discretised) boundary integral forms, we will refer
to the inertial reference frame and therefore the domain of definition of the integrals for moving objects will be
time dependent. That applies even to non-deformable body boundaries. However, when we write the discretised
form that its purpose is to be directly programmable, the Lagrangian reference frame will be used, illuminating
that some matrices has to be calculated only at specific timesteps; e.g. a non-deformable body induction factor
matrix is not time dependent even if the body moves in a highly unsteady way and it could be calculated only
during the first timestep.

17In GPGPU programming the processes can be either executed in CPU kernels or in GPU kernels, moreover
data are stored either in classical random access memory (RAM) or in video random access memory (VRAM). The
terminology host and device will is adopted to distinguish when referencing to CPU or GPU, respectively

18Of course compromisation between memory management and computational speed is crucial. Therefore, to
minimise the overhead of memory allocation on the heap, the reallocation process is applied repeatedly after a
specific number of timesteps and not at every single one. For more details on efficient memory management
and for a pedagogical introduction to programming see e.g. Horton (2007) for procedural programming in C, or
Horton (2014) for object oriented programming in C++.

19In Eqs.(2.19, 2.21) the potential jump at the wake µW is presented as time dependent because at that point of
the manuscript the wake induced the transitional region (Kutta strip) where µ is time dependent.
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dependence of the induction factors is of the utmost importance, especially concerning com-
putational complexity20 (space and time complexity) of the algorithm21. In the present case of
a rigid body, induction factors from the body panels to the body control points are constant
in time. Furthermore, the Kutta strip is selected to be always at the plane of the bisector of
the corner that forms the neighboring to the trailing edge body panels22 (those geometrical
objects, i.e. bisector and corner, are generalisations from the plane to the 3D curvilinear space).
Therefore, the relative location of Kutta and body panels remains constant and the correspond-
ing double layer induction factors are not time dependent. Finally, the relative position of the
wake and the body changes both due to the motion of the body and the evolution of the free
wake, rendering wake induction factors variable in time.

The discretised BIE Eq.(2.25) can be written in a more compact matrix form

D
pot
B ·ΦB(t) = S

pot
B · b(t) +D

pot
B,K · µK(t) +D

pot
B,W(t) · µW , (2.26)

where Dpot
B , Spot

B ,Dpot
B,K,Dpot

B,W(t) are potential23 induction-factor matrices, with S denoting source
or single-layer integrals, and with D denoting dipole or double-layer integrals. To be more spe-
cific Dpot

B and S
pot
B model body-body interactions and exist even at a non-lifting problem, while

the additional terms involving the matrices Dpot
B,K and D

pot
B,W model wake-body interactions and

are associated with the second and the last term in the right hand side of Eq.(2.25). The above
matrices are defined as follows

D
pot
B = {0.5δij + Dpot

ij }, S
pot
B = {Spot

ij }, D
pot
B,K = {−Dpot

ik }, D
pot
B,W(t) = {−Dpot

iw (t)}, (2.27)

and the indices belong to the following subsets of N

i, j ∈ {0, 1, ..., NB − 1}, k ∈ {0, 1, ..., NK − 1}, w ∈ {0, 1, ..., NW(t)− 1}. (2.28)

In Eq.(2.26) ΦB = {ΦBj}, b = {bj}, µK = {µKk}, µW = {µWw}. In the sequel, we will denote
with bold, vectors containing the values of piecewise constant trace functions on the panels,
representing the boundaries boundary.

20In computer science, the computational complexity, of an algorithm (or of a program that is the implementa-
tion of an algorithm via a computational code), is the amount of resources (execution time or memory) required
for running it. Time complexity is the computational complexity that describes the amount of time it takes to
run an algorithm, i.e. execution time. Space complexity represents the total amount of memory space required to
solve a given computational problem with a given algorithm.

21On the one hand, numerical solution with BEM is more a compute-intensive rather than a data-intensive task
and the calculation of N2 singular integrals to fill the induce factor matrices is the core of the problem. Therefore if
a part of the matrix remains constant during time marching, this should be exploited to the design of the algorithm
possibly by storing the matrix to the device memory during the first timestep. On the other hand, although the
memory size of GPUs increases rapidly, still VRAMs available are much more smaller than RAMs, therefore in
GPGPU developers must be cautious concerning space complexity of their algorithms, in the specific case, when
allocating naively large amounts of device memory for the induction factors. To be more specific, taking also
into account the computational power that modern GPUs with thousands of cores provide, it is sometimes more
preferable to recalculate parts of the induction factors than to store them.

22That selection of the position of Kutta strip is computationally efficient, but is not panacea, for more details
see Filippas and Belibassakis (2014) and Politis (2011b).

23The upper index pot indicates that the present objects are potential induction-factor matrices. Using a unified
notation in Sec.2.5.1.3 we will introduce the velocity induction-factor matrices using the upper index vel.
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The above form of discretised BIE together with the discretised form of the selected Kutta
condition could provide us with a system of nonlinear algebraic equations that could be solved
using a general iterative method; e.g. the Newton-Raphson method. More details on that
approach are presented in Anevlavi (2019).

However, in the present work the pressure-type Kutta condition is used to construct the evo-
lution equations of the dynamical system, solved by time integration, as will be demonstrated
in Sec.2.8. In that case we multiply Eq.(2.26) with D−1 and we obtain

ΦB(t) = G · b(t) + Z · µK(t) + P(t) · µW , (2.29)

where

G = (D
pot
B )−1 · Spot

B , Z = (D
pot
B )−1 ·Dpot

B,K, P(t) = (D
pot
B )−1 ·Dpot

B,W(t). (2.30)

The above mapping is a discrete Dirichlet-to-Neumann (DtN) operator24 that connects the po-
tential (Dirichlet data) with its normal derivative (Neumann data) on body boundary ∂DB, but
also involves the unknown values of the dipole intensity µK (Dirichlet data) on the Kutta strip
∂DK, as well as the (known from the past) potential jump µW (Dirichlet data) on the wake ∂DW .
We observe in the above equation that the influence of the wake, that introduces memory ef-
fects, is taken into account through P(t) · µW . Also, the effect of the body velocity and of the
unsteady background field is considered through the components VB and VG, included in b,
as described by the body boundary condition Eq.(2.4). In Sec.2.8 using the appropriate part of
the DtN map, Eq.(2.29), in the discrete form the pressure-type Kutta condition, we will obtain a
system of (spatially and temporarily) nonlocal differential equations, with explicit and implicit
nonlinearities, that approximately describe the dynamics of the system.

2.5 Velocity calculation

Under the assumption of incompressibility, an unsteady disturbance, divergent-free25, vec-
tor field V(x; t) can be defined in open26 D, representing the fluid velocity, in the context of
the mathematical modeling of the physical fluid. Moreover, assuming irrotationality, a purely
mathematical object is allowed to be defined as an unsteady scalar field, i.e. the velocity po-
tential Φ(x; t) = ∇V(x; t). The aforementioned relation between those two fields reveals their
connection and moreover is directly associated with an technique for the approximate com-
putation of the velocity, when numerical data for the potential are available in the whole D,
i.e. by a stencil of finite differences in 3D/2D space. However, potential theory is fundamen-
tally connected with the theory of BIE, and the representation theorems provide us with an

24The terminology DtN operator is common in the modeling of inviscid water waves. Here we derive a DtN
operator for lifting-flow problems in infinite domain. In Sec.3.4.1 the DtN for the problem of free surface - non
lifting body will be presented. Finally, in Sec.3.5.1 the extended form of the DtN operator, that is suitable for lifting
flows beneath the free surface, will be constructed.

25The conservation of mass law in incompressible fluids reduces to ∇V = 0. That equation has kinematic
content and characterises the velocity field as divergent-free.

26Moreover velocity V(x; t) can be defined in D by a continuous expansion on the boundary ∂D, by the appro-
priate definition of its limiting boundary value. This is done in a similar manner with the definition of the limiting
boundary value of the potential, see Eq.(2.2) and the relevant discussion or Politis (2011b).
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alternative and more elegant way for the calculation of both potential and velocity, when only
the Dirichlet and Neumann data on the boundary are known. In the present section we will
provide the representation theorem for the velocities whose discretised form can be applied
for calculations in the D27 (Sec.2.5.1). That representation theorem will also be applied for the
calculation of the velocity on ∂DW and the implementation of the free wake model (Sec.2.6).
Contrarily, it is efficient and usual, when a direct formulation is followed, the surface gradient
of the velocities on the boundary to be calculated with curvilinear finite differences (Sec.2.5.2).
That approach will also be adopted for the imposition of a) non-linear free-surface boundary
conditions in Chapters 3 and 4, as well as b) linearised free-surface conditions in the presence
of a current in Sec.4.5.4.

2.5.1 Calculation of potential gradient with the representation theorem for
the velocities

In order to produce a representation theorem for the velocities, it is necessary to calculate the
derivative of the representation formula of the potential Eq.(2.14). In the case of points in
the domain, i.e. x0 ∈ D, the integrals at the right hand side are regular and thus, in order
to produce a representation theorem for the gradient of potential ∇0Φ(x; t) we can simply
interchange the limit processes of integration and differentiation. However, that process cannot
be applied directly on the boundary (x0 ∈ ∂D), because in that case the integrals at the right
hand side of Eq.(2.14) become singular. The special treatment of that technical issue have been
presented, in detail, in Politis (2011b) and Filippas (2013).

Before we proceed, we introduce the following notation ∂s(·) = n×∇(·) for the differentiation
of a scalar field on the surface of a boundary. When that operation applies to a scalar field X,
the result is a vector in the direction of the tangent to the surface unit vector s. Of course, the
direction of s depends (it is coplanar and normal) to the direction of the surface gradient of
the limiting boundary value of quantity to whom the differential operator is applied. Then
applying the operator ∂s(X) × n we obtain a vector that equals the surface gradient of the
limiting boundary value of X, which is denoted by ∇X∗ and the following decomposition
holds ∇X = ∂nX · n + ∂sX × n = ∂nX · n + ∇X∗; for more details see the Section 11: "A
useful vector decomposition formula" of Politis (2011b). Moreover, the notation ∂s0(·) = n×
∇0(·) will be used when the gradient is applied with respect to the collocation point x0. In the
present case the velocity is decomposed to its normal to the boundary and its tangential to the
boundary components (see also Fig.2.7) as follows

∇0Φ(x0) = ∂n0Φ(x0) · n(x0) + ∂s0Φ(x0)× n(x0)

= ∂n0Φ(x0) · n(x0) +∇0ΦB(x0). (2.31)

27The representation theorem for the velocities in ∂D is exploited in Belibasakis and Politis (1995, 1998) follow-
ing an approach that provides us with a velocity/vorticity-based formulation which is direct with respect to the
tangential to the boundary velocity. That formulation is termed direct because it leads to the direct calculation
of the surface vorticity. Another classical but indirect formulation is the one developed by Hess (1972). That
formulation is based on the linearity of Laplace equation and the linear superposition of distributed singularity
elements (Green functions) on the boundaries, with unknown intensities. The indirectness of that method stems
from direct calculation of singularity intensities instead of the velocity or the potential. The later can be calculated
indirectly from the superposition of singularity-induced velocities and integration. The formulation followed in
the present manuscript is potential-based and a direct one with respect to the potential.
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To proceed, the representation theorem for the velocities in terms of the boundary values of the
normal to the boundary derivative of the potential ∂nΦ (source intensity) and its tangential to
the boundary derivative of the potential ∂sΦ (surface vorticity intensity) is as follows

∇0Φ(x0; t) = VJ(x0; t) + Vs(x0|∂D; t) + Vd(x0|∂D; t), x0 ∈ D (2.32)

where the jump-relation component is

VJ =

0, x0 ∈ D,

sign(r·n)
2 [∂n0Φ(x0; t) · n(x0) + ∂s0Φ(x0; t)× n(x0)], x0 ∈ ∂D,

(2.33)

the source-induced velocity is

Vs(x0|∂D; t) =
∫

∂D(t)

∂nΦ(x; t)∇0G(x0|x) ds(x), (2.34)

and the dipole-induced velocity is

Vd(x0|∂D; t) = −
∫

∂D(t)

Φ(x; t)∇0[∂nG(x0|x)] ds(x)

= +
∫

∂D(t)

Φ(x; t)(n∇)[∇G(x0|x)] ds(x)

= −
∫

∂D(t)

∂sΦ(x; t)×∇G(x0|x) ds(x) + VBS(x0; ∂DW(t); t), (2.35)

with

VBS(x0|∂D; t) =



0, ∂(∂D) = ∅.

+Φ(x2; t) · ∇2Gv(x0|x2; x; t)
−Φ(x1; t) · ∇1Gv(x0|x1; x; t), D ⊆ R2

1
4π

∫
∂(∂D)(t)

Φ(x; t) dl(x)×r(x0|x)
[r(x0|x)]3

, D ⊆ R3


, ∂(∂D) 6= ∅.

(2.36)

The second branch of Eq.(2.33) is the jump relation for the velocities induced by a source dis-
tribution (first component) and a dipole/surface vorticity distribution (second component);
see also the discussion bellow Eq.(2.15) and Kress et al. (1989). To be more specific, the nor-
mal to the boundary component of the velocity induced by a source distribution presents a
discontinuity, while the tangential to the boundary component of the velocity induced by a
dipole/surface vorticity distribution is also discontinuous through the boundary.

Lets proceed to a physical interpretation of the components of the velocity representation theo-
rem. The first integral term in Eq.(2.32) represents the velocity at x0, induced by a distribution
of sources, of intensity ∂nΦ, located on ∂D. The second part of the integral, together with the
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Figure 2.7: Decomposition of velocity∇0Φ to its normal to the boundary ∂n0 Φ · n and its tangential
to the boundary ∂s0 Φ× n components.

integral VBS
2829, is the velocity at x0, induced by a distribution of dipoles on ∂D, directed nor-

mal to it, with intensity Φ; or equivalently30, the velocity induced by surface vortices on ∂D
that are directed perpendicularly to it, with intensity ∂sΦ. To be more specific, it holds that the
velocity, induced from a dipole distribution with intensity Φ(x) on a closed surface31, equals
the velocity induced from a surface vorticity distribution on the same surface with intensity
∂sΦ(x). Moreover, when the surface ∂D has a boundary denoted by ∂(∂D), one must include
the Biot-Savart integral (Eq.2.36) to the calculation. That line integral32 represents the velocity
induced from a vortex filament located along the boundary of the boundary; i.e. on ∂(∂D).

In the above relations we have used the derivative of Green’s function as well as the deriva-
tive of the normal to the boundary derivative of Green’s function and the derivative of vortex

28That component of the velocity is termed Biot-Savart integral. The origin of that characterization comes from
the field of electromagnetism, more precisely, from a similar formula that connects the magnetic-flow field with
the current flow in a wire. To be more specific, it is named after Jean Baptiste Biot and his colleague Félix Savart
honoring them for their work in 1820; see Biot and Savart (1820). Moreover, James Clerk Maxwell in 1861 in his
work "On Physical Lines of Force" (Maxwell, 1861), related magnetic permeability with the intensity of a vortex
formed in a fluid. Finally, the first application of the Biot-Savart law in practical fluid dynamics appeared in the
lifting-line theory developed by Frederick Lanchester (Lanchester, 1907) and Ludwig Prandtl (Prandtl, 1918) in
early 90’s.

29The notation VBS(x0|∂D; t) reveals that the Biot-Savart integral is a non-local operator that depends on both
the shape of the boundary ∂D and the boundary values of the potential.

30A rigorous proof of that equivalence, that holds for general-shaped boundaries (not only flat or piecewise-
flat) and generally distributed dipoles/surface vortices (not only constant or piecewise constant distributions)
can be found in the works of Hess (1972) and Politis (2004, 2011b) and Batista (2016). In Politis (2004, 2011b)
an elegant proof of the generalised equivalence theorem is given using tensor calculus and the Lemma is called
reformulations of Stoke’s theorem. In Batista (2016) a proof using vector calculus is provided and result is named
Politi’s Lemma.

31A closed boundary surface is also a boundary whose boundary equals the empty set; i.e. ∂(∂D) = ∅.
32In 2D case the vortex filament reduces to point vortices at the termination ends of the curve ∂D, those points

are denoted here with x1 and x2.
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singularity denoted with ∇Gv. Those singularities are given by the following formulas

∇0G(x0|x) = −∇G(x0|x) =


1

2π
r(x0|x)

[r(x0|x)]2
, D ⊆ R2,

1
4π

r(x0|x)
[r(x0|x)]3

, D ⊆ R3,
(2.37)

∇0[∂nG(x0|x; t)] = (n∇)[∇G(x0|x; t)] =


1

2π
2r(x0|x)[n(x;t)·r(x0|x)]

[r(x0|x)]4
− n(x;t)

[r(x0|x)]2
, D ⊆ R2,

1
4π

3r(x0|x)[n(x;t)·r(x0|x)]
[r(x0|x)]5

− n(x;t)
[r(x0|x)]3

, D ⊆ R3,
(2.38)

∇Gv(x0|xi; x; t) =
1

2π

e3(x; t)× r(x0|xi)

[r(x0|xi)]2
, i = 1, 2, D ⊆ R2, (2.39)

with
r(x0|x) = x0 − x, r(x0|x) = ‖x0 − x‖2, (2.40)

and e3, in the 2D case, denoting the unit normal to the 2D domain (D ⊆ R2) vector, defined by
e3 = e1 × e2. Where e1, e2 are the tangential to the boundary and the normal to the boundary
unit vectors, respectively.

In the sequel the velocity representation theorem will be applied to the boundary value prob-
lem (BVP) presented in Sec.2.2, distinguishing three cases with respect to the location of the
control point. The first case concerns points on the body boundary (x0 ∈ ∂DB) where the cal-
culation of the velocity and pressure (by applying Bernoulli’s theorem) is crucial both for the
solution (calculation of tangential to the boundary velocity and implementation of pressure-
type Kutta condition) and the calculation of the generalised forces acting on the body (via the
integration of boundary pressure). The second case refers to points in the interior of the do-
main (x0 ∈ D) and the formula that will be obtained is useful for the calculation of the velocity
and the pressure fields around the body; for visualisation purposes and for gaining insight
to the physics of the problem, in the context of our inviscid approximation. The third case is
about points on the wake (x0 ∈ ∂DW) where the calculation of the velocity is necessary for the
implementation of the free wake model.

2.5.1.1 Velocity representation theorem on body boundary

To proceed, for points on body boundary (x0 ∈ ∂DB) it holds

1
2
∇0ΦB(x0; t) =

1
2
[b(x0; t) · nB(x0; t) + ∂s0ΦB(x0; t)× nB(x0; t)]

=
∫

∂DB(t)

b(x; t)∇0G(x0|x)− ∂sΦB(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DB; t)

−
∫

∂DW(t)

γW(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DW ; t), x0 ∈ ∂DB(t), (2.41)

where γW = nW ×∇µW = ∂sΦu
W − ∂sΦl

W denotes the tangential velocity jump (the surface
gradient of the dipole intensity or the free vorticity intensity) on the wake. We denote that in
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a specific time t the boundary vector field γW is known from the past, everywhere with the
exception of the Kutta strip. Moreover, the Biot-Savart term is zero on the body boundary of
a smooth non-lifting body, because it is a closed surface. Also, that term on the wake can be
calculated in terms of the potential jump/dipole intensity on the wake surface that is a two-
sided open surface, as follows

VBS(x0|∂D; t) =



0, ∂(∂D) = ∅.

+µ(x2; t) · ∇2Gv(x0|x2; x; t)
−µ(x1; t) · ∇1Gv(x0|x1; x; t), D ⊆ R2

1
4π

∫
∂(∂DW)(t)

µ(x; t) dl(x)×r(x0|x)
[r(x0|x)]3 , D ⊆ R3


, ∂(∂D) 6= ∅.

(2.42)

The above relation is a singular BIE with unknown the tangential component of the boundary
velocity on the body ∂s0ΦB. Moreover the potential jump on the Kutta strip is unknown. That
equation together with the potential-based BIE Eq.(2.19) and the pressure-type Kutta condition
Eqs.(2.12, 2.13) could be used in order to obtain a system of equations for the unknown val-
ues of both the potential and the tangential velocity on the body inducing also the unknown
potential jump on the Kutta strip. However, that approach in its practical application, is quite
computational demanding due to a couple of reasons; see also Politis (2011a). On the one hand,
the integrals that are required to be evaluated include more singular (Cauchy principal value
and not weakly singular, see Politis (2011b) and Filippas (2013).) kernels than the integrals in
the potential-based BIE. Therefore, more intensive computations are required for their calcula-
tion. On the other hand, by including to the unknowns the boundary values of the tangential
velocity, the degrees of freedom become almost twice, increasing in this way the computational
complexity of the algorithm, both in terms of space and time complexity. For those reasons, in
the present work, the discretisation of pressure-type Kutta condition and the calculation of the
tangential velocities is implemented by applying a curvilinear finite difference scheme, as will
be described, in detail, in Sec.2.5.2 and in Sec.2.8.

2.5.1.2 Velocity representation theorem in the fluid domain

In the interior of the domain (x0 ∈ D) there are no discontinuities and the boundary integrals,
inducing the velocity field, are regular; therefore, no velocity jump exists, i.e. VJ = 0. Also,
the velocity can be decomposed in the sense of Eq.(2.31), into two components, as discussed
above the aforementioned relation. To be more specific, we consider a plane that passes from
x0 and we select a normal to the plane vector n(x0). The velocity ∇0Φ(x0; t) at the point x0
can be decomposed to a normal to the plane component ∂n0Φ · n and a tangential to the plane
component ∂s0Φ× n. Finally, the velocity representation theorem is as follows

∇0Φ(x0; t) = [∂n0 Φ(x0; t) · n(x0; t) + ∂s0 Φ(x0; t)× n(x0; t)]

=
∫

∂DB(t)

b(x; t)∇0G(x0|x)− ∂sΦB(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DB; t)

−
∫

∂DW(t)

γW(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DW ; t), x0 ∈ ∂DW(t), (2.43)



42 Chapter 2. Unsteady lifting bodies in unbounded domain

where

VBS(x0|∂D; t) =



0, ∂(∂D) = ∅.

+µ(x2; t) · ∇2Gv(x0|x2; x; t)
−µ(x1; t) · ∇1Gv(x0|x1; x; t), D ⊆ R2

1
4π

∫
∂(∂DW)(t)

µ(x; t) dl(x)×r(x0|x)
[r(x0|x)]3

, D ⊆ R3


, ∂(∂D) 6= ∅.

(2.44)

2.5.1.3 Velocity representation theorem on the wake - Discretised form

The proper implementation of the non-linear free wake model is quite important for the accu-
rate estimation of the forces acting on a lifting body in strongly unsteady flows (Politis, 2016)
and crucial for the modeling of the flow of the surrounding fluid (in the context of the present
inviscid approximation), especially when the interaction of multiple bodies and free bound-
aries is studied33. As illuminated in Sec.2.2 by Eq.(2.10) and the discussion bellow, the trailing
vortex sheet is a surface/curve of discontinuity of the tangential velocity and a material sur-
face/curve, evolving freely with the mean total velocity of the flow Vm

W = 0.5(∇Φu
T +∇Φl

T).
The mean disturbance velocity on the wake (x0 ∈ ∂DW) can be obtained by the following form
of the representation theorem

Vm
W(x0; t) =

∫
∂DB(t)

b(x; t)∇0G(x0|x)− ∂sΦB(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DB; t)

−
∫

∂DW(t)

γW(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DW ; t), x0 ∈ ∂DW(t), (2.45)

where

VBS(x0|∂D; t) =



0, ∂(∂D) = ∅,

+µ(x2; t) · ∇2Gv(x0|x2; x; t)
−µ(x1; t) · ∇1Gv(x0|x1; x; t), D ⊆ R2

1
4π

∫
∂(∂DW)(t)

µ(x; t) dl(x)×r(x0|x)
[r(x0|x)]3

, D ⊆ R3


, ∂(∂D) 6= ∅,

(2.46)

where the mean value of the jump-relation terms 0.5(Vu
J + Vl

J) is zero due to the unique defi-
nition of the unit normal vector; see also Fig.2.4.

In the sequel, we apply the discretisation process described in Sec.2.4, excluding collocation34.

33In the present work the interaction of free surface and the trailing vortex sheet of a lifting body is studied, see
Sec. 3.2.

34The implementation of collocation or Galerkin methods aim to the approximate satisfaction of a system of
equations. Therefore it is irrelevant to the calculation of velocities via the discretised form of a representation
theorem.
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For the implementation of the free wake model, the velocity must be calculated on the nodes
of the wake panels; for more details see Sec.2.6.

In order to use a unified notation (that is also directly connected with the concept object ori-
ented programming and the polymorphism) for representation theorems of both scalar and
vector (and in general tensor) discrete fields, we will use ordered systems (lists)35. The compo-
nents of a system are in general systems and in the present case 1st-order systems, i.e. vectors of
R3, or 0th-order systems, i.e. scalars of R. We define the system x = {xi} where xi ∈ R3 and i =
1, ..., N. There exists a relation between the 1st-order system x and a vector that belongs to finite
dimensional linear (or vector) space which is a subspace of R3N. Moreover, a 2nd-order system
can be defined as A = {aij} where aij ∈ R3 and i, j ∈ {0, 1, ..., N − 1}, N ∈ N. Again, there
exists a relation between the 2nd-order system A and a usual non-square matrix that belongs to
a space of matrices with dimensions 3N × N. Finally, given the fact that we stay in the context
of finite dimensional spaces (N ∈N) and that dot and cross product between vectors of R3 are
well defined, we may "overload the operators of dot and cross product" (define dot and cross
product between systems that contain vectors). We introduce two linear operators one for the
dot product and another for the cross product, denoted with Adot(·) and Across(·), respectively.
Both of them map systems to systems36, therefore, have as domain of definition and as range,
spaces of systems37 and the proof of their linearity is obvious. To be more specific, consider
the aforementioned system of order one x and the system of order two A that both contain sys-
tems of order one. Using system A we can define the operator Adot(·) that maps x to another
system y with contents systems of order zero. The overload process of the binary operator of
dot product can be done as follows A · x .

= Adot(x) and finally, concerning the result and the
calculation, it holds that

y = A · x = {yi} =
{

N

∑
j=1

aij · xj

}
, i ∈ {0, 1, ..., N − 1}. (2.47)

Moreover, using system A we can define the operator Across(·) that maps x to another system z
that contains vectors. The overload process of the binary operator of cross product can be done

35A N-dimensional matrix (or a tensor of Nth order, if it is a tensor) is a Nth-order system, a vector is a 1st-order
system and a scalar is a 0th-order system; see e.g. Borisenko and Tarapov (1979). and McConnell (2014).

36In the present paragraph we try to apply the process of "overloading of binary operators" in a quite rigorous
way. This is straightforward for the 3D case. However, in 2D the result of cross (exterior) product is a vector that
does not belong to the same vector space (from the point of view of an exterior 3D observer it does not belong
to the same plane) that the initial vectors belong; i.e. cross (exterior) product is an exterior operation. When
working with the classical algebraic quantity, i.e. the vector, the argument "map systems (of vectors) to systems
(of vectors)" in 2D, requires special justification to be rigorous. We denote also that the dot (interior) product, both
in 2D and in 3D, results to a lower-dimension quantity i.e. a scalar. Contrarily, there are not such inconveniences
encountered, when the modern (but more complex) concept of a blade, instead of a vector, is applied. For more
details on that interesting topic see any reference of geometric algebra; e.g. Flanders (1963) and Macdonald (2017).
Moreover, for an application of Clifford algebra to the well-posedness of the 3D non-linear water-wave problem;
see Wu (1999). Leaving that interesting task as a subject of future work, in the present manuscript, even when
we refer to 2D case, we will informally speak as an exterior 3D observer and the vectors in that case will be 3D
vectors. To be more specific, when applying cross product, the initial systems are two collections of vectors that
belong to the 2D space that is a plane in 3D space. Also, the resulting system is a collection of vectors that belong
in 3D space. The resulting vectors are vertical to the 2D plane.

37A system that contains vector quantities is a system with components systems of order 1. Also, a system that
contains scalar quantities is also a system with components systems of order 0. Therefore the result of dot product
is also a system.
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as follows A× x .
= Across(x) and finally, concerning the result and the calculation, it holds that

z = A× x = {zi} =
{

N

∑
j=1

aij × xj

}
, i ∈ {0, 1, ..., N − 1}. (2.48)

To proceed, the following approximate form of the velocity representation theorem on the wake
nodes is obtained

Vm
W(t) = Svel

B (t) · b(t) +


Dvel

B (t) · µ(t) +Dvel
K (t) · µK(t) +Dvel

W (t) · µW , D ⊆ R2.

Dvel
B (t)× µ(t) +Dvel

K (t)× µK(t) +Dvel
W (t)× µW , D ⊆ R3.

(2.49)

The above 2nd-order systems are defined in terms of velocity induction factors as follows

Svel
B = {Svel

ij }, Dvel
B = {0.5δij + Dvel

ij }, Dvel
K = {Dvel

ik }, Dvel
W (t) = {Dvel

iw (t)}, (2.50)

where the indices belong to the following subsets of N

v ∈ {0, ..., NWnodes − 1}, j ∈ {0, ..., NB − 1}, k ∈ {0, ..., NK − 1}, w ∈ {0, ..., NW(t)− 1},
(2.51)

and the velocity induction factors are defined as follows

Svel
ij = −

∫
element j

∇G(xi|x) ds(x), (2.52)

Dvel
ij =

∫
element j

(n∇)[∇G(xi|x)] ds(x)

=


∇2Gv(xi|x2; x)−∇1Gv(xi|x1; x), D ⊆ R2.

− 1
4π

∫
∂(element j)

dl(x)×r(xi|x)
[r(xi|x)]3

, D ⊆ R3.
(2.53)

It is clear that Svel
B ,Dvel

B ,Dvel
K ,Dvel

W (t) are velocity induction-factor matrices, with S denoting the
velocity induced by a unit source distribution, and with D denoting the velocity induced a by
unit dipole distribution. However, D has an equivalent physical interpretation connected with
a specific way of calculation. According to Politis lemma (Batista, 2016) and the definition of
dipole velocity component Vd in Eq.(2.35), there is a connection between the velocity induced
by dipoles distributed on a boundary element i and the velocity induced by surface vortices
distributed on the same element. The second can be decomposed to a surface integral on the
element and a line (Biot-Savart) integral along the boundary of the element; see Eq.(2.35). In
the present case of constant unit dipole distribution µ(ξ, η) = µi = 1 on boundary element i,
the surface vorticity intensity is zero because γ(ξ, η) = ∇µ(ξ, η) = ∇µi = 0. Therefore, in
the present approach, that a piecewise constant singularity distribution is used, D denotes the
velocity induced by unit dipole distribution or an equivalent collection of vortex rings (with
four straight-line sides that are non coplanar in general) with unit intensity.
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Moreover Dvel
B and Svel

B model the effect of the body on the velocity on the wake, while the
additional terms involving the matrices Dvel

K and Dvel
W model the effects of the Kutta strip and

the wake on the wake including wake self-induced velocities.

2.5.2 Efficient calculation of the potential surface gradient with curvilinear
finite differences

2.5.2.1 Differentiation on the boundary

In the present section an efficient way for the calculation of the tangential to the boundary
velocity (surface gradient of the potential) will be presented. The boundary can be a gen-
eral shaped 2D manifold under the restrictions discussed in Gunter (1967) and Politis (2011b).
The description will be done using a general curvilinear (non-Cartesian and non-orthogonal)
coordinated system; see also Politis (2011a). Aiming to this, we will apply the method of re-
ciprocal bases38. In the following discussion we will use the indices i, j, k ∈ {1, 2, 3}. At a
few cases the indices i, j ∈ {1, 2} and this would be explicitly stated. Under our assumptions
at every point of the boundary a (covariant) base can be defined, that consists of three non-
coplanar vectors {e1, e2, e3}. That base vectors are in general neither orthogonal nor of unit
length. In the present case, base vectors e1, e2 are tangential to the boundary39 and e3 = n is
the unit normal to the boundary vector that is related with the surface unit vectors as follows
e3 = e1 × e2/‖e1 × e2‖2. The reciprocal or contravariant base {e1, e2, e3} can also be defined
in order to have orthogonality at the curvilinear system, i.e.

ei · ej =

0, if i 6= j.

1, if i = j.
(2.54)

The volume V of the parallelepiped spanned by the base {e1, e2, e3} or the reciprocal base
{e1, e2, e3} can be obtained by the following triple products e1 · (e2 × e3) = e1 · (e2 × e3).
Moreover, the reciprocal base components can be calculated when base e3 = e1× e2 is known,
as follows

ei =
ej × ek

e1 · (e2 × e3)
. (2.55)

At every point of the boundary the second-order metric tensor can be defined g. That tensor
has covariant components gij, contravariant components gij and mixed components gj

i that can

38In the present section we will briefly present and use some basic concepts and results (excluding proofs) of
tensor algebra and analysis. For a more thorough introduction to the fundamentals and the concept of vector and
tensor algebra, analysis and applications, that includes also rigorous justification see e.g. Borisenko and Tarapov
(1979) and McConnell (2014). For a more advanced treatment of tensor fields on manifolds see e.g. Bishop and
Goldberg (2012). In the present manuscript when referring to a tensor as an object, we will adopt a vector-style
bold-letter notation. Contrarily, when we refer to the covariant, contravariant or mixed components of a tensor,
or when some algebra is needed to be done, the index notation will be followed. In the aforementioned references
the index notation is used. A classical reference, from the field of continuum mechanics, where the vector notation
is used, can be found in the book Gurtin et al. (2010).

39We denote that on the boundary the collection of vectors {e1, e2} is a (covariant) base on the 2D manifold,
where tangential to the boundary vectors, can be expanded.
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be calculated using the covariant and the contravariant bases as follows

gij = ei · ej, (2.56)

gij = ei · ej, (2.57)

gj
i = ei · ej. (2.58)

We consider now the a vector a on the boundary. That vector is a first-order tensor with co-
variant components ai and contravariant components ai. On the one hand, that vector can be
expanded with respect to the covariant base using its contravariant components as follows40

a = aiei. (2.59)

On the other hand, that vector can be expanded with respect to the contravariant base using its
covariant components as follows

a = aiei. (2.60)

Moreover, using the covariant and contravariant components of the metric tensor, we can es-
tablish two relations between the covariant and the contravariant components of a vector, as
follows

ai = gijaj, (2.61)

and

ai = gijaj. (2.62)

Consider now the limiting boundary value of the velocity∇ΦB. This is a vector field defined on
the boundary ∂D by a limiting process, in order to obtain a continuous expansion on the closure
of the domain D for the space gradient∇Φ, that was initially defined in open D. Consider also
the tangential component of ∇ΦB that is the surface gradient of the limiting boundary value
of the potential. This is a vector field defined on the boundary ∂D and it is denoted as ∂sΦ× n.
That vector has covariant and contravariant components denoted by (∂sΦ×n)i and (∂sΦ×n)i,
respectively, where the index i ∈ 1, 2. Those components are the covariant and contravariant
derivatives of ΦB

(∂sΦ× n)i = (∂ei ΦB)i, i ∈ {1, 2}, (2.63)

(∂sΦ× n)i = (∂ei ΦB)
i, i ∈ {1, 2}, (2.64)

respectively. The covariant derivative (∂ei ΦB)j of ΦB can be calculated by curvilinear differen-
tiation41. Then the contravariant derivative can be obtained using Eq.(2.62), as follows

(∂ei ΦB)
i = gij(∂ej ΦB)j, i, j ∈ {1, 2}. (2.65)

40In the present section we use Einstein (repeating index) summation convention; e.g. aiei =
3
∑

i=1
aiei.

41Justification for the argument that the covariant (and not the contravariant) derivative is calculated by curvi-
linear differentiation can be found in McConnell (2014).
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Furthermore, the tangential component of the velocity ∂sΦ× n can be obtained by expansion
with respect to the covariant base e1, e2 that is defined on ∂D, using Eq.(2.59), as follows

∂sΦ× n = (∂ei ΦB)
iei, i ∈ {1, 2}. (2.66)

Finally, the limiting boundary value of the velocity ∇ΦB is obtained by adding the tangential
and the normal to the boundary components

∇ΦB = ∂sΦ× n + ∂nΦ · n. (2.67)

2.5.2.2 Curvilinear finite differences on a non-uniform grid

The present section is dedicated to the approximate calculation of the tangential velocity (co-
variant derivative of the limiting boundary value of the potential) with curvilinear finite dif-
ferences. CUFD schemes will be presented for both closed and open curves. In the case of a
smooth (non-lifting) body there exists a curvilinear direction that corresponds to the direction
along a closed curve. Examples are, at an ellipsoid the direction along the ellipses that do not
intersect the poles, the direction along the circumference of smooth pylons at offshore struc-
tures. Contrarily, the directions of the meridians of an ellipsoid, that passes from the poles,
both directions along a lifting body, the two curvilinear directions on the wavy free surface, in
a ship the directions of sections, constitute directions that correspond to open curves.

To proceed, consider a lifting body, for example a foil and the collocation points on its bound-
ary that form a curvilinear non-uniform grid on its surface. Two curvilinear directions are
defined, one at the direction of the chord (with parameter ξ and unit vector e1) and another
at the direction of span (with parameter η and unit vector e2). We denote here that the base
{e1(ξ, η), e2(ξ, η)} on that boundary is in general neither Cartesian nor orthogonal, also, it is
variable with respect to the parameters (ξ, η) and e1, e2 are not of unit length. The boundary
∂D has been approximated by a discretised boundary ∂D(h)42 that consists of N ∈ N bound-
ary elements with variable size and shape. Each boundary element has a characteristic length43

hi, i ∈ {1, ..., N} and h is an appropriate mean value.

Concerning the numbering of control points, we have in total N control points located at the
centroids of the panels. We define two local numberings, one ξ-wise (chordwise) and another
η-wise (spanwise)44 as follows:

• Concerning ξ-wise (chordwise) numbering, we begin with the first chordwise strip lo-
cated at the most negative (with respect to x2 axis) place of ∂D(h). Moving from one
collocation point to the other along the direction of chord we define a local chordwise
numbering. That numbering begins from 0, at the nearest to the trailing edge collocation

42A similar notation is common in the literature of numerical treatment of partial differential equations (PDEs);
see e.g. Grossmann et al. (2007).

43In the case of a quadrilateral bilinear element the characteristic length is the maximum of the two diagonals
that connect two non-successive (moving along the circumference of the element) points.

44The example of the foil, that is related with the topic of the present thesis, is chosen here in order to demon-
strate the numbering. In that case there is chordwise and spanwise direction. However that applies also on an
arbitrary shaped boundary with one ξ-wise direction and another η-wise direction. For example, in the case
where the wavy free surface, in a numerical wave tank, is the 2D manifold, ξ-wise direction could be the direction
of length and η-wise direction could be the direction of breadth; see e.g. Chapters 3 and 4.
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point at the lower side of foil. That numbering ends to Nloc1 − 1, at the nearest to the
trailing edge collocation point at the upper side of the foil. Therefore in one chordwise
strip we have in total Nloc1 collocation points and boundary elements.

• Concerning η-wise (spanwise) numbering, we begin with the first spanwise strip located
at lower side of the foil at the trailing edge. Moving from one collocation point to the
other along the direction of span we define a local spanwise numbering. That numbering
begins from 0, at the most negative element (with respect to x2 axis). That numbering
ends to Nloc1 − 1, at the at the most positive element (with respect to x2 axis). Therefore
in one chordwise strip we have in total Nloc2 collocation points and boundary elements.

Therefore, we have in total N = Nloc1Nloc2 collocation points and panels. Moreover, we can
define two global numberings, one ξ-major (chord-major) and another η-major (span-major),
as follows:

• In the chord-major ordering, we move along the chordwise strips from the lower to the
upper-side trailing edge, beginning with the strip located at the most negative place of x2
axis ending to strip located the most positive strip of x2 axis.

• In the span-major ordering, we move along the spanwise strips boundary element located
at the most negative place of x2 axis to the boundary element located at the most positive
place of x2 axis, beginning with the strip located at the lower side of trailing edge ending
to strip located upper side of trailing edge.

We consider now the collection of discretised data considered as an unordered family of scalars
or vectors. However, we can order them, using a mapping between them and a finite subset
of physical numbers, following either the chord-major or span-major numbering45. In this
way, ordered lists (systems) are created, that represent the collocation points (containing vec-
tors of R3), the discretised potential field (containing real numbers), the discretised tangential
velocity field (containing vectors of R3) or the covariant components of the tangential veloc-
ity (containing real numbers). In the sequel for demonstration purposes we will follow the
chord-major numbering. The systems that are arranged chord-majorly will be denoted us-
ing |1 and those that are arranged span-majorly using |2. Therefore, we have the collocation
points x0|1 = {x0i}, the potential Φ|1 = {Φi}, the tangential velocity46 Vt|1 = {Vti}, the first
component (chordwise) of the covariant derivative of the potential Vt1|1 = {Vt1i}, the sec-
ond component (spanwise) of the covariant derivative of the potential Vt2|1 = {Vt2i}, with
i ∈ {0, 1, ..., N − 1}. For programming purposes and for clarity, we denote that i = i(p, q) =

45The necessity of proper ordering of data is of at most practical importance both for the elegant description of
the curvilinear finite differences (CUFD) and the efficient parallel programming of that numerical scheme. The
CUFD is a data-intensive process, contrary to the calculation of the induction factors that is a compute-intensive
process. Therefore, in that case (that GPGPU programming is used), memory coalescing is crucial (Trompoukis
2012). In order to achieve memory coalescing, the proper selection of numbering, the choice of column-major or
row-major way of storage data, together with the proper design of the GPU grid of blocks and threads, are of the
utmost importance. However, from the point of view of the present developer, it should be mentioned that the
integrated process, that contains both calculation of induced factors, inversion of matrices, CUFD and other sub-
processes should be characterised as a compute-intensive task. The reason is that, in terms of time complexity,
the induced factors calculation and the inversion of matrices are the heaviest tasks. Moreover, at the present
initial stage of development, the developer is not concerned with development of code for the efficient inversion
of matrices, which is a data-intensive process. For now, this is treated with the selection of the proper GPGPU
library, leaving the development of a solver that is better for the specific application as a very interesting subject
for future work.

46In the present paragraph the tangential velocity is convenient to be denoted as Vt = ∂sΦ× n.
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pNloc1 + q, where p ∈ {0, ..., Nloc2 − 1}, q ∈ {0, ..., Nloc1 − 1}. Also, an ordered list containing
boundary element nodes (vectors of R3) xnode|1 = {xnode

i }, i ∈ {0, 1, ..., Nnode − 1} is created,
where Nnode = (Nloc1 + 1)(Nloc2 + 1).

Consider now, a 2D/3D curve that can be either closed or open with a curvilinear direction e1.
In the case of a closed curve, a central CUFD scheme is applied everywhere; on the contrary, in
the case of an open curve, forward and backward CUFD schemes are applied at the termination
ends. The covariant component of the tangential velocity along that curvilinear direction of e1,
can be approximated by the following 2nd order CUFD scheme

Vt1|1 = D(x0|1) ·Φ|1. (2.68)

The above chordwise CUFD matrix D(x0|1) is a nearly-banded47 N− 1×N− 1 square matrix,
that can have the following two forms

D =



• • 0 0 •
• • • 0 0
0

0
0 0 • • •
• 0 0 • •


, or D =



• • • 0 0
• • • 0 0
0

0
0 0 • • •
0 0 • • •


, (2.69)

where the non-zero elements are denoted by dots (•). The first CUFD matrix below corresponds
to a closed curve and the second to an open curve. To be more specific, in the present 2nd-
order approach, excluding the first and last row, D is a tridiagonal matrix with bandwidth 1.
In general by applying a (2k)th-order CUFD scheme we obtain a nearly-banded matrix, that
contains a (1 + 2k)-diagonal matrix with bandwidth k, where k ∈N.

The non-zero CUFD coefficients in matrix D that are common in both closed and open curves
are calculated as follows

Dii−1 = −
d2

i
2d1

i d2
i

, Dii =
d2

i − d1
i

2d1
i d2

i
, Dii+1 =

d1
i

2d1
i d2

i
, i ∈ {1, ..., Nloc − 2}, (2.70)

where

d1
i = d(x0,i−1, x0i), d2

i = d(x0,i, x0,i+1), (2.71)

and d is a proper distance48 of a proper metric space that contains the points of the 2D manifold.

47At the present version of the computational code we treat all the matrices as dense. This is mainly due to
the fact that calculation of the DtN operator, that is more computationally demanding than the time-evolution
problem, is treated using a classical BEM. The BEM induction-factor matrices, whose creation and storage is cru-
cial in terms of time and space complexity, are dense; contrary to the finite element/difference/volume matrices,
used in volume discretisation methods, that are banded (in the case of structured grids) or sparse (in the case of
unstructured grids). A very interesting subject for future work is the development of fast multipole BEM where
the induction-factor matrices are banded. In that case, for improved computational performance, both induction-
factor and CUFD matrices should be treated as banded or sparse.

48In the present manuscript the terminology metric is used for the metric tensor of the 2D manifold. When
referring to the binary operation that defines distance between two objects of a metric space the word distance
and not metric will be adopted. For more details on metrics and metric spaces, see any reference related to
functional analysis e.g. Kolmogorov and Fomin (1957).
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A naive, but adequate for engineering calculations, choice could be the distance that is induced
by the Euclidean norm, i.e. d2(x0,i−1, x0i) = ‖x0,i−1 − x0i‖2.

In the case of a closed curve, the non-zero elements of the first and the last row of the CUFD
matrix D are calculated as follows

D00 =
d2

0 − d1
0

2d1
0d2

0
, D01 =

d1
0

2d1
0d2

0
, D0,Nloc−1 = −

d2
0

2d1
0d2

0
, (2.72)

DNloc−1,0 =
d1

Nloc−1

2d1
Nloc−1d2

Nloc−1
, DNloc−1,Nloc−2 = −

d2
Nloc−1

2d1
Nloc−1d2

Nloc−1
,

DNloc−1,Nloc−1 =
d2

Nloc−1 − d1
Nloc−1

2d1
Nloc−1d2

Nloc−1
, (2.73)

where

d1
0 = d(x0,Nloc−1, x00), d2

0 = d(x00, x01),

d1
Nloc−1 = d(x0,Nloc−2, x0,Nloc−1), d2

Nloc−1 = d(x0,Nloc−1, x00). (2.74)

In the case of an open curve, the non-zero elements of the first and the last row of the CUFD
matrix D are calculated as follows

D00 = − 3
3d1

0 − d2
0

, D01 =
4

3d1
0 − d2

0
, D02 = − 1

3d1
0 − d2

0
, (2.75)

DNloc−1,Nloc−3 =
1

3d2
Nloc−1 − d1

Nloc−1
, DNloc−1,Nloc−2 = − 4

3d2
Nloc−1 − d1

Nloc−1
,

DNloc−1,Nloc−1 =
3

3d2
Nloc−1 − d1

Nloc−1
, (2.76)

where in that case

d1
0 = d(x00, x01), d2

0 = d(x01, x02),

d1
Nloc−1 = d(x0,Nloc−3, x0,Nloc−2), d2

Nloc−1 = d(x0,Nloc−2, x0,Nloc−1). (2.77)

In order to calculate the covariant component of the tangential velocity along the other curvi-
linear direction of e2 we rearrange the systems of collocation points and potential, obtain-
ing x0|2 = {x0n(i)} and potential Φ|2 = {Φn(i)} where i, n(i) ∈ {0, ..., N − 1}. In that case
n = n(p, q; i) = qNloc2 + p, where p ∈ {0, ..., Nloc2 − 1}, q ∈ {0, ..., Nloc1 − 1}. The reordering49

49Concerning programming, there are two ways for rearranging data in memory. The first way is implemented
by copying the data in another location allocated in the heap, resulting in a new array, where the data are stored
sequentially according to the new ordering. This way, although is inefficient in terms of space complexity, is
sometimes more efficient in terms of time complexity, because ordered data can be processed faster by either
single or multiple threads. The second way is implemented by rearranging an array of pointers (pointers to
pointers) while the data are still stored in their initial location. Those techniques are usually termed zero-copy
technique. However the data in memory are still stored sequentially according to the old numbering and maybe
their postprocess is inefficient in terms of time complexity. The latter technique, that is standard in classical
shorting routines, is usually preferred when arrays of large objects should be rearranged or when strict memory
limitations exist. In the present case, although GPUs still have memory limitations, the first approach is followed,
because the systems of vectors are not that large and for better performance in terms of time complexity.
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is done as follows

n(p, q; ipq) = iT(p, q), p ∈ {0, ..., Nloc2 − 1}, q ∈ {0, ..., Nloc1 − 1}. (2.78)

To justify the use of unary operation of transpose in the above equation we denote that n and
i are 2nd-order finite systems of physical numbers. To be more specific the above quantities
can be interpreted as non-square matrices (2nd − order systems) and could be denoted as ipq
and nqp. However, to be implemented in CUDA C/C++ they are stored in RAM (or in VRAM)
sequentially in a column major way, using simple pointers. Therefore, for the RAM (or VRAM)
they are also vectors (1st − order systems). To proceed, according to their first nature, n may be
interpreted as a Nloc1 × Nloc2 non-square matrix, i as a Nloc2 × Nloc1 non-square matrix and iT

is its transpose50. Also, the systems x0 and Φ have similar double nature51. However, they are
richer because they contain vectors and scalars, respectively. Therefore the following relations
hold

x0|2 = (x0|1)T, (2.79)

Φ|2 = (Φ|1)T. (2.80)

To proceed, we calculate the spanwise CUFD matrix D(x0|2), in a similar manner as we calcu-
lated the chordwise CUFD matrix D(x0|1). Then we apply a similar to Eq.(2.68) formula, to the
rearranged data

Vt2|2 = D(x0|2) ·Φ|2. (2.81)

Finally, Vt2|1 can be calculated, if it is necessary, by rearranging Vt2|2, as follows

Vt2|1 = (Vt2|2)T. (2.82)

2.6 Free-wake analysis

In the present section we will describe an iterative scheme that can be applied to incorporate
to implicit nonlinearity, arising in lifting flow problems, that is associated with the free trailing
vortex sheet. As described in Sec.2.2, vorticity is emanating from the trailing edge lying on
singular surface/curve of potential discontinuity. Vorticity travels at the wake as a material

50In order to develop an efficient computational code, it is important to thoroughly understand the double
nature of n and i. They are both non-square matrices (2nd-order systems) and vectors (1st − order systems), of
physical numbers. In order to use developed libraries, that implement efficiently linear algebraic operations, e.g.
the transpose, their first nature is important. In order to store them and develop functions that implement algebra
with them, in CUDA C/C++, their second nature is required.

51That nature is illuminated by noticing that via i(p, q) or n(p, q; i), with p ∈ {0, ..., Nloc2 − 1} and q ∈
{0, ..., Nloc1 − 1}, their data are mapped to the elements of the Cartesian product of the following finite and or-
dered subsets of N: {0, ..., Nloc2− 1}, {0, ..., Nloc1− 1}. That Cartesian product has a cardinality of N = Nloc1Nloc2,
that equals the number of elements that the 1st − order systems contain.
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surface/curve, according to the following law

DtµW(x; t) = 0, x ∈ ∂DW , (2.83)

where µW = Φu
W − Φl

W denotes the potential jump (the dipole intensity) on the wake and
Dt(·) = ∂t(·) + Vm

W · ∇(·) is the material derivative, based on the mean total velocity Vm
W =

0.5(∇Φu
T +∇Φl

T), on the trailing vortex sheet. The above relation states that the boundary ∂DW
evolves in time, as a material curve and its exact motion is part of the solution introducing an
implicit nonlinearity to the problem. That problem can be solved using an iterative implicit-
coupling scheme, as follows. Assuming that we have already time-marched to time step t−∆t
and everything is known, including the geometry of the wake ∂DW(t−∆t). In order to proceed
to the next timestep, the body is moved generating a new Kutta strip from the trailing edge with
unknown dipole intensity. Then as will be described in Sec.2.8 and in Sec.2.9, the unknown
hydrodynamic quantities are calculated. Subsequently, we can evolve the material curve ∂D(t)
according to the following equation

Then, if we use an explicit time integration scheme (one-way coupling of body and free wake
dynamics) for the above equation, the next step follows or if we implement an implicit itera-
tive scheme (strong two-way coupling of body and free wake dynamics), the part of the DtN
map that includes the influence of the wake has to be calculated many times and the above
procedure has to be repeated before we proceed to the next time step.

Focusing now to the calculation of the velocity, Vm
W can be calculated by the representation

theorem presented in Sec.2.5.1.3, as follows

Vm
W(x0; t) =

∫
∂DB(t)

b(x; t)∇0G(x0|x)− ∂sΦB(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DB; t)

−
∫

∂DW(t)

γW(x; t)×∇G(x0|x) ds(x) + VBS(x0|∂DW ; t), x0 ∈ ∂DW(t), (2.84)

where

VBS(x0|∂D; t) =



0, ∂(∂D) = ∅.

+µ(x2; t) · ∇2Gv(x0|x2; x; t)
−µ(x1; t) · ∇1Gv(x0|x1; x; t), D ⊆ R2

1
4π

∫
∂(∂DW)(t)

µ(x; t) dl(x)×r(x0|x)
[r(x0|x)]3

, D ⊆ R3


, ∂(∂D) 6= ∅.

(2.85)

As also demonstrated in Sec.2.5.1.3, the discretised form of the velocity representation theorem
for points on the Nnode wake nodes, i.e. on xnode = {xnode

i }, i ∈ {0, 1, ..., Nnode − 1}, is as follows

Vm
W(t) = Svel

B (t) · b(t) +


Dvel

B (t) · µ(t) +Dvel
K (t) · µK(t) +Dvel

W (t) · µW , D ⊆ R2.

Dvel
B (t)× µ(t) +Dvel

K (t)× µK(t) +Dvel
W (t)× µW , D ⊆ R3.

(2.86)
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The velocity induction factors are defined as follows

Svel
ij = −

∫
element j

∇G(xi|x) ds(x), (2.87)

Dvel
ij =

∫
element j

(n∇)[∇G(xi|x)] ds(x)

=


∇2Gv(xi|x2; x)−∇1Gv(xi|x1; x), D ⊆ R2.

− 1
4π

∫
∂(element j)

dl(x)×r(xi|x)
[r(xi|x)]3

, D ⊆ R3.
(2.88)

The induction factors from the body to the wake are regular integrals and can be easily calcu-
lated52. However, in 3D case53, the Kutta-strip induction factors and the self-induction factors
on the wake are highly-singular non-integrable (in the usual sense) integrals; see also Politis
(2004). In the present case of bilinear quadrilateral elements with constant dipole intensity,
those Biot-Savart integrals has a straight-line support (the sides of the elements). Therefore,
an analytical formula can be obtained. However, the velocity calculated by that formula, in
the neighborhood of the node, is still highly singular, and the desingularisation processes that
will be followed is described later in the present section. To proceed, in the 3D case the fol-
lowing decomposition, of the boundary of the element to the four straight-line edges, can be
done ∂(element j) =

⋃3
k=0 Ljk Therefore, the line integral (vortex ring velocity) can be decom-

posed to four straight line integrals on the edges of the element (vortex filaments velocities), as
follows

Dvel
ij = − 1

4π

∫
∂(element j)

dl(x)× r(xi|x)
[r(xi|x)]3

= − 1
4π

3

∑
k=0

DL
ijk, (2.89)

where each vortex filament velocity can be calculated analytically (Katz and Plotkin, 2001), as
follows

DL
ijk =

∫
Ljk

dl(x)× r(xi|x)
[r(xi|x)]3

=
r1

ijk × r2
ijk

‖r1
ijk × r2

ijk‖2
· r0

ijk ·
(

r1
ijk

‖r1
ijk‖2

−
r2

ijk

‖r2
ijk‖2

)
. (2.90)

In the above relation upper indices are used to distinguish between the different vector dis-
tances. To be more specific, r0

ijk is the vector distance between two nodes on the filaments, r1
ijk

is the vector distance between the first node of the filament and the control point and r2
ijk is the

vector distance between the second node of the filament and the control point. It is clear that
when the control point tend to one of the nodes that quantity tend to infinity.

The velocity representation theorem is accurate for the calculation of the shear layer dynamics

52In 2D case, that calculation can be done analytically in the context of the present low order panel method; see
e.g. Moran (2003) or Katz and Plotkin (2001). In 3D case, the calculation can be done either analytically, using
far-field approximate formulas or numerically, with simple (non-adaptive) quadrature rules.

53In 2D case the induction factors are single vortices located on the nodes of the panel and their self-induced
velocities are singular. The desingularisation of those velocities will be discussed later in the present paragraph.
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in the context of the present inviscid approximation. However, dipole self-induced velocity
on a boundary element is singular at its nodes. Moreover, from the physical point of view,
the mechanisms (a) of vortex sheet evolution, especially at highly unsteady cases, and (b) of
the strong interaction between the vortex sheet and itself and other boundaries54, are mainly
viscous and they are excluded from the present modeling. Furthermore, as denoted in Politis
(2011a): "the mathematical flow fields in the vicinity of vortex sheets present peculiar/non-
physical performance due to the following reasons: (a) the boundary of a shear layer induces
infinite velocities in its neighborhood, Saffman (1992); (b) approaching a point of a shear layer
from either sides results in different values of self-induced velocities and induced potentials.
Thus formulas for induced velocities/potentials used in BEM cannot be applied to strong inter-
action cases, where viscosity rules without modification". Moreover, in Politis (2016) it is stated
that: "Free vortex sheets are inherently unstable and amenable to two well-known instabilities:
the Kelvin-Helmholtz instability55 and the roll-up of their free edges56. As a result, they show
chaotic behavior with the passage of time. On the other hand, experimental evidence on flows
around lift producing devices shows that the wake vorticity is organized in specific, problem
dependent roll-up patterns". In Politis (2004), a cut-off based filtering technique is applied
in order to encounter that problem, achieving reasonably smooth wake shapes, in cases of
moderate unsteadiness. However, in Politis (2011a, 2016), a more efficient and elegant desin-
gularisation technique is introduced57, that is able to produce smooth wake shapes in highly-
unsteady operating conditions. That technique, as explained in Politis (2011a), is inspired by
the by exact solutions (like the Batchelor, Oseen-Lamb or the Burgers vortices58) of simplified
forms of Navier-Stokes equations, as will be described in the sequel. In that approach, smooth
desingularisation kernels remove the generic singularities from the self-induced velocities, by
introducing artificial viscosity to the modeling. In this way the small-scale instabilities are sup-
pressed, leaving the large-scale organized vortices to govern the evolution of the vortex sheet,
generating smooth roll-up patterns, even at highly loaded conditions.

A detailed demonstration of the way that vortices can be obtained, as solutions of simplified
forms of Navier-Stokes equations, can be found in Chapters 2 and 6 of Wu et al. (2007). Here
just a brief discussion on that topic will be presented, together with the formula of the specific
vortex solution we exploit for filtering purposes. To proceed, we start with Navier-Stokes equa-
tion, see Eq.(2.161) in the aforementioned work. We cast the left-hand-side material derivative

54The interaction of free shear layer and the water free surface, in initially still water and in waves, are studied
in Sec.3.2 and Sec.4.4, respectively.

55Strictly speaking, the Kelvin-Helmholtz instability refer to continuous dilatation of an initially disturbed vor-
tex sheet with uniform vorticity. A discussion concerning stability on non-uniform shear layers, like unsteady
vortex sheets, can be found in Hocking (1964, 1965).

56On the one hand, Kelvin-Helmholtz instability refers to the roll-up of the wake about a spanwise axis forming
a reverse Karman vortex wake (at thrust-producing operation), that can also be modeled in the 2D formulation
of a flapping foil; see e.g. Politis (2011a), Saffman (1992), Batchelor (2000), Wu et al. (2007), Lewis (2005). On the
other hand, the termination edges of a finite vortex sheet induce infinite velocities to their self and this is related
with the tip vortex rollup; see also Politis (2016).

57We denote here, that those filter functions have already been introduced in vortex particle methods; see e.g.
Winckelmans and Leonard (1993) and Krasny et al. (2002).

58Batchelor and Oseen-Lamb are stretch-free vortices and will be discussed in the sequel. The Burgers vortex
(Burgers, 1948), that is referenced in Politis (2016), is the first stretched vortex solution to model turbulent eddies
and includes as a special case the Oseen-Lamp vortex; for more details see Sec.6.2.2 of Wu et al. (2007).
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to the vorticity form, revealing the inertial term, the gradient of kinetic energy and the Coriolis-
type Lamb-vector term. Next, at the right hand side, by applying the first law of thermodynam-
ics in the enthalpy form59, we replace pressure gradient with enthalpy gradient temperature
and entropy gradient, obtaining the viscous Crocco-Vazsonyi equation; see Eqs.(2.163, 2.164)
in the aforementioned reference, where the total enthalpy is used. Writing that relation with re-
spect to a cylindrical coordinated system one can obtain Crocco-Vazsonyi equation, in a form,
suitable for the pursuit of vortice-type solutions; see Eq.(6.4) in the aforementioned reference.
When seeking for axisymmetric and stretch-free columnar vortices, by introducing the appro-
priate assumptions we obtain a simplified form for Crocco-Vazsonyi equation; see Eq.(6.18) in
the aforementioned reference. Following Wu et al: "if the flow is effectively inviscid, the only
equation we can use is (6.18a) in which the pressure can automatically adjust itself to balance
whatever centrifugal acceleration. Thus, a stretch-free inviscid vortex can have arbitrary radial
dependence, providing a big freedom for constructing various inviscid vortex models. The
most familiar example is the q-vortex, which fits many experimental data pretty well". The
azimuthal velocity of that vortex, known also a Batchelor vortex60, is given by the following
formula61

uθ(r) =
Γ

2πr

[
1− e−c( r

R)
p]

, p = 2. (2.91)

In the above formula, the second multiplicative factor is the kernel-smoothing function that
will be applied to desingularise the Biot-Savart integral. To be more specific, Γ denotes the vor-
tex filament intensity, r is the radial Euclidean distance of the reference point from the core, R is
a characteristic radius (that will be further analysed in the sequel) to make r non-dimensional.
Moreover, c is a constant characterising the range of action of the filter. In the present work,
following Politis (2016), we select c = ln 2. Furthermore, p is a parameter that, in the context
of a kernel-smoothing process, depends on the order of the singularity of the kernel function.
In the present work, that parameter is selected to be p = 2. This is a suitable choice for, both
2D vortex (i.e. infinite vortex filament) and 3D (finite) vortex filament, self-induced velocity
desingularisation. That choice is supported by the aforementioned theoretical analysis and by
parametric study conducted by professor Politis, that is partially presented in the aforemen-
tioned reference. Applying that selection of parameters, we conclude to the following form of

59That procedure was followed by Alexander Friedmann in order to produce the result knows as Crocco’s the-
orem, that is an inviscid form of Crocco-Vazsonyi equation. That result is an aerodynamic theorem relating the
flow velocity, vorticity, and pressure (or entropy) of a potential flow. Crocco’s theorem gives a relation between
the thermodynamics and fluid kinematics. The theorem was first enunciated by Alexander Friedmann for the
particular case of a perfect gas and published in 1922 in the work entitled "An essay on hydrodynamics of com-
pressible fluid". That work is archived at the Wayback Machine in 1934, under the editorship of Nikolai Kochin
(see the first formula on page 198 of the reprint). However, usually this theorem is connected with the name of
Italian scientist Luigi Crocco.

60As stated in Wu et al. (2007), q-vortex "is actually the canonical form of an approximate viscous solution
suitable to describe a wake vortex far downstream of an aircraft, found by Batchelor in 1964. So the q-vortex
is also called the Batchelor vortex."; see also Batchelor (1964). In that specific case "the vorticity has a Gaussian
distribution, and hence the q-vortex is one of the family called Gaussian vortices."

61That formula is a specific form of Eq.(6.19) of Wu et al. (2007), that is initially introduced, for filtering purposes,
in Politis (2011a) and further analysed and extended in Politis (2016).
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the kernel-smoothing function62

m(r; R) = 1− e−(ln 2)( r
R)

2

. (2.92)

Concerning the filter radius R in the present work a constant (time independent63) value will
be adopted following the guidelines suggested in Politis (2016). According to the aforemen-
tioned reference proper values of R are 0.5% to 15% of the diameter of the convex hull that
of the system of interacting objects. In the present case it is the convex hull of the single foil.
Exact selection of the value is case dependent and varies with respect to the complexity of the
geometry, unsteadiness and the Reynolds number.

The application of filtering in 2D case, where a 2D vortex (or equivalently a 3D infinite vortex
filament) has to be desingularised, is straightforward and is standard in vortex particle meth-
ods. The smoothened velocities can be calculated by multiplying the vortex singularity with
the kernel-smoothing function m. In the 3D case, of finite length vortex filaments the desingu-
larisation technique is described in Politis (2011a, 2016). The resulting desingularised velocity
induction factors can be calculated by the following formula

Dvel
ij |m =


m [r(xi|x2); R]∇2Gv(xi|x2; x)−m [r(xi|x1); R]∇1Gv(xi|x1; x), D ⊆ R2,

− 1
4π

3
∑

k=0
DL

ijkm(hijk; R), D ⊆ R3,
(2.93)

where Dvel
ij |m denotes the desingularised induction factor and hijk stands for the normal dis-

tance from the control point i to the vortex filament k lying at the kth edge of the element j.

2.7 Pressure calculation

In the present section we deal with the calculation of pressure by means of an approximate
Bernoulli theorem, including the effect of an unsteady nonuniform background field, that is not
irrotational in general. In the context of the adopted approximation, the total flow consists of an
irrotational part that corresponds to the disturbance field and a weakly rotational background
field. In that case we will begin with Euler equations, that expresses Newton’s second law, for
the total velocity and pressure fields ∇Φ = ∇Φ + VG and pT = p + pG, respectively, where
pT and pG are the disturbance and the background pressure fields, respectively. The Euler

62Professor Politis, that initially introduced that technique for the desingularisation of Biot-Savart velocities
in free-wake analysis of lifting surfaces for purposes of marine hydrodynamics, named that function mollifier.
Therefore we will denote that filtering function with the letter m, following the nomenclature used in Politis
(2016).

63In Politis (2016) a time dependent radius is selected R = 2
√

vt, where v is the kinematic viscosity. This leads
to the Ossen-Lamp vortex; see Oseen (1912) and Lamb (1993). As described in Wu et al. (2007), that vortex form
is also the zeroth mode of a Laguerre-polynomial based series expansion. That spectral representation is used in
order to solve Laguerre equation in which Navier-Stokes equations can be transformed to, under the appropriate
assumptions. That process is described thoroughly in the aforementioned reference. The extension of the of
present method in order to include age-dependent kernel-smoothing functions, that could also include additional
modes of the Laguerre series, or more complex core structure, consisting of many regions (as shown in Fig.8.2 of
the aforementioned reference) is straightforward.
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equations for the total fields are given bellow

∂t∇Φ(x; t) +
1
2
∇ [∇Φ(x; t)]2 −VT(x; t)× [∇×VT(x; t)] +

∇pT(x; t)
ρ

= 0, x ∈ D, (2.94)

⇒ ∂t (∇Φ + VG) +
1
2
∇ (∇Φ + VG)

2

− (∇Φ + VG)× [∇× (∇Φ + VG)] +
∇ (p + pG)

ρ
= 0. (2.95)

In the equation above ρ is the density of the fluid and ∂t(·) denotes the rate of change with
respect to an earth-fixed (inertial) observer (i.e. with regard to an inertial reference frame). The
disturbance velocity field is assumed to be irrotational, therefore Eq.(2.95) becomes

∂t (∇Φ + VG) +
1
2
∇ (∇Φ)2 +∇ (∇Φ ·VG) +

1
2
∇V2

G

−∇Φ× (∇×VG)−VG × (∇×VG) +
∇ (p + pG)

ρ
= 0. (2.96)

We apply now Euler equations on the background field and we obtain

∂tVG(x; t) +
1
2
∇V2

G(x; t)−VG(x; t)× [∇×VG(x; t)] +
∇pG(x; t)

ρ
= 0, x ∈ D. (2.97)

Subtracting now Eq.(2.97) from Eq.(2.96) we produce the following equation Eq.(2.95) becomes

∂t (∇Φ) +
1
2
∇ (∇Φ)2 +∇ (∇Φ ·VG)−∇Φ× (∇×VG) +

∇p
ρ

= 0. (2.98)

Furthermore we assume that the rotational term∇Φ× (∇×VG) is of higher order and, in the
context of the present weakly rotational approximation, can be neglected, and thus Eq.(2.98)
becomes

∇
[

∂tΦ +
1
2
(∇Φ)2 +∇Φ ·VG +

p
ρ

]
= 0, x ∈ D. (2.99)

Finally, integrating the above equation along a curve in D we obtain

p(x; t)
ρ

+ ∂tΦ(x; t) +
1
2
[∇Φ(x; t)]2 + VG(x; t)∇Φ(x; t) = C(t), (2.100)

where the x−integration constant C(t) is time dependent. However C(t) can be set to zero by
redefining the potential as follows

Φ(x; t) = Φ1(x; t) +
∫ t

C(τ) dτ, (2.101)
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thus Eq.(2.100) becomes

p(x; t)
ρ

+ ∂tΦ1(x; t) +
1
2
[∇Φ1(x; t)]2 + VG(x; t)∇Φ1(x; t) = C(t), (2.102)

To sum up, we have obtained a formula for the calculation of disturbance pressure that is
written, after dropping the index 1, in the following form

p(x; t)
ρ

+ ∂tΦ(x; t) +
1
2
[∇Φ(x; t)]2 + VG(x; t)∇Φ(x; t) = 0, x ∈ D. (2.103)

where p is the disturbance pressure field, ρ is the density of the fluid and ∂t(·) denotes the
rate of change with respect to an earth-fixed (inertial) observer (i.e. with regard to an inertial
reference frame).

The time derivative of the potential with respect to the moving, with the body velocity, frame
of reference can be calculated by the following formula

dtΦ(x; t) = ∇Φ(x; t) ·VB(x; t) + ∂tΦ(x; t), x ∈ ∂DB(t). (2.104)

More details concerning the derivation of the above formula can be found e.g. in the following
references Katz and Plotkin (2001), Politis (2004), Politis (2011b), Filippas (2013). By replacing
Eq.(2.104) into Eq.(2.103), we obtain a formula for pressure calculation on body boundary, as
follows

p(x; t)
ρ

= −dtΦ(x; t) +∇Φ(x; t) · [VB(x; t)−VG(x; t)]− 1
2
[∇Φ(x; t)]2 , x ∈ ∂DB(t). (2.105)

Moreover, the trace on the body boundary of the space gradient of the potential can be de-
composed to its tangential and the vertical components according to Eq.(2.67) and the body
boundary condition (Eq.2.4), as follows64

∇Φ(x; t) = ∂sΦ(x; t)× n(x; t) + ∂nΦ(x; t) · n(x; t)
= Vt(x; t) + {[VB(x; t)−VG(x; t)] · n(x; t)} · n(x; t)
= Vt(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (2.106)

Therefore, Eq.(2.105), after some algebra, becomes

p(x; t)
ρ

= −dtΦ(x; t) + Vt(x; t) · [VB(x; t)−VG(x; t)]

− 1
2
[Vt(x; t)]2 +

1
2

b2(x; t), x ∈ ∂DB(t). (2.107)

The above form of approximate Bernoulli’s equation is utilised for pressure calculations on
the body boundary. Then the boundary pressure can be integrated to obtain generalised forces
(forces and moments) and by exploiting also the local generalised velocity (linear and angular),
the power of the studied hydromechanical systems can be obtained, leading to the estimation
of appropriate metrics of the efficiency or the performance (power take-off).

64In the present paragraph the tangential velocity is convenient to be denoted as Vt = ∂sΦ× n.
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2.8 Pressure-type Kutta condition

The classical Pressure-type Kutta condition can be produced from the dynamic boundary con-
dition on the wake by demanding that the pressure field (and therefore the pressure jump)
ought to be continuous in D. Recall, the dynamic boundary condition (Eq.2.7) on the wake
∂DW

pu
W(x; t) = pl

W(x; t), x ∈ ∂DW . (2.108)

The above equation necessitates that the surface of potential and tangential velocity disconti-
nuity, that represents the vortex wake, cannot carry loading and thus the pressure at the both
sides of it should be the same. We assume that the pressure jump must be continuous while
moving from the trailing vortex sheet to the body and therefore it must be zero at the trailing
edge, i.e. at ∂DB ∩ ∂DW . The pressure fields at the upper and the lower side of the trailing
edge, approaching from the lifting body, are given by the following formulas

pu
B(xTE; t) = lim

ξ→ξTE
pu

B[xB(ξ, η); t], xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t), (2.109)

pl
B(xTE; t) = lim

ξ→ξTE
pl

B[xB(ξ, η); t], xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t). (2.110)

Moreover, the pressure fields at the upper and the lower side of the trailing edge, approaching
from the wake, are the same according to Eq.(2.108) and are given by the following formulas

pW(xTE; t) = pu
W(xTE; t) = lim

ξ→ξTE
pu

W [xW(ξ, η); t], xW ∈ ∂DW(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t),

(2.111)

pW(xTE; t) = pl
W(xTE; t) = lim

ξ→ξTE
pl

W [xW(ξ, η); t], xW ∈ ∂DW(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t).

(2.112)

Assuming continuity of the pressure field and taking into account Eqs.(2.108-2.112) we obtain
the pressure-type Kutta condition

lim
ξ→ξTE

{
pu

B[xB(ξ, η); t]− pl
B[xB(ξ, η); t]

}
= 0, xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t),

(2.113)

2.8.1 Analytical form

To proceed, we recall an appropriate form of the approximate Bernoulli’s theorem, Eq.(2.103),
derived in Sec.2.7

p(x; t)
ρ

= −∂tΦ(x; t)− 1
2
[∇Φ(x; t)]2 −VG(x; t)∇Φ(x; t), x ∈ D. (2.114)
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By rearranging terms, making common factor −1/2 and adding and subtracting the quantity
−1/2V2

G, factorising and using the binomial theorem for the sum of squares, we obtain the
following formula

p(x; t)
ρ

= −∂tΦ(x; t)− 1
2
[∇Φ(x; t) + VG(x; t)]2 − 1

2
V2

G(x; t), x ∈ D. (2.115)

Moreover, we apply the above form of approximate Bernoulli’s theorem to the upper and lower
side of the trailing edge, we use pressure-type Kutta condition (Eq.2.113) and we factorise the
difference of squares to construct the following form of the condition

lim
ξ→ξTE

FPK[xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (2.116)

where the operator FPK(·) is defined as follows

FPK[xB(ξ, η); t] =
{

∂t(Φu −Φl) +
[
0.5(∇Φu +∇Φl)

+0.5(Vu
G + Vl

G)
]
· (∇Φu −∇Φl + Vu

G −Vl
G)− 0.5

[
(Vu

G)
2 − (Vl

G)
2
]}

.

(2.117)

The above form of pressure-type Kutta condition written with respect to the inertial refer-
ence frame, is appropriate for the modeling of lifting flows in a weakly rotational background
field, and has already been used in the mathematical formulation of the problem in Sec.2.2,
Eqs.(2.12&2.13). For the calculation of pressure from the boundary values of the potential, that
is the primary unknown is the present direct formulation, the reformulation of the above rela-
tion with respect to the moving reference frame is required. Aiming to the construction of the
aforementioned formula we begin with Eq.(2.105), that is rewritten bellow

p(x; t)
ρ

= −dtΦ(x; t) +∇Φ(x; t) · [VB(x; t)−VG(x; t)]− 1
2
[∇Φ(x; t)]2 , x ∈ ∂DB(t). (2.118)

By rearranging terms, making common factor −1/2 and adding and subtracting the quantity
−1/2 [VB(x; t)−VG(x; t)]2, we obtain the following formula

p
ρ
= −dtΦ−

1
2

[
(∇Φ)2 − 2∇Φ · (VB −VG) + (VB −VG)

2 − (VB −VG)
2
]

. (2.119)

Moreover, we factorise the difference of squares to construct the following form

p
ρ
= −dtΦ−

1
2
(∇Φ + VG −VB)

2 +
1
2
(VG −VB)

2 . (2.120)

The last relation, in which ∇Φ + VG −VB is the total fluid velocity and VG −VB is the back-
ground field velocity relative to an observer build that follows foil’s motions, is the approxi-
mate form of Bernoulli’s theorem with respect to the Body fixed reference frame. To proceed
further, we apply the above form of approximate Bernoulli’s theorem to the upper and lower
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side of the trailing edge, we use pressure-type Kutta condition (Eq.2.113) to construct the fol-
lowing form of the operator FPK(·)

FPK[xB(ξ, η); t] = dt(Φu −Φl) +
1
2
(∇Φu + Vu

G −Vu
B)

2 − 1
2

(
∇Φl + Vl

G −Vl
B

)2

+
1
2

(
Vl

G −Vl
B

)2
− 1

2
(Vu

G −Vu
B)

2 . (2.121)

Moreover, the limiting value on the body boundary of the space gradient of the potential can
be decomposed to its tangential and the vertical components according to Eq.(2.67) and the
body boundary condition (Eq.2.4), as follows

∇Φ(x; t) = ∂sΦ(x; t)× n(x; t) + ∂nΦ(x; t) · n(x; t)
= Vt(x; t) + {[VB(x; t)−VG(x; t)] · n(x; t)} · n(x; t)
= Vt(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (2.122)

With the aid of Eq.(2.122), the operator FPK(·) becomes

FPK[xB(ξ, η); t] = dt(Φu −Φl) +
1
2
(Vu

t + bunu + Vu
G −Vu

B)
2 − 1

2

(
Vl

t + blnl + Vl
G −Vl

B

)2

+
1
2

(
Vl

G −Vl
B

)2
− 1

2
(Vu

G −Vu
B)

2 . (2.123)

Moreover, by factorising the difference of the squares and rearranging terms, we obtain the
following form of pressure-type Kutta condition

lim
ξ→ξTE

FPK[xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (2.124)

where

FPK[xB(ξ, η); t] = dt(Φu −Φl) +

(
Vu

t + Vl
t

2
+

bunu + blnl

2
+

Vu
G + Vl

G
2

−
Vu

B + Vl
B

2

)
[
Vu

t −Vl
t + bunu − blnl + Vu

G −Vl
G −

(
Vu

B −Vl
B

)]
−
(

Vu
G + Vl

G
2

−
Vu

B + Vl
B

2

) [
Vu

G −Vl
G −

(
Vu

B −Vl
B

)]
. (2.125)

The above relation65 is the pressure-type Kutta condition with respect to the body fixed ref-
erence frame. That equation includes a quadratic nonlinear form of the unknown boundary
value of the tangential velocity Vt and linear terms. It also includes the unknown bound-
ary value of the potential Φ at the body contour as approaching the trailing edge. As will be
demonstrated in the following section the continuous boundary field Vt is approximated by

65The terms in the Eq.(2.125) are mean values and differences of the upper and lower side traces on the body
boundary. Some of those fields are continuous at the trailing edge, however when discretisation is applied and a
BEM is exploited for calculations, the vicinity of the trailing edge is modeled by neighboring to the trailing edge
panels. In that case, the upper and lower elements are not identical and the same applies to the boundary field
values. Therefore, it is important for the accurate and stable imposition of Kutta condition, those mean values
and differences to be considered in the calculations.
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a discrete tangential velocity field that is projected to a curvilinear coordinated system (see
also Sec.2.5.2.1). Moreover, it is approximated by CUFDM (see also Sec.2.5.2.2) and replaced
with linear combinations of Φ. Then the DtN (Sec.2.4) will be exploited to replace all the un-
knowns by linear functions of the dynamic variable of the problem that will be the potential
jump (dipole intensity) at the Kutta strip.

2.8.2 Discretised form - The dynamical system

We apply discretisation with BEM and collocation as described in detail in Secs.2.4 & 2.5.2.2.
We consider the collection of discretised data that are families of scalars or vectors. They are
ordered following span-major numbering. In this way, ordered lists (systems) are created,
that represent the collocation points (containing vectors of R3), the discretised potential field
(containing real numbers), the discretised tangential velocity field (containing vectors of R3)
or the covariant components of the tangential velocity (containing real numbers). The sys-
tems that are arranged span-majorly will be denoted using |2. To proceed, the pressure-type
Kutta condition is applied at the body-collocation points at the upper and lower side of the
trailing edge66 and the corresponding operator is discretised as follows FPK|2 = {FPK

i }, with
i ∈ {0, 1, ..., NPK − 1}, where NPK is the total number of collocation points that Kutta condi-
tion is applied. Therefore, we have the aforementioned collocation points x0|2 = {x0i}, the
potential Φ|2 = {Φi}, the tangential velocity Vt|2 = {Vti}, the first component (chordwise) of
the covariant derivative of the potential Vt1|2 = {Vt1i}, the second component (spanwise) of
the covariant derivative of the potential Vt2|2 = {Vt2i}. Moreover, the known-Neumann-data-
times-the-normal-vector discretised vector field is N|2 = {bini} the background-field velocity
VG|2 = {VGi} and the body velocity VB|2 = {VBi}.

The discretised form of pressure-type Kutta condition is as follows

FPK (x0|2; t)|2 = 0, x0|2 ∈ ∂DB(t), (2.126)

where

FPK (x0|2; t)|2 = dt(Φ
u|2 −Φl|2)

+

(
Vu

t |2 + Vl
t|2

2
+

Nu|2 + Nl|2
2

+
Vu

G|2 + Vl
G|2

2
−

Vu
B|2 + Vl

B|2
2

)
[
Vu

t |2 −Vl
t|2 + Nu|2 −Nl|2 + Vu

G|2 −Vl
G|2 −

(
Vu

B|2 −Vl
B|2
)]

−
(

Vu
G|2 + Vl

G|2
2

−
Vu

B|2 + Vl
B|2

2

) [
Vu

G|2 −Vl
G|2 −

(
Vu

B|2 −Vl
B|2
)]

. (2.127)

The discretised tangential velocity vector field Vt is expanded with respect to a curvilinear
coordinate system and its covariant base, using the velocity contravariant components (see

66A single numbering is used for both the upper and the lower collocation points; i.e. the collection i ∈
{0, 1, ..., NPK− 1} is mapped to the upper side data denoted with upper index u and to the lower side data denoted
with l.
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Sec.2.5.2.1), as follows

Vt|2 = (Vtj)
j|2 · ej|2, j ∈ {1, 2}. (2.128)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|2 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NPK− 1} and the dot product is between systems of vectors.

The contravariant components of the velocity can be calculated when the covariant compo-
nents are known as follows

(Vtj)
j|2 = gjk|2(Vtk)k|2, j, k ∈ {1, 2}. (2.129)

where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|2 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NPK − 1}.

By applying CUFD we can approximate the covariant component of the tangential velocities
by the neighboring potential values (see Sec.2.5.2.2) as follows

(Vt1)1|2 = [D(x0|1) ·Φ|1]T =
[
D(x0|1) · (Φ|2)T

]T
. (2.130)

(Vt2)2|2 = D(x0|2) ·Φ|2. (2.131)

The above detailed analysis enlightens the fact that the discretised boundary value of the tan-
gential velocity Vt can be expressed as a function of the discretised boundary value of the
potential Φ in the context of our approximation; i.e. Vt = VCUFDM (Φ).

At the final stage the discretised pressure-type Kutta condition (Eqs.2.126&2.127) will be ex-
ploited for the construction of the dynamical-system equations in the form dtU = f(U), where
the system-derivative f is a function of the dynamic variable U = µK. In order to obtain that
form of Kutta condition we recall the discretised DtN operator constructed in Sec.2.4, Eq.(2.29)

Φ(t) = G · b(t) + Z · µK(t) + P(t) · µW (2.132)

In the above linear relation the only unknown discretised fields are represented by the systems
of Dirichlet data on the body and the Kutta strip; i.e. the potential Φ and the potential jump
µK. The Neumann data on the body b and are known from the prescribed kinematics and the
Dirichlet data on the wake µW have been determined from the time history of the system evolu-
tion. Therefore, the discretised pressure-type Kutta condition (Eqs.2.126&2.127) together with
the discretised DtN operator Eq.(2.132) are a system of (spatially and temporarily) nonlocal dif-
ferential equations, with explicit and implicit nonlinearities and a linear algebraic constraint.

In the sequel, the algebraic constraint is used in order to expresses the system-derivative f as
a function of the dynamic variable U = µK. First of all, the discretised potential field with the
aid of Eq.(2.132) becomes a function of µK; i.e. Φ = DTN (µK). In this way the discretised trace
tangential velocity can be expressed as a function of µK; i.e. Vt = VDTN (µK). Therefore, the
pressure-Kutta operator is also a function of the unknown µK (and other known quantities);
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i.e. FPK = FPK (µK). The pressure-type Kutta condition becomes

dt

[
DTNu (µK)−DTNl (µK)

]
=

−
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B
2

) [
Vu

G|2 −Vl
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(
Vu

B −Vl
B

)]
. (2.133)

In the equation above, the upper indices u and l refer to the discretised tangential velocity
and potential at the upper and lower sides the discretised boundary, respectively. To be more
specific to the corresponding values of the discretised fields at the collocation points located at
the centroids of the boundary elements that represent the upper and lower sides of the body at
the vicinity of the trailing edge. Those values are global functions of the total discretised field
of the potential jump at the Kutta-strip µK and that relation is expressed by the global DtN
operator (second term at the right hand side of Eq.2.132). For example the velocity and the
potential at the left tip of the foil, depends on the intensity of the dipoles that are distributed
at Kutta-strip in the vicinity of the right tip. Moreover, it is a function of the total Neumann
data on the body (first term at the right hand side of Eq.2.132) and the time history of the
total Dirichlet data that are stored as dipoles in the wake (third term at the right hand side
of Eq.2.132). In this way the spatial and temporal nonlocal character of the problem, that is
preserved through discretisation vie BEM, is illustrated.

To proceed further, it is necessary to perform some operations to the time derivative of the DtN
operator appeared at the left hand side of Eq.(2.133).

dt

[
DTNu (µK)−DTNl (µK)

]
=

= dt[G
u − Gl] · b(t) + [Zu − Zl] · µK(t) + [Pu(t)− Pl(t)] · µW . (2.134)

We define the following matrices Gu\l = [Gu − Gl], Zu\l = [Zu − Zl], Pu\l = [Pu − Pl] as differ-
ences of matrices with one dimension that equals the number of Kutta-strip collocation points
NPK and the other defined by the number of the panels (on body, Kutta-strip and wake, respec-
tively) that induce potential at the collocation points. By adopting that notation and using the
Leibniz rule for differentiation we obtain the following relation

dt

[
DTNu (µK)−DTNl (µK)

]
=

= dt[G
u\l · b(t) + Pu\l(t) · µW ] + dt[Z

u\l] · µK(t) + Zu\l · dt[µK(t)]. (2.135)
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By replacing Eq.(2.135) into Eq.(2.133) and multiplying both sides with the inverse of Zu\l, we
obtain the final form of the discretised pressure-type Kutta condition

dt[µK(t)] = (Zu\l)−1 · {−dt[G
u\l · b(t) + Pu\l(t) · µW ]− dt[Z
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−
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}. (2.136)

We have finally obtained a system of (spatially and temporarily) nonlocal differential equa-
tions, with explicit and implicit nonlinearities, with unknown the dynamic variable µK that
approximately describe the dynamics of the system

dtU = f(U), where U = µK, (2.137)

and

f(U) = (Zu\l)−1 · {−dt[G
u\l · b(t) + Pu\l(t) · µW ]− dt[Z
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}. (2.138)

Eqs.(2.137&2.138) can be numerically integrated in order to calculate evolution of the dynamic
variable µK, based on information concerning the function µK at previous time steps, in con-
junction with the history of the wake dipole intensity µW , and the Neumann data N|2 = {bini},
known at every time step from unsteady background field and the body motion as described
by the body boundary condition Eq.(2.4). Subsequently, the discretised DtN map Eq.(2.132)
is used to calculate the remaining unknown discretised Dirichlet boundary field values Φ as
follows

Φ(t)|1 = G · b(t)|1 + Z · µK(t)|2 + P(t) · µW |2. (2.139)

2.9 Time integration of the system

Starting from a prescribed initial condition, e.g. from rest, a time-stepping method is applied to
obtain the numerical solution. After evaluation of different explicit time-integration schemes,
we found that the higher-order Adams-Bashforth-Moulton predictor-corrector method pro-
vides the required accuracy, stability and efficiency. The used scheme requires calculation of
only two derivative equations at each time, and the error is of order

(
∆t5), where ∆t is the



66 Chapter 2. Unsteady lifting bodies in unbounded domain

timestep, ensuring that good convergence is achieved. To be more precise, if we know U (t) at
time t, we have at the corrector step

U (t + ∆t) = U (t) +
∆t
24
[
9fpre (t + ∆t) + 19f (t)− 5f (t− ∆t) + f (t− 2∆t)

]
. (2.140)

with predictor

fpre (t + ∆t) = ft+∆t
[
Upre (t + ∆t)

]
. (2.141)

and

Upre (t + ∆t) = U (t) +
∆t
24

[55f (t)− 59f (t− ∆t) + 37f (t− 2∆t)− 9f (t− 3∆t)] . (2.142)

2.10 Numerical results and discussion

2.10.1 Stability and convergence

We begin with a discussion about the stability and convergence of the present scheme. Exten-
sive numerical investigation has been performed for cases of flapping motion in great submer-
gence and near the free surface, as well as in cases of operation in waves. In all cases numerical
stability is achieved when a condition of CFL-type is satisfied, as follows

C∆t
∆x
≤ δ = O(1). (2.143)

Figure 2.8: Convergence of thrust coefficient CT as a function of the number of body panels NB
and the time-step ∆t/T(%), for a NACA0012 hydrofoil in flapping motion. The error of thrust
coefficient (%) is shown using colorscale. Contour lines indicate the ratio ∆sW/∆sB of the length

of panels in the vicinity of the trailing edge.
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where C is in general the celerity of the generated waves on the free-surface and in the present
unbounded domain case is the foil velocity (C = U) that corresponds to an equivalent vorticity
wave on the wake; see linear unsteady hydrofoil theory Filippas (2013) or Newman (1977).
Concerning the convergence characteristics of the numerical scheme it is found that there exists
an optimum relation between the size ∆sB of the neighboring to the trailing edge panels of the
body and those that represent the nearby wake ∆sW

67.

As an example, we present in Fig.2.8 a color plot of the error
∣∣∣(CT − Cre f

T

)
/Cre f

T

∣∣∣ associated

with the thrust coefficient CT = −Fx/ρU2h0, as a function of the number of panels on the
body NB and the time-step expressed as a portion of the period ∆t/T(%), in the case of flap-
ping NACA0012 hydrofoil in unbounded domain. In this case, the Strouhal number is St =
ωh0/πU = 0.4, the vertical (heaving) amplitude h0/c = 1 and the rotational (pitching) ampli-
tude θ0 = 45◦.

The thrust coefficient error is calculated with respect to the value Cre f
T as obtained by the present

method, based on the finest discretization in both space and time (NB = 500, ∆t = 0.00125T).
In the same figure the curves corresponding to different values of ∆sW/∆sB are shown using
solid lines. We clearly observe that an optimal ratio exists, which in the examined case is
∆sW/∆sB = 2.4. Extensive numerical evidence has shown that for 0.2 ≤ St ≤ 0.45 and 15◦ ≤
θ0 ≤ 50◦ the optimal ratio varies in the interval 2 ≤ ∆sW/∆sB ≤ 3.25 with greater values
corresponding to lower Strouhal numbers.

In the case of oscillating hydrofoil under the free surface (including also the flapping mode) se-
lection of numerical parameters for convergence also ensures stability of the numerical scheme.
This is due to the fact that the wavelength of the wake is usually significantly smaller than the
wavelength of the generated waves on the free surface. Thus, a small enough time-step is re-
quired in order to capture the wake dynamics, which in most cases suffices for satisfaction of
the above criterion, Eq.2.143.

2.10.2 Validation and GPU performance

In the present section validation of the present method against a simpler steady nonlifting
problem that can be solved analytically is presented. Moreover the performance of the 3D
steady version of the GPU code is compared against a serial 3D steady CPU code that was
developed for that purpose. For the comparison, an Intel i5-2300 CPU and a single GTX1080
GPU with 2560 NVIDIA CUDA cores were used. Moreover, comparison of performance of the
mixed precision instance of the GPU code against the double precision instance, is presented.
The superior performance of mixed precision GPU calculations without significant harm at the
accuracy of the solution, is demonstrated.

The method was tested for the calculation of the potential on the surface of an ellipsoid with
semi-axis ratio selected to be 0.5:2.5:0.06, to have similar shape with a foil. The results were
then compared to the steady analytical solution that can be fond in Milne-Thomson (1996). In
Figs.2.9 & 2.10, the total calculation time was analyzed to the individual operations for mixed
and double precision calculations, respectively. The two operations that require significant

67The present section analysis have been obtained using the 2D version of the code. Similar results have been
obtained with the 3D version where ∆s is a mean value of the maximum diagonal of the boundary elements.
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Figure 2.9: Double precision execution time profile for the calculation of the potential on an ellip-
soid with semi-axis ratio selected to be 0.5:2.5:0.06, to have similar shape with a foil.

Figure 2.10: Mixed precision execution time profile for the calculation of the potential on the
ellipsoid of figure 2.9.

Figure 2.11: Benchmarking between a single threaded CPU core (Intel i5-2300 3.4GHz) and an
GTX1080 GPU with 2560 NVIDIA CUDA Cores for the problem of Fig.2.9.
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Figure 2.12: Validation against analytical solution and demonstration of the performance using
mixed-precision arithmetics for the example of Fig.2.9.

time are the calculation of the induction-factor matrices and the solution of the linear system
using LU decomposition and the cuSOLVER function from the CUDA Toolkit v10.0.130. It
is observed that for both mixed and double precision calculations the linear-system solution
takes more than 50% of the total time exceeding the 80% for the coarser grids. Moreover for
the mixed precision instance of the code and for DoFs more than 4000 the computational time
for the induction factor reaches similar levels.

In Fig.2.11, the performance of the GPU code is compared with the performance of the code
running on a single CPU thread. The double precision instance of the GPU code completes the
task up to 197 times faster than the CPU code, while the mixed precision instance is more than
1600 times faster.

In Fig.2.12, the execution times for the calculation of the potential on the test ellipsoid, using
the mixed precision scheme are compared with the same calculation using double precision
arithmetics, also the relative error is plotted for validation purposes. The mixed precision is
almost 7 times faster for the finer discretisation with 8000 DoFs. It is significant that the error of
the mixed precision remains close to that of double precision. With mixed precision arithmetics
more demanding problems (that will be presented in the sequel and in the following chapters)
can be solved due to lower memory usage and the more efficient exploitation of GPU resources.

2.10.3 Biomimetic flapping-foil thruster

In this section numerical results are presented and discussed concerning the performance of
hydrofoils in flapping motion at great distance from both the free surface and the bottom,
corresponding practically to operating conditions in unbounded domain. Also, comparisons
are presented with experiments and other methods from the literature. Except of forward
translation with constant speed U, the hydrofoil also performs combined heaving and pitching
motions, the latter defined with respect to a pivot axis located at a specific distance XR from
the leading edge. The phase difference between pitching and heaving motion is denoted by ψ,
and is appropriately selected |ψ| = 90◦; see, e.g., Anderson et al. (1998) or Rozhdestvensky and
Ryzhov (2003). The Strouhal number of the hydrofoil is St = ωh0/πU = 0.4 and ε = θ0U/ωh0
is the feathering parameter, where θ0 is the pitch and h0 is the heave amplitude.
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Figure 2.13: Amplitude of lift coefficient of NACA0012 hydrofoil, in low-amplitude flapping mo-
tion h0/c = 0.1, θ0 = 10◦, ψ = −90◦, XR/c = 0.5 in infinite domain. Present method results against

linearized theory predictions with and without the contribution of added mass effects.

In order to show the compatibility of the present method with thin hydrofoil theory (Filip-
pas, 2013; Newman, 1977), in Fig.2.13 a comparison between our calculations (shown using
stars) and linearized theory predictions (shown by circles) is shown concerning the amplitude
of lift coefficient CL = FL/0.5ρU2c, in the case of a NACA0012 flapping hydrofoil at small
amplitude heaving and pitching oscillations h0/c = 0.1 and θ0 = 10◦, respectively. The pivot
axis is located at a distance XR/c = 0.5 from the leading edge and the phase difference is
ψ = −90◦. The amplitude of the lift coefficient is plotted for various values of the reduced
requency kr = ωc/2U = Str (πc/2h), ranging in the interval 0.3 ≤ kr ≤ 3. We clearly observe
in the examined case that present method results are in very good agreement with theoretical
predictions. Furthermore, in order to illustrate the significance of the added mass effect to the
unsteady responses of the flapping hydrofoil, in the same figure the theoretical predictions,
obtained by omitting the added mass effect (expressed by the last term in the right-hand side
of Eq.(225) of Newman (1977), are also shown using triangles. The significance of added mass
effect has been recently examined and thoroughly discussed in the works by La Mantia and
Dabnichki (2012, 2013) where it is also shown that its omission could lead to great underesti-
mation of both integrated forces and structural loads. On the other hand, it is obvious that the
present method is fully capable of providing the total responses fully including the added mass
effect, which is expected to become even more significant in the case of flapping foil operating
under the free surface. This is another important direction that is planned for future research.

Next, in Fig.2.14 we consider the traveling hydrofoil to perform high-amplitude heaving mo-
tion, h0/c = 1, simultaneously with pitching oscillations with amplitude ranging in 10◦ ≤ θ0 ≤
55◦. The pivot axis is located at Xr/c = 0.33 from the leading edge and ψ = −90◦.

Calculations concerning the mean value of thrust coefficient CT = −Fx/ρU2h0, for various
Strouhal numbers St, are compared against experimental measurements by Read et al. (2003).
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Figure 2.14: Thrust coefficient for NACA0012 hydrofoil, in flapping motion with h0/c = 1, ψ =
−90◦, XR/c = 0.33. Present method compared against experimental data from Read et al. (2003).

We observe in this figure that for small and moderate angles of attack (large θ0), where leading
edge separation and dynamic stall effects are not strong, present results are in good agreement
with measured data, while for larger angles of attack and Strouhal numbers, our 2D ideal-flow
method does not provide satisfactory predictions. Discrepancies at high loading conditions
are attributed to non-linear effects due to 3D effects and vortex wake rollup dynamics that
are included in the present simulation. Consideration of viscous effects is also included in the
figure, indicated using dashed lines, as calculated using the following empirical formula for
the skin friction resistance coefficient cr (Blevins, 1984; Filippas and Belibassakis, 2014), as a
function of Reynolds number Re = Uc/v (where v is the kinematic viscosity)

cr =
0.0858[

log10 Re− 1.22
]2 + ca (Re) a2. (2.144)

The above formula includes the effect of the effective angle of attack a through an empirical
coefficient ca, which increases friction coefficient at higher angles of attack leading to better
predictions, as shown in Fig.2.14 (dashed lines). We observe in Fig.2.14 that, in comparison
with the experimental data (Read et al., 2003), the present results obtained with the 2D version
of the code leads to an overestimation of the slope |dCT/dθ0| of the thrust curves from 15%
to 45% (depending mainly on St). Part of this discrepancy is due to nonlinearity of the wake
dynamics. However, the basic reason cause could be 3D effects intruding the experiments.
As it is recently presented in Politis and Tsarsitalidis (2013), the measured data agree well
with calculations of a flapping wing of finite aspect ratio AR = 6, and the overestimation
of |dCT/dθ0| by the present 2D analysis is (on the average) compatible with corresponding
estimation provided by quasi-steady lifting line theory, i.e. 2/AR = 33%.
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(a) (b)

Figure 2.15: Simulation of biomimetic flapping-foil thruster in unbounded domain: (a) Time his-
tory of lift and thrust coefficients, comparison of the fully nonlinear 3D calculations with AR = 6 &
AR = 40 against experimental results, 3D calculations with a prescribed wake model and 2D calcu-
lations. (b) Potential and velocities on the body and potential jump on the wake (fully nonlinear cal-
culations). For a constant-chord foil with NACA0012 sections and St = 0.3, h0/c = 0.75, θ0 = 23.3◦,

pivot point XR/c = 0.33 and phase lag ψ = −90◦.

A specific example, corresponding to one operating condition, for a constant-chord foil with
NACA0012 sections, St = 0.3, heave amplitude h0/c = 0.75, pitch amplitude θ0 = 23.3◦, pivot
point XR/c = 0.33 and phase lag ψ = −90◦, is shown in Fig.2.15. In Fig.2.15a the time history
of lift (CL = F3/0.5ρU2A) and thrust (CT = −F1/0.5ρU2A) coefficients is presented. A is the
surface of the foil. Calculations have been performed using the present approach with the fully
nonlinear 3D model with AR = 6 and AR = 40, the 3D model with a prescribed wake model
and the fully nonlinear 2D model. Experimental measurements by Schouveiler et al. (2005) are
also provided. In general, we observe quite satisfactory agreement of the present method with
experimental data concerning both the amplitude and the phase lag of the integrated force
coefficients. Moreover, it is clear from the trend of the 3D calculations as the AR raises that
the 3D version of the numerical method is compatible the the 2D. In Fig.2.15b the potential
and velocities on the body and potential jump on the wake are depicted, as calculated with the
fully nonlinear 3D model. Regarding the performance of the numerical method and the GPU
accelerated computational code, we provide some information fro the case of AR = 6. The
simulation is in time domain and the foil begins from the rest reaching harmonic state after 2
periods T, the time-step is ∆t/T = 1%. A total number of NB = 1860 body boundary elements
are used. Mixed-precision arithmetics have been used, 1.3GB were required from the VRAM
and the simulation time was 21 sec in the case of the prescribed wake model and 88 sec in the
case of the free-wake model. In the present case of moderate unsteadiness the fully non-linear
wake model does not provide significant improvement to the predictions in comparison with
the prescribed wake model, as expected (see relevant discussion in Sec.2.2, below Eq.2.10).

In the sequel, numerical results are presented in order to demonstrate whether or not the for-
mulation of the fully non-linear wake is important. In Fig.2.16 calculations concerning he thrust
coefficient CT = −Fx/ρU2h0 for the NACA0012 hydrofoil are presented, for flapping motion
with h0/c = 1, ψ = −90◦, XR/c = 0.33. Results are obtained by the present method using
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Figure 2.16: Systematic results of averaged thrust coefficient for a 2D NACA0012 hydrofoil, in
flapping motion with parameters as in Fig.2.14. Frozen wake model (linearized wake dynamics)

compared against free wake formulation in unbounded domain.

frozen wake model (linearized dynamics) or free wake analysis, are shown using solid and
dashed lines, respectively. We observe that the effect of free wake is to reduce the thrust coeffi-
cient and it is noticeable only at the greater Strouhal numbers and angles of attack.

However for wake visualization purposes the free wake analysis is the only model that can be
applied. To illustrate further this fact, the development of trailing vortex sheet after 5 periods
from start is plotted in Fig.2.17a, using free wake analysis, and compared with the shape of
the linearized wake model, shown in the same figure using dashed line. We observe that the
free wake curve spirals around the peaks of the trailing vortex intensity, shaping an expand-
ing reverse Karman vortex street, which is characteristic feature of thrust production by the
foil. Quite similar wake patterns have been observed in experiments Schouveiler et al. (ibid.)
(Fig.2.17b).

As we have already mentioned in the case of lifting flow around sharp-ended body like a hy-
drofoil, the problem is supplemented by the Kutta condition, necessitating finite velocity at
the trailing edge. An alternative to the classic Pressure-type condition could be a Morino-type
version of the Kutta condition; see Eq.2.11 and the relevant discussion below. That approx-
imation permits the direct calculation of vorticity transport on the free trailing vortex sheet
in terms of the potential difference at the trailing edge. In order to compare with Pressure-
type Kutta condition we use the example of Fig.2.14, where the traveling hydrofoil performs
high-amplitude heaving motion, h0/c = 1, simultaneously with pitching oscillations with am-
plitude 10◦ ≤ θ0 ≤ 55◦. The pivot axis s located at XR/c = 0.33 from the leading edge and
ψ = −90◦. Calculations concerning the mean value of thrust coefficient CT = −Fx/ρU2h0, for
various Strouhal numbers St using pressure-type or Morino-type conditions, are compared in
Fig.2.18 against experimental measurements by Read et al. (2003), that have been presented
in Fig.2.14. We clearly observe that the calculations with Morino-type condition lead to an
overestimation of thrust coefficient especially at heavier loads (i.e. higher Strouhal numbers
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(a)

(b)

Figure 2.17: (a) Trailing vortex sheet development in 2D for the case of Fig.2.15. (b) Trailing vortex
sheet visualization from experiments by Schouveiler et al. (2005).

Figure 2.18: Systematic results of averaged thrust coefficient for a 2D NACA0012 hydrofoil, in
flapping motion with parameters as in Fig.2.14. Pressure-type Kutta condition compared against

Morino-type condition.
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and angles of attack). This is reasonable due to the fact that the simpler linear Morino-type
condition is a quasi-steady approximation of the more accurate quadratic Pressure-type Kutta
condition.

Finally for the same case, in Fig.2.19 we present the evolution of the pressure coefficient (cp =

p/0.5ρU2) distribution for 5 periods starting from the rest for St = 0.2, θ0 = 35◦ at the upper
subplots and St = 0.35, θ0 = 35◦ at the lower subplots, Morino-type Kutta condition at the
left is compared against Pressure-type condition at the right. In general we can notice that the
pressure difference at specific points (x/c) is larger at the case of Morino-type Kutta conditions
and that causes the total overestimation of the integrated thrust coefficient. As we expected,
that difference is more significant at the higher Strouhal number and more specifically at the
moments when the pressure reaches local extremes. Moreover we can notice that the pressure
difference at the trailing edge has finite values at the trailing edge when using Morino-type
condition especially for the case of large Strouhal number. This means that a physical quantity
like the pressure is discontinuous when we pass from the foil to the wake which is not correct
in the context of potential theory. Concerning the above the pressure type condition, although
is quadratic and more difficult to be applied, is required for modeling of moderate to higher
unsteady phenomena like the flapping foil propulsion beneath the free surface.

Figure 2.19: Pressure coefficient distribution for a 2D NACA0012 hydrofoil, in flapping motion
with h0/c = 1 and ψ = −90◦ at the upper subplots, St = 0.35, θ0 = 35◦ at the lower subplots, in
infinite domain for five periods starting from rest. Morino-type Kutta condition (left) compared

against Pressure-type condition (right).
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2.11 Remarks and conclusions

In the first part of the present thesis a fully nonlinear time domain method is developed for the
general unsteady problem of flow around lifting bodies of general shape in unbounded do-
main. Also effects of a nonuniform background velocity field (gust) supplementing the future
study of the ship-foil self-propulsion problem are modeled. The formulation of the problem
is based on the potential theory and the boundary integral equations (BIE). For the numerical
solution of the 3D, unsteady and nonlinear problem an efficient (in terms of both time and
space complexity) GPU-accelerated boundary element method (BEM) is developed, based on
a formulation that is direct with respect to the potential.

The method is applied to the hydrodynamic analysis of foils in several conditions focusing
to the 3D effects the nonlinear wake dynamics and the nonlinearity of the Kutta conditions
and the performance of the developed GPU computational code. Present work supplements
the evidence of previous studies that such biomimetic systems when operate at optimum con-
ditions could achieve high thrust and efficiency levels. Results are obtained, illustrating the
numerical performance of the developed method and validating its accuracy through compar-
isons with other methods and experimental data. Numerical predictions include lift and thrust
coefficients of the system, over a range of motion parameters, as reduced frequency, Strouhal
number, maximum angle of attack. Comparison between the prescribed and the fully nonlinear
wake model, as well as between quasi-steady linearised Morino-type and nonlinear pressure-
type Kutta conditions are included, identifying the range of applicability and the limitations of
the studied approaches.

Future extensions include the treatment of leading edge separation and dynamic stall effects
to extend method’s applicability to operation conditions corresponding to large angles of at-
tack. Also, friction resistance could be taken into account using boundary layer theory (Pa-
padakis, 2014; Riziotis and Voutsinas, 2007) and experimental and empirical coefficients. All
the above extensions would provide in the future even better comparison with experimen-
tal measurements, and support the derivation of systematic results for the detailed investi-
gation of various arrangements of flapping hydrofoil systems operating in stationary fluid or
in nonuniform background fields. Moreover, the experimental and numerical study of the
self-propulsion problem of a ship with biomimetic flapping foil propulsors is of the utmost im-
portance. Also the effects of chordwise and spanwise elasticity could improve the performance
of the biomimetic thruster, as have been demonstrated in our work (Priovolos et al. 2018) and
in the diploma thesis Anevlavi (2019) and in references cited there. Finally, we conclude that
the present method and GPU code, can serve as a useful and efficient tool for assessment and
the preliminary design and control of biomimetic systems such as flapping foils for efficient
marine propulsion and maneuvering.
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Chapter 3

Hydrodynamic analysis of bodies beneath
the free surface

3.1 Summary

The method presented in Chapter 2 is extended to study the effect of the free-surface boundary
and the interaction of the latter with the trailing vortex sheet without simplifications concern-
ing their nonlinear character. Oscillating wings are investigated as unsteady thrusters, beneath
the free surface and the modeling also includes finite depth effects. The motion and the ge-
ometry of the body are general, thus no linearisation has been applied. The body contour is
modeled as a surface of potential discontinuity. In the present chapter, the body motion is pre-
scribed, however the whole formulation is directly extended to solve problems that include
free motions of finite degrees of freedom; see e.g. the problem of the semi-activated foil in
Sec.4.5.4. We consider moderate submergence and speed, permitting us to approximately ne-
glect effects of breaking waves and cavitation. The formulation of the problem is based on
the potential theory and the boundary integral equations (BIE). For the numerical solution of
the fully nonlinear, 3D and unsteady problem the GPU-accelerated boundary element method
(BEM) is extended to treat hydrodynamic flows beneath the free surface. The calculation of
generalised forces is obtained by pressure integration without any additional assumption. The
latter is calculated using the Bernoulli’s equation as presented in Sec.3.3.

We begin with the definition of the unsteady initial boundary value problem (IBVP) problem
in the present case. The free-surface boundary conditions and pressure-type Kutta condition
will serve for the construction of the equations of the dynamical system and the other kine-
matic boundary conditions with provide appropriate constraints. Then the analytical form of
Bernoulli’s equation and of the pressure-type Kutta condition will be presented. For simplicity
in the description of the present method, and especially as concerns the treatment of the free-
surface conditions (including the conditions at infinity), we will start our presentation with the
boundary integral formulation in the case of non-lifting flow around a body of smooth but arbi-
trary geometry, undergoing general motion. This problem contains as cases of special interest
the wave-resistance problem due to constant-speed forward motion and the enforced radia-
tion problem due to body oscillations. Then, in Sec.3.5 the whole methodology is extended
to the case of an oscillating hydrofoil in forward motion beneath the free-surface radiating
waves, giving special attention to the treatment of the discretised form of pressure-type Kutta
condition and free-surface boundary conditions that, along with the discretised extended DtN
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operator, form a system of (spatially and temporarily) nonlocal differential equations, with ex-
plicit and implicit nonlinearities and linear algebraic constraints. The application of Green’s
formula on the body boundary and the exact free-surface boundary will be used to obtain a
weakly singular Boundary Integral Equation (BIE) for the unknown boundary fields. For the
numerical solution we use a potential based boundary element method (BEM) and a colloca-
tion method to obtain the discretised BIE. The latter along discretisation will be used for the
construction of the discretised extended Dirichlet-to-Neumann (DtN) operator that will serve
as an algebraic constraint to the equations of the dynamic system that will be constructed from
the free-surface boundary conditions and the Kutta condition. A curvilinear finite difference
method (CUFDM), in variable, non Cartesian and non orthogonal coordinate systems (see also
Sec.2.5.2) is exploited to express the potential, included in free-surface conditions and the Kutta
condition, in terms of the dynamic variables of the problem. Exploiting the free-surface and
Kutta conditions we proceed to the construction of the dynamic system equations in the form
of a system of (spatially and temporarily) nonlocal differential equations, with explicit and im-
plicit nonlinearities, with a linear algebraic constraint. Next, a method for time integration is
presented.

Concerning numerical results and applications, the problem of thrust production using biomi-
metic flapping-foil systems beneath the free-surface including wave resistance and finite depth
effects is numerically investigated. The importance of free-surface and 3D effects, nonlinearity
as well as the superior performance of the developed GPU code, are illustrated. Both pre-
scribed and free wake models are investigated for foils beneath the free surface leading to
similar results concerning the integrated quantities in the region of interest to the problem and
therefore the first simplest scheme which demands also lower computational cost is more effi-
cient and suitable for engineering application at the present problem. However for the detailed
prediction of the free-surface elevation and of the velocity and pressure field the fully nonlinear
models are important.

Last but not least, it is discussed in Sec.3.6, that the problem of flapping foil in fully non-linear
water waves can be treated in the context of the method if part of the lateral boundary could
model a 3D wavemaker.

3.2 Mathematical formulation of lifting bodies beneath the free
surface

The studied configuration is depicted in Fig.3.1. The problem is time dependent and the oscil-
lating lifting body is represented by a moving boundary ∂DB(t), with respect to the earth-fixed
frame of reference. The domain of definition of the problem is an open semi-bounded domain
D ⊆ Rn (where n = 2, 3) with boundary ∂D which is supposed to be smooth everywhere
except the trailing edge. Moreover the wake of the body is modeled by another deformable
boundary ∂DW(t), whose length grows emanating continuously from the body sharp edge.
The level of the free-surface, when it is still, is shown in Fig.3.1 as a horizontal plane. We
consider moderate submergence and speed, permitting us to approximately neglect effects of
breaking waves and cavitation. Moreover, the body is consider to be rigid and its motion is
prescribed. However, the present method is nonlinear; i.e. a) the shape of the body and b) its
motion are not linearised, c) the nonlinear dynamics of the free wake are included and d) the
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Figure 3.1: Definition of the studied problem (Zhu et al. 2006) in the case of a foil (of mid-chord c0)
moving under the free surface (at mean submergence d). The free surface is initially still and the

waves are generated from the motion of moving boundaries.

fully nonlinear free-surface boundary conditions are satisfied at the exact location of the free-
surface elevation, that is a result of the rigid-boundaries wave-making motion. In the present
work we are interested in design, operation and control problems, aiming to the simulation
of the system during many periods and not to its response to extreme cases of overturning
and nearly-breaking waves. The latter can be simulated in the context of potential theory, with
accepted accuracy, only until the breaking and not after. Therefore, we assume that the free
surface is a function defined on the horizontal plane, that is the still free-surface level; see e.g.
Hague and Swan (2009) and Spinneken et al. (2014). For the surface tracking, we follow a
semi-Lagrangian approach (the horizontal velocities of the free-surface particles are omitted),
leaving the extension to the fully Lagrangian method, as a straightforward extension for future
work; for fully Lagrangian methods see e.g. Grilli et al. (2001), Fochesato et al. (2007), Touboul
et al. (2006), Touboul and Kharif (2010) and Manolas (2015). A Cartesian coordinate system
is introduced with x3-axis pointing upwards, x1-axis and x2-axis lying on the still free-surface
plane, with x1-axis at the direction of body’s characteristic motion.

The wave potential Φ satisfies Laplace equation

∆Φ(x; t) = 0, x ∈ D(t), (3.1)

supplemented by the body boundary condition

∂nB Φ(x; t) = VB(x; t) · nB(x; t), x ∈ ∂DB(t), (3.2)

and the hard bottom no-entrance condition

∂nH Φ(x; t) = 0, x ∈ ∂DH. (3.3)
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The first is a non-homogeneous Neumann boundary condition and the second, for imperme-
able and motionless bottom, is a homogeneous Neumann boundary condition. The present
method can also tackle problems of impermeable but deformable bottom, however the anal-
ysis of those interesting problems that belong to the fields of coastal engineering is left as a
subject for future work.

Moreover, the fully non-linear dynamic and kinematic boundary conditions are imposed on
the exact free-surface elevation, generated by the wave-making motion of the body. Those
equations are given here

∂tΦ(xF, η; t) = −gη(xF; t)− 1
2
[∇Φ(xF, η; t)]2, x ∈ ∂DF(t), (3.4)

∂tη(xF; t) = −∂nF Φ(xF, η; t)
√

1− [∂x1η(xF; t)]2 − [∂x2η(xF; t)]2, x ∈ ∂DF(t), (3.5)

where xF = {x1, x2} and x = {xF, η} = {x1, x2, η} . The dynamic boundary condition of the
free surface Eq.(3.4), is similar to the one applied on the free wake of a lifting body examined in
Chapter 2, and in the present case, it requires that the hydrodynamic pressure as approaching
the free surface equals the atmospheric pressure1. This assumption using Bernoulli’s theorem
Eq.(3.4). The kinematic boundary condition Eq.(3.4), is also of the same type as the one used
in the modeling of the free wake, it necessitates that the normal velocities of the fluid and of
the free-surface boundary must be equal and thus Dt (x3 − η = 0), where Dt(·) is the material
derivative. The last constraint, leads to Eq.(3.5).

Moreover, the trace on the free-surface boundary of the space gradient of the potential can be
decomposed to its tangential and the vertical components according to Eq.(2.67), as follows2

∇Φ(xF, η; t) = ∂sΦ(xF, η; t)× n(xF, η; t) + ∂nΦ(xF, η; t) · n(xF, η; t)
= VF,t(xF, η; t) + ∂nΦ(xF, η; t) · n(xF, η; t), x ∈ ∂DF(t). (3.6)

With the aid of Eq.(3.6) and the fact that the square root in Eq.(3.5) is the square root of the
metric a of the free-surface boundary, the free-surface boundary conditions become

∂tΦ(xF, η; t) = −gη(xF; t)− 1
2
[VF,t(xF, η; t) + ∂nΦ(xF, η; t) · n(xF, η; t)]2, x ∈ ∂DF(t), (3.7)

∂tη(xF; t) = −∂nF Φ(xF, η; t)
√

a(xF, η; t), x ∈ ∂DF(t). (3.8)

We treat the above as an initial and boundary value problem (IBVP) and we assume that far
from the body the radiated wavefield tends to zero. In the above equations η denotes the gen-
erated free-surface elevation and g is the acceleration of gravity. Furthermore, H is the constant

1The surface tension generates a pressure difference between the atmospheric pressure and the internal pres-
sure of the water at the free surface boundary. Although that effect is significant for the study of high-frequency
capillary waves in hydroacoustics, it can be neglected when wave-body interaction is of the main interest. There-
fore the surface tension effect is neglected in the present modeling.

2In the present paragraph the tangential to the boundary velocity are denoted as VF,t = ∂sΦ× n.
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(finite) depth, d is the mean submergence of the body and VB denotes the instantaneous ve-
locity of the body (due its own motion) at each point on the boundary. Finally, n is the unit
normal vector pointing into the interior of D(t).

In the case of lifting flow around bodies with sharp edges, the problem is supplemented by the
kinematic and dynamic conditions on the trailing vortex sheet ∂DW(t). The dynamic boundary
condition

pu
W(x; t) = pl

W(x; t), x ∈ ∂DW(t), (3.9)

necessitates that a free shear layer cannot carry loading and thus the pressure at the both sides
of it should be the same. The kinematic boundary condition

∂nW Φu
W(x; t) = ∂nW Φl

W(x; t), x ∈ ∂DW(t), (3.10)

demands that the upper and the lower side of the shear layer cannot be separated to two dis-
tinct surfaces during the flow, thus the normal to the surface velocity is continuous through
∂DW(t). The indices B, W, F, H are used to denote values of the potential field, its derivative
and potential jump, at the body surface and the wake of the foil, the free surface and the bot-
tom, respectively. Using Eqs.(3.9) and Eq.(3.10) in conjunction with the appropriate form of
Bernoulli’s equation (see also Sec.3.3),

p(x; t)− patm

ρ
+ ∂tΦ(x; t) +

1
2
[∇Φ(x; t)]2 + gx3 = 0, x ∈ D(t), (3.11)

we obtain

DtµW(x; t) = 0, x ∈ ∂DW(t). (3.12)

In the equations above µW = Φu
W −Φl

W denotes the potential jump (the dipole intensity) on the
wake and Dt(·) = ∂t(·) +Vm

W · ∇(·) is the material derivative, based on the mean total velocity
Vm

W = 0.5(∇Φu +∇Φl), on the trailing vortex sheet.

In the lifting case, enforcement of the Kutta condition is required in order to fix the circulation
at each time instant. The non-linear (quadratic), pressure-type Kutta condition, requiring zero
pressure difference at the trailing edge, is imposed as follows

lim
ξ→ξTE

FPK
f s [xB(ξ, η); t] = 0, xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t), (3.13)

where the operator FPK
f s (·) is defined as follows

FPK
f s [xB(ξ, η); t] = ∂t(Φu −Φl) + 0.5(∇Φu +∇Φl)(∇Φu −∇Φl) + g(xu

3 − xl
3). (3.14)

The above form of pressure-type Kutta condition can be derived using the Bernoulli’s theorem
on the body at upper and lower sides of trailing edge; see Sec.3.3, Eq.(3.25).
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3.3 Pressure calculation and Kutta condition

In the first part of the present section we will present the derivation of an appropriate form of
Bernoulli’s theorem for the calculation of pressure distribution in the case of lifting flows be-
neath the nonlinear free surface and in the presence of nonlinear waves. Then we will develop
the analytical form of pressure-type Kutta condition for free-surface flows. That form of Kutta
condition is exploited in the present section for the study of lifting bodies beneath the free sur-
face in the absence of incident waves. Moreover it could be exploited in the problem of lifting
flows around bodies in nonlinear waves in a numerical wave tank as explained in Sec.3.6 or
by following the approach presented in Chapter 4 were the Bernoulli’s equation and the Kutta
condition that will be presented here are exploited (Sec.4.4.3).

In contrary with the case of weakly rotational background field (Sec.2.7), the present wave
field is irrotational integration of Euler equations can be performed leading to the classical
Bernoulli’s theorem for the total potential and pressure fields Φ and p, respectively. Therefore,
conservation of energy along a stream line in D(t) can be written as follows

p(x; t)− patm

ρ
+ ∂tΦ(x; t) +

1
2
[∇Φ(x; t)]2 + gx3 = C(t) x ∈ D(t), (3.15)

where the x−integration constant C(t) is time dependent. However C(t) can be set to zero by
redefining the potential as follows

Φ(x; t) = Φ1(x; t) +
∫ t

C(τ) dτ, (3.16)

thus Eq.(3.15) becomes

p(x; t)− patm

ρ
+ ∂tΦ1(x; t) +

1
2
[∇Φ1(x; t)]2 + gx3 = C(t), (3.17)

To sum up, we have obtained a formula for the calculation of pressure that is written, after
dropping the index 1, in the following form

p(x; t)− patm

ρ
+ ∂tΦ(x; t) +

1
2
[∇Φ(x; t)]2 + gx3 = 0, x ∈ D. (3.18)

in the above equations p is the pressure at x = {x1, x2, x3}, patm is the atmospheric pressure
on the free surface, ρ is the density of the fluid, g is the acceleration of gravity and the last
term is the hydrostatic component. When using that form of Bernoulli’s equation to calculate
forces acting or the body (especially for free-floating or semi-activated systems; see Sec.4.5.4)
we should either omit the hydrostatic term or include to the calculation the gravitational force
acting on the body that depends to its mass. Moreover, ∂t(·) denotes the rate of change with
respect to an earth-fixed (inertial) observer (i.e. with regard to an inertial reference frame).

The time derivative of the potential with respect to the moving, with the body velocity, frame
of reference can be calculated by the following formula

dtΦ(x; t) = ∇Φ(x; t) ·VB(x; t) + ∂tΦ(x; t), x ∈ ∂DB(t). (3.19)
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More details concerning the derivation of the above formula can be found e.g. in the following
references Katz and Plotkin (2001), Politis (2004), Politis (2011b), Filippas (2013). By replacing
Eq.(3.19) into Eq.(3.18), we obtain a formula for pressure calculation on body boundary, as
follows

p(x; t)− patm

ρ
= −dtΦ(x; t) +∇Φ(x; t) ·VB(x; t)− 1

2
[∇Φ(x; t)]2 − gx3, x ∈ ∂DB(t). (3.20)

Moreover, the boundary value of the space gradient of the potential can be decomposed to its
tangential and vertical components according to Eq.(2.67) and the body boundary condition
(Eq.3.2), as follows3

∇Φ(x; t) = ∂sΦ(x; t)× n(x; t) + ∂nΦ(x; t) · n(x; t)
= Vt(x; t) + [VB(x; t) · n(x; t)] · n(x; t)
= Vt(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (3.21)

Therefore, Eq.(3.20), after some algebra, becomes

p(x; t)− patm

ρ
= −dtΦ(x; t) + Vt(x; t) ·VB(x; t)

− 1
2
[Vt(x; t)]2 +

1
2

b2(x; t)− gx3, x ∈ ∂DB(t). (3.22)

The above form of Bernoulli’s equation is utilised for pressure calculations on the body bound-
ary. Then the boundary pressure can be integrated to obtain generalised forces (forces and
moments) and by exploiting also the local generalised velocity (linear and angular).

The classical Pressure-type Kutta condition in the following form can be produced from the
dynamic boundary condition on the wake by demanding that the pressure field (and therefore
the pressure jump) ought to be continuous in D as explained in Sec.2.8

lim
ξ→ξTE

{
pu

B[xB(ξ, η); t]− pl
B[xB(ξ, η); t]

}
= 0, xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t),

(3.23)

To proceed, we apply Bernoulli’s theorem (Eq.3.18) to the upper and lower side of the trailing
edge, we use pressure-type Kutta condition (Eq.3.23) and we factorise the difference of squares
to construct the following form of the condition

lim
ξ→ξTE

FPK
f s [xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (3.24)

where the operator FPK
f s (·) is defined as follows

FPK
f s [xB(ξ, η); t] = ∂t(Φu −Φl) + 0.5(∇Φu +∇Φl) · (∇Φu −∇Φl) + g(xu

3 − xl
3). (3.25)

The above form of pressure-type Kutta condition written with respect to the inertial reference
frame has already been used in the mathematical formulation of the present problem in Sec.3.2,

3In the present paragraph the tangential velocity is convenient to be denoted as Vt = ∂sΦ× n.
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Eqs.(3.13&3.14). For the calculation of pressure from the boundary values of the potential,
that is the primary unknown is the present direct formulation, the reformulation of the above
relation with respect to the moving reference frame is required. Aiming to the construction of
the aforementioned formula we begin with Eq.(3.20), that is rewritten bellow

p(x; t)− patm

ρ
= −dtΦ(x; t) +∇Φ(x; t) ·VB(x; t)− 1

2
[∇Φ(x; t)]2 − gx3, x ∈ ∂DB(t). (3.26)

By rearranging terms, making common factor −1/2 and adding and subtracting the quantity
−1/2 [VB(x; t)]2, we obtain the following formula

p(x; t)− patm

ρ
= −dtΦ−

1
2

[
(∇Φ)2 − 2∇Φ ·VB + (VB)

2 − (VB)
2
]

. (3.27)

Moreover, we factorise the difference of squares to construct the following form of Bernoulli’s
theorem

p(x; t)− patm

ρ
= −dtΦ−

1
2
(∇Φ−VB)

2 +
1
2
(VB)

2 . (3.28)

To proceed further, we apply the above form of Bernoulli’s theorem to the upper and lower side
of the trailing edge, we use pressure-type Kutta condition (Eq.3.23) to construct the following
form of the operator FPK

f s (·)

FPK
f s [xB(ξ, η); t] = dt(Φu −Φl) +

1
2
(∇Φu −Vu

B)
2 − 1

2

(
∇Φl −Vl

B

)2

+
1
2

(
Vl

B

)2
− 1

2
(Vu

B)
2 . (3.29)

Moreover, the boundary value of the space gradient of the potential can be decomposed to its
tangential and the vertical components according to Eq.(2.67) and the body boundary condition
(Eq.2.4), as follows

∇Φ(x; t) = ∂sΦ(x; t)× n(x; t) + ∂nΦ(x; t) · n(x; t)
= Vt(x; t) + {[VB(x; t)−VG(x; t)] · n(x; t)} · n(x; t)
= Vt(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (3.30)

With the aid of Eq.(3.30), the operator FPK
f s (·) becomes

FPK
f s [xB(ξ, η); t] = dt(Φu −Φl) +

1
2
(Vu

t + bunu −Vu
B)

2 − 1
2

(
Vl

t + blnl −Vl
B

)2

+
1
2

(
Vl

B

)2
− 1

2
(Vu

B)
2 . (3.31)

Moreover, by factorising the difference of the squares and rearranging terms, we obtain the
following form of pressure-type Kutta condition

lim
ξ→ξTE

FPK
f s [xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (3.32)
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where

FPK
f s [xB(ξ, η); t] = dt(Φu −Φl) +

(
Vu

t + Vl
t

2
+

bunu + blnl

2
−

Vu
B + Vl

B
2

)
[
Vu

t −Vl
t + bunu − blnl −

(
Vu

B −Vl
B

)]
−
(

Vu
B + Vl

B
2

)(
Vu

B −Vl
B

)
. (3.33)

The above relation4 is the pressure-type Kutta condition with respect to the body-fixed ref-
erence frame. That equation includes a quadratic nonlinear form of the unknown boundary
value of the tangential velocity Vt and linear terms. It also includes the unknown bound-
ary value of the potential Φ at the body contour as approaching the trailing edge. As will be
demonstrated in the following section the continuous boundary field Vt is approximated by
a discrete tangential velocity field that is projected to a curvilinear coordinated system (see
also Sec.2.5.2.1). Moreover, it is approximated by CUFDM (see also Sec.2.5.2.2) and replaced
with linear combinations of Φ. Then an extended form of the DtN operator (see Sec.3.5.1 and
Sec.3.5.2) will be exploited to replace all the unknowns by linear functions of the dynamic vari-
ables of the problem that will be the potential on the free surface, the free-surface elevation and
potential jump (dipole intensity) at the Kutta strip.

For simplicity in the description of the present method, and especially as concerns the treat-
ment of the free-surface conditions (including the conditions at infinity), we will start our pre-
sentation with the boundary integral formulation in the case of non-lifting flow around a body
of smooth but arbitrary geometry, undergoing general motion. This problem contains as cases
of special interest the wave-resistance problem due to constant-speed forward motion and the
enforced radiation problem due to body oscillations. Then, in Sec.3.5 the whole methodology
is extended to the case of an oscillating hydrofoil in forward motion beneath the free surface
radiating waves.

3.4 Boundary integral formulation of non-lifting bodies be-
neath the free surface

Applying Green’s theorem to the present nonlifting problem Eqs.(3.1-3.8), we obtain the fol-
lowing two integral representations for the potential in D in terms of the potential Φ (dipole
intensity) and its normal derivative ∂nΦ (source intensity), the first on the body boundary and

4The terms in the Eq.(2.125) are mean values and differences of the upper and lower side functions on the body
boundary. Some of those fields are continuous at the trailing edge, however when discretisation is applied and a
BEM is exploited for calculations, the vicinity of the trailing edge is modeled by neighboring to the trailing edge
panels. In that case, the upper and lower elements are not identical and the same applies to the boundary field
values. Therefore, it is important for the accurate and stable imposition of Kutta condition, those mean values
and differences to be considered in the calculations.
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Figure 3.2: Definition of the studied problem in the case of a smooth nonlifting body, moving
under the free surface (at mean submergence d). The free surface is initially still and the waves are

generated from the motion of moving boundaries.

the second on the free-surface boundary, written compactly as follows

Φ(x0; t)−ΦJ(x0; t) =
∫

∂DB(t)

∂nΦB(x; t)Gs(x0|x)−ΦB(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x)−ΦF(x; t)∂nGs(x0|x) ds(x), x0 ∈ ∂DB(t) ∪ ∂DF(t)

(3.34)

where

Φ(x0; t)−ΦJ(x0; t) =


Φ(x0; t), x0 ∈ D.

ΦB(x0; t)− sign(r·n)
2 ΦB(x0; t), x0 ∈ ∂DB,

ΦF(x0; t)− sign(r·n)
2 ΦF(x0; t), x0 ∈ ∂DF,

(3.35)

In the above relation we have used Green’s function (Eq.2.16), consisted of the fundamental
solution of 2D/3D Laplace equation corresponding to a Rankine source plus a regular part,
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corresponding to a mirror source with respect to the bottom surface and the normal to the
boundary derivative of the total Green’s function. The total Green’s function is denoted with
Gs and its normal derivative with ∂nGs. In this way and in the case of flat bottom, the boundary
condition Eq.(3.3) is identically satisfied and the corresponding boundary term of the integral
representation is dropped. For simplicity, the case of general bathymetry is not presented in the
present section; for more details in that interesting problem see Sec.4.5.1, Sec.4.5.4 and Filippas
et al. (2018).

The first integral in Eq.(3.34) represents the effect of the body while the second the effect of the
free-surface, on the potential. The first term in the integrals is the potential induced at x0 from
a source with intensity ∂nΦ(x) located on the boundary at x, while the second term represents
similarly the effect of normal to the boundary dipole with intensity Φ(x). In this way the whole
information for the potential in the domain D is stored on the boundary ∂D whose dimension
is of one order lower. Therefore, if the trace of the potential and the derivative on the boundary
are known, using Green’s formula Eqs.(3.34, 3.35) we can evaluate potential everywhere in D.

Replacing body boundary condition Eq.(3.2) into the representation theorem on the bound-
ary Eqs.(3.34, 3.35), we obtain the following two Fredholm 2nd kind weakly singular integral
equations

−
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x) ds(x)

1
2

ΦB(x0; t) +
∫

∂DB(t)

ΦB(x; t)∂nGs(x0|x) ds(x) =−
∫

∂DF(t)

ΦF(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB(t)

b(x; t)Gs(x0|x) ds(x), x0 ∈ ∂DB(t)

(3.36)

and

−
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x) ds(x)

+
∫

∂DB(t)

ΦB(x; t)∂nGs(x0|x) ds(x) =− 1
2

ΦF(x0; t)−
∫

∂DF(t)

ΦF(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB(t)

b(x; t)Gs(x0|x) ds(x), x0 ∈ ∂DF(t) (3.37)

The weakly singular boundary integral equation Eqs.(3.36 & 3.37) and the free-surface bound-
ary conditions Eqs.(3.7 & 3.8), provide us with a system of equations for the unknown bound-
ary fields ΦB on the body and ΦF, ∂nΦF at the free-surface. The above system of equations
can be solved numerically after the appropriate discretisation, implemented with a boundary
element method (BEM) and collocation, as we will see in the following section. Furthermore,
numerical solution of the system can be achieved following two different paths. Either by time
integration, where free-surface conditions are treated as a dynamic system and BIE as an alge-
braic constraint, or using a finite difference method (FDM) for the temporal discretisation of
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free-surface conditions. In the later case, BIE and free-surface conditions are treated similarly
forming a non-linear algebraic system. The first approach is adopted in the present work and
is described in detail at the following sections.

3.4.1 Discretisation the DtN map

The spacial discretisation mainly consists of the following approximations of the analytical
model:

• Concerning the geometry, a C0 representation of the boundary is used as follows:

– in 2D formulation, following a low-order panel method, the body contour is re-
placed by a closed polygonal line, and NB denotes the number of panels. The free
surface is also approximated by open polygonal lines composed of NF panels, re-
spectively.

– in 3D formulation, the boundary is approximated using bilinear-quadrilateral ele-
ments.

• Concerning the representation of the functions on the boundary, the potential and its nor-
mal derivative at each time step, are approximated by piecewise constant distributions,
as follows:

ΦF(x; t) = ΦF f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

∂nΦF(x; t) = ∂nΦF f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

ΦB(x; t) = ΦBi(t), at body element i, i = 0, 1, ..., NB − 1,
∂nΦB(x; t) = ∂nΦBi(t) = bi(t), at body element i, i = 0, 1, ..., NB − 1. (3.38)

• Finally, following a collocation scheme, the BIEs (Eqs.3.36 & 3.37) are satisfied in a finite
number of points (or control points) and in order to avoid singularities the centroids of
the elements have been chosen as collocation points.

To proceed, the discretised form the of the BIEs (Eqs.3.36 & 3.37) is as follows

A
pot
F,B(t) ·

(
NF(t)
ΦB(t)

)
= B

pot
F,B(t) ·

(
ΦF(t)
b(t)

)
, (3.39)

where

A
pot
F,B(t) =

(
A

pot
F,B,00(t) A

pot
F,B,01(t)

A
pot
F,B,10(t) A

pot
F,B,11

)
and B

pot
F,B(t) =

(
B

pot
F,B,00(t) B

pot
F,B,01(t)

B
pot
F,B,10(t) B

pot
F,B,11

)
. (3.40)

In the above equations A
pot
F,B(t),B

pot
F,B(t) are the potential induction-factor matrices at the left

hand side and the right hand side of Eqs.(3.36 & 3.37), respectively. They model free surface-
free surface, body-body and free surface-body interactions. The above matrices are defined as
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follows

A
pot
F,B,00(t) = {−Spot

f s (t)}, A
pot
F,B,01(t) = {D

pot
f j (t)},

A
pot
F,B,10(t) = {−Spot

is (t)}, A
pot
F,B,11 = {0.5δij + Dpot

ij },

B
pot
F,B,00(t) = {−0.5δ f s − Dpot

f s (t)}, B
pot
F,B,01(t) = {S

pot
f j (t)},

B
pot
F,B,10(t) = {−Dpot

is (t)}, B
pot
F,B,11 = {Spot

ij }, (3.41)

with S denoting source or single-layer integrals, and with D denoting dipole or double-layer
integrals see Eq.(2.23). Moreover, the indices belong to the following subsets of N

f , s ∈ {0, 1, ..., NF − 1}, i, j ∈ {0, 1, ..., NB − 1}. (3.42)

In Eq.(3.39) ΦF = {ΦFs}, NF = {∂nΦFs}, ΦB = {ΦBj}, b = {bj}. In the sequel, we will denote
with bold, vectors containing the values of piecewise constant trace functions on the boundary
elements, at various parts of the boundary.

Next we multiply Eq.(3.39) with
[
A

pot
F,B(t)

]−1
and we obtain(

NF(t)
ΦB(t)

)
= G(t) ·

(
ΦF(t)
b(t)

)
, (3.43)

or(
NF(t)
ΦB(t)

)
=

(
G00(t) G01(t)
G10(t) G11(t)

)
·
(

ΦF(t)
b(t)

)
, (3.44)

where

G(t) =
[
A

pot
F,B(t)

]−1
·Bpot

F,B(t). (3.45)

The above mapping is a discrete Dirichlet-to-Neumann (DtN) operator5 that connects the po-
tential (Dirichlet data) with its normal derivative (Neumann data) on body boundary ∂DB.
We observe in the above equation that the effect of the body velocity is considered through
the component VB, included in b, as described by the body boundary condition Eq.(3.2). In
Sec.3.4.2 using the appropriate part of the DtN map, Eqs.(3.43-3.45), in the discretised form
free-surface boundary conditions, we will obtain a system of (spatially and temporarily) nonlo-
cal differential equations, with explicit and implicit nonlinearities, that approximately describe
the dynamics of the system.

5The terminology DtN operator is common in the modeling of inviscid water waves. Here we derive a DtN
operator for non-lifting flow around smooth bodies beneath the free surface. In Sec.3.5.1 the extended form of the
DtN operator, that is suitable for lifting flows beneath the free surface, will be constructed.
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3.4.2 Discretised free-surface boundary conditions and the dynamical sys-
tem

We apply discretisation with BEM and collocation as described in detail in Secs.3.4.1 & 2.5.2.2.
We consider the collection of discretised data that are families of scalars or vectors. They are
ordered following x1-major numbering. In this way, ordered lists (systems) are created, that
represent the collocation points (containing vectors of R3), the discretised potential field (con-
taining real numbers), the discretised gradient of the free-surface potential field (containing
vectors of R3) or the covariant components of the tangential velocity (containing real num-
bers). The systems that are arranged x1-majorly will be denoted using |1. To proceed, the
free-surface conditions are applied at the free-surface collocation points. Therefore, we have
the aforementioned collocation points x0|1 = {x0 f } with f ∈ {0, 1, ..., NF − 1}, where NF is the
total number of the free-surface collocation points, the free-surface potential ΦF|1 = {ΦF, f },
the free-surface elevation η|1 = {η f }, the trace of the gradient of the free-surface potential
VF|1 = {∇Φ f }, the metric of the free surface a|1 = {√a f }, the free-surface tangential velocity
VF,t|1 = {VF,t, f }, the first component (x1-wise) of the covariant derivative of the free-surface
potential VF,t,1|1 = {VF,t,1, f }, the second component (x2-wise) of the covariant derivative of
the free-surface potential VF,t,2|1 = {VF,t,2, f }. Moreover, the free-surface Neumann-data dis-
cretised vector field is NF|1 = {∂nΦF, f } and the discretised normal vector field nF|1 = {nF, f }.
The discretised form of free-surface boundary conditions (Eqs.3.7 & 3.8) are as follows

∂tΦF|1 = −gη|1 −
1
2
[VF,t|1 + NF|1 · nF|1]2, x ∈ ∂DF(t), (3.46)

∂tη|1 = −NF|1 · a|1, x ∈ ∂DF(t), (3.47)

The discretised free-surface tangential velocity vector field VF,t is expanded with respect to a
curvilinear coordinate system and its covariant base, using the velocity contravariant compo-
nents (see Sec.2.5.2.1), as follows

VF,t|1 = (VF,t,j)
j|1 · ej|1, j ∈ {1, 2}. (3.48)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|2 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NF − 1} and the dot product is between systems of vectors.

The contravariant components of the velocity can be calculated when the covariant compo-
nents are known as follows

(VF,t,j)
j|1 = gjk|1(VF,t,k)k|1, j, k ∈ {1, 2}. (3.49)

where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|2 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NPK − 1}.

By applying CUFD we can approximate the covariant component of the free-surface tangential
velocities by the neighboring free-surface potential values (see Sec.2.5.2.2) as follows

(VF,t,1)1|1 = D(x0|1) ·ΦF|1. (3.50)
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(VF,t,2)2|1 = [D(x0|2) ·ΦF|2]T =
[
D(x0|2) · (ΦF|1)T

]T
. (3.51)

The above detailed analysis enlightens the fact that the discretised trace tangential velocity
VF,t can be expressed as a function of the discretised trace of the free-surface potential ΦF in
the context of our approximation; i.e. VF,t|1 = VCUFDM (ΦF|1).

At the final stage the discretised free-surface conditions (Eqs.3.46 & 3.47) will be exploited
for the construction of the dynamical-system equations in the form dtU = f(U), where the
system-derivative f is a function of the dynamic variables collected into the 1st-order system
U = {ΦF, η}. In order to obtain that form of free-surface conditions we recall the appropriate
part of the discretised DtN operator constructed in Sec.3.4.1, Eqs.(3.43-3.45)

NF(t)|1 = G00(t) ·ΦF(t)|1 + G01(t) · b(t)|1. (3.52)

In the above linear relation the unknown discretised fields are the systems of Neumann and
Dirichlet data on the free-surface; i.e. the normal derivative of the free-surface potential NF|1
and the free-surface potential ΦF|1. The Neumann data on the body b and are known from
the prescribed kinematics. Therefore, the discretised free-surface conditions (Eqs.3.46 & 3.47)
together with the appropriate part of the discretised DtN operator Eq.(3.52) are a system of
(spatially and temporarily) nonlocal partial differential equations, with explicit and implicit
nonlinearities and a linear algebraic constraint.

In the sequel, the algebraic constraint is used in order to expresses the system-derivative f
as a function of the dynamic variables collected into the 1st-order system U = {ΦF, η}. To
proceed, the discretised normal derivative of the free-surface potential field NF with the aid of
Eq.(3.52) becomes a function of ΦF; i.e. NF(t)|1 = DTN0 (ΦF(t)|1). The free-surface boundary
conditions become

∂tΦF|1 = −gη|1 −
1
2
[VCUFDM (ΦF|1) +DTN0 (ΦF(t)|1) · nF|1]2, x ∈ ∂DF(t), (3.53)

∂tη|1 = −DTN0 (ΦF(t)|1) · a|1, x ∈ ∂DF(t), (3.54)

Eqs.(3.53 & 3.54) can be numerically integrated in order to calculate evolution of the dynamic
variables collected into the 1st-order system U = {ΦF, η}, based on information concerning the
functions ΦF, η at previous time steps, in conjunction with the Neumann data b on the body
boundary, known at every time step from the body motion as described by the body boundary
condition Eq.(3.2).

Moreover, the free-surface-boundary nodes are updated every time that the the free-surface
at the collocation points changes. However the free-surface elevation is known only at the
collocation points and its values are stored in η. The bilinear 4-node boundary elements con-
struct a basic grid with global nodes located at the local element nodes. The values of the
free-surface elevation can be obtained everywhere by interpolation, when the nodal values of
the free-surface are known. In order to calculate the nodal values of the free-surface elevation a
staggered grid, with nodes at the collocation points, is exploited. The staggered-grid nodal val-
ues are given by the free-surface elevation η. Then by interpolation, using the staggered grid,
the basic-grid nodal values are obtained. Next by interpolation, using the basic grid, the free-
surface potential is obtained everywhere. In this way, the free-surface boundary is updated



92 Chapter 3. Hydrodynamic analysis of bodies beneath the free surface

and the relative quantities like the metric a|1 and the free-surface unit normal vector nF|1 are
updated.

Subsequently, following part of the updated discretised DtN map (Eqs.3.43 - 3.45) is used to
calculate the remaining unknown discretised body Dirichlet boundary field values ΦB

ΦB(t)|1 = G10(t) ·ΦF(t)|1 + G11(t) · b(t)|1. (3.55)

3.4.3 Numerical time integration of the system

Starting from a prescribed initial condition, e.g. from rest, a time-stepping method is applied to
obtain the numerical solution. After evaluation of different methods, we found that the higher-
order Adams-Bashforth-Moulton predictor-corrector method provides the required accuracy,
stability and efficiency; see Sec.2.9, Longuet-Higgins and Cokelet (1976) and Johannessen and
Swan (1997). To be more precise, if we know U (t) at time t, we have at the corrector step

U (t + ∆t) = U (t) +
∆t
24
[
9fpre (t + ∆t) + 19f (t)− 5f (t− ∆t) + f (t− 2∆t)

]
. (3.56)

with predictor

fpre (t + ∆t) = ft+∆t
[
Upre (t + ∆t)

]
. (3.57)

and

Upre (t + ∆t) = U (t) +
∆t
24

[55f (t)− 59f (t− ∆t) + 37f (t− 2∆t)− 9f (t− 3∆t)] . (3.58)

The used scheme requires calculation of only two derivative equations at each time, and the
error is of order

(
∆t5), where ∆t is the timestep, ensuring that good convergence is achieved.

To be more specific, at the predictor step, for the calculation of Upre (t + ∆t) in Eq.(3.58), the
calculation of derivative f (t) at the present time t and the corresponding DtN are required,
together with the values of the derivatives f (t− i∆t) , i ∈ {1, 2, 3} from the past, that have
already been obtained. Moreover, at the corrector step in Eq.(3.56), the calculation of U (t + ∆t)
requires a prediction of the derivative fpre (t + ∆t) at the future time t + ∆t. Aiming to this, we
use the prediction Upre (t + ∆t) into Eq.(3.57) and the DtN is calculated again, that time at the
predicted free-surface elevation ηpre, included in Upre.

3.4.4 Conditions at infinity - Implementation of PML model

An important task concerning the present time-domain scheme deals with the treatment of the
horizontally infinite domain and the implementation of appropriate radiation-type conditions
at infinity. Although in the case of purely linear waves, conditions at infinity could be treated
using the appropriate time-dependent Green’s function, the present work is based on the trun-
cation of the domain and on the use of Perfectly Matched Layer (PML) model, as e.g. described
by Berenger (1994) and Turkel and Yefet (1998). The latter model permits the numerical absorp-
tion of the waves reaching the ends of the truncated domain with minimum reflection. This
selection is motivated by the fact that PML model supports the efficient treatment of the



3.4. Boundary integral formulation of non-lifting bodies beneath the free surface 93

(a)
(b)

Figure 3.3: Free-surface elevation generated by moderate-amplitude oscillations of an elliptically
shaped, fully immersed body at ω2H/g = 1.63. (a) Snapshot where The upper and lower limits of

heaving motion are shown using dashed lines. (b) Time history of the free-surface elevation.

(a) (b)

Figure 3.4: Free-surface elevation generated by an elliptically shaped, fully immersed body trav-
eling with constant forward speed at Fn = U/

√
ga = 0.71. (a) Snapshot. (b) Time history of the

free-surface elevation.

problem of generation and propagation of non-linear waves excited due to large motion(s) of
the moving body at low-submergence depths; see also Belibassakis and Athanassoulis (2011).
In order to apply the PML-type absorbing layer, the time-derivative operator in the left hand-
side of the dynamical system equations is substituted by the following mixed-type operator:

dtU + σ(xF)U = f(U), where U = µK, (3.59)

where the PML-parameter σ(xF) is a positive absorption coefficient with support of character-
istic size l extended over several wavelengths from the artificial end-type boundaries used in
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order to truncate the computational domain. In the present work we use optimum PML coef-
ficients, as described by Collino and Monk (1998) and applied by Belibassakis et al. (2001) and
Belibassakis and Athanassoulis (2011) to water wave problems. More details about the PML
can be found in our published work Filippas and Belibassakis (2014).

3.4.5 Numerical results and discussion

3.4.5.1 2D calculations

As an example of the forced radiation problem we present in Fig,3.3 the calculated free-surface
elevation in the case of an elliptically-shaped, fully immersed body of axis ratio a/b = 8 (where
a is the length and b the height of the body), performing oscillations in heaving motion with
moderate amplitude h/b = 0.25, in water of depth H/b = 8, after 4 periods starting from rest.
The mean submergence is d/b = 1.75 and thus, the vertical oscillation is limited in the interval
−2.5 < y/b < −1, shown using dashed lines in Fig.3.3a. In the examined case the frequency
parameter is ω2H/g, corresponding to intermediate wave conditions H/λ, where H is water
depth and λ the wavelength of the free waves in the water strip at the examined frequency,
as predicted by the linear theory ω2 = kg tanh(kH), where k = 2π/λ is the corresponding
wavenumber. Furthermore, the time history of calculated free-surface elevation is plotted in
Fig.3.3b all over the horizontal domain for the first 4 periods of oscillation starting from rest.
We clearly observe the generation of symmetrical waves propagating to both directions with
phase speed C and wavelength λ/b = 28.8 that is found to be in reasonable compatibility with
linearized water-wave theory λ/b = 28.9.

Moreover, in Fig.3.4, an example concerning the wave-resistance problem is presented. The
calculated free-surface elevation generated by the same as before elliptically-shaped, fully im-
mersed body, in constant-speed forward motion at Fn = U/

√
ga, where a is the length of the

body, is plotted. The water depth is the same as before H/b = 8, while the mean submergence
now is greater d/b = 3. The examined case corresponds to intermediate wave conditions H/λ,
where λ is the wavelength of the free-surface waves in the water strip at the examined constant
speed, given by the dispersion relation F−2

H = kH tanh(kH) corresponding to the bathymetric
Froude number FH = U/

√
gH = 0.71. In this case, the time history of calculated free-surface

elevation is plotted in Fig.3.4b, all over the horizontal domain, starting from rest until the
nondimensional time tU/λ = 3. We clearly observe the generation of a small-amplitude tran-
sient wave pattern that travels to the positive x-direction while the main wave pattern travels
with the speed of the body. After the transient effects have died out, the characteristic wave
length of the main pattern λ/b = 24 is again found in reasonably good compatibility with the
predictions by linear theory λ/b = 24.3.

Moreover, the performance of the PML model is examined in Figs.3.5-3.7 for the example of
Fig.3.3. More specifically, the calculated free-surface elevation, after 4 and 8 periods start-
ing from rest, is plotted in the upper and lower subplots of these figures, respectively, as
obtained using the PML absorbing layer with parameters σ0 ∈ {0, 2, 4}, p ∈ {2, 3, 4} and
l ∈ {1λ, 1.5λ, 2λ}. In addition, in these figures, our results are compared against a reference
numerical solution (indicated using crosses) which is obtained using a very long (character-
ized as infinite) computational domain ensuring that the generated wave disturbance has not
reached its horizontal ends at the two times considered (t/T = 4 and 8).
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(a) (b)

Figure 3.5: Effect of σ0-parameter on the efficiency of the PML, for the example of Fig.3.3. The
position of PML is indicated by bold dashed lines. The parameter σ0 controls the magnitude of the

σ(xF) distribution.

(a) (b)

Figure 3.6: Effect of p-parameter on the efficiency of the PML, for the example of Fig.3.3. The
position of PML is indicated by bold dashed lines. p is positive parameter that controls the rate of

absorption in the PML

(a) (b)

Figure 3.7: Effect of PML thickness λ on the efficiency of the PML, for the example of Fig.3.3. The
position of PML is indicated by bold dashed lines. λ adjusts the support of σ(xF) and is comparable

to the characteristic wave length of the generated wave

We clearly observe in these figures that the wave presents fast decay within the PML while the
numerical solution remains in very good compatibility to the reference solution outside the ab-
sorbing layer. Moreover, the performance of the PML becomes better as its length is increased.
Based on extensive numerical evidence, we finally conclude that the PML parameters should
be 2 ≤ σ0 ≤ 4, 2 ≤ p ≤ 4 and, 1 ≤ l/λ ≤ 2 for optimum performance in the studied problem.
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Figure 3.8: Wave resistance study of a prolate spheroid. a) Pressure and velocity fields on the
body boundary and free-surface potential and free-surface elevation. b) Total potential field on the
free-surface. c) Wave resistance coefficient and comparison against calculations from Belibassakis

et al. (2013a).

Figure 3.9: Enforced radiation study of a prolate spheroid. a) Pressure and velocity fields on the
body boundary and free-surface potential and free-surface elevation. b) Total potential field on the
free-surface. c) Added mass coefficient and comparison against calculations from Chatjigeorgiou

and Miloh (2015). In the case 1 NF = 5400, in the case 2 NF = 10000.

3.4.5.2 3D calculations and GPU performance

In Fig.3.8 calculations are presented concerning the wave-resistance problem of a fully im-
mersed prolate spheroid of axis ratio 5 : 1 : 1, in constant-speed forward motion at Froude
number F = U/

√
gL in the interval [0.4, 0.7], where L is the length of the body and U its veloc-

ity. The body was initially in rest and accelerates smoothly until the steady state condition. The
body advances beneath the initially calm free-surface with its longitudinal axis in submergence
d = 0.16L. A snapshot of the simulation for t/T = 5 is presented in Figs.3.8(a,b) for F = 0.5.
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Moreover, in Fig.3.8(c) the wave resistance coefficient CW = RW/0.5ρU2SW is presented as a
function of Froude number (F) and SW is the wetted surface. The results are in quite good
agreement with the calculations from the literature (Belibassakis et al., 2013a) .

For the convergence of the present method two sets of numerical parameters have been used.
The first is selected to achieve convergence of the distributed quantities and the second is se-
lected for the accurate wave-resistance calculation and corresponds to coarse space-time dis-
cretisation. The timestep is 1% (4% in the second case) of the period, on the body and the
free-surface we have 640 and 8100 (1472 in the second case) boundary elements, respectively.
For the accurate prediction of the surface velocity field at the vicinity of the poles double pre-
cision arithmetics have been used, leaving the development of the mixed precision version of
the code for the present problem as a subject for future work. For this reason the present im-
plementation of the algorithm in the specific GPU6 is characterised by high space complexity
and relatively large time complexity. To be more specific 3.2GB (but only 1.5GB in the sec-
ond case) where required by the VRAM and the execution time of the code reached the 1174
sec (but only 31 sec for the second case). It is worthwhile to mention that the performance of
the GPGPU computational code, both in terms of time and space complexity, is substantially
higher than the performance of corresponding serial or parallel CPU codes, implemented by
exploiting resources of similar cost.

In Fig.3.9 calculations are presented concerning the enforced radiation problem of a fully im-
mersed prolate spheroid of axis ratio 6 : 1 : 1, performing enforced heaving motion with
nondimensional frequency Ω = ω2a/g in the interval [0.5, 5], beneath the initially calm free-
surface with its longitudinal axis in submergence d = 2b, where a is the large and b is the small
semiaxis of the body, respectively and ω is the heaving frequency. A snapshot of the simulation
or t/T ≈ 2.76 and Ω = 2.5 is presented in Figs.3.9(a,b). Moreover, in Fig.3.9(c) the added mass
coefficient µ33 is presented as a function of Ω. It is clear from the convergence trend of the 3D
calculations that our calculations are in the limit compatible with the results from the literature
(Chatjigeorgiou and Miloh, 2015) . More specifically, in Fig.3.9(a) the potential and velocities
on the body together with the free-surface potential are depicted. In Fig.3.9(b) the free-surface
elevation and potential are presented and with red dashed line is denoted the limit of the PML.
Regarding the performance of the numerical method and the GPU accelerated computational
code. In the present time-domain simulation the body begins from the rest reaching harmonic
state after 2 periods T, the time-step is ∆t/T = 1%. A total number of NB = 1350 body
boundary elements and NF = 10000 free-surface boundary element are used. Mixed-precision
arithmetics have been used, 4.8GB were required from the VRAM and the simulation time was
322 sec.

3.5 Boundary integral formulation and BEM for lifting bodies
beneath the free surface

Applying Green’s theorem to the lifting problem Eqs.(3.1 - 3.14), we obtain the following two
integral representations for the potential in D in terms of the potential Φ (dipole intensity) and

6The present GPU is a GTX1080 and is designed mainly for graphic processing and not for scientific calcula-
tions. The ratio of single to double precision units is 1:32.
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its normal derivative ∂nΦ (source intensity), the first on the body boundary and the second on
the free-surface boundary7, written compactly as follows

Φ(x0; t)−ΦJ(x0; t) =
∫

∂DB(t)

∂nΦB(x; t)Gs(x0|x)−ΦB(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x)−ΦF(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DW(t)

[
∂nΦu

W(x; t)− ∂nΦl
W(x; t)

]
Gs(x0|x) ds(x)

−
∫

∂DW(t)

[
Φu

W(x; t)−Φl
W(x; t)

]
∂nGs(x0|x) ds(x), x0 ∈ ∂DB(t) ∪ ∂DF(t) (3.60)

where

Φ(x0; t)−ΦJ(x0; t) =


Φ(x0; t), x0 ∈ D.

ΦB(x0; t)− sign(r·n)
2 ΦB(x0; t), x0 ∈ ∂DB,

ΦF(x0; t)− sign(r·n)
2 ΦF(x0; t), x0 ∈ ∂DF,

(3.61)

In the above relation we have used Green’s function (Eq.2.16), consisted of the fundamental
solution of 2D/3D Laplace equation corresponding to a Rankine source plus a regular part,
corresponding to a mirror source with respect to the bottom surface and the normal to the
boundary derivative of the total Green’s function. The total Green’s function is denoted with
Gs and its normal derivative with ∂nGs. In this way and in the case of flat bottom, the boundary
condition Eq.(3.3) is identically satisfied and the corresponding boundary term of the integral
representation is dropped. For simplicity, the case of general bathymetry is not presented in
this section; for more details in that interesting problem see Sec.4.5.1, Sec.4.5.4 and Filippas
et al. (2018). .

The first integral in Eq.(3.60) represents the effect of the body, the second the effect of the free-
surface and the third and fourth integrals the effect of the wake on the potential. The first term
in the integrals is the potential induced at x0 from a source with intensity ∂nΦ(x) located on the
boundary at x, while the second term represents similarly the effect of normal to the boundary
dipole with intensity Φ(x). In this way the whole information for the potential in the domain D
is stored on the boundary ∂D whose dimension is of one order lower. Therefore, if the trace of
the potential and the derivative on the boundary are known, using Green’s formula Eqs.(3.60,
3.61) we can evaluate potential everywhere in D.

The non-local form of the operator in the right hand side of Eq.(3.60), that is demonstrated by

7The representation theorem is written for the body and the free-surface boundaries and the boundary fields
on those two boundaries are mainly governed by the corresponding boundary conditions. However, there exists
also the wake boundary emanating from body’s trailing edge. The values of the potential jump on the wake
are governed by the corresponding boundary conditions and the appropriate Kutta condition. Due to the Kutta
condition the mathematical structure of that boundary is essentially different. Moreover, the numerical treatment
of the wake boundary in the present case is different and is done following a Lagrangian approach.
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the boundary integral and the necessity of accurate description of the boundary and the data8

on them, is radicated to the character of free-surface waves and lifting flows. That character
is preserved in the context of potential theory and Boundary Integral Equations (BIE) in an
optimal way. To be more specific:

• From the point of view of analytical modeling, in potential methods the absence of phys-
ical dissipation, due to the neglection of viscosity, strengthens9 the interaction between
the boundaries.

• Concerning numerical modeling, the BEM, that is based on a boundary integral refor-
mulation of the Boundary Value Problem (BVP), is mesh-free (in the interior of the do-
main). In this way numerical diffusion, connected with mesh-based methods (e.g. Finite
Element/Difference/Volume methods), that weakens the interaction between the bound-
aries, is avoided.

Replacing body boundary condition Eq.(3.2) and wake kinematic condition Eq.(3.10) into the
representation theorem on the boundary Eqs.(3.60, 3.61), we obtain the following two Fred-
holm 2nd kind weakly singular integral equations

−
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x) ds(x)

1
2

ΦB(x0; t) +
∫

∂DB(t)

ΦB(x; t)∂nGs(x0|x) ds(x) =−
∫

∂DF(t)

ΦF(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB(t)

b(x; t)Gs(x0|x) ds(x)

−
∫

∂DW(t)

µW(x; t)∂nG(x0|x) ds(x), x0 ∈ ∂DB(t), (3.62)

and

−
∫

∂DF(t)

∂nΦF(x; t)Gs(x0|x) ds(x)

+
∫

∂DB(t)

ΦB(x; t)∂nGs(x0|x) ds(x) =− 1
2

ΦF(x0; t)−
∫

∂DF(t)

ΦF(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB(t)

b(x; t)Gs(x0|x) ds(x)

−
∫

∂DW(t)

µW(x; t)∂nG(x0|x) ds(x), x0 ∈ ∂DF(t), (3.63)

8The boundary values of the potential and the normal to the boundary derivative correspond to the intensity of
the singularities (Green function - source and normal derivative - dipole) located on the boundary. The knowledge
of those boundary fields is necessary and sufficient for the calculation of the hydrodynamic fields (potential,
velocity, pressure, etc) in the interior of the domain. The magnitude of those functions at a specific boundary area
is a measure of the influence of the specific part of the boundary to the fluid flow and other boundaries.

9In real flows between two boundaries viscosity, due to dissipation mechanisms, allows interaction of bound-
aries at a specific level. In ideal flow models, that interaction is stronger and this is the reason the verb "strengthen"
is used.
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where µW = Φu
W − Φl

W denotes the potential jump or the dipole intensity on the wake. The
weakly singular boundary integral equations Eqs.(3.62&3.63), free-surface boundary condi-
tions Eqs.(3.7, 3.8) and the Pressure-type Kutta condition Eqs.(3.13&3.14) provide us with a
system of equations for the unknown boundary fields ΦB on the body, ΦF and ∂nΦF at the
free-surface and µW at the vicinity of trailing edge. The above system of equations can be
solved numerically after the appropriate discretisation, implemented with a boundary ele-
ment method (BEM) and collocation, as we will see in the following section. Furthermore,
numerical solution of the system can be achieved following two different paths. Either by time
integration, where free-surface conditions are treated as a dynamic system and BIE as an alge-
braic constraint, or using a finite difference method (FDM) for the temporal discretisation of
free-surface conditions. In the later case, BIE and free-surface conditions are treated similarly
forming a non-linear algebraic system. The first approach is adopted in the present work and
is described in detail at the following sections.

3.5.1 Discretisation and the extended DtN map

The spacial discretisation mainly consists of the following approximations of the analytical
model:

• Concerning the geometry, a C0 representation of the boundary is used as follows:

– in 2D formulation, following a low-order panel method, the body contour is re-
placed by a closed polygonal line, and NB denotes the number of panels. The free
surface and the trailing vortex sheet are also approximated by open polygonal lines
composed of NF and NW(t) panels, respectively.

– in 3D formulation, the boundary is approximated using bilinear-quadrilateral ele-
ments.

• Concerning the representation of the functions on the boundary, the potential, its nor-
mal derivative and the potential jump at each time step, are approximated by piecewise
constant distributions, as follows:

ΦF(x; t) = ΦF f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

∂nΦF(x; t) = ∂nΦF f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

ΦB(x; t) = ΦBi(t), at body element i, i = 0, 1, ..., NB − 1,
∂nΦB(x; t) = ∂nΦBi(t) = bi(t), at body element i, i = 0, 1, ..., NB − 1,
µW(x; t) = µWw(t), at wake element w, w = 0, 1, ..., NW(t)− 1. (3.64)

• Finally, following a collocation scheme, the BIEs (Eqs.3.62 & 3.63) are satisfied in a finite
number of points (or control points) and in order to avoid singularities the centroids of
the elements have been chosen as collocation points.

To proceed, the discretised form the of the BIEs (Eqs.3.62 & 3.63) is as follows

A
pot
F,B(t) ·

(
NF(t)
ΦB(t)

)
= B

pot
F,B(t) ·

(
ΦF(t)
b(t)

)
+D

pot
F,B,K(t) · µK(t) +D

pot
F,B,W(t) · µW , (3.65)



3.5. Boundary integral formulation and BEM for lifting bodies beneath the free surface 101

where

A
pot
F,B(t) =

(
A

pot
F,B,00(t) A

pot
F,B,01(t)

A
pot
F,B,10(t) A

pot
F,B,11

)
, B

pot
F,B(t) =

(
B

pot
F,B,00(t) B

pot
F,B,01(t)

B
pot
F,B,10(t) B

pot
F,B,11

)
,

D
pot
F,B,K(t) =

(
D

pot
F,B,K,0(t)
D

pot
F,B,K,1

)
, D

pot
F,B,W(t) =

(
D

pot
F,B,W,0(t)

D
pot
F,B,W,1(t)

)
. (3.66)

In the above equations A
pot
F,B,Bpot

F,B are the potential induction-factor matrices at the left hand
side and the right hand side of Eqs.(3.62)&(3.63), respectively. They model free surface-free
surface, body-body and free surface-body interactions. Also D

pot
F,B,K,Dpot

F,B,W are double layer
potential induction-factor matrices modeling the effects of the Kutta strip and the wake on the
free-surface and the body. The above matrices are defined as follows

A
pot
F,B,00(t) = {−Spot

f s (t)}, A
pot
F,B,01(t) = {D

pot
f j (t)},

A
pot
F,B,10(t) = {−Spot

is (t)}, A
pot
F,B,11 = {0.5δij + Dpot

ij },

B
pot
F,B,00(t) = {−0.5δ f s − Dpot

f s (t)}, B
pot
F,B,01(t) = {S

pot
f j (t)},

B
pot
F,B,10(t) = {−Dpot

is (t)}, B
pot
F,B,11 = {Spot

ij },

D
pot
F,B,K,0(t) = {−Dpot

f k (t)}, D
pot
F,B,K,1 = {−Dpot

bk },

D
pot
F,B,W,0(t) = {−Dpot

f w (t)}, D
pot
F,B,W,1(t) = {−Dpot

iw (t)}, (3.67)

with S denoting source or single-layer integrals, and with D denoting dipole or double-layer
integrals see Eq.(2.23). Moreover, the indices belong to the following subsets of N

f , s ∈ {0, 1, ..., NF − 1}, i, j ∈ {0, 1, ..., NB − 1}, k ∈ {0, 1, ..., NK − 1}, w ∈ {0, 1, ..., NW(t)− 1}.
(3.68)

In Eq.(3.65) ΦF = {ΦFs}, NF = {∂nΦFs}, ΦB = {ΦBj}, b = {bj}, µK = {µKk}, µW = {µWw}. In
the sequel, we will denote with bold, vectors containing the values of piecewise constant trace
functions on the boundary elements, at various parts of the boundary.

Next we multiply Eq.(3.65) with
[
A

pot
F,B(t)

]−1
and we obtain(

NF(t)
ΦB(t)

)
= G(t) ·

(
ΦF(t)
b(t)

)
+ Z(t) · µK(t) + P(t) · µW , (3.69)

or(
NF(t)
ΦB(t)

)
=

(
G00(t) G01(t)
G10(t) G11(t)

)
·
(

ΦF(t)
b(t)

)
+

(
Z0(t)
Z1(t)

)
· µK(t) +

(
P0(t)
P1(t)

)
· µW , (3.70)
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where

G(t) =
[
A

pot
F,B(t)

]−1
·Bpot

F,B(t), Z(t) =
[
A

pot
F,B(t)

]−1
·Dpot

F,B,K(t),

P(t) =
[
A

pot
F,B(t)

]−1
·Dpot

F,B,W(t). (3.71)

The above mapping is the discrete form of the extended Dirichlet-to-Neumann (DtN) operator
that is suitable for lifting flows beneath the free surface. That operator connects the potential
(Dirichlet data) with its normal derivative (Neumann data) on body boundary ∂DB, but also
involves the unknown values of the dipole intensity µK (Dirichlet data) on the Kutta strip ∂DK,
as well as the (known from the past) potential jump µW (Dirichlet data) on the wake ∂DW . We
observe in the above equation that the influence of the wake, that introduces memory effects, is
taken into account through P(t) · µW . Also, the effect of the body velocity is considered through
the component VB, included in b, as described by the body boundary condition Eq.(3.2). In
Sec.3.5.2 using the appropriate parts of the DtN map, Eqs.(3.69 - 3.71), in the discretised form
of free-surface boundary conditions and pressure-type Kutta condition, we will obtain a sys-
tem of (spatially and temporarily) nonlocal differential equations, with explicit and implicit
nonlinearities, that approximately describe the dynamics of the system.

3.5.2 Discretised free-surface and Kutta conditions and the dynamical sys-
tem

The discretised free-surface conditions are the same in case of lifting and nonlifting flows and
have been already presented in Sec.3.4.2. Those discretised boundary conditions are rewritten
here

∂tΦF|1 = −gη|1 −
1
2
[VF,t|1 + NF|1 · nF|1]2, x ∈ ∂DF(t), (3.72)

∂tη|1 = −NF|1 · a|1, x ∈ ∂DF(t), (3.73)

The discretised free-surface tangential velocity vector field VF,t is expanded with respect to a
curvilinear coordinate system and its covariant base, using the velocity contravariant compo-
nents (see Sec.2.5.2.1), as follows

VF,t|1 = (VF,t,j)
j|1 · ej|1, j ∈ {1, 2}. (3.74)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|1 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NF − 1} and the dot product is between systems of vectors.

The contravariant components of the velocity can be calculated when the covariant compo-
nents are known as follows

(VF,t,j)
j|1 = gjk|1(VF,t,k)k|1, j, k ∈ {1, 2}. (3.75)
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where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|2 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NF − 1}.

By applying CUFD we can approximate the covariant component of the free-surface tangential
velocities by the neighboring free-surface potential values (see Sec.2.5.2.2) as follows

(VF,t,1)1|1 = D(x0|1) ·ΦF|1. (3.76)

(VF,t,2)2|1 = [D(x0|2) ·ΦF|2]T =
[
D(x0|2) · (ΦF|1)T

]T
. (3.77)

The above detailed analysis enlightens the fact that the discretised boundary value of the tan-
gential velocity VF,t can be expressed as a function of the discretised boundary value of the
potential ΦF in the context of our approximation; i.e. VF,t|1 = VCUFDM (ΦF|1).

At the final stage the discretised free-surface conditions (Eqs.3.72 & 3.73) together with the dis-
cretised Kutta condition that will be presented in the sequel, will be exploited for the construc-
tion of the dynamical-system equations in the form dtU = f(U), where the system-derivative
f is a function of the dynamic variables collected into the 1st-order system U = {ΦF, η, µK}.
In order to obtain that form of free-surface conditions we recall the appropriate part of the
discretised extended DtN operator constructed in Sec.3.5.1, Eqs.(3.69 - 3.71)

NF(t)|1 = G00(t) ·ΦF(t)|1 + G01(t) · b(t)|1 + Z0(t) · µK(t)|2 + P0(t) · µW |2. (3.78)

In the above linear relation the unknown discretised fields are the systems of Neumann and
Dirichlet data on the free-surface; i.e. the normal derivative of the free-surface potential NF|1
and the free-surface potential ΦF|1 and the system of Dirichlet data on the Kutta strip; i.e. the
potential jump µK. The Neumann data on the body b and are known from the prescribed kine-
matics and the Dirichlet data on the wake µW have been determined from the time history of
the system evolution. Therefore, the discretised free-surface conditions (Eqs.3.72 & 3.73) to-
gether with the appropriate part of the discretised DtN operator Eq.(3.78) are a system of (spa-
tially and temporarily) nonlocal differential equations, with explicit and implicit nonlinearities
and a linear algebraic constraint. This is only the half part of the total system of equations.
The remaining part that is based on the pressure-type Kutta condition will be constructed later
in the same section. The other part of the system is also constrained and another part of the
extended DtN operator serves as a linear constraint this will be also discussed later.

In the sequel, the algebraic constraint is used in order to expresses the system-derivative f as
a function of the dynamic variables collected into the 1st-order system U = {ΦF, η, µK}.To
proceed, the discretised normal derivative of the free-surface potential field NF with the aid
of Eq.(3.78) becomes a function of ΦF and µK; i.e. NF(t)|1 = DTN0 (ΦF(t)|1, µK|2). The free-
surface boundary conditions become

∂tΦF|1 = −gη|1 −
1
2
[VCUFDM (ΦF|1) +DTN0 (ΦF(t)|1, µK|2) · nF|1]2, x ∈ ∂DF(t), (3.79)

∂tη|1 = −DTN0 (ΦF(t)|1, µK|2) · a|1, x ∈ ∂DF(t), (3.80)
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The discretised free-surface conditions in the form of Eqs.(3.79 & 3.80) together with the dis-
cretised pressure-type Kutta condition, that will be constructed in the sequel, are a system of
(spatially and temporarily) nonlocal differential equations, with explicit and implicit nonlin-
earities, in the form dtU = f(U), where the system-derivative f is a function of the dynamic
variables collected into the 1st-order system U = {ΦF, η, µK}.

Moreover concerning the lifting part of the problem and the pressure-type Kutta condition, we
apply discretisation with BEM and collocation as described in detail in Sec.2.4 and in Sec.2.5.2.2.
We consider the collection of discretised data that are families of scalars or vectors. They are
ordered following span-major numbering. In this way, ordered lists (systems) are created,
that represent the collocation points (containing vectors of R3), the discretised potential field
(containing real numbers), the discretised tangential velocity field (containing vectors of R3)
or the covariant components of the tangential velocity (containing real numbers). The sys-
tems that are arranged span-majorly will be denoted using |2. To proceed, the pressure-type
Kutta condition is applied at the body-collocation points at the upper and lower side of the
trailing edge10 and the corresponding operator is discretised as follows FPK

f s |2 = {FPK
f s,i}, with

i ∈ {0, 1, ..., NPK − 1}, where NPK is the total number of collocation points that Kutta condi-
tion is applied. Therefore, we have the aforementioned collocation points x0|2 = {x0i}, the
potential ΦB|2 = {ΦB,i}, the tangential velocity Vt|2 = {Vti}, the first component (chordwise)
of the covariant derivative of the potential Vt1|2 = {Vt1i}, the second component (spanwise)
of the covariant derivative of the potential Vt2|2 = {Vt2i}. Moreover, the known-Neumann-
data-times-the-normal-vector discretised vector field is N|2 = {bini} and the body velocity
VB|2 = {VBi}.

The discretised form of pressure-type Kutta condition is as follows

FPK
f s (x0|2; t)|2 = 0, x0|2 ∈ ∂DB(t), (3.81)

where

FPK
f s (x0|2; t)|2 = dt(Φ

u
B|2 −Φl

B|2) +
(

Vu
t |2 + Vl

t|2
2

+
Nu|2 + Nl|2

2
−

Vu
B|2 + Vl

B|2
2

)
[
Vu

t |2 −Vl
t|2 + Nu|2 −Nl|2 −

(
Vu

B|2 −Vl
B|2
)]

−
(

Vu
B|2 + Vl

B|2
2

)(
Vu

B|2 −Vl
B|2
)

. (3.82)

The discretised tangential velocity vector field Vt is expanded with respect to a curvilinear
coordinate system and its covariant base, using the velocity contravariant components (see
Sec.2.5.2.1), as follows

Vt|2 = (Vtj)
j|2 · ej|2, j ∈ {1, 2}. (3.83)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|2 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NPK− 1} and the dot product is between systems of vectors.

10A single numbering is used for both the upper and the lower collocation points; i.e. the collection i ∈
{0, 1, ..., NPK− 1} is mapped to the upper side data denoted with upper index u and to the lower side data denoted
with l.
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The contravariant components of the velocity can be calculated when the covariant compo-
nents are known as follows

(Vtj)
j|2 = gjk|2(Vtk)k|2, j, k ∈ {1, 2}. (3.84)

where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|2 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NPK − 1}.

By applying CUFD we can approximate the covariant component of the tangential velocities
by the neighboring potential values (see Sec.2.5.2.2) as follows

(Vt1)1|2 = [D(x0|1) ·ΦB|1]T . (3.85)

(Vt2)2|2 = D(x0|2) ·ΦB|2. (3.86)

The above detailed analysis enlightens the fact that the discretised trace tangential velocity Vt
can be expressed as a function of the discretised trace of the potential ΦB in the context of our
approximation; i.e. Vt|2 = VCUFDM (ΦB).

At the final stage the discretised pressure-type Kutta condition (Eqs.3.81 & 3.82) together with
the discretised free-surface conditions (Eqs.3.72 & 3.73) will be exploited for the construction
of the dynamical-system equations in the form dtU = f(U), where the system-derivative f is a
function of the dynamic variables collected into the 1st-order system U = {ΦF, η, µK}. In order
to obtain that form of Kutta condition we recall the discretised DtN operator constructed in
Sec.3.5.1, Eqs.(3.69 - 3.71)

ΦB(t) = G10(t) ·ΦF(t) + G11(t) · b(t) + Z1(t) · µK(t) + P1(t) · µW . (3.87)

In the above linear relation the unknown discretised fields are the system of Dirichlet data
on the body boundary; i.e. the body potential NB|1, the system of Dirichlet data on the free-
surface; i.e. the free-surface potential NF|1 and the system of Dirichlet data on the Kutta strip;
i.e. the potential jump µK. The Neumann data on the body b and are known from the pre-
scribed kinematics and the Dirichlet data on the wake µW have been determined from the
time history of the system evolution. Therefore, the discretised pressure-type Kutta condition
(Eqs.3.81 & 3.82) together with the appropriate part of the discretised DtN operator Eq.(3.87)
and the discretised free-surface boundary conditions (Eqs.3.72 & 3.73) together with the appro-
priate part of the discretised DtN operator Eq.(3.78) are a system of (spatially and temporarily)
nonlocal differential equations, with explicit and implicit nonlinearities and linear algebraic
constraints.

We proceed with the pressure-type Kutta condition. The algebraic constraint is used in order
to expresses the system-derivative f as a function of the dynamic variables collected into the
1st-order system U = {ΦF, η, µK}. First of all, the discretised potential field with the aid of
Eq.(3.87) becomes a function of ΦF and µK; i.e. Φ = DTN (ΦF, µK). In this way the discretised
trace tangential velocity can be expressed as a function of ΦF and µK; i.e. Vt = VDTN (ΦF, µK).
Therefore, the pressure-Kutta operator is also a function of the unknown ΦF and µK (and other



106 Chapter 3. Hydrodynamic analysis of bodies beneath the free surface

known quantities); i.e. FPK
f s = FPK

f s (ΦF, µK). The pressure-type Kutta condition becomes

dt

[
DTNu

1 (ΦF, µK)−DTNl
1 (ΦF, µK)

]
=

−
[
Vu

DTN (ΦF, µK) + Vl
DTN (ΦF, µK)

2
+

Nu + Nl

2
−

Vu
B + Vl

B
2

]
[
Vu

DTN (ΦF, µK)− Vl
DTN (ΦF, µK) + Nu −Nl −

(
Vu

B −Vl
B

)]
+

(
Vu

B + Vl
B

2

)(
Vu

B −Vl
B

)
. (3.88)

In the equation above, the upper indices u and l refer to the discretised fields at the upper and
lower sides the discretised boundary, respectively. To be more specific to the corresponding
values of the discretised fields at the collocation points located at the centroids of the boundary
elements that represent the upper and lower sides of the body at the vicinity of the trailing
edge. Those values are global functions of the total discretised field of the potential jump at
the Kutta-strip µK and that relation is expressed by the global DtN1 operator (third term at the
right hand side of Eq.3.87). Moreover they are global functions of the total discretised field of
the potential jump on the free-surface boundary ΦF and that relation is expressed by the global
DtN1 operator (first term at the right hand side of Eq.3.87). For example the velocity and the
potential at the left tip of the foil, depends on the intensity of the dipoles that are distributed at
Kutta-strip in the vicinity of the right tip. Also they depend on the intensity of the dipoles that
are distributed at whole free-surface boundary. Moreover, it is a function of the total Neumann
data on the body (second term at the right hand side of Eq.3.87) and the time history of the
total Dirichlet data that are stored as dipoles in the wake (forth term at the right hand side
of Eq.3.87). In this way the spatial and temporal nonlocal character of the problem, that is
preserved through discretisation vie BEM, is illustrated.

To proceed further, it is necessary to perform some operations to the time derivative of the DtN
operator appeared at the left hand side of Eq.(3.88).

dt

[
DTNu

1 (ΦF, µK)−DTNl
1 (ΦF, µK)

]
=

=
{

dt[G
u
10(t)− Gl

10(t)] ·ΦF(t) + [Gu
11(t)− Gl

11(t)] · b(t)

+[Zu
1(t)− Zl

1(t)] · µK(t) + [Pu
1(t)− Pl

1(t)] · µW

}
. (3.89)

We define the following matrices G
u\l
10 = [Gu

10 − Gl
10], G

u\l
11 = [Gu

11 − Gl
11], Z

u\l
1 = [Zu

1 − Zl
1],

P
u\l
1 = [Pu

1 −Pl
1] as differences of matrices with one dimension that equals the number of Kutta-

strip collocation points NPK and the other defined by the number of the panels (on free-surface,
body, Kutta-strip and wake, respectively) that induce potential at the collocation points. By
adopting that notation and using the Leibniz rule for differentiation we obtain the following
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relation

dt

[
DTNu

1 (ΦF, µK)−DTNl
1 (ΦF, µK)

]
=

= dt[G
u\l
10 (t)] ·ΦF(t) + G

u\l
10 (t) · dt[ΦF(t)]

+ dt[G
u\l
11 (t) · b(t) + P

u\l
1 (t) · µW ]

+ dt[Z
u\l
1 (t)] · µK(t) + Z

u\l
1 (t) · dt[µK(t)]. (3.90)

Next, using the dynamic boundary condition (Eq.3.79) and considering that the body-fixed
time derivative of the free-surface potential is the same with the inertial11, we can replace time
derivative of the free-surface potential with functions of the dynamic variables as follows

dt

[
DTNu

1 (ΦF, η, µK)−DTNl
1 (ΦF, η, µK)

]
=

= dt[G
u\l
10 (t)] ·ΦF(t)

+ G
u\l
10 (t) ·

{
−gη− 1

2
[VCUFDM (ΦF) +DTN0 (ΦF, µK) · nF]

2
}

+ dt[G
u\l
11 (t) · b(t) + P

u\l
1 (t) · µW ]

+ dt[Z
u\l
1 (t)] · µK(t) + Z

u\l
1 (t) · dt[µK(t)]. (3.91)

By replacing Eq.(3.91) into Eq.(3.88) and multiplying both sides with the inverse of Zu\l
1 , we

obtain the final form of the discretised pressure-type Kutta condition

dt[µK(t)] =
[
Z

u\l
1 (t)

](−1)
· {−dt[G

u\l
10 (t)] ·ΦF(t)

− G
u\l
10 (t) ·

{
−1

2
[VCUFDM (ΦF) +DTN0 (ΦF, µK) · nF]

2 − gη

}
− dt[G

u\l
11 (t) · b(t) + P

u\l
1 (t) · µW ]− dt[Z

u\l
1 (t)] · µK(t)

−
[
Vu

DTN (ΦF, µK) + Vl
DTN (ΦF, µK)

2
+

Nu + Nl

2
−

Vu
B + Vl

B
2

]
[
Vu

DTN (ΦF, µK)− Vl
DTN (ΦF, µK) + Nu −Nl −

(
Vu

B −Vl
B

)]
+

(
Vu

B + Vl
B|2

2

)(
Vu

B −Vl
B

)
}. (3.92)

The discretised free-surface conditions in the form of Eqs.(3.79 & 3.80) together with the discre-
tised pressure-type Kutta condition (Eq.3.92) are a system of (spatially and temporarily) non-
local differential equations, with explicit and implicit nonlinearities, written here in the form
dtU = f(U), where the system-derivative f is a function of the dynamic variables collected
into the 1st-order system U = {ΦF, η, µK}. That system can be numerically integrated in order
to calculate evolution of {ΦF, η}, based on information concerning the functions ΦF, η, µK at
previous time steps, in conjunction with the history of the wake dipole intensity µW , and the

11The free-surface elevation and the free-surface potential are functions defined at the initially calm free-surface
level, following an Eulerian approach.
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Neumann data b on the body boundary, known at every time step from the body motion as
described by the body boundary condition Eq.(3.2). The time derivatives at the right hand side
of Eq.(3.92) are numerically calculated using backward finite difference schemes.

Moreover, the free-surface-boundary nodes are updated every time that the the free-surface
at the collocation points changes. However the free-surface elevation is known only at the
collocation points and its values are stored in η. The bilinear 4-node boundary elements con-
struct a basic grid with global nodes located at the local element nodes. The values of the
free-surface elevation can be obtained everywhere by interpolation, when the nodal values of
the free-surface are known. In order to calculate the nodal values of the free-surface elevation a
staggered grid, with nodes at the collocation points, is exploited. The staggered-grid nodal val-
ues are given by the free-surface elevation η. Then by interpolation, using the staggered grid,
the basic-grid nodal values are obtained. Next by interpolation, using the basic grid, the free-
surface potential is obtained everywhere. In this way, the free-surface boundary is updated
and the relative quantities like the metric a|1 and the free-surface unit normal vector nF|1 are
updated.

Subsequently, following part of the updated discretised extended DtN map (Eqs.3.69 - 3.71) is
used to calculate the remaining unknown discretised body Dirichlet boundary field values ΦB

ΦB(t)|1 = G10(t) ·ΦF(t)|1 + G11(t) · b(t)|1 + Z1(t) · µK(t)|2 + P1(t) · µW |2. (3.93)

3.5.3 Numerical results and discussion

In this section numerical results are presented and discussed concerning the performance of
hydrofoils in steady and oscillatory motion under the free surface. Calculations are compared
with other methods and experimental results from the literature, in order to illustrate the range
of applicability, as well as the limitations of the developed method. In particular, in Sec.3.5.3.1
the hydrofoil in steady motion beneath the free surface is examined. In Sec.3.5.3.2 the addi-
tional effects of oscillatory motion(s) are presented, the unsteady thruster operates beneath
the free-surface and in sea with finite depth, while in Sec.3.5.3.3 the nonlinear wake effect is
studied. Finally, in Sec.3.5.3.4 results are presented with the 3D fully nonlinear version of the
method.

3.5.3.1 Steady foil beneath the free surface

Numerical calculation for NACA4412 hydrofoil at a stationary angle of attack 5◦ and a variety
of Froude numbers Fn = U/

√
gc (where c is the chord) and submergence ratio d/c of the foil

are shown in Fig.3.10. In all cases deep water conditions (H/λ >> 0.5) are assumed. Present-
method results are based on NB = 60 panels on the body, the number of free-surface panels
per wavelength is NF/λ = 25, and the time step U∆t/λ = 4%. Transition from rest to steady
state condition has been accomplished after a traveled distance of 10 chord lengths. Results for
both distributed and integrated quantities are presented in comparison with numerical results
from steady panel methods reported by various authors and experimental measurements by
Ausman (1954). In particular, the wave elevation for Fn = 0.9 and d/c = 1 is shown in
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(a) (b)

(c) (d)

Figure 3.10: NACA4412 hydrofoil, at 5◦ angle of attack beneath the free surface: (a) Free surface
elevation for Fn = 0.9 and submergence d/c = 1 (with respect to the leading edge of the foil).
(b) Pressure coefficient at Fn = 1.03 and submergence d/c = 0.6 (with respect to the midchord of
the foil). (c) Lift coefficient for submergence d/c = 1 (with respect to the leading edge of the foil),
against Froude number. (d) Lift and wave resistance coefficients at Fn = 1, against submergence

(with respect to the midchord of the foil).

Fig.3.10a against numerical predictions by Yeung and Bouger (1979). Also, the pressure coef-
ficient

(
CP = p/0.5ρU2) at somewhat greater Froude number Fn = 1.03 and smaller submer-

gence of the foil d/c = 1 is plotted in Fig.3.10b against calculated data from Giesing and Smith
(1967) and experimental data by Ausman (1954). In both cases we observe that present results
are in very good agreement with other methods and experimental data. To illustrate the effects
of the free surface on the generation of the lift, we include in Fig.3.10b a calculation with the
foil at great distance from the free surface, corresponding practically to infinite domain which
is in perfect agreement with the steady panel method by Hess & Smith see e.g. Moran (2003),
Sec.4.8. We notice that free-surface effects result in significant decrease of pressure difference
on the foil and thus, reduction of lift and suction force at the leading edge. The latter is also
responsible for the increase of the wave resistance, as it will be illustrated in the sequel.
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Moreover, in Fig.3.10c the effect of Froude number on the lift coefficient CL = FY/0.5ρU2c for
foil submergence d/c = 1 is shown, and compared with predictions by Yeung and Bouger
(1979) and Bal (1998). It is seen that the free surface causes a drop in CL as Froude number
increases. The effect of free surface on lift and wave-resistance coefficient

(
CR = FX/0.5ρU2c

)
,

for Fn = 1, is presented in Fig.3.10d and compared against predictions by Chen (2012). We
observe in this figure that as the submergence increases the lift coefficient converges to its
value in unbounded domain and that wave resistance tends to zero, as it is naturally expected.

3.5.3.2 Free surface and finite depth effects on flapping-foil thrusters

In this subsection we examine the effects of free surface on the performance of the biomimetic
flapping hydrofoil operating as an unsteady thruster. In particular, in Fig.3.11a we compare in-
tegrated results, obtained by the present method concerning the thrust coefficient defined here
as CT = −Fx/ρgh2

0, against predictions by linearised theory for thin uncambered hydrofoil
beneath the free surface, developed by Grue et al. (1988). For compatibility with the thin hy-
drofoil theory, we examine here a thin symmetrical NACA0006 hydrofoil, in small-amplitude
oscillations. Results have been obtained for heaving oscillatory and flapping motion, respec-
tively, and are plotted in Fig.3.11a against the non-dimensional frequency Ω = ω2c/2g. We
can see in the above that present method predictions are in very good agreement with thin
hydrofoil theory.

Furthermore, calculations concerning he thrust coefficient CT = −Fx/ρU2h0 for the NACA0012
hydrofoil are presented in Fig.3.11b, for flapping motion with 0.2 ≤ St ≤ 0.45 and 10◦ ≤ θ0 ≤
55◦. Results obtained by the present method with a flapping foil operating at two different sub-
mergence ratios d/c = 2.5, 1.5 and Froude number Fn = 1.5, in water layer of constant depth
H/c = 5, are shown using dashed lines and symbols, respectively, and compared against re-
sults with the same flapping foil operating in infinite fluid, indicated in the same figure using
continuous lines. We remark here that the characteristic wavelength associated with forward
translation of the foil is λ/H = 2.76 and is found to be much greater than the corresponding
wavelengths of all oscillatory frequencies, associated with all Strouhal numbers considered.
We observe in this figure that, the main effect of finite submergence is to reduce the thrust
coefficient essentially due to development of wave resistance. The reduction is of the order 0.7-
13%, in the case of d/c = 2.5, and, as it is naturally expected, it becomes quite more significant
as submergence decreases, reaching almost 20% for d/c = 1.5, at high loading conditions. As
already remarked, the above free-surface effect is attributed to the development of wave resis-
tance associated with the generation the complex wave system due to both steady translation
of the body and radiating waves due to flapping oscillations.

Although we have concentrated so far on the free-surface effects, that are expected to be more
significant for flapping thrusters operating at small submergence, the effect of other boundaries
can also be conveniently studied by the present method, as for example, the bottom boundary
effects that could be found to be important especially for inland shipping. In fact, a very inter-
esting example of full scale application of flapping foil propulsion is coming from the inland
shipping industry. The Dutch company O-foil developed main flapping-foil propulsion mech-
anism and equipped the Ms Triade inland vessel (Fig.3.11c) reporting 50% fuel savings.
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(a) (b)

(c) (d)

Figure 3.11: (a) Thrust coefficient CT = −Fx/ρgh2
0 against non dimensional frequency Ω = ω2c/2g,

for NACA0006 hydrofoil at d/c = 0.5, in heaving and flapping low-amplitude motions. Feathering
parameter ε = 0.6, pivot point XR/c = 0.5, and heave-pitch phase lag |ψ| = 90◦. (b) Free surface
and bottom effects on CT for NACA0012 hydrofoil for cases of different submergence ratio d/c =
2.5, 1.5. The Froude number is Fn = 1.5 and the water depth H/c = 5. (c) An example of full scale
application of flapping foil propulsion is coming from the inland shipping industry. (d) Free surface
and bottom effects on CT for NACA0012 hydrofoil for cases of different water depth conditions.

The Froude number is Fn = 1.5 and the submergence is d/c = 1.5.

Relevant results concerning thrust coefficient CT = −FX/ρU2h0 for the NACA0012 hydrofoil
are presented in Fig.3.11d, for flapping motion with 0.2 ≤ St ≤ 0.45 and 10◦ ≤ θ0 ≤ 55◦.
Results obtained by the present method with a flapping foil operating at submergence ratios
d/c = 1.5 and Froude number Fn = 1.5, in deep water and in intermediate depth λ/H = 0.24,
are shown using black and red dashed lines and symbols,respectively, and compared against
results with the same flapping foil operating in unbounded domain, indicated in the same fig-
ure using continuous lines. As we have observed before, the main effect of finite submergence
is to reduce the thrust coefficient essentially due to development of wave resistance. The re-
duction is of the order 0.7-20% and is more important at high loading conditions. The effect of
finite depth is causes a reduction of thrust at higher Strouhal numbers where it is more impor-
tant. At small Strouhal numbers there are regions where the effect of finite depth is to increase
thrust in comparison with the case of deep water but the increase is of secondary importance
at least in the cases studied here.
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3.5.3.3 Nonlinear wake effects

In the sequel, numerical results are presented in order to demonstrate whether or not the for-
mulation of the fully non-linear wake is important. In Fig.3.12a calculations concerning the
thrust coefficient

(
CT = −FX/ρU2h0

)
for the NACA0012 hydrofoil are presented, for flapping

motion with h0/c = 1, ψ = −90◦, XR/c = 0.33, 0.2 ≤ St ≤ 0.45 and 10◦ ≤ θ0 ≤ 55◦ in
finite submergence d/c = 2.5 and the Froude number is Fn = 1.5, in deep water condition
H/λ >> 1. We observe that the effect of free wake is to reduce the thrust coefficient and
it is noticeable only at the greater Strouhal numbers and angles of attack; see also Sec.2.10.3.
Even in the present case of operation beneath the free surface at small submergence the effect
very important. Moreover in Figs. 3.12b & 3.12c the evolution of thrust and lift coefficients
is presented concerning the example of Fig.3.12a, for a hydrofoil beneath the free surface at
St = 0.45, θ0 = 35◦. It is observed again that, for the present cases of moderate unsteadiness,
the effect of free wake is of second order and is more significant at the peaks of the signals.

(a) (b)

(c)

Figure 3.12: Free surface and free-wake effects for NACA0012 hydrofoil for submergence ratio
d/c = 2.5, h0/c = 1, ψ = −90◦, XR/c = 0.33, Fn = 1.5, in deep water condition H/λ >> 1. Frozen
wake model (linearized wake dynamics) compared against free wake formulation: (a) Systematic
calculations of on thrust coefficient (CT)for 0.2 ≤ St ≤ 0.45 and 10◦ ≤ θ0 ≤ 55◦. (b) Time history
of thrust coefficient in the case of St = 0.45, and theta0 = 35◦. (c) Time history of lift coefficient in

the case of St = 0.45, and theta0 = 35◦.
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3.5.3.4 3D effects nonlinearity and GPU performance

In Fig.3.13 we present 3D calculations for the biomimetic propulsor beneath the free-surface. In
Fig.3.13a), for validation purposes, present method calculations are compared against 2D un-
steady hydrofoil theory from Grue et al. (1988) and 3D BEM calculations from Zhu et al. (2006).
To be more specific, two constant-chord (c) foils with NACA0005 and NACA0012 advancing
at Froude number F = U/

√
gc = 0.18 in heaving motion with amplitudes h0/c = 0.025 &

h0/c = 0.1 and mean submergence d/c = 0.5 are simulated. Reasonable agreement is achieved
with both the linear theory and the potential solver.

Figure 3.13: Simulation of biomimetic flapping-foil thruster beneath the free-surface. a) Mean
value of the thrust coefficient as a function of nondimensional frequency. Comparison of present
method for constant-chord foils with NACA0012 sections, AR = 10 & AR = 5, in heaving motion
with h0/c = 0.025 & h0/c = 0.1 and F = U/

√
gc = 0.18, in mean submergence d/c = 0.5, against

2D unsteady hydrofoil theory from Grue et al. (1988) and 3D BEM calculations from Zhu et al.
(2006). b) Potential and velocities on the body and potential jump on the wake as well as free-
surface potential and elevation with the fully nonlinear model. For a constant-chord AR = 6 foil
with NACA0012 sections and St = 0.3, h0/c = 0.75, θ0 = 23.3◦, pivot point XR/c = 0.33 and phase

lag ψ = −90◦, Froude number F = 0.6, mean submergence d/c = 0.5.

Moreover, in Fig.3.13b) a specific example, corresponding to one operating condition, for a
constant-chord foil with NACA0012 sections adn AR = 6, at Froude number F = 0.6, mean
submergence d/c = 0.5, in flapping foil motions with St = 0.3, heave amplitude h0/c = 0.75,
pitch amplitude θ0 = 23.3◦, pivot point XR/c = 0.33 and phase lag ψ = −90◦, is simulated
using the fully nonlinear 3D model. To be more specific, the potential on the body and the free-
surface and the velocities on the body and potential jump on the wake are depicted. Regarding
the performance of the numerical method and the GPU accelerated computational code, we
provide some information for the fully nonlinear calculations. The simulation is in time do-
main and the foil begins from the rest reaching harmonic state after 2 periods T, the time-step
is ∆t/T = 0.5%. A total number of NB = 1860 body boundary elements and NF = 2170 free-
surface elements are used. Mixed-precision arithmetics have been used, 1.4GB were required
from the VRAM and the simulation time was 270 sec in the case of the prescribed wake model
and 847 sec in the case of the free-wake model. It is worthwhile to mention that due to the
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specific numerical treatment of the problem (see also Sec.1.3.1), the truncation of the horizon-
tally infinite domain using PML, the exploitation of mixed precision arithmetics and the proper
handling of induction-factor matrices (see the discussion bellow Eq.2.25), the present GPGPU
computational code is very efficient in terms of space complexity. To be more specific, in the
present case where free-surface discretisation is required the memory demand from the VRAM
is only 0.1GB higher in comparison with the infinite domain case. This is crucial if we consider
the limited amount of memory available even in modern GPUs.

3.6 Non-linear numerical wave tank

The problem of flapping foil in fully non-linear water waves can be treated in the context
of the method described at the present section in teh context of a numerical wave tank ap-
proach; see e.g. Vinje and Brevig (1981), Grilli et al. (2001), Fochesato et al. (2007), Touboul et
al. (2006), Touboul and Kharif (2010) and Manolas (2015). Part of the lateral boundary could be
model a 3D wavemaker. Even more general nonlinear waves could be studied when the wave-
maker12 performs general motion. The waves generated will be evolve over flat or nonuniform
bathymetry and interact with the body taking into account the fully nonlinear dynamics. The
implementation of that approach, as well as the thorough study of the connection between the
real nonlinear stochastic waves in open water, the resulting more realistic non-linear waves in
the numerical wave tank, are left as a very interesting subject of future work; see e.g. Ning and
Teng (2007), Abbasnia et al. (2017). In the next chapter, an efficient method for the hydrody-
namic analysis, design and operation of flapping foils in fully developed nonlinear waves will
be presented.

3.7 Remarks and conclusions

In the second part of the present thesis the fully nonlinear time domain method for the general
unsteady problem of flow around lifting bodies of general shape is extended to treat problems
with free-surface flows. Also finite depth effects are included and the the wave-resistance
problem due to constant-speed forward motion and the enforced radiation problem due to
body oscillations (heaving and pitching) of a nonlifting body are examined. The formulation
of the problem is based on the potential theory and the boundary integral equations. For the
numerical solution of the 3D, unsteady and nonlinear problem an efficient (in terms of both
time and space complexity) GPU-accelerated BEM is developed, based on a formulation that
is direct with respect to the potential. For the numerical solution of the fully nonlinear, 3D and
unsteady problem the GPU-accelerated BEM is extended to hydrodynamic flows beneath the
free surface.

The method is applied to the hydrodynamic analysis of foils in several conditions focusing
on the investigation of the free-surface effects, which for relatively low submergence become
important and should be included in the modeling. Moreover, the nonlinear vortex wake and
the performance of the developed GPU computational code. Results are obtained, illustrating

12The effect of the wave maker can be modeled using a moving lateral boundary with geometry and kinematics
that fit to the exact shape and motion of a real wavemaker, or using proper inhomogeneous boundary conditions.
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the superior numerical performance of the developed method and the GPU code validating
the accuracy of the method through comparisons with other methods and experimental data.
Comparison between the prescribed and the fully nonlinear wake model are included, identi-
fying the range of applicability and the limitations of the studied approaches. Numerical pre-
dictions for the thrust coefficient of the flapping hydrofoil operating beneath the free surface
indicate that the present system, after experimental verification, could be exploited for efficient
thrust production beneath the free surface, even when the effect of wave-making resistance is
considered.

Last but not least, it is discussed, that the problem of flapping foil in fully non-linear water
waves can be treated in the context of the method as presented in the present chapter, in the
context of a numerical wave tank approach.

Direct extensions include the investigation of added mass effect beneath the free surface for
various foil shapes and arrangements. Future research includes the treatment of leading edge
separation and dynamic stall effects. Research extensions include the study of 3D flapping-
wing thrusters beneath the free-surface and their interaction with the hull of the ship. Finally,
the problem of flapping foil in fully non-linear water waves can be treated in the context of
the method described at the present section with part of the lateral boundary, modeling a 3D
wavemaker.





117

Chapter 4

Hydrodynamic analysis of bodies in waves

4.1 Summary

The method and the GPU code, that are introduced in previous chapters, are extended in cases
of lifting flows beneath the free surface and in fully nonlinear waves. Although, the problem of
the system could be treated by the method presented in Chapter 3 using a classical numerical
wave tank, a more efficient approach is selected for a number of reasons that will be illustrated
in the sequel and summarised in the conclusions.

Exploiting the present method, oscillating wings are investigated as unsteady thrusters, be-
neath the free surface and in oblique nonlinear waves exploring the possibility of thrust aug-
mentation extracting energy from the incident wave field (wave devouring propulsion), the
results are presented in Sec.4.5.2. By employing the two dimensional version of the method
and linearizing the free-surface boundary conditions two very interesting and practical prob-
lem are studied. In order to examine those problems significant effort has been put to the
extension of the method as discussed in the relevant sections and the corresponding publica-
tions. Extension of the 3D fully nonlinear version of the method to treat in more detail those
problem is a very interesting subject for future work. The first problem is about flapping wings
located beneath or to the side of the hull of the ship that are investigated as unsteady thrusters,
augmenting the ship’s main propulsion in waves; results are presented in Sec.4.5.3. Also, the
performance of oscillating hydrofoils in the presence of waves and currents is studied for the
exploitation of combined renewable marine energy sources in nearshore and coastal regions;
results are presented in Sec.4.5.4.

Turning into more details concerning the method, the body contour is modeled as a surface
of potential discontinuity. In the present chapter the body motion is prescribed, however the
whole formulation could be extended to solve problems that include free motions of finite de-
grees of freedom; see e.g. the problem of the semi-activated foil in Sec.4.5.4 where the a specific
version of the method has been extended to include induced heaving oscillations. The for-
mulation of the problem is based on the potential theory and the boundary integral equations
(BIE). For the numerical solution of the fully nonlinear, 3D and unsteady problem the GPU-
accelerated boundary element method (BEM) is extended to hydrodynamic flows beneath the
free surface and in nonlinear waves. The calculation of generalised forces is obtained without
any further assumption by pressure integration. The latter is calculated using the Bernoulli’s
equation as presented in Sec.3.3.
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We begin with the definition of the unsteady initial boundary value problem (IBVP) problem
in the present case. The free-surface boundary conditions and pressure-type Kutta condition
will be serve for the construction of the dynamical system equation and the other kinematic
boundary conditions with provide appropriate constraints. Then the representation of the to-
tal fields, in terms of the initial guess and the corrector field, is introduced. The application
of Green’s formula on the body boundary and the exact free-surface boundary will be used to
obtain a weakly singular Boundary Integral Equation (BIE) for the unknown corrector bound-
ary fields. For the numerical solution we use a potential based boundary element method
(BEM) and a collocation method, obtaining the discretised BIE. The latter after discretisation
will be used for the construction of the discretised extended Dirichlet-to-Neumann (DtN) op-
erator that will serve as an algebraic constraint to the equations of the dynamic system that
will be constructed from the free-surface boundary conditions and the Kutta condition. A
curvilinear finite difference method (CUFDM), in variable, non Cartesian and non orthogonal
coordinate systems (see also Sec.2.5.2) is exploited to express the corrector potential, included
in free-surface conditions and the Kutta condition, in terms of the dynamic variables of the
problem. Exploiting the free-surface and Kutta conditions we proceed to the construction of
the dynamic system equations in the form of a system of (spatially and temporarily) nonlocal
differential equations, with explicit and implicit nonlinearities linear algebraic constraints. The
evolution of the unknown corrector dynamic variables is obtained by time integration and the
total solution can be constructed using that information and the initial guess fields. Next, a
method for time integration together with the algorithm of the constant time iterations that are
performed to solve the non-linear problem, are presented.

The importance of free-surface and 3D effects, nonlinearity as well as the performance of the
developed GPU code in the case of 3D foils in oblique waves, are illustrated. The problem
of augmentation of the ship’s main propulsion in waves is studied in Sec.4.5.3. The main ar-
rangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by
ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this
work we investigate the energy extraction by the system operating in irregular wave condi-
tions and its performance concerning direct conversion to propulsive thrust. More specifically,
we consider operation of the flapping foil in waves characterized by a spectrum, correspond-
ing to specific sea state, taking into account the coupling between the hull and the flapping
foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction
of the corresponding boundary conditions and the consideration of the wave velocity on the
formation of the incident flow. Numerical results concerning thrust and power coefficients are
presented, indicating that significant thrust can be produced under general operating condi-
tions. The present work can be exploited for the design and optimum control of such systems
extracting energy from sea waves for augmenting marine propulsion in rough seas, with simul-
taneous reduction of ship responses offering also dynamic stabilization. Also, the performance
of biomimetic energy systems in the presence of waves and currents is studied for the exploita-
tion of combined renewable marine energy sources in nearshore and coastal regions is studied
in Sec.4.5.4. The system operates as a semi-activated biomimetic energy device, with imposed
pitching motion and induced heaving motion in harmonic incident waves and flow. Except
of uniform currents also vertically sheared currents are considered. The analysis is based on a
Coupled-Mode System, in conjunction with a time-domain BEM, taking into account the effect
of the wavy free surface, the velocity due to waves and currents on the formation of the incident
flow, and the effects of variable bathymetry. Results are presented concerning the performance
of the system for a wide range of parameters, including cases where the wave frequency is
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different from the pitching frequency of the hydrofoil. It is indicated that significant energy
can be extracted, and that the power gain from the waves increases well above the maximum
values predicted for the system in uniform flow. The present method can be applied to the
design and optimum control of such biomimetic systems operating in the nearshore/coastal
region and extracting energy from waves in the presence of ambient currents.

4.2 Mathematical formulation of lifting bodies in nonlinear
waves

The studied configuration is depicted in Fig.4.1. The problem is time dependent and the oscil-
lating lifting body is represented by a moving boundary ∂DB(t), with respect to the earth-fixed
frame of reference. Moreover the wake of the body is modeled by another deformable bound-
ary ∂DW(t), whose length grows emanating continuously from the body sharp edge. The level
of the free-surface, when it is still, is shown in Fig.4.1 using a dashed line. We consider moder-
ate submergence and speed, permitting us to approximately neglect effects of breaking waves
and cavitation. Moreover, the body is consider to be rigid and its motion is prescribed. How-
ever, the present method is nonlinear; i.e. a) the shape of the body and b) its motion are not
linearised, c) the nonlinear dynamics of the free wake are included and d) the fully nonlinear
free-surface boundary conditions are satisfied at the exact location of the total free-surface ele-
vation. In the present work we are interested in design, operation and control problems, aiming
to the simulation of the system during many periods and not to its response to extreme cases of
overturning and nearly-breaking waves. The latter can be simulated in the context of potential
theory, with accepted accuracy, only until the breaking and not after. Therefore, we assume that
the free surface is a function defined on the horizontal plane, that is the still free-surface level.
For the surface tracking, we follow a semi-Lagrangian approach (the horizontal velocities of
the free-surface particles are omitted), leaving the extension to the fully Lagrangian method, as
a straightforward extension for future work. A Cartesian coordinate system is introduced with
x3-axis pointing upwards, x1-axis and x2-axis lying on the still free-surface plane, with x1-axis
at the direction of body’s characteristic motion.

The total wave potential Φ satisfies Laplace equation

∆Φ(x; t) = 0, x ∈ D(t), (4.1)

supplemented by the body boundary condition

∂nB Φ(x; t) = VB(x; t) · nB(x; t), x ∈ ∂DB(t). (4.2)

and the hard bottom no-entrance condition

∂nH Φ(x; t) = 0, x ∈ ∂DH. (4.3)

The first is a non-homogeneous Neumann boundary condition and the second, for imper-
meable and motionless bottom, is a homogeneous Neumann boundary condition. With the
present method problems of deformable bottom can be solved, however the analysis of those
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Figure 4.1: Definition of the studied problem in the case of a foil (of mid-chord c0) moving under
the free surface (at mean submergence d) and in waves.

interesting problems that belong to the fields of coastal engineering is left as a subject for future
work.

Moreover, the fully non-linear dynamic and kinematic boundary conditions are imposed on
the total free-surface elevation, as follows

∂tΦ(xF, η; t) = −gη(xF; t)− 1
2
[∇Φ(xF, η; t)]2, x ∈ ∂DF(t), (4.4)

∂tη(xF; t) = −∂nF Φ(xF, η; t)
√

1− [∂x1η(xF; t)]2 − [∂x2η(xF; t)]2, x ∈ ∂DF(t), (4.5)

or where xF = {x1, x2} and x = {xF, η} = {x1, x2, η} .

We treat the above as an initial and boundary value problem (IBVP) and we assume that far
from the body the total field tend to the solution of the equivalent problem in the absence of the
body. In the above equations η denotes the total free-surface elevation and g is the acceleration
of gravity. Furthermore, H is the constant (finite) depth, d is the mean submergence of the body
and VB denotes the instantaneous velocity of the body (due its own motion) at each point on
the boundary. Finally, n is the unit normal vector pointing into the interior of D(t).

In the case of lifting flow around bodies with sharp edges, the problem is supplemented by the
kinematic and dynamic conditions on the trailing vortex sheet ∂DW(t). The dynamic boundary
condition

pu
W(x; t) = pl

W(x; t), x ∈ ∂DW(t), (4.6)

necessitates that a free shear layer cannot carry loading and thus the pressure at the both sides
of it should be the same. The kinematic boundary condition

∂nW Φu
W(x; t) = ∂nW Φl

W(x; t), x ∈ ∂DW(t), (4.7)

demands that the upper and the lower side of the shear layer cannot be separated to two dis-
tinct surfaces during the flow, thus the normal to the surface velocity is continuous through
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∂DW(t). The indices B, W, F, H are used to denote values of the total potential field, its deriva-
tive and potential jump, at the body surface and the wake of the foil, the free surface and the
bottom, respectively. Using Eqs.(4.6) and Eq.(4.7) in conjunction with the appropriate form of
Bernoulli’s equation1,

p(x; t)− patm

ρ
+ ∂tΦ(x; t) +

1
2
[∇Φ(x; t)]2 + gx3 = 0, x ∈ D(t), (4.8)

we obtain

DtµW(x; t) = 0, x ∈ ∂DW(t), (4.9)

µW = Φu
W − Φl

W denotes the potential jump (the dipole intensity) on the wake and Dt(·) =
∂t(·) + Vm

W · ∇(·) is the material derivative, based on the mean total velocity Vm
W = 0.5(∇Φu +

∇Φl), on the trailing vortex sheet, that includes also the velocity of the waves.

In the lifting case, enforcement of the Kutta condition is required in order to fix the circulation
at each time instant. The non-linear (quadratic), pressure-type Kutta condition, requiring zero
pressure difference at the trailing edge, is imposed as follows

lim
ξ→ξTE

FPK
f s [xB(ξ, η); t] = 0, xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t), (4.10)

where the operator FPK
f s (·) is defined as follows

FPK
f s [xB(ξ, η); t] = ∂t(Φu −Φl) + 0.5(∇Φu +∇Φl)(∇Φu −∇Φl) + g(xu

3 − xl
3). (4.11)

The above form of pressure-type Kutta condition can be derived using the Bernoulli’s theorem
on the body at upper and lower sides of trailing edge; see Sec.3.3, Eq.(3.25).

4.3 The representation of the total fields

In the present section, for demonstration purposes, we will present in detail the representation
of the potential. Similar representation holds for the other quantities involved, i.e. the free-
surface elevation, time and space derivatives and dipole intensities, as well as the shape of the
domain. The method is based on an iterative scheme and at a specific time t, iterations are
performed, following a general iterative method

ΦI+1(x; t) = GI [ΦI(x; t)], I ∈N. (4.12)

At a specific time t, a finite number of NI iterations are performed, until the total wave poten-
tial at the current iteration ΦI converges2 to the solution Φ of the fully nonlinear problem, as

1When using that form of Bernoulli’s equation to calculate forces acting or the body (especially for free-floating
or semi-activated systems) we should either omit the hydrostatic term or include to the calculation the gravita-
tional force acting on the body that depends to its mass.

2The theoretical study of the convergence characteristics, of various general iterative schemes that could be
applied, is not a subject of the present thesis. Only numerical evidence of the convergence and accuracy is pro-
vided in the present work, via demonstration of the boundary conditions’ satisfaction and comparisons against
calculations from the literature.
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follows

Φ(x; t) ≈ lim
I→NI

ΦI(x; t) = ΦNI−1(x; t). (4.13)

The total wave potential ΦI(x; t) at the iteration I has the following representation

ΦI(x; t) = Φ0
0(x; t) + φcor

I (x; t), I ∈N, (4.14)

and at the last iteration (I = NI − 1) the representation has the following form

ΦNI−1(x; t) = Φ0
0(x; t) + φcor

NI−1(x; t). (4.15)

At a specific time t, the first component Φ0
0 is an initial guess at the specific time t. That can be

an exact or an approximate solution of the fully non-linear water-wave problem in the absence
of the body, or the linear solution with the presence of the body. The initial-guess could be
obtained using couple mode or mild-slope models in the case of variable bathymetry, the Rie-
necker and Fenton approach for fully non-linear waves over flat bottom, the Stokes or Cnoidal
waves, for approximate solution of non-linear waves, in deep to intermediate and intermedi-
ate to shallow depth, respectively. Finally, another approach that is less efficient, but capable
to treat overturning waves, could be the use of a non-linear BEM. The proper selection of the
initial guess affects the efficiency of the numerical scheme. To be more specific, we expect that
for wave-lifting body interaction over flat bottom, when choosing initial guess between the
possible solutions in the absence of the body, the linearised solution will need more iterations
that the 5th order Stokes, that also will require more iterations than the fully nonlinear solution
obtained by Rienecker and Fenton approach. The detailed study of the performance of the
method and its dependence to the initial guess, is left as a subject of future work.

At a specific timestep, we assume that convergence is achieved when the sequence of the cor-
rector field φcor

I , I ∈ N converges to a specific finite field value. The norm of that finite value
has a specific interpretation, it is the distance from the initial guess to the fully nonlinear solu-
tion. To be more specific concerning the convergence we have

Φ(x; t)−Φ0
0(x; t) = ΦNI−1(x; t)−Φ0

0(x; t) = lim
I→(NI−1)

φcor
I (x; t) = φcor

NI−1(x; t), (4.16)

and and the convergence of φcor
I can be said that is achieved3 when the following distance

(defined in an appropriate Banach space) becomes adequate small

d [φcor
I+1(x; t)− φcor

I (x; t)] < ε, ε ∈ R+. (4.17)

The claim that the iterative procedure converges to the fully nonlinear solution could be sup-
ported by calculations, demonstrating that the fully nonlinear boundary conditions are satis-
fied with controlled accuracy and via comparisons against fully nonlinear solutions of simpler
problems from the literature (DtN calculation and comparison against HCMS for the case of a
soliton over variable topography, evolution of fully nonlinear waves in deep water with initial
guess a 5th order Stokes wave).

3The convergence of the Cauchy sequence is equivalent with the convergence of the series inside a complete
metric space. The detailed and rigorous proof of that convergence and the selection of the proper Banach space is
not the topic of the present manuscript. The only guideline that will be given here, is that for the proof maybe the
Banach fixed point theorem could be used.
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To be more specific concerning the algorithm, the only quantities that is chosen by the user
is the initial guess fields e.g. the initial guess potential Φ0

0. Then, at every iteration step, the
unknown is the corrector φcor

I . That is calculated in a way the ensures that the total ΦI , at
the specific iteration, satisfies the nonlinear equations, defined on the approximation of the
total free-surface elevation, at the specific iteration. For that calculation, information from the
past is exploited and that information remains unchanged during the whole iterative process.
Concerning the sequence of the total potential ΦI that converges to the fully nonlinear solution
Φ, we proceed to the next iteration as follows

ΦI+1(x; t) = GI [Φ0
0(x; t) + φcor

I (x; t)], I ∈N. (4.18)

In the present work, a computational code is implemented, following an explicit version of
that method, using an Adams-Bashforth-Moulton predictor-corrector time-integration scheme,
performing NI = 2 sets of similar constant-time calculations. At a specific timestep the initial
constant-time iteration step corresponds to I = 0 and the second constant-time iteration step
corresponds to I = NI − 1 = 1, for more details see Sec.4.4.5. The extension of the code to the
case of arbitrary number of constant-time iterations, until a specific convergence criterion to be
satisfied, is left as a subject of future work

By replacing Eq.(4.13) and Eq.(4.14) into linear Laplace equation (Eq.4.1), we conclude that
the terms of the representation must be harmonic functions. That should be considered when
choosing the initial guess Φ0

0 and for the corrector φcor
I it is satisfied, because it will be con-

structed by linear superposition of singularities, located on ∂D(t), that are harmonic functions
in open D(t). More details on the representation of the corrector potential field are given in
Sec.(4.4.1).

Moreover, we replace the representation in the body boundary condition Eq.(4.2) and taking
the limit I → NI − 1, we obtain

∂nB φcor
NI−1(x; t) = VB(x; t) · nB(x; t)− ∂nB Φ0

0(x; t) = b(x; t), x ∈ ∂DB(t). (4.19)

Moreover we denote that at the time t and at the Ith iteration ∂nB Φ0
0 is known and therefore

∂nB φcor
I = ∂nB φcor

NI−1 = ∂nB φcor is obtained by the known Neumann data b, does not change with
the iterations and this is the reason the lower index I in term b is dropped. In a similar manner
the hard bottom condition (Eq.4.3) becomes

∂nH φcor
NI−1(x; t) = ∂nH φcor(x; t) = −∂nH Φ0

0(x; t), x ∈ ∂DH. (4.20)

If the initial guess Φ0
0 satisfies the bottom boundary condition the above equation is just a ho-

mogeneous Neumann condition for the unknown corrector potential. Furthermore, we replace
the representation for Φ and η at the fully non-linear free-surface conditions (Eqs.4.4 & 4.5) and
taking the limit I → NI − 1, we obtain the following formulas

∂tφ
cor
NI−1(xF, ηNI−1; t) =− ∂tΦ0

0(xF, ηNI−1; t)− gη0
0(xF; t)− gηcor

NI−1(xF; t)

− 1
2
[
∇Φ0

0(xF, ηNI−1; t) +∇φcor
NI−1(xF, ηNI−1; t)

]2
, x ∈ ∂DF,NI−1(t), (4.21)

∂tη
cor
NI−1(xF; t) = −∂tη

0
0(xF; t)−

[
∂nF Φ0

0(xF, ηNI−1; t)

+∂nF φcor
NI−1(xF, ηNI−1; t)

]√
1− [∂x1 ηNI−1(xF; t)]2 − [∂x2 ηNI−1(xF; t)]2, x ∈ ∂DF,NI−1(t), (4.22)
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where the initial-guess data (Φ0
0, η0

0 and derivatives) are known and the unknowns are the
corrector data (φcor

NI−1, ηcor
NI−1 and derivatives). The above equations (and pressure Kutta con-

dition for the lifting case), after spatial discretisation, together with the discretised BIE-DtN
will be a system of (spatially and temporarily) nonlocal differential equations, with explicit
and implicit nonlinearities and an integral constraint. The dynamic variables of the above sys-
tem are the corrector potential φcor

NI−1 and free-surface elevation ηcor
NI−1 (and Kutta-strip dipole

intensity µcor
NI−1,K for the lifting case), while the corrector normal derivative ∂nφcor

NI−1 is a depen-
dent variable, that will be expressed as a function of the dynamic variables, using discretised
BIE-DtN. The above equations are not linearised in any way and the present approach is a
non-perturbative one. To be more specific, a) the explicit non-linearities introduced by the
quadratic term in Eq.(4.21) and by the metric of the free-surface boundary in Eq.(4.22) are not
approximated by any expansion. Also, b) they are satisfied at the total free-surface elevation,
introducing an implicit non-linearity, that is treated by the present general iterative numerical
scheme.

Moreover, the corrector trace on the free-surface boundary of the space gradient of the poten-
tial (∇φcor

NI−1) can be decomposed to its tangential and the vertical components according to
Eq.(2.67), as follows4

∇φcor
NI−1 = ∂sφ

cor
NI−1 × n + ∂nφcor

NI−1n

= ∂sφ
cor
NI−1 × n + ∂nφcorn

= Vcor
t,NI−1 + ∂nφcorn, x ∈ ∂DF,NI−1(t). (4.23)

With the aid of Eq.(4.23) and the fact that the square root in Eq.(4.22) is the square root of the
total metric aI of the free-surface boundary, the free-surface boundary conditions become

∂tφ
cor
NI−1(xF, ηNI−1; t) =− ∂tΦ0

0(xF, ηNI−1; t)− gη0
0(xF; t)− gηcor

NI−1(xF; t)

− 1
2
[
∇Φ0

0(xF, ηNI−1; t) + Vcor
t,NI−1(xF, ηNI−1; t)

+∂nφcor(xF, ηNI−1; t)n(xF, ηNI−1; t)]2 , x ∈ ∂DF,NI−1(t), (4.24)

∂tη
cor
NI−1(xF; t) =− ∂tη

0
0(xF; t)−

[
∂nF Φ0

0(xF, ηNI−1; t)

+∂nF φcor
NI−1(xF, ηNI−1; t)

]√
aI(xF, ηNI−1; t), x ∈ ∂DF,NI−1(t), (4.25)

Concerning the lifting part of the problem, the vorticity and the trailing vortex sheet evolves
with the mean total velocity Vm

NI−1 = 0.5(∇Φ0,u
0 +∇Φ0,l

0 ) + 0.5(∇φcor,u
NI−1 +∇φcor,l

NI−1). Moreover,
at the pressure-type Kutta condition the operator FPK

f s (·) becomes

FPK
f s,NI−1[xB(ξ, η); t] = ∂t(φ

cor,u
NI−1 − φcor,l

NI
) +

[
0.5
(
∇φcor,u

NI−1 +∇φcor,l
NI−1

)
+ 0.5

(
∇Φ0,u

0 +∇Φ0,l
0

)]
·

· (∇φcor,u
NI−1 −∇φcor,l

NI−1 +∇Φ0,u
0 −∇Φ0,l

0 ) + ∂t(Φ0,u
0 −Φ0,l

0 ) + g(xu
3 − xl

3). (4.26)

The above equation, after spatial discretisation (including CUFDM), will provide an extra
equation that complete the dynamic system of the discretised form of Eqs.(4.21 & 4.22), in
the case of lifting flows beneath the free surface and in waves. The extra dynamic variable, that

4In the present paragraph the tangential velocity is convenient to be denoted as Vcor
t,NI−1 = ∂sφcor

NI−1 × n.
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is the corrector Kutta-strip intensity µcor
NI−1,K, will be appear when the corrector body potential

φcor
NI−1 will be replaced using the extended form of the discretised BIE-DtN.

4.4 Boundary integral formulation and BEM for lifting bodies
in waves

4.4.1 Representation theorem and BIE for the corrector potential

The corrector potential is a harmonic function therefore by applying Green’s theorem to the
present problem Eqs.(4.19 - 4.26), we obtain the following two integral representations for the
corrector potential in DNI−1 in terms of the corrector potential φcor

NI−1 (dipole intensity) and its
normal derivative ∂nφcor

NI−1 (source intensity), the first on the body boundary and the second
on the total free-surface boundary, written compactly as follows

φcor
NI−1(x0; t)− φcor

J,NI−1(x0; t) =
∫

∂DB,NI−1(t)

∂nφcor
B,NI−1(x; t)Gs(x0|x)− φcor

B,NI−1(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DF,NI−1(t)

∂nφcor
F,NI−1(x; t)Gs(x0|x)− φcor

F,NI−1(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DW,NI−1(t)

[
∂nφcor,u

W,NI−1(x; t)− ∂nφcor,l
W,NI−1(x; t)

]
Gs(x0|x) ds(x)

−
∫

∂DW,NI−1(t)

[
φcor,u

W,NI−1(x; t)− φcor,l
W,NI−1(x; t)

]
∂nGs(x0|x) ds(x), x0 ∈ ∂DB,NI−1(t) ∪ ∂DF,NI−1(t) (4.27)

where

φcor
NI−1(x0; t)− φcor

J,NI−1(x0; t) =


φcor

NI−1(x0; t), x0 ∈ DNI−1.

φcor
B,NI−1(x0; t)− sign(r·n)

2 φcor
B,NI−1(x0; t), x0 ∈ ∂DB,NI−1,

φcor
F,NI−1(x0; t)− sign(r·n)

2 φcor
F,NI−1(x0; t), x0 ∈ ∂DF,NI−1,

(4.28)

In the above relation we have used Green’s function (Eq.2.16), consisted of the fundamental
solution of 2D/3D Laplace equation corresponding to a Rankine source. In the present case
the mirror Green’s function could not be exploited because the Neumann bottom boundary
condition Eq.(4.3) is inhomogeneous therefore in the case of finite depth the bottom integral
must be calculated. For simplicity, we assume deep water conditions therefore the bottom
integral is dropped.

The first integral in Eq.(4.27) represents the effect of the body, the second the effect of the free-
surface and the third and fourth integrals the effect of the wake on the corrector potential. The
first term in the integrals is the corrector potential induced at x0 from a source with intensity
∂nφcor

NI−1(x) located on the boundary at x, while the second term represents similarly the effect
of normal to the boundary dipole with intensity φcor

NI−1(x). In this way the whole informa-
tion for the corrector potential in the domain DNI−1 is stored on the boundary ∂DNI−1 whose
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dimension is of one order lower. Therefore, if the trace of the corrector potential and the cor-
rector normal derivative on the boundary are known, using Green’s formula Eqs.(4.27, 4.28)
we can evaluate corrector potential everywhere in DNI−1. The initial guess potential is known,
therefore the total potential can be obtained.

Replacing body boundary condition Eq.(4.19) and wake kinematic condition into the represen-
tation theorem on the boundary Eqs.(3.60, 3.61), we obtain the following two Fredholm 2nd
kind weakly singular integral equations

−
∫

∂DF,NI−1(t)

∂nφcor
F,NI−1(x; t)Gs(x0|x) ds(x)

1
2

φcor
B,NI−1(x0; t) +

∫
∂DB,NI−1(t)

φcor
B,NI−1(x; t)∂nGs(x0|x) ds(x) = −

∫
∂DF,NI−1(t)

φcor
F,NI−1(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB,NI−1(t)

b(x; t)Gs(x0|x) ds(x)

−
∫

∂DW,NI−1(t)

µcor
W,NI−1(x; t)∂nG(x0|x) ds(x), x0 ∈ ∂DB,NI−1(t),

(4.29)

and

−
∫

∂DF,NI−1(t)

∂nφcor
F,NI−1(x; t)Gs(x0|x) ds(x)

+
∫

∂DB,NI−1(t)

φcor
B,NI−1(x; t)∂nGs(x0|x) ds(x) = −1

2
φcor

F,NI−1(x0; t)−
∫

∂DF,NI−1(t)

φcor
F,NI−1(x; t)∂nGs(x0|x) ds(x)

+
∫

∂DB,NI−1(t)

b(x; t)Gs(x0|x) ds(x)

−
∫

∂DW,NI−1(t)

µcor
W,NI−1(x; t)∂nG(x0|x) ds(x), x0 ∈ ∂DF,NI−1(t),

(4.30)

where µcor
W,NI−1 = φcor,u

W,NI−1 − φcor,l
W,NI−1 denotes the corrector potential jump or the corrector

dipole intensity on the wake. The weakly singular boundary integral equations Eqs.(4.29 &
4.30), free-surface boundary conditions Eqs.(4.24, 4.25) and the Pressure-type Kutta condition
Eqs.(4.11 and 4.26) provide us with a system of equations for the unknown boundary fields
φcor

B,NI−1 on the body, φcor
F,NI−1 and ∂nφcor

F,NI−1 at the free-surface and µcor
W,NI−1 at the vicinity of

trailing edge. The above system of equations can be solved numerically after the appropriate
discretisation, implemented with a boundary element method (BEM) and collocation and the
free-surface conditions are treated as a dynamic system and BIE as an algebraic constraint, as
we will see in the following sections.
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4.4.2 Discretisation and the extended DtN map

The spacial discretisation mainly consists of the following approximations of the analytical
model:

• Concerning the geometry, a C0 representation of the boundary is used as follows:

– in 2D formulation, following a low-order panel method, the body contour is re-
placed by a closed polygonal line, and NB denotes the number of panels. The free
surface and the trailing vortex sheet are also approximated by open polygonal lines
composed of NF and NW(t) panels, respectively.

– in 3D formulation, the boundary is approximated using bilinear-quadrilateral ele-
ments.

• Concerning the representation of the functions on the boundary, the corrector potential,
its normal derivative and the corrector potential jump at each time step, are approximated
by piecewise constant distributions, as follows:

φcor
F,NI−1(x; t) = φcor

F,NI−1, f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

∂nφcor
F,NI−1(x; t) = ∂nφcor

F,NI−1, f (t), at free-surface element f , f = 0, 1, ..., NF − 1,

φcor
B,NI−1(x; t) = φcor

B,NI−1,i(t), at body element i, i = 0, 1, ..., NB − 1,

∂nφcor
B,NI−1(x; t) = ∂nφcor

B,i (t) = bi(t), at body element i, i = 0, 1, ..., NB − 1,

µcor
W,NI−1(x; t) = µcor

W,NI−1,w(t), at wake element w, w = 0, 1, ..., NW(t)− 1. (4.31)

• Finally, following a collocation scheme, the BIEs Eqs.(4.29 & 4.30) are satisfied in a finite
number of points (or control points) and in order to avoid singularities the centroids of
the elements have been chosen as collocation points.

To proceed, the discretised form the of the BIEs Eqs.(4.29 & 4.30) is as follows

A
pot
F,B,NI−1(t) ·

(
Ncor

F,NI−1(t)
φcor

B,NI−1(t)

)
=B

pot
F,B,NI−1(t) ·

(
φcor

F,NI−1(t)
b(t)

)
+D

pot
F,B,K,NI−1(t) · µ

cor
K,NI−1(t) +D

pot
F,B,W,NI−1(t) · µ

cor
W,NI−1, (4.32)

where

A
pot
F,B,NI−1(t) =

(
A

pot
F,B,NI−1,00 A

pot
F,B,NI−1,01(t)

A
pot
F,B,NI−1,10(t) A

pot
F,B,11

)
,

B
pot
F,B,NI−1(t) =

(
B

pot
F,B,NI−1,00 B

pot
F,B,NI−1,01(t)

B
pot
F,B,NI−1,10(t) B

pot
F,B,11

)
,

D
pot
F,B,K,NI−1(t) =

(
D

pot
F,B,K,NI−1,0(t)
D

pot
F,B,K,1

)
, D

pot
F,B,W,NI−1(t) =

(
D

pot
F,B,W,NI−1,0(t)
D

pot
F,B,W,1(t)

)
. (4.33)
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In the above equations Apot
F,B,NI−1,Bpot

F,B,NI−1 are the potential induction-factor matrices at the left
hand side and the right hand side of Eqs.(4.29 & 4.30), respectively. They model free surface-
free surface, body-body and free surface-body interactions. Also D

pot
F,B,K,NI−1,Dpot

F,B,W,NI−1 are
double layer potential induction-factor matrices modeling the effects of the Kutta strip and the
wake on the free-surface and the body. The above matrices are defined as follows

A
pot
F,B,NI−1,00 = {−Spot

NI−1, f s}, A
pot
F,B,NI−1,01(t) = {D

pot
NI−1, f j(t)},

A
pot
F,B,NI−1,10(t) = {−Spot

NI−1,is(t)}, A
pot
F,B,11 = {0.5δij + Dpot

ij },

B
pot
F,B,NI−1,00 = {−0.5δ f s − Dpot

NI−1, f s}, B
pot
F,B,NI−1,01(t) = {S

pot
NI−1, f j(t)},

B
pot
F,B,NI−1,10(t) = {−Dpot

NI−1,is(t)}, B
pot
F,B,11 = {Spot

ij },

D
pot
F,B,K,NI−1,0(t) = {−Dpot

NI−1, f k(t)}, D
pot
F,B,K,1 = {−Dpot

bk },

D
pot
F,B,W,NI−1,0(t) = {−Dpot

NI−1, f w(t)}, D
pot
F,B,W,1(t) = {−Dpot

iw (t)}, (4.34)

with S denoting source or single-layer integrals, and with D denoting dipole or double-layer
integrals see Eq.(2.23). Moreover, the indices belong to the following subsets of N

f , s ∈ {0, 1, ..., NF − 1}, i, j ∈ {0, 1, ..., NB − 1}, k ∈ {0, 1, ..., NK − 1}, w ∈ {0, 1, ..., NW(t)− 1}.
(4.35)

In Eq.(4.32) φcor
F,NI−1 = {φcor

F,NI−1,s}, Ncor
F,NI−1 = {∂nφcor

F,NI−1,s}, φcor
B,NI−1 = {φcor

B,NI−1,j}, b = {bj},
µcor

K,NI−1 = {µcor
K,NI−1,k}, µcor

W,NI−1 = {µcor
W,NI−1,w}. In the sequel, we will denote with bold, vectors

containing the values of piecewise constant functions on the panels, at various parts of the
boundary.

Next we multiply Eq.(4.32) with
[
A

pot
F,B,NI−1(t)

]−1
and we obtain

(
Ncor

F,NI−1(t)
φcor

B,NI−1(t)

)
=GNI−1(t) ·

(
φcor

F,NI−1(t)
b(t)

)
+ ZNI−1(t) · µcor

K,NI−1(t) + PNI−1(t) · µcor
W,NI−1, (4.36)

or(
Ncor

F,NI−1(t)
φcor

B,NI−1(t)

)
=

(
GNI−1,00(t) GNI−1,01(t)
GNI−1,10(t) GNI−1,11(t)

)
·
(

φcor
F,NI−1(t)

b(t)

)
+

(
ZNI−1,0(t)
ZNI−1,1(t)

)
· µcor

K,NI−1(t) +
(
PNI−1,0(t)
PNI−1,1(t)

)
· µcor

W,NI−1, (4.37)

where

GNI−1(t) =
[
A

pot
F,B,NI−1(t)

]−1
·Bpot

F,B,NI−1(t), ZNI−1(t) =
[
A

pot
F,B,NI−1(t)

]−1
·Dpot

F,B,K,NI−1(t),

PNI−1(t) =
[
A

pot
F,B,NI−1(t)

]−1
·Dpot

F,B,W,NI−1(t). (4.38)

The above mapping is the discrete form of the extended Dirichlet-to-Neumann (DtN) operator



4.4. Boundary integral formulation and BEM for lifting bodies in waves 129

that is suitable for lifting flows beneath the free surface and in waves. That operator con-
nects the corrector potential (Dirichlet data) with its normal derivative (Neumann data) on
body boundary ∂DB, but also involves the unknown values of the corrector dipole intensity
µcor

K,NI−1 (Dirichlet data) on the Kutta strip ∂DK, as well as the (known from the past) corrector
potential jump µcor

W,NI−1 (Dirichlet data) on the wake ∂DW . We observe in the above equation
that the influence of the wake, that introduces memory effects, is taken into account through
PNI−1(t) · µcor

W,NI−1. Also, the effect of the body velocity and the initial guess velocity are consid-
ered through the components VB and ∂nB Φ0

0, included in b, as described by the body bound-
ary condition Eq.(4.19). In Sec.4.4.4 using the appropriate parts of the extended DtN map,
Eqs.(4.36 - 4.38), in the discretised form of free-surface boundary conditions and pressure-type
Kutta condition, we will obtain a system of (spatially and temporarily) nonlocal differential
equations, with explicit and implicit nonlinearities, that approximately describe the dynamics
of the system.

4.4.3 Pressure calculation and implementation of the pressure-type Kutta
condition

In the present section we develop the appropriate form of Bernoulli’s theorem for the calcula-
tion of pressure distribution in the case of lifting flows beneath the nonlinear free surface and
in the presence of nonlinear waves and the analytical form of pressure-type Kutta condition
for the same problem. Both expressions will be in terms of the representation of the total fields.

We begin with the appropriate form of Bernoulli’s theorem that has been derived in Sec.3.3,
Eq.(3.18), that is rewritten here

p(x; t)− patm

ρ
+ ∂tΦ(x; t) +

1
2
[∇Φ(x; t)]2 + gx3 = 0, x ∈ D. (4.39)

in the above equations p is the pressure at x = {x1, x2, x3}, patm is the atmospheric pressure
on the free surface, ρ is the density of the fluid, g is the acceleration of gravity and the last
term is the hydrostatic component. When using that form of Bernoulli’s equation to calculate
forces acting or the body (especially for free-floating or semi-activated systems; see Sec.4.5.4)
we should either omit the hydrostatic term or include to the calculation the gravitational force
acting on the body that depends to its mass.

Now the representation of the total fields will be replaced in Eq.(3.18). According to Eq.(4.14),
the total wave potential ΦI(x; t) and its derivative have the following representation

Φ(x; t) = lim
I→NI−1

ΦI(x; t), ΦI(x; t) = Φ0
0(x; t) + φcor

I (x; t), I ∈N, (4.40)

∇Φ(x; t) = lim
I→NI−1

∇ΦI(x; t), ∇ΦI(x; t) = ∇Φ0
0(x; t) +∇φcor

I (x; t), I ∈N. (4.41)
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By replacing Eqs.(4.40 & 4.41) into Eq.(4.39), taking the limit I → (NI − 1) and rearranging
terms, we obtain the following relation

p(x; t)− patm

ρ
= −∂tφ

cor
NI−1(x; t)− 1

2

[
∇Φ0

0(x; t) +∇φcor
NI−1(x; t)

]2
− ∂tΦ0

0(x; t)− gx3, x ∈ D.

(4.42)

In the equations above, ∂t(·) denotes the rate of change with respect to an earth-fixed (inertial)
observer (i.e. with regard to an inertial reference frame). The time derivative of the corrector
potential dtφ

cor
NI−1 with respect to the moving, with the body velocity, frame of reference can be

calculated by the following formula

dtφ
cor
NI−1(x; t) = ∇φcor

NI−1(x; t) ·VB(x; t) + ∂tφ
cor
NI−1(x; t), x ∈ ∂DB(t). (4.43)

More details concerning the derivation of the above formula can be found e.g. in the following
references Katz and Plotkin (2001), Politis (2004), Politis (2011b), Filippas (2013). By replacing
Eq.(4.43) into Eq.(4.42), we obtain a formula for pressure calculation on body boundary, as
follows

p(x; t)− patm

ρ
=− dtφ

cor
NI−1(x; t) +∇φcor

NI−1(x; t) ·VB(x; t)

− 1
2

[
∇Φ0

0(x; t) +∇φcor
NI−1(x; t)

]2
− ∂tΦ0

0(x; t)− gx3, x ∈ ∂DB(t). (4.44)

using binomial theorem for the sum of squares and rearranging terms we obtain the following
formula

p(x; t)− patm

ρ
=− dtφ

cor
NI−1(x; t) +∇φcor

NI−1(x; t) ·
[
VB(x; t)−∇Φ0

0(x; t)
]
− 1

2

[
∇φcor

NI−1(x; t)
]2

− ∂tΦ0
0(x; t)− 1

2

[
∇Φ0

0(x; t)
]2
− gx3, x ∈ ∂DB(t). (4.45)

Moreover,∇φcor
NI−1 can be decomposed to its tangential and the vertical components according

to Eq.(2.67) and the body boundary condition (Eqs.4.2 & 4.19), as follows5

∇φcor
NI−1(x; t) = ∂sφ

cor
NI−1(x; t)× n(x; t) + ∂nφcor

NI−1(x; t) · n(x; t)

= ∂sφ
cor
NI−1(x; t)× n(x; t) + ∂nφcor(x; t) · n(x; t)

= Vcor
t,NI−1(x; t) +

[
VB(x; t) · n(x; t)− ∂nB Φ0

0(x; t)
]
· n(x; t)

= Vcor
t,NI−1(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (4.46)

Therefore, Eq.(4.45), after some algebra, becomes

p(x; t)− patm

ρ
=− dtφ

cor
NI−1(x; t) +∇φcor

NI−1(x; t) ·
[
VB(x; t)−∇Φ0

0(x; t)
]
− 1

2

[
∇φcor

NI−1(x; t)
]2

+
1
2
[b(x; t)]2 − ∂tΦ0

0(x; t)− 1
2

[
∇Φ0

0(x; t)
]2
− gx3, x ∈ ∂DB(t). (4.47)

5In the present paragraph the tangential velocity is convenient to be denoted as Vt = ∂sΦ× n.
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The above form of Bernoulli’s equation is utilised for pressure calculations on the body bound-
ary in the case of (nonlifting or lifting) bodies beneath the free surface and in nonlinear waves
and is written in terms of the representation of total fields. Then the boundary pressure can be
integrated to obtain generalised forces (forces and moments) and by exploiting also the local
generalised velocity (linear and angular), the power of the studied hydromechanical systems
can be obtained, leading to the estimation of appropriate metrics of the efficiency or the per-
formance (power take-off).

The classical Pressure-type Kutta condition in the following form can be produced from the
dynamic boundary condition on the wake by demanding that the pressure field (and therefore
the pressure jump) ought to be continuous in D as explained in Sec.2.8

lim
ξ→ξTE

{
pu

B[xB(ξ, η); t]− pl
B[xB(ξ, η); t]

}
= 0, xB ∈ ∂DB(t) and xTE ∈ ∂DB(t) ∪ ∂DW(t),

(4.48)

To proceed, we apply Bernoulli’s theorem (Eq.3.18 or Eq.4.39) to the upper and lower side of
the trailing edge, we use pressure-type Kutta condition (Eq.3.23) and we factorise the difference
of squares to construct the following form of the condition

lim
ξ→ξTE

FPK[xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (4.49)

where the operator FPK(·) is defined as follows

FPK[xB(ξ, η); t] = ∂t(Φu −Φl) + 0.5(∇Φu +∇Φl) · (∇Φu −∇Φl) + g(xu
3 − xl

3). (4.50)

The above form of pressure-type Kutta condition written with respect to the inertial reference
frame has already been used in the mathematical formulation of the present problem in Sec.3.2,
Eqs.(4.10 & 4.11). For the calculation of pressure from the boundary values of the potential,
that is the primary unknown is the present direct formulation, the reformulation of the above
relation with respect to the moving reference frame is required. Aiming to the construction of
the aforementioned formula we begin with Eq.(4.45), that is rewritten bellow

p(x; t)− patm

ρ
=− dtφ

cor
NI
(x; t) +∇φcor

NI
(x; t) ·

[
VB(x; t)−∇Φ0

0(x; t)
]
− 1

2

[
∇φcor

NI
(x; t)

]2

− ∂tΦ0
0(x; t)− 1

2

[
∇Φ0

0(x; t)
]2
− gx3, x ∈ ∂DB(t). (4.51)

By rearranging terms, making common factor −1/2 and adding and subtracting the quantity
−1/2

[
VB −∇Φ0

0
]2 and factorising, we obtain the following formula

p(x; t)− patm

ρ
=− dtφ

cor
NI−1(x; t)

− 1
2

{[
∇φcor

NI−1(x; t)
]2 − 2∇φcor

NI−1(x; t) ·
[
VB(x; t)−∇Φ0

0(x; t)
]
+
[
VB −∇Φ0

0
]2
}

+ 1/2
[
VB −∇Φ0

0
]2 − ∂tΦ0

0(x; t)− 1
2
[
∇Φ0

0(x; t)
]2 − gx3, x ∈ ∂DB(t). (4.52)
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Moreover, we factorise the difference of squares to construct the following form of Bernoulli’s
theorem

p(x; t)− patm

ρ
=− dtφ

cor
NI−1(x; t)− 1

2

[
∇φcor

NI−1(x; t) +∇Φ0
0 −VB

]2

+ 1/2
[
∇Φ0

0 −VB

]2
− ∂tΦ0

0(x; t)− 1
2

[
∇Φ0

0(x; t)
]2
− gx3, x ∈ ∂DB(t).

(4.53)

To proceed further, we apply the above form of Bernoulli’s theorem to the upper and lower side
of the trailing edge, we use pressure-type Kutta condition (Eq.4.48) to construct the following
form of the operator FPK(·)

FPK
NI−1[xB(ξ, η); t] = dt(φ

cor,u
NI−1 − φcor,l

NI−1) +
1
2

(
∇φcor,u

NI−1 +∇Φ0,u
0 −Vu

B

)2
− 1

2

(
∇φcor,l

NI−1 +∇Φ0,l
0 −Vl

B

)2

+
1
2

(
∇Φ0,l

0 −Vl
B

)2
− 1

2

(
∇Φ0,u

0 −Vu
B

)2

+ ∂t

(
Φ0,u

0 −Φ0,l
0

)
+

1
2

(
∇Φ0,u

0

)2
− 1

2

(
∇Φ0,l

0

)2
+ g

(
xu

3 − xl
3

)
. (4.54)

Moreover, the trace on the body boundary of the space gradient of the potential can be de-
composed to its tangential and the vertical components according to Eq.(2.67) and the body
boundary condition (Eqs.4.2 & 4.19), as follows6

∇φcor
NI−1(x; t) = ∂sφ

cor
NI−1(x; t)× n(x; t) + ∂nφcor

NI−1(x; t) · n(x; t)

= ∂sφ
cor
NI−1(x; t)× n(x; t) + ∂nφcor(x; t) · n(x; t)

= Vcor
t,NI−1(x; t) +

[
VB(x; t) · n(x; t)− ∂nB Φ0

0(x; t)
]
· n(x; t)

= Vcor
t,NI−1(x; t) + b(x; t)n(x; t), x ∈ ∂DB(t). (4.55)

With the aid of Eq.(4.55), the operator FPK(·) becomes

FPK
NI−1[xB(ξ, η); t] = dt(φ

cor,u
NI−1 − φcor,l

NI−1)

+
1
2

(
Vcor,u

t,NI−1 + bunu +∇Φ0,u
0 −Vu

B

)2
− 1

2

(
Vcor,l

t,NI−1 + blnl +∇Φ0,l
0 −Vl

B

)2

+
1
2

(
∇Φ0,l

0 −Vl
B

)2
− 1

2

(
∇Φ0,u

0 −Vu
B

)2

+ ∂t

(
Φ0,u

0 −Φ0,l
0

)
+

1
2

(
∇Φ0,u

0

)2
− 1

2

(
∇Φ0,l

0

)2
+ g

(
xu

3 − xl
3

)
. (4.56)

Moreover, by factorising the difference of the squares and rearranging terms, we obtain the
following form of pressure-type Kutta condition

lim
ξ→ξTE

FPK
NI−1[xB(ξ, η); t] = 0, xB ∈ ∂DB and xTE ∈ ∂DB ∪ ∂DW , (4.57)

6In the present paragraph the tangential velocity is convenient to be denoted as Vt = ∂sΦ× n.
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where

FPK
NI−1[xB(ξ, η); t] = dt(φ

cor,u
NI−1 − φcor,l

NI−1)

+

(
Vcor,u

t,NI−1 + Vcor,l
t,NI−1

2
+

bunu + blnl

2
+
∇Φ0,u

0 +∇Φ0,l
0

2
−

Vu
B + Vl

B
2

)
[
Vcor,u

t,NI−1 −Vcor,l
t,NI−1 + bunu − blnl +∇Φ0,u

0 −∇Φ0,l
0 −

(
Vu

B −Vl
B

)]
−
(
∇Φ0,u

0 +∇Φ0,l
0

2
−

Vu
B + Vl

B
2

) [
∇Φ0,u

0 −∇Φ0,l
0 −

(
Vu

B −Vl
B

)]
+ ∂t

(
Φ0,u

0 −Φ0,l
0

)
+
∇Φ0,u

0 +∇Φ0,l
0

2

(
∇Φ0,u

0 −∇Φ0,l
0

)
+ g

(
xu

3 − xl
3

)
.

(4.58)

The above relation7 is the pressure-type Kutta condition with respect to the body fixed refer-
ence frame. That equation includes a quadratic nonlinear form of the unknown trace on the
boundary of the corrector tangential velocity Vcor

t,NI−1, linear terms and the last line that includes
known initial guess terms and the hydrostatic term. It also includes the unknown boundary
value of the corrector potential φcor at the body contour as approaching the trailing edge. As
will be demonstrated in the following section the continuous boundary field Vcor

t,NI−1 is ap-
proximated by a discrete tangential velocity field that is projected to a curvilinear coordinated
system (see also Sec.2.5.2.1). Moreover, it is approximated by CUFDM (see also Sec.2.5.2.2) and
replaced with linear combinations of φcor. Then an extended form of the DtN operator (see
Sec.4.4.2 and Sec.4.4.4) will be exploited to replace all the unknowns by linear functions of the
dynamic variables of the problem that will be the corrector values of the potential on the free
surface and of the free-surface elevation as well as and potential jump (dipole intensity) at the
Kutta strip.

4.4.4 Discretised free-surface and Kutta conditions and the dynamical sys-
tem

We apply discretisation with BEM and collocation as described in detail in Secs.2.4 & 2.5.2.2.
We consider the collection of discretised data that are families of scalars or vectors. They are
ordered following x1-major numbering. In this way, ordered lists (systems) are created, that
represent the collocation points (containing vectors of R3), the discretised potential field (con-
taining real numbers), the discretised gradient of the free-surface potential field (containing
vectors of R3) or the covariant components of the tangential velocity (containing real numbers).
The systems that are arranged x1-majorly will be denoted using |1. To proceed, the free-surface
conditions are applied at the free-surface collocation points. Therefore, we have the aforemen-
tioned collocation points x0|1 = {x0 f } with f ∈ {0, 1, ..., NF − 1}, where NF is the total number

7The terms in the Eq.(4.58) are mean values and differences of the upper and lower side traces on the body
boundary. Some of those fields are continuous at the trailing edge, however when discretisation is applied and a
BEM is exploited for calculations, the vicinity of the trailing edge is modeled by neighboring to the trailing edge
panels. In that case, the upper and lower elements are not identical and the same applies to the boundary field
values. Therefore, it is important for the accurate and stable imposition of Kutta condition, those mean values
and differences to be considered in the calculations.
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of the free-surface collocation points, the initial guess free-surface potential Φ0
0|1 = {Φ0

0, f }, the
corrector free-surface potential φcor

F,NI−1|1 = {φcor
F,NI−1, f }, the initial guess free-surface elevation

η0
0,NI−1|1 = {η0

0, f }, the corrector free-surface elevation ηcor
NI−1|1 = {ηcor

NI−1, f }, the initial guess
trace of the gradient of the free-surface potential V0

F,0|1 = {∇Φ0
0, f }, the corrector trace of the

gradient of the free-surface potential Vcor
F,NI−1|1 = {∇φcor

NI−1, f }, the total metric of the free sur-
face aI |1 = {√aI, f }, the corrector free-surface tangential velocity Vcor

F,t,NI−1|1 = {VF,t,NI−1, f },
the first component (x1-wise) of the covariant derivative of the corrector free-surface potential
Vcor

F,t,NI−1,1|1 = {VF,t,NI−1,1, f }, the second component (x2-wise) of the covariant derivative of
the corrector free-surface potential Vcor

F,t,NI−1,2|1 = {VF,t,NI−1,2, f }. Moreover, the initial guess
free-surface Neumann-data discretised vector field is N0

0|1 = {∂nΦ0
0, f } and the corrector free-

surface Neumann-data discretised vector field is Ncor
F,NI−1|1 = {∂nφcor

NI−1, f } and the discretised
unit normal to the total free-surface vector field nF|1 = {nF, f }. The discretised form of free-
surface boundary conditions (Eqs.4.24 & 4.25) in the case of nonlinear waves are as follows

∂tφ
cor
NI−1|1 =− ∂tΦ

0
0|1 − gη0

0,NI−1|1 − gηcor
NI−1|1

− 1
2

(
V0

F,0|1 + Vcor
F,t,NI−1|1 + Ncor

F,NI−1|1 · nF|1
)2

, x ∈ ∂DF,NI−1(t), (4.59)

∂tη
cor
NI−1|1 = −∂tη

0
0,NI−1|1 −

(
N0

0|1 + Ncor
F,NI−1|1

)
· aI |1, x ∈ ∂DF,NI−1(t), (4.60)

where the dot product at the 2nd term at the r.h.s. of Eq.(4.60) and the square at the 4th term at
thr r.h.s. of Eq.(4.59) as well as, the product at the expression inside the square, are dot products
between 1st-order systems; for more details, see Sec.2.5.1.3.

The discretised tangential corrector free-surface velocity vector field Vcor
F,t,NI−1 is expanded with

respect to a curvilinear coordinate system and its covariant base, using the velocity contravari-
ant components (see Sec.2.5.2.1), as follows

Vcor
F,t,NI−1|1 = (Vcor

F,t,NI−1,j)
j|1 · ej|1, j ∈ {1, 2}. (4.61)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|2 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NF − 1} and the dot product is between systems of vectors.

The contravariant components of the corrector free-surface velocity can be calculated when the
covariant components are known as follows

(Vcor
F,t,NI−1,j)

j|1 = gjk|1(Vcor
F,t,NI−1,k)k|1, j, k ∈ {1, 2}. (4.62)

where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|1 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NF − 1}.

By applying CUFD we can approximate the covariant component of the tangential corrector
free-surface velocities by the neighboring corrector potential values (see Sec.2.5.2.2) as follows(

Vcor
F,t,NI−1,1

)
1
|1 = D(x0|1) ·φcor

F,NI−1|1. (4.63)
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(
Vcor

F,t,NI−1,2

)
2
|1 =

[
D(x0|2) ·φcor

F,NI−1|2
]T

=

[
D(x0|2) ·

(
φcor

F,NI−1|1
)T]T

. (4.64)

The above detailed analysis enlightens the fact that the discretised boundary value of the tan-
gential free-surface corrector velocity Vcor

F,t,NI−1 can be expressed as a function of the discretised
boundary value of the corrector free-surface potential φcor

F,NI−1 in the context of our approxima-

tion; i.e. Vcor
F,t,NI−1|1 = VCUFDM

(
φcor

F,NI−1|1
)

.

At the final stage the discretised free-surface conditions (Eqs.4.59 & 4.60) together with dis-
cretised Kutta condition that will be presented in the sequel, will be exploited for the con-
struction of the dynamical-system equations in the form dtUcor

NI−1 = f(Ucor
NI−1), where the

system-derivative f is a function of the dynamic variables collected into the 1st-order system
Ucor

NI−1 =
{

φcor
F,NI−1, ηcor

NI−1, µcor
NI−1,K

}
. In order to obtain that final form of free-surface conditions

we recall the discretised extended DtN operator constructed in Sec.4.4.2, Eqs.(4.36 - 4.38).

Ncor
F,NI−1(t)|1 = GNI−1,00(t) ·φcor

F,NI−1(t)|1 + GNI−1,01(t) · b(t)|1
+ ZNI−1,0(t) · µcor

K,NI−1(t)|2 + PNI−1,0(t) · µcor
W,NI−1|2.

(4.65)

In the above linear relation the unknown discretised fields are the systems of Neumann and
Dirichlet data on the free-surface; i.e. the normal derivative of the corrector free-surface po-
tential Ncor

F,NI−1|1 and the corrector free-surface potential φcor
F,NI−1|1 and the system of Dirichlet

data on the Kutta strip; i.e. the potential jump µcor
K,NI−1|2. The Neumann data on the body b|1

and are known from the prescribed kinematics and the initial guess velocity and the Dirichlet
data on the wake µcor

W,NI−1|2 have been determined from the time history of the system evo-
lution. Therefore, the discretised free-surface conditions (Eqs.4.59 & 4.60) together with the
appropriate part of the discretised extended DtN operator Eq.(4.65) are a system of (spatially
and temporarily) nonlocal differential equations, with explicit and implicit nonlinearities, with
a linear algebraic constraint. This is only the half part of the total system of equations. The
remaining part that is based on the pressure-type Kutta condition will be constructed later in
the same section. The other part of the system is also constrained and another part of the DtN
serves as a linear constraint this will be also discussed later.

In the sequel, the algebraic constraint is used in order to expresses the system-derivative f as a
function of the dynamic variables collected into the 1st-order system

Ucor
NI−1 =

{
φcor

NI−1, ηcor
NI−1, µcor

NI−1,K

}
. (4.66)

To proceed, the discretised normal derivative of the corrector free-surface potential field Ncor
F,NI−1

with the aid of Eq.(4.65) becomes a function of φcor
F,NI−1 and µcor

NI−1,K as follows

Ncor
F,NI−1|1 = DTN0

(
φcor

F,NI−1|1, µcor
NI−1,K|2

)
. (4.67)
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The free-surface boundary conditions become

∂tφ
cor
NI−1|1 =− ∂tΦ

0
0|1 − gη0

0,NI−1|1 − gηcor
NI−1|1

− 1
2

[
V0

F,0|1 + VCUFDM

(
φcor

F,NI−1|1
)

+DTN0

(
φcor

F,NI−1|1, µcor
NI−1,K|2

)
· nF|1

]2
, x ∈ ∂DF,NI−1(t), (4.68)

∂tη
cor
NI−1|1 = −∂tη

0
0,NI−1|1 −

[
N0

0|1 +DTN0

(
φcor

F,NI−1|1, µcor
NI−1,K|2

)]
· aI |1, x ∈ ∂DF,NI−1(t),

(4.69)

The discretised free-surface conditions in the form of Eqs.(4.68 & 4.69) together with the dis-
cretised pressure-type Kutta condition, that will be constructed in the sequel, are a system of
(spatially and temporarily) nonlocal differential equations, with explicit and implicit nonlin-
earities, in the form dtUcor

NI−1 = f(Ucor
NI−1), where the system-derivative f is a function of the

dynamic variables collected into the 1st-order system Ucor
NI−1 =

{
φcor

F,NI−1, ηcor
NI−1, µcor

K,NI−1

}
.

Moreover concerning the lifting part of the problem and the pressure-type Kutta condition,
we apply discretisation with BEM and collocation as described in detail in Secs.2.4 & 2.5.2.2.
We consider the collection of discretised data that are families of scalars or vectors. They are
ordered following span-major numbering. In this way, ordered lists (systems) are created, that
represent the collocation points (containing vectors of R3), the discretised potential field (con-
taining real numbers), the discretised tangential velocity field (containing vectors of R3) or
the covariant components of the tangential velocity (containing real numbers). The systems
that are arranged span-majorly will be denoted using |2. To proceed, the pressure-type Kutta
condition is applied at the body-collocation points at the upper and lower side of the trailing
edge8 and the corresponding operator is discretised as follows FPK

f s,NI−1|2 = {FPK
f s,NI−1,i}, with

i ∈ {0, 1, ..., NPK − 1}, where NPK is the total number of collocation points that Kutta condition
is applied. Therefore, we have the aforementioned collocation points x0|2 = {x0i}, the correc-
tor potential φcor

B,NI−1|2 = {φcor
B,NI−1,i}, the initial guess potential Φ0

0|2 = {Φ0
0,i}, the corrector

tangential velocity Vcor
t,NI−1|2 = {Vcor

t,NI−1,i}, the first component (chordwise) of the covariant
derivative of the corrector potential Vcor

t,NI−1,1|2 = {Vcor
t,NI−1,1,i}, the second component (span-

wise) of the covariant derivative of the corrector potential Vcor
t,NI−1,2|2 = {Vcor

t,NI−1,2,i}. Moreover,
the known-Neumann-data-times-the-normal-vector discretised vector field is N|2 = {bini} the
initial guess velocity V0

0|2 = {∇Φ0
0,i} and the body velocity VB|2 = {VBi}.

The discretised form of pressure-type Kutta condition is as follows

FPK
f s,NI−1 (x0|2; t)|2 = 0, x0|2 ∈ ∂DB(t), (4.70)

8A single numbering is used for both the upper and the lower collocation points; i.e. the collection i ∈
{0, 1, ..., NPK− 1} is mapped to the upper side data denoted with upper index u and to the lower side data denoted
with l.
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where

FPK
f s,NI−1 (x0|2; t)|2 = dt(φ

cor,u
B,NI−1|2 −φcor,l

B,NI−1|2)

+

(
Vcor,u

t,NI−1|2 + Vcor,l
t,NI−1|2

2
+

Nu|2 + Nl|2
2

+
V0,u

0 |2 + V0,l
0 |2

2
−

Vu
B|2 + Vl

B|2
2

)
[
Vcor,u

t,NI−1|2 −Vcor,l
t,NI−1|2 + Nu|2 −Nl|2 + V0,u

0 |2 −V0,l
0 |2 −

(
Vu

B|2 −Vl
B|2
)]

−
(

V0,u
0 |2 + V0,l

0 |2
2

−
Vu

B|2 + Vl
B|2

2

) [
V0,u

0 |2 −V0,l
0 |2 −

(
Vu

B|2 −Vl
B|2
)]

+ ∂t

(
Φ0,u

0 |2 −Φ0,l
0 |2

)
+

V0,u
0 |2 + V0,l

0 |2
2

(
V0,u

0 |2 −V0,l
0 |2

)
+ g

(
xu

0 |2 − xl
0|2
)

.

(4.71)

The discretised tangential corrector velocity vector field Vcor
t,NI−1 is expanded with respect to a

curvilinear coordinate system and its covariant base, using the velocity contravariant compo-
nents (see Sec.2.5.2.1), as follows

Vcor
t,NI−1|2 = (Vcor

t,NI−1,j)
j|2 · ej|2, j ∈ {1, 2}. (4.72)

where ej are the systems of vectors that represents the base vectors discretised vector fields
ej|2 = {eji}, j ∈ {1, 2}, i ∈ {0, 1, ..., NPK− 1} and the dot product is between systems of vectors.

The contravariant components of the corrector velocity can be calculated when the covariant
components are known as follows

(Vcor
t,NI−1,j)

j|2 = gjk|2(Vcor
t,NI−1,k)k|2, j, k ∈ {1, 2}. (4.73)

where gjk is a system that contains the contravariant components of the metric tensor at the
collocation points; i.e. gjk|2 = {gjk

i }, j, k ∈ {1, 2}, i ∈ {0, 1, ..., NPK − 1}.

By applying CUFD we can approximate the covariant component of the tangential corrector
velocities by the neighboring corrector potential values (see Sec.2.5.2.2) as follows

(
Vcor

t,NI−1,1

)
1
|2 =

[
D(x0|1) ·φcor

B,NI−1|1
]T

=

[
D(x0|1) ·

(
φcor

B,NI−1|2
)T]T

. (4.74)

(
Vcor

t,NI−1,2

)
2
|2 = D(x0|2) ·φcor

B,NI−1|2. (4.75)

The above detailed analysis enlightens the fact that the discretised boundary value of the tan-
gential corrector velocity Vcor

t,NI−1 can be expressed as a function of the discretised boundary
value of the corrector potential φcor

B,NI−1 in the context of our approximation; i.e. Vcor
t,NI−1|2 =

VCUFDM

(
φcor

B,NI−1|2
)

.

At the final stage the discretised pressure-type Kutta condition (Eqs.4.70 & 4.71) together with
the discretised free-surface conditions (Eqs.4.59 & 4.60) will be exploited for the construction of
the dynamical-system equations in the form dtUcor

NI−1 = f(Ucor
NI−1), where the system-derivative
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f is a function of the dynamic variables collected into the following 1st-order system

Ucor
NI−1 =

{
φcor

F,NI−1, ηcor
NI−1, µcor

K,NI−1

}
. (4.76)

In order to obtain that form of Kutta condition we recall the discretised DtN operator con-
structed in Sec.4.4.2, Eqs.(4.36 - 4.38)

φcor
B,NI−1(t) =GNI−1,10(t) ·φcor

F,NI−1(t) + GNI−1,11(t) · b(t)
+ ZNI−1,1(t) · µcor

K,NI−1(t) + PNI−1,1(t) · µcor
W,NI−1. (4.77)

In the above linear relation the unknown discretised fields are the system of corrector Dirichlet
data on the body boundary; i.e. the corrector body potential φcor

B,NI−1, the system of corrector
Dirichlet data on the free-surface; i.e. the corrector free-surface potential φcor

F,NI−1 and the sys-
tem of corrector Dirichlet data on the Kutta strip; i.e. the potential jump µcor

K,NI−1. The Neumann
data on the body b and are known from the prescribed kinematics and the known initial guess
free-surface velocity and the corrector Dirichlet data on the wake µcor

W,NI−1 have been deter-
mined from the time history of the system evolution. Therefore, the discretised pressure-type
Kutta condition (Eqs.4.70 & 4.71) together with the appropriate part of the discretised DtN op-
erator Eq.(4.77) and the discretised free-surface boundary conditions (Eqs.4.59 & 4.60) together
with the appropriate part of the discretised DtN operator Eq.(4.65) are a system of (spatially
and temporarily) nonlocal differential equations, with explicit and implicit nonlinearities and
linear algebraic constraints.

We proceed with the pressure-type Kutta condition. The algebraic constraint is used in or-
der to expresses the system-derivative f as a function of the dynamic variables collected into
the 1st-order system

{
φcor

F,NI−1, ηcor
NI−1, µcor

K,NI−1

}
. First of all, the discretised corrector poten-

tial field with the aid of Eq.(4.77) becomes a function of φcor
F,NI−1 and µcor

K,NI−1; i.e. ΦB,NI−1 =

DTN
(

φcor
F,NI−1, µcor

K,NI−1

)
. In this way the discretised corrector tangential velocity can be ex-

pressed as a function of φcor
F,NI−1 and µcor

K,NI−1; i.e. Vcor
t,NI−1 = VDTN

(
φcor

F,NI−1, µcor
K,NI−1

)
. There-

fore, the pressure-Kutta operator is also a function of the unknown φcor
F,NI−1 and µcor

K,NI−1 (and

other known quantities); i.e. FPK
f s,NI−1 = FPK

f s,NI−1

(
φcor

F,NI−1, µcor
K,NI−1

)
. The pressure-type Kutta

condition becomes

dt

[
DTNu

1

(
φcor

F,NI−1, µcor
K,NI−1

)
−DTNl

1

(
φcor

NI−1, µcor
NI−1,K

)]
=

−

Vu
DTN

(
φcor

F,NI−1, µcor
K,NI−1

)
+ Vl

DTN

(
φcor

F,NI−1, µcor
K,NI−1

)
2

+
Nu + Nl

2
+

V0,u
0 + V0,l

0
2

− Vu
B + Vl

B
2


[
Vu

DTN

(
φcor

F,NI−1, µcor
K,NI−1

)
− Vl

DTN

(
φcor

F,NI−1, µcor
K,NI−1

)
+ Nu −Nl + V0,u

0 −V0,l
0 −

(
Vu

B −Vl
B

)]
+

(
V0,u

0 + V0,l
0

2
− Vu

B + Vl
B

2

) [
V0,u

0 −V0,l
0 −

(
Vu

B −Vl
B

)]
− ∂t

(
Φ0,u

0 −Φ0,l
0

)
−

V0,u
0 + V0,l

0
2

(
V0,u

0 −V0,l
0

)
− g

(
xu

0 − xl
0

)
. (4.78)

In the equation above, the upper indices u and l refer to the discretised fields at the upper
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and lower sides the discretised boundary, respectively. To proceed further, it is necessary to
perform some operations to the time derivative of the DtN operator appeared at the left hand
side of Eq.(4.78).

dt

[
DTNu

1

(
φcor

F,NI−1, µcor
K,NI−1

)
−DTNl

1

(
φcor

F,NI−1, µcor
K,NI−1

)]
=

= dt

{
[Gu

NI−1,10(t)− Gl
NI−1,10(t)]φ

cor
F,NI−1(t) + [Gu

NI−1,11(t)− Gl
NI−1,11(t)] · b(t)

+[Zu
NI−1,1(t)− Zl

NI−1,1(t)] · µcor
K,NI−1(t) + [Pu

NI−1,1(t)− Pl
NI−1,1(t)] · µcor

W,NI−1

}
.

(4.79)

We define the following matrices G
u\l
NI−1,10 = [Gu

NI−1,10 − Gl
NI−1,10], G

u\l
NI−1,11 = [Gu

NI−1,11 − Gl
NI−1,11],

Z
u\l
NI−1,1 = [Zu

NI−1,1 − Zl
NI−1,1], P

u\l
NI−1,1 = [Pu

NI−1,1 − Pl
NI−1,1]as differences of matrices with one di-

mension that equals the number of Kutta-strip collocation points NPK and the other defined
by the number of the panels (on free-surface, body, Kutta-strip and wake, respectively) that
induce potential at the collocation points. By adopting that notation and using the Leibniz rule
for differentiation we obtain the following relation

dt

[
DTNu

1

(
φcor

F,NI−1, µcor
K,NI−1

)
−DTNl

1

(
φcor

F,NI−1, µcor
K,NI−1

)]
=

= dt[G
u\l
NI−1,10(t)] ·φ

cor
F,NI−1(t) + G

u\l
NI−1,10(t) · dt[φ

cor
F,NI−1(t)]

+ dt[G
u\l
NI−1,11(t) · b(t) + P

u\l
NI−1,1(t) · µ

cor
W,NI−1]

+ dt[Z
u\l
NI−1,1(t)] · µ

cor
K,NI−1(t) + Z

u\l
NI−1,1(t) · dt[µ

cor
K,NI−1(t)]. (4.80)

Next, using the dynamic boundary condition (Eq.4.68) and considering that the body-fixed
time derivative of the free-surface potential is the same with the inertial9, we can replace time
derivative of the free-surface potential with functions of the dynamic variables as follows

dt

[
DTNu

1

(
φcor

F,NI−1, µcor
K,NI−1

)
−DTNl

1

(
φcor

F,NI−1, µcor
K,NI−1

)]
=

= dt[G
u\l
NI−1,10(t)] ·φ

cor
F,NI−1(t)

+ G
u\l
NI−1,10(t) ·

{
−∂tΦ

0
0 − gη0

0,NI−1 − gηcor
NI−1

−1
2

[
V0

F,0 + VCUFDM

(
φcor

F,NI−1

)
+DTN0

(
φcor

F,NI−1, µcor
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cor
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cor
K,NI−1(t)]. (4.81)

9The free-surface elevation and the free-surface potential are functions defined at the initially calm free-surface
level, following an Eulerian approach.
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By replacing Eq.(4.81) into Eq.(4.78) and multiplying both sides with the inverse of Zu\l
NI−1,1, we

obtain the final form of the discretised pressure-type Kutta condition

dt[µ
cor
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u\l
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}. (4.82)

The discretised free-surface conditions in the form of Eqs.(4.68 & 4.69) together with the discre-
tised pressure-type Kutta condition (Eq.4.82) are a system of (spatially and temporarily) non-
local differential equations, with explicit and implicit nonlinearities, written here in the form
dtUcor

NI−1 = f(Ucor
NI−1), where the system-derivative f is a function of the dynamic variables

collected into the 1st-order system Ucor
NI−1 =

{
φcor

F,NI−1, ηcor
NI−1, µcor

K,NI−1

}
. That system can be nu-

merically integrated in order to predict the evolution of the dynamic variables collected into the
1st-order system Ucor

NI−1 (Eq.4.66), based on information concerning the functions φcor
NI−1,ηcor

NI−1
and µcor

NI−1,K at previous time steps, in conjunction with the history of the corrector wake dipole
intensity µcor

W,NI−1, and the Neumann data b(t) on the body boundary, known at every time
step from the body motion and the initial guess velocity as described by the body boundary
condition Eq.(4.19), as well other known initial-guess quantities included in Eqs.(4.68 & 4.69).

Moreover, the free-surface-boundary nodes are updated every time that the the total free-
surface at the collocation points changes. It holds for the total potential that ηNI−1 = η0

0 + ηcor
NI−1.

We assume that the initial guess free-surface elevation is known everywhere and can be up-
dated at the collocation points without interpolation. However the corrector free-surface ele-
vation is known only at the collocation points and its values are stored in ηcor

NI−1. The bilinear
4-node boundary elements construct a basic grid with global nodes located at the local ele-
ment nodes. The values of the corrector free-surface elevation can be obtained everywhere by
interpolation, when the nodal values of the corrector free-surface are known. In order to cal-
culate the nodal values of the corrector free-surface elevation a staggered grid, with nodes at
the collocation points, is exploited. The staggered-grid nodal values are given by the correc-
tor free-surface elevation ηcor

NI−1. Then by interpolation, using the staggered grid, the basic-grid
nodal values are obtained. Next by interpolation, using the basic grid, the corrector free-surface
potential is obtained everywhere. Then we add the initial guess free-surface elevation to the
corrector free-surface elevation to obtain the total free-surface everywhere. In this way, the to-
tal free-surface boundary is updated and the relative quantities like the total metric aI and the
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total free-surface unit normal vector nF can be calculated.

Subsequently, part of the updated discretised extended DtN map (Eqs.4.36 - 4.38) is used to
calculate the remaining unknown discretised body Dirichlet boundary field values φcor

B,NI−1

φcor
B,NI−1(t)|1 =GNI−1,10(t) ·φcor

F,NI−1(t)|1 + GNI−1,11(t) · b(t)|1
+ ZNI−1,1(t) · µcor

K,NI−1(t)|2 + PNI−1,1(t) · µcor
W,NI−1|2. (4.83)

4.4.5 Numerical time integration of the system

In the present work, a computational code is implemented, following an explicit version of
that method, using an Adams-Bashforth-Moulton predictor-corrector time-integration scheme,
performing NI = 2 sets of similar constant-time calculations. At a specific timestep the initial
constant-time iteration step corresponds to I = 0 and the second constant-time iteration step
corresponds to I = NI − 1 = 1. The extension of the code to the case of arbitrary number of
constant-time iterations, until a specific convergence criterion to be satisfied, is left as a subject
of future work. The process begins with known the second (I = NI − 1 = 1) value of the
corrector system

(
Ucor

NI−1 = Ucor
1

)
at time t, and the time history of the second (I = NI − 1 = 1)

value of the time derivatives (fNI−1 = f1). Then, the first (I = 0) value of the corrector system
Ucor

0 (t + ∆t) at time t + ∆t is obtained as follows

Ucor
0 (t + ∆t) = Ucor

1 (t) +
∆t
24
{55f1 [Ucor

1 (t) ; t]− 59f1 [Ucor
1 (t− ∆t) ; t− ∆t]

+37f1 [Ucor
1 (t− 2∆t) ; t− 2∆t]− 9f1 [Ucor

1 (t− 3∆t) ; t− 3∆t]} . (4.84)

The first (I = 0) set of calculations also include the approximation of the first (I = 0) value
of the time derivative f0 [Ucor

0 (t + ∆t) ; t + ∆t] at time t + ∆t. In this way the predictor step
of the Adams-Bashforth-Moulton method provides us with a process to implement the first
(I = 0) set of calculations of the present iterative scheme. For that calculation the extended DtN
operator must be calculated with respect to the total free-surface elevation and the updated
traces of the data on the updated boundaries. Then it follows the corrector step of Adams-
Bashforth-Moulton method that corresponds to the second (I = 1) set of calculations of the
present iterative scheme

Ucor
1 (t + ∆t) = Ucor

1 (t) +
∆t
24
{9f0 [Ucor

0 (t + ∆t) ; t + ∆t] + 19f1 [Ucor
1 (t) ; t]

−5f1 [Ucor
1 (t− ∆t) ; t− ∆t] + f1 [Ucor

1 (t− 2∆t) ; t− 2∆t]} . (4.85)

In this way the second (I = 1) value of the corrector system Ucor
1 (t + ∆t) at time t + ∆t is

obtained. The second (I = 1) set of calculations also includes the approximation of the second
(I = 1) value of the time derivative f1

[
Ucor

1 (t + ∆t) ; t + ∆t
]

at time t + ∆t is calculated. The
latter requires the recalculation of the extended DtN operator with respect to the new total free-
surface elevation and the updated traces of the data on the updated boundaries. The problem
of the extra computational cost of the repeated calculation of the DtN is tackled by means of
GPGPU programming.
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The aforementioned process is performed for every timestep to obtain the time evolution of
the (NI − 1)th value of the corrector potential φcor

NI−1, and the other dynamic variables collected

into the system Ucor
NI−1 =

{
φcor

NI−1, ηcor
NI−1, µcor

NI−1,K

}
. The time evolution of the total potential is

obtained by adding at each timestep the (NI − 1)th value of corrector potential to the initial
guess potential as follows Φ ≈ limI→(NI−1) ΦI = ΦNI−1 = Φ0

0 + φcor
NI−1. The same applies

to the other trace data of the problem. Moreover, the free-surface boundary is recalculated
by remeshing at the location of the total free-surface elevation. The later is approximated by
interpolation from the control-point values of the total free surface using a staggered grid.

Finally, the evolution of the wake could be obtained explicitly either by calculation at every
constant-time iteration step or simpler by calculation at the end of every timestep. In the
present work the second approach is followed. Moreover, it could be calculated implicitly;
i.e. the first approximation of the wake could be obtained at the end of a specific constant-time
iteration or timestep, followed by another wake-iterative scheme with many (interior) itera-
tions at the specific constant-time (exterior) iteration or timestep until a proper convergence
criterion (that includes wake related metrics) is achieved. In the present work the explicit ap-
proach is adopted and the investigation of the importance of the implicit approaches is left as
a subject of future work.

4.5 Numerical results and discussion

4.5.1 DtN calculation in the case of propagation of a solitary wave over gen-
eral bathymetry

In the present section validation of the present method in the case of propagation of a soli-
tary wave over general bathymetry, exploiting the solution of a fully nonlinear Hamiltonian
Coupled-Mode System (HCMS) of equations (Papoutsellis et al., 2018), is presented. Perfor-
mance analysis of the mixed precision instance of the GPU code is also documented. The GPU
calculations have been performed in a GTX1080 GPU with 2560 NVIDIA CUDA Cores.

In the work of Papoutsellis et al. (2018), time domain calculations with the HCMS model are
presented, concerning the transformation of a solitary wave over a 3D bathymetry with banks
and trenches; more details concerning the geometry and the parameters of the problem can be
found in Sec.6.5 of the aforementioned reference. Exploiting the recently presented Hamilto-
nian Coupled-Mode Theory (HCMT), the authors studied that very interesting problem with
a rich physical content and also introduced a new representation of the Dirichlet-to-Neumann
operator, which is needed to close the Hamiltonian evolution equations.

In the present section results are obtained by the present method concerning the normal to
the free-surface boundary derivative of the potential on the exact location of the free-surface
boundary. To be more specific, for the design of the computational domain where the DtN
operator is calculated, four time instances (cases) of the evolution of the solitary wave, as been
calculated by the HCMS model, are exploited. In Fig.4.2 the boundary-element grid for the
four cases is presented. An elliptic boundary value problem is solved in the interior of the
domain. The bottom boundary condition is a homogeneous Neumann-type condition while
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(a) (b)

(c) (d)

Figure 4.2: Computational domain and boundary element grid for DtN calculation in the case of a
solitary wave propagating over a 3D bathymetry with banks and trenches. Four time instances are

exploited for the calculations: (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

(a) (b)

(c) (d)

Figure 4.3: Normal-derivative field as calculated by the two methods and the difference of the two
fields for the four computational domains depicted in Fig.4.2: (a) Case 1. (b) Case 2. (c) Case 3. (d)

Case 4.
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Figure 4.4: GPU performance and L2 error connected with the DtN calculation in the case of a
solitary wave propagating over a 3D bathymetry with banks and trenches depicted in Fig.4.2.

inhomogeneous Neumann-type boundary conditions are imposed at the four lateral bound-
aries and a Dirichlet-type boundary condition is imposed on the free-surface boundary. The
values of the normal derivative and the potential as calculated by the HCMS model are ex-
ploited. By using the DtN operator, as calculated by the present method, the known Dirichlet
data on the free-surface are transformed to Neumann data and the latter can be compared with
the HCMS calculations; see Fig.4.3 where the normal-derivative field as calculated by the two
methods and the difference of the two fields, are presented.

More details concerning the numerical characteristics and the performance of the present GPU
numerical method and the relative L2 error between the two methods are presented in Fig.4.4.
For the four different phases of evolution of the solitary wave (cases 1-4) five different grids
have been used, with Nx, Ny, Nz elements along the length, the width and the depth of the com-
putational domain. The finer grid have already been presented in Fig.4.2. The total degrees of
freedom (DoF) affecting the size of the induction-factor matrices are also presented in Fig.4.4
and the required VRAM size varies from 1217MB (for the coarser) to 7167MB (for the finer dis-
cretisation). The available GPU memory for the GTX1080 GPU is 8000MB, permitting a level of
accuracy that corresponds to an L2 error varying from 1.60% to 3.01%, for the finer discretisa-
tion. Moreover, the total calculation time was analyzed to the basic individual operations. The
two operations that require significant time are the calculation of the induction-factor matrices
and the solution of the linear systems using LU decomposition and the cuSOLVER function
from the CUDA Toolkit v10.0.130. It is shown that the calculation of the singular integrals ap-
proximately takes up to 30% of the total time for the finer grid case and the total GPU time
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does not exceed 16.5 sec in all cases. It is observed that the linear-system solution is significant
in terms of computational complexity and therefore spacial care must be put in choosing or
even developing more efficient functions for that computational demanding process. The total
execution time, as well as the memory footprint can be decreased by employing techniques
like the Fast Multipole Method; see e.g. Nishimura (2002). That argument is also supported by
the analysis presented in Sec.2.10.2, for an ellipsoid in steady motion, in unbounded domain.

4.5.2 Free-surface effects on wave-augmented propulsion using flapping-
foil biomimetic systems

In the present section, we demonstrate the effects of incoming waves and the possibility of
wave-energy extraction for exploitation in marine propulsion. A comparison between the
present method and recent computations by De Silva and Yamaguchi (2012), based on CFD
solver (FLUENT) for three cases of flapping NACA0015 hydrofoil in deep water conditions
is presented in Fig.4.5. The parameters of motion are St = 0.18, h0/c = 0.6, θ0 = 15.2◦,
XR/c = 0.3, ψ = −105◦ and Fn = 0.87, with mean submergence d/c = 1.28. Results, in the
case of no incident wave are shown using thin lines and are compared against two cases of
head incident waves with different phase lag φ between heaving foil motion and wave. In this
case the encounter frequency ω0 equals to flapping frequency ω0/ωh = 1, leading to maximum
energy extraction; see De Silva and Yamaguchi (2012). In general, present method results, con-
cerning the thrust coefficient

(
CT = −FX/ρU2h0

)
, are found in reasonable agreement with the

viscous solver, in all cases examined. We observe in Fig.4.5 that when φ = −90◦, the vertical
velocities of the wave and the heaving motion have opposite direction resulting in maximum
thrust production due to additional energy extraction from the wave. When φ = 90◦ the above
velocities have the same direction and the thrust production is again positive, but lower in
comparison with the case of calm water; see also De Silva and Yamaguchi (2012), sec.6.2. Small
differences in calculated CT observed between present method and CFD analysis are attributed
to viscosity effects. The present method is again found to be able to provide good predictions,
at least in the examples that are characterized by small and moderate angles of attack, where
leading edge separation and dynamic-stall effects are not significant. It is worth noting, that
the computational cost of present boundary element method is order(s) of magnitude less, ren-
dering our approach quite competitive and efficient, especially for initial design, optimization
and active control development.

Another example concerning the efficiency of the flapping thruster in waves is presented in
Fig.4.6. We examine in detail one of the cases of Fig.3.11b, concerning a NACA0012 hydrofoil
at St = 0.4, θ0 = 35◦ at submergence d/c = 2.5, in the presence of an incoming wave of
amplitude η0/h0 = 0.75, with flapping frequency equal to encounter frequency ω0/ωh = 1.
In this figure the effect of phase difference φ between heaving motion and the incident wave
on unsteady thrust production is studied. More specifically, in Fig.4.6 the values of the thrust
coefficient

(
CT = −FX/ρU2h0

)
are presented, as a portion of its value at finite submergence

below the free surface in calm water. The value at calm water is shown with horizontal bold
line at 100% and the value in unbounded domain with horizontal dashed line. We observe
that the effect of the free surface is to cause a reduction of thrust (approx. 5% in the examined
case, in comparison with value in deep submergence CTin f = 0.41) due to the wave resistance.
The results obtained by the present method for the same system operating in head incident
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Figure 4.5: Thrust coefficient for NACA0015 at Fn = 0.87 and submergence d/c = 1.28 and deep
water with motion parameters St = 0.18, h0/c = 0.6, θ0 = 15.2◦, XR/c = 0.3, ψ = −105◦, for
three cases: (i) without wave, (ii) with an incident wave of amplitude η0/h0 = 0.238, encounter
frequency equal to flapping frequency ω0/ωh = 1 and φ = −90◦, (iii) the same wave and φ = 90◦.

waves are also shown in the same figure using a thick line, for various values of the phase
lag φ between incident wave and heaving motion. We clearly notice in this figure that there
exists an interval, for −178◦ ≤ φ ≤ 12◦, where energy extraction from the waves raises the
total thrust production of the system above its value at calm sea, free of cost. This gain is
maximized at φ = −90◦, shown using an arrow in the figure, where it becomes of order 20%
higher. Moreover, we observe in Fig.4.6 that in the region −163◦ ≤ φ ≤ 4.7◦ the thrust gain
from wave energy extraction overrides significantly the losses due to wave resistance. On the
basis of the above findings we expect that the present biomimetic system, with the appropriate
active control, could serve for augmenting ship propulsion in rough sea by extracting energy
from the waves. That interesting and practical problem is studied in detail in Sec.4.5.3.

In the final example of the present section we present a 3D fully nonlinear simulation of for
the biomimetic propulsor beneath the free-surface and in oblique incident waves of moderate
amplitude, leaving the systematic examination of angle-of-incidence and nonlinearity effects
as a subject of future work. In Fig.4.7 we present 3D calculations for the biomimetic propulsor
beneath the free-surface and in waves with angle of incidence β = 45◦ and wave amplitude
η0/c = 0.2. The calculated incident wave satisfies with controlled accuracy the fully nonlinear
free-surface boundary conditions. The initial guess corresponds to a 5th-order Stokes wave;
see e.g.Massel (1989) and Fenton (1985). The characteristic wavelength is selected properly
to approximately obtain a wave component in x − direction (that is the direction of the foil
forward motion) with encounter frequency that equals the flapping foil frequency. For the
simulation a constant-chord foils with NACA0012 sections, AR = 6, in flapping motion with
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Figure 4.6: Average thrust coefficient for the flapping hydrofoil of Fig.3.11b at St = 0.4, θ0 = 35◦

at submergence d/c = 2.5, in the presence of an incoming wave of amplitude η0/h0 = 0.75, with
flapping frequency equal to encounter frequency ω0/ωh = 1. Comparison between results in deep

submergence, beneath the free surface in calm sea, and in head waves.

St = 0.3, h0/c = 0.75, θ0 = 23.3◦, pivot point XR/c = 0.33 and phase lag ψ = −90◦ and
F = U/

√
gc = 0.6, in mean submergence d/c = 0.5. To be more specific, the corrector poten-

tial on the body and the total potential at the free-surface and the potential jump on the wake
are depicted. Regarding the performance of the numerical method and the GPU accelerated
computational code, we provide some information for the fully nonlinear calculations. The
simulation is in time domain and the foil begins from the rest reaching harmonic state after 2
periods T, the time-step is ∆t/T = 0.5%. A total number of NB = 1860 body boundary ele-
ments and NF = 2976 free-surface elements are used. Mixed-precision arithmetics have been
used, 1.5GB were required from the VRAM and the simulation time was 350 sec in the case of
the prescribed wake model and 981 sec in the case of the free-wake model. It is worthwhile
to mention that due to the specific numerical treatment of the problem (see also Sec.1.3.1),
the truncation of the horizontally infinite domain using PML, the exploitation of mixed preci-
sion arithmetics, the proper handling of induction-factor matrices (see the discussion bellow
Eq.2.25) and the special treatment of the nonlinear incident waves (as presented in the present
chapter), the present GPGPU computational code is very efficient in terms of space complexity.
To be more specific, in the present case where free-surface discretisation is required the mem-
ory demand from the VRAM is only 0.2GB higher in comparison with the infinite domain case.
This is crucial if we consider the limited amount of memory available even in modern GPUs.
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Figure 4.7: 3D nonlinear simulation of biomimetic flapping-foil thruster beneath the free-surface
and in waves with angle of incidence β = 45◦ and wave amplitude η0/c = 0.2. For the simulation
a constant-chord foils with NACA0012 sections, AR = 6, in flapping motion with St = 0.3, h0/c =
0.75, θ0 = 23.3◦, pivot point XR/c = 0.33 and phase lag ψ = −90◦ and F = U/

√
gc = 0.6, in mean

submergence d/c = 0.5. Potential and velocities on the body and potential jump on the wake as
well as total free-surface potential and elevation, as calculated with the fully nonlinear model, are

presented.

4.5.3 Augmenting ship propulsion in waves by actively controlled flapping
foils

The present section results and the details in the development of the method are presented
in detail in our work (Belibassakis and Filippas, 2015), however here we will present a few
interesting and practical results concerning the problem of ship propulsion augmentation in
waves by actively controlled flapping foils (Fig.4.8). For that purpose the linearised free-surface
conditions and the 2D version of the code have been used. The method has also been extended
to treat multichromatic waves that correspond to specific sea states modeled using parametric
spectra; more details can be found in the aforementioned reference. For simplicity, only head
waves in deep-water conditions are considered here as excitation of the hull oscillatory motion.

To obtain solution the following procedure is adopted: The first step is the calculation of the
incident wave-current field in frequency domain by means of a coupled-mode model. Sub-
sequently, the lifting flow problem associated with the flapping foil is solved along with the
dynamical heaving response of the foil, where the mechanical system including the energy
generator is modeled as an one degree-of-freedom oscillator. Finally, the biomimetic system
then is analyzed by means of a time-domain BEM; more details can be found in Belibassakis
and Filippas (2015).
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Figure 4.8: Ship hull, advancing in head waves, equipped with a flapping wing located below the
keel, at forward station operating in random wave conditions, gaining its vertical motion from ship

heave and pitch responses.

The first step is the calculation of the coupled responses of the ship with the operation of the
flapping thruster, using linear seakeeping analysis, in conjunction with foil model based on
quasi-steady lifting line approximation and spanwise integration of sectional lift forces. The
latter can be corrected after the last step calculated by means of a time domain BEM. Subse-
quently, the wave field and the kinematics of the foil are obtained using the calculated RAO.
Then, the behaviour of the above system in random waves, represented by various frequency
spectra, is examined by means of timedomain BEM, including the free surface effect and taking
into account the ship-induced motions, but disregarding as a first approximation the foil-hull
interaction.

To be more specific, we consider a ship in head waves advancing at constant forward speed
U. In the present approach we use the equations of motion derived in the body-fixed frame
of reference linearised by assuming small oscillatory amplitudes. Seakeeping analysis in the
frequency domain is used to obtain the motions and responses of the examined system (ship
and flapping wing) in the vertical plane. A simplified lifting-line model to derive expressions
of the flapping wing forces. As it has been suggested by Politis and Politis (2014) the controlled
foil pitch angle is set proportional to the angle of attack due to heaving motion of the foil,
with the pitch control parameter w ranging from 0 to 1. The analysis described in detail in
Belibassakis and Politis (2013) and Belibassakis and Filippas (2015), permits us to calculate
the ship responses including the effect of the flapping wing operating as an unsteady thruster
and compare with the corresponding seakeeping responses concerning the bare hull without
the wing. For demonstration purposes, we consider a series 60-Cb0.60 ship hull form and a
flapping wing propulsor located at a distance xwing = 15 m fore the midship section (station
8 of the ship), at a depth d = 7 below the waterline. More the details concerning the geometry
can be found in the aforementioned reference.
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(a)

(b)

Figure 4.9: (a) Heave ξ3/A and pitch response ξ5/kA of the examined ship hull against non-
dimensional wavelength λ/L and ship Froude numbers Fn = U/sqrtgL. (b) Comparison of heave
and pitch responses for ship speed U = 5.5 m/s, with (bold line) and without (dashed line) the

operation of the flapping wing thruster.

In Fig.4.9 results are presented concerning the response of the system in head seas. To be more
specific, in Fig.4.9a the normalised heave response with respect to the incident wave amplitude
ξ3/A of the ship is plotted, without the operation of the wing, for various values of the non-
dimensional wavelength λ/L and ship Froude numbers Fn = U/sqrtgL. The corresponding,
ship-pitch response ξ5/kA is also shown in Fig.4.9a. To illustrate the effect of foil operation,
in Fig.4.9b, the same responses are presented in the case of ship Froude number Fn = 0.25
(U = 5.5 m/s) using dashed line. The modified responses taking into account the coupled
ship-flapping wing dynamics are overplotted in the same figures using a thick solid line. We
observe significant reduction of the ship motions, especially in the vicinity of the resonance
condition. This result is indicative of the extraction of energy from ship motion by the flapping
wing. In the case of ship pitch motion, the operation of the flapping wing propulsor leads
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Figure 4.10: Sea spectrum (Hs = 4 m and Tm = 10 sec) with respect to the inertial (S) and the
moving (SU) frame and foil’s motion spectrum at station 8 xwing/L = 0.33 where the horizontal
flapping wing is located, for head seas and ship speed U = 10.6 kn (Fn = 0.25). The amplitude
and phase of the foil’s RAO are also plotted using thick lines in the upper and the lower subplots,

respectively.

to reduction of the response, especially for wavelengths longer than the ship length. Thus,
the operation of the examined unsteady thruster extracts energy from the waves offering also
dynamic stabilisation. An extra effect, strongly connected with the reduction of ship responses,
is the expected drop of the added wave resistance of the ship. Indicative results concerning the
latter additional benefit are provided in Belibassakis and Politis (2013).

Using the responses of the system, the kinematics of the flapping wing are obtained, permit-
ting the detailed formulation and study of the performance of the wing sections operating in
random head waves. For this reason, the present method is applied to analyze numerically the
performance of high aspect ration foils beneath the free surface. As a first approximation we
use the assumption of waves with small amplitude in comparison with the wavelength and
we work in the context of linear free surface wave theory. Realistic sea conditions are modeled
using parametric spectra and the realization of the free surface elevation and of other wave sig-
nals is implemented using the classical random phase model, more details can be found in our
work Belibassakis and Filippas (2015).The final speed of the foil U, reached after acceleration
from rest, is connected with the following Froude number Ff oil = U/

√
gc based on the chord

c of the foil. We denote with S(ω) the wave spectrum in the earth fixed frame of reference
and we can obtain an expression for the spectrum according to a moving observer with the foil
mean velocity U denoted by SU(ωen), where ωen is the encounter frequency. Then we use the
response amplitude operator RAO f oil at the position xwing of the wing, in order to obtain the
spectrum of wings heaving motion (see also Fig.4.10). Furthermore, the rotational motion of
the hydrofoil, about an axis at xR = 0.33c distance from the foils leading edge, is defined as



152 Chapter 4. Hydrodynamic analysis of bodies in waves

negative at the clockwise direction. The latter self-pitching motion of the foil is a result of a
simple active control law based on its linear oscillation history.

In the sequel numerical results are presented and discussed concerning the performance of
a NACA0012 flapping hydrofoil in random waves, at various sea states. The effects of the
mean foil submergence d, its horizontal location along the ship xwing and of the pitch control
parameter w are investigated. The incident wave field is represented by frequency spectra cor-
responding to different sea states labelled by an index ranging from 1 to 5. The correspondence
of sea conditions with Beaufort scale (BF), sea state and the main spectral wave parameters, i.e.,
the significant wave height Hs and the modal period Tm are given in the following table:

Considering the vertical motion of the hydrofoil in head waves, which is described by the com-
bined ship hull-flapping foil responses, in Fig.4.11 the simulation of a flapping foil at mean
submergence d/c = 7, Froude number Ff oil =

√
U/gc

(
Fship = 0.25

)
, advancing in random

head waves corresponding to sea state 5 is presented. Numerical results have been obtained
using pitch control parameter w = 0.5 and setting the pivot-axis concerning the self-pitching
motion of the flapping foil at distance c/3 from the leading edge. In particular, in Fig.4.11 the
profile of the ship travelling in random waves and positioned according to the response of
the coupled ship-flapping wing system is shown at five instants within a time interval corre-
sponding to one modal period. The hydrofoil is located at forward station xwing = 0.3L with
respect to the midship section of the ship. In the same figure the trailing vortex curve mod-
elling the foil’s wake is plotted, including the calculated dipole intensity (potential jump) on
the vortex sheet, which is illustrated using arrows normal to the wake curve with length pro-
portional to the local dipole strength. The latter result is associated with the memory effect of
the generated lifting flow around the flapping foil operating in random incident waves. More-
over, in the right subplots of Fig.4.11 the instantaneous distribution of the pressure coefficient(
cp = p− patm/0.5ρU2) on the hydrofoil, at the same time instants as the plots to the right,

as calculated by the present method. From the calculated sectional pressure distributions, lift
and thrust components are obtained at each time step by integration. Furthermore, it is worth-
while to notice that the present model is able to predict intermittent cavitation inception, which
may significantly affect the performance of flapping hydrofoil, and would be very important
particularly at lower foil submergence.
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Figure 4.11: Simulation of the system operating in sea state 5. Results plotted at various instants
in one modal period. In the right subplots the distribution of the unsteady pressure coefficient(
cp = p− patm/0.5ρU2) on the flapping foil, located at station xwing = 0.3L (with respect to the

midship section), at the same instants is plotted, as calculated by the present method.
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(a)

(b)

Figure 4.12: Time history of (a) the total free-surface elevation and (b) the disturbance component
due to the operation of the foil during the same time interval of one modal period, as in Fig.4.11.

In order to illustrate the relative magnitude of the incident and disturbance flow generating by
the flapping motion of the foil in waves, for the same as before wave conditions and hydro-
foil data, the calculated free-surface elevation normalised with respect to the significant wave
height is plotted in Fig.4.12 over the horizontal domain, at some instants during one modal pe-
riod. In particular, in Fig.4.12(a) the total free surface elevation is plotted during the formation
of a high-amplitude wave. The corresponding disturbance component due to the operation of
the flapping foil is shown in Fig.4.12(b), as calculated by the present method. Since the flapping
foil travels forward at subcritical conditions and the submerged depth is significant, the dis-
turbance wave propagates mainly as a following component, which is characterised by quite
smaller amplitude than the incident wave.
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Turning into more specific details, we present in Fig.4.13 the time series of important quantities
concerning thrust production by the examined system operating in random wave conditions,
as calculated by the present method. The same parameters as before are considered concerning
the incident wave and the flapping foil data. In the first subplot the time history of heaving
motion at the location of the foil at a forward station of the ship, as produced by combined
oscillatory heaving and pitching motion of the coupled ship-flapping foil response, is shown
together with the generated lift coefficient CL = FY/0.5ρU2c. The calculated signals are plotted
for 15 modal periods, after transition from rest has been achieved. We observe that signifi-
cant amplitudes of the lift force are produced. Moreover, the phase lag between foil’s motion
and lift force is approximately 180◦ and therefore, the generated lift acts as a restoring force
reducing the responses of a ship equipped with flapping hydrofoils. Thus, except of thrust
augmentation, the examined system will offer dynamic stabilisation, as it can also be observed
in the RAO calculations presented in Fig4.9b. In Fig. 7(b) the dynamic evolution of thrust with
respect to the resistance of the ship in calm water −FX/R is shown, in the same time inter-
val. For the ship travelling at U = 5.5 m/s the calm water resistance has been estimated to be
Rs = 14.75 kN (Belibassakis and Politis, 2013). We observe in this subplot that the thrust oscil-
lations are in the interval 0% ≤ −FX/Rs ≤ 960%, with an average value of 79% of Rs, which
is indicated in Fig.4.13(b) using thick solid line. Moreover, in Fig.4.13(c) the power extracted
by the examined system from the waves is compared against the corresponding power that is
necessary for the self-pitching motion of the foil, actually for tuning the instantaneous angle
of attack in order to produce positive thrust. A dashed line is used in Fig.4.13(c) to indicate
the achieved propulsion power, scaled with respect to the Effective Horse Power of the ship in
calm water (which at U = m/s is estimated EHP = 80 kW). In the same subplot a bold line is
used to indicate the power required for the self pitching motion of the foil, which is negligible
and thus, it is multiplied by 100 in the figure in order to be observable. Negative values indi-
cate power required by the system. Similar findings have been reported by Politis and Politis
(2014), in the case of pitching and heaving wing in infinite flow domain, without consideration
of the free-surface effects.

Next, in Fig.4.14 we examine the effect of sea state and of the free-surface boundary on the
augmentation of the overall propulsion of the ship by the flapping system operating in ran-
dom waves. In Fig.4.14(a) the mean value of the normalised thrust is plotted for various sea
conditions represented by the significant wave height, as listed in previous Table. The same pa-
rameters as in the previous example are considered concerning the flapping foil data. We notice
in this plot that as the wave height increases, the value of mean thrust also increases. Moreover,
appropriate modification of pitch control parameter, can further increase the amplitude of the
angle of attack of the flapping foil and thus, the thrust production. The latter is expected to be
practically useful in the case of lower severity seas. This could be achieved without passing the
limit of leading edge separation, as it will be described in more detail below. Furthermore, in
Fig.4.14(b), the variation of the mean thrust generated by the flapping foil is shown as a func-
tion of its mean submergence scaled with respect to the modal wavelength. In this case, the
corresponding ratio of mean submergence to chord varies in the interval 7 ≤ d/c ≤ 40. We can
see that the effect of free surface is to reduce the thrust coefficient, which is naturally expected
due to increase in the developed wave resistance, as the foil submergence becomes smaller.
Another reason for the observed thrust decrease at lower submergence is the reduction of the
foil vertical oscillatory motion induced by ship pitching due to smaller radius of rotation.
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(a)

(b)

(c)

Figure 4.13: Evolution of motion and integrated hydrodynamic quantities for a NACA0012 flap-
ping hydrofoil in random head waves, corresponding to sea state 5, traveling at Ff oil = 1.76, for
time duration of 15 modal periods. Foil mean submergence d/c = 7 and control parameter w = 0.5.
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(a) (b)

Figure 4.14: Mean thrust to calm water resistance ratio as (a) function of sea conditions represented
by significant wave height, and (b) as function of the mean foil submergence to modal wavelength

ratio.

(a) (b)

Figure 4.15: (a) Mean thrust to calm-water resistance as a function of the longitudinal position of
the flapping foil for various sea conditions. (b) Mean thrust coefficient (bold line) as a function of

pitch control parameter w, for the same as before foil parameters.

Next, the effect of the longitudinal position of the flapping wing located at a forward station
along the ship is demonstrated in Fig.4.15a. In this plot the mean thrust to resistance ratio is
plotted against x wing measured from the midship section and expressed as a portion of ship
half length L/2. The three curves correspond to various sea conditions; see Table 1. As it is
expected, best position for thrust production by the examined unsteady propulsor is near the
bow. On the other hand, selection of extreme forward location of the flapping foil is dangerous
from the point of view of intense slamming, especially at high wave conditions, and should
be avoided. Similar findings based on experimental research have been reported by Naito and
Isshiki (2005) and more recently by Bøckmann and Steen (2016). Finally, in Fig.4.15b the effect
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of the pitch control parameter w on the thrust production by the flapping foil is investigated. In
particular, the mean thrust coefficient is plotted as a function of w using a thick solid line. The
foil data are kept the same as before. We clearly observe that as the pitch control parameter is
getting smaller, the calculated thrust coefficient increases, as expected due to the increase of the
amplitude of the effective angle of attack. However, the present method does not provide quite
reliable predictions of the thrust coefficient at large angles of attack (see also Sec.2.10.3) due to
dynamic stall effects, which are not presently modeled and will be subject of future extension
of the present model. For this reason the root mean square and the maximum value of the angle
of attack are also plotted in Fig.4.15b, using circles and triangles, respectively, supporting the
selection of the pitch control parameter in order to avoid leading edge separation.

Moreover, in author’s work Filippas (2015), a feasibility study on an existing patrol boat of
Greek navy fleet is presented. That boat is equipped with two fin stabilized near the midship
section for roll reduction purposes. Although, the design wings with small span, located near
the pitch rotation center of the ship is optimal for roll reduction and not for extraction of energy
from ship heave and pitch, it is shown that existing set up can operates only changing the
control law of the wings’ rotational motion. Moreover, it is illustrated that with appropriate
redesign of the location of the fins the performance of the system can be further enhanced.

Based on the above data we conclude that the present results can be exploited to derive use-
ful guidelines concerning the control and optimum performance of the examined system ex-
tracting energy from sea waves for augmenting marine propulsion in rough seas, with simul-
taneous reduction of ship responses offering dynamic stabilisation. There are several issues
that need to be considered before real ship application of the present system becomes feasible.
These include clearance under the hull and fouling protection, cavitation, flow separation and
structural vibration issues, cost of the support structure and the pitch actuator mechanism.
Also, arrangements consisted of multiple oscillating foils, or foils closer to the hull could en-
hance the whole performance, however, they introduce strong interference effects associated
with foil operation in the boundary layer of the ship or in the wake of preceding bodies, re-
quiring special viscous-inviscid interaction techniques of full CFD modelling for numerical
simulation. All the above are left to be examined as future tasks associated with the detailed
design and implementation of the system.

4.5.4 Semi-activated oscillating hydrofoil as a nearshore biomimetic energy
system in waves and currents

The present section results and the details in the development of the method are presented
in detail in our work (Filippas et al., 2018), however here we will present a few interesting
and practical results concerning the problem of energy extraction from waves and currents
nearshore using semi-activated oscillating foil biomimetic systems (Fig.4.16). For that purpose
the linearised free-surface conditions and the 2D version of the code have been used. The
method has also been extended using a linearised version of the couple mode system (Belibas-
sakis et al., 2017) to consider the effect of non-uniform linearly sheared currents, and the effects
of variable bathymetry.
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(a)

(b)

Figure 4.16: (a) Interaction of waves with vertically sheared currents over variable seabed topog-
raphy around the location where the biomimetic energy converter is installed; see also Belibassakis

et al. (2017). (b) Oscillating hydrofoil operating as energy device in waves and sheared currents.

To obtain solution the following procedure is adopted: The first step is the calculation of the
incident wave-current field in frequency domain by means of a coupled-mode model. Sub-
sequently, the lifting flow problem associated with the flapping foil is solved along with the
dynamical heaving response of the foil, where the mechanical system including the energy
generator is modeled as an one degree-of-freedom oscillator. Finally, the biomimetic system
then is analyzed by means of a time-domain BEM; more details as well as validation of the
method, can be found in the aforementioned references.

In the sequel, we apply the proposed method to study the performance of a NACA0012 hy-
drofoil, as flow and wave energy converter, operating in nearshore regions. We consider here
a hydrofoil of chord c operating in a coastal region, in the presence of propagating waves
and vertically sheared currents, over the shoaling environment that is presented in Sec.2.2
of Filippas et al. (2018). In the examined case, the Strouhal number of the incident waves is
St = ω

√
h1/g = 0.4, where h1 is the depth at the entrance of the domain and the wave am-

plitude is H/(2c). We recall that the current speed at the entrance of the domain corresponds
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to bathymetric Froude number Fd = U/
√

gh1 and the maximum shear in the middle of the
domain (where the hydrofoil is located) is Smax = 0.05 s−1. The hydrofoil operates around a
mean submergence depth d = 2c, and performs enforced pitching and induced heaving oscil-
lations. The pitching motion is about a rotation axis at distance XR = 0.33c from the leading
edge, with amplitude θ0 = 15◦. In general, the oscillation frequency ωΘ can be different from
the incident wave frequency ω. In the present section we consider one case where ωΘ/ω = 1,
with corresponding reduced frequency kr = ωΘc/2U = 0.267 and phase difference between
pitch and the incoming wave equal to ψ = −40◦, and another case with ωΘ/ω = 2, kr = 0.533
and ψ = −90◦. In the examined cases, the following oscillator parameters of the 1-degree-of-
freedom oscillator are used m∗ = 4, ζ = 0.5, ω0/ω = 2; for more details see Filippas et al.
(2018), Sec.3.1.

4.5.4.1 Numerical simulation of the biomimetic energy system in waves and currents

First, in Fig.4.17 we consider an example of equal wave and pitching frequency ωΘ/ω = 1 and
ψ = −40◦. Results are presented at various instances in a period T, concerning the position of
the foil, together with dipole intensities in the vortex wake (denoted with red arrows), as well
as the calculated instantaneous pressure coefficient cp on the flapping foil and the free-surface
elevation η (with red stars we denote the absorbing layer zone). Integrating the pressure dis-
tribution on the hydrofoil boundary, we obtain the force and the moment, and subsequently
exploiting information about the enforced pitching and induced heaving velocities, the input
and output power of the system is calculated.

In the case ωΘ/ω = 1 and ψ = −40◦, in Fig.4.18(a) the foil’s rotational motion Θ against the re-
sulting effective angle of attack α is shown, and in Fig.4.18(b) the time history of the developed
lift coefficient CL is plotted together with the moment coefficient CM (required for the enforced
pitching motion) and the normalized heaving response X/c. In Fig.4.18(b) the non-linear char-
acter of the responses are clearly observed in the shape of the time signals, with the maximum
values of heaving oscillation being comparable to the chord length Zmax/c = 0.95. The input
power coefficient CPθ and the output power coefficient CPb of the considered system, operat-
ing in the above conditions, are presented in Fig.4.18(c). We observe that the extracted energy,
with mean value CPb = 0.281 (denoted with continuous thick line), is significant, especially
as compared to the power needed for controlling the pitching foil motion, with corresponding
average pitching power coefficient CPΘ = 0.013 (denoted with dashed thick line), resulting in
the examined case to a net power extraction coefficient ηP = 20%.

The corresponding time signals in the case of different pitching and wave frequency ωΘ/ω = 2
and ψ = −90◦, are presented in Fig.4.19. In this case, the foil performs two cycles of motion
in one wave period, with larger power extraction during the second cycle, when the crest of
the wave occurs over the foil. Although, the mean output power coefficient, compared to the
previous case, is slightly smaller CPb = 0.237, and the corresponding input power coefficient
is larger CPΘ = 0.021, the performance of the system is better ηP = 33% due to the smaller
induced heaving motion Zmax/c = 0.33. In the sequel, we will demonstrate that even larger
amounts of energy can be extracted from waves and sheared currents, with proper selection
and control of the operational parameters, without reaching large angles of attack, avoiding
thus excessive flow separation and unfavorable dynamic stall effects.
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Figure 4.17: (a) Simulation of the system for ωΘ/ω = 1, kr = ωΘc/2U = 0.267 and ψ = −40◦ dur-
ing the fifth period. (b,c,d,e) Results at various instances: position of the foil and dipole intensities
in the wake are shown in the left subplots, pressure coefficient on the flapping foil in the middle
subplots, and calculated free-surface elevation over the shoaling environment in the right subplots.
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(a)

(b)

(c)

Figure 4.18: Time history of (a) enforced pitching angle and output angle of attack, (b) heaving
motion, lift and moment coefficients of the hydrofoil, and (c) calculated input and output power

coefficients, in the case of ωΘ/ω = 1 and ψ = −40◦.
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(a)

(b)

(c)

Figure 4.19: Time history of (a) enforced pitching angle and output angle of attack, (b) heaving
motion, lift and moment coefficients of the hydrofoil, and (c) calculated input and output power

coefficients, in the case of ωΘ/ω = 2 and ψ = −90◦.
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4.5.4.2 Investigation of the operational parameters

In this section we investigate the effects of the operational parameters of the present wave
and hydrokinetic energy converter, using the same environmental parameters (sheared current
and wave) as in Sec.4.5.4.1. For a specific value of incident wave frequency ω, the average
net power coefficient ηP and the maximum amplitudes of the effective angle of attack α0 and
the heaving motion Z0 are shown in Fig.4.20 using contour plots. In that figure, the effect of
the frequency of pitching oscillation ωΘ and the phase difference ψ between the free-surface
elevation and the foil pitch are examined, for specific pitch amplitude θ0 = 15◦ and oscillator
parameters m∗ = 4, ζ = 0.5, ω0/ω = 2. Concerning the net power coefficient, Fig.4.20(a), in
the examined range of parameters, it varies from ηP = 7.5% to ηP = 33.3% with greater values
at larger frequencies of the foil’s pitch, obtaining its maximum value at ωΘ/ω = 2. On the
other hand, the angle of attack, Fig.4.20(b), and the heaving amplitude, Fig.4.20(c), follow, in
general, the opposite trend. The reduction of heaving amplitude response at large frequencies
is common, even in purely linear oscillators, and can be predicted also by linear theory in
infinite domain, as shown by Zhu et al. (2009), Fig. 4 (a). The increase in the power extraction
coefficient at large frequencies, is also reasonable and have been noticed by Zhu et al. (2009),
Fig. 4 (c). This can be explained by the fact that when the pitching frequency raises the system
operates in much smaller vertical regions (due to the smaller induced heave amplitude) while
the absorbing power increases, and in the same time the pitching power cost is still not large
enough; see e.g. Zhu et al. (2009), Fig. 5.

Moreover, in Fig.4.20, we observe that there are two maximum values of the efficiency located
at regions where pitching frequency is integer multiple of the wave frequency as expected
because the system is excited by two different frequencies. The global maximum of the power
extraction coefficient ηP = 33.3%, Fig.4.20(a), is obtained at the vicinity of ωΘ/ω = 2 and
ψ = −90◦, where the maximum angle of attack equals α0 = 7.5◦ attaining reasonable values,
Fig.4.20(b), and the heaving amplitude is rather small Z0/c = 0.32, Fig.4.20(c). Another local
peak is noticed for ωΘ/ω = 1 and ψ = −40◦, however the value of the net power extraction is
less ηP = 20%, corresponding to larger (still reasonable) angle of attack α0 = 9.6◦, and much
larger heaving amplitude Z0/c = 0.67. For both the above cases, ωΘ/ω = 1, 2, the phase
difference ψ between pitching motion and the waves adjusts the angle of attack α0, Eq.(46) of
Filippas et al. (2018), and larger power extraction is obtained when ψ maximizes the angle of
attack α0, Fig.4.20(a, c). In the sequel we will focus on cases corresponding to the region of
the global maximum of ηP, where larger amounts of energy can be extracted by the examined
system, with reasonable values of the angle of attack.

In Fig.4.21 we demonstrate the effect of the amplitude of pitching motion ωΘ/ω = 2 for
ωΘ/ω = 2 and the phase difference between foil’s pitch and the waves selected in the re-
gion where the global maximum appears ψ ∈ [−90◦, 40◦]. In the region of the parameters
studied here, we observe a monotonic increase in ηP, α0, Z0 (see Fig.4.21(a,b,c) respectively)
as θ0 increases, for the whole interval of ψ, with the maximum of the net power extraction
reaching the level of ηP = 53.5%, for θ0 = 25◦ and ψ around −100◦. That monotonic behavior
is expected and has been noticed by other researchers, using either linear theory or BEM, in
infinite domain, see e.g. Zhu et al. (2009), Fig.6. In this case, the maximum angle of attack at-
tains moderate value α0 = 11.4◦ and the heaving amplitude is Z0/c = 0.59, indicating that the
biomimetic wave-current energy device would lead to significant power output with proper
selection of the control parameters. Although, in a realistic setup a pitching amplitude
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(a)

(b)

(c)

Figure 4.20: Contour plots of a) ηP, b) α0 and c) Z0 as functions of pitch frequency ωΘ and pitch-
wave phase difference ψ for specific Strouhal number St = ω

√
h1/g, pitch amplitude θ0 = 15◦,

oscillator parameters m∗ = 4, ζ = 0.5, ω0/ω = 2 and other parameters as in Fig.4.19.
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(a)

(b)

(c)

Figure 4.21: (a) Average net power extraction ηP, (b) maximum amplitudes of the effective angle
of attack α0, and (c) heaving amplitude Z0, as functions of ψ and θ0 for ωΘ/ω = 2 and other

parameters as in Fig.4.19.
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of θ0 ≥ 25◦ corresponding to a moderate amplitude of the angle of attack (α0 = 11.4◦) seems a
reasonable choice, in the present study a more conservative selection is used θ0 ≥ 25◦ = 15◦,
resulting in lower maximum angle of attack (α0 = 7.5◦) and preventing flow separation and
dynamic stall effects.

4.5.4.3 Investigation of the environmental parameters

In the final section of the present chapter we examine the effects of the incident wave-current
field and the mean vertical position of the foil on the performance of the system in the shoaling
environment of Sec. 2.2 in Filippas et al. (2018). As before, the Strouhal number of the incident
wave is St = 0.4, the foil’s pitching motion parameters are ωΘ/ω = 2, θ0 = 15◦, and the
sheared current characteristics are Fd = U/

√
gh1 = 0.05, Smax = 0.05s−1. Also, the oscillator

parameters are m∗ = 4, ζ = 0.5, ω0/ω = 2. In Fig.4.22 the effect of the wave amplitude
H/(2c) on the operation of the system is shown, for a range of foil-wave phase difference ψ. In
Fig.4.22(a) we observe that the net power coefficient varies from ηP = 27% to ηP = 38% with
the global maximum at a region where the angle of attack becomes α0 = 15◦.

It is noticed that, with proper selection of the phase difference between the waves and foil’s
pitch, with optimum value around ψ = −90◦, the power extraction coefficient remains above
ηP = 33% for any wave amplitude H/(2c) in the studied interval. In the previous optimum re-
gion, smaller angle of attack and heaving response are obtained (see Fig.4.22(b,c) respectively)
when wave amplitude decreases, without loss in power extraction efficiency. Concerning the
induced heave amplitude Z0 and the resulting angle of attack α0 in general they increase along
with the wave amplitude and this is reasonable because greater amounts of environmental en-
ergy is transformed to heaving motion, resulting also greater angles of attack in an amount
that depends on the adjustment of the foil-wave phase difference ψ (see also the relevant dis-
cussion in the previous paragraph and the definition of the effective angle of attack in Filippas
et al. (2018), Eq.(46)). Searching deeper, the effect of the phase difference ψ, in the region about
ψ = −90◦, pitching excitation leads to a heaving response at a phase difference of 180◦ with
the wave, i.e. foil’s vertical velocity is in opposite direction to the corresponding wave velocity,
resulting to greater angles of attack and smaller heaving amplitudes due the waves. Again in
the aforementioned case (ψ = −90◦) the system operates in a smaller vertical region and with
significant power extraction due to the adequate values of the angle of attack and concurrently
the pitching power cost is still not large enough, explaining the maximum values of the net
power coefficient in that region, see Fig. 4.22(a). A significant benefit of flapping-foil energy
devices arises from their ability to operate in relatively small vertical region in comparison with
conventional flow turbines. In this way they support the design of multicomponent systems
with many horizontal foils in parallel arrangement increasing in this way the performance of
such enhanced biomimetic systems; see e.g. Rozhdestvensky and Ryzhov (2003), Fig. 2 and
Wu et al. (2015).

Next, in Fig.4.23 for the same set-up and ψ = −90◦, the effect of incident wave frequency ω and
pitching frequency ωΘ are examined. It is illustrated that for waves with frequencies less than
ω/ω0 = 0.95 the local maxima of the net power extraction are located around ωΘ/ω = 2 (in-
dicated by the dashed line in Fig.4.23(a)). For comparison, the cases studied so far correspond
to ω/ω0 = 0.5 and ωΘ/ω0 = 1.
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(a)

(b)

(c)

Figure 4.22: Contours of (a) ηP, (b) α0 and (c) Z0 for varying wave height H and foil-wave phase
difference ψ for ωΘ/ω = 2 and other parameters as in Fig.4.19.
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(a)

(b)

(c)

Figure 4.23: Contours of (a) ηP, (b) α0 and (c) Z0 for varying wave frequency ω and pitching
frequency ωΘ and other parameters as in Fig.4.19.
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An interesting result is that there exists a region for ω/ω0 > 0.95 close to ωΘ/ω0 = 1 (shown
by a dashed circle in Fig.4.23(a)) where high levels of power extraction ηP > 40% are achieved
with very small angles of attack α0 < 6.5◦ and moderate heaving amplitude Z0/c < 0.45 (see
Fig.4.23(b,c) respectively). The peaks in the responses (heaving response Z0, resulting angle
of attack α0, power extraction coefficient ηP ) appearing at ωΘ/ω = 1 and ωΘ/ω = 2 can be
physically interpreted using the basic principles of the theory of dynamic systems and linear
hydrofoil theory. First of all, the lift actuating the heaving oscillator (right hand side of Eq. (46)
in Filippas et al. (2018),) can be decomposed in the context of linear theory into (i) terms that
oscillate with pitching frequency ωΘ; see e.g. Zhu et al. (2009), Eq. (5)), and (ii) other terms os-
cillating with the wave frequency ω. Therefore, the present system response peaks are expected
for pitching frequency near an integer multiple of the wave frequency, which is reasonable for
dynamical systems under bichromatic excitation. Moreover, the oscillatory behavior of the re-
sponses in the vicinity of ωΘ/ω = l, l ∈ N, (as e.g. for the case of ωΘ/ω = 2 which is also
clearly illustrated in Fig.4.24) is justified by the appearance of parametric resonance. In fact,
analyzing again the developed lift force on the foil, by means of linear hydrofoil theory (see e.g.
Zhu et al. (2009), Eq. (5)), terms proportional to heaving acceleration are observed, oscillating
with pitching frequency ωΘ, which are clearly added mass terms. The rest excitation forces
contain the lift induced by the waves, which is therefore at frequency ω. Thus, the added mass
of the system (and consequently, its natural frequency) oscillates at ωΘ which is responsible for
the manifestation of parametric resonance phenomena; see, e.g. Fossen and Nijmeijer (2011). A
more detailed investigation of the above linear and non-linear aspects concerning the dynamic
behavior of the present system will be subject of future work.

Finally, in Fig.4.24 the effects of shear on ηP, α0 and Z0 are presented, for three values of the
hydrofoil mean submergence depth d. We observe in Fig.4.24(a,c), that the performance ηP and
the amplitude of heaving motion Z0 present a linear increase with maximum shear coefficient
Smax, due to the increase of the local current velocity near the foil with Smax. As noted in
Fig.4.24(a), for d/c = 2 when Smax increases from 0.05s−1 to 0.1s−1 the Froude number near the
foil Ff oil foil takes values from 0.12 to 0.134. With the present selection of the parameters, and
especially the phase difference ψ, incident waves have positive effect on total power extraction.
However, as also demonstrated in Fig.4.24, as the foil submergence depth increases, the power
output of the present system decreases, due to the decay in depth of water waves.

To summarize, in the present feasibility study it is demonstrated that using biomimetic sys-
tems in the examined arrangement significant energy can be extracted from sea currents and
the efficiency of the device can be further enhanced by exploiting wave energy. In particu-
lar, for moderate values of the wave-frequency parameter St = 0.4, significant efficiency can
be achieved for both equal wave and pitching frequencies ωΘ/ω = 1 and in the case where
the two input frequencies are different ωΘ/ω 6= 1, depending on the environmental condi-
tions. An evidence is given that the local maxima of the efficiency are obtained when pitching
frequency is an integer multiple of the wave frequency. Also, optimal values of the phase
difference between pitching motion and waves, for the studied setup with ωΘ/ω = 1, 2 are
identified near ψ = −40◦,−90◦, respectively. Moreover, in the region of the studied parame-
ters, an increase in pitching amplitude θ0 results in monotonic increase of efficiency, and the net
power extraction may reach the level of ηP = 53.5%, for θ0 = 25◦ and ψ around −100◦. Even
for smaller pitching amplitude θ0 = 15◦, preventing large angles of attack and avoiding flow
separation and dynamic stall effects, it is demonstrated that the performance remains good of
the order 35%. Furthermore, examining the effect of the wave amplitude together with the
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(a)

(b)

(c)

Figure 4.24: Effects of shear Smax and foil’s mean submergence d on (a) ηP, (b) α0 and (c) Z0 for
St = 0.4, ωΘ/ω = 2 and ψ = −90◦ and θ0 = 15◦ with other parameters as in Fig.4.19.
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wave-foil phase difference, it is observed that with proper selection of ψ (e.g., ψ = −100◦,
for ωΘ/ω = 2) the power extraction coefficient remains significant ηP ≈ 33% for any wave
amplitude, providing robust operation of the system. For higher values of the wave frequency
0.4 ≤ St ≤ 0.9, a very important observation is that a region exists close to ωΘ/ω = 1 where
high level of power extraction ηP = 40% is achieved with very small angles of attack α0 < 6.5◦

and moderate heaving amplitude Z0/c < 0.45. The identification of such regions of optimum
operation is important for the design of the studied biomimetic energy device.

4.6 Remarks and conclusions

In the last part of the present thesis the fully nonlinear time domain method for the general
unsteady problem of flow around lifting bodies of general shape beneath the free surface is
extended to treat problem in the presence of nonlinear oblique waves. Although, the problem
of the system could be treated by the method presented in Chapter 3 using a classical numerical
wave tank, a more efficient approach is selected for the following reasons. In the context of the
present approach, the body operates in the fully developed wave-field from the beginning of
the simulation and no time is necessary to pass for the wave to reach from the wavemaker to
the region of operation of the system. Moreover, with the present approach an initial guess
of the whole wavefield in space-time domain is exploited to accelerate the convergence of the
iterative procedure that is used at a specific timestep to solve the fully nonlinear problem. By
using the initial guess only the evolution of the corrector fields is necessary to be calculated
by the time-integration of the dynamical system by exploiting the known initial guess and
the total fields known from previous timesteps. The initial guess could be a simple, e.g. a
Stokes wave in the absence of a body, or the solution of the problem including the body but
with linearised free-surface boundary conditions. For these reasons, the present method and
the GPU code could serve for efficient the assessment, preliminary design, optimisation and
control of the studied systems.

The method is applied to the hydrodynamic analysis of foils in waves. Results are obtained,
illustrating the superior numerical performance of the developed method and the GPU code
and the accuracy of the method is tested through comparisons with other methods and exper-
imental data. Numerical predictions for the thrust coefficient of the flapping hydrofoil operat-
ing beneath the free surface and in waves indicate that the present system, after experimental
verification, could be exploited for efficient wave-devouring thrust production.

Moreover, the problem of augmentation of the ship’s main propulsion in waves is studied and
results are presented in Sec.4.5.3. The present method is applied to the hydrodynamic analysis
of flapping hydrofoils operating beneath the free surface, in the presence of irregular incident
waves, taking into account the coupling between the hull motion and the flapping foil dynam-
ics. We consider operation of the hydrofoil in head waves characterized by a given frequency
spectrum, corresponding to specific sea states. The transfer function from sea wave spectra
to energy spectra of vertical foil motion is based on the Response Amplitude Operator of the
coupled system at the exact longitudinal location of the flapping wing. Numerical results con-
cerning the thrust coefficient are presented, indicating that significant thrust can be produced
and that the free surface effects are important concerning the overall performance of the sys-
tem. Thus, the present method can serve as a useful tool for the preliminary design, assessment
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and optimum control of such biomimetic systems extracting energy from sea waves and aug-
menting marine propulsion.

Furthermore, the performance of biomimetic energy systems in the presence of waves and
currents are studied for the exploitation of combined renewable marine energy sources in
nearshore and coastal regions in Sec.4.5.4. The present method takes into account the effect
of the wavy free surface and the variable bathymetry through the satisfaction of the corre-
sponding boundary conditions, as well as the velocity component due to waves and sheared
currents with linear vertical profile on the formation of the incident flow. An example of the
system operating over a variable bathymetry region of the form of smooth shoal is consid-
ered and a wide range of parameters is studied including the velocity of the current and the
shear, the frequency and the amplitude of the incident waves, the mean submergence of the
foil, the pitching amplitude, phase difference with respect to the waves and corresponding fre-
quency that can be different from wave frequency. Numerical results concerning the extracted
power and the operability characteristics of the system are presented, indicating that signifi-
cant output can be obtained and the improvement due to wave energy extraction is significant.
The present method could be found useful for the design and control of such biomimetic sys-
tems operating in the nearshore/coastal region and extracting energy from waves and ambient
sheared currents.

Future extensions include the systematic investigation of and optimisation of the foil geom-
etry and motion and the study of multicomponent foil devices. Furthermore, full treatment
of 3D effects is important for studying various additional parameters including the effects of
directional seas and the interaction with the hull and other appendages. Another important
direction for future work is the investigation of elasticity effects on foils performance in waves.
Concerning the energy extraction from waves and currents, future work includes the examina-
tion of non-harmonic pitching motion and irregular waves. Very important for that system is
also the investigation of the performance of enhanced biomimetic energy systems such as mul-
ticomponent flapping-foil arrangements and large arrays of devices in specific locations. Direct
extension of the method could be a fully Lagrangian approach for the tracking of the surface in
nearly breaking conditions. Breaking of waves and cavitation and detailed analysis of viscous
effects could be treated by means of higher-fidelity CFD tools and efficient viscous-inviscid
interaction approaches. Another direction deals with the implementation of high-order BEMs
using B-Splines or NURBS for the representation of the geometry and the unknown distribu-
tions of singularities on the boundary, accelerating the convergence and leading to increased
numerical efficiency. The above problems increase significantly the computational require-
ments and in some cases more resources than a single GPU may be required. That difficulty can
be cost-efficiently tackled using shared memory multi-GPU systems or even large multi-GPU
clusters on HPC platforms using MPI for inter GPU communication. Finally, a very interesting
direction for future research includes the experimental demonstration and investigation of the
present systems at model scale.
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Conclusions and suggestions for future
research

The main objective of this thesis is the development of a method and a high performance com-
putational code to treat the fully nonlinear problem of lifting flows around bodies beneath the
free surface in oblique waves and the exploitation of the method for the hydrodynamic analysis
of ship and marine biomimetic systems in waves.

The motion and the geometry of the body are general, thus no linearisation has been applied.
For simplicity in the description, in the present work the body motion is assumed to be pre-
scribed, however the method has been extended to solve problems that include free motions
of finite degrees of freedom (Filippas et al. 2018; Koutsogiannakis 2019). Also, research on
elastic foils of infinite degrees of freedom is already in progress; see e.g. Priovolos et al.
(2018) and Anevlavi (2019). The dynamics of the wake are also not linearised and the evo-
lution of the wake is obtained in the context of a time-stepping method. Concerning the free-
surface boundary conditions, no smallness assumptions are made and the present approach
is a non-pertubative one. In specific cases, the additional effects of shear currents and general
bathymetry are included in the modeling.

The coupling between the free-surface and the lifting body-wake dynamics is implemented
in a strong explicit manner. The formulation of the problem is based on the potential theory
while the boundary integral equations and the kinematics of the problem are exploited to set
up a linear boundary integral constraint. Additionally, the dynamics of the free-surface and
the pressure-type Kutta condition are used to set up the dynamical-system equations. The re-
formulation of the initial boundary value problem (IBVP) to a boundary integral formulation
is performed and the extended Dirichlet-to-Neumann (DtN) operator is obtained in the form
of a weakly singular boundary integral equation (BIE). The spatially discretised form of the
dynamic system and the extended DtN is obtained by means of BEM, collocation, curvilin-
ear finite difference method (CUFDM), deducing in this way a system of 1st-order (spatially
and temporarily) nonlocal differential equations, with explicit and implicit nonlinearities and
linear algebraic constraints. A time-stepping method is then implemented, based on the time
integration of the nonlinear constrained system of evolution equations. High-order multistep
time-integration schemes, that belong to the family of Runge Kutta methods for 1st-order sys-
tems, are exploited for the solution. Explicit high-order methods, with extended stability man-
ifold, are used in general, while implicit schemes, that are theoretically A-stable, are selected
when the system is stiff, implemented via a Newton-Raphson general iterative scheme, with
the Jacobian calculated numerically with 2nd-order central finite differences (Filippas et al. 2018;
Priovolos et al. 2018). It is worthwhile to mention that the present formulation and the analysis
that have been performed enabled the selection and storage of data in relatively small data
structures that is important for efficient memory management in the programming.
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For the numerical solution of the fully nonlinear, 3D and unsteady problem a computational
code is developed, exploiting parallel programming techniques and general purpose program-
ming on graphics processing units, using the CUDA C/C++ API. The combination of the
aforementioned formulation (see also Sec.2.4) and the GPGPU programming supported the
development of the efficient (in terms of both time and space complexity) high performance
computational code.

Concerning the special treatment of flow around lifting bodies in waves presented in Chapter
4, although the problem of the system could be treated as discussed in Chapter 3 by means of
a classical numerical wave tank, a more efficient approach is selected, as demonstrated by the
calculations and the discussion in the concluding section of Chapter 4.

The importance of free-surface and 3D effects, nonlinearity as well as the superior performance
of the developed GPU code in the case of 3D foils in oblique waves, are illustrated. The prob-
lem of augmentation of the ship’s main propulsion in waves is studied. The present work
can be exploited for the design and optimum control of biomimetic systems extracting energy
from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction
of ship responses offering also dynamic stabilization. Moreover, a semi-activated biomimetic
energy device, with imposed pitching motion and induced heaving motion in harmonic inci-
dent waves and flow is proposed and a feasibility study is conducted. The present method
can be applied to the design and optimum control of such biomimetic systems operating in
the nearshore/coastal region and extracting energy from waves in the presence of ambient
currents.

As already mentioned in the main part of this manuscript, our formulation opens several di-
rections of research both in the enhancement of the method and in the application of marine
biomimetic devices, some of which are already in progress. We shall summarize bellow some
important points that deserve future attention.

The treatment of leading edge separation and dynamic stall effects would extend method’s ap-
plicability to operation conditions corresponding to large angles of attack. Also, friction resis-
tance could be taken into account using boundary layer theory (Papadakis, 2014; Riziotis and
Voutsinas, 2007) and experimental and empirical coefficients. Direct extension of the method
could be a fully Lagrangian approach for the tracking of the surface in nearly breaking condi-
tions. Breaking of waves and cavitation and detailed analysis of viscous effects could be treated
by means of higher-fidelity CFD tools and efficient viscous-inviscid interaction approaches.

All the above extensions would provide in the future even better comparison with experi-
mental measurements, and support the derivation of systematic results for the detailed inves-
tigation of various arrangements of flapping hydrofoil systems operating in stationary fluid
or in nonuniform background fields. Moreover, the experimental and numerical study of the
self-propulsion problem of a ship with biomimetic flapping foil propulsors is of the utmost im-
portance. That could be achieved using a viscous CFD method for the estimation of the wake
where the foil operates. Then the wake could be approximated by a weakly rotational back-
ground field and the performance of the foil would be examined using the present method
developing an iterative CFD-BEM coupling method. Another quite efficient and more accu-
rate approach for the modeling of the biomimetic propulsor would require the combination
of the present unsteady three-dimensional nonlinear BEM, a boundary layer solver and self-
propelled equations of motion; see e.g. Moored (2018), where the problem of a self-propelled
foil in uniform flow is studied. In that work the importance of high amplitude motions in
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the propulsive efficiency of the system is underlined, rendering our fully nonlinear method
appropriate for the study the problem of self-propulsion of marine vehicles.

Furthermore, future extensions include the systematic investigation and optimisation of the
foil geometry and motion and the study of multicomponent foil devices. Furthermore, full
treatment of 3D effects is important for studying various additional parameters including the
effects of directional seas and the interaction with the hull and other appendages.

Also the effects of chordwise and spanwise elasticity could improve the performance of the
studied biomimetic systems, as have been demonstrated in our work (Priovolos et al. 2018)
and in the diploma thesis of Anevlavi (2019) and in references cited there.

Concerning the energy extraction from waves and currents, future work includes the examina-
tion of non-harmonic pitching motion and irregular waves. Very important is also the inves-
tigation of the performance of enhanced biomimetic energy systems, such as multicomponent
flapping-foil arrangements and large arrays of devices in specific locations.

Moreover, biomimetic systems extracting wave energy operate in stochastic and nonuniform
environment, therefore proper control of their motion is required. In the case of a wave-foil
attached to ship hull a simple proportional control law is used and in the case of energy ex-
traction from wave and currents a prescribed harmonic motion of the control pitching signal is
examined. An important direction for future work would be the development of more sophis-
ticated setups with feedback control, employing techniques of adaptive and nonlinear or even
optimal control.

Another direction could be the implementation of high-order BEMs using B-Splines or NURBS
for the representation of the geometry and the unknown distributions of singularities on the
boundary, accelerating the convergence and leading to increased numerical efficiency; see e.g.
Ning and Teng (2007), Ginnis et al. (2014), Abbasnia et al. (2017).

Furthermore, the problem of flapping foil in fully non-linear water waves can be treated in
the context of the method described in Sec.4. Part of the lateral boundary could model a 3D
wavemaker.

The above problems significantly increase the computational requirements and in some cases
more resources than a single GPU may be required. That difficulty can be cost-efficiently tack-
led using shared memory multi-GPU systems or even large multi-GPU clusters on HPC plat-
forms employing MPI for inter GPU communication.

Finally, a very interesting direction for future research includes the experimental demonstra-
tion and investigation of the present systems at model scale.
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