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ABSTRACT 
 

 
 The subject of this thesis is the development of a method for the dynamic synthesis, 

design and operation (SDO) optimization of ship energy systems. 

 The common practice of synthesis, design and operation of energy systems, especially 

in the marine industry, is usually based on previous experience and rule-of-thumb criteria. 

Furthermore, the system is often designed at full load and steady state operation is 

assumed, while the off-design or dynamic behavior is considered only after the system is 

fixed.  

 The subject of this research activity is the determination of techno-economic optimal 

solutions for the SDO of marine energy systems, in order to fully cover the various energy 

demands for propulsion, electricity and thermal energy. Real‒life dynamic elements such 

as time and space varying operational requirements with respect to weather conditions and 

time varying loads are incorporated to the performance models of the components and 

consequently to the performance of the integrated ship energy system, thus producing a 

purely dynamic optimization problem.  

 For the development of the appropriate methodology, special attention is given to the 

construction of a superconfiguration that depicts all the available synthesis options and the 

possible interconnections among components. Α mixed integer modeling procedure that 

views the system as a whole is applied; integer, invariant and continuous variables are used 

for modeling the levels of synthesis, design and operation, respectively. The general 

problem is then stated using a Differential Algebraic Equation (DAE) formalism, while 

appropriate dynamic optimization procedures, combined with mixed integer nonlinear 

programming, are developed and applied. This leads to the formulation of a methodology 

which, in contrast to the majority of methods appearing in the literature, can be 

characterized as a single‒level approach that treats the synthesis, design and operation 

levels simultaneously and requires no applicability conditions for decomposition, thus can 

be considered universal in the context that it can be applied to any dynamic SDO 

optimization problem. 

 Finally, the applicability and efficacy of the proposed method is demonstrated via the 

solution of several realistic case studies. Furthermore, the effect of certain technical and 

economic parameters on the optimal solution is studied via sensitivity analysis for each 

case study. The results provide interesting insights concerning the optimal SDO of marine 

energy systems and prove the suitability of the proposed modeling and optimization 

procedure for these types of problems. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Scope of the Thesis  

 
 The objective of this thesis was the development of a method for the dynamic 
synthesis, design and operation (SDO) optimization of ship energy systems, under the 
assumption of a fixed route of the ship, while time varying operational requirements with 

respect to weather conditions and loads are also considered. The aforementioned three 
levels of optimization are defined as follows [Frangopoulos (1991a, b), Frangopoulos 
(1992), Frangopoulos et al (2002)]: 
 

1. Synthesis : The term “synthesis” implies the components that appear in a system and 
their interconnections. 

2. Design: By the word “design”, the technical characteristics (specifications) of the 

components and the properties of the substances entering and exiting each component 
at the nominal load of the system are implied here. The nominal load is usually called 
the “design point” of the system. 

3. Operation: With the term “operation”, the operating properties of components and 
substances (speed, power output, mass flow rates, pressures, temperatures, 

composition of fluids, etc.) under specified conditions are implied. 
 
 One may argue that design includes synthesis too. However in order to distinguish the 
various levels of optimization and due to the lack of a better term, the word “design” will 

be used with the particular meaning given here. For a system, once the synthesis is 
specified, then, optimization is possible at the design and operation levels. If both synthesis 
and design characteristics are defined, the optimization is carried out at the operation level. 
The fact that, for marine energy systems, numerous alternatives exist in terms of synthesis 

and design options, as well as operational strategies, makes the SDO problem a rather 
complex one. 
 In order to cover the overall energy demands of a vessel, energy systems onboard 
ships are required to produce energy of several forms (e.g. mechanical, electric, thermal), 

while at the same time being completely autonomous and cost effective. Therefore, while 
searching for the optimal overall energy system for a vessel, the designer must take into 
account several factors such as: the need for energy efficiency in order to minimize 
operational costs, various safety requirements as well as legislation requirements 

considering emissions and operational flexibility, in order to be able to cope with the 
varying requirements of the mission.  
 Furthermore, once the time dependency of certain parameters (e.g. time varying 
energy demands and weather conditions along the trip) is taken into consideration and 

modeled accordingly in the already complex SDO problem, further complications are 
introduced. 
 Time‒dependent optimization problems of energy systems can be classified as 
follows:  

 
1. Intertemporal static optimization problem, where the time horizon of the system's 

operation can be divided into distinct periods of steady state operation (intervals) with 
conditions that differ from period to period. The periods are independent from each 

other and the problem can be treated as a series of static optimization problems. This 
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type of problem is also characterized as quasi‒static or quasi‒stationary in the 
literature [Rancruel and Spakovsky (2003), Munoz and Spakovsky (2003)]. 

2. Dynamic optimization problem, where each operating point in time affects all other 

operating points in time. These problems are treated with dynamic optimization 
methods. Two distinct types of problems may exist: 

a) Intertemporal dynamic problem where the time horizon of the system's 

operation can be divided into distinct periods of steady state operation 
(intervals) with conditions that differ from period to period. The operating 

point in a certain period affects and is affected by the operating points of other 
periods. Thus, interdependency among periods exists; the problem is then 
inherently dynamic.  

b) Optimization of transients problem, where one or more components of the 

system are described by transient behavior, i.e. changing from one operating 
point to another operating point, which is under optimization. This is 
characterized as a trajectory/optimal control problem in the dynamic 
optimization literature [Wozny and Li (2000), Bausa and Tsatsaronis 

(2001a,b), Ko et al. (2008), Saerens et al. (2008)]. 
 

 Regarding the term intertemporal, it is used here with the following meaning: 
Intertemporal optimization is an optimization that takes into consideration the various 

operating conditions that a system encounters throughout its life-time, and determines the 
operating point at each instant of time that results in the overall optimal value of the 
general objective function. 
 Considering the case (2b), a simple example of such a problem in the area of marine 

engineering, could be the operation optimization of a marine diesel engine as it adapts 
from a certain speed of the vessel to an increase or a decrease of that speed. It is noted that, 
the transient operation/behavior of one or more components of the system may be included 
in an intertemporal static or an intertemporal dynamic problem. However, in the first case, 

the transient performance of a component is only simulated within each period of operation 
and not optimized. In the second case it can be either simulated or even optimized.  
 This study concerns problems of type (2a) only, where the true dynamic nature of the 
system is taken into account. The transients have not been considered, because they last for 

very small periods compared with the whole operating time of the system. 
 
 Under all the above considerations, the general (intertemporal) dynamic SDO problem 
can be summarized in the following question: 

 
"What are the optimal synthesis, design characteristics and operational profiles of a 
system that covers all the varying energy needs of a ship (propulsion, electric, thermal) 
under known weather conditions along a specified route?” 

 
 In order to efficiently tackle this question, the designer must employ mathematical 
optimization techniques to determine the optimal system in a coherent, flexible and 
mathematically precise manner. Conditions changing with time affect not only the optimal 

operation, but also the optimal synthesis and design of the system. Thus, a dynamic ‒ 
mixed integer nonlinear programming problem (MINLP) is formulated, which is solved by 
dynamic optimization methods. 
 In the past decades, static optimization methods have been successfully used for the 

design of land based as well as marine energy systems, although not to the same extent. 
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However, as will be discussed in the next section, few cases of application of dynamic 
SDO optimization can be found in the literature considering land based energy systems and 
almost none in marine energy systems. This fact has served as a main motivation for the 
present work.  

 
 

1.2 Literature Review 
 

 1.2.1 Fundamental literature on dynamic optimization 
 
 Dynamic optimization methods have become a well-known research subject since the 
late 1950’s with the studies of Pontryagin and Gelfand in optimal control theory 

[Pontryagin et al. (1962), Gelfand and Fomin (1963)] and Bellman on dynamic 
programming [Bellman (1957)] and nowadays constitute a very active field of research 
with many branches. 
 Early applications of the dynamic optimization methods had to do with locating the 

optimal rocket thrust profiles in atmosphere and in vacuum [Bryson and Ho (1969), Philips 
(1988), Philips and Drake (2000)] or to solve combinatorial or multi-stage decision 
optimization problems, where the goal is to find the optimal sequence of decisions so as to 
optimize a process based on a measure of performance, such as the Travelling Salesman 

Problem (TSP) [Lawler et al. (1985), Gutin and Punnen (2006)] and the Vehicle Routing 
Problem (VRP) [Psaraftis (1988), Toth and Vigo (2001)]. 
 A thorough and complete presentation of dynamic optimization theory and available 
solution approaches is given in Chapter 2 of this thesis. 

 
 

 1.2.2 Setting the limits of the literature review 
 

 The literature on dynamic optimization is vast and extends to several scientific fields, 
thus only problems concerning energy systems are included in this literature review. 
Problems regarding optimal ship routing, fleet scheduling or optimal ship refueling (e.g. 
Norstad et al. (2011), Zhen et al. (2017)) will not be included.  

 Also, optimization of transients problems are not included. Examples of optimization 
of transients in energy systems can be found in Vassiliadis et al. (1994a, b), Bausa and 
Tsatsaronis (2001a, b), Rodriguez and Diaz (2006a, b), Kikkinides et al. (2006), Saerens et 
al. (2008). 

 Since in this study we are interested in SDO problems, in the next sections static SDO 
optimization problems for energy systems for design point only, intertemporal static SDO 
optimization problems for energy systems and intertemporal dynamic SDO optimization 
problems for energy systems are referenced. Specifically for the last category, apart from 

intertemporal dynamic complete SDO optimization problems, also intertemporal dynamic 
operation optimization and intertemporal dynamic design and operation optimization 
problems on energy systems are included. In Table 1.1 all the referenced papers, along 
with their main characteristics, are listed.  

 For a better understanding of the terminology used in the literature review a note on 
the approaches on the solution of the SDO optimization problem is first given.  
 
  

http://en.wikipedia.org/wiki/Eugene_Lawler


4 Introduction 

 1.2.3 A note on approaches to the solution of the SDO problem 
 
 A SDO optimization problem can, in general, be intractable, highly complex and 
highly dimensional subjected to time dependent operating conditions. In the past years, 

several methods\techniques have been applied in order to reformulate this initial complex 
problem into a tractable one. The main idea is to break up (decompose) the original ‒hard 
to solve‒ SDO optimization problem into a set of smaller problems, the solution of which 
coincides with or closely approaches the solution of the former. In general, three solution 

approaches of this kind can be found in the literature [for a review see Frangopoulos et al. 
(2002)]. 
 The first solution approach involves the mathematical formulation of the problem in 
several levels based on the conceptual aspects of the optimization problem, i.e. synthesis, 

design, and operation. Thus, a three‒level (synthesis ‒ design ‒ operation) [Frangopoulos 
(1990), Frangopoulos (1991a, b)] or a bi‒level (synthesis\design ‒ operation) 
[Frangopoulos (1992), Georgopoulos et al. (2002), Dimopoulos et al. (2008)] optimization 
problem is formulated. For each level, a set of variables (which is a sub-set of the total set 

of variables) is declared and an objective function (which is a part of the total objective 
function) is formed. Then, an appropriate three‒level or bi‒level algorithm is applied, 
which optimizes each level separately, while at the same time keeping them interrelated by 
setting up an iterative procedure among the several levels of optimization until the global 

optimum for the total objective function is found. 
 Another common solution approach takes advantage of the structure of the system by 
separating it into a set of interconnected units (subsystems, components) while at the same 
time considering the system as a whole [Frangopoulos (1991a, b), Frangopoulos (1992), 

Munoz and von Spakovsky (2001a, b), Georgopoulos et al. (2002), Munoz and von 
Spakovsky (2003), Oyarzabal et al. (2004)]. As in the case of the first solution approach, 
for each unit and for the system level a subset of the total set of variables and an 
appropriate objective function are declared. Then the respective sub-problem of each unit 

is optimized, for its respective set of variables, while the overall problem at the system 
level is optimized for the system level set of variables. 
 The final solution approach tackles the time dependent nature of the problem by 
dividing the time horizon of the operational optimization problem of the system into 

distinct periods (intervals) of steady state operation. In this way, a series of sub-problems 
(quasi‒stationary sub-problems) is defined and an intertemporal static SDO optimization 
problem is formed. Then, these ‒independent of each other‒ periods of operation are 
optimized individually with respect to a set of operation variables and the results are 

summed over all intervals. [Frangopoulos (1992), Munoz and von Spakovsky (2001a, b), 
Rancruel and Spakovsky (2003), Dimopoulos and Frangopoulos (2008)]. 
 It should be clarified that the aforementioned solution approaches are not always 
applicable to every SDO optimization problem; depending on the problem, decomposition 

conditions must be fulfilled in order to apply them correctly. Furthermore, it is noted that 
there may be cases where more than one of these techniques can be applied simultaneously 
in a single SDO optimization problem. In fact, in the rest of this literature review several 
studies where this is the case, are presented. 

 
 

 1.2.4 Static SDO optimization of energy systems considering design point only 
 

 Synthesis, design and operation (SDO) optimization of energy systems has grown into 
a research area of great interest in the past 20‒30 years. The common practice of synthesis 
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and design of energy systems, especially in the marine industry, is usually based on 
previous experience and rule-of-thumb criteria of the designer and the system is often 
developed at full load steady state operation, while its off-design behavior is considered 
only after the system is fixed. However, the continuous attempt for better fuel utilization 

and reduction of the adverse effects on the environment leads to more and more complex 
and integrated systems. Past experience alone is not sufficient for the optimal design and 
operation of these systems, while the availability of a multitude of alternative 
configurations makes it rather impossible to study all of those one by one and select the 

best one. Thus, the formal application of mathematical optimization techniques becomes 
necessary. 
 Several methodologies have been developed [Frangopoulos et al. (2002)] and many 
studies of SDO optimization can be found in the literature in different scientific areas. In 

Pelster et al. (2001) a thermo-economic environomic methodology that facilitates synthesis 
and design optimization is presented and applied to a 50 MW cogeneration combined cycle 
power plant. A single‒level approach that applies a Struggle Genetic Algorithm (Str-GA) 
is used for the solution of the problem. Another study in which the synthesis and design 

levels of optimization are treated via a single‒level algorithm can be found in Mussati et al. 
(2004), where the synthesis and design optimization of a dual purpose desalination plant is 
examined. A superconfiguration1 is used in order to model all available synthesis options 
and a MINLP model is developed. Another example where a superconfiguration is used 

can be found in Sun et al. (2017). In this study, a site utility system is optimized for cost 
minimization and again the SDO aspects of the system are tackled in a single level. Also 
time and probability based uncertainties are considered. In Calise et al. (2007) the optimal 
synthesis and design of a hybrid solid oxide fuel cell ‒ gas turbine power plant is 

investigated. For the operation level full load is considered and again a single‒level 
approach for the synthesis – design levels is adopted, while a genetic algorithm is used for 
the solution of the optimization problem. 
 However, not all studies utilize a single‒level approach. In Tofollo (2014) the optimal 

synthesis and design of a set of Rankine cycles forming an energy system that 
absorbs/releases heat at different temperature levels and converts part of the absorbed heat 
into electricity is examined. For the solution of the problem a bi–level hybrid 
evolutionary/Sequential Quadratic Programming (SQP) algorithm is applied. The upper 

level is constituted of the synthesis of the system and is optimized via an evolutionary 
algorithm, while the lower level tackles the system design characteristics and is optimized 
via a traditional SQP algorithm. 
 A common characteristic of all these works is that only a single mode is considered for 

the operation of the system. Thus, optimization at the operational level is meaningless and 
only the synthesis and design levels are optimized. Also, since only one mode of operation 
is considered, the time dependency of the operation cannot modeled. In the next section 
several studies which have taken further steps for modeling multiple modes of operation 

and taking into account the time dependencies of varying loads or other time varying 
parameters are presented. 
 
 

 1.2.5 Intertemporal static SDO optimization of energy systems 
 
 The earliest publications that address in a concise mathematical manner the complete 
SDO optimization problem for energy systems with time dependencies can be found in 
                                                             
1  The word ‘superstructure’ is usually used for land installations, but it is avoided here, because it  has  a 

different meaning on ships. 



6 Introduction 

Frangopoulos, (1991a), (1991b), and (1992). In these studies the optimal SDO of a 
cogeneration system supplying a process plant with heat and electricity is investigated. All 
three solution approaches that were discussed in Section 1.2.3 are applied simultaneously. 
 Specifically, in Frangopoulos (1991a) the time horizon of the problem is divided into 

independent periods of steady state operation, while a method called Intelligent Functional 
Approach (IFA) is used to analyze the system as a set of interrelated units. Furthermore, 
for the solution of the problem a three‒level algorithm is applied. At the lower level 
(operation), the system is optimized with respect to a set of operation variables in order to 

determine optimal system behavior for all time intervals. The results are then integrated 
over time and introduced in the intermediate (design) level, where for a fixed synthesis the 
system is again optimized with respect to a set of design variables. Finally, the results of 
this optimization are passed to the upper (synthesis) level, where a new choice of system 

configuration (synthesis) is made based on minimizing (or maximizing) the system’s 
objective function with respect to a set of synthesis variables. An iterative procedure is 
then set up among the three levels of optimization until the global optimum for the 
objective function is found. The same methods are applied in Frangopoulos (1991b) with 

one exception; the internal economy of the system allows for the three‒level procedure 
described previously to be simplified by combining the levels of synthesis and design into 
a single one. 
 In Frangopoulos (1992) also independent periods of steady state operation are 

considered and the Thermoeconomic Functional Approach (TFA) is applied in order to 
divide the system into a set of interrelated units. Again, a bi‒level algorithm is preferred; 
the optimal operation is determined at the lower level while the synthesis and design are 
tackled simultaneously at the upper level. 

 Other works where all three aforementioned approaches have been used include those 
in which the Local Global Optimization (LGO) and Iterative Local Global Optimization 
(ILGO) algorithms are implemented. In LGO the system is separated into a set of units and 
for each unit and for the system level a subset of the total set of synthesis/design variables 

is declared. Then the respective sub-problem of each unit is optimized, for its respective set 
of variables, while the overall problem at the system level is optimized for the system level 
set of variables. This results in a nested set of optimizations of unit level problems within 
an overall system level problem. The process is repeated many times for different values of 

the coupling functions resulting in a set of unit level optimum response surfaces (ORSs), 
the combination of which results in the system level ORS. The system level optimum is 
then found at the lowest point (if a minimization) on this surface. Based on LGO, the 
ILGO algorithm uses derivative information in the form of shadow prices (derivatives of 

the optimal value of a function with respect to certain variables) to intelligently move 
along the system level ORS towards the system level optimum.  
 In Munoz and Spakovsky (2001a) the theory behind LGO and ILGO is discussed. In 
Munoz and Spakovsky (2001b) SDO optimization of a turbofan engine coupled to an 

environmental control system for a military aircraft is performed. For the operation of 
certain units of the system time is divided into independent periods of operation. The 
ILGO algorithm is applied. In Rancruel and Spakovsky (2003) also SDO optimization of 
aircraft energy systems is performed. The ILGO optimization approach combined with a 

bi‒level optimization algorithm is implemented. Another study where the ILGO method is 
applied can be found in Georgopoulos et al. (2002), where SDO optimization of a 
stationary cogeneration proton exchange membrane fuel cell (PEMFC) based total energy 
system (TES) for residential/commercial applications is performed. 

 In Oyarzabal et al. (2004) the optimal SDO of a PEM fuel cell cogeneration system is 
investigated. The LGO algorithm is utilized. Also in Munoz and Spakovsky (2003) the trip 
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of a military aircraft that includes many phases (take-off, flight and landing) is studied 
under the scope of optimizing the SDO of its energy system. Transient operation of several 
system components is considered. Both LGO and ILGO algorithms are used for the 
solution of the problem.  

 However, not all studies involve the decomposition of the system in units via a special 
technique such as IFA or LGO. In Olsommer et al. (1999) the optimal SDO of a waste 
incineration system with cogeneration and a gas turbine topping cycle is under 
investigation for minimization of the total net present cost of the system over its entire 

economic lifetime. The time horizon is divided into independent periods of steady state 
operation and a bi‒level (synthesis/design and operation) solution procedure is applied via 
a Struggle Genetic Algorithm.  
 Also, studies that tackle only the design and operation levels can be found. In Zheng et 

al. (2017) the coordinated expansion planning of the integrated natural gas and electric 
power systems is examined. Periods of steady state operation are assumed and a bi‒level 
optimization procedure is formulated in order to minimize investment and operational 
costs. A hybrid solution approach, combining a heuristic optimization method, for the 

upper level of synthesis, and an analytical optimization method for the lower level of 
operation, is proposed. 
 Considering the domain of marine energy systems, noteworthy are the studies of 
Dimopoulos et al. and Dimopoulos and Frangopoulos. In Dimopoulos et al. (2008) the 

overall energy system of a cruise liner vessel, with various technological alternatives for 
the synthesis, is considered and optimized for cost minimization. Also, time varying 
operational requirements are considered. The time horizon of the ships’ mission is divided 
into periods of steady state operation and two levels of optimization are formulated: a 

synthesis‒design outer level and an operation inner level. In Dimopoulos and Fragopoulos, 
(2008) a Liquefied Natural Gas (LNG) vessel is considered and a detailed thermoeconomic 
model of the energy system components and the production of boil-off gas from the LNG 
cargo, which is used as the main fuel of the system, is developed. The same method as in 

Dimopoulos et al. (2008) is applied for the synthesis, design and operation optimization 
under the scope of maximizing the Net Present Value (NPV) of the investment.  
 Another study that tackles the SDO optimization of a marine energy system, 
specifically an organic Rankine cycle system, is performed in Kalikatzarakis and 

Frangopoulos (2017). The maximization of the Net Present Value (NPV) of the system is 
considered as the objective function. The time horizon of a year of operation is divided into 
periods of steady state operation and the problem is tackled by a hybrid numerical scheme 
that combines a Genetic Algorithm (GA) and the SQP algorithm. 

 A main characteristic of all the studies in the current sub-section, where the time 
dependencies are taken into account, is the hypothesis that the total period of operation of 
the energy system can be ‒and is‒ divided into a series of time intervals of steady state 
operation, independent of each other. However, this hypothesis is not always applicable in 

every SDO problem. In this case, a truly dynamic problem is formulated. In the next 
section several examples of intertemporal dynamic SDO optimization problems are 
presented. 
 

 

 1.2.6 Intertemporal dynamic SDO optimization of energy systems 
 
 A very fitting example of intertemporal dynamic operation optimization of an energy 

system can be found in Vallianou and Frangopoulos (2012). A trigeneration system, 
consisting of a gas engine with heat recovery, an absorption chiller, compression chillers 
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and two thermal storage tanks, is considered that serves the electric, thermal and cooling 
loads of a building complex. The operation optimization under load varying conditions is 
performed under the scope of minimizing costs. Also, the transient operation of certain 
system components is modeled and included in the problem.  

 In Cheng et al. (2009) the dynamic operation optimization of a large scale hydropower 
station is performed. Specifically the Hydro Unit Load Dispatch (HULD) problem is 
solved, which essentially is a question of optimal water allocation in a number of turbine 
generator sets, so as to maximize the plant efficiency for a time dependent load curve. The 

problem is solved first via dynamic programming, and then it is formulated so as to be 
solved by an evolutionary static optimization method, and the results are compared. 
Dynamic programming is also used in Marano et al. (2012), in order to solve the dynamic 
operation optimization of a hybrid power plant consisting of compressed air energy storage 

(CAES) coupled with a wind farm and a photovoltaic plant.  
 Considering marine energy systems, two very interesting studies of dynamic operation 
optimization can be found in Wang et al. (2018), Zaccone et al. (2018). Specifically, in 
Wang et al. a novel dynamic optimization method is proposed in order to optimize ship 

energy efficiency, accounting for time-varying environmental factors such as wind speed 
and direction and water speed and depth. The ship speeds at different time steps are set as 
the optimization variables and an appropriate index that models ship efficiency is set as the 
objective function. However, the ship energy system is considered to comprise only the 

propulsion engines. In the work of Zaccone et al., a 3D dynamic programming method is 
formulated in order to find the optimal path and speed profile for a ship voyage so as to to 
minimize fuel consumption. Although this example involves also weather routing, which is 
of no interest in this study, the ship speed optimization part is very interesting.  

 Moving on from only operation optimization, several studies of dynamic optimization 
where both the design and operation levels are considered can be found in the literature. In 
Mohideen et al. (1996) dynamic models and a mixed integer mathematical formulation are 
used to model and optimize a ternary distillation process via a suitable algorithm. The 

problem is solved via a single level formulation.  
 In Ondeck et al. (2017) the design and operating strategy of residential CHP systems is 
optimized in order to meet time varying energy demands. The problem is solved using a 
temporal Lagrangean decomposition method that was applicable due to the special 

scheduling nature of the problem.  
 Of course dynamic design and operation optimization studies where the problems are 
tackled in two‒levels (design ‒ operation) also exist. In Martelli et al. (2015) the optimal 
design and operation of combined heat and power Organic Rankine cycles is examined in 

order to maximize the annual profit. In Evins (2015) a multi‒objective dynamic design and 
operation problem is solved for a building energy system. The upper (design) level 
contains variables for both the design of the building and the energy system and the lower 
(operational) level contains variables that determine the energy system operation strategy 

for each time step. In Barberis et al. (2016) the dynamic design and operation optimization 
of a real smart polygenerative grid, designed to satisfy energy demands of the University 
of Genoa, Campus of Savona (Italy) is investigated. Again a bi‒level approach is used.  
 Concerning the complete dynamic SDO problem, until 2012 very few studies can be 

found in the literature. In Rancruel, (2005), Rancruel and Spakovsky (2005) the dynamic 
synthesis, design and operation optimization of a solid oxide fuel cell based auxiliary 
power unit is investigated using total life cycle costs of the system as the objective 
function. Transient operation of certain components is also considered. The solution 

approach is based on a decomposed optimization of individual units (components and sub-
systems), which simultaneously takes into account the interactions between all the units 
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which make up the overall system. The DILGO algorithm ‒which is the dynamic version 
of the ILGO algorithm‒ is applied. A problem with three levels (based on the units of the 
system) and five coupling functions is formulated. DILGO is also applied in Wang (2008), 
where dynamic SDO optimization of a 5 kW PEMFC energy system is performed. The 

same system is examined in Kim et al. (2008), (2011) with the additions of a stochastic 
modeling and uncertainty analysis methodology for calculating the uncertainties on the 
system outputs. 
 In Arcuri et al. (2015) a dynamic SDO optimization of a small size trigeneration plant 

is performed. Two levels of optimization are considered and a bi‒level optimization 
algorithm is applied. In Buoro et al. (2012) the optimal SDO for advanced energy supply 
system for a standard and a domotic home is investigated. The annual cost minimization is 
set as the objective function and the whole year of operation is modeled via 12 

characteristic days of operation. A superconfiguration is used and the problem is solved on 
a single level. Other studies that also employ the use of a superconfiguration and formulate 
a single level problem can be found in Petrushke et al. (2014), where dynamic SDO 
optimization is performed in renewable energy systems via a hybrid method that exploits 

synergies between heuristic and optimization based approaches, in Goderbauer et al. 
(2016) where a decentralized energy supply system is optimized for an appropriate cost 
function via adaptive discretization algorithm and in Zhu et al. (2017), where a large scale 
combined cooling, heat and power (CHP) system is examined. Finally, another noteworthy 

study can be found in Fuentes-Cortes et al. (2015), where multi‒objective dynamic SDO 
optimization that encompases economic, environmental and safety aspects is performed for 
residential CHP systems. 
 Considering the field of marine engineering, as aforementioned, few studies exist for 

the dynamic operation optimization of marine energy systems while no studies of 
intertemporal dynamic SDO optimization have been found. 
 
 

1.3 Original Contribution of the Thesis  
 
 In the present Thesis a general methodology is proposed that is suitable for 
formulating and solving dynamic SDO optimization problems of ship energy systems. 

Based on the literature review, very few studies of dynamic SDO optimization exist in 
general, and none in the field of ship energy systems. Real‒life dynamic elements such as 
time and space varying operational requirements with respect to weather conditions and 
time varying loads are incorporated to the performance models of the components and 

consequently to the performance of the integrated ship energy system, thus producing a 
purely dynamic optimization problem. One of the original contributions of this work is that 
it effectively deals with the complex problem of sub-system integration for dynamic 
environments as it provides a general mathematical framework, where dynamic 

optimization methods are successfully combined with SDO optimization of marine energy 
systems. 
 A key element of this general framework is the consideration of a superconfiguration 
for the energy system under optimization. This superconfiguration is a generic super‒set 

that includes all envisaged components and their possible interconnections and is in fact 
the crucial concept that allows for the synthesis optimization part to be performed. This is 
realized via a certain modeling technique adopted by the author, which considers all 
possible system components initially present at the superconfiguration of the system. The 

existence or not of each unit is then modeled via a binary variable. Then the whole 
integrated system is modeled using a general mathematical formulation so as when the 



10 Introduction 

optimizer chooses to exclude a specific component from the system, and thus set the 
corresponding binary value to 0, all accompanying equations and variables of the 
component are excluded from the problem. In that way no integer variables are present in 
the system and nested or multi‒level strategies in order to tackle with the complete SDO 

optimization problem can now be avoided.  
 From the literature review it is evident that, in the very few studies of SDO 
optimization and dynamic SDO optimization that exist, in order to solve the problem 
always certain techniques are applied that lead to the formulation of a bi‒ level or even 

multi‒level optimization procedure. However, in many cases, simplifications to the 
problems are assumed, in order for the conditions for applying these techniques to be met. 
This leads to severe reduction of the dimensional space of the problem and thus to sub-
optimal solutions. In the specific work, especially due to the highly complex interrelations 

between the components of the energy system and the dynamic nature of the problem, 
hypotheses of decomposing the energy system in units or dividing the time horizon of the 
problem into independent periods of steady state operation, cannot be made. Based on the 
technique described in the previous paragraph, combined with specifically adapted for this 

work dynamic optimization methods, a single‒level mathematical statement for the 
problem is formulated and the solution procedure is performed on a single level. The 
synthesis, design and operation aspects are all tackled simultaneously by the optimizer in 
every computational step. This means that the choices of optimal synthesis of the system, 

the optimal design characteristics of the components and the optimal operating state at 
each instant of time are all treated as interdepended to each other. This single‒level 
approach combined with dynamic optimization methods allows for capturing the true 
dynamic nature of the problem and ensures a more efficient search in the optimization 

space, which is another contribution of this work. 
 Another noteworthy aspect of the modeling procedure and formulation of the 
optimization problem lies in the flexibility that it offers to the user. Each component model 
introduced in the integrated energy system is a building block that can be easily replaced 

with a more detailed and accurate or simpler and computationally fast model or even 
completely removed. The only constriction, in the case of substituting a specific model 
with another, is that the substitute has to follow the same computational structure as the 
original. The same type and number of variables should be declared as inputs and as 

outputs. Also, the dynamic optimization method that was developed can easily be applied 
to other energy systems, not necessarily related to the field of marine engineering.  
 It is noted that the dynamic SDO optimization method proposed in this work is applied 
to several realistic case studies. The results provide interesting insights concerning the 

optimal SDO of marine energy systems and prove the suitability of the modeling and 
optimization procedure for these types of problems. 
 
 

1.4 Thesis Outline 
 
 The remaining of this Thesis is organized in five chapters. Also list of abbreviations 
and seven appendices are included. 

 In Chapter 2, the definition of dynamic optimization is clarified and a possible 
classification of dynamic optimization problems is presented. Also, a concise and complete 
presentation of all known dynamic optimization methods and approaches along with their 
advantages and disadvantages is given. Next, based on this presentation, appropriate 

dynamic optimization procedures, that will be used for the solution of the problems of this 
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Thesis, are formulated and applied in selected benchmark problems and to a trigeneration 
energy system.  
 The general formulation of the dynamic SDO problem, accompanied with a suitable 
mathematical framework, based on a generic marine energy system is presented in 

Chapter 3. Also, the concepts of the integrated energy system and the superconfiguration 
are discussed. In the presentation of the mathematical statement of the general problem, all 
synthesis, design and operation variables are formally introduced. The chapter concludes 
with the presentation of the appropriate dynamic optimization procedures and the related 

software that will be used. 
 The simulation models and processes for all components that comprise the overall 
‒generic‒ marine energy system are presented in Chapter 4. The performance of each 
component is modeled for both the nominal operating state as well as for the off‒design 

operating conditions, an essential requirement in order to properly perform design and 
operation optimization. Physical modeling, based on a first principles approach, as well as 
regression analysis based on market data, has been employed on a case by case basis, in 
order to derive accurate but simultaneously computationally efficient component models.  

 In Chapter 5 seven case studies of dynamic SDO optimization are presented and 
solved. For each case study, an appropriate mathematical statement of the problem and a 
presentation of the values of parameters (vessel characteristics, weather profile, mission 
parameters) are given. In all case studies, the problem is solved once for the nominal case 

and then sensitivity analysis is performed for several important parameters. The numerical 
results of each case study are presented and discussed.  
 Finally, in Chapter 6, concluding remarks for this Thesis are given. Also, the author’s 
views regarding future work of the subject of dynamic synthesis, design and operation 

optimization of marine energy systems are presented. 
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Table 1.1. Aspects addressed in papers on optimization of energy systems. 
(Only papers of Paragraphs 1.2.4, 1.2.5 and 1.2.6 are included) 

 

Paper 
Optimization of Intertemporal Transients 

included 

Bi-level/ 

Multi-level 
Marine 

S D O Static Dynamic 

Arcuri et al. (2015) + + +  +  +  

Barberis et al. (2016)  + +  +  +  
Buoro et al. (2012) + + +  +    

Calise et al. (2007) + +       

Cheng et al. (2009)   +  +    

Dimopoulos and Frangopoulos (2008) + + + +   + + 

Dimopoulos et al. (2008) + + + +   + + 

Evins (2015)  + +  +  +  

Frangopoulos (1991a) + + + +   +  

Frangopoulos (1991b) + + + +   +  
Frangopoulos (1992) + + + +   +  

Fuentes-Cortes et al. (2015) + + +  +    

Georgopoulos et al. (2002) + + + +   +  

Goderbauer et al. (2016) + + +  +    

Kalikatzarakis and Frangopoulos (2017) + + + +    + 

Kim et al. (2011) + + +  + + +  

Kim et al. (2008) + + +  + + +  

Marano et al. (2012)   +  +    
Martelli et al. (2015)  + +  +  +  

Mohideen et al. (1996)  + +  + + +  

Munoz and Spakovsky (2001a) + + + +   +  

Munoz and Spakovsky (2001b) + + + +   +  

Munoz and von Spakovsky (2003) + + + +   +  

Mussati et al. (2004) + +       

Olsommer et al. (1999) + + + +   +  
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Ondeck et al. (2017)  + +  +  +  

Oyarzabal et al. (2004) + + + +   +  

Pelster et al. (2001) + +       

Petruschke et al. (2014) + + +  +    

Rancruel and Spakovsky (2003) + + + +  + +  

Rancruel and Spakovsky (2005) + + +  + + +  
Rancruel, (2005) (PhD Thesis) + + +  + + +  

Sun et al. (2017) + + +      

Toffolo (2014) + +     +  

Vallianou and Frangopoulos (2012)   +  + +   

Wang et al. (2018)   +  +   + 

Wang et al. (2008) + + +  + + +  

Zaccone et al. (2018)   +  +   + 

Zeng et al. (2017) .  + + +   +  
Zhu et al. (2017) + + +  +    
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CHAPTER 2: DYNAMIC OPTIMIZATION 

 

2.1 Introduction to Optimization 

 

Optimization is the act of obtaining the best result under given circumstances or, 
expressed more formally, the process of finding the conditions that give the maximum or 
minimum value, under certain constraints, of a suitable function that serves as a 
performance criterion. Optimization has always been an integral part of the job of an 

engineer, although sometimes on small projects the cost of engineering time may not 
justify the optimization effort required. The function or functions that must be maximized 
or minimized are called objective functions. Those are functions of certain variables that 
mathematically formulate the problem and are divided into decision or independent 

variables and state or dependent variables. When performing optimization in a problem, we 
try to find the ‘optimal’ values of these decision variables that minimize or maximize the 
objective function(s). It is noted that the maximum of a function coincides with the 
minimum of the negative of the same function (Fig. 2.1). 

 
 

 
 

Figure 2.1.  Minimum of f(x) is the same as maximum of -f(x). 
 
 

The methods that seek the optimum are also known as Mathematical Programming 
Techniques and are generally considered as a branch of mathematics under the name 
Operations Research. Operations Research studies the application of scientific methods 
and techniques to decision making problems and attempts to locate the best or optimal 

solutions. Mathematical Programming Techniques are useful in finding the minimum (or 
maximum) of a function of several variables under a known set of constraints. Other 
methods that perform the same task are stochastic process techniques, that use random 
variables with known probability distributions, and statistical methods that analyze 

experimental data and build empirical models to obtain the most accurate representation of 
real-world phenomena or processes. Table 2.1 lists all those areas of Operations Research.  
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Table 2.1.  Methods of Operations Research [Rao (1996)]. 
 

 
 
 

The general optimization problem consists in determining the extremum (minimum or 
maximum) of an objective function under certain constraints. Let f represent the function to 

be minimized (objective function). Then the problem is usually stated mathematically as 
follows: 
 

 mininimize ( )f
x

x  (2.1) 

with respect to 
 

 1 2[ , , ... ]Tnx x xx  (2.2) 

 
subject to the constraints 

 

 ( ) 0,     1,..,ih i p x  (2.3) 

 ( ) 0,     1,..,jg j m x  (2.4) 

where: 
 
 x n-dimensional vector, known as decision vector and x1, x2, …, xn, the independent 

(decision) variables, 

 hi equality constraint functions (‘strong’ constraints), which constitute the 
simulation model of the system and are derived by an analysis of the system 
(energetic, exergetic, economic, etc.), 

 gj inequality constraint functions (‘weak’ constraints) corresponding to design and 

operation limits, state regulations, safety requirements, etc. 
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The number of variables n and the number of constraints m and p need not be related 
in the general case. The problem stated with the Eqs. (2.1) – (2.4) is called a constrained 
optimization problem. Problems that do not involve any constraints are called 
unconstrained optimization problems. 

 In general, engineering optimization problems can be classified in several ways, 
depending on the criterion. The classification is very useful from both the educational and 
the computational point of view, because there are many special methods available for the 
efficient solution of particular classes of problems. Certain ways of categorization are 

described in brief in the following. 
 
Constrained or unconstrained optimization: Any optimization problem can be classified as 
constrained or unconstrained, depending on whether constraints are posed in the problem.  

 
Linear, non-linear, geometric and quadratic optimization: According to the nature of 
equations in the objective function and/or the constraints, optimization problems can be 
classified as linear, non-linear, geometric and quadratic programming problems. If any of 

the functions is non-linear, we have a Non-Linear Programming Problem (NLP). 
 
Integer- or real-valued optimization: Here we have integer or real-valued programming 
problems depending on the values permitted for the design variables. If some or all of the 

independent variables of an optimization problem are restricted to take on only integer (or 
discrete) values, then the problem is called an Integer (or Discrete) Programming (IP) 
problem. If all the independent variables are permitted to take any real value, then the 
optimization problem is called a Real-Valued Programming problem.  

 The existence of integer variables in linear and nonlinear programming problems leads 
to Mixed Integer Linear Programming (MILP) and Mixed Integer Nonlinear Programming 
(MINLP) problems, respectively.  
 

Deterministic or stochastic optimization: Depending on the deterministic or stochastic 
nature of the variables, we have deterministic and stochastic programming problems. In a 
stochastic programming problem some or all the variables/parameters are probabilistic. 
 

Separable or non-separable optimization: Optimization problems can be classified as 
separable or non-separable, based on whether the objective and constraint functions are 
separable functions. A function f(x), x = (x1, x2, …, xn), is called separable, if it can be 
expressed as the sum of n single-variable functions: 

 

 
n

i i

i 1

f ( ) f (x )



x  (2.5) 

 
Single-Objective or Multi-Objective optimization: Depending on whether there is only one 

or more than one objective functions, optimization problems can be classified as single 
(SOO) or multi-objective (MOO) optimization problems. 
 
Static and Dynamic optimization: Depending on the nature of the problem, optimization 

problems can be classified as static or dynamic.  
 A static optimization problem has already been mathematically stated above in Eqs 
(2.1) – (2.4). The optimal values of the decision/optimization variables are single 
numbers/points. To the contrary, in a dynamic optimization problem, the objective function 
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and/or the constraints, thus the values of the decision/optimization variables, are 
continuous or discrete functions of time. These types of problems are called Dynamic 
Optimization Problems (DOP) and are solved by dynamic optimization methods as will be 
thoroughly presented in the rest of this chapter. 

 
 

2.2 Definition and Mathematical statement of the Dynamic Optimization Problem 

(DOP) 

 
As previously mentioned, optimization problems can be divided into static and 

dynamic. In dynamic optimization problems, the variables, objective functions, parameters 
or the constraint functions may be time-dependent. However this is not sufficient in order 

for an optimization problem to be characterized as dynamic. There are cases where a 
seemingly dynamic or time-dependent problem can be treated as a static one and tackled 
by static optimization methods. For example, we may have an energy system where the 
period of operation can be decomposed into time intervals of steady-state operation, 

independent of each other [Munoz and Spakovsky (2003), Dimopoulos et al. (2008), 
Dimopoulos and Frangopoulos (2008)]. In that case, this 'pseudo-dynamic' optimization 
problem can be solved relatively easily, since it can be decomposed into a series of static, 
independent of each other, optimization problems. A more complete definition of a 

Dynamic optimization Problem is the following: 
 
Dynamic optimization problems (DOPs) are those whose specifications change over time 
during the optimization procedure, thus resulting in the change over time of the global 

optimal values of the independent variables [Xin et al. (2010)]. 
 

The dependence over time can be continuous or discrete, based on the nature of the 
problem. The most important point to take away from the previous discussion over static 

optimization problems is that the choice of the optimal input combination is made just 
once: there is no planning for the future, nor are there future decisions to be made. This is 
exactly as the static framework of the problem dictates. In contrast, given the parameters of 
a dynamic optimization problem, its solution is a sequence of optimal decisions in discrete-

time, or a time path or curve of optimal decisions in continuous-time, over the relevant 
planning period or planning horizon.  

The optimal time path or curve is, by definition, the one that optimizes an objective 
function. The type of objective function in dynamic problems however is quite different 

from that in static problems. To clarify the form of the objective function in dynamic 
problems, let us consider Fig. 2.2. Here three typical time paths of a function or curve y(t) 
are displayed, along with the resulting value of the objective function associated with each 
time path J[y(t)], the latter of which we refer to as a path value. Notice that all time paths 

or curves begin at time t = t0 at the point y = y0, and end at time t = t1 at the point y = y1, all 
four of which are given or fixed, thereby requiring that the paths being compared begin and 
end at the same position and time. The typical problem in dynamic optimization seeks to 
find a time path or curve y(t), or equivalently a function y(.) that minimizes the objective 

function J[.]. Thus to each time path or curve yi(t), i = a, b, c, or function yi(.), i = a, b, c, 
there is a corresponding value of the objective function J[yi(t)], i = a, b, c. 

J[y(t)] represents a mapping from paths or curves to real numbers, or equivalently, 
from functions to real numbers, and therefore is not a mapping from real numbers to real 

numbers as in the case of functions. Such a mapping from paths or curves to path values, 
or from functions to real numbers, is what Fig. 2.2 depicts, and is called a functional. 
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Figure 2.2.  Values of the objective function J[y i(t)] for curves yi(t), i = a, b, c 
[Caputo (2005)]. 

 
 
 The general notation we shall employ for such a mapping from functions to real 
numbers is J[y(t)]. This notation emphasizes that the functional J[.] depends on the 

function y(t), or equivalently, on the entire curve y(t). Moreover, it highlights the fact that 
it is a change in the position of the entire path or curve y(t), that is, the variation in the path 
or curve y(t), rather than the change in t, that results in a change in the path value or 
functional J[.]. Thus, a dynamic optimization problem in continuous time seeks to find a 

path or curve y(t), or equivalently, a function y(t), that optimizes the objective functional 
J[y(t)]. Now, that a proper definition has been given we can proceed to the formal 
mathematical statement of a DOP. 
 A dynamic optimization problem can be formulated using a Differential-Algebraic 

Equation (DAE) formulation. The DAE system consists of differential equations that 
describe the behavior of the system, such as mass and energy balances, and algebraic 
constraints that ensure thermodynamic consistency or other physically meaningful 
relations-limits imposed on the problem. A general DAE optimization problem can be 

stated in implicit form as follows [Allgor and Barton (1997), Biegler et al. (2002), Biegler 
and Grossman (2004), Biegler (2010)]: 
 
 

( ), ( ), ( ), ,
mininimize [ ( ), ( ), ( ), , ]

f
f f f f

t t t t
J t t t t

z y u p
z y u p  (2.6) 

 
subject to 
 

 ( ( ), ( ), ( ), ( ), , ) 0t t t t t F z z y u p  (2.7) 

 ( ( ), ( ), ( ), ( ), , ) 0t t t t t G z z y u p  (2.8) 

 
with initial conditions 

 

 0(0) z z  (2.9) 
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point conditions 
 
 

0( ( ), ( ), ( ), , ) 0,     [ , ]s s s s s s ft t t t t t t H z y u p  (2.10) 

 
and bounds 

 

 ( )L Ut z z z  (2.11) 

 ( )L Ut y y y  (2.12) 

 ( )L Ut u u u  (2.13) 

 L U p p p  (2.14) 

 L U
f f ft t t   (2.15) 

where:  
 
 J scalar objective functional 

 F differential-algebraic equality constraints 
 G differential-algebraic inequality constraints 
 Hs additional point conditions at times ts (including tf) 
 z differential state profile vector 

 z0 initial values of z(t) 
 y algebraic state profile vector 
 u control (independent variables) profile vector 
 p time-independent parameters vector 

 tf final time. 
 
 

As a simple illustration of a dynamic optimization, consider the brachistochrone 

problem that was proposed in 1696 by John Bernoulli to challenge the mathematicians of 
Europe (Fig. 2.3). 
 

 
 

Figure 2.3.  Schematic of the Brahistochrone problem [Barton et al. (1998)]. 

 
 

The objective of the brachistochrone problem is to find (in two dimensions) the shape 
of a frictionless wire that causes a bead, initially at rest, to move under the force of gravity 
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between the origin and a specified final point in minimum time. This can be formulated as 
a dynamic optimization problem in the following way [Kraft (1994)]: 
 

 
( )

min f
t

t


 (2.16a) 

subject to 

 cos( ( ))x w t   (2.16b) 

 sin( ( ))y w t    (2.16c) 

 sin( ( ))w g t   (2.16d) 

 
with initial conditions 

 (0) 0x   (2.16e) 

 (0) 0y   (2.16f) 

 (0) 0w   (2.16g) 

 
and final conditions 

 ( )f fx t x  (2.16h) 

 ( )f fy t y  (2.16i) 

where: 
 

 w the velocity tangential to the wire 
 g the gravitational acceleration (a given constant) 
 γ the angle of the wire to horizontal. 
 

 Equation (2.16a) defines the objective function for the optimization, which in this case 
is to minimize the time required to reach the final point. The motion of the bead in a 
gravity field is described by a set of differential equations, Eqs. (2.16b) – (2.16d), that 
constitute the dynamic model of the system. In this case the control (or forcing function) 

for the dynamic system is γ(t), the angle of the wire to horizontal, which defines the shape 
of the wire as a function of time. Hence, the decision variable in this problem is the control 
profile γ(t). The purpose of the optimization is to find, out of all the possible functions 
γ(t)/shapes of the wire, the function/shape that minimizes the final time. 

In order to complete the formulation of the brachistochrone problem, it is necessary to 

include the point constraints, Eqs. (2.16e) – (2.16i). The initial point constraints, Eqs. 
(2.16e) – (2.16g), require the bead to be at rest at the origin at the initial time, and the final 
point constraints, Eqs. (2.16h), (2.16i), require the bead to be at a certain point in the two-
dimensional space at the final time. 

 
Of course the statement given by Eqs. (2.6) – (2.15) is the most general statement of a 

DAE optimization problem (containing first order derivatives), including equality and 
inequality constraints for the differential, state and control variables. It must be noted here 

that in the area of dynamic optimization of energy systems that is examined in this study, 
differential inequality constraints are rarely imposed, so Eq. (2.8) may, in some cases, be 
replaced with the following: 
 

 ( ( ), ( ), ( ), , ) 0t t t t G z y u p  (2.17) 
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where G now stands for only the algebraic inequality constraints. On the other hand, in 
most problems, Eq. (2.7) can be written in separable form considering the differential and 
algebraic variables as: 
 

 
( )

( ( ), ( ), ( ), , )
d t

t t t t
dt


z

F z y u p  (2.18) 

 

In this case, the dynamic optimization problem may be treated by optimal control 
theory. Furthermore, special cases of the inequality constraints may be considered (only 
the bounds of the variables described by Eqs. (2.11) – (2.15)), in which case Eq. (2.17) 
would be re-stated as an equality constraint: 

 

 ( ( ), ( ), ( ), , ) 0t t t t G z y u p  (2.19) 

 
thus formulating an even simpler statement of the DAE optimization problem that can, in 

general, describe the majority of the dynamic optimization problems examined in studies 
of energy systems. 

The scalar functional J that represents the objective function of the minimization 
problem can have various forms. In Eq. (2.6) it is stated in Mayer form. Another general 

form for continuous time commonly used in our field of research of energy systems, is the 
one known as Bolza form: 
 

 

0

[ ( ), ( ), ( ), , ] ( ( ), ( ), , ) ( ( ), ( ), ( ), , )

ft

f f f f f f f

t

J t t t t P t t t L t t t t dt  z y u p z y p z y u p  (2.20) 

 
that consists of the function P at the end of the time interval tf and the integral of the 
function L over the time horizon. Both forms can be proven to be mathematically 
equivalent. 

Of course, the same problem can be stated in discrete form too, in order to cover 
optimization problems in discrete time. The time period [t0, tf] can be considered as 
consisting of N time intervals of length Δtn, so that 

0f nt t N t    and the integral in Eq. 

(2.20) is replaced by a summation over the N time intervals, while the variables are 

discrete vector sequences (e.g.  1 2, ,..., Nu u u u ). The analogous discrete problem is 

stated as follows: 

 

 
f, , ,t ,

minimize [ , , , , ]fJ t
z y u p

z y u p  (2.21) 

with 

 

 
1

[ , , , , ] ( , , , ) ( , , , , )
N

f N N n n n

n

J t P N L n


 z y u p z y p z y u p  (2.22) 

 
subject to 
 

 1 ( , , , , ),       1 Nn n n n n n   z F z y u p  (2.23) 

 ( , , , , ) 0,       1 Nn n n n n  G z y u p  (2.24) 
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with initial conditions 
 

 0
0 z z  (2.25) 

 

point conditions 
 

 ( , , , , ) 0,       1 s N     s s s s s   G z y u p  (2.26) 

 
and bounds 

 

 ,       1 n NL U
n n n   z z z  (2.27) 

 ,       1 n NL U
n n n   y y y  (2.28) 

 ,       1 n NL U
n n n   u u u  (2.29) 

 L U p p p  (2.30) 

 

 
 Furthermore, the general DAE formulation of a DOP that is given by Eqs. (2.6) – 
(2.15) can be re-stated in order to include DOPs of multi‒modal systems. Very 
characteristic problems of this kind are those of energy systems described by dynamic 

models that, during their period of service, include different modes of the system and need 
to be optimized for the whole period of service. In this case, the system characteristics 
(state equations, constraints, etc.) may vary from mode to mode, and this type of variation 
may be formulated as a mixture of continuous and discrete functions of time. Thus, the 

operation of the whole system must be described as a sequence of different sets of DAEs 
(multimodal systems) with the objective to find the duration and operating conditions of 
each stage in order to achieve an overall optimal result for the whole system. 

As an example, a real-life engineering problem of this type may be that of the trip of 

an aircraft that includes the phases of take-off, flight and landing, where each phase is 
described by a different DAE system and the optimization must be performed for the 
whole trip [Munoz and Spakovsky (2003)]. Another very characteristic example is the 
voyage of a ship that can be decomposed in many different phases [loaded trip, ballast trip, 

ports], [Dimopoulos (2008), Dimopoulos and Frangopoulos (2008)], where in each phase 
the synthesis of the system, and thus the system of equations that describe its 
characteristics, may change while the cost minimization or the revenue maximization must 
be performed for the whole voyage. 

A mathematical statement of such a multi‒modal problem must be given. So an energy 
system is considered, the operation of which consists of N modes, and 

 ( ),  ( ),  ( ),  ,  ,n ft t t t tz y u p  for 1,...,n N  need to be calculated for the dynamic 

optimization problem: 
 
 

( ), ( ), ( ), , ,
mininimize [ ( ), ( ), ( ), , ]

f k
f f f f

t t t t t
J t t t t

z y u p
z y u p  (2.31) 

subject to 

 ( ( ), ( ), ( ), ( ), , ) 0n t t t t t F z z y u p  (2.32) 

 ( ( ), ( ), ( ), , ) 0n t t t t G z y u p  (2.33) 

 

where 1[ , ] with 1,...,n nt t t n N  , 
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with initial conditions 
 

 
0 0 0 0 0 0( ( ), ( ), ( ), ( ), , ) 0t t t t t Q z z y u p  (2.34) 

 
junction conditions (that ensure that the values of the variables at the beginning of each 

mode are related to the values at the end of the previous mode) 
 

 
1 1 1 1( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), , ) 0n n n n n n n n n nt t t t t t t t t    Q z z y u z z y u p  (2.35) 

 
point conditions 

 

 
1( ( ), ( ), ( ), , ) 0,     [ , ],   for 1,...,s s s s s s n nt t t t t t t n N  H z y u p  (2.36) 

 
and bounds 
 

 ( )L Ut z z z  (2.37) 

 ( )L Ut y y y  (2.38) 

 ( )L Ut u u u  (2.39) 

 L U p p p  (2.40) 

 
L U

f f ft t t   (2.41) 

 ,   for 1,...,L U
n n nt t t n N    (2.42) 

 
where the functional J can have the form 
 

 

0

[ ( ), ( ), ( ), , ] ( ( ), ( ), , ) ( ( ), ( ), ( ), , )

ft

f f f f f f f

t

J t t t t P t t t L t t t t dt  z y u p z y p z y u p  (2.43) 

 
Several methods can be proposed for the solution of such problems. In certain simple 

cases, the problem can be stated in an appropriate mathematical form, where calculus of 

variations or dynamic programming can be applied. However, in the general case only 
direct approach solution methods can be successfully applied. Their main characteristic (as 
will be presented in the following Section 2.4) is the transformation of the original 
dynamic optimization problem into a NLP problem through discretization that can be 

solved using a non-linear programming optimization method. Of course evolutionary 
optimization methods modified suitably for dynamic optimization can be applied 
successfully too.  
 

 

2.3 Classification of Dynamic Optimization Problems 
 

As mentioned before, the research trends in optimization for the past decade have 

evolved from a focus on static problems to complex cases with dynamic aspects. This swift 
of interest in dynamic optimization problems was inevitable, as it was becoming more and 
more evident that static approaches could not always model reality accurately. However, 
dynamic optimization problems have proved extremely complex and hard to solve. It is 

very important how dynamic changes in the input variables affect the results in the 
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objective functions’ space, therefore it is clear that a classification of dynamic problems is 
needed as a first step, in order to understand the effects of the dynamic factors on the 
optimal solution of each problem. 

Studies regarding the structural view on dynamic optimization problems have been 

provided by many authors in the past. A first approach was given in Branke (2001). 
Another recent approach that provides a formal framework on the classification of dynamic 
optimization problems is given in Tantar et al. (2010, 2011). This study is based on 
classifying the problems based on the different dynamic elements that appear in the 

problem, or equivalently by specifying the basic time-dependent components. In more 
detail, Tantar classifies the problems in four categories as follows: 
 

 First order: time-dependent parameter evolution, dynamic transformation of the 

input variables.  

 Second order: time-dependent function evolution of the objective function values. 

 Third order: time-depended state dependency, parameter or function state time-

dependency (the parameters or the function is defined by accounting for not only 
the current moment but also the previous states). 

 Fourth order: time-dependent environment, parts of or the whole integral 
environment evolves with time. 

 
 Other notable studies are those of [Weicker (2002)], which outline the role of 
classification as a tool for systematic research in dynamic optimization, and the works of 
[Bu and Zheng (2010), Mehnen et al. (2006)]. 

 
 

2.4 Solution Approaches for the Dynamic Optimization Problem 
 

Along with growing application and acceptance of large-scale dynamic simulation in 
chemical, mechanical and marine engineering, much attention was also given to the 
research regarding possible methods of solution of optimization problems (DOPs) around 
these dynamic systems. Specifically, DOPs gained much publicity in 1960's with the 

development of optimal control theory and several solution techniques have been 
investigated since (for a fairly complete review see Longsdon and Biegler (1989), 
Longsdon and Biegler (1992)). In general, the several solution approaches are divided in 
two main categories, the Indirect Methods and the Direct Methods. Figure 2.4 depicts the 

various possible solution approaches. 
In the category of Indirect Methods belong Calculus of Variations (COV) and 

Dynamic Programming (DP). 
Calculus of variations belongs to the general group of variational methods that were 

developed and introduced in the 1960's by the Russian Mathematician Lev Pontryagin 
(Pontryagin’s Maximun Principle) [Pontryagin et al. (1962)]. In this approach, the problem 
is transformed into a two-point boundary value problem (TPBVP) and solved likewise. 
Variational methods work fairly well for unconstrained problems, but the solution of the 

TPBVP is still difficult to be achieved especially with the addition of profile 
inequalities/path constraints. The general idea behind variational methods is the use of the 
necessary mathematical conditions for optimality in order to find an optimal solution. 
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Figure 2.4.  Solution approaches for dynamic optimization problems . 

 
 

Dynamic Programming (DP) was developed at the same time as Calculus of 
Variations by the American mathematician Richard Bellman [Bellman (1957)]. The 

primary goal of Bellman was to invent a method to tackle decision/optimization problems 
with discrete characteristics. In general, Dynamic Programming is suitable for solving 
complicated and multi-stage decision problems by tracing the optimal strategy. It is based 
on the concept that, if the current state and the planned decision of a system are known, an 

optimal policy formed in the future will be independent of the past policy already formed. 
It is noted that this method is mostly applied to multi-stage sequential decision problems, 
where the objective function equations are non-differentiable mainly due to the fact that 
they are in discrete form (the functional J in Eq. (2.22) contains summations of terms over 

time). The key idea behind this method lies in the famous Bellman's recursive equation, 
which in essence restates the original DOP in recursive form. 

In the category of Direct Methods, the DOP is approached by applying a certain level 
of discretization that converts the original continuous time problem into a discrete one. The 

key idea behind Direct Methods is the conversion of the original DOP into a Non-Linear 
Programming Problem (NLP). As it is shown in Figure 2.4, Direct Methods can be divided 
into two sub-categories, the Sequential and the Simultaneous Methods, according to the 
level of discretization applied. 

In the first sub-category, there is discretization of only the independent variables 
profiles (control variables). These methods are known as sequential or decomposed 
methods, because the system under optimization is decomposed into the control and state 
variables and only the control variables are discretized and treated as optimization 

variables. The problem is solved by non-linear programming (NLP) methods (e.g. steepest 
descent, Quasi-Newton methods, Successive Quadratic Programming, SQP), whereas the 
state variables are determined by integration of the system of DAE's via computer software 
solvers, simulation tools, etc. In certain cases, Dynamic Programming can be used too, but 

it is generally not recommended. 
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In the second sub-category, we have the simultaneous methods, where full 
discretization is performed in both the control and state variables and a large scale NLP 
problem is formulated. Different NLP methods and full discretization techniques can be 
used, but their basic characteristic is that they solve the DAE system only once, at the 

optimum, in contrast to the sequential methods approach, where the differential system is 
integrated in each iteration of the optimization procedure. 

An early comment that can be made here is that the full discretization methods 
(simultaneous) have the advantage of better stability properties than the partial 

discretization methods (sequential), however they generate bigger and more 
computationally expensive problems. Furthermore, in the sequential approach the solution 
is always feasible and only the guess profiles of the independent (control) variables are 
required to initiate the optimization, unlike the simultaneous methods where guess profiles 

for the controls and the states must be provided in advance. Another comment should be 
that direct methods are commonly used in practical applications since, unlike indirect 
methods, they can be applied to large scale complicated problems and are typically easier 
to use. However the fact that usually all direct methods utilize gradient approaches poses a 

main drawback, since the global optimum cannot be ensured, except for cases where the 
system is convex.  

In general, we can say that there are two broad categories of algorithms that can be 
used in order to solve the resulting NLP problem that originates from the discretization of a 

dynamic optimization problem: Evolutionary and Gradient-based Algorithms. 
Evolutionary algorithms (EAs) are a class of stochastic search and optimization 

methods that are based on stochastic search, social metaphors and principles of natural 
biological evolution. Genetic algorithms, evolutionary programming, evolution strategies, 

genetic programming, and their variants [Michalewicz (1996)] are some of the examples 
included in the broad category of Evolutionary algorithms, that have received considerable 
and increasing interest over the past decade. Several engineering optimization problems 
have been solved by EAs [Androulakis and Venkatasubramanian (1991), Dakev et al. 

(1996), Morimoto et al. (1996), Moros et al. (1996), Chen and Zalzala (1997), McKay et 
al. (1997)], because EAs are robust and suitable for effectively obtaining optima. 
Furthermore, their main advantage lies in the fact that they have a smaller probability than 
other algorithms of falling into local optima, thus being characterized as global 

optimization tools. 
Gradient based algorithms require the evaluation of the first order (and in certain cases 

the second order) gradient of the objective function plus an estimation of the initial point of 
the independent variables must be provided in order to solve the problem. Thus, gradient 

based algorithms suffer from dependence on the initial point value and can be "trapped" in 
local optima in cases of non-convex objective functions. In addition, the gradients must be 
calculated in each iteration so an additional computation burden is introduced in the 
problem. 

For the rest of this Section, a more detailed mathematical presentation of both the 
Indirect and Direct methods is given. 

 
 

 2.4.1 Indirect methods: calculus of variations 
 
The Calculus of Variations is a method associated with the problem of extremum 

seeking for functionals of the type 
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0

( , , )

ft

t

S L t dt  y u  (2.44) 

 
while the state equations have the special form 

 

 
d

dt


y
u  (2.45) 

 

and satisfy an initial condition. For simplicity we consider here the initial state: 
 

 0
0( )t y y  (2.46) 

 

In this type of problem, for functional equations of the form given by Eq. (2.44) 
subject to Eq. (2.45), the control variables u are equal in number with the state variables of 
vector y. Since the control vector can then be replaced by the derivative of the state vector, 
the typical problem of variational calculus can be stated by the maximization or the 

minimization of the integral 

 

0

( , , )

ft

t

S L t dt  y y  (2.47) 

 

subject to the initial condition given by Eq. (2.46) and a final condition 
 

 ( ) f
ft y y  (2.48) 

 
This is called the fixed end problem. 

In variational analysis the meaning of variation is fundamental. The variation of the 
argument y(t) is the difference between two functions 
 

 ˆ( ) ( )t t  y y y  (2.49) 

 
while the variation of the functional 
 

 ˆ ˆ( ) ( )S S S   y y y  (2.50) 

 
is called the accretion of the functional S. For the functional of Eq. (2.47) the variation δS 
is 
 

 
1

f
It

i i
t

i i i

L L
S y y dt

y y
  



  
  

  
  (2.51a) 

 
The fundamental theorem of variational calculus states that the vanishing of variation 

δS along the extremal curve ˆ ( )ty  is the necessary condition for the extremum of the 

functional, Eq. (2.47). Using differentiation by parts 
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i i i

i i i

d L d L L
y y y

dt y dt y y
  

     
    

     
 (2.51b) 

 
and combining Eqs. (2.51a) and (2.51b), we obtain the following expression for δS 

 

 
0 1

f
I

t

i i i
t

i i i i

L d L d L
S y y y dt

y dt y dt y
   



       
      

       
  (2.52) 

 
where the middle term does not contribute to the extremum of S when the end points of the 
extremal are fixed. This results in the necessary extremum conditions satisfied along the 

extremal curve ˆ ( )ty  in the form of I differential equations: 

 

 0,      1,2,...,
i i

L d L
i I

y dt y

  
   

  
 (2.53) 

 
These equations are called the Euler-Lagrange equations of variational calculus. The 

extremum condition describes the disappearance of the so-called variational derivative 

  iL y  defined as the left hand side of Eq. (2.53). 

The Euler-Lagrange equation is also valid when the right end of the trajectory is fixed, 
as in Eq. (2.48). Of course, there is also the case where the right end of the trajectory 
moves along a surface or a line. In that case the form of the final condition depends on the 
manifold along which the end of the trajectory moves. For the motion along a curve 

described by the equations 
 

 ( ),      1,2,...,i i fx t i I   (2.54) 

 

a necessary condition for the vanishing of the first variation must be satisfied 
 

 
1

( ( ) ) 0
fI

f f
f if

i i

L
t y L

y




 
   

 
  (2.55) 

 
Equation (2.55) is called the transversality condition. 

Solving the set of Euler-Lagrange equations, with initial and final conditions defined 
by Eqs. (2.46) and (2.48), leads to the determination of the extremal trajectory. The nature 
of the functional extremum (maximum, minimum or saddle point) is determined by the 
investigation of sufficient conditions. More information about Calculus of Variations can 

be found in many sources [Gelfand and Fomin (1963), Moiseiwitsch (1966), Rund (1966)]. 
Also, important generalizations of the Euler-Lagrange equations to cases with many 
independent variables and for functional containing derivatives of higher order exist, but 
they will not be presented here. 

The application of the aforementioned method in the DAE optimization problem 
stated by Eqs (2.6), (2.9) – (2.15), (2.17) and (2.18) requires the formulation of the 
necessary conditions of optimality that are obtained from Potryagins Maximum Principle 
[Potryagin et al. (1962)] as a set of differential-algebraic equations: 
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 ( ( ), ( ), ( ), , ) 0t t t t G z y u p  (2.61) 

 
where, the Hamiltonian H is a scalar function of the form 

 

 ( ) ( ) ( ) ( ) ( )T TH t t t t t λ F μ G  (2.62) 

 
λ, μ are vectors of the adjoint variables and vf is the multiplier associated with the final 
time constraint  

 

 ( ( ), ( ), ( ), , ) 0f f f f ft t t t G z y u p  (2.63) 

 
The main difficulty in obtaining a solution to these equations is due to the boundary 

conditions. The state variables are given as initial conditions and the adjoint variables as 

final conditions. This procedure leads to a two-point boundary value problem (TPBVP) 
that can be solved with various approaches, including single shooting, invariant 
embedding, multiple shooting or a discretization method such as collocation of finite 
elements or finite differences. 

In the single shooting methods the missing initial conditions values are guessed. Then, 
an initial value solver is used to integrate Eqs. (2.7) and (2.8) and Newton iteration is 
applied to adjust the guessed initial conditions so that the final conditions are equal to the 
given values. The main disadvantage of this method is that in most cases the problem is 

infeasible for a given set of guessed initial conditions. The difficulty is with the non-
linearities and instabilities of the DAE system. 

Invariant embedding is a procedure for converting the TPBVP to an initial value 
problem (IVP). It is based on assuming the structure of the solution, and results in solution 
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procedures analogous to the Ricatti matrix differential equation. The main disadvantage 
here is the high dimensionality of the resulting problem. 

Multiple shooting methods follow the same idea as single shooting, but with the 
integration horizon divided into smaller sub-intervals. State variable values are not only 

guessed at initial time, but also at several points in between. Then the system of equations 
is decomposed by either solving a collocation system for each region or using a direct 
integrator along the nominal trajectory on each sub-interval. Newton iteration is also 
needed to enforce the continuity between sub-intervals. 

The discretization methods are known as the most stable. The solution to the TPBVP 
is obtained simultaneously for the whole horizon, so the initial conditions do not need to be 
guessed. 

For the multiple shooting and discretization methods, special decomposition strategies 

are usually used to decompose the structured linear algebraic system that is obtained, in 
each iteration, of the solution procedure. Efficient factorization schemes, based on 
structured Gaussian elimination and structured orthogonal factorization can be used in 
order to minimize the computational effort. Although these methods work well for 

problems without bounds, handling inequality constraints is difficult, unless a priori 
information about the active constraints is known. 

 
 

 2.4.2 Indirect methods: dynamic programming 
 

The term Dynamic Programming was originally used in the 1940s by Richard Bellman 
to describe the process of solving problems where one needs to find the best decisions one 

after another. By 1953, he refined this to the modern meaning, referring specifically to 
nesting smaller decision problems inside larger decisions, and the field was thereafter 
recognized by the IEEE as a systems analysis and engineering topic. Bellman's 
contribution is remembered in the name of the Bellman equation, a central result of 

dynamic programming, which restates an optimization problem in recursive form [Bellman 
(1957)]. 

The word dynamic was chosen by Bellman to capture the time-varying aspect of the 
problems and also because it sounded impressive. The word programming referred to the 

use of the method to find an optimal program, e.g. a military schedule for training or 
logistics. This usage is the same as that in the terms linear programming and mathematical 
programming, a synonym for mathematical optimization. 

The method of dynamic programming is based on Bellman's Principle of optimality: 

 
"An optimal policy has the property that whatever the initial state and decisions are, 

the remaining decisions must constitute an optimal policy with regard to the state resulting 
from the first decision" [Bellman, (1957)]. 

 
Essentially, the principle of optimality states that the optimal path for the control 

variable in a problem will be the same whether we solve the problem over the entire time 
interval of interest or solve for future periods as a function of the initial conditions given 

by past optimal solutions. We can break the problem up into two bits, solving only for the 
current optimal path, taking the fact that the future path will also be optimal as a given. 

More specifically let's consider the following discrete problem: 
 

 
   ,

0

minimize ( , ),       = 0,1,...,T
t t

T

t t
x u

t

V P x u t


  (2.64) 
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subject to 

 
1 ( , )t t tx f x u   (2.65) 

 
with lower and upper bounds 

 
0 0x x  (2.66) 

 
1 1T Tx x   (2.67) 

 
In this problem, both P and f are functions of the current period's state and control 

variables and not of their past or future values. In addition, the function V is time additive 
with the same functional form P[.] for any time period. Using these two properties, 

Bellman found the solution properties called the principle of optimality. Let a feasible 
solution be u(0,T) which is decomposed into two time segments: u(0,t-1) and u(t,T). The 
principle of optimality says that the optimal solution u*(0,T) must be such that at any stage 

t the remaining decisions u*(t,T) must be optimal with regard to the new starting state *
tx  

which results from the first period t=0, and evolves under the earlier decisions u*(0,t-1). 
Since V has an additive form, we can write: 

 

 (0, ) (0, 1) ( , )V T V t V t T    (2.68) 

 
Formally, the principle of optimality is stated as follows: 

 

"u*(0,T) minimizes V(0,T) with starting initial state 
0x  if and only if u*(t,T) minimizes 

V(t,T) with starting state 
0x  for any t, t+1,..., T." 

The optimal solution u*(t,T) from stage t is determined only by *
tx  and the past values 

u*(0,t-1) and the corresponding 
* * * *

0 1 1(0, 1) ( , ,..., )tx t x x x    are irrelevant because they are 

all summarized in 
*
tx . The state variable at time t already contains all the relevant 

information for planning the remaining horizon. If we start the planning horizon from time 
t instead of time 0, we can rewrite Eq. (2.68) as 
 

 ( , ) ( , 1) ( 1, )V t T V t t V t T     (2.69) 

 
which can be expressed as 
 

 1( ) min[ ( , ) ( )]
t

t t t t
u

U x P x u U x    (2.70) 

 
by setting U(xt) = V(t,T). Using Eq. (2.65) we write Eq. (2.70) as: 
 

 ( ) min[ ( , ) ( ( , ))]
t

t t t t t
u

U x P x u U f x u   (2.71) 

 
which is known as Bellman's functional recurrence equation. This equation is solved by 

backward induction, meaning that from the last period T, we proceed to min ( , )
T

T T
u

P x u  

subject to 1 ( , )T T Tx f x u   with 1 1T Tx x   and Tx  a known parameter. Once *

T
u  is 
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obtained, the resulting ( , )T TP x u  is only a function of 
Tx  which is expressed as ( )TV x . 

Proceeding one period backward, we solve the problem: 
 

 
1

1 1 1 1 1( ) min[ ( , ) ( ( , ))]
T

T T T T T
u

U x P x u U f x u


       (2.72) 

 

where 
1Tx 
 is treated as a known parameter. The first order condition is given by: 

 

 
11 1 1 1( , ) ( ) ( , ) 0

TT T T u T TP x u U x f x u
   

   (2.73) 

 

which can be solved for *
1Tu   as a function of 

1Tx 
. By proceeding to solve successively 

backward to the initial period 0, the sequence *
tu  is generated as a function of 

tx . But it is 

* *
1 0 0 0 0 0( , ) ( , ) ( )x f x u f x u f x    so *

1x  can be obtained and *
1u  can be determined and so 

on. Repeating the process forward to the last period, all *
tx  are determined and the 

optimized value of V(0,T) is obtained. 
However, the use of iterative dynamic programming for the solution of large scale 

DOPs has been limited, largely because of the high dimensionality issues associated with 
it. Usually, the phrase “curse of dimensionality” is used to describe this limitation and what 
is essentially meant by it, is, that the augmentation of the number (dimension) of variables 
leads to an exponential augmentation of all the “paths” that need to be calculated and 

stored, thus leading to major memory and computational time demands. 
 

 2.4.3 Direct methods: the sequential approach 
 

In the sequential approach, optimization is carried out in the space of the control 
variables only while the values of the state variables emerge from the integration of the 
DAE system of equations at each iteration. The control variables u(t) are discretized using 
a well-known discretization scheme and the differential equations, Eq. (2.7), are integrated 

using standard integration algorithms while both the objective function J, the values of the 
constraints and the required gradients are evaluated (Figs. 2.5, 2.7). This method 
corresponds to a ‘feasible’ path approach since the differential equations are satisfied at 
each step of the optimization. A piecewise constant, piecewise linear or piecewise 

polynomial approximation of the inputs is often utilized (Fig. 2.6).  
 

The basic procedure is as follows:  
 

a) Parameterize the control variables using a finite number of decision/optimization 
variables (typically piecewise constant or piecewise polynomial). The vector of 
decision variables also includes tf. 

b) Choose an initial guess for the decision/optimization variables. 

c) Integrate the system states to the final time and compute the objective function J and 
the constraints. 

d) Use an optimization algorithm to update the values of the decision variables. 
e) Repeat Steps c and d until the objective function is minimized.  
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Figure 2.5.  Sketch of sequential approach of a DOP [Biegler (2010)]. 
 
 

Often, in the case where a piecewise constant discretization over equally spaced 
intervals is selected for the control variables, the method is referred to in the literature as 
Control Vector Parameterization (CVP) [Ray (1981), Edgar and Himmelblau (1988)]. This 
approach has been extended to DAE systems of index 1 [Vassiliadis et al. (1994a,b)], 

where the term “index 1” refers to the fact that only first derivatives of variables are 
included in the system model. Utilization of the CVP approach can be found in many 
engineering applications e.g. trigeneration systems [Vallianou and Frangopoulos (2012)], 
electric arc furnace systems [MacRosty and Swartz (2007)], hydrogen storage beds 

[Kikkinides et al. (2006)] as well as many chemical engineering applications, e.g. reactive 
distillation [Sargent and Sullivan (1979), Sorensen et al. (1996)], industrial batch processes 
[Srinivasan et al. (2003a,b)], and batch distillation systems [Furlonge et al. (1999)]. The 
CVP method is also employed in the current work by the author as it will be presented in 

the following chapters. 
 
 

 
 

Figure 2.6.  Constant, linear and polynomial approximations [Chachuat (2009)]. 
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In order to apply the sequential method to a Dynamic Optimization Problem, the time 
horizon is divided into N time stages and at each stage the control variables are represented 
with a piecewise constant, linear or polynomial approximation [Biegler (2010), Feehery 
and Barton (1998), Vassiliadis (1993)]. A very common method is to use a set of Lagrange 

polynomials, as follows. In each stage i, the control variables can be written as 
 

 1
,

1

( )
Ncol

i
i k i k

k i

t t
u t u

L





 
  

 
  (2.74) 

 

where ,i ku  represents the values of control variables in stage i at collocation point k  and 
k

 

can be a Lagrange polynomial of order Ncol satisfying the condition 

 

 
1,  if k = r

( )
0,  if k r

k rx
 

  
 

 (2.75) 

 
While the CVP approach is straightforward to implement, it tends to be slow, 

especially in dealing with inequality path constraints [Bell et al. (1996)]. This is mainly 
due to the fact that this feasible path method requires repeated and expensive solution of 
the differential equations. Furthermore, the quality of the solution is strongly dependent on 
the parameterization of the control profile [Logsdon and Biegler (1989)]. 

Concerning the required gradients, they can be calculated by three different strategies: 
perturbation, direct sensitivity or adjoint sensitivity (Fig. 2.7). Perturbation is the easiest 
way to implement but may lead to significant errors in the values of the gradients as 
perturbation methods are often plagued by truncation and round-off errors [Biegler 

(2010)]. The key idea behind perturbation is the application of a forward difference 
perturbation to the vector of the optimization variables, 

 

 j je u u  (2.76) 

 

where the jth element of vector ej is 1 and the other elements are zero, and δ is a small 
perturbation size. Then, the DAE system is solved for the new point and the approximate 
gradient is calculated: 

 

 
1

( ( ) ( )) ( )
jjJ J J


  uu u u  (2.77) 

 

Unlike perturbation, direct and adjoint sensitivity methods can provide gradients with 
the same level of accuracy as the state profiles. Direct and adjoint sensitivity methods 
calculate the required gradients by solving the sensitivity equations, which are derived by 
differentiating the DAE system with respect to the discretized control variables u.  

In direct sensitivity methods [Caracotsios and Steward (1985), Feehery et al. (1997), 
Biegler (2010)], gradients are calculated using the sensitivity equations, which are found 
by differentiating the DAE system after the control vector has been discretized with a 
parameter set (here we take θ for example) 
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and  
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These equations can be solved, and once the sensitivities of the states with respect to 
the parameters are known, the gradient of the objective function can be calculated: 
 

 0
dJ J J J

d   

           
          

           

z y

z y
 (2.80) 

 

Because of their desired properties, BDF methods are often applied for the solution of 
the combined state ‒ sensitivity system. However, in cases where the number of 
discretization points, and thus the number of variables, becomes very large, direct 
sensitivity methods may be inefficient. A complementary approach that copes with many 

optimization variables can be derived based on the combination of variational methods and 
sensitivity equations, and that approach constitutes the adjoint sensitivity method. 

In adjoint sensitivity, the sensitivity equations of the objective function and constraint 
functions are calculated separately and in cases where the number of variables is greater 

than the number of equations, this approach is much more efficient than the direct 
sensitivity approach. 
 

In the first case, the DAE adjoint equations are determined by the Hamiltonian given 

by Eq. (2.62). The adjoint profiles λ and μ form a semi-explicit DAE that can be solved. 
Once the system is solved, the gradients are obtained from: 
 

 

0

ft

t

F G
J t  

  
  

  
 λ μ u

u u
 (2.81) 

 
If the control profile is discretized into piecewise constants ui, the gradient can be 
expressed as 
 

 
1

0 1

1 ...
N

N

tt

N

t t

F G F G
J dtdu dtdu



      
       

      
 λ μ λ μ

u u u u
 (2.82) 

 
so that 
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dJ F G
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 λ μ

u u
 (2.83) 

 
Of course, adjoint methods require the storage of the state profiles for the calculations. 

Another difficulty is that the state variables boundaries cannot be treated directly. Usually, 
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when state constraints are imposed, a separate adjoint system is developed for each 
constraint. 

Although there have been a lot of advances in solving sensitivity equations more 
efficiently [Feehery et al. (1997)], the computational effort remains an expensive part of 

the optimization algorithm, because the cost of solving the equations is strongly dependent 
on the number of the variables. As with adjoint methods, direct sensitivity methods too 
cannot treat directly the bounds on state variables. Also different techniques have been 
developed for dealing with inequality constraints by penalty functions or by the 

introduction of slack variables [Jacobson et al. (1971)]. 
 
 

 

Figure 2.7.  Sequential approach of a DOP [Chachuat (2009)]. 
 
 
Before moving on to the simultaneous approach, two important topics must be 

highlighted. In general the sequential approach produces methods that can be easy to 
implement and can prove to be very efficient in terms of both computational time and 
accuracy. However, they suffer from the disadvantage that they are too dependent on the 
efficiency of the embedded DAE solver that integrates the underlying DAE system. This 

may pose a real problem in cases where the DAE system suffers of instabilities or in cases 
where the DAE system is highly non-linear and consists of numerous equations and state 
variables thus making its integration computationally intensive. 
 

 

 2.4.4 Direct methods: the simultaneous approach 
 

As we have seen above, one of the most important disadvantages of the sequential 

approach is the fact that the computational intensive integration of the DAE system is 
performed in each iteration of the optimization procedure, even when the optimization 
variables are far from the optimal solution. In the simultaneous approach an approximation 
- discretization of the system of equations is introduced, along with the discretization of the 

controls, in order to avoid explicit integration for each input profile, thereby reducing the 
computational burden. Optimization is carried out in the full space of discretized control 
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and state variables. Thus, in general, the differential equations are satisfied only at the 
solution of the optimization problem [Vassiliadis et al. (1994a)]. This is therefore called an 
‘infeasible path’ approach. Simultaneous methods are also known as direct transcription 
methods, as the original dynamic optimization problem is fully transcribed into a, usually, 

large scale Non-linear Programming Problem (NLP) and solved with an efficient NLP 
solver. 

The basic procedure is as follows [Neuman and Sen (1973), Tsang et al. (1975), 
Srinivasan et al. (2003a,b)]: 

 
a) Parameterize both the control and the state variables using a finite number of 

decision/optimization variables (typically piecewise polynomials). The vector of 
control variables also includes tf. 

b) Discretize the differential equations, Eq. (2.7), i.e. the differential equations are 
satisfied only at a finite number of time instants (typically via orthogonal 
collocation). These two steps transform the dynamic optimization problem into a 
nonlinear programming problem (NLP). 

c) Choose an initial guess for the decision variables.  
d) Iteratively solve for the optimal set of decision/optimization variables using an NLP 

code. 
 

Since the above procedure typically leads to a large NLP, efficient numerical methods 
are necessary to solve this problem [Gill et al. (1981)]. With the development of 
Successive Quadratic Programming (SQP), reduced space SQP, the interior-point approach 
and the conjugate gradient methods, the NLP's resulting from the simultaneous approach 

can be solved efficiently [Biegler (1984), Renfro et al. (1987), Cervantes and Biegler 
(1998), Biegler et al. (2002)]. The role of finite elements in terms of node locations and 
breakpoints in order to account for control profile discontinuities is studied in Cuthrell and 
Biegler (1987), Cuthrell and Biegler (1989) and Logsdon and Biegler (1989). 

The use of simultaneous methods requires awareness of the tradeoff between 
approximation and optimization [Srinivasan et al. (1995)]. It could turn out that a less 
accurate approximation of the integration gives a better value of the objective function. 
Thus, since the goal in Step d is merely the optimization of the objective function, the 

solution obtained could correspond to an inadequate state approximation. Improvement of 
the integration accuracy requires either introducing accuracy as a constraint or increasing 
the number of collocation points. Especially when the system is stiff, a very fine grid, 
which translates into a large number of decision variables, is needed. 

As can be seen in Fig. 2.6, the discretization of the control and the state variables can 
be in a piecewise constant, linear or polynomial fashion. There are mainly two different 
methods for discretizing the state variables, multiple shooting and collocation on finite 
elements. 

The direct multiple shooting method [Bock and Platt (1984)] is a hybrid between the 
sequential and simultaneous methods discussed in the preceding. In this approach, the time 
interval [t0, tf] is divided into N stages. Except for the first stage, the initial conditions of 
the various stages are considered as decision variables along with continuity constraints 

stating that the initial states of every stage should match the final ones of the preceding 
stage. This procedure is an ‘infeasible’ path method as in simultaneous approaches, while 
the integration is accurate as in sequential approaches. 

More specifically, the control variables are approximated by suitable 

parameterizations using only a finite set of control parameters. Usually, a constant or linear 
representation is used. In each stage i = 0, 1 ,..., N a time transformation is used 
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with τ belonging to [0,1] and 
0 0 1 1( , , ,... )Nt d d d   with a dimensionless discretization grid 
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such that ( ,0, )i i it     and ( , , ) 1i i i im t     . An approximation of the control ui is then 

defined by 
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using the local control parameters ijq . For the functions ,i j , basic forms are selected, e.g. 

polynomials. If a constant approximation is selected, we have the form , ( , )i j ij ijq q   , 

while for a linear approximation, the form 
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is constructed by linear interpolation between the values 
1
ijq  and 

2
ijq  at the endpoints of the 

stage. Using this representation, a continuous approximation can be obtained by imposing 
continuity equations between the stages. After this, the DAE system is explicitly 

discretized in each stage i at the points ij  of the discretization grid using multiple 

shooting. At each grid point, the values of the state variables ( , )z y
ij ij ijs s s  are chosen as 

additional unknowns and a set of decoupled initial value problems (IVP) is formulated: 
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with initial conditions 
 

 ( ) , ( )z y
i ij ij i ij ijz s y s    (2.91) 
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By including the continuity conditions for the differential variables into the NLP and 

the consistency conditions 
 

 ,( , , ( , ), , ( , )) 0z y
i ij ij i j ij ij i ijg s s q p       (2.92) 

 
as equality constraints, the final solution satisfies the DAE system. With this approach, the 
inequality constraints for the states and controls can be imposed directly at the grid points. 

The resulting NLP is solved using an SQP-type method that requires the gradient of 
the objective function and the constraints Jacobians at each iteration. For almost all the 
different explicit functions, the corresponding derivatives can be easily calculated. Further 
extensions of the direct multiple shooting methods to DAE systems are described in Schulz 

et al. (1998). 
Another method of discretization of the state variables and the DAE system is 

collocation on finite elements. In this method, the time horizon is divided into intervals 
(finite elements) and the continuous time problem is converted into an NLP problem by 

approximating the profiles to a family of polynomials on each finite element. Different 
polynomial representations are used in the literature. Due to their accuracy, formulations 
based on orthogonal collocation methods are generally preferred [Carey and Finlayson 
(1974), Biegler (2010)]. Orthogonal collocation methods are a special class of the Implicit 

Runge-Kutta (IRK) methods, where orthogonal polynomials are used to approximate the 
state profiles in each finite element. The resulting large scale NLP allows a great deal of 
sparsity and structure. Moreover, difficulties related to the efficiency of the embedded 
DAE solver are avoided and sensitivity calculations for the derivatives are replaced by 

direct gradient and Hessian evaluations within the NLP formulation. Furthermore, in more 
advanced formulations, the length of the finite elements themselves can be treated as 
optimization variables, thus making the method more efficient in problems with 
instabilities. Here a monomial basis representation [Bader and Ascher (1987)] for the 

differential profiles is used as an example.  
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where 
1iz 
 is the value of the differential variable at the beginning of element i, hi is the 

length of the element i, ,i kdz dt  is the value of its first derivative in element i at the 

collocation point k, and k  is a polynomial of order Ncol satisfying the conditions 
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with r , the collocation point within each element. This representation is recommended 

because of smaller rounding errors. One disadvantage of the above representation is that 
state path constraints can only be enforced directly at the mesh points dividing each 

element. However the problem can be solved by adding bounded algebraic variables. The 
control and state variables are approximated using Lagrange polynomials of the form 
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with 

 
1,  if k = r
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 (2.97) 

 
Many authors also prefer to use low order Lagrange polynomials for the differential 

variables as well. Orthogonal collocation on finite elements will also be discussed in more 
detail in the next section. 

Indirect methods are of no specific interest in this text, thus the next Section focuses 
on the formulation and implementation of Direct methods, in order to gain a better 
understanding of the sequential and the simultaneous approach and examine the 
advantages and drawbacks of each by implementing them to several "simple" examples of 

DOPs selected from the literature. 
 
 

2.5 Formulation of Customized Direct Methods 

 
In the present Section, a method based on the sequential approach, which we will from 

now on refer to as Control Vector Parameterization (CVP), and a method based on the 
simultaneous approach, which we will from now on refer to as Radau Collocation, are 

developed and stated mathematically in more detail. Next, both of these methods will be 
applied in five, selected from the literature, dynamic optimization problems. The results 
are presented in comparison with the original literature results in Section 2.6. Several 
conclusions are drawn from this procedure and valuable insight considering the pros and 

cons of each approach and the correct ways of implementing them is gained. 
 
 

 2.5.1 Formulation of a sequential approach: the CVP method 

 
A dynamic optimization method based on the sequential approach, and more 

specifically based on the Control Vector Parameterization (CVP) scheme is developed. As 
in all sequential methods, also in CVP, the control variables are discretized and each 

variable at each time step is treated as an optimization variable, whereas the state variables 
are calculated at each iteration by solving the system of differential equations that describe 
the problem. The necessary gradients are calculated by the NLP optimization software. 
Discretization is performed via a piecewise constant discretization scheme over equally 

spaced time intervals which, as presented in the previous Section, is the main characteristic 
of all CVP methods. 

The system of differential equations that constitute the model of the system of each 
problem can be solved with the help of a variety of integration methods that exist in the 

literature. For reasons of simplicity the first order Euler Method for integration is used as a 
first approach. 
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The Euler Method is a first-order numerical procedure for solving ordinary differential 
equations (ODEs) with a given initial value. It is the most basic explicit method for 
numerical integration of ordinary differential equations and is the simplest Runge–Kutta 
method. The Euler method is named after Leonhard Euler, who treated it in his book 

Institutionum Calculi Integralis [Kentall (1989)]. The Euler method is a first-order method, 
which means that the local error (error per step) is proportional to the square of the step 
size, and the global error (error at a given time) is proportional to the step size. It also 
suffers from stability problems. For these reasons, the Euler method is not often used in 

practice. It serves as the basis to construct more complicated methods. Here, however, we 
apply the Euler method to solve relatively simple systems of ODEs and of course it is 
expected that a more sophisticated method should be applied in order to tackle with more 
complicated problems. 

The Euler method can be summarized as follows: suppose that we want to 
approximate the solution to the first order initial value problem: 
 

 ( ) ( ( ), )y t f y t t   (2.98) 

 
with initial value 
 

 
0 0( )y t y  (2.99) 

 

We choose a value h for the size of the time step and set 
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One step of the Euler method from 
nt  to 

1n nt t h    is  
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Thus knowing the initial value y0 at n = 0 the profile of y(t) can be constructed. 

Finally, the resulting NLP static optimization problem is solved with the SNOPT [Gill 
et al. (1997)] version 7.0 software. A schematic of the algorithm of the method is depicted 

in Figure 2.8. 
SNOPT is a set of Fortran subroutines designed to minimize a linear or nonlinear 

function subject to bound on the variables and sparse linear or nonlinear constraints. 
SNOPT uses a sequential quadratic programming (SQP) algorithm. Search directions are 

obtained from QP subproblems that minimize a quadratic model of the Lagrangian 
function subject to linearized constraints. An augmented Lagrangian merit function is 
reduced along each search direction to ensure convergence from any starting point. 

SNOPT requires relatively few evaluations of the problem functions. Hence it is 

especially effective if the objective or constraint functions (and their gradients) are 
expensive to evaluate. 
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Figure 2.8.  The algorithm of the Control Vector Parameterization method. 
 
 

 2.5.2 Formulation of a simultaneous approach: the Radau collocation method 
 

In the same way as in the previous section, a simultaneous approach is now chosen to 
be developed. As has been explained earlier, the simultaneous approach belongs to the 

family of direct methods, where the original DOP is fully transcribed into a large scale 
NLP problem and the resulting static optimization problem is treated via a static 
optimization algorithm/large scale NLP solver. 

Here the simultaneous approach based on orthogonal collocation methods over finite 

elements will be applied [Biegler (2010), Carey and Finlayson (1974)]. These methods can 
also be considered as a special class of the Implicit Runge-Kutta (IRK) methods [Suli and 
Mayers (2003)]. The main idea behind orthogonal collocation methods is the use of 
piecewise polynomial representations for the representation of the control and the state 

variables in each finite element. Thus, the system of differential equations is solved exactly 
at selected points in time. To be more specific, we consider the polynomial representation/ 
approximation of a state variable, i.e z(t) over a single finite element of length hi as shown 
in Fig. 2.9. 

 The polynomial that approximates z(t) is denoted as zK(t) and is in essence a 
polynomial of order K+1. A number of various ways can be selected for the representation 
of this polynomial (power series, Newton divided differences or B-splines) [Ascher et al. 
(1995), Betts (2010)], however representations based on Lagrange interpolation 

[Hazewinkel (2001)] are in general selected in order to incorporate the same bounds and 
constraints of the variables to the polynomial coefficients as well. 
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Figure 2.9.  Polynomial approximation for a state profile across a finite element 
[Biegler (2010)]. 

 
 

 In this work, K+1 interpolation points in each element i are chosen and the state 
variable z(t) is represented as 
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with 
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where ( )j t  are the Lagrange polynomials denoted as  
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hi is the length of each element and τj are the selected collocation points with 

0 10, , 0,..., 1j j j K       . This polynomial representation is specifically chosen due 

to its very desirable property that the value of the polynomial in each selected collocation 
point is in fact the value of its respective coefficient. In mathematical terms this is denoted 

as follows: 
 

Let j  , then time t is 

 

 1 j ij i-1 i,with τ [0,1] and t [t ,t ]ij i i jt t h       (2.105) 

 
and by substituting in Eq. (2.102) and performing the necessary algebra we have 
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due to the following property of the Lagrange polynomials: 
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As concerning the time derivatives, they can be represented as sums of the derivatives 

of the Lagrange polynomials simply by applying the derivative in Eq. (2.102): 
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The point of this procedure is the determination of the coefficients zij that approximate 

the solution to the DAE system. To achieve this, the formulas given by Eqs. (2.102) and 
(2.108) are substituted to the corresponding differential equation of the state z(t), Eq. 
(2.109), and the resulting algebraic equations are enforced in the interpolation points τk as 
it is shown in Eq. (2.110). Here we chose a simple but fairly general differential equation 

for z(t) in order to facilitate the presentation: 
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which results in 
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    (2.111) 

 
after the necessary substitutions. The K equations that are given by the formula of Eq. 
(2.111) are known as collocation equations and are merely algebraic equations that can be 

incorporated directly into the NLP formulation of the dynamic optimization problem.  
In order for the presentation of our simultaneous approach to be complete, there are 

two remaining issues that need to be addressed: the determination of the collocation points 

τk and the expression for the derivatives of the Lagrange Polynomials ( )j k . 

 

 
Gauss-Radau collocation 

 
The determination of the collocation points τk plays an important role in order to 

obtain the most accurate approximation of the control/state variables. So the question of 
how we shall determine the collocation points instantly arises. The answer to this question 
is given by a theorem known as theorem of Accuracy of Gaussian Quadrature 
[Abramowitz and Stegun (1965), Laurie (2001), Stoer and Bulirsch (2002)], which in short 

states that the method of orthogonal collocation gives an exact solution to the differential 

equation, Eq. (2.109), if ( ( ), )f z t t  is a polynomial of order 2K and τj are the roots of a Kth 

degree polynomial, PK(t), with the property 
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1

0

( ) ( ) 0,    j=0,...K-1,  j =1,...K  for j j   j jP P d        (2.112) 

 
The proof of this theorem is of no direct importance in this text, so it is not presented 

here. The polynomial PK(t) is known as the Gauss-Legendre polynomial with the 
orthogonality property denoted by Eq. (2.112). Several choices of PK(t) are known in the 

literature that of course give different values for τk. In this work we focus on Gauss-Radau 
collocation [Wang and Guo (2012), Biegler (2010), Garg et al. (2010)], which means that 
the Gauss-Radau roots as given in Table 2.2 are utilized as collocation points. The choice 
of Gauss-Radau collocation was made due to many reasons. The first one is the fact that 

the τK 'th Radau root is always equal to 1, thus the point that determines the end of each 
element is a collocation point itself, a fact that simplifies a lot the necessary algebra. 
Another reason is the fact that Gauss-Radau collocation is compatible with the NLP 
formulation and has, always according to the literature, decent stability properties. More 

specifically, Gauss-Radau collocation is said to be AN-stable or equivalently algebraically 
stable, which results in no stability limitation for hi in stiff problems (a definition of A-
stability and AN-stability can be found in Appendix A). Finally, a very important reason 
lies in the fact that Radau collocation is among the highest order methods. The truncation 

error is evaluated as O(h2K-1), of course only for the collocation points zij and not for the 
intermediate points. 
 
 

Table 2.2.  Gauss-Radau roots as collocation points [Biegler (2010)]. 
 

Degree K Radau Roots 

1 1.000000 

2 
0.333333 
1.000000 

3 
0.155051 
0.644949 
1.000000 

4 

0.088588 
0.409467 

0.787659 
1.000000 

5 

0.057104 
0.276843 
0.583590 
0.860240 

1.000000 

 
 

Derivatives of the Lagrange Polynomials 
 

Another important issue that needs to be addressed is the calculation of the derivatives 
of the states/controls in the collocation points which, as we showed earlier, Eq. (2.108), is 
deduced from the calculation of the derivatives of the Lagrange polynomials at those 
points. For the calculation of the derivatives of the Lagrange polynomials we analyze the 
multiple: 
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By differentiating we have: 
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Equation (2.114) provides us with a subtle formula to calculate ( )j kt  at the 

collocation points. 
Of course, the above formulation can be used in the case of one single element as well 

as for multiple elements. A final detail that needs to be clarified is what happens with the 
continuity of the controls/states across the element boundaries in case we use multiple 

elements. The answer to this question is simple: continuity is forced in the state profiles 
(and some cases in control profiles too, as has been done in this work). In the case of N 
elements, this is written as 
 

 1,0 ,

0 0

( ) (1) ,  for i=1, ..., N-1
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       (2.115) 

 
with the initial value 
 

 1,0 (0)z z  (2.116) 

 

and maybe the final value 
 

 ,N K fz z  (2.117) 

 

Whether continuity should be enforced on the control profiles too depends on the 
problem at hand. For example, considering the DOPs examples solved in the next chapter 
of this text, there is no reason why the control variables profiles should not be (enforced to 
be) continuous across elements. In those problems control and state variables are expected 

to be continuous likewise. However, DOPs exist where control profiles should be allowed 
to be discontinuous at the beginning point of each element (τ=0). Typical examples of 
these are DOPs on systems that involve multistage/multiphase processes. In this case, each 
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element may be set to represent a different stage/phase, so it is not necessary to enforce 
continuity between elements, as this will prevent the NLP solver to capture with accuracy 
an interesting and possibly correct solution of the problem at hand. 

The resulting NLP static optimization problem is solved with the SNOPT version 7.0 

software. Details about the SNOPT software have been given in Section 2.5.1. In the next 
section, simple examples of DOPs chosen from the literature are selected and solved 
utilizing the two approaches that have been described above. 
 

 

2.6 Application of the Customized Direct Methods to Example Problems  
 
A series of dynamic optimization problems are selected from the literature and solved 

by implementation of the direct methods that have been presented in the previous section. 
Many dynamic optimization problems are available as "simple examples" or even 
"benchmarks" in the literature. In the following, five relatively simple or, to be more exact, 
not very complicated dynamic optimization problems are presented. All five problems can 

be categorized as "optimal trajectory" problems based on the categorization proposed in 
Section 2.3. Each example is solved by the two direct methods described in Section 2.5 of 
this chapter. 

The five dynamic optimization problems that have been selected to serve as examples 

in order to evaluate the performance of the Control Vector Parameterization (CVP) and the 
Radau Collocation methods are: the Van der Pol oscillator problem, the Car optimization 
problem, the Batch reactor problem, the Continuously Stirred Tank Reactor (CSTR) 
problem and a Mathematical example problem with no known real-life problem relation. In 

the following of this chapter, each problem will be stated and then solved first by CVP and 
then by Radau Collocation, followed by relative comments upon the results. However, 
before we proceed, two important issues must be noted. 

Considering the CVP method, an important parameter of the algorithm is the number 

of discretization points that the user selects for the control variables. All five problems 
have been solved for N=20, 50, 100 and 200 discretization points for each control variable. 
However only the results with N=100 points are presented, as they were found to produce 
smoother plots for the state and control variables and more accurate values for the 

objective function and the constraints than the cases with N=20 and N=50 points. The case 
with N=200 points, practically adds no more accuracy in the results, while it costs more on 
computational time and memory. 

For the Radau collocation method, it is clarified that different combinations of 

collocation points and elements have been used in order to study the functionality of this 
method. The related results are however presented only in the first example, the Van der 
Pol oscillator. In the remaining examples only the results of the best combination are 
presented and compared to the results from the literature and from the CVP method. A 

useful aspect that the reader must keep in mind in order to better comprehend the results 
given by the Radau Collocation method, is that accuracy in the solution of the DAE system 
is promised only in the collocation points and not the intermediate ones, that are calculated 
by the formula of the polynomial expression of Eq. (2.102). 
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 2.6.1 Van der Pol oscillator problem 
 
 The van der Pol oscillator problem in various alternative statements has been 

solved by many authors [Vassiliadis V. S. (1993), Tanartkit and Biegler (1995), Banga et 

al. (1998)]. The problem tackled here is set with two inequality constraints and one 
equality constraint. The system with the integral term of the cost function is described with 
the following set of differential equations and the aim of the optimization is to minimize 

the cost function in a fixed final time 5Ft  : 
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 (2.124) 

and final conditions: 
 

2( ) 0.1Fx t    (2.125) 

 
The importance of this problem lies in the fact that, although it is not a very complex 

system, it poses some difficulty due to non-linearity, Eq. (2.119) and the presence of a final 
time constraint for the variable x2, Eq. (2.125). 
 
 

Solution with the CVP method 
 

The time step is set in 0.05 and 101 discretization points were used. The calculation 
was completed in 0.94 seconds and the optimal objective function value was found at 

3.0106587, whereas the best objective function value from the literature is found to be 
2.96099523. In Figs. 2.10 and 2.11 the optimal control and states plots are presented in 
comparison to the plots taken from the literature. 
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(a) (b) 

Figure 2.10. Optimal trajectory of control variable from (a) literature (b) CVP 
method. 

 
 

  
(a) (b) 

Figure 2.11.  Optimal trajectory of state variables from (a) literature (b) CVP method.  
 
 

It is noted that the results from the CVP method are in good agreement with the best 
known results from the literature. 
 

Solution with the Radau Collocation method 

 
In Figs. 2.12 and 2.13, the plots for the control and the states found in the literature in 

comparison with the plots produced by the various combinations of number of elements 
and collocation points via the Radau Collocation method are presented.  

 
 



 Dynamic Optimization 51 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 



52 Dynamic Optimization 

 

 

(g)  
Figure 2.12.  Optimal trajectory of control variable from (a) literature, 

and with Radau method with (b) K=3, N=10; (c) K=3, N=40; (d) K=4, N=10; (e) K=4, 
N=30; (f) K=5, N=10;(g) K=5, N=30. 

 
 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

 

 

(g)  
Figure 2.13.  Optimal trajectory of state variables from (a) literature, 

and with Radau method with (b) K=3, N=10; (c) K=3, N=40; (d) K=4, N=10; (e) K=4, N=30; 
(f) K=5, N=10; (g) K=5, N=30. 

 
 

It can be deduced from Figures 2.12 and 2.13 that the most accurate results are 
obtained with K=3 collocation points with accuracy increasing while the number of 
elements is increased, which is expected. The results with K=4 and K=5 collocation points 
are not in fact as disappointing as they seem. This can be explained by the comment stated 

earlier, which claims that the method used to solve the differential system of equations 
promises very good accuracy at the collocation points, but not at the intermediate ones. 
The intermediate points are calculated via the use of the polynomial expression, and can 
easily deviate from reality if few elements and many collocation points are used. 

Furthermore, the more collocation points we use, the more the dimension of the problem 
per element is increased thus leading to inability of the NLP solver to operate efficiently. 
More about this aspect of Radau Collocation will be explained later in this section. 

In the case K=3 and N=40 (where the best result is observed) the calculation was 

completed in 0.79 seconds and the optimal objective function value was found equal to 
2.9615007. 
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In the next examples, although all the above combinations have been calculated too, 
only the best one (which is also the case with K=3 collocation points and N=40 elements) 
is plotted in comparison with the literature results. 
 

 

 2.6.2 Car optimization problem 
 

A broadly referred dynamic optimization problem is that of starting and stopping a car 

in minimum time for a fixed distance (300 units) [Longsdon and Biegler (1989), Dadebo 
and McAuley (1995), Rajesh et al. (2001)]: 
 

 
0min F

u
J t  (2.126) 
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and final conditions 
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where 

 
1( )x t  velocity, 

 
2 ( )x t  distance, 

 ( )u t acceleration (control variable). 

 
The main interest in this problem lies in the fact that it is an open-ended dynamic 

optimization problem, where the value of the final time is unknown and in fact an 
optimization variable too. 
 

Solution with the CVP method 

 
In Figs. 2.14-2.16, the plots for acceleration, distance and velocity found in the 

literature are presented in comparison to the plots produced by the CVP method. 
Moreover, the best value for the objective function found in the literature is 30 (time units) 

which also comes in agreement with our calculations with a minor numerical error of 
0.1%.  
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(a) (b) 

Figure 2.14.  Optimal trajectory of acceleration from (a) literature (b) CVP method.  
 

  

(a) (b) 
Figure 2.15.  Optimal trajectory of distance from (a) literature (b) CVP method. 

 

  

(a) (b) 
Figure 2.16.  Optimal trajectory of velocity from (a) literature (b) CVP method.  
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The calculation was performed for 100 discretization points and was completed in 
0.17 seconds. 
 
 

Solution with the Radau Collocation method 
 

In Figs. 2.17-2.19, the plots for acceleration, distance and velocity found in the 
literature are presented in comparison with the best plots produced by the Radau 

collocation method with K=3 collocation points and N=40 elements. The best value for the 
objective function found in the literature is 30 (time units) which also comes in agreement 
with our calculations with a minor numerical error of 0.05%. The calculation was 
completed in 0.31 CPU seconds. 

 
 

 
 

(a) (b) 
Figure 2.17.  Optimal trajectory of acceleration from (a) literature, 

(b) Radau method with K=3, N=40. 

 
 

 
 

(a) (b) 
Figure 2.18.  Optimal trajectory of distance from (a) literature, 

(b) Radau method with K=3, N=40. 
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(a) (b) 
Figure 2.19.  Optimal trajectory of velocity from (a) literature, 

(b) Radau method with K=3, N=40. 
 

 

 2.6.3 Batch reactor problem 

 
The simple batch reactor [Crescitelli and Nicoletti (1973)] is considered with the 

following chemical reaction: A → B → C. The parameters of the reactor for the two 
reactant species are: activation energy e1 = 18000 cal·mol−1 and e2 = 30000 cal·mol−1, 

frequency factors k10 = 0.535x1011 min−1 and k20 = 0.461x1018 min−1, initial concentration 

β1 = 0.53 mol l−1 and β2 = 0.43 mol·l−1, constants α and c defined as α = 1 2e e , c = 

20 10k k  and final time tF = 8.0 min. The objective of the optimization is to maximize the 

amount of the product B at the final time: 

 
0 2max ( )F

u
J x t  (2.132) 

s.t. 

 1 1x ux   (2.133) 

 
2 1 2x ux cu x   (2.134) 

 1 2u   (2.135) 
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 (2.136) 

 
The importance of this problem lies in the presence of Eq. (2.134), which introduces 

high non-linearity in the DAE system. 

 
 

Solution with the CVP method 
 

In Figs. 2.20 and 2.21, the plots for the control and the states found in the literature are 
presented in parallel with the best plots produced by the CVP method. 
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(a) (b) 

 
Figure 2.20.  Optimal trajectory of control variable from (a) literature, 

(b) CVP method. 
 

 

  
(a) (b) 

 
Figure 2.21.  Optimal trajectory of state variables from (a) literature, 

(b) CVP method. 
 

 
The calculation was completed in 0.77 seconds and the optimal objective function 

value was found equal to 0.678939, whereas the best objective function value from the 
literature is found to be 0.679436. 100 discretization points were used. 

 
 

Solution with the Radau Collocation method 
 

In Figs. 2.22 and 2.23, the plots for the control and the states found in the literature are 
presented in parallel with the best plots produced by the Radau collocation method with 

K=3 collocation points and N=40 elements. 
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(a) (b) 
 

Figure 2.22.  Optimal trajectory of control variable from (a) literature, 
(b) Radau method with K=3, N=40. 

 
 

  
(a) (b) 

 
Figure 2.23.  Optimal trajectory of state variables from (a) literature, 

(b) Radau method with K=3, N=40. 

 
 
Calculation was completed in 1.63 seconds and the optimal objective function value 

was found equal to 0.67943837. 

It can be easily observed that in both methods the plots of the control variable u have a 
minor inaccuracy in comparison with the literature results. In CVP method this happens in 
the very first point (t=0.0) and in Radau Collocation in the first element (Δt=0.2). This 
result can be explained by the observation that in its discretized formulation, the 

differential system, Eqs. (2.133), (2.134), does not produce any equation containing u(0), 
that can be programmed in the form of a constraint in the NLP solver in order to correctly 
calculate the first point u(0) of the control variable profile. Thus u(0) remains at its initial 
value, as this is set by the user in the initialization of the NLP algorithm. 
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 2.6.4 CSTR problem 
 
The following problem of a continuously stirred tank reactor (CSTR) [Balsa-Canto et 

al. (2001), Fikar and Latifi (2002), Luus (1990)] is considered, in which four control 

variables of a chemical reactor are optimized, in order to obtain maximum economic 
benefit for the time horizon of tf = 0.2 sec: 
 

 
0.2

2
0 1 4 1 2 4 5 6 7 3

0

max (5.8( ) 3.7 4.1 (23 11 28 35 ) 5.0 0.099)
u

J qx u u u q x x x x u dt         
 

 

  (2.137) 

 
s.t. 

 
1 4 1 1 2 1 6 317.6 23x u qx x x x x u     (2.138) 

 
2 1 2 1 2 2 317.6 146x u qx x x x x     (2.139) 

 
3 2 3 2 373x u qx x x    (2.140) 

 
4 4 1 2 4 535.2 51.3x qx x x x x     (2.141) 

 
5 5 2 3 4 5219 51.3x qx x x x x     (2.142) 

 
6 6 4 5 1 6 3102.6 23x qx x x x x u     (2.143) 

 
7 7 1 6 346x qx x x u    (2.144) 

 

 
10 20u   (2.145) 

 
20 6u   (2.146) 

 
30 4u   (2.147) 

 
40 20u   (2.148) 

with initial conditions 

 

 (0) [0.1883;0.2507;0.0467;0.0899;0.1804;0.1394;0.1046]x  (2.149) 

 
where 

 
1 2 4q u u u    (2.150) 

 
The difficulty in this problem is due to the fact that it is not a single control dynamic 

optimization problem, but has 4 control variables, thus quadrupling the number of 
optimization variables. Moreover, the DAE system consists of 7 state variables and 7 

highly nonlinear equations thus making the problem highly complex. 
 
 

Solution with the CVP method 

 
In Figs. 2.24 - 2.27, the plots for the four control variables found in the literature are 

presented in parallel with the best plots produced by the CVP method. 100 discretization 
points were used. 
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(a) (b) 
Figure 2.24.  Optimal trajectory of control variable u1 from (a) literature, 

(b) CVP method. 
 

 
 

(a) (b) 

Figure 2.25.  Optimal trajectory of control variable u2 from (a) literature, 
(b) CVP method. 

 

 
 

(a) (b) 
Figure 2.26.  Optimal trajectory of control variable u3 from (a) literature, 

(b) CVP method. 
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(a) (b) 
Figure 2.27.  Optimal trajectory of control variable u4 from (a) literature, 

(b) CVP method. 
 

 
The calculation was completed in 7.45 seconds and the optimal objective function 

value was found at 22.1135, while the best objective function value from the literature is 
found to be at 21.8003. 

From the figures several discrepancies for the calculated optimal solutions of the 
control variables u1 and u2 in comparison with the literature results are observed, although 

the values of the objective function and constraints are accurate. By observing the figures 
more closely we can understand that the general shape of the curves is correct, while 
several points are not predicted correctly, thus disfiguring the final result. This can be only 
explained by the inefficiency of the NLP solver to correctly and accurately calculate the 

values of the optimization variables corresponding to these specific points. This result is 
not, in general, unexpected. As has been mentioned before, this specific problem has 4 
control variables, thus by using 100 discretization points per variable, a 400 variable 
problem is produced. Several errors are to be expected even from the most efficient NLP 

solver. 
Furthermore, it is also natural that the 1st order Euler integration scheme used here is 

not adequate to tackle with the highly complex and non-linear nature of the system of 
differential equations, Eqs. (2.138) - (2.144). A smaller time-step must be used, but smaller 

time step means shorter time intervals, thus, more discretization points per variable. This in 
turn leads to a higher dimension NLP problem, so once again the question of the efficiency 
of the NLP arises. 
 

 
Solution with the Radau Collocation method 

 
In Figs. 2.28 - 2.31, the plots for the four control variables found in the literature are 

presented in parallel with the best plots produced by the Radau collocation method with 
K=3 collocation points and N=40 elements. 
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(a) (b) 
Figure 2.28.  Optimal trajectory of control variable u1 from (a) literature, 

(b) Radau method with K=3, N=30. 

 

  

(a) (b) 
Figure 2.29.  Optimal trajectory of control variable u2 from (a) literature, 

(b) Radau method with K=3, N=40. 
 

  

(a) (b) 
Figure 2.30.  Optimal trajectory of control variable u3 from (a) literature, 

(b) Radau method with K=3, N=40. 
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(a) (b) 
Figure 2.31.  Optimal trajectory of control variable u4 from (a) literature, 

(b) Radau method with K=3, N=30. 
 

 
Figures 2.28 and 2.29 are a clear example of the comment stated previously that only 

the collocation points, and not the intermediate, are an exact solution of the DAE system. 
This can explain why there is so much deviance between the Radau Collocation method 

solution and the solution from the literature as concerning the control variables u1 and u2. 
In essence, the profiles of u1 and u2 calculated by the Radau collocation method are found 
to be very accurate in comparison to the literature results only at the collocation points, 
while all the intermediate points, calculated by the polynomial formula of Eq. (2.102), are 

observed to deviate. Furthermore, this method also suffers from the problem described in 
the previous paragraph: the presence of 4 control variables quadruples the total number of 
optimization variables thus leading to inaccuracies of the NLP solver in certain points. 

The calculation was completed in 247.19 seconds and the optimal objective function 

value was found at 21.8536179. 
The solution presented above can be partially improved by using a greater number of 

elements, but not too many. Too many elements would produce a problem of too many 
variables and the inefficiency of the NLP solver would be cataclysmic for the results. In 

Figs. 2.32 - 2.35, the plots for the four control variables found in the literature are 
presented in parallel with the best plots produced by the Radau collocation method with 
K=3 collocation points and N=80 elements. We must note that by nearly doubling the 
number of elements, the time of calculation has severely augmented (749.31 seconds), 

while the optimal objective function value was found at 21.837459. 
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(a) (b) 
 

Figure 2.32.  Optimal trajectory of control variable u1 from (a) literature, 

(b) Radau method with K=3, N=80. 
 

  
(a) (b) 

Figure 2.33.  Optimal trajectory of control variable u2 from (a) literature, 
(b) Radau method with K=3, N=80. 

 

 

 

(a) (b) 

Figure 2.34.  Optimal trajectory of control variable u3 from (a) literature, 
(b) Radau method with K=3, N=80. 
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(a) (b) 
Figure 2.35.  Optimal trajectory of control variable u4 from (a) literature, 

(b) Radau method with K=3, N=80. 

 
 

It can be observed that the use of more elements has provided more accurate (in 
accordance with the literature) and more "smooth" curves for the control variables. 

In conclusion, the aforementioned results concerning the application of the CVP 
method and the Radau collocation method for the solution of the CSTR problem, are to be 
expected. The utilization of a simultaneous approach based on orthogonal collocation is far 
superior (in terms of solving a highly complex highly non-linear system of differential 

equations) than a sequential approach based on control vector parameterization, which 
integrates the differential system of equations utilizing a 1st order Euler integration scheme. 
 
 

 2.6.5 Purely mathematical example problem 
 

Consider the following DOP [Feehery (1998), Luus (1990), Rajesh et al. (2001)] with 
one inequality state path constraint: 

 

 

1
2 2 2

0 1 2

0

min ( 0.005 )
u

J x x u dt    (2.151) 

 
subject to: 

 1 2x x  (2.152) 

 2 2x x u    (2.153) 
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 (2.155) 

 

and final time 1Ft  . 
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This problem is considered as a relatively simple optimal control problem with one 

control variable u and two state variables 
1x  and 

2x . The main interest of this problem lies 

in the presence of one inequality state path constraint described by the non-autonomous 
Eq. (2.154), where time t is introduced explicitly. 
 

 
Solution with the CVP method 

 
From Figures 2.36 and 2.37 it can be verified that the literature results are in 

agreement with our results as concerning the plots of control and state variables versus 
time. Best objective function value found in the literature was 0.1701564, while the 
optimal value calculated with the CVP method was 0.1695485. For the calculation, 101 
discretization points were used with a time step of 0.01 and the calculations were 

completed in 0.96 seconds. 
 

 

  
(a) (b) 

Figure 2.36.  Optimal trajectory of the control variable u from 
(a) literature, (b) CVP method. 

 
 

  
(a) (b) 

Figure 2.37.  Optimal trajectory of the state variables x1, x2 from 
(a) literature, (b) CVP method. 
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Solution with the Radau Collocation method 
 

In Figs. 2.38 - 2.39, the plots for the control variable and the two state variables found 
in the literature are presented in parallel with the best plots produced by the Radau 

collocation method with K=3 collocation points and N=40 elements. The minimum 
objective function value was found to be 0.169685 and the optimization was completed in 
1.12 seconds 
 

 

  
(a) (b) 

Figure 2.38.  Optimal trajectory of control variable u from (a) literature, 

(b) Radau method with K=3, N=40. 
 
 

  
(a) (b) 

Figure 2.39.  Optimal trajectory of the state variables x1, x2 from 

(a) literature, (b) Radau method with K=3, N=40. 
 

 
The "tricky" part about the application of the Radau Collocation method (or any 

simultaneous method) in this problem lies in the way the path constraint, Eq. (2.154), will 
be handled. The problem with the path constraint lies in the fact that it is non-autonomous, 
which means that it contains time t in explicit form. Thus, if the discretized equivalent of 
Eq. (2.154) is declared as extra constraint equations in our NLP software, the values of 
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their gradients (given that they are automatically calculated by the NLP solver) may be 
wrong. In order to perform the correct transcription of the particular problem into a NLP 
problem and reach the correct solution, the path constraint must be "declared" in the form 
of bounds on the x2 variable.  

 
 

 2.6.6 Comparative and general comments 
 

Application of the CVP method at the selected example problems has revealed that, 
although CVP is a relatively simple method that relies on the -not extremely accurate- 1st 
order Euler scheme in order to integrate the DAE system of equations, the results are rather 
satisfactory. The required computational times were observed to be very short and the 

method was implemented in a computer code of no more than 700-1000 lines in each 
problem. In the case of dynamic optimization problems with few control variables and with 
relatively stable dynamic systems, the CVP method works extremely well and can be 
considered as a better choice than the Radau Collocation method. However, CVP method 

is expected to be strongly affected by non-linearity, as happens in the case of the 
Continuously Stirred Tank Reactor (CSTR) problem. 

Considering the Radau Collocation method, judging by the corresponding results 
derived for the CSTR problem, it can be stated that, indeed as a basic representative of 

simultaneous methods, it can handle unstable dynamic systems with success. The method 
also works fairly well in the simpler dynamic optimization problems and its results can be 
compared with those of the CVP method both in terms of accuracy and computational 
time. Of course, due to the fact that Radau Collocation is a far more complex method to be 

applied than CVP, the generated computer code necessary was at the levels of 1500-2500 
lines, depending of the problem. Another important fact proved by the application of the 
method to the aforementioned problems is that the method promises, and indeed produces, 
arithmetical accuracy of 10-5 but only at the collocation points, and not the intermediate 

ones. Finally, what must be kept in mind is that this specific method is a trade-off between 
the number of collocation points and the number of elements to be used in order to reach 
the best results. As it can be observed by the figures provided in the solution of the Van der 
Pol Oscillator problem, the use of too many collocation points and elements as well as the 

use of too few collocation points and elements is not correct. An "optimal" combination of 
these two parameters exists and must be specified in order for the method to work best. 

Finally, a more general observation that can be applied to both methods is that they 
both highly depend on the efficiency of the gradient-based NLP solver that is chosen to 

solve the resulting optimization problem after the discretization, especially in cases of 
dynamic optimization problems with many variables where the original problem, after 
discretization is performed, is translated to a static optimization problem of -perhaps-
thousands of variables. 

 
 

2.7 Dynamic Optimization of a Trigeneration System 
 

A trigeneration system is a system that produces electric (or mechanical) energy, while 
its thermal energy is used to cover heating loads directly or cooling loads by means of an 
absorption chiller. This feature proves to be very important for the economic feasibility of 
such units in areas like Greece, where mild winters and long hot summers are observed, 

thus making the heating period short.  
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Dynamic optimization has been performed on such a system installed in a complex of 
buildings in the past [Vallianou and Frangopoulos (2012)]. This system has been selected 
for further study in this work, as a good application example of dynamic optimization in 
energy systems. 

 
 

 2.7.1 Description of the Trigeneration system 
 

An important feature of the trigeneration system at hand is the presence of storage 
tanks for hot and cold water. Storage tanks are used in order to deal with the fact that the 
peak of thermal and cooling loads are not, in general, expected to coincide with the peak of 
the electric load. So the option of being able to store the produced thermal and cooling 

energy seems, if not necessary, at least very reasonable. 
A simplified diagram of the supply lines of hot and cold water is depicted in Figure 

2.40. 
The energy needs of the building complex are covered by the trigeneration system at 

hand and by electricity coming from the local network. The basic components that 
constitute the trigeneration system are: a gas-engine cogeneration unit, natural gas boilers, 
one hot water tank with its own natural gas burner, one cold water storage tank, an 
absorption chiller driven by thermal energy and electrically driven compression chillers. 

The boilers and compression chillers are designed to have sufficient capacity in order 
to fully cover the energy needs of the building, if needed, without the aid of the 
cogeneration unit or any other component. As it can be observed in Figure 2.40, hot water 
from the cogeneration unit and the boilers is stored in the hot water tank and then supplied 

to the absorption chiller and, of course the building. In the same way, cold water from the 
compression chillers and the absorption chiller is stored in the cold water tank and then 
supplied to the building. Both tanks are connected to closed circuits, thus the mass of water 
in them remains constant. A natural gas burner is installed on the hot water tank in order to 

compensate for thermal losses. 
 
 

 
 

Figure 2.40.  Simplified diagram of the trigeneration energy system 
[Vallianou and Frangopoulos (2012)]. 
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Another important feature that needs to be mentioned is that the building operates for a 
five-day week (Monday through Friday). This means that during the weekend only the 
storage tanks operate and bridge the gap between Friday and Monday. 

Further details about the technical characteristics of the components of the system and 

about the energy loads of the building complex can be found in the work of Vallianou and 
Frangopoulos (2012). General details considering the simulation, optimization, 
performance evaluation and complexities of trigeneration systems can be found in the 
literature [Cardona and Piacentino (2007), Kavvadias and Maroulis (2010), Carvalho et al. 

(2011)]. 
 
 

 2.7.2 Modeling of the Trigeneration system 

 
The complete model can be obtained from the original publication [Vallianou (2009), 

Vallianou and Frangopoulos (2012)]. Here, for brevity, only selected important elements of 
the model used for the simulation of the trigeneration system are presented. 

Although storage of thermal and cooling energy exists, no storage for electric energy 
is present. Thus the electric energy produced by the cogeneration system and the electric 
energy provided by the grid must be equal to the total electric load (including the 
compression chillers). This is stated by Eq. (2.156) as 

 

 cog b cons chelW W W W    (2.156) 

 

where cogW  is the electric power from the cogeneration unit, bW  is the power bought from 

the grid, consW  is the power consumed by the building, and chelW  is the electric power 

consumed by the compression chillers. 
For the boilers and the auxiliary burner of the hot water tank a constant efficiency is 

assumed. The coefficient of performance at nominal load for the compression chillers is 
assumed to be constant at partial load and is given as a function of the ambient 

temperature: 
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   (2.157) 

 

Considering the cogeneration unit, the energy flow rate of the fuel consumed fcogH  is 

given as a function of the electric power output: 
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   (2.158) 

 

A similar expression is used for the useful heat produced, fcogQ : 
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   (2.159) 
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In order to simulate the transient behaviour of the hot and cold water storage tanks, 
differential equations are used. Specifically, the energy balance for the hot water tank is 
given as:  
 

 ( ) ( )hwt
hwt p cog B abs cons hwt hwt r

dT
m c Q Q Q Q UA T T

dt
       (2.160) 

 

with 
hwtm  the water mass of the hot water tank, cogQ  the useful thermal power output of 

the cogeneration unit, 
BQ  the thermal power output of the boilers and the burner, ( )hwtUA  

the product of overall heat transfer coefficient and external surface area of the hot water 

tank, 
hwtT  the temperature of the hot water tank, and 

rT  the room temperature. The energy 

balance for the cold water tank is given by Eq. (2.161) 
 

 ( ) ( )cwt
cwt p cons abs chel cwt cwt r

dT
m c UA T T

dt
       (2.161) 

 

with 
cwtm  the water mass of the cold water tank, 

cons  the cooling power output to the 

building, abs  the cooling power of the absorption chiller, chel  the cooling power output 

of the compression chillers, ( )cwtUA  the product of overall heat transfer coefficient and 

external surface area of the cold water tank, 
cwtT  the temperature of the cold water tank, 

and 
rT  the room temperature. 

Finally the model for the transient operation of the absorption chiller is discussed in 
brief. The operation of the absorption chiller can be described by the Gompertz function 
(Figs. 2.41, 2.42). 

Two equations are used, one for the load increase from zero to nominal load 

 

 ( )
tc

incrG t ab ab   (2.162) 

 
and one for the load decrease from nominal to zero load 

 

 
1.75

( ) 1
tc

decrG t ab ab    (2.163) 

 
where α=1.228455, b=0.000128 and c=0.810818. The cooling power of the absorption 

chiller is thus given as a function of time 
 

 ( ) ( )abs Dabst G t    (2.164) 
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Figure 2.41.  Gompertz function for load increase [Vallianou and Frangopoulos (2012)]. 
 
 

The heat flow rate required for the absorption chiller at nominal load is given as 

 

 Dabs
Dabs

Dabs

Q
COP


  (2.165) 

 

where 
DabsCOP  is the coefficient of performance for the absorption chiller at its nominal 

load (design point). The heat flow rate at partial load is given by the equation 
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  (2.166) 

 
while the heat flow rate for operation during transients is given by the equation 
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with 
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  (2.168) 

 
Next, the details of the dynamic optimization problem of the trigeneration system are 

discussed. 
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Figure 2.42.  Gompertz function for load decrease [Vallianou and Frangopoulos (2012)]. 
 
 

 2.7.3 Dynamic optimization of the Trigeneration system operation 
 
The optimization problem of the trigeneration system can be characterized as a 

dynamic one due to two important factors: the presence of transient phenomena and the 

existence of storage tanks for hot and cold water. 
The transient operation of the absorption chiller is a phenomenon that cannot be 

ignored due to the fact that its time constant is longer than the time constant of the 
cogeneration unit. So the assumption of steady state operation during time intervals would 

be inaccurate. The time needed for the absorption chiller to switch from zero load to full 
load (or any intermediate load) and the time needed to switch to zero load again are 
important parameters that should be taken into consideration during the optimization 
procedure. 

Concerning the existence of storage tanks, the presence of energy storage during the 
period of operation of an energy system characterizes the corresponding optimization 
problem as a dynamic one. The key idea is that due to storage, the power output of each 
component in each time interval affects and is affected by the power output in other time 

intervals. Thus the problem can no longer be decomposed into time intervals of steady-
state operation independent of each other and treated likewise, but dynamic optimization 
methods must be applied. 

The objective of optimization is the minimization of the total annual cost for covering 

the energy needs of the building complex  
 

 min tot ac p m f eC C C C C C      (2.169) 

 
where Cac, Cp, Cm, Cf, Ce represent the annualized capital cost, personnel cost, maintenance 

cost, fuel and electricity cost, respectively. Details about the specific equations for each 
cost can be found in the original work [Vallianou (2009), Vallianou and Frangopoulos 
(2012)]. 

The change of the energy needs with time is represented with one typical day for each 

month and nine time intervals of constant needs in each interval during the typical day. 
Four independent variables are selected, namely the electric power output of the 
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cogeneration unit, cogW , the thermal power output of the boilers and the burner of the hot 

water tank, 
BQ , the cooling power of the absorption chiller, 

abs , and the cooling power 

of the compression chillers, 
chel . The building operates during five weekdays, while any 

stored energy is retained during the weekend, taking into consideration energy losses. 
Constraints that are not incorporated in the optimization problem by the model, but have to 
be declared separately in the NLP solver, are the following: 

 

 0.3   and  0Dcog cog Dcog DcogW W W W     (2.170) 

 0.1   and  0Dabs Dabs abs Dabs      (2.171) 

 80 95o o
hwtC T C   (2.172) 

 7 12o o
cwtC T C   (2.173) 

 
Equations (2.170) and (2.171) reveal the presence of a technical lower limit on the 

operating power of the cogeneration unit and the absorption chiller. Of course the value 
zero is included to cover the cases when the cogeneration unit or the absorption chiller is 

not operating. The optimization algorithm automatically sets the value of the power output 
equal to zero, if a value lower than the lower limit declared in the above equations is 
calculated during the optimization process. 

In the original work, the dynamic optimization problem is solved by treating 

simultaneously 9×7=63 time intervals per week (9 time intervals per day), thus 
constructing a 4×63=252 variables NLP problem for the time horizon of a typical week. 
The CVP method is applied, and the Euler method for the solution of the differential 
equations, Eqs. (2.160) – 2.161), is used. For the solution of the NLP problem, an SQP 

algorithm is used via the SNOPT software supplemented with the necessary subroutines 
for calculating the state variables and the objective function values. 

An issue that was left open for research in the original work was the fact that the 
increased number of variables, in the case where 1 hour intervals were used (which means 

24 intervals per day instead of 9), made the problem impossible to solve because of the 
long computational time required. The contribution of the author in this problem was the 
modification/improvement of the original algorithm in order to solve the problem for 1 
hour time intervals and for the whole 30-day month rather than simply one typical week 

per month. The model provided from the original work was not altered in any way. Also, 
the method of approach of the dynamic optimization problem was chosen to be Control 
Vector Parameterization with piecewise constant discretization for the control variables as 
in the original work, but the method of integration of the system of differential equations 

was upgraded from the 1st order Euler integration scheme that was originally used to 4th 
order Runge-Kutta. 

The problem is solved for the typical week of every month using 24 intervals per day 
(24×7x4=672 variables) and for the whole month using both 9 intervals per day 

(9×30×4=1080 variables) and 24 intervals per day (24×30x4=2880 variables). Also the 
case of the whole year set as the time horizon is solved by optimizing successively every 
month while using the output of the previous month as the input the next, interconnecting 
in a way the 12 months. Of course, in the case of the whole year, the above procedure leads 

only to an approximation of the real optimal solution. In order to solve correctly and 
realistically the case of optimization of the whole year, all 30 days of all 12 months should 
be considered interconnected, thus forming a 24×365×4=35040 variable problem, which 
would be very hard to solve efficiently. 
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 2.7.4 Results and Comments 
 
For economy of space, optimization results for only two months (January and July) are 

presented in this section. The month January is selected as a representative of the cold 

period, while the month July is the representative of the hot period of operation. 
Optimization results for both months are presented in comparison with results of the 
original work. Furthermore, optimization results in terms of total cost using 24 time 
intervals per day for a whole month are compared to the results where 9 time intervals per 

day for a whole month were used. 
The energy needs of the building that must be covered by the trigeneration system are 

given in Table 2.3 for a typical day of January and Table 2.6 for a typical day of July, 
while the optimization results (values of the independent variables as well as important 

dependent variables) of the original work and the current work for January are given in 
Tables 2.4 and 2.5, respectively. It can be observed that during January (cold period) the 
cogeneration unit operates at its nominal load from 06.00 to 20.00 and the thermal energy 
produced by the unit is used to cover the thermal loads. The use of thermal energy from the 

boilers in order to drive the absorption chiller is not recommended (ΨABS=0), while the 
necessary cooling load is covered by the compression chillers. 
 
 

Table 2.3.  Building energy needs in a typical day in January 
[Vallianou and Frangopoulos (2012)]. 

 

Time period 
Wcons 
(kW) 

Qcons 
(kW) 

Ψcons 
(kW) 

00.00-06.00 0 0 0 

06.00-08.00 455 1380 700 

08.00-10.00 580 1690 700 

10.00-12.00 625 1530 700 

12.00-14.00 650 1360 700 

14.00-16.00 635 1320 700 

16.00-18.00 605 1420 700 

18.00-20.00 465 1210 700 

20.00-00.00 0 0 0 

 

 
Comparing the results of the current work with the results of the original work we can 

see a minor difference in the way the thermal power output of the boilers and the burner of 

the hot water tank, BQ , is exploited during the time interval 06.00-08.00. Indeed, as it is 

proven by the value of the objective function (total cost), a "more optimal" strategy for BQ  

is determined in the case of 1-hour time intervals, which in turn leads to a more 

economical mode of operation for the trigeneration system. The optimal total cost in the 
case of the typical week is calculated at 8.265,16 € for 9 intervals per day and at 8.115,13 € 
for 24 intervals per day. Respectively, the optimal total costs in the case where the system 
is optimized for the whole month using 9 and 24 time intervals per day can be found in 

Table 2.9. 
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Table 2.4.  Optimization results for a typical day in January 

[Vallianou and Frangopoulos (2012)]. 
 

Time period 
WCOG 

(kW) 
QCOG 

(kW) 
QB 

(kW) 
ΨABS 
(kW) 

QABS 

(kW) 
ΨCHEL 
(kW) 

00.00-06.00 0 0 0 0 0 0 

06.00-08.00 540 759 625,7 0 0 701,0 

08.00-10.00 540 759 932,2 0 0 700,2 

10.00-12.00 540 759 772,2 0 0 700,2 

12.00-14.00 540 759 602,2 0 0 700,2 

14.00-16.00 540 759 562.2 0 0 700,2 

16.00-18.00 540 759 662,2 0 0 700,2 

18.00-20.00 540 759 452,2 0 0 700,2 

20.00-24.00 0 0 0 0 0 0 

 

 
Table 2.5.  Optimization results for a typical day in January (current work).  
 

Time period 
WCOG 
(kW) 

QCOG 
(kW) 

QB 
(kW) 

ΨABS 
(kW) 

QABS 
(kW) 

ΨCHEL 
(kW) 

00.00-06.00 0 0 0 0 0 0 

06.00-07.00 540 759 629,2 0 0 701,7 

07.00-08.00 540 759 622,2 0 0 700,2 

08.00-09.00 540 759 932,2 0 0 700,2 

09.00-10.00 540 759 932,2 0 0 700,2 

10.00-11.00 540 759 772,2 0 0 700,2 

11.00-12.00 540 759 772,2 0 0 700,2 

12.00-13.00 540 759 602,2 0 0 700,2 

13.00-14.00 540 759 602,2 0 0 700,2 

14.00-15.00 540 759 562,2 0 0 700,2 

15.00-16.00 540 759 562,2 0 0 700,2 

16.00-17.00 540 759 662,2 0 0 700,2 

17.00-18.00 540 759 662,2 0 0 700,2 

18.00-19.00 540 759 452,2 0 0 700,2 

19.00-20.00 540 759 452,2 0 0 700,2 

20.00-00.00 0 0 0 0 0 0 

 
 

The results for July (hot period) from the original work and the current work are 

presented in Tables 2.7 and 2.8. It can be observed that during July, the absorption chiller 
operates at its full capacity from 07.00 to 19.00, while the cogeneration unit operates at its 
nominal load from 06.00 to 20.00.   
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Table 2.6.  Building energy needs in a typical day in July 
[Vallianou and Frangopoulos (2012)]. 

 

Τime 
period 

Wcons 
(kW) 

Qcons 
(kW) 

Ψcons 
(kW) 

00.00-06.00 0 0 0 

06.00-08.00 455 465 1130 

08.00-10.00 580 465 1650 

10.00-12.00 625 465 2060 

12.00-14.00 650 465 2430 

14.00-16.00 635 465 2620 

16.00-18.00 605 465 2490 

18.00-20.00 465 465 2070 

20.00-00.00 0 0 0 

 
 

Table 2.7  Optimization results for a typical day in July 
[Vallianou and Frangopoulos (2012)]. 

 

Time period 
WCOG 
(kW) 

QCOG 
(kW) 

QB 
(kW) 

ΨABS 
(kW) 

QABS 
(kW) 

ΨCHEL 
(kW) 

00.00-06.00 0 0 0 0 0 0 

06.00-08.00 540 759 0 189,1 283,6 973,4 

08.00-10.00 540 759 0 206 293,9 1444,9 

10.00-12.00 540 759 0 206 294,2 1854,6 

12.00-14.00 540 759 0 206 294,2 2210,0 

14.00-16.00 540 759 0 206 294,2 2414,4 

16.00-18.00 540 759 0 206 294,2 2284,4 

18.00-20.00 540 759 0 80.5 127,9 1985,3 

20.00-24.00 540 759 0 0 6,8 0 

 
 

Comparing the current results with the respective results from the original work, it can 
be once again verified that the use of 1-hour time intervals leads to a better optimal 

operation strategy for the absorption chiller (start-up and shut-down) combined with the 
compression chiller and cooling tank, thus to a better value for the total cost. The optimal 
total cost in the case of the typical week is calculated at 9.552,16 € for 9 intervals per day 
and at 9.389,16 € for 24 intervals per day. Same as above, the optimal total costs in the 

case where the system is optimized for the whole month using 9 and 24 time intervals per 
day can be found in Table 2.9. 
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Table 2.8.  Optimization results for a typical day in July (current work).  
 

Time period 
WCOG 

(kW) 

QCOG 

(kW) 

QB 

(kW) 

ΨABS 

(kW) 

QABS 

(kW) 

ΨCHEL 

(kW) 

00.00-06.00 0 0 0 0 0 0 

06.00-07.00 540 759 0 166,1 268,4 1061,9 

07.00-08.00 540 759 0 206 293,7 939,2 

08.00-09.00 540 759 0 206 294,2 1445,1 

09.00-10.00 540 759 0 206 294,2 1444,6 

10.00-11.00 540 759 0 206 294,2 1854,5 

11.00-12.00 540 759 0 206 294,2 1854,5 

12.00-13.00 540 759 0 206 294,2 2195,5 

13.00-14.00 540 759 0 206 294,2 2224,4 

14.00-15.00 540 759 0 206 294,2 2414,4 

15.00-16.00 540 759 0 206 294,2 2414,4 

16.00-17.00 540 759 0 206 294,2 2284,4 

17.00-18.00 540 759 0 206 294,2 2284,4 

18.00-19.00 540 759 0 206 294,2 1864,4 

19.00-20.00 540 759 0 33,2 100,0 2022,4 

20.00-21.00 0 0 0 0 17,4 0 

21.00-00.00 0 0 0 0 0 0 

 
 

In the original work of Vallianou and Frangopoulos (2012) the effectiveness of the 
optimization procedure was verified by comparing the results with typical predetermined 

operation modes of the system in terms of overall cost. Here, since the results of 
optimization are improved in comparison with those of the original work, there is no need 
to repeat this comparison. 

Finally, in Table 2.9 the total optimal costs for the cases of optimization of the 

trigeneration system for a whole 30-day period (month) using 9 time intervals per day and 
24 time intervals per day are presented. It can be deduced that the case where 1-hour time 
intervals per day were used provides a superior optimal solution compared to the case of 9 
time intervals per day. This result was expected due to two fairly logical reasons. Firstly, 

the use of 1-hour time intervals means that the differential equations that describe the 
transient operation of the storage tanks, Eq. (2.160), are solved more accurately than in the 
case where 2-hour and 6-hour intervals are used, as in essence a smaller time step is used. 
Secondly, the transient operation of the absorption chiller, as has already been mentioned 

before, lasts for 20 minutes. Thus, the use of time intervals with lengths longer than 20 
minutes is expected to introduce an error in the simulation of the system, which decreases 
as the selected time interval becomes smaller and smaller. So, differences in the results are 
to be expected when using 1-hour intervals instead of 2-hour intervals and the closer the 

time interval used is to the recommended value of 20 minutes, the more "optimal" and 
more realistic solutions will be produced. 
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Table 2.9.  Optimal Cost per Month (in Euros). 
 

Month 
Cost (Euros) 

9 intervals 

Cost (Euros) 

24 intervals 

January 38029,97 37339,94 

February 31413,53 30813,30 

March 33787,05 33126,92 

April 32162,30 31532,28 

May 34569,77 33847,61 

June 37114,59 36437,70 

July 42029,21 41313,16 

August 22257,42 21567,69 

September 31454,78 30823,24 

October 30281,13 29590,56 

November 34187,58 33527,55 

December 35230,65 34600,44 

 
 

Another important note that must be highlighted here and cannot be easily observed by 
studying the preceding tables is the fact that solving the problem for a typical week and for 
a typical month is in essence two very different optimization problems. Indeed, by taking 
for example the month January and optimizing (with 1-hour time intervals) for a time 

horizon of a week, the optimal total cost is found to be equal to 8.115 € while in the case of 
the whole month the optimal total cost is found to be equal to 37.339 €, which is not equal 
to the product of 8.115 € with the number of weeks per month. However, this result is to be 
expected, since in the case of the whole month each week is interconnected with its 

previous and next by the transient operation of the tanks during weekends, thus a more 
complex, more complete and closer to reality optimization problem is produced, which is 
different from the problem of optimizing the system for a single week and the two cases 
should not be compared to each other. 

 
 
 
 



 The General Framework for Dynamic Optimization of Marine Energy Systems 81 

 

CHAPTER 3: THE GENERAL FRAMEWORK FOR DYNAMIC OPTIMIZATION 

 OF MARINE ENERGY SYSTEMS 
 
 

3.1 General 
 
 As described in the introductory chapter of this thesis, the aim of this work is to 
develop a comprehensive and efficient method for the dynamic optimization of synthesis, 

design and operation of marine energy systems. In this chapter the general formulation of 
the problem, accompanied with a suitable mathematical framework, based on a generic 
marine energy system is presented.  
 The term “generic” is used to highlight the fact that the energy system is modeled in a 

way that can encompass a multitude of synthesis, design and operation alternatives among 
which the dynamic optimization algorithm can search for the optimal, after a suitable 
objective function is determined, the necessary technical, operational or even economic 
constraints are imposed and the required parameters of the vessel mission are defined. 

 Since the generic marine energy system is composed of many individual components, 
whose existence in the final synthesis of the system, their design characteristics and their 
operation profile are under optimization, suitable component models have been developed 
and are thoroughly presented in the next chapter of this study, Chapter 4. Of course, all 

these components, both in terms of synthesis/design and in terms of operation are 
inherently interrelated to each other, to the mission characteristics and to the time (or time 
and space) varying operational requirements of the vessel. Thus, they cannot be treated 
separately but have to be optimized simultaneously as parts of the whole system. The 

formulation of the generic system serves as a basis for incorporating all the individual 
component models and their interrelations, under a single framework and also ensures that 
the problem is correctly stated in a suitable “dynamic optimization problem” formulation, 
so that dynamic optimization methods can be applied. 

 Special attention has been given to the construction of a superconfiguration that 
depicts all the available synthesis options and the possible interconnections among 
components. In the next section, the superconfiguration of the generic system that contains 
all the possible synthesis options is presented. However, for the case studies, presented in 

Chapter 5, simpler superconfigurations are used.  
 Furthermore, it is noted that the dynamic optimization problem of the generic marine 
energy system that will be described in the rest of this Chapter is set up as one-level 
dynamic optimization problem, and more specifically as a Mixed Integer Dynamic 

Optimization Problem (MIDO), since integer and binary variables are used to define the 
synthesis of the energy system. By the term "one-level", it is meant that the three levels of 
optimization (synthesis-design-operation) are stated in a single complex problem and 
treated by the optimizer simultaneously. A detailed discussion of this feature, as well as the 

method of treatment for the integer variables, is given in Section 3.3.2. 
 Finally, in Section 3.4, the appropriate dynamic optimization procedures that were 
developed for this study, along with the related software in which they were implemented, 
are presented. 

 
 

3.2 Description of the generic energy system – The superconfiguration 
 

 In this study, the optimal configuration (synthesis), design specifications of 
components and operating conditions of an energy system that will cover all energy needs 
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of a ship on a fixed route under the scope of minimizing/maximizing a cost related 
objective function, are requested. 
 The requested propulsion power is not known in advance, but depends on the vessel 
speed and weather conditions along the route. The varying with time or space and time 

weather conditions encountered by the ship have an effect on the total resistance of the 
vessel, thus impact the required power from the propulsion plant in order to attain a certain 
speed. Furthermore, the ship speed at any instant of time is unknown and also under 
optimization, since only the route is predetermined in advance and the total travel time can 

be either predetermined or variable and under optimization, depending on the mission 
profile which is a parameter to the problem. This problem is an inherently dynamic one, 
since the speed in a certain instant of time affects and is affected by the speed in all other 
instants. 

 A superconfiguration of the generic energy system that will cover all energy needs is 
considered in Figure 3.1. A single propeller is driven by the propulsion plant which may 
comprise a number of two stroke diesel engines, four stroke diesel engines and a number of 
gas turbines. For the gas turbines, three different types are considered. Details considering 

the selection of the three possible gas turbine types are given in Chapter 4, Section 4.5, 
Figure 4.4. The type and number of engines that constitute the propulsion plant is under 
optimization. One or more (determined by optimization) single-pressure heat recovery 
steam generators (HRSGs) will serve part or all of the thermal demands by saturated steam 

extraction from the drum, while the superheated steam produced will drive one or more 
(determined by optimization) steam-turbines, if the optimization thus dictates. The power 
produced by the steam turbine(s) will be distributed between the propeller and a generator, 
which will supply electric power for the service of the electric loads. Diesel generator sets 

(the number is also determined by optimization) and an auxiliary boiler are included, 
which will cover the electric and thermal demands in port and will supply electric and 
thermal energy during voyages in case the STGs and HRSGs cannot fully cover the loads. 
 The type (e.g. four stroke diesel engines, two stroke diesel engines, gas turbines), 

number and design characteristics (e.g. nominal power output of the propulsion plant, the 
HRSGs, the gensets, etc.) of all the components described above are not predetermined but 
variable and under optimization. Also, the operational profile of each component at each 
instant/interval of time is also under optimization. 

 Regarding the weather conditions encountered by the ship during the trip, only the 
wind speed and direction and the wave height and direction are taken into consideration in 
this work, since other parameters such as pressure, temperature, fog, etc. are not crucial in 
the determination of ship speed and the required propulsion power. Once these four 

parameters are given as inputs, either as constants or as functions of space and time, the 
added resistances of wind and waves are calculated, thus the total resistance can also be 
calculated. All details considering the treatment of the weather as well as the calculation of 
ship resistance and propulsion are presented in Section 4.7 of Chapter 4, where the 

appropriate ship resistance and propulsion models are discussed. 
 The electric and thermal demands are parameters of the problem and are given as 
inputs. They can be defined in various ways; for example they can be considered constant 
or functions of variables such as time, distance travelled or brake power, depending on the 

profile of the mission. 
 Finally, it is noted that the problem can be set so that it optimizes the system for a 
single trip or for consecutive trips over a total period of time, which can span up to the full 
life cycle of the vessel taking into consideration the real conditions (if available) prevailing 

at each instant of time. 
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Figure 3.1. Superconfiguration of the generic energy system. 

(AB: auxiliary boiler, Cond: condenser, DGS: diesel-generator set, FWT: feed water tank, 
G: generator, HRSG: heat recovery steam generator, ME: main engine, ST: steam turbine) 
 
 

3.3 The General Dynamic Optimization Problem 
 
 

 3.3.1 Mathematical statement of the general problem 

 
 The dynamic optimization problem can be mathematically stated using a Differential − 

Algebraic Equation (DAE) formulation. The total time horizon of the optimization, ft , can 

be either a predetermined parameter (fixed) or an optimization variable. Here, in the 
general case, it is stated as an optimization variable. The objective function is selected to 

be either the minimization of the present worth cost, PWC , which consists of capital, fuel 

and operation expenses, or the maximization of the Net Present Value (NPV). Analytic 
equations regarding the calculation of these economic criteria are given in Appendix B. 
 In the case of minimization of PWC, the objective function is mathematically stated as 
 

 
,
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f

c f om
x t
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whereas in the case of maximization of NPV it is stated as 
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cPWC  capital present worth cost, 

 
fPWC  fuel present worth cost, 

 
omPWC  operation and maintenance present worth cost, 

 PWR  present worth of revenue, 

 ft  final time (total time horizon of the optimization), 

 
 Vector x , represents the vector of control (optimization) variables, consisting of the 

vectors of synthesis, design and operation optimization variables ( v ,w  and z , 
respectively): 
 

 ( , , )x v w z  (3.2) 

with 

 

  ,2 ,4 1 2 3, , , , , , , ,D X D X GT GT GT B ST DG ABv z z z z z z z z y   (3.3a) 

  , , , , , , ,, , , , , ,
n n n n n nbn i j g k g k s k ST l DG m ABw W m T m m W Q  (3.3b) 

  , , , , ,, , ,b i j h k e l DG mz W W   (3.3c) 

where 
 

 

,2

,4

1

2

3

0,...,    for   , 2

0,...,    for   , 4

0,...,       for   1

0,...,       for   2

0,...,       for   3

D X

D X

GT

GT

GT

z i D X

z i D X

j z i GT

z i GT

z i GT





 


 


 
 

 


 (3.4a) 

 

 0,..., Bk z  (3.4b) 

 

 0,..., STl z  (3.4c) 

 

 0,..., DGm z  (3.4d) 

and: 
 

 ,2D Xz   number of two stroke diesel engines (integer variable), 

 ,4D Xz   number of four stroke diesel engines (integer variable), 

 1GTz  number of type 1 gas turbines (integer variable), 

 2GTz  number of type 2 gas turbines (integer variable), 

 3GTz  number of type 3 gas turbines (integer variable), 

 Bz  number of heat recovery steam generators (integer variable), 

 STz  number of steam turbines (integer variable), 

 DGz  number of diesel generator sets (integer variable), 

 ABy  variable determining the existence of the auxiliary boiler (binary variable), 
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 , ,bn i jW  nominal brake power output of j th engine of type i (invariant2), 

 ,ng km  nominal exhaust gas mass flow rate of k  th HRSG (invariant), 

 ,ng kT  nominal exhaust gas temperature of k  th HRSG (invariant), 

 ,ns km  nominal steam mass flow rate of k  th HRSG (invariant),  

 ,nST lm  nominal steam mass flow rate of l th ST (invariant),  

 ,nDG mW  nominal power output of m th generator set (invariant),  

 
nABQ  nominal thermal power output of auxiliary boiler (invariant), 

 , ,b i jW  brake power output of j th engine of type i,  

 ,h k  fraction of k  th HRSG steam mass flow rate delivered to thermal loads: 

 , , , ,s h k h k s km m    (3.5a) 

 , ,s h km  steam mass flow rate drawn from k  th HRSG drum for serving thermal loads, 

 ,s km  steam mass flow rate of k  th HRSG unit, 

 ,e l  fraction of l th steam turbine power output delivered to generator: 

 , , ,STG l e l ST lW W    (3.5b) 

 ,STG lW  l th steam turbine generator power for serving electric loads, 

 ,ST lW  l th steam turbine power output, 

 ,DG mW  m th diesel generator set power output. 

 

 Indices j, k , l and m run through all the values from 0 up to an upper value. The upper 
values of indices j, k , l and m are not determined (fixed) at the beginning of the 
optimization, since they are in fact defined by the values of their respective –integer- 
synthesis variables. However, they are bound from above with the same upper bounds of 

these respective integer synthesis variables, which must be well determined and fixed at 
the start of the optimization. Specifically, as can be seen from Eq. (3.4a), the upper value 
of index j depends on the index i which determines the type of propulsion equipment and 
from the respective value of the, under optimization, integer variable that determines how 

many components of type i will be installed. Thus, the problem has as many design and 
operation variables for the components, as the integer values of the synthesis control 

variables dictate. Variable 
ABy  that determines the existence of the auxiliary boiler is 

binary. In both cases of integer and binary variables, value 0 denotes that the unit is not 
installed. 

 The main differential variables for this problem are the distance travelled by the ship, 
defined as: 
 

 travel

d
d V

dt
  (3.6) 

 
the fuel consumption of the propulsion engines and diesel generator sets, generally defined 

with the help of the Specific Fuel Oil Consumption (SFOC) of the component and the 
produced brake power as: 

                                                             
2  Time-independent optimization variable. 
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 f f b

d
m b W

dt
  (3.7) 

 

and the fuel consumption of the auxiliary boiler, defined as: 
 

 ,
AB

f AB

AB u

Qd
m

dt H



 (3.8) 

 

where 
AB  is considered a constant parameter. 

 Another family of differential variables is derived from the energy output of each 

component, which is generally given as: 
 

 , ,
d

E Y Y W Q
dt

   (3.9) 

 
 The fuel consumption and the energy output of each component are necessary in order 
to calculate the fuel, operation and maintenance costs for each component, which are main 

parts of the operational costs of the system and both the objective functions. The capital 
costs for each component are calculated using the values of the design variables (Eq. 3.3b). 
Detailed information considering the calculations of the capital cost for each component 
are given in Appendix C. 

 Since the propulsion plant characteristics, i.e. type and number of engines and their 
nominal power, are not known but they are the results of optimization, a unique Specific 
Fuel Oil Consumption (SFOC) curve as a function of load only is not sufficient. Thus, 
based on manufacturer data, SFOC surfaces are constructed, where the SFOC for each 

engine of type i as well as the exhaust gas mass flow rate and temperature are given as 
two-variable (nominal power and load factor) functions. The total exhaust gas mass flow 
rate and temperature from all engines is then calculated and supplied to the HRSGs. The 
same procedure (two variable functions) is also applied in the modeling of diesel generator 

sets SFOC and exhaust gas properties. The models used for the propulsion engines and the 
diesel generator sets are presented in Chapter 4. 
 The condition that the brake power of the main engines and the steam turbine, as well 
as the electric and thermal power produced by the integrated system must be equal to the 

required brake power, the electric and thermal demands at any instant of time, respectively, 
leads to the equality constraints: 
 

  , , , , , , , ,

, ,

1b i j ST p l b i j e l ST l b

i j l i j l

W W W W W          (3.10) 

 , , , , ,STG l DG m e l ST l DG m e

l m l m

W W W W W         (3.11) 

 ,B k AB

k

Q Q Q   (3.12) 

where 
 

 , ,ST p lW  propulsion power from l th ST, 

 bW  required brake power from the engines, 

 eW  electric load, 
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 ,B kQ  heat drawn from k  th HRSG drum for serving thermal loads, 

 Q  thermal load. 

 
 The total required brake power of the engines is calculated as a function of the ship 
speed, ship resistance and propulsive efficiency as 

 

 
( , , )

( , , )

tot
b

prop

V R V WS
W

V WS




p

p
 (3.13) 

where 
 
 WS  weather state, 

 p  constant parameters describing the vessel, 

 prop  propulsive efficiency. 

 
 All terms of Eq. (3.13) are discussed in detail in Chapter 4 and in Appendixes D and 
E.  
 It is clarified that even though the ship speed is unknown and under optimization, it is 

not directly declared as a control variable. Instead, it is derived from the brake power 
outputs of the main engines, Eqs. (3.10), (3.13), which are declared as control variables. 
Thus, the ship speed is –indirectly– determined by optimization. 
 Finally, there are equalities developed by the simulation of the components as well as 

inequality constraints imposed on the variables, but their full presentation is beyond the 
limits of the present text. Noteworthy inequality constraints include the upper and lower 
bounds imposed on the speed of the ship 
 

 
min maxV V V   (3.14) 

 

and the upper and lower bounds imposed on the load factor,

 
Lf , of all components (main 

engines, diesel generator sets, steam turbines, etc.) that ensure their operation inside the 
limits specified by the manufacturer:  

 

 
maxmin

L L Lf f f   (3.15) 

 
 Of course all control variables, are accompanied by upper and lower limits. However, 
upper and lower limits may not be necessary for all state variables. 

 Additional constraints may be imposed by emission regulations if, for example, the 
ship travels within emission controlled areas (ECAs). Such a case is not examined in this 
work, but it is not difficult to include emission constraints wherever applicable. 
 

 

 3.3.2 Variables for the synthesis, design and operation levels 
 
 The general dynamic optimization problem stated in the previous section has been 

formulated so that the aspects of synthesis, design and operation, regarding a generic 
marine energy system are considered. 
 A common practice followed in the literature [Olsommer B. (1998), Munoz JR and 
von Spakovsky MR. (2003), Dimopoulos et al. (2008), Dimopoulos and Frangopoulos 
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(2008), Dimopoulos G. (2009)] denotes that a Synthesis−Design−Operation problem is 
usually stated as a two−level problem and the optimizer would firstly solve the 

Synthesis/Design problem (higher level) and then the Operation sub-problem (lower level) 
and reach to an optimal solution via iteration between the two levels.  

 In this study, as is evident from the mathematical statement presented in Section 3.3.1, 
the problem is stated and consequently treated by the optimization procedure in a single 
level as a Mixed Integer DO problem (MIDO). The distinction between the three levels of 
Synthesis, Design and Operation is only conceptual in terms of the solution procedure 

applied; however, it is reflected in the general mathematical formulation in terms of the 
type of variables used to describe each level. 
 Specifically, for the level of operation, “continuous” real variables are used that 
change at each instant of time. If present in the system, the power output of the main 

engines and diesel generators and the fractions of HRSGs steam mass flow rate and steam 
turbine power output, delivered to thermal and electric loads respectively, are all 
represented by time dependent (dynamic) control variables.  
 For the level of design, “static” or invariant real variables are used. The nominal 
power output of all, if present in the system, main engines, diesel generator sets, auxiliary 

boiler and the nominal values of the design parameters of the HRSGs and steam turbines 
are all denoted by variables that have a single static value throughout the time horizon of 
the optimization. 
 For the level of synthesis static, integer and binary, variables are used. Since several 

technology alternatives (two stroke DEs, four stroke DEs and three different types of GTs 
(discussed in Section 4.5) are available for the propulsion plant, five integer variables, each 
one representing the number of units of each alternative that may be installed, are used. For 
the HRSGs, since one technology alternative is considered, we are only interested in the 

number of units, thus one integer variable is used. The same applies for the steam turbines 
and the diesel generators. Finally, the existence of the auxiliary boiler is determined via the 
use of a binary variable. 
 From the discussion up until now and the mathematical formulation presented in the 

previous section it is evident that the values of the synthesis variables have a severe effect 
on the whole problem, since the specific value of each variable affects the underlying 
design and operation levels in terms of the number of (design and operation) variables that 
should be present in the problem as well as in terms of the underlying system of equations. 

Essentially, this means that each time one integer variable changes value, the optimization 
problem must be reformulated either by adding the necessary extra variables and their 
related equations or by subtracting them, depending on the increase or the decrease of the 
value of the integer variable.  

 Of course, this adversity could be treated by using a conventional “if…then…else” 
custom algorithmic formulation for each integer variable, where for each value of the 
variable the underlying system (variables and equations) would be reformulated. However, 
this would not be a true single−level treatment of the problem, and it would be impossible 

to apply any gradient based dynamic optimization method for the solution of the problem. 
Furthermore, the complexity of the required code would highly increase with the increase 

of the number of the integer variables and their possible values. 
 In order to tackle with this specific difficulty, a special technique based on the idea of 
the superconfiguration (Fig. 3.1), presented in Section 3.2, has been developed. The idea is 
to consider all possible technology alternatives initially present at the system, and also for 

each alternative to consider the maximum number of units, given by the upper bound of the 
respective integer variable. Then, each unit can be represented by a binary variable that 
determines the existence or not of the said unit. In this way, each integer variable that is 
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present in the formulation of Section 3.3.1 is translated into a series of binary variables and 
thus all integer variables are eliminated from the system, without in fact increasing the 
dimensionality of the problem. In other words, each value of each integer variable now 
corresponds to a binary variable. 

 Furthermore, since now only binary variables are used, it can be arranged so that the 
value 1 corresponds to the existence of the specific component while the value 0 will 
correspond to the exclusion of the specific component from the system. This feature can be 
used to our advantage, since, now instead of using an “if…then…else” strategy, a more 

compact formulation can be applied. The problem can be stated with the maximum 
possible number of design and operation variables with all their accompanying equations 
(model equations, constraints, costs, etc.) multiplied by the respective binary variable. The 
idea is that, if the optimizer dictates the installation of a component (thus it will set the 

relative binary variable equal to 1) the accompanying system of equations will not be 
affected. The cost calculations, pertinent to the component, will participate in the objective 
function calculations and the relative gradients will not be zero. However, if the relative 
binary variable is set to zero, all relative to the component variables and equations will still 

be present in the system but they will not affect the optimization. The costs pertinent to the 
component will not be added to the objective function while the necessary gradients will be 
calculated as zero. The same will stand for the constraints. From the point of view of the 
optimizer, the operation and design variables relative to the said component, cannot affect 

the objective function and constraints, thus their values are irrelevant to the optimization.  
 An example, based on Eq. (3.10) can be given. For simplicity, let’s assume that only 
two stroke and four stroke diesel engines are possible propulsion alternatives and up to two 
units of each may be installed. Then Eq. (3.10) is re-stated using 4 binary variables as 

follows: 
 

 
2 2

,2 , ,2 , ,4 , ,4 ,
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i i

y W y W W   

 

    (3.16) 

where 
 

 ,2 ,1D Xy   variable determining the existence of first 2-X DE (binary), 

 ,2 ,2D Xy   variable determining the existence of second 2-X DE (binary), 

 ,4 ,1D Xy   variable determining the existence of first 4-X DE (binary), 

 ,4 ,2D Xy   variable determining the existence of second 4-X DE (binary), 

 ,2 ,1b XW   brake power of first 2-X DE (continuous variable), 

 ,2 ,2b XW   brake power of second 2-X DE (continuous variable), 

 ,4 ,1b XW   brake power of first 4-X DE (continuous variable), 

 ,4 ,2b XW   brake power of second 4-X DE (continuous variable). 

 
 Also, if the objective is the minimization of the PWC, then the corresponding PWC of 
the propulsion plant, which is part of the total PWC, must be stated as follows: 
 

 
2 2
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      (3.17) 

where 
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DPWC  total PWC for the propulsion plant,  

 
,2 ,D X iPWC 

 total PWC of i th 2-X DE,  

 ,4 ,D X iPWC   total PWC of i th 4-X DE.  

 
 Finally, it is noted that this transcription of integer to binary variables does not 
complicate the definition of several constraints that we may need to impose on the 
synthesis of the system. For example, in the case of optimizing a system where no more 

than three generator sets would be allowed, based on the integer formalism, the constraint 
would be stated as: 
 

 0 3DGz   (3.18) 

 
while the equivalent binary expression would simply be: 
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  (3.19) 

 

with, ,DG iy  ,the binary variable determining the existence of the i th diesel generator set. 

 
 

3.4 Dynamic Optimization Procedure and Related Software  
 

 Based on the analysis of all available solution methods for DOPs, that was presented 
in Chapter 2, two different approaches from the family of direct solution methods (Fig. 
2.4) were formulated and implemented for the solution of the DOP that was stated in 
Section 3.3: a sequential method (based on the sequential approach) and a simultaneous 

method (based on the simultaneous approach). 
 From the comparative comments between sequential and simultaneous methods stated 
in Paragraph 2.6.6, it is evident that algorithms based on sequential methods are easier to 
develop and implement and can take advantage of very reliable existing DAE and NLP 

modern solvers (e.g. DASOLV, DASSL, NPSOL, SNOPT). Also, in terms of 
computational time, sequential methods have, in general, an advantage over the 
simultaneous methods in problems that contain few control variables and many state 
variables. 

 Considering the specific DO problem at hand, it can be either a closed loop dynamic 
optimization problem (trip duration known) or an open loop dynamic optimization problem 
(trip duration unknown) depending on the mission characteristics. However, in both cases, 
compared to the large number of state variables, we have few control variables (synthesis 

and design control variables are invariant) while at the same time the numerical integration 
of the underlying DAE model proves to be not too time consuming due to the high 
efficiency of modern solvers. 
 Based on these arguments, the main focus was given to the application of the 

sequential method, which proved able to tackle all the DO problems of all case studies and 
was used with success both in the case of closed loop (final time known) and open loop 
(final time under optimization) problems. The simultaneous method was applied only in 
the most complex cases (open loop problems with many synthesis alternatives) and while it 

also tackled those cases with success, in terms of accuracy, it proved less ‒or in very few 
cases equally ‒ efficient than the sequential method in terms of computational time. 
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 The sequential and simultaneous dynamic optimization methods and the dynamic 
models used to calculate ship resistance, propulsion, performance of main engines, 
HRSGs, steam turbines, diesel generator set units and their interconnections as well as the 
effects of the dynamically varying weather and loads were implemented in the commercial 

gPROMS® software.  
 The gPROMS® software is a unified modeling and solution platform that enables the 
user to program several models describing different components and combine them within 
a complete process flowsheet (the ship operation during a trip). This is a very important 

advantage in complex problems (such as those tackled in this study) since it allows the user 
to test and validate separately each specific model even while simulating the whole 
complex process. Another, helpful for the programmer, feature of the platform is that it 
allows the user to write the equations describing a process in any order, since they are all 

solved simultaneously, while steady-state and dynamic modeling can be carried out 
simultaneously within the same environment. 
 Furthermore, another reason that led to the selection of the gPROMS® platform lies in 
the fact that it provided two, convenient for this work, tools: the multiflash toolbox and the 

dynamic optimization toolbox. The multiflash toolbox uses tabulated data in order to 
calculate the physical properties of substances, which proved very useful in the case of 
calculating the steam/water properties for the HRSG and the steam turbine models. The 
dynamic optimization toolbox takes advantage of the gPROMS® platform capabilities and 

provides the opportunity to combine several robust solvers (NLP solver, MI solver, 
initialization solver) in order to coherently formulate and solve a dynamic optimization 
problem while avoiding several drawbacks encountered when writing custom code in any 
low level programming language. 

 The basic procedure/idea behind the sequential methods is presented in Figure 3.2 and 
has been described in detail in Chapter 2, Paragraph 2.4.3. For the sequential method 
implemented for the solution of all case study problems in this work, a Control Vector 
Parameterization (CVP) scheme is used for the discretization of the control variables. In 

this CVP scheme piecewise constant parameterization of the control variables, over equally 
spaced time intervals, is applied. In the gPROMS® environment, the overall sequential 
method is implemented via the solver CVP_SS of the gPROMS® optimization toolbox. 
The user imports the parameterization of the control variables and CVP_SS links 

everything to the NLPSQP solver for the solution of the NLP optimization problem. The 
DASOLV solver handles the numerical integration of the underlying DAE problem and the 
computation of sensitivities, while the BDNLSOL solver is used as the initialization and 
re-initialization solver when DASOLV is used for simulation activities. Finally, the mixed 

integer part of the problem (i.e. the binary variables) is handled via the OAERAP solver. 
Details on all solver codes can be found in gPROMS® user guides [gPROMS (2016)] 
which can be downloaded from the PSE website. 
 The application of the sequential method can be summarized in the following steps: 

 
1. The user declares the duration of each control interval and the initial values of the 

control variables over the interval. (In case the duration is not fixed, it is also 
declared as a variable with an initial value.) 

2. Starting from the initial point at time t=0 the dynamic system model is solved over 
the entire time horizon to determine the variation (with time) of all variables in the 
system.  

3. The values of the objective function and constraints as well as the values of their 

partial derivatives (sensitivities) with respect to all quantities specified by the user 
are calculated. 
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4. The optimizer revises the choices made on step 1 and the procedure is repeated.  
 
 

 
 

Figure 3.2. Sketch of the sequential approach used. 
 
 
 Often in the literature, as well as in the gPROMS® documentation, the sequential 

method presented above is referred to as a “single shooting” method. The term is derived 
from step 2 of the above algorithm, which involves a single integration of the dynamic 
model (DAE system of equations) over the entire horizon. Further details about the single 
shooting methods can be found in the literature [Bard (1974)]. 

 The basic procedure/idea behind the simultaneous methods has been described in 
detail in Chapter 2, Paragraph 2.4.4. For the simultaneous method, the CVP_MS solver of 
the gPROMS® platform is used. Again, a piecewise constant parameterization of the 
control variables is performed, but in contrast to the CVP_SS solver, the control intervals 

are now optimized individually, while the control variables are manipulated to obtain a 
consistent solution at the interval boundaries. The same sub-solvers (NLPSQP, DASOLV, 
BDNLSOL, OAERAP) are used and linked together via CVP_MS.  
 This type of simultaneous method is often refered to as a "multiple-shooting" method 

in the literature. The term results from the fact that each control interval is treated 
independently and no integration of the DAE system of equations over the entire time 
horizon is performed. A more detailed description of the multiple shooting methods as well 
as further extensions of the direct multiple shooting methods to DAE systems can be found 

in the literature [Bock and Platt (1984), Schulz et al. (1998)]. 
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CHAPTER 4: MODELING OF COMPONENTS 
 
 

4.1 General 

 
 In this chapter the simulation models of the individual components that constitute the 
integrated marine energy system are presented. The general framework of dynamic 
optimization of marine energy systems, as was presented in the previous chapter, is 

essentially based on the accurate modeling of the individual components at both design and 
off-design operating point, which is essential in order to properly perform design and 
operation optimization. Thus, it is evident that the results of the dynamic optimization 
procedure on the overall system will be as accurate and efficient as these models are. Of 

course, it must also be noted that since economic criteria are used as objective functions for 
the optimizations performed in this work, apart from performance models, cost models are 
also developed for each component, which are presented in Appendix C. 
 The models used can be divided into two categories. Those that have been developed 

using a first principles approach combined with literature data, such as the models for the 
heat recovery steam generator, the steam turbine and the resistance – propulsion model, 
and those that are based on regression analysis of data, such as the models for the diesel 
engines (two and four stroke), the gas turbines, the auxiliary boiler and the diesel generator 

sets. Since, as it was presented in Chapter 3, all the models are incorporated into a general 
superconfiguration of the system and a dynamic optimization procedure is applied on the 
overall system, an effort was made to keep the model complexity and, thus, the 
computation/simulation times as low as possible during the modeling phase. It is noted that 

the optimizer may require the application of each model, as well as the calculation of the 
derivatives of the model output, several times and for many intervals during the 
optimization procedure. Thus, very detailed, complex and time consuming simulation 
models would have a dramatic effect on the required convergence time, or even accuracy, 

of the optimizer. However, caution was exercised in order not to diminish the validity and 
accuracy of the models. 
 Finally, it is noted that each model is separately inserted into the complete simulation 
structure in terms of coding. This essentially means that changes can be made in each 

specific model without affecting the overall simulation and optimization procedure. This 
feature is very convenient, since it enables the user/designer to easily replace each 
component model with another, more suitable for the requirements of the study, without 
having to make coding alterations to the overall algorithm. However, since the input and 

output specifications of each component model are pre-specified, the new model that will 
be used must obey to these specifications. 
 
 

4.2 Heat Recovery Steam Generator (HRSG) 
 
 The models describing the heat recovery unit have been produced by the application of 
energy balances and heat transfer equations on the heat exchangers of the unit, in order to 

be able to simulate both nominal and off-design performance of the components. The 
nominal performance simulation model is used for the HRSG dimensioning, thus, it 
includes the design variables as inputs. Furthermore, the nominal performance model 
outputs are also used to evaluate the overall capital cost for the HRSG, which is assessed 

via semi-empirical cost functions adapted for marine applications (presented in Appendix 
C). 
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 In this work, in order to avoid undue complications, only single pressure HRSG units 
have been considered. However, double or triple pressure HRSG units could be 
investigated. 
 

 

 4.2.1 Single pressure HRSG nominal performance 
 
 The schematic layout of a single pressure HRSG, with the heat exchangers and gas 

path configurations is depicted in Figure 4.1. The complete set of equations used for the 
simulation of this configuration is presented in the following. 
 
 

 
 

Figure 4.1. Single pressure HRSG configuration. 

 
 
 The main inputs to the nominal HRSG model are steam quality (pressure, 
temperature), steam mass flow rate and exhaust gas heat input (mass flow rate and 

temperature), while the main outputs are areas of heat exchangers and power of auxiliary 
equipment (pumps). Thus, the steam temperature, steam mass flow rate and the exhaust gas 
mass flow rate and temperature can be used as design variables (invariant over time) in the 
optimization set-up. 

 For each heat exchanger, two fundamental equations are used for nominal 
performance: a) the energy balance between exhaust gas heat input and useful heat 
production, and b) the heat transfer rate equation relating heat addition to temperature 
differences, material properties and the surface of the heat exchanger. In Figure 4.2 the 

exhaust gas and steam streams of a typical heat exchanger are depicted. 
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Figure 4.2. Typical heat exchanger inlet and outlet stream. 
 
 

Based on the notation of Figure 4.2 the energy balance equations are written: 
 

 
1 1
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     (4.1) 

 

 
HX lmQ UA T   (4.2) 

 
The logarithmic mean temperature difference is defined as: 
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 (4.3) 

where  
 

HXQ  transferred heat rate 

 U  overall heat transfer coefficient 

 
HX  efficiency of the heat exchanger (it accounts for thermal losses) 

 
gm  gas mass flow rate 

 
pgc  gas specific heat capacity 

 
igT  gas inlet temperature 

 
1igT


 gas outlet temperature 

 
istT  water/steam inlet temperature 

 
1istT


 water/steam outlet temperature 

 stm  water/steam mass flow rate 

 
isth  water/steam inlet specific enthalpy 

 
1isth


 water/steam outlet specific enthalpy 

 A  heat transfer area of the heat exchanger. 

 
 The overall heat transfer coefficient, U, is a parameter dependent on the material and 
type of heat exchanger and is calculated according to Eq. (4.4) taken from Shah and 

Sekulic (2003). 
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 In this equation, η0 is the (extended) surface overall heat transfer efficiency and Rw is 
the thermal resistance of the wall between the hot and cold streams. The heat transfer 
coefficients, α, for the exhaust gas (hot) and the water/steam (cold) are calculated based on 

Krupiczka et al. (2003), Annaratone (2008), respectively. 
 Equations (4.1)-(4.4) are applied in all four heat exchangers (superheater, evaporator, 
economizer, preheater), while water and steam properties are calculated via the Multiflash 
tool of the gPROMS simulation software. 

 Considering the water/steam cycle, we have the following equations: 
 
Point 0: High Pressure steam outlet: 
 

 
0 0 0 0 0 0( , ) ( , )HP HPP P T T h s f P T    (4.5) 

 

with steam pressure 
HPP , and temperature 

HPT  given as inputs. 

 
Point 1: Water inlet: 
 

 
1 1 1 1 1 1( , ) ( , )w wP P T T h s f P T    (4.6) 

 

with water inlet pressure 
wP , and temperature 

wT  given as inputs. 

 
Point 2: Preheated water: 
 

 
2 1 2 2 2 2 2( , ) ( , )w preP P T T h s f P T    (4.7) 

 

with preheated water temperature 
w preT 

 given as input. 

 

Point 3: Water after deaerator: 
 

 
3 3 3 3 2 2 2 2( , , , ) ( , , , )P T h s P T h s  (4.8) 

 
Point 4: Water after HP pump: 

 

 
4

4 4 4 4 3 3 3( , , ) ( , , , , )

HP

pump P

P P

T h s f P P T h 




 (4.9) 

 
where 

pumpf , the pump model, as described in Section 4.2.3. 

 
Point 5: Saturated water at HP: 

 

 
5

5 5 5 , 5( , , ) ( )

HP

sat w

P P

T h s f P




 (4.10) 
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Point 6: Saturated steam at HP: 
 

 
6

6 6 6 , 6( , , ) ( )

HP

sat s

P P

T h s f P




 (4.11) 

 

 Furthermore, several inequality constraints are stated, during the simulation of the 
nominal performance, that ensure the functionality of the heat exchangers and of the 
overall system. Two very important constraints are the limit of the gas temperature at the 
exit of the HRSG 

 
 

5 5ming gT T  (4.12) 

 
as well as the pinch point constraint  
 
 

3 5 ming ppT T T   (4.13) 

 
where 

minppT  is the minimum pinch point temperature difference. 

 Equations (4.1) ‒ (4.13) constitute the complete model for nominal single pressure 
HRSG performance. In this study, the steam pressure, 

,HP nomP , is set as a parameter (in 

both nominal and off-design operation), while the nominal steam temperature is stated as  
 

 
0, 1, 20°Cnom g nomT T   (4.14) 

 

thus, the remaining inputs, which are also used as design variables for the optimization, are 
the steam mass flow rate, 

,st nomm , and the exhaust gas mass flow rate, 
,g nomm , and 

temperature, 
1,g nomT . 

 Once values are assigned to the three inputs, the nonlinear system of equations is 

solved by the gPROMS solver. This calculation procedure determines the thermodynamic 
properties at all points in the HRSG configuration depicted in Figure 4.1. After these 
properties are known, heat rates, logarithmic mean temperature differences and areas of 
heat exchangers, as well as the total capital cost of the unit can be evaluated. 

 
 

 4.2.2 Single pressure HRSG off-design performance 
 

 The goal of the off-design performance model is to evaluate the HRSG performance 
for exhaust gas flows and temperatures different from those at the nominal (design) point, 
as they are determined by the off-design operation of the diesel engine, once the heat 
exchanger areas have been determined. 

 Different exhaust gas flow and temperature conditions in a HRSG affect the 
performance of each heat exchanger in the configuration, and more specifically the heat 
transfer coefficient of each element. A semi-empirical correlation has been proposed by 
Kehlhofer (1997) to describe the deviation of the heat transfer coefficient of each heat 
exchanger from its nominal value with respect to the change in exhaust gas flow and 

temperature conditions. This correlation has been successfully applied to energy systems 
[Olsommer (1998), Pelster (1998); Dimopoulos (2009)]. The general form of this semi-
empirical correlation, for each heat exchanger, is: 
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where the exhaust gas mass flow rate and temperature appearing in this equation are those 
at the heat exchanger inlet. The regression constants have the values: a = 0.57 and b = 
0.00025, which were found to be specific of exhaust gas to water/steam heat exchangers 
[Kehlhofer (1997), Olsommer (1998)]. 

 In order to evaluate the HRSG performance at off-design / partial load conditions, Eqs. 
(4.1)-(4.3) are stated for each heat exchanger along with Eqs. (4.4)-(4.13) and (4.15), and 
with the necessary inequality constraints to ensure proper operation of each heat 
exchanger. However, Eq. (4.13) is stated with a lower value for the minimum pinch point 

difference, 
minppT . A system of nonlinear equations is formed with the exhaust gas mass 

flow rate, 
gm , temperature, 

4gT , steam pressure, 
HPP , and temperature, 

HPT , as inputs. 

However, in the optimization set up while the exhaust gas mass flow rate and temperature 
will be given by the propulsion engine (dependent variables), the steam temperature must 
be stated as a control/independent variable. Considering the steam pressure, it is considered 
to be a constant parameter, equal to the nominal steam pressure defined in the nominal 

performance model. The system of equations is solved by the gPROMS software, which 
also calculates the water/steam properties via the Multiflash tool. 

The values of the various parameters appearing in the single pressure HRSG model are 
given in Table 4.1. It is noted that for certain parameters (exhaust gas minimum outlet 

temperature, minimum pinch point temperature difference) different values should be 
assigned depending on the type of the propulsion engine. 
 
 

Table 4.1.  Single pressure HRSG model parameters. 
 

Parameter Symbol Value 

Heat exchanger efficiency  HX  0.99 

Exhaust gas minimum outlet temperature (K) ‒ (diesel engines) 5min,g DET  433 

Exhaust gas minimum outlet temperature (K) ‒ (gas turbines) 5min,g GTT  403 

Gas specific heat capacity (kW/kgK) pgc  1.17 

Minimum pinch point temperature difference (K) ‒ (diesel engines) min,pp DET  15 

Minimum pinch point temperature difference (K) ‒ (gas turbines) min,pp GTT  20 

Preheater water outlet (K) w preT 
 368 

 
 

 4.2.3 Pumps 

 
A very simple pump model with the input and output streams has been considered in 

this work. It consists of the following equations 
 

 ( , )i i ih h P T  (4.16) 
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  (4.20) 

where  
 

 
ih  specific enthalpy of input stream, 

 
oh  specific enthalpy of output stream, 

 
iP  pressure of input stream, 

 
oP  pressure of output stream, 

 v  specific volume, 

 
iT  temperature of input stream, 

 
oT  temperature of output stream, 

 m  water mass flow rate, 

 
PW  pump required power, 

 
,p is  pump isentropic efficiency, 

 
,p m  pump mechanical efficiency. 

 

The inputs to the equations are the properties 
iP , 

oP and 
iT , and the outputs are the 

properties 
oT  and 

PW . The function f denotes water/steam thermodynamic properties that 

are calculated by gPROMS Multiflash tool [gPROMS (2016)]. The various pump model 

parameters are presented in Table 4.2. 
 
 

Table 4.2.  Pump model parameters. 

 

Parameter Symbol Value 
Pump isentropic efficiency  

,p is  0.80 

Pump mechanical efficiency 
,p m  0.98 

 
 

4.3 Steam Turbine (ST) 
 

Both nominal and off-design performance of steam turbines are simulated, using semi-
empirical performance models [Kougioufas (2005), Dimopoulos (2009)]. In this Section, 
the equations describing nominal and part-load performance are presented. 
 

 4.3.1 Steam turbine nominal performance  
 

A steam turbine semi-empirical nominal performance model has been developed using 
a standard methodology proposed in SNAME (1973). This methodology was further 
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adapted [Dimopoulos (2009)], to correctly assess steam turbines with intermediate steam 
extraction, using data from the work presented in Frangopoulos et al. (1996). A typical 
steam turbine unit is depicted in Figure 4.3. In this text no steam extraction is considered. 
 

 

 
 

Figure 4.3. Steam turbine generator. 
 
 

The ST nominal performance model is considered at the maximum output of the ST 

unit, which entails that no steam is extracted from the unit. Given the nominal steam mass 
flow rate and quality (as given by the HRSG unit), the steam turbine nominal power output 
and efficiency are evaluated, with the use of a number of parameters. The steam turbine 
nominal power output is calculated by the equation: 

 

 0 2,( )
n n n nST ST ST isW m h h   (4.21) 

where: 
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 (4.22) 

 

The nominal efficiency, 
nST , is evaluated using the methodology of SNAME (1973) 

and Dimopoulos (2009), which relates nominal efficiency with a base value multiplied by a 
number of correction factors: 

 

 
nST base b P Tf f f   (4.23) 

 
The base steam turbine efficiency is an empirical function of the nominal ST power 

output (in kW): 
 

 0.047816ln 0.32132
nbase STW    (4.24) 

 

The term bf  is a correction factor for the condenser pressure (in Pascal): 

 

    
2

5 5
2 20.00008 750.062 /10 0.0081 750.062 /10 0.796bf P P     (4.25) 
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The term 
Pf  is a correction factor for the inlet pressure (in Pascal) of the turbine: 

 

     5
20.0003ln 0.0035 /10 0.0097ln 1.1051

n nP ST STf W P W     (4.26) 

 

The term 
Tf  is a correction factor for the inlet temperature of the turbine: 

 

 2
0 0n nT fLT fLT fLTf a T b T c    (4.27) 

where: 
 

    
2

10 5 8 5 7
0 02.9516 10 /10 2.30535 10 /10 7.38075 10

n nfLTa P P         (4.28) 

 

    
2

7 5 5 5 4
0 02.58817 10 /10 2.338015 10 /10 6.8779 10

n nfLTb P P          (4.29) 

 

    
2

5 5 3 5 1
0 06.09528 10 /10 6.56782 10 /10 8.76669 10

n nfLTc P P         (4.30) 

 

The equations for the correction factors have been derived from data given in SNAME 
(1973) in the form of diagrams. It is noted that Eqs. (4.21) - (4.30) are interrelated due to 
the fact that the nominal efficiency is used in the nominal power evaluation and vice versa. 

The steam turbine nominal inlet steam properties, 0 0,
n n

P T  are given as inputs from the 

HRSG unit. The condenser pressure, 
2P , is defined as a parameter (equal to 0.05 bar) in 

this model. Furthermore the nominal steam mass flow rate, 
nSTm , is also an input to the 

model, thus, declared as an invariant design optimization variable and determined by the 
optimization procedure. 
 

 

 4.3.2 Steam turbine off-design performance 
 

Partial load performance of the ST has been considered for different steam mass flow 

rates, 
STm , and different steam quality (pressure 

0P , temperature 
0T ) to the unit. Given the 

inlet steam mass flow rate, steam quality and ST unit nominal characteristics, the steam 
turbine power output and efficiency are evaluated, with the use of a number of parameters. 

The steam turbine power output is given as: 
 

 0 2,( )
nST ST ST isW m h h      (4.31a) 

where: 
 

 
0 0 0 0

2, 2 0
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( , )is
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 (4.31b) 

 

Off-design efficiency is evaluated using the methodology in SNAME (1973), which 
relates efficiency with the nominal value multiplied by a load correction factor: 
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nST ST Lf   (4.32) 

where 
 
 

,0.12441466ln 1L L STf f   (4.33) 

 
In Eq. (4.33), 

,L STf , is the steam turbine load factor, defined as: 
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L ST
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Equation (4.33) is based on a diagram given in SNAME (1973). The detailed form of 

all the conversions of SNAME graphs to analytic interpolation or regression functions is 
presented in Kougioufas (2005). 

 
 

4.4 Diesel Engines (DE) 
 

Two–stroke and four–stroke diesel engine models are utilized in order to calculate the 
fuel consumption, and the exhaust mass flow rates and temperatures at various operating 
points of a diesel engine. Since the optimization of the system is approached from the point 
of view of an integrated ship energy system viewed as a whole, we are interested only in 

the fuel consumption, which has a major contribution to the operational costs, and the 
exhaust gas properties, which have effect on the design of the steam bottoming cycle.  

Very complex and detailed models would be computationally heavy and difficult to 
use with the dynamic optimization software in the present work. Instead, regression 

analysis of data provided by manufacturers of diesel engines has been performed here, 
which gives realistic estimates of performance accurate enough for the particular work. 

Since the propulsion plant characteristics, i.e. how many engines and of what nominal 
power output (Maximum Continuous Rating - MCR), are not known in advance but they 

are under optimization, a unique Specific Fuel Oil Consumption (SFOC) curve as a 
function of load only is not sufficient. Therefore, a Specific Fuel Oil Consumption surface 
is created for each engine type (two–stroke or four–stroke), where the Specific Fuel Oil 

Consumption, for each engine j, is given as a two variable function: 
 

 ( , )   
j j j jf f bn Lb b W f  (4.35) 

where 

 

 
jbnW  nominal brake power of the engine j 

 
jLf  engine load factor: 

 
j

j

j

b

L

bn

W
f

W
  (4.36) 

 
In a similar way, the exhaust gas mass flow rate and temperature are calculated by 

functions of the form 
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 ( , )
j j j jg g bn Lm m W f  (4.37) 

 ( , )
j j j jg g bn LT T W f  (4.38) 

 
 

 4.4.1 Two-stroke diesel engines 
 

A total of 23 two stroke diesel engines were used to build a data set covering the 
nominal power output range from 3,5 MW to 90 MW. The data were extracted from the on 

line Computerized Engine Application System (CEAS) application [MAN (2017)]. Several 
parameters had to be set, as the online application provides a wide variety of choices. In 
this work, official catalogue, standard heavy fuel oil, Tier II, super long stroke, same mark 
number diesel engines, of the latest electronically control technology were considered in 

order to ensure the continuity of the data. 
The specific fuel oil consumption is given in gr/kWh, the exhaust gas mass flow rate 

in kg/s and the exhaust gas temperature in oC. As for the independent variables, the 
regressions presented consider the engine load factor in % and the nominal brake power in 
kW. For the SFOC we have the following function 

 

 
5 5

, 1 2 3

1 1

ln ( )n k
f base n L k bn

n k

b a f a W a

 

     (4.39a) 

with 
 

 42700 / ,  25 ,  1 ,  20 ,o o
u e e seaH kJ Kg T C P atm T C     (4.39b) 

where  
 

 uH  LHV of the fuel actually used, 

 eT  atmospheric temperature in oC, 

 eP  atmospheric pressure in mbar, 

 seaT  sea water temperature in oC. 

 
 The maximum absolute error of regression (Eq. 4.39a) is 0.98%  , with coefficient 

of determination 2 0.99R  . The SFOC calculated by Eq. (4.39a) is denoted as a base 

SFOC, because it is assumed that it represents the fuel consumption when the engine 
operates at specified environmental conditions (Eq. 4.39b). To account for other possible 

environmental conditions, an additional correction must be made according to the 
following equation:  
 

      ,

42700
1+0.0002 25- 0.00002 1000 0.006 25.0f f base e e sea

u

b b T P T
H

         (4.40) 

 
For the exhaust gas mass flow rate we have: 
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with regression properties: 0.84%  , 2 0.9983R  . Finally, the exhaust gas temperature 

is given by the function 
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 (4.42) 

 

with regression properties: 0.90%  , 2 0.989R  . The values of all the parameters 
ija , 

ijb , and 
ijc  are given in Table 4.3. 

 
 

Table 4.3.  Values of parameters appearing in Eqs. (4.39), (4.41) and (4.42). 

 

11a  2438.18952262 11b  -5.67293497774 11c  33.2515026494 

12a  -1556.11464220 12b  -337.358555458 12c  0.962399049025 

13a  483.951873881 13b  0.956426808182 13c  0.919161259303 

14a  -73.9862532113 21b  -63.0637026295 21c  8.4 

15a  4.46320111809 22b  -4.31862595736 22c  -11.9999999999 

21a  190821.995075 23b  47.7672564816 31c  6.08308573382 

22a  -2862722896.72 31b  -2.45616599999E-03 32c  -1.64281445770E-02 

23a  21777694084450.5 32b  0.508764598999 33c  1.12049849574E-04 

24a  -7.099613044E+16 41b  99.2380932921   

25a  8.210654599E+19 43b  0.70666485205   

3a  -1295.47263397 43b  -6.97669704062   

 
 

 4.4.2 Four-stroke diesel engines 
 

A total of 11 four-stroke diesel engines were used to build a data set covering the 
nominal power output range from 3,5 MW to 21 MW. The data were extracted from 
manuals downloaded from MAN [MAN (2016)] and Wärtsila [Wärtsila (2014)].  

Again, as in the previous section, the specific fuel oil consumption is given in gr/kWh, 

the exhaust gas mass flow rate in kg/s and the exhaust gas temperature in oC. As for the 
independent variables, the regressions presented consider the engine load factor in % and 
the nominal brake power in kW. 
 

The SFOC is given by the following function: 
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Regression properties of Eq. (4.43): 0.95%  , 2 0.988R  . Again, the SFOC 

calculated by Eq. (4.43) is denoted as a base SFOC, because it is assumed that it represents 
the fuel consumption when the engine operates at the environmental conditions specified in 
equation (4.39b). For other environmental conditions, the correction of Eq. (4.40) must be 

applied. 
For the exhaust gas mass flow rate we have: 
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Regression properties of Eq. (4.44): 0.83%  , 2 0.983R  . Finally, the exhaust gas 

temperature is given by the function: 
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  (4.45) 

 

with regression properties: 0.91%  , 2 0.986R  . The values of the parameters 
na , 

nb , 

and 
nc  are given in Table 4.4. 

 
 

Table 4.4.  Values of parameters appearing in Eqs. (4.43)-(4.45). 

 

11a  -12.5130349 11b  1.02464367E-03 11c  0.012694694 

12a  0.308163035 12b  9.36530362E-08 12c  -3.3937952E-04 

13a  -3.3047702E-3 13b  -2.15333815E-12 13c  2.08274512E-06 

14a  1.27515182E-5 21b  -1.30249958E-02 2c  1.04404874 

21a  383687.174 22b  3.69303720E-04 3c  4.61515815E-04 

22a  -86467.7384 23b  -1.9614900E-06 4c  282274912.948 

23a  9719.36971 3b  1.95718695 5c  302.460757 

24a  -544.977166 4b  0.561755635   

25a  12.195741     

3a  -678887.387     

 
 

4.5 Gas Turbines (GT) 
 

For the simulation of the nominal and off-design performance of gas turbines as prime 
movers of ships, a software package that has been developed in collaboration with the 

Laboratory of Thermal Turbomachines of the School of Mechanical Engineering NTUA 
[Software MarineGTs (2015)] was used. The software is appropriate for simulations of 
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several types of gas turbines. In this study, three selected types of specific interest, 
presented in Fig. 4.4 are considered. 

In order to use the software package, certain input data must be defined by the user. 
Then, the analysis of performance at the design point or at any off-design point is 

performed per user request. The user can also select one of four different fuels: two 
different types of diesel oils with equivalent chemical formulas C12.9H22.9 and 
C12.8H23.7S0.05, methane CH4 and natural gas. With the definition of the fuel and the design 
point inputs, a thermodynamic analysis is executed throughout the chosen GT type that 

determines the state of the working medium at all the points of interest inside the 
configuration. These quantities are required for creating performance maps for predicting 
the off−design operation of these components and, consequently, of the overall 
configuration. 

 
 

1 

 

2 

 

3 

 
 

Figure 4.4:  The three gas turbines types considered in the present work. 
(1: Simple cycle, 2: Recuperated cycle, 3: Intercooled recuperated cycle, all with separate 

power turbine.) 
 
 

This specific software was not directly integrated in the simulation of the overall 

energy system. Instead, it was used for the collection of data in order to create performance 
curves via regression for the fuel consumption and the exhaust gas properties (as in the 
case of diesel engines) of the three gas turbine types (Fig. 4.4). This was due to the fact 
that the calculations performed by the software were rather complicated and time 
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consuming. Thus, directly integrating the software in the simulation model of the general 
energy system would inevitably increase the required simulation time which in turn would 
lead to a dramatic increase of computational time of the whole dynamic optimization 
procedure. 

The diesel oil with chemical formula C12.8H23.7S0.05 and LHV = 42500 kJ/kg was 
considered as fuel, and all GT types were simulated for variable rotational speed with 3000 
RPM at full load and with variation according to the cubic propeller law at part load 
operation. The ambient temperature for design point operation for the simulations was 

considered constant at 15oC.  
 The nominal power rating had no effect on the calculation of the fuel oil consumption, 
as the results of the simulation program have indicated. However, the atmospheric 
temperature has an important impact on the fuel consumption, and the related equations are 

set up as functions of both the load factor and the atmospheric temperature. In these 
equations the load factor f l has to be input in the range 0.2 to 1 and the environmental 
temperature Te in the range of -25 to 45oC. The same holds for the exhaust gas temperature 
calculated from the simulation program.  

 It is noted that an effort was made for developing regression equations with similar 
mathematical form among the various GT types, thus, the equations derived for the fuel oil 
consumption from the regression analysis have the same form and only the coefficients are 
modified according to the gas turbine type. This general equation is of the following form 
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        (4.46) 

where 
 

eT  environmental temperature in the range -25 to 45oC, 

Lf  load factor in the range 0.2 to 1,  

GTSFC  specific fuel oil consumption in gr/kWh. 

 

 Regression properties of Eq. (4.46): 0.96%  , 2 0.98R  . The coefficients aij for 

each of the three gas turbine types are presented in Table 4.6. 
 

Table 4.6.  Coefficients for Specific Fuel Consumption (Eq. 4.46) for the three GT types. 

 
Coefficient GT1 GT2 GT3 

11a  4.47322148958418E-02 3.405351667679E-02 2.557248651794E-02 

12a  -1.400180543201E-03 -2.028288273915E-03 -2.196962614881E-03 

13a  3.867763952385E-05 8.714195263599E-05 8.781031932547E-05 

21a  1.1848757780596E-04 9.307213910424E-05 8.570210556930E-05 

22a  -4.947221948975E-07 -2.070508829023E-07 6.70232304529E-08 

23a  2.2864141416523E-08 2.971717172036E-09 4.361111111989E-09 

31a  6.5728891232741E-05 9.939587009403E-07 -7.04304395696E-06 

32a  7.3893657229541E-07 5.327267858972E-07 6.39671398453E-08 

33a  -7.114769815124E-06 -3.162810208413E-06 -3.023122907372E-07 

34a  0.1674760336643 0.1601942814552 0.1563163070215 
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 For the exhaust gas mass flow rates, the regression is performed for a nominal power 
output of 20 MW for all the GT types. Thus, Eq. (4.47a) has been obtained, which gives 
the base value, 

, ,g GT basem , in kg/s: 
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 (4.47a) 

 
The coefficients are given in Table 4.7. The mass flow rate for other values of the  nominal 

power rating is given by the equation 
 

 
, , ,

20

GTn
g GT g GT base

W
m m   (4.47b) 

 

where 
,GT nW  is the nominal power rating in MW. Regression properties of Eq. (4.47a): 

0.98%  , 2 0.99R  . 

 
 

Table 4.7.  Coefficients for exhaust gas mass flow rate (Eq. 4.47a) for the three GT types. 
 

Coefficient GT1 GT2 GT3 

11a  23.47431928775 22.69808182124 19.93455959934 

12a  4.220403961559 4.233977115205 2.863072018236 

13a  0.2432678657330 0.3433450620947 1.250684978371E-04 

21a  -0.132431387748 -0.1548641305609 -7.426530923772E-02 

22a  2.91510452910E-04 3.430917714065E-04 -7.76228421058E-05 

23a  -3.067644444444E-06 -3.369186868789E-06 -1.970349494952E-06 

31a  -5.291689320007E-02 -5.433642333292E-02 -6.185227044037E-02 

32a  5.152894212379E-05 4.715371224612E-05 -1.122213017345E-05 

33a  -6.77988830307E-03 -7.807314222533E-03 -0.0155662006009 

34a  52.42219657425 64.28535211075 45.5527705728 

 
 

Finally, for the exhaust gas temperature, three distinct equations are derived, one for 
each type. The corresponding coefficients are given in Table 4.8. 

 

 
3 4

, 1 1 2 3

1 1

n n
g GT n L n e

n n

T a f a T a
 

     (4.48a) 

 

 

3 3

, 2 1 2 31

1 1

2 2
32 33 34

ln ( ) ln( )

                 ln( ) ln ( )

n n
g GT n L n e e L

n n

e L e L

T b f b T b T f

b T f b T f b

 

  

  

 
 (4.48b) 

 



Modeling of Components 109 

 

 

3 3

, 3 1 2 31

1 1

2 2
32 33 34                 

n n
g GT n L n e e L

n n

e L e L

T c f c T c T f

c T f c T f c

 

  

  

 
 (4.48c) 

 
 

Table 4.8.  Coefficients for exhaust gas temperature (Eqs. 4.48a-4.48c) for the three GT 
types. 

 

11a  -109.3338625959 11b  128.3101425101 11c  195.7940716073 

12a  244.8577169885 12b  35.95271343481 12c  -140.344465376 

13a  -92.95504616657 13b  5.240925095706 13c  77.83859998768 

21a  2.756513727084 21b  2.047513181407 21c  0.4092610592856 

22a  -1.369993821229E-04 22b  -1.53350577121E-03 22c  1.05612756128E-03 

23a  -3.818296735099E-07 23b  -2.92413199629E-05 23c  -2.05798570711E-05 

24a  -1.982811549038E-08 31b  0.2148387007573 31c  0.177909971426 

3a  479.3289239962 32b  -4.797576518103E-04 32c  -9.878499638277E-04 

  33b  2.140043036109E-02 33c  0.486252482879 

  34b  371.5830961622 34c  231.4432373500 

 
 

4.6 Diesel Generator Sets (DG) 

 
In order to cover the electric needs of the ship, diesel generator sets may be used. In 

the same rationale of diesel engines, regression models have been developed for the 
specific fuel oil consumption, the exhaust gas mass flow rate and the exhaust gas 

temperature based on data collected from manufacturers. 
A total of nine generator sets were used to build a data set covering the nominal power 

output range from 500 kW to 11 MW. The specific fuel oil consumption is given in 
gr/kWh, the exhaust gas mass flow rate in kg/s and the exhaust gas temperature in oC. As 

for the independent variables, the regressions presented consider the engine load factor in 
percentage points (%) and the nominal brake power in kW. 

The specific fuel oil consumption is given as: 
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Regression properties of Eq. (4.49): 0.92%  , 2 0.958R  . As in the case of the diesel 

engines, this is the base SFOC and the same correction, given in Eq. (4.40) must be applied 
for the actual SFOC. For MCR>4800 kW, since the available data exhibit no 
differentiation, the value of MCR=4800 kW is used in all calculations. The exhaust gas 

mass flow rate is given by the equation 
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with regression properties: 0.95%  , 2 0.966R  . The exhaust gas temperature is given 

by the equation 
 

 
63

4 5

1

c

Wbnn
g n L bn

n

T c f c c W


   
       

  
  (4.51) 

 

with regression properties: 0.97%  , 2 0.987R  . The values of the parameters 
ija , 

ib , 

and 
ic  are given in Table 4.9. 

As in the case of the fuel consumption regression equation, for the cases with 
MCR>4800 kW, the value of MCR=4800 kW is used for exhaust gas mass flow rate and 
temperature. 
 

 
Table 4.9.  Values of parameters appearing in Eqs. (4.49)-(4.51). 

 

11a  -112.3333723 1b  -1.302499580E-2 1c  0.0126946949 

12a  -77.25033231 2b  6.693037204E-5 2c  -3.39379522E-4 

13a  11.37912696 3b  -1.96149009E-6 3c  2.082745120E-6 

21a  -549.5713057 4b  0.5617556354 4c  1.044048741 

22a  53.00736007 5b  3.644054500E-3 5c  303.7136098 

23a  -2.024884015 6b  0.91481054413 6c  9.470141366 

3a  84.78846317 7b  1.02097503E-5   

4a  -5.416457726     

5a  -2.682009390     

6a  1863.361740     

 

 

4.7 Ship Resistance and Propulsion Models  
 

The total resistance model, TR , is made up of a number of different components which 

in this study, due to the interest of the dynamic behavior given to the problem by the 

weather considerations, is stated as the sum of two terms: 
 

 T calm AddedR R R   (4.52) 

 

The total calm water resistance, calmR , includes the terms [Holtrop and Mennen (1982), 

Holtrop (1984), Politis and Skamnelis (2007)]: 

 

 1(1 )calm F a w APP BB TRR R k R R R R R        (4.53) 

 
where 
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FR  frictional resistance, 

 
1k  form factor of the hull (describes the viscous resistance from the hull, with 

relation to 
FR ), 

 
aR  model ship correlation resistance, 

 
wR  wave making and wave breaking resistance, 

 
APPR  appendage resistance due to the presence of bilge keels, rudders, bossings, 

open shafts and struts, 

 
BBR  additional resistance due to the bulbous bow near the water surface, 

 
TRR  additional resistance of the immersed transom stern. 

 
 

The added resistance, 
AddedR , includes the dynamic terms of added wind resistance, 

AwR , 

and added wave resistance, 
AsR  [Politis and Skamnelis(2007)]: 

 

 
Added Aw AsR R R   (4.54) 

 
These two terms model the added effect of the weather (wind and waves) on the total 

ship resistance and are very important in this study. In contrast to the terms appearing in 

Eq. (4.53) that are generally dependent on the ship speed and characteristics (geometry, 
hull form), the added wind and wave resistances are dependent on the weather profile also, 
thus inserting time and space (e.g. distance from a port) dependency in the problem and 
making it inherently dynamic. 

A method, based on regression upon multiple data from model tests in wind tunnels, 
proposed by Fujiwara et al. (2005) is used for the calculation of the added wind resistance 
component. The calculation of the added wave resistance term is based on the 
superposition principle for the components of the wave, motion and resistance spectra as 

well as on the assumption of linearity for the ship’s response and utilizes Maruo’s theory 
[Maruo (1957), Maruo (1960)] and the method given in Tsujimoto et al. (2008). If there is 
not enough information about the geometry of the ship's hull, the above formulas cannot be 
applied and a simplified empirical method [ITTC (1987), ITTC (2012)] is used, which 

requires only the basic ship dimensions and the ship speed as inputs.  
Finally, as stated in Chapter 3, Section 3.3.1, Eq. (3.13), in order to correlate the 

required brake power from the propulsion plant (diesel engines, gas turbines) with the total 
ship resistance, the propulsive efficiency, 

prop , must first be calculated. This calculation is 

performed based on a model from the literature [Holtrop and Mennen (1982), Holtrop 
(1984)] which uses as inputs the ship speed and characteristics (geometry, hull form) as 

well as other details considering the gear, transmission shaft and propeller (i.e. gearing, 
bearings, stern tube, propeller and open water efficiencies). 
The models, based on the literature, that are used for the calculation of total ship resistance, 
are described in depth in Appendix D. Furthermore, the models used for the required shaft 

power as well as the coupling of resistance and propulsion are given in Appendix E. 
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CHAPTER 5: CASE STUDIES 
 
 

5.1 General 

 
 In this chapter, based on the general problem formulation and the generic energy 
system modeling presented in the previous two chapters, seven case studies of dynamic 
SDO optimization on specific vessels with determined mission characteristics are 

formulated and solved. Table 5.1 summarizes the characteristics of all seven case studies, 
for convenient reference. 
 For the first case study a LNG carrier is considered. The ship performs consecutive 
round trips between two ports so as to cover the time horizon of a whole year of operation. 

Then, based on this first year of operation, dynamic optimization is performed in order to 
minimize the PWC for 20 years of operation. 
 The next six case studies (Case Studies 2–7) are based on an existing containership. 
Real data are considered for the heat and electricity demands as well as for the weather 

conditions that the ship encounters. Four seasons (summer, winter, spring, fall) are 
considered and for each season the ship performs a characteristic round trip of 
predetermined distance between two ports so as to cover the time horizon of a whole year 
of operation. 

 
 

Table 5.1.  Characteristics of case studies. 
 

Case 
study 

Type of ship Propulsion alternatives 
Duration of 
single trip 

Objective 
Function 

1 LNG carrier 4-X diesel engines Fixed PWC 

2 Containership Gas turbines Fixed PWC 

3 Containership Gas turbines Variable PWC 

4 Containership Gas turbines Variable NPV 

5 Containership 
4-X diesel engines, 2-X diesel 

engines, Gas turbines 
Fixed PWC 

6 Containership 
4-X diesel engines, 2-X diesel 

engines, Gas turbines 
Variable PWC 

7 Containership 
4-X diesel engines, 2-X diesel 

engines, Gas turbines 
Variable NPV 

 
 

 In Case Study 2 the duration of each round trip for each season is predetermined and 
fixed. Considering the synthesis of the propulsion plant, only the three types of gas 
turbines (Chapter 4, Section 4.5) are allowed as alternatives. The economic criterion that 
serves as the objective function is the minimization of PWC. 

 For Case Study 3, the duration of each round trip for each season is variable and also 
under optimization. The objective function is again the minimization of PWC and again 
only gas turbines are allowed as propulsion alternatives. 
 In Case Study 4, the same problem as in Case Study 3 is posed again, but now an 

appropriate revenue for each trip is introduced and the maximization of NPV is selected as 
the objective function. 
 In the next three case studies, the three problems that were introduced in case studies 
2–4 are posed once more, but now all possible technology alternatives (two stroke diesel 
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engines, four stroke diesel engines and three types of gas turbines) are allowed 
simultaneously for the synthesis of the propulsion plant. 
 In each of the Case Studies 2–7, the problem is solved once for the nominal case 
(nominal values of parameters) and then, based on this nominal case, a parametric study 

for different values of fuel cost is performed. Specifically in Case Studies 4 and 7, where 
the maximization of NPV is set as the objective function, the parametric study is 
performed for both the fuel price and the freight rate. In all cases, the horizon of 
optimization covers 20 years of operation.  

 
 

5.2 Case Study 1: LNG Carrier with 4-X Diesel Engines, Trips of fixed Time, 

Minimization of PWC 

 

 5.2.1 Description of the system and the optimization problem 
 
 In this problem, the optimal synthesis, design specifications and operating conditions, 

as they change with time, of an energy system that will cover all energy needs (propulsion, 
thermal, electric) of a LNG carrier are requested.  
 The basic ship dimensions, areas and volumes along with the necessary coefficients 
for the resistance and propulsion calculations are presented in Table 5.2. The ship is 

assumed to perform consecutive round trips (Figure 5.1) between two ports, A and B, so as 
to complete the time horizon of a full year of operation. The time schedule of the ship for 
each round trip is given in Table 5.3. The distance between the two ports is fixed and 

known, 
ABd  = 460 km. The operation profile of the ship from the point of view of energy 

requirements is approximated with four modes of operation (loading, off-loading, loaded 

trip and ballast trip) with fixed and predetermined (known) time durations. The electric and 
thermal loads for each mode are given in Table 5.4. They are considered constant and 
known in port, but they are calculated as functions of the brake power of the engine(s) 
during the trip, based on regression performed on data from the literature [Dimopoulos 

(2009)]. 
 Maneuvering periods are not considered in this work, because their duration is much 
smaller than the duration of the whole round trip and their effect on the objective function 
is negligible. 

 
 

Table 5.2.  Vessel dimensions, propulsion power and related coefficients. 
 

Parameter Symbol Value 

Basic Ship Dimensions 

Overall length (m) OAL  294 

Length between perpendiculars (m) ppL  288 

Length at the waterline (m) WLL  290 

Breadth (m) B  32.2 

Draught (m) T  8.8 

Forward moulded draught (m) FT  9 

Aft moulded draught (m) AT  8.6 

Draught at midship (m) MT  8.5 
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Areas and Volumes 

Transverse area of the bulbous bow (m2) BTA  0 

Transverse immersed transom area at rest 
(m2) TA  25 

Wetted volume (m3)   57360 

Ship Hull Coefficients 

Block coefficient BC  0.605 

Prismatic coefficient PC  0.617 

Waterplane area coefficient WPC  0.835 

Midship section coefficient MC  0.98 

Longitudinal position at the centre of 
buoyancy forward of 0.5L  as a  

percentage of overall ship length 
lcb  -4.5% 

Equivalent appendage resistance factor 2k  2 

Half angle of entrance Ei  25° 

Stern shape coefficient sternC  0 

Vertical position of the centre of transverse 
area of the bulbous bow (m) Bh  7 

Added Wind and Wave Related Coefficients 

Lateral projected area of superstructures on 
deck (m2) ODA  750 

Area of maximum transverse section 
exposed to the winds  (m2) XVA  450 

Projected lateral area above the waterline 
(m2) YVA  500 

Horizontal distance from midship section to 
centre of lateral projected area (m) MCC  10 

Height from waterline to centre of lateral 
projected area (m) CH  30 

Height of the top of the superstructure (m) BRH  20 

Propulsion Power Coefficients 

Bearing efficiency b  0.98 

Stern-tube efficiency st  0.97 

Gearing efficiency g  0.99 

Rotative efficiency r  0.98 

Open water efficiency o  0.99 

Service speed (kn) SV  21.5 

Brake power at service speed (kW)  21000 
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Figure 5.1. Modes of operation for characteristic round trip between Ports A and B. 
 

 
Table 5.3.  Time schedule of the ship. 

 

Mode Description Duration 

1 Loading at port A 9 h 

2 Loaded trip from port A to port B 15 h 

3 Off-loading at port B 9 h 

4 Ballast trip from port B to port A 15 h 
 Total round trip 48 h 

 

 

Table 5.4.  Electric and thermal load. : instantaneous total brake power of the main 

engines. 
 

Mode Electric load (kW) Thermal load (kW) 

1 1000 800 

2   
3 3000 4000 

4   
 
 

 In this case study it is considered that a number (determined by the optimization) of 
four-stroke diesel engines will drive a single propeller. If determined by optimization, a 
single-pressure HRSG will serve part or all of the thermal loads by saturated steam 
extraction from the drum, while the superheated steam produced will, again if the 

optimization thus dictates, drive a steam-turbine generator (STG). It is noted that 
connecting exhaust pipes from more than one engine, if there is need, is allowed by the 
classification societies only if proper equipment (such as blowers and dampers) is installed. 
Diesel generator sets (the number is also determined by optimization) and an auxiliary 

boiler are included, which will cover the electric and thermal loads in ports and will supply 
electric and thermal energy during voyages, in case the STG or/and HRSG cannot fully 
cover the loads. 
 In Figure 5.2 a superconfiguration of the energy system that will cover all energy 

needs is presented.  

bW

3451 540ln( )bW 
55.39 3.7310

150 bW
e

  


3423 539ln( )bW 
55.37 3.9310

150 e bW  
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Figure 5.2. Superconfiguration of the energy system for Case Study 1. 

 
 

 The required propulsion power is not known in advance, but is under optimization, 
since various weather conditions that depend on space and time are encountered along the 
route. Furthermore, the ship speed at any instant of time is also under optimization. 
 Regarding the weather conditions encountered by the ship, as has been described in 

previous sections (Section 3.2.1), in this study only the wind speed and direction and wave 
height and direction are taken into consideration in order to estimate the total ship 
resistance and thus the required brake power at a certain speed. For the specific case study 
and without restricting the generality of the formulation, it is assumed for simplicity that 

the wind and waves are always in the heading direction: 
 

 
 0.0

 0.0

wind

waves








 (5.1) 

 

thus decreasing the number of required inputs and calculations (since wind and wave 
direction angle have zero value). This scenario, although not realistic, is chosen for 
simplicity and is mathematically equivalent with every other possible scenario. 
Furthermore, by utilizing the Beaufort scale, the wave height generated by the wind above 

the sea level is associated with its corresponding wind speed. Therefore, the weather 
conditions are adequately described solely by the wind speed, which, in this case study is 
considered as function of space (distance from port) and time. A 3-D plot (contour) is used 
(Figure 5.3) to describe the wind speed as a function of space and time during the loaded 

and ballast trips. More details considering the Beaufort scale and the correlation of wave 
height and wind speed can be found in Appendix G. 
 Even though in this application a typical weather profile has been considered, the 
problem could be solved for various weather states. 
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 Finally, regarding the objective function, the present worth cost (PWC) is selected as 
an appropriate economic criterion and the problem is set up as a PWC minimization 
problem. In the following section, the mathematical statement of the optimization problem 
is presented. 

 
 

  
(a) (b) 
 
Figure 5.3.  Wind speed for the base case as a function of space and time:  (a) Loaded trip, 

distance from port A.  (b) Ballast trip, distance from port B. 
 
 

 5.2.2 Mathematical statement of the optimization problem 

 
 The dynamic optimization problem can be mathematically stated as a minimization 
problem using a Differential − Algebraic Equation (DAE) formulation. Of course, this 
formulation is based on the mathematical formulation of the general problem presented in 

Section 3.3.1 combined with the technique for handling integer variables presented in 
Section 3.3.2. The objective is selected to be the minimization of the present worth cost, 
which consists of capital, fuel and operation expenses. All symbols as well as all 
calculations necessary for the estimation of the total PWC are presented in detail in 

Chapter 3 and Appendices B, C. The objective function is stated as 
 

 min c f om
x

PWC PWC PWC PWC    (5.2) 

 

with vector x , representing the vector of control (optimization) variables, consisting of the 
vectors of synthesis, design and operation optimization variables ( v ,w  and z , 

respectively) 

 

 ( , , )x v w z  (5.3) 

with: 

  ,4 , ,, , , ,D X J B STG DG M ABv y y y y y  (5.4a) 
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  , ,, , , , , ,
n n n n n nbn J g g s STG DG M ABw W m T m m W Q  (5.4b) 

  , ,, ,b J DG M hz W W   (5.4c) 

where 

 
 

,4 ,D X Jy 
 set of variables j determining the existence of the j th 4‒X diesel engine 

(binary):  ,4 , ,4 ,1 ,4 ,2 ,4 , ,4 , max, , ...., ,..,D X J D X D X D X j D X jy y y y y      (5.5a) 

 
By  variable determining the existence of the HRSG (binary), 

 
STGy  variable determining the existence of the STG (binary), 

 
,DG My  set of variables m determining the existence of the m th generator set (binary): 

  , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG my y y y y  (5.5b) 

 
ABy  variable determining the existence of the auxiliary boiler (binary), 

 

 
,bn JW  set of variables j determining the nominal brake power output of j th 4‒X 

diesel engine (invariant):  , ,1 ,2 , , max, , ...., ,..,bn J bn bn bn j bn jW W W W W  (5.6a) 

 
ngm  nominal exhaust gas mass flow rate of HRSG (invariant), 

 
ngT  nominal exhaust gas temperature of HRSG (invariant), 

 
ns

m  nominal steam mass flow rate of HRSG (invariant),  

 
nSTGm  nominal steam mass flow rate of STG (invariant),  

 ,nDG MW  set of variables m determining the nominal power output of m th generator set 

(invariant):  , ,1 ,2 , , max, , ...., ,..,
n n n n nDG M DG DG DG m DG mW W W W W  (5.6b) 

 
nABQ  nominal thermal power output of auxiliary boiler (invariant), 

 ,b JW  set of variables j determining the j th 4‒X diesel engine brake power output: 

  , ,1 ,2 , , max, ,..., ,...,b J b b b j b jW W W W W  (5.7a) 

 
,DG MW  set of variables m determining the m th diesel generator set power output: 

  , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG mW W W W W  (5.7b) 

 
h  fraction of HRSG steam mass flow rate delivered to thermal loads: 

 
,s h h sm m    (5.8) 

 
,s hm  steam mass flow rate drawn from HRSG drum for serving thermal loads, 

 sm  steam mass flow rate of HRSG unit. 

 
 
 Indices j and m run through all the values from 1 up to an upper bound. It is noted that 

the upper values of indices j and m, quantify the maximum number of diesel engines and 
diesel generator sets, respectively, that are allowed to be installed in the system and are 
pre-determined parameters, given at the beginning of the optimization. Once these upper 
values for j and m are defined, the problem is set with as many binary variables for the 

diesel engines and the diesel generator sets as necessary. Binary variables HRSGy , STGy , 
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and 
ABy  determine the existence of the HRSG, STG and auxiliary boiler in the energy 

system. For all binary variables, value 0 denotes that the unit is not installed.  
 Details for the calculation of PWC are presented in Appendix B. In this specific case 
study, since the assumption that the same round trip is repeated over the first year is made, 
the first year fuel cost of component n can be calculated by the equations: 

 
 

, ,fa n f n tripsC C N  (5.9) 

 
, , , ,

trips

trip AB trip BA port A port B

N
t t t t




  
 (5.10) 

 
, , ,f n f n f nC c m  (5.11) 

where 

 
 

,fa nC  first year annual fuel cost of component n,  

 
tripsN  number of total round trips of the ship in a year, 

 
,f nC  fuel cost of component n per round trip. 

   maximum permissible annual hours of operation, 

 
tript  duration of travel for a round trip,  

 
,trip ABt  duration of travel from port A to B (in a round trip),  

 
,trip BAt  duration of travel from port B to A (in a round trip),  

 
,port At  time spend in port A (in a round trip),  

 
,port Bt  time spend in port B (in a round trip),  

 
,f nc  fuel price for component n,  

 
,f nm  fuel consumption for component n in a round trip.  

 
 The same methodology is used for the first year operation and maintenance costs of 

each component:  
 
 

, ,oma n om n tripsC C N  (5.12) 

 
, ,om n om n nC c E  (5.13) 

where 
 
 

,om nC  operation and maintenance cost per trip for each component n,  

 
,om nc  operation and maintenance unit cost for component n, 

 nE  useful energy output of the component n for a round trip. 

 
 The main differential variables for this problem are the distance travelled by the ship, 
the fuel consumption of the propulsion engines, diesel generator sets and auxiliary boiler. 

Another family of differential variables is derived from the energy output of each 
component, which is generally given as the integral of output power of the component over 
the time horizon. All the respective equations for each component have been presented in 
detail in Chapter 3, Section 3.3.1, Eqs. (3.6)‒(3.9) and in Appendix C.  

 Since the number of diesel engines and the nominal power of each engine are not 
known but they are the result of optimization, the SFOC for each engine as well as the 
exhaust gas mass flow rate and temperature are given as two-variable (nominal power and 
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load factor) functions. The total exhaust gas mass flow rate and temperature from all 
engines is then calculated and supplied to the HRSG, if a HRSG is installed. The same 
procedure (two variable functions) is also applied in the modeling of diesel generator sets 
SFOC and exhaust gas characteristics. The models used for the propulsion engines and the 

diesel generator sets are presented in extent in Chapter 4. 
 The brake power of the propulsion engines, as well as the electric and thermal power 
produced by the integrated system must be equal to the required brake power, the electric 
and thermal loads at any instant of time: 

 

 ,4 , ,4 ,D X j b X j b

j

y W W    (5.14) 

 , ,STG STG DG m DG m e

m

y W y W W     (5.15) 

 
B B ABy Q Q Q    (5.16) 

where: 
 

 
bW  required brake power from the engines, 

 
eW  electric load, 

 
BQ  heat from HRSG serving thermal loads, 

 Q  thermal load. 

 
 The total required brake power of the engines is calculated as a function of the ship 
speed, weather state, ship resistance and propulsive efficiency. The respective equation is 
given in Chapter 3 (Eq. 3.13). All details considering the underlying mathematical 

calculations are presented in Chapter 4 and in Appendixes D and E.  
 Finally, there are multiple equalities correlated with the simulation of the components 
as well as inequality constraints imposed on certain variables, but their full presentation is 
beyond the limits of the present text. Noteworthy inequality constraints are the upper and 
lower bounds imposed on the speed of the ship and the upper and lower bounds imposed 

on the load factor of all components (main engines, diesel generator sets, steam turbines, 
etc.) that ensure their operation inside the limits specified by the manufacturer: 
 

 
min maxV V V   (5.17a) 

 
maxmin

L L Lf f f   (5.17b) 

 
 Other important technical constraints are related with the nominal (design) 
characteristics of the components. A good example is the allowed upper and lower values 
for the nominal power output of the 4‒X diesel engines and diesel generator sets: 

 

 min max, , ,bn j bn j bn jW W W   (5.18a) 

 
min max, , ,DGn m DGn m DGn mW W W   (5.18b) 

 

 Of course all control variables, are accompanied by upper and lower limits. However, 
upper and lower limits may not be necessary for all state variables. 
 In the next section all the necessary values of input parameters and data assumptions 
in order to set up and solve the optimization problem stated in the current section are 

presented. 



122 Case Studies 

 5.2.3 Additional data and assumptions  
 
 The values of economic parameters used in the calculation of the objective function 
are given in Table 5.5. The operation and maintenance unit costs for each component are 

given in Appendix C and are repeated here for reference. For the diesel engines, the diesel 
generator sets and the auxiliary boiler, the same type of fuel is considered (Heavy Fuel Oil) 
which has a Lower Heating Value (LHV) of 39550 kJ/kg. 
 

 
Table 5.5.  Economic parameters. 

 

Parameter Value 

Fuel price (all components) 300 € / ton 

Technical life of the system  20 years 

Market interest rate 10% 

Maximum permissible annual number of operation hours 6000 hours 
Diesel engines O&M unit cost  6.000 € / MWh 

HRSG O&M unit cost  4.558 € / MWh 

STG O&M unit cost  3.646 € / MWh 

Genset O&M unit cost  6.381 € / MWh 

Auxiliary boiler O&M unit cost  4.558 € / MWh 

 
 

 In Table 5.6 a list of lower and upper bounds of several important synthesis, design 

and operation variables is presented. Details regarding the time discretization that is used 
in order to model the operation of the energy system for the total time horizon are 
presented in Table 5.7. It is clarified that, in essence, each control variable is decomposed 
to as many static variables as the number of intervals considered for the operation, thus 

increasing significantly the scale of the problem and the computing time. 
 
 

Table 5.6.  Bounds on synthesis, design and operation variables . 

 
Variable Lower value Upper value 

Number of diesel engines 1 4 

Number of DG sets 0 4 

Diesel engine nominal power output (kW) 3500 21000 

DG set nominal power output (kW) 300 5000 

Load factors (all equipment) 0.1 1 

Ship speed (kn) 6 22 

 
 

Table 5.7.  Numerical solution parameters. 
 

Parameter Value 

Length of time intervals on trips 1 h 
Length of time intervals in ports 9 h 

Number of time intervals used 32 

Optimization convergence tolerance 10-4 
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 5.2.4 Solution procedure  
 
 The problem is set up and solved once with the nominal set of parameter values and 
weather conditions, and then a sensitivity analysis with respect to the fuel price and the 

capital cost of equipment is performed. In addition, in order to investigate the effect of the 
weather on the optimal solution, an alternative weather profile is introduced while all other 
parameters are kept constant, and the optimization problem is solved once again. 
 For the solution of all the dynamic optimization problems pertaining to this case study, 

a sequential method is applied. All the relevant solution procedure specifics, such as the 
algorithms and the related software, are described in detail in Section 3.4. All 
optimizations are performed on an Intel® Core™2 Quad Processor Q9650 CPU at 3GHz 
with 8Gb of RAM. 

 
 

 5.2.5 Numerical results for the nominal case  
 

 The optimal values of the synthesis variables are presented in Table 5.8. Optimal 
values for the design variables are presented in Table 5.9, along with the optimal values of 
HRSG nominal thermal power and STG nominal power output, which are dependent 
variables but are given for completeness. The optimal values of the objective function and 

its constituents are given in Table 5.10. In Figure 5.4a, the optimal ship speed profiles for 
both trips (fully loaded and ballast) are presented for the 15 hour duration of each trip. 
Operation optimization results for the diesel engines, HRSG, steam turbine, auxiliary 
boiler and generator sets are presented in Figures 5.4b-5.7 for the whole round trip of 48 

hours. 
 
 

Table 5.8. Optimal synthesis of the system. 

 

Number of diesel engines (prime movers) 2 

Number of HRSGs 1 

Number of STGs 1 

Number of DG sets 2 

Number of auxiliary boilers 1 

 
 

Table 5.9. Optimal design specifications of the system components. 

 
Variable Engine 1 Engine 2 

Main engine nominal brake power (kW) 14790 6210 

DG sets nominal electric power (kW) 1020 2040 

Heat recovery steam generator 

Thermal power (kW) 4441 

Exhaust gas mass flow rate (kg/s) 29 

Nominal inlet exhaust gas temperature (oC) 292 
Auxiliary boiler nominal thermal power (kW) 4000 

Steam-turbine generator 

Nominal electric power (kW) 1419 

Nominal steam mass flow rate (kg/s) 2.09 
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Table 5.10. Cost items (present worth costs). 
 

Component 
Costs (€) 

Capital Operation & maintenance Fuel 
Diesel Engines 9,250,000 3,371,267 33,013,477 

STG 603,875 133,629 0 

HRSG 742,977 817,605 0 

Auxiliary boiler 390,000 212,517 1,215,745 

DG sets 1,877,678 385,534 3,880,468 

Subtotal 12,864,530 4,920,552 38,109,690 

Total PWC 55,894,772 

 

 
 

Figure 5.4a. Optimal ship speed versus time. 
 

 
 

Figure 5.4b. Optimal load factors versus time. 
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Figure 5.5. Contribution of the HRSG and auxiliary boiler to thermal loads versus time. 
 
 

 

 
 

Figure 5.6. Electric power of the DG sets and the STG versus time. 
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Figure 5.7. Optimal percentage of steam mass from HRSG to thermal loads versus time.  
 

 
 The optimal present worth cost after 20 years of operation (125 trips per year) is 
55,894,772 €. The optimization was concluded in 24100 seconds, performing 57 Major 
NLP iterations. For the optimal solution two four-stroke diesel engines of 14.79 and 6.21 

MW and two diesel generator sets of 1020 and 2040 kW were selected. Also the 
installation of a HRSG unit along with a STG (1419 kW) is determined. Slow steaming 
through the “storms” (15 – 20 hours for port A to B and 38 – 43 hours for port B to A) is 
the result of optimization, in order to minimize the diesel engine fuel costs. The load 

factors vary from 50% to 98% for the larger engine and from 86% to 99% for the smaller 
engine (area of minimum consumption in 4-X diesel engines). 
 The thermal demands are almost fully covered by the HRSG during the trips, while the 
auxiliary boiler supplies a small part of the heat required during the trips and fully covers 

the heat demand in ports. The STG covers approximately 2/3 of the electric demand during 
the trips, while the remaining 1/3 is covered by DG set 1. Furthermore, the electric demand 
in port A is fully covered by the DG set 1, while DG set 2 operates only in port B in 
parallel with DG set 1, in order to cover the increased electric demand. 

 
 

 5.2.6 Parametric study 
 

 For the parametric study, two parameters are considered: the fuel price and the capital 
cost of equipment. For the fuel price four values, apart from the nominal value of 300 
€/ton, were considered (20, 150, 450 and 600 €/ton), while capital costs were varied from 
50% to 200% of the nominal value. This has been performed by using a scale factor on the 

total capital cost value in the objective function. Selected results regarding the optimal 
synthesis and design characteristics of the system for various values of fuel price and 
capital cost are presented in Tables 5.11 and 5.12. More detailed results regarding the 
optimal PWC, HRSG power output and STG power output are presented in Figures 5.8, 

5.9 and 5.10, respectively. 
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Table 5.11. Effect of fuel price and capital cost on the optimal synthesis of the system. 
 

 
Capital Cost 50% 50% 100% 100% 200% 200% 

Fuel Price (€/ton) 20 300 150 600 150 450 

S
y

n
th

e
si

s 

DEs 1 2 2 2 2 2 

HRSGs – 1 – 1 – 1 

STGs – 1 – 1 – 1 

DG sets 1 2 2 2 2 2 

AB 1 1 1 1 1 1 

 
 
 In all cases, with the exception of 20 €/ton fuel price, two diesel engines, one auxiliary 

boiler and two generator sets are installed. As can be observed in Figure 5.7, for the fuel 
price of 20 €/ton and for all capital cost cases the optimal PWC values are very close. This 
indicates that for very low fuel prices all the possible system configurations tend to 
degenerate into a single solution with one diesel engine, one generator set, one auxiliary 

boiler and no bottoming cycle. 
 
 
Table 5.12. Effect of fuel price and capital cost on the optimal design specifications of the 

system. 
 

 
Capital Cost 50% 50% 100% 100% 200% 200% 

Fuel Price (€/ton) 20 300 150 600 150 450 

N
o

m
in

a
l 
p

o
w

e
r 

(k
W

) 

DE 1 21000 14790 14850 14830 14850 14850 

DE 2 – 6210 6150 6170 6150 6150 

HRSG – 4525 – 4597 – 4488 

STG – 1427 – 1434 – 1415 

DG set 1 3000 1025 1080 1000 1010 1000 

DG set 2 – 2035 1980 2040 2050 2050 

AB 4000 4000 4000 4000 4000 4000 

 
 
 For fuel prices 300, 450 and 600 €/ton and for all capital costs a bottoming cycle is 
always installed, while for fuel prices 150 and 20 €/ton the bottoming cycle is 

economically non feasible. The only exception is found at fuel price of 150 €/ton and 
capital costs at 50%. This behavior reveals the existence of a fuel marginal price in each 
capital cost case. Indeed, additional executions of the program – only for the nominal case 
– reveal the exact marginal price of the fuel at 214.4 €/ton (marked in Figure 5.8); below 

this price the optimal system does not include a bottoming cycle. It is noted that for fixed 
capital costs, the fuel price increase leads to higher optimal HRSG and STG nominal 
power output values. Also, for every fixed fuel price, the decrease of capital costs leads to 
higher optimal HRSG and STG nominal power output values.  

 The optimal nominal power output of the diesel engines, does not vary significantly 
(variation lower than 1%) for different fuel prices and capital costs. 
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Figure 5.8. Effect of fuel price and capital cost on the optimal PWC. 
 
 

 
 

Figure 5.9. Effect of fuel price and capital cost on the optimal HRSG nominal power. 
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Figure 5.10. Effect of fuel price and capital cost on the optimal STG nominal power. 
 
 

 5.2.7 Effect of weather on the optimal solution 
 
 In order to study the effect of weather on the optimal solution, a different weather 
profile is considered, while all other parameters are kept the same as in the nominal case. 

Again a 3-D plot (contour) is used (Fig. 5.11) to describe the wind speed as a function of 
space and time during the loaded and ballast trips. Here, comparing with the nominal case 
(Fig. 5.2), a weather profile with two peaks (“storms”) is introduced for the fully loaded 
trip, while a milder and “flat” weather profile is introduced for the ballast trip. 

 
 

  
(a) (b) 
Figure 5.11. Wind speed as a function of space and time:  (a) Loaded trip, distance from 

port A.  (b) Ballast trip, distance from port B. 
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 Following the same format as in the presentation of the nominal case, the optimization 
results are presented in Tables 5.13, 5.14 and 5.15, and in Figures 5.12-5.16. 
 
 

Table 5.13. Optimal synthesis of the system. 
 

Number of diesel engines (prime movers) 2 

Number of HRSGs 1 
Number of STGss 1 

Number of DG sets 2 

Number of auxiliary boilers 1 

 
 

Table 5.14. Optimal design specifications of the system components. 
 

Variable Engine 1 Engine 2 

Main engine nominal brake power (kW) 15580 6060 
DG sets nominal electric power (kW) 810 2200 

Heat recovery steam generator 

Thermal power (kW) 4590 

Exhaust gas mass flow rate (kg/s) 30.5 

Nominal inlet exhaust gas temperature (oC) 294 

Auxiliary boiler nominal thermal power (kW) 4000 

Steam-turbine generator 

Nominal electric power (kW) 1560 
Nominal steam mass flow rate (kg/s) 2.29 

 

 
Table 5.15. Cost items (present worth costs). 

 

Component 
Costs (€) 

Capital Operation & maintenance Fuel 

DEs 9,659,265 3,342,232 32,514,962 

ST 627,487 130,309  
HRSG 752,636 809,299  

Auxiliary boiler 390,000 210,660 1,205,123 

DG sets 1,828,315 388,831 3,929,107 

Subtotal 13,257,703 4,881,331 37,649,192 

Total PWC 55,788,226 
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Figure 5.12. Optimal ship speed versus time. 

 
 

 
 

Figure 5.13. Optimal load factors versus time. 
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Figure 5.14. Contribution of the HRSG and auxiliary boiler to thermal loads versus time . 

 
 

 
 

Figure 5.15. Electric power from the DG sets and the STG versus time. 
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Figure 5.16. Optimal percentage of steam mass from HRSG to thermal loads versus time.  

 
 
 The optimization was concluded in 23500 seconds, performing 48 Major NLP 
iterations. Similarly to the solution of the nominal case, two four-stroke diesel engines and 

two diesel generator sets are selected. However in this case, diesel engine 1 is designed 
with a 5% higher MCR and diesel engine 2 with a 2% lower MCR. Also, the installation of 
a HRSG unit along with a STG is again dictated, but the STG is now designed with 
approximately a 10% higher nominal power output. This leads to significant differences in 

both the optimal nominal power output and the optimal operational strategy for each diesel 
generator set. Specifically, when compared to the nominal case, DG set 1 is designed with 
nominal power output significantly below 1 MW (800 kW), while DG set 2 is designed 
with nominal power output higher than 2 MW (2200 kW). Furthermore, during the fully 

loaded trip, now the STG covers slightly more than 2/3 of the electric demand, while the 
remaining load is covered by the DG set 1. During the ballast trip the STG performance 
drops (lower exhaust gas mass flow rates) and the DG set 1 operates constantly near full 
load. In contrast to the nominal case, the electric demand in port A is now covered by DG 

set 2, since DG set 1 has now been designed with output power lower than 1MW in order 
to more efficiently accommodate the ballast trip. Both DG sets operate in parallel in port 
B.  
 As in the nominal case, the thermal demands are almost fully covered by the HRSG 

during the trips. 
 Finally, the ship slow steams through both “storms” in the fully loaded trip utilizing 
both engines. However on the ballast trip a large difference is observed compared with the 
nominal case, since the small engine is not operating at all. 
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5.3 Case Study 2: Containership with Gas Turbines, Trips of fixed Time, 

Minimization of PWC 
 

 5.3.1 Description of the system and the optimization problem 

 
 In this case study, the optimal configuration (synthesis), design specifications of 
components and operating conditions of an energy system that will cover all energy needs 
of a containership under the scope of minimizing the PWC, are requested. 

 A containership with carrying capacity 9572 TEU and DWT of 111529 MT is 
considered. All vessel characteristics, such as ship dimensions and coefficients that are 
used in order to provide an accurate calculation of ship resistance and required propulsion 
power are given in Table 5.16. 

 
 

 
 

Figure 5.17. Containership during voyage. 

 
 

Table 5.16.  Vessel dimensions propulsion power and related coefficients for 
containership. 

 

Parameter Symbol Value 

Ship Dimensions 

Overall length (m) OAL  336 

Length between perpendiculars (m) ppL  321 

Length at the waterline (m) WLL  317 

Breadth (m) B  45 

Draught (m) T  15 

Forward moulded draught (m) FT  14.7 

Aft moulded draught (m) AT  15.2 

Draught at midship (m) MT  15 

Wetted volume (m3)   146491 
Wetted Surface S  19029 
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Ship Hull Coefficients 

Block coefficient BC  0.6506 

Prismatic coefficient PC  0.6605 

Waterplane area coefficient WPC  0.8560 

Midship section coefficient MC  0.9850 

Longitudinal position at the centre of 
buoyancy (m) 

lcb  152.7 

Height at the centre of transverse area (m) Bh  22 

Propulsion Power Coefficients 

Bearing efficiency b  0.98 

Stern-tube efficiency st  0.97 

Gearing efficiency g  0.99 

Rotative efficiency r  0.98 

Open water efficiency o  0.99 

Service speed (kn) SV  24 

Brake power at service speed (kW)  69439 

 
 
 The problem is formulated in such a way that, simultaneously, the time horizon of a 

whole year of operation is considered. Specifically, for each of the four seasons, the ship 
will perform a characteristic round trip (Figure 5.18) of 6000 nm between ports A and B, 

with 3000 ABd nm , which will include the necessary amount of time (and service of 

energy needs) that is required during the stay at both ports. In this case study the duration 
of this round trip for each season is predetermined and fixed. The time schedule of the ship 

for each round trip and all seasons is given in Table 5.17. 
 
 

Table 5.17.  Time schedule of the ship. 

 

Mode Description Duration 
1 Loading at port A (all seasons) 2 days 

2 Loaded trip from port A to port B (all seasons) 6 days 

3 Off-loading and loading at port B (all seasons) 2 days 

4 Loaded trip from port B to port A (all seasons) 6 days 

 Total round trip 16 days 

 
 
 The electric and thermal loads are given as inputs in Tables 5.18 and 5.19. They are 

defined as functions of time for an 8-day time horizon, differing for each season. Also they 
are considered constant at ports.  
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Figure 5.18.  Characteristic round trip between Ports A and B. 
 
 

Table 5.18.  Thermal energy demands for each season. 
 

Time 
(Days) 

Thermal Power (kW) 

Summer Fall Winter Spring 
From port A to port B 

1 850 860 1000 990 

2 880 900 1050 980 

3 860 950 1080 1010 

4 900 970 1100 1020 

5 840 930 1060 950 

6 850 960 1100 970 

7 845 959 1100 980 
8 851 963 1090 970 

From port B to port A 

1 860 930 1100 1040 

2 870 950 1080 970 

3 870 980 1060 960 

4 890 970 990 950 

5 860 890 1040 980 

6 870 910 1070 960 
7 880 920 1080 970 

8 870 910 1050 960 

 Ports 

A 950 950 950 950 

B 950 950 950 950 
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Table 5.19.  Electric energy demands for each season. 
 

Time 
(Days) 

Electric Power (kW) 

Summer Fall Winter Spring 
From port A to port B 

1 1495 1508 1482 1625 

2 1599 1573 1586 1599 

3 1560 1547 1482 1547 

4 1514 1560 1508 1495 

5 1508 1495 1586 1534 

6 1495 1495 1495 1521 

7 1490 1495 1485 1525 
8 1495 1495 1490 1520 

From port B to port A 

1 1625 1547 1534 1521 

2 1560 1625 1521 1625 

3 1534 1664 1625 1573 

4 1521 1508 1651 1625 

5 1560 1501 1495 1599 

6 1521 1547 1521 1586 
7 1520 1539 1520 1580 

8 1525 1550 1521 1580 

 Ports 

A 1500 1500 1500 1500 

B 1500 1500 1500 1500 

 
 
 A superconfiguration of the energy system that will serve all energy needs is 

considered in Figure 5.19. Three types of gas turbines, as presented in Section 4.5, are 
available as technology alternatives for the synthesis of the propulsion plant. The number 
and type of gas turbines that will be installed is determined by the optimization and they 
will drive a single propeller. Also, single-pressure HRSGs may be installed that will serve 

part or all of the thermal loads by saturated steam extraction from the drum, while the 
superheated steam produced will be led to steam turbine(s), if the optimization thus 
dictates. The number of HRSGs and STs that will be installed is again determined by the 
optimization. The power produced by the steam turbine(s) will be distributed between the 

propeller and a generator, which will supply electric power for the service of the electric 
loads. Diesel generator sets, whose number is determined by the optimization, and an 
auxiliary boiler are included, which will serve the electric and thermal loads in port and 
will supply electric and thermal energy during voyages, in case the STGs and HRSGs 

cannot fully cover the demands. 
 The requested propulsion power is not known in advance, but it is calculated as a 
function of speed and weather conditions, since the varying with space and time weather 
conditions encountered by the ship along the route are taken into consideration. Thus, the 

ship speed at any instant of time is unknown and also under optimization. Regarding the 
weather conditions encountered by the ship during each trip, for each season, the wind 
speed and direction are given as inputs. The wave height and direction are then calculated, 
since they are correlated with the wind speed with the help of the Beaufort scale 
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(Appendix G). Once these parameters are determined, the resistance and propulsion power 
calculations are performed.  
 
 

 
 

Figure 5.19. Superconfiguration of the energy system for Case Studies 2,3 and 4. 
 

 
 The wind speed is given as a function of time and space for each season in Tables 
5.20a – 5.20d. The wind direction is given in Table 5.20e, also as a function of time and 
space, but is assumed to remain constant over all seasons. All data have been gathered 

from a list of internet sites3 ‒accessible to anyone‒ which are specialized in accurate 
real‒time as well as historical weather data for any region (sea or land).  
 In Figure 5.20 the simulated power – speed curves for weather conditions of BF0, BF4 
and BF5 are given, for reference. For drawing this figure, the wind direction was assumed 

to be heading in all cases. 
 Finally, for the objective function, the present worth cost (PWC) is selected as an 
appropriate economic criterion and the problem is set up as a PWC minimization problem. 
 

  

                                                             
3  https://earth.nullschool.net, http://www.meteoearth.com, http://www.accuweather.com, 
 http://enterprisesolutions.accuweather.com, 
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Table 5.20a.  Wind speed (in kn) as a function of time and space in Summer. 
 

Time 
(Days) 

Distance from Port A (nm) 

 513 1026 1539 2052 2565 3078 

1 4.43 4.91 4.32 5.45 4.91 6.05 

2 13.61 15.87 16.41 13.71 13.12 16.36 
3 17.87 16.25 17.44 18.03 16.79 15.71 

4 9.18 11.39 9.40 9.94 10.48 17.87 

5 24.95 19.22 16.79 24.19 26.30 24.35 

6 21.65 23.00 24.62 26.84 26.35 22.89 

7 22.73 21.06 27.21 24.62 26.89 23.98 

8 23.65 23.97 22.08 22.30 22.89 25.11 

 
 

Table 5.20b.  Wind speed (in kn) as a function of time and space in Fall. 
 

Time 

(Days) 
Distance from Port A (nm) 

 513 1026 1539 2052 2565 3078 

1 4.75 5.35 4.75 5.94 5.35 6.53 

2 14.85 17.22 17.82 14.85 14.25 17.82 

3 19.60 17.82 19.01 19.60 18.41 17.22 

4 10.10 12.47 10.10 10.69 11.28 19.60 

5 27.32 20.79 18.41 26.13 28.51 27.73 

6 23.76 24.95 26.73 29.10 28.51 26.95 

7 24.95 23.16 29.70 26.73 29.10 23.76 
8 25.54 26.13 23.76 24.35 24.95 24.95 

 

 
Table 5.20c.  Wind speed (in kn) as a function of time and space in Winter. 

 

Time 
(Days) 

Distance from Port A (nm) 

 513 1026 1539 2052 2565 3078 

1 5.23 5.88 5.23 6.53 5.88 7.19 

2 16.33 18.95 19.60 16.33 15.68 19.60 

3 21.56 19.60 20.91 21.56 20.25 18.95 

4 11.11 13.72 11.11 11.76 12.41 21.56 
5 30.05 22.87 20.25 28.75 31.36 29.40 

6 26.13 27.44 29.40 32.01 31.36 28.44 

7 27.44 25.48 32.67 29.40 32.01 28.13 

8 28.09 28.75 26.13 26.79 28.44 29.44 
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Table 5.20d.  Wind speed (in kn) as a function of time and space in Spring. 
 

Time 
(Days) 

Distance from Port A (nm) 

 513 1026 1539 2052 2565 3078 

1 3.89 4.37 3.89 4.86 4.37 5.35 

2 12.15 14.09 14.58 12.15 11.66 14.58 
3 16.04 14.58 15.55 16.04 15.06 14.09 

4 8.26 10.21 8.26 8.75 9.23 16.04 

5 22.35 17.01 15.06 21.38 23.33 21.87 

6 19.44 20.41 21.87 23.81 23.33 20.41 

7 20.41 18.95 24.30 21.87 23.81 19.94 

8 20.90 21.38 19.44 19.92 22.41 21.41 

 
Table 5.20e.  Wind direction in degrees (O) with respect to north, counting 

counterclockwise, as a function of time and space for all seasons. 
 

Time 

(Days) 
Distance from Port A (nm) 

 513 1026 1539 2052 2565 3078 

1 318 320 310 345 300 260 

2 315 330 330 330 300 250 

3 315 325 334 300 285 260 

4 320 325 330 250 265 255 

5 321 328 345 260 244 230 

6 317 320 305 255 230 225 

7 323 333 300 245 250 228 
8 320 330 328 260 242 230 

 

 

 
 

Figure 5.20.  Power – speed curve for different Beaufort numbers. 
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 5.3.2 Mathematical statement of the optimization problem 
 
 The dynamic optimization problem of this case study can be mathematically stated as 
a minimization problem using a Differential − Algebraic Equation (DAE) formulation. 

Again, this mathematical formulation is based on the mathematical formulation of the 
general problem presented in Section 3.3.1 combined with the technique for handling the 
synthesis variables presented in Section 3.3.2. The objective for this case study is selected 
to be the minimization of PWC. All symbols as well as all calculations necessary for the 

estimation of the total PWC are presented in detail in Chapter 3 and Appendices B, C. The 
objective function is stated as 
 

 min c f om
x

PWC PWC PWC PWC    (5.19) 

 
with vector x , representing the vector of control (optimization) variables, consisting of the 

vectors of synthesis, design and operation optimization variables ( v ,w  and z , 
respectively): 

 

 ( , , )x v w z  (5.20) 

with: 
 

  1, 1 2, 2 3, 3 , , ,, , , , , ,GT J GT J GT J B K ST L DG M ABv y y y y y y y  (5.21a) 

  , 1, 1 , 2, 2 , 3, 3 , , , , ,, , , , , , , ,
n n n n n nbn GT J bn GT J bn GT J g K g K s K ST L DG M ABw W W W m T m m W Q  (5.21b) 

  , 1, 1 , 2, 2 , 3, 3 , , ,, , , , ,b GT J b GT J b GT J h K e L DG Mz W W W W   (5.21c) 

where 
 
 

1, 1GT Jy  set of variables j1 determining the existence of the j1 th gas turbine of type 1 

(binary):  1, 1 1,1 1,2 1, 1 1, 1max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.22a) 

 
2, 2GT Jy  set of variables j2 determining the existence of the j2 th gas turbine of type 2 

(binary):  2, 2 2,1 2,2 2, 2 2, 2max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.22b) 

 
3, 3GT Jy  set of variables j3 determining the existence of the j3 th gas turbine of type 3 

(binary):  3, 3 3,1 3,2 3, 3 3, 3max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.22c) 

 ,B Ky  set of variables k  determining the existence of the k  th HRSG (binary):

 , ,1 ,2 , , max, , ...., ,..,B K B B B k B ky y y y y  (5.22d) 

 ,ST Ly  set of variables l determining the existence of the l th ST (binary):

 , ,1 ,2 , , max, , ...., ,..,ST L ST ST ST l ST ly y y y y  (5.22e) 

 
,DG My  set of variables m determining the existence of the m th generator set (binary): 

  , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG my y y y y  (5.22f) 

 ABy  variable determining the existence of the auxiliary boiler (binary), 

 

 , 1, 1bn GT JW  set of variables j1 determining the nominal brake power output of j1 th gas 

turbine of type 1 (invariant): 
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  , 1, 1 , 1,1 , 1,2 , 1, 1 , 1, 1max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.23a) 

 
, 2, 2bn GT JW  set of variables j2 determining the nominal brake power output of j2 th gas 

turbine of type 2 (invariant): 

  , 2, 2 , 2,1 , 2,2 , 2, 2 , 2, 1max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.23b) 

 
, 3, 3bn GT JW  set of variables j3 determining the nominal brake power output of j3 th gas 

turbine of type 3 (invariant): 

  , 3, 3 , 3,1 , 3,2 , 3, 3 , 3, 3max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.23c) 

 ,ng Km  set of variables k determining nominal exhaust gas mass flow rate of k  th 

HRSG (invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n ng K g g g k g km m m m m  (5.23d) 

 ,ng KT  set of variables k determining nominal exhaust gas temperature of k  th HRSG 

(invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n ng K g g g k g kT T T T T  (5.23e) 

 ,ns Km  set of variables k determining nominal steam mass flow rate of k  th HRSG 

(invariant):   , ,1 ,2 , , max, ,..., ,...,
n n n n ns K s s s k s km m m m m  (5.23f) 

 ,nST Lm  set of variables l determining the nominal steam mass flow rate of l th ST 

(invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n nST L ST ST ST l ST lm m m m m  (5.23g) 

 ,nDG MW  set of variables m determining the nominal power output of m th generator set 

(invariant):  , ,1 ,2 , , max, , ...., ,..,
n n n n nDG M DG DG DG m DG mW W W W W  (5.23h) 

 
nABQ  nominal thermal power output of auxiliary boiler (invariant), 

 

 , 1, 1b GT JW  set of variables j1 determining the brake power output of j1 th gas turbine of 

type 1:  , 1, 1 , 1,1 , 1,2 , 1, 1 , 1, 1max, ,..., ,...,b GT J b GT b GT b GT j b GT jW W W W W  (5.24a) 

 , 2, 2b GT JW  set of variables j2 determining the brake power output of j2 th gas turbine of 

type 2:  , 2, 2 , 2,1 , 2,2 , 2, 2 , 2, 2max, ,..., ,...,b GT J b GT b GT b GT j b GT jW W W W W  (5.24b) 

 , 3, 3b GT JW  set of variables j3 determining the brake power output of j3 th gas turbine of 

type 3:  , 3, 3 , 3,1 , 3,2 , 3, 3 , 3, 3max, ,..., ,...,b GT J b GT b GT b GT j b GT jW W W W W  (5.24c) 

 ,h K  set of variables k  determining the fraction of k  th HRSG steam mass flow 

delivered to thermal loads:  , ,1 ,2 , , max, ,..., ,...,h K h h h k h k      (5.24d) 

 , , , ,s h k h k s km m   (5.24e) 

 , ,s h km  steam mass flow rate drawn from k  th HRSG drum for serving thermal loads, 

 ,s km  steam mass flow rate of k  th HRSG unit, 

 ,e L  set of variables l determining the fraction of the l th steam turbine power 

output delivered to generator:
 

 , ,1 ,2 , , max, ,..., ,...,e L e e e l e l      (5.24f) 

 , , ,STG l e l ST lW W   (5.24g) 
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 ,STG lW  l th steam turbine generator power for serving electric loads, 

 ,ST lW  l th steam turbine power output, 

 
,DG MW  set of variables m determining the m th diesel generator set power output: 

  , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG mW W W W W  (5.24h) 

 

 Indices j1, j2 and j3 run through all the values from 1 up to an upper bound. It is noted 
that these upper bounds quantify the upper value of gas turbines of type 1, 2 and 3, 
respectively, that are allowed to be installed in the system and are pre-determined 
parameters, given at the start of the optimization. Once these upper values for all j’s are 

defined, the problem is set with as many binary variables for the gas turbines as necessary. 
The same idea stands also for the HRSGs, STs and diesel generator sets, which are 
modeled by indices k, l and m respectively. For all binary variables, value 0 denotes that 
the unit is not installed.  

 Since, in this case study, the assumption that for each of the four seasons of the year 
the same round trip is repeated over the season, the first year annual fuel cost of 
component n can be calculated by the equations: 
 

 
4

, , , ,

1

fa n f n s trips s

s

C C N


  (5.25) 

 

 
, , , , ,f n s f n f n sC c m  (5.26) 

 

 ,

, , , , , , , ,

s
trips s

trip AB s trip BA s port A s port B s

N
t t t t




  
 (5.27) 

where 
 
 

,fa nC  first year annual fuel cost of component n,  

 
, ,f n sC  fuel cost of component n per round trip in season s. 

 
,f nc  fuel cost for component n,  

 
, ,f n sm  fuel consumption for component n in a round trip for season s,  

 
,trips sN  number of total round trips of the ship for season s, 

 
s  maximum permissible annual hours of operation for season s, 

 
, ,trip AB st  duration of travel from port A to B for season s,  

 
, ,trip BA st  duration of travel from port B to A for season s,  

 
, ,port A st  time spend in port A for season s (in a round trip),  

 
, ,port B st  time spend in port B for season s (in a round trip).  

 
 The same methodology is used for the first year operation and maintenance costs of 

each component,  
 
 

, , , ,oma n om n s trips sC C N  (5.28) 

 
, , , ,om n s om n n sC c E  (5.29) 

where 
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, ,om n sC  operation and maintenance cost for component n per trip for each season s, 

 
,om nc  operation and maintenance unit cost for component n, 

 ,n sE  energy output of the component n for the duration of the round trip in season s. 

 
 The main differential variables for this problem are the distance travelled by the ship, 

the fuel consumption of the propulsion engines, diesel generator sets and auxiliary boiler. 
Another family of differential variables is derived from the energy output of each 
component which is generally given as the integral of output power of the component over 
the time horizon. All the respective equations for each component have been presented in 

detail in Chapter 3, Section 3.3.1, Eqs. (3.6)‒(3.9) and in Appendix C.  
 Since the type and number of gas turbines and the nominal power of each one are not 
known but they are the result of optimization, the SFOC for each gas turbine as well as the 
exhaust gas mass flow rate and temperature are given as two-variable (nominal power and 

load factor) functions. The total exhaust gas mass flow rate and temperature from all 
engines is then calculated and supplied to the HRSGs, if HRSGs are installed. The same 
modeling procedure (two variable functions) is also applied in the case of diesel generator 
sets’ SFOC and exhaust gas characteristics. The models used for the gas turbines and the 

diesel generator sets are presented in extent in Chapter 4. 
 The brake power of the propulsion engines and power from the steam turbines, as well 
as the electric and thermal power produced by the integrated system must be equal to the 
required brake power, the electric and thermal demands at any instant of time: 

 

 1, 1 , 1, 1 2, 2 , 2, 2 3, 3 , 3, 3 , ,

1 2 3

GT j b GT j GT j b GT j GT j b GT j ST p l b

j j j l

y W y W y W W W        (5.30a) 

 , , , ,(1 )ST p l e l ST lW W    (5.30b) 

 , , , ,ST l STG l DG m DG m e

l m

y W y W W    
 

(5.31) 

 
, ,B k B k AB

k

y Q Q Q    (5.32) 

where 
 
 

bW  required brake power from the engines, 

 , ,ST p lW  output power from l th ST given to the propeller, 

 
eW  electric load, 

 
BQ  heat drawn from HRSG drum for serving thermal loads, 

 Q  thermal load. 

 

 The total required brake power of the engines is calculated as a function of the ship 
speed, weather state, ship resistance and propulsive efficiency. The respective equation is 
given in Chapter 3 (Eq. 3.13). All details considering the underlying mathematical 
calculations are presented in Chapter 4 and in Appendixes D and E of this thesis.  

 As it was stated in Case Study 1, there are multiple equalities correlated with the 
simulation of the components as well as inequality constraints (Eqs. 5.17a,b) imposed on 
certain variables, but their full presentation is beyond the limits of the present text.  
 Other important technical constraints are related with the nominal (design) 

characteristics of the components. Good example are the allowed upper and lower values 
for the nominal power output of the gas turbines and diesel generator sets: 
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 , 1,min , 1, 1 , 1,maxbn GT bn GT j bn GTW W W   (5.33a) 

 , 2,min , 2, 2 , 2,maxbn GT bn GT j bn GTW W W   (5.33b) 

 , 3,min , 3, 3 , 3,maxbn GT bn GT j bn GTW W W   (5.33c) 

 ,min , ,maxDGn DGn m DGnW W W   (5.34) 

 
 Of course all control variables, are accompanied by upper and lower limits. However, 
upper and lower limits may not be necessary for all state variables. 
 In the next section all the necessary values of input parameters and data assumptions 

in order to set up and solve the optimization problem stated in the current section are 
presented. 
 
 

 5.3.3 Additional data and assumptions  
 
 Values of certain cost parameters that are used for the PWC calculations are given in 
Table 5.21. For the gas turbines and diesel generator sets, the same type of fuel is 

considered (Marine Diesel Oil ‒ MDO) which a Lower Heating Value (LHV) of 42700 
kJ/kg. For the auxiliary boiler, Heavy Fuel Oil (HFO) with a Lower Heating Value (LHV) 
of 39550 kJ/kg is considered. 
 

 
Table 5.21.  Values of cost parameters for Case Study 2. 

 

Parameter Symbol Value 

MDO fuel cost nominal value (GTs, DG sets) ,f MDOc  0.450 € / kg 

HFO fuel cost nominal value (auxiliary boiler) ,f HFOc  0.300 € / kg 

Technical life of the system  tN  20 years 

Maximum permissible hours of operation – Summer  1  
2136 

Maximum permissible hours of operation – Fall  2  2136 

Maximum permissible hours of operation – Winter  3  
1450 

Maximum permissible hours of operation – Spring  4  
2136 

Market interest rate i  10 % 

 
 

 In Table 5.22 a list of lower and upper bounds of several important synthesis, design 
and operation variables is presented. Details regarding the time discretization that is used 
in order to model the operation of the energy system for the total time horizon are 
presented in Table 5.23. It is clarified that in essence, each control variable is decomposed 

to as many static variables as the number of intervals considered for the operation, thus 
increasing significantly the scale of the problem and the computing time. 
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Table 5.22.  Bounds on synthesis, design and operation variables for Case Study 2. 
 

Variable Lower value Upper value 

Number of gas turbines of type 1 0 2 
Number of gas turbines of type 2 0 2 

Number of gas turbines of type 3 0 2 

Number of total gas turbine units 1 4 

Number of DG sets 0 4 

Number of HRSGs 0 2 

Number of STs 0 2 

Gas turbine nominal power output (kW) (any type) 2500 90000 

DG set nominal power output (kW) 300 5000 

Load factors (all equipment) 0.1 1 

Ship speed (kn) 14 25.4 

 
 

Table 5.23.  Numerical solution parameters for Case Study 2. 
 

Parameter Value 

Distance from port A to B 3000 nm 

Round trip distance 6000 nm 
Single trip duration (from port A to B, all seasons) 6 days 

Single trip duration (from port B to A, all seasons) 6 days 

Total round trip duration 16 days 

Length of time intervals on trips 1 day 

Length of time intervals in ports 2 days 

Number of time intervals used 50 

Optimization convergence tolerance 10-4 

 
 

 5.3.4 Solution procedure  
 

 For the solution of all the dynamic optimization problems pertaining to this case study, 
a sequential method is applied. All the relevant solution procedure specifics, such as the 
algorithms and the related software, are described in detail in Section 3.4 of Chapter 3. All 
optimizations are performed on an Intel® Core™2 Quad Processor Q9650 CPU at 3GHz 

with 8Gb of RAM. 
 It is noted that in the period Case Studies 2‒7 were solved, updated and more robust 
solvers for the gPROMS software were available. Thus, they were much more efficient in 
terms of computational time. 

 
 

 5.3.5 Numerical results for the nominal case  
 

 In this section detailed results of the optimal solution for the nominal fuel price are 
presented.  
 The algorithm is able to successfully determine the optimal choice, among the three 
types of gas turbines (or any possible combinations of them), automatically. For reasons of 

completeness and to test its proper functionality, the problem is solved once again, for each 
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type separately, at the nominal fuel price. Optimal cost elements of the optimal solution of 
each type are presented in Table 5.24. The optimal solution given by the algorithm for the 
complete problem is verified by these results. 
 

 
Table 5.24. Optimal costs (in €) of the system for each GT type. 

 

GT type Capital Cost Fuel PWC O&M PWC Total PWC 

1 21,783,196 165,549,466 18,700,482 206,033,144 

2 22,486,258 165,343,458 16,989,449 204,819,165 

3 22,949,592 166,256,995 14,207,511 203,414,098 
 

 
 Since the best choice is the 3rd type, and thus the optimal solution to the problem, a 
more thorough presentation of the optimal values of synthesis, design and operation 
variables is given below. The results of optimization, in terms of optimal synthesis and 

design are presented in Tables 5.25 and 5.26. Table 5.27 summarizes the hours of 
operation, trips per season and total trips per year. Optimal cost values for the system are 
given in Table 5.28. Optimal values of certain control variables per time interval and for all 
seasons are presented in Tables 5.29 – 5.32. 

 
 

Table 5.25. Optimal synthesis of the system. 
 

Type of GT 3 

Number of GTs (prime movers) 1 

Number of HRSGs 1 

Number of STs 1 

Number of DG sets 1 

Number of auxiliary boilers 1 

 
 

Table 5.26. Optimal design specifications of the system components. 
 

Variable Optimal Value 

Main engine nominal brake power (kW) 44929 

DG set nominal electric power (kW) 1652 

Heat recovery steam generator 

Thermal power (kW) 24107 

Exhaust gas mass flow rate (kg/s) 94.5 
Nominal inlet exhaust gas temperature (oC) 385.7 

Auxiliary boiler nominal thermal power (kW) 950 

Steam-turbine 

Nominal power (kW) 6355 

Nominal steam mass flow rate (kg/s) 7.98 
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Table 5.27. Hours of operation and round trips per season. 
 

Season Summer Fall Winter Spring 

Hours of operation 2074 2074 1421 2112 
Number of round trips 5.4 5.4 3.7 5.5 

Total round trips per year 20 

 

 

Table 5.28. Cost items (in €). 
 

Season Summer Fall Winter Spring 

Present worth cost of fuel 44,329,039 44,750,310 32,362,378 44,815,268 

Present worth cost of O&M 3,795,651 3,825,489 2,733,964 3,852,407 
Capital cost 22,949,592 

Total PWC (objective function) 203,414,098 

 
 

Table 5.29. Optimal ship speed versus time (in kn). 
 

Day Summer Fall Winter Spring 

 From port A to B 

1 20.89 20.88 20.91 20.90 

2 20.84 20.84 20.86 20.84 

3 20.87 20.87 20.88 20.89 

4 20.88 20.88 20.91 20.90 

5 20.72 20.72 20.69 20.68 
6 20.79 20.79 20.72 20.78 

 From port B to A 

1 20.79 20.84 20.74 20.81 

2 20.28 19.94 19.13 20.47 

3 21.09 21.18 21.74 20.99 

4 21.02 21.08 21.46 20.95 

5 20.89 20.95 20.98 20.89 

6 20.91 20.99 20.93 20.87 
 

 
Table 5.30. Propulsion power from diesel engine(s) and ST versus time (in kW) . 
 

Day 

Summer Fall Winter Spring 

bW  
STPW  

bW  
STPW  

bW  
STPW  

bW  
STPW  

From port A to port B 
1 37079.0 4330.2 37221.2 4323.7 37501.8 4362.6 37219.6 4206.6 

2 37549.8 4247.8 37586.8 4275.5 37949.8 4278.9 37198.2 4231.6 

3 37292.9 4275 37358.6 4291 37722.8 4372.7 37259.1 4286.5 

4 37151.4 4314.5 37270.8 4273.9 37526.6 4337.7 37279.5 4339.4 

5 38451.3 4379.6 38476.9 4393.8 39322.6 4340.5 37137.7 4293.9 

6 37867.7 4366.3 37937.7 4369.4 38967.9 4415.8 37178.6 4308.8 
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 From port B to port A 

1 42256.4 4428.4 43351.3 4552.4 44929.6 6164.5 41284.3 4491.0 

2 44929.3 4604.5 44928.9 4539.5 44929.5 6164.5 44476.6 4520.9 

3 39532.7 4401.8 40356.0 4307.9 44930.2 6164.5 39758.3 4372.7 

4 40153.5 4442.1 41107.8 4496.4 44929.5 6164.5 40220.9 4341.0 

5 41276.9 4451.8 42285.1 4553.7 44929.2 6164.5 40654.2 4385.9 
6 41049.7 4480.91 41980.8 4494.7 44929.8 6164.5 40816.6 4405.9 

 

 
Table 5.31. Contribution of the HRSG and auxiliary boiler to thermal loads versus time for 
all seasons (in kW). 
 

 Summer Fall Winter Spring 

Day hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

From port A to port B 

1 850 0 860 0 1000 0 990 0 
2 880 0 900 0 1050 0 980 0 

3 860 0 950 0 1080 0 1010 0 

4 900 0 970 0 1100 0 1020 0 

5 840 0 930 0 1060 0 950 0 

6 850 0 960 0 1100 0 970 0 

 From port B to port A 

1 860 0 930 0 1100 0 1040 0 

2 870 0 950 0 1080 0 970 0 
3 870 0 980 0 1060 0 960 0 

4 890 0 970 0 990 0 950 0 

5 860 0 890 0 1040 0 980 0 

6 870 0 910 0 1070 0 960 0 

 Ports 

A 0 950 0 950 0 950 0 950 

B 0 950 0 950 0 950 0 950 

 
 

Table 5.32. Electricity from STG and DG sets versus time for all seasons (in kW). 
 

Day 
Summer Fall Winter Spring 

STGW  
1DGW   STGW  

1DGW  
STGW  

1DGW  
STGW  

1DGW  

 From port A to Port B 

1 1495 0 1508 0 1482 0 1625 0 
2 1599 0 1573 0 1586 0 1599 0 

3 1560 0 1547 0 1482 0 1547 0 

4 1514 0 1560 0 1508 0 1495 0 

5 1508 0 1495 0 1586 0 1534 0 

6 1495 0 1495 0 1495 0 1521 0 

 From port B to port A 

1 1625 0 1547 0 0 1534  1521 0 

2 1560 0 1625 0 0 1521  1625 0 
3 1534 0 1664 0 0 1625  1573 0 
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4 1521 0 1508 0 0 1651  1625 0 

5 1560 0 1501 0 0 1495  1599 0 

6 1521 0 1547 0 0 1521  1586 0 

 Ports 

A 0 1500 0 1500 0 1500 0 1500 

B 0 1500 0 1500 0 1500 0 1500 
 

 
 The optimal present worth cost after 20 years of operation is 203,414,098 €. The 
optimization was concluded in 5680 seconds, performing 39 Major NLP iterations at an 
Intel® Core™2 Quad Processor Q9650 cpu at 3GHz with 8Gb of RAM. Indeed, although 

this problem is dimensionally more complicated when compared with the problem of Case 
Study 1, we conclude that the computational efficiency of the gPROMS solvers has 
improved due to the upgrade. 
 In the solution of this nominal case, one gas turbine of type #3 is selected by the 

optimizer as the optimal propulsion plant synthesis solution, although it is noted that the 
optimal PWC values for all three GT types are relatively close. A bottoming cycle is 
installed with one HRSG and one ST. Thermal loads during the trips are always served by 
the HRSG, while at ports they are covered by the auxiliary boiler. Also, with the exception 

of the trip from port B to A during winter, in all other trips the bottoming cycle fully serves 
the electric demands and provides the remaining power to the propeller. However, during 
this winter return trip (from port B to A), where the propulsion demand is augmented, the 
optimizer selects to provide all the available ST power to the propeller (while letting the 

DG set to fully serve the electric loads) in order to decrease the needed nominal power 
output (and thus capital cost) of the gas turbine. Finally, a single diesel generator unit is 
installed. 
 

 

 5.3.6 Parametric study 
 
 For the sensitivity analysis the fuel price is considered to vary. Apart from the nominal 

value of 450 €/ton, three more values were considered: 300, 600, and 750 €/ton. Selected 
sensitivity analysis results regarding the optimal synthesis and design characteristics of the 
system are presented in Tables 5.33 and 5.34. The variation of the optimal PWC is given in 
Table 5.35. It is noted that for the specific hours of operation (not variable) in this problem 

the optimal solution always chooses to install gas turbine type #3. 
 
 

Table 5.33. Effect of fuel price on the optimal synthesis of the system. 

 

 Fuel Price (€/ton) 300 450 600 750 

S
y

n
th

e
si

s 

GT type 3 3 3 3 

Number of GTs 1 1 1 1 

Number of HRSG 1 1 1 1 

Number of ST 1 1 1 1 

Number of DG sets 1 1 1 1 

Number of AB 1 1 1 1 
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Table 5.34. Effect of fuel price on the optimal design specifications of the system. 
 

 Fuel Price (€/ton) 300 450 600 750 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) GT 44921 44929 44937 44945 
HRSG 23883 24107 24255 24375 

ST 6350 6358 6363 6370 

DG set 1652 1652 1652 1652 

AB 950 950 950 950 

 
 

Table 5.35. Effect of fuel price on the optimal PWC. 

 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 22,925,374 22,949,592 22,965,668 22,981,674 

Fuel PWC (total) 110,837,520 166,256,995 221,677,226 277,098,251 

O&M PWC (total) 14,207,538 14,207,511 14,207,545 14,207,548 

Total PWC (objective) 147,970,432 203,414,098 258,850,439 314,287,473 

 
 
 For the parametric study, many comments that were stated for the nominal case 

solution, can be repeated. One type #3 gas turbine unit and a bottoming cycle, comprising a 
single HRSG and a single ST, are always installed for all fuel prices. Also a single diesel 
generator set is installed. It is interesting that the nominal (design) values of components 
seem to increase slightly as the fuel price rises. An explanation is given in Paragraph 

5.10.2. 
 
 

5.4 Case Study 3: Containership with Gas Turbines, Trips of Variable Time, 

Minimization of PWC 
 

 5.4.1 Description of the system and the optimization problem 
 

 In Case Study 3, the optimal configuration (synthesis), design specifications of 
components and operating conditions of an energy system that will cover all energy needs 
of a containership under the scope of minimizing the PWC with variable trip durations, are 
requested. 

 The same system as in Case Study 2 is used, with the main difference that now the 
duration of each trip for each season is variable and under optimization. Thus, the number 
of round trips per season and consequently the total number of round trips per year is no 
longer fixed but it is the result of optimization. It is noted that the number or round trips for 

each season can be a decimal number so as to model the (possible) passage from one 
season to the next in the same round trip. However, the problem is set in an appropriate 
manner so as the total number of round trips per year is integer. 
 All other details regarding the energy system, the mission characteristics and the 

dynamic optimization problem can be found in Section 5.3.1, as they are the same with 
Case Study 2. The superconfiguration of the energy system can be found in Figure 5.19. 
Data regarding the vessel characteristics can be found in Table 5.16. The weather and the 
thermal and electric loads per trip and per season can be found in Tables 5.18-5.20e. The 

time schedule of the ship is given in Table 5.36. 



152 Case Studies 

Table 5.36.  Time schedule of the ship. 
 

Mode Description Duration 

1 Loading at port A (all seasons) 2 days 
2 Loaded trip from port A to port B (all seasons) Variable 

3 Off-loading and loading at port B (all seasons) 2 days 

4 Loaded trip from port B to port A (all seasons) Variable 

 Total round trip variable 

 
 

 5.4.2 Mathematical statement of the optimization problem 

 
 The dynamic optimization problem of this case study is mathematically stated as a 
minimization problem using the same Differential − Algebraic Equation (DAE) 
formulation (Eq. 5.19-5.34) as in Case Study 2. 

 The main difference is that in this case study, the round trip durations are also 
optimization variables, thus the objective function (Eq. 5.19) must be correctly restated as: 
 

 
,

min
f

c f om
t x

PWC PWC PWC PWC    (5.35) 

 
with vector x , again representing the vector of control (optimization) variables, consisting 

of the vectors of synthesis, design and operation optimization variables as stated in Eqs. 

(5.20)-(5.24h) and vector ft  representing the vector of control (optimization) variables 

consisting of the single trip durations for each season: 

 

 , , , ,( , )      1,2,3,4f trip AB s trip BA st t t for s   (5.36) 

where 
 
 

, ,trip AB st  duration of trip from port A to B for season s, 

 
, ,trip BA st  duration of trip from port B to A for season s. 

 
that appear in the definition of the number of round trips per season, Eq. (5.27). Of course, 
since now these durations are control variables, appropriate upper and lower bounds are 

defined: 
 

 , , ,min , , , , ,max    ,   1,2,3,4trip AB s trip AB s trip AB st t t s    (5.37a) 

 , , ,min , , , , ,max    ,   1,2,3,4trip BA s trip BA s trip BA st t t s    (5.37b) 

 

 In the next section the necessary values of input parameters and data assumptions for 
the dynamic optimization problem of Case Study 3 are presented. 
 
 

 5.4.3 Additional data and assumptions 
 
 Values of certain cost parameters that are used for the PWC calculations are given in 
Table 5.21. Considering the fuel, for the gas turbines and diesel generator sets, Marine 

Diesel Oil (MDO) with a Lower Heating Value (LHV) of 42700 kJ/kg is considered, while 
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for the auxiliary boiler, Heavy Fuel Oil (HFO) with a Lower Heating Value (LHV) of 
39550 kJ/kg, is considered. In Table 5.37 a list of lower and upper bounds of several 
important synthesis, design and operation variables is presented. Details regarding the time 
discretization that is used in order to model the operation of the energy system for the total 

time horizon and other numerical solution parameters are presented in Table 5.38. 
 
 
Table 5.37.  Bounds on synthesis, design and operation variables for Case Study 3. 

 
Variable Lower value Upper value 

Number of gas turbines of type 1 0 2 

Number of gas turbines of type 2 0 2 

Number of gas turbines of type 3 0 2 

Number of total gas turbine units 1 4 

Number of DG sets 0 4 

Number of HRSGs 0 2 

Number of STs 0 2 
Gas turbine nominal power output (kW) (any type) 2500 90000 

DG set nominal power output (kW) 300 5000 

Load factors (all equipment) 0.1 1 

Ship speed (kn) 14 25.4 

Single trip duration, all seasons (days) 5 8 

 
 

Table 5.38.  Numerical solution parameters for Case Study 3. 

 
Parameter Value 

Single trip distance 3000 nm 

Round trip distance 6000 nm 

Single trip duration from port A to B (all seasons) variable 

Single trip duration from port B to A, (all seasons) variable 

Total round trip duration variable 

Length of time intervals on trips 1 day 

Length of time intervals in port 2 days 
Number of time intervals used 66 

Optimization convergence tolerance 10-4 

 
 

 5.4.4 Solution procedure  
 
 For the solution of all the dynamic optimization problems pertaining to this case study, 
both a sequential method and a simultaneous method were applied. The sequential method 

was found to be as efficient as the simultaneous method in terms of accuracy but better in 
terms of computational time, since the simultaneous method required more Major 
Iterations of the optimization algorithm in order to converge to a solution. 
 All the relevant solution procedure specifics, such as the algorithms and the related 

software, are described in detail in Section 3.4 of Chapter 3. All optimizations are 
performed on an Intel® Core™2 Quad Processor Q9650 CPU at 3GHz with 8Gb of RAM.  
 The updated solvers of the gPROMS software were used. 
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 5.4.5 Numerical results for the nominal case 
 
 The algorithm is able to determine the optimal, between the three, type of gas turbine 
automatically. As in the previous case study, for reasons of completeness and to determine 

its proper functionality, along with the general case, three distinct optimizations (one for 
each GT type) are also performed. The optimal cost elements of the optimal solution for 
each GT type are presented in Table 5.39 and verify that the general problem is indeed 
solved correctly. 
 
 

Table 5.39. Optimal cost (in €) of the system for each GT type. 

 
GT type Capital Cost Fuel PWC O&M PWC Total PWC 

1 14,017,586 77,106,458 9,100,805 100,224,849 

2 14,836,182 76,777,255 8,334,553 99,947,990 

3 15,428,136 77,095,837 7,114,045 99,638,018 
 

 

 Since the best choice is the 3rd type, and thus the optimal solution to the problem, a 
more thorough presentation of the optimal values of synthesis, design and operation 
variables is given below. The results of optimization, in terms of optimal synthesis and 
design are presented in Tables 5.40 and 5.41. Table 5.42 summarizes the hours of 

operation, trips per season and total trips per year. Optimal cost values for the system are 
given in Table 5.43. Optimal values of certain control variables per time interval and for all 
seasons are presented in Tables 5.45 – 5.47 
 

 
Table 5.40. Optimal synthesis of the system. 

 

Type of GT 3 

Number of GTs (prime movers) 1 

Number of HRSGs 1 

Number of STs 1 
Number of DG sets 1 

Number of auxiliary boilers 1 

 
 

Table 5.41. Optimal design specifications of the system components. 
 

Variable Optimal Value 

Main engine nominal brake power (kW) 19558 

DG set nominal electric power (kW) 1652 
Heat recovery steam generator 

Thermal power (kW) 9090 

Exhaust gas mass flow rate (kg/s) 38 

Nominal inlet exhaust gas temperature (oC) 376 

Auxiliary boiler nominal thermal power (kW) 950 

Steam-turbine 

Nominal power (kW) 2527 
Nominal steam mass flow rate (kg/s) 3.34 
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Table 5.42. Hours of operation and round trips per season. 

 

Season Summer Fall Winter Spring 

Hours of operation 2064 2064 1440 2112 

Trip from port A to B duration (days) 8 8 8 8 

Trip from port B to A duration (days) 8 8 8 8 
Round trip duration (days) 20 20 20 20 

Number of round trips 4.3 4.3 3 4.4 

Total round trips per year 16 

 
 

Table 5.43. Cost items (in €). 
 

Season Summer Fall Winter Spring 

Present worth cost of fuel 20,308,659 20,552,807 15,653,183 20,581,188 
Present worth cost of O&M 1,878,182 1,899,753 1,421,041 1,915,069 

Capital cost 15,428,136 

Total PWC (objective function) 99,638,018 

 
 

Table 5.44. Optimal ship speed versus time (in kn). 
 

Summer Fall Winter Spring 

Day V  Day V  Day V  Day V  

From port A to port B 

1 15.77 1 15.76 1 15.84 1 15.73 

2 15.67 2 15.67 2 15.75 2 15.65 

3 15.73 3 15.73 3 15.78 3 15.74 

4 15.76 4 15.76 4 15.84 4 15.76 
5 15.41 5 15.42 5 15.39 5 15.41 

6 15.56 6 15.56 6 15.46 6 15.57 

7 15.52 7 15.60 7 15.45 7 15.60 

8 15.58 8 15.52 8 15.47 8 15.55 

 From port B to port A 

1 15.46 1 15.49 1 15.42 1 15.56 

2 14.63 2 14.17 2 13.43 2 14.89 

3 16.10 3 16.21 3 16.87 3 15.94 
4 15.94 4 16.00 4 16.45 4 15.84 

5 15.68 5 15.72 5 15.77 5 15.73 

6 15.73 6 15.80 6 15.69 6 15.68 

7 15.81 7 15.71 7 15.68 7 15.70 

8 15.73 8 15.85 8 15.70 8 15.66 
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Table 5.45. Propulsion power from gas turbine and ST versus time (in kW) . 
 

Summer Fall Winter Spring 

Day bW  
STPW  Day bW  

STPW  Day bW  
STPW  Day bW  

STPW  

 From port A to port B 

1 15475 816 1 15550 806 1 15862 847 1 15463 682 

2 15712 720 2 15726 747 2 16098 750 2 15442 708 

3 15592 755 3 15625 770 3 15947 851 3 15504 764 

4 15512 799 4 15601 755 4 15888 821 4 15525 819 
5 16001 826 5 16020 841 5 16631 773 5 15380 772 

6 15771 830 6 15814 832 6 16441 859 6 15421 787 

7 15765 835 7 15800 841 7 16441 859 7 15401 798 

8 15780 825 8 15825 825 8 16440 861 8 15431 780 

 From port B to port A 

1 18294 802 1 18796 903 1 19558 2527 1 17826 890 

2 19558 919 2 19558 852 2 19558 2527 2 19321 843 

3 17141 849 3 17646 736 3 19558 2527 3 17240 812 
4 17394 873 4 17878 906 4 19558 2527 4 17462 768 

5 17875 852 5 18358 933 5 19558 2527 5 17623 802 

6 17762 888 6 18262 881 6 19558 2527 6 17681 817 

7 17750 896 7 18250 892 7 19558 2527 7 17731 805 

8 17765 890 8 18265 879 8 19558 2527 8 17720 831 

 
 
Table 5.46. Contribution of the HRSG and auxiliary boiler to thermal loads versus time for 

all seasons (in kW). 
 

Summer Fall Winter Spring 

Day hQ  
ABQ  Day hQ  

ABQ  Day hQ  
ABQ  Day hQ  

ABQ  

 From port A to port B 

1 850 0 1 860 0 1 1000 0 1 990 0 

2 880 0 2 900 0 2 1050 0 2 980 0 

3 860 0 3 950 0 3 1080 0 3 1010 0 

4 900 0 4 970 0 4 1100 0 4 1020 0 
5 840 0 5 930 0 5 1060 0 5 950 0 

6 850 0 6 960 0 6 1100 0 6 970 0 

7 845 0 7 959 0 7 1100 0 7 980 0 

8 851 0 8 963 0 8 1090 0 8 970 0 

 From port B to port A 

1 860 0 1 930 0 1 1100 0 1 1040 0 

2 870 0 2 950 0 2 1080 0 2 970 0 

3 870 0 3 980 0 3 1060 0 3 960 0 
4 890 0 4 970 0 4 990 0 4 950 0 

5 860 0 5 890 0 5 1040 0 5 980 0 

6 870 0 6 910 0 6 1070 0 6 960 0 

7 880 0 7 920 0 7 1080 0 7 970 0 

8 870 0 8 910 0 8 1050 0 8 960 0 
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 Ports 

A 0 950 A 0 950 A 0 950 A 0 950 

B 0 950 B 0 950 B 0 950 B 0 950 

 
 

Table 5.47. Electric power of STG and DG sets versus time for all seasons (in kW). 

 

Summer Fall Winter Spring 

Day STGW  
1DGW  Day STGW  

1DGW  Day STGW  
1DGW  Day STGW  

1DGW  

 From port A to port B 

1 1495 0 1 1508 0 1 1482 0 1 1625 0 

2 1599 0 2 1573 0 2 1586 0 2 1599 0 
3 1560 0 3 1547 0 3 1482 0 3 1547 0 

4 1514 0 4 1560 0 4 1508 0 4 1495 0 

5 1508 0 5 1495 0 5 1586 0 5 1534 0 

6 1495 0 6 1495 0 6 1495 0 6 1521 0 

7 1490 0 7 1495 0 7 1485 0 7 1525 0 

8 1495 0 8 1495 0 8 1490 0 8 1520 0 

 From port B to port A 

1 1625 0 1 1547 0 1 0 1534 1 1521 0 
2 1560 0 2 1625 0 2 0 1521 2 1625 0 

3 1534 0 3 1664 0 3 0 1625 3 1573 0 

4 1521 0 4 1508 0 4 0 1651 4 1625 0 

5 1560 0 5 1501 0 5 0 1495 5 1599 0 

6 1521 0 6 1547 0 6 0 1521 6 1586 0 

7 1520 0 7 1539 0 7 0 1520 7 1580 0 

8 1525 0 8 1550 0 8 0 1521 8 1580 0 

 Ports 
A 0 1500 A 0 1500 A 0 1500 A 0 1500 

B 0 1500 B 0 1500 B 0 1500 B 0 1500 

 
 

 The optimal present worth cost after 20 years of operation is 99,638,018 €. The 
optimization was concluded in 6050 seconds, performing 41 Major NLP iterations at an 
Intel® Core™2 Quad Processor Q9650 cpu at 3GHz with 8Gb of RAM. 
 A single type #3 gas turbine unit along with one HRSG, one ST and one diesel 

generator set are selected for the optimal synthesis of the system.  
 In order to make the system cost effective, the optimizer selects as optimal duration 
for all trips in all seasons the upper limit of 8 days. This leads to a significant decrease in 
the nominal power design characteristics of the gas turbine, the HRSG and the ST when 

compared to Case Study 2. Especially, for the propulsion plant, the optimal nominal power 
output (19558 kW) drops by 56% when compared with the nominal power output (44929 
kW) result of Case Study 2 and by 72% when compared with the required nominal power 
output (70817 kW) for the design speed of 25.4 knots (Table 5.16). This is expected, since 

by taking all trip durations to the upper limit of 8 days, the average speed (for all trips) 
decreases and a smaller number of trips are performed in each season. Indeed, by 
comparing Tables 5.29 and 5.44 we observe that all speeds in all trips have decreased by 
25% on average. 
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 Considering the distribution of ST power to the propeller and electric loads, the same 
behavior as in case study 2 is observed. With the exception of the trip from port B to A 
during winter, in all other trips the bottoming cycle fully serves the electric demands. 
However, during this winter return trip (from port B to A), where the propulsion demand 

happens to be augmented, the optimizer selects to provide all the available ST power to the 
propeller (while letting the DG to fully serve the electric loads). All thermal loads during 
the trips are fully covered by the HRSG. 
 

 

 5.4.6 Parametric study 
 
 For the sensitivity analysis the fuel price is considered to vary. Apart from the nominal 

value of 450 €/ton, three more values were considered: 300, 600, and 750 €/ton. Selected 
sensitivity analysis results regarding the optimal synthesis and design characteristics of the 
system are presented in Tables 5.48 and 5.49. The variation of the optimal PWC is given in 
Table 5.50. The optimal results for trip durations and number of round trips are 

summarized in Tables 5.51 and 5.52. 
 
 

Table 5.48. Effect of fuel price on the optimal synthesis of the system. 

 
 Fuel Price (€/ton) 300 450 600 750 

S
y

n
th

e
si

s 

GT type 3 3 3 3 

GT 3 1 1 1 1 

HRSG 1 1 1 1 

ST 1 1 1 1 

DG sets 1 1 1 1 

AB 1 1 1 1 

 
 

Table 5.49. Effect of fuel price on the optimal design specifications of the system. 
 

 Fuel Price (€/ton) 300 450 600 750 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) GT 3 19143 19558 19812 20203 

HRSG 9050 9090 9180 9273 
ST 2518 2527 2544 2561 

DG set 1 1652 1652 1652 1652 

AB 950 950 950 950 

 
 

Table 5.50a. Effect of fuel price on the optimal PWC. 
 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 
Capital Cost 15,406,136 15,428,136 15,444,136 15,459,704 

Fuel PWC (total) 51,505,222 77,095,837 102,503,460 128,277,117 

O&M PWC (total) 7,114,047 7,114,045 7,114,156 7,114,045 

Total PWC (objective) 74,025,405 99,638,018 125,061,752 150,850,866 
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Table 5.51. Effect of fuel price on the optimal trip durations (numbers in days). 
 

Trip 
Fuel Price (€/ton) 

300 450 600 750 
Summer 1 8 8 8 8 

Summer 2 8 8 8 8 

Fall 1 8 8 8 8 

Fall 2 8 8 8 8 

Winter 1 8 8 8 8 

Winter 2 8 8 8 8 

Spring 1 8 8 8 8 

Spring 2 8 8 8 8 
 

 
Table 5.52. Effect of fuel price on the optimal number of round trips. 

 

Season 
Fuel Price (€/ton) 

300 450 600 750 

Summer 4.3 4.3 4.3 4.3 

Fall 4.3 4.3 4.3 4.3 

Winter 3 3 3 3 
Spring 4.4 4.4 4.4 4.4 

Total per year 16 16 16 16 

 
 

 A noteworthy comment on the results of this parametric analysis is that for all fuel 
prices examined here, the optimizer always selects the upper limit as the optimal choice for 
all the trip durations. In all cases, one type #3 gas turbine unit and a bottoming cycle, 
comprising a single HRSG and a single ST, are always installed for all fuel prices. Also a 

single diesel generator set is always installed. Again, it is observed that the nominal 
(design) values of components seem to increase slightly (<2%) as the fuel price rises. 
 
 

5.5 Case Study 4: Containership with Gas Turbines, Trips of Variable Time, 

Maximization of NPV 
 

 5.5.1 Description of the system and the optimization problem 

 
 In Case Study 4 the optimal configuration (synthesis), design specifications of 
components and operating conditions of an energy system that will cover all energy needs 
of a containership under the scope of maximizing the NPV, are requested. 

 The same formulation as in Case Study 3 is used. Again, the duration of each trip for 
each season is variable and under optimization. However, in this case study, a different 
objective function is used. For each trip, a suitable freight rate is defined, thus, a 
corresponding revenue can be calculated. The economic criterion that serves as the 

objective function is the NPV and the goal is its maximization. 
 All other details regarding the energy system,the mission characteristics and the 
dynamic optimization problem can be found in Sections 5.3.1 and 5.4.1, as they are the 
same with Case Study 3. The superconfiguration of the system is depicted in Figure 5.19. 
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 5.5.2 Mathematical statement of the optimization problem 
 
 The DAE formulation that is presented in Eqs. (5.19)-(5.34) of Section 5.3.2 with the 
addition of Eqs. (5.36)-(5.37b) of Section 5.4.2 serves as a suitable mathematical statement 

or this case study. However, a different objective function in the place of Eq. (5.19) is 
defined 
 

 
,

max
ft x

NPV PWR PWC   (5.38) 

 
with vector x , representing the vector of control (optimization) variables, consisting of the 

vectors of synthesis, design and operation optimization variables as stated in Eqs. (5.20)-

(5.24h) and vector ft  representing the vector of control (optimization) variables consisting 

of the single trip durations (Eq. 5.36) for each season. The PWC term is calculated in the 
same way as in Eq. (5.35). The present worth of revenue is given by the equation 

 

   ,2 ( , )r load AB trips a nPWR f C d TEU N PWF N i       (5.39) 

where 
 

 
rf  freight rate (in €/nm/TEU), 

 
loadC  safety loading factor of containership, 

 TEU  containership cargo capacity, 

 
,trips aN  total (annual) number of round trips, 

 PWF  Present Worth Factor (Appendix B). 

 
 The total annual number of round trips is given as the sum of the round trips of each 

season: 
 

 
4

, ,

1

trips a trips s

s

N N


  (5.40) 

 
 In the next section the necessary values of input parameters and data assumptions for 

the dynamic optimization problem of Case Study 4 are presented. 
 
 

 5.5.3 Additional data and assumptions 

 
 The same containership, as in Case Study 2, with carrying capacity 9572 TEU and 
DWT of 111529 MT is considered with the same round trip distance of 6000 nm. Values 
of certain cost parameters that are used for the NPV calculations are given in Table 5.53. 

Considering the fuel, for the gas turbines and diesel generator sets, Marine Diesel Oil 
(MDO) with a Lower Heating Value (LHV) of 42700 kJ/kg is considered, while for the 
auxiliary boiler, Heavy Fuel Oil (HFO) with a Lower Heating Value (LHV) of 39550 
kJ/kg, is considered. A list of lower and upper bounds of several important synthesis, 

design and operation variables is given in Table 5.37. Details regarding the time 
discretization that is used in order to model the operation of the energy system for the total 
time horizon, the mission characteristics and other numerical solution parameters are 
presented in Table 5.38. 
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Table 5.53.  Values of cost parameters for Case Study 4. 
 

Parameter Symbol Value 

MDO fuel cost nominal value (all components) ,f MDOc  0.450 € / kg 

HFO fuel cost nominal value (all components) ,f HFOc  0.300 € / kg 

Technical life of the system  tN  20 years 

Maximum permissible hours of operation – Summer  1  2136 

Maximum permissible hours of operation – Fall  2  
2136 

Maximum permissible hours of operation – Winter  3  
1450 

Maximum permissible hours of operation – Spring  4  2136 

Market interest rate i  10 % 

Freight rate (nominal value) rf  0.0326 € / TEU.nm 

Loading factor of containership loadC  0.85 

 
 

 5.5.4 Solution procedure  
 
 The same comments as in Section 5.4.4 apply here. 
 

 

 5.5.5 Numerical results for nominal case  
 
 The algorithm is first set to perform the optimization for each type of GT fixed as the 

prime mover for the nominal fuel price and freight rate. Then the generalized case is solved 
where the optimal type of gas turbine (or combinations of types) must be determined. The 
optimal cost elements of the optimal solution of each type are presented in Table 5.54. The 
optimal solution of the general problem, in which the optimal type of GT type must also be 

determined, agrees with the results of Table 5.54. 
 
 

Table 5.54.  Optimal NPV (in €) of the system for each GT type. 

 
GT 

type 

Capital 

Cost 
Fuel PWC 

O&M 

PWC 
Total PWC PWR 

NPV 

(objective) 

1 14,017,586 77,106,458 9,100,805 100,224,849 215,363,516 115,138,667 
2 14,836,182 76,777,255 8,334,553 99,947,990 215,363,516 115,415,526 

3 15,428,136 77,095,837 7,114,045 99,638,018 215,363,516 115,725,498 

 
 

 The analysis of the optimal solution (for the best GT type #3), in terms of optimal 
synthesis and design is presented in Tables 5.55 and 5.56. Optimal round trip duration and 
hours of operation for each season are given in Table 5.57. Optimal cost values for each 
component of the system and revenues are given in Table 5.58. Optimal values of certain 

control variables per time interval and season are presented in Tables 5.59 – 5.62. 
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Table 5.55. Optimal synthesis of the system. 
 

Type of GT 3 

Number of GT (prime mover) 1 
Number of HRSGs 1 

Number of steam turbines 1 

Number of DG sets 1 

Number of auxiliary boilers 1 

 
 

Table 5.56. Optimal design specifications of the system components. 

 

Variable Optimal Value 
Main engine nominal brake power (kW) 19558 

DG set nominal electric power (kW) 1652 

Heat recovery steam generator 

Thermal power (kW) 9090 

Exhaust gas mass flow rate (kg/s) 38 

Nominal inlet exhaust gas temperature (oC) 377 

Auxiliary boiler nominal thermal power (kW) 950 

Steam-turbine 
Nominal power (kW) 2527 

Nominal steam mass flow rate (kg/s) 3.34 

 
 

Table 5.57 Hours of operation and round trips per season. 
 

Season Summer Fall Winter Spring 

Hours of operation 2064 2064 1440 2112 

Trip from port A to B (days) 8 8 8 8 
Trip from port B to A (days) 8 8 8 8 

Round trip duration (days) 20 20 20 20 

Number of round trips 4.3 4.3 3 4.4 

Total round trips per year 16 

 
 

Table 5.58. Cost items (in €). 

 

Season Summer Fall Winter Spring 
Present worth of revenue 57,878,945 57,878,945 40,380,659 59,224,967 

Present worth cost of fuel 20,308,659 20,552,807 15,653,183 20,581,188 

Present worth cost of O&M 1,878,182 1,899,753 1,421,041 1,915,069 

Capital cost 15,428,136 

Total PWC 99,638,018 

Total present worth of revenue 215,363,516 

Net Present Value 
(objective function) 

115,725,498 
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Table 5.59. Optimal ship speed versus time (in kn). 
 

Summer Fall Winter Spring 

Day V  Day V  Day V  Day V  

From port A to port B 

1 15.77 1 15.76 1 15.84 1 15.73 

2 15.67 2 15.67 2 15.75 2 15.65 

3 15.73 3 15.73 3 15.78 3 15.74 

4 15.76 4 15.76 4 15.84 4 15.76 
5 15.41 5 15.42 5 15.39 5 15.41 

6 15.56 6 15.56 6 15.46 6 15.57 

7 15.52 7 15.60 7 15.45 7 15.60 

8 15.58 8 15.52 8 15.47 8 15.55 

From port B to port A 

1 15.46 1 15.49 1 15.42 1 15.56 

2 14.63 2 14.17 2 13.43 2 14.89 

3 16.10 3 16.21 3 16.87 3 15.94 

4 15.94 4 16.00 4 16.45 4 15.84 

5 15.68 5 15.72 5 15.77 5 15.73 

6 15.73 6 15.80 6 15.69 6 15.68 

7 15.81 7 15.71 7 15.68 7 15.70 

8 15.73 8 15.85 8 15.70 8 15.66 
 

 
Table 5.60. Propulsion power from gas turbine and ST versus time (in kW) . 
 

Summer Fall Winter Spring 

Day bW  
STPW  Day bW  

STPW  Day bW  
STPW  Day bW  

STPW  

 From port A to port B 

1 15475 816 1 15550 806 1 15862 847 1 15463 682 

2 15712 720 2 15726 747 2 16098 750 2 15442 708 

3 15592 755 3 15625 770 3 15947 851 3 15504 764 

4 15512 799 4 15601 755 4 15888 821 4 15525 819 

5 16001 826 5 16020 841 5 16631 773 5 15380 772 

6 15771 830 6 15814 832 6 16441 859 6 15421 787 

7 15765 835 7 15800 841 7 16441 859 7 15401 798 
8 15780 825 8 15825 825 8 16440 861 8 15431 780 

 From port B to port A 

1 18294 802 1 18796 903 1 19558 2527 1 17826 890 

2 19558 919 2 19558 852 2 19558 2527 2 19321 843 

3 17141 849 3 17646 736 3 19558 2527 3 17240 812 

4 17394 873 4 17878 906 4 19558 2527 4 17462 768 

5 17875 852 5 18358 933 5 19558 2527 5 17623 802 

6 17762 888 6 18262 881 6 19558 2527 6 17681 817 
7 17750 896 7 18250 892 7 19558 2527 7 17731 805 

8 17765 890 8 18265 879 8 19558 2527 8 17720 831 
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Table 5.61. Contribution of the HRSG and auxiliary boiler to thermal loads versus time for 
all seasons (in kW). 

 

Summer Fall Winter Spring 

Day hQ  
ABQ  Day hQ  

ABQ  Day hQ  
ABQ  Day hQ  

ABQ  

 From port A to port B 

1 850 0 1 860 0 1 1000 0 1 990 0 

2 880 0 2 900 0 2 1050 0 2 980 0 

3 860 0 3 950 0 3 1080 0 3 1010 0 

4 900 0 4 970 0 4 1100 0 4 1020 0 

5 840 0 5 930 0 5 1060 0 5 950 0 

6 850 0 6 960 0 6 1100 0 6 970 0 
7 845 0 7 959 0 7 1100 0 7 980 0 

8 851 0 8 963 0 8 1090 0 8 970 0 

 From port B to port A 

1 860 0 1 930 0 1 1100 0 1 1040 0 

2 870 0 2 950 0 2 1080 0 2 970 0 

3 870 0 3 980 0 3 1060 0 3 960 0 

4 890 0 4 970 0 4 990 0 4 950 0 

5 860 0 5 890 0 5 1040 0 5 980 0 
6 870 0 6 910 0 6 1070 0 6 960 0 

7 880 0 7 920 0 7 1080 0 7 970 0 

8 870 0 8 910 0 8 1050 0 8 960 0 

 Ports 

A 0 950 A 0 950 A 0 950 A 0 950 

B 0 950 B 0 950 B 0 950 B 0 950 

 
 

Table 5.62. Electric power of STG and DG set versus time for all seasons (in kW). 
 

Summer Fall Winter Spring 

Day STGW  
1DGW  Day STGW  

1DGW  Day STGW  
1DGW  Day STGW  

1DGW  

 From port A to port B 

1 1495 0 1 1508 0 1 1482 0 1 1625 0 
2 1599 0 2 1573 0 2 1586 0 2 1599 0 

3 1560 0 3 1547 0 3 1482 0 3 1547 0 

4 1514 0 4 1560 0 4 1508 0 4 1495 0 

5 1508 0 5 1495 0 5 1586 0 5 1534 0 

6 1495 0 6 1495 0 6 1495 0 6 1521 0 

7 1490 0 7 1495 0 7 1485 0 7 1525 0 

8 1495 0 8 1495 0 8 1490 0 8 1520 0 

 From port B to port A 
1 1625 0 1 1547 0 1 0 1534 1 1521 0 

2 1560 0 2 1625 0 2 0 1521 2 1625 0 

3 1534 0 3 1664 0 3 0 1625 3 1573 0 

4 1521 0 4 1508 0 4 0 1651 4 1625 0 

5 1560 0 5 1501 0 5 0 1495 5 1599 0 
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6 1521 0 6 1547 0 6 0 1521 6 1586 0 

7 1520 0 7 1539 0 7 0 1520 7 1580 0 

8 1525 0 8 1550 0 8 0 1521 8 1580 0 

 Ports 

A 0 1500 A 0 1500 A 0 1500 A 0 1500 

B 0 1500 B 0 1500 B 0 1500 B 0 1500 
 

 
 The optimal NPV after 20 years of operation is 115,725,498 €. The optimal number of 
total round trips per year is 16. The optimization was concluded in 10650 seconds, 
performing 53 Major NLP iterations at an Intel® Core™2 Quad Processor Q9650 cpu at 

3GHz with 8Gb of RAM. 
 For the nominal values of fuel price and freight rate, one type #3 gas turbine, with a 
single HRSG, a single ST and one diesel generator set are installed. All trip durations go to 
the upper limit and in fact this solution coincides with the solution of the nominal case of 

Case Study 3, where the minimization of PWC was the objective. This shows that in this 
system and for these mission parameters, the system has no room to increase the revenues 
by increasing the speeds in every trip and thus the total trips per season (and per year), so 
the optimizer chooses a cost effective system. Consequently, the same comments that were 

stated in Section 5.4.5 apply. 
 
 

 5.5.6 Parametric study 

 
 For the sensitivity analysis, variation of the fuel price and freight rate is considered. 
For the fuel price, in consistency with the PWC study, apart from the nominal value of 450 
€/ton, four more values were considered: 300, 600, and 750 €/ton. For the freight rate, 

apart from the nominal, the double price is also considered. Sensitivity analysis results 
regarding the optimal synthesis and design characteristics of the system are presented in 
Tables 5.63a,b and 5.64a,b. The variation of the optimal NPV is given in Tables 5.65a,b. 
Tables 5.66a,b and 5.67ab summarize the optimal trip durations and number of round trips 

per season for the whole year respectively. 
 
 
Table 5.63a. Effect of fuel price on the optimal synthesis of the system for nominal freight 

rate. 
 

 Fuel Price (€/ton) 300 450 600 750 

S
y

n
th

e
si

s 

Type 3 3 3 3 

DE 1 1 1 1 
HRSG 1 1 1 1 

ST 1 1 1 1 

DG 1 1 1 1 

AB 1 1 1 1 
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Table 5.63b. Effect of fuel price on the optimal synthesis of the system for double freight 
rate. 

 

 Fuel Price (€/ton) 300 450 600 750 

S
y

n
th

e
si

s 

Type 3 3 2 2 

DE 1 1 1 1 

HRSG 1 1 1 1 
ST 1 1 1 1 

DG 1 1 1 1 

AB 1 1 1 1 

 
 

Table 5.64a. Effect of fuel price on the optimal design specifications of the system for 
nominal freight rate price. 

 

 Fuel Price (€/ton) 300 450 600 750 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

Type 3 3 3 3 

GT 20455 19558 19812 20203 

HRSG 12371 9090 9180 9273 
ST 3242 2527 2544 2561 

DG 1 1500 1652 1652 1652 

AB 950 950 950 950 

 
 

Table 5.64b. Effect of fuel price on the optimal design specifications of the system for 
double freight rate. 

 

 Fuel Price (€/ton) 300 450 600 750 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

Type 3 3 2 2 

GT 39574 28420 20439 17684 

HRSG 24913 17597 19747 16886 
ST 6521 4610 5229 4488 

DG 1 1500 1500 1500 1652 

AB 950 950 950 950 

 
 

Table 5.65a. Effect of fuel price on the optimal NPV for nominal freight rate. 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

300 450 600 750 
Capital Cost 16,160,569 15,428,136 15,444,136 15,459,704 

Fuel PWC (total) 59,550,135 77,095,837 102,503,460 128,277,117 

O&M PWC (total) 8,626,161 7,114,045 7,114,156 7,114,045 

Total PWC 84,336,865 99,638,018 125,061,752 150,850,866 

Total PWR 228,823,736 215,363,516 215,363,516 215,363,516 

NPV (objective) 144,486,871 115,725,498 90,301,764 64,512,650 
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Table 5.65b. Effect of fuel price on the optimal NPV for double freight rate . 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

300 450 600 750 
Capital Cost 22,093,996 18,876,508 16,161,690 15,086,063 

Fuel PWC (total) 108,008,269 122,932,876 130,782,014 141,425,993 

O&M PWC (total) 14,646,478 11,505,197 11,073,655 9,679,542 

Total PWC 144,748,744 153,314,581 158,017,360 166,191,599 

Total PWR 538,408,790 511,488,350 484,567,911 457,647,471 

NPV (objective) 393,660,045 358,173,769 326,550,550 291,455,872 

 
 

Table 5.66a. Effect of fuel price on the optimal trip durations for nominal freight rate 
(numbers in days). 

 

Trip 
Fuel Price (€/ton) 

300 450 600 750 

Summer 1 7.27 8 8 8 

Summer 2 7.57 8 8 8 

Fall 1 7.27 8 8 8 

Fall 2 7.63 8 8 8 

Winter 1 7.33 8 8 8 

Winter 2 7.99 8 8 8 

Spring 1 7.23 8 8 8 
Spring 2 7.55 8 8 8 

 

 
Table 5.66b. Effect of fuel price on the optimal trip durations for double freight rate  

(numbers in days). 
 

Season Fuel Price (€/ton) 

300 450 600 750 

Summer 1 5.91 6.52 7.08 7.48 

Summer 2 6.07 6.74 7.36 7.78 

Fall 1 5.91 6.52 7.08 7.47 

Fall 2 6.1 6.78 7.41 7.83 
Winter 1 5.92 6.56 7.13 7.51 

Winter 2 6.27 7.04 7.75 8 

Spring 1 5.89 6.5 7.05 7.42 

Spring 2 6.05 6.72 7.34 7.75 
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Table 5.67a. Effect of fuel price on the optimal number of round trips for nominal freight 
rate. 

 

Season 
Fuel Price (€/ton) 

300 450 600 750 

Summer 4.6 4.3 4.3 4.3 

Fall 4.6 4.3 4.3 4.3 
Winter 3.1 3 3 3 

Spring 4.7 4.4 4.4 4.4 

Total per year 17 16 16 16 

 
 

Table 5.67b. Effect of fuel price on the optimal number of round trips for double freight 
rate. 

 

Season 
Fuel Price (€/ton) 

300 450 600 750 

Summer 5.4 5.2 4.9 4.6 

Fall 5.4 5.1 4.9 4.6 
Winter 3.7 3.5 3.3 3.1 

Spring 5.5 5.2 4.9 4.7 

Total per year 20 19 18 17 

 
 

 For all fuel price and freight rate values a single gas turbine is installed. However, the 
type of the gas turbine depends on the fuel price and freight rate. For fuel prices 600 and 
700 €/ton and for double freight rate, a type #2 gas turbine is selected as the optimal 
choice, whereas in all other cases a type #3 gas turbine is selected. In all cases, a bottoming 

cycle is installed with a single HRSG and ST. Also, one diesel generator set is always 
installed.  
 Trip durations generally seem to increase as fuel price rises (need for cost effective 
system). This is observed clearly in the results for double freight rate (Table 5.66b). For 

nominal freight rate and fuel prices 450 €/ton and above, trip durations are on the upper 
limit, all solutions are the same as the solutions for minimization of PWC (for variable 
time) of Case Study 3, since the optimal trip durations coincide at the upper limit (8 days). 
For these solutions, the same comment, as in PWC case, stands: the design values of the 

system components slightly increase as the fuel price increases.  
 For double freight rate, the gas turbine nominal power output decreases as the fuel 
price increases, since the trip durations increase and the average speed drops. However, in 
comparison with the nominal freight rate case, the gas turbine nominal power output is 

generally augmented (17 – 40 MW), thus the bottoming cycle system is also of higher 
nominal power output. 
 Considering the total round trips per year, it is noted that the maximum number of 
round trips per year is observed in the smallest fuel price for both freight rates. For 

nominal freight rate, the number of round trips per year remains the same (at its lower 
limit) for fuel price 450 €/ton and above, while for double freight rate, the number of round 
trips per year decreases as the fuel price increases. It is evident that, as freight rate 
increases, the need for more trips (and more revenue) becomes more important than 

reducing travel costs. 
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5.6 Case Study 5: Containership with 4-X Diesel Engines, 2-X Diesel Engines and 

Gas Turbines, Trips of fixed Time, Minimization of PWC 
 

 5.6.1 Description of the system and the optimization problem 

 
 The description of the energy system and the optimization problem for Case Study 5 is 
similar as in Case Study 2. The main difference lies in the fact that more technology 
alternatives are now allowed for the synthesis of the propulsion plant: apart from the three 

possible gas turbine types, two stroke and four stroke diesel engines are also available for 
installation. This increases significantly the complexity of the problem, since the optimizer 
searches for the optimal solution by taking also into account every possible combination 
between all alternatives. 

 All the remaining details about the problem, the energy system and the mission 
characteristics can be found in Section 5.3.1 of Case Study 2. However, a new 
superconfiguration of the energy system, Fig. 5.21, is defined. 
 

 

 
 

Figure 5.21. Superconfiguration of the energy system for Case Studies 5,6 and 7. 
 

 

 5.6.2 Mathematical statement of the optimization problem 
 
 The dynamic optimization problem of this case study is mathematically stated as a 

minimization problem using a Differential − Algebraic Equation (DAE) formulation. The 
objective function can be found in Eq. (5.19) with vector x , representing the vector of 

control (optimization) variables, consisting of the vectors of synthesis, design and 
operation, Eq. (5.20). However, since more technology alternatives are added as choices 

Cond

ME1

FWT

HRSG1

4
f ,G n

m

b 1
W

c w
m

f ,D 1
m

fw
m

E
W g ,1

m

S T ,1
m

h ,1
m

DGSn4 AB

g ,A B
m

A B
Q

ME2

MEn1

f ,D 2
m

1
f ,D n

m

f ,A B
m

g ,D G S
m

G

b 2
W

1
b n

W

ST1

G

DGS2

DGS1

f ,G 2
m

f ,G 1
m

G

G

HRSGn2

2
g ,n

m
2

h ,n
m

2
S T ,n

m

G STn3



170 Case Studies 

for the propulsion plant, the vectors of synthesis, design and operation control variables are 
re-stated: 
 

  1, 1 2, 2 3, 3 4 , 4 2 , 5 , , ,, , , , , , , ,GT J GT J GT J X J X J B K ST L DG M ABv y y y y y y y y y  (5.41a) 

 
 , 1, 1 , 2, 2 , 3, 3 ,4 , 4 ,2 , 5 , , , , ,, , , , , , , , , ,

n n n n n nbn GT J bn GT J bn GT J bn X J bn X J g K g K s K ST L DG M ABw W W W W W m T m m W Q   

  (5.41b) 

  , 1, 1 , 2, 2 , 3, 3 ,4 , 4 ,2 , 5 , , ,, , , , , , ,b GT J b GT J b GT J b X J b X J h K e L DG Mz W W W W W W   (5.41c) 

where: 

 
 

1, 1GT Jy  set of variables j1 determining the existence of the j1 th gas turbine of type 1 

(binary):  1, 1 1,1 1,2 1, 1 1, 1max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.42a) 

 
2, 2GT Jy  set of variables j2 determining the existence of the j2 th gas turbine of type 2 

(binary):  2, 2 2,1 2,2 2, 2 2, 2max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.42b) 

 
3, 3GT Jy  set of variables j3 determining the existence of the j3 th gas turbine of type 3 

(binary):  3, 3 3,1 3,2 3, 3 3, 3max, , ...., ,..,GT J GT GT GT j GT jy y y y y  (5.42c) 

 
4 , 4X Jy  set of variables j4 determining the existence of the j4 th 4X diesel engine 

(binary):  4 , 4 4 ,1 4 ,2 4 , 4 4 , 4max, , ...., ,..,X J X X X j X jy y y y y  (5.42d) 

 
2 , 5X Jy  set of variables j4 determining the existence of the j4 th 4X diesel engine 

(binary):  2 , 5 2 ,1 2 ,2 2 , 5 2 , 5max, , ...., ,..,X J X X X j X jy y y y y  (5.42e) 

 ,B Ky  set of variables k  determining the existence of the k  th HRSG (binary):

 , ,1 ,2 , , max, , ...., ,..,B K B B B k B ky y y y y  (5.42f) 

 ,ST Ly  set of variables l determining the existence of the l th ST (binary):

 , ,1 ,2 , , max, , ...., ,..,ST L ST ST ST l ST ly y y y y  (5.42e) 

 
,DG My  set of variables m determining the existence of the m th generator set (binary): 

   , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG my y y y y  (5.42g) 

 
ABy  variable determining the existence of the auxiliary boiler (binary), 

 

 , 1, 1bn GT JW  set of variables j1 determining the nominal brake power output of j1 th gas 

turbine of type 1 (invariant): 

  , 1, 1 , 1,1 , 1,2 , 1, 1 , 1, 1max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.43a) 

 , 2, 2bn GT JW  set of variables j2 determining the nominal brake power output of j2 th gas 

turbine of type 2 (invariant): 

  , 2, 2 , 2,1 , 2,2 , 2, 2 , 2, 1max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.43b) 

 , 3, 3bn GT JW  set of variables j3 determining the nominal brake power output of j3 th gas 

turbine of type 3 (invariant): 

  , 3, 3 , 3,1 , 3,2 , 3, 3 , 3, 3max, ,..., ,...,bn GT J bn GT bn GT bn GT j bn GT jW W W W W  (5.43c) 
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,4 , 4bn X JW  set of variables j4 determining the nominal brake power output of j4 th 4X 

diesel engine (invariant):  

  ,4 , 4 ,4 ,1 ,4 ,2 ,4 , 4 ,4 , 4max, ,..., ,...,bn X J bn X bn X bn X j bn X jW W W W W  (5.43d) 

 
,2 , 5bn X JW  set of variables j5 determining the nominal brake power output of j5 th 2X 

diesel engine (invariant):  

  ,2 , 5 ,2 ,1 ,2 ,2 ,2 , 5 ,2 , 5max, ,..., ,...,bn X J bn X bn X bn X j bn X jW W W W W  (5.43e) 

 ,ng Km  set of variables k determining nominal exhaust gas mass flow rate of k  th 

HRSG (invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n ng K g g g k g km m m m m  (5.43f) 

 ,ng KT  set of variables k determining nominal exhaust gas temperature of k  th HRSG 

(invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n ng K g g g k g kT T T T T  (5.43g) 

 ,ns Km  set of variables k determining nominal steam mass flow rate of k  th HRSG 

(invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n ns K s s s k s km m m m m  (5.43h) 

 ,nST Lm  set of variables l determining the nominal steam mass flow rate of l th ST 

(invariant):  , ,1 ,2 , , max, ,..., ,...,
n n n n nST L ST ST ST l ST lm m m m m  (5.43j) 

 ,nDG MW  set of variables m determining the nominal power output of m th generator set 

(invariant):  , ,1 ,2 , , max, , ...., ,..,
n n n n nDG M DG DG DG m DG mW W W W W  (5.43k) 

 
nABQ  nominal thermal power output of auxiliary boiler (invariant), 

 

 , 1, 1b GT JW  set of variables j1 determining the brake power output of j1 th gas turbine of 

type 1:  , 1, 1 ,4 ,1 ,4 ,2 ,4 , 1 ,4 , 1max, ,..., ,...,b GT J b X b X b X j b X jW W W W W  (5.44a) 

 , 2, 2b GT JW  set of variables j2 determining the brake power output of j2 th gas turbine of 

type 2:  , 2, 2 , 2,1 , 2,2 , 2, 2 , 2, 2max, ,..., ,...,b GT J b GT b GT b GT j b GT jW W W W W  (5.44b) 

 , 3, 3b GT JW  set of variables j3 determining the brake power output of j3 th gas turbine of 

type 3:  , 3, 3 , 3,1 , 3,2 , 3, 3 , 3, 3max, ,..., ,...,b GT J b GT b GT b GT j b GT jW W W W W  (5.44c) 

 ,4 , 4b X JW  set of variables j4 determining the brake power output of j4 th 4‒X diesel 

engine:  ,4 , 4 ,4 ,1 ,4 ,2 ,4 , 4 ,4 , 4max, ,..., ,...,b X J b X b X b X j b X jW W W W W  (5.44d) 

 ,2 , 5b X JW  set of variables j5 determining the brake power output of j5 th 2‒X diesel 

engine:  ,2 , 5 ,2 ,1 ,2 ,2 ,2 , 5 ,2 , 5max, ,..., ,...,b X J b X b X b X j b X jW W W W W  (5.44e) 

 ,h K  set of variables k  determining the fraction of k  th HRSG steam mass flow 

delivered to thermal loads:  , ,1 ,2 , , max, ,..., ,...,h K h h h k h k      (5.44f) 

 , , , ,s h k h k s km m   (5.44g) 

 , ,s h km  steam mass flow rate drawn from k  th HRSG drum for serving thermal loads, 

 ,s km  steam mass flow rate of k  th HRSG unit, 
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,e L  set of variables l determining the fraction of the l th steam turbine power 

output delivered to generator:
 

 , ,1 ,2 , , max, ,..., ,...,e L e e e l e l      (5.44h) 

 , , ,STG l e l ST lW W   (5.44i) 

 ,STG lW  l th steam turbine generator power for serving electric loads, 

 ,ST lW  l th steam turbine power output, 

 
,DG MW  set of variables m determining the m th diesel generator set power output: 

  , ,1 ,2 , , max, ,..., ,...,DG M DG DG DG m DG mW W W W W  (5.44j) 

 
 Indices j1, j2, j3, j4 and j5 run through all the values from 1 up to an upper bound. It is 
noted that these upper bounds quantify the upper value of gas turbines of type 1, 2, 3, four 
stroke diesel engines and two stroke diesel engines, respectively, that are allowed to be 

installed in the system and are pre-determined parameters, given at the beginning of the 
optimization. Once these upper values for all j’s are defined, the problem is set with as 
many binary variables for the gas turbines and diesel engines as necessary. The same idea 
stands also for the HRSGs, STs and diesel generator sets, which are modeled by indices k, l 

and m, respectively. For all binary variables, value 0 denotes that the unit is not installed.  
 The optimization problem is stated with Eqs. (5.19) and (5.25)‒(5.29) of Section 5.3.2.  
 The main differential variables for this problem are the distance travelled by the ship, 
the fuel consumption of the propulsion engines, diesel generator sets and auxiliary boiler. 

Another family of differential variables is derived from the energy output of each 
component, which is generally given as the integral of output power of the component over 
the time horizon. All the respective equations for each component have been presented in 
detail in Chapter 3, Section 3.3.1, Eqs. (3.6)‒(3.9) and in Appendix C.  

 Two-variable (nominal power and load factor) functions are used to describe the 
SFOC and exhaust gas characteristics for all propulsion engine alternatives. The total 
exhaust gas mass flow rate and temperature from all engines is then calculated and 
supplied to the HRSGs, if HRSGs are installed. The same modeling procedure (two 

variable functions) is also applied in the case of diesel generator sets’ SFOC and exhaust 
gas properties. The models used for the gas turbines, diesel engines and the diesel 
generator sets are presented in extent in Chapter 4. 
 The brake power of the propulsion engines, must be equal to the required brake power 

at any instant of time: 
 

 

1, 1 , 1, 1 2, 2 , 2, 2 3, 3 , 3, 3

1 2 3

4 , 4 ,4 , 4 2 , 5 ,2 , 5 , ,

4 5

GT j b GT j GT j b GT j GT j b GT j

j j j

X j b X j X j b X j ST p l b

j j l

y W y W y W

y W y W W W

  

  

  

  
 (5.45) 

 
 Also the electric and thermal power produced by the integrated system must be equal 
to the electric and thermal demands at any instant of time, as stated in Eqs. (5.31), (5.32). 
The total required brake power of the all engines is calculated as a function of the ship 

speed, weather state, ship resistance and propulsive efficiency. The respective equation is 
given in Chapter 3 (Eq. 3.13). All details considering the underlying mathematical 
calculations are presented in Chapter 4 and in Appendixes D and E.  
 Multiple equalities correlated with the simulation of the components as well as 

inequality constraints imposed on certain variables, exist but their complete presentation is 
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beyond the limits of the present text. Noteworthy inequality constraints for the upper and 
lower bounds imposed on important variables can be found in Eqs. (5.33a,b). 
 Equations (5.34a)‒(5.34d) summarize other important technical constraints related 
with the nominal (design) characteristics of the components. For reasons of completeness 

the respective expression for the two stroke and four stroke diesel engines are given: 
 

 ,4 ,min ,4 , 4 ,4 ,maxbn X bn X j bn XW W W   (5.46a) 

 ,2 ,min ,2 , 5 ,2 ,maxbn X bn X j bn XW W W   (5.46b) 

 
Of course all control variables, are accompanied by upper and lower limits. However, 
upper and lower limits may not be necessary for all state variables. 
 In the next section all the necessary values of input parameters and data assumptions 

in order to set up and solve the optimization problem stated in the current section are 
presented. 
 
 

 5.6.3 Additonal data and assumptions 
 
 The same containership with carrying capacity 9572 TEU and DWT of 111529 MT is 
considered performing for each season the same round trip of 6000 nm between two ports, 
A and B. Values of certain cost parameters that are used for the PWC calculations are 

given in Table 5.21. For the gas turbines, MDO is considered as fuel with a Lower Heating 
Value (LHV) of 42700 kJ/kg, while for the 2-X diesel engines, the 4-X diesel engines, the 
diesel-generator sets and the auxiliary boiler, HFO is considered as fuel with a Lower 
Heating Value (LHV) of 39550 kJ/kg. All fuel costs are given in Table 5.21. In Table 5.68 

a list of lower and upper bounds of several important synthesis, design and operation 
variables is presented. Details regarding the time discretization that is used in order to 
model the operation of the energy system for the total time horizon and other numerical 
solution parameters are given in Table 5.23. 

 
Table 5.68.  Bounds on synthesis, design and operation variables for Case Study 5.  
 

Variable Lower value Upper value 

Number of gas turbines of type 1 0 2 

Number of gas turbines of type 2 0 2 

Number of gas turbines of type 3 0 2 

Number of 2−X diesel engines 0 3 
Number of 4−X diesel engines 0 3 

Number of total propulsion engines 1 6 

Number of DG sets 0 4 

Number of HRSGs 0 2 

Number of STs 0 2 

Gas turbine nominal power output (kW) (any type) 3000 90000 

2−X diesel engines nominal power output (kW) 3500 90000 

4−X diesel engines nominal power output (kW) 3500 21000 
Generator set nominal power output (kW) 300 5000 

Load factors (all equipment) 0.1 1 

Ship speed (kn) 14 25.4 
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 5.6.4 Solution procedure  
 
 The same comments as in Section 5.4.4 can be repeated here. Due to the augmented 
number of control variables, both methods (sequential and simultaneous) are applied. The 

sequential method proved to be as accurate as the simultaneous, but faster. 
 
 

 5.6.5 Numerical results for nominal case  

 
 The results of optimization, in terms of optimal synthesis and design are presented in 
Tables 5.69 and 5.70. Hours of operation and round trips per season and for the whole year 
are given in Table 5.71. Optimal cost values for the system are given in Table 5.72. 

Optimal values of certain control variables per time interval and for all seasons are 
presented in Tables 5.73 – 5.76. 
 
 

Table 5.69. Optimal synthesis of the system. 
 

Type of propulsion engines 2 – X Diesel 

Number of diesel engines (prime movers) 1 
Number of HRSGs 1 

Number of steam turbines 1 

Number of DG sets 2 

Number of auxiliary boilers 1 

 
 

Table 5.70. Optimal design specifications of the system components. 

 

Variable 
Optimal 
Value 

Main engine nominal brake power (kW) 52320 

DG set 1 nominal electric power (kW) 485 
DG set 2 nominal electric power (kW) 1041 

Heat recovery steam generator 

Thermal power (kW) 8874 

Exhaust gas mass flow rate (kg/s) 95.6 

Nominal inlet exhaust gas temperature (oC) 249 

Auxiliary boiler nominal thermal power (kW) 950 

Steam-turbine 

Nominal power (kW) 2060 
Nominal steam mass flow rate (kg/s) 2.98 

 

 
Table 5.71. Hours of operation and round trips per season. 

 

Season Summer Fall Winter Spring 

Hours of operation 2074 2074 1421 2112 

Number of round trips 5.4 5.4 3.7 5.5 

Total round trips per year 20 
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Table 5.72. Cost items (in €). 
 

Season Summer Fall Winter Spring 

Present worth cost of fuel 31,228,418 31,585,101 22,909,230 31,539,831 
Present worth cost of O&M 3,640,600 3,677,583 2,641,898 3,687,850 

Capital cost 17,984,660 

Total PWC (objective function) 148,895,171 

 
 

Table 5.73. Optimal ship speed versus time (in kn). 
 

Day Summer Fall Winter Spring 

 From port A to B 

1 20.92 20.91 20.94 20.88 

2 20.85 20.85 20.88 20.85 

3 20.89 20.89 20.90 20.87 

4 20.91 20.91 20.94 20.87 
5 20.68 20.68 20.65 20.74 

6 20.78 20.78 20.69 20.80 

 From port B to A 

1 20.75 20.75 20.82 20.81 

2 20.16 20.00 19.43 20.30 

3 21.19 21.26 21.51 21.07 

4 21.08 21.11 21.31 21.00 

5 20.90 20.92 20.99 20.93 
6 20.93 20.97 20.95 20.90 

 

 
Table 5.74. Propulsion power from diesel engine(s) and ST versus time (in kW). 
 

Day 

Summer Fall Winter Spring 

bW  
STPW  

bW  
STPW  

bW  
STPW  

bW  
STPW  

From port A to port B 

1 41078 479 41333 343 41650 425 41105 185 

2 41575 252 41559 337 42092 232 41226 217 

3 41298 369 41393 356 41802 433 41085 258 

4 41091 506 41364 311 41712 363 41051 307 

5 42444 92 41766 824 43041 251 41481 396 

6 41768 360 42138 65 41650 425 41233 395 

 From port B to port A 
1 45922 447 46717 486 50414 1298 45366 372 

2 47767 805 48807 1060 51202 2004 46985 718 

3 44248 381 44916 279 48161 935 44369 320 

4 44658 397 45387 405 48804 1049 44684 282 

5 45387 387 46109 448 49908 1186 44962 311 

6 45240 411 45936 399 50012 1228 45059 332 
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Table 5.75. Contribution of the HRSG and auxiliary boiler to thermal loads versus time for 
all seasons (in kW). 

 

 Summer Fall Winter Spring 

Day hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

From port A to port B 

1 850 0 860 0 1000 0 990 0 

2 880 0 900 0 1050 0 980 0 

3 860 0 950 0 1080 0 1010 0 

4 900 0 970 0 1100 0 1020 0 

5 840 0 930 0 1060 0 950 0 

6 850 0 960 0 1100 0 970 0 

 From port B to port A 
1 860 0 930 0 1100 0 1040 0 

2 870 0 950 0 1080 0 970 0 

3 870 0 980 0 1060 0 960 0 

4 890 0 970 0 990 0 950 0 

5 860 0 890 0 1040 0 980 0 

6 870 0 910 0 1070 0 960 0 

 Ports 

A 0 950 0 950 0 950 0 950 
B 0 950 0 950 0 950 0 950 

 

 
Table 5.76. Electric power of STG and DG sets versus time for all seasons (in kW). 

 

Day 
Summer Fall Winter Spring 

STGW  
1GW  

2GW  
STGW  

1GW  
2GW  

STGW  
1GW  

2GW  
STGW  

1GW  
2GW  

 From port A to Port B 

1 1368 127 0 1508 0 0 1396 86 0 1625 0 0 

2 1599 0 0 1508 65 0 1586 0 0 1599 0 0 

3 1481 79 0 1472 75 0 1371 111 0 1547 0 0 

4 1328 186 0 1511 49 0 1433 75 0 1495 0 0 

5 1510 0 0 1020 475 0 1586 0 0 1434 100 0 

6 1503 0 0 1498 0 0 1326 169 0 1424 97 0 

 From port B to port A 
1 1507 118 0 1465 82 0 684 0 850 1521 0 0 

2 1184 376 0 930 0 695 0 480 1036 1229 396 0 

3 1534 0 0 1620 44 0 1012 0 613 1573 0 0 

4 1521 0 0 1508 0 0 930 0 721 1620 5 0 

5 1555 5 0 1501 0 0 802 0 693 1589 10 0 

6 1525 0 0 1542 5 0 754 0 767 1576 10 0 

 Ports 

A 0 480 1020 0 480 1020 0 480 1020 0 480 1020 

B 0 480 1020 0 480 1020 0 480 1020 0 480 1020 
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 The optimal present worth cost after 20 years of operation is 148,895,171 €. The  
optimization was concluded in 6900 seconds, performing 29 Major NLP iterations at an 
Intel® Core™2 Quad Processor Q9650 cpu at 3GHz with 8Gb of RAM. 
 One, two stroke, diesel engine is determined as the optimal choice for the propulsion 

plant. A bottoming cycle with a single HRSG and a single ST and two diesel generator sets 
are installed. The excess of ST power is given to electric loads with the remaining power 
directed to the propeller, with the exception of certain intervals where the brake power 
requirements are augmented. Two diesel generator sets are installed: one of low nominal 

power output (485 kW) in order to cover the remaining electric loads that are not fully 
served by the STG during trips, and a second one (1041 kW) that operates at ports, in 
parallel with the first, and in the winter return trip where the ST power is mostly given in 
the propeller. Thermal loads during the trips are always covered by the HRSG, while at 

ports they are covered by the auxiliary boiler. 
 Since, essentially, this case study is based on Case Study 2 with the significant 
alteration that more technology alternatives are allowed for the propulsion plant, it is worth 
mentioning that the optimal PWC achieved with the selection of a two stroke diesel engine 

is 25% lower than the respective optimal PWC for the gas turbine case. 
 
 

 5.6.6 Parametric study 

 
 For the sensitivity analysis the fuel price is considered to vary. Apart from the nominal 
value of 300 €/ton, four more values were considered: 200, 400, 500 and 600 €/ton. 
Selected sensitivity analysis results regarding the optimal synthesis and design 

characteristics of the system are presented in Tables 5.77 and 5.78. The variation of the 
optimal PWC is given in Table 5.79. 
 
 

Table 5.77. Effect of fuel price on the optimal synthesis of the system. 
 

 Fuel Price (€/ton) 200 300 400 500 600 

S
y

n
th

e
si

s 

DEs 1 1 1 1 1 
HRSGs – 1 1 1 1 

STs – 1 1 1 1 

DG sets 1 2 2 2 2 

AB 1 1 1 1 1 

 
 

Table 5.78. Effect of fuel price on the optimal design specifications of the system.  

 

 Fuel Price (€/ton) 200 300 400 500 600 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

DE 51094 52320 54068 56857 57214 

HRSG – 8874 8898 8933 8984 

ST – 2060 2080 2139 2171 

DG set 1 1664 485 360 343 340 

DG set 2 – 1041 1161 1170 1175 

AB 1100 950 950 950 950 
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Table 5.79. Effect of fuel price on the optimal PWC. 
 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 
Capital Cost 14,505,140 17,984,660 18,243,420 18,646,960 18,709,660 

Fuel PWC (total) 82,938,516 117,262,580 156,057,884 194,372,376 233,181,997 

O&M PWC (total) 11,833,736 13,647,931 13,644,719 13,660,131 13,664,666 

Total PWC 
(objective) 

109,277,392 148,895,171 187,946,022 226,679,468 265,556,323 

 
 

 For all fuel price values, one two‒stroke diesel engine is selected. A bottoming cycle, 
with a single HRSG and a single ST, is always installed, except for the fuel price of 200 
€/ton. When a bottoming cycle is installed, the HRSG serves all thermal demands during 
trips and two diesel generator sets are installed: one of relatively low power output (<500 

kW), that covers the remainder electric loads that the STG cannot cover during trips and 
one of higher power output (1000‒1200 kW) that operates at ports, in parallel with the first 
one. Also, the second DG set operates during winter (trip from port A to port B) since then 
the ST power is mainly diverted to the propeller in order to accommodate the high brake 

power demands. The installation of two DG sets with this specific operational strategy can 
be attributed to the fact that in all those cases the required ship speeds are high and the 
propulsion system is designed with a high nominal power output. This leads to the 
installation of a bottoming cycle with high nominal output characteristics that can serve a 

large percentage of the electric demands during the trips, leaving only a small part (of 
electric demands) that can be accommodated by a DG set of low power output. If a single 
DG set was to be installed, it would have to be of adequate power output in order to serve 
the electric demand at ports (1500 kW) and thus it would operate in very low load factors 

in order to cover the low remaining electric demands during trips. This would be very 
inefficient in terms of SFOC and thus not optimal. 
 For the fuel price of 200 €/ton, where no BC is present, the auxiliary boiler is of higher 
nominal power output than for all other fuel prices, since now it has to cover the thermal 

demands during trips. Also, in that case a single DG set is installed that covers all electric 
load during trips and at port. Since the electric demands generally range from 1450‒1670 
kW (at trips and ports) the selection of a single DG set is explained. 
 Considering Table 5.78, the same observation that was made in Case Study 2 nominal 

case, stands: the nominal power output design values of the propulsion engine, HRSG and 
ST seem to increase as fuel price rises but, unlike in Case Study 2, this increase seems to 
be higher (2.5-3.5%) in this case. 
 

 

5.7 Case Study 6: Containership with 4-X Diesel Engines, 2-X Diesel Engines and 

Gas Turbines, Trips of Variable Time, Minimization of PWC 
 

 5.7.1 Description of the system and the optimization problem 
 
 The description of the energy system and the optimization problem for Case Study 6 is 
similar as in Case Study 3. The main difference lies in the fact that more technology 

alternatives are now allowed for the synthesis of the propulsion plant. Specifically, apart 
from the three possible gas turbine types, two-stroke and four-stroke diesel engines are also 
available for installation.  
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 All the details about the problem and the energy system can be found in Section 5.4.1 
of Case Study 3. The superconfiguration of the energy system is depicted in Figure 5.21. 
 
 

 5.7.2 Mathematical statement of the optimization problem 
 
 The dynamic optimization problem of this case study is mathematically stated as a 
minimization problem using the same Differential − Algebraic Equation (DAE) 

formulation that was presented in Section 5.4.2 of Case Study 3. Minimization of the 
PWC, Eq. (5.35), is used as the objective function with vector x , representing the vector of 

control (optimization) variables, consisting of the vectors of synthesis, design and 

operation optimization variables as stated in Eqs. (5.41a)-(5.44j) and vector ft  

representing the vector of control (optimization) variables consisting of the the single trip 
durations as stated in Eqs. (5.36).  
 

 

 5.7.3 Additional data and assumptions 
 
 The same containership with carrying capacity 9572 TEU and DWT of 111529 MT is 

considered performing for each season the same round trip of 6000 nm between two ports, 
A and B. Values of certain cost parameters that are used for the PWC calculations are 
given in Table 5.21. For the gas turbines, MDO is considered as fuel with a Lower Heating 
Value (LHV) of 42700 kJ/kg, while for the 2-X diesel engines, the 4-X diesel engines, the 

diesel-generator sets and the auxiliary boiler, HFO is considered as fuel with a Lower 
Heating Value (LHV) of 39550 kJ/kg. In Table 5.80 a list of lower and upper bounds of 
certain synthesis, design and operation variables is presented. Details regarding the time 
discretization that is used in order to model the operation of the energy system for the total 

time horizon and other numerical solution parameters are given in Table 5.38. 
 
 

Table 5.80.  Bounds on synthesis, design and operation variables for case Study 6. 

 

Variable Lower value Upper value 
Number of gas turbines of type 1 0 2 

Number of gas turbines of type 2 0 2 

Number of gas turbines of type 3 0 2 

Number of 2−X diesel engines 0 3 

Number of 4−X diesel engines 0 3 

Number of total propulsion engines 1 6 

Number of DG sets 0 4 

Number of HRSGs 0 2 
Number of STs 0 2 

Gas turbine nominal power output (kW) (any type) 3000 90000 

2−X diesel engines nominal power output (kW) 3500 90000 

4−X diesel engines nominal power output (kW) 3500 21000 

Generator set nominal power output (kW) 300 5000 

Load factors (all equipment) 0.1 1 

Ship speed (kn) 14 25.4 

Single trip duration (days) 5 8 
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 5.7.4 Solution procedure  
 
 In this case study, also, both available methods (sequential and simultaneous) were 
applied. For all previous case studies up until now the sequential method had proved to be 

superior in terms of computational times, since it converged in fewer iterations. However, 
in the problems solved in this case study, probably due to the increased number of control 
variables (several propulsion alternatives combined with variable trip durations), it is 
observed that the simultaneous method manages to solve the optimization problems in 

fewer Major Iterations of the optimization algorithm than the sequential one. Of course, it 
has to be noted that, in general, each simultaneous method iteration is not equal to each 
sequential method iteration in terms of computational time. Nevertheless, it was observed 
that the simultaneous method achieved equal or slightly better computational times (<3%) 

when compared with those of the sequential. 
 
 

 5.7.5 Numerical results for nominal case  

 
 For the nominal fuel price, the results of optimization, in terms of optimal synthesis 
and design are presented in Tables 5.81 and 5.82. Optimal values for hours of operation, 
round trips per season and total trips per year are given in Table 5.83. Optimal cost values 

for the system are given in Table 5.84. Optimal values of certain control variables per time 
interval and for all seasons are presented in Tables 5.85 – 5.88. 
 
 

Table 5.81. Optimal synthesis of the system. 
 

Type of Propulsion engines 2 – X Diesel 

Number of diesel engines (prime movers) 1 
Number of HRSGs 1 

Number of steam turbines 1 

Number of DG sets 1 

Number of auxiliary boilers 1 

 
 

Table 5.82. Optimal design specifications of the system components. 

 

Variable Optimal Value 
Main engine nominal brake power (kW) 21459 

DG set 1 nominal electric power (kW) 1500 

DG set 2 nominal electric power (kW) – 

Heat recovery steam generator 

Thermal power (kW) 3566 

Exhaust gas mass flow rate (kg/s) 39.2 

Nominal inlet exhaust gas temperature (oC) 250 

Auxiliary boiler nominal thermal power (kW) 950 
Steam-turbine 

Nominal power (kW) 724 

Nominal steam mass flow rate (kg/s) 1.11 
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Table 5.83. Hours of operation and round trips per season. 
 

Season Summer Fall Winter Spring 

Hours of operation     
Trip from port A to B (days) 8 8 8 8 

Trip from port B to A (days) 8 8 8 8 

Round trip duration (days) 20 20 20 20 

Number of round trips 4.3 4.3 3 4.4 

Total round trips per year 16 

 

 
Table 5.84. Cost items (in €). 

 
Season Summer Fall Winter Spring 

Present worth cost of fuel 14,540,709 14,755,292 11,268,793 14,749,692 

Present worth cost of O&M 1,694,455 1,718,192 1,292,969 1,727,540 

Capital cost 10,310,417 

Total PWC (objective function) 72,058,059 

 
 

Table 5.85. Optimal ship speed versus time (in kn). 

 

Day Summer Fall Winter Spring 

 From port A to B 

1 15.79 15.77 15.88 15.73 

2 15.68 15.68 15.77 15.66 
3 15.74 15.74 15.81 15.70 

4 15.77 15.77 15.88 15.70 

5 15.37 15.39 15.36 15.47 

6 15.55 15.55 15.44 15.58 

7 15.49 15.48 15.40 15.50 

8 15.59 15.56 15.44 15.55 

 From port B to A 

1 15.43 15.42 15.42 15.55 
2 14.41 14.10 13.43 14.69 

3 16.19 16.30 16.87 16.01 

4 16.01 16.04 16.45 15.89 

5 15.70 15.71 15.77 15.75 

6 15.75 15.81 15.69 15.70 

7 15.70 15.75 15.73 15.75 

8 15.63 15.80 15.71 15.70 
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Table 5.86. Propulsion power from diesel engine(s) and ST versus time (in kW). 

 

Day 

Summer Fall Winter Spring 

bW  
STPW  

bW  
STPW  

bW  
STPW  

bW  
STPW  

From port A to port B 

1 16331 0 16391 0 16796 0 16102 0 

2 16431 0 16474 0 16892 0 16157 0 

3 16371 0 16418 0 16856 0 16120 0 

4 16345 0 16391 0 16796 0 16125 0 

5 16703 0 16740 0 17262 0 16322 0 

6 16548 0 16593 0 17193 0 16226 0 

7 16555 0 16599 0 17250 0 16220 0 
8 16561 0 16611 0 17234 0 16231 0 

 From port B to port A 

1 18965 0 19441 0 21459 551 18671 0 

2 19730 0 20171 0 21459 551 19468 0 

3 18297 0 18674 0 21459 551 18267 0 

4 18470 0 18916 0 21459 551 18377 0 

5 18749 0 19211 0 21459 551 18496 0 

6 18702 0 19127 0 21459 551 18541 0 
7 18798 0 19220 0 21459 551 18550 0 

8 18755 0 19221 0 21459 551 18545 0 

 
 

Table 5.87 Contribution of the HRSG and auxiliary boiler to thermal loads versus time for 
all seasons (in kW). 

 

 Summer Fall Winter Spring 

Day hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

hQ  
ABQ  

From port A to port B 
1 850 0 860 0 1000 0 990 0 

2 880 0 900 0 1050 0 980 0 

3 860 0 950 0 1080 0 1010 0 

4 900 0 970 0 1100 0 1020 0 

5 840 0 930 0 1060 0 950 0 

6 850 0 960 0 1100 0 970 0 

7 845 0 959 0 1100 0 980 0 

8 851 0 963 0 1090 0 970 0 
 From port B to port A 

1 860 0 930 0 1100 0 1040 0 

2 870 0 950 0 1080 0 970 0 

3 870 0 980 0 1060 0 960 0 

4 890 0 970 0 990 0 950 0 

5 860 0 890 0 1040 0 980 0 

6 870 0 910 0 1070 0 960 0 

7 880 0 920 0 1080 0 970 0 
8 870 0 910 0 1050 0 960 0 
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 Ports 

A 0 950 0 950 0 950 0 950 

B 0 950 0 950 0 950 0 950 

 
 

Table 5.88. Electric power of STG and DG set versus time for all seasons (in kW).  

 

Day 
Summer Fall Winter Spring 

STGW  
1DGW  

STGW  
1DGW  

STGW  
1DGW  

STGW  
1DGW  

 From port A to Port B 

1 632 863 631 877 604 878 589 1036 

2 626 973 622 951 593 993 593 1006 

3 630 930 608 939 584 898 585 962 
4 619 895 602 958 577 931 582 913 

5 643 865 621 874 599 987 605 929 

6 637 858 609 886 587 908 598 923 

7 634 856 609 886 597 988 600 926 

8 637 858 609 886 634 856 594 926 

 From port B to port A 

1 689 936 680 867 122 1412 635 886 

2 702 858 682 943 127 1394 670 955 
3 672 862 651 1013 132 1493 647 926 

4 670 851 659 849 151 1500 652 973 

5 684 876 686 815 138 1357 647 952 

6 681 840 679 868 130 1391 653 933 

7 594 926 675 864 594 926 650 930 

8 600 926 679 871 596 925 650 930 

 Ports 

A 0 1500 0 1500 0 1500 0 1500 
B 0 1500 0 1500 0 1500 0 1500 

 

 
 The optimal present worth cost after 20 years of operation is 72,058,059 €. The 
optimization was concluded in 7100 seconds, performing 32 Major NLP iterations at an 
Intel® Core™2 Quad Processor Q9650 cpu at 3GHz with 8Gb of RAM. 

 A two-stroke diesel engine along with one HRSG, one ST and one diesel generator set 
are selected for the optimal synthesis of the system. As in Case Study 3, in order to make 
the system cost effective, the optimizer selects as optimal duration for all trips in all 
seasons the upper limit of 8 days. This leads to a significant decrease in the nominal power 

design characteristics of the diesel engine, the HRSG and the ST when compared to those 
of Case Study 5. This is expected, since the increase of the trip durations leads to lower 
average speeds (for all trips) which translates to lower propulsion power. 
 The HRSG serves all thermal demands during trips. Also, it is noteworthy that all ST 

power is directed to the electric loads except of the case of trip from port B to port A in 
winter, where the propulsion demands are augmented due to the weather, and 
approximately 75% of the total ST power output is provided to the propeller.  
 When comparing with the equivalent Case Study 3, the choice of a two stroke diesel 

engine instead of a gas turbine leads to a 27% decrease in the value of the optimal PWC 



184 Case Studies 

and to a 10% increase in nominal power output of the propulsion plant. This has been 
discussed in Section 5.6.5 and the same comments apply here. 
 
 

 5.7.6 Parametric study 
 
 For the sensitivity analysis the fuel price is considered to vary. Apart from the nominal 
value of 300 €/ton, four more values were considered: 200, 400, 500 and 600 €/ton. 

Selected sensitivity analysis results regarding the optimal synthesis and design 
characteristics of the system are presented in Tables 5.89 and 5.90. The variation of the 
optimal PWC is given in Table 5.91. The optimal trip durations, round trips per season and 
total round trips per year are given in Tables 5.92 and 5.93. 

 
 

Table 5.89. Effect of fuel price on the optimal synthesis of the system. 
 

 Fuel Price (€/ton) 200 300 400 500 600 

S
y

n
th

e
si

s 

DEs 1 1 1 1 1 

HRSGs – 1 1 1 1 

STs – 1 1 1 1 

DG sets 1 1 1 1 1 

AB 1 1 1 1 1 
 

 
Table 5.90. Effect of fuel price on the optimal design specifications of the system.  

 

 Fuel Price (€/ton) 200 300 400 500 600 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

DE 22010 21459 21797 22665 23414 

HRSG – 3566 3588 3611 3629 

ST – 724 744 750 762 

DG set 1 1664 1500 1500 1500 1500 
DG set 2 – – – – – 

AB 1100 950 950 950 950 

 
 

Table 5.91. Effect of fuel price on the optimal PWC. 
 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 9,076,406 10,310,417 10,404,230 10,603,600 10,769,740 
Fuel PWC (total) 39,066,143 55,314,486 73,607,171 91,767,488 109,912,009 

OPM PWC (total) 5.628.583 6,433,156 6,432,542 6,440,651 6,450,140 

Total PWC 
(objective) 

53,771,132 72,058,059 90,443,943 108,811,739 127,131,889 

Total PWR 215,363,516 215,363,516 215,363,516 215,363,516 215,363,516 

NPV 161,592,384 143,305,457 124,919,573 106,551,776 88,231,627 
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Table 5.92. Effect of fuel price on the optimal trip durations (numbers in days). 
 

Trip 
Fuel Price (€/ton) 

200 300 400 500 600 
Summer 1 8 8 8 8 8 

Summer 2 8 8 8 8 8 

Fall 1 8 8 8 8 8 

Fall 2 8 8 8 8 8 

Winter 1 8 8 8 8 8 

Winter 2 8 8 8 8 8 

Spring 1 8 8 8 8 8 

Spring 2 8 8 8 8 8 
 

 
Table 5.93. Effect of fuel price on the optimal number of round. 

 

Season 
Fuel Price (€/ton) 

200 300 400 500 600 

Summer 4.3 4.3 4.3 4.3 4.3 

Fall 4.3 4.3 4.3 4.3 4.3 

Winter 3 3 3 3 3 
Spring 4.4 4.4 4.4 4.4 4.4 

Total per year 16 16 16 16 16 

 
 

 Considering the sensitivity analysis results, it is observed that all optimal trip durations 
for all seasons go to the upper limit of 8 days. In all fuel prices, a single two-stroke diesel 
engine is selected for the propulsion plant. A bottoming cycle with a single HRSG and a 
single ST is always installed, with the exception of fuel price 200 €/ton. Also, one diesel 

generator set is always installed for all fuel prices. In the case of fuel price 200 €/ton the 
selection of a single DG set can be explained by the same logic that was presented in the 
comments of Section 5.6.6. For the rest fuel prices, it is noted that in comparison with the 
previous case study, the ship speed at all trips is severely diminished and this leads to a 

significant decrease in the power output of the propulsion plant. Thus, in all cases, a 
bottoming cycle of lower power output (than in Case Study 5) is installed that serves a 
smaller percentage of electric loads during trips when compared to Case Study 5. Now, the 
remaining electric demand (that cannot be covered by the STG) is higher (820‒1050 kW) 

and the installation of a single DG set (instead of two) is cost effective, in terms of capital 
and fuel consumption costs. 
 Lastly, for fuel price 300 €/ton and above, it is observed that the nominal (design) 
values of the diesel engine and the bottoming cycle components seem to increase slightly 

as the fuel price rises. 
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5.8 Case Study 7: Containership with 4-X Diesel engines, 2-X Diesel Engines and 

Gas Turbines, Trips of Variable Time, Maximization of NPV 
 

 5.8.1 Description of the system and the optimization problems  

 
 The description of the energy system and the optimization problem for Case Study 7 is 
similar as in Case Study 4 with the main difference that more technology alternatives are 
now allowed for the synthesis of the propulsion plant. Specifically, apart from the three 

possible gas turbine types, two-stroke and four-stroke diesel engines are also available for 
installation.  
 All the details about the problem and the energy system can be found in Section 5.5.1 
of Case Study 4. The superconfiguration of the energy system can is depicted in Figure 

5.21. 
 
 

 5.8.2 Mathematical statement of the optimization problem 

 
 The dynamic optimization problem can be mathematically stated by using the DAE 
formulation that was presented in Section 5.4.2 of Case Study 3. Maximization of the 
NPV, Eqs. (5.38), (5.39), is used as the objective function with vector x , representing the 

vector of control (optimization) variables, consisting of the vectors of synthesis, design and 

operation optimization variables as stated in Eqs. (5.41)-(5.44j) and vector ft  representing 

the vector of control (optimization) variables consisting of the the single trip durations as 

stated in Eqs. (5.36).  
 
 

 5.8.3 Additional data and assumptions 

 
 The same containership, as in Case Studies 2‒6, with carrying capacity 9572 TEU and 
DWT of 111529 MT is considered with the same round trip distance of 6000 nm. 
 Values of certain cost parameters that are used for the PWC calculations are given in 

Table 5.53. Considering the type of fuel for each component and the corresponding LHV’s, 
the same considerations as in Cases Studies 5 and 6 are made. In Table 5.80 a list of lower 
and upper bounds of certain synthesis, design and operation variables is presented. Details 
regarding the time discretization that is used in order to model the operation of the energy 

system for the total time horizon and other numerical solution parameters are given in 
Table 5.38. 
 
 

 5.8.4 Solution procedure  
 
 The same comments as in Section 5.7.4 can be repeated here. 
 

 

 5.8.5 Numerical results for nominal case  
 
 The results of optimization, in terms of optimal synthesis and design are presented in 

Tables 5.94 and 5.95. Optimal round trip duration and hours of operation for each season 
are given in Table 5.96. Optimal cost values for each component of the system and 
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revenues are given in Table 5.97. Optimal values of certain control variables per time 
interval and season are presented in Tables 5.98 – 5.101. 
 
 

Table 5.94. Optimal synthesis of the system. 
 

Type of propulsion engines 2 – X Diesel 

Number of diesel engines (prime movers) 1 
Number of HRSGs 1 

Number of steam turbines 1 

Number of DG sets 1 

Number of auxiliary boilers 1 

 
Table 5.95. Optimal design specifications of the system components. 

 

Variable 
Optimal 

Value 
Main engine nominal brake power (kW) 22411 

DG set 1 nominal electric power (kW) 1500 

DG set 2 nominal electric power (kW) – 

Heat recovery steam generator 

Thermal power (kW) 4115 

Exhaust gas mass flow rate (kg/s) 41.8 

Nominal inlet exhaust gas temperature (oC) 252.5 

Auxiliary boiler nominal thermal power (kW) 950 
Steam-turbine 

Nominal power (kW) 836 

Nominal steam mass flow rate (kg/s) 1.24 

 
Table 5.96. Hours of operation and round trips per season. 

 
Season Summer Fall Winter Spring 

Hours of operation 2143 2151 1464 2186 

Trip from port A to B duration (days) 7.61 7.62 7.68 7.59 

Trip from port B to A duration (days) 7.81 7.87 8 7.79 

Round trip duration (days) 19.42 19.49 19.68 19.38 

Number of round trips 4.6 4.6 3.1 4.7 

Total round trips per year 17 

 
Table 5.97. Cost items (in €). 

 

Season Summer Fall Winter Spring 

Present worth of revenue 61,917,011 61,917,011 41,726,681 63,263,033 

Present worth cost of fuel 16,481,054 16,587,940 11,901,074 16,789,753 

Present worth cost of O&M 1,927,287 1,942,087 1,383,655 1,969,489 
Capital cost 10,665,380 

Total PWC 79,647,719 

Total present worth of revenue 228,823,736 

Net Present Value (obj) 149,176,017 



188 Case Studies 

Table 5.98. Optimal ship speed versus time (in kn). 
 

Summer Fall Winter Spring 

Day V  Day V  Day V  Day V  

From port A to port B 

1 16.59 1 16.55 1 16.51 1 16.58 

2 16.47 2 16.46 2 16.40 2 16.51 

3 16.54 3 16.52 3 16.44 3 16.55 

4 16.57 4 16.55 4 16.51 4 16.55 
5 16.18 5 16.17 5 16.00 5 16.33 

6 16.35 6 16.33 6 16.08 6 16.44 

7 16.33 7 16.34 7 16.01 7 16.35 

7.61 16.36 7.62 16.32 7.68 16.18 7.59 16.50 

 From port B to port A 

1 15.80 1 15.68 1 15.49 1 15.98 

2 14.82 2 14.40 2 13.58 2 15.09 

3 16.55 3 16.55 3 16.68 3 16.43 
4 16.37 4 16.30 4 16.34 4 16.31 

5 16.06 5 15.97 5 15.78 5 16.18 

6 16.11 6 16.06 6 15.71 6 16.13 

7 16.05 7 15.95 7 15.69 7 16.10 

7.81 16.17 7.87 16.11 8 15.73 7.79 16.18 

 
 
Table 5.99. Propulsion power from diesel engine(s) and ST versus time (in kW). 

 

Summer Fall Winter Spring 

Day bW  
STPW  Day bW  

STPW  Day bW  
STPW  Day bW  

STPW  

 From port A to port B 

1 19000 0 1 18991 0 1 18924 0 1 18935 0 

2 19108 0 2 19080 0 2 19026 0 2 18995 0 
3 19043 0 3 19020 0 3 18989 0 3 18955 0 

4 19015 0 4 18991 0 4 18924 0 4 18960 0 

5 19398 0 5 19362 0 5 19418 0 5 19171 0 

6 19232 0 6 19206 0 6 19345 0 6 19069 0 

7 19240 0 7 19225 0 7 19314 0 7 19100 0 

7.61 19290 0 7.62 19208 0 7.68 19423 0 7.59 19050 0 

 From port B to port A 

1 20188 53 1 20356 0 1 21889 358 1 20158 0 
2 20310 776 2 21047 128 2 22131 422 2 20762 45 

3 19536 0 3 19549 0 3 21145 122 3 19731 0 

4 19717 0 4 19802 0 4 21415 174 4 19847 0 

5 20011 0 5 20113 0 5 21683 373 5 19973 0 

6 19962 0 6 20024 0 6 21752 352 6 20020 0 

7 19980 0 7 20100 0 7 21761 345 7 20010 0 

7.81 19960 0 7.87 20050 0 8 21751 353 7.79 20030 0 
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Table 5.100. Contribution of the HRSG and auxiliary boiler to thermal loads versus time 
for all seasons (in kW). 
 

Summer Fall Winter Spring 

Day hQ  
ABQ  Day hQ  

ABQ  Day hQ  
ABQ  Day hQ  

ABQ  

 From port A to port B 

1 850 0 1 860 0 1 1000 0 1 990 0 

2 880 0 2 900 0 2 1050 0 2 980 0 

3 860 0 3 950 0 3 1080 0 3 1010 0 

4 900 0 4 970 0 4 1100 0 4 1020 0 

5 840 0 5 930 0 5 1060 0 5 950 0 

6 850 0 6 960 0 6 1100 0 6 970 0 
7 845 0 7 959 0 7 1100 0 7 980 0 

7.61 851 0 7.62 963 0 7.68 1090 0 7.59 970 0 

 From port B to port A 

1 860 0 1 930 0 1 1100 0 1 1040 0 

2 870 0 2 950 0 2 1080 0 2 970 0 

3 870 0 3 980 0 3 1060 0 3 960 0 

4 890 0 4 970 0 4 990 0 4 950 0 

5 860 0 5 890 0 5 1040 0 5 980 0 
6 870 0 6 910 0 6 1070 0 6 960 0 

7 880 0 7 920 0 7 1080 0 7 970 0 

7.81 870 0 7.87 910 0 8 1050 0 7.79 960 0 

 Ports 

A 0 950 A 0 950 A 0 950 A 0 950 

B 0 950 B 0 950 B 0 950 B 0 950 

 
 

Table 5.101. Electric power of STG and DG versus time for all seasons (in kW).  
 

Summer Fall Winter Spring 

Day STGW  
1GW  Day STGW  

1GW  Day STGW  
1GW  Day STGW  

1GW  

 From port A to port B 

1 786 709 1 784 724 1 745 737 1 748 877 
2 781 818 2 775 798 2 734 852 2 752 847 

3 785 775 3 760 787 3 725 757 3 743 804 

4 774 740 4 755 805 4 719 789 4 741 754 

5 798 710 5 774 721 5 741 845 5 764 770 

6 792 703 6 762 733 6 728 767 6 756 765 

7 789 701 7 762 733 7 721 763 7 757 769 

7.61 792 703 7.62 762 733 7.68 725 765 7.59 755 765 

 From port B to port A 
1 758 867 1 796 751 1 425 1109 1 763 758 

2 35 1525 2 678 947 2 371 1150 2 749 876 

3 794 740 3 765 899 3 656 969 3 774 799 

4 792 729 4 773 735 4 628 1023 4 779 846 

5 807 753 5 801 700 5 422 1073 5 774 825 
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6 803 718 6 794 753 6 436 1085 6 781 805 

7 801 719 7 790 749 7 434 1086 7 780 804 

7.81 803 722 7.87 793 757 8 436 1085 7.79 780 802 

 Ports 

A 0 1500 A 0 1500 A 0 1500 A 0 1500 

B 0 1500 B 0 1500 B 0 1500 B 0 1500 
 

 
 The optimal NPV after 20 years of operation is 149,176,017 €. The optimal number of 
total round trips per year is 17. The optimization was concluded in 11060 seconds, 
performing 41 Major NLP iterations at an Intel® Core™2 Quad Processor Q9650 cpu at 

3GHz with 8Gb of RAM. 
 For the nominal values of fuel price and freight rate, one two-stroke diesel engine with 
a single HRSG, a single ST and one diesel generator set are installed. Unlike the equivalent 
nominal case in Case Study 4, trip durations in each season do not go to the upper limit, 

and compared to Case Studies 4 and 6, average speeds per season are slightly augmented 
as one extra trip is performed per year.  
 Thermal loads are always fully covered by the bottoming cycle and the ST power 
output is given to serve the electric loads with the exception of the return trip in winter, 

when brake power demand is the highest and 35% ‒on average‒ of the ST power output is 
directed to the propeller. 
 
 

 5.8.6 Parametric study 
 
 For the sensitivity analysis, variation of the fuel price and the freight rate is 
considered. For the fuel price, in consistency with the PWC study, apart from the nominal 

value of 300 €/ton, four more values were considered: 200, 400, 500 and 600 €/ton. For the 
freight rate, apart from the nominal, the double price is also considered. Sensitivity 
analysis results regarding the optimal synthesis and design characteristics of the system are 
presented in Tables 5.102a,b and 5.103a,b. The variation of the optimal NPV is given in 

Tables 5.104a,b. Tables 5.105a,b and 5.106a,b summarize the effect of fuel price and 
freight rate on the optimal trip durations and number of round trips per season for the 
whole year. 
 

 
Table 5.102a. Effect of fuel price on the optimal synthesis of the system for nominal freight 

rate. 
 

 Fuel Price (€/ton) 200 300 400 500 600 

S
y

n
th

e
si

s 

DEs 1 1 1 1 1 

HRSGs – 1 1 1 1 

STs – 1 1 1 1 

DG sets 1 1 1 1 1 

AB 1 1 1 1 1 
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Table 5.102b. Effect of fuel price on the optimal synthesis of the system for double freight 
rate. 

 

 Fuel Price (€/ton) 200 300 400 500 600 

S
y

n
th

e
si

s 

DE 1 1 1 1 1 

HRSG – 1 1 1 1 

ST – 1 1 1 1 
DG 1 2 2 2 2 

AB 1 1 1 1 1 

 
 

Table 5.103a. Effect of fuel price on the optimal design specifications of the system for 
nominal freight rate price. 

 

 Fuel Price (€/ton) 200 300 400 500 600 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

DE 31051 22411 21797 22665 23414 

HRSG – 4115 3588 3611 3629 

ST – 836 744 750 762 

DG 1 1664 1500 1500 1500 1500 
DG 2 – – – – – 

AB 1100 950 950 950 950 

 
 

Table 103b. Effect of fuel price on the optimal design specifications of the system for 
double freight rate. 

 

 Fuel Price (€/ton) 200 300 400 500 600 

N
o

m
in

a
l 

p
o

w
e
r 

(k
W

) 

DE 64117 48114 38359 32019 27224 

HRSG – 8456 6713 5364 4562 

ST – 1882 1477 1150 934 

DG 1 1664 490 326 610 697 
DG 2 – 1020 1180 900 812 

AB 1100 950 950 950 950 

 
 

Table 5.104a. Effect of fuel price on the optimal NPV for nominal freight rate . 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 10,954,420 10,665,380 10,404,230 10,603,600 10,769,740 
Fuel PWC (total) 56,663,379 61,759,821 73,607,171 91,767,488 109,912,009 

OPM PWC (total) 8,073,774 7,222,518 6,432,542 6,440,651 6,450,140 

Total PWC 75,691,573 79,647,719 90,443,943 108,811,739 127,131,889 

Total PWR 242,283,956 228,823,736 215,363,516 215,363,516 215,363,516 

NPV (objective) 166,592,383 149,176,017 124,919,573 106,551,776 88,231,627 
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Table 5.104b. Effect of fuel price on the optimal NPV for double freight rate . 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

200 300 400 500 600 
Capital Cost 16,525,690 17,161,440 14,994,690 13,501,900 12,315,590 

Fuel PWC (total) 102,168,004 110,804,019 119,978,572 125,697,852 128,678,938 

OPM PWC (total) 14,573,599 12,949,546 10,548,733 8,856,380 7,566,637 

Total PWC 133,267,293 140,915,005 145,521,995 148,056,132 148,561,165 

Total PWR 565,329,230 538,408,790 511,488,351 484,567,911 457,647,472 

NPV (objective) 432,061,936 397,493,785 365,966,355 336,511,779 309,086,306 

 
 

Table 5.105a. Effect of fuel price on the optimal trip durations for nominal freight rate 
(numbers in days). 

 

Trip 
Fuel Price (€/ton) 

200 300 400 500 600 

Summer 1 6.78 7.61 8 8 8 

Summer 2 6.93 7.81 8 8 8 

Fall 1 6.79 7.62 8 8 8 

Fall 2 6.97 7.87 8 8 8 

Winter 1 6.82 7.68 8 8 8 

Winter 2 7.14 8 8 8 8 

Spring 1 6.77 7.59 8 8 8 
Spring 2 6.99 7.79 8 8 8 

 

 
Table 5.105b. Effect of fuel price on the optimal trip durations for double freight rate  

(numbers in days). 
 

Trip 
Fuel Price (€/ton) 

200 300 400 500 600 

Summer 1 5.57 6.08 6.54 6.97 7.38 

Summer 2 5.64 6.18 6.66 7.12 7.56 

Fall 1 5.57 6.09 6.56 6.97 7.39 

Fall 2 5.65 6.20 6.69 7.15 7.61 
Winter 1 5.58 6.11 6.57 7.01 7.44 

Winter 2 5.72 6.30 6.83 7.34 7.83 

Spring 1 5.56 6.08 6.53 6.95 7.36 

Spring 2 5.63 6.16 6.65 7.10 7.54 

 
 
Table 5.106a. Effect of fuel price on the optimal number of round trips for nominal freight 

rate. 
 

Season 
Fuel Price (€/ton) 

200 300 400 500 600 

Summer 4.9 4.6 4.3 4.3 4.3 
Fall 4.8 4.6 4.3 4.3 4.3 
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Winter 3.4 3.1 3 3 3 

Spring 4.9 4.7 4.4 4.4 4.4 

Total per year 18 17 16 16 16 

 
 
Table 5.106b. Effect of fuel price on the optimal number of round trips for double freight 

rate. 
 

Season 
Fuel Price (€/ton) 

200 300 400 500 600 
Summer 5.7 5.3 5.1 4.8 4.7 

Fall 5.6 5.5 5.2 4.9 4.5 

Winter 4 3.7 3.5 3.3 3.1 

Spring 5.7 5.5 5.2 5.0 4.7 

Total per year 21 20 19 18 17 

 
 
 For all fuel price and freight rate values a single two-stroke diesel engine is installed. 

For both freight rates and fuel prices 300 €/ton and above, a bottoming cycle is installed 
with a single HRSG and ST, while for fuel price 200 €/ton and all freight rates no 
bottoming cycle is installed. For double freight rate and fuel price 300 €/ton and above two 
diesel generator sets are installed, while in all other cases a single diesel generator set is 

selected. Thermal loads are always fully covered by the bottoming cycle, when installed; 
alternatively an auxiliary boiler of higher nominal power output is installed. 
 Trip durations generally seem to increase as fuel price rises (need for cost effective 
system) and for nominal freight rate and fuel price 400 €/ton and above they reach their 

upper limit. In those cases, all solutions are the same as the solutions for minimization of 
PWC (for variable time) of Case Study 6, since the optimal trip durations coincide with the 
upper limit (8 days). 
 It is interesting the fact that for double freight rate and fuel price at 200 €/ton, all trip 

durations fall under the 6 day duration, that is considered as the nominal trip duration for 
all trips and was examined in Case Study 5. 
 For nominal freight rate and fuel price values 300 €/ton and above, the diesel engine 
nominal power is low (21 ‒ 24 MW) since speeds are decreased, thus reducing the 

available thermal energy of the exhaust gas. As a result a ST in the area of 750 – 850 kW is 
designed in all cases. This was also the case in Case Study 6 and the same argument that 
was stated in Section 5.7.6 applies here: Due to the small power output of the ST, the 
installation of two generator sets is no longer optimal since at most 50% of electric loads 

can be covered during trips by the STG. Thus, the installation of a single diesel generator 
set is prefered. However, for double freight rate, ship speeds are higher and thus the 
nominal power output is higher (28 – 64 MW). This, as was also the case in Case Study 5, 
means that the bottoming cycle system is of higher nominal power output too and can 

serve a large percentage of electric loads during trips leaving only a small remainder that is 
covered by a DG set of low power output. Thus, for the same reasons explained in Section 
5.6.6, two diesel generator sets are installed.  
 Considering the total round trips per year, it is noted that the maximum number of 

round trips per year is observed in the lowest fuel price for both freight rates. For nominal 
freight rate, the number of round trips per year remains the same (at its lower limit) for fuel 
price 400 €/ton and above while for double freight rate, the number of round trips per year 
decreases as the fuel price increases. Once more, as it was observed in Case Study 4, it is 
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evident that, as freight rates increase, the need for more trips (and more revenue) becomes 
more important than cost effectiveness. 
 
 

5.9 Comparison with a Conventional Energy System 
 
 The containership considered in Case Studies 2‒7 is based on an existing 
containership whose energy system synthesis as well as the design characteristics of its 

components are known. This provides us with the opportunity to consider several possible 
operational profiles (for the remaining operational variables since now synthesis and 
design variables are defined) and simulate the performance of the original‒existing energy 
system for the characteristic “6000 nm round trip per season” scenario that is used in all 

problems throughout Case Studies 2‒7. The synthesis and design characteristics of the 
energy system are given in Tables 5.107 and 5.108 respectively. The system consists of 
one large 2 – X Diesel engine, two DG sets, and two boilers: an exhaust gas and an 
auxiliary. Also, no bottoming cycle is installed.  

 Considering the mission profile, the same time schedule as in Case Studies 2 and 5 is 
assumed. For each season, the trip durations, from port A to B and conversely, are fixed 
and are given in Table 5.109. For the ship speed, three different cases, A, B and C, are 
considered (Tables 5.110a,b,c). Case A is constructed based on the idea of slow steaming. 

Thus, in each trip, the ship is set to travel through the "bad weather" regions, with very low 
speeds. For the rest of the trip the speeds are set as near as possible to the nominal speed of 
24 kns, adapted accordingly so as to ensure that the ship will cover the required distance of 
3000 nm over exactly 6 days. The same strategy is followed in Cases B and C, however 

now all these low speeds throughout the bad weather regions are increased by 2 kns (and 
the rest adapted accordingly) for Case B and 3 kns for Case C. 
 
 

Table 5.107. Synthesis of the system. 
 

Type of propulsion engines 2 – X Diesel 

Number of diesel engines 1 
Number of HRSGs ‒ 

Number of steam turbines ‒ 

Number of DG sets 2 

Number of exhaust gas boilers 1 

Number of auxiliary boilers 1 

 
 

Table 5.108. Design specifications of the system components. 

 
Component Value 

Main engine nominal brake power (kW) 69439 

DG set 1 nominal electric power (kW) 2880 

DG set 2 nominal electric power (kW) 2880 

Exhaust gas boiler nominal thermal power (kW) 3400 

Auxiliary boiler nominal thermal power (kW) 3800 
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Table 5.109. Time schedule of the ship. 
 

Season Summer Fall Winter Spring 

Trip from port A to B (days) 6 6 6 6 

Trip from port B to A (days) 6 6 6 6 

Round trip duration (days) 16 16 16 16 

Number of round trips 5.4 5.4 3.7 5.5 

Total round trips per year 20 

 
 

Table 5.110a. Ship speed versus time for case A (in kn). 

 

Day Summer Fall Winter Spring 

 From port A to B 

1 23 23 23.5 22.5 

2 21 21 22 22 

3 22 22 22.5 22.5 
4 23 23 23.5 22 

5 17 17 17 18 

6 19 19 16.5 18 

 From port B to A 

1 17.5 17 19 21 

2 16.5 15.5 14.5 17 

3 23.5 23.5 23.5 22.5 

4 23 23.5 23 22.5 
5 22.5 22.5 22.5 21 

6 22 23 22.5 21 

 
 

Table 5.110b. Ship speed versus time for case B (in kn). 
 

Day Summer Fall Winter Spring 

 From port A to B 

1 22 22 22.5 21.5 

2 20 20 21 21 

3 21 21 21.5 21.5 

4 22 22 22.5 21 

5 19 19 19 20 
6 21 21 18.5 20 

 From port B to A 

1 19.5 19 21 20.5 

2 18.5 17.5 16.5 19 

3 22.5 22.5 22.5 21.5 

4 22 22.5 22 21.5 

5 21.5 21.5 21.5 20.5 

6 21 22 21.5 20.5 
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Table 5.110c. Ship speed versus time for case C (in kn). 
 

Day Summer Fall Winter Spring 

 From port A to B 

1 21 21 21.5 21 

2 20 20 21 20 

3 21 21 21.5 21 

4 22 22 21.5 21 
5 20 20 20 21 

6 21 21 19.5 21 

 From port B to A 

1 20.5 20 21 20.5 

2 19.5 18.5 17.5 20 

3 21.5 21.5 22.5 21.5 

4 21 21.5 22 21 

5 21.5 21.5 21 21 
6 21 22 21 21 

 

 
 In Table 5.111 economic data from the simulation of Cases A, B and C are presented 
in comparison with the optimal solution of the nominal case of Case Study 5 (minimization 
of PWC). It is observed that Cases A, B and C all give a higher PWC than the minimum 

PWC value calculated in Case Study 5. The fact that Case C has the lower PWC among the 
three simulated cases is not surprising once we observe closely the optimal ship speed 
profile (Table 5.74) of Case Study 5; in Case C the proposed ship speed profile happens to 
be closer to the optimal ship speed profile. For the specific time schedule and weather 

characteristics of the problem the strategy of decreasing too much the ship speed in regions 
of bad weather leads to severe increase of the speeds in the remaining intervals, thus 
resulting in augmented and far from optimal fuel consumptions. This is partly alleviated in 
Cases B and C, where a smaller decrease of speed in bad weather regions is enforced. Of 

course, this is not a general result that applies in all problems of this kind; in fact it is 
dependent on the specific weather conditions and mission profile considered. 
 Next, the calculations of the PWC and NPV for Cases A, B and C and for all fuel 
prices and freight rates are performed. The results are presented in Tables 5.112a,b,c. It is 

observed that for each fuel price the optimum (minimum) PWC values from Case Studies 5 
and 6 are lower than the respective PWC values from Cases A, B and C. Also, for each 
fuel price and freight rate, the optimum (maximum) NPV value from Case Study 7 is 
higher than the calculated NPV values from Cases A, B and C. These results are expected 

and serve as an indication\validation of the good functionality of the optimization 
procedure.  
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Table 5.111. Comparison of economic data between Cases A, B, C and the optimal 
solution of Case Study 5 at nominal fuel price (300 €/ton). 

 

Costs\Revenue (€) 
Case 

A B C 
Case Study 5 

(Optimal PWC) 

Capital Cost 19,333,390 19,333,390 19,333,390 17,984,660 
Fuel PWC  131,668,600 124,626,200 123,111,700 117,262,580 

OPM PWC 12,622,180 12,033,030 11,901,370 13,647,931 

Total PWC 163,624,100 155,992,620 154,346,460 148,895,171 

PWR (nominal freight rate) 269,204,395 269,204,395 269,204,395 269,204,395 

NPV (nominal freight rate) 105,580,295 113,211,775 114,857,935 120,309,225 

PWR (double freight rate) 538,408,790 538,408,790 538,408,790 538,408,790 

NPV (double freight rate) 374,784,690 382,416,170 384,062,330 389,513,620 

 
 

Table 5.112a. PWC for Cases A, B, C and Case Studies 5, 6 for all fuel prices (in €). 
 

Case 
Fuel Price (€/ton) 

200 300 400 500 600 

Case A 119,734,637 163,624,100 207,513,703 251,403,237 295,292,770 

Case B 114,450,553 155,992,620 197,534,687 239,076,753 280,618,820 

Case C 113,309,227 154,346,460 195,383,693 236,420,927 277,458,160 

Case Study 5 109,277,392 148,895,171 187,946,022 226,679,468 265,556,323 
Case Study 6 53,771,132 72,058,059 90,443,943 108,811,739 127,131,889 

 

 
Table 5.112b. NPV for Cases A, B, C and Case Study 7 for all fuel prices and nominal 

freight rate (in €). 
 

Case 
Fuel Price (€/ton) 

200 300 400 500 600 

Case A 149,469,658 105,580,195 61,690,592 17,801,058 -26,088,475 

Case B 154,753,742 113,211,675 71,669,608 30,127,542 -11,414,525 

Case C 155,895,168 114,857,935 73,820,702 32,783,468 -8,253,765 

Case Study 7 166,592,383 149,176,017 124,919,573 106,551,776 88,231,627 
 

 
Table 5.112c. NPV for Cases A, B, C and Case Study 7 for all fuel prices and double 

freight rate (in €). 
 

Case 
Fuel Price (€/ton) 

200 300 400 500 600 

Case A 418,674,153 374,784,620 330,895,087 287,005,553 243,116,020 

Case B 423,958,237 382,416,170 340,874,103 299,332,037 257,789,970 

Case C 425,099,563 384,062,330 343,025,097 301,987,863 260,950,630 

Case Study 7 432,061,936 397,493,785 365,966,355 336,511,779 309,086,306 
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5.10 General Comments 
 

 5.10.1 Comments on convergence, computational times and global optimization 
 

 For the solution of all the DO problems in Case Studies 1‒7 two main convergence 
criteria are used to denote a successful optimization The primary convergence criterion 
consists of four tolerances that must be simultaneously satisfied for a solution to be 
reached: 

 
1. Feasibility tolerance calculates the magnitude of the sum over all constraint and 

bound violations. 
2. Complementarity tolerance represents the sum over all violation of constraints and 

bounds weighted by their influence on the gradient of the objective function. 
3. Taylor tolerance represents the rate of change in the objective function between two 

iterations. 
4. Optimization tolerance serves as a measure of proximity to a local optimum. 

Convergence is deemed to occur when a linear combination of the gradients of the 
Lagrangian function on one hand, and the violation of the constraints on the other, 
drops below this tolerance. 

 

Otherwise, a secondary criterion is applied that checks if there is no progress in the values 
of the objective function and the decision variables, as well as no constraint violations and 
if so, it terminates the optimization. If the two main criteria are not satisfied, then several 
other fail safe criteria exist that check if the numerical procedure of the solution of the 

system of the algebraic equations is stuck to a loop and if the maximum number of 
iterations or function evaluations has been exceeded; if so, they terminate the optimization 
and the problem fails to converge. For the problems solved in this chapter, all 
optimizations were concluded successfully by satisfying the primary convergence criterion. 

The relative tolerances for the first and second convergence criteria were set to 10-4 and 
10 -12 respectively. 
 Computational times for all the optimizations that were performed are presented in 
Table 5.113. Since, for each case study, many DO problems are solved in order to perform 

sensitivity analysis on several parameters, a range of values is given rather than a single 
value. 
 
 

Table 5.113. Computational times for all Case Studies. 
 

Case Study 
Time (hrs) 

Sequential method Simultaneous method4 

1 6.4‒6.8 ‒ 

2 1.5‒1.7 ‒ 

3 1.7‒2 2‒2.3 

4 3‒3.3 3.2‒3.6 

5 1.9‒2.2 2.2‒2.5 
6 2‒2.3 2.2‒2.4 

7 3.1‒3.3 3.2‒3.5 

 

                                                             
4 The simultaneous method was only applied to some‒randomly selected‒ cases. 
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 It is noted that, while the problems associated with Case Study 1 are simpler and not 
extremely (computationally) demanding compared to the respective problems of all other 
cases, the corresponding computational times were higher. This is attributed to the fact that 
shortly after the solution of Case Study 1, new versions of gPROMS solvers were released 

that were considerably faster and more robust than their previous counterparts. The 
upgrated solvers were used for Case Studies 2‒7. The sequential method was used for the 
solution of all problems, while the simultaneous method was applied in only a few cases. 
From Table 5.113 it is evident that in all cases, with the exception of Case Study 7, the 

sequential method always proved faster. Also, it is observed that, as was expected, the 
required computational time grows along with the complexity of the problem, however it 
still remains within reasonable limits. 
 Since both the solution approaches are based on a gradient based method (SQP) for the 

solution of the MINLP problem, a global optimal solution cannot be guaranteed with 
certainty. However, several techniques can be applied. One of the most popular and 
frequently used is the multistart method which addresses the global optimization problem 
by starting a local optimization routine (such as a gradient based algorithm) from many 

different starting points. If the best of the resulting solutions is retained, then we might be 
willing to accept this as a global solution. Of course there is no guarantee that a global 
minimum has been found, but increased confidence might be gained by running the 
program again many times with different initial points.  

 For the problems tackled in the Case Studies 2‒7 such a multistart procedure was 
employed. 
 Three different scenarios were considered for the operational/continuous variables that 
involved initialization of each variable in each time interval: close to the middle of its 

upper and lower bounds, at 10-30% higher than its lower bound and at 10-30% lower than 
its upper bound. In general, it was observed that, when initialized near the upper bound, or 
close to the middle of the domain defined by the bounds, the operational variables tended 
to converge to their best values in reasonable times. When initialized near the lower bound, 

convergence was slower and in several occasions, depending on the values of the design 
variables, the optimization failed or led to suboptimal solutions. 
 Considering the design/invariant variables, again, the three same scenarios as for the 
operation variables were considered. It was observed that values close to the lower bound 

should be chosen with care since they may lead to initialization of the optimization with 
very large values (beyond bounds) for the load factors  of equipment and cause quadratic 
subproblem failures in the SQP method. Also, it was observed that, when initializing many 
units of the same type of equipment, it is best not to use the same value for the initial point 

of the nominal power output in all equipment, since it may lead to suboptimal solutions.  
 It must be noted that since this motif of selection of initial points for the operation and 
design variables is based on the values of their upper and lower bounds, special care should 
be taken when defining those bounds. Setting them to be very close to each other means 

that significant solutions may be omitted; additionaly the motif of selection of initial values 
described above cannot be applied properly. On the other hand, defining them very far 
apart augments the search space, thus the application of the motif leaves big regions of 
initial point values untested. 

 Another important observation concerning the selection of initial points is the 
following: it is best to collectively choose points that initialize the system in a feasible or 
near‒feasible state. For example, if the propulsion engines are initialized with small 
nominal power output while high initial values are used for the speeds, the values for the 

load factors may blow up causing optimization failures. For the problems solved in this 
chapter this was achieved by trial and error: After some initial unsuccessful attempts, the 
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relative data (from these attempts) provided good insight concerning the selections of the 
appropriate bounds –and thus initial points– for the variables. 
 For the synthesis/binary variables two scenarios were used: initialization of all 
variables at value 1 and initialization of 50% of the variables that refered to the same type 

of component at value 1. For example, if the number of 2‒X diesel engines is under 
optimization and up to 4 engines are allowed, then 4 binary variables are defined, while 
half of them are initialized at value 1 and the rest to 0. If the number of allowed engines is 
odd, then the remaining variable is also initialized at 1. Initialization of all variables to the 

value 0 would be meaningless and was avoided. Thankfully, in any synthesis problem 
certain initial configurations exist that can be excluded a priori due to the nature of the 
problem. For example in a problem which involves stay in a port (and perhaps loading and 
unloading operations) it is meaningless to initialize the problem with zero DG sets and no 

auxiliary boiler. 
 For the synthesis variables it was observed that the strategy of initializing all variables 
in their upper values worked best. The success of the strategy of initializing half of them to 
0 and half to 1 was dependent upon the convergence of the design and operation variables. 

 In Tables 5.114a,b convergence results for several initial point configurations for the 
solution of the nominal case problem of Case Studies 1 and 4 are given. 
 
 

Table 5.114a. Initialization schemes for the solution of nominal case problem of Case 
Study 1. 

 

Variable Bounds 
Initial points 

1 2 3 4 

 ,4 , 2 4D X
y


 0 or 1 all 1 all 1 1,1,0,0 1,0,1,0 

By  0 or 1 0 1 1 1 

STGy  0 or 1 0 1 1 1 

 , 2 4DG
y


 0 or 1 all 1 all 1 1,0,1 1,0,1 

ABy  0 or 1 1 1 1 1 

 , 1 4bn
W

  
(MW)

 
3.5-21 

13, 11 

5, 6 

4, 5 

5.5, 7 

15, 10 

6, 5 
9 

 , 1 4DGn
W

  
(MW)

 
0.3-5 

4, 4.5 

3.5, 3.8 

2.5, 2 

1.5, 1.8 
3.5 4.5 

gnT
 
(oC) 220-360 340 280 330 345 

gnm
 
(kg/s) 20-600 55 25 50 35 

snm
 
(kg/s) 0.5-3.5 5.5 1.8 5 2.5 

STGnm
 
(kg/s)

 
1.5-3 3 1.2 2.5 1.9 

,AB nQ
 
(MW)

 
0.5-8 6.5 5 5 6 

V
 
(kg/s)

 
0-22 18 21 14 12 

 , 2 4b
W

  
(MW)

 
0.5-21 

10, 8 
4, 4 

3.5, 4.5 
5.5, 6.5 

14, 14 
8, 11 

8 

 , 2 4DG
W

  
(MW)

 
0.5-5 3.5 2 3 4 

h  
(-) 0-0.2 0.12 0.8 0.10 0.05 

Solution Best Failure Best Suboptimal 
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Table 5.114b. Initialization schemes for the solution of nominal case problem of Case 
Study 4. 

 

Variable Bounds 
Initial points 

1 2 3 4 

 1, 0 2GT
y


 0 or 1 all 1 all 1 1,0 1,0 

 2, 0 2GT
y

  
0 or 1 all 1 all 1 1,0 1,0 

 3, 0 2GT
y

  
0 or 1 all 1 all 1 1,0 1,0 

 , 0 2B
y


 0 or 1 all 1 all 1 1,0 1,0 

 , 0 2ST
y


 0 or 1 all 1 all 1 1,0 1,0 

 , 2 4DG
y


 0 or 1 all 1 all 1 1,0,1 1,0,1 

ABy  0 or 1 1 1 1 1 

 1 , 1 2GT n
W

  
(MW)

 
2.5-50 30, 35 30, 20 30 10 

 2 , 1 2GT n
W

  
(MW)

 
2.5-50 30, 35 30, 20 30 10 

 3 , 1 2GT n
W

  
(MW)

 
2.5-50 30, 35 30, 20 30 10 

 , 1 4DGn
W

  
(MW)

 
0.3-4 

4, 3 

2.5, 3.5 
4, 3 

3.5, 2.5 
2.5 1 

 , 1 2gn
T

  
(oC) 250-750 600, 500 550, 500 600 400 

 , 1 2gn
m

  
(kg/s) 25-90 40, 55 50, 40 85 29 

 , 1 2sn
m

  
(kg/s) 0.5-16 6, 7 7, 5.5 12 6.5 

 , 1 2STGn
m

  
(kg/s)

 0.5-12 5, 5.5 6, 4 11 3 

,AB nQ
 
(MW)

 
0.5-3 3 3 3 2 

V
 
(kg/s)

 
14-24.5 21 18 15.5 24 

 1 , 1 2GT n
W

  
(MW)

 
0.5-40 15, 17 15, 10 20 8 

 2 , 1 2GT n
W

  
(MW)

 
0.5-40 15, 17 15, 10 20 8 

 3 , 1 2GT n
W

  
(MW)

 
0.5-40 15, 17 15, 10 20 8 

 , 2 4DG
W

  
(MW)

 
0.5-5 

3.5, 2.5 
2, 3 

3.5, 2.8 
3, 2 

2 0.8 

h  
(-) 0-0.2 0.12 0.1 0.05 0.08 

e  
(-)

 
0-1 0.5 0.4 0.2 0.3 

 , , 1 4trip AB
t

  
(days)

 
5-8 6 7 6 5.5 

 , , 1 4trip BA
t

  
(days)

 
5-8 6 7 6 5.5 

Solution Best Best Suboptimal Failure 

 
 
 In Table 5.114a the solution denoted as best refers to the solution given in Paragraph 

5.2.5 with PWC*=55.894.772 €. For the suboptimal solution, the objective function value 
is PWC*=57.032.402 €. The energy system consists of: two 4-X diesel engines of nominal 
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power 13.912 kW and 7.771 kW, one DG set of 3.000 kW and a bottoming cycle with a 
HRSG and a STG of nominal power 4.650 kW and 1.480 kW, respectively. 
 In Table 5.114b the solution denoted as best refers to the solution given in Section 
5.5.5 with NPV*=115,725,498 €. For the suboptimal solution, the objective function value 

is NPV*=115,415,526 €. The energy system consists of one GT of type 2 of nominal 
power 18.889 kW, one DG set of 1.652 kW and a bottoming cycle with one HRSG and one 
ST of nominal power 18.110 kW and 4.813 kW, respectively. 
 

 

 5.10.2 Comparative comments on the results 
 
 In general it would be wrong to draw conclusions from the comparison of the solution 

of Case Study 1 with the solutions of the rest case studies (2‒7), since it tackles with a 
different vessel, a different energy system (ST can provide power only on electric loads 
and not on the propeller) and a completely different mission profile and time schedule for 
the ship. Also, a single repeated round trip is used to model a whole year of operation in 

contrast to all other cases, where four characteristic round trips (each one repeated in every 
season) are used. 
 However, a noteworthy general comment that can be made is that in all case studies, 
with the exception of Case Study 1, a single engine is determined as the optimal solution. 

A possible explanation of this may lie in the observation that in Case Study 1 only 4‒X 
diesel engines are allowed as propulsion alternatives, which in fact have a low upper limit 
(20 MW) for the nominal power output. So, increased demands in propulsion power (due 
to bad weather and high ship speeds) cannot be covered by the power output of a single 

4‒X diesel engine. In contrast, it can be observed that in Case Studies 2‒7, where the 
optimal choice for the propulsion engine is either a gas turbine or a 2-X diesel engine, 
which both have a very high upper limit for the nominal power output (90 MW), a single 
unit is always installed.  

 Focusing on Case Studies 2‒7, that are relatively more comparable, several general 
observations can be made. 
 In Case Studies 2, 3 and 4 only gas turbines are allowed as propulsion alternatives. For 
all three objective functions (min PWC with fixed trip durations, min PWC with variable 

trip durations, max NPV with variable trip durations) a single GT with a bottoming cycle 
(with a single HRSG and ST) are always installed for all fuel prices and freight rates. The 
type #3 gas turbine is always selected, with the exception of Case Study 4 (maximization 
of NPV), in which for double freight rate and fuel prices 600 and 700 €/ton the type #2 GT 

unit is selected. In order to gain some insight into why this happens, the problem is solved 
again for fuel prices 600 and 700 €/ton while only the type #3 GT is allowed for the main 
engine. Economic data from the solutions are presented in Table 5.115. The results verify 
that the GT type #2 system is indeed the optimal solution. For 600 €/ton both systems 

perform 18 round trips per year and for 750 €/ton they perform 17 round trips per year, 
thus the total PWR is the same between the two systems for each fuel price. However, for 
both fuel prices the type #2 GT energy system, when compared with the type #3, has lower 
capital costs (3.4-3.6%), lower fuel costs (1-1.5%) and higher O&M costs (14-16%). The 

same behavior can be observed in Table 5.54 where the results for all GT types and 
nominal values of fuel price and freight rate are presented: the type #2 GT system has 
lower capital and fuel costs and higher O&M costs than the type #3 GT system. It is, thus, 
expected that as fuel price rises, there will be some point that the difference in fuel costs 

will overcome the difference in O&M costs and will lead to a total PWC for the type #2 
system lower than the total PWC for the type #3 system. Indeed, this is what happens here: 
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a lower PWC for the type #2 GT system is achieved for both fuel prices and specifically 
for the fuel price of 750 €/ton where the difference is more than 1.3 million €, mainly due 
to the difference in fuel consumption. This can be justified, since the type #2 GT has 
higher exhaust gases energy content (when compared with GT #3), which leads to the 

design of a bottoming cycle of higher power output. Thus, a larger ST is installed that can 
serve a higher percentage of the electric and propulsion demands and consequently save 
fuel from the main engine and DG sets. 
 

 
Table 5.115. Results of NPV maximization for GT types 2 and 3 with double freight rate 

and fuel prices 600 and 750 €/ton for Case Study 4 . 
 

Fuel price: 600 €/ton 750 €/ton 

GT type: GT 2 (optimal) GT 3 GT 2 (optimal) GT 3 

Costs\Revenue (€)     

Capital Cost 16,161,690 16,770,789 15,086,063 15,620,972 

Fuel PWC (total) 130,782,014 132,088,765 141,425,993 143,669,718 

O&M PWC (total) 11,073,655 9,517,971 9,679,542 8,290,478 
Total PWC 158,017,360 158,377,525 166,191,599 167,581,168 

Total PWR 484,567,911 484,567,911 457,647,471 457,647,471 

NPV (objective) 326,550,550 326,190,386 291,455,872 290,066,303 

Total round trips per year 18 18 17 17 

 
 
 Furthermore, in all cases the thermal loads during trips are covered by the HRSG and 

also a single DG set is installed, which is mainly used at ports. This may be explained by 
the fact that the exhaust gases from the GTs are of high energy content (compared to any 
system with diesel engines) and thus the installation of a bottoming cycle of high nominal 
power output that can cover the thermal and electric demands during trips is possible. 

 Other interesting observations that verify the functionality of the methods proposed in 
this study can be made, if the corresponding values of NPV are calculated in the cases of 
PWC minimization (Case Studies 2 and 3). Next, in Tables 5.116a,b and 5.117a,b, the 
effect of fuel price on the optimal PWC and the corresponding ‒ calculated value of NPV 

for nominal and double freight rates for Case Studies 2 and 3, is presented. Also, Tables 
5.65a,b, where the effect of fuel price on the optimal NPV for nominal and double freight 
rates for Case Study 4 is demonstrated, are repeated here for convenience.  
 

 
Table 5.116a. Effect of fuel price on the optimal PWC and corresponding value of NPV for 

nominal freight rate for Case Study 2. 
 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 22,925,374 22,949,592 22,965,668 22,981,674 

Fuel PWC (total) 110,837,520 166,256,995 221,677,226 277,098,251 

O&M PWC (total) 14,207,538 14,207,511 14,207,545 14,207,548 

Total PWC (objective) 147,970,432 203,414,098 258,850,439 314,287,473 

Total PWR 269,204,395 269,204,395 269,204,395 269,204,395 
NPV 121,233,963 65,790,297 10,353,956 -45,083,078 
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Table 5.116b. Effect of fuel price on the optimal PWC, and corresponding value of NPV 
for double freight rate for Case Study 2. 

 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 22,925,374 22,949,592 22,965,668 22,981,674 

Fuel PWC (total) 110,837,520 166,256,995 221,677,226 277,098,251 
O&M PWC (total) 14,207,538 14,207,511 14,207,545 14,207,548 

Total PWC (objective) 147,970,432 203,414,098 258,850,439 314,287,473 

Total PWR 538,408,790 538,408,790 538,408,790 538,408,790 

NPV 390,438,358 334,994,692 279,558,351 224,121,317 

 
 
Table 5.117a. Effect of fuel price on the optimal PWC and corresponding value of NPV for 

nominal freight rate in Case Study 3. 
 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 15,406,136 15,428,136 15,444,136 15,459,704 
Fuel PWC (total) 51,505,222 77,095,837 102,503,460 128,277,117 

O&M PWC (total) 7,114,047 7,114,045 7,114,156 7,114,045 

Total PWC (objective) 74,025,405 99,638,018 125,061,752 150,850,866 

Total PWR 215,363,516 215,363,516 215,363,516 215,363,516 

NPV 141,338,110 115,725,498 90,301,764 64,512,650 

 
 
Table 5.117b. Effect of fuel price on the optimal PWC and corresponding value of NPV for 

double freight rate in Case Study 3. 
 

Costs (€) 
Fuel Price (€/ton) 

300 450 600 750 
Capital Cost 15,406,136 15,428,136 15,444,136 15,459,704 

Fuel PWC (total) 51,505,222 77,095,837 102,503,460 128,277,117 

O&M PWC (total) 7,114,047 7,114,045 7,114,156 7,114,045 

Total PWC (objective) 74,025,405 99,638,018 125,061,752 150,850,866 

Total PWR 430,727,032 430,727,032 430,727,032 430,727,032 

NPV 356,701,626 331,089,014 305,665,280 279,876,166 

 
 
 Comparing Tables 5.116a,b and 5.117a,b it can be observed that in Case Study 3, all 
optimal values of PWC are lower that in Case Study 2. This is a natural result of the fact 

that in Case Study 3 the duration of trips is variable and under optimization and the 
maximum duration of 8 days is determined as optimal for every trip. This leads to lower 
ship speeds and thus a smaller (in terms of power output) energy system with decreased 
capital, O&M and fuel costs. When calculating the corresponding NPV, it is observed that 

for nominal freight rate the Case Study 3 NPV values are higher than those of Case Study 
2 (need for cost effectiveness). However, for double freight rate something very interesting 
happens; for fuel prices 300 and 450 €/ton the corresponding NPV values (where more 
round trips are performed) are higher in Case Study 2 than in Case Study 3. This reveals 
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that there is a critical point in the fuel price ‒ freight rate space, where the need for more 
trips (and thus more profit) becomes more important than the cost effectiveness of the 
system.  
 

 
Table 5.65a. Effect of fuel price on the optimal NPV and corresponding value of PWC for 

nominal freight rate for Case Study 4. 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 16,160,569 15,428,136 15,444,136 15,459,704 

Fuel PWC (total) 59,550,135 77,095,837 102,503,460 128,277,117 

O&M PWC (total) 8,626,161 7,114,045 7,114,156 7,114,045 

Total PWC 84,336,865 99,638,018 125,061,752 150,850,866 
Total PWR 228,823,736 215,363,516 215,363,516 215,363,516 

NPV (objective) 144,486,871 115,725,498 90,301,764 64,512,650 

 
 

Table 5.65b. Effect of fuel price on the optimal NPV and corresponding value of PWC for 
double freight rate for Case Study 4. 

 

Costs\Revenue (€) 
Fuel Price (€/ton) 

300 450 600 750 

Capital Cost 22,093,996 18,876,508 16,161,690 15,086,063 

Fuel PWC (total) 108,008,269 122,932,876 130,782,014 141,425,993 

O&M PWC (total) 14,646,478 11,505,197 11,073,655 9,679,542 
Total PWC 144,748,744 153,314,581 158,017,360 166,191,599 

Total PWR 538,408,790 511,488,350 484,567,911 457,647,471 

NPV (objective) 393,660,045 358,173,769 326,550,550 291,455,872 

 
 

 Comparing Tables 5.116a,b and 5.117a,b with 5.65a,b it can be observed that the 
results of Case Study 4 (maximization of NPV) always yield NPV equal or higher than the 
NPV obtaibed with the minimization of PWC in Case Studies 2 and 3 for all fuel prices 
and freight rates, as expected. It is noteworthy that for nominal freight rate, and fuel prices 

450 €/ton and higher, all solutions of Case Study 4 coincide with those of Case Study 3. 
The low value of freight rate does not allow the system to gain more revenue by increasing 
the number of round trips, so cost effectiveness is pursued and all trip durations go to the 
upper limit. However, for double freight rate, more expensive (in terms of PWC) systems 

are selected that can perform more round trips per year and the NPV is maximized.  
 
 In Case Studies 5, 6 and 7, gas turbines and diesel engines (2‒X and 4‒X) are 
simultaneously allowed as propulsion alternatives. For all three objective functions (min 

PWC with fixed trip durations, min PWC with variable trip durations, max NPV with 
variable trip durations) a single 2‒X diesel engine is installed. Also, a bottoming cycle, 
with a single HRSG and ST, is always installed, except for the fuel price of 200 €/ton. This 
was also observed in Case Study 1 and reveals that for low fuel prices the capital and 

O&M costs of installing and operating a bottoming cycle is higher than serving the energy 
demands with the auxiliary boiler and the DG set(s); especially since in the case of diesel 
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engines the energy content of the exhaust gases is generally low (compared to gas turbines) 
and leads to bottoming cycles with low nominal power outputs.  
 Another interesting general observation regarding Case Studies 5, 6 and 7 is the 
following: In Case Study 6, for all fuel prices, and Case Study 7, for all fuel prices and 

nominal freight rate, one DG set is always installed. However, in Case Study 5, for all fuel 
prices, and Case Study 7 for all fuel prices and double freight rate, 2 DG sets, one of 
nominal power lower than 700 MW and one of nominal power slightly higher than 1 MW 
are installed. Also, in those cases, where two DG sets are present, a certain operational 

strategy is observed: a large percentage of the electric loads is served by the STG with the 
remainder complemented by the first DG set. Then, in ports, the second DG set, which is 
of higher nominal power output, operates in parallel to the first one, in order to completely 
serve the demand. The question of why, in those cases, two DG sets are installed instead of 

one is answered in the reasoning of the closing comment of the previous paragraph. In 
Case Study 5 and Case Study 7, for double freight rate, the ship speeds are high (when 
compared with Case Studies 6 and 7 – for nominal freight rate) and the propulsion system 
is of higher nominal power output, thus leading to bottoming cycles with higher nominal 

output characteristics. This means that during trips a higher percentage of electric demands 
can be served and the remaining demand can be accommodated by a DG set with relatively 
low power output (<0.7 MW). Then, a second (> 1 MW) DG set is also installed to 
accommodate electric demands at ports in parallel with the first one. Finally, it should be 

clarified that in all cases where no bottoming cycle is installed, a single DG set is always 
chosen. This is easily explained by observing the electric demands (trips and ports) for all 
seasons in Table 5.19. All demands lie in the range of 1450‒1670 kW and thus can be 
optimally covered by a single DG set. 

 Other interesting observations that verify the functionality of the methods proposed in 
this study can be made by calculating the corresponding values of NPV for the cases of 
PWC minimization (Case Studies 4 and 5). Next, in Tables 5.118a,b and 5.119a,b, the 
effect of fuel price on the optimal PWC and the corresponding value of NPV for nominal 

and double freight rates for Case Studies 4 and 5, is presented. Also, Tables 5.104a,b 
where the effect of fuel price on the optimal NPV for nominal and double freight rates for 
Case Study 7 is demonstrated, are repeated here for convenience. 
 

 
Table 5.118a. Effect of fuel price on the optimal PWC and corresponding value of NPV for 

nominal freight rate for Case Study 5. 
 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 14,505,140 17,984,660 18,243,420 18,646,960 18,709,660 

Fuel PWC (total) 82,938,516 117,262,580 156,057,884 194,372,376 233,181,997 

O&M PWC (total) 11,833,736 13,647,931 13,644,719 13,660,131 13,664,666 

Total PWC 
(objective) 

109,277,392 148,895,171 187,946,022 226,679,468 265,556,323 

Total PWR 269,204,395 269,204,395 269,204,395 269,204,395 269,204,395 

NPV 159,927,003 120,309,225 81,258,373 42,524,927 3,648,072 
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Table 5.118b. Effect of fuel price on the optimal PWC and corresponding value of NPV for 
double freight rate for Case Study 5. 

 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 14,505,140 17,984,660 18,243,420 18,646,960 18,709,660 

Fuel PWC (total) 82,938,516 117,262,580 156,057,884 194,372,376 233,181,997 
OPM PWC (total) 11,833,736 13,647,931 13,644,719 13,660,131 13,664,666 

Total PWC 

(objective) 
109,277,392 148,895,171 187,946,022 226,679,468 265,556,323 

Total PWR 538,408,790 538,408,790 538,408,790 538,408,790 538,408,790 

NPV 429,131,398 389,513,620 350,462,768 311,729,322 272,852,467 

 
 

Table 5.119a. Effect of fuel price on the optimal PWC and corresponding value of NPV for 
nominal freight rate for Case Study 6. 

 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 9,076,406 10,310,417 10,404,230 10,603,600 10,769,740 

Fuel PWC (total) 39,066,143 55,314,486 73,607,171 91,767,488 109,912,009 

OPM PWC (total) 5.628.583 6,433,156 6,432,542 6,440,651 6,450,140 
Total PWC 

(objective) 
53,771,132 72,058,059 90,443,943 108,811,739 127,131,889 

Total PWR 215,363,516 215,363,516 215,363,516 215,363,516 215,363,516 
NPV 161,592,384 143,305,457 124,919,573 106,551,776 88,231,627 

 

 
Table 5.119b. Effect of fuel price on the optimal PWC and corresponding value of NPV for 

double freight rate for Case Study 6. 
 

Costs (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 9,076,406 10,310,417 10,404,230 10,603,600 10,769,740 

Fuel PWC (total) 39,066,143 55,314,486 73,607,171 91,767,488 109,912,009 

O&M PWC (total) 5.628.583 6,433,156 6,432,542 6,440,651 6,450,140 

Total PWC 
(objective) 

53,771,132 72,058,059 90,443,943 108,811,739 127,131,889 

Total PWR 430,727,032 430,727,032 430,727,032 430,727,032 430,727,032 

NPV 376,955,900 358,668,973 340,283,039 321,915,293 303,595,143 
 

 
 Comparing Tables 5.118a,b with 5.119a,b the same observations that were made for 
the gas turbine cases are also verified for the diesel engines. All optimal values of PWC in 
Case Study 6 are lower than those in Case Study 5, since the maximum duration of 8 days 

is determined as optimal for every trip. For the corresponding NPV, for nominal freight 
rate the Case Study 6, NPV values are higher than those of Case Study 5 (need for cost 
effectiveness). However, for double freight rate, once again, something very interesting 
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happens; for fuel prices 200, 300 and 400 €/ton the calculated NPV is higher in Case Study 
5 (where more round trips are performed) than in Case Study 6. 
 
 

Table 5.104a. Effect of fuel price on the optimal NPV and corresponding value of PWC for 
nominal freight rate for Case Study 7. 

 

Costs\Revenue (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 10,954,420 10,665,380 10,404,230 10,603,600 10,769,740 

Fuel PWC (total) 56,663,379 61,759,821 73,607,171 91,767,488 109,912,009 
OPM PWC (total) 8,073,774 7,222,518 6,432,542 6,440,651 6,450,140 

Total PWC 75,691,573 79,647,719 90,443,943 108,811,739 127,131,889 

Total PWR 242,283,956 228,823,736 215,363,516 215,363,516 215,363,516 

NPV (objective) 166,592,383 149,176,017 124,919,573 106,551,776 88,231,627 

 
 
Table 5.104b. Effect of fuel price on the optimal NPV and corresponding value of PWC for 

double freight rate for Case Study 7. 
 

Costs\Revenue (€) 
Fuel Price (€/ton) 

200 300 400 500 600 

Capital Cost 16,525,690 17,161,440 14,994,690 13,501,900 12,315,590 
Fuel PWC (total) 102,168,004 110,804,019 119,978,572 125,697,852 128,678,938 

OPM PWC (total) 14,573,599 12,949,546 10,548,733 8,856,380 7,566,637 

Total PWC 133,267,293 140,915,005 145,521,995 148,056,132 148,561,165 

Total PWR 565,329,230 538,408,790 511,488,351 484,567,911 457,647,472 

NPV (objective) 432,061,936 397,493,785 365,966,355 336,511,779 309,086,306 

 
 
 From Tables 5.104a,b (reapeated here for the convenience of the reader) it is 

comfirmed that the results of Case Study 7 (maximization of NPV) always yield NPV 
equal to or higher than the NPV obtained with the minimization of PWC in Case Studies 5 
and 6 for all fuel prices and freight rates. Also, for nominal freight rate and fuel prices 400 
€/ton and above, all solutions of Case Study 6 coincide with those of Case Study 7. The 

low value of freight rate does not allow the system to gain revenue by increasing the 
number of round trips and drives the system to cost effectiveness (all trip durations go to 
the upper limit). For double freight rate, more expensive (in terms of PWC) systems are 
selected that can perform more round trips per year leading to better NPV values. 

 
 A comment that can be made when comparing the GT cases (Case Studies 2‒4) with 
the equivalent diesel engine cases (Case Studies 5‒7) is the following: Generally an 
increase is observed for the optimal nominal power output of the propulsion plant in the 

two-stroke diesel engine cases. This can be explained by the fact that for the gas turbine 
the optimal SFOC is achieved near 100% load factor, while for the two-stroke diesel 
engine it is achieved near 80-85% load factor. In other words, in the two-stroke diesel 
engine cases, the optimizer designs the engine with a nominal power output higher than the 

actual maximum brake power demand, thus sacrificing capital costs to gain better fuel 
consumption. 
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 Another general comment comes from the observation that the nominal power 
characteristics of the propulsion engine and the bottoming cycle (when installed) seem to 
slightly increase as fuel price rises. This has been observed in the parametric study results 
of all seven case studies. An argument that can explain this is the following: As fuel price 

increases, a trade‒off between the fuel cost (fuel consumption) and the capital cost of 
equipment takes place. The more expensive the fuel is, the more the optimizer sacrifices 
capital costs by installing larger equipment in an attempt to operate the main engine in a 
load factor range that is closer to the range of minimum SFOC. Furthermore, by installing 

propulsion engines of higher power output, exhaust gases of higher energy content are 
produced and the design of a bottoming cycle with increased nominal power characteristics 
is facilitated. This leads to more efficient bottoming cycle systems that can serve a bigger 
portion of the thermal and electric demands during trips, thus leading to decreased fuel 

consumption in the auxiliary boiler and DG sets.  
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CHAPTER 6: CLOSURE 
 
 

6.1 Concluding Remarks 

 
 A method for the dynamic synthesis, design and operation optimization of integrated 
energy systems of ships has been developed in a general form and applied successfully in 
certain case studies. For the synthesis optimization, the superconfiguration approach is 

followed and models of all the components that may exist in the system have been 
developed. The features that render the optimization problem dynamic, such as weather 
state and operating conditions changing with time, are highlighted. 
 A complete mathematical formulation of the dynamic SDO optimization problem has 

been presented and a solution procedure has been proposed in which the synthesis, design 
and operation levels of optimization are tackled simultaneously. In this way, nested 
optimization is avoided and the risk of overlooking optimal solutions is minimized. 
 Α mixed integer modeling procedure that views the system as a whole has been 

applied. Integer, invariant and continuous variables have been used for modeling the levels 
of synthesis, design and operation, respectively. Then, a specific technique has been used 
that transposes all integer variables to binary without affecting the dimensionality of the 
problem. This leads to the formulation of a methodology which can be characterized as a 

single‒level approach in contrast with the majority of methods appearing in the literature 
that tackle the SDO problem in two, three or even multiple levels. Usually, in order to 
correctly apply these two‒, three‒ or multi‒level approaches certain strict conditions must 
be met otherwise the search space of the optimization problem is not fully considered 

leading to non‒global optimal solutions. The single‒level approach proposed in this study 
requires no applicability conditions and thus can be considered universal in the context that 
it can be applied to any dynamic SDO optimization problem. 
 Also, suitable dynamic optimization approaches (both sequential and simultaneous) 

that can tackle the dynamic SDO optimization problem in satisfactory computational times 
and computational accuracy have been formulated and presented. The general methods 
have been applied successfully to several case studies. 
 Among other results, it is interesting to note that in several cases the optimal system, 

under the specific objective and constraints, consists of more than one prime movers of not 
equal power output and/or of more than one diesel generator sets also of not equal electric 
power output. Of course, predicting the optimal power output of each engine or generator 
is not possible by experience alone. 

 For each case study, sensitivity analysis with respect to the fuel price and in certain 
cases also with respect to the freight rate, the capital costs and even a different weather 
profile has been performed and interesting results of their impact on the optimal solution 
are recorded. In most cases, the economic benefit from installing a steam bottoming cycle 

has been demonstrated. Also, the result of the mathematical procedure for sailing through 
severe weather regions not only agrees with the usual practice of slow steaming, but also 
reveals the optimal speed profile for minimum fuel consumption, which could hardly be 
identified by experience alone.  

 A general comment regarding the application of the method to the case studies is that 
the power output of the equipment (main engines, generator sets, steam turbines etc.) has 
been treated as a continuous variable. If, for example, a diesel engine of the optimal power 
output is not available in the market, the one with the closest power will be selected. With 

so many sizes available, the deviation most probably will be small. If, however, the 
deviation is significant, the following actions can be taken: The system simulation software 



212 Closure 

is used to evaluate the effect of the change of power on the value of the objective function. 
If this is significant, the optimization software is used again with the power output fixed at 
the closest available size, so that the new optimal values of the remaining variables are 
determined. 

 Considering the applicability and practicality of the method, the following comment 
can be made: The design of a ship is traditionally performed in three stages 
[Papanikolaou (2010)]: (i) concept or preliminary design, (ii) contractual design and 
(iii) detailed design. In each stage, the ship can be considered as a complex system 

integrating a variety of subsystems: hull, energy system (as defined in the preceding), 
cargo handling, navigation equipment, etc. In each stage, design optimization can be 
performed for each subsystem. Thus, the procedure presented in the preceding chapters can 
be applied in each stage, with increasing complexity and accuracy of the system modeling 

from the first to the third stage. With the concrete results obtained, the designer will be 
more confident in search for rational decisions regarding the design and operation of the 
system. 
 It has to be mentioned that the configuration of the system on board ships has to 

comply with rules and regulations of classification societies and national agencies. For 
example, the number and nominal power of the generator sets have to be determined so 
that sufficient redundancy exists and, under extreme conditions, at least the critical loads 
are covered. Therefore, results of optimization have to be considered in connection with 

pertinent rules and regulations in order to reach the final selection of equipment. 
 As a final comment, it is noted that the general method is not restricted only to 
applications such as those presented in this work, but with proper modifications can be 
applied to even more complex systems not only on vessels but also on land. 

 
 

6.2 Future Work Recommendations 
 

 The current study is a first attempt in tackling the complex problem of dynamic SDO 
optimization of marine energy systems. The method can be further developed, in order to 
address aspects such as the following. 
 The method has been developed for single-objective optimization. However, 

optimization problems of real life may involve several –often contradicting– goals, such as 
safety, reliability, emissions or risk considerations, that cannot be represented by or 
combined in a single objective function. Thus, multi‒criteria or multi‒objective 
optimization schemes may be required. Multi‒objective optimization has been successfully 

applied to a wide range of engineering problems in the past. 
 Τhere is need for even more efficient and robust optimization algorithms. Although in 
this study the gradient based algorithms (in order to solve the transcribed MINLP problem) 
have been proven to be fairly efficient in terms of convergence and computational time and 

able to handle the mixed integer part of the problem with success, this may not be always 
the case, if even more complex problems with numerous synthesis alternatives are posed. 
Alternatively, hybrid algorithms may be employed that combine the speed of gradient 
based optimization schemes and the diversity of evolutionary based optimization schemes. 

Specifically, of great particular interest would be algorithms that in a single step can apply 
an evolutionary method for the treatment of the mixed integer part of the problem 
(synthesis) and a gradient based method for the treatment of the invariant and continuous 
part (design, operation). 

 One more aspect is the transient behavior of the components and of the overall energy 
system. Characteristic examples may include the start-up time, the period of adjustment of 
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the system from one ship speed to another, the behavior of the HRSG and ST when 
adjusting to different loads, etc. In this work for simplicity, transients have not been 
considered, because the time scales of the transient operation of all components are very 
small compared to the whole operating time of the system, for which optimization is 

performed. Ideally, if possible, transient operation of at least the most important 
components should be modeled and included in the optimization process. However, this 
would require more detailed and computationally heavy models for each component, thus 
having a detrimental effect on the required computational time and computer memory in 

order to solve the optimization problem of the overall energy system. 
 Of course, complex simulation models for each component may also be required in 
other cases apart from the modeling of transient operation. For example, the components 
included in the superconfigurations investigated in the present work have predetermined 

and invariant internal structures and are in a sense tackled as boxes with inputs and 
outputs. However, in many cases, this internal structure (of each component) plays a 
crucial role in the efficiency and operating capability of the component and one could 
argue that ideally it should also be optimized along with the overall energy system. In 

order to achieve this, again more detailed and accurate and thus computationally heavy 
models for the components would be used. 
 One –crude but effective– approach that could possibly tackle the issue of 
computationally heavy models would be to use the complex and detailed model of each 

component in order to produce detailed look‒up tables by executing all the time 
consuming calculations in advance, and then use them for representation of each 
component to the overall energy system. However, since this would require the use of a lot 
of memory in each optimization step, a more elegant approach would involve the 

application of machine learning algorithms (e.g. neural networks), in order to derive fast 
and simple but nonetheless accurate models for each component by utilizing all the data 
from the abovementioned look‒up tables. This would preserve the satisfactory 
computational times of the proposed dynamic optimization methods, while at the same 

time improving the accuracy in component simulation. 
 Another area for improvement lies in the models used for the calculation of ship 
resistance and propulsion, which play a critical role in the accurate calculation of the 
optimal ship speed during the trip. The models used in this study have been taken from the 

literature and have been constructed based on theoretical considerations as well as 
experimental results. Newer versions of appropriate analytical models for the calculation of 
total ship resistance and propulsion can be found in Politis (2008) (available for 
download5). Also, along with the book, the GRID software (in Fortran code) for 

calculating propeller efficiency in free flow is provided6. 
 For the two vessels assumed in the case studies, the predictions of the resistance and 
propulsion models were in good agreement with the few experimental data that were 
available. However, since these models are fairly general they are not expected to be 

accurate for every vessel, especially in the case of calculation of the added wave resistance 
which, as shortly discussed in Appendix D, is still an open problem in the literature. Thus, 
in case of application of the proposed method in existing vessels, for which many 
experimental data for the ship resistance and propulsion could be available, the real data 

rather than the theoretical models should be used (perhaps, again, via a neural network).  Of 
course, the same comment also stands in the case of each component; if enough 
experimental data are available they are far more preferable than any theoretical model, 

                                                             
5 https://1drv.ms/b/s!AuhmkWH18AWoiDXr-F9dA0_CO2v8 
6 https://1drv.ms/u/s!AuhmkWH18AWoiDpU7Ftg1Q6ujMCx 
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since the accuracy of the optimal solution is directly related with the accuracy in which the 
component performance is modeled. 
 One more aspect is related to the weather state. The methodology that has been 
proposed in this study assumes that the weather that the ship will encounter throughout its 

route, although time and space dependent, is deterministically known in advance. There 
may be cases when this assumption may be accurate up to a certain degree but, in general, 
the weather conditions are stochastic and should be treated likewise. Based on this remark, 
stochastic optimization methods (e.g. optimization under uncertainties, stochastic 

programming with recourse) should be combined/integrated with the dynamic optimization 
method proposed in this study. 
 Finally, in order to focus on the main objective, which was the development and 
demonstration of the applicability of the method and avoid undue complication in the 

present work, it was necessary to make certain simplifying assumptions. For example, hull 
and propeller fouling as well as component degradation of machinery during the operation 
of the ship have been ignored. These simplifications can be relaxed by modifying 
accordingly the existing models (or by adding supplementary models if necessary) for 

more accurate results. 
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APPENDIX A.  AN STABILITY 
 
 Before a proper definition of AN-stability is given, the definition of A-stability must 
be clarified. The simplest concept of stability for ODE methods is related to the linear 

scalar autonomous test equation  
 

  (A.1) 

 

where . 

 It is well known that the solution is  and, hence, 

 

  (A.2) 

 

Therefore, whenever  the condition 

 

  (A.3) 

 
is equivalent to 

 

  (A.4) 

 

In particular, the condition  is equivalent to the asymptotic stability property 

 

  (A.5) 

 

whereas the slightly weaker condition 

 

is equivalent to the contractivity, or 

dissipativity, property 

 

  (A.6) 

 
Thus, we have: 

 

Definition of A-Stability: 
 
The A-stability region of a numerical method for ODEs is the set SA of complex numbers 

α=hλ such that the numerical solution of Eq. (A.1) obtained with the constant 

stepsize h satisfies . 

 Thus, a numerical method for ODEs is considered A-stable if  
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In other words, a numerical method for ODEs is A-stable if, when implemented with 
constant stepsize h, it preserves the asymptotic stability properties of the solution y(t) of 
Eq. (A.1). 
 

 The second stability concept of importance for ODE methods is called AN-stability. 
AN-stability is related to the linear scalar non-autonomous test equation 
 

  (A.8) 

 

where λ(t) is a continuous complex valued function. 

 It is known that the solution is , therefore, if 

 

  (A.9) 

 

then 
 

  (A.10) 

 

In particular, if  
 

  (A.11) 

 
then Eq. (A6) holds. Moreover, if  

 

  (A.12) 

 
then the solution y(t) asymptotically vanishes, that is Eq. (A.5) holds.  
 

Thus, we have: 
 

Definition of AN-Stability: 
 

A numerical method for ODEs is said to be AN-stable if the numerical solution of  

Eq. (A8) satisfying Eq. (A.11) is such that  for any mesh Δ. 

 
 It is clear that the concept of AN-stability is stronger than the concept of A-stability. 
 
  

0

0 0

( ) ( ) ( ),   t t

( )

y t t y t

y t y

  



0

0( ) exp ( )

t

t

y t x dx y
 
 
 
 


0 0( ( )) ,   t tt   

0 0( )
0 0( ) ,   t t

t t
y t e y

 
 

0( ( )) 0,   t tt  

0 0 

 0n n
y



1n ny y 



 Appendices 217 

 

APPENDIX B.  PRESENT WORTH COST 
 
 As stated in Chapter 3, the total PWC of the system is given by the equation: 
 

 c f omPWC PWC PWC PWC    (B.1) 

 
 Following the notation of Chapter 3, Section 3.3.1, Eqs. (3.3a)-(3.4d), for the total 
capital present worth cost we have: 
 

 , , , , , , , , ,

,

c c i j c B k c ST l c G m c AB

i j k l m

PWC C C C C C         (B.2) 

where 

 

 , ,c i jC  capital cost of j th propulsion engine of type i, 

 ,c BC  capital cost of k  th HRSG, 

 ,c STC  capital cost of l th steam turbine, 

 ,c GC  capital cost of m th diesel generator set, 

 ,c ABC  capital cost of auxiliary boiler. 

 
 Indices i, j, k , l and m are defined in detail in Chapter 3, Eqs. (3.4a)‒(3.4d). All capital 

cost calculation models are presented in Appendix C. 
 
 For the total fuel present worth cost we have: 
 

 
, , , , ,

,

f f i j f G m f AB

i j m

PWC PWC PWC PWC     (B.3) 

 
where 

 

 , ,f i jPWC  fuel present worth cost of j th propulsion engine of type i, 

 , ,f G mPWC  fuel present worth cost of m th Diesel generator set, 

 ,f ABPWC  fuel present worth cost of auxiliary boiler. 

 
 In order to calculate each of the aforementioned costs, the annual (first year) fuel cost 

for each component is calculated, since the present worth cost (for each component) can 
generally be defined as: 
 

 , , ( , )f n fa n nPWC C PWF N i   (B.4) 

where  

 

 nN  engine life of component n in years, 

 i  market interest rate, 

 ,fa nC  first year fuel cost of component n, 

 PWF  present worth factor. 
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 For a constant value analysis, which ignores the inflation rate, it is 
 
 

 
 

 

1 1
( , )

1

n

n

N

n N

i
PWF N i

i i

 


 
 (B.5) 

 

 Based on the definition of the engine life of each component, 
nN , several 

considerations can be followed. In this study, the engine life for all components is 
considered equal to a constant value, defined as the nominal technical life of the system 
 

 
n tN N  (B.6) 

 

 The calculation of each components’ first year annual fuel cost, ,fa nC  , is dependent on 

the specific mission assumptions and parameters (time horizon of optimization) for each 
case study, thus it is discussed separately for each case study (Chapter 5). The general 
mathematical formulas for calculating fuel costs of each component are given in Appendix 

C. 
 
 For the operation and maintenance (O&M) present worth cost we have: 
 

, , , , , , , , ,

,

om om i j om B k om ST l om G m om AB

i j k l m

PWC PWC PWC PWC PWC PWC         (B.7) 

where: 

 

 , ,om i jPWC  O&M present worth cost of j th engine of type i, 

 , ,om B kPWC  O&M present worth cost of k  th HRSG, 

 , ,om ST lPWC  O&M present worth cost of l th steam turbine, 

 ,om GPWC  O&M present worth cost of m th diesel generator set, 

 ,om ABPWC  O&M present worth cost of auxiliary boiler. 

 
 The annual (first year) O&M cost formalism is used, thus for each component n, the 

present worth cost of O&M is given as: 
 

 , , ( , )om n oma n nPWC C PWF N i   (B.8) 

 

where, ,oma nC , is the first year O&M cost of component n, which is dependent on the 

specific mission assumptions and parameters for each case study. The general 

mathematical formulas for calculating O&M costs of each component are given in 
Appendix C. 
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APPENDIX C.  COMPONENT COST MODELS 
 
 Appropriate mathematical models for the evaluation of the costs for each component 
are needed, which are essential for the calculation of the economic function that will serve 

as the objective function in our dynamic optimization problem. The costs for each 
component are divided into the capital cost of installation and the operation costs. The 
operation costs for each component comprise the operation and maintenance (O&M) cost 
and the fuel cost, if applicable. In the following sections, the mathematical models for the 

capital cost, O&M cost and fuel cost for each component, which was described in Chapter 
4, are presented. 
 
 

C.1 Single Pressure Heat Recovery Steam Generator Costs  
 
Capital cost 
 

 The cost function appearing in Frangopoulos (1994) and Pelster (1998) has been used 
for the capital cost of the HRSG, with its coefficients adapted according to data found in 
GTW (2010). The form of the function is: 
 

 ,c B HX piping gaspath pumpC C C C C     (C.1) 

where  
 

 
HXC  total heat exchangers capital cost, 

 pipingC  piping capital cost, 

 gaspathC  gas path system capital cost, 

 pumpC  pump capital cost. 

 

The cost components are further analyzed as follows: 
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 (C.5) 

where  
 

 
stPf  correction factor for operating steam pressure, 

 
stTf  correction factor for operating steam temperature, 

 
gTf  correction factor for operating exhaust gas temperature, 

 Pf  correction factor for piping, 

 PW  power input to the pump. 
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The correction factors appearing in Eqs. (C.2) ‒ (C.3) are given as  
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where P is given in bar and T in Kelvin. 
 Constants c1, c2, c3 and c4 were determined using data found in GTW (2010) and have 
the following values: 
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 (C.9) 

 
 
Operation and maintenance cost 

 
 For the Ο&Μ costs of the HRSG, a constant unit cost value is considered,  
 

 , 0.004558  Euros/kWhom Bc   (C.10) 

 

derived from market data surveys [Kougioufas (2005), Andrianos (2006), Dimopoulos 
(2009)]. The operation and maintenance cost is then calculated as: 
 

 , ,

0

ft

om B om B recC c Q dt    (C.11) 

 

where recQ  is the thermal power recovered from exhaust gas by HRSG.  

 
 

C.2 Steam Turbine Costs  
 
Capital cost 
 

 The unit capital cost of a marine steam turbine unit is expressed as a function of the 

mechanical nominal power output,
nSTW , and is derived by regression analysis of market 

data [GTW (2010), EPA (2014)] and a cost function expression appearing in Pelster 
(1998): 
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 (C.12) 

 
with parameter values: 

 

 

375.7  Euros

0.38

7500  kWref

a

b

W



 



 (C.13) 

 
The capital cost is then given as: 
 

 , , nc ST c ST STC c W   (C.14) 

 
 It is noted that the electric generator and condenser unit capital costs are incorporated 
in the capital cost equation. 

 
 
Operation and maintenance cost 
 

 For the specific Ο&Μ unit cost of the ST, a constant value derived from market data 
surveys performed in Kougioufas (2005) and Andrianos (2006) and data found in EPA 
(2014), is used, 
 

 , 0.3646  Euros/kWhom STc   (C.15) 

 
 Thus, the operation and maintenance cost is calculated as: 
 

 , ,

0

ft

om ST om ST STC c W dt    (C.16) 

 

where STW  is the mechanical power produced by the steam turbine for the total horizon of 

optimization ft . 

 
 

C.3 Diesel Engines Cost Models 
 
Capital cost 
 

 The installed investment cost of a diesel engine (purchase and installation cost) is 
derived from literature data as an equation of the nominal brake power of the engine in 
both cases of 2-X and 4-X engines. For 2-X diesel engines we have 
 

  , ,2 ,   6 90 MW
b

c DE X bn bnC a W W     (C.17) 
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with 

 
b16100  Euros/(kW)

0.62

a

b




 (C.18) 

 
while for 4-X diesel engines we have 
 

 , ,4 1 2 ,   5 20 MWc DE X bn bnC a a W W      (C.19) 

 

where   6
1 2 10a    € and 

2 250a   €/kW.  

 
 

Operation and maintenance cost 
 
 For both types of diesel engines, the Ο&Μ cost per engine j is given as: 
 

 , ,j j jom DE om DE bC c E   (C.20) 

 
where  

 , jom Dc  unit cost of Ο&Μ of engine j 

 
jbE  brake energy produced by engine j for the total horizon of optimization: 

 

 

0

f

j j

t

b bE W dt   (C.21) 

 

 For the unit cost of Ο&Μ, a constant value derived from data found in EPA (2014) is 
used for both types of engines 
 

 , 0.006  Euros/kWhom DEc   (C.22) 

 

 
Fuel cost 
 

 Considering the fuel cost, if a constant unit cost of fuel, ,f DEc , is assumed, then the 

fuel cost per diesel engine, , jf DEC , is calculated by the fuel consumption, , jf DEm , of each 

diesel engine j as 
 

 , , , , , ,

0

f

j j j j

t

f DE f DE f DE f DE f DE b DEC c m c b W dt       (C.23) 

where 

 

 , jf DEb  specific fuel oil consumption of engine j  

 , jb DEW  brake power of engine j. 



 Appendices 223 

 

C.4 Gas Turbine Costs  
 
Capital cost 
 

 The capital cost of each of the three types of gas turbines is expressed as a function of 

the nominal power output, 
nGTW . As in Section 4.4 of Chapter 4, an effort was made for 

developing regression equations with similar mathematical form among the various GT 
types. The equation was derived based on cost calculation considerations found in 

Frangopoulos (1991) and Frangopoulos (1994) combined with data taken from 
manufacturers [GTW (2010), NTC (2018)]:  
 

 , exp( )
n n

b
c GT G GC a W c d W      (C.24) 

 
 The parameter values for each type are given in Table C.1. 
 
 

Table C.1.  Coefficients for capital cost (Eq. C.24) for all GT types. 

 

Coefficient GT1 GT2 GT3 
b  (E/kW )a  0.9116 1.0628 1.1844 

  (-)b  0.451124718 0.451124718 0.451124718 

  (-)c  11.660166099 11.660166099 11.660166099 

   1/kWd  8.1530518977E-07 8.1530518977E-07 8.1530518977E-07 

 
 

Operation and maintenance cost 
 
 For the gas turbines the unit cost of Ο&Μ is modeled as a function of the GT nominal 
power output with data found in EPA (2014), 

 

  , n

b

c GT GTc a W   (C.25) 

 

with parameter values: 
 

 
0.3549

0.2104

a

b



 
 (C.26) 

 
Thus the Ο&Μ cost is calculated as  
 

 , ,

0

ft

om GT om GT GTC c W dt    (C.27) 

 

with GTW  the power output of the GT. The same formula is used for all three gas turbine 

types. 
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Fuel cost 
 

 Considering the fuel cost, if a constant unit cost of fuel, 
,f GTc , is assumed, then the 

fuel cost per GT, , jf GTC , is calculated as a function of the fuel consumption, , jf GTm , as 

 

 , , , , , ,

0

f

j j j j

t

f GT f GT f GT f GT f GT b GTC c m c b W dt       (C.28) 

 
where 

 , jf GTb  specific fuel oil consumption of GT j  

 , jb GTW  brake power of GT j. 

 
 

C.5 Diesel Generator Set Costs 
 
Capital cost 
 
 The unit capital cost of a diesel generator set is expressed as a function of the nominal 

power output, 
nGW , derived by data taken from manufacturers: 
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 (C.29) 

 

with parameter values: 
 

 

730  Euros

0.6

1000  kWref

a

b

W



 



 (C.30) 

 

 Thus, the capital cost is given as: 
 

 , , nc G c G GC c W   (C.31) 

 

 
Operation and maintenance cost 
 
 For the diesel generator set, the same approach as for the diesel engines is used: 

 

 , ,

0

ft

om G om G GC c W dt    (C.32) 

 
with the unit cost of Ο&Μ considered as a constant value [EPA (2014)]: 
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, 0.006381  Euros/kWhom Gc   (C.33) 

 
 
Fuel cost 
 

 Considering the fuel cost, a constant unit cost of fuel, ,f Gc , is assumed. The fuel cost 

per trip, ,f GC , is calculated via the fuel consumption, ,f Gm , as: 

 

 , , , , ,

0

ft

f G f G f G f G f G GC c m c b W dt       (C.34) 

 

where 

 ,f Gb  specific fuel oil consumption of diesel generator set (Appendix D) 

 
GW  electric power demand covered by the diesel generator set. 

 
 

C.6 Auxiliary Boiler Costs 
 
 
Capital cost 
 

 The capital cost (in €) of the auxiliary boiler is estimated by the equation: 
 

 , 70000 80
nc AB ABC Q    (C.35) 

 

where 
nABQ  is the nominal thermal power output of the auxiliary boiler in kW. 

 
Operation and maintenance cost 
 

 For the Ο&Μ costs of the auxiliary boiler, ,om ABc , a constant unit Ο&Μ value used. 

 

 , 0.00458  Euros/kWhom ABc   (C.36) 

 
so the Ο&Μ cost is given as 
 

 , ,

0

ft

om AB om AB ABC c Q dt    (C.37) 

 
Fuel cost 

 

 For the fuel cost, a constant unit cost of fuel, ,f ABc , is assumed. The fuel cost, ,f ABC , 

is then calculated by the fuel consumption, ,f ABm , as: 
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, , ,f AB f AB f ABC c m   (C.38) 

 
where the fuel consumption of the auxiliary boiler is calculated as follows:  
 

 ,

0

ft

AB
f AB

AB u

Q
m dt

H
 

  (C.39) 

 
where 

 
uH  lower heating value of the auxiliary boiler fuel, 

 
AB  efficiency of the auxiliary boiler, 

 
ABQ  thermal power covered by the auxiliary boiler. 
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APPENDIX D.  TOTAL SHIP RESISTANCE 
 
 A ship differs from land based large engineering structures in that, in addition to all its 
other functions, it must be designed to move efficiently through the water. In this appendix 

the specific mathematical models used in this work for the calculation of the total 
resistance of a ship are presented.  
 The resistance of a ship at a given speed is the force required to tow the ship at that 
speed, assuming no interference from the towing ship. Thus, the total resistance of a ship, 

TR , is not exactly the same as the propulsion resistance due to hull/propeller interactions. 

In order to calculate 
TR , the propulsive efficiency, prop , needs to be calculated also 

(discussed in Appendix E). This total resistance is made up of a number of different 
components, which are caused by a variety of factors and which interact with each other in 
a rather complex way. In order to deal with the question more efficiently, it is customary to 
decompose the total resistance as a sum of different terms [Politis and Skamnelis (2007)]: 

 

 
T calm Aw AsR R R R    (D.1) 

where 
 

 
calmR  calm water resistance 

 
AwR   additional resistance due to the effects of wind (added wind resistance) 

 
AsR   additional resistance due to the effects of waves (added wave resistance) 

 

 The first term of Eq. (D.1) is usually referred to in the literature as calm water 
resistance and is a static term that is generally dependent on the ship speed and 
characteristics (geometry, hull form). The last two terms model the effect of the weather, 
wind and waves, on the total ship resistance and are very important in this study, since they 

are dependent on the weather profile also, thus "inserting" time and space dependency in 
the problem and making it inherently dynamic. 
 It must be stated that also other terms of added resistance can be included, with a very 
good example being the added resistance due to turning (for surface ships) or diving (for 

submarines), but since they are just static terms with, in most cases, very small 
contribution in the total resistance, they are not taken into account in this work.  
 In the next sections a brief presentation of the physical characteristics as well as the 
mathematical models used in this work to calculate the total calm water, the added wind 

and the added wave resistance is given. 
 
 

D.1 Calm Water Resistance 
 
 From a physical as well as a computational point of view, the calm water resistance 
includes several components: 
 

 1(1 )calm F a w APP BB TRR R k R R R R R        (D.2) 

where 
 

 FR  frictional resistance, due to the motion of the hull through a viscous fluid, 
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11 k   form factor of the hull, describing the viscous resistance from the hull in 

relation to 
FR , (form drag) 

 
aR   model-ship correlation resistance necessary to reconcile or "correlate" the 

predictions of calm water resistance results from smaller scaled models to the 
real ship. It also includes the -still- air resistance the ship encounters while 
sailing, 

 
wR   wave-making and wave-breaking resistance, due to the energy that must be 

supplied continuously by the ship to the wave system created on the free 

surface, 

 
APPR   appendage resistance due to the presence of bilge keels, rudders, bossings or  

   open shafts and struts, 

 
BBR   additional pressure resistance of bulbous bow near the water surface,  

 
TRR   additional pressure resistance of immersed transom stern. 

 
 A streamlined body moving on a straight horizontal line at constant forward speed, 

deeply immersed in an unlimited ocean, presents the “simplest” (still far from trivial) case 
of resistance, frictional resistance. Since there is no free surface, there is no wave 
formation and therefore no wave making resistance. In a real fluid, the boundary layer 
alters the virtual shape and length of the body, the pressure distribution at the stern is 

changed and there is a net force on the body acting against the motion, giving rise to a 
resistance, which is known as form drag or viscous pressure drag. Also, the fluid 
immediately in contact with the surface of the body is carried along with the surface and a 
boundary layer which becomes gradually thicker from the bow to the stern, is formed. The 

momentum supplied to the water in the boundary layer by the hull is a measure of the 
frictional resistance. If the body is rather blunt at the after end, the flow may detach at 
some point, called the separation point, thus reducing the total pressure on the afterbody 
and adding to the resistance. This separation resistance is evidenced by a pattern of eddies 

which is a drain of energy. 
 A ship moving on the surface of the sea experiences all of the aforementioned forms 
of resistance in much the same way as does a submerged body. However, the presence of 
the free surface adds a further component. The resulting pressure distribution on the hull 

results in the creation of a wave system which spreads out astern of the ship and has to be 
continuously recreated. This corresponds to a drain of energy supplied by the ship and is 
termed the wave making resistance. 
 Several examples of the plot of calm water resistance (effective horsepower, EHP, per 

ton of displacement) versus the speed–length ratio OAV L  (V in knots, LOA in feet) for 

different types of ships are presented in Fig. D.1. 
 Next, we proceed to examine all the components of total calm water resistance one by 
one and provide an appropriate mathematical model for their estimation. 
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Figure D.1.  Speed-power trends for different ship types [Politis and Skamnelis (2007)]. 

 
 

 D.1.1 Frictional resistance 

 

 The frictional resistance is usually the most significant component of the total ship 
resistance. For relatively slow ships with high block coefficients it contributes to about 
85% of the total resistance, whereas for high speed streamlined displacement hulls it may 
drop to about 50%. These values may become higher in time due to the increased 

roughness of the ship surface. The first theoretical considerations regarding the calculation 
of frictional resistance were made by Froude [Froude (1872), (1874)]. However, until 
Osborne Reynolds [Reynolds (1883)] the dependence of frictional resistance on the 
Reynolds number 

 

 Re OAVL

v
  (D.3) 

 
with 

OAL  the ship's length, V its velocity, and v  the kinematic viscosity of the water, was 

unknown to the scientific community. Later theoretical considerations due to Prandtl and 
von Karman [Politis and Skamnelis (2007)] led to the development of a theoretical 
formula: 
 

  10log Re F

F

A
C B

C
   (D.4) 

 

with A, B constants and FC  the frictional resistance coefficient defined as: 
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  (D.5) 

 

where   denotes the water density and S  the ship's wetted surface.  

 Extensive sets of experimental data were analyzed by Schoenherr in the light of Eq. 
(D.4), and he found that he could obtain a good fit to the experimental data by making B 
zero and A equal to 0.242, arriving at the Schoenherr formula [Schoenherr (1932)] which 
was adopted in 1947 by the ATTC (American Towing Tank Conference) for use with 

standard ship resistance computations [ATTC (1947)]. However, with the introduction of 
larger ships, and comparatively smaller models, it was observed that the Schoenherr line 
had a slope which was not considered to be sufficiently steep at the low Reynolds numbers 
appropriate to small models, so that it did not give good correlation between the results of 

small and large models. To alleviate this problem, the International Towing Tank 
Conference (ITTC) adopted in 1957 a new formula: 
 

 
2

10

0.075

(log Re 2)
FC 


 (D.6) 

 

which is known as the ITTC line and is the current standard. 
 The formula stated in Eq. (D.6) will be also used in this study for the calculation of the 

frictional resistance coefficient, 
FC , and thus the frictional resistance, 

FR . 

 
 

 D.1.2 Form resistance 

 
 Form resistance originates from the change of pressure distribution upon a body as it 
travels through a real fluid due to the formation of a boundary layer. The virtual shape and 

length of the body is altered, thus the pressure distribution at the stern is changed and its 
forward component is reduced, leading to the formation of a net force on the body, acting 
against the motion. 
 Hughes [Hughes (1963), (1965)] proposed that only the term of viscous resistance 

should be used for modelling the form resistance since until then viscous and wave making 
resistances were calculated by the Froude method as one. What he observed was that at 
low Froude numbers, 
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where g  denotes the acceleration of gravity, the wave making resistance will be 

vanishingly small, and after a certain point the curve of calm water resistance will become 
approximately parallel to the friction line. Hughes called this the “run–in” point and 

defined a form factor 11 k  by the expression 
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Viscous Resistance
1

Frictional Resistance
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which equivalently defines the form resistance as a function of the frictional resistance  
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1Form FR k R  (D.9) 

 
 This form factor is independent of the Reynolds number and is the same for all similar 

models and ships. In this study, the calculation of the form factor of the hull, 
11 k , is 

performed by the formula [Holtrop and Mennen (1982), Holtrop (1984)] 
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 with, 
1 1.06806a  , 

2 0.46106a  , 
3 0.121563a  , 

4 0.36486a  , and 
5 0.604247a   . In 

this formula, B  and T  are the moulded breadth and draught of the ship, respectively, 
PC  

is the prismatic coefficient and   is the moulded displacement volume. The parameter 
RL  

is defined as  
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where lcb  is the longitudinal position at the centre of buoyancy forward of 0.5L  as a 

percentage of L . The coefficient 
14c  accounts for the stern shape. It depends on the stern 

shape coefficient 
SternC . Values for 

SternC  are given in Table D.1. 

 
 

Table D.1.  Stern shape coefficient values. 

 

Afterbody Form SternC  

Pram with gondola -25 

V-shaped sections -10 

Normal shaped sections 0 

U-shaped sections with Hogner stern 10 

 
 

 D.1.3 Model/Ship correlation resistance  

 

 The model-ship correlation resistance, aR , is supposed to primarily describe the effect 

of the hull roughness. However, it also incorporates the increase in calm water resistance 
due to the still-air the ship's superstructure "meets" as it sails. The correlation allowance 
coefficient is used to describe the correlation resistance, and is defined in the same manner 
as the frictional resistance coefficient: 
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 This correlation allowance, once called roughness coefficient, is in essence a 
correction factor in order to mainly fine–tune model tests with full scale measurements, 
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since most experimental data, that lead to the construction of all the formulas are based on 
small scale model tests. Physically, its existence is based on a variety of factors, most 
notably the difference in roughness characteristics (the model surface is always smoother 
than the ship) and the laminar flow near the bow of the model (turbulence stimulators are 

often used on the model to alleviate this phenomenon). Its value, typically in the order of 
0.0004, varies for different ship types and model sizes. In this study, the formula by 
Holtrop and Mennen (1982) is used: 
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where
BTA  is the transverse area of the bulbous bow, 

Bh  denotes the vertical position of the 

centre of 
BTA  and should not exceed the upper limit of 0.6 FT , with 

FT  the forward 

moulded draught. Finally 
BC  is the ship's block coefficient. 

 Several expressions for calculating the wetted area of the hull, S , are given in 

Appendix F. 
 

 

 D.1.4 Wave making/breaking resistance 

 
 The wave making resistance of a ship is related to the net force upon the ship due to 

the normal fluid pressures acting on the hull, just as the frictional resistance is the result of 
the tangential fluid forces. If the body is travelling on or near the free surface, this pressure 
variation causes waves which radiate away from the body and carry with them a certain 
amount of energy that is dissipated in the ocean. The wave making resistance can then be 

also characterized by the energy expended by the ship that is necessary to maintain the 
wave system. Purely theoretical determination of the wave making resistance requires 
knowledge of the wave system generated by a moving ship. 
 The first serious theoretical attempt towards quantifying the ship wave system, that 

explained many of its features, was due to Lord Kelvin in the late 19th century [Thomson, 
(1879)]. In his approach the whole wave pattern moves with the ship and for an observer 
on the ship the waves appear to be stationary. Kelvin was able to arrive at his model using 
a general technique in asymptotic analysis, called the method of stationary phase, which he 

developed precisely for the wave resistance problem. However, to utilize this theory the 
wave amplitude must be calculated. One way of evaluating it is based on the thin ship 
theory which was introduced by Michell (1898), as a purely analytic approach for 
predicting the wave resistance of ships and led to the mathematical formulation of Mitchell 

integral. Based on this theory, a fairly large number of numerical computations have been 
carried out both for practical ship geometries and for simplified mathematical forms. 
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Mitchell’s integral is an effective means of comparisons between different theoretical 
predictions or different hull forms. 
 More recent numerical studies [Erickson (1990)] of wave making resistance follow the 
so called panel methods, where the surface of the ship is approximated by a series of 

panels with distributed sources and sinks and allow for the actual geometry of the hull to 
be taken into account. Another modern approach [Eggers et al. (1967, Ikehata (1969)] is 
known as wave pattern analysis, which requires a relatively complex survey of the wake 
region to determine the amplitude function for all relevant wave angles. These techniques 

have led to the discovery of an additional drag component associated with wave breaking, 
and to a better understanding of the bulbous bows of supertankers and other ships with low 
Froude numbers.  
 In the current work, the wave making and wave-breaking resistance are 

simultaneously calculated using formulas derived from regression analysis in the work of 
Holtrop and Mennen (1982) and Holtrop (1984). The formula provides two different 

predictions of the resistance 
wR  , one for the high and one for the low speed range.  

 In the high speed range, 0.55nF  , the wave-making and wave-breaking resistance is 

calculated as  
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where MC  is the mid-ship section coefficient, TA  is the transverse immersed transom area 

at rest, BTA  is the transverse area of the bulbous bow, Bh  denotes the vertical position of 

the centre of BTA  and should not exceed the upper limit of 0.6 FT , with FT  the forward 

moulded draught. The coefficient 2c  along with 3c  are given in the previous (model/ship 

correlation resistance) section by Eqs. (D.16) and (D.17).  

 Attempts to derive an accurate formula for low and moderate speeds 0.40 0.55nF   

were not successful, thus a formula up to a Froude number, 0.40nF  , is derived and the 

wave-making and wave breaking resistance is calculated as 
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with 
Ei  the half angle of entrance, which is the angle of the waterline at the bow in degrees 

with reference to the centre plane, neglecting the local shape at the stern. If 
Ei  is unknown, 

it can be calculated by the following formula 
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with 
WPC  the waterplane area coefficient. 

 For the speed range, 0.40 0.55nF  , the following interpolation formula is used: 
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with 
0.4w AR   the wave resistance prediction for 0.40nF  and 

0.55w BR   the wave resistance 

prediction for 0.55nF   according to the respective formulae. 

 
 

 D.1.5 Appendage resistance  

 
 The appendage resistance is attributed to the presence of appendages such as bilge 
keels, rudders, bossings or open shafts and struts in the ship's hull. It can be calculated 

using the formula proposed by Holtrop and Mennen (1982) 
 

  2
20.5 1APP APP Feq

R V S k C   (D.32) 

 

where APPS  is the wetted area of the appendages,  21
eq

k  is the equivalent appendage 

resistance factor and FC  is the frictional resistance factor (Eq. D.7). The equivalent 

appendage resistance factor for a combination of appendages is given as: 
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where the tentative  21 k  values for several types of appendages are given in Table D.2. 

 
Table D.2.  Approximate 1+k 2 values.  

 

Appendage type  21 k  

Rudder behind skeg 1.5 - 2.0 

Rudder behind stern 1.3 - 1.5 

Twin-screw balance rudders 2.8 

Shaft brackets 3.0 

Skeg 1.5 - 2.0 

Strut bossings 3.0 

Hull bossings 2.0 
Shafts 2.0 - 4.0 

Stabilizer fins 2.8 

Dome 2.7 

Bilge keels 1.4 

 
 

 D.1.6 Bulbous bow resistance 

 
 On high speed vessels such as destroyers and passenger liners, a bulbous bow 
promotes beneficial interference between the waves generated at different points along the 
length of the hull. Thus, for such vessels, the bulbous bow reduces the wave making 

resistance. Originally, bulbous bows of a similar form were fitted to supertankers on the 
basis of experimental measurements indicating significant reductions in the total drag, but 
these reductions often exceed the total estimated wave resistance. For supertankers and 
similar vessels, the bulbous bow is effective in reducing the magnitude of the bow wave 

and thereby in avoiding wave breaking. For naval vessels, this is particularly interesting 
since it is related to non-acoustic signature and detection considerations. 

 The bulbous bow itself adds a portion of resistance, 
BR , to the total calm water 

resistance due to pressure phenomena. In this study, this additional portion is calculated by 
the Holtrop and Mennen (1982) formula 
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where the coefficient BP  is a measure for the emergence of the bow  
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and niF  is the Froude number based on the immersion   



236 Appendices 

 

  20.25 0.15
ni

F B BT

V
F

g T h A V



  

 (D.36) 

 

with 
BTA  the transverse area of the bulbous bow, 

Bh  the vertical position of the centre of 

BTA , and 
FT  the forward moulded draught, as stated previously. 

 

 

 D.1.7 Immersed transom stern resistance 

 
 The additional resistance due to pressure phenomena from the immersed transom stern 

is also modelled using the Holtrop and Mennen (1982) formula: 
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where 
6c  is related to the Froude number based on the transom immersion, 
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while 
nTF  is given by  
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with 
TA  the transom area and 

WPC  the waterplane area coefficient, as stated above. 

 In Sections D.2 and D.3, the models used for the calculation of the added resistance 
due to the weather are presented. 

 

 

D.2 Added Wind Resistance 
 
 A ship sailing on a smooth sea and in still air experiences air resistance but this is 

usually negligible, and it may become appreciable only in high wind. Although the wind 
speed and direction are never constant and considerable fluctuations can be expected in a 
storm, constant ‒average values‒ for wind speed and direction are usually assumed. Even 
in a steady wind, the speed of the wind varies with height above the sea. For consistency 

therefore the speed is quoted at a datum height of 10 m. Near the sea surface the wind is 
considerably slower than at and above the datum height. According to Davenport (1982) 

the variation of speed with height, 
zwindU , can be sufficiently represented by 
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where 
gz  is the datum height, 

windU  is the mean wind speed at the datum height, and n  is 

about 7.5 for the atmosphere (this is like the 7–th power law in turbulent boundary layers). 
 Since a moving ship has its own non-zero velocity, it experiences the incoming wind 
differently from a standing still ship. Specifically, it experiences a relative or apparent 
wind that is created as a combination of the true wind and the headwind, also called 

oncoming wind, created by the ship's forward motion. The relative wind velocity and 
direction are both calculated by the vector sum of the true wind and the headwind the ship 
would experience in still air, as is shown in Fig. D.2. Since the headwind vector in still air 
is opposing the ship's velocity, the apparent wind can also be defined as a vector 

subtraction: the velocity vector of the true wind minus the velocity vector of the ship. 

 Thus, the symbols 
windU  and 

wind  that are used in this work to describe the wind 

refer, specifically, to the true wind speed and direction measured during a weather forecast, 
which is indeed what we are going to use as an input to our problem. However since in the 

calculations the relative wind also needs to be taken into account, the symbols 
RwindU  and 

Rwind  are used to describe the relative wind velocity and direction, respectively. 

Performing the vector subtraction, the following formula for calculating relative wind 
speed and direction from the true wind speed, direction and ship speed are derived: 
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Figure D.2.  Real and apparent wind speed and angle. 
 

 
 Figure D.3 defines a Cartesian x-y coordinate reference system for the ship. The origin 
is located amidship at the intersection of the still water place and on the longitudinal line of 
ship symmetry. Also, definitions and associated sign conventions for the longitudinal force 
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AX  , the lateral force 
AY  and the yaw moment 

AN , which are the three basic forces acted 

on the ship by the wind, are given. 
 
 

 
 

Figure D.3. Coordinate system of wind force coefficients [Fujiwara et al. (2005)]. 
 
 
 Since in this study we are only interested in the effects of the wind on the ship's 

resistance, and not on ship stability, only the longitudinal wind force needs to be taken into 

account. The longitudinal wind force (resistance) is given in terms of a coefficient 
XAC , 

which is called longitudinal wind force coefficient, and is expressed as 
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where 
FA  is the transverse projected area of the ship and 

A  is the density of the air. The 

longitudinal wind force coefficient is a function of the relative wind angle 
Rwindψ  and 

typically it varies between ±0.8 as 
Rwindψ  from 0 to 180 degrees. 

 Well known studies for the prediction of the added wind resistance component based 
on regression of data in the literature are the studies of Isherwood (1973) and Blendermann 

(1996). In this study, a relatively new method proposed by Fujiwara et al. (2005) is used. 
The method is based on regression upon multiple data from model tests in wind tunnels in 
order to calculate the added wind resistance coefficient (or the longitudinal wind force 
coefficient) 
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with 
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while for 90
R

o
wind   the added wind resistance coefficient is given by  
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where 
 

 
ODA  lateral projected area of superstructures on deck 

 
XVA   area of maximum transverse section exposed to the winds 

 
YVA   projected lateral area above the waterline 

 B   ship breadth 

 
MCC   horizontal distance from midship section to centre of lateral projected area 

YVA   

 
BRH   height of the top of the superstructure 

 
CH   height from waterline to centre of lateral projected area 

YVA  

 
OAL   overall ship length  

    smoothing range, normally 10o  . 

 

 The non-dimensional coefficients ij , ij  and ij  used in Eqs. (D.45)‒(D.47) are given 

in Table D.3. 

 
Table D.3.  Coefficients for the Fujiwara formula.  

 

 i 
j 

0 1 2 3 4 

ij  
1 0.922 -0.507 -1.162 - - 

2 -0.018 5.091 -10.367 3.011 0.341 

ij  
1 -0.458 -3.245 2.313 - - 
2 1.901 -12.727 -24.407 40.310 5.481 

ij  
1 0.585 0.906 -3.239 - - 

2 0.314 1.117 - - - 

 



240 Appendices 

D.3 Added Wave Resistance 
 
 Most studies of performance of a ship are based primarily on the calm water resistance 
of the ship hull without considering the sea condition prevailing on the route that the ship 

is designed to operate. This calm water resistance is used as a first estimation of the power 
required to drive the ship in a seaway and an allowance, called ‘‘Sea Margin’’ or 
‘‘Weather Margin’’, is added to this value of the resistance to consider the effect of the 
environment on ship behaviour. This value of the Sea Margin is usually stated at the design 

stage by the ship owner or ship designer (often 15–30% of the ship calm water power), 
based on experience of similar ships sailing on the same route or tradition. A more accurate 
value of this Sea Margin can be obtained through theoretical methods that compute the 
added resistance of a ship based on its motions, that in turn are obtained through numerical 

calculations or towing tank tests. 
 A ship moving forward in a wave field generates two kinds of waves: waves 
associated with forward speed in still water, and waves associated with its motions due to 
the incident waves. Since both kinds of waves dissipate ship energy, it is expected to 

conclude that a ship moving in waves will dissipate more energy than one sailing in still 
water [Arribas (2007)]. This extra-induced loss of energy is called added resistance in 
waves and is considered to be independent of the calm water -wave making- resistance of a 
ship [Ström-Tejsen et al. (1973)]. 

 According to the classical sea keeping theories, the energy dissipated of a ship can be 
attributed to three different components related to the energy supplied from the ship to the 
water and generated by the ship propulsion plant. These three components are: (i) The 
drifting force, obtained from the interference between incident waves, which are diffracted 

when encountering ship hull, and the radiated waves [Alexandersson, (2009)] produced by 
ship motions, especially those produced by heave and pitch, (ii) The diffraction effect, 
where incident waves are also reflected in ship hull (Fig. D.4), and also interact with the 
ship radiated waves, and (iii) A ‘‘viscous’’ effect due to the damping of the vertical 

motions. 
 Calculations and measurements indicate that the drifting force, produced by the ship 
motions radiated waves, would make the largest contribution to the added resistance, 
whereas diffraction effects would be the least significant, which is more important for short 

waves. Moreover, only a small part of the energy is consumed by viscous friction, since 
viscous damping is insignificant compared to hydrodynamic damping of ship motions. 
From the practical point of view, the added resistance in waves can be considered a non-
viscous phenomenon [Ström-Tejsen et al. (1973)], almost produced by potential effects 

such as inertial and wave phenomena. The radiation induced resistance is dominating when 
the ship motions are big, while the diffraction induced resistance is dominating for high 
wave frequencies (Fig. D.4) when the ship motions are small. 
 On the basis of analytical considerations, in general, the three mentioned effects are 

considered additive (thus they can be superimposed) and proportional to the squared value 
of the wave amplitude and ‒hence‒ non-linear. The principle of superposition for 
predicting average resistance was originally stated by Maruo (1957). Rigorous proof was 
later demonstrated by Vassilopoulos (1967). Also, the assumption of proportionality to the 

squared value of the wave amplitude was the subject of numerous investigations in the 
early years of the numerical theories on added resistance [Gerritsma (1961), (1972); 
Strom-Tejsen et al. (1973); Bhattacharyya (1978); Lloyd (1998)]. Experiments reported in 
the literature indicate that the linear relationship between added resistance and wave height 

square at constant speed and wavelength can be considered a good approximation for 
practical purposes. 
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 Today, it is possible to make analytical predictions of ship motions and sea loads, from 
the simple but powerful strip theories and time domain calculations, and some commercial 
codes are available for the designer. Heave and pitch motions in regular waves can be 
calculated with sufficient accuracy, so that these motion responses can be used with the 

superposition theory and the sea energy spectrum [Bhattacharyya (1978)] to make practical 
design predictions for the added resistance in waves. Added resistance in waves can be 
obtained also from model experiments in regular or irregular head waves with the ship 
model towed at constant speed, and added resistance measured as the difference between 

the mean added resistance in waves and the still water resistance measured at the same 
speed. Several empirical methods widely used are those of Shifrin (1973), Jinkine and 
Ferdinande (1974), while the analytical methods considered have been developed by 
Havelock (1937), Gerritsma and Beukelman (1972), Maruo (1957) and Hosoda (1973). 

The comparison between all the above methods which predict the added resistance as a 
function of regular wave characteristics is shown in Nabergoj and Prpic-Orsic (2007) for 
head sea conditions. 
 

 

 
 

Figure D.4.  Radiation and diffraction induced resistance, for different wave frequencies 

[Alexandersson (2009)]. 
 
 
 The calculation of the added resistance in an irregular sea is based on the superposition 

principle for the components of the wave, motion and resistance spectra as well as on the 
assumption of linearity for the ship’s response. In regular waves the added resistance varies 
as the square of the wave amplitude. In a wave spectrum the (total) mean added wave 
resistance would then be calculated from 
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where 
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waveR  mean resistance increase in regular waves 

 
   wave amplitude 

    circular frequency of regular waves 

    angle between ship heading and regular waves, whereas 
wave  which is an 

input    from the weather profile data used before is the primary wave direction 
 V   ship speed  

 ( , )E    directional spectrum of the waves: 
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with ( )fS   being the frequency spectrum and ( )G   being the angular distribution 

spectrum. In this study, the modified Pierson-Moskowitz frequency spectrum of ITTC 
(1978) is used 
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where 
sH  denotes the significant wave height defined before as the mean wave height 

(trough to crest) of the highest third of the waves. 
 For the angular distribution function the cosine power formula shown next is applied 
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where 
 
 s  directional spreading parameter (taken equal to 1 for seas and 75 for swells) 

    Gamma function 

 wave   primary wave direction (as stated above). 

 

 So, the problem is translated into the calculation of the mean resistance increase in 

regular waves, waveR . Applying the theoretical considerations examined at the start of this 

section, the mean resistance in regular waves is decomposed into two terms 
 

 
M Rwave wave waveR R R   (D.56) 

 

with 
MwaveR  being the mean resistance increase in regular waves induced by ship motion 

while 
RwaveR  is the mean resistance increase in regular waves induced by wave reflection. 
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In general the reflection resistance should be calculated with accuracy since the mean 
resistance increase in short waves is the predominant one. 

 Ideally the calculation of the mean resistance by ship motion,
MwaveR , is based on 

Maruo's theory [Maruo (1957), (1960)]. However, this involves complicated 

‒computationally heavy‒ algorithms and requires much information on the geometry of the 
ship’s hull, thus, is out of the scope of this Thesis. Based on the fact that the important 

term is in fact the term 
RwaveR  and not

MwaveR , a simplified empirical method [ITTC 

(2012)] is used. The method is developed to approximate the transfer function of the mean 

resistance increase in regular waves by using only main ship dimensions and the ship 
speed. The formula for the motion resistance is given as 
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where 

 

 yyk  non dimensional radius of gyration in lateral direction 

 ppL   ship length between perpendiculars 

    circular frequency of regular waves 

    angle between ship heading. 
 

 Concerning the resistance increase due to reflection,
RwaveR , the method given in 

Tsujimoto et al. (2008) is used: 
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where 

 

 fB  bluntness coefficient 

 
UC   advance speed coefficient 

 
 effect of draught and encounter frequency 

 
1I  modified Bessel function of the first kind of order 1  

 
1K   modified Bessel function of the second kind of order 1 

 k  wave number 

 T  ship draught 

 
w  slope of the line element dl along the water line (Fig. D.5). 

 

 

 
 

Figure D.5.  Domains of integration (I&II) for calculation of bluntness coefficient 
[Tsujimoto et al. (2008)]. 

 

 

 The coefficient of advance speed in oblique waves,
UC , is calculated with the 

empirical line shown in Fig. D.6, which has been obtained by tank tests of various ship 
types.  
 In several cases where not enough information was available about the geometry of the 

ship's hull, again, a simplified empirical method [ITTC (2012)] was used  
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where MT  is the draught at midship. 

 
 This empirical method is applicable and very accurate, if the following restrictions 
apply: 
 

(1) 75( ) 350( )m Lpp m   
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(2)  4.0 9.0
ppL

B
   

(3)  2.2 5.5
B

T
   

(4) 0.10 0.30nF   

(5) 0.5 0.90BC   

(6) the wave direction is heading (within 0 to 45  degrees). 

 
 Since this method applies only to waves in the bow sector ( 45  degrees), waves 

outside this sector are omitted and the angular distribution spectrum loses its meaning. The 
formula given in Eq. (D.49) for the calculation of the total added wave resistance in 

irregular seas is then simplified to the following 
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with ( )fS   being the modified Pierson-Moskowitz frequency spectrum of ITTC (1978) as 

stated in Eqs. (D.51)-(D.54). 

 
 

 
 

Figure D.6.  Relation between the coefficient of advance speed on added resistance due to 

wave reflection and the bluntness coefficient for conventional hull form above water 
[Tsujimoto et al. (2008)]. 
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APPENDIX E.  SHIP PROPULSION 

 
 A moving ship experiences resistance forces from the sea water and the air that must 
be overcome by a thrust supplied by some kind of a thrust-producing mechanism. In the 

earliest days this consisted of manually operated oars which in turn gave places to sails and 
then mechanical devices such as jets, paddle wheels and finally propellers of many 
different forms. In the following of this section only mechanical means of propulsion will 
be discussed. 

 In the scope of finding an appropriate model that can correlate the propulsion engine 
with the total resistance of the ship, some basic concepts and the corresponding equations 
of ship powering are described. The basic power terms are schematically depicted in 

Fig. E.1. The brake power, 
bW , is the power measured at the shaft coupling by means of a 

mechanical, hydraulic or electrical brake. It is determined by a shop test and is calculated 

by the formula 
 

 2bW Qn  (E.1) 

 

where Q  is the brake torque (kN∙m) and n  is the revolutions/sec.  

 
 

 
 

Figure E.1.  Ship power definitions. 
 

 

 The shaft power, sW , is the power transmitted through the shaft and is usually 

measured aboard the ship by means of a torsion-meter. This instrument measures the angle 
of twist between two sections of the shaft, which is directly proportional to the torque 

transmitted. The shaft power is calculated as 
 

 s b gW W  (E.2) 

 

where g  is the gearing efficiency. Through the bearing efficiency b  and the stern-tube 

efficiency st , we arrive at the delivered power  

 

 d s st b b g st bW W W       (E.3) 

 
which is the power available to the propeller for the propulsion of the ship. 
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 The corresponding effective/towing power, effW , since the ship moves with speed V

and experiences total resistance 
TR  is given as: 

 

 eff TW R V  (E.4) 

 

 This effective power is related to the delivered to the propeller power, 
dW , through the 

quasi–propulsive efficiency 
 

 
eff

d

d

W

W
   (E.5) 

 

where the coefficient 
d  is in the range of 0.5 to 0.7 whereas all other efficiencies are very 

close to 1. The total propulsive efficiency can now be defined as 

 

 
eff

prop g st b d

b

W

W
       (E.6) 

 
 Thus, the problem of correlating the effective power with the brake power, or 
equivalently calculating the total propulsive efficiency, is reduced to the task of calculating 

the quasi-propulsive efficiency, 
d . In order to do this, some basic characteristics of the 

propeller and of the propeller-hull interaction must be taken into account. 

 As the propeller advances through the water at a speed of advance 
AV , it delivers a 

thrust T , and the thrust power is 
 

 t AW TV  (E.7) 

 
 The ratio of the work done on the ship to that done by the propeller is called the hull 
efficiency  

 

 
eff T

h

t A

W R V
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    (E.8) 

 

 Also, the propeller efficiency is defined based on the torque, 
dQ , on the whole 

propeller, as 
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t A
p

d d

W TV

W nQ



   (E.9) 

 
 The relations between thrust, torque, and rotational speed in open water, where the 
inflow is uniform, cannot be expected to remain the same behind the hull in the variable 
flow conditions experienced there. This leads to the possibility of different propeller 

efficiencies in open water and behind the hull. The propeller in open water, with a uniform 

inflow velocity at a speed of advance AV , has an open water efficiency given by  
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   (E.10) 

 

where 
0Q  is the torque measured in open water when the propeller is delivering thrust T  

at rotational speed n . The ratio of propeller to open efficiencies under these conditions is 

called the relative rotative efficiency, being given by 
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   (E.11) 

 

 The value of the relative rotative efficiency does not, in general, depart significantly 
from one, being in the range of 0.95 to 1.1 for most twin screw ships, and between 1.0 and 
1.05 for single screw. From Eq. (E.5), (E.8), (E.9) and (E.11) we reach to an expression for 
the quasi-propulsive efficiency expressed as a multiple of hull, rotative and open water 

efficiencies 
 

 
eff eff
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d t

W W

W W
           (E.12) 

 
thus, the total propulsive efficiency, Eq. (E.6) can now be expressed as  

 

 
eff

prop g st b h r o

b

W

W
         (E.13) 

 
 The division of the propulsive coefficient into factors in this way is of great assistance 
both in understanding the propulsion problem as well as in making estimates of propulsive 

efficiency for design purposes, or even creating a simple and well understood 
mathematical model of the system. Since the gearing, stern-tube, bearing, rotative and 
open-water efficiencies are usually in the range of 0.95 - 1, the term that mainly defines the 
total efficiency is hull efficiency. Thus the task of determining the total propulsive 

efficiency is reduced to the task of calculating
h . 

 The propeller operates while being located behind the model or ship hull. This results 
in the flow being considerably modified in comparison to when working in open water. 
The propeller is working in water which has been disturbed by the passage of the hull, and 
in general the water around the stern has acquired a forward motion in the same direction 

as the ship. This forward moving water is called the wake, w , and one of the results is that 
the propeller is no longer advancing relatively to the water at the same speed as the ship, 

V , but at some lower speed, the speed of advance, AV . This difference between speeds is 

the wake speed. The wake fraction is defined as 
 

 AV V
w

V


  (E.14) 

 
 Also, when a hull is towed, there is an area of high pressure over the stern which has a 
resultant forward component reducing the total resistance. With a self-propelled hull, 

however, the pressure over some of this area is reduced by the action of the propeller in 
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accelerating the water flowing into it, the forward component is reduced, the resistance is 

increased and so is the thrust necessary to propel the model or ship. If 
TR  is the total 

resistance and T  the thrust, we can write for the same ship speed 
 

 (1 )TR t T   (E.15) 

 
where the expression (1 − t) is called the thrust deduction factor. 
 Combining Eqs. (E.14) and (E.15) with Eq. (E.8) we obtain a new expression for the 
hull efficiency 
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 (E.16) 

 
 It is noted that in some ships this is higher than one. At first sight this seems an 
anomalous situation in that apparently something is being obtained for nothing. It can, 
however, be explained by the fact that the propeller is making use of the energy which is 

already in the wake because of its forward velocity. 
 In this study, the wake and thrust factor are calculated using the formulas of Holtrop 
and Mennen (1982), Holtrop (1984). For single screw ships with a conventional stern we 
have for the wake factor  
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1

1.45 0.315 0.0225P Pc C lcb    (E.23) 

  21V F aC k C C    (E.24) 

where 
 

 
VC  viscous resistance coefficient (defined in appendix D)  

 
FC   frictional resistance coefficient (defined in appendix D) 

 
aC   allowance resistance coefficient (defined in appendix D) 

 
OAL   overall ship length 

 
AT   aft moulded drought  

 D   propeller diameter  
 S   wetted area  

 B   ship breadth 

 
sternC   stern shape coefficient (defined in appendix D) 

 
PC   prismatic coefficient on the waterline 

 
MC   midship section coefficient 

 
BC   block coefficient 

 lcb   longitudinal position at the centre of buoyancy forward of 0.5 OAL  as a 

percentage    of 
OAL . 

 

and for the thrust factor 
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 In case of multiple screw ships or open-stern single screw, the following formulas are 
used instead 
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with 9c , VC , 11c  and 
1P

C  calculated as in the previous formula, and 
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APPENDIX F.  WETTED AREA 
 
 The wetted surface is normally calculated by hydrostatic programs. In the work of 
Kristensen (2012), an analysis of the wetted surface data of 129 ships has been performed. 

The equations for the wetted surface, which have been deducted from his analysis, are 
shown in Table F.1, where Lwl is the waterline length of the ship hull. 
 
 

Table F.1.  Equation for the wetted surface for several ships [Kristensen (2012)]. 
 

Bulk carriers and tankers 0.99( 1.9 )wlS L T
T


   

Container vessels (single screw) 0.995( 1.9 )wlS L T
T


   

Twin screw ships (Ro-Ro ships) with open shaft lines  
(and twin rudders) 

1.53( 0.55 )wlS L T
T


   

Twin skeg ships (Ro-Ro ships with twin rudders) 1.2( 1.5 )wlS L T
T


   

Double ended ferries 1.11( 1.7 )wlS L T
T


   

 

 
 The formula for calculation of the wetted surface includes the area of rudder(s) skegs 
and shaft lines. However any additional surfaces, S', from appendages such as bilge keels, 
stabilizers etc., shall be taken into account by adding the area of these surfaces to the 

wetted surface of the main hull.  
 If the wetted surface, S1, is given for a given draught, T1, the wetted surface, S2, for 
another draught, T2, can be calculated by using the following formulas, which have been 
deducted based on an analysis of data for container ships, tankers and bulk carriers:  

 

Container ships:  2 1 1 22.4( )( ) with 1.01wl wl ppS S T T L B L L      

Tankers and bulk carriers:  2 1 1 22.0( )( ) with 1.02wl wl ppS S T T L B L L      

 
 The corresponding formula proposed by Holtrop and Mennen (1982) is  
 

 

  



2 0.453 0.4425

      0.2862 0.003467 0.3696

      2.38

OA M B

M WP

BT B

S L T B C C

C B T C

A C

   

  



 (F.1) 

 

where MC  is the midship section coefficient, BC  the block coefficient on the waterline 

length, WPC  the waterplane area coefficient and BTA  the transverse sectional area of the 

bulb at the position where the still water surface intersects the stern. 

 Formulas from both Kristensen and Holtrop and Mennen are adopted for the case 
studies of this work, depending on the quantity of available information considering the 
specific vessel of each case study. 
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APPENDIX G.  BEAUFORT SCALE 
 

 The Beaufort scale is an empirical measure that relates wind speed to observed 
conditions at sea or on land. Its full name is the Beaufort wind force scale, although it is a 
measure of wind speed and not of force in the scientific sense. 
 In the early 19th century, naval officers made regular weather observations, but there 

was no standard scale and so they could be very subjective. Beaufort succeeded in 
standardizing the scale that went through a long and complex evolution from the previous 
work of others. Then it was adopted officially and first used during the voyage of HMS 
Beagle under Captain Robert FitzRoy, later to set up the first Meteorological Office (Met 

Office) in Britain giving regular weather forecasts. 
 
 

 
 

Figure G.1. The Beaufort Scale [Met office (2011)]. 
 
 

 The initial scale had thirteen classes (zero to twelve) and did not include wind speed 
numbers but related qualitative wind conditions to effects on the sails of a frigate. The 
scale was made a standard for ship's log entries on Royal Navy vessels in the late 1830s 
and was adapted to non-naval use from the 1850s, with scale numbers corresponding to 

cup anemometer rotations. In 1916, to accommodate the growth of steam power, the 
descriptions were changed to how the sea, not the sails, behaved and extended to land 
observations. Rotations to scale numbers were standardized only in 1923. The scale was 
extended in 1946, when forces 13 to 17 were added, intended to apply only to special 
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cases, such as tropical cyclones. Nowadays, the extended scale is only used in Taiwan and 
mainland China, which are often affected by typhoons. Internationally, WMO Manual on 
Marine Meteorological Services (2012 edition) defined the Beaufort scale only up to Force 
12 and there was no recommendation on the use of the extended scale. A typical Beaufort 

scale is given in Fig. G.1. 
 Wind speed on the 1946 Beaufort scale is based on the empirical relationship: 
 

 
3

20.836windU B   (G.1) 

 

where 
windU  is the equivalent real wind speed (in m/sec) at 10 meters above the sea surface 

and B  is the Beaufort scale number. Note that wave heights in the scale are for conditions 

in the open ocean, not along the shore, and that these values refer to well-developed winds. 
 The important, for our study, characteristic of the widely used Beaufort scale is that it 
provides an empirical correlation of the wind above the sea and the corresponding wave 
effect at the sea. As discussed earlier, in order to fully describe the weather state and use it 

as input to the problems, four parameters must be known: the wind speed and direction and 
the significant wave height and wave direction. However, in essence, only three inputs are 
required, since the significant wave height can be deduced from the wind speed using the 
Beaufort scale. Thus, in order to efficiently use the scale, interpolation is performed based 
on the data given in Fig. G.1 and the significant wave height is stated as a function of the 

wind speed. More specifically, a seventh order polynomial is used and the significant wave 
height (in meters) is given by the equation 
 

  
7

0

j

s j wind

j

H b U


   (G.2) 

 

where the 
ib  coefficients are given in Table G.1. 

 
 

Table G.1.  Coefficients for the wave height - wind speed interpolation polynomial. 

 

7b  -93.61600798 10  3b  0.00732495739  

6b  -7-4.513220943 10  2b  -0.0186024963  

5b  -52.330232355 10  1b  0.1433105708  

4b  -0.0006007757097  0b  -0.01933157561 
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