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Abstract 

Power emerging from the oceans is a form of renewable energy increasingly attracting the 

interest of the scientific and industrial society. A brief review of wave energy technologies and 

an attempt for their categorization is initially presented in this thesis. The performance of Wave 

Energy Converters (WECs) in nearshore and coastal areas, where the bottom topography may 

present significant variation, is examined in this work by means of a Boundary Element Method, 

capable of treating hydrodynamic interaction between multiple floating bodies and general 

bathymetry.  The methodology is based on a novel Boundary Element Method, combined with 

the Coupled Mode System and Perfectly Matched Layer model, for the treatment of the 

propagation/diffraction/radiation problems and, following its validation in 2D and 3D problems, 

the research focuses in the evaluation of flow details at the local scale of the energy absorbers. 

An important feature of the methodology is that it is free of mild-slope assumptions and 

restrictions. Numerical results are presented and discussed concerning the details of the wave 

field and the power output of a single floater with vertical cylindrical body over a region of 

general topography. The optimization of the device performance is examined by considering 

generally-shaped axisymmetric bodies and power take-off values for heaving motion. 

Interactions among cylindrical heaving WECs in an array layout are also examined. Finally, 

shape and PTO optimization are carried through for heave power mode and one additional degree 

of freedom, this of pitch mode of oscillation. 

 

Keywords: Wave energy; Point absorber; Frequency-domain; Boundary Element Method; 

Coupled Mode System; Perfectly Matched Layer; Variable depth effects; Wave Energy 

Converter; WEC Arrays; Multi-DOF WEC; Design optimization; 
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Περίληψη 

Η ωκεάνια ενέργεια είναι μια μορφή ανανεώσιμης ενέργειας η οποία όλο και περισσότερο 

προσελκύει το ενδιαφέρον της επιστημονικής κοινότητας και της βιομηχανίας. Αρχικά γίνεται 

μια παρουσίαση των διαθέσιμων τεχνολογιών κυματικής ενέργειας καθώς και μια προσπάθεια 

κατηγοριοποίησής τους. Η απόδοση των συσκευών εκμετάλλευσης της κυματικής ενέργειας σε 

παράκτιες περιοχές, όπου η τοπογραφία του πυθμένα μπορεί να παρουσιάζει έντονη 

διακύμανση, εξετάζεται στην παρούσα μελέτη με όρους της Μεθόδου Συνοριακών Στοιχείων, 

μεθόδου ικανής να αντιμετωπίσει περιπτώσεις υδροδυναμικής αλληλεπίδρασης πολλαπλών 

επιπλεόντων σωμάτων και γενικού βαθυμετρικού προφίλ. Η καινοτόμος αριθμητική 

μεθοδολογία βασίζεται στο συνδυασμό BEM-CMS-PML για την αντιμετώπιση των γενικών 

προβλημάτων διάδοσης/περίθλασης/ακτινοβολίας και, αφού επικυρωθεί σε 2D και 3D 

προβλήματα, θα χρησιμοποιηθεί στον υπολογισμό των χαρακτηριστικών της ροής στην τοπική 

κλίμακα των ενεργειακών απορροφητών. Σημαντικό χαρακτηριστικό της μεθοδολογίας είναι η 

έλλειψη οποιωνδήποτε παραδοχών και περιορισμών για τις μέσες κλίσεις. Τα αριθμητικά 

αποτελέσματα παρουσιάζονται και σχολιάζονται σύμφωνα με τις λεπτομέρειες του κυματικού 

πεδίου και της παραγόμενης ισχύος για μια συσκευή με μορφή κατακόρυφου κυλίνδρου, η οποία 

λειτουργεί πάνω από περιοχή γενικής βαθυμετρίας. Η βελτιστοποίηση της απόδοσης γίνεται με 

την υπόθεση σωμάτων γενικού αξονοσυμμετρικού σχήματος και διαφόρων τιμών των 

παραμέτρων του συστήματος απορρόφησης ενέργειας κατά την κατακόρυφη ταλάντωση της 

συσκευής. Η αλληλεπίδραση μεταξύ όμοιων κυλινδρικών συσκευών σε διάταξη συστοιχίας 

εξετάζεται επίσης. Τέλος, η βελτιστοποίηση του σχήματος και των παραμέτρων του συστήματος 

απορρόφησης της ισχύος μελετάται και για συσκευή με περισσότερων του ενός βαθμών 

ελευθερίας, συγκεκριμένα λαμβάνοντας υπόψη την κατακόρυφη ταλάντωση και την περιστροφή 

περί τον εγκάρσιο άξονα, κίνηση γνωστή και ως προνευτασμός. 
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Ocean energy: A brief review 

1.1 Facts and policies for climate change 

1.1.1 The crucial indexes 

The prosperity of our societies is measured by the energy consumption (Figs 1, 2). More 

specifically, a country which is growing and attempting to establish a well-living for its citizens, 

is at the same time a powerful energy consumer and therefore a severe reason for environmental 

pollution, due to the reliance of the energy sector on conventional fuels. The energy consumption 

and the environmental impacts are a field of harsh diplomatic negotiations, especially among the 

growth and the growing countries, with apparent competitive affairs.   

 

Figure 1: Total energy consumption (1990-2017) [1] 
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Figure 2: Energy consumption and GDP annual growth change (2006-2017) [2] 

However, this global activity has many fallouts on our planet. The September of 2016, according 

to many researches, was the turning point in human history and its relation with the environment. 

The CO2 concentration in the atmosphere, and as a result the temperature levels on planet Earth, 

climbed to their highest levels, as shown in Fig. 3 and this demands the immediate fundamental 

transformation of the global energy mix in just few years [3]. One of the significant outcomes is 

that the annual ice covering of Arctic is dramatically reducing (Fig. 4) and subsequently the sea 

level increases, as pointed out by the measurements of Table 1 and the relevant Figs 5, 6 and 7, 

facts manifesting the climate crisis. 

 

Figure 3: Global temperature difference (1884-2017) [4] 

 

Figure 4: Arctic sea ice covering (1979-2018) [4] 

Now, more than ever before, this issue demands a solution, under the prescience alleging that 

humanity has almost twelve years to prevent a non-reversible climate change. The data by the 
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National Air & Space Administration are ringing the bell and the following facts and stats are a 

proof [4]. The main evidences of this rapid climate change are namely: the global temperature 

rise, the warming oceans, the shrinking ice sheets, the retreating glacial, the decreased snow 

cover, the rising sea level, the declining Arctic sea ice, the frequent extreme events and the ocean 

acidification. Another reason justifying this concern is that during United Nations Climate 

Change Conference in Paris on 2015 was predicted a total mean temperature increase of 1.5oC 

by 2050, while in most recent studies humanity surpasses itself and this prediction is now almost 

2oC, if the man continues to reject CO2 with the same tempo. 

 

Figure 5: CO2 emissions: (a) 2005-2020, (b) Last 400 millenniums [4] 

 

Figure 6: Arctic ice: (a) Covering in square km, (b) Mass in Gt [4] 

 

Figure 7: (a) Temperature anomaly, (b) Sea level variation [4] 

 

 

 

 

(b) (a) 

(a) (b) 

(a) (b) 
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Table 1 

The climate change in numbers [4] 

Variable Trends Facts 

[CO2]atm ↗7.6%  (17th Sep 2017-17th Sep 2018) The highest levels of air CO2 for the 

past 650.000 years. 

Global Temperature ↗1.8oC (Since 1880) Eighteen of the warmest years 

occurred from 2001 

Arctic Ice ↘12.8% per decade In 2012 the Arctic sea ice shrank to its 

lowest recorded levels 

Ice Sheets ↘413 Gtn per year Rapidly losing mass 

Sea Level ↗3.2 mm per year Global average  sea level has risen to 

almost 178 mm in the past century 

On the other hand, there are many scientists supporters of the opinion that this whole variation 

of the climate is a natural circle and at some time the dynamic ecosystem of Earth will overcome 

and will balance again. If anyone study evidences, similar to those described in the above Figs 5, 

6 and 7, he will probably come up with a different conclusion, because above any questioning, 

critical indexes of equilibrium are showing ominous ratios for the last decades. 

1.1.2 Redirecting to eco-policies 

Pursuant to those foreboding facts the countries are changing their policies and redirecting their 

efforts towards eco-friendly energy production activities and carbon neutrality. The pressure for 

more regulations regarding the emissions are intense, referring to a total decrease of the 

Greenhouse Effect Gases up to 40-70% until 2050. The European Schedule of "20-20-20" is one 

among others that stands out and sets strategy and targets of environmental policy adaptation for 

every member until 2020 (Fig. 8), while more strict regulations are scheduled for 2030. Every 

member of the EU institutes laws and regulations in order to assign partial targets in specific 

fields and meet the strategic goals. Moreover, emission pricing tariffs are also proposed and 

applied all over the world. A characteristic example of this effort and its results is the China, 

which contributed in the decline of coal sharing in primary energy consumption of about 60.4% 

during 2017. However, the industrial growth led to surging energy demands and thus to an 

increase of 3% in coal consumption during 2017-2018, proving that this transition should be 

restlessness.  
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Figure 8: The EU 2020 Schedule and the member statistics for renewable  

                 energy sources in percentage of gross energy consumption [5,6] 

Therefore, the green technology emerges more ambitiously than ever before and progressively 

dominates more quota of the energy production market. This forms of energy sources can be 

categorized based on their origins as: 

- Wind energy  

- Solar energy 

- Hydropower 

- Biomass 

- Hydrogen and fuels cells 

- Geothermal energy 

- Ocean (Blue) energy 

The most significant advantages of the renewables are: 

- Eco-friendly 

- Inexhaustible sources 

- A way for power self-sufficiency 

- Low operating costs 

- State funded programs 

- Employment opportunities 

- High geographical distribution 

- High density near urban areas 

- Significant prospects for technological evolution 

As every proposed solution, even this one has its disadvantages. The majority of them are related 

with the physical form of this type of energy, but also with the human way of living and the 

ordinary public perception and beliefs, i.e. Not In My Back Yard (NIMBY), impeding their 

commercial establishment. 
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 The main drawbacks of exploiting renewable forms of energy are: 

- The geographical distribution is not advantageous in cases of high power concentration 

demands in a specific area. 

- Low power density 

- Intense geographical and seasonal power fluctuations 

- High investment cost due to its immaturity as technology and demand for R&D funds 

- Low capacity factors because of their reduced temporal availability 

- Impact on the environment and the ecosystems of flora and fauna 

- Property issues for the potential grounds among stakeholders and owners  

- Unpropitious operational conditions 

- High cost of power transfer 

- Deterioration of the optical surroundings  

- Noise pollution 

 

Figure 9: Renewable energy electricity production (1990-2017) [1] 

The investments in renewable energy sector is the only way to become independent from the 

conventional fuels. In addition, it is also the way for the countries to become self-sufficient in 

the energy sector by the geographical distribution of its sources and the ensuing decentralization 
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of the power system. Retrieving stats again for China’s case, this colossus in carbon consumption 

is struggling to become more "green" and this effort is reflected from the increased share of 

renewables in total power generation from 16.2% in 2011 to 26.5% in 2017 [7] and the record 

breaking investments percentage of 45% of the global investments in renewables sector for 2017, 

up from 35% during 2016 and followed by Europe (15%) [8]. In conclusion the past year of 2017 

was a mark in renewables power capacity scale up, reaching the highest numbers of all times. In 

2017, the estimations of new investments in renewable energy technologies were 279.8 bn$, 

increased by 2.1% from 2016. The power capacity from renewable sources was 2017 GW in 

2016 and 2195 GW in 2017, including the hydro plants. At the same time, the renewable sector 

holds almost 20.5% of total energy consumption globally, while the sharing of this amount is 

shaped as the 27% for heat production out of 48% in total energy spending in this specific field, 

25% in power production out of 20% and 3% on transports out of 32% [8]. The efforts are 

focusing primarily in the power sector, and secondly in heat-cooling and transportation, while 

besides this fact, the electric passenger vehicles sales increased up to 58% in comparison with 

2016 and the appreciation of modern renewables participation in heating and cooling is growing 

rapidly beyond 10.3% for 2017. 

 

Figure 10: Renewable power capacities and top six countries (2017) [8] 

At the present, the transition towards renewables is shown to be possible, but the results in its 

sectors individually are unequal. Nevertheless, efforts and innovative technologies attempt to 

exploit the most prosperous forms of renewables, striving for a more promising future. Many 

companies at first, counted to almost five hundreds so far, cities secondly, and even whole 

nations attempt and being committed to go 100% on renewables, as members of RE100 initiative, 

always in terms of energy production footprint and not of energy sources, for example Facebook, 

Microsoft, BMW Group and Coca Cola until 2020. Over 1.8 billion people have decided to go 

totally "green" in the following decades, at least in one sector and in this direction a great 

paradigm is Copenhagen setting the goal to be the first carbon neutral capital by 2025. As of 

now, fifty seven countries are targeting on a 100% renewable electricity production [8]. A change 

also in the way of thinking is essential if humanity wants to meet her goals and, along this path 

of transforming to more eco-friendly society, skepticism and concerns about the accompanying 

impacts of green technologies should be critiqued. 
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1.2 An ocean of potential 

1.2.1 Power emerging from the seas 

The ocean energy, also called as "blue" energy, is another form of renewable energy, with its 

dawning dating back to two centuries, however still commercially "young" in the energy market. 

More than a thousand patents were registered up to 1980 and this number has of course been 

multiplied nowadays. Even today, with the technological evolution and R&D activity in this area 

of interest to their highest levels there is still no validation for the most efficient way of 

harnessing the energy from the seas and many of the proposals are still in labs and experimental 

tanks, while the currently operating devices have specifications at best of TRL 6-7 out of 9 

(Technology Readiness Level) (Fig. 11).  This is the main difference among this renewable 

source and others like solar and wind, fields where the way, the deployment risk and the 

machines of producing power has come to a final crystallization. 

 

Figure 11: Current ocean energy technologies [9] 

The ocean can provide a proportion of their energy, primarily absorbed by the sun, with one of 

the following forms: 

- Tidal energy 

- Wave energy 

- Marine current energy 

- Osmotic energy 

- Ocean thermal energy 

Estimations about the potential of these forms as a possible answer for eco-friendly power 

production are more than encouraging, as the values in Table 2 reveal: 
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Table 2 

Ocean energy potential [10] 

Form Annual global potential 

Tidal energy >300 TWh 

Marine current power >800 TWh 

Osmotic power (salinity gradient) 2,000 TWh 

Ocean thermal energy (thermal gradient) 10000 TWh 

Wave energy 8000–80000 TWh 

The wide range in assessing the wave energy has to do with the point of view of each researcher 

and the strongly dynamic physics of the waves. The results are proving the high prospects of 

exploiting such a powerful source. Focusing on wave energy, the great density of this form, 

measured up to 3 KW/m2 [11], comparing it with the 0.3 KW/m2 of solar energy, in combination 

with the coastal distribution of the population, with the 37% of people living in only 60 miles of 

coastline, drive the estimations for the energy capacities from the waves to very big scales. The 

total electric grid power is at the moment almost 3.5 TW and theoretical assessment only on 

wave energy suggests that more than 2 TW can be extracted from the waves. The exploitation of 

15% of wave energy in USA can provide the same amount of energy as the total conventional 

hydro plants all over the world. The total theoretical wave energy potential is estimated up to 32 

PWh/yr [12]. However, this potential is mainly distributed in Atlantic Ocean and in North Sea 

while in the Mediterranean Sea, which is mainly dominated by short crested waves and small 

fetch lengths, is by far less exploitable [13]. Their time availability is another advantageous 

feature, exceeding up to 90% of time, compared to the 20-30% of wind and solar energy devices 

[14]. More than a hundred companies operate in this field and set the goals for the near future. 

Here are presented some really interesting facts in this sector of power production [15]: 

- World’s largest tidal energy plant is launched in Scotland 

- Tidal energy is turning commercial 

- China plans a foundation of marine energy center 

- USA invests 40 m$ in wave center 

- World largest tidal turbine is under test in Orkney. The Orbital O2 2MW have recently 

completed a very successful test year at the European Marine Energy Centre (EMEC) 

generating over 3 GWh (Fig. 12). 

- The relevant market is estimated to cost up to 460 bn$ in the period 2010-2050 

- If the ocean energy deployment reaches 748 GW by 2050 this could create 160.000 

employment opportunities by 2030. 

 

Figure 12: The Orbital O2 (2 MW) tidal turbine by Orbital Marine Power (ex Scotrenewables) [16] 
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The areas with potential interest around the world are geographically gathered in latitudes of 30o-

60o, because the wind generates waves and in this area the wind presents the following features: 

- High wind velocities 

- Long fetch lengths 

- Long lasting blows 

Waves of high amplitudes can occurred also in cases on canals due to more complicated potential 

phenomena. 

 

Figure 13: Global wave potential 

 

Figure 14: Global marine power installations (2018) 

On the opposite of this "ocean of potential" is the still expensive energy technological units for 

ocean power exploitation. Many predictions refer to two different scenarios for the upcoming 

years regarding the commercialization of the wave energy: one optimistic and one pessimistic 

[17]. Estimations of the Levelized Cost Of Energy (LCOE) for wave energy are approximately 

500 $/MWh and 440 $/MWh for tidal [15]. Furthermore, economical separation of the scenarios, 

can be applied and, in more details, the scenarios are divided in low (279 $/MWh), medium (486 

$/MWh) and high (1038 $/MWh) cost [18]. This may be one of the reasons why tidal projects 
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and the relevant installed capacity are dominant over wave energy projects. The cost of ocean 

energy is still extremely high compared with other renewables such as offshore wind (174 

$/MWh), onshore wind (83 $/MWh), crystalline silicon solar PV (122 $/MWh), large hydro (70 

$/MWh) and geothermal applications (271 $/MWh). Despite its current economic defect, 

longtime studies identified that it could lead to savings up to 1.38 bn$/year by replacing other 

intermittent renewable power generation sources like solar and wind [15]. The new wave power 

systems, with the implementation of the knowledge acquired from R&D studies, scheduled for 

2022–2040, are promising reduce of the costs for power take-off (PTO) by 22%, for installation 

18%, for operation and maintenance 17%, for foundation and mooring 6% and for grid 

connection 5% [18]. The cost predictions with the commercial experience of the near future, in 

case of economies of scale and farms are 131-261 $/MWh for 2030 for installed power levels 

above 2 GW [19].  

1.2.2 The wave energy technologies 

Going back and recalling the Girard’s and his son’s patent in Royan, France (1799), the Bochaux-

Praceique oscillating water column (OWC) device of 1 KW (1910), Yoshio Masuda research 

projects in Japan for devices with different principals of function (1940), C.C Mei’s projects in 

M.I.T. (1973), Stephen Salter’s Duck with the really impressing efficiency of 81% (1974) and 

many other concepts, patents and theories of the past century, developed mainly during the oil 

crisis of 80’s in the Gulf of Mexico, when waves physics were deeply studied and described, 

these are the true reasons behind today’s experience and knowledge, deployed day by day in 

harvesting the oceans more efficiently. 

 

Figure 15: (a) Girard’s patent (1799), (b) Cover page of Norwegian magazine  

   proposal for autonomous electrical signaling buoys [20]. 

There are six key features for every wave energy device rendering its design and operation 

principals and making possible the energy absorption by the oceans. These are: 

- Structure and prime mover 

- Foundation and mooring 

- Power Take Off 

- Control 

- Installation 

- Connection to the grid 

(a) (b) 
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As stated previously, there is still no definition for the most efficient way of power production 

by the oceans and therefore there is still no optimized device, even regarding its main aspects 

and design, while state of the art concepts show up, being funded and tested constantly. 

Nevertheless, some categorization is feasible, according to their characteristics. 

1.2.2.1 1st Categorization criterion: Type 

There are three predominant types of wave energy converters and every single concept design 

can be classified as [14]: 

- Attenuator: Devices with their principal axis parallel to the dominant wave direction, 

giving the impression of "riding" them. 

- Point absorber: Devices with small dimensions in comparison to the incident 

wavelength. Due to their small dimension and their very common axisymmetric design 

the direction of the wave has no impact. Numerous examples of different approaches and 

technologies are making this class the most widely used and studied. A different type of 

converters is discussed in [21], the quasi-point absorber, which is a point absorber with 

bigger dimensions, compared to the wavelength, than typical point-absorbers. 

- Terminator: Their main feature is that their principal axis is parallel to the wavefront and 

therefore perpendicular to the wave direction, intercepting the waves. 

Despite the lack of a determined efficient technology, there are some leaders in this market. 

Some of the most known commercialized products with their categorization and power capacity 

are included in Table 3.  

Table 3 

Wave energy types and relevant commercial products [18] 

Category Device Capacity (kW) 

Point Absorber Pontoon Power Converter (PPC) 3619 

 Ocean Energy Buoy (OE) 2880 

 Wavebob 1000 

 CETO 260 

 Seabased AB 15 

Attenuator Sea Power 3587 

 Wave Star 2709 

 Oceantec 500 

Terminator Wave Dragon 5900 

1.2.2.2 2nd Categorization criterion: Operation  

A further attempt for categorization of the above main types of Wave Energy Converters (WECs) 

lead to this second level of classification according to the mode of operation [14,22]. The most 

significant classes are: 
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- Oscillating water column (OWC): It can be further categorized in: 

 

- Fixed-structure OWC: Based on different principals of extracting energy from the 

waves many prototypes have been proposed, but only few full-scale models were 

deployed. They are named as first generation devices and they are located in coastal 

or nearshore spots, making their installation, even in seaport structures and 

breakwaters, their maintenance and the power transfer effortless. However, the 

available potential for capture is limited. The principal of their function is trapping 

the air inside a concrete structure above sea level. The incoming wave will raise the 

water level inside this man-made cave and cause the air to flow through a turbine, 

commonly a Wells turbine, which is ideal for exploiting low velocities without 

rectifying valves and without being exposed in seawater and corrosion.  

 

              

Figure 16: Fixed structure OWC: (a) The Limpet project [23], (b) The Tapchan project [24] 

- Floating-structure OWC: The first types of this technology were deployed during 

1960s and 1970s by Yoshio Masuda. The mode of operation is similar to that of the 

Fixed-structure OWC: again air is trapped inside a chamber on a floating platform 

and through its interaction with the oscillating water is guided to a Wells turbine, 

coupled with a generator, and then escapes to the atmosphere. As the water retreats 

air is suctioned back and refills the chamber. The platforms are slack-moored and free 

to oscillate maximizing the flow of the air towards the turbine. In most of the cases, 

one platform has installed many OWC devices, probably with different resonance 

frequencies to optimize the operation. 

 

        

Figure 17: Floating structure OWC: (a) Operation principal, (b) The Mighty Whale device [25] 

(a) (b) 

(a) (b) 



Chapter 1   

14 

 

- Oscillating body systems: Can be either floating or fully submerged, located in offshore 

spots. They are exposed to the highest wave energy potential and this is the reason behind 

their evolution. On the other hand issues arising from the extreme sea states occurring at 

these locations, related to mooring, maintenance, power transfer and survival are 

reasoning why only few technologies have reached full-scale and commercialization. 

They can be categorized as: 

 

- Single body heaving buoys: The most common and simplest oscillating wave devices, 

also conceived generally as point absorbers. They are capturing energy from the most 

dense power mode, the heave motion. The oscillating part of the buoy reacts against 

a fixed or large-inertia component and this relative motion is converted to power from 

the PTO. The number of proposed technologies is really impressing, introducing 

different ways of power production from piston-pump-turbine systems to 

autonomous wave-to-wire circuits. 

 

         

Figure 18: Single body heaving buoys with linear generator PTO: The Seabased AB device [26,27]: 

(a) Device description, (b) Farm arrangement 

 

- Two-body heaving systems: The distance between free surface where the floating part 

of the WEC operates and sea bottom, where the fixed component is located is causing 

problems from wave induced forces and strength against failure of the mechanical 

components. The two-body system, with a component acting like the fixed one and 

located in a mid-distance such as a heaving plate, is an alternative, aiming to the 

power conversion of the relative motion between this component and the floating one. 

This relative motion is achieved through causing phase difference between the 

oscillations of the two components with inertia appliance techniques. 

(a) (b) 
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Figure 19: Two-body heaving buoy: The OPT PB3 device [28,29]: 

(a) The device, (b) Two-WECs array 

 

- Fully submerged pressure differential: Mainly a submerged point absorber using the 

difference of pressure above itself between crests and troughs of the wave. A typical 

configuration comprise a sea-based fixed cylinder and a piston connected with the 

oscillating part of the WEC, moving inside this cylinder, pumping fluid and 

producing power. The main advantage of this device is that since it is fully submerged 

is not exposed in the extreme conditions of the free surface, such as slamming events, 

while at the same time has no visual impact. On the other hand, maintenance is an 

issue. They are typically installed nearshore and can also be combined with 

desalination pumped-water units. 

 

                

Figure 20: Submerged pressure differential: (a) The AWS device [30], (b) The CETO device [31] 

- Pitching devices: This converters, unlike the above heaving systems associated with a 

relative translational oscillation, absorb energy through the pitch-rotation. In late 1970s 

the first device of this type was the Salter’s Duck or Duck of Edinburgh, which 

unfortunately never reached a full-scale model. The power capturing mechanism 

constitutes from a section hinged with joints parallel to the wave direction. These joints 

may pump fluid, typically oil though hydraulic motors and drive electrical generators. 

This principal can also be applied with small modifications in two-body devices with 

(a) (b) 

(a) (b) 
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one component in the water and the other outside of it. In this models the component 

in the water takes a paddle-shape. The non-wet component can also be enclosed inside 

the component in the water along with the PTO which will take advantage of their 

relative motion. 

 

     

Figure 21: Pitching devices [32]: (a) The Pelamis device [33], (b) The Salter's Duck 

- Bottom hinged systems: They are also mentioned as oscillating wave surge converters. 

Again, based on the rotational relative movement, many devices have been proposed 

hinged at the sea bed. The pitch-oscillation of a paddle engaged with joints to the fixed 

bottom component is the main principal of the PTO, which can be a water-pump and a 

sub-sea pipeline leading to a conventional hydro plant or produce electricity on the spot 

and transfer it to shore with an underwater cable, exploiting mainly the horizontal 

velocity field induced by the wave. The upper part of this device can be above sea 

water and visible in nearshore installations. 

 

   

Figure 22: Bottom hinged systems: The AMP Oyster device: 

(a) The device, (b) Oyster Plant configuration [34,35] 

 

- Many body systems: The idea of scaling-up and deploying a number of heaving point 

absorbers sharing the same platform in an offshore environment is a trend in modern 

industry, leading the projects for larger power capacities. 

 

(a) (b) 

(a) (b) 
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Figure 23: Multi-body systems: (a) The SEEWEC project [36], (b) The Wavestar project [37,38] 

- Overtopping converters: A whole different way of extracting energy from the waves is 

the overtopping systems, aiming at this time to capture the wave crest water volume by 

breakwaters, curved-reflectors and ramps to a raised reservoir, and drive it to a low-head 

hydro turbine. The study of these devices cannot be addressed by hydrodynamics of 

OWC and oscillating body converters. This proposal is ideal even for energy storage as 

hydraulic potential. They can be either onshore or offshore deployed, where the turbine 

is located commonly under the sea water level. Many concepts combine more than one 

reservoirs and multi-stage turbines. 

 

   

Figure 24: Overtopping systems: (a) Operation principals [32], (b) The Wavedragon device [39,40] 

- Other concepts: This field of research is really active with new state of the art concepts 

and ideas arising very often. Here are presented some of these devices: 

 

- Bulge wave device: Water enters due to the wave to a flexible floating tube near the 

free surface. As it travels through this tube it accelerates and increases its amplitude 

and finally goes through a micro-turbine at the end of the tube, producing power. 

 

 

Figure 25: The bulge wave device (motion snapshots) [41] 

(a) (b) 

(a) (b) 



Chapter 1   

18 

 

- Rotating mass converters: These devices are taking advantage of the rotational 

degrees of freedom, mainly of the pitch and roll, of a floating body. This movement 

causes the rotation of an eccentric mass inside their axisymmetric body, which drives 

an electrical generator. 

 

 

Figure 26: The rotating mass device (motion snapshots) [41] 

 

- Membrane devices: A floating flexible membrane follows the wave motion, with the 

appropriate PTO, which can be turbine or piezoelectric, producing finally electricity. 

 

 

                     Figure 27: The membrane device [32] 

Table 4 

Wave energy technologies [18] 

Technology System Principle Project 

Oscillating Water Column  Fixed 

Floating 

Isolated; In breakwaters; Nearshore 

- 

Pico; Limpet; Sakata 

Mighty Whale; Oceanlinx 

Oscillating Bodies Fixed-shoreline 

Floating 

 

Submerged 

- 

Translation (heave) 

Rotation 

Translation (heave) 

Rotation 

Eco Wave Power 

AquaBuoy; Wavebob 

SEAREV 

AWS 

Oyster; Waveroller 

Overtopping Fixed 

Floating 

Shoreline 

- 

TAPCHAN; SSG 

Wave Dragon 
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Figure 28: Wave energy concepts and their categorization (2018) [42] 

1.2.2.3 3rd Categorization criterion: Location 

According to the device distance from the shoreline there are three types of installations, 

described in detail in Fig. 29 [15]: 

- Shoreline devices: With their foundations in a natural rock or in a man-made structure 

they are closely located to the grid and easy to maintain with lower risks of being 

damaged, however with reduced available potential to be captured. 

- Near-shore devices: Operating in shallow waters and mainly fixed on the bottom, able to 

oscillate against a stationery rod. The potential is again limited in low levels. 

- Offshore devices: The high depth of the spot demands their mooring and sets challenges 

for construction, maintenance, installation and survivability. Along with the harming 

extreme conditions comes the much higher amount of energy potential. In environmental 

terms, is predicted to have the lowest impacts. 

 

Figure 29: Shore distance categorization for WECs 
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1.2.2.4 4th Categorization criterion: Power Take Off  

The method for capturing the energy is varying among devices. The most common idea is the 

power production by the coupling of a rotary component to a high-speed electrical generator, as 

depicted in Fig. 30, frequently in combination with appropriate transmission systems to convert 

linear oscillation into rotary motion. A brief description for each type of this Power Take Off 

(PTOs) follows [14]: 

- Pneumatic PTO – Turbine Transfer: The flow of the fluid (air or seawater) rotates a 

turbine directly coupled with a generator. Issues relevant to the variable speed of these 

devices are similar to the wind energy technology. The main advantage is the non-

environmental danger in case of leakages. If the working fluid is air, popularly through a 

Wells turbine, then slow velocities can be exploited. Poor efficiency, hard-starting and 

high noise levels are some major disadvantages. If seawater is used, then behavioral fluid 

complexity, particles contamination, corrosion and cavitation are serious drawbacks. 

- Hydraulic PTO – Turbine/Motor Transfer: The implementation and installation of 

accumulators and check valves in a hydraulic circuit for power production is another 

idea. The oscillation of a moving part of the WECs body, such as a piston, which is called 

as actuator, can force the flow of a fluid in the circuit and finally drive a hydraulic motor 

or a turbine, coupled with the generator. High pressures, size and weight dimensioning, 

acting forces, seawater containment, sealing, end-stop constraints and maintenance are 

subjects of strenuous study. Another critical issue is the energy storage. Batteries are still 

costly to be developed for this applications while the other alternative of high efficiency, 

the storage as hydraulic potential in a reservoir, is accompanied with environmental 

issues and additional costs. 

- Electrical linear generator: At first these technologies were proven too heavy, too 

expensive and inefficient. With the progress in modern materials may now be a feasible 

suggestion. The direct conversion of mechanical energy into electrical power is much 

simpler than hydraulic and other PTOs. This system is constituted with a translator with 

permanent magnets, the equivalent of the rotor, and a fixed or large-inertia stator with 

windings. The main obstacle is the signal processing and transformation into a 

compatible with the electrical grid waveform. 

 

Figure 30: PTOs for wave energy extraction [42] 
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1.2.2.5 5th Categorization criterion: Control  

The behavior of every device and therefore the energy capture depends on the damping. Devices 

with high damping are restricted to move within limits and therefore little power is absorbed, 

while soft dampers cannot take off sufficient amount of power. The optimal adjustment is crucial 

for WECs operation in irregular seas and active control systems of dynamic response are 

implemented, tuning the function for improved year-round efficiency. The suggested controls 

can be categorized in: 

- Hydrodynamic control 

- PTO control 

- Grid/Load side control 

There are many suggested ways of controlling the operation of a WEC such as latching control, 

reactive loading control, declutching, phase and amplitude control, feedback linearization 

control, hydraulic PTO control, turbine PTO and all-electric PTO control [43]. Among this wide 

range of different control strategies two of them have captured the interest of the industry and 

scientific society [14]: 

- Latching control: The aim of this strategy is stalling the device at extremes of its 

oscillation and releases it when acting forces enables the energy capture maximization. 

The latching control is highly non-linear, discrete and naturally sub-optimal. The 

optimization of its implementation is the determination of the right-to-release moment. 

The opposite of latching control, the declutching or dubbed unlatching allows the device 

to move freely for a part of the whole cycle and the PTO is engaged with the moving 

body at the desired velocities, showing an improvement factor of two for some sea states. 

- Reactive loading control: This control is used to improve the efficiency range near the 

resonance frequency of a WEC by adjusting dynamic parameters of the system. The main 

principal for its optimization is the minimization of the reactive force on moving part of 

the WEC. 

Simulation and Design of Experiments (DOE) are essential for optimizing and validating the 

operation of this controllers, especially in irregular seas, where spectrum analysis must be 

accurately evaluated. In addition, in many cases more controllers and sensors are applied in order 

to overcome the uncertainty of predicting waves, and they are called causal, aiming to gain this 

incoming wave information at a distance before the device by evaluating developed algorithms. 

Furthermore, the idea of developing multi-DOFs PTOs and WECs, referred as Multiple Input-

Multiple Output systems (MIMO), has gained attention, and therefore the development of 

sufficient controllers and strategies is another interesting research subject [44]. 

1.2.2.6 6th Categorization criterion: Mooring 

The mooring on WECs industry is of great interest and special treatment. This is because, unlike 

any other typical mooring installation, this time the mooring system has to deal with two main 

objects: ensuring survivability in extreme conditions and allowing the WEC to operate 

effectively and absorb as much energy as possible from the waves. Different arrangements and 

different materials have been proposed and studied. The most common systems are [42]: 
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- Spread type 

- Catenary mooring 

- Taut mooring 

- Turret mooring 

- Single point 

- Catenary Anchor Leg Mooring (CALM) 

- Single Anchor Leg Mooring (SALM) 

- Articulated Loading Column (ALC) 

- Single Point Mooring & Reservoir (SPAR) 

In the following Fig. 31 are illustrated the main types of spread type mooring configurations and 

in Fig. 32 is shown an example of SALM type. 

 

Figure 31: Mooring configurations examples and applications [42]: 

 (a) Catenary line (Langlee), (b) Taut line (Searev), (c) Taut line with floats (Flansea), 

 (d) Taut line with weights (PowerBuoy) and (e) Taut line with floats and weights (Pelamis)  

 

Figure 32: CorPower WEC with its PTO and the single point mooring [45] 

(a) (b) (c) (d) (e) 
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1.2.3 Capturing the wave power 

Every structure placed in a liquid environment underlies to the interaction with this fluid and is 

able to move along the six degrees of freedom, described in Fig. 33: 

 

Figure 33: Degrees of freedom of a rigid body 

The main principal for wave energy extraction proposes that the device must generate a wave 

field to interfere destructively the sea waves. An efficient WEC is an efficient wave generator. 

A critical design aspect, which defines this radiating wave field, is the submerged volume of the 

system, which though its oscillation displaces equal volume of fluid, a function easily 

comprehensible especially for heave oscillation. However, due to structural reasons, most of the 

WEC devices have a large percentage of "dead" volume not participating in this fluid 

displacement. 

For each of these motions, with the appropriate PTO, energy from the wave can be captured by 

the device. Among these modes of oscillation and rotation the heave and surge modes are the 

most power concentrating oscillations, but there is no clear superiority for one of them upon the 

other. 

In theory an array of infinite number of point absorbers or alternatively an attenuator with infinite 

length, operating simultaneously, can harvest the 100% of the incident sinusoidal wave power. 

However, this is limited by the radiating waves and therefore the maximum power capture is 

calculated as: 

 
Pmaxrad

=α
J

k
=α

λ

2π
 J   (1.1) 

where J is the wave powerflux per unit of wavefront, k is the wavenumber, λ is the wavelength 

and α is a constant defined as α=1 for heave and α=2 for surge or pitch modes [44]. The efficiency 

of a WEC is maximized when all these three modes of operation are included and then: 

 
Pmaxrad,(surge, heave, pitch)

=
3λ

2π
 J   (1.2) 

In deep water, where λ=
g

2π
T 2

 and J=
ρg2TH2

32π
, for a heaving point absorber the upper limit of 

power capture is: 

 
Pmaxrad,heave

=
ρ(g/π)3

128
Τ 3Η 2   (1.3) 
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Another limitation is implemented from the finite-volume constraint of the submerged part of 

the WEC: 

 
Pmaxstruct,heave

=
π

4
ρg

Vs H

T
    (1.4) 

where ρ is the fluid density, g is the gravitational acceleration, Vs is the wave-generating volume, 

H is the amplitude of the sinusoidal wave and T is the wave period [44,46]. 

These limitations can be illustrated from the known Budal’s Diagram, which follows in Fig. 34. 

The absorbed power and thus the power production by a heaving WEC are bounded in the area 

below the two limit-lines described by the Eqs (1.3) and (1.4). 

 

Figure 34: Heaving WEC power capture limits 

(Budal's Diagram: Power capture-P vs Wave Period-T). 

The main advantage of heaving point absorbers are their independence from the directional 

spectrum of the incident wave field due to their axisymmetric body design and their relatively 

small dimensions. There almost seventy four different companies operating in this specific field, 

with strong deviations in the efficiency and advantages of their WEC proposals. 

The investigation of the behavior of a heaving point absorber and its power capture is the subject 

of many researches all over the world. In this thesis project a novel method, formulated and 

validated, able to treat shape examination and 3D variable topography interactions, is used for 

the estimation of its response.  

As stated previously, a device combining multi-modes of operation is another key feature of 

future design. The multi-DOF WEC is also the subject of a subsequent chapter of this thesis. In 

the following analysis the water density and the reference water depth, in case of flat bottom 

examination, are considered equal to unit however, this value, along with the incident wave 

height, has no significant impact, because the results are calculated by the solver and presented 

in non-dimensional form, permitting the comprehensible expansion to any other case of 

conditions and design.
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2                                                                                                                                               

The BEM: Implementation and validation 

2.1 BEM introduction 

The Boundary Element Method (BEM) have been developed as an alternative, however with 

high prospects, method, to treat problems usually evaluated with Finite Element Method (FEA), 

due to the last ones inefficiency in many engineering problems and their subsequent Computer 

Aided Engineering (CAE) implementation. A brief presentation of engineering problems 

analysis and available solution approaches follows in Fig. 35 [47]. 

 

Figure 35: Solution approaches for engineering problems 

Both of these theories are different philosophies of the same main problems, the Boundary 

Values Problems or BVPs. Theoretically, every physical problem can be modelled and solved as 

a BVP with appropriate boundary conditions (BCs) and its differential physical-governing 

equation. The evaluation process aims to the satisfaction both of the BCs and the governing 

equation. This is feasible only in very simple a not so interesting for an engineer problems. Most 

of the times the solution is utopian to satisfy exactly both the differential equation and the 

boundary conditions.  

 

Figure 36: Description of evolution history of BEM [47] 
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Upon this compromise, two different mathematical theories were developed: The Finite Element 

Method based on the theory of Ritz (1909) and the Boundary Element Method based on Trefftz's 

(1926) theory. A compendious flashback to the history of evolution of BEM is presented in Fig. 

36 with the nascence of the theory dating back to 1980s. 

The FEM’s target is the absolute satisfaction of the BCs and the optimal approximation of the 

governing equation in the whole domain mesh. On the other hand, the BEM’s objective is the 

best approximation of the BC’s while the physical equation is exactly and globally satisfied in 

the domain. More specifically, BEM is proven to be far more efficient and computational cost-

saving in cases of infinite or semi-infinite domains, also described as exterior domain problems, 

initially mentioned in aerodynamics science field, and also in case of stress concentration during 

structural modelling and analysis. As its name declare the main difference between BEM and 

FEM is that in the first method only the surface-boundary of the domain has to be discretized 

and meshed, while in the second case the whole volume of the domain has to be assigned with 

the appropriate mesh (Figs 37, 38).  

                            

Figure 37: Mesh representation: (a.1, a.2)-BEM, (b.1, b.2)-FEM [48]            

 

 

Figure 38: Exterior (a) and Interior (b) problem treatment: FEM (1) vs BEM (2) [49] 

In more details, the FEM domain has to be discretized in elementary domains, known as 

subdomains, and the whole process aims to the minimization of the difference of the governing 

equation values at the intersection points, known as nodes. Obviously, two main problems 

automatically emerge: the need of an approach for the solution at the nodes and an increased 

computational power, especially in problems of engineering interest. However, even under these 

a.1 a.2 

b.1 b.2 

a.1) Exterior-FEM a.2) Exterior-BEM 

b.1) Interior-FEM b.2) Interior-BEM 
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conditions, there are nodes where the governing equation is violated. Speaking now in terms of 

the BEM, the final formulation of the solution is a composition of fundamental solutions, the 

Green Functions, which satisfy the governing equation individually and as a result, the composed 

solution does the same too [50]. These singularities are distributed in the boundary and the 

demand for BCs satisfaction leads to the formulation and as a consequence the solution-

approximation of a Boundary Integral Equation (BIE).Comparing the BE Method, with its main 

competitor, the FE Method, many conclusions arise [51,52], which can be categorized as: 

BEM Advantages 

- Less data preparation time. This comes as a result of the surface-only modeling and their 

subsequent easier changes and re-meshes. 

- Application to infinite domain problems. The solution satisfies a priory the governing 

equations and is able to treat problems which FEM is impossible to. 

- Higher solution resolution. More accurate solution due to the insignificance of interior 

points where the governing equation is fully continuous and exact. 

- Less computational cost. Significantly reduced computation time and storage space 

because BEM uses less number of nodes and elements. 

- Minimum unwanted information. In most of the engineering problems, especially 

structural, the "worst" situation or the under study interaction occurs only on the surface 

and "garbage in – garbage out" effect may cost a big amount of CPU and memory. 

- No need for spatial subdivision. This task is often a serious numerical problem. 

- Ability for analytical integration. In many cases, the integration can be evaluated 

analytically, pointing out BEM as ideal for 3D strongly unsteady problems. 

BEM Disadvantages 

- Lack of essential mathematic background. In BEM formulation the applied mathematics 

may seem unfamiliar for many engineers. 

- In non-linear problems the interior modelling in unavoidable. However, for 

simplification can be restricted in selected areas of interest. 

- Fully populated and unsymmetric solution matrix. The solution matrix in which a BEM 

results, is fully populated with non-zero elements, unsymmetric and even it is smaller 

than the FEM solution matrix, because of its non-sparse form, binds more computer 

memory, which counterbalances the memory savings due to the modest number of nodes 

and elements. 

- Inefficiency in thin-shell three dimensional structures. Inaccuracies are implemented by 

the large surface to volume ratio and the proximity of each element on both of the sides. 

- Requirement for fundamental solution. This is the main disadvantage of BEM. If the 

fundamental solution is not simple then the computation cost is highly increased. In 

addition, the evaluation of singular integrals may also present difficulties. 

In order to overcome problems arising from the frailty of the BEM many studies concentrate on 

the fundamental functions formulation [53–55]. Present research focuses on the implementation 

of high order BEM [56,57], while others attempt to combine BEM with FEM along with CFD 

tools and create hybrid and more effective methods, taking advantage of each numerical 

"component" to the region in which is more efficient [58–60]. 
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The final selection among BE and FE method is up to the engineer and is mainly related to the 

following aspects of each problem: 

- Type of the problem (linear, non-linear, shell-like analysis, etc.) 

- Requirement or accuracy 

- Amount of time for data pre-processing 

In conclusion, BEM appears to be more efficient in 3D linear problems with variables changing 

rapidly. It can be used as a preliminary design analysis, when time has to be shortened and the 

effort minimal. It is also a little immature in comparison with FEM and in many studies scientists 

prefer a well-established FEA computer software than new methods and source code 

development. Finally, it should be mentioned the relation between those two methods which 

allows the direct applicability of FE in BE problems and conversely, with a not so difficult 

"translation". 

The following computational processes are handled by a personal computer with the following 

specifications: 64bit Intel® Core™ i7-5500U CPU @ 2.40GHz, 8GB RAM. The source code is 

combining scripts developed in Mathworks MATLAB and FORTRAN programming languages. 
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2.2 2D validation: The Wavemaker case  

2.2.1 Boundaries treatment 

The Boundary Element Method (BEM) is ideal for treating problems with infinite or semi-

infinite domains. In additions, it is the most commonly used numerical method for solving 

physical hydrodynamic problems of irrotational flows, ruled by the Laplace Equation along with 

relevant to each problem boundary conditions, which can be a Dirichlet, a Neumann or a mixed-

Robin type BC, based on the participant functions and their derivatives [60,61]: 

 - 
1g                              ( Dirichlet BC )                     (2.1) 

 
- 

2g
n





                         ( Neumann BC )      (2.2) 

 
- 

3g
n




  


                ( Robin BC )                          (2.3) 

In problems with unbounded boundaries the main arising problem for numerical evaluations is 

the Radiation Condition, which expresses the energy losses and the physical deadening behavior 

of an outgoing signal away from its source. Scientist can overcome this obstacle by the 

implementation of mathematical tools in the theories, i.e. the adoption of the Perfectly Matched 

Layer (PML) technique. However, in the 2D wavemaker problem, which is evaluated in this 

section, the radiation condition has the analytic Sommerfeld expression and its implementation 

is effortless. 

2.2.2 Mathematical formulation for the 2D semi-infinite strip problem  

Assuming, the assignment of the appropriate Cartesian coordinate system at a point of Standard 

Water Level (SWL) and the computational domain as the 2D semi-infinite strip area expanding 

from the boundary of the free water surface to the boundary of the plain seabottom of constant 

depth-h along z-axis, and from the wavemaker position towards infinity along x-axis, as shown 

in Fig. 39, the problem of potential evaluation of small amplitude and slope waves is linearized 

and ruled by the Laplace Equation and thence can be formulated as follows: 
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Figure 39: The 2D wavemaker problem formulation 

- Laplace Equation 

 2 2

2 2
0

x z

   
   

 
, for 0,h z a x       (2.4) 

- Free Surface Boundary Condition (FS-BC)

 

 

 
0 , 0z

z



   


 (2.5) 

where μ=ω2/g is the frequency parameter, ω is the angular frequency of the waves, g the 

acceleration of gravity and 𝑖=√-1. The free surface is a dynamic boundary described by two 

separate conditions: The Kinematic BC and the Dynamic BC, which in case of natural waves of 

small slopes (Η/λ=7÷10 %) can be combined and lead to the formulation of the Generalized BC, 

described in Eq. (2.5).

       
- Bottom Boundary Condition (B-BC)       

 
0 , z h

n z

 
   

 
 (2.6) 

The solutions of the above system, described by the Eqs (2.4-2.6), can be obtained with the 

variables separation method and appropriate algebra handling with the complex representation 

of the Φ-potential as: Φ(x,z;t)=Re{φ(x,z) e-iωt} and then the problem reformulates to an Ordinary 

Differential Equations Problem (ODE problem) in conjunction with its BCs. The variables 

separation is based on solutions pursuit for the Eq. (2.7) with the presentation of the hypothetic 

solution φ(x,z) as a complex number: 

    , ( , ) ( , ) ( )R ix z x z i x z X x Z z       (2.7) 

The solution φ(x,z) can be then substituted is the Laplace Equation: 

  
 

 

 

 
       2 2( ) 0 0 & 0n n

X x Z z
X x Z z X x k X x Z z k Z z

X x Z z

 
         

 
 (2.8) 
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The BCs for the Free Surface (FS-BC) (Eq. (2.5)) and the Bottom (B-BC) (Eq. (2.6)) are related 

and can be satisfied only by the Z(z) function, and then a vertical Sturm-Liouville (St-L) 

eigenvalues problem is formulated with expressions for the solutions Z0(z) and Zn(z): 

    

   

 

2 0

: 0, 0

0,

nZ z k Z z

St L Z z Z z z

Z z z h



  
 

     
    

 
 

 
 

 

 
0

0

0

cosh cos
, 0           and           , 1

cosh cos

n

n

n

k z h k z h
Z z n Z z n

k h k h

          

 

 

 

 

 

 

(2.9) 

along with an equation which connects the angular frequency-ω with the wavenumber-kn as a 

function of the strip depth-h: 

    2 2

0 0tanh ,  0     and tan , 1n nk g k h n k g k h n       (2.10) 

It is also obtained: 

        0 0exp ,  0 and exp ,  0n nX x ik x n X x k x n       (2.11) 

The Eq. (2.10) is known as the Generalized Dispersion Relation, which obviously has an infinite 

set of solutions due to the fact that Laplace Equation is solved in two dimensions, admitting 

oscillating and exponential solutions. For n=0, this relation expresses a one-way connection 

between ω and k, which in this case is a real number and expresses the oscillating component of 

the solution. For n≠0, among the exponential roots only the decaying ones can be accepted 

because in any other case the condition of the bounded physical problem is violated. The roots 

of the Generalized Dispersion Relation are plotted in Fig. 41, while a reference case is also 

graphically solved in Fig. 42. From the graphic results it is ratiocinated that: 

kn→nπ/h   for   n→∞   (practically for n≥5), due to the approximation of the asymptotic limit. 
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Figure 40: Depth conditions in regard with tanh(kh) and particles orbits 

          

Figure 41: Graphical solution of the Dispersion Relation [62]:  

 (a)  ω2=k0 g tanh(k0h),  

(b)  ω2=-kn g tan(knh) 

 

      
Figure 42: Graphical solution of the Dispersion Relation for ω=1 rad/s and h=1 m:                                                                                         

(a)  ω2=k0 g tanh(k0h)  (red marker)  and  ω2=-kn g tan(knh) (blue marker)                                                                                                                         

(b)  ω2=-kn g tan(knh)                                                                                                                                                          

 

(a) (b) 

 (a) (b) 
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The kn are the eigenvalues of the formulated regular Sturm-Liouville problem [63] and its 

solution presents the following interesting features: 

1. andnk n   

2. In every kn corresponds only one linearly independent eigenfunction  nZ z  

3. Mutually orthogonal eigenfunctions: 

 

   
0

2 0, if
, : ,

1, if

z

n m n m nm n nm

z h

n m
Z Z Z z Z z dz Z

n m
 






    

  
 

(2.12) 

4. An orthonormal system is formulated by the eigenfunctions:  

 
 

 
,

n

n n m nm

n

z z
Z z Z Z

z
     

 

(2.13) 

where δnm denotes Kroneckers delta. 

5. The eigenfunctions constitute a base on the space L2 (-h,0) and is a generalization of the 

Fourier Systems, and accordingly every function in the interval –h< z< 0 can be 

represented by the generalized Fourier series: 

 
     2

0 0

,
,n

n n n

n nn

f Z
f z Z z f Z Z z

Z

 

 

 
      (2.14) 

6. The completeness of the Sturm-Liouville systems permits the representation of Dirac’s 

delta function in the following form: 

 
     0 0

0

n n

n

z z Z z Z z




   (2.15) 

Deriving from Eqs (2.9) and (2.11) a general representation of the solutions for the potential-φ 

and the free surface elevation-η are: 

 

       0 0

0 0 0

1

, nik x ik x k x

n n

n

x z A e A e Z z A e Z z


  



    (2.16) 

 
 

     0 0

0 0

1

, 0 nik x ik x k x

n

n

i i
x x z A e A e A e

g g

 
 


  



        (2.17) 

In the above expression for the potential, the first right part indicates the right-propagating mode, 

the second the reflected mode and the rest (n>0) the evanescent modes exponentially decaying 

towards infinity (x→∞). These equations are general representations of solutions in the right 

semi-infinite strip for every value of coefficients (An, n=0,1,2,…). The series on Eqs (2.16), (2.17) 

are converging fast, practically for n ≥ 5, the exponential components are nullified and only the 

oscillating component remains. This convergence limit, expressed in length units, is equal to 2λ. 

The analytical evaluation of these coefficients in the wavemaker problem are totally related with 

its type: flap-type or piston-type wavemaker, positioned at x=0 (without loss of generality). The 

formulation of these expressions are the subject of the following section. 
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2.2.3 Analytical Treatment 

Basically there are two main types of wavemakers: the flap type and the piston type, shown in 

the representative Fig. 43. For these types, their function is described in Fig. 44. Hybrid types of 

wavemakers, or more sophisticated designs, i.e. the one shown in Fig. 45, can also be found in 

the relevant fields of research and applications, in relation to the aspects of the studied 

phenomenon. 

   

Figure 43: Main types of wavemakers: (a) Flap type, (b) Piston type [64] 

 

Figure 44: Wavemakers function: (a) Flap type, (b) Piston type 

 

Figure 45: Double flap wavemaker [65] 

For the flap type wavemaker, a harmonically rotating flap around a pivot point in depth-d and 

with an angle amplitude-θ0 produces harmonic waves of the same angular frequency-ω, equal to 

its rotation frequency. At this point it should be mentioned that, the flap movement induces flow 

velocities both horizontally and vertically, but for small amplitudes of its rotation due to the 

(a) 

(a) 

(b) 

(b) 
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linearity satisfaction, only horizontal velocities are considered.  On the other hand, the piston 

type wavemaker oscillates horizontally with an angular frequency-ω and with a stroke-x0 and 

therefore generates harmonic waves of the same frequency. 

Due to the particles orbits, described in Fig. 46, the flap type wavemaker approximates better the 

intermediate and deep water depth conditions, while the piston type models the conditions of 

shallow water.  

 

Figure 46: Particles motion in case of the two types of wavemakers: (a) Flap type, (b) Piston type 

In regard with the velocities developing field, the flap type for small amplitudes-θ0 generates 

horizontal flow above the pivot-joint point equal to ω(z+d),  for z > -d, while under the pivot 

point the body is assumed as rigid wall and consequently the velocity is zero for z < -d. The 

piston type causes a horizontal flow velocity constant in every depth of the water column. 

Based on the above theory for the boundary condition at the positon of the wavemaker and the 

St-L problem properties, the following formulation of the analytical solution can be developed, 

aiming to the evaluation of the coefficients An and in compliance with the satisfaction of the 

boundary conditions: 

For  x=a: 

Flap Type Wavemaker 

 
  ,   0i z d d z

x n

 


 
       

 
 (2.18) 

 
 

0,   h z d
x


    


 (2.19) 

 
 

         0

, 0 0 0 2
1 0

,
0, nik x k x n

x n n n n

n n n

f Z
x z A ik e Z z A k e Z z f z Z z

Z


 


 

 
       (2.20) 

 
    

 
2 0 0 00 0
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,     

cosh 2 cosh

k h k h k hf Z Gi
A ik A N Z

ik k h N k k hZ

  
       (2.21) 

 
 

 

   

 
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2 2

cos sin, 1 1
,     

cos 2 cos

n n nn n
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k h k h k hf Z Gi
A k A N Z

k k h N k k hZ

  
        (2.22) 

(α) (b) 
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where, 

and, 

Piston Type Wavemaker 
 

, 0i h z
x





    


 (2.25) 

 
 

         0

, 0 0 0 2
1 0

,
0, nik x k x n

x n n n n
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f Z
x z A ik e Z z A k e Z z f z Z z

Z


 


 

 
       (2.26) 

 

   

 
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k h k h k hf Z Gi
A ik A N Z

ik k h N k k hZ

  
       (2.27) 

 

 

   

 
2

2 2

cos sin, 1 1
,

cos 2 cos

n n nn n
n n n n n
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k h k h k hf Z Gi
A k A N Z

k k h N k k hZ

  
        (2.28) 

where, 

 
     

0
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z h u
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 

 
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and, 
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(2.23) 
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An example of the analytical solution of this problem both for the two types of wavemakers 

follows in the next Figs 47, 48. The conditions are ω=1 rad/sec and h=1 m, and as a result 

h λ⁄ =0.1285, corresponding to intermediate depth conditions, conditions which both of the 

wavemakers can model effectively. The flap type wavemaker is bottom hinged (d=h). 

 
Figure 47: Free surface potential for flap type wavemaker (bottom hinged) (ω=1 rad/sec, h=1 m) 

 
Figure 48: Free surface potential for piston type wavemaker (ω=1 rad/sec, h=1 m) 

From the above plots it is obvious that, for these depth conditions, the piston type wavemaker 

achieves greater values of potential at the free surface in comparison to the flap type, a fact that 

is justified by the way of operation, the relative stroke of each wavemaker and the water 

displacement volume. 

According to the water volume displaced by each type of wavemaker, a simplified theory was 

proposed is 1964 by Galvin [66]. The basic idea behind this theory is that the water volume 

displaced by the wavemaker in one stroke is equal to the generated propagating wave crest 

volume and is graphically described in Fig. 49: 
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Figure 49: Galvin Theory for wavemakers: (a) Flap type, (b) Piston Type 

For a piston type wavemaker for example, with a stroke-S, the volume equilibrium is: 

 
 

/2

0
/ 2 sin /

L

H kx dx H k  (2.31) 

Assuming a unitary stroke for both wavemakers: Sf = Sp=1, the non-dimensional equations of 

wave height to stroke ratio can then formulate as: 

Flap Type Wavemaker 

       For d=h (Bottom hinged) 
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(2.32) 
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Piston Type Wavemaker 
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In shallow water conditions, where: kh<
π

10
, the above height-to-stroke ratios of Eqs (2.33), (2.36), 

which are: 

 
Shallow water: 0,   2

piston flap

H H
kh kh

S S

   
     

   
 (2.38) 

are also proving that the piston type presents dominant efficiency in comparison to the flap type 

at shallow waters. The relevant curves of H/S ratio and the non-dimensional power for these 

wavemakers, for ω=2.3 rad/sec and: Sf = Sp=1, are plotted in Figs 50 and 51: 

 
Figure 50: HS ratio curves for wavemakers ([67]) 

 
Figure 51: Non-dimensional power curves for wavemakers ([67]) 

2.2.4 BEM-2D treatment  

As the problem of semi-infinite stripe is already solved analytically, during the preceding section, 

it is now time to step on the numerical approximation of the same problem. The implementation 

of a validated numerical method, able to treat problems, not so simple like the one described 

previously, is of high significance because, in more complicated problems, analytical solutions 

are infeasible. One of the most common methods is, as stated previously, the Boundary Element 

Method (BEM). One form of this method is the low-order, or panels BEM, also known as 1st 
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order BEM. In this theory, the boundary geometry is approximated with an amount of linear 

elements, the panels with distributed fundamental solutions of the Laplace Equation, located at 

the center of each panel. As a result, the problem reformulates to a BIE, which can be solved 

numerically. 

Focusing on the 2D-problem, the fundamental solution of the Laplace Equations, known as 

Green 2D Function and also referred as source function, is: 

                              
 

11
x | y ln

2
G x y




   (2.39) 

With its substitution in Laplace Equation it is further ratiocinated that: 
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where, 

           y=( y
1
,y

2
) ∈ D is a fixed point in the D-domain 

           x=(x1,x2) ∈ D is the general field point in the D-domain 

           δ(x-y)=δ(x1-y
1
) δ(x2-y

2
)  is the Dirac Function, defined by: 

         0,    x x y dx y C    



      (2.41) 

Among the different variations of this method, one is reliant on Green’s 2nd Theorem: 
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where with n is indicated the unit normal vector of the boundary geometry ∂D directing to the 

exterior of the D. 

The potential in any point of the interior domain, based on Green’s Theorem, can then be 

represented by the surface distribution of sources or sinks of constant strength-σ(y) from the 

following Eq. (2.43): 

        x | y
D

x y G ds y 


   (2.43) 

and therefore the velocity potential for any point in the interior domain is: 
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 
   (2.44) 

The gradient 𝛻𝑥 appeared in the above equation is applied on G(x|y) inside the integral, because 

σ(y) is constant in each panel, independent from the space variable. 



The BEM: Implementation and validation 

41 

 

As the approximation is formulated for the interior problem, another expression must be found 

for the boundary. In this case the velocity expression includes one more term: 

    
     x | y

2
x

D

y n x
u y G ds y






    (2.45) 

where n(x) is the unit normal vector to the ∂D towards the exterior of D. Hence, the normal 

component of the velocity can be calculated by the inner product of (u,n): 
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The BCs can be either Dirichlet type: g0 (x) or Neumann type: gn(x), x ∈ ∂D, hence the Eq. (2.46) 

is now: 
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or, 
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The numerical evaluation of these integrals requires the approximation of the boundary of the 

domain with a simpler, easier to handle, geometry. In 1st order BEM, 1D elements are used for 

this approximation. However, due to its simplicity, this method requires a large number of 

elements in order to achieve the needed accuracy in the solution, while higher order BEM 

deploys panels with more degrees of freedom able to bend and approximate more easily the 

geometry of the domain with a lower number of panels. With this approach, any boundary can 

be approximated by a polygon composed by linear elements, each one bringing a constant σi 

source, sink or doublet distribution in its center, as shown in Fig. 52: 

 

Figure 52: 1st order BEM: (a) Approximation of the boundary in the case of low-order BEM by a polygon, 

        (b) Source, sink and doublet distribution on each element. 

As long as the panels number increases the polygon approaches the real geometry of the 

boundary and theoretically when N→∞ then Polygon→ ∂D and Numerical Solution → Real 

Solution. The first step is the evaluation of the normal vector in each panel. The basic idea is the 

assumption of constant strength source distribution in each panel, described by the histogram of 

Fig. 52(b), on the verge of actual sources form. Except from sources, sinks and doublets 

(α) (b) 
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distribution, used in this study, vortex distribution is also used in problem with vorticity in a 

similar way. The strength of each source (general term including both source, sink and doublet) 

are unknown and will be evaluated by the solution of a linear system. The calculation of the 

integrals above may be a hard task, even for simple sources form and straight lines boundaries. 

The boundary is discretized with a certain number of points N, known as nodes and the nodes 

are connected with straight lines, forming the method’s panels. 

Inserting now a coordinate system for each panel (Fig. 53) the aim is to find the induced potential 

and velocity to a hypothetic point P(x2,x3) from each panel, defined by the nodes A, B with 

general coordinates (xA
2,x

A
3) and (xB

2,x
B

3) respectively. The local coordinates are consisted of the 

axis-ζ parallel to (AB) and axis-η perpendicular to ζ. In this system the coordinates of A, B points 

are exhibiting simpler expressions: A (ζΑ,0) and B (ζB,0). 

 

Figure 53: Local coordinate system on the panel 

 

Figure 54: Induced field (potential, velocities) from a linear element ( A(ζΑ=0, ηΑ=0), Β(ζΒ=1, ηΒ=0) ) [62] 
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The midpoint of (AB)-panel induces a potential and a velocity to the point P expressed by the 

Eqs (2.50)-(2.55) while the total induced potential from all N-panels is expressed in Eq. (2.49): 
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Through the coordinates transformation it can be finally assumed that: 

          2 2 3, , cos , sinxu x x u u         (2.53) 
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(2.55) 

An example of this induced field is represented in Fig. 54. Furthermore, a linear system can be 

formulated (Eq. (2.56)) for the solution of the unknown strengths of the sources, which implicates 

the matrix of influence Ajk, the unknowns σk and the boundary conditions gj.  Specifically, the 

matrices of influence express the induced potential from the midpoint of k-panel to the midpoint 

of j-panel. 
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, 1, ,
N

jk k j

k

A g j N
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   (2.56) 

where, 

    j jg P P :  Dirichlet BC (2.57) 
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(2.58) 

The system can be easily solved in a mathematical software with the inverse of matrix Ajk of the 

Eq. (2.56). 
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2.2.4.1 Wavemaker problem BEM-2D implementation 

In this section a comparison between the analytical results, discussed previously, and the BE 

Method results for the semi-infinite strip problem is attempted. For the implementation of the 

numerical method a computational algorithm is developed in Mathworks MATLAB 

environment. 

The first step is to define the computational domain, consisted of three main regions (Fig. 55): 

- The Free Surface (FS) – (M1) 

- The Wavemaker: Two subregions, one for the moving flap and one for the fixed rest of 

the body of the device or single region for the piston type wavemaker – (M2) 

- The rigid bottom – (M3) 

 

Figure 55: Semi-infinite strip computational domain and regions Mi (i=1,..,3) 

A technique for a more dense mesh near the position of the wavemaker, where the phenomenon 

is more intense due to the movement and thus requires higher detail, is used. The next steps of 

algorithm’s development is the finding of the panels’ midpoint and the angle between each local 

coordinates system and the general one and the calculations of the unit normal vector with its 

two components, vertical and horizontal. Then, the matrix of BCs in the right hand of the Eq. 

(2.56) can be formulated. The induced potential and velocities to the j-collocation point, which 

is the center of the j-element, from all the i-center points is calculated by a short subroutine. 

Finally, the linear system can be easily solved for the source strength σk. 

Free Surface: 
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where μ: is the frequency parameter defined as: 
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where, 

 
Flap type:   

 
0,

,   

y d
f y
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   
 (2.62) 

indicates the velocity of the flap and therefore the velocity of the water column in touch with the 

wavemaker, or: 

  Piston type:     f y i   (2.63) 

Rigid Bottom: 
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Now, it is essential to model the behavior of the outgoing wave towards infinity. This is the aim 

of the appliance of the radiation condition which is responsible for the formulation of the final 

solution. As governed and determined by the physics of the problem, the wave, as a disturbance, 

far from the stimulation field is weakening and finally disappears. In many cases this condition 

cannot be formed a priory because of the lack of analytical or even semi-analytical solutions of 

the problem and as a result preliminary mathematical analysis is the key to overcome this 

obstacle. A case of this need is going to be examined in the subsequent chapters. However, in 

this problem the radiation condition takes the well-known Sommerfeld expression (Eq. (2.65)).  
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The Sommerfeld Condition: 

- It is not applied in a specific border of the domain 

- It is not the result of simple assumptions 

- It is not general but depends on each problem individually 

Practically, the deadening of the waves is achieved by the construction of a wave breaking beach. 

 

Figure 56: Semi-infinite strip computational domain and regions Mi (i=1,..,4) with the radiation boundary 

Radiation Condition: 
 

 
3 4

1 1 1

0,   1,
2

M
k

m k km o km i i

m i i

n U jk k M M


 
  

        (2.66) 



Chapter 2   

46 

 

2.2.4.2 Wavemaker problem BEM-2D validation 

The BEM approach of this problem can be further validated by the comparison with the results 

deriving from the analytical description and solution of this specific problem, which is described 

in advance. Some examples are plotted in the following Figs 57, 58. 

As stated before, as long as the number of nodes-N on the boundary increases, the BEM results 

tend to the analytic solution. In order to visualize this convergence, the error of the approximation 

is calculated as: 

    ( ) ( )Re ReFS BEM FS Anerror      (2.67) 

Therefore the exponential convergence of the approximation is indicated in Fig. 59. 

 
Figure 57: BEM vs Analytic-Flap type wavemaker (ω=2.3 rad/sec, h=1 m, Bottom hinged d=h, N=11) 

 
Figure 58: BEM vs Analytic-Flap type wavemaker (ω=2.3 rad/sec, h=1 m, Bottom hinged d=h, N=41) 

From the convergence plot (Fig. 59) arises the meaning of the compromise between accuracy and 

computational cost. The number of nodes defines the mesh resolution and therefore the time 
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consumption and the CPU usage cost. However, in this case the time for evaluating the solution 

even with 61 nodes is insignificant, with the evaluation process lasting for almost 213 sec. 

 
Figure 59: Convergence plot for number of nodes-N in flap type wavemaker BEM. 

In the same way, analysis and validation process can also be evaluated for the piston type 

wavemaker (Fig. 60), with only one difference: the usage of Eq. (2.63) instead of Eq. (2.62). 

 
Figure 60: BEM vs Analytic-Piston type wavemaker (ω=2.3 rad/sec, h=1 m, N=41) 
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2.3    3D validation: The heaving cylinder 

2.3.1 Analytical treatment
     

                                                                                          

The capability of having at the same time a numerical-BEM solution and an analytical one is 

very useful in order to prove the BEM reliability. Moreover, it will provide the researcher with 

an essential asset for comparing these two results and optimizing the BEM-PML scheme 

performance. One problem which combine all these leverages about the numerical method 

optimization is the heaving cylinder 3D problem, following in the subsequent section. The 

cylinder operates over a constant-depth bathymetric profile where analytical and numerical 

solutions can be accomplished. In the second step, those solutions will be compared and the 

implemented PML model will be optimized in order to achieve convergence between the 

numerical and the analytical solution and then, with small modifications, will be applied in the 

forthcoming analysis of 3D problems, this time even with different body shapes and over a 

varying sea bottom, a case where the formulation is far more complicated and an analytical 

treatment is impracticable. 

A cylindrical body is subjected to the excitation of the propagating wave field over a flat bottom. 

Cylindrical bodies are very common in offshore installations and extensive studies for the 

formulation of the analytical expressions of the dynamic equations and responses for this 

problem has been carried through during the past century [68,69]. Furthermore, cylindrical bodies 

are nowadays used in many WEC concepts capturing the energy form the waves, pointing out 

the great interest on the investigation of cylinder’s hydrodynamic behavior. 

Considering a heaving vertical cylinder with radius-a and draft-T in water of depth-h and 

consequently of bottom clearance equal to d=h-T, the symmetry of the problem defines that the 

response is independent from the attack angle of the incident waves and it is possible to assume 

without loss of generality that the waves propagate parallel to the x1-axis (Fig. 61). Evaluating 

the hydrostatic balance equation for the cylinder, the mass is equal to M=ρπα2T and the cylinder 

is considered upright with the center of mass vertically coincident to the center of buoyancy. 

 

Figure 61: Heaving oscillation of a vertical cylinder 
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For the heave mode (ξ3 motion), the symmetry also imposes that the hydrostatic coefficients are: 

C33=ρgπα2 and C34=C35=0 and the added mass are M33=M and M35=0. For the same reason, 

the radiation potentials, related with the surge, sway, roll and pitch motions (ξ1, ξ2, ξ4 and ξ5), 

namely the Φ1(x), Φ2(x), Φ4(x) and Φ5(x) are antisymmetric and their multiplication with the 

symmetric generalized normal vector nk (k=1,…,6)  to the body surface results is their total 

nullification: 

 
3 3 0, 1,2,4,5
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l l B

D

n dS l


      (2.68) 

In addition, the Φ6(x) radiation potential of yaw-ξ6 motion is equal to zero (Φ6(x)=0) because the 

n6=0, as the generalized normal vector resets at the submerged body part. 

As a result, the equation expressing the dynamic equilibrium in this case is simplified, taking the 

form of Eq. (2.69), where only the coefficients of added mass and damping matrix, connected 

with the heave-ξ3 motion exclusively (i.e. indicators (…)33), and participating in vertical 

oscillation, are non-zero, simplifying severely the equation of motion and de-complexing it from 

the other equations: 

            2

33 33 33 3 03 3di C X X               (2.69) 

where X03(ω) and Xd3(ω) are the complex amplitudes of the Froude-Krylov and Diffraction forces 

respectively, while their summation is the Total heave excitation forces. Any other outer forces 

should be included in the right part of the above equation. 

Stepping on the appliance of the Coupled Mode Method (CMS) the potential Φ3(x) can be 

defined and the corresponding hydrodynamic coefficients of added mass and damping can be 

evaluated as the real and the imaginary part of a complex number, as a function of Φ3-potential:   
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The right part of the above equation is evaluated by taking account that the Φ3-potential is 

axisymmetric, independent from the azimuthal angle θ= tan-1 ( x2 x1⁄ )
 
and thus: Φ3=Φ3(r,x3)  

where 𝑟 =√(x1)2+(x2)2 is the distance between the horizontal plane and the centerline of the 

cylinder. 

The FK forces can be easily calculated through direct integration of the incident wave field (Eq. 

(2.71)) over the submerged cylindrical wetted surface ∂DB: 
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where A is the free surface elevation amplitude and angular frequency-ω is calculated by the 

Dispersion Relation: ω2=gk0tanh (k0h) . Considering now that the generalized normal vector 

equals to: n3=0 on the vertical wetted surface of the cylinder and n3=1 on the cylinder’s bottom 

( x
3
=-T ), the FK forces are given analytically by the following Eq. (2.72): 
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However, the evaluation of the diffraction potential Φd (x) and the corresponding Xd3 forces: 
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presents difficulties because the field in this case is not axisymmetric and is depending on all 

three dimensions. The CMS can also be applied in this case to provide the solution [70,71]. 

Furthermore, the hydrodynamic forces can also be derived by the well-known Haskind-

Newmann Equations according only to Φ3(r,x3), or also their amplitude can be calculated through 

B33, which is evaluated again according only to Φ3(r,x3), making possible at both cases the 

avoidance of the tough evaluation of the diffraction potential. 

2.3.1.1 Radiation potential evaluation 

The Coupled Mode Model (CMS) for the determination of the propagating field, is an alternative 

novel method for determining also the potential of the radiation problem for the heave motion of 

a cylindrical body. The CMS is a very common approach not only in hydrodynamics, but also in 

many wave propagation problems i.e. acoustic waves, free surface waves and vibrations and it 

is based on the coupling of analytical general representations of the field in subareas of the 

domain and the requirement for continuity of potential and their vertical derivative at the 

matching surfaces. As shown in Fig. 61, the domain D=De ∪ Di is separated in this two 

subdomains: De exterior domain and Di the interior domain, below the cylinder, while the 

matching of these domains is obviously the vertical cylindrical surface ∂DB, where: 

𝑟 =√(x1)2+(x2)2=a, -h<x3<-T. These two domains will be treated separately in the subsequent 

paragraphs. 

Exterior Domain Problem 

The physical far-field wave behavior with the outgoing and decaying wave propagation towards 

infinity, explained by the energy equilibrium between cylindrical surfaces of constant growth as 

they stray from the cylinder body, is the reason providing the representation of the solution for 

the radiation problem in the exterior domain along with the General Representation Theorem 

[72]. The field is axisymmetric and therefore all terms depending trigonometrically on the 

azimuthal angle are nullified, except the first one: 
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where H0
 (1)

, K0 and I0 correspond to the Hankel and Bessel functions respectively, and 
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 (2.76) 

and  k0, kn, n=1,2,… are the local wavenumber, deriving from the Dispersion Relation: 

  0 0tanhh k h k h 
    

and     tanh ,n nh k h k h       1,2n                                                                                                 
(2.77) 

where μ= ω2 g⁄  is the frequency parameter. In the above formulation the coefficients                               

{αn , n=0,1,2,…} are the only unknowns. 

Interior Domain Problem 

For the subdomain Di beneath the cylinder the following equations and BCs are satisfied: 

 
Laplace Equation:               

2

3
3 2
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1
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r r r x
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Cylinder Bottom BC:             

3, 3 31,     x n x T
n


     


                                                                                                                                         (2.81) 

The general solution of the above system of equations can be composed by a solution referring 

to the homogenous problem of Eq. (2.80) and a solution for the inhomogeneous problem of Eq. 

(2.81) as it is presented in Eq. (2.82): 

      3 3 3 3 3 3, , ,NH Hr x r x r x    (2.82) 

where, an easily obtained solution for the inhomogeneous problem Φ3
ΝΗ(r, x3) is: 
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 (2.83) 

The general representation of the solution for the homogenous problem Φ3
Η(r,x3) can be achieved 

with variables separation in Di : 
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Combining those two expression it can be written that: 
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(2.85) 

For the interior problem the coefficients {bn , n=0,1,2,…} are the unknowns. At this point, the 

representation of the solution described above meets all the requirements except two conditions: 

(A) The BC at the vertical wetted part of the cylinder: 
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, 30,     for    ,     0
e

r r a T x
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(2.86) 

 

(B) The matching conditions on the common interface of the domains Di and De, 

requiring continuity of the potential and its first derivative: 
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(2.87) 

After applying the CMS, the property of normalized orthogonal basis constitution by the 

eigenfunctions {Zn
(e)(x3),  n=0,1,2,…} and {Zn

(i)(x3),  n=0,1,2,…} can be utilized, constituting 

finally a complete set of functions in the field of squared integrable functions in the intervals 

-d<x3<0 and -h<x3<-T, respectively. Therefore, the Eqs (2.86), (2.87) can be projected to the 

vertical basis {Zk

(e)(x3),  k=0,1,2,…}  and {Zk

(i)(x3),  k=0,1,2,…}for the relevant subdomains: 
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(2.88) 

and, 
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The substitution of the representation of potential for the exterior domain De (Eq. (2.74)) and for 

the exterior domain Di (Eq. (2.85)) in the Eqs (2.88), (2.89) and their analytical integration in 

respect to x3 leads to the final solution of the system for the unknown coefficients                               

{an , bn , n=0,1,2,…} [73]: 
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where mk are solutions of the equation:  mtanh(m)=v,   (m=m0  or  m=imk  k=1,2,…)  
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where the value-Sn is: 
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The coupling integrals Cnk are: 
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  (2.99) 

The infinite representation series of Eqs (2.74), (2.85) are practically converged after first K-

terms, formulating a system of 2K-equations and 2K-unknowns, ready for numerical solution. 

The presented simplified method, which is nothing else but an application of Galerkin’s Method 

[74], is characterized by fast convergence and progressive error minimization as K increases. 
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2.3.1.2 Hydrodynamic coefficients evaluation 

Applying for the radiation potential that: 

       3 3 3 3, , ;
i

nr x T r x T b        (2.100) 

the hydrodynamic coefficients for the cylinder can now be evaluated. Using the indefinite 

integral property: ∫ x I0(x)dx=xI1(x) the final non-dimensional expression for the hydrodynamic 

coefficients is: 

  33 33

33 33 3
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where, 
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The present method is able to treat problems and estimate the response in various water depth 

conditions. In the following Figs 62-66 the added mass and damping coefficients are calculated 

and plotted in regard to the non-dimensional wavenumber k a=2πα/λ or to the non-dimensional 

angular frequency 𝜔√α/g  for a reference case of a cylinder (α/h=1/3.5, T/α=3/2), which is also 

used in the forthcoming study, while a complete investigation of these coefficients can be found 

in [68,69]. Another type of normalization is also applied in regard to the cylinder mass-M, which 

is one of great importance design variable, totally related with the hydrodynamic behavior of the 

body. These coefficients are evaluated in the following figures for the reference case (Fig. 64) 

and for various ratios of bottom clearance-d over depth-h (Figs 65, 66). 
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Figure 62: Hydrodynamic coefficients for a cylinder (α/h=1/3.5, T/α=3/2, d/h=4/7):  

(a) A33-added mass, (b) B33-damping 

           
Figure 63: Non-dimensional hydrodynamic coefficients for a cylinder (α/h=1/3.5, T/α=3/2, d/h=4/7): 

(a) A33/(α/h)-added mass, (b) B33/(α/h)-damping 

 

 
Figure 64: Non-dimensional hydrodynamic coefficients A33/Μ-added mass B33/Μω-damping 

for a cylinder (α/h=1/3.5, T/α=3/2, d/h=4/7)  

 

(a) 

(a) 

(b) 

(b) 
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Figure 65: Non-dimensional hydrodynamic coefficient A33/Μ-added mass  

for a cylinder (α/h=1/3.5) and for various progressive d/h ratios 

 
Figure 66: Non-dimensional hydrodynamic coefficient B33/Μω-damping 

for a cylinder (α/h=1/3.5) and for various progressive d/h ratios 

2.3.1.3 Froude-Krylov forces evaluation 

If the Eq. (2.71) is substituted in Eq. (2.72), under the consideration of the analytic expression for 

the exp(-ikx1): 
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with em=1 for m=1 and  em=2 for m=2,3,…, then it can be obtained that: 
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where Jm corresponds to the real part of the Hankel-Hm . From the terms appearing in the sum of 

Eq. (2.104), due to the integration of θ-angle, only the m=0 term has non-zero contribution: 
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where obviously:  ∫ x J0(x)dx=xJ1(x), and in non-dimensional form is: 

 
 03 0
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0 0

cosh2
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X k d
X J k a
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   (2.106) 

According to the above equation for very slow motion (ω, k0a→0), as is naturally expected, the 

Diffraction forces are negligible and so the FK-forces tend to the hydrostatic added force with 

wave elevation X̂03→1. On the opposite case, when (ω, k0a→∞) the FK-forces and the Total-

forces tend to zero. The last behavior can be explained by the fact that whenever the frequency 

increases the wavelength tends to zero and the pressure-induced forces by the big number of 

wavelengths on the cylinder bottom are mutually reversed. Furthermore, it can be concluded that 

FK-forces for the vertical oscillation of a cylinder present zero phase difference from the incident 

wave’s free surface elevation at the center r=0 of the cylinder for every frequency and this is a 

physical consequence of the axisymmetric oscillating body, while the Total-forces present non-

zero phase difference, being equal to zero for low frequencies and showing asymptotic behavior: 

arg{X3}→ka-π/4 for high frequencies. A typical example is plotted in the following Figs 67, 68 

for a cylinder (a/h=0.11667, d/h=0.79), compliant to the above predictions of asymptotic natural 

behavior. 

 
Figure 67: Normalized Total forces (FK+Diffr) on a cylinder (a/h=0.11667, d/h=0.79) [75] 

 
Figure 68: Phase of Total forces (FK+Diffr) on a cylinder (a/h=0.11667, d/h=0.79) [75] 
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2.3.1.4 Total hydrodynamic forces evaluation 

The Total forces, acting on the body, are the summation of FK and Diffraction forces: 

      3 03 3dX X X     (2.107) 

And can be evaluated by integrating the incident wave and radiation potential on the cylinder’s 

collateral surface 
*

RD  for R   : 
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where:   
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and the incident wave potential can be written 

as: 
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Stepping on the substitution of radiation potential Φ3
(e)

(r,x3) in the exterior domain De and 

keeping in mind that: 

- The functions K0(kn r)
 
are exponentially decaying far from the source and thus can 

K0(kn r) → 0
 
for R→∞. 

- The m-terms which include cos(mθ), 1, 2,3m   are nullified during the θ-

integration. 

the expression of the Total hydrodynamic forces is: 
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(2.110) 

The x3-integral in the above equation is calculated analytically: 
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For the r-integration, the expression inside the bracket can be simplified, using the Wronski-

determinant of the functions J0(k0R) and Y0(k0R) of the real-J0 and the imaginary-Y0 part of the 

Hankel-H0, it is obtained that: 
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After making all the above evaluations and their substitution in Eq. (2.110), the final expression 

for the normalized Total hydrodynamic forces is: 
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where a0 is the first frequency-depended coefficient in series of Φ3
(e)(r,x3)  (Eq. (2.74)) and the 

divider ρgπα2Α corresponds to the added hydrostatic forces induced by the incident wave of A-

amplitude. 

Additionally, it is referred that the amplitude of Total hydrodynamic forces can be alternatively 

calculated by the Kochin function, which is also connected with the damping coefficient B33: 
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and due to axisymmetry, the Kochin function can be exploited regardless the azimuth θ-angle, 

resulting in the following expression: 
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In Fig. 67 the Total hydrodynamic forces are also evaluated by the above Kochin-based 

formulation and they are indicated with the dashed line, showing good approximation, while the 

error is caused by the usage of only K=5 terms and tends to be eliminated as the K increases. 

2.3.1.5 Heave response evaluation 

The calculation of the transfer function of heave response in regard to the incident wave 

amplitude-A, known as Response Amplitude Operator (RAO)-ξ3, can now be achieved: 
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 (2.116) 

with all the participating quantities already evaluated analytically. 

The continuation of the evaluation for the example presented in Figs 67, 68 is completed here 

with the following plots (Figs 69, 70). The resonance frequency, where theoretically 

RAOheave→∞ is drawn with dashed line. For low frequencies the cylinder oscillates 

hydrostatically in phase with the wave and behaves like a floating cork (ξ3
(ω) Α⁄ →1, ω→0) 

while in high frequencies the oscillation is declining towards zero and the phase difference 

increases continually. These conclusions are naturally expected, within the regime of the linear 

theory of small amplitude and slope waves. 
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Figure 69: Heave RAO for a cylinder (a/h=0.11667, d/h=0.79) [75] 

 
Figure 70: Phase RAO for a cylinder (a/h=0.11667, d/h=0.79) [75] 

2.3.2 BEM-3D treatment 

In this section a BEM will be set up to treat the diffraction-ΦD(x,z) and radiation-Φk(x,z) potential 

problems of a heaving cylinder now in a 3D domain, which were examined previously 

analytically, under the assumption of constant-depth seabed profile. 

The present BEM will be a low-order method with piecewise constant normal-dipole singularity 

distribution on 4-node quadrilateral elements, which will approximate continuously the various 

boundaries. The evaluation of potential and velocity field for these quadrilateral panels is 

presented in Appendix A. 

The main purpose is to finally formulate a method applicable in 3D problems and validated by 

comparison with the analytic solution of a heaving cylinder over a flat bottom, which is already 

described. A crucial aspect of this research is the absorbing layer implementation. In this problem 

radiation condition cannot be formed by default and further numerical treatment is needed for its 

appliance. The Perfectly Matched Layer (PML) technique is one of these techniques and now it 

is time to be implemented, processed and optimized.  

2.3.2.1 BEM-PML 3D implementation 

Based on the Fig. 71, the diffraction and radiation potentials have to be evaluated on the wetted 

surface of the cylinder-∂Dc, on the flat-bottom-∂DΠ and on the free surface-∂DF.  
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Figure 71: 3D-Computational domain of a heaving cylinder over a flat bottom 

For this latter BEM, the BC on the free surface will be modified as to include the satisfaction of 

the radiation condition through the effect of the PML, as follows: 
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where now the expression for the frequency parameter-μ is extended in: 
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in order to include the activation of the absorbing layer at radial distances larger than the 

activation length-Rα. In other words, Rα denotes the radius where the PML is initially activated 

and starts to filter negatively the outgoing waves, applying the physical radiation property of the 

deadening behavior of a straying signal far from its source. 

As evaluated in Appendix A, the induced potential and velocities by a piecewise constant 

singularity distribution on 2-node boundary elements is approximately: 

        ,     p p p p

p p

r F r r F U r       (2.119) 

where the summation refers to all the elements in every sub-boundary and Φp(r), Up(r) are 

respectively the induced potential and induced velocity from the pth element with strength Fp to 

a field point-r. 
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The BC for the bottom is, as known ∂Φ ∂n⁄ =0, r ∈ ∂DΠ and it can be expressed also as: 
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and the BCs on the body can be expressed discretely as: 
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where for the diffraction problem: 

 
0,1 1 0,2 2 0,3 3dn n n n      (2.122) 

or for radiation problems (l=1,2,…,6): 
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Finally, the free surface BC is: 
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2.3.2.2 Mesh generation 

In computational hydrodynamic problems mesh generation is one parameter of great importance. 

With the correct and consistent discretization of the boundaries, the numerical solution can 

converge and approximate the analytical solutions, whenever they are feasible. In the present 

problem, every boundary, namely the body surface, the free surface and the seabottom, is 

discretized with a cylindrical distribution of panels, which, along with continuous junction of 

these various sub-meshes and the quadrilateral elements, ensures global continuity of the 

boundary. The cylindrical arrangement is ideal for the representation of the radiating behavior 

of the solution in diffraction and multi scattering problems. A typical representation of the 

meshes follows in the next Fig. 72. 
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Figure 72: Computational cylindrical meshes: (a) Free Surface, (b) 3D side view near the cylinder, (c) Bottom 

However, the researcher has to consider that a very fine mesh is not always ideal for every 

problem and in many cases convergences differs from analytical solution’s approximation. A 

mesh-element size consistency among the different sub-boundaries is the key to achieve reliable 

solutions. Choosing a very fine mesh on the body surface requires exponentially larger amount 

of same sized elements on the free surface and on the bottom and, due to the dimension of the 

problem, is unavoidably bounded by the computational cost. Further details on this and its 

impact, specifically in this problem, will follow in a subsequent paragraph. 

 

(a) 

(b) 

 

(c) 
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2.3.2.3 PML optimization 

In many areas of interest for a scientist and an engineer, radiation conditions, which expresses 

the weakening behavior of the outgoing waves at the far field, and which formulates the final 

solution, cannot be formed a priori, demanding smart techniques and further tuning of them. The 

inheritance of the absorbing layer technique from a specific length of activation and with defined 

characteristics, based on the Perfectly Matched Layer (PML) model, is applied in this specific 

study [76,77]. In this approach, the deadening of the waves is induced by a hypothetic part of 

frequency (Eqs (2.117), (2.118)), operating as a damping filter for the waves without significant 

reflections. The evaluation and optimization of the PML is a multi-parametric problem, based 

mainly on five crucial parameters. The main objective function of the PML’s optimization 

procedure is the minimization of any influence of the PML in the region before its appliance, 

due to reflections, ensuring at the same time the progressive nullification of the wave field in the 

region after its activation length. Its effectiveness can be tested by comparing the numerical and 

the analytical solution in case of a cylindrical body over a steady depth seabed. The requirement 

for PML efficiency is quantified with the usage of the relative error based on L2 norm for the FS 

potential. 

The main PML tuning parameters, discussed above, are: 

- Dimensionless frequency 𝜔√h/g 

- Coefficient  ĉ=cλ
n
/ω 

- The activation length R/λ 

- The exponent n 

- The number of panels per wave length (N/λ) 

For the numerical evaluation is used as reference case a cylinder of α/h=1/3.5, T/α=3/2 and 

d/h=4/7. The meshes, with the first number corresponding to spatial and the second number 

corresponding to azimuthal discretization, are: 10x88 on Cylinder Body-∂Dc, (4*N/λ)x88 on the 

free surface-∂DF for 4-wavelengths spatial distribution and 26x88 on the bottom-∂DΠ. Logically, 

the azimuthal discretization must be the same for all boundaries for reasons of consistency. 

Targeting to the minimization of the relative error based on L2 norm, 64 different PMLs, 

corresponding to different sets of these parameters, are put under investigation resulting in the 

optimum set of Table 5, where the frequency takes values corresponding to all depth conditions, 

from deep to shallow. As a result the mesh resolution varies from 6688 to 10208.  

Table 5 

Optimum PML parameters 

ω < 2 ĉ =1 R/λ=2 Ν/λ=15 n=5 

2 ≤ ω < 7 ĉ =1 R/λ =3 Ν/λ=20 n=3 

7 ≤ ω < 8 ĉ =1 R/λ =3 Ν/λ=15 n=3 

8 ≤ ω ≤ 9 ĉ =1 R/λ =3 Ν/λ=10 n=3 
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2.3.2.4 BEM-PML 3D validation 

For the PML-optimum set of Table 5, numerical results for the potential are plotted in comparison 

with the relevant analytical results in the subsequent Fig. 73. It can be obtained that as the 

frequency approaches very low or very high values the approximation presents slightly bigger 

errors, however if we consider a WEC operating in this location, which its performance 

estimation is the final purpose of this study, the efficient frequency bandwidth is among these 

extreme limits, where good approximation is achieved as the Fig. 73 proves. Finally, the 

corresponding Froude-Krylov and Total forces, as well as the hydrodynamic coefficients, 

calculated both from the analytical and the numerical method are plotted in Figs 74, 75.  

                     

        
Figure 73: BEM approximation of the analytic solution for the free surface potential 

 for various frequencies in case of cylindrical body (α/h=1/3.5, T/α=3/2, d/h=4/7)  

 
Figure 74: BEM approximation of the analytic solution for the normalized hydrodynamic forces 

 in case of cylindrical body (α/h=1/3.5, T/α=3/2, d/h=4/7) 

(a) (b) 

(c) (d) 
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Figure 75: BEM approximation of the analytic solution for the hydrodynamic coefficients 

 in case of cylindrical body (α/h=1/3.5, T/α=3/2, d/h=4/7) 

Remembering now, that very fine partial mesh resolution, for example only on WEC surface, is 

not recommended if it is not vindicated with analogous increase of mesh resolution in all 

boundaries, which binds most of the memory and demands added computational cost, because 

in any other case discontinuities and errors may arise in the matching positions of the boundaries. 

For example, the evaluation of the hydrodynamic coefficients for two different meshes on the 

cylinder body, specifically 10x88 and 20x88, keeping the meshes identical on the free surface 

and on the bottom, approximates differently the analytical expressions, as shown in Fig. 76, with 

the finer mesh on the body showing worse approximation indeed. 

 
Figure 76: BEM approximation of the analytic solution for the hydrodynamic coefficients in case of  

cylindrical body (α/h=1/3.5, T/α=3/2, d/h=4/7) for two different meshes on the cylinder’s surface. 

2.3.2.5 BEM – Heave response evaluation 

For the evaluation of heave RAO, phase RAO as well as for the power output of a typical WEC 

of this geometry, estimations about the PTO are upon consideration. For this reason is assumed 

a typical PTO damping coefficient Bs with indicative values considered as 5,10 and 20 times a 

mean value of hydrodynamic damping bm over frequency, which is estimated as 

2πbm mωR⁄ =0.12, where the resonance frequency is ωR√a/g=0.7: 
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BPTO=Bs=[5,10,20]  bm=

0.084

2π √α/g
 (2.125) 

Very low values of PTO damping (CPTO≪ 1) may lead to unconstrained resonance effect for the 

device and higher values of RAOs, however a very "soft" PTO has to comply both with industrial 

feasibility and power performance. The averaged power output from the combination of k-

oscillation modes with m-parameters each (Eq. (2.126)) is normalized with respect to the incident 

wave power, defined as P/(0.25ρCgΗ2α), for η
eff

=1. 
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P N B    
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   (2.126) 

The Heave-RAO is logically decreases as the PTO damping increases. Starting from the unit, 

where the WEC follows the wave in low frequencies, hitting a peak in the resonance frequency 

and then asymptotically approaching to zero.  

For the phase, it should be noticed that is converges to π-value for high frequencies and to zero 

for low frequencies, where RAO equals to unit and therefore the WEC behaves like a cork. In 

the resonance frequency the phase is π/2. 

The maximization of power output seems to occur at the resonance frequency and is more intense 

for the lower values of PTO damping. In addition, higher values of PTO-damping cause decrease 

of peak values of RAO and of powerlevels however, with wider frequency spreads of efficient 

energy capture by the device (Fig. 77). 

 
Figure 77: Heave RAO, Phase RAO and Normalized Power Output  

for Cylindrical WEC (α/h=1/3.5, T/α=3/2, d/h=4/7) 
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3                                                                                                 

Heaving cylinder and varying seabed: The BEM-PML model  

3.1 Hydrodynamic problem formulation 

Considering all the study so far, the main purpose was the development of a numerical method, 

able to treat more complex, however far more interesting, problems in the field of floating bodies. 

The proposed method, combining multiple techniques, namely the Boundary Element Method, 

the Coupled Mode Model and the Perfectly Matched Layer (BEM-CMS-PML), is now fully 

developed and more importantly step by step validated in 2D and 3D problems by the analytical 

solution. Therefore, the research will proceed with the implementation of this method in 

problems where analytic solutions are unfeasible.  

One problem of this type, is the interaction of the floating body and a varying seafloor. The 

problem of the evaluation of its response is studied from the past century [78,79], however 

modern techniques and far more efficient computational tools are now available to the scientists 

[56,80]. Floating bodies are essential components of floating structures, and recently are 

gathering more and more scientific interest through their applications as wave energy harnessers, 

applications which are constantly evolving and becoming step by step commercialized. 

Despite the fact that the pertinent industry is growing fast, most of the researches focus only on 

body-wave interaction, omitting possible impacts of a varying seabed. These interactions may 

be critical for the response and power output of a WEC operating over a terrain of non-negative 

slopes, due to trapping modes and localized disturbances, and therefore this is the aim of the 

present section through the investigation at this time of body-wave-seabed hydrodynamic 

coupling [81,82] by implementing the optimized BEM-PML method, as a good compromise 

between error minimization and low computational cost. 

The formulation of the present problem is illustrated in Fig. 78 for a generally shaped floating 

body over a seabed with a variable profile: 

 

Figure 78: Formulation of the 3D hydrodynamic problem with a variable bathymetry 
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The first component of this problem has to deal with the evaluation of the propagating incident 

wave potential over this region, coming from a far constant depth region and with the absence 

of the floating body. 

For reasons of simplicity, and without violation of generality, the bathymetry profile function is 

considered as a typical transition from a deeper subregion of constant depth-h3 to a shallower 

region of constant depth-h1, while in the middle subregion the h(x) follows an arbitrary variation. 

The wave potential, with the assumptions of small free surface elevations and wave velocities, 

can be expressed for an incident wave of amplitude-A and frequency-ω as: 

 
     , ; Re , ; exp

2

igH
x z t x z i t  



 
     

 
 (3.1) 

and free surface elevation is: 
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where x=(x1,x2) satisfies the linearized water wave equations. In regard to the hydrodynamic 

theory for floating bodies [79] the complex potential can be decomposed on eight components, 

namely the normalized incident propagating wave potential φp(x,z), without the presence of the 

body, the diffraction potential φD(x,z), due to the presence of the rigid motionless body and the 

total radiation potential φR(x,z), related with the six degrees of freedom for the body motion:  
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where the radiation potential φR(x,z) can be synthesized as the summation of the six radiation 

potentials in the non-uniform domain  , ,x z l=1,2,…6, associated with the six l-oscillation 

modes of amplitude ξl: 
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The BCs, which should be satisfied on the body’s wetted surface, are: 

    , ,D Px z n x z n       (3.5) 

where n=(n1,n2,n3) denotes the normal vector on the wetted surface of the body with direction 

outwards the fluid domain, and thence inwards the body, and:  

  ,x z n n    (3.6) 

where nl is the l-component of the generalized normal vector on the wetted surface of the body 

(  
3
,n r n


   l=4,5,6) (Eq. (2.123)). 
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For the evaluation of the propagating wave potential φ
P
(x,z), it will be used the CMS [83], which 

is described in more detail in Appendix B. 

Considering now a heaving WEC, only the vertical oscillation ξ3 is evaluated, which also consists 

one of the most power intensive modes, and this explains why a very large number of WEC-

concepts is taking advantage of the heave-motion of the device. The response then can be 

formulated as: 

    
1

3 P DA X X


   (3.7) 

where, XP+XD are the heaving exciting vertical forces due to propagation and diffraction and 

can be individually evaluated as functions of the corresponding potentials: 
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The hydrodynamic coefficients complex matrix A can now be evaluated as: 

      2

33 33S SA M a i B b C c         (3.10) 

where α33 and b33 are the added mass and damping coefficients of the body, calculated by 

integrating the relevant heaving radiation potential φ3 on the submerged part of the WEC: 
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The coefficient c=ρgAWL  is the hydrostatic coefficient in heave motion, where AWL is the 

waterline surface. The coefficients Bs, Cs are characteristics parameters for the PTO system. 

The average power output from the WEC, considering only the ξ3-heave mode and assuming η
eff

 

efficiency of the PTO is: 
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eff SP B      (3.12) 

The power output obviously relies on the frequency, the direction and the wave height of the 

incident wave, as well as on the PTO used in this installation and the natural environment. In 

general, the operation of the device is characterized by multichromatic wave conditions 

determined by a directional wave spectrum, which needs to be modelled with spectral analysis. 

3.1.1  Propagation problem evaluation 

The Coupled Mode Model is an alternative technique to solve wave propagation problems over 

a varying seabottom, even with steep topography, where analytic solutions cannot be 
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accomplished. The wave potential φ
P
(x,z) of the propagating filed over a variable bathymetry, 

with absence of the floating body-scaterrer, can be evaluated by means of a consistent CMS 

method developed in [83] end extended to 3D regions in [84]. The method is described in detail 

in Appendix B.  

Briefly, this model is based on the local-mode representation of the potential: 
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Where the φ
0
(x) Z0(z;x) refers to the propagating mode of the generalized incident field and the 

φ
n
(x) Zn(z;x),  n=1,2,… correspond to the evanescent modes of the field. The additional term 

φ
-1

(x) Z-1(z;x) is the sloping-bottom mode, a correction tuning-term ensuring the satisfaction of 

the Neumann BC at the seabed on every part of its profile, including the non-horizontal parts and 

the non-mildly sloped parts, and effecting on the fast convergence of the local-mode series. The 

 Z-1(z;x) is the vertical structure of this mode. The mode vanishes in constant-depth subregions. 

Finally, the Coupled Mode System of the horizontal equations for the amplitudes of the incident 

propagating wave field over the variable bathymetric terrain takes the following form: 
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where the coefficients Amn, Bmn, Cmn are defined in terms of the vertical modes  Zn(z;x) and 

depend on x-variable. Supplemented also by the essential BCs for reflection, transmission and 

radiation of the wave, the CMS formulation is discussed in Appendix B along with characteristic 

examples. 

3.1.2 Diffraction-Radiation problems evaluation 

The evaluation for the diffraction and radiation potentials will be based on the already developed 

and validated 3D BEM method, described in the previous chapter, where the expressions for the 

total induced potential and velocity from all the 4-node quadrilateral elements allocated on the 

boundaries are: 

    p p

p

r F r    (3.15) 

 
    p p

p

r F U r   (3.16) 

The optimized BEM-PML method will be implemented in order to treat the diffraction and 

radiation problems, with the PML’s same formulation and activation length-Rα as in the previous 

chapter and described in Table 5. 
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Figure 79: Formulation of the 3D hydrodynamic problem with a variable bathymetry and PML 

Therefore, the BC on free surface of Eq. (3.17) reformulates again as previously, with the 

implementation of a hypothetic part of frequency, expressed by the second formula in the bracket 

of Eq. (3.18): 
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The discrete solution is achieved with the usage of collocation method, through the satisfaction 

of BCs at the centroid of each quadrilateral panel, distributed on all boundaries with mesh 

generation. By treating the self-induced quantities semi-analytically, as it is described in 

Appendix A, the induced potential and velocities from the pth-element at any collocation point 

can be calculated by numerical quadratures. These BCs, along with the free-surface BC of Eq. 

(3.18), are: 
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It is finally obtained the following linear system for the body’s boundary: 
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where for the diffraction problem: 
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and for the radiation problem: 
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 (3.23) 

The rest discrete BCs (free surface and bottom) are now expressed as: 
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3.1.3 Mesh generation 

The mesh will be the same as previously and through the sufficient resolution on the bottom with 

26x88 elements cylindrically arranged, in a way similar to the body and free-surface meshing, 

and with consistency in azimuthal discretization, which is equal to 88 elements for all three 

boundaries, will model reliably the hydrodynamic phenomena and varying seabed effects. This 

meshing technique also ensures the continuous transition from one boundary to another and 

therefore global continuity of the geometry. The resolution on the free surface will be again 

higher, because the interaction with the body is located near the free surface and causes more 

intense variations of the potential and of the velocities. 
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Figure 80: Computational cylindrical meshes: 3D side view far and near the cylinder  

over a variable monotonic bathymetric variation with constant depths at infinity. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3   

76 

 

3.2 Numerical results 

The formulation of the numerical method has now be completed. The total process of the 

algorithm is depicted in the flowchart of Fig. 81. It is now possible to proceed with numerical 

examples, following in the next section. 

 

Figure 81: Flowchart of the method for the solution of 3D problems of floating bodies over variable seabed 

A reference case for a cylinder over a region of monotonic depth decrease has been evaluated 

and the results are visualized in the following figures.  

The design parameters of the cylinder body are: α/h=1/3.5, T/α=3/2 and d/h=4/7. The non-

dimensional frequency is 𝜔√α/g=0.5461. The mesh generation is using 10x88 elements on the 

body-∂DB, 80x88 on the free surface-∂DF and 26x88 on the bottom skin-∂DΠ with a total of 

10208 elements. The seabed profile exhibits a simplified monotonic function of the relevant 

position along x1-axis: 

       1 30.5 tanh bo ntm meah x h h h x x      (3.26) 

where the mean depth is: hm=0.5 (h1+h3). The coefficient-αbot defines the bottom slope and for 

this example is set αbot=0.5, while h1=3 m and h2=1 m. The region is characterized by constant 

depths at infinity. The propagating field is calculated by the CMS with 2nd order finite differences 

scheme using 201 elements for discretization and keeping only 5 modes, which is enough for 

numerical convergence. The incident wave angle is set to 0deg. In the following figures are 

plotted the propagating field using contours, where is obvious the satisfaction of the bottom 

Neumann BC with the equipotential lines becoming perpendicular to the seabed profile. In these 
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contour plots is included also the illustration of the free surface’s elevation by using the dashed 

black line. Finally, scatter plot for the diffraction and heave radiation potentials and 3D plots for 

some indicating of the seven potentials (diffraction potential and 1÷6 for the radiation potentials) 

are evaluated in the near field (namely for surge, heave, roll and pitch), proving the potential’s 

reformulation between to different depth-regions with the field in the shallower side being 

increased and "suppressed". The effectiveness of the absorbing layer is clear in these plots by 

the deadening behavior of the outgoing waves after the PML-activation at a radius of three 

wavelengths towards the end of the free surface domain, without significant contamination of 

the field before its application due to reflections, contaminations which can be generated in case 

of applying typical Sommerfeld-type radiation conditions. 
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Figure 82: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.5461, 0deg 

Flat bottom 

 

 
Figure 83: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.5461, 0deg 

Variable bottom (h1=3 m, h3=1 m, αbot=0.5) 
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Figure 84: Diffraction field (Real and Imag) (top and 3D view) for 𝜔√α/g=0.5461, 0deg 

Flat bottom 

 

 

Figure 85: Diffraction field (Real and Imag) (top and 3D view) for 𝜔√α/g=0.5461, 0deg 

Variable bottom (h1=3 m, h3=1 m, αbot=0.5) 
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Figure 86: Heave field (Real and Imag) (top view) for 𝜔√α/g=0.5461, 0deg 

Flat bottom 

 

 

 

 

Figure 87: Heave field (Real and Imag) (top view) for 𝜔√α/g=0.5461, 0deg 

Variable bottom (h1=3 m, h3=1 m, αbot=0.5) 
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Figure 88: Radiation potentials (surge, heave, roll, pitch) (3D and top view) for 𝜔√α/g=0.5461, 0deg 

Variable bottom (h1=3 m, h3=1 m, αbot=0.5) 
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4                                                                                                               

On WECs shape investigation: Flat and variable bathymetry 

4.1 Commercial WEC shapes 

An essential feature of studying wave-body interactions is the shape of the floating, or submerged 

device. With the optimization of the wetted surface, further improvements in efficiency can be 

accomplished, resulting to an optimized WEC performance. In regard with the heaving WECs, 

which has also the type of the already studied cylindrical device, the relevant industry directs the 

efforts towards axisymmetric floating bodies, with their operation independent from the heading 

angle of the waves. Typical examples of WEC devices in a commercialize level are presented in 

Fig. 89.  

 

Figure 89: Deployment phase of different commercial WECs:  

(a) CorPower Buoy [45,85], (b) PowerBuoy OPT [29,86], (c) Sinn Power [87], (d) CETO Carnegie [31,86] 

The investigation of the impact of the WEC shape in its performance is also one of the main 

subject in research projects. Shapes like the conical, the semi-spherical, the elliptical and many 

others are examined in [88–90]. 

 

(a) (b) 

(c) (d) 
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4.2 Investigated geometries 

4.2.1 Geometries generation 

In the present research eight different geometries are investigated. These shapes are chosen with 

an impartial view of the relevant industry trends and research activity [81] and they are the: 

- Cylindrical 

- Disk-shaped 

- Egg-shaped 

- Floater-shaped 

- Nailhead-shaped 

- Elliptical 

- Conical 

- Semi-spherical 

In particular, the nailhead-shaped design presents further interest, due to its unconventional 

geometry, for performing with higher efficiency as a multi-DOF WEC, combining heave and an 

extra rotational degree of freedom. The generation of these geometries is carried out in a 

Mathworks MATLAB code with the implementation of a spline interpolating over some 

determined nodes. The formation of the nailhead-shaped wetted surface is indicated in the 

following Fig. 90, with the 360o-rotation of the generating spline. 

 
Figure 90: Generating spline of the Nailhead-shaped WEC wetted surface 

All of these shapes are axisymmetric and thus only 0deg of incident wave will be considered 

without loss of generality. One significant feature of this shape investigation process is the 

determination of the geometries in compliance with constant-mass constraint. If the same 

material is considered for the construction of these point absorbers with the same mass 

distribution, then the radius and the draft of each shape can be calculated so as to keep the 

submerged vertical cross section area equal to the submerged vertical cross section area of the 

reference cylindrical design of α/h=1/3.5, T/α=3/2 and d/h=4/7. This assumption of constant-

mass is adopted as a basic reference feature for all the geometries, permitting this way a more 

unbiased comparison. The dimensions can be read in the Fig. 91 and in the Table 6. 

The mesh generation follows the same principals of the relevant process in case of the cylinder, 

with one modification. The mesh on the WEC body is now finer for approaching more effectively 

the abrupt geometry changes of the proposed shapes without discontinuities. As a consequence, 

a mesh of 18x88 is considered in each WEC body, except the cylindrical WEC with the 

unchangeable 10x88 discretization. For all these cases, except cylinder, there are no analytic 
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solutions for their response. The developed and validated BEM method is used for the estimation 

of their performance. The geometries are illustrated in Fig. 91, along with the meshes on the 

WEC, on the free-surface and on the bottom, in the near field.  

 

Figure 91: WEC shapes and near field computational mesh over flat bottom:                                                                         

(a) Cylindrical, (b) Nailhead-shaped, (c) Disk-shaped, (d) Elliptical,                                                                                    

(e) Egg-shaped, (f) Conical, (g) Floater-shaped, (h) Semi-spherical 

The generation of geometries can also be handled by an optimizer. The algorithm will run the 

computational code as many times as needed for convergence, or until he reaches the limit of 

maximum iterations, and will evaluate the most efficient geometry by determining the position 

of the spline-nodes. However, the computational cost and the memory demands at this scenario 

are exponentially larger. The above geometries will supply the researcher with a very useful 

estimation on which is the most efficient general shape of a WEC. Very sophisticated designs 

are normally rejected due to high R&D and manufacturing costs. This subject, for implementing 

an optimizer, is let for future work. 
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4.3 Numerical results 

4.3.1 Steady-depth bathymetry 

4.3.1.1 Response evaluation 

Stepping on the assessment of these geometries and their power output, RAOs of heave motion 

and heave phase, along with the non-dimensional power output are evaluated in the present 

section. The PTO damping is considered the same for each device and equal to a reference PTO 

of the cylindrical WEC, described as: BPTO=Bs=[1, 5, 25, 50, 100, 200, 400, 600] bm. This 

procedure will allow further appraisal of these shapes and their efficiency and as a result 

determination of the most effective designs for a wide spread of PTO damping values. 

Firstly are plotted the responses and power outputs by a Cylindrical WEC for eight PTO damping 

values. As proven by the Figs 92-94 there are significant differences as these damping values 

change. Resonance effect is intense for the two lower PTO damping values. Furthermore, in 

these figures is obvious the effect of PTO induced constraints, describing why this range of 

damping values is taken under consideration and especially why lower values of PTO damping 

are neglected as industrial unfeasible, or as unpropitious for survival and smooth operation or as 

power inadequate. 

Then, for each of the shapes the RAO of heave mode, its phase and the normalized power output 

is evaluated. Despite the fact that the evaluation refers to all these PTO cases, in the following 

figures, in order to visualize part of these results, will be plotted the responses for all eight 

geometries, but for reasons of simplicity, only three representative values of PTO damping will 

be considered, i.e. for BPTO=Bs=[1, 10, 100] bm. 
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Figure 92: Heave RAO for various PTOs for Cylindrical WEC over a flat bottom 

 
Figure 93: Heave Phase for various PTOs for Cylindrical WEC over a flat bottom 

 
Figure 94: Normalized Power Output for various PTOs for Cylindrical WEC over a flat bottom 
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Figure 95: Heave RAO, Phase RAO and Normalized Power Output – Cylindrical WEC – Flat bottom 

 

 

 

 

 
Figure 96: Heave RAO, Phase RAO and Normalized Power Output – Nailhead-shaped WEC – Flat bottom 
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Figure 97: Heave RAO, Phase RAO and Normalized Power Output – Disk-shaped WEC – Flat bottom 

 

 

 

 

 
Figure 98: Heave RAO, Phase RAO and Normalized Power Output – Elliptical WEC – Flat bottom 
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Figure 99: Heave RAO, Phase RAO and Normalized Power Output – Egg-shaped WEC – Flat bottom 

 

 

 
Figure 100: Heave RAO, Phase RAO and Normalized Power Output – Conical WEC – Flat bottom 
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Figure 101: Heave RAO, Phase RAO and Normalized Power Output – Floater-shaped WEC – Flat bottom 

 

 

 
Figure 102: Heave RAO, Phase RAO and Normalized Power Output – Semi-spherical WEC – Flat bottom 
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The crucial value for estimating the WEC performance is obviously the power output. As 

illustrated in the previous evaluation, each wave energy device exploits in a different way the 

wave spectrum. There are concentrated power absorption cases, in a small effective frequency 

bandwidth, with the most indicating example the Cylindrical WEC, which reaches its maximum 

efficiency in the resonant frequency and in its neighbor presents appreciable power absorption 

levels (Fig. 95). On the other hand, most of the devices achieve lower power-levels but for a 

larger frequency bandwidth (Figs 96-102). In addition, resonance in some cases is too constrained 

and no peaks are obtained in the relevant curves, for example in case of the nailhead-shaped 

design (Fig. 97). 

By the above figures, the researcher can assert that each WEC can operate most efficiently for a 

specific value of PTO damping. The idea of optimizing the PTO damping will be evaluated in 

the next section. 

Coming to an induction, there is no possibility for pre-defining the optimum shape for a WEC 

or its PTO variables, unless the details of topography and the sea state are known. The researcher 

has to come along with a compromise depending on the application, on what is more preferable: 

exploiting the waves with high efficiency but only in near-resonance frequencies or absorbing 

the offered power in a larger band of frequencies but with lower performance levels. The final 

selection is inseparable linked with the site of installation and the local wave spectrum, while 

control strategies on WECs attempt to model and apply mathematically this compromise.  

4.3.1.2 Performance assessment 

The evaluation of the performance of these proposed WECs will be based in the area below the 

"most-efficient-curve" of normalized power.  In more detail, the area above the power curve with 

the most effective PTO will be calculated, and then divided by the area of the surrounding 

rectangle. The area above the WEC power curve represents the absorbed normalized energy by 

the device, while the area of the rectangle represents the normalized energy offered by the waves. 

The result will be a ratio, quantifying the performance of the WEC and will be called as 

performance index. For this procedure, PTO damping takes different values, in order to include 

each geometry’s optimal area: BPTO=Bs=[1, 5, 10, 50, 100, 250, 500, 750, 1000] bm , securing 

this way that the following comparison will be consistent and reliable. Taking this into account, 

the results are presented in Table 6, along with the WEC waterline radius and draft: 

Table 6 

WEC shapes, main dimensions and performance index over flat bottom 

WEC design FS radius (m) Draft (m) max {Performance index} 

Cylindrical 0.28571 0.42857 11.29 % 

Nailhead-shaped 0.64654 0.34000 15.38 % 

Disk-shaped 0.58588 0.22000 13.66 % 

Elliptical 0.61724 0.25000 14.73 % 

Egg-shaped 0.33963 0.60000 10.63 % 

Conical 0.42273 0.50000 17.70 % 

Floater-shaped 0.33238 0.40000 9.87 % 

Semi-spherical 0.39485 0.39485 13.30 % 
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From the results of Table 6 there are qualified two designs as the most efficient: the Nailhead-

shaped and the Conical WECs. The first of them, the Nailhead-shaped WEC presents special 

interest for combining more than one modes of power absorption, but this will be examined in a 

subsequent chapter. After an overall evaluation, the Conical WEC is selected as the most 

efficient wave energy converter, among all the investigated alternative designs for a 1-DOF 

device. Comparisons for different WEC shapes are also evaluated in [89], comparing indeed two 

of the most efficient designs of the present analysis: the cone and the semi-spherical and 

concluding again in slight superiority of the conical shape over the semi-spherical. 

 

Figure 103: The conical WEC 

4.3.1.3  PTO damping optimization 

The damping coefficient of the Power Take Off system is a decisive parameter for the 

performance of the device. It is also, a tuning parameter, chosen by the manufacturer of the PTO, 

and thus is a design variable for maximizing the energy output. With the right selection of its 

value the performance index of the previous section will be significantly improved.  

The ten PTO damping values, selected in the previous analysis, are typical and they are used for 

comparing the different shapes, regardless the PTO. After this evaluation, the conical shape was 

found as the most efficient design. Then, for this shape, the second step is to decide the relevant 

ideal PTO damping value. For this purpose, different PTO values, inside a utilized range for the 

Conical WEC, will be tested. This values are: 

 BPTO=Bs= CPTO bm = [1:1:200]  bm (4.1) 

The corresponding power curves are depicted in Fig. 104.  

 
Figure 104: Normalized Power Output for various PTO damping values – Conical WEC over flat bottom 
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By evaluating the area below the curves, the performance index can now be calculated and the 

results are presented in Fig. 105. As shown, the optimal PTO damping for the conical WEC is 

almost BPTO=CPTO bm=77 bm , resulting in a performance index of 17.95%. It can be also 

obtained that for a high damped system, the resonance frequency has no meaning because the 

hard PTO does affect strongly in the operation of the device and restricts its resonance response, 

and optically the peak of the power curve is smaller and shifted left (Fig. 104). 

 
Figure 105: Performance index for PTO values – Conical WEC over flat bottom 

4.3.2 Variable-depth bathymetry 

4.3.2.1 Geometries and depth-profile 

A seabed with varying depth conditions can affect the performance of floating WECs. The 

numerical estimation of this effect is the aim of the present section. 

The investigated geometries are the eight different shapes, presented previously. After the 

evaluation of their response, the optimal shape will be re-selected and compared with the Conical 

WEC results, which found to be the superior design in case of a flat bottom. The processes of 

geometries generation and meshing are totally unchangeable. 

The bottom profile is described by an arbitrary function. In here, it takes the form of a smooth 

shoal, common in nearshore and coastal environments. The function which describes the seabed 

profile is: 

       1 30.5 tanh bo ntm meah x h h h x x      (4.2) 

where the mean depth is: hm=0.5 (h1+h3). The coefficient-αbot defines the bottom slope and for 

this example is set αbot=0.5, while h1=1.2 m and h2=0.8 m. The region is characterized by 

constant depths at infinity. The resulting mean depth hm=1 m, is equal to the depth of the flat-

bottom case, for reasons of consistency during the comparison. This is not a significant depth-

step and so the effects of the seabed on the response of the WEC will be slightly alternated. 

For supervisory reasons, the depth profile will be shown in Fig. 106, with the Cylindrical WEC 

on the free-surface, along with the flat bottom equivalent illustration. The rest of shapes are 

omitted for brevity. 
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Figure 106: Flat and varying seabed below the Cylindrical WEC 

4.3.2.2 Performance assessment 

The evaluation of the results for the different shapes, operating over the varying seabottom, led 

to the estimation of their performance index, presented in Table 7: 

Table 7  
WEC shapes and performance index for flat and variable bottom 

WEC design 
max {performance index} 

Flat Bottom 

max {performance index} 

Variable Bottom 

Cylindrical 11.29 % 11.41 % 

Nailhead-shaped 15.38 % 15.74 % 

Disk-shaped 13.66 % 14.11 % 

Elliptical 14.73 % 15.11 % 

Egg-shaped 10.63 % 10.82 % 

Conical 17.70 % 17.92 % 

Floater-shaped 9.87 % 10.10 % 

Semi-spherical 13.30 % 13.39 % 

As proven by the above table, a varying seabottom is affecting the performance of a WEC and 

actually causes an increase of the device’s ability for harnessing wave energy, with the highest 

improvement detected for the Disk-shaped WEC and being equal to almost 3.3%. These results 

are very promising and may be a first indication of installations of WECs over a deliberately 

varying seabed, in order to improve their performance. This proposal is vacated for future work. 

The optimal design is again the Conical WEC, with an increase (1.24%) to its performance index 

due to the varying seabed profile. If a steeper step of depth is considered, then the above 

variations in results might be more intense. 

4.3.2.3 PTO damping optimization 

The damping coefficient of the PTO will now be optimized again, for the optimum Conical 

WEC, but now for the case of the variable seafloor. The curve of the performance index as a 

function of the PTO values will be re-plotted. The PTO damping values are similar to those 
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evaluated in (4.3.1.3). The optimal PTO damping value is now BPTO=CPTO bm=80 bm , 

corresponding to a performance index of 18.10% (Fig. 107). 

 
Figure 107: Performance index for PTO values – Conical WEC                                                                                          

over variable bottom (h1=1.2 m, h3=0.8 m, αbot=0.5) 

4.3.3 Design comparison 

One of the main purposes of the study is the comparison of an optimal WEC shape operating 

over a flat or a varying seabed. The optimum shape is now found to be the Conical WEC. The 

ideal value of PTO damping is BPTO=CPTO bm=77 bm for flat bottom and BPTO=CPTO bm=80 bm 

for variable bottom, and for this PTOs are illustrated the normalized power curves in Fig. 108. 

The superiority of the variable-bottom results are mainly obtained in lower frequencies, while in 

the mid-frequencies the WEC presents more efficient operation over the flat bottom end finally, 

in high frequencies the power output is similar despite the change of the bathymetric profile. 

 
Figure 108: Normalized Power Output for optimum PTO damping value.                                                                      

Conical WEC over flat and variable bottom (h1=1.2 m, h3=0.8 m, αbot=0.5)
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5                                                                                               

Arrays treatment: On WECs interaction 

5.1 Arrays layout 

Most of the devices, deployed in the renewable energy sector, are installed in an array layout for 

maximizing the energy capture levels. Wave energy harnessers, especially heaving WECs, which 

are investigated in the present study, are normally considered in farm configurations in order to 

obtain an appreciable utilizable amount of power absorption.  

One issue of great interest, arising from this farm layout, is the hydrodynamic interaction 

between the devices and the wave field alteration by each device. Design and optimization of 

this layout is a critical task for the total efficiency of the wave park. Furthermore, the effects of 

a variable seafloor on the propagating field and on the WECs performance is upon further notice. 

The WEC transforms the whole fluid domain and thus affects all the nearby devices, in contrast 

with the wind or tidal turbines, which have their highest impact in their wake (Fig. 109). There 

are two main design concerns regarding arrays of wave energy converters. These are the 

positioning issues and the coupling issue. 

 

Figure 109: Interactions and wave field analysis in an array of three WECs 

The optimization of WECs operating in arrays is different than the optimum design of a single 

WEC. An appropriate design and arrangement may cause higher excitation forces and 

accordingly higher output, known as constructive interaction phenomenon.  

The problem of wave-seabed-multiple body interactions will be treated by means of the 

developed and presented 3D BEM-PML, a method ideal for modeling in detail the near-body 

potential field and estimating the WEC responses. Analytical methods for flat-bottom regions 

([91]) and phase-averaging spectral wave methods ([92]) have been used, however higher 



Chapter 5   

98 

 

accuracy on evaluating the field near the WEC body and modelling the interaction effects and 

then proceeding on array layout optimization and design demands Computational Fluid 

Dynamics tools (CFD) implementation ([93]). 

More complex effects relate with the operation of WECs in an array layout. Hydrodynamic 

coupling, entrapped modes around periodic arrays, the park-effect, chaotic resonance and 

radiation admittances are only few of the problems need to be solved and numerically 

approached, if a large scale array of active WECs is upon design and performance estimation 

[94]. 
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5.2 Mathematical formulation 

5.2.1 The hydrodynamic problem of WEC arrays 

The proposed numerical method is the BEM-CMS-PML method, discussed in (2.3.2), for treating 

problems of floating bodies over a 3D varying sea-bottom. The propagating field is calculated 

by the CMS model, presented in Appendix B. The evaluation of the radiation and diffraction field 

is handled by the BEM computational code, where the radiation condition in forced by the 

previously optimized PML model, in order to avoid reflections contamination of the field 

induced by a typical Sommerfeld expression of radiation condition. 

In the former case, only one floating body was considered and its responses were finally obtained 

using this method. The only alteration herein, is that k-bodies are installed and thus the code has 

to deal with the evaluation of the 6k-radiation potentials and the relevant hydrodynamic 

coefficients and responses.  

Based on [79] the complex potential φ(x,z) can be decomposed on the propagating potential, on 

the diffraction potential and on the radiation potentials: 

 
       

22
, , , ,P D Rx z x z x z x z

gH


       (5.1) 
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where φp(x,z) is the normalized propagation wave field without the presence of the bodies, 

φD(x,z) is the diffraction field due to the insertion of the motionless bodies DB
k  ,  k=1,N, satisfying 

the BC: 𝜕φ
D

(x,z)/∂nk= -∂φ
P
(x,z)/∂nk on the k-body where nk=(n1,n2,n3)

k
 is the normal vector on 

the wetted surface of the k-body, directing outwards of the fluid domain and so inwards the body. 

Moreover, φkl is the radiation potential due to the l-motion of the k-body, satisfying the BC: 

∂φ
kl

(x,z)/∂n=nkl, where nkl is the l-component of the generalized normal vector on the wetted 

surface of the k-body and thus nkl=(r × nk)
l-3

 , l=4,5,6 . 

Considering now only simple heaving N-WECs, the response ξk3 can be evaluated for each device 

as well as the hydrodynamic coefficients of added mass and damping of each k-WEC. The heave 

response of the k-WEC is: 

 ξk3=(Akm)-1(XPm+XDm) ,  k, m=1,…,N (5.3) 

where the matrix Akm can be calculated as:  

 Akm=-ω2 (Μ+akm)-iω(BS δkm+bkm)+(CS+c)δkm (5.4) 

In the Eq. (5.4) the δkm denotes the Kronecker’s delta, M is the body mass, which is assumed 

similar for all the devices, while akm and bkm are the added mass and damping coefficients 

respectively, calculated as: 
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akm −

1

iω
bkm=ρ ∬ φ

k3
nm3 dS

∂DBm

 ,  k, m=1,…,N (5.5) 

In addition, c=ρgAWL  is the hydrostatic coefficient in heaving oscillation, where AWL is the 

waterline surface. The coefficients Bs and Cs are characteristic of the PTO, which is also assumed 

the same for each device. 

The exciting forces, FK and Diffraction, are evaluated by the following integrals of the 

corresponding potentials on the wetted surface-∂DBm of the m-WEC, respectively: 

 
XPm=

ρgH

2
∬ φ

P
nm dS

∂DBm

 ,  m=1,…,N  (5.6) 

 

 
XDm=

ρgH

2
∬ φ

D
nm dS

∂DBm

 ,  m=1,…,N (5.7) 

As a result, the total average power output of the heaving WEC-array is:  
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Finally, q-index is used to indicate how the interaction between the WECs affects the power 

output. Assuming the same efficiency for each WEC ηeff, the q-index is the ratio of the mean 

power output by the array, divided by the power output of a single device operating in the same 

region and sea-state conditions:  

  1

1( , ) ; , , / ( , , )Nq N P N H P H       (5.9) 

5.2.2 Mesh generation 

The mesh on the various boundaries is now composed by several subparts. The near-WEC mesh 

is cylindrically developed around the WEC’s waterline. This cylindrical mesh is gradually 

reformed into a rectangular mesh, ensuring the matching between the cylindrical meshes around 

the WECs. The rectangular mesh finally deforms again into cylindrical mesh on the far-field, 

which is ideal for representing the radiating solution. Meshes are also used for the discretization 

of the WECs and of the variable bottom, based again on cylindrical distribution of elements. The 

usage of this technique along with the quadrilateral elements ensures continuity of the geometric 

approximation of the (N+N+1+1)-boundaries: N-WECS, N-near fields, 1-FS far field and 1-

bottom. 
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Figure 110: Computational meshes: (a) Free surface far (a.1) and near the WECs (a.2),  

(b) Side 3D view of the near field and WECs, (c): Variable bottom 

The corresponding meshes for the following example of (5.3) are: 6x40 on each WEC, 5x40 for 

each of the near-fields, 30x100 on the far field and 14x20 on the bottom skin. The total elements 

used for the discretization are then 5920. The total number of subparts are 14. They are depicted 

in Fig. 110, where all the sub-meshes are plotted with different colors. 

 

 

(a.1) (a.2) 

(b) 

(c) 
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5.3 Numerical results 

A typical example of a WEC array is considered hereupon.  An array of 3x2 cylindrical WECs 

of radius a=1 m and of draft to radius ratio of d/a=1.5 are installed over a variable depth region. 

The depth profile is described by the Eq. (5.10): 

 

      
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1 3 1 3
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

 
   




 (5.10) 

The non-dimensional frequency is ω√hm/g=1.5, or equivalently ω√a/g=0.8 is also considered. 

The horizontal spacing of WECs is s1/a=5 along x-axis and s2/a=4 along y-axis. This spacing in 

regard to the wavelength is small and thus the interaction of the WECs is strong.  

In Fig. 111 is illustrated the propagating field for 0deg of incident waves, while in Figs 112, 113 

is shown the diffraction pattern, where is obvious the backscattered wave by the array, the main 

reflection as well as the scattering effect in the downwave area of the array. The WECs are 

indicated with white solid lines. 
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Figure 111: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.8, 0deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 

 
Figure 112: Diffraction field (Real and Imag) (top view) for 𝜔√α/g=0.8, 0deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 

 

Figure 113: Diffraction field (Real and Imag) (3D view) for 𝜔√α/g=0.8, 0deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 
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Same results are also obtained for the 45deg oblique waves (Figs 114, 115, 116). In this case 

special comments are added on the diffraction pattern plot, indicating the backscattered wave, 

the reflected wave as well as the downwave scattering effect (Fig. 117). 

 
Figure 114: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 

 

Figure 115: Diffraction field (Real and Imag) (top view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 

 

Figure 116: Diffraction field (Real and Imag) (3D view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 
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Figure 117: Diffraction field (Real) for the 45deg oblique waves by the 3x2 WEC array for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) 

The illustration of the heave-radiation potential is based on the assumption of one active WEC. 

Each time only one active WEC radiates potential by its heave motion, while the other five 

remain motionless. For better understanding, in Fig. 118 is depicted a numbering assignment for 

the WECs of the array.  

 

Figure 118: Numbering of the WECs in the 3x2 array configuration 

Hereupon, will be presented the radiation potential plots for two cases of different active WECs, 

namely the WEC No.1 and No.4 and for 45deg of incident waves. 
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Figure 119: Heave-Radiation field (Real and Imag) (top view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot=0.05) – WEC No.1 active 

 
Figure 120: Heave-Radiation field (Real and Imag) (top view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot =0.05) – WEC No.4 active 

The minimization of the shadowing effect in the downwave region is the main reason behind the 

layout optimization. The quantification of this wake effect is accomplished through the q-index. 

Assuming a PTO similar to this of (4.3.1.1), the non-dimensional heave amplitude, in respect to 

the incident wave amplitude, and the q-index are calculated for the three typical PTO damping 

values and for 0deg and 45deg wave incident angles. The maximum q-index is 92% for the case 

of 0deg incident waves and CPTO=5, while it decreases to 65% for the "hardest" PTO of CPTO=20. 

The relevant q-index for the 45deg wave heading angle are 77% for CPTO=5 and 53% CPTO=20. 

The results are tabulated in Table 8. 
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Table 8  

Array q-index for various PTO values and for 0deg and 45deg incident angle over variable bottom 

CPTO  5 10 20 

|ξ
3
|/(H/2)  0.86 0.76 0.58 

q-index 
0deg 0.92 0.80 0.65 

45deg 0.77 0.66 0.53 

Finally, in the subsequent Figs 121 and 122 , the total potential and its absolute value are 

illustrated in the case of activated WEC No.1 for the above presented sea state of  ω√α/g=0.8 

and 45deg incident waves, over a variable seafloor. 

 
Figure 121: Total field (Real) (top view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot =0.05) – WEC No.1 active 

 
Figure 122: Absolute value of total field (Real) (top view) for 𝜔√α/g=0.8, 45deg 

Variable bottom (h1=5 m, h3=2 m, αbot =0.05) – WEC No.1 active 
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6                                                                                                        

The 2-DOF WEC: Performance evaluation  

6.1 The conceptual idea 

The analysis of a WEC in heave motion have shown the prospects and the significance of 

research in this field of eco-friendly power production, regarding computational process coding, 

design decisions, bathymetry effects and interactions in arrays configuration.  

At the same time, the idea of combining more than one degrees of freedom for harnessing the 

available power by the wave is another perspective on how these systems will be more efficient. 

Many studies have been carried through upon this subject and pertain to the concept of a WEC 

with two or more DOFs ([44,95–98]), and therefore able to absorb higher amount of the wave 

power and achieve more stable power supply to the grid. A typical review of PTOs with more 

than one power capture mode is presented in Fig. 123. 

 

Figure 123: Classification of wave energy PTOs based on the power capture mode [95] 
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In this specific study the idea of a device in heave-pitch mode will be examined. A typical PTO 

for these two modes of operation is the No.8 in Fig.123 and also illustrated in Fig. 124 where 

power capture from pitch mode come as a result of differential heave between the two sides of 

the WEC, which in this case should have probably a large ratio of radius to draft. Otherwise, the 

PTO for pitch may be totally different than the PTO for heave and this is the general case which 

will be examined in the following study where damping values for PTO are independent. 

 

Figure 124: Heave-Pitch PTO configuration for a WEC 
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6.2 Mathematical formulation 

At this time the solution for the responses of heave and pitch will be obtained by the formulation 

and evaluation of the system of coupled equations. The coupled system of heave-pitch equations 

is expressed as [99]: 

 D33ξ3+D35ξ5=XP3+XD3 (6.1) 

 

 D53ξ3+D55ξ5=XP5+XD5 (6.2) 

 

where, 

 D33=-ω2(Μ+Α33)+iω(Β33+ΒS3)+C33 (6.3) 

 

 D35=-ω2(I35+Α35)+iωΒ35+C35 (6.4) 

 

 D53=-ω2(I53+Α53)+iωΒ53+C53 (6.5) 

 

 D55=-ω2(I55+Α55)+iω(Β55+ΒS5)+C55 (6.6) 

The hydrodynamic coefficients of added mass and damping, Aij, Bij, for i, j=3, 5, respectively, as 

well as the excitation FK and Diffraction heave-forces and pitch-moments, XPi, XDi for i=3, 5 

are calculated by the BEM solver. For the evaluation of the rest of the included coefficients in 

the above expressions, it should be taken under consideration that the center of gravity is 

coincident to the center of waterline, so XG=0 and GB̅̅ ̅̅ =0, where XG is the long-center of gravity 

and GB̅̅ ̅̅  is the vertical distance of the center of gravity from the center of waterline, positively 

signed when the center of waterline is above the center of mass. The waterline for every 

investigated geometry is circular and the first and second moments of the waterline , which are: 

Ak= ∫ xkA
dA  and  Akm= ∫ xk xmA

dA=π
Dwl

4

64
 ,  k, m=1,2 where Dwl=2a is the diameter of the circular 

waterline and a is the waterline radius., introduce the following simplifications on the hydrostatic 

coefficients: C33=ρgπα2, C35=C53=ρgA1=0, C55=ρgA22+Mg GB̅̅ ̅̅ =0. The inertia coefficients are: 

I35=I53=-MXG=0 and I55=M Ryy
2 , where Ryy denotes the gyration radius with respect to the 

transverse axis and , assuming a typical mass distribution near the surface of the WEC, this radius 

is set to: Ryy=0.7a.  

After the calculation of the involved variables, the response of the WEC can now be obtained. 

For the evaluation of the normalized power output by the device typical PTO damping values 

are examined. The Heave-PTO is defined as: [1, 5, 10, 20:10:340] times a mean value of 

hydrodynamic damping bm3 over frequency, which is estimated as 2πbm3 mωR3⁄ =0.12, where 

the resonance frequency ωR3√a/g=0.7, thus BPTO3=Bs3=CPTO3 bm3. Same PTO assumption is 

considered for the pitch motion, where the PTO damping is evaluated in regard with a mean 

value of damping of the system as: [50:10:400] times a mean value of hydrodynamic damping 

bm5 over frequency, which is estimated as 2πbm5 mωR5⁄ =0.01, where the resonance frequency 

ωR5√a/g=0.45 and consequently BPTO5=Bs5=CPTO5 bm5. Lower values for PTO coefficients, 

both for heave and pitch mode, are not considered because either are unfeasible by the industry, 
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or allow high resonance amplitudes of RAO and may cause survivability issues, or at last they 

are not power effective. 

The coefficients of D35 and D53 are, for every geometry, too small, compared with the relevant 

D33 and D55, therefore the coupling is weak for this motion study and the RAOs obtained by the 

solution of the coupled system are slightly different than the results of the uncoupled heave or 

pitch equations solution. The evaluation of response and power output will be examined for the 

eight geometries and both for flat and variable bottom regions of installation. 
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6.3 Numerical results 

6.3.1 Steady-depth bathymetry 

6.3.1.1 Response evaluation 

The coupled system of equations of motion is solved for different combination of PTO damping 

coefficients for heave and pitch mode. The relevant RAOs and their phases are firstly calculated. 

An indicative example will be presented in the following figures for the Cylindrical WEC and 

for three different PTOs for heave and pitch, i.e.: BPTO3=Bs3=[1, 10, 100] bm3 and 

BPTO5=Bs5=[50, 100, 200] bm5. 

 
Figure 125: Heave RAO, Phase RAO and Normalized Power Output – Cylindrical WEC – Flat bottom 

 
Figure 126: Pitch RAO, Phase RAO and Normalized Power Output – Cylindrical WEC – Flat bottom 
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Comparing the results of heave-response by the coupled motion (Fig. 125) with them of the 

heaving alone (Fig. 95), they are slightly alternated and affected by the pitch mode, due to the 

very weak coupling. The RAO of pitch is presented in non-dimensional form: (ξ
5
/kA) (Fig. 126). 

As illustrated by the normalized power curve of pitch mode this WEC-PTO combination exploits 

a large bandwidth of wave frequencies with almost 50% performance, resulting in great amounts 

of absorbed power by this mode and being a testament for the significance of this 2-DOF 

proposal. In the same way these curves are evaluated for all the 36x36 PTOs combinations and 

for the eight different shapes of WECs. 

6.3.1.2 Performance assessment 

The gross power output from each WEC, calculated as the summation of the power output by 

each mode individually, will be divided by the area of the rectangle and lead to the calculation 

of the total performance index, which is the main variable for estimating and comparing the 

performance of the devices. The results are tabulated in Table 9. 

Table 9  
WEC shapes and 2-DOF performance index over flat bottom 

WEC design 
max {Performance index  (Heave+Pitch)} 

Flat Bottom 

Cylindrical 32.43 % 

Nailhead-shaped 29.00 % 

Disk-shaped 22.04 % 

Elliptical 27.12 % 

Egg-shaped 26.25 % 

Conical 21.99 % 

Floater-shaped 19.65 % 

Semi-spherical 13.44 % 

From the assessment of the above results many interesting conclusions arise. First of all, the 

Cylindrical WEC is the most efficient design, with the Nailhead-shape being the second most 

qualified. The optimal design for heave power mode, the Conical WEC, is now withdrawn in the 

fifth place. Another very interesting comment, has to do with the semi-spherical design. The 

performance index is almost unchangeable for the 2-DOF scenario, proving the fact that the 

submerged semi-spherical wetted surface experiences very low pitch excitation, and so absorbs 

incapable amount of energy, with only 0.4% improvement of the performance index. 

The performance index is determined by the PTO coefficients. For every geometry particularly, 

there are different optimum values for the damping of the two power extracting modes. 

Therefore, curves of iso-performance lines can be plotted for every geometry, evaluating the 

performance index as a function of the PTO values. Similar approach to the evaluation of a 3-

DOF WEC with a 6-PSS (prismatic pair–spherical pair–spherical pair mechanism have been 

studied in [97] resulting in an optimum output of normalized power of 46% (126KW for incident 

wave of H1/3=2 m, Te=6.98 sec and a WEC radius of 5 m), while in the present study, considering 

only 2 degrees of freedom the relevant values is equal to 32.4%, obtained for the cylindrical 

shape. 



The 2-DOF WEC: Performance evaluation 

115 

 

Probably, the optimum PTOs for heave and pitch will be only one couple of values for each 

geometry, however in the following contour plots the effective values lay inside a wide range, 

represented by the red area. The evaluation for the exact values of PTOs for the most efficient 

designs will follow in the next section. 

6.3.1.3 PTO damping optimization 

The qualified design for the 2-DOF scenario, are the Cylindrical WEC and the Nailhead-shaped 

WEC. The benefits of the second conceptual design in case of a 2-DOF power absorption has 

been mentioned previously and is explained by the benefits of combining two cylindrical bodies 

with a smooth transition from a small-radius high-draught cylinder to a big-radius small-draught 

cylinder in the free surface, experiencing strong excitation in both of these modes. For the 

estimation of the exact optimal PTO values, the considered damping coefficients are: 

BPTO3=Bs3=[1:1:340] bm3 and BPTO5=Bs5=[50:1:389] bm5. The two optimal shapes and the 

results are presented in Fig. 127 and in Table 10:  

                                                                                                         

      

    

    

Figure 127: The 2-DOF scenario: optimum WEC shapes, iso-performance curves and normalized power output 

by each mode over a flat bottom 
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Table 10  

Optimum WEC designs, performance index and PTO couple over flat bottom 

Design & Performance Cylindrical WEC Nailhead-shaped WEC 

Radius (m) 0.28571 0.64654 

Draft (m) 0.42857 0.34 

Max{Performance index (Heave+Pitch)} 32.47 % 29.00 % 

Optimum PTO damping: [CPTO3, CPTO5] [4, 50] [261, 214] 

 

       

    

     

    

           Figure 128: Iso-performance curves for each WEC over flat bottom:                                                                                                             

(a) Cylindrical, (b) Nailhead-shaped, (c) Disk-shaped, (d) Elliptical,                                                                                                                                                         

(e) Egg-shaped, (f) Conical, (g) Floater-shaped, (h) Semi-spherical 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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The optimal values for the PTOs in case of the cylindrical WEC are approaching the lower limits 

of these coefficients, set by the requirements of industry, survival conditions operation and power 

efficiency, thus despite its superiority over the other candidate, the attainment of such low values 

of PTO damping may be challenging. The iso-performance contours are depicted, for a utilized 

for each shape range, in Fig. 128, to show the optimum area of PTOs coefficients for every shape, 

allowing both the direct comparison between the designs and the determination of optimum PTO 

values. 

6.3.2 Variable-depth bathymetry 

6.3.2.1 Performance assessment  

The investigation of the performance of the above shapes with two power modes over an 

arbitrary bathymetry is now considered. The bathymetric profile is described by the same 

equation with the heaving WECs of the Chapter 4 (Eq. 4.2) with h1=1.2 m, h2=0.8 m and 

abot=0.5: 

       1 30.5 tanh bo ntm meah x h h h x x      (6.7) 

The PTO damping is described in (6.2) and the relevant coefficients are: CPTO3 = [1, 5, 10, 

20:10:340] and CPTO5 = [50:10:400]. For these values the results for the varying seabed scenario 

are gathered in Table 11, along with the results over the flat bottom: 

Table 11  

WEC shapes and 2-DOF performance index over flat and variable bottom 

WEC design 

max {Performance index  

(Heave+Pitch)} 

Flat Bottom 

max {Performance index  

(Heave+Pitch)} 

Variable Bottom 

Cylindrical 32.43 % 32.00 % 

Nailhead-shaped 29.00 % 29.08 % 

Disk-shaped 22.04 % 22.31 % 

Elliptical 27.12 % 27.26 % 

Egg-shaped 26.25 % 25.84 % 

Conical 21.99 % 22.07 % 

Floater-shaped 19.65 % 19.59 % 

Semi-spherical 13.44 % 13.60 % 

As proven by comparing the results of the above table, the effects of the variable depth region 

are not easily predictable on the WECs performance. If only heave-mode is considered then, as 

concluded in Chapter 4, the performance is slightly improved over the varying floor. However, 

in this case, where both heave and pitch modes contribute to the power output of the device, 

there are examples of performance improvements and examples of performance pejoration. The 

highest rated increase of performance index is obtained for the disk shape (+0.27%) and the most 

intense decrease is espied for the cylindrical shape (-0.43%). 
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6.3.2.2 PTO damping optimization 

Focusing on the most efficient designs, the Cylindrical WEC and the Nailhead-shaped WEC, the 

optimal values of the PTO damping, will now be recalculated, considering the PTOs range of 

(6.3.1.3) for the varying seabed case and compared with the relevant values for the flat seabed 

case. The results are presented in Table 12, from where it can be deduced that the optimal PTO 

values are changed for the nailhead shape resulting in almost same performance ratings and 

remain unchangeable for the cylindrical shape along with an appreciable decrease of 

performance index. 

Table 12  

Optimum WEC designs, performance index and PTO couples for flat and variable bottom case 

Design & Performance 
 

Cylindrical WEC 
Nailhead-shaped 

WEC 

Max{Performance index (Heave+Pitch)} 

Flat 32.47 % 29.00 % 

Variable 32.04 % 29.08 % 

Optimum PTO damping: [CPTO3, CPTO5] 

Flat [4, 50] [261, 214] 

Variable [4, 50] [276, 213] 

6.3.3 Design comparison  

The performance of each shape over both bathymetric profiles will be illustrated, through the 

normalized power output curves, in the following figures, showing that the strongest effect on 

the performance, induced by the varying seafloor, is detected for the pitch oscillation of the 

Cylindrical WEC (Fig. 129) and for the heave oscillation of the Nailhead-shaped WEC (Fig. 130). 

The total impact on the WECs performance is quantified though the estimation of the 

performance index, which is found significantly decreased for the cylindrical shape and almost 

identical (slight increase) for the nailhead-shape. 
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Figure 129: Normalized power output for each power mode (Heave, Pitch) for the Cylindrical WEC  

over flat and variable bottom (h1=1.2 m, h3=0.8 m, αbot=0.5) with optimized PTO. 

       
Figure 130: Normalized power output for each power mode (Heave, Pitch) for the Nailhead-shaped WEC  

over flat and variable bottom (h1=1.2 m, h3=0.8 m, αbot=0.5) with optimized PTO. 
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7                                                                                                             

Conclusions and future research 

7.1 Discussion and conclusion  

In the present thesis several aspects of point absorbers have been investigated, accompanied with 

the development and implementation of a numerical method for approaching and solving the 

general hydrodynamic problem. 

The proposed computational code is synthesized by Mathworks MATLAB and FORTRAN 

scripts, developed to evaluate the total potential flow field by means of a utilized BEM for 

diffraction and radiation problems, combined with the CMS for the propagation field and an 

optimized PML for the enforcement of the radiation condition. The conceptual method is able to 

treat the 3D hydrodynamic boundary problem over an arbitrary bathymetry and calculate the 

response of any number of floating bodies over this region. The method is developed and 

validated step by step, starting from the 2D wavemaker problem, stepping on the 3D problem of 

a heaving cylinder over a flat seabed and finally numerically approaching the heave oscillation 

of a cylinder over a region of general topography. 

Afterwards, the range of the examined body geometry is expanded to eight different and common 

shapes of wave energy converters, pertained to the category of point absorbers. The WECs are 

capturing the wave energy only through their heaving mode of oscillation. Flat and variable 

depth, with the form of a smooth coastal shallowing, conditions are examined. The damping of 

PTO is found one of the most significant tuning parameters and design variables for performance 

maximization. The Conical WEC is the most efficient design both for the two depth conditions, 

with a performance index of 17.95% for a PTO coefficient equal to CPTO=77 for flat bottom, and 

gently improved for operation over a variable bottom with a performance index of 18.10% and 

CPTO=80, proving that the arbitrary bathymetry will affect the performance of a device and 

actually may cause a performance upgrade for all of the considered shapes. 

The interaction among devices in an array configuration is then upon further research. A farm of 

3x2 cylindrical heaving WECs is examined and the potential flow total field is evaluated, 

resulting in a q-index maximized for 0deg of incident waves and CPTO=5 and being equal to 92%  

and minimized to 53% for 45deg of incident wave angle and CPTO=20. 

Finally, the conceptual idea of combining more than one power modes resulted during the final 

section in that the cylindrical shape and the nailhead shape are the most efficient for operating 

both above a flat or a varying seabed, with the Cylindrical WEC being almost 3+ % more power 

effective than the Nailhead-shaped WEC, reaching a performance index of 32.43% over a flat 

bottom and 32.00% over a smooth shallowing depth profile. The impact of the topographic 

profile in now not so simple and affects the performance in a non-easily predictable way, causing 

improvements or worsening of the performance of the devices depending on their shape. The 

PTOs used now for harnessing power form the sea environment are obtaining two with different 

damping values, thus the optimization of PTO coefficients has now three design parameters: the 
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geometry of the WEC, the heave-PTO damping and the pitch-PTO damping, and one objective 

function: the performance index, resulting in 2D contour plots illustrating the iso-performance 

lines for each WEC and for every couple of PTOs. The bathymetry does also affect the optimal 

values of PTO damping for each device, and can be accounted as another design constraint. 

The main conclusions arising from this research can be presented in brief as: 

- The BEM-PML-CMS method is able to treat the general 3D hydrodynamic problem in 

frequency domain with great reliability, justified by the validation process and upon 

further utilization for every problem after fine tuning, independently from the geometry 

of the body, the bathymetry, the number of the floating bodies or the modes of their 

power capture. 

- The PTO damping values are exhibiting constrained lower limits, due to feasibility, 

survivability and power efficiency issues. 

- The ratio of the area below the normalized power curve divided with the area of the 

surrounding rectangle, defines the performance index and it is a very useful comparing 

value. 

- The Conical WEC is the most efficient design for a heaving point absorber, irrespective 

to the seabed profile. 

- The Cylindrical and the Nailhead-shaped WECs are the ones with the highest 

performance ratings for the concept of a 2-DOF device, capturing power from heave 

and pitch modes, regardless the seafloor topography and achieving promising power 

output levels. 

- A varying seafloor can affect appreciably the performance of a floating device, and in 

many cases may cause increased performance levels indeed. 

- Wake effects in arrays configuration might be crucial for the performance of the 

heaving WECs, and thus in the power output from the whole wave park. 

- The optimization of the PTO damping is one of the greatest aspects upon research in 

the quest of the most efficient design, taking values utilized and specific for each shape 

and each bathymetric profile case. With the usage of the iso-performance contours the 

determination of the optimal PTO couple for each shape is effortless. 
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7.2 Future research proposals 

During this research, in the pursuit of the master diploma, side by side with notable results and 

conclusions many other prospects for future research have emerged and might be a first impetus 

for the forthcoming activities in this field.  

First of all, the examination of the effects by a more steep depth profile will be another area of 

study with, possibly, many promising results. The idea of a man-made seafloor, like a platform, 

in order to intentionally disturb the potential field in a desirable way and achieve better 

performance levels is another novelty opportunity. 

Secondly, the shape optimization has many other prospects of research. For example, the conical 

shape, one of the most efficient for heaving point absorbers, is a general shape with numerous 

design variables, such as waterline radius, draft and deadrise angle, which can be optimized, 

resulting in an even better performance. More sophisticated designs is definitely on hand for 

future studies and their aspects can be objectives of an algorithmic optimizer scheme. 

Treating the problem in terms of the presented method, the consideration of n-power modes is 

now the next step to obtain maximized power output by devices of this type, reaching ideally all 

the six modes of oscillation as contributors to the total power output of a concept design with a 

more sophisticated PTO. In addition, the investigation of different control strategies and their 

evaluation will be certainly part of the recent trend in the wave energy industry. Engagement of 

the mechanical engineering sector is essential for determining crucial parameters, such as 

survivability limits, PTO coefficient ranges, manufacturing processes and operation & 

maintenance issues. 

The optimization of an array layout is another design variable which affects in a very serious 

way the performance. The minimization of wake effects and a strategic design taking advantage 

of the constructive interaction effect will be the aim of future research for establishing an 

effective way for capturing great amount of energy from the oceans. 

Examination of techno-economical parameters and environmental impacts of WECs are 

unquestionably one already marching area of research and development activities in companies 

and organizations around the world and of course a required part of study for every well-rounded 

proposal. 

Finally, the generalization of the computational code in a format to treat any geometry over any 

bathymetry, through simple commands, will be an, at least, practical asset. The implementation 

of coding optimization techniques and of a user friendly interface will finally assist the total 

research and development work. Simply by controlling some nodes, the researcher will provide 

the code with the desirable geometry of the device and the relevant bathymetric profile of this 

specific region of installation. This task will also be expanded to treat arrays of WECs. The scale 

up in computational terms, accompanied with state of the art CFD tools and hybrid methods will 

provide higher accuracy and more detail-oriented design. The interconnection between a 

computational code for wave energy converters, a mapping tool providing the bathymetric 

profile in every region of interest and of a wave forecasting model introducing the wave spectrum 

will be a cutting-edge evolution in the modelling of wave energy technologies and will be the 

first step for a real-time time-domain model for observing, assessing and controlling the devices. 
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Appendix A                                                                                              

The quadrilateral elements on BEM 

A.1  Quad-elements on BVPs 

In the presented formulation of this low order Boundary Element Method, one key feature is the 

discretization of the boundary geometry with the assignment of elements. These elements can be 

1D in case of a 2D problem, or 2D panels in 3D problems. On these elements a singularity 

distribution is considered and the induced potential and velocities at any specific location of the 

domain can be evaluated with the summation of effects by each one element. 

Stepping on the investigation of the geometry of these elements and focusing on 3D problems, 

the panels may take different shapes, such as triangular or rectangular, which are the most 

common and the simplest of shapes. The triangular elements are becoming more popular lately, 

due to the easier approximation of the boundary and their relevant efficiency on this task, even 

on complicated geometries of boundaries. However, the quadrilateral elements, which have more 

limited freedom on modelling the boundary shape with high accuracy, have the advantage of 

modelling at first order curvature effects, exhibiting this extra degree of freedom and they are 

very useful in BVPs due to this curving ability. Both these techniques present first order 

accuracy. The usage of curved quadrilateral elements are a way to approximate shapes and ensure 

the continuity of the geometry. Additionally, characterized by four nodes they give more 

accuracy, however accompanied with further complication on solving the problem [100]. If 

higher accuracy is required, then added nodal points can be allocated along the sides or on the 

surface of each quadrilateral element, adding extra parameters for each element and permitting 

the usage of only few of them for the solution of the whole problem (Fig. 131).  

 

Figure 131: Quadrilateral elements with four nodes and with added nodal points 

In this specific case of BVP, considered in this study, the 4-node curved quadrilateral element is 

applied for the approximation of boundaries, securing the continuity of the approximation of the 

geometry without gaps, in contrast with the constant-strength flat quad-elements, commonly 

used in potential flow problems [101], which introduce discontinuities on the geometry [61]. The 

constant-strength 4-node curved quadrilateral element is used in the present work, introducing a 

low order approximation without any increase of the number of unknowns, which are namely 

the discrete singularity strengths on each element and ensuring the avoidance of any inter-

elemental discontinuities and thus better approximation of the potential. 



Appendix A   

132 

 

For the main singularity distribution on the boundary elements is selected the surface dipole, 

which, in combination with the selected elements, presents some significant properties: 

- Induced potential and velocity of each element can be obtained analytically. For every 

not-extremely twisted element on the boundary, which almost refers to any case of 

interesting applications, the expressions of the induced potential and velocity have 

analytical forms and thus this method presents very fast calculations even for very large 

discretization. 

- Self-induced values guarantee the formulation of a diagonal matrix of coefficients. The 

induced potential and velocity by each element on its center are very strong and this 

defines that the matrix of coefficients will be diagonally dominant for every case of BCs 

of the present 3D free-surface problems. 

- Diagonal matrix of coefficients offers iterative solution methods. Methods, like Gauss-

Seidel, under this matrix-form requirement, are able to solve problems in large domains 

with variable fine-meshed boundaries. 
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A.2  Mathematical formulation 

A.2.1  Definition of the quadrilateral element 

Considering the quadrilateral element of the boundary, an intrinsic coordinates system (ξ,η) is 

introduced within the element, bounded in [-1,1], as shown in Fig. 132. Using coordinates 

isoparametric transformation, the rectangle  
2 21,1 IR    is transformed to the 3D surface 

element x E as follows: 

    
1

, ,
L

n n

n

x x N   



 

(A.1) 

where x=(x,y,z) are the Cartesian coordinates of a point with intrinsic coordinates (ξ,η) and xn 

are the coordinates of the element’s corner nodes n=1,…,4, numbered as illustrated in Fig. 132.  

 

Figure 132: Coordinates systems on a 4-node quadrilateral element: (a): Global CS, (b): Local CS 

Therefore, the shape functions can be expressed generally as: 
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(A.2) 

and the individual shape function for each node, in respect to the numbering , is: 
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Each one of these functions is connected to a single node, describing a curved surface, consisted 

of straight lines in ξ, η directions and called as hyper-surface. A typical example for the N1 shape 

function, as well us for the rest of shape functions are depicted in Figs 133, 134. 

 

Figure 133: N1 shape function of the 4-node quad-element 

 

 Figure 134: Shape functions of the 4-node quad-element [102] 

Secondly, the centroid C0 and the tangent vectors, parallel to ξ, η directions have now to be 

evaluated: 

 
 0 1 2 3 4

1

4
C x x x x     (A.7) 
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Any function   ,f x    on the element can now be integrated as follows: 

 
    

1 1

1 1

4 , ,f dS f x d d

 

 

      
 
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     (A.10) 

where, 

 e e     (A.11) 
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is the Jacobian determinant of the transformation and: 

    / /n e e e e e e            (A.12) 

is the unit normal vector on the quad-element. 

A.2.2  Evaluation of induced velocity 

In problems, like these described in this study, the induced potential and velocities are the values 

of interest, that need to be evaluated for each element individually and for the whole domain at 

the end. Assuming a constant doublet distribution of strength-μ for an element pointing towards 

z-direction, the induced velocity can be obtained through integration: 

    0, , ;
S

x y z n G x x dS     (A.13) 

where, 

 
       

1/2
2 2 2

0 0 0 04 ;G x x x x y y z z       
 

 (A.14) 

and specifically for the 4-node quad-element with all its nodes laying on the same plane, the 

velocity potential is expressed as: 

  
   

1/ 2
2 2 2

0 0

, ,
4

S

z dS
x y z

x x y y z






 

    
 

  
(A.15) 

Based on the theory of Katz & Plotkin [61], the 3D constant strength doublet element is 

equivalent to a constant strength vortex ring, placed on the edges of the element, as shown in 

Fig. 135. 

 

Figure 135: Doublet quad-element and its equivalent vortex ring [61] 
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Equivalence of constant doublet panel to vortex ring 

The induced potential by a constant μ-strength doublet element is expressed as: 

 
34 S

z dS

r




     (A.16) 

where    
2 2 2

0 0r x x y y z     . 

The corresponding induced velocity is therefore: 
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4 4S S

z z z z
q dS i j k dS
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          

    
   (A.17) 

considering for the partial derivatives that:  
3 3 3 3

0 0

1 1 1 1
    and    

x r x r y r y r

   
   

   
 .  

If C is the closed surrounding perimeter-curve of the element and Γ is the circulation, induced 

by the vortex distribution along C, then the velocity due to these vortices is obtained by Biot-

Savart Law as follows: 

 

34 C

dl r
q

r

 
   (A.18) 

where dl=(dx0,dy0) and r=(x-x0,y-y0,z). For these quantities it is obtained that: 

    0 0 0 0

0 03 3 3 3

C

y y dx x x dyz z
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r r r r

    
     

   
  (A.19) 

The Stoke’s Theorem for vector A⃗⃗  and for the length-S of curve-C is: 

 
C S

A dl n A dS     (A.20) 

For n=k the Eq. (A.20) becomes: 
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 
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   (A.21) 

With the appliance of Stoke’s Theorem on Eq. (A.19), the expression for the induced velocity 

finally becomes: 

 
0 0

3 3 3 3

0 0 0 0

ˆˆ ˆ
4 S

x x y yz z
q i j k dS

x r y r x r y r

       
     

      
  (A.22) 
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In conclusion, comparing Eqs (A.17) and (A.22), it is obvious that the induced velocity by the 

doublet panel is equal to the induced velocity by the vortex filament for Γ=μ. This also is in force 

in case of the twisted 4-node quad-element [103]. 

For the calculation of the induced velocity potential, even for twisted elements, is used the above 

described formula. An additional theorem is also needed, and described hereupon: Considering 

one segment on one of the edges of the element and a random domain point P, as shown in Fig. 

136: 

 

Figure 136: Impact of a straight vortex line segment to a point P [61] 

The induced velocity by this vortex in this case is: 

 
34

dl r
q

r

 
   (A.23) 

If the direction of the velocity’s vector points from 1→2, then the expression for the velocity at 

the point P is: 

 
1 2 1 2
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1 21 2
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r r r r
q r

r rr r

 
   

  
 (A.24) 

In general, the coordinates of the points 1, 2 and P will be given in the Cartesian system. The 

steps for evaluating the induced velocity at any point-P are: 

1) Calculate  1 2r r : 

        1 2 1 2 1 2P P P Px
r r y y z z z z y y        (A.25) 

 

        1 2 1 2 1 2P P P Py
r r x x z z z z x x         (A.26) 

 

        1 2 1 2 1 2P P P Pz
r r x x y y y y x x        (A.27) 

and the absolute value of this outer product is: 

      
2 2 2 2

1 2 1 2 1 2 1 2x y z
r r r r r r r r        (A.28) 
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2) Calculate r1 and r2  : 

 
     

2 2 2

1 1 1 1P P Pr x x y y z z       (A.29) 

 

 
     

2 2 2

2 2 2 2P P Pr x x y y z z       (A.30) 

3) Singular conditions check: The vortex solution will be singular if the P lies on the vortex. 

In this case special handling is essential in the vicinity of the vortex segment and for 

numerical purposes a very small radius-ϵ of the vortex core size is assumed: 

  2

1 2 1 2if      or    or   r r r r    then 0u w    (A.31) 

 

where the vortex core size-ϵ can be as small as the truncation error. Otherwise, the 

velocity components can be calculated by any other vortex core model.  

4) Calculate the inner product  0 1 r r  and  0 2 r r : 

         0 1 2 1 1 2 1 1 2 1 1P P Pr r x x x x y y y y z z z z           (A.32) 

 

         0 2 2 1 2 2 1 2 2 1 2P P Pr r x x x x y y y y z z z z           (A.33) 

5) The resulting velocity’s components are: 

  1 2 x
u K r r   (A.34) 

 

  1 2 y
K r r    (A.35) 

 

  1 2 z
w K r r   (A.36) 

where constant K is: 
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r r r r
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r rr r

  
  

  
 (A.37) 

The above procedure must be accomplished for each vortex segment at the edge of the 4-node 

element and the induced velocities from each segment have to be summed, in order to evaluate 

the induced velocity from this boundary element to a point-P of the domain. 
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A.2.3  Evaluation of induced potential 

For the evaluation of induced potential by a 4-node quadrilateral element with constant doublet 

distribution (μ=const) at any point P (x,y,z) of the domain, based on [104], the following integral 

should be evaluated: 

  
 34

P Q

Q

x x
n dS Q

r




 


    (A.38) 

where, 

E: Quad-element’s area  

nQ: The normal vector at the center of the element 

xP: The position vector of P, from the axis origin to the field point P 

xQ:  The position vector of each point Q ϵ E, from the axis origin to the element point Q 

Here is considered μ=1. In case of a sink at the field point P, with unit strength σ=-1, it is 

observed that the sink flow is equal to U, with: 
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                                                                                (A.39) 

With the assumption of a sink at P, evaluating the sink flow through E leads to the following Eq. 

(A.40), which proves the equivalence of sink flow and dipole constant distribution: 
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The sink flow rate through the element’s area is also the flow rate through a sphere of radius r=1 

and center the point-P, calculated as: 
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   
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where α is the solid angle of the element.  

Separating the quad-element on two 3-node elements, as shown in Fig. 138(α), the corresponding 

angles of each tetrahedral are calculated as well as the potential for each one and finally the total 

potential is simply the summation of these two quantities. 
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Figure 137: Inducements of a curved quad-element to the field point-P 

                   

Figure 138: (a) Separation of quad-element to two 3-node elements and (b) Solid angle of a tetrahedron 

The solid angle of the tetrahedron, as shown in Fig. 138(b) is: 

 
1 2 32a         (A.42) 

Consequently, the induced potential by the quad-element of unit singularity distribution to the 

field point P is: 

 
1 2

1 2
4 4

a a

 
       (A.43) 

where αi corresponds to the solid angle of the ith 3-node element. Validation examples of this 

method can be found in [62]. 

(a) (b) 
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Appendix B                                                                                               
The Coupled Mode Model in evaluating the propagation field  

B.1  Mathematical formulation 

B.1.1  The 3D hydrodynamic problem 

The proposed BEM-PML method to treat hydrodynamic problems of floating bodies over a flat 

or a variable topography in 3D regions requires the evaluation of the relevant potentials. 

Specifically, the evaluation for the diffraction and radiation potentials demands the calculation 

of the incident wave propagation field, with the body omitted. The analytic solution for the wave 

potential is known for the case of a flat seabed [67], however it cannot be extended to a varying-

depth region. A numerical method to calculate the wave potential in this problem is the Coupled 

Mode Model [83]. 

In Fig.139 is illustrated the domain, with its decomposition in subdomains: 

 

Figure 139: Domain and subdomains of the hydrodynamic problem 

The bottom profile, which is described by a one-dimensional arbitrary variation, is a subdomain 

of finite length and therefore the geometry of the bottom can be described by iso-depth contours. 

This transitional region is among two others, each one with a constant, but different, depth. 

Firstly, a Cartesian coordinate system is introduced, with the origin above the variable 

bathymetry at a point of standard water level (SWL), the z-axis is pointing upwards and the y-

axis is parallel to the bottom contours. The domain can then be represented as D3D=D×R, where 

D is the 2D intersection of D3D with a vertical plane, perpendicular to the bottom contours and 

R=(-∞,+∞) is the real line. This notation can be explicitly defined as: 

       D x y z x y R h x zD3

2 0    , , : , ,  (B.1) 
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while, 

     D x z x R h x z    , : , 0  (B.2) 

The D3D domain is decomposed in three subdomains (Eq. (B.3)): D3D
(i)

=D(i)× R,  i=1,2,3
 
 where, 

D3D
(1)

 is the constant-depth subdomain for x < α,  D3D
(3)

 is the constant-depth subdomain for x > b 

and D3D
(2)

 is the variable-depth subdomain between D3D
(1)

 and D3D
(3)

.  
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 (B.3) 

The general representation of the wave potential in semi-infinite strips of constant depth is 

analytically exploited [71,105] and in this specific domain there are two regions of this constant-

depth characteristics: 
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(B.5) 

In the above series the terms (A0 exp (ik0
(1)

x) +AR exp (-ik0
(1)

x)) Z0
 (1)

(z) and 

AT exp (ik0
(3)

x) Z0
(3)

(z) are the propagating modes, while the others for n=(1,2,…) are the 

evanescent modes. The variables {ik0
(i)

,kn
(i)

, n=1,2,…} , i=1,3 and {Zn
 (i)(z), n=0,1,2,…}, i=1,3 are 

respectively the eigenvalues and the eigenfunctions of the regular Sturm-Liouville problem 

evaluated by using the separation of variables in the half-strips D(i),  i=1,3: 
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The problem can be reformulated as a transmission BVP in the D(2)where the function φ(2)(x,z) 

satisfies the following system of equations, BCs and matching conditions on the vertical 

boundaries ∂DI
(12)

 and  ∂DI
(23)

 and on the segments of the FS-line ∂DF
(i)

 and Bottom-line ∂DΠ
(i)

: 

     22 (2)0,     ,x z D    (B.8) 
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where n(i) is the unit normal vector to the ∂D(i), i=1,2,3 boundary, directed to the exterior of it. 

Afterwards, a variational formulation of the problem follows, as described in [83], and the wave 

potential expressions is enhanced: 
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(B.12) 

The main usefulness of this variational principle is that it leaves the freedom to choose any 

among different representations of the unknown φ(2) in D(2) and their relevant numerical solution 

algorithms. 

B.1.1  Local Mode representation 

The wave potential φ(2)(x,z) for the propagation of water gravity waves above variable depth 

seabed, with the absence of the body, can be calculated conveniently by the CMS, based on the 

enhanced local mode representation: 
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In the expression of Eq. (B.13), the term for n=0: φ
0
(x) Z0(z;x)correspond to the propagating 

mode, the terms φ
n
(x) Zn(z;x), n=1, 2,…, are the evanescent modes and the additional tuning 

term φ
-1
(x) Z-1(z;x), called the sloping-bottom mode, is induced in order to satisfy the Neumann 
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BC on the non-horizontal parts of the bottom. The functions Zn(z;x) are the vertical structures of 

the nth-mode, obtained as eigenfunctions of the local vertical St-L problem and described by Eqs 

(B.6), (B.7) and the functions φ
n
(x) are the complex amplitude of the nth-mode, describing the 

horizontal patterns of these eigenfunctions. 
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 (B.14) 

The function Z-1(z;x), defined as the vertical structure of the sloping-bottom mode, is a correction 

term, assures the satisfaction of the Neumann BC even in the non-horizontal parts of the seabed, 

making this model consistent and enforces the energy conservation. This term also improves the 

decay of modal-amplitude functions from the order O (n-2) to O (n-4), where n is the mode-

number and so it accelerates the convergence. In this model, based on the least degree polynomial 

satisfying conditions, the chosen form of Z-1(z; x) is: 
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 (B.15) 

With the substitution of  Eqs (B.13) and (B.15) in the variational Eq. (B.12) the final Coupled 

Mode System of horizontal equations for the amplitudes-φn of incident wave propagating field 

over a variable bathymetry is formulated: 
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0 , a b   x m, , , ,..101  (B.16) 

where the coefficients amn, bmn, cmn are expressed in terms of the vertical modes Zn(z;x), as shown 

in Table 13: 
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Table 13  

CMS coefficients 

 

CASE I 
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n  1 0 1 2, , , , 
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The above CMS in α < x < b is also supplemented by boundary conditions: 

        1 1 0a a  

       1 1 0b b  

 

(B.17) 
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(B.19) 

Finally, due to the equivalence of the variational formulation of the transmission problem of Eq. 

(B.12) and the system of Eqs (B.16-B.19), the coefficients AR, C n
 (1)

, AT, Cn
 (3)  (Eqs (B.4), (B.5)) can 

now be calculated as: 
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By solving the system and substituting the solution in the above equations, the coefficients in 

semi-infinite strip can be evaluated. The system is supplemented by appropriate BCs for treating 

reflection, transmission and radiation of waves. Considering only the propagating mode (n=0) 

the above CMS reduces to an one-equation model, which is exactly the modified mild-slope 

equation derived in [105,106], while neglecting the slopping-bottom mode leads to the extended 

mild-slope equation derived in [105], equations which are non-conservative with respect to the 

energy due to the fact that the infinite series of Eq. (B.13) without the slopping-bottom mode 

cannot converge uniformly in the interval [-h(x),0]. 

The presented Coupled Mode Model, commensurate with any other linear model, presents some 

significant advantages: 

- Fast accurate convergence. Through identifying only the critical couplings, this method 

treats effectively the nonlocal character of the problem and allows accurate 

approximation of the wave propagating field in the whole domain with only few modes 

(3÷5). 

- Easy simplifications. The CMS can be easily simplified and extended to the mild-slope 

equation or other modifications, based on the physical conditions of the subareas. 

- High-quality information. The induced pressure and tangential velocity at the bottom, 

useful for applications in the field of wave energy, as well in geophysical studies of the 

bottom, can be calculated with high accuracy. 

- Implementation on Green’s Function formulation. The Green’s functions are the main 

tool for studying wave-body interactions over a varying seabed and the developed CMS 

offers, through the completeness of representing the velocity field, a method for utilizing 

the formulation and the numerical efficiency of these functions.  
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B.2  Numerical results 

For reasons of completeness in this section will be evaluated examples of CMS appliance and 

incident wave propagation field calculations. 

The bathymetry is described by a monotonic depth-decrease and constant depths at infinity, 

common in nearshore and coastal regions, described by the Eq. (B.22): 
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 (B.22) 

This profile describes a smooth but steep underwater shallowing step from 2 m to 1 m. The 

following results, correspond to 𝜔√α/g = 0.5461. The ratios h/λ are respectively in these two 

sub-regions of constant depth are h3/λ=0.1968 and h1/λ=0.3421. In addition, another frequency 

of 𝜔√α/g = 0.8532 is put under investigation, with h3/λ=0.4111 and h1/λ=0.8115. These ratios 

correspond to deep-water (h/λ > 0.25) and intermediate-depth (0.05 ≤ h/λ ≤ 0.25) conditions. 

The results have been obtained by using 5 nodes, which were found enough for the numerical 

convergence. 

In these figures are plotted the real and imaginary parts of the potential on the free-surface, from 

two points of view and for different incident wave angles, while in the side view the free-surface 

elevation is also illustrated with the black dashed line. The bottom surface is shown with white 

solid line. As shown in these figures, the equipotential lines, in total agreement with the theory, 

are becoming perpendicular to the bottom when they are intersecting it. The potential, as well as 

the free-surface elevation, are transforming and they are obliged to be "suppressed", bended and 

slightly increased in the shallower region, in comparison with their form in the deeper region. 

This transformation is expressed firstly by the fact that the same amount of potential has now to 

be fitted in smaller area and secondly by the Snell’s Law which explains the wave diffraction 

phenomenon during the propagation of the wavefront over a shoaling region, where as the depth 

decreases the group velocity does the same too and thus the direction is increasing towards 90deg 

and becomes more near-perpendicular to the shore. 
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Figure 140: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.5461, 0deg 

Flat bottom 

 

 

 
Figure 141: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.5461, 0deg  

Variable bottom (h1=2 m, h3=1 m, αbot=0.5) 
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Figure 142: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.5461, 45deg 

Flat bottom 

 

 

 
Figure 143: Propagating field (Real and Imag) by CMS (top and side view) for  𝜔√α/g=0.5461, 45deg  

Variable bottom (h1=2 m, h3=1 m, αbot =0.5) 
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Figure 144: Propagating field (Real and Imag) by CMS (top and side view) for  𝜔√α/g=0.5461, 85deg 

Flat bottom 

 

 

 
Figure 145: Propagating field (Real and Imag) by CMS (top and side view) for  𝜔√α/g=0.5461, 85deg  

Variable bottom (h1=2 m, h3=1 m, αbot =0.5) 
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Figure 146: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.8532, 0deg 

Flat bottom 

 

 

 
Figure 147: Propagating field (Real and Imag) by CMS (top and side view) for 𝜔√α/g=0.8532, 0deg  

Variable bottom (h1=2 m, h3=1 m, αbot =0.5) 
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Appendix C                                                                                                

Applied engineering research of a WEC 

C.1  Introduction 

The subject of this chapter is the analysis of a wave energy converter with a heaving buoy and 

energy storage to an onshore reservoir through water pumping. This analysis was completed 

during the author’s pre-graduate thesis project [20] and is a great example of "on-hand" 

engineering in the field of wave energy. In here, this study will be presented in brief for reasons 

of completeness and in order to be available for future research, combining this applied and the 

previously described theoretical approaches of wave energy conversion systems. 

The study is based on time-domain analysis and response evaluation of a typical cylindrical buoy 

heaving in linear waves. The induced forces and the power output by the device are calculated 

for an optimum-reference case of the buoy. Different scenarios for optimization are considered, 

based on different design variables, different objective functions, regular and irregular waves, 

by means of evolutionary algorithms and constrained by operational criteria. Sensitivity tests are 

included. For irregular waves, a reference site is selected and time-series data are processed for 

the estimation of the absorbing power by the device. Finally, an innovative proposal for the 

water-pump design is described in the last section. 

C.1.1  Device description 

The main design aspects of the proposed device are illustrated in Fig. 148. Further analysis of the 

heaving plate and the mooring system are not subject of the present study. The wave-excited 

oscillation of the buoy moves a connected with ball joints piston inside a hydraulic pump and 

with this simple principal, water can be stored as hydraulic potential to the reservoir, able to 

drive a hydroturbine whenever the grid demands it. This pumped storage hydro power plant is 

an alternative approach on the common wave-to-wire approaches and exploits the important 

advantages of storing energy and avoiding rejections and disposals from the grid. Therefore, the 

motion of this 1 DOF-device is characterized by two separate phases: the upward motion and the 

downward motion, presenting some crucial differences, due to the water column inside the pipe. 

 

Figure 148: Simplified illustration of the proposed WEC system 
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Nomenclature 
 
 
 

 

A  Wave amplitude 
Absan Annual WEC energy absorption 

Ap Piston cross section area 
b Damping coefficient 
c Wave phase velocity 

Cd Drag coefficient 
CWR Capture Width Ratio 

D Cylindrical buoy’s draft 
dp Piston diameter 
dp2 Piston diameter (second for Chapter 8) 
db Buoy diameter 
dt Pipe diameter 
Est Annual stored energy 
Ek Kinetic wave  energy 
Ep Dynamic wave energy 
Etot Total wave energy 

EWEC Energy absorbed by WEC (1 period) 
F 

FaccW 
Wave frequency 

Accelerating water resistance Fb Buoyancy force 
Fd Diffraction force 
FE Amplitude of excitation force 
Fe Excitation force 

FFK Froude-Krylov force 
Fl Loss force 
Fr Radiation force 
Fv Drag force 
Fw Water column force 
g Gravity acceleration 
H Wave height 

H1/3 Significant wave height 
Hcr Wave amplitude threshold 
HHT Available water fall 
Hb Cylindrical buoy’s height 
J Wave power flux 
k Wave number 
Lk Vertical pipe length 
Ls Horizontal pipe length 
Lα Total pipeline length 
ma Added mass 
mtot Total mechanism mass 

 
 
 

PWAVE Wave power available to WEC 
PWEC WEC absorbed Power 

Qt Flow rate 
Qtm Mean Flow rate 
Sw Wetted surface 
T Wave period 
TE Wave energy period 

Vwater Annually storage of water volume 
yA Oscillating system displacement 
yB Oscillating system velocity 
yE Oscillating system acceleration 
z 
�̇� 
�̈� 

Vertical displacement of mechanism 
Vertical velocity of mechanism 

Vertical acceleration of mechanism 
Zm 

𝑍ℎ𝑒𝑎𝑑  

Pump-reservoir vertical distance 
Vertical reservoir level-standard water level distance zwave Vertical displacement of wave 

δptot Total pressure losses 
 ηsea Water viscosity 

λ Wave length 
ρ Water density 
ω Wave angular frequency 
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C.2  Mathematical model 

C.2.1  Equations of motion 

The mathematical formulation of this problem is based on Linear Wave Theory, introduced by 

Airy in 1841, which have been proved very reliable in many fluid mechanics problems. 

The induced forces by the wave and by the body’s motion, through the appliance of Newton’s 

2nd Law, are forming a system of two 2nd degree differential equations, describing the relevant 

phases of oscillation: 

Upward motion 

 

(mtot+ma)z̈=FE cos(ωt) -bż-
1

2
ρCdSw|ż|ż+ρgSw(zwave-z) (C.1) 

Downward motion 

(mtot+ma+ρ La Ap 
dp
 2

dt
 2) z̈=FE cos(ωt) -bż-

1

2
ρCdSw|ż|ż+ρgSw(zwave-z)-ρgZmAp-δptotAp      (C.2) 

where, 

- Buoyancy : Fb=-ρ g Sw (z-zwave)                                                                            (C.3) 

 

- Excitation: Froude-Krylov + Diffraction :  Fe=FFK+Fd=FE cos(ωt)       (C.4) 

 

- Radiation :  Fr=-maz̈-bż          (C.5) 

 

- Drag :  Fv=-0.5 ρ Cd Sw |ż|ż                                                                                                                                                   (C.6) 

 

- Linear friction losses :  Fl=-δptotAp                                                                                                                                                   (C.7) 

 

- Water column resistance :  Fw=-ρgZmAp                                                                                                                                                   (C.8) 

 

- Water accelerating force :  Fwacc=-ρ La Ap (dp/dt)
2 z̈                                                                                                                                                   (C.9) 

 

For the evaluation of these forces (Eqs (C.3)-(C.9)), the involved coefficients are calculated by 

semi-empirical or empirical methods. These coefficients as well as the other parameters of the 

problem are included in Table 14. As shown by the previous system of Eqs (C.1), (C.2), during 

the downward motion, the resistance by the water column "trapped" inside the pipeline is now 

applied, along with the induced forces by the acceleration and movement of the fluid inside the 

tube. Obviously, the downward stroke of the piston is the power productive phase of operation. 
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Table 14  

Fixed parameters and coefficients  

C.2.2  Optimization scenarios 

The solution of the system of equations of motion is handled by a numerical solver based on RK 

4th method. The computational code "ENALIOS" is developed in Mathworks MATLAB 

environment and the optimization process is carried out by the EASY software platform, 

developed in NTU Athens [107], able to treat SOO (Simple Objective Optimization) and MOO 

(Multi Objective Optimization). Four are the different scenarios of optimization, described in 

Table 15, while the algorithm’s flowchart is depicted in Fig. 149. Absolute convergence is 

unfeasible and thus 1200 evaluations are set as the maximum number of iterations for the 

Scenarios A.1, A.2 and B, while a step of (T/70) for 10T is set for the Scenario C. The ranges for 

the design variables are those of Table 16. 

Table 15 

Scenarios for optimization 

Scenario DOFs 
Optimization 

Problem Type 
Objective Functions 

Type of 

Optimum set 

A.1 4  (mtot,db,dp,dt) 

 

MOO 
Flow Rate – 

Total Investment Cost 
New 

A.2 3 (mtot,db,dp) 

 

SOO Flow Rate New 

B 4  (mtot,db,dp,dt) SOO 
Annual water 

storage 
New 

C 

 

3 (dp,dp2,Hcr) 

 

SOO 
Annual water 

storage 

Scenario B + 

New 

 

 

 

 

Value Variable 

g=9.81 Gravity acceleration (m/s2) 

ρ=1025 Fluid density (kg/m3) 

Patm=101325 

ηsea=9.02 

Atmospheric pressure(N/m2) 

Water viscosity (mPoise) 

Lf=0.025 

Ζtot=3.95 

Friction factor 

Total friction losses coefficient 

Ls=500 

Lk=60 

HHT=76 

Total  horizontal length of tube (m) 

Total vertical length of tube(m) 

Available water head (m) 

Cd=0.5 Drag coefficient 

CA=1.0 Added mass coefficient 
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Figure 149: Total process flowchart 

Table 16  

Design variable ranges 

Variable Range 

mtot 3000-20000 kg 

db 1-4 m 

dp 0.1-1 m 

dt 0.1-1.2 m 

dp2 0.1-1 m 

Hcr 1.1-2.1 m 

The objectives functions are:  

- Total cost (WEC+pipeline)  

- Annual Flow Rate 

- Annual hydraulic energy storage  

The total investment cost of the device is estimated to 8.78 m$/MW, including the WEC (R&D, 

manufacture process lead to a total installation cost of 2.5-6.0 m$/MW [38]) and the purchase 

and installation cost of a 11.5 mm thickness GRP pipe, in regard with the annual Carbon Steel 

prices and material reduction factors. A maintenance cost up to 0.15 m$/MW is also included. 

The cost of the hydropower plant (reservoir, turbine etc.) is omitted, as it is independent from 

the WEC design. 

The optimization process is also supplemented with criteria related with safe operation and 

survivability of the buoy and protection from flow damages and vibrations, i.e. slamming is 

avoided by applying no-emergence criterion for the buoy. 
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C.3  Numerical results 

C.3.1  Scenario A.1 

The first optimization scenario has two competitive targets, the mean flow rate and the capital 

cost of the unit and four free design variables for regular waves of A=1.8 m and T=7 sec. As a 

result, a Pareto Front is obtained (Fig. 150), separating the area of feasible solutions with the area 

of unfeasible ones. The developer can then select a particular set, making a compromise of the 

desired values of these two competitive objective functions. 

 
Figure 150: Scenario A.1 – Pareto Front of design-sets. 

C.3.2  Scenario A.2 – Reference case 

In order to obtain a single solution from the Pareto front of Fig. 150, the pipe diameter, is fixed 

at 0.6 m. The optimization now lead to the optimum set of design variables of Table 17. 

Table 17  

Optimum design variables for the reference case – Scenario A.2  

 

C.3.2.1  Response evaluation 

For this set of parameters, the evaluation of the response of the heaving cylinder is the main 

objective of this section. It can be observed that the buoy follows the wave during the upwards 

phase, hitting a maximum amplitude above the wave, due to its inertia. However, the behavior 

Variable Value 

T 7 sec 

A 1.8 m 

mtot 18853.40 kg 

db 3.01 m 

dp 0.43 m 

dt 0.60 m 

D 2.60 m 

Hb 4.10 m 



Applied engineering research of a WEC 

159 

 

is different in the downwards motion, where the floating buoy delays as a result of the water 

column resistance acting on the piston. The periodic but no harmonic behavior is obvious is the 

following Fig. 151 of buoy’s motion snapshots in regard to the free surface elevation. 

 

Figure 151: Relative motion of the mechanism and wave 

 
Figure 152: System velocity – Fully Periodic Response 

 
Figure 153: System acceleration – Fully Periodic Response 

 
Figure 154: Flow rate at the reservoir – Fully Periodic Response 
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Figure 155: Plots of dynamic analysis (Upwards are positively signed): a) Excitation Force, b) Water Column 

Force, c) Immersion, d) Drag Force, e) Buoyancy-Weight Force, f) Accelerating Water Resistance; g) Loss Force, 

h) Radiation Force 

 

       

(a) (b) 

(c) (d) 

(e) 
(f) 

(g) (h) 
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The scaling is differential in x-axis and represents the time scale and the size-length scale. This 

scale-handling is the reason why the buoy appears so slender. The black curve in Fig. 151 shows 

the displacement of the buoy in a way that whenever it crosses the SWL is having the design 

draft, which is the draft as it is calculated from the hydrostatic equilibrium. Now focusing on 

some specific crucial time moments of the above diagrams, conclusions can arise for the behavior 

of the WEC. 

In position A the buoy crosses its low dead point. The velocity is equal to zero (Fig. 152), and 

therefore the flow rate is zero, as can be observed in Fig. 154 while the deceleration hits its 

maximum (Fig. 153). At this specific moment the valve that connects the pipe and the cylinder, 

closes and the water column resistant force goes to zero (Fig. 155 (b)), while the other forces, 

which are velocity-depending, namely the drag force (Fig. 155 (d)), the radiation force (Fig. 155 

(h)) and the friction loss force (Fig. 155 (g)), are nullified too. 

The position B is referred to an intermediate point of the oscillation, where the wave is 

overtopping at maximum the design draft of the buoy, and therefore the immersion and the acting 

relative buoyancy force are maximum (Fig. 155 (c), (e)). 

Position C depicts the buoy at the point of equal wave and system amplitude of oscillation. The 

buoyancy force now counteracts the weight of the system (Fig. 155 (e)), while due to the system’s 

inertia, there is a considerable phase difference between the motions of the system and of the 

free surface elevation.   

The buoy crosses the upper dead point at position D (Fig. 151), where the system’s acceleration, 

presented in Fig. 153, exhibits an abrupt increase, as a result of the application of the water 

pipeline column back pressure. At this instant time moment the valve opens and the piston starts 

to pump water to the reservoir (Fig. 154). The system’s velocity is again zero and thus all the 

other resisting forces are equal to zero too. In addition, the system’s weight becomes now greater 

than the buoyancy force. (Fig. 155 (e)). 

Position E is critical for the system behavior, because the no-emergence constraint is activated 

and it should not be violated and buoy marginally stays in the water (Fig. 151).  

The flow rate strikes a maximum of almost 121 Kg/sec. This flow rate curve (Fig. 154) through 

time-integration results in a mean flow rate of 46.8 Kg/sec. 

The excitation force, illustrated in Fig. 155 (a), is appeared to be harmonic and in phase with the 

free surface elevation, which is an expected behavior for the low frequencies. The system design 

should aim to the minimization of the phase difference among excitation force and system 

velocity for the maximization of energy capture [108], a target almost achieved in this specific 

application. 

The palm-like behavior of the water column resistance is the main reason behind the dissimilar 

behavior of the mechanism, due to this force’s brake-like character. As shown in Fig. 155 (b), 

this force is acting for almost 4 sec and it is neglected for a period of 3 sec, explaining the periodic 

but not harmonic behavior of the motion. Disturbances in the slope of most of the curves are 

induced by the function of the valves, which are modelled as on-off valves. The instant on-off 

handling "turns" on and off correspondingly a high magnitude acting force, which in turn causes 

this bending of the curves at specific time moments. In order to prevent such strong vibrations, 

the valves operation in real applications will be controlled by suitable automation systems. 
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C.3.2.2  Emerging buoy event 

As stated previously a non-emerging criterion is applied, securing no emergence of the buoy. 

This non-emergence requirement was found to be the most tough-implemented constraint and 

the optimization procedure led the design to its limits during all scenarios, at the edge of 

constraint’s violation. Even one change on the design parameters can drive the buoy out of the 

water and an example of this event, for inclusiveness reasons only, is presented in this subsection 

and shown in Fig. 156, where a buoy with 17.7% less mass than the optimum, is totally emerging 

from the free surface. Finally, it should be mentioned again that during the evaluation of the final 

results emergence is permitted for all the scenarios. 

          
Figure 156: Snapshots of the motion created with an animation: (a) not emerging and (b) emerging.  

C.3.2.3  Power Output 

Calculations for the power output by this specific device had been done and concluded in very 

auspicious results, comparable with already installed and operating WECs [18]. The Capture 

Width Ratio (CWR), an indicator of efficiency for WECs, calculated as the energy absorbed 

from a device divided by the offered wave energy to the device per wave length, thus: 

 

CWR=100 
PWEC  

PWAVE 
 (C.10) 

where, 

 

P WAVE=J db (C.11) 

and the absorbed energy by the device can be evaluated as the potential dynamic energy of the 

system between the upper dead point (UDP) and lower dead point (LDP) for a period of 

oscillation: 

 

P WEC=
E WEC

T
=

mtot g (UDP-LDP)

T
 (C.12) 

The power flux for the considered reference wave of amplitude A = 1.8 m and period T = 7 sec 

is calculated as:  J = 44.5 kW/m.  The resulting CWR for the reference system performance is 

almost 45%. 

(a) (b) 
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C.3.2.4  Sensitivity tests 

Sensitivity analysis of the optimum design variables of the system is essential for revealing the 

importance of each one of them and their tolerance level, which is the allowable deviation of 

their optimum values for maintaining the objective function near its best value. 

This kind of test can be evaluated for every parameter of the system. In this brief description it 

will be shown only four sensitivity tests, indicative of the operation of the system and for the rest 

tests the reader is guided to [20]. 

According to Fig. 157 (a), the total mass is a variable able to range inside a wide band of values 

with minor effects on the objective function, which is the flow rate at the reservoir, but this is 

limited by the non-emergence criterion. This constraint determines also the span for every 

parameter of design and thus the span for possible values of the buoy diameter (Fig. 157 (b)) and 

piston diameter (Fig. 157 (c)). The total mass and the piston diameter are shown to be well-

approximated by the optimization process, while the buoy diameter is not fully converged to its 

optimal value, which is the peak of the relevant curve and is slightly different by the obtained 

value, indicated by the red marker, as shown in Fig. 157 (b). Finally, the WEC can also operate 

safely in different wave-amplitude states as shown in Fig. 157 (d), being able to achieve better 

flow rate levels in higher waves. 

Tests like these establish the fluctuation levels of manufacturing and installation process, 

showing which of the parameters are more sensitive to the implemented criteria of operation and 

objective functions. 

         

       

Figure 157: Parametric analysis of the effect of various design parameters:   

a) Total mass, b) Buoy diameter, c) Piston diameter, d) Wave amplitude 

 

 (a)  (b) 

 (c)  (d) 
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C.3.3  Real wave data 

C.3.3.1  Location and wave data 

A more realistic approach of the device’s operation evaluates the wave data time-series for 

Monterey Bay (36°48'36.1"N 122°08'08.6"W) ([109]). The location is shown on the map of Fig. 

158 and the time-series of Significant Wave Height-SWH and wave period-T for year 2015 are 

shown in Fig. 159. The sampling rate is 30 min. Based on these time series, where the deviation 

of the period is low, this specific sea state characterizes a swell dominated environment. As a 

result the period can be set as constant and the power defining parameter is the wave amplitude. 

The heading angle of the waves are lacking any significance, due to the axisymmetric body in 

heave. 

 
Figure 158: Monterey Bay, California, USA 

      
Figure 159: Time series for SWH (a) and wave period (b) in Monterey Bay during 2015 [109] 

According to these time-series data, the annual power density curve for this specific site can be 

obtained (Fig. 160).  

 
Figure 160: Annual duration curve for the wave power density, Monterey Bay 2015 
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C.3.3.2  Scenario B 

At this time, the system is re-optimized according to the annual power density curve for 

Monterey Bay, US. The performance and power output by the WEC is evaluated in each one of 

the seven steps of this curve and the main objective in the maximization of annual cumulative 

water storage at the reservoir. The resulting optimum set is tabulated in Table 18, along with the 

previous Scenario A.2 and Scenario C, which follows in the next section, for reasons of 

comparison. It is obvious that the main design variables are alternated in this more realistic case 

study. The annual WEC energy absorption, also presented in Table 18, is the ratio of the captured 

by the WEC energy divided by the offered wave energy annually. The Table 18, proves the 

overestimation of WEC power output in the ideal case of regular waves, enables the comparison 

among the different scenarios and also manifests the superiority of an innovative proposal, 

following subsequently. 

Table 18  

Scenarios (A.2, B, C) – Design variables and energy evaluation 

For the ideal harmonic waves of the Scenario A.2 energy storage by the system is exceeding up 

to 230.3 MWh per WEC from the provided by the sea 1168.7 MWh per WEC and thus the energy 

absorption in year round basis is 19.7%.  

In the more realistic Scenario B, each device absorbs about 73.3 MWh out of the 477.3 MWh of 

provided wave energy and the average energy capture becomes 15.3%, lower than the energy 

absorption of Scenario A.2, because the WEC now cannot operate to its optimal design point 

during the whole year.  

C.3.3.3  Scenario C – Double optimal adjustment 

When the optimized device is installed to operate in a sea state like this described in Scenario B, 

its efficiency is limited by the fact that it operates in off-design points. In other words, the 

optimization sets the set of design variables as a compromise of different optimal operation 

points, and so the annual production is not maximized. Based on this principal, a concept of a 

mechanism combining the advantages of having two operation points is proposed. One of the 

most significant design variables is the piston diameter. Therefore, a device with two different 

operating piston diameters is considered and the system is optimized for this case. In addition, 

this is a not so sophisticated design and the relevant added cost is low. 

Variable  Scenario A.2 Scenario B Scenario C 

Total Mass (kg) mtot 18853.40 19734.10 19734.10  

Buoy Diameter (m) db 3.01 2.80 2.80  

1st Piston Diameter (m) dp 0.43 0.32  0. 99  

Pipe Diameter (m) dt 0.60 0.20  0.20 

2nd Piston Diameter (m) dp2 - - 0.32  

Wave amplitude threshold (m) Hcr - - 1.18  

Average Flow Rate (m3/s) Qtm 0.0468 0.0149 0.0192 

Annual Water Storage (m3) VWATER  1472300  468864  605798  

 Annual Stored Energy (MWh) Est 230.3  73.3  94.7 

Annual WEC Energy Absorption Absan 19.7 % 15.3 % 19.9 % 
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From the optimization process, resulting in the relevant set of design variables of Table 18, is 

concluded that for low-waves the algorithm led the design to an increase of piston diameter in 

order to achieve more cross section area of scanning and as a result increase the water storage in 

the reservoir, despite the smaller stroke of the piston. In case of high waves, the maximization 

of flow rate is accomplished by a smaller piston diameter, and so smaller resistance acting on its 

section.  

The device is schematically shown in Fig. 161, and its operation is explained with the Table 19. 

While the wave amplitude remains below a design value, the WEC operates like the simple one-

piston device, and both piston sections pump water to the reservoir. On the other hand, when the 

wave height is larger than this threshold, the on-off valve No. 5 opens and the larger piston ceases 

to pump water, leaving the power absorption only on the operation of the piston with the smaller 

diameter. 

As pointed out from the results of Table 18 this conceptual approach enables the device to exploit 

more efficiently the waves and improve its power absorption levels. The wave amplitude 

threshold is equal to 1.18 m and corresponds to an appreciable period of the year. This improved 

design shows almost 30% higher power production in comparison with Scenario B of simple-

piston device. Finally, due to its simplicity and feasibility at low cost is a promising alternative 

solution for efficiency improvements in the field of WECs, with even more than two optimal 

piston diameters.

Table 19 

Valve regulation for concept design 

 
Figure 161: 2D sketch of piston-cylinder 

mechanism

 Wave,Motion
Valve

⁄  1 2 3 4 

 

5 

Upwards Low Wave     
Downwards Low Wave     

Upwards High Wave     

Downwards High 

Wave 
    
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