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ABSTRACT

Making the most profit in an online game with the least time investment is perhaps one of the
most asked questions new players have. It requires a vast amount of knowledge especially for
complex games with in-game economies. Using Path of Exile as our game of choice, we have
built a dataset of in-game item transactions using its built-in API and using machine learning
we analyse the dataset to find ways to reduce the knowledge needed for new players to
generate currency faster and more efficiently through buy and sell transactions.
After downloading 6 months’ worth of data from the API feed, we apply a pipeline in which
we read the data, convert it to a readable format using a document based database - since
natively the feed schema is highly nested- and use statistics and domain knowledge to
engineer features which will later help our machine learning models perform better.
We finally produce two datasets:
e A dataset comprising of items that present a firm set of attributes through time.

We use Recurrent Neural Networks in the form of LSTM to build models to try and

forecast the future prices of these items.

These models can later be used to help players decide where to buy or sell the items

according to our forecast model.

e A dataset comprising of items that present a variable number of features.
We use different machine learning algorithms as well as Artificial Neural Network
models to predict the price of an item or classify it in range price clusters meaningful
to a player. A player can later use these estimators, to get information on the price of
items and decide if an item is valuable and how much.

Keywords: Machine Learning, Recurrent Neural Networks, RNN, LSTM, Artificial Neural
Network, ANN, Linear Regression, Linear classifier, Decision Trees, XGBoost, K - means
Clustering, K-nearest Neighbors, Activation functions, Swish Activation Function, sigmoid
Activation Function, Softmax Activation Function, Linear Activation Function, Feature
Scaling, Feature Engineering, Min-Max Scaler, Standard Scaler, K-fold, Grid Search,
Ensemble
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Chapter 1: Overview

1.1 The problem

There have been many games, throughout the years, which involved an in-game
economy which flourished through selling and buying items found by the players to the
players. Diablo 3 implemented real money trading via a real money auction house, with
merchandise being its in-game items. Path of Exile, the game whose data we collected and
used, implemented trading with in-game currencies, each of different value. While figuring
out the price of an item or if the price of an item is going to change in the future will help you
increase your riches, it requires immense knowledge of the game’s mechanics and quirks and
lots of game time. Considering that Path of Exile has a continuously changing market with
more than 172 quadrillion different possible combinations for its items and more than 50
different currency types, makes this a difficult feat.

1.2 The game

In Path of Exile, players have different goals and in the process of achieving those
goals, they acquire items with a variable number of features, picking from more than 90
different features for its item category. The items can either be used, sold or just thrown
away. Depending on how many features an item has and which are those features, the worth
of the item varies. All this takes place in “leagues” as they are called, which are 3-month
periods, after which all the items and currency a player has accumulated goes away and they
start from the beginning.

The game’s items are split to different categories and rarities. Rare items have 2 or
more features (in the game the features are called “mods”) and names depending on those
features, while Unique items have specific features and names. For each item’s feature, be it
of rare or unique rarity, its features can have different ranges. A feature with a value of 10 on
one instance of an item can have a value of 100 in a different instance. The feature’s value
range depends on the category of the item, on the instance of the item and on the level of the
item.

Players in the game mainly use two types of currencies to trade, chaos orbs and
exalted orbs. Exalted orbs are worth multiple times the value of a chaos orb (generally the
rate is more than 100 chaos orbs to 1 exalted orb). Chaos orbs are the main currency players
use to trade. For that reason all prices are converted in chaos orbs using the daily exalted to
chaos orbs conversion rate which was data mined from a poe.ninja.
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Trading in the game is done using stashes. Each player has a number of stashes which
serve the purpose of showcasing the item. Using the game’s API, we can capture all the
changes made to a stash, using that stashes’ unique id. For example, if at a specific point in
time a stash with an id Y contains an item X, and later on that stash doesn’t contain that item,
we can assume item X has been sold.

1.3 Goal

The goal is to be able to predict the prices of rare items within a good error margin or
at least classify what price range they belong in as well as forecasting the price of unique
items. Predicting the price of a rare item will allow players to decide if they want to throw
away that item or try and sell it. The forecasts for unique items will be implemented using
observations at the start of a season and will inform the player if the price of the item will rise
or drop, allowing him to buy many of the same items for profit or sell his items now so he
does not lose money.
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Chapter 2: Neural Networks Theory
2.1 Neural Networks

Artificial neural networks are a set of algorithms, modelled loosely after the human
brain, that are designed to recognize patterns. They interpret sensory data through a kind of
machine perception, labelling or clustering raw input. Artificial neural networks (or ANNS)
help us cluster and classify. We can think of them as a clustering and classification layer on
top of the data we store and manage. They help to group unlabelled data according to
similarities among the example inputs, and they classify data when they have a labelled
dataset to train on.

The building unit of the neural networks is called the neuron, and imitates the
functionality of the human neuron. Neurons are connected in layers so that one layer can
communicate with the others forming a neural network. Every layer, other than the input and
the output layers, is called a hidden layer [1]. The output of one layer is fed to the inputs of
another layer.

Input Layer Hidden Layer Output Layer

X1

X2
Figure 1: Schematic of Neural Network model

The main goal of the ANN is to “learn” so it can cluster or classify data. Learning is
the task of adjusting weights to minimize the error. That is performed by back propagation of
error.

According to back propagation, after we initialize a loss function, which is dependent
on the output of the last layer, back propagation tries to minimize that function.

By analysing and by carefully picking out the non-linear functions, backpropagation
ends up on the dependence of the output layer to the input layer, going through the neural
network in reverse order and by computing at each step the derivative of the cost function in
relation to the parameter traveled.

Afterwards, by gradient descent or variations, the values of all parameters (which is
the weights of each input and the bias) are changed in such a way that the value of the cost
function is minimized (depending on its sign and measure derivative in each step).

Then, it tries cluster or classify with the new parameters and the same process is
repeated. Finally, the cost function will converge to a minimum value and the system will
more often predict the exit.
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2.2 Recurrent Neural Networks

In the case of sequential data, such as text or speech signals, in which there are high
dependencies between the data features, then really helpful, are the RNNs or Recurrent
Neural Networks.

In contrast to RNNSs, in a typical Feed-
Forward Neural Network like the ANNs we
described, the information only moves in one
direction, from the input layer, through the
hidden layers, to the output layer [2]. The
information moves straight through the
network. Because of that, the information never
touches a node twice. In a RNN, the
information cycles through a loop. When it
makes a decision, it takes into consideration the
current input
and also what it has learned from the inputs it
received previously. Therefore a Recurrent Neural Network has two inputs, the present and
the recent past. This is important because the sequence of data contains crucial information
about what is coming next, which is why a RNN can do things other algorithms can’t.

Figure 2 : Recurrent Neural Network

RNN’s have two major obstacles, the exploding gradient and the vanishing gradient.
The exploding gradient is the assignment of a really high importance to the weights.
Vanishing gradient is when the values of a gradient are too small and the model stops
learning or takes way too long to learn. LSTM solved both of these issues.

LSTM or Long Short-Term Memory networks are an extension of recurrent neural
networks. They are well suited to learn from important experiences, past data points, that

consist of long time lags [3].
tw
V :>7 h“ _v’{ “t ]T[ htﬂ ]—v'

Figure 3: Basic RNN architecture
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LSTM consists of many complex cells, with 3 gates each, input, output and forget. A
gate is basically a neuron consisting of parameters that can be tweaked and optimized to
minimize the cost function just like in the rest of neural networks. This happens with
variations of the backpropagation algorithm. Each gate has each own parameters, different
activation functions and different inputs and outputs.

A feature of LSTM is that it maintains two internal states and the neuron structure, mainly the
forget gate, enables the network to learn what it should "remember™ at any stage of the
sequence. A common example is language modeling with LSTM

& ®
T

A
' R
—® O—
A || Lebet
| 7
® ®

Figure 4 : LTSM chain along with the gates

®
T

The input of the cell Xt at time t (for data organized in time sequence) is fed to the
various gates (Ft, It, Ot) and based on the parameters of the gates and the states ct, ht
determine the output ot and the states of the cells in the next step. At a LSTM layer, the
internal states are vectors of length L, so after processing the input, a vector with L attributes
appears as the output of the plane. At the output it is possible to also obtain a sequence of the
same length as the original, consisting of the outputs Ot [L] for each step of the input
sequence. Finally, we are able to get the Ct, Ht states either at each step of the sequence, or
only the last state (after passing the whole sequence).

2.3 Arimavs LSTM

All observations in Time Series data have a time stamp associated with them. These
observations could be taken at equally spaced points in time or they could be spread out
unevenly. Any time series data has two components — trend (how data is increasing or
decreasing over time) and seasonality (variations specific to a particular time frame). For
time-series data two of the most common analysis approaches are forecasting and pattern and

outlier detection [4].
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Forecasting [16] time series data has been around for several decades with techniques
like ARIMA [8]. Recently Recurrent Neural Networks (LSTM) have been used with much
success.

Advantages of using ARIMA :
e Simple to implement, no parameter tuning
e Easier to handle multivariate data
e Quicktorun

Advantages of LSTM:
e No pre-requisites (stationarity, no level shifts)
e Can model non-linear function with neural networks
e Needs a lot of data

Since we didn’t want to deal with the stationarity, seasonality and trend of our data
series and having to convert it specifically for ARIMA, we decided to use LSTM.
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Chapter 3: Building the Dataset

3.1 System Architecture

External Website
datamining

Data
> Cleansing/ »| Feature Engineering Dataset Building
preprocessing

Read stash
feed from AFI

T
R
\-\_\_‘___—___,__J
F—————— Storage
Produce stats B Snapshots * Feature Engineering

External Website

Selecting dataset
N datamining

procedure

Transactions

Final
Dataset

Unique items

Rare items

Figure 5: Dataset building system architecture

3.2 API feed

Using the game’s APl we downloaded data for 2 3-month seasons. That data included
snapshot throughout the time of all the player’s stashes and the items they have put up for
sale. Each stash had a unique id and since the snapshots were historical, each new snapshot of
an already seen stash indicated that an item has been removed, and thus sold, or that it had a
different price.

3.3 Processing the API feed and generalization of mods

After downloading the API feed, the next step was reading through it and “cleaning”
it to a more readable form, as we needed to save the data in a document based database.
Another problem was the different mods of the items. It was important to generalize them
and turn them to features with ranges. Mods could be either ranged - defined by a range of
values - or discrete which meant either an item had that mod or it didn’t. Using regex the
mods were generalized.
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Feature | Examples of item features Generalized feature | Feature as seen in {feature in dataset} =
Types game {value in dataset}
Ranged +(12-20) to maximum Life # to maximum life +15 to maximum Life | # to maximum life = +15
Ranged +(20-30)% to Cold Resistance #% to cold resistance | 15% to Cold #% to cold resistance = 15
Resistance
Ranged (8-12)% Chance to Block #% chance to block 9% Chance to Block #% chance to block =9
Discrete | 3% reduced movement speed #% reduced 3% reduced movement | #% reduced movement speed
movement speed speed =1
Table 1: Feature generalization
Feature Types:
e Ranged: Ranged features can have a range of values.
e Discrete: Discrete features can only have specific values and are only seen with these
values. For that reason in our dataset, if this feature appeared in the item, it had a
value of 1 but if it did not appear it had a value of 0.
Steps:
1. Data mine all the different mods that could appear for unique and rare items for each
different category
2. Generalize the mods using regex and convert them to features/columns for the

respective dataset

In the process of reading the APl we were also able to engineer additional features:

e date & time : since we were making API calls we were able to save the time and thus
have a date and time for each stash feed. Since the API feed downloaded didn’t have a
date and time we wouldn’t be able to treat unique items as a time series problems if
we did not create the feature ourselves
Exalt conversion rate and converted currency to chaos: after acquiring the daily
conversion rates for all types of currencies from poe.ninja we were able to convert all
currencies to chaos (the main currency used for trading in the game) as well as the
daily exalt conversion rate, indicating the inflation of the market with more items in

price and amount.

3.4 Dataset building and storing

It concluded in more than 7 TB of uncompressed data in the form of json files.

The aggregation software developed run for 6 months consuming the feed from the
game servers.
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The feed schema is highly nested so the final storage that would process it should avoid a
strict relational schema like RDBMs because the complexity of inserting or updating a record
as well as the time consumed would be significant.

MongoDB was chosen as the storage for the final processed feed as it is more suited to host a
document schema efficiently.

Using MongoDB native characteristics - document oriented, very fast, really flexible when it
comes to field addition and deletion - and its latest transaction capabilities since July 2018 —
although immature — the final process of the feed and the dataset was possible [5].

To build the dataset we used 2 types of collections:

e stashes_snapshot: we needed a way to figure out which items were being sold and to
save the last snapshot of each stash. This was achieved through the stashes_snapshot
collection. When reading a stash_feed file, for each stash_id we were processing we
were checking the following :

o Have we seen it again? If not then we had to add the whole stash to the
stashes_snapshot

o If we have seen it again, we had to check each of the items whether it existed
before. If not we add it to the snapshot. If an item which previously existed in
the stash snapshot now doesn’t exist, that means it has been sold. These items
were added to the transactions collection

o By comparing when the item was added, and when it was sold we built the
feature days_in_snapshot, indicating how long it took for the item to get sold.
Generally items that were correct in price took less than 3 days to get sold,
more valuable items took over 3 days but less than 7 days to get sold and
anything more than 7 days was more or less an outlier with only a handful of
exceptions.

e transactions: In this collection we stored the items that were sold. Every time we did
that we added the feature “days_in_snapshot” indicating how many days passed
before an item was sold. If an item was taken off the stash and added back in, we
removed the previous transaction and updated its price.

3.5 Dataset evaluation

Checking the correctness of generalized features was crucial for the dataset quality.
Features in the dataset were cross-referenced with the available game features we built.
Any features existing in the dataset and not found in the feature set or any errors that
occurred during the generalization led to observation deletion.
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3.6 Selecting items/categories to analyse

Making the dataset for one season for all items took a lot of time and a lot of
computing power so we had to choose specific categories to analyse from the rare items, as
well as specific uniques to analyse as time series data. For that reason we assumed that
making the database for 7 days for all the items was representative of the whole season and
after analysing each item and each category we would be able to choose which ones we
would build our dataset with.

3.6.1 Rares

For the rare items, we checked how many sales have happened in those 7 days, how
many features there were and their correlation values to the price the item was sold. We also
picked categories with good allocation of features and price along all the observations as we
didn’t want to deal with a dataset skewed highly to specific prices and features. Moreover, we
built histograms of the different prices per category before and after removing outliers.

3.6.2 Uniques

For the unique items, we opted for items with good standard deviation and variance of
price, as well as 2 types of items : one without features that had correlation > 0.1 to perform
univariate forecasting and one with at least 4 features with correlation >0.1 to perform
multivariate forecasting.
The uniques we choose should also have an adequate number of transactions to support time-
series analysis of 24 hours per day.

item_name feature corr_value no_features transactions std
Inpulsa's Broken Heart Sadist Garb  ex_#to maximum life 0.14 9 4505 47.30
ex_#% increased damage if you have
Inpulsa's Broken Heart Sadist Garb  shocked an enemy recently 0.32 9 4505 47.30
Inpulsa's Broken Heart Sadist Garb  ex_#% increased effect of shock 0.12 9 4505 47.30
ex_shocked enemies you kill explode, dealing

Inpulsa's Broken Heart Sadist Garb  #% of their maximum life as lightning damage which cannot shock 0.16 9 4505 47.30
Inpulsa's Broken Heart Sadist Garb  linked_sockets 0.11 9 4505 47.30
Inpulsa's Broken Heart Sadist Garb  sockets_number 0.27 9 4505 47.30
Windripper Imperial Bow Attacks per Second 0.21 7 1617 46.46
Windripper Imperial Bow Critical Strike Chance 0.25 7 1617 46.46
Windripper Imperial Bow Physical Damage 0.25 7 1617 46.46
‘Windripper Imperial Bow ex_#% increased attack speed 0.21 7 1617 46.46
Windripper Imperial Bow ex_#% increased critical strike chance 0.25 7 1617 46.46
Windripper Imperial Bow sockets_number 0.23 7 1617 46.46
Loreweave Elegant Ringmail Armour 0.35 6 1404 281.59
Loreweave Elegant Ringmail Energy Shield 0.21 6 1404 281.59
Loreweave Elegant Ringmail Quality 0.35 6 1404 281.59
Loreweave Elegant Ringmail ex_#% increased elemental damage 0.10 6 1404 281.59
Loreweave Elegant Ringmail ex_your maximum resistances are #% 0.36 6 1404 281.59
Loreweave Elegant Ringmail linked_sockets 0.33 6 1404 281.59

Table 2: Uniques selection list (excerpt)
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Since the standard deviation of the item’s price was skewed heavily by outliers, we
removed them after testing different threshold values for IQR and Z-Score methods.
Threshold value of 70% gave the best results. If an item had a standard deviation < 5, it was
not worth considering since that meant its price didn’t change throughout the dataset and thus
it wasn’t fitted for analysis.

The number of features of an item was also a really good indicator, since it helped to decide
which items to choose for multivariate time-series analysis.
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Chapter 4: Uniques Dataset Analysis - Forecasting future prices
4.1 The Dataset
For this part of the problem we chose 2 unique items each for a different kind of reason:

e Tabula Rasa Simple Robe
This item had no features with correlation > 0.1 or <-0.1 since the item generally has
no mods. For that reason the only feature that contributed to the item’s price was the
daily exalt conversion rate which indicated the inflation of the market. As we can see
the first days of the season, this item is highly valuable and drops drastically as the
days go by or in other words as the market inflates and the ex_conv_rate(daily exalt
conversion rate) increases and then the price increases again and follows the trend of
the daily exalt conversion rate.

s | — ex_conv_rate —— price_amount

04-06_08n 09-08_16h

-07_08h
time {s)

Figure 6: Tabula Rasa price (price_amount) , exchange conversion rate (Ex_conv_rate)
plot

e Windripper Imperial Bow
Selected to perform multivariate forecasts on it since it consisted of features with
correlation_value > 0.1 and <-0.1. Also, those features didn’t vary a lot in their ranges
. Lastly, there is a high correlation value between the ex_conv_rate and the price of
the item since the item was originally sold in exalts and it was converted to chaos, but
also because as the players amass more riches during the season, the expensive items
rise in price.
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Figure 7: Windripper Imperial Bow price (price_amount) , exchange conversion
rate (Ex_conv_rate) plot

For each of the above items, each observation consisted of the following features :
e Generalized features

Date

Days_in_snapshot

Ex_conv_rate

Price_amount

Time

Time_hours

4.2 Qutliers

Outliers are observation points, too distant from the other observations. We remove
them because they distort the picture of the data we obtain, using statistics and data
visualization. We can use boxplots or barplots to visualize them. When our goal is to predict,
our models are often improved by ignoring outliers. Here we want to forecast future prices
and outliers would skew our line plots in certain time-periods.
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To remove outliers from our dataset we used either the IQR method or the Z-Score
method and we also removed observations that had days_in_snapshot > 5, since those
observations were of low confidence.

The Z-score is the signed number of standard deviations by which the value of an
observation or data point is above the mean value of what is being observed or measured. If
the value of an observation is above a certain threshold, we consider this an outlier. The
interquartile range (IQR), also called the midspread or middle 50%, or technically H-spread,
is a measure of statistical dispersion, being equal to the difference between upper and lower
quartiles, IQR = Q3 — QI.

Below we see the price_amount for different high quartiles (thresholds) of IQR and Z-
score respectively for the items Tabula Rasa and Windripper. As we see Z-score has almost

no impact on our dataset and IQR high quartiles of 0.7 to 0.8 give the best results.

Tabula Rasa Simple Robe - IQR thresholds comparison

— IQR=10.6
IQR = 0.65
IQR = 0.7000000000000001
—— IQR = 0.7500000000000001
IQR = 0.8000000000000002
—— IQR = 0.8500000000000002
IQR = 0.9000000000000002
IQR = 0.9500000000000003
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Figure 8: Tabula Rasa Simple Robe — IQR threshold comparison
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Tabula Rasa Simple Robe - Z_score thresholds comparison
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Figure 9: Tabula Rasa Simple Robe Z-score threshold comparison

Windripper Imperial Bow - IQR thresholds comparison
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Figure 10: Windripper Imperial Bow — IQR threshold comparison
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4.3 Feature Selection
A handful of different techniques were used for feature selection.

4.3.1 Missing Value Ratio

While exploring the dataset we found out that many of the features had a high
percentage of missing values. For that reason, we could remove those features since they
didn’t contribute much information.

4.3.2 Low Variance Filter

Calculating the variance of each variable, we dropped the variables that had too little
to no variance at all, since those variables would not affect the target variable which is the
price_amount.

4.3.3 Correlations

Using pandas’ ‘corr’ method to find the cross-correlations of features, we decided to
remove features with correlation_value lower than 0.2 and higher than -0.2 to 0. The methods
that were used were either Spearman or Kendall which are generally computed on ranks and
so depict monotonic relationships, while Pearson was not used since it is on true values and
depicts linear relationships [6]. This method wasn’t preferred compared to the others.

Figure 11: Tabula Rasa Simple Robe Correlation Matrix

Tabula Rasa Simple Robe Correlation Matrix
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Figure 12: Windripper Imperial Bow Correlation Matrix
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4.3.4 Random Forest

Random Forest came packaged with in-built feature importance, so by using it we
could find out which features contributed to the target variable.

Feature Importances - Tabula Rasa Simple Robe

ex_conv_rate
item_level
Quality

corrupted

co_# to level of socketed trap or mine gems
co_#% increased damage -

co_# to level of socketed gems

co_# to level of socketed aoe gems -

co_# to level of socketed duration gems -

co_#% increased maximum life 4

0.0 0.1 0.2 0.3 0.4 0.5
Relative Importance per feature

Figure 13: Feature importances — Tabula Rase Simple Rose
There are no features of relative importance except the ex_conv_rate. For that reason

we can perform univariate time-series analysis of the item without worrying that we lost
information from important features

Feature Importances - Windripper Imperial Bow

ex_conv_rate

Elemental Damage

ex_adds # cold damage

item_level

Quality

im_#% increased elemental damage with attack skills
days_in_snapshot

Critical Strike Chance

co_bow attacks fire an additional arrow

co_adds # lightning damage

0.0 0.1 0.2 0.3 0.4 0.5
Relative Importance per feature

Figure 14: Feature importances — Windripper Imperial Bow
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4.3.5 Backward Feature Elimination

e We first take all the n variables present in our dataset and train the model
using them
We then calculate the performance of the model
Now, we compute the performance of the model after eliminating each
variable (n times), i.e., we drop one variable every time and train the model on
the remaining n-1 variables

e We identify the variable whose removal has produced the smallest (or no)
change in the performance of the model, and then drop that variable

e Repeat this process until no variable can be dropped

To achieve this we used rfe from sklearn.feature_selection library with many
algorithms included but not limited to Linear Regression, Logistic Regression, Random
Forest, Decision Trees etc. From the above the most consistent results were from Decision
Trees.

4.3.6 Forward Feature Elimination

It’s the opposite process to Backward Feature Elimination. Instead of eliminating
features, we try to find the best features which improve the performance of the model. To
achieve this we used f_regression from sklearn.feature_selection library
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4.4 Convert irregular time series to regular

Unevenly (or unequally or irregularly) spaced time series is a sequence of observation
time and value pairs (tn, Xn) with strictly increasing observation times [7]. As opposed to
equally spaced time series, the spacing of observation times is not constant. A common
approach to analysing unevenly spaced time series is to transform the data into equally
spaced observations using some form of interpolation - most often linear - and then to apply
existing methods for equally spaced data.

Initially our data did not have the characteristics of time-series data, that is the observations
were not a sequence of equal time segments.

4.4.1 Adding a Time index

Initially our data did not have the characteristics of time-series data, meaning the
observations were not a sequence of equal time segments. For that reason our first step was to
use the pd.to_datetime method of pandas and by combining our date and time features get a
dateTime index. Using that our next step was to break the data down to equal segments by
setting up a frequency and interpolating the observations.

4.4.2 Resampling

co_#to
co_#to co_#to co_#to level of
level of level of level of socketed
* * * * L] ¥
socketed socketed socketed trap or co_#%

Ar
4k
Ar
Ar
Ar

aoe duration projectile mine increased
Quality gems gems gems gems damage days_in_snapshot ex_conv_rate item_level price_amount
date_time # % % % * % * L * * s
2018-06-04 0.0 0 0 0 0 0.0 0.0 60.00 71.0 18.00000
00:17:00
2018-06-04 0.0 0 0 0 0 0.0 0.0 60.00 75.0 20.00000

00:25:00

Table 3: Adding a time index - Uniques

It can be observed that the date_time index of each observation is in a different time-
period or in other words in a different frequency. To turn the dataset into a time-series one we
also need to increase the frequency of our samples, such as from minutes to seconds, or
decrease it such as from days to months. These processes are called resample. In both cases,
data must be invented. Here we chose to downsample from minutes to hours.
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4.4.3 Interpolation

In this part we had to solve two problems of irregular data: empty segments that occured after
resampling by not having any observations during these time-periods and segments with
multiple values that we had to break down to one value. For that reason we had to interpolate
our data. Interpolation is a method of constructing new data points within the range of a
discrete set of known data points. The processes we followed were filling and flattening.

co_#to

level of

socketed

Quality  aoce gems

A

date_time % s
2018-06-04 0.0
00:01:00
2018-06-04 0.0
00:07:00
2018-06-04 200
00:07:00
2018-06-04 0.0
00:08:00
2018-06-04 0.0
00:09:00

Y
-

Ar

co_#to

level of
*

socketed

duration

gems

Ar

co_#to
level of

*
socketed
projectile
gems

Ar

co_#to
level of
socketed .
trap or *
mine
gems

Ar

. #
co_#%
increased
damage

A

0.0

0.0

0.0

0.0

0.0

A

days_in_snapshot

Table 4: Resampling - Uniques

-
-

0.0

0.0

0.0

0.0

0.0

A

ex_conv_rate

Ar

We can inspect that there are multiple observations for the same date_time index and we need
to interpolate to a certain frequency and flatten the multiple values.

co_#to

level of

socketed

Quality aoe gems

A+

date_time % s
2018-07-13 130
23:59:00
2018-07-16 200
00:00:00
2018-07-16 0.0
00:00:00

-
¥

Ak

co #to
level of
socketed
duration
gems

-
¥

Ak

co_#to
level of
socketed
projectile
gems

-
¥

Ak

co_#to
level of
socketed
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mine
gems

-
¥

Ak

. #
co_#%
increased

Ar

damage days_in_snapshot

-
b4

0.0

0.0

0.0

-
-

3.0

4.0

1.0

Table 5: Missing values - Uniques

Ar

ex_conv_rate

-
-

76.00

70.00

70.00

A

-
-

19.0

19.0

item_level price_amount

60.0 77.0

60.0 740

60.0 76.0

60.0 21.0

60.0 80.0

item_level price_amount

80.0 14.0000
76.0 13.0000
820 13.0000

Missing days between 13 of July and 16 of July. Our dataset needs to be filled between these

days with default values following a distribution, to be turned into a regular time-series

dataset.
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Filling

We filled empty segments with either backfilling or forward filling, linearly which
followed a linear distribution between the last and first seen values between the missing
segments or by using pchip (Piecewise Cubic Hermite Interpolating Polynomial) which is
typically used for interpolation of numeric data to obtain a smooth continuous function. We
decided to use the pchip method since it was shape preserving and visually pleasing. The key
idea was to determine the slopes so that the interpolant does not oscillate too much [10].

Flattening

To have one observation per time unit we had to flatten our data. Flattening
observations referring to the same time unit is performed using the mean, the median or the
mode of all the values in a segment or with a custom function. For most of the different
features we used the median but for the target variable, price_amount, we used the mean
since in contrast to the other features, price_amount values varied a lot more. The difference
between the two can be seen in the plot below.

Tabula Rasa - pchip vs linear filling method

— price_amount_linearFill
price_amount_pchipFill

Figure 15 : Tabula Rasa — pchip vs linear filling method

Page 33 of 109



Tabula Rasa - mean vs median flattening method

20 | — price_amount_meanFlatten
I price_amount_medianFlatten

7
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Figure 16 : Tabula Rasa — mean vs median filling method
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4.5 Time Series Analysis

For Time Series Forecasting using the Long Short-Term Memory(LSTM) Network
we try to provide momentum indicators of the prices of unique items. Before we dive into
forecasting and LSTM, there are some important parameters and arguments that need to be
explained.

Input Timesteps(Lag)

Traditional neural networks take in a stand-alone data vector each time and have no
concept of memory on data. LSTM networks keep a context of memory within their pipeline
and thus become powerful at tackling sequential and temporal problems without the issue of
the vanishing gradient affecting their performance. The “memory” our network keeps is the
lag. For each forecast, we feed a lag of sequential information to our network, for it to learn
from.

Forecasting Sequence
If the lag is the input, forecasting sequence is the output. It is the time-period window
our model will try to forecast.

Train / Test Split
Just like in ANN’s, using LSTM we have to split our dataset to a train set and a test
set. There are a few differences though:
e Splitting cannot be on a shuffled dataset. We have to decide beforehand how
many time-periods we will use as training.
Lag cannot be higher than the train dataset.
Train and test splits are sequential, just like before the split and train split
precedes the test split.

Normalization

Since the starting price of an item is different for each 3 month season, we decided to
take each n-sided window of training /testing data and normalize it to reflect percentage
changes from the start of that window.

Epochs

An epoch is simply one forward pass and one backward pass of all the training
examples. Training for more epochs makes our model better but also more prone to
overfitting.

Batch Size

Batch size is the number of training examples in one forward/backward pass. The
higher the batch size, the more memory space we need. It has been observed in practice that
when using a larger batch there is a significant degradation in the quality of the model, as
measured by its ability to generalize.
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Dropout
Dropout is a regularization method that approximates training a large number of
neural networks with different architectures in parallel.

During training, some number of layer outputs are randomly ignored or “dropped
out.” This has the effect of making the layer look like and be treated like a layer with a
different number of nodes and connectivity to the prior layer. In effect, each update to a layer
during training is performed with a different “view” of the configured layer. For example, a
Dropout layer with a rate of 0.2 has a 20% chance to drop each neuron.

Loss Functions

A loss function is used to optimize the parameter values in a neural network model.
Loss functions map a set of parameter values for the network onto a scalar value that
indicates how well those parameter accomplish the task the network is intended to do. It is
essentially a mathematical way of measuring how wrong our predictions are. Loss is that
measure.

Optimizer

During the training process, we change the parameters of our model to try and
minimize the loss function and make better, more accurate predictions/forecasts. Optimizers
tie together the loss function and the model parameters by updating the model in response to
the output of the loss function [11].

Activation Function

The activation function of a node defines the output of that node, or "neuron,"” given
an input or set of inputs. This output is then used as input for the next node and so on until a
desired solution to the original problem is found. If we do not apply an Activation function
then the output signal would simply be a simple linear function.

HyperParameters

A hyperparameter is a parameter whose value is set before the learning process
begins. By contrast, the values of other parameters are derived via training. Different model
training algorithms require different hyperparameters . These hyperparameters are going to
be optimized later on using a method called Grid Search. Our hyperparameters here were:

e Input timesteps e Loss
e Forecasted sequence e Optimizer
e Train/ test split e Learning rate for SGD
e Epochs e Neurons of different LSTM and Dense
e |QR high quantile layers
threshold e Activation Function

Dropout rate
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4.6 Univariate Unistep vs Univariate Multistep Time-Series Analysis using
LSTM

As previously mentioned, we used the item “Tabula Rasa” because it did not consist
of important features that could affect its price except the daily conversion rate of exalts. On
it, we perform 2 types of analyses, unistep and multistep. Unistep, or point by point, is the
prediction of a single time-period ahead of time, plotting this prediction and then taking the
next window along with the full testing data and predicting the next point along once again.

The multistep prediction will be done in two parts. The first will consist of a full
sequence prediction, by initializing a training window and training our model on it. The
model then predicts the next point and we shift the window by one time-period to the right,
just like the point by point method. The difference is we then predict using the data that we
predicted in the prior prediction. In the second prediction we have one predicted data point, in
the third 2 predicted data points and so forth [9]. After we predict points equal to the input
sequence, our next prediction consists of only predicted data points. This allows us to use the
model to forecast many time steps ahead, but as it is predicting on predictions which can then
in turn be based on predictions this will result in increased error rate of the predictions the
further ahead we predict.

The second part is a multi-sequence prediction. This is a blend of the full sequence
prediction in the sense that it still initializes the testing window with test data, predicts the
next point over that and makes a new window with the next point. However, once it reaches a
point where the input window is made up fully of past predictions it stops, shifts forward one
full window length, resets the window with the true test data, and starts the process again. In
essence this gives multiple trend-like predictions over the test data in order to analyse how
well the model can pick up future momentum trends [17].

All the processes were created using the Tensorflow and Keras Libraries as well sklearns
multiple libraries[12].
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Figure 17 : Point to point forecast sequence length 9 frequency periods, 200 epochs, split
0.4, dropout 0.10, network neurons 100,150,250,activation function linear, optimizer adam,
learning rate 0.5

With RMSE = 0.01855 the point to point forecasting is a pretty accurate representation of
what is going to happen in the following time-period.

In contrast, our full sequence forecasting below tries to predict what will happen in the first
time-periods but afterwards, building solely on other predictions, fails to forecast and the
RMSE increases rAPIdly.

Figure 18:Full sequence forecast sequence length 9 frequency periods, 200 epochs, split 0.4, dropout
0.1, network neurons 100,150,250,activation function linear, optimizer Adam, learning rate 0.5
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Lastly, we can see the Multistep forecast plot. With a split of 0.4 (or roughly 30 days) it can
predict trends (and sometimes the amplitude of trends) for a good majority of the time-
periods. While it is not perfect, it is a good indication of the usefulness of the model.
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Figure 19: Multisteps forecast sequence length 6 frequency periods, 200 epochs, split 0.4, dropout
0.2, network neurons 100,150,activation function linear, optimizer Adam, learning rate 0.5

Grid Search

To improve our results we have to tune our hyperparameters. For that reason we used
Grid search. Grid search is used to find the optimal hyperparameters of a model which results
in the most ‘accurate’ predictions. Grid search builds a model for every combination of
hyperparameters specified and evaluates each model. For point to point predictions, we
calculated the RMSE of predictions for each model and picked the one with the lowest
RMSE, whereas for full sequence predictions all our results were bad and building on
multiple errors didn’t give a good representation of future prices.

The parameters we optimized and the ranges we optimized them on can be seen below. It is
important to note that using a sgd optimizer gave far worse results than adam for any learning
rate we initialized it on and for that reason we stopped the test early since it would double the
size of our permutations.

grid = ParameterGrid({"sequence length": [6, 7, 8, 9, 18, 11, 12, 13, 14, 15, 16],
"train_test split": [8.3 , @.35, @.4 , ©.45, 8.5 , @.55, 8.6 , @.65, 6.7 , 8.75, @.8],
"epochs": [1@e,2e8],
"optimizer™:[ "adam’, 'sgd'],
"learning_rate":[©.81,8.085,8.1,08.2],
"layeré_neurons":[188,288],
"layerl neurons":[5@8,188],
"dropout_rate":[@.1,8.2,8.3,8.4],
"layer3 activation_function™:['linear’, 'sigmoid’]

1)



iequence_lengin ¢ wain_tesi_spiit ¢ €epocns ¢ neuronsu ¢ neuronsl ¢ daropout_rate ¢ acuvauon_runcuon ¢ opumizer ¢ learning_rate ¢ mse ¢ frequency @

8 04 200 100 50 0.2 linear adam 05 0.013552 12H
9 04 200 100 50 03 linear adam 0.5 0.013576 12H
9 04 200 100 50 0.1 linear adam 05 0.013616 12H
8 07 200 100 50 03 linear adam 0.5 0.013646 12H
9 04 300 100 50 0.2 linear adam 05 0.013676 12H
13 04 200 100 50 0.1 inear adam 05 0322730 24F
13 04 300 100 50 0.2 inear adam 0.5 0.329392 24+
13 04 300 100 50 03 linear adam 0.5 0.348312 24+
13 04 300 100 50 0.1 inear adam 0.5 0.350861 24+

Table 6: Best and worst RMSE results after GridSearch optimization - Uniques

For multistep forecasts we could not compare different sequence lengths, and depending on
the train and test split each forecasted trend was on a different time-window and had a
different length. For that reason the metrics rmse, mae or mape were not representative of the
performance of the model and its ability to forecast trends. The decision for the best model or
models was done purely by observing each different result plot.

Generally for splits higher than 0.5, the model overfitted and the trends did not have positive
or negative peaks. Raising the dropout rate or adding more dropout layers did not change
that.

For sequence length higher than 10, the predictions had a big error as each next prediction-
point was based on more predictions-points.

One sweet spot for 8 hours and 12 hours resampling frequency was the sequence length of 6.
Our model could almost always predict if the price of the item would rise , fall or sudden
changes as well as the amplitude of those trends.

One parameter that was also really important was the activation function. Since we
normalized our variables and predicted change percentages, any activation function that
could not produce negative results could not be used. From tanh and linear activation
functions, the linear gave the best results.

Testing optimizers, sgd could not be used, even after testing from a learning rate of 0.01 to 1,
since it did not produce any results. Adam was the only one that gave good results.
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Figure 20: Multistep forecasts sequence length 8 frequency periods, 200 epochs, split 0.3, dropout
0.1, network neurons 100,150,250,activation function linear, optimizer sgd,learning rate 0.5

Lastly epochs and the neurons of each layer were really important to be kept in low numbers,
200 epochs maximum and 100 and 50 neurons in first and second layer, since the more
epochs or more neurons a layer had the easier the model overfitted. That means that our
forecasts could not have any peaks be it negative or positive.
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Figure 21: Multistep forecasts sequence length 6 frequency periods, 200 epochs, split 0.4, dropout
0.2, network neurons 100,150,activation function linear, optimizer Adam, learning rate 0.5

One parameter that played a big role was the rate of the dropout layer as well as how many
dropout layers there were in our neural network. Using 2 dropout layers of 0.1 rate and 0.2
rate gave us the best results. It lowered the amplitude of the forecasted trends and it enabled

the model to predict more price troughs.
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Figure 22: Multistep forecasts sequence length 6 frequency periods, 300 epochs, split 0.4,
network 100 dropout 0.1,100,250 dr 0.2,activation function linear, optimizer Adam, learning rate 0.5
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4.7 Multivariate Unistep vs Multivariate Multistep Time-Series Analysis

using LSTM

In multivariate time-series analysis, we had to choose an item with features that followed

certain rules:
e They had to have a correlation of 0.2 or higher
e They had to appear in a big percentage of observations.

Following the second rule any feature which followed the format “co ” had to be removed as

seen below.

Feature name

Appearance percentage

co_#% increased movement speed

co_bow attacks fire an additional arrow

co_adds # fire damage

co_#% increased critical strike chance

co_socketed gems are supported by level # onslaught
co_#% chance to gain a frenzy charge on kill
co_socketed gems are supported by level # faster projectiles
co_#% increased physical damage

co_socketed gems are supported by level # blind
co_adds # cold damage

co_adds # lightning damage

co_#% increased attack speed

co_adds # physical damage

co_#% increased elemental damage with attack skills

0
0.112734
0.371084
0.422754
0.432148

0.44624
0.44624
0.450937
0.474423
0.4583518
0.526093
0.540185
0.624736
3.231716

Table 7: ‘co_’ features and their appearance percentage - Uniques

Following the univariate example, we first made point-to-point predictions and then tried to
forecast multiple trends. This time we experimented with different features to showcase how
removing features could affect the overall information gain, which we represented by

calculating the RMSE value [14].

We run the same model using 5, 6, 7, 8 and 9 features.

The optimal neural network consisted of 3 LSTM layers with 100, 50 and 50 neurons
respectively as well as 1 dropout layer set on 0.3 dropout rate. The last layer was a dense

layer with a linear activation function.

The hyperparameters and the ranges we experimented with, as well as the results, can be seen

below.
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"sequence_length™:
"train_test split":

]

['51 SJ
[@.3,0.4,

12, 13,

"epochs":

[1ee,z2ea,300],

"Dptimizer":['adaw']J

"layer_@é.neurons™:[1e&, 2868, 388] ,
"layer_ 1.neurcons”:[58,1e&,15a],
"layer_2.neurons”:[58,188,153] .
"layer_3.rate”:[8.1, 8.2, 8.3].

"layer 4a.activation function™:["'linear']
»

dropout_rate &
03
0.2

0.2

0.3
0.2
0.3
0.2
0.1

14],

Table 8: Results grid after fitting models produced using hyperparameters — Uniques

epochs & learning_rate & neurons0d & neuronsi & neurons2 ¢ no_of_features £ optimizer &
100 0.5 100 50 50 9 adam
100 0.5 100 50 50 g adam
200 0.5 100 50 50 B adam
300 0.5 100 50 50 & adam
300 0.5 100 50 50 5] adam
300 0.5 100 50 50 6 adam
300 0.5 100 50 50 5 adam
300 0.5 100 50 50 5 adam

rmse & sequence_length ¢ train_test_split ¢

-
¥

Ar

-
¥

0.111247 6 04
0.111601 6 0.4
0.112929 6 03
0.206421 10 03
0.208711 14 0.3
0.217636 14 03
0.235387 " 03
0.293465 il 0.3

As seen above, the results we got were better (smaller RMSE) when more features were used,
since there was less information loss. Also shorter sequence length resulted in smaller rmse
and fewer epochs resulted in less overfitting and therefore a better rmse value.
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periods, 100 epochs, split 0.4, dropout 0.3, network neurons 100,150,250,activation function linear,

optimizer adam, learning rate 0.5
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The same can be observed for multistep forecasting [15]. When the train/test split is kept at
0.4 it seems to be the optimal value for predicting trends at low sequence lengths. As for
epochs, with 100 or less epochs, the model can fairly accurately forecast trends. Also, a
dropout rate of 0.2 or 0.3 allows the model to predict sharper troughs. Neurons didn’t play
that much of a role but at the higher values we predicted less peaks.
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Figure 24: Multistep forecasts sequence length 9 frequency periods, 200 epochs,split 0.5, network
100,250 dr 0.1,activation function linear,optimizer adam,learning rate 0.5
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Figure 25: Multistep forecasts sequence length 9 frequency periods, 100 epochs,split 0.5, network
100,250 dr 0.1,activation function linear,optimizer adam,learning rate 0.5

Overall, as seen also in the plots above for 5 and 9 features respectively, having more
features, allowed our model to forecast better trends and their amplitudes [18].
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4.8 Conclusion

While the process of forecasting seemed difficult at first, we managed to get really good
point to point forecasts for unique items as well as good multistep forecasts. Although the
evaluation process of multistep forecasting was not optimal, we could find specific
hyperparameters which worked best by observing our plots and draw conclusion from those.

Having complete observations for each unique item in the game, we could build models for
each one and then automate the process of forecasting their prices. One idea for picking out
the best model after hyperparameter optimization would be to evaluate each model according
to a certain purpose e.g. predicting market returns to trade with and using as metric the
bottomline profit and loss (PnL).
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Chapter 5: Rares Dataset Analysis - Price prediction

5.1 General

Observing the rare items at first glance, the problem was the variable number of features for
each observation. Considering that each rare item, which meant each observation, could not
have more than 12 features and the number of observations was around 580.000 (before
removing outliers), it became apparent that the number of different combinations our 96+
features made, far exceeded our observations. Some combinations did not appear at all and
some other appeared only once.

We tried to tackle the problem a number of different ways, either as a regression problem by
using different algorithms or different neural networks or by doing the same thing but as a
classification problem by bucketing the different prices of items.

5.2 The Dataset

For the rare items, we chose to analyse the “Body Armour” category. The dataset consisted
of:

e League, rarity, item_category : these columns had to do with categorizing all the
different datasets from different seasons. Here they don’t matter so we drop them
Generalized features
Date , time , time_hours : we did not treat this dataset as a time-series one, therefore
we dropped those columns

e Days in_snapshot : How many days it took for the item to get sold since it was listed
as available for sale
Ex_conv_rate : Daily exalt to chaos conversion rate
Price_amount : this is the target variable. It is the price we are trying to predict

One major problem with the dataset was the variable number of features for each observation.
Each observation, which means each item, cannot have more than a certain number of
generalized features. That meant that each of these features could not appear in all the
observations. Some appeared a lot (for example ‘ex_# to maximum life” appears in 75.27%
of our observations) and some other features appear a lot less (for example “ex_gain
onslaught for # seconds when hit” appear in 0.001891% of our observations)[19].
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Armour 50.422927

Energy Shield 46.267913
Evasion Rating 42.519867
ex ##% increased stun and block recovery 42.501362
ex_##% to cold resistance 49.985666
ex_##% to fire resistance 49.9608399
ex_##% to lightning resistance 49.2608821

co_#% reduced fire damage taken ©.913063
ex_#% chance to avoid cold damage when hit 9.011860
ex_#% chance to avoid fire damage when hit ©.005328
ex #% chance to dodge spell hits 0.005157
co #% to all maximum resistances 0.004469
ex_#% increased area of effect 0.002235
ex_gain onslaught for # seconds when hit 9.001891

Table 9: Features in Rares dataset and their appearance percentage

There were a couple of strategies we implemented and tested to overcome this problem:

e Filling the missing values [13] with a mean, median or mode value : Since some
features only appear in low priced items or high priced items, and considering that
some of the features had a different weight of appearance in the game (which means
that it is more rare to see these ones in one of the items) filling out missing values
didn’t help with the accuracy of our model, on the contrary since our dataset consisted
of almost 60% of observations with price_amount < 2, it made all other prices more
difficult to predict while leaving the accuracy for low prices almost the same.

e Removing features with appearance lower than a certain percentage threshold: this
again did not help our model to make better predictions since features which were
rarer sometimes meant an increase in price. Removing those features lowered our
prediction accuracy for items with high prices.

In the end, it proved better to not remove any pre-existing features since generally the
features with low appearance were connected with higher prices.

Dependent variable y (price_amount) distribution
Another problem was the number of observations associated with each different

price_amount. Bucketing our observations to different price_amount ranges gave us the
following results.
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Figure 26: Bucketing price_amount (y) bar plot - Rares

It is clear that we have a lot more observations with price_amount < 2. For that reason
one idea was to convert the target variable of each observation, price_amount, to follow a
Gaussian distribution using base log. Converting the price_amount returns the following
distribution:
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Figure 27: Price_amount (y) Gaussian distribution - Rares

After running a basic neural network, before taking the natural logarithm of the values and
after, we get the following results:
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-
-

{0.1]
{1.5]
(5,10]
(10,30]
{30,50]
{50,150]

{150,nan]

Before np.log After np.log

<20% & <=30% & <40% & <50% & >50% & total & % <20% ¢ <30% ¢ <40% % <5H0% & =>50% % <50% error %
2132 936 390 1000 16744 14136946 (0.1] 6204 2012 1472 995 6586 61.862297
1451 730 438 205 2113 36.735725 (1,5] 1712 1001 1271 1509 4386 52924174
308 165 269 302 1490 13.666140 (5,10] 93 58 T 103 669 33100000
1334 529 434 352 1883 41107679 {10,301 1568 G40 483 392 2362 56.620753
376 181 157 164 479 41.046426 {30,501 565 265 255 225 596 68.730325

424 190 211 147 631 38.303182 (50,150] 412 245 244 199 536 67.237164

75 ey 30 35 109 37.857143 {150,nan] 39 34 27 44 167 46.302251

Table 10: y bucketing before and after applying np.log() transformation - Rares

5.3 Feature Engineering

A big part of the problem was using domain knowledge of the data to create new features.
This was fundamental to getting better results for our algorithms. Those features were:

# of ele_resistances :

# of resistances

total_ele resistance

total_resistance

Partial Dependence

The partial dependence plot [20] shows the marginal effect one or two features have
on the predicted outcome of a machine learning model. A partial dependence plot can show
whether the relationship between the target and a feature is linear, monotonous or more
complex.

Using partial dependence we analysed the dependence of each feature’s values to the
target variable and created two new features, no_of good_features and no_of bad_features.
According to domain knowledge, an item that has a number of good features above a certain
threshold is considered valuable, and an item that has a number of bad features above a
certain threshold is considered worthless. After engineering these 2 new features we use
partial dependence again to figure out if our assumption was right in the first place.
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Figure 28: Features partial dependency plots

5.4 Outliers

As before for outliers we used IQR and Z-Score as our main methods, as well as
days_in_snapshot < 10. From partial dependence plots we also saw that the higher the
days_in_snapshot feature the higher the price. This made sense since the more expensive the
item, the more difficult it is to be sold. We experimented with different IQR thresholds and
Z-scores but at the end of the day only IQR gave us noteworthy results. Still, by inspecting
which observations were considered outliers and running our machine learning processes
both with and without removing outliers, we came to the conclusion that leaving the dataset

as is, gives us better results overall.
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price >150
with outliers 0.65%
without outliers 1.80%

Table 11: Outliers existence percentage in Rares dataset (over 150 price)

As we can see by removing outliers, we remove almost '3 of our observations with
price_amount > 150. This lowered our accuracy of predicting prices above that threshold
sometimes even by half.

Using one of our neural networks, after running the model with and without outliers
we got an accuracy of 60.2% for prediction items with price_amount > 150 with outliers
while only 50.7% without outliers.

5.5 Approach - Regression vs Classification

Our initial goal was to build a regression model which could price items within a
relatively small margin from their actual values. Without using the logarithmic values of the
price_amount our results were not as good, since we weren’t able to price any items with an
accuracy of 42% or above. After the logarithmic transformation our results got better but
were still lackluster in some cases.

This gave us the idea to bucket our prices in price bins and instead of trying to build a
regression model, to try and classify in which bin each item belonged to. Using a dynamic
algorithm, which used the minimum percentage each price bin should have and the maximum
range from the lower and the higher value of the bin as parameters, we broke down the price
to segments as seen in the plot below.

Figure 29: y (price_amount) bucketing in Rares dataset
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5.6 Theory

5.6.1 Machine learning algorithms
Apart from building neural network models and training them, we also tested basic
machine learning algorithms such as linear regression, k-means clustering etc :

Linear Regression

In statistics, linear regression is a
linear approach to modelling the
relationship between a scalar response (or i
dependent variable) and one or more
explanatory variables (or independent
variables). The case of one explanatory
variable is called simple linear regression.
For more than one explanatory variable, the
process is called multiple linear regression.
This term is distinct from multivariate
linear regression, where multiple correlated ,
dependent variables are predicted, rather Weight * Horsepower
than a single scalar variable [21].

Figure 30: Linear Regression

In linear regression, the relationships are modelled using linear predictor functions
whose unknown model parameters are estimated from the data. Such models are called linear
models.

Most commonly, the conditional mean of the response given the values of the explanatory
variables (or predictors) is assumed to be an affine function of those values; less commonly,
the conditional median or some other quantile is used. Like all forms of regression analysis,
linear regression focuses on the conditional probability distribution of the response given the
values of the predictors, rather than on the joint probability distribution of all of these
variables, which is the domain of multivariate analysis.

Linear classifier

In the field of machine learning [22], the goal of statistical classification is to use an
object's characteristics to identify which class (or group) it belongs to. A linear classifier
achieves this by making a classification decision based on the value of a linear combination
of the characteristics. An object's characteristics are also known as feature values and are
typically presented to the machine in a vector called a feature vector. Such classifiers work
well for practical problems such as document classification, and more generally for problems
with many variables (features), reaching accuracy levels comparable to non-linear classifiers
while taking less time to train and use.
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Decision Trees

Decision trees build regression or classification models in the form of a tree structure.
It breaks down a dataset into smaller and smaller subsets while at the same time an associated
decision tree is incrementally developed. The final result is a tree with decision nodes and
leaf nodes. A decision node has two or more branches, each representing values for the
attribute tested. Leaf node represents a decision on the numerical target. The topmost
decision node in a tree corresponds to the best predictor called root node.

XGBoost

XGBoost stands for eXtreme Gradient Boosting. It is an implementation of gradient
boosting machines. The XGBoost library implements the gradient boosting decision tree
algorithm. This algorithm goes by lots of different names such as gradient boosting, multiple
additive regression trees, stochastic gradient boosting or gradient boosting machines.

Boosting is an ensemble technique where new models are added to correct the errors
made by existing models. Models are added sequentially until no further improvements can
be made. A popular example is the AdaBoost algorithm that weights data points that are hard
to predict. Gradient boosting is an approach where new models are created that predict the
residuals or errors of prior models and then they are added together to make the final
prediction. It is called gradient boosting because it uses a gradient descent algorithm to
minimize the loss when adding new models.

K - Means Clustering

A cluster refers to a collection of data points aggregated together because of certain
similarities.

We’ll define a target number k, which refers to the number of centroids you need in
the dataset. A centroid is the imaginary or real location representing the center of the cluster.
Every data point is allocated to each of the clusters through reducing the in-cluster sum of
squares. In other words, the K-means algorithm identifies k number of centroids, and then
allocates every data point to the nearest cluster, while keeping the centroids as small as
possible. The ‘means’ in the K-means refers to averaging of the data; that is, finding the
centroid [23].

To process the learning data, the K-means algorithm in data mining starts with a first
group of randomly selected centroids, which are used as the beginning points for every
cluster, and then performs iterative (repetitive) calculations to optimize the positions of the
centroids It halts creating and optimizing clusters when either:

e The centroids have stabilized—there is no change in their values because the

clustering has been successful.
e The defined number of iterations has been achieved.
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K-nearest Neighbors

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric
method used for classification and regression. In both cases, the input consists of the k closest
training examples in the feature space. The output depends on whether k-NN is used for
classification or regression:

e In k-NN classification, the output is a class membership. An object is classified by a
plurality vote of its neighbors, with the object being assigned to the class most
common among its k nearest neighbors (K is a positive integer, typically small). If k =
1, then the object is simply assigned to the class of that single nearest neighbor.

e In k-NN regression, the output is the property value for the object. This value is the
average of the values of its k nearest neighbors.

K-NN is a type of instance-based learning, or lazy learning, where the function is only
approximated locally and all computation is deferred until classification.

5.6.2 Activation functions

Activation functions are really important for a Artificial Neural Network to learn and
make sense of something really complicated and Non-linear complex functional mappings
between the inputs and response variable. They introduce non-linear properties to our
Network. Their main purpose is to convert an input signal of a node in a A-NN to an output
signal. That output signal now is used as an input in the next layer in the stack.

Specifically in A-NN we do the sum of products of inputs(X) and their corresponding
Weights(W) and apply an Activation function f(x) to it to get the output of that layer and feed
it as an input to the next layer.

If we do not apply an Activation function then the output signal would simply be a
simple linear function. A linear function is just a polynomial of one degree. Linear equations

may be easy to solve but they are limited in their 8 Linear Function
complexity and have less power to learn complex 6l
function mappings from data. al

Non-linear functions are those which have

linear(x)
o

degree more than one and they have a curvature £,

when we plot a Non-Linear function. Hence, we 4l

need to apply an Activation function f(x) so as to 6l

make the network more powerful and add to it the ) <« S S i i L |
ability to learn something complex and x

complicated from data and represent non-linear Figure 31: Linear Activation Function

complex arbitrary functional mappings between
inputs and outputs
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Except from the Linear activation function, we also experimented with the following ones:

3 Swish

Swish

With the function f(x)=x -
sigmoid(x),
the swish activation function has
been observed to work better than
ReLU on deeper models across a T —
number of challenging data sets.
Figure 32: Swish Activation Function
Swish is a smooth, non-monotonic
function that consistently matches or outperforms ReLU on deep networks applied to a
variety of challenging domains such as Image classification and Machine translation. It is
unbounded above and bounded below & it is the non-monotonic attribute that actually creates
the difference. With self-gating, it requires just a scalar input whereas in multi-gating
scenario, it would require multiple two-scalar input.

10 sigmoid

Sigmoid
t is a activation function of form f(x) =1/1 +
exp(-x) . Its Range is between 0 and 1. It is a S—
shaped curve. It is easy to understand and apply 0
but it has major reasons which have made it fall
out of popularity -

0.6

02

00 |
-10 -5 [] 5 n

e Vanishing gradient problem

e Its output isn’t zero centered. It makes the ~ Figure 32: Sigmoid Activation Function
gradient updates go too far in different
directions. 0 < output < 1, and it makes optimization harder.

e Sigmoids saturate and kill gradients.

e Sigmoids have slow convergence.

Softmax

The above functions are not suitable for classification problems, and for that we needed a
new function. The softmax function is a more generalized logistic activation(sigmoid)
function which is used for multiclass classification. If the problem was on binary
classification the sigmoid function would work just as well.
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5.7 Feature scaling

Feature scaling is a method used to standardize the range of independent variables or
features of data. In data processing, it is also known as data normalization and is generally
performed during the data preprocessing step. Since the range of values of raw data varies
widely, in some machine learning algorithms, objective functions will not work properly
without normalization. For example, the majority of classifiers calculate the distance between
two points by the Euclidean distance. If one of the features has a broad range of values, the
distance will be governed by this particular feature. Therefore, the range of all features
should be normalized so that each feature contributes approximately proportionately to the
final distance.

Here we had features like ‘ex_# to maximum life” with ranges from 1 to 130+ and
others like “ex_#% to fire resistance” with ranges from 1 to 50. For scaling we experimented
with 2 different scalers: Min-max scaler and Standard Scaler.

Min-Max Scaler

In this we subtract the Minimum from all values — thereby marking a scale from Min
to Max. Then divide it by the difference between Min and Max. The result is that our values
will go from zero to 1. This is quite acceptable in cases where we are not concerned about the
standardisation along the variance axes. e.g. image processing or neural networks expecting
values between O to 1.

The downside however is that because we have now bounded the range from 0 to 1, we will
have lower standard deviations and it suppresses the effect of outliers.

Standard Scaler
We standardize features by removing the mean and scaling to unit variance.
The standard score of a sample x is calculated as:
z=(x-u)/s
where u is the mean of the training samples or zero if with_mean=False, and s is the standard
deviation of the training samples or one if with_std=False.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set. Mean and standard deviation are then
stored to be used on later data using the transform method.

Comparing the two with a neural network consisting of 2 dropout layers of 0.2 rate, 4
hidden layers with 400 neurons and a Relu activation function, a linear activation function on
the output layer, 30 epochs and a batch size of 10000 we got the following results which
helped us decide to drop the Standard scaler and use the Min Max Scaler :
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Standard Scaler Min Max Scaler
& <20% & <30% & <40% & <50% & >50% & <50% error & + <20% & =30% ¢ <40% & <50% & =H0% & <=50% error &
{0,2] 7926 3829 3585 2498 11006 51.843018 (0,2] 5873 3655 2935 1915 7227 66.549410
{2,5] 1246 776 an 1134 4187 408.026053 (2,5] 746 475 555 769 3509 42 038322
(5,101 122 102 119 158 836 37.471952 (5,101 v G5 92 95 709 31.761309
{10,30] 1839 209 624 451 3086 54 GTT7633 {10,301 1627 563 477 312 2324 56.175750
(30,50] 425 262 299 301 a7y 56.846290 {30,501 508 261 244 261 727 63.668186
(50,1501 249 190 244 290 a1 52199571 {50,150] 270 176 231 229 703 56.308286
(150,nan] 52 46 73 104 6582 28735632 | (150,nan] 71 48 a9 100 570 33.566434

Table 12: Predicted errors using Standard and MinMax Scalers on Rares dataset

5.8 K-fold

Cross-validation is a resampling procedure used to evaluate machine learning models
on a limited data sample. The procedure has a single parameter called k that refers to the
number of groups that a given data sample is to be split into. As such, the procedure is often
called k-fold cross-validation. When a specific value for k is chosen, it may be used in place
of k in the reference of the model, such as k=10 becoming 10-fold cross-validation.

The general procedure is as follows:

Shuffle the dataset randomly.

Split the dataset into k groups

For each unique group:

Take the group as a hold out or test data set

Take the remaining groups as a training data set

Fit a model on the training set and evaluate it on the test set

Retain the evaluation score and discard the model

Summarize the skill of the model using the sample of model evaluation scores

In our problem we experimented with k=5 and k=10 and decided to use k=10 since it gave us
better results, probably because the more the training set, the more different combinations our
model trained on.

5.9 Grid Search

Before we start our hyperparameter tuning using GridSearch we had to choose our ranges,
different activation functions, optimizers etc. Also, we had to choose how many hidden
layers and dropout layers we were going to use.
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We experimented with the following neural networks :
1 hidden layer
2 hidden layers

2 hidden layers 1 dropout

2 hidden layers 2 dropouts
3 hidden layers 2 dropouts
4 hidden layers 2 dropouts
5 hidden layers 2 dropouts

From the above, using 2 hidden layers and 2 dropouts gave us the best performance overall.
Using more than 2 hidden layers only increased the time it took to train our model and
lowered the epochs needed until our model started to overfit. Comparing the two with
regression gave us the following results:

30 epochs, 2 hidden layers, 2 dropout layers
8 minutes 13 seconds training time

30 epochs, 5 hidden layers, 2 dropout layers
15 minutes 50 seconds training time

0.2]
(2,5]
(5,10]
(10,30]
(30,50]
(50,150]

{150,nan]

<20% %
7926
1245
122
1838
425

249

52

<30% %
3829
776

102

209

262

190

46

<40% %

3585

a7

119

624

299

244

73

2498

1134

158

451

am

290

104

<50% ¢ >50% %

11006

4187

236

3086

a7y

2,

682

=50% error &

61.843013

49.026053

37.471952

54677633

56.846290

52.199571

28735632

& <20% 4+ <30% & <40% & <50% & >=50% & <50% error &

(0,2]
(2,3]
15,10]
(10,30]
(30,50]
{50,150]

{150,nan]

8916 4354 3532 2586 9493 67.130640

266 579 780 1057 4945 39741715
153 61 a5 112 914 31.018368
1213 760 206 631 3330 50593472
229 198 252 305 1250 44046553
20 78 120 221 1399 26.290832
27 21 38 72 845 15.752742

Table 13: Grid Search Result grid, best models — Rares

As we can see, while our predictions for price_amount < 5 are better, every other price range
accuracy is worse.

5.10 Pipelines (scikit-learn)

degrees.
After a dataset is cleaned up from a potentially initial state of massive disarray however,

there are still several less intensive yet no less important transformative data preprocessing
steps such as feature scaling, dimensionality reduction etc.

finish off with an estimator of some sort.

A typical machine learning task generally involves data preparation to varying

A typical scenario is to string a number of transformations together and ultimately
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Scikit-learn Pipelines is used here to build such a pipeline of scaling and chaining an
estimator.

This method provides many of the same advantages that decoupling does in software
development.

Advantages include:
e Flexibility: Units of computation are easy to replace. If you discover a better
implementation for one chunk, you can replace it without changing the rest of the
system.

e Scalability: Each bit of computation is exposed via a common interface. If any part
becomes a bottleneck, you can scale that component independently. Common scaling

techniques might involve a load balancer or additional backends.

e Extensibility: when the system is divided into meaningful pieces it creates natural
points of extension for new functionality.

In our case, we stringed together in the same Pipeline the feature scaling, the machine
learning process and the grid search with k-fold cross validation with k=10.

SciKit Learn Pipeline

v

GridSearch

v

v

Input Data Feature Scaling Output

Figure 34: SciKit learn pipeline

For regression the process looked like this:

estimator =
KerasRegressor(build_fn=build_model,verbose=1,epochs=epochs,batch_size=batch_size)

estimators =[]
estimators.append((‘standardize',MinMaxScaler(feature_range = (0, 1)) ))
estimators.append(('mlp’,estimator))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

gridsearch_parameters = configs['gridsearch_model']

Page 60 of 109



grid_search = GridSearchCV/(estimator = pipeline,
param_grid = gridsearch_parameters,
scoring="neg_mean_absolute_error",cv=kfold)

grid_search = grid_search.fit(X,y)

#to get the best parameters
print(grid_search.best_params_)

5.11 Evaluation Metrics

Analysing the problem with regression algorithms, the metrics we could use were
mean squared error, mean absolute error or mean absolute percentage error. Even though all
3 could be used to measure the accuracy for continuous variables, none of the above really
helped us determine why our model was wrong in our predictions, which price_bucket had
the best accuracy and how that accuracy changed with different hyperparameters.

For that reason we coded our own accuracy measurement for regression, calculating
the error percentage of each of our predictions. If our prediction was less than 40% of the real
price, then we counted the prediction as correct for the price bucket of the real price. That
way we calculated the prediction accuracy of each price bucket.

Analysing the problem using classification, we not only calculated the overall

accuracy of each model using sklearn’s built in metrics library, but we also calculated the
overall accuracy of each price bucket.
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5.12 Results
Calculating the prediction accuracy for our regression and classification models after grid

search we get the following diagram.

Prediction accuracy for different hyperparameters

Classif, 40ep, all_feat, w/o outl
Classif, 30ep, all_feat, w/o outl
Classif, 50ep, all_feat, w/ outl
Classif, 40ep, all_feat, w/ outl
Classif, 20ep, all_feat, w/ outl
Classif, 50ep, all_feat, w/o outl
Classif, 20ep, all_feat, w/o outl
Classif, all_feat, w/ outl XGBoost
Reqgr, 20ep, 45feat, Linear, w/o outl

Regr, 40ep, all_feat, Linear, w,/ outl 57.25
Regr, 20ep, all_feat, Linear, w,/ outl 56.33
Reqgr, 30ep, all_feat, Linear, w/ outl 5599
Classif, all_feat, w/ outl 55.97
Rear, 50ep, 45feat Linear, w/ outl 55.90
Regr, 40ep, all_feat, Linear, w/o outl 55.36
Regr, 30ep, all_feat, Linear, w,/ outl 55.26
Regr, 100ep, custom_feat, Linear, 55.21
Regr, 100ep, 45feat, Linear, w/o 55.08
Rear, 30ep, 45feat, Swish, w/ outl 54.60
Regr, 30ep, all_feat, Linear, w/o outl 54.60
Reqgr, 30ep, 45feat, Linear, w/ outl 54.59
Regr, 40ep, 45feat, Linear, w/ outl 54.41
Regr, 40ep, 45feat, Swish, w/o outl 54.34
Regr, 50ep, 45feat, Swish, w/o outl 54,22
Regr, 20ep, all_feat, Linear, w/o outl 54.20
Reqgr, 20ep, 45feat, Linear, w/ outl 5417
Regr, 40ep, all_feat, Swish, w/ outl 54.15
Regr, 30ep, all_feat, Swish, w/ outl 534.10
Rear, 20ep, 45feat, Swish, w/ outl 54.08
Regr, 30ep, 45feat, Swish, w/o outl 53.87
Reqgr, 40ep, 45feat, Swish, w/ outl 53.68
Regr, 20ep, all_feat, Swish, w/ outl 53.54
Regr, 20ep, 45feat, Swish, w/o outl 53.36
Regr, 30ep, all_feat, Sigmoid, w/o 53.18
Regr, 40ep, all_feat, Sigmoid, w/ 47.08
Regr, S0ep, 45feat, Sigmoid, w/o 4677
Regr, 20ep, 45feat, Sigmoid, w/o 46.69
Reqgr, 30ep, all_feat, Sigmoid, w/ 46.11
Regr, 20ep, all_feat, Sigmoid, w/ 46.03
Regr, 40ep, 45feat, Sigmoid, w/ outl 45,99
Regr, 40ep, all_feat, Sigmoid, w/o 4579
Regr, 20ep, all_feat, Sigmoid, w/o 4574
Regr, 20ep, 45feat, Sigmoid, w/ outl 4549
Reqr, 30ep, 45feat, Sigmoid, w/ outl 4528
4457
0.00 20.00 40.00 60.00 80.00

Prediction Accuracy

Figure 35: Prediction accuracy using models generated from hyperparameters technique -
Rares

We can see that each classification model gives higher prediction accuracy than any other model.
XGBoost has a 66.76% accuracy which is pretty significant for an out of the box with no tuning
algorithm. The “middle” accuracy models from 57% to 53% consist of Decision Trees for
classification and all the other regression models with Linear and Swish activation functions. Only
one model with a Sigmoid activation function has 53% accuracy and all the others are below 47%. In
fact, without this exception, every model with a Sigmoid activation function underperforms.

From the above diagram we could say that we should just use a classification approach to our problem
and just select the model with the best accuracy. Although this would be correct for our overall
accuracy, we get no information for the accuracy per price bucket. Considering that our dataset does
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not have a good distribution of price ranges, consisting 60% of price ranges from 0 to 2, it
could very well over perform for these price ranges and underperform for others.

For this reason, we need to take a closer look to the accuracies per price bucket, breaking the
problem down to 3 different cases: the high overall accuracy range, the middle and the low.

High prediction accuracy models

Accuracies per bucket for high accuracy models

B Classif, 50ep,
all_feat, w/o outl

94.58
B Classif, 40ep,

: 94.20 all_feat, w/o outl
(0,2] acc % 0485 -

Classif, 30ep
97.4  30ep,
all_feat, w/o outl

22.10 B Classif, 20ep,
all_feat, w/o outl

. 2528
(2,5] acc % 2176 B Classif, 50ep,
15.32 all_feat, w/ outl
B Classif, 40ep,
7.47 all_feat, w/ outl
. . 2.28 B Classif, 30 ep, all
(5.10] acc % 659 feat, w/ outl
0.63 W Classif, 20ep,
all_feat, w/ outl
65.08 B Classif, all_feat,
) ) 66.04 w/ outl XGBoost
(10,30] acc % 6657
5917
1915
(30,50] acc % L
13.51
58.21
. . 63.33
(50,150] acc % 5614
5517
3551
(150,nan] acc 27.32
% 24170
12,39
66.88
Overall 66.76
Accuracy 67.01
66.24

0.00 10,00 20.00 30.00 40.00 5000 60.00 7000 80.00 90.00

Figure 36: Accuracies per bucket for high accuracy models - Rares
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As suspected, our model performs exceptionally well for the (0, 2] price range with a
prediction accuracy of over 95% using XGBoost. Observing the other price ranges we get a
decent prediction accuracy of 65%+ for items on the range of (50,150] as well as on the range
of (10, 30]. For items on the price range of 150 and over the only model that comes close to a
35% is the classifier with 50 epochs, using all features and without outliers.

For the ranges of (2, 5] and (30, 50] our models are bad having a 20-22% accuracy. But for
the range of (5, 10] no model can even come close to a 10% accuracy. If we used that model
to classify the price of an item, we could be mostly correct for 3 of the price ranges, but be
absolutely wrong for the other 4. This confirms our suspicions that relying solely on the
overall prediction accuracy of a model would not give us the optimal results.

Middle prediction accuracy models
Taking a look at each price range individually we can draw the following conclusions:

e For the (0, 2] price range we observe that each regression model has a lower
prediction accuracy from the only classifier in our group, which used Decision Trees,
but also from the other classifiers in our previous diagram. The best model from
regression is the one using a Swish activation function, running for 30 epochs without
outliers and using 45 features after feature selection.

e For the (2, 5] price range we get an almost 53% prediction accuracy when running
regression with 45 features, for 50 epochs, using a Linear activation function and
without removing outliers. Just like before the model that performs the worse is the
classification model. Using a Swish activation function we get an accuracy of 41%
approximately or worse with 20 epochs dipping to a 30% accuracy. This is a lot better
than just using a classification model, which had 25% accuracy. In other words, using
regression instead of classification we double our accuracy for this price range

e For the (5, 10] price range our accuracies are not as bad as before, but we still cannot
predict with a higher than 40% accuracy if an item belongs to this price range. Using
a Swish activation function we get an accuracy of over 36%. We also observe that not
removing outliers lowers our prediction accuracy, probably because these outliers
were observations on the higher price ranges but had combinations of items that
belonged to a lower price range.

e For the (10, 30] price range using regression we get a lower accuracy by almost 10%.
Whatever the hyperparameters, the accuracies were really close, with the exception of
activation functions with Linear being the to one give us the best results (from 54.7 to
56.6%)

e For the (30,50] price range we see an increase in accuracy of almost 3 times from the
highest classification algorithm being the Decision Trees one with an accuracy of
26.7%. With regression we get an accuracy of 68.7% using a Linear activation
function with 50%, with Swish being a close second with an accuracy of 68.6%. The
increase in epochs after the value of 50 doesn’t increase our accuracy since we see our
model with 100 epochs and a Linear activation function having a lower accuracy.

e For the (50,150] price range our regression models are as good as our classification
ones and even better, since using a Swish activation function with 50epochs and
without outliers, gives a 68.88% accuracy and with a Linear activation function we
have a 67.2% accuracy.
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e For the 150 and over price range for 50 epochs using a Swish activation function we
get 51.87% accuracy whereas using classification we got a 35.51% accuracy.

Accuracies per bucket for middle accuracy models

62.06

(0,2] acc %

A538

(2,5] acc %

77.52

36.16
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%

17778

54.66
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%

51.88

68.58

(30,50] acc
% 65

26.75

68.88

(20,150]
acc % 65.97

43.52

51.87

(150,nan]
acc % 50.00

25.68

0.00 20.00 40.00 60.00

Figure 37: Accuracies per bucket for high accuracy models - Rares
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80.00

Page 65 of 109



Low prediction accuracy models

As we can see the reason our last models had such low overall prediction accuracy, was
because they could not predict any item from 5 to over 150 price. That is because of the
nature of the sigmoid function which, as previously mentioned, cannot output negative
numbers. Even though a price of an item cannot have negative values, we used base
logarithmic function on all prices to get a better distribution and that resulted in negative
target variables and that is why using sigmoid activation function we cannot make predictions
for prices higher than 5.

Accuracies per bucket for low accuracy models

B Reor, 40ep, all_feat,
Sigmoid, w/o outl
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0.00 20.00 40,00 60.00 80.00

Figure 38: Accuracies per bucket for low accuracy models - Rares
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After analysing the low, medium and high prediction accuracy models we see that each
category does a good job predicting a price range but not all of the ranges. This becomes
even more apparent when we observe the best models per price range in this last diagram.

Best accuracy per price bucket

B Classif, all_feat, w/ outl XGBoost B Regr, 30ep, all_feat, Sigmoid, w/ outl
B Regr, 50ep, 45feat, Swish, w/o outl W Classif, 20ep, all_feat, w/ outl W Regr, 50ep, 45feat Linear, w/ outl

— 97.65
(0,2] acc % 63,06

61.86

94.49

15.32

(2,5] acc % 45.38
2308

61.91

5292

(5,10] acc % 36.
3310

59.17
0.00
(10,30] acc % 54.66
66.55
56.62
13.51

(30,50] acc % 68.58
20.41
68.73

(50,150] acc % 68,88
67.24

12.39

(150,nan] acc % 51.87
24 64
46,30

66.24
46.03

Overall Accuracy
67.00

il
il
wills
=3

0.00 25.00 50.00 75.00 100.00

Figure 39: Best accuracy per price bucket - Rares

It is clear that classification models are really good for the ranges (0,2] , (10,30] and
(50,1501, regression models with a sigmoid activation function for the range of (2,5],
regression models with either swish or linear activation functions for the range of (30,50] and
regression model using a Swish activation function for the range of 150 and over. For the
price range of (5, 10] there are no models that can give us a good prediction accuracy.
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5.13 Ensemble

Ensemble methods that train multiple learners and then combine them for use, are a kind of
state-of-the art learning approach. It is well known that an ensemble is usually significantly
more accurate than a single learner [24].

Ensemble methods have already achieved great success in many real-world tasks like face
detection and in the Xbox Kinect, a random forest-based skeleton tracking algorithm which
allows people to interact with games freely without game controllers.

5.13.1 Combine Model Predictions into Ensemble Predictions
The three most popular methods for combining the predictions from different models are:

« Bagging. Building multiple models (typically of the same type) from different
subsamples of the training dataset.

e Boosting. Building multiple models (typically of the same type) each of which learns
to fix the prediction errors of a prior model in the chain.

« Voting. Building multiple models (typically of differing types) and simple statistics
(like calculating the mean) are used to combine predictions [26].

5.13.2 Bagging Algorithms

Bootstrap Aggregation or bagging involves taking multiple samples from your training
dataset (with replacement) and training a model for each sample.
The final output prediction is averaged across the predictions of all of the sub-models.

Such algorithms are Bagged Decision Trees, Random Forest, Extra Trees

5.13.3 Boosting Algorithms

Boosting ensemble algorithms creates a sequence of models that attempt to correct the
mistakes of the models before them in the sequence.

Once created, the models make predictions which may be weighted by their demonstrated
accuracy and the results are combined to create a final output prediction.
Such algorithms are AdaBoost, Stochastic Gradient Boosting.

5.13.4 Voting Ensemble

Voting is one of the simplest ways of combining the predictions from multiple machine
learning algorithms.
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It works by first creating two or more standalone models from your training dataset. A
Voting Classifier can then be used to wrap the models and average the predictions of the sub-
models when asked to make predictions for new data [25].

The predictions of the sub-models can be weighted [27] , but specifying the weights for
classifiers manually or even heuristically is difficult. More advanced methods can learn how
to best weight the predictions from submodels, but this is called stacking (stacked
aggregation) and is currently not provided in scikit-learn.

Unweighted average: .

Weighted average:

Figure 40: Averaging predictions to form ensemble models.

Stacked Generalization or stacking is an ensemble technique that uses a new model to learn
how to best combine the predictions from two or more models trained on your dataset.

Training set
| J
|
M T==1 1 |3
R .
l i prediction l l
Predictions P, P, . e P
b b
Meta-Regressor
}
Final prediction P;

Figure 41: stacking concept
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5.13.5 Ensemble approach for POE Rares Regression results

Observing our analysis and performance results on Rares dataset we see that the algorithms
used do not offer the best outcome for all price buckets.

This is an indication that by applying ensemble methods we might get a better performance
score.

We used voting with weighted prediction.

The sub-learners used are:

Prediction
Sub - learner Better results at segment Accuracy
(30,50
ANN with activation function ‘swish’, (50,150 55 38%
50 epochs, 45 features, without outliers (150,nan] =e
(5,10]
ANN with activation function ‘swish’,
. . (0,2] 53.76%
30 epochs, 45 features, without outliers
ANN with activation function ‘sigmoid’,
. . (2,5] 47.44%
30 epochs, 45 features, without outliers
ANN with activation function ‘linear’,
. . (10,30] 55.41%
100 epochs, 45 features, without outliers

Table: 14 Sub — learners configuration participating in the ensemble predictor

We fitted the models and concatenated their predictions in a list.

We used the method minimize to find the predictor’s weights and the ensemble score
applying the function log_loss() .

The function log loss is the following:
def log_loss_func(weights):

""" scipy minimize will pass the weights as a numpy array "
final_prediction =0

for weight, prediction in zip(weights, predictions):

final_prediction += weight*prediction

Page 70 of 109



return mean_squared_error(y_test, final_prediction)

and is based on mean squared root.

The ensemble gave us a score of 57.12 % accuracy improving the previous performance
score of 55.41% which was the best score out of the 4 models we used.

This first approach is the simplest possible since we have better results when we apply
classification algorithms to the Rares dataset.

Producing an ensemble with the best classification results or even deploying a stacked
aggregation of 2 levels would possibly return better results.
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5.14 Conclusion

The dataset is comprised of 580.000 observations hosting a variable number of features from
90+ to 510+ in combinations of 11maximum. As already shown in the diagrams some
combinations between these features are rather rare and have a small presence in the dataset.
As a result the algorithms do not have any way to learn and the performance drops.

Even though none of our algorithms was good at predicting all of the items’ prices, breaking
the price in ranges and observing those price ranges, gave us insight on which algorithms
performed best on each one. After tackling the problem from a classification perspective, we
were able to build a model that would accurately predict if an item was valuable or not. With
a performance score of 97.65% in the segment of (0, 2] the model is pretty confident that this is a not
valuable item.

For the regression part of the problem, using 4 different regression models and via ensemble
learning, we were also able to improve our overall accuracy. Tweaking our parameters and
finding better average weights for our models or trying different models could give us even
better results. Finally, using ensembling on classification models could also help with
improving our overall accuracy.

After observing our results we came to the conclusion that one big improvement on our
algorithms’ performance, would be the addition of more data. This would result not only in
more different combinations but also more observations per price range. There are a number
of ways we could add more data:

Reading the API stash feed from the start of the game

This would include more than 2.5 years of transactions but it would also introduce a number
of problems since the API does not have time properties which we introduced ourselves and
it would mean it is even more difficult to remove faulty observations. It would also introduce
problems related to the storage of the dataset and the computing power needed to build the
dataset and would imply a completely new distributed architecture.

Boosting the dataset with our own samples

Sampling around the value of the features, and creating a bunch of similar samples as well as
using our domain knowledge to create more observations. This would certainly introduce bias
to our models but it could potentially improve our performance.

Improving the current dataset using user feedback

This would be rather difficult to implement, but we could deploy our best model, create
software around it to be used directly from players in the game and then get feedback directly
from the players for the validity of our predictions. That way we could determine which
combinations of features create problems and introduce initial feature weights to our problem
as well as get more data directly from the players.
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Chapter 6: Future Work

The project may have proved to be harder than initially expected and the performance
of our models is certainly not the best for the Rare items, but there are still a lot of ideas we
could test in the future that may increase the credibility of the dataset or the performance of
our models.

Fighting fake data
- When building our dataset we decided to create a number of features to use later, one
of them being the days it took for an item to be sold. Later, we decided that we should
have tracked the hours it took for an item to be sold or even minutes since, according
to domain knowledge, an item that takes less than 30 minutes to be sold, has a high
chance of being fake data.

- In the dataset there is a number of features that are not used.
One of them is the username of the player that made the transaction.
We could classify players in categories expressing the level of confidence we estimate
not only from the dataset itself but from other external sources too.

Legitimate outlier values
- In certain cases outlier values are completely legitimate.
One such case is when an item in Unique items has a spike in value when a streamer
uses it while playing.
We could use causal inference to estimate the deviation from the normal plot and
forecast the price correctly

- Another case is when a certain rare combination takes effect when the game applies
an attribute to the item.

Natural Language processing on game forums and reddit

For our Unique items analysis, we could use natural language processing on game
forums or reddit, to determine positive player language on certain items and introduce new
features in our dataset which would enable us to better predict trends of items.
Reddit and forums also is a very rich source of various players’ guilds that try to scam novice
players to sell cheap. This could help classify certain players as Untrusty and thus the items
they list for sale are considered low on price, or other players as Novice and thus their items
are not to be considered high in confidence regarding to their price.

Moreover, being able to determine the “streamer effect”, a phrase which in the gaming world
means that if a famous person uses certain items these items would raise in price, will also
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help predict trends of those items.

Meta items

In the world of Path of Exile, the “meta” is referred to the best items in a given time
in the game. These “meta” items are generally more expensive. Data mining the most used
items from external websites would help us determine which are these items and engineer a
new feature which would represent the popularity of an item.
These items, if they are rare, also contain certain features which would help us initialize the
weight of those features for our machine learning models.

Building models for individual price ranges

Another idea to be implemented is to build binary classification models, one for each
price range. To do that, for a model of each price range we would categorize the price of each
observation as 0 or 1 if it wasn’t or was in that price range and train each model with all the
observations. Then we would use ensembling to predict the price range of an item.
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Exterapévn Iepiinyn
Kepdraro 1 :Ewcayoy

1.1 To wpopinpo

Mo mouyvidia pe owovopieg evrog moyvidloh ot omoieg aKpAlovy HEGH TNG OyOPAs KoL TNG
TAOANGONG OVTIKEILEVMV, 1] YVAGCT] Y10 T OVTIKEILEVO TOL ALY VIS0 EIvOl KOTAADTNG Yo VoL
avENoel vog VEOG TaiKTnG To TAoVTo Tov. [0 To Project pog ypNoIHOTOoaE TO oLy Vidt
Path of Exile, to onoio £yel pia cuveydg petaforlopevn ayopd pe avtikeipeva o
amoteA0VVTOL Ao TAVE amo 172 TeETpAKNG EKATOUUDPLN SLOPOPETIKOVG GLVOVOAGIOVE
YOPOUKTNPLOTNKOV.

1.2 To mayvidn

Yo moyviol Path of Exile, o1 maikteg £xovv d1apopetikodc 6TOYOVG KOt Y10, TV EMLTEVEN TOVG
anmoktovv avtikeipeva. Ta avrikeipeva yopilovtal g Rare kot Unique. To Unique
OVTIKEILEVOL £XOVV GUYKEKPLEVOVG TOTOVG YOPUKTNPICTIKMV Kot AAAALOVY LOVO Ot TIHEG
tovg. [ Tar Rare, ta yopaknpiotikd avtd propovv va etvar cuvovacpol and 6 péypt 11 and
pio katnyopio opaKTNPICTIKOV Kol 0 GLVOVAGIOS TOVS OAAG Kot o1 TIHEG TOV KAOE
YOPOAKTNPLOTIKOV OPILEL TN TIUY| TOV AVTIKEUEVOV.

H dwompaypdrevon oto moyvidt yivetar pe ) xprion stashes. Ta stashes nailovv to poro
Burpivag oty omoia amekovilel évag moiyng ta avtikeipeva mov 0EAeL vo TOANGCEL.
Xpnowonoiwvtog to eveopoatouévo APl tov mayvidov, katackevdlovpe £Eva cHVOAO
dedOUEV®V TO 01010 amOTEAEITAL 0T TIG TOANOELG TTOL £YIVAV GTO Ty VidL

1.3 X16y0¢.

Ot otdyot pag givor 6o avaroyao to tomo avtkeévov. I ta Unique avtikeipeva Oa
TOPAKOAOLONGOVLE TNV TIUT TOVG Kot B TpocTabnicovpie va mpofAEyove TV ALY TNG
0TO PLEALOV MOTE O TOLYTNG VAL OTOPAGIGEL AV O yOPAGEL TO OVTIKEILEVO LE GKOTO TO
Kk€POOG emeldn M Ty Tov Ba avéPer 1 Ba To TOVANGEL Yo va amo@OyeL T {npio emEON M TIUN
tov Oa méoet. [a ta Rare avtikeipeva, okondg eivar  eKTinon g TG TOVG AvAAoya. TO
YOPOKTNPLOTIKA 0t T OTTOT0 ATOTEAOVVTOL KO YPTCLOTOUDVTOG OUTY| TH TANPOQOpPia O
TaiKTNG Vo omo@acicel av BEAEL vo TOVANGEL 1] )L TO AVTIKEIUEVO.
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Ke@dharo 2: Avaiven covérov dedouévov Unique — Mpopreyn
UEALOVTIKOV TIHAOV

2.1 To ovvoiro dedopivemv

I'o 1o koppdtt avtd TV TPoPAnuatog dtaAééaue 2 unique avtikeipeva, To KAOe Eva yio
SLPOPETIKO AOYO :

e Tabula Rasa Simple Robe
To avtikeipevo avTo OV VAL YOPAKTNPICTIKA ILE GUCYETICUO LE TN TIUN UEYOAVTEPO
tov 0.1 1 pkpotePO OV -0.1 €KTOC OO TNV NUEPNOLOL IGOTILLIO LETATPOTNG TOV 2
KUPLOTEP®V GUVOALAYUAT®V TOV oY VidoV0, 1 omoia yapaktnpilel tov TAnmpiopod
™G ayopdc. Tig mpdteg puépeg ¢ kbe oeldV TO AVTIKEINLEVO AVTO EVOIL TOAD
TOAVTILO KO 1] T TOV TEPTEL OPOUUOTIKA KABMG TEPVOLV Ol LEPEG 1 e GAAL AOY1OL
KaBdG av&dvetor  TANOwplopdS oY ayopd.

e Windripper Imperial Bow
Av1o 10 avtikeipevo ypnoporomOnke pe okoro v multivariate tpdyvoon tpdv
POV ATOTEAEITOL OO YAPOKTNPLOTIKA T 0TI £YOVV GLGYETIGUO LIE T1| TIUN|
peyoivtepo tov 0.1 1 pkpdtepo tov -0.1. Térog, dmwg Kot 6To TPONYOVUEVO
AVTIKIIEVO VITAPYEL LEYAAOG GLUGYETICUOG LE TN TN TOV XOPUKTNPIGTIKOV oL £&nyel
N oo TNV NUEPNOLOL IGOTIUIO LETATPOTNG TOV 2 KVUPLOTEPWOV GUVUALAYLATOV.

2.2 Outliers

o v apaipgon Tov outliers, mepapatiotikape pe 600 texvikég , v IQR kot t Z-score.
Ao T1g 600 TEYVIKEG, Hovo 1 texvikn IQR pumopovee va avipetotiost Tovg outliers kot
dokudlovrag dapopetikég Tiuég g katoAn&ape o threshold=0.7 yia to avtikeipeva
Tabula Rasa Simple Robe kot threshold = 0.8 yia to avtikeipevo Windripper Imperial Bow.

Eriong ypnowonomoae tov teptopiopd days_in_snapshot < 5 to omoio yapaktmpiotikd
IMADVEL TOGEC LEPEG TTPE OTO GLYKEKPLUEVO OVTIKEILEVO v ToANOel. AvTd £ytve 610t O1
TOANGCELS PETA amd S5 MUéEPES lvarl YoUNANG EUMIGTOGHVNG.

2.3 Feature Selection

Mo v emAoyn YopaKTNPIOTIKOV Y10 AVAALGT ¥PNCLOTOONKAV OPKETESG SLOPOPETIKES
TeEYVIKEC. O1 KLPLOTEPEG NTAV :

Correlations

Xpnowonomoape tn péBodo ‘corr’ tng Piprodnkng pandas yio va agatpécovpe KGbe
YOPOKTNPLOTIKO UE HIKPO GLOYETIOUO pe T Tiun. [ ) mepintmon tov Tabula Rasa Simple
Robe avtikelpévou dev vINpye KATO10 TETOL0 YUPAKTNPLOTIKO EVG Y10 TN TEPITTMOT TOV
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Windripper Imperial Bow, kpatioape Hovo to YoupaKTnploTIka Tov iyay GUoYETIoUO
peyaAvtepo tov 0.1 ko pikpdtepo tov -0.1.

Random Forest

H pébodog Random Forest £xet evompotmpévn péhodo mov avaiiel t onpoacio kaoe
YOPOKTNPLGTIKOD OTOTE YPTCUOTOIDVTOS T TNPUUE O ATOTEAEGLOL TN ONLOGI0 TOV £XEL TO
KAOE YaUPUKTNPIGTIKO Y10, TN TN TOL OVTIKEULEVOL

Feature Importances - Tabula Rasa Simple Robe

ex_conv_rate
item_level
Quality
corrupted

co_# to level of socketed trap or mine gems

co_#% increased damage -

co_# to level of socketed gems -

co_# to level of socketed ace gems -
co_# to level of socketed duration gems -

co_#% increased maximum life

0.0 0.1 0.2 0.3 0.4 0.5
Relative Importance per feature

Figure 13

Feature Importances - Windripper Imperial Bow

ex_conv_rate

Elemental Damage

ex_adds # cold damage

item_level

Quality

im_#% increased elemental damage with attack skills
days_in_snapshot

Critical Strike Chance

co_bow attacks fire an additional arrow

co_adds # lightning damage

0.0 0.1 0.2 0.3 0.4 0.5
Relative Importance per feature

Figure 14
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Backwards Feature Elimination

o Apyikad Aoppdvoope OAeg TIg LeTABANTEG N TOV VILAPYOVY GTO GUVOAO SEGOUEVOV LOG
KOl EKTTOOEVOVLLE TO LOVTEAO YPNCULOTOIDVTOS OVTA

e Y11 cvvéyela, vToAoyilovpe TNV AmOd00T) TOV LOVTEAOL

e  Topa, vroroyilovpe TV AmOS0CT TOL LOVTEAOL apov eEaAelyovpe KAOe petafAntm
(n @opéc), onAad1 apalpodue pio petaPAnTn Kabe Popa Kol EKTUOEVOVUE TO
HoVTELO OTIg vTOAomeg N-1peTaPfAnTtég

e IIpocodiopifovpe ™ petafAntn e omoiag 1 apaipeon £xel ONUIOVPYNOCEL T
uiKpoTeEPT (1 OX1) CALOYT) GTNV OITOO0CT] TOL LOVTEAOD KOl GTI GUVEYELD TNV
OTOLLAKPVVOT TNG LETOPANTIG QLTI

e Enavardfete avt m dwadwkacio péxpt vo unv aearpedel kopio petapfintm

I"o va to metvyovpe, ypnoonomoape rfe and ™ BiProdrkn sklearn.feature _selection ue
ToAOVG akyopibpovg mov cupmeplapfovay, oArd dev meplopilovtav oe Linear Regression,
Logistic Regression, Random Forest, Decision Trees kAn. And to mopamdve to 1o otadepd
amoteAéopoto tav oo ta Decision Trees.

2.4 Metatpom) avopotov(dvicmy 1] aKAOVOVIGT®OV) (POVOCELPAOV GE OLLOLMV

Avopoteg (1) avioeg 1) akavovioTeg) ypovocelpég eivar pia akoiovdio Levymv xpovov Kot
TIUNG TapatPNoems (tn, Xn) pe avotnpd avsavopuevoug ypovoug tapatnpnong [7]. Xe
avtifeon pe T1g €€lo0ov Soy®PIoUEVES XPOVIKEG GELPEG, 1) ATOGTACT TOV XPOVAOV
TapaTNPNoNG oV eivar atadepr). Mia kKo TpocEyyion yio TNV avAALGT TV YPOVIKA
OVETOPKADS OO MPIGUEVOV GUVOA®V £ivol 1] LETATPOTN TV OEO0UEVAOV GE £EIGOV

O WPICUEVES TAPOTNPNOELS LE TN YPNON KATOLUG LOPPNG TAPEUPOANG - cLVNOMG
YPOLULUIKNG - KO GTT) GLVEXELN EPOPLOYNG TOV VITOPYOVCOV HeEBOdWV Y e&icov
JLOPICUEVO DEQOUEVOL.

Apyucd To dEOOUEVOL LLOG OEV ElYAV TOL XOPAKTNPIGTIKA TMV YPOVOGELP®Y OEO0UEVAOV, ONAAON
Ol TALPOTNPNCELS OEV NTAV Lo akoAovBia OV ¥pPOVIKOV TUNUAT®V.

AoV sicaydyope éva deiktn datetime o 0moiog avVTITPOCOTELE TV GPOL KOL TN LEPOL TG
TAOANGNG, CTAGALE TO OEOOUEVA LOg G ioa TUNaTa, pLOUILOVTOS o GLYVOTNTO Kot
TOPEUPAAAOVTAS TIG TOPOTNPTCELS.

Mmnopei va Tapatnpnei 6t1 o deiktng date _time kb mapatnpnong Ppickeron og
JLPOPETIKY XPOVIKN TTEP1000 1 e GALA AOYLX GE SLOPOPETIKT cuyvoTTA. [0l vt
LETATPEYOLLE TO GOVOLO SEGOUEVOV GE 0L GELPE YPOVOCELPDV, TPEMEL EMIGNS VO AVENCOVLLE
™ GLYVOTNTO TOV SEYUATOV HOC, OTTMG amd AETTA GE OEVTEPOAETTA, 1] VO TO LLELDGOVLLE Y10
TOPAOELYLLOL atd PEPEG G€ UNVES. AVTEC 01 dlodkacieg ovopdlovTon ETavadEry LOTOANYiaL.
Kot ot1g 600 mepintdoetg, ta dedouéva mpénel vo epevpebovy. Edd emAéEape va peudoovpe
Ta Oetypato amd AETTA GE MPEG.
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2.4.1 Interpolation

e ot T0 PEPOG lyape Vo AOGOVE 0VO TPOPANUOT TOV OKAVOVIOTOV OEDOUEVMV: KEVE
TULOTO TTOV ERPOVIGTNKOV LETA TNV OVOOEYHOTOANY i, YOPIC VO £XOVV TOPATNPNCEL KOTA
1 OEPKELD AVTAOV TOV YPOVIK®V TEPIOOMV KOl TUNUOTO L TOALATALS TILEC TTOL EMPETE VAL
katoAdfBoope oe pio Tipn. 't 'avtd Enpene va mapeppfdriovpe ta dedopéva pag. H
mapepPorn etvar pia pEB0d0g KaTaoKEVNG VE®V GNUEI®V dEGOUEVOV EVTOG TNG TEPLOYNG EVOG
SL0KPITOH GLVOLOL YVOOTAOV oNUeEiwV 0edopévmy. Ot dadikacieg Tov akolovOncapEe NTOV
TANP®OT Kol IGOTESMOT).

Flattening

21 TEPINTMOOT TOV TOAOTAGY TYL®OV GTNV 1010 YPOVIKT| TEPI0O0 TPETEL VAL TIC
ooned®oovpe. Avt 1 dwadikacio ovoudleton Flattening. T'a va tetdyovpe 10 6KOTO pog
YPNOLOTOWGOUE EiTE TO PEGO aptOpo, T0 didpeco gite To mode. I ta TeptocdTEPL
YOPOKTNPLOTIKA YPNGULOTOWGOALE TO SIAUEGO CAAAG Y10 T1 TUUT XPCLOTO|GALLE TOV LEGO
6po, dedopévou 0Tt o€ avtifeon e To GALD YOUPOKTNPLOTIKA, O TIES TIUMV TIUNG
Kopaivovtay mold meptocotepo. H dtapopd petald tmv 600 pmopel va avel 6To mopakdto

YPaenua.

Tabula Rasa - mean vs median flattening method

—— price_amount_meanFlatten

price_amount_medianFlatten
15 v 1 v
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FiIIing Figure 16
X1 mepinTmon Tov AEITOVY YPOVIKEG TEPTOJOL TPEMEL VAL TIG GUUTANPMOCOVLE UE
TPOETMAEYUEVES TIUEG DOTE VO LETATPEYOVLE TO OEGOUEVA LLAG GE GUVOAO OEOOUEVMV
Ypovooelpmv. Avto Eyve gite pe pe pébodo backfilling, forward filling, ypoppikd
YPNOUOTOIDVTOC YPOUUIKY Kortavoun eite pe ) uébodo pchip mov cvvbog ypnoponoteitan
Yo TOPEUPOAT aplOUNTIKOV dEG0UEVOV o OPLOAT GUVEXNG AgtTovpyia. AToQacicope va
YPNOLOTOm ooV LE TN HEB0JO pchip, dedopuévou OTL Tay S1aTnPNUEVO Kol OTTTIKA EVYAPLETO.
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H Baokn 0éa Nrav va tpocdloptotovv ot KMGELS £T01 doTe 0 TapeUPAAAOUEVOC VO UnV
taAavteveTon Thpa woAw [10].

2.5 Avaivon XpoviKov LepOv

Mo v TpoPreyn ypovooelpdv e ) xpnon tov diktvov LSTM, npocnaboipe va
TOPEYOVUE OEIKTES OLVOLIKNG TOV TILMV TOV LOVOIIKOV OVTIKEWEV®V. X avTd TO ONUEi0
VILAPYOLY CNUOVTIKEG TOPAUETPOL, T CNUACIO TOV OTOIWV TPEMEL VAL EENYNGOLVLLE:

Xpovog e16600v (Lag / Input Timesteps)

Ta mapadooctiakd vevpovikd diktua maipvouv kdbe popd Evav avtdvoLo eopéa dEdOUEVHV
Kot ogv €xovv €vvola g pvnung ota dedopéva. Ta diktva LSTM Sratnpodv Eva mhaicto
UVAUNG HECO GTOV 0y®YO TOVG Kol £TG1 KOBIoTOVTOL 10YVPA GTNV OVTILETOTIOT TOV
SLOOYIKDOV KO YPOVIK®V TPOPANUAT®V Y0pic To (TN TOV SIHKOLLOVOTG TG SLOPLYNG TOL
emnpealet v omddoon tovc. H "pviun" mov datnpet o diktvd pog eivan n kabBovostépnan.
"o k60e TpoPreyn, TpoPodoTovE (o KaBLGTEPTON SLUSOYIKAOV TANPOPOPLDOV GTO dIKTLO
pag, y v padbovpe omd atd.

AxolovBia TpoPreyng (Forecasting Sequence)

Edv n kaBvotépnon givar 1 gilcodog, 1 axorovbia poPreyng sivor n €£o0dog. [Ipoxettan yio
10 TapdBvpo YPOVIKNG TEPLOOOL TOL TO LOVTEAD [oS B TpooTabnoet va mpoPAEYEL.

Ay @pPLopovg 6T EKTAidEVONS / OKIUNG

Axpipac onwg kot ot ANN, ypnoyonowwvtag 1o LSTM, npénet va yopicovpe to chvoro
JEJOUEVMV LLOG O VO GET EKTTAUOEVOTG KOt £VaL GET SOKIUADV. Y TAPYOLV MGTOCO UEPIKES
Slpopég:

® O 01y wp1orOg € £V GUVOAD OEOOUEVAV deV TTPETEL Vo avakoateveTatl. [Ipémet va
OTOPAGICOVLE EK TOV TPOTEP®V TOCEG YPOVIKES TEPLOOOVGS Ol YPNCLOTOGOVLE MG
ekmaidgvon).

e To Lag dev umopel va givor vynAdTEPO 0O T0 GLVOAO OEOOUEVMV EKTTOIOEVOTG.

o O1 01oywp1opol ekmaidevLoNg Kot SOKIUMV ivar d1000y1K01 KOl TO GET EKTOLOELONG Elvor
TPV TO GET SOKIUNG.

Oparomoinon (Normalization)

Agdopévov 0t 1 Tipn| ekkivnong evog otoryeiov etvar dtapopetikn yio kB emoyn 3 unvov,
amopacicape vo Adpovpe kdbe mapabuvpo dedopévmv ekmaidgvons / SOKIUOV Kot Vo, TO
KOVOVIKOTTOMGOVIE MOTE VO AVTIKOTONTPILEL TIC TOCOOTIONES QAAAYEC OTTO TNV OPYT] AVTOV
ToV TTOPaBvpovL.
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Enoyég (Epochs)

Mua emoyn elvar amAid Eva TEPAGLA TPOG TO EUTPOG Kol VUL TPOS TO, TLGM TEPACUO OADV TWV
Tapadeypatmv eknaidevons. H eknaidevon yio meptocotepeg enoyés Kabiotd o Lovtéro
HoG KaADTEPO OAAG Kat o emppenss oe veppopTmon(overfitting).

Méye0og mapridag (Batch Size)

To péyebog maptidag eivar 0 apOodg TOV EKTUOEVTIKOV TOPASELYHATOV GE £VO. UTPOCGTIVO /
onicOo mépacpa. Oco vynAdtepo gival to péyebog g maptidag, TG0 TEPIGGHTEPOG YDPOG
pviung yperdletat. ‘Exet mapatnpndei oty mpdén ot dtav ypnoonoteital pio peyordhtepn
TaPTION VITAPYEL ONUAVTIKT LITOPAOUIGT GTNV TOLOTNTO TOV LOVTEAOV.

Améovpon (Dropout)

H andppiyn eivan pua péBodog taktomoinong mov mpoceyyilel tnv Katdption evog LeydAov
aplOLOY VELPOVIK®V SIKTO®V UE S10POPETIKEG TOPAAANAES apyttekTovikES. Katd tn didpketa
¢ ekmaidgvong, kamolot THmot £60MV GTPOUATOS ayvoovvtat Tuyaia 1 "amoywpovv. ['a
napadetypa, Eva otpmpa Dropout pe poBud 0,2 éxet 20% mbavotra va piEet kdOe vevpova.

Yuvaptiosis Andierag(Loss Functions)

Mo Aettovpyio OTOAELNG YPNOUYLOTOLEITAL Vi TN PEATIOTONTOINGT TV TIUAV TOPAUETP®YV GE
éva LovTELD veupmvikol diktvov. Ot Aettovpyiec ATMAELNG AVTIGTOLYOVV GE £VOL GUVOLO
TILOV TOPOUETPOV Y10, TO SIKTLO GE 10l KAMUOK®OTY] T TOV DTOOEIKVOEL TOGO KOAXL 1|
TOPALETPOS QLTI OAOKANPOVEL TNV Epyacio mov To dikTvo mpoopiletar va Kavel. Eivat
oVC0TIKA £vag LadnUaTikdg TPOTOG HETPNONG TOGO AavOacuéEVES elval o1 TPOPAEWYELS LLaC.
Andrewo gtvar avtd 0 péTpo.

Beltietomowmtiig (Optimizer)

Koatd ™ dudpxeta g drodwkasiog kotdptions, aAAALOVLE TIC TOPAUETPOVS TOV HOVTEAOD
LOG Y10l Vo, TPOGTOOCOVLE VO EACLICTOTON|GOVE T AELTOVPYIO ATMAELNG KOl VO KAVOLLLE
KaAvtepes, akpiéotepeg mpoPAréyets. Ot fertictomomtég cuvovalovy T GuVEpPTNON
ATOAELOG KO TIG TAPAUETPOVE TOV poviéaov [11].

Yuvaption gvepyomoinong

H ovvaptnon evepyomoinong evog kopPov kabopilel tnv €060 avtod tov KOpPov N
"vevpava', 0ed0UEVIC LaG 16000V 1) GLVOAOL €1G0OMY. AT 1 ££000G YPNCLUOTOIEITOL GTN
OLVEYELD MG €1G000G Y1 TOV EMOUEVO KOUPO Kot 00Te KabeEng £mg dtov Bpebei n embBount
Adom oto apykd TPOPANLA. AV deV EQAPLLOCOVLE [LLOL GUVAPTNOT EVEPYOTOINGNG TOTE TO
onpa €£600v Ba NTav amAd Pio OTAT] YPOLLUIKT GUVAPTNON.

HyperParameters
"Eva hyperparameter eivat pio mapapuetpog g omoiag 1 Tn £yl optoTel mpv apyioet

dwdwacio ekpdOnong. Avtibeta, ot TYHES GAL®V TOPAUETP®V TPOEPYOVTOL OO TNV
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eKTaidgvoT). AlaPopeTIKOL OAYOPIOLLOL KATAPTIONG LOVTEAMVY ATOUTOVV OOPOPETIKES
hyperparameters ot omoiec 0o BedtiotomomBovv apydTEPQ ¥PNGIUOTOIOVTOS Lo, LEB0S0 TOV
ovoualetar Grid Search. Ot vrepm hyperparameters pog nrov €6®

® XpovoolaKOTTEG IGO0V e [IpofAemouevn axolovdio

® Aoy mpiopdg TpEvov / dOKIUNG e Emoyéc

o Kat®eit vynAiov mocotikov opiov IQR e AndAiein

® [Toc0010 expadnong yioo SGD ® Nevpmveg SlopopeTIk®V otpopdtov LSTM
kot Dense

® XuVAPTNOT EVEPYOTTOINGONG
(activation function) e Ilocootd andppryng(dropout rate)

e Optimizer

2.6 Univariate Unistep evavtiov Univariate Multistep ypnowonoi®vrag
LSTM

Onwg avaeépdnke mponyovuévmg, xpnoiporoliooue o avtikeipevo "Tabula Rasa" eneion
dgv amoTEAOVVTAY A0 CNUOVTIKA YOPAKTNPLOTIKA TToV Ho Lmopodcay vo ETNpedcovy Ty
TIUT TOL EKTOG OTO TNV NUEPTOLOL IGOTIO LETATPOTNG. XE AVTO, EKTEAOVUE 2 TOTOVG
avaivoemv, unistep kot multi-step. To Unistep 1 To point-to-point givor n TpdPreyn piog
LOVo YPOVIKNG TEPLOOOV UTPOGTA 0md TO XPOVO, oYeOAloVTOS oVt TV TPOPAEYN KO OT
ouvéyela Taipvovtog to enopevo mapdbvpo pall pe Ta TANPN dESOUEVH SOKILMY Kol
npoPAémovtog 1o emOUEVO onueio yio AN o gopd.

H npopreyn multistep o yiver o dvo pépn. To mpdTo Ba omoteAeitonl amd po TAfpn
TPOPAEYN aKoAovBiag, apyikomoldvTag £va Tapdbupo eKToIdEVOTG KOl EKTALOEVOVTAG TO
LoVTELO pag o€ avTo. To poviédho t0te mpoPAénet To emOUEVO onueio kot petatomilovpe To
TopaBvPo KATA pia YPOVIKN TEPI0d0 TPOG Ta. OeELA, akpmg OTwe N uEBodog point-by-point.
H dwopopa eivar 1ote 1 emdpevn TpoOPAey yiveTal ¥pnoIULOTOIDOVTAG TO OEGOUEVO TTOV
wpoPAEYaLE TNV TpONYoLUEVT TPOPAEYN. X1 devTEPN TPOPAEYN ExOVLE EVOL
nwpoPArenduevo onueio dedopévey, ot Tpitn 2 TpoPrendueva onueio dEdOUEVOV Kol 0OVTM
kaBeENg [9]. Aol mpoPAéyovpe onueia ica pe v akolovbia 16600V, 1 EndueVN
TpoOPAeyN pog arotedeiton LOVo amd to tpoPAemdueva onueio dedopEVeV. Avtd pHog
EMTPEMEL VAL YPTCLLOTOMGOVLLE TO HOVTEAO Yl VO TPOPAEYOLE TOAAL PripaTo UTpocTd,
0AAG KaODS TpoPAETEL TIC TPOPAEWELS TOL GTN GLVEXELD LTOPOVV Vo fACIOTOVV GTIG
npoPAéyelc, avtd Bo 00Ny oEL 68 AVENUEVO TOGOGTO COAALATOS TOV LETENEITA TPOPAEYEW®V.

To devtepo pépog ivar pa TpdPreym morlhomddv axorovbidv(multistep). Avto eivar éva
petypo g poPreyng minpovg akorovdiog vd v £vvola 0Tt apykomotet To mapddvpo
JOKIUNG e OEOOUEVA SOKIUMV, TPOPAETEL TO EMOEVO oMpeio TAVE® amd avTd Kot KAvel Eva
véo Tapabupo e To ETOUEVO omMpeio. QoTdO60, LOMG PTAcEL 6€ Eva onpeio 6oL To
TapaBvpo ElGaYMYNG AmMOTEAEITOL OO TPONYOVEVES TTPOPAEYELS, CTAUATE, LETAKIVEL TPOG
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T EUTPOG EVa TANPEG UNKOG TapaBvpov TPOPAEYNG, ETAVAPEPEL TO TAPABLPO LLE TO
TPAYLOTIKAE dedopéEVa doKIUNG Kol Eekva Eova TN oladtkacio. XTnv ovcio avtd divet
TOALMATAEG TAGELS OTTMG O TPOPAEYELC TAV® GTO OEGOUEVA TV SOKILMDVY, TPOKELEVOL VOl
avaAvOel OG0 KOAQ TO LOVTEAD UTTOPEL VoL TAPEL TIG TAGELS TNG LeAAOVTIKNG opung [17].

Oleg o1 dradikaocis dnuiovpyndnkay ypnoomoldvtag tic Pipiodnkeg Tensorflow kot
Keras kafd¢ eniong kot moAlomAéc Pifaodnkeg tov sklearn[12].
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4 Figure 17

Me RMSE = 0,01855 n mpoPAeyn amd onueio oe onpeio sivor pia apketd axpiPng
OVOTOPAGTACT TOV Tt TPOKELTOL VoL GUUPEL GTNV ENOLEV YPOVIKT| TEPTODO.

AvrtiBeta, n TpoPreyn TANpovg akorovBiag pog tpoomadei vo mpoPAréyet Tt o cuuPel otig
TPMTEG YPOVIKES TEPLOOOVGS, OAAE 0pyOdTEPD, PaGILONEV ATOKAEIGTIKA GE AALEG TPOPAEYELC,
amotuyydvel va mpoPAéyet kot to RMSE avEdvetan dpopatikd.

&

time period

Full Sequence forecast_sl9_spl0.4_ep200_n0100_n150_n250_dr0.1_aclinear_optadam _Ir0.5
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True Data
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Figure 18
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Téhog, PAEmovE TN TAOKN TPOYVMONG TOALDY oTadiwv. Me oet exmaidevong 0.4 (1 mepimov
30 nuépeg) pmopet vo TpoPAEYEL TIG TAGELS (Kot LEPTIKEG POPEG TO EVPOG TMV TAGEWV) Y10 L0,
HEYAAN TAEIOYMOiD TV XPOVIKOV TEPLOd®V. AV Kot dev givar TEAEL0, amoTedel Ko £voeién
NG YPNOUOTNTOG TOL LOVTEAOV.

Grid Search

["o va Bektidoovpe To amoTeAECUATA LOG, TTPETEL VO, GLVTOVIGOVUE TIG hyperparameters pag.
"o to Adyo avtd ypnooroooue Grid Search. H uébodog Grid Search ypnoipomoteiton yio
™V €0peoN TOV PEATIOTOV VIEPTOPAUETPOV EVOG LOVTEAOV TTOV 00NYEL OTIC O «aKPPEICH
npoPAréyelc. H avalnmmon mAéypatog onpiovpyel éva poviého yio Kabe cuvovacud
VREPTOPAUETPOV OV KaBopileton kot a&lohoyel kdBe povtéro. o mpoPréyelc and onueio
og onuelo, vmoroyicape o RMSE tov npofAéyewmv yio k0B povtédo kan emAéEapie To éva
pe 1o yapnAdtepo RMSE, evd yia tig mpofAéyeic mAnpovg axolovbiog OAa Ta amoTEAEGHOTA
pog frav koK Kot facilopeva o€ ToAAATAL COAALATE OEV SIVOUV KOAT OVTITPOGHOTEVCT)
TOV LEAALOVTIK®V TILDV.

Ot TtopdpeTpot Tov PEATIGTOTOWCALE KL TAL EVPT TYLDOV TOVS aivovTol Topakate. Eivat
onuavtikd va onpeiodei 6t n ypron evog sgd optimizer £dwoe ToAD xepoOTEPQL
amoteAéoparto an '6, Tt 1 adam yuo kéOe learning rate mov tov Eekvioape Kot yio avTo To
AOY0 oTAUOTAGOUE TN dOKIUN Vi, 016t Ba dimhaciale To péyeboc TV TEPITTOGEDY HaG.

INo 11g TpoPréyelg TOAGV 6TadIMV OV UTOPOVGALE VO CUYKPIVOLLLE SLOPOPETIKA LK

grid = ParameterGrid({"sequence_length": [6, 7, &, 9, 18, 11, 12, 13, 14, 15, 18],
"train_test_split": [8.3 , @.35, 8.4 , @.45, 8.5 , 0.55, 8.6 , @.65, 8.7 , @.75, @.8],
"epochs": [18@,288],
"optimizer”:["adam’,'sgd'],
"learning_rate":[©.81,8.85,8.1,8.2],
“layera_WELPDrs”:[1BGJ296]J
"layerl neurons":[58,188],
"dropout_rate":[©.1,0.2,8.3,0.4],
"layer3_activation_function":['linear’, ' 'sigmoid’]
1))
OAANAOLYIOG KO OVAAOYQ LLE TO TOGOGTO TV GET EKTOLOELONG OOKIUNG KAOE TpoPAemOUEVT
Téom Nrav o€ d1PoPETIKO YpoviKo Tapdbupo kal elxe dapopeTikd unkoc. I'a To Adyo avto,
Ol LETPNOELS FMSE, Mae 1 mape dev NTaV AVIUTPOCOTEVTIKES TNG AmOO0GNS TOV LOVTEAOD KOl
™G WKovOTNTAS TOL va TpoPAéyet Tdoelc. H amdpaon yio 1o Kaddtepo povtédo 1 povtéia
£YVe AMOKAELGTIKA LE TNV TOPATHPNOT KAOE SLUPOPETIKNG YPOUPIKNG TAPAGTACNG
OTTOTEAECUATMV.

I'evikd yuo droywpiopovg vymidtepovg amd 0,5, to povtéro ékave "overfit" kot ot Tdoelg dev
elyov Beticég 1 apvnTikég kopveéc. H avénon tov mocsooton dropout 1 n tpocOnkm
TEPIOCOTEP®V EMTEIWV EYKOTAAEWYNS OV lye Kapia aAhayn o€ ovTo.
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IMa prog adAniovyiag vyniotepo and 10, ot TpoPAEyeLS iyov peydlo opaipa Kabdg kabe
enouevo onpeio TpoPreync Paciotnke oe mepiocOTEPA onueia TPOPAEYEWV.

"Eva kaAo onpeio yio 8 mpeg kot 12 dpeg ypovikég mep1ddovg NTav To UNKoS akoAovdiag 6.
To povtéro pag Bo umopovce oyedoV TAVTO Vo, TPOPAEYEL GV 1] TN TOV AVTIKEIUEVOL Ol
avéPave, va TEsel N EAPVIKES aAAOYEG, KaB®MG Kol TO E0POG AVTOV TOV TAGEMV.

Mo TopAUETPOG TOV NTAV ETIONG TOAD GNLUOVTIKN TOV 1) GLVOPTICELS EVEPYOTOINGNC.
E@dcov kavovikomomaoape Tig LeTaPANTES LG Kol TO TPOPAETOUEVO TOGOGTA AALAYNC, OEV
UTOPOVGE VO, XpNOILOTOMB0VV GUVAPTICELS EVEPYOTOINGNG TOL OEV LITOPOVCAV VO
Tapayovv apvnTika amoteAéopata. And T cuvaptioel tanh ko linear activation, n linear
£0MGE TO, KOADTEPQ OMOTEAEGLOTAL.

TEéN0G, 01 emOYEC KO 01 VELPAOVES KAOE GTPMUATOC NTAV TTOAD CUAVTIKO va. dtatnpndovv o
pkpovg apBpovg, 200 emoyéc og péyrotn tiun kKo 100 kot 50 vevpdveg 610 TP®OTO KO TO
dEVTEPO GTPOUA, KOODS 01 TEPICGOTEPES EMOYEG 1) TEPICGOTEPOL VEVPAOVES GE VO GTPOLLAL
npokaiovoav overfitting Tov povtéhov. Avtd onuaivel 6t ot TpoPAdyelg pog dgv Oa
UTopovGaV vo £X0VV KOPLOES gite apvnTikéG gite BTk,
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Mo TopapUeTPog oL Enaée PeydAo poAo NTav 0 PLOUOG TOL GTPMOUATOC
gykotaletymg(dropout rate) kabmg kot oco dropout eninedo VINPYAV GTO VEVPMOVIKO LLOG
diktvo. Xpnoporoiwvrag 2 enineda dropout g taéng tov 0,1 ko 0,2, pog Edmoay ta
KaAOTEP amoteléopata KoOMG Lelmwoay To €DPOG TV TPOPAETOUEVOV TACEWDY KOl
EMETPEYAV GTO LOVTEAO VO TPOPAEYEL TEPIGGATEPES KOPLOES TIUNG.
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2.7 Multivariate Unistep evavtiov Multivariate Multistep avaivon
ogoopuévov ypovooelpdc pe LSTM

I'o v avéivon multivariate StohéEape YopaKTNPIOTIKG LUE GUOYETIGHO LE TIUT LEYOUADTEPO
tov 0.2 Ko Tov epeavioviovoay g pHeyaio mocooto. ['a avtd to Adyo Kdabe
YOPOKTNPLGTIKO TOV TOTOV «CO_» EMPETE VoL PalpeDel.

Axolovbmvtag to Tapdaderyua pe univariate, kévape tpdta TpoPAEYELS and onueio o€
onuelo Kol 0T GLVEYELN TPOSTOONGALE VO TPOPAEYOLLE TOALATAEG TAGELS. AVTY| T POPA
TPOLYLLOLTOTOUCOLE TEIPAUATIGLOVS LE SLAPOPO YOPOKTNPICTIKA Y10l VO, SEIEOVLE TG M
aQaipesT TOV YOPAKTNPIOTIKAOV B0l UTOPOVGE VO EMNPEACEL TO GUVOMKO KEPSOG
TANPoPopiag Tov aviumpocwnedcoope vroloyiovtag v tiu RMSE [14].

Extelovpe 1o 1010 povtédo ypnoyonowmviag S, 6, 7, 8 kal 9 yopaKTnploTikd.

To BéATioTo Vevpkod diktvo cvvictatal and 3 otpopato LSTM pe 100, 50 kot 50 vevpdveg
avTioToiyme, kabmg kot 1 otpodpa dropout mov pvBuictke o€ 0,3. To tedevtaio oTpdLLL
ntov évo dense oTpduUa LE YPOUULIKT GUVAPTNGT EVEPYOTOINGNG.

Ot hyperparameters kot to. €bpn TILOV TOVG TOL SOKLUACALE, KOODS KOl TO 0TOTEAEGULATA,
LTTOPOLV VO JOLV TOPAKATO.

To amoteréopata mov mpape NTav Kadvtepa (Lkpotepa RMSE) 6tav ypnoiomotrdnioy
TEPLOCOTEPO YOPAKTNPIOTIKA, KOODG vanpye Aydtepn anmAigia TAnpopopidv. Eniong,
pikpoTEPO UNKog adAniovyiog elye Mg amotéAecpa KpOTEPO rMSE KoL AyOTEPES EMOYES
elyov og amotédeopa ikpotepo overfitting kot kotd cuvéneia KaAdTEPN T FMSE.

Point to point forecast_sl6_spl0.4_ep100_n0100_n150_n250_dr0.30000000000000004_aclinear_optadam_Ir0.5

True Data
| f ‘\ f { \| | | | Prediction

Figure 23
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Table 8

{"sequence_length™”: [&, 7, 8, @&, 18, 11, 12, 13, 14],
"train_test split": [B8.3,8.4,8.5].

“"epochs": [1e&,28a,388].

"Dptimizer":['adam']J
"layer_@é.neurons™:[1e&, 2868, 388] ,

"layer_ 1.neurcons”:[58,1e&,15a],
"layer_2.neurons”:[58,188,153] .

"layer_3.rate”:[8.1, 8.2, 8.3].

"layer 4a.activation function™:["'linear']

by

Table 8: Results grid after fitting models produced using hyperparameters — Uniques

dropout_rate ¢ epochs 4 learning_rate & neurons0 ¢ neurons1 & neurons2 & no_of features &« optimizer & rmse ¢ sequence_length

- - - - - - - - -
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

0.3 100 0.5 100 50 50 L] adam 0.111247
0.2 100 0.5 100 50 50 9 adam 0.111601
0.2 200 0.5 100 50 50 H adam 0.112929
0.3 300 0.5 100 50 50 & adam 0.206421
0.2 300 0.5 100 50 50 6 adam 0.208711
0.3 300 0.5 100 50 50 6 adam 0217636
0.2 300 0.5 100 50 50 5 adam 0.235387
0.1 300 0.5 100 50 50 5 adam 0.293465

s
b

Ar

10
14
14

train_test_split &
04
04

03

03
0.3
03
03
0.3

To 1810 pmopel va mapatnpndel yo v npoPrieyn o moArd otada [15]. Otav o daympioprog

ekmaidevong / dokung dwutnpeitar og 0,4 paivetot va ivatl n BEATIOTN TN Yo TNV

TpoPreyn tdoewv o€ yaunAd unkn akoiovdiog. Ocov apopd Tig emoyéc, pe 100 1 Arydtepeg

EMOYEC, TO HOVTELD pmopel va TpoPAdyet e akpifela tig tdoelg. Emiong, o pubudg

eykataienyng 0,2 1 0,3 emtpénetl 610 povtéAo va TpoPAénet o £viova koTdToTo Opta. Ot
veupmveg 0ev mailovv 1060 peydlo poro, aALE 6TIG VYNAGTEPES TILEG TTPOPAEYOLLE AYOTEPES

KOPLPEC.
Figure 24
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SVUVOMKA, OTMG POAVETOL KO OTIC TOPATAVE® TAOKEC, Y10l TOL YOPAKTNPIOTIKA 5 Ko 9
avTIoTOlY O, £XOVTOG TEPIGGOTEPO, YOPOUKTINPIOTIKA, ETETPEYOV GTO LOVTEAO LLOG VO, TPOPAEYEL
TIG KAAVTEPEG TAGELS KO T TAAGTN TOLG [18].

2.8 Toumépaocpa

Evd n dadikacio mpdPreyng pavnke apytkd SOGKOAN, KATOUPEPOUE VO EYOVIE TTOAD KOAD
amoTéEAEC O O TPOPAEYELS Yo LOVOOIKA oToLyEln KaBMG Kot KOAES TPOPAEYELS TOAADY
otadiwv. [Tapdro mov 1 daudikacio a&loldynong g TpoPAEYNC TOAAATAGY GTAdI®V OEV
nrav BEATio, Oo puropovcape vo Bpodie GLYKEKPIUEVOUS VTEPTOPAUETPIKOVS TOPEYOVTES
0ot omoiot Aettovpyohoav KOADTEP TAPUTNPDOVTAS TIG TAOKES Kol 50 YOVTAG TO
CLUTEPACUATA TOVG. Exovtog oAoKANpOUEVEG TOPATPNGELS Y10 KAOE LOVOIIKO OVTIKEILEVO
TOV ALY VIOL00, Oa LTopoHGALE VO SNUIOVPYHGOLE LOVTEAX Y10 KOBEVA KOt 6T GUVEXELL VOl
OVTOLOTOTTO GOV LE T SladtKacio TPOPAEYNC TOV TIL®V Tove. Mia 1déa yia TV emAoyn Tov
KOADTEPOL HOVTELOV pETE amd Peltiotonoinon hyperparameters Oa tav va a&loloynOei
KG0e LOVTELO GOUQMVA e £V GUYKEKPLLEVO KOO T.Y. TNV TPOPAEYN T®V Am0dOGEDV NG
ayopdg 6to eumdplo Kat T ypnomn tov kEPdovg Kot ¢ Cnuiag (PNL) oc petpnoets.
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Kepdlaro 3: Avarlvon ocdoopuévav Rares - Ilpopieyn tip@v
3.1 I'evika

[Mopatpovrtag To Rare avtikeipeva pe v Tp®Tn Hotid, To TPOPANUA ToV 0 HETAPANTOC
ap1OUOG YOPOKTNPLOTIKOV Yo KaOe Tapatnpnomn. Aaupdvovrog vrdyn 611 kdbe Rare
aVTIKEILEVO, TOV oNUOivel KAOE TOpATHPNOT), OEV LITOPOVGE Vo £YEL TEPIOCOTEPA OO 12
YOPOKTNPLOTIKE Kot 0 aptBuog TV Tapatnpnoewy ntav mepimov 580.000 (mpv aparpebovv
T amoBEpaTa), £yve eavepo 6Tl 0 aplOUdg S1POPETIKOV cuVIVACUOV TV 90+
YOPOKTNPIOTIKOV OGS, NTAV TOAD LEYUAVTEPOG T®V Tapatnpnocwv. Kdnolol cuvdvacuol oev
enpaviomkav kafOA0V Kot KAmolot ALOL eppavicTnKoay Hovo pio popd.

[Ipooradncape vo ovVTILETOTIGOVUE TO TPOPANLA LE d1EPOPOVS TPOTOVG, E1TE G TPOPAN LA
regression ypnoUOTOLOVTOS SOPOPETIKOVG AAYOPIOHOVG 1 SLAPOPETIKA VEVLPOVIKA SiKTLOL
elte kdvovtag 1o 1010 TPAyU, 0ALG ©¢ TPOPANLA TaSvOunoNg, X0PIilovTag TIg S1POPETIKEG
TIUEG AVTIKEUEVOV GE KOUPATIOL EDPOVS TLDV.

3.2 To 6UvoL0 0€d0pPEVEOV

"Eva onuovticd mpdfAnpo pe 1o cHVOAO dE00UEVODV NTAV 0 LETAPANTOS aplBuog
YOPOKTNPOTIKOV Y1 kéBe mapatrpnon. Kabe mapatnpnon, mov onpaivel KOs otoryeio, dev
umopel va £yl TEPIOCOTEPA OO £VOL OPIGUEVO OPLOILO YEVIKEVUEVAOV YOPOKTNPLOTIKOV. AVTO
onpove 6t Kaféva amd avtd ta xapaKkTPIoTiKd 0ev Ba LTopovcE Vo ELPAVICTEL GE OAEG TIG
napatnphoelc. Opiopéva epeavioTnkay ToALES EOopES (Yo Tapddetypa, To 'ex  # to
maximum life' epeaviletor oto 75,27% TV TOpATNPAGEDOV HOC) Kot KOO0 GAAL
YOPOKTNPOTIKA epeavilovtatl ToAd Aydtepa (Yo mapdadetypa "ex gain onslaught yo #
devtepOrenta Otav yTumoovv" gppaviCovror oto 0.001891% [19].

AoKIdcape S10POPETIKES GTPATNYIKES Y10 VO, OVTUYLETOTICOVLE TO TOPOTAV® TPOPAN LA
Eite yepicape tig tipég mov édeumay amd kb€ otNAN €ite apopEcape YUpOKTNPLOTIKA TO

Armour 50.422927
Energy Shield 46.267913
Evasion Rating 42.519067
ex_#% increased stun and block recovery 42.501362
ex ##% to cold resistance 40.985666
ex ##% to fTire resistance 40.960399
ex ##% to lightning resistance 40.260821

co_#% reduced fire damage taken 0.013063
ex_#% chance to avoid cold damage when hit ©.011860
ex_#% chance to avoid fire damage when hit 0.0805328
ex_#% chance to dodge spell hits 0.805157
co_#% to all maximum resistances 2.004469
ex_#% increased area of effect 0.802235
ex_gain onslaught for # seconds when hit 2.201891

Table 9
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omota 0V eppoavifovtav o€ peydAo mocooto. TeAKE amodelyTnKe TMG APNVOVTAG TOL
YOPOKTNPLIOTIKA (OC £YOLV NTAV 1) KOADTEPT) CTPOTIYIKY.

Dependent variable y (price_amount) distribution
"Eva dAAo mpdPAnua frav o apluoc towv mapatnprcemy tov oyetilovtaol pe kibe

drapopeTikny Ty H cuykévipwon Tov mopatnpioemy Hog 68 SIPOPETIKES GEWPES TILADV LG
£0moe o akOAoVOO amoTEAEGUATO.

60

50

40

30

20

10

y<2 2<y<5 10 <y < 30 5<y<10 50 <y < 150 30 <y <50 y > 150

Figure 26

Etvar cagég 6t éxovpe modd mepiocoOTepEg TapatnpNoels pe Tiun <2. ['a to Adyo
oVTO, L0 1OEA TTOV VO LETATPEYOVUE TN LETOPANTNA-GTOYO KAOE TAPATHPNONG, TUNG, VIOl VOl
axolovOncovpe pa Gaussian kotovoun ypnotporolmvtag Aoyaptpo. H petatpon g
TIUNG EMOTPEPEL TNV aKOAOLON dtavoun:

400000 ]
350000 I-
300000 I-
250000 I-
200000 I-
150000 I-
o000 [

I

o -5 0 5 10 15 20
Figure 27
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AoV exteElécovpie £va BaciKO VELPOVIKO OTKTVLO, TPV TAPOVLE TOV PUGIKO AOYAPIOO TV
TILDV KoL LETA, EXOVUE TO akOAOVOO amoTEAEC AT

Before np.log After np.log
& 220% 2 <=30% & <40% = <50% & =50% 2 total% = & «20% & =30% 2 =40% = <50% 2 =50% + <50% error =
(0,1] 2132 936 290 1000 16744 14.136946 0,1] 6204 2012 1472 995 6536 61.862297
{1,5] 1451 T30 538 805 2113 36.735725 1,5] 1712 1001 1271 1508 4336 52.924174
(5,10] 303 165 269 302 1490 18.666140 (5,10] 93 58 T7 103 669 33.100000
{10,30] 1334 529 434 352 1883 41.107679 (10,301 1568 G40 483 392 2362 56.620753
{30,50] 376 181 157 164 479 41.045426 (30,50] 565 265 255 225 596 68.730325
{50,150] 424 190 21 147 631 38.303182 (50,150] 412 245 244 199 536 67.237164
{150,nan] 75 31 30 35 109 37.857143 (150,nan] 39 34 27 44 167 46.302251

Table 10

3.3 KataoKev1] YOpUKTPLOTIKAOV

"Eva peyélo puépog tov mpofALoToc NTav 1 Xp1on TV YVOGEMY Y10, T0 SEGOUEVO Y1dL TN
onpovpyia VEOV YopaKTNPIOTIKOV. AVTO NTay OEUEMMDOES Yo TV EMTEVLEN KOADTEP®OV
OTOTEAEGUAT®V Y10 TOVG OAYOPIOLOVS HOC. AVTA TO YOPAKTIPIGTIKA 1TOV:

e # of ele resistances:
e # of resistances

e total ele resistance
e total resistance

Mepwr EEaptnon (Partial Dependence)

H ypaoum mapdotaom pepung eEdptmong [20] deiyvel 10 oplakd amotéAecpa TOv EXOVV Eva
N 300 YOPOKTNPIETIKA 6TV TPoPAemopevn EkPacr evOog LOVTEAOL punyovikng ndonong. Mo
YPUPIKY omeOVION HEPIKNG EApTNONG UTtopel va deilet edv 1 oxéom HETAED TOV GTOYOV Ko
EVOG YOPOUKTNPIGTIKOV EVOL YPOUUIKY), LOVOTOVN 1] TTLO TEPITAOKT).

XPNOHOTOUDVTOG LEPIKT] £APTNOT OVOADGOLE TNV EEAPTNON TOV TILAOV KAOE
YOPOKTNPLOTIKOD amd TN HETAPANTN 6TOXOV KOt ONOVPYNGAUE dVO VEN YOPOKTNPLOTIKAL,
no_of_good_features kot no_of_bad_features. Zoupwva pe ™ yvodon ndve oto topéa, va
OTOU(EL0 TTOL £)EL 0L GELPE KOADY YOPAKTNPICTIKOV TEve amd £vo opiopévo Oplo Bempeitat
TOADTIHO Kot £vaL GTOLYEID OV EYEL LI GEIPA KOKDV YOPUKTNPIOTIKOV TAVE® omd Eva
OLYKEKPLUEVO Oplo Bempeitar dypnoto. Aol KOTAGKEVAGOVE AVTA TOL 2 VEX
YOPOKTNPLOTIKA, YPNCUYLOTOLOVHE KoL TAAL peptkn e€aptnon Yo va Befarwbovpe mmwg n
apyIKn vrobeon pog NTaV COOTH.
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Partial dependence

Partial dependence

Partial dependence
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3.4 Ouitliers Figure 28

&

no_of_good_features

I tovg outliers ypnowomomoape IQR kat Z-score pebodovg dmmg ko mtpy. Emeion
aparpdvtog outliers apaipovue tepimov o 1/3 amd 11 TAPATNPNOELS LOG UE TIUN

peyoAvtepn tov 150 , amo@acicaple va apopEGOVIE TEAMKO TIG OKPOIES TILEC.

XpNooTotmdVTaG Vo 0md To VELPOVIKE oG dikTva, £xovtag TpEEEL TO LOVTEAD e KO XPig
outliers, £yovpe axpipeia 60,2% yio ta otoyeio TPOPAeyng pe Tuf Twng> 150 pe outliers,

eved povo 50,7% yopig outliers.

price >150

with outliers

0.65%

without outliers

1.80%

Table 11
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3.5 IIpocéyyon — Regression evavriov Classification

O apykde pog oTdY0G NTOV Vo dNUoVPYHcoLUE Eva LovtéLo regression(regression), to omoio
Oa pmopovoe va TIHOAOYNGEL GToLYElN LECO OE £VOL GYETIKA UIKPO TEPODPL0 0o TIG
TPOYLOTIKEG TOVG TIUES. XPiG Vo ¥PNOIUOTOI0VUE TIG AoyaplOuikég agieg TG TG TWUNG, T
ATOTEAECUATA LaG eV NTAV TOGO KOAG, APOD dEV UTOPOVGALLE VO TILOAOYNCOVUE GTOLYXEID
ne axpifeia 42% 1 topandve. Metd to AoyoplOpKd HETACYNUATICHO TO, OTTOTEAECUATAL LLOG
BeAtidOnkav, 0AAE G€ KATOLEC TEPIMTMOGEIS NTOV OKOUO TTOAD LUKPA.

AVT6 pog £dmoe TV 10€0 VoL YOPICOVLE TIG TIEG MG OE KAOOVG TILMV KOl avTi Vol
npoonadfcovE Vo yTicovpe Eva LovTELO regression, va Tpoonaffcovpe vo TaEIVOUNGOVE
0€ TO10 €VPOC TUNG KAOE avTIKEINEVO aviike. XPNOILOTOIOVTAG Evay SVVAUIKO adlyopiOpo, o
omoiog ypnoiponoince To EAdy16TO TOG00TO KABE EXPOVE TIUMV KO TO PEYIGTO €0POG OTd TN
YOUNAOTEPT KOL TNV VYNADTEPT TIUT TOV EDPOVG OC TAPOUUETPOVG, XWPIGALE TNV TN OE
TUNUOTO OTTMG POAVETOL GTO TOPOUKAT® YPAPTLLOL.

350000

300000

250000

200000

150000

no of observations

100000

50000

<
e o

A &
o o » &

Figure 29 ey

3.6 K-fold

H dwotavpodpevn emikvpmon givor po dtodikacio emavaderypatoinyiog o
YPNOLOTOIEITOL Y10 TV AEOAOYNGT LOVTEAWMV UNXAVIKNG LABNONG GE £Vl TEPLOPIGULEVO
detypa dedopévav. H dradwacia £xetl o poévo mapdpetpo mov ovopdletor k mov avapépetat
oToV 0plOUo TV OPAd®MV GTIG OTOIEC TPOKELTAL VO YOPIGTEL VOl OEOOUEVO STy AL OECOUEVOV.
Q¢ ek T00TOL, N dladikacio cuyvd ovoudletar K-fold cross-validation.

11 Sk pag mepintwon 6o pikpdTepn N TN ToL K 1660 1EPIo6OTEPOVS SOUPOPETIKOVG dEV
Ba £PAeme 10 LOVTEAO oG Kot TOGO dVoKOAOTEPO Ba Ty va To ekmondevcovpe. Telkd
ypnowonomoape k=10 yopilovtog 1o chvoro dedopévav pog oe 90% kot 10% koppdtio
EKTTOLOEVONG KOt SOKIUMV avTIoTOL O 0O TO GUVOLO OESOUEVMV.
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3.7 Grid Search

[Tpw Eexvnoovpe to hyperparameter tuning pe ) xpnon tov GridSearch, énpene va
emAEEovpe Ta €0PN UOG, TIG SIAPOPEG GVVOPTNGELS EVEPYOTOINGNG, TOVG PEATIGTOTONTES
KAn. Emiong, énpene va emiéEovpe mOGH KPLPE CTPOLLOTO, KO ETITESOQL ATOYDPTONG
EMPOKELTO VO YPT|CLLOTOU|COVLE.

[ewpopoticape pe To TOPUKATO VEVPOVIKA diKTVOL!
® | KpLPO GTPOUA

® 2 KPLUUEVA CTPDUOTOL

® 2 kpuppéva otpopota 1 amdppyn

e 2 kpuppéva otpopota 2 dropouts

® 3 xpvppéva otpodpata 2 dropouts

® 4 kpoppéva otpopoata 2 dropouts

® 5 kpuppéva otpopoata 2 dropouts

Ao T0 TOPATAV®, YPNCIULOTOL®VTAG 2 Kpuupéva oTpmdpata kot 2 dropouts pog €dmoeav tnv
KOAVTEPT] OTOS0CT) GLVOMKA. XPNGLUOTOIDVTOS TEPIGSOTEPQ OO 2 KPLPA GTPMUATO
avENONKe LOVO 0 YPOHVOC TOV YPELBGTNKE Y10 VO EKTOALOEVGOVLLE TO LOVTEAO LLOG KOL VL
LLELOGOVLE TIG EMOYES TOV ATOLTOVVTOL LEYPL TO LOVTELD Hag Vo apyicel va vepioyel. H
o0YKpLoN TOV dVO LE HOVTELD regression pag £dwoe To akolovba amotedéopata:

30 epochs, 2 hidden layers, 2 dropout layers 30 epochs, 5 hidden layers, 2 dropout layers
8 minutes 13 seconds training time 15 minutes 50 seconds fraining time
& <20% & <30% & <40% & <50% & »50% & <50% error & 4 <20% 4 <30% & <40% & <50% & =50% & <50% error &
(0,21 7928 3829 3585 2408 11006 61.843018 (0,21 2018 4354 3532 2536 9493 67.130640
(2,51 1246 778 71 1134 4187 49.026053 (2,51 868 579 760 1057 4948 39741715
(5,10] 122 102 119 158 236 37.471952 (5,10] 153 61 25 12 914 31.012868
{10,30] 1839 809 624 451 3086 54 677633 (10,30] 1213 760 806 631 3330 50.593472
(30,501 425 262 299 301 a77 56.846290 (30,50] 229 193 252 305 1250 44.046553
{50,150] 249 190 244 290 201 52 199571 {50,150] 20 78 120 221 13099 26.290832
{150,nan] 52 46 73 104 682 28735632 | (150,nan] 27 21 38 72 845 15.752742
Table 12

3.8 MeTpijoeis a&oroynong

Avaibovtog 1o TpoPAnue pe aAyoplOpovg regression, ot LETPNOELS TOV UTOPOVGOLE VO
YPNOUOTOINGOVUE HTAV UEGEC TIUEG TETPAYDOVIKOV GQUAUATOV(MSE), LEGOL OTOAVTOV
opdipatog(mae) 1 pEcov amdAVTOL T0606TOV GPAipatog(mape). ITapdro mov kot ta 3 Oa
UTopovGaV Vo, xpnotpomomBovy yia ) pétpnon g akpifelag yio cuveyeic petapfAnTéc,
KOvEVO oo T Topamdve dev pag fondnce vo tpocdlopicovie Yot 1o HOVTELD oG TV
AGB0c oTIG TPOPAEYELS [LOC, TOLO EVPOG TIUNG elxe TV KaAVTEPN axpifelo Kot TG dAAaLe
T 1 akpifela PE SLOPOPETIKOVS VITEPTOPOUUETPIKOVS TOPAYOVTEC.
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"o 10 AOY0 0VTO KMOKOTOMOAE T O1KN Hog LETPNON akpifelag yio ta povtéla regression,
vroAoyilovtag To T0G0oTd GPAALNTOC KaOE TpOPAeYNS. Eqv n mpdPAeyn pag ftav
pucpotepn and to 40% Tng TPAYLATIKNG TIUNG, TOTE VTOAOYIoAUE TNV TPOPAEYT] G COGTY|
Y10l TO €0POG TIUNG TNG TPAYUATIKNAG TIUNG. Me autdv Tov TpOTo vtodoyicaple TV akpifela

TpoPrEéyemV KABE EXPOVG TYLDV.

Avolvovtog o mpofAnua pe classification, voloyicape oyt LOVO T GVVOMKY aKpifeia
KGOE LOVTELOV YPNGILOTOIOVTAS TNV EVOOUATOUEVT PPNk pnétpnong g sklearn, alid
vroAoyioape eniong tn cvvoAlkn axkpifeta KOs bpovs TIMV.

3.9 Anoteréopata

YmoAoyiCovtag v akpifeia g mpofrieync yio To povtého regression kon classification petd
and Grid Search éyovpe to axdrovbo diaypappia.

Prediction accuracy for different hyperparameters

Classif, 40ep, all_feat, w/o outl
Classif, 30ep, all_feat, w/o outl
Classif, 50ep, all_feat, w/ outl
Classif, 40ep, all_feat, w/ outl
Classif, 20ep, all_feat, w/ outl
Classif, 50ep, all_feat, w/o outl
Classif, 20ep, all_feat, w/o outl

Classif, all_feat, w/ outl XGBoost ;
Regr, 20ep, 45feat, Linear, w/o outl 66.24
Rear, 40ep, all_feat, Linear, w/ outl 57.25
Regr, 20ep, all_feat, Linear, w/ outl 56.33
Regr, 30ep, all_feat, Linear, w/ outl 5599
Classif, all_feat, w/ outl 55.97
Regr, 50ep, 45feat Linear, w/ outl 55.90
Regr, 40ep, all_feat, Linear, w/o outl 55.36
Regr, 30ep, all_feat, Linear, w/ outl 55.26
Regr, 100ep, custom_feat, Linear, 55.21
Regr, 100ep, 45feat, Linear, w/o 55.08
Rear, 30ep, 45feat, Swish, w/ outl 54.60
Regr, 30ep, all_feat, Linear, w/o outl 54.60
Regr, 30ep, 45feat, Linear, w/ outl 54.59
Regr, 40ep, 45feat, Linear, w/ outl 54.41
Regr, 40ep, 45feat, Swish, w/o outl 54.34
Regr, 50ep, 45feat, Swish, w/o outl 54.22
Regr, 20ep, all_feat, Linear, w/o outl 54.20
Rear, 20ep, 45feat, Linear, w/ outl 5417
Regr, 40ep, all_feat, Swish, w/ outl 54.15
Regr, 30ep, all_feat, Swish, w/ outl 54.10
Regr, 20ep, 45feat, Swish, w/ outl 54.08
Regr, 30ep, 45feat, Swish, w/o outl 53.87
Regr, 40ep, 45feat, Swish, w/ outl 53.68
Regr, 20ep, all_feat, Swish, w/ outl 53.54
Rear, 20ep, 45feat, Swish, w/o outl 53.36
Regr, 30ep, all_feat, Sigmoid, w/o 53.18
Regr, 40ep, all_feat, Sigmoid, w/ 47.08
Regr, S0ep, 45feat, Sigmoid, w/o 46.77
Regr, 20ep, 45feat, Sigmoid, w/o 46.69
Regr, 30ep, all_feat, Sigmoid, w/ 46.11
Regr, 20ep, all_feat, Sigmoid, w/ 46.03
Rear, 40ep, 45feat, Sigmoid, w/ outl 4599
Regr, 40ep, all_feat, Sigmoid, w/o 4579
Regr, 20ep, all_feat, Sigmoid, w/o 4574
Regr, 20ep, 45feat, Sigmoid, w/ outl 45.49
Regr, 30ep, 45feat, Sigmoid, w/ outl 4528
4457
0.00 20.00 40.00 60.00 80.00
Figure 35 Prediction Accuracy

Mmopovue va dovpe 6t kabe povtéro classification divelt vyniotepn axpipelo TpoPAeYNC
a6 onotodnmote Ao povtéro. To XGBoost £xet axpifeta 66,76%, to onoto sivor apketd
onuavtikd yia éva out of the box ywpig akydpiBpo suvrovicpov povtéro. Ta poviéra
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"ueoaiog" axpipelog and 57% £wg 53% amotehodvron oo ta Decision Trees yuo
classification kot 6Aa Ta GALo poviédo regression pe cuvaptnoelg evepyomoinong Linear ko
Swish. Movo éva povtédo e cuvlptnon evepyomoinong Sigmoid éxet axpifeta 53% ot dAa
T A0 vt KATE and 47%. XV TpaypatikotnTa, Yopig auth v e&aipeon, ke poviého
ne ovvaptnon evepyonoinong Sigmoid amodidel Aoymnua.

A6 10 TOPATAVE® SLAYPOLLO TOPATPOVUE OTL TPETEL VAL YPTGLLOTOGOVLLE L0 TPOCEYYIoN
classification oto mpoPANUA pag Kkat vo eMAEEOVE TO LOVTEAD LE TNV KOADTEPT OKPiPELa.
Av kot avtd Oa Tav cmGTO Yo T GLVOMKN OKPIPELD LG, OEV EXOVUE TANPOPOPIES YO0 TNV
axpipeta avd evpoc Tunc. Aappdvovtoag vroy”n 0Tl T0 GHVOAO deSOUEV®V Hag eV EXEL KAAN
KOTOVOUN TV TILOV, KaOds T0 60% tov Tipev kopoaivetol amd 0 émg 2, B propovce
aodidEL TOAD KOAA Y10 AVTA TOL €0PT] TILAV KOt VoL EYEL YOUNAITEPT 0TOIO0N Yid ToL AAAL.
Mo 10 A0y0 awtd, TpEnel va eEETACOVE TPOGEKTIKA TG aKpifElEg avd DPOG TIUNG,
ondlovtag 10 TPOPANUA G€ 3 SOPOPETIKES TEPUTTMOGELS: TO LOVTEAL TPOPAEYNG VYNNG,
pecaiog Kot younAng akpipelog

Movtéha Tpépreyng vynig axpipelac

Onwg vromtevdnKaple, To LOVTELO Pag amodidetl eEoipetikd KaAd yio To evpog Tinav (0, 2) ue
axpifero TpdPAeyng dved Tov 95% ypnotponowdvros to XGBoost. [apatnpdvrog ta GAla
evpn TWOV emttvyyavovpe a&lonpenn axpifeia tpoPréyemv 65% 50,150] kabog Kot Yo 10
eaopa tov tipov tov 10,30 T'o ta avtikeipeva mov kopaivovton petald 150 kot mave amd
TO HOVOSIKO HoVTELO oL TTpoceyyilel To 35% eivan o classifier pe 50 emoyég,
YPNOUOTOIDVTOS OAOL T YOPOKTNPIOTIKA Ko wpig outliers.

INoa ta €6pn tov (2, 5] ko (30, 50) Ta povtéda pog eivor Kakd pe axpifeio 20-22%.
YPNOWOTOMCAUE AVTO TO LOVTELD Y10l VAL TASIVOUNGOVLLE TV TIUT €VOG GTotKElOL, Ot
UTOpOoLGaLLE Vo EILACTE G €Ml TO TAEIGTOV 6mGTOL Yo 3 amd TaL €0p1 TILADV, OALY VoL ElLACTE
amoAOTmg AdBog yio Toug dAra 4. Avto emBefaidver Tig voyieg pog OTL N ETAOYN
Bac1lopevn amokAEIGTIKA 0TI GLVOALKT akpifela TPOPAeEYNS VOGS LOVTELOL, dEV Hag divel Ta
KOAVTEPX OTOTEAEGLLATOL.
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Accuracies per bucket for high accuracy models

(0,2] acc %

(2,5]acc %

(5,10] acc %

(10,30] acc %

(30,50] acc %

(50,150] acc %

(150,nan] acc
%

Overall
Accuracy

B Classif, S0ep,
all_feat, w/o outl

94.58 .

Classif, 40ep,
9420 " 4 feat, w/o outl
94.85

g7 H Classif, 30ep,
7 all_feat, w/o outl

2210 B Classif, 20ep,
i all_feat, w/o outl
2528

2176 B Classif, 50ep,
1532 all_feat, w/ outl
B Classif, 40ep,
7.42 all_feat, w/ outl
228 B Classif, 30 ep, all
6.59 feat, w/ outl
0.63 B Classif, 20ep,
all_feat, w/ outl
65.08 B Classif, all_feat,
£6.04 w/ outl XGBoost
66.27
5917
1915
13.47
17.87
13.51
58.21
63.33
58.14
5517
3551
27.32
24170
12.39
66.88
66.76
67.01
66.24

0.00 10.00 20.00 30.00 40.00 50.00 6000 70.00 8000 90.00

Figure 36

Movtéla popreync pecaiog axpiperog

Meletwvtag Kabe KApoKa TILOV EeYmPIoTd UTOPOVUE VO KATAANEOVIE GTO aKOAoLOa
CLUTEPAOLLOTOL:

INa 1o dpog Tipdv (0, 2) Tapatnpodue 6Tt KGO LoVTELO regression €yl YouUNAdTEPT
axpipela mpoPAeyng amd Tov povadiko classifier tng opdoag pog, o omoiog
ypnowonoince Decision Trees, aAld kot amd Toug GAAovg classifier 6to mponyovpevo
SudypapLpa. ivot vt TOL YPNCIUOTOLEL Lo GLVAPTNON Evepyoroinong Swish, mov
exteleitan yua 30 ypovikég mep1dOovE ympig axpaieg TS Kot ypnoonotel 45
YOPAKTNPIOTIKA LETA TNV ETIAOYT TOV YOPOKTNPICTIKOV.
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IMa 1o e0pog Tindv (2, 5) emvuyydvetar akpifela TpoPreyng oxedov 53% otav
exteAeitan regression pe 45 yopoaknpiotikd, yio 50 ypovikég mepiddoug,
YPNOUOTTOLDVTOC [, Asttovpyia I'pappukng evepyomoinong kot ympic outliers.
Xpnoonowmvag Hie cuvaptnon evepyomoinong Swish, £yovpe o axpifera 41%
nepinmov N xepotepn, pe 20 emoyég mov Pubilovron og akpifera 30% .Avtod givor moly
KOAVTEPO amd TN ypnom evog povédov classification wov eiye axpifeio 25%, pe Ghia
AoY10, xpnopomoldvTag regression avti yia classification, duthooidlovpue v
axpifeld pog yio ovtd T0 €HPOG TYLDV

[Ma v Ty tpov (5,10) n akpifetd pog dev givar 1660 Kakn 660 TPy, aALL dev
umopovpe va mpoPAéyovpe pe axpifeta ave tov 40% edv £va otoryeio avikel o€
aVT6 TO EVPOG TWAV. TAVE and 36%, TapaTnPOVUE OTL 1| aPaipecT TV outliers
petmvel v akpifela Tov TpoPAEYEDV Lag, TOUVMOG ETELDN AVTEC OL TIUEG TAV
TOPATNPNCELS Y10 TO VYNAITEPA EVPT TIUOV OAAG €YV GLVIVAGLOVG GTOLXEI®Y TOV
OVIIKOVV GE YOUNAOTEPO EVPOG TIUDV.

Mo mv Kiipoko Tipov (10,30) pe regression, £xovpe pa yopumAdtepn akpifeto
oxedov Katd 10%. Omota ko av elvat o1 VTEPTAPAUETPIKES TIHES, OL OKPiPElEg NTOV
TOAD KOovTd, pe eEaipeom TIC GLVAPTNOELS Evepyomoinong pe Linear ot omoieg pog
£0moav To KoAvTtepa anoteAéspata (amd 54,7 émg 56,6%)

[Ma 1o evpog Tymv (30,50) mapatnpovpe avéEnon g axpifelag oxeddov 3 popéc amd
TOV LVYNAGTEPO alyOpBpo Ta&vounong mov eivar  Decision Trees e axpifeia
26,7%. Mg v regression emtrvyydverot akpifeia 68,7% pe tn xpnom YPOUUIKNG
evepyonoinong H abénon tov enoydv petd v tiun tov 50 dev av&avet v axpifetd
pog, apov PAémovpe to povtédo pog pe 100 emoyég Kot piot GLVAPTNOT YPOLLLUIKNG
gvepyomoinong pe yoaunAdtepn akpipewa .

INa 1o evpog Tudv (50,150), ta povtéda regression givot 1060 KaAd 660 Ta
TaEWVOUNTIKA oG Kol OKOUO KOADTEPD, 0pOV 1| GLVAPTNGOT evepyonoinong Swish pe
50epochs kot ywpig axpifeta divel akpifeta 68,88% ko pe ypoppky evepyomoinon
&yooue 67,2% axpipeta.

I"a 1o e0pog Tipdv Tov 150 Kot dve yio 50 enoyég, xpNCHOTOIOVTOG Lo Asttovpyio
gvepyomoinong Swish, £yovpe 51,87% axpifeln evod pe ™ ypnon classification
&yoope axpifewa 35,51%.
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Accuracies per bucket for middle accuracy models

(0,2] acc %

(2,5] acc %

(5,10] acc
%

(10,30] acc
%

(30,50] acc
%

(50,150]
acc%

{(150,nan]
acc%

27.52

1778

26,75

36.16

54.66

51.88

62,06

75.10

68.58

68.88

4352

51.87

0.00

25.68

20,00

40.00

Figure 37

80.00

B Reor, 50ep, 45feat Linear, w/
outl

B Reor, 50ep, 45feat, Swish,
w/o outl

W Regr, 40ep, 45feat, Linear, w/
outl

B Reor, 20ep, all_feat, Linear,
wy outl

B Reor, 30ep, all_feat, Linear,
w/o outl

B Reor, 30ep, all_feat, Linear,
wy outl

B Rear, 20ep, 45feat, Linear, w/
outl

B Reor, 20ep, all_feat, Linear,
w/o outl

B Reor, 20ep, all_feat, Swish,
wy outl

B Reor, 30ep, all_feat, Linear,
wy outl

B Rear, 30ep, 45feat, Swish,
wy outl

B Rear, 40ep, 45feat, Swish,
w/o outl

B Rear, 20ep, 45feat, Swish,
wy/ outl

B Rear, 30ep, 45feat, Linear, w/
outl

B Reqr, 100ep, 45feat, Linear,
w/o outl

B Rear, 40ep, all_feat, Linear,
wy/ outl

B Regr, 40ep, 45feat, Swish,
wy/ outl

B Rear, 30ep, all_feat, Swish,
wy/ outl

B Rear, 40ep, all_feat, Linear,
w/o outl

B Reqr, 40ep, all_feat, Swish,
wy/ outl

B Reor, 100ep, custom_feat,
Linear, w/o outl

B Regr, 20ep, 45feat, Linear,
w/o outl

B Rear, 30ep, 45feat, Swish,
w/o outl

B Reor, 20ep, 45feat, Swish,
w/o outl

B Classif, all_feat, w/ outl
DecisionTrees
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Movtéla Tpoyvoong yopnins axpipelog

Onwg pmopovpe va dovuE, 0 AdY0G Yo Tov omoio ta teAevTaia LovTELD Hag lyov T0G0
YOLUNAN cvvolk akpifela TpoPAeync, NTav nedn dev umopovoay va TpoPAEYOVY KovEVa
ototyeilo amd 5 og mwhve amd 150 Tipéc. Avtd cvpPaivel AOyw TG VOGS TG CLVAPTNONG
Sigmoid, 6mmg avapépbnke TPoNyoLUEVMC, OEV UTOPEL vV TapayEL apvnTIKOHS 0ptOpong.
[Topdro mov pior TN VOG OVTIKELEVOL OV UTTOPEL VoL EYEL APVNTIKEG TUUEG,
y¥pnoonomoape Bacikn Aoyaplpuiky] Guvaptnon o€ OAES TIG TYES Y10 KOADTEPT KOTAVOUN
KO TPOLE OPVNTIKE OTOTEAEGLATO KOl YL '0VTO LE TN XPNOT) TG GLVAPTNONG EVEPYOTOINONG
sigmoid dgv pmopovpe vo KAvouLe TPoPAEYELS Yia TILEG LYNAOTEPES Ol S

Accuracies per bucket for low accuracy models

B Reqr, 40ep, all_feat,
Sigmoid, w/o outl
64.70 ]

Reqgr, 30ep, all_feat,

-_— Regr 206p, all feat,

Sigmoid, wio outl
B Regr, 50ep, 45feat, Sigmoid,
e — 7 0] w/o autl
psy———————————————— B Regr 40ep, 4steat, Sigmoid,
——————————————— Mk ot
o B Reor, 30ep, 45feat, Sigmoid,
w/ outl
0.23 B Regr, 20ep, 45feat, Sigmoid,
(5,10] acc % l w/ outl
. Regr, 20ep, 45feat, Sigmoid,
o w/o outl
B FReqr, 40ep, all_feat,
0.00 Sigmuoid, wy outl
(10,30] acc % B Regr, 30ep, all_feat,
. Sigmoid, w/ outl
N B Rear, 20ep, all_feat,
Sigmoid, w/ outl
0.00
(30,50] acc %
0.00
(90,150] acc %
0.00
(150,nan] acc %
0.00 20.00 40.00 60.00 80.00

Figure 38
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A@0oD ovOADGOLE TO LOVTEAD YOUNANG, LEGNC KOl VYNANG akpifetog mpdPieyng, PAEmove
ot K0Be Katnyopia kKével KaAn dovAeld mpoPArémovtag Eva e0pOC TV, 0ALA Oyt Ol T
g0p1M. AvTO YiveTan Ao O ELEAVEG OTOV TOPATNPOVLE TO KOADTEPO LOVTEAQ VAL TEPLOYT|
TILAV GE OVTO TO TEAEVTOIO OLAYPOLLLLLOL.

Best accuracy per price bucket

B Classif, all_feat, w/ outl XGBoost B Regr, 30ep, all_feat, Sigmoid, w/ outl
B Regr, 50ep, 45feat, Swish, w/o outl W Classif, 20ep, all_feat, w/ outl W Regr, S0ep, 45feat Linear, w/ outl

97.65
61.68
(0,2] acc % 65206
94.49
61.86
61.91
(2,5] acc % 45,38
52.92
(5,10] acc % 36.1E
33.10
5917
(10,30] acc % 54.66
66.55
56.62
(30,50] acc % R8.58
68.73
55.17
(50,150] acc % 68.88
57.18
67.24
(150,nan] acc % [HIE 51.87
24.64
46.30
b66.24
46.03
Overall Accuracy 4.20
67.00
55.36
0.00 25.00 50.00 75.00 100.00
Figure 39

Eivon capég 611 ta povtéra classification sivar mpaypaticd kaAd yio tig meproyég (0,2],
(10,30) xau (50,150), povtéra regression pe cuvaptnon evepyonoinong Sigmoid yia o €6pog
TV (2,5), poviéda regression pe cuvapTnon YPaUUKigG 1 SWish gvepyomoinong yia 1o
€0p0¢(30,50) Kot povtéda regression ypnoomoLmdVToG o cLVAPTHON gvepyoroinong Swish
v TV KAlpaxka tov 150 kot ave. T 1o €0pog Tinadv tov [5,10] dev vrdpyovv povtéda Tov
va pog dtvouv o koA TpoPAEYELS Le KaAn axpifeta.
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3.10 Ensemble

[Mapamnpdvtog To amoTeEAEGHATO TNG AVAAVONG Kol TS OTOO00TG LG GTO GUVOAO
dedopévaov Rares PAEmovE OTL O1 YPNOIUOTOIOVUEVOL AAYOPIOLOL OEV TTPOGPEPOVY TO
KOAVTEPO AMOTELEGLA Y10. OAOVE TOLG TOTOVG TIUDV. AV glvarn pia EvoelEn ot
epapuolovtag pebooovg ensemble pmopel va Exovpe KOADTEPT ATOS00T). XP1CLUOTOCULE
ynoeoeopia pe otabuiopévn tpopieym.Ta vropovtéda Tov ypnooromOnkay givat:

Prediction
Sub - learner Better results at segment Accuracy
(30,50
ANN with activation function ‘swish’, (50,150 55 389
50 epochs, 45 features, without outliers (150,nan] =e
(5,10]
ANN with activation function ‘swish’,
. . (0,2] 53.76%
30 epochs, 45 features, without outliers
ANN with activation function ‘sigmoid’,
. . (2,5] 47.44%
30 epochs, 45 features, without outliers
ANN with activation function ‘linear’,
: , (10,30] 55.41%
100 epochs, 45 features, without outliers
Table 14

Exnoudedoope to LOVIEAN KOl GLYKPOTNGOLE TIG TPOPAEWYELS TOVG e SLOPOPETIKO PAPOg Yo
10 k6Oe povtédro.

H pébodog ensemble pag £dwoe Babuoroyio akpifeiag 57,12% Peltidvovtag v
npornyovpevn Babuoroyio anddoons 55,41%, n omoia NTav n kaAvtepn Pabduoroyia amod ta 4
LLOVTEAQ TTOV YPNCLOTOMGAUE. AVTY| 1] TPATY TPOGEYYIoN glvar 1 ATAOVGTEPT dvvaTh AUPOV
gyovpe kaAvTEPQ amoteAécpoTo otav epapudlovue adydpiBuovg classification oto civoro
dedopévov Rares.H mapaywyn evoc ensemble povtélov pe ta koddtepa amoteAéouata.
Ta&vopunong N akopo Kot 1 avamtuén pag otolPayuévng cvocmpdtmong(stacked
aggregation) 2 emmédwv Oo enéPepe EVOEYOUEVOS KOADTEPO OTOTEAECLATAL.

3.11 Xopumepaocpata,

To chvoro dedopévav amotereitan amd 580.000 mwapatnpricelg mov Praocevouv éva
petafintd apOpd yapoakmpiotikav ard 90+ émg 510+ oe cuvovaopovs tov 11. Omwg
QoiveTol 101 6T S0y PALLLATO, OPIGUEVOL GLVIVAGHOTL LETAED AVTAV TV YOPAKTNPIOTIKOV
etvat peAAOV omtdviot Kot £xouV (kpn Topovcio 6To GOVOA0 dedopévav. Q¢ amoTéAEGa, Ol
alyopBpot dev €yovv Kavéva tpdmo vo pdbovv Kot 1 anddoon TEPTEL.

[Tapodro mov kavévag amd Tovg aAyopiBpovg pog dev ftav KaAdg oty TpofAeyn OA®V TV
TILDOV TOV OVTIKEWWEV®V, T1 GTAGILO TNG TG G EVPOG TILMY KOl TUPATNPAOVTOS ALTA TO
0PN TAOV, PG EOMGE TNV EIKOVA Y10 TOVS KOADTEPOLS aAyOp1OoLg oe KaBE Eva amd avTd.
A@o¥ avtipetonicaue To TpoPAnua pe classification, katopbdoape va dNUIOVPYHGOLLE Eva,
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povtélo mov Ba tpoéPAene pe axpifela edv Eva ototyeio Tav moAVTIHo I Oxt. Me éva Babud
amodoong 97,65% oto tunpa tov (0, 2) to povtéro sivor apketd ciyovpo 0Tt avtikeipeva og
OVTO TO EVPOG TIUNG OEV EVOL TOAVTILLOL.

"o to Tuqpo regression tov TpofANUATOS, ¥PNCIUOTOLOVTOS 4 S0POPETIKG. LOVTEA
regression kot ypnoponoidvtag ensemble, uropéoape eniong vo PEATIOGOVLE T GUVOMK|
axpifeld pog. H mpocappoyn tov mopapétpmy Hog Kot 1 eDPES KAADTEP®V HECOV Bapdv
Y10 TOL LOVTEAQDL LG 1) 1) OOKIUN OLOLPOPETIKMY HOVTEA®Y Bo UTOpoHGaV VO LG ODGOVY OKOLLOL
KaAvtepo amoteAéopata. Tédog,  ypfion ensemble oe povtéda classification Oa propodoe
emiong va fondnoet ot Pertioon g cVVOAKNG aKpiPeELdg Log.

AQOV TOPUTNPNCULE TO ATOTEAEGHOTA LG, KOTOANEOUE GTO GUUTEPAGLLO OTL LI LEYOAN
Bedtiwon otig emddGEIS TV aAyopiBumy pog Oa ntav 1 tpocsbkn teplocdTEpOV
dedopévmv. Avto Ba giye og amotéleoua Oyt LOVO SAPOPETIKOVS GUVILAGHOVS AL Kol
TEPLGGOTEPES TAPATNPNGELS AV E0POG TYHMV. Y TAPYOLV d1APOPOL TPOTOL LE TOLG OTOI0VG
UTOPOVLLE VO TPOGHEGOVLE TEPLGGOTEPD dEGOUEVAL:

Avayvoon g tov APl feed and v apyni Tov TaryvidroH

Av16 Oa mephappave mévo amod 2,5 ypdvie cuVOALAYDV, 0ALG Ba dnovpyodoe emiong
oplopéva pofAanuata, kabmg to API dev éxet Tig 1010TNTEG TOL YPAHVOL TTOV EIGTYOLE KO
avtd Bo onpave OTL givat aKOUn SVGKOAATEPO VO ATTOUAKPLVOOVV Ol TOPAATPUOTIKEG
TapaTnpNoEls. Oa slonyoye ETiong TPOPANUATO CYETIKA LE TNV OTOONKELGN TOV GLVOAOV
OEJOUEVMV KOl TNV VTOAOYIGTIKY 16Y0 TOL OTOLTEITOL Y10 TV KATOGKEVT] TOV GLVOLOL
dedopéEVmV Kat o GUVETOYOTAV L0 EVIEAMG VEN KATAVEUNUEVT] OPYLTEKTOVIKT.

Evioyvovtog 10 60voA0 dedopévov pe d1kd pog deiypota

AgtypoatoAnyia yopo omd v agie TV YopoKTNPIETIKOV KOl ONUIOVPYDOVTOS Lo OEGUN
TOPOUOI®V OEYUAT®V KABMG KOl YPNGULOTOIDVTOS TIS YVMGELS TOV TOUEN LG Y10 VO
SNUOVPYHCOVUE TEPIGGOTEPES TOPATNPNOELS. AVTO Giyovpa Ba slonyaye bias ota poviéla
pog, oAl Ba propovce va PEATIOCEL TIG EMOOCELS HOG.

Beltioon tov TpEyovTog cuvolov dedopévov pe profiling tov ypnotov

Av16 O Tav SVoKOAO va epaplocTel, oA B pmopovoape vo avarTOEOVE TO KAADTEPO
LLOVTEAO LOG, VO ONULOVPYHGOVUE AOYIGUIKO YOP® TOL Y10l VAL TO YPT|GULOTOU|GOVLLE
amgvBeiog amd ToVg TAIKTES TOV IO VIS0 Kot TN GUVEXELD VoL AAPoVE AECH GYOALD ATt
TOVG MOLKTEG Yol TV €YKLPOTNTA TV TPOPAEYEDV pac. Me avtdv tov tpdmo Ba pmopodcape
Vo TPOGOI0PIGOVIE TO101 GLVOVOGOT YAPAKTNPIGTIKAOV SMULOVPYOVV TPOPANLATO Kot

€100 youV apyKa Bépn YopaKTNPIGTIKOV Y10 TO TPOPANUA Hog, KaBMG Kol va TOPOVUE
neprocotepa dedopéva anevbeiog omd Tovg moikTeC.
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Kepaiaro 4: Melhovtik) 00vAigLd

To €pyo pmopet va amodeiydnke mo d0oKo o amd O, Tt apykd avapevotay Kot 1 amddoon
TOV LOVTEAWMV Lo Glyovpa Ogv givor 1 KaAdtepn Yo Ta Rare avtikeipeva, aAld vapyovv
OKOLOL TOALEC 10E€EC TTOV UITOPOVUE VAL OOKILAGOVLE GTO LEAAOV TTOL UITOPEL VoL vENGoVY TNV
a&lomiotio Tov GLVOAOL SESOUEVAV 1) TV ATOS0GT TOV LOVIEAMV LLOG.

Kotamorépnon thact®V ded0pévov
- Koatd ) dnpovpyio Tov cuvorov Se30UEVOV LOG OTOPAGIGOLE VO O1LLLOVPYHCOVLE

L0 GEPA OO YOPAKTNPLOTIKA TTOL Ba ypnoipomomBodv apydtepa, Eva omd To ool
elval ot NUEPEG TOL YPpEGoTNKE Yo va TwANOEl Eva atotyeio. Apydtepa, OmoPacicoue
011 Ba £mpeme Vo £YOVILE EVIOTGEL TIC MPEG TOL YPEWECTNKE Y10 VoL TOANOEL Eval
OVTIKEILEVO 1| AKOLLAL KOl AETLTAL, 0OV, GOUPOVO LLE TIG YVADGELG TOL TOUEN, EVaL
avtikeipevo mov maipvel Aydtepo amd 30 Aemtd yio va tovAnOet, £xet peyain
TOAVOTNTO VO OTOTEAEL YEDTIKO SEOOUEVO.

- Z10 ohVOLO OESOUEVAV VITAPYOLY OPLGUEVE YOPAKTIPICTIKE TTOV dEV
YPNOLUOTOLOVVTOLL.
‘Eva amd avtd eivar to dvopa xpfotn Tov ikt Tov TPUYHATOTOINGE T GLVAALAY.
Oa uropoHGALE VO KOTNYOPLOTOMGOLLLE TOIKTEG G KOt yopieg mov ekppdlovv 0
eMNEDO EUMGTOGVVTG TTOL VTTOAOYiCove Oyt LOVO amd To 1610 T0 GHVOLO dedOUEVEOV
OAAGQ Kot omd GAAeS eE®TEPIKEG TINYES.

Awororoynpéveg aéieg
- €& OPICUEVEG TEPUTTAOGELS 01 EEMGTPEPELS TIUES EIVOL ATOADTOG AMOOEKTES.
Mia tétola mepintwon eivar 6tav éva ototyeio ota Movadikd otoryeio £ et o akun
otV a&ia, 6tav €vag streamer 1o ypnoiponotlel kabang mailel {ovtovd To Tatyviot.
Oa pmopovoaype va ypnoonotoovpe causal inference yio va vroloyicovpe tnv
ATOKALOT] ad TO KOVOVIKT TAOKT Kot VoL TPOPAEYOLLLE TNV T COGTA

- M dAAN mepintoon givat 6Tav KOTOL0G GTAVIOS GUVOLAGHLOG TOiPVEL
ATOTEAECLOTO OTOV TO O VIOl EPAPUOLEL £Vl YOPOKTNPLOTIKO GTO OVTIKEIEVO.

EneCepyoacio guowng yAOooas 6g popovpn waryviorov kot reddit

"o v avéivon tov Unique avtikeluévmv pmopodiLe Vo XPNGLULOTOGOVLE TN
QLOIKT eMeEePYsio YADGGOG 6 OPOLU TatyVidldv 1 To reddit, va kaBopicovpe tn Oetikn
YADOGCO TOV TOIKT GE OPIGUEVO. OVTIKEILEVA KOl VO EI0AYAYOLLE VEQ GTOLYEID GTO GUVOAO
dedOUEVMV OGS, TOV Ba pog emTPEYOLV VoL TPOPAEYOLLE KOADTEPD TIG TAGELS TOV
OVTIKELLEVOV.
To Reddit kot ta @Opovp eivor emiong pio TOAD TAOVGLO YT YVOGELS SLOUPOP®V TOKTOV
oV TPooTafoHV VO ATATGOVY aPYAPLOVS TOUKTES TTPOTPETOVTAS TOVG VO TOVAN|GOLY TO,
avTikeipeva Tovg ToAD EONvA. Avto Bo uropovce vo fondncel 6ty TaEVOUN G OPIGUEVOV
oKtV ©¢ Untrusty Kot GUVERTMOC To. 6TOYELN TOL TOAOVV TPOS TOANGT BempovvTol YaUnAd
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oTNV TN, 1 AALOLG TTaikTeG G Novice Kol ETOUEVMG TO AVTIKEILEVO TOVG OEV TPETEL VO
BempovVTOL LYNAGL TNV EUTIGTOGVVI OGOV OPOPE. TNV TLUT TOVG,.

EmumAéov,to va gipar o€ 0éon va kabopicovue ndte vdpyet «streamer effecty, po pdon n
01010l GTOV KOGUO TV ToyVIOLOV oNuaivel 6Tt v Eva S1AoT IO GTOUO YPTCLULOTTOLET
oplopéva otoyeia ta omoio avtd Ta ototyeia o avéoovy v Tiur, o fondnocet emiong va
TPOPAEYOLLLE TIG TACELS OVTAOV TV GTOLYEIWDV.

Méto otoyysia

>1ov K6opo tov Path of Exile, to "meta" avapépeton oto KaAbTEPO GTOLYXEIQ GE Pt
dedopévn otypn oto moyviol. Avtd ta ototyeia "meta” sivar cuvnOwe mo axpiPd. H
€EOPLEN OESOUEVOV TV TLO YPTCLUOTOLOVUEVMV AVTIKELEVOV OO £EMTEPIKOVG 1IGTOTOTOVG
Oa pag Bondnoet va mpocdiopicovpe mota ivar ovTd To GTOLXEID KOt VoL ONILIOVPYHCOVLE Vol
VEO YOPOKTNPLOTIKO TOL ol avTITPOCS®TEDEL TN ONUOTIKOTNTO EVOG GTOLYEIOV.
Av1d ta ototyeia, av eivol omdvia, TEPLEYOLY EMIGNG OPICUEVA YOPOAKTNPIOTIKA TTOV Hal pog
BonBovoav va apycomotcovpe 10 BAPOg AVTAOV TV YOUPOKTPLOTIKMV Y10 TO. LOVTELD

Hnyavikng pabnong.

Anpovpyio povTEL®V Y10 HEPOVOUEVES KOTIYOPIES TINOV

Mo GAAN 100 TOV TPETEL VO EPOPLOGTEL Elvar va dnpiovpynBovv dvadikd poviéra
taivounong, éva yu kébe e0pog Tindv. ' va yivel avtd, yio éva povtédo kabe Tiung Tipav
0o ta&vopmoape Ty Tun kabe tapatnpnong og 01 1 av dev Tav | frav g owtd T0 €HPOg
TILAOV KOl V0L EKTOOEVLGEL KAOE LOVTELD [e OAEG TIG TOPATNPNOELS. LT CLUVEKELX, Oa
ypnoonomoape ensemble yio va TpoPAéyovpe o €DPOC TV EVOG GTOLYEIOV.
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