
National Technical University of Athens

The Moving Least Squares Method in Mesh Deformation -
Implementation in CUDA/C++ & Performance analysis

by

Evangelos D. Katsavrias

Dissertation
In partial fulfillment of the requirements for the degree of

Master of Science
in Computational Mechanics

February 2019, Athens

Approval committee

Professor Kyriakos C. Giannakoglou

2nd committee member

3rd committee member

National Technical University of Athens Page i

Acknowledgements

I would like to thank my thesis advisor Professor Kyriakos C. Giannakoglou of the School
of Mechanical Engineering at National Technical University of Athens, for giving me the
opportunity to work on this interesting subject.

I would also like to thank the two other members of the approval committee, who offered their
expertise to assess my thesis. I am also grateful to all the professors, the course instructors,
and the director of the MSc. programme Professor Andreas Boudouvis, for their excellent
work.

Finally, I must express my very profound gratitude to my parents, my sisters, and my friends
for providing me with unfailing support and continuous encouragement through the process
of this thesis.

Evangelos D. Katsavrias

National Technical University of Athens Page iii

Abstract

There are plenty applications in computational mechanics, e.g. in fluid flows around bodies,
contact solid mechanics, fluid-structure interaction analysis, etc., where the mesh deforma-
tion is part of the process. These problems are quite computationally intensive and very
often solved on GPGPUs. Therefore, a mesh deformation method that would perform well
on the GPGPU parallel environment, is something desirable to reduce the overall solution
time of the problem. Such a mesh deformation method seems to be the Moving Least Squares
(MLS) method, which exhibits full data independence in its coarse granularity level of com-
putations, and a moderate parallelization potential in its finer granularity of computations.

Prior work on the MLS method for mesh deformation, see Τουρής [2016], had exposed the
effectiveness and the good performance of the method in mesh deformation. In this work, a
parallel execution of the Moving Least Squares (MLS) method is developed, on General Pur-
pose GPUs (GPGPUs). Initially, the MLS method’s computations are analyzed to expose
the potential parallelism with the CUDA compute execution model. Further, CUDA algo-
rithms are proposed to execute the computations efficiently and gain an optimal speedup.
Additionally, the MLS method is enriched with the more general rational weighting functions
(i.e. inverse distance weighting functions), which allow the utilization of low polynomial de-
gree MLS interpolation, preserving the good quality results for low-medium degree of mesh
deformations, see Witteveen and Bijl [2009]. The low polynomial MLS interpolation is an
interesting case, because the computations are substantially reduced and the parallelization
potential is increased.

The results of the developed algorithms expose good compute performance with very high
speedups for low polynomial degree MLS interpolations, e.g. up to x20 in the case of the
zero degree MLS method (known also as Inverse distance weighting method). The speedups
for higher polynomial degrees are moderate, i.e. x5, but the utilized hardware comprised of
a very strong CPU and a GPGPU with poor compute resources.

National Technical University of Athens Page v

Contents

Committee aproval i

Acknowledgements iii

Abstract v

Contents vii

Chapter 1 Introduction 1

1.1 Scope and applications of the mesh deformation techniques 1

1.2 Mesh deformation methods . 2

1.2.1 Methods based on a continuous deformation field 3

1.2.2 Methods based on explicit mesh distortion constraints 7

1.3 Introduction to high performance computing and parallel processing 9

1.3.1 Parallel computers . 10

1.3.2 Chip Multiprocessors . 13

1.3.3 High compute throughput with GPGPUs 16

1.4 Work scope and outline . 21

Chapter 2 The least squares methods 23

2.1 Introduction . 23

2.2 Least Squares Approximation . 23

2.3 Weighted Least Squares approximations . 26

2.4 Local Least Squares approximations . 27

2.5 Weighted Local Least Squares method (WLS) 31

2.6 Moving Least Squares method (MLS) . 32

National Technical University of Athens Page vii

Contents

2.7 Analysis of the MLS computations and data structures 33

2.7.1 Two straightforward special cases on the polynomial degree 36

Chapter 3 The parallelization of the MLS method and implementation in
CUDA 39

3.1 Introduction . 39

3.2 Coarse grain parallelization of the MLS method 40

3.3 Fine grain analysis of the MLS execution time 42

3.4 Fine grain parallelization of the MLS method 45

3.4.1 The parallelization of the 0-degree local least squares 45

3.4.2 The parallelization of a higher degree local least squares 48

3.5 CUDA algorithm designs of the MLS method 51

3.5.1 CUDA algorithm design 1, A design with iterations over subsets of the
sample points . 54

3.5.2 CUDA algorithm design 2, A design where the subsets of sample points
are scattered to multiple thread blocks 55

3.5.3 CUDA algorithm design 3, A design with matrix-matrix multiplica-
tions on the cuBLAS library . 56

Chapter 4 Performance results of the MLS method on CUDA GPGPUs 57

4.1 2D test case 1 . 57

Chapter 5 Conclusions 61

Appendix A Elements from the approximation theory 63

A.1 Approximation of functions . 63

A.2 Best approximation . 65

A.2.1 Existence of a best approximation . 65

A.2.2 Uniqueness of the best approximation 67

A.2.3 The best approximation in inner product spaces 68

A.3 The orthogonal projection operator . 70

A.4 Orthogonal polynomials . 71

Page viii

Contents

Appendix B Weighting functions for local weighted least squares approx-
imations 73

B.1 Weighting functions in general rational form 73

B.2 A parametric analysis on the parameters of the rational weighting functions . 75

Appendix C The performance of the MLS method in mesh deformation
problems 85

C.1 Introduction . 85

C.2 Consistency tests of the IDW method on mesh deformation applications . . . 87

C.2.1 Consistency test on the rigid translation 88

C.2.2 Consistency test on the rigid rotation 91

C.2.3 Consistency test on the constant grad du/dx 94

C.2.4 Consistency test on the constant grad du/dy+dv/dx 97

C.3 The performance of the MLS mesh adaptation with parametric analyses on
feasibility and quality . 100

C.3.1 Feasibility analysis . 101

C.3.2 Mesh quality analysis . 107

Bibliography 123

National Technical University of Athens Page ix

Chapter 1

Introduction

1.1 Scope and applications of the mesh deformation techniques

Modelling and solving problems in mechanics where the the analysis domain is moving or its
shape is changing, can be encountered frequently. Some of the problems, are the following:

• Shape optimization

• Fluid-structure interaction analysis

• Aeroelastic analysis

• Hydroelastic analysis

• Elastic bodies with contact interfaces

• Combination of the above problems

In single domain shape optimization problems, there is the need to adapt the computational
mesh to the updated geometry shape. In multi-domain problems of moving domains, or
shape changing domains, the additional requirement is to propagated the deformations from
one domain to the neighbour domains and preserve the compatibility on the interface. In all
the aforementioned problems, one basic need is emerged; to adapt the corresponding compu-
tational mesh to the updated domain shape and position. A straightforward way to adapt a
computational mesh to the domain shape is a naive regeneration. Though, that would prove
expensive for large meshes, especially when the solution of the problem implicates solution
steps and/or time steps. Instead, it is preferable to adapt the mesh by rapid deformations
(i.e. node displacements), such that the mesh quality would not be affected severely and the
mesh topology would be preserved. Therefore, the mesh deformation methods are suggested
to be used as an efficient alternative, which can result in an adapted mesh of good quality
in low computational cost.

A concrete application of the mesh deformation technique, is found in shape optimization of
bodies immersed in flowing fluids, under certain requirements for their aerodynamic behavior,
see Jameson [1988], Jameson [1995], Zhang et al. [2019], Karpouzas et al. [2016]. For instance,

National Technical University of Athens Page 1

1.2. Mesh deformation methods

an objective can be to minimize the drag forces on the immersed body under the fluid flow,
or to maximize the lift forces, or to maximize the efficiency of the flow around a blade of
a turbine. In such problems, a CFD analysis is iteratively executed to determine the fluid
flow around the updated shape of the immersed body. Thus, the computational mesh of
the fluid domain, needs to be adapted to the updated shape of the solid body in every
optimization step. In each mesh adaptation, it is crucial to preserve the good quality of
the mesh for fast convergence in the CFD analysis. Furthermore, using a mesh deformation
method over a mesh regeneration, keeps the mesh topology unchanged. The latter fact
allows the use of the previous step CFD solution, in the new launched CFD analysis as an
initial one, which accelerates the convergence. Another interesting application of the mesh
deformation technique, is found in the Fluid-Structure Interaction (FSI) analysis with the
Arbitrary Lagrange-Eulerian formulation Donea et al. [1982]. In FSI analysis, the domain
of the fluid changes due to the deformation of the structure, and it is inconvenient to have
a fixed fluid mesh. The issue is solved by using the Arbitrary Lagrangian-Eulerian (ALE)
formulation, also known as the dynamic mesh formulation. In the ALE formulation the fluid
mesh moves in compliance with the boundary deformation, therefore it is neither Eulerian
(fixed) nor Lagrangian (moving with material particles).

1.2 Mesh deformation methods

The goal of every mesh deformation method is to compute the displacements of the free
nodes (e.g. the interior mesh nodes) when the displacements of a number of fixed nodes
are given (e.g. the boundary mesh nodes with prescribed displacements). The governing
rule under which the node displacements should be evaluated, is the optimal quality of the
resulted mesh, or equivalently, the objective is the minimum distorsion of the mesh elements.
Other, application dependent requirements, can be the preservation of the orthogonality on
the boundaries, the high rigidity of the elements close to the boundaries, etc.

The minimum distorsion requirement, is approached differently in each mesh deformation
method. Nevertheless, two main classes can be identified. The first class, consists of methods
where a continuous displacement field is constructed, under the constraint to satisfy the
displacements at some given points and the basic requirement of low local distorsions. The
displacements of the free nodes, are probed from the continuous displacement field, as soon
as the two domains are overlapping. The methods of the second class, are expressing the
distorsion of the mesh elements explicitly, through certain geometric quantities of the mesh
(e.g. element angles, edge lengths, etc.) which are linked directly to the node displacements.
These geometric quantities are interrelated within the mesh, and they allow for the expression
of constraint equations, which subsequently can lead to a system of equations of all the
unknown nodal displacement components.

Finally, the implementation of each method, should be based on computational models
which are able to provide the required output, for some given input data and constraints,
in a consistent and robust manner. In the subject computational models, the consistency is
related to the prescribed node displacements and the required smoothness, and the robust-
ness is referring to the sustainability to various displacement modes, as required from the
applications.

In the following subsections, the most important mesh deformation methods are presented.
For further reading, Selim and Koomollil published recently an extensive survey on the

Page 2

Chapter 1. Introduction

existing mesh deformation methods (Selim and Koomullil [2016]). There, the most significant
techniques are reviewed and compared, allowing a researcher to adopt the most efficient
scheme or to propose improvements.

1.2.1 Methods based on a continuous deformation field

The first class of methods, is based on existing abstract computational models, which evalu-
ate scalar fields or vector fields while satisfying the following conditions: a) some prescribed
values on part of the domain (e.g. boundary values, values on sample points, etc.), and b)
some value variations with respect to the spatial variables (e.g. partial differential equations,
distributions, etc.). These computational models can be subclassed as following:

1) The computational model is based on a mathematical model of an appropriate PDE,
which describes smooth fields, while complying to a given boundary and some pre-
scribed boundary values (i.e. a Dirichlet problem), and combined with a certain com-
putational method (e.g. weighted residual methods, finite differences, finite volumes,
etc.). Concrete computational models of this family, are the one developed for elasticity
problems (i.e. biharmonic PDEs), and the corresponding mesh deformation methods
are termed as elastic pseudo-structural, or physical analogy methods.

2) The computational model is a general function fitting method, which is able to produce
a sufficiently smooth function that interpolates some given sample data. For better
results, some of these methods are imitating/approximating numerically the general
solution of a Dirichlet problem, or a specific computational method solving a specific
Dirichlet problem, while being parametrized by any number of sample data.

The common feature of these methods, is that the unknown displacement field is found from
a linear space of functions, which is spanned by a basis of primative functions. Thus, the
coefficients of the linear combination of the basis functions, are the only unknown parameters
to be determined. Another common feature of these methods, is that the topological data
of the mesh are not needed, and they can apply to any type of mesh, i.e. structured,
unstructured or hybrid.

What makes special each method, is the different type of basis functions that defines a
different function space of solutions. Furthermore, the different optimality expressions (e.g.
on the variations of the displacement field, or the interpolation of the given data) result a
different linear system of equations of the unknown parameters.

Some of the mesh deformation methods of this class are presented and described in the follow-
ing text. Other methods not explained below, are the Algebraic Damping method proposed
by Zhao and Forhad (Zhao and Forhad [2003]), and for structured meshes the Transfinite
Interpolation (TFI) method that is quite efficient and suggested for many applications with
moving boundaries Sen et al. [2017].

National Technical University of Athens Page 3

1.2. Mesh deformation methods

1.2.1.1 Elastic pseudo-structural methods

It is a physical analogy method, where the domain spanned by the subject computational
mesh is seen as an elastic body. The linear elasticity field equations (which can combine and
sum up to a biharmonic equation), are describing a highly smooth displacement field, from
which the free mesh nodes can inquire the displacement values, under the constraint to satisfy
the prescribed Dirichlet boundary conditions and/or other given node displacements (Lynch
and O’Neil [1980]). The deformation can be controlled with certain physical parameters that
describe the body stiffness in various affine transformations (e.g. shear, normal stretches,
volume change, etc.). Several improvements has been proposed from Stein et al. [2003],
for the best combination of the elastic parameters (e.g. the Lame parameters), in order to
achieve very large deformations. Another improvement, is to variate the stiffness parameters
for selected elements (e.g. small elements, or elements close to the boundaries), to preserve
some mesh properties. The elastic problem is treated numerically with the finite elements
method on the same subject mesh, and the components of the vector displacement field are
coupled. Thus, a very large system of equations needs to be solved, but the stiffness matrix
is sparse, and allows for efficient memory storage models and solvers (e.g. direct or iterative
with preconditioning).

1.2.1.2 Methods describing the displacement field with general PDEs

The elastic pseudo-structural methods, based on a biharmonic PDE, are just a concrete
example of the abstract class of PDEs, which can be used to describe an appropriate dis-
placement field with low local distortions. Using the biharmonic operator to describe a
field, larger deformations can be allowed compared to second order PDEs (e.g. based on the
Laplacian operator) (Helenbrook [2003]). Furthermore, the biharmonic equations have the
advantage, against the Laplacian, to preserve the orthogonality of the mesh on the bound-
aries. The main drawback of the methods based on a biharmonic description, is the high
computational cost.

The Laplacian operator is another efficient suitable way to result a smooth mesh deformation
(Burg [2006]). The traditional Laplacian method is based on the Laplace equation, though
the modified Laplacian, incorporating a diffusion coefficient, can perform better by adjusting
the coefficient value. The diffusion coefficient value, can be variable and based on the distance
from the boundaries, or based on a mesh property (i.e. orthogonality and skewness). Finally,
the method can handle very large deformations of single frequency (i.e. rigid translations
or rotations), by adjusting appropriately the exponent of the diffusion coefficient (Selim and
Koomullil [2016]).

1.2.1.3 Function fitting methods with Radial basis functions

The Radial Basis Functions (RBF) method (de Boer et al. [2007]), is a function fitting
method, where the fitting process is taking place globally, for the full set of the nodes with
prescribed displacements (i.e. fixed nodes). The prescribed data of each fixed node, applies
an influence on the resultant fitted function, which influence follows a distribution over the
domain that fades out smoothly as the distance from the subject fixed node increases. The
distribution of the influence (i.e. on the fitted field) is described with a radial function, and

Page 4

Chapter 1. Introduction

the intensity (magnitude) of the influence is an unknown parameter to be evaluated. The
resultant fitted function (i.e. unknown field) is described as the sum of the influences from
all the fixed nodes, i.e. the linear combination of the evaluated radial functions on a certain
domain point, with coefficients the corresponding magnitudes of the radial functions. One
radial function is centered on each fixed node, spanning over the domain with a sufficiently
large radius, such that it includes a sufficient number of fixed nodes. Every fixed node
with its linked fixed nodes, falling in the radial function span, will co-influence a certain
subdomain, which is defined by the intersection of the corresponding radial functions’ span.
In case where the radius of the functions is small, the occured fitting process is more local,
allowing only few fixed nodes to effect on points in the domain, as well as assigning small
influence for fixed nodes far from the close vicinity. The latter fact, facilitates a better and
smoother interpolation around the boundaries. In contrast, too small influence radius can
result a non robust fitting method, resulting poor smoothness far from the fixed nodes or
even failing to give a solution.

The unknown magnitude of the influence of each fixed node, is determined after construct-
ing a linear system of equations. The number of equations is equal to the number of the
unknowns, i.e. the number of the fixed nodes, where each equation is the field description
(through the sum of the influences) satisfied on one of the fixed nodes by interpolation. The
latter process is frequently termed as ”network trainning”, where the term network refers to
the expressed interaction of the fixed nodes.

The RBF method can result dense system matrices when the influence radius is large, such
that a large number of fixed nodes are co-influencing, or sparse when the radius is reduced.
Thus, the method can be fast with efficient solvers for sparse matrices, whereas the method
becomes slow for a large number of boundary nodes and large influence radii. The efficiency
of the method can be further improved with iterative solvers and preconditioning. Further
efficiency improvements are reported in Selim and Koomullil [2016].

The RBF method is easy to implement and the resulted mesh quality is good preserving the
orthogonality on the boundaries. Finally, the quality of the results depends on the type of
the radial basis functions and the chosen influence radius.

1.2.1.4 Free form deformation methods (FFD)

The FFD methods are describing and controlling a domain (i.e. an infinite closed set of
points) through a finite set of control points (Sederberg and R. Parry [1986]). The FFD
methods in mesh deformation, are describing directly the domain where the computational
mesh is defined (e.g. the fluid domain), through a set of control points placed on the
boundaries (static or dynamic). Thus, as the mesh nodes are a finite subset of the domain
points, their position is given directly through the FFD description. The FFD descriptions
are based on linear function spaces, parametrized by the control points (i.e. boundary points)
and spanned by a basis of an equal size. An important requisite property for the used linear
function space, is the linear combination convexity, i.e. the combination coefficients should
be non-negative and their sum at any point within the domain should equal to one. The
latter property allows for convex descriptions, such that the control lattice formed by the
control points, being the convex hull of the described domain. Futhermore, to achieve
smooth desctiptions, the basis functions are chosen to be sufficiently smooth, e.g. harmonic
functions (Μαυρονικόλα [2017], Ζέρβας [2018]), Bernstein polynomials (Becker et al. [2011],
Παπαδημητράκης [2016]), etc.

National Technical University of Athens Page 5

1.2. Mesh deformation methods

1.2.1.5 Local function fitting methods with weighted least squares (WLS) and moving
Least Squares (MLS)

The WLS and MLS methods are both very well known methods, with applications in regres-
sion analysis, function fitting, numerical analysis of PDEs, image morphing, etc. The two
methods implement a generalized linear least squares method, which results a smooth func-
tion fitted to some given data (i.e. a displacement field fitted to some given displacements in
mesh deformation), by a linear combination of smooth basis functions. The generalization
of the method comes from that the minimized squared quantities are weighted in a desired
way by a distribution (i.e. a kernel, or a mask function). In fact, the ordinary least squares
method is a special case of the WLS, where the weighting distribution is a constant function.
The improved results of applying the two methods, are the outcome of choosing a weighting
function with local support (span), i.e. positive on part of the domain and zero (or almost
zero) on the rest of the domain. These weighting functions are cutting off the influence of far
distant data, resulting a locally fitted function that is relied on a subset of the most closely
distant data. The degree of the locality of the fitting, is controlled through the weighting
function span and the speed that it vanishes. If the weighting function vanishes very fast
from a defined center point in the domain, then the resulted least squares fitting is consid-
ering only the very close distant data around the center point. Furthermore, in order to
keep smooth the resultant field function, which is comprised of several local evaluations, the
weighting function is required to vanish very smoothly as approaching the bounds of the
local support. As for a short mathematical insight to the method, the local fitting of the
displacement field to the prescribed displacements, is the solution of a minimization of the
total weighted interpolation error (i.e. expressed in the L2 norm). Searching for a solution
in a linear function space, i.e. parametrizing the solution function with a finite number
of basis functions and unknown coefficients, the minimization problem can be solved with
the Ritz method, from a set of linear equations known as normal equations. Considering a
function space spanned by the monomial basis, one of the unknown coefficients represents
the field value (i.e. the coefficient corresponding to the constant function) on the center
of the weighting function, which is the domain point where the field value is queried. The
rest of the evaluated parameters, deliberate the corresponding local derivatives of the field
function, but in an omni-directional sense.

The MLS method (Lancaster and Salkauskas [1981], Bos and Salkauskas [1989]), implements
an infinite number of the above described local fittings for a given continuous domain, i.e.
for every point of the domain an individual local least squares fitting is performed. The
latter fact implies, that performing a local fitting of a function with a basis of monomials,
only the coefficient corresponding to the constant function is in interest, which represents
the field value at a specific domain point.

The WLS method, implements the local least squares fitting on a finite number of points
within the domain, termed as stationary points (Nealen [2004]). The evaluated data on the
stationary points, i.e. the field value and some derivatives, constitute the data to evaluate
the field values at any other point in the domain. As a method for these evaluations, it
is proposed (Nealen [2004]) the MLS method of 0-degree polynomial (i.e. the constant
function is the only member of the basis functions), using as data only the one available on
the stationary points.

The MLS method applied in mesh deformation, performs one local least squares fitting
per adapted mesh node and per displacement component (i.e. 2 evaluations per node for

Page 6

Chapter 1. Introduction

a 2D mesh and 3 evaluations for a 3D mesh). Moreover, for the evaluation of a specific
displacement component on a node, i.e. for a point evaluation of a scalar field function,
only the data of the same displacement component are considered. Furthermore, to apply
the MLS method in mesh deformation, an appropriate weighting function and a span size
should be selected. Small span sizes and rapid decaying weighting functions, enhance the
locality of the function fitting, which improves the interpolation to the given displacements
and the mesh quality in the vicinity of the fixed nodes (i.e. the mesh nodes with prescribed
displacements). Though, small weighting function spans can cause high distorsions away
from the fixed points, or numerical accuracy problems when all the points are assigned very
small weights, or even lack of robustness, especially when a higher degree polynomial is used
and the data points are sparse long distant. Nevertheless, when the nodes with prescribed
displacements are short distant, and the displacements follow highly variable patterns, small
span sizes and/or higher degree polynomials are necessery to interpollate the given data and
avoid high distorsions around the fixed nodes.

A special case of the MLS method, where the solution function space is spanned by one
basis function, i.e. the constant function, and the weighting function is an inverse distance
function (IDW), is proved to be very efficient, thus attracting a high interest for many ap-
plications (Gordon and Wixom [1978], McLain [1974]). This method has been first proposed
from Shepard (Shepard [1968]) for surface reconstruction applications by interpolating the
given sample points in 3D, and is frequently called the Shepard’s method. In this method,
the IDW functions can achieve a perfect interpolation, due to the very high weighting values
that explode to infinity as approaching the center of the distribution, and the rapid decay
of the weighting values as getting away from the center. The evaluation of such a local least
squares fitting is simplified to the weighted average method, which is computationally very
cheap. In mesh deformation, the method has been proposed from Witteveen (Witteveen and
Bijl [2009], Uyttersprot [2014], Sen et al. [2017]) demonstrating very good mesh qualities for
a low computational cost. Additionally, this very simplified form of the MLS method, facil-
itates greatly the algorithm design in parallel processing, requiring minimal communication
between the computing threads and allowing the efficient linear speed up. Moreover, this
special case of the MLS method, because of the very rapid decaying inverse distance weight-
ing functions and the constant fitted function, results a zero variation of the field values in
the close proximity of the nodes with prescribed displacements (clamping effect). Therefore,
in the most common cases where the prescribed displacements are on the boundary nodes,
it results meshes where the elements close to the boundaries preserve their initial shape, i.e.
the close distant mesh nodes are rigidly clamped on the boundaries.

The MLS method is used in many other applications, in computational mechanics (Nay-
roles et al. [1992], Belytschko et al. [1994], Liu [2002], Quaranta et al. [2005]) and physics
(Maisuradze et al. [2003]). Furthermore, it is used in general where a geometry deforma-
tion or image morphing (Schaefer et al. [2006]) is required, e.g. CAGD, computer graphics,
animation industry, medical image processing, etc. Other applications are where a function
reconstruction is required, based on some sample data, with applications in statistical mod-
eling (Cleveland and Devlin [1988], Cleveland [1979], Strutz [2010]), geo-sciences, geometry
reconstruction, etc.

1.2.2 Methods based on explicit mesh distortion constraints

The mesh deformation methods of this class are based on concepts where the mesh quality is
controlled explicitly, through geometrical quantities and imposed constraints. For instance,

National Technical University of Athens Page 7

1.2. Mesh deformation methods

such constraints can force the mesh elements to follow rigid motion modes as rigid particles,
to satisfy an equilibrium of fictitious forces and moments (physical analogy methods), con-
straints on the angles between the edges, etc. Thus, some of the mesh deformation methods
in this class are:

a) the rigid body motion method,

b) the linear springs analogy method,

c) the rotational springs analogy method,

d) the delaunay graphs method.

The above methods can function for structured or unstructured meshes.

1.2.2.1 Springs analogy methods

In this method the mesh is modeled as a system of springs being joint on the nodes. The
mesh deformation is the result of the solution of a system of equations, which describe the
equilibrium of the interconnected nodes, for given displacements of some of the nodes (e.g.
the boundary nodes displacement). There are two pseudo-structural approaches to interre-
late the nodes with springs of appropriate stiffness, limiting their relevant displacement. In
the first approach, each edge within the mesh is emulated with a linear spring of stiffness
inverse proportional to the length (Batina [1991]), i.e. short lengthed edges are assigned
with higher stiffness value. Alternatively, each angle between two adjacent mesh edges, is
assigned with a rotational spring of stiffness proportional to the declination of the angle from
the proper angle of the element (e.g. 60deg for triangular elements, 90deg for quadrilateral
elements, etc.). The two approaches, are the base of the spring analogy methods, i.e. the
linear spring analogy and the rotational spring analogy methods (Farhat et al. [1998], De-
gand and Farhat [2002]). The method of the linear springs is easy to apply, but it performs
poorly under big displacements and dense meshes, degenerating the mesh elements. In such
cases, a method of rotational springs analogy with corrections on the boundary nodes, will
perfom better to avoid the mesh elements’ degeneration J. Blom [2000], Αποστόλου [2015].

1.2.2.2 Adaptation with the Rigid body movement model

This method is implemented with the assistance of fictitious cells formed around each interior
node that need to be adapted. The method is of a physical analogy type, as each cell is
modeled as a perfectly rigid particle (Κοντός [2018]). For each interior node, the adjacent
circumferential neighbor nodes are found to form a cell, which cell is forced to be rigid and
undeformed under the mesh deformation process. In other words, the goal is to displace
the cells without changing their shape, thus it is algebraically expressed some constraint
equations on the nodes displacements, which are solved for the unknown node displacements.
The resulted mesh quality is similar to the initial, and the method is fast enough although
it is iterative (Κοντός [2018]).

Page 8

Chapter 1. Introduction

1.2.2.3 Adaptation with Delaunay graphs

The mesh deformation method with Delaunay graphs parametrization (Delaunay graph map-
ping method), is an algebraic method proposed from Liu (Liu et al. [2006]). The method
requires an ascillary initial coarse graph that will be defined on the given mesh elements.
It is important to create an initial graph with as high as possible good quality in order to
sustain large deformations, i.e. the graph elements has to be as close as possible to the
proper shape. Though, such a proper shape of the graph elements is generated through
the Delaunay triangulation procedure, where one of the fundamental properties is that the
minimum angle per graph element is the maximum possible.

The nodes of the given mesh, mapped to the barycentric points of the elements of the ascillary
graph, and the connectivities between the mesh nodes, are sufficient topological data for the
ascillary graph. The new positions of the boundary displacements of the deformed mesh, are
redefining the ascillary graph, but the mapped topological data are preserved. Thus, the new
positions of the barycentric points of the graph elements are the required adapted positions
of the deformed computational mesh. The mesh deformation method using Delaunay graphs
can result meshes of good quality efficiently, even for large deformations Τσολοβίκος [2018].

1.3 Introduction to high performance computing and parallel pro-
cessing

There are many applications which can effectively use computing speeds in the trillion op-
erations per second range. Some of these are:

1) Numerical simulation to predict the behaviour of physical systems.

2) High performance graphics, e.g. visualization, animation, etc.

3) Big data analytics for strategic decision making and finance.

4) Synthesis of molecules for designing medicines.

Figure 1.1: The von Neumann computer architecture.

There are two methods of increasing the speed of computers. One method is to build
sequential processing elements (scalar processors) using faster semiconductor components

National Technical University of Athens Page 9

1.3. Introduction to high performance computing and parallel processing

(frequency rate), and the other is to improve the architecture of computers using parallel
models, i.e. temporal (or task) parallelism and/or data parallelism. The temporal paral-
lelism implies the decomposition of the process in several sub-processes (e.g. instructions),
which can be executed by individual specialized execution units in an overlapped manner
(e.g. instruction level parallelism, pipeline streams, multi-threading, memory hierarchy, data
transferring bus lines, etc.), for as long as no data dependencies occur between the overlapped
sub-processes. Data parallelism is achieved by executing the same process (no matter the
operation complexity, e.g. an instruction, or a program, etc.) on n sets of independent
operands, simultaneously on n corresponding execution units. Such processing units to ex-
ecute entire programs (i.e. coarse grain of parallelism) can be inter-connected cores, CPUs,
GPUs, multiprocessor servers or computer clusters, known as parallel computers. When
instruction level parallelism exists in a micro-processor, then examples of execution units
are the ALUs, FPUs, LSUs, BEUs, AGUs, etc., which can be installed multiple times in a
core to implement further temporal or data parallelism. The latter type of parallelism is
known in the literature as very fine grained parallelism, as the smallest grain is a machine
instruction in a program.

The speed of a sequential computer (see Figure 1.1) is limited by the speed at which a
processor can retrieve instructions and data from the memory, and the speed at which it can
process the retrieved data. To increase the speed of processing of data, one may increase the
speed of the processors by increasing the clock speed. Though, the heat dissipation in the
processors is directly analog to the frequency, which puts a limit to the frequency at which
processors operate, which is known as the frequency wall in the literature.

In 1965 Moore had predicted that the number of transistors in an integrated circuit chip will
double (per unit area of chip) approximately every two years, and without increasing the
product cost (known as the Moore’s law). The Moore’s prediction and the actual advances
are a result of constant tecnhological developement (e.g. advances in lithography process),
market and economy laws, and more precisely nowdays, complemented from the Kimmey’s
Law, Dennard’s Law, Metcalfe’s Law and the Emergent Behavior (Hutcheson [2018]). The
increase in the number of transistors allowed processor designers to install more execution
units on chip, combined with control units, achieving complex pipelined, superscalar, multi-
threaded processors that exploited the available instruction level parallelism (ILP). However,
even if many arithmetic elements are equipped in one processor, there was not enough in-
struction level parallelism available in threads to use them. Further as the complexity of
the processor increased design errors crept in, debugging complex processors on a single
chip with too many transistors was difficult and expensive. Thus, instead of using the extra
transistors to increase the number of integer units, floating point units, and registers, which
reached a point of diminishing returns, architects had to explore other ways of using the
extra transistors. There are two other ways of using transistors. One is to increase the size
of the on-chip memory called the L1 cache to exploit memory hierarchy speedups, and the
other is to put several processors in a single chip and make them cooperate to execute a
program. There is a limit beyond which increasing the L1 cache size has no advantage as
there is an upper limit to locality of reference to memory. Nevertheless, installing n proces-
sors (processing cores) in a chip, can very often yield n− fold speedup and in some special
cases even super-linear speedup. The number of cores has been increasing in step with the
increase in the number of transistors in a chip, i.e. the number of cores is doubling almost
every two years. An architecture with multiple cores, implements an on-chip shared memory
for the parallel working cores, or a network of cores, where each core has its own memory.

Page 10

Chapter 1. Introduction

1.3.1 Parallel computers

The computer speed relies mostly on the processor speed, though other computer units,
namely, the memory, and I/O units, can contribute when their speed is increased, or the
computer architecture is improved. For example, while the processor is computing, data can
be transferred asynchronously from the computer memory to the processor memory and from
the I/O units to the computer memory, for later use. Such an overlap of operations is achieved
by using both software and hardware features. To further increase the processing speed,
many such computers may be inter-connected to work cooperatively to solve a problem.
Research in parallel computing started in the late 70s, by examining how several independent
processors could be inter-connected to work in parallel. Many scientific groups and companies
were active in building parallel machines during the 80s and 90s upto early 2000, but parallel
computing had never been used for general purpose (Rajaraman and Murthy [2016]). It was
the multiple cores architecture, by implementing parallel computing paradigms, that brought
the parallel computing in everyday use. Nevertheless, in each case of processor architecture,
computer architecture, or parallel computer architecture, the main subject is to improve the
inter-connection network of the sub-units, by implementing temporal and data parallelism.

Figure 1.2: General diagram of a parallel computer (Rajaraman and Murthy [2016]).

The heart of a parallel computer is a set of processing elements (PE) interconnected by a
communication network (see Figure 1.2), and the general structure is complemented by PE
local memory and an I/O system. This general structure can have many variations based on
the type of PEs, the memory available to PEs to store programs and data, and how memories
are connected to the PEs, the type of communication network used and the technique of
allocating tasks to PEs and how they communicate and cooperate (Rajaraman and Murthy
[2016]). The variations in each of these lead to a rich variety of parallel computers.

The vast variety of parallel computer architecture may be classified based on the following
criteria:

1) How do instructions and data flow in the system? This idea for classification is ex-
tensively used in literature, being also one of the earliest proposals, known as Flynn’s
classification (Flynn [1972]).

National Technical University of Athens Page 11

1.3. Introduction to high performance computing and parallel processing

2) What is the coupling between PEs? Coupling refers to the way in which PEs cooperate
with one another. The autonomy enjoyed by the PEs while cooperating with one
another during problem solving determines the degree of coupling between them. A
tightly coupled parallel computer, shares a common main memory, thus communication
among PEs is very fast and cooperation may be even at the level of instructions.

3) How do PEs access memory? Accessing relates to whether data and instructions are
accessed from a PE’s own private memory or from a memory shared by all PEs.

4) What is the quantum of work done by a PE before it communicates with another
PE? This is commonly known as the grain size of computation. The grain sizes are
classified as very fine grain (a single machine instruction), fine grain (a thread, i.e. a
very small sequence of machine instructions, managed independently), medium grain
(e.g. a subroutine, or a procedure less than 1000 machine instructions), and coarse
grain (a complete program). The grain size determines the frequency of communication
between PEs during the solution of a problem.

Flynn classified parallel computers into four categories based on how instructions process
data. A computer with a single (scalar) processor with no temporal and data parallelism,
is called a Single Instruction stream, Single Data stream (SISD) Computer. This type
of computer implements the von Neumann architecture. A class of computers which have
multiple processors is the Single Instruction stream, Multiple Data stream (SIMD) computer
(see Figure 1.3). These computers (e.g. array computers) expose data parallelism, but no
temporal parallelism, i.e. a specific instruction is issued (dispatched) to every processor
from one central control unit (instruction scheduler), and every processor operates on a
different set of operands, in a lock-step-fashion (simultaneously) using data from their local
memory. In this model there is no explicit communication among processors. However,
data paths between nearest neighbours, or grids, are used in some structures to allow local
communication. SIMD computers are used to solve many problems in science which require
identical operations to be applied to different data sets synchronously, e.g. adding and
multiplying the elements of a set of arrays simultaneously. If instead of a single instruction,
the PEs are issued a program to process multiple data streams, such a parallel computer is
called a Single Program Multiple Data (SPMD) Computer. The third class of computers
according to Flynn’s classification, is known as Multiple Instructions stream, Single Data
stream (MISD) computers. Observe in Figure 1.4 that in this structure multiple instruction
schedulers exist, where each one is controlling a different stream of instructions dispatched
to an individual PE, and operating on shared data. The MISD parallel computing model,
fascilitates the implementation of temporal parallelism, e.g. the pipeline processing is a
special case of this mode of computing. In pipeline processing (e.g. in vector computers)
the data processed by PE1 (see Figure 1.4), namely, R1 is fed to PE2, R2 to PE3 etc., and
DM contents will be input to only PE1. This type of processor may be generalized using
a 2-dimensional arrangement of PEs, which is known as a systolic processor (e.g. VLSI
circuits). The last and the most general model, according to Flynn’s classification, combines
the temporal and the data parallelism, and is termed as the Multiple Instructions stream,
Multiple Data stream (MIMD) computer (see Figure 1.5). MIMD is the most frequent
architecture for the mainstream processors, and parallel computers (e.g. Message passing
multi-computer, cluster computers, shared memory computer using bus or interconnection
network communication, distributed shared memory systems, etc.).

The classification based on the mode of accessing memory, finds the class of Shared Memory
(SM) computers, and the class of Distributed Shared Memory (DSM) computers. In a

Page 12

Chapter 1. Introduction

Figure 1.3: General diagram of a SIMD computer (Rajaraman and Murthy [2016]).

Figure 1.4: General diagram of a MISD computer (Rajaraman and Murthy [2016]).

Figure 1.5: General diagram of a MIMD computer (Rajaraman and Murthy [2016]).

shared memory computer all the processors share a common global address space, or in
other words, programs are written for this parallel computer assuming that all processors
address a common shared memory. The latter memory model has a Uniform Memory Access

National Technical University of Athens Page 13

1.3. Introduction to high performance computing and parallel processing

(UMA), i.e. the time to access a word in the memory is constant for all the processors. Shared
memory machines may be of the bus-based, extended, or hierarchical type. In distributed
shared memory (DSM) systems, each processor may have its own local memory and may
or may not share a common memory. A distributed shared memory computer has a Non
Uniform Memory Access (NUMA), explaining, the time taken to access a word in its local
memory is smaller than the time taken to access a word stored in the memory of another
computer or a common shared memory. For example, if a remote memory is accessed by a
PE using a communication network, it may be 10 to 1000 times slower than accessing its own
local memory. Distributed memory machines may have hypercube or mesh interconnection
schemes.

1.3.2 Chip Multiprocessors

When the performance of single processors reached saturation around 2005, chip designers
started integrating many processors (cores) on a single chip to continue to build processors
with better performance. The parallel processors built on a single integrated circuit chip,
and following known architectures from parallel computers, are called Chip Multiprocessors
(CMP), allowing a core level parallelism to speedup execution of programs, or to execute a
number of independent programs simultaneously. However, there are important differences
between the architectural issues in designing a parallel computer of independent processing
units, and designing a CMP. On the negative side, individual cores heat up at high clock
frequency and may affect the performance of physically adjoining cores. Another problem
arises due to threads or processes running on different cores and sharing an on-chip cache
memory, leading to contention and performance degradation unless special care is taken
both architecturally and in programming. Furthermore, whereas in parallel computers wires
interconnecting computers had no constraint on the number of wires, the wires inside a
chip occupy chip area and thus their number has to be reduced. Also, the switches used
for inter-processor communication need chip space and their complexity has to be reduced.
Considering in advantages, as the processors are closely packed, the delay in transferring data
between cooperating processors is small. Thus, very lightweight threads (i.e., single machine
instruction or very short sequence of machine instructions, managed independently) can
run in the processors and communicate more frequently without degrading performance.
As cores are constantly duplicated, the design of a single core may be replicated without
incurring extra design cost. Besides this, depending on the requirement of the application,
the power budget, and the market segment, processors may be tailored with a necessary
number of cores without incurring a high cost.

Figure 1.6 illustrates a generalized structure of CMPs, where a set of processing cores in-
terconnected by a communication network is the standard essential part of the chip. The
independent processing cores share common on-chip cache memory to cooperate and solve
problems in parallel. The general structure given in Figure 1.6 can have many variations
(similar to parallel computers) based on the type of cores, the memory system used by
the cores, the type of communication system interconnecting the cores, and how the cores
communicate and cooperate.

The type of the processing cores, can vary from one CMP to another, or from core to core
within a particular CMP. Some of the most common core processor types are, the single
threaded scalar processor (SISD, von Neumann computer), a multithreaded superscalar pro-
cessor, a simplistic processor consisting only of an ALU, a general purpose processor, etc.

Page 14

Chapter 1. Introduction

Figure 1.6: A typical architecture of a chip multiprocessor (CMP). (Rajaraman and Murthy [2016])

As mentioned above, CMPs are designed according to known parallel computing models,
and some of them are described below,

a) the SPMD model, operates in parallel all the cores with copies of the same running
program, but on different data sets,

b) the SIMD, according to which an instruction dispatcher issues (broadcasts) a single
instruction to all the supervised core processors, i.e. copies of an instruction are dis-
patched, but with different data per core.

c) the SIMT (single instruction, multiple threads) model, is a generalization of the SIMD
model that was innovated from NVIDIA for their general purpose core processors known
as SMs (shader or streaming multiprocessors). In a SIMT architecture, rather than a
single thread issuing vector instructions applied to data vectors (SIMD model), multiple
threads issue common instructions to arbitrary data. The benefits of SIMT for pro-
grammability led NVIDIA’s GPU architects to coin a new name for this architecture,
rather than describing it as SIMD.

d) the MIMD model, where all the instructions and the data are stored in the shared
memory and managed by scheduled threads. A free core selects a thread to execute
and deposits the results back in the shared memory for use by other cores. each core
is assigned an independent task, and all the cores work simultaneously on the assigned
tasks, known as the request level parallel processing.

Concerning the memory system, there are few memory hierarchy patterns used, of 2 or
more cache memory levels. Such patterns variate the location of the higher (further) cache
levels, i.e. the L2 cache can be placed locally in each core, or shared among the cores and
installed on-chip. If L3 cache memory exists, it can be placed either on-chip, when the L2
cache memory is on core, or off-chip. Shared cache memories (or off-chip memories) reduce
the occupied on-chip area and power consumption, allowing for larger memory capacities
and the cooperation of the processors. From the other hand, cache memories placed in
processing cores accelerate the processing of independent tasks per core. With the chips
being populated with more and more transistors, higher capacities of cache memories are
possible, and higher level cache memories can immigrate on-chip closer to the processing
cores. The use of independent caches from the cores, leads to the cache coherence problem,

National Technical University of Athens Page 15

1.3. Introduction to high performance computing and parallel processing

i.e. inconsistency in the stored data from a cache memory level to another level. The
problem of cache coherence is solved with various techniques developed for parallel computing
architectures, by updating the data of a given address (unified memory address space) in
all the cache memories. The memory consistency model and the need to write race free
programs are also applicable to CMPs.

The design of communication networks among the cores and the shared memories in CMPs,
follows various architectures from parallel computers, e.g. a bus interconnection, or a ring
bus interconnected cores (with caches), a fixed interconnection network such as a ring, or
a grid, or crossbar switch with appropriate routers. A point of difference, compared to the
communication networks of conventional parallel computers, is that in CMPs a bus or an
interconnection network is an integral part of a single microprocessor chip, offering higher
speeds and lower latencies.

Nevertheless, the most difficult problem is to perceive parallelism in algorithms and develop a
software environment which will enable application programs to utilize this potential parallel
processing power. Unlike multithreaded processors in which the hardware executes multiple
threads without a programmer having to do anything, multicore processors require care-
ful programming. The problem of the programming model in GPU multi-core processors,
where the number of cores is very large (many-cores processors), is specially handled with a
large pool of virtual threads that are programmed in the software level. The large pool of
virtual threads are managed by an efficient hardware execution model (i.e. ATI/AMD Ultra-
Threaded Dispatch and GCN system, or NVIDIA GigaThread and CUDA system), which
in first priority services the need of high processing throughput and dynamic branching.

1.3.3 High compute throughput with GPGPUs

Graphic processor units (GPUs) since ’90s offered a full acceleration for 2D and 3D graph-
ics, dismissing any workload from the CPU. They utilized a classical processing pipeline,
illustrated in Figure 1.7, which is still valid without considerable changes.

The graphics pipeline contains all the necessary stages from the moment that the vertex
data arrive to the GPU until a pixel is finally drawn on the screen. Initially, each stage of
the pipeline was supported by specialized (fixed-function) parallel processing elements on
chip. The parallel processing elements per pipeline stage, were designed to operate with
high throughput on a large amount of independent data (e.g. vertices, or fragments-pixels),
covering the workload per stage (i.e. traditionally the fragment-pixel stage had a much larger
number of elements to process, compared to the vertex stage).

In the early 2000, there was a demand from GPUs to offer more complex and flexible pro-
cessing features in the most important pipeline stages, i.e. the vertex processing stage and
the fragments-pixel processing stage. Therefore, the corresponding processing units became
gradually programmable, starting with the vertex stage by implementing the programmable
parallel vertex shaders, and then the programmable parallel pixel shaders. A constant de-
mand for better control and more dynamic flow over the graphics pipeline, was pushing the
GPU architectures to unify the programmable shaders, into general purpose parallel proces-
sors, that could be shared dynamically for the various graphics pipeline stages, see Figure
1.8. The latter GPU architectures with unified parallel processors, were developed along
with dynamic multi-threading execution systems (i.e. ATI/AMD Ultra-Threaded Dispatch

Page 16

Chapter 1. Introduction

Figure 1.7: Classic graphics pipeline with a specialized processor per function. (NVIDIA)

and GCN system, or NVIDIA GigaThread and CUDA system), which in first priority are
servicing the need to retain the processing throughput in the highest possible level at every
moment, while sharing the available compute resources among many data and many pipeline
stages.

Figure 1.8: Unified shader processor array, executing the logical graphics pipeline stages. (Patterson
and Hennessy [2013])

The dynamic multi-threading execution systems are implemented by many flying virtual
threads, which are in standby to be instantiated by hardware threads for execution, when
the scheduling units will find the optimum time instant. In a typical system, thousands of
threads are queued up for work. If the GPU must wait on one group of threads, it simply
begins executing work on another. The flying virtual threads concept, facilitates greatly
the parallel programming models (e.g. CUDA, OpenCL, etc.), by letting the execution
control of the hardware computing threads to the hardware itself (or compiler sometimes),
and maintaining a scalable software for future or current hardware with variant amount
of compute resources. These abstract programming models, combined with the general
purpose parallel processors compliant with the IEEE 754 standard (a standard of precision

National Technical University of Athens Page 17

1.3. Introduction to high performance computing and parallel processing

and numerical accuracy of floating point operations), gave the ability to use the GPUs as
general purpose processing units (GPGPUs) for any sufficiently parallel problem. GPGPU
computing is the use of a GPU as a co-processor to accelerate CPUs for general-purpose
computing. The GPU accelerates applications running on the CPU by offloading some of
the compute-intensive portions of the code where data are independent and the operations
are the same. Additionally, computations on GPGPUs demonstrate a high potential for
good energy efficiency.

Parallel computing devices such as GPGPUs, tend to be hit for any single threaded appli-
cation and frequently are poor performers for extremely branch-intensive, unpredictable or
too small problems. Very small problems lack the parallelism needed to use all the threads
on the GPU and/or could fit into a low-level cache on the CPU, substantially boosting CPU
performance. Unpredictable problems have too many meaningful branches, which can pre-
vent data from efficiently streaming from GPU memory to the cores or reduce parallelism
by breaking the SIMD parallel model that exists in the fine grain execution model of the
GPGPUs. This problems does not exist in MIMD parallelism, which is implemented for
the coarse grain execution model of the GPGPUs, i.e. each process/instruction has its own
‘locus of control’.

GPU chip multiprocessors, which originate from the special-purpose graphics co-processors,
are optimized for data-parallel tasks with simpler control logic, focusing on the throughput
of parallel programs. These programs in graphics, are based on a data-parallel map idiom of
large single-value data. Thus, other applications which possess the map idiom, basically map
operating on multiple-dimension arrays, are ideal for peak performance. Loops on regular
data structures is another example of map idiom, offering high parallelism degree, even
for fine grain calculations. The GPGPUs are not necessarily limited to map computations,
stencils may be target computations, as well as complex reduce and parallel prefix. GPGPUs
rely heavily on the underlying architecture with shared memory, so many stencils can be
modeled as map & barrier.

GPU multi-core processors are heavily populated with cores, and are known as many-core
processors. The many core architecture is organized in a two level hierarchy that focuses
primarily on achieving high compute throughput on data parallel workloads, by sacrificing
single-thread performance and execution latency. This is in contrast to general purpose
processors, and multi-core architectures, which focus primarily on single-thread performance,
with low execution and communication latency, with a secondary focus on high compute
throughput.

The GPGPUs architectures, implement a coarse grain parallel model among clusters of
execution units, and a fine grain parallel model among the execution units within each
cluster. Both of the parallel granularity levels are participating to achieve high compute
throughput, through the dynamic multi-threading execution system, as introduced in the
text above. NVIDIA names the clusters of the execution units stream multiprocessors (SM),
and AMD calls them compute units (CU).

A CU or a SM loosely corresponds to a core processor in a modern microprocessor. The
GPGPU chip multiprocessors consist of, core processors (i.e. SMs or CUs) on an intercon-
nection network, high-bandwidth DRAM channels, on-chip L2 cache, and a dynamic virtual
thread manager. The number of SMs and cores per SM, varies as per the price and target
market of the GPU. Among the core processors, a bus interconnection is usually preferred, as

Page 18

Chapter 1. Introduction

it is simple and easy to fabricate, but it can become a bottleneck for a many-core processor,
when many of them will try to access the cache memory on chip simultaneously. There-
fore, an interconnection network is preferred, with a message passing cooperation system to
avoid the cache coherence problem, or a shared memory architecture with a ring bus and
directory based cache coherence protocol (Rajaraman and Murthy [2016]). GPGPUs coarse
grain parallel computing executes with the MIMD parallel model. The execution model
is implemented with dynamic managers of groups of virtual threads (i.e. the ATI/AMD
Ultra-Threaded Dispatch system, or the NVIDIA GigaThread system), which try to keep
a workload equilibrium among the SMs or CUs. The managed groups of virtual threads
are known as thread blocks. The thread blocks are distributed to the SMs (or CUs) for
further brakedown structuring in groups of, warps in CUDA terminology, or wavefronts in
the AMD’s GCN architecture, which groups have a hardware fixed size. The warps (or
wavefronts) are executed concurrently in a fine grained parallel fashion of the SIMT model.

Each core processor (i.e. SM or CU) has its own central front-end, complete with instruction
fetch-decode-issue logic (i.e. warp schedulers and instruction dispatch units), a large amount
of execution units, registers, L1 cache memory, and an interconnection network. NVIDIA
and AMD like to call their arithmetic execution units (ALUs/FPUs) ‘cores’, so that they can
claim to have hundreds of cores. In reality, GPU chip multiprocessors have more like tens of
cores, i.e. the SMs or CUs, but are able to provide more computate power by using vectors,
which lower the amount of the control overhead. However, it is clear that Stream Processors
(SP) in NVIDIA’s terminology, are not truly independent processor cores. Each SP has a
register file (at least a portion of one) and an independent instruction pointer, but the SPs
lack a complete front-end that can fetch and schedule instructions independently. In that
regard, the SPs most closely correspond to an issue pipeline in a modern multi-threaded CPU.
The fine grain parallel computing is implemented with the SIMT (generalization of SIMD)
parallel model, with a fixed number of hardware threads instantiating the virtual flying
threads (i.e. context switching) and dispatching a common instruction to the execution
units, per processor clock cycle. For instance, in CUDA the latter cluster of hardware
threads consists of 32 threads. The corresponding CUDA clusters of 32 virtual threads,
which are instantiated at a clock time are called warps. Thus, the virtual flying threads
are not totally unordered, but structured in groups of a fixed number of members, i.e. the
warps. The threads in the warps should ideally possess the same sequence of instructions,
as they are executed under the SIMT model. If there are threads in a warp with divergent
instructions, these instructions will be issued only for the active threads, while the rest will
remain idle as waste compute resources. This thread diverging problem requires careful
programming, accounting for how the virtual threads are grouping in warps. The grouping
of the virtual threads is augmented by multi-dimensional grid structures, where each virtual
thread has a flying identity that corresponds to its position in the structured grid. In that
grid, which is a fundamental element of the CUDA programming model, 32 consecutive
virtual threads are comprising a warp. Each warp has its own program counter to keep a
register of which instructions need to be issued for execution, common and divergent in total.
Furthermore, every warp is able to access its own registers, to load and store from divergent
addresses, and to follow divergent control flow paths. When a warp is being instantiated
by the hardware threads for its current instruction dispatch at a certain clock cycle, at the
next clock cycle it may proceed in dispatching its next instruction (if any remains), or may
not. The decision is taken by a central instruction control unit (known as a warp scheduler
in CUDA architecture), which analyzes a number of concurrent warps, currently residing in
the SM. Thus, warps will reside in the SM, until they finish the issuing of their instructions,
and will be instantiated according to a schedule (i.e. context switching) in various clock

National Technical University of Athens Page 19

1.3. Introduction to high performance computing and parallel processing

cycles, see Figure 1.9a. Current CUDA architectures support multiple (e.g. 2 or 4) warps
instantiation per clock cycle, and furthermore, multiple (e.g. 2) consecutive instructions to
be issued for execution from each instantiated warp, when possible. These, allow higher
performance with instruction level parallelism, i.e. instruction pipelining, and superscalar
execution (i.e. IPC> 1, when enough execution units are available). The execution units
in each SM are structured in blocks, e.g. in Figure 1.9b the Fermi SM execution blocks are
illustrated, where we see two blocks of 16 ALUs (arithmetic logic units) each, one block of
four SFUs (special function units) and one block of 16 LSUs (load/store units). Therefore,
for the Fermi SM, a total of 32 instrcutions from one or two warps can be dispatched in each
cycle to any two of the four execution blocks within the SM. In case where the available
number of execution units is greater or equal to the size of the warp (i.e. 32), and the
warp threads do not diverge in the execution path, all the threads execute the scheduled
instruction in one clock cycle, offering the maximum throughput. Otherwise, the number of
cycles increases accordingly.

Employing the SIMT execution model, the control and logic hardware units get simplified
and centralized to service a large number of simple ALUs that lack complex control and
logic. The simple processing elements, need less transistors and integrated chip area, thus
allowing to install a large number of them, resulting a substantially increased processing
throughput.

Page 20

Chapter 1. Introduction

(a) Illustrated are the instruction dispatching pipelines, one per warp scheduler, as
issued from the central instructions control unit and the private program counter of
each warp. (Source: NVIDIA)

(b) The figure shows the structure of the execution units in blocks, within a Fermi SM. The
dispatched warp instructions are issued for execution per clock cycle in clusters, of size equivalent
to the execution block. (NVIDIA)

Figure 1.9: In the two pictures above, the instructions dispatching mechanism is shown, along with
the block structures of the execution units.

National Technical University of Athens Page 21

1.4. Work scope and outline

1.4 Work scope and outline

The various applications mentioned in section 1.1, where the mesh deformation is part of the
process, are quite computationally intensive and very often solved on GPGPUs. Therefore,
a mesh deformation method that would perform well on the GPGPU parallel environment,
is something desirable to reduce the overall solution time of the problem. Such a mesh
deformation method seems to be the MLS method, which exhibits full data independence in
its coarse granularity level of computations, and a moderate parallelization potential in its
finer granularity of computations.

Prior work on the MLS method for mesh deformation, see Τουρής [2016], had exposed the
effectiveness and the good performance of the method in mesh deformation. The subject
of this work is to develop a parallel execution of the Moving Least Squares (MLS) mesh
deformation method, on General Purpose GPUs (GPGPUs). Initially, the MLS method’s
computations are analyzed for various polynomial degrees, to expose the potential parallelism
with the CUDA compute execution model. Further, CUDA algorithms are proposed to
execute the computations efficiently and gain an optimal speedup.

Additionally, the MLS method is enriched with the more general rational weighting functions
(i.e. inverse distance weighting functions), which allow the utilization of low polynomial
degree MLS interpolation, preserving the good quality results for low-medium degree of mesh
deformations, see Witteveen and Bijl [2009]. The low polynomial MLS interpolation is an
interesting case, because the computations are substantially reduced and the parallelization
potential is increased.

The breakdown structure of this work is as following:

1. The second chapter introduces to the reader the mathematical background of the MLS
method, combined with elements from the approximation theory which can be found
in Appendix A. This mathematical background is essential to realize that the MLS
method is a least squares method, with the ability to fit a function locally by cutting
off the effect of far data. The elements from the approximation theory are useful to
comprohend numerous publications on the MLS method with many applications.

2. The third chapter contains a thorough analysis of how the computations of the MLS
method can fit and exploit the CUDA architecture. Furthermore, three variants of
CUDA algorithm designs are presented to implement the MLS method, which are
utilized in some test cases as presented in chapter four.

3. The fourth chapter demonstrates the parallel execution speedups that result each of
the CUDA algorithm designs for some test cases. Additional results are included for
simple parallelizations with CPU multithreading-multicore hardware and heteregeneous
execution (CPU+GPGPU).

Page 22

Chapter 2

The least squares methods

2.1 Introduction

In this chapter the mathematical background is shown for the family of the least squares
methods. This chapter is augmented with many references to the Appendix A, where various
important elements from approximation theory are presented.

The mathematical tool of this work, the Moving Least Squares method (MLS), is shown to
be a special implementation of the generalized weighted least squares. Using appropriate
weighting functions, the generalized weighted least squares can perform local approximations,
which is the key element of the MLS method.

The importance of the weighting function in the results of the MLS and WLS methods
is recongnised, especially in cases where the methods are required to interpolate the data.
Further analysis on the weighting functions can be found in Appendix B, along with several
parametric analyses which exposing the effect of the various function parameters on the
quality of the interpolation. The intepolation property of the MLS, has been proved quite
essential in our problem of mesh deformation, improving substantially the results in the close
vicinity of the boundaries, even with the 0-degree polynomial.

2.2 Least Squares Approximation

The least squares approximation, is a method that gives the best approximation of a function,
or the best approximation of a set of nodes. The best approximation implies an objective
function, which minimizes the total approximation error. The objective functions can ac-
tually be any reliable metric functions, measuring the total approximation error, and can
prove robust in a minimization process. In the case of the least squares method, that objec-
tive function is the norm-2 metric. The latter metric function, is associated with the inner
product operation, thus when minimized, the orthogonal projection of the total error on the
solution space is implied. More details can be found in Davis [1975] and Atkinson and Han
[2009], or in Appendix A.2 and A.3.

National Technical University of Athens Page 23

2.2. Least Squares Approximation

Least Squares Approximation
Let C = L2(Ω̄) be a closed space, on Ω = Rd, equiped with the norm ‖.‖2, and
f ∈ C. Assume S = Pn is a finite-dimensional convex subset of C with n ≥ 0 and a
basis span{φ0, φ1, ..., φn}. Then there is a unique best approximation PS(f) = f̂b =∑n

i=0 aiφi ∈ Pn, defined by a unique set {ai}ni=0, ai ∈ R, from the minimization
problem

min
f̂∈Pn

∥∥∥f − f̂∥∥∥2

2
(2.1)

⇔ E(f ; ai) = min
ai

∫
Ω̄

∣∣∣∣∣f(x)−
n∑
i=0

aiφi(x)

∣∣∣∣∣
2

dx (2.2)

The necessary condition to find the set {ai}ni=0, which minimizes the above equation,
is yielding a set of n+ 1 in number equations, known as normal equations.

∂E(f ; ai)

∂am
= 0, m = 0, 1, 2, ..., n (2.3)

⇔ ∂

∂am

∫
Ω̄

∣∣∣∣∣f(x)−
n∑
i=0

aiφi(x)

∣∣∣∣∣
2

dx = 0

⇔
∫

Ω̄

n∑
i=0

φm(x)aiφi(x)dx =

∫
Ω̄

φm(x)f(x)dx

The normal equations in Eq. 2.3 can be expressed in a matrix form

Aa = f

where A is the following Gramian matrix

A =

∫
Ω̄

φ0(x)φ0(x) φ0(x)φ1(x) ... φ0(x)φn(x)
φ1(x)φ0(x) φ1(x)φ1(x) ... φ1(x)φn(x)

...
φn(x)φ0(x) φn(x)φ1(x) ... φn(x)φn(x)

 dx (2.4)

and the vectors a of the set of unknowns ai and f of the RHS

f =

∫
Ω̄

f(x)φ0(x)
f(x)φ1(x)

...
f(x)φn(x)

 dx, a =

a0

a1

...
an

For function reconstruction problems, we have the following corollary for the best approxi-
mation with distinct data provided.

Page 24

Chapter 2. The least squares methods

Least Squares Approximation on Distinct Points
Let C = L2(Ω̄) be a closed space, on Ω = Rd, equiped with the discrete norm ‖.‖2,
and f ∈ C. Assume S = Pn is a finite-dimensional convex subset of C with n ≥ 0
and a basis span{φ0, φ1, ..., φn}. Let a set of sample values F = {f(x̂i)}Mi=1 is given on
the set of sample points P = {x̂i}Mi=1, with M ≥ n + 1. Then there is a unique best

approximation PS(f) = f̂b =
∑n

i=0 aiφi ∈ Pn, defined by a unique set {ai}ni=0, ai ∈ R,
from the minimization problem

min
f̂∈P

∥∥∥f − f̂∥∥∥2

2
(2.5)

⇔ min
M∑
i=0

|f(x̂i)−
n∑
j=0

ajφj(x̂i)|2

The necessary condition to find the set {ai}ni=0, which minimizes the above equation,
is yielding a set of n+ 1 in number equations, known as normal equations.

∂E(f ; ai)

∂am
= 0, m = 0, 1, 2, ..., n (2.6)

⇔ ∂

∂am

[
M∑
i=0

|f(x̂i)−
n∑
j=0

ajφj(x̂i)|2
]

= 0

⇔
M∑
i=0

n∑
j=0

φm(x̂i)φj(x̂i)aj =
M∑
i=0

f(x̂i)φm(x̂i)

The Gramian matrix of the discrete normal equations is defined as

A =
M∑
i=0

φ0(x̂i)φ0(x̂i) φ0(x̂i)φ1(x̂i) ... φ0(x̂i)φn(x̂i)
φ1(x̂i)φ0(x̂i) φ1(x̂i)φ1(x̂i) ... φ1(x̂i)φn(x̂i)

...
φn(x̂i)φ0(x̂i) φn(x̂i)φ1(x̂i) ... φn(x̂i)φn(x̂i)

 (2.7)

and the vectors a of the set of unknowns ai and f of the RHS

f =
M∑
i=0

f(x̂i)φ0(x̂i)
f(x̂i)φ1(x̂i)

...
f(x̂i)φn(x̂i)

 , a =

a0

a1

...
an

�

National Technical University of Athens Page 25

2.3. Weighted Least Squares approximations

2.3 Weighted Least Squares approximations

The classic least squares approximation, as introduced in the previous section with the
minimization of the total approximation error, can be generalized. The generalization is
introduced with a weighting mask function applied on the measured errors per point. In fact,
the classic least squares method is a special case of the generalized, where the weighting mask
function is the global unit function that considers every point error with the same importance
in the total error.

Weighted Least Squares Approximation
Let C = L2

w(Ω̄) be a closed space, on Ω = Rd, equiped with the norm ‖.‖0,w, and
f ∈ C. Assume S = Pn is a finite-dimensional convex subset of C with n ≥ 0 and an
orthogonal basis span{φ0, φ1, ..., φn}. w(Ω) is a positive function and integrable on Ω̄.

Then there is a unique best approximation PS(f) = f̂b =
∑n

i=0 aiφi ∈ Pn, defined by
a unique set {ai}ni=0, ai ∈ R, from the minimization problem

min
f̂∈Pn

∥∥∥f − f̂∥∥∥2

0,w
(2.8)

⇔ E(f ; ai) = min
ai

∫
Ω̄

w(x)

∣∣∣∣∣f(x)−
n∑
i=0

aiφi(x)

∣∣∣∣∣
2

dx (2.9)

The necessary condition to find the set {ai}ni=0, which minimizes the above equation,
is yielding a set of n+ 1 in number equations, known as normal equations.

∂E(f ; ai)

∂am
= 0, m = 0, 1, ..., n (2.10)

⇔ ∂

∂am

∫
Ω̄

w(x)

∣∣∣∣∣f(x)−
n∑
i=0

aiφi(x)

∣∣∣∣∣
2

dx = 0

⇔ am =

∫
Ω̄
φm(x)w(x)f(x)dx∫
Ω̄
φm(x)2w(x)dx

The discrete case is similar to (2.6) and (2.10)

∂E(f ; ai)

∂am
= 0, m = 0, 1, ..., n (2.11)

⇔ ∂

∂am

[
M∑
i=0

w(x̂i)|f(x̂i)−
n∑
j=0

ajφj(x̂i)|2
]

= 0 (2.12)

⇔
M∑
i=0

n∑
j=0

φm(x̂i)w(x̂i)φj(x̂i)aj =
M∑
i=0

φm(x̂i)w(x̂i)f(x̂i) (2.13)

⇔ am =

∑M
i=0 φm(x̂i)w(x̂i)f(x̂i)∑M
i=0 φm(x̂i)2w(x̂i)

(2.14)

Page 26

Chapter 2. The least squares methods

2.4 Local Least Squares approximations

When we are dealing with problems that a global single polynomial approximation, gives
insufficient quality of results, local approximations are employed for better accuracy and sta-
bility. Many of the local approximations are piecewise polynomials over a set of subdomains.
Though, there are alternative methods that necessitate only given points in the domain, and
have a great success in many computational fields. Here we introduce the local least squares
approximation on weighted inner product function spaces, which is the base for the weighted
local least squares (WLS) and moving least squares (MLS) methods. Both of the methods
give a global approximation for a function f , through several local approximations over a
set of given domain points.

The concept of the presented local approximations, is based on the weighted inner product
(., .)w operating on the residual E(f̂), as introduced in the previous sections with an ap-
propriately selected weighting function w. Such an appropriate weighting function should
be semi-positive in a compact support, integrable, and rapidly decaying. Hence, trying
to give a notion of the method in simple words, projecting the error function E(f̂) on a
compactly supported weighting function w, will result a weighted error on a compact sub-
domain. Subsequent minimization of the latter weighted residual, results a local(compact)
approximation.

In the rest of the text, the compact support of the weighting function will be represented by
an infuluence ball B(x̄, r),

B(x̄, r) = {x | x ∈ Ω, ‖x− x̄‖2 ≤ r}

where Ω̄ ⊂ Rd is the given d-dimensional domain of a function f , r ∈ R+ is the half
span defined as a parameter of the weighting function, and x̄ is the center(origin) coined as
stationary point. More details on the weighting functions are provided in Appendix B.

According to the above, applying Eq. (2.9), which is the generalized WLS, we get the
following expression of the minimization problem for the best approximation

E(f ; ai)|x̄ = min
ai

∫
B(x̄,r)

w(x− x̄)R2(x)dx

= min
ai

∫
B(x̄,r)

w(x− x̄)

∣∣∣∣∣f(x)−
n∑
i=0

aiφi(x)

∣∣∣∣∣
2

dx (2.15)

which is a minimization problem of a convolved function (w ∗ R2)(ξ), ξ ∈ B(x̄, r). The
convolution consists of the kernel-mask w(x − x̄) and the squared inner product measured
error R2(x).

The above convolution is considered to preserve the convexity properties of the finite di-
mensional solution space S ⊂ C = L2

w(Ω̄), when the weighting function is semi-positive
in a compact support, integrable, and rapidly decaying. Such functions are presented in
Appendix B, illustrating their properties and results.

National Technical University of Athens Page 27

2.4. Local Least Squares approximations

As in section 2.3, we assume the function space C, the solution space S = Pn with a non-
orthogonal basis {φi}ni , the best approximation PS(f)|x̄ = f̂b|x̄ =

∑n
i=0 ai|x̄φi, and addition-

ally a weighting function wB(x̄,r) with the above stated properties. Then the local approxi-
mation can take place from the normal equations of (2.10)

∂E(f ; ai)|x̄
∂am

= 0, m = 0, 1, 2, ..., n (2.16)

⇔
∫
B(x̄,r)

w(x− x̄)
n∑
i=0

φm(x)φi(x)ai|x̄dx =

∫
B(x̄,r)

w(x− x̄)φm(x)f(x)dx

Note that to avoid numerical instabilities when computating each local approximation, it is
convenient to consider the origin of the the polynomials φi(x) shifted to the stationary point
position, i.e. φi(x− x̄). In this way, the resulted normal equations are of better condition to
process and solve, with smaller effect of the machine limitations on precision and numerical
accuracy. The eq. (2.16) rewritten∫

B(x̄,r)

w(x− x̄)
n∑
i=0

φm(x− x̄)φi(x− x̄)ai|x̄dx (2.17)

=

∫
B(x̄,r)

w(x− x̄)φm(x− x̄)f(x)dx

The values f̂(x)|x̄ of a local approximation in the vicinity of the stationary point x̄, consid-
ering the shifted basis functions φi|x̄j , are estimated from the relation

f̂(x)|x̄ =
n∑
i=0

φi(x− x̄)ai|x̄ (2.18)

where ai|x̄ are the local coefficients estimated from the minimization problem (2.17).

For the discrete case of the local least squares approximation, as in section 2.2, we consider
the data of the reconstructed function, F = {f(x̂i)}Mi=1, P = {x̂i}Mi=1 ⊂ Ω̄, and the subsets
of them

P|x̄ = {x̂i | x̂i ∈ B(x̄, r), 1 ≤ i ≤ s, n+ 1 ≤ s ≤M} ⊂ P
F|x̄ = {f(x̂i)}si=1 ⊂ F

The latter subsets are containing only the data within the support of the weighting function,
i.e. in the influence ball B(x̄, r). Moreover, the weighting function as considered to be radial
in d-dimensions (i.e. same value at a certain distance from the center x̄), we equip it with
the distance metric ‖.‖2. Then we have the following local discrete normal equations

M∑
i=0

n∑
j=0

w(‖x̂i − x̄‖2)φm(x̂i − x̄)φj(x̂i − x̄)aj|x̄

=
M∑
i=0

w(‖x̂i − x̄‖2)φm(x̂i − x̄)f(x̂i), m = 0, ...n (2.19)

The local approximations as defined above, can be expressed in a matrix form as following

Ax̄ax̄ = fx̄ (2.20)

Page 28

Chapter 2. The least squares methods

where

Ax̄ =

M∑
i=0

w(‖x̂i − x̄‖2)

φ0(x̂i − x̄)φ0(x̂i − x̄) φ0(x̂i − x̄)φ1(x̂i − x̄) ... φ0(x̂i − x̄)φn(x̂i − x̄)
φ1(x̂i − x̄)φ0(x̂i − x̄) φ1(x̂i − x̄)φ1(x̂i − x̄) ... φ1(x̂i − x̄)φn(x̂i − x̄)

...
φn(x̂i − x̄)φ0(x̂i − x̄) φn(x̂i − x̄)φ1(x̂i − x̄) ... φn(x̂i − x̄)φn(x̂i − x̄)

 (2.21)

fx̄ =
M∑
i=0

w(‖x̂i − x̄‖2)

f(x̂i)φ0(x̂i − x̄)
f(x̂i)φ1(x̂i − x̄)

...
f(x̂i)φn(x̂i − x̄)

 , ax̄ =

a0

a1

...
an

 (2.22)

Alternatively, Ax̄ and fx̄ can be expressed with the Vandermonde matrix Vx̄

Ax̄ = VT
x̄Wx̄Vx̄ (2.23)

fx̄ = VT
x̄Wx̄F (2.24)

Vx̄ =

φ0(x̂1 − x̄) φ1(x̂1 − x̄) ... φn(x̂1 − x̄)
φ0(x̂2 − x̄) φ1(x̂2 − x̄) ... φn(x̂2 − x̄)

...
φ0(x̂M − x̄) φ1(x̂M − x̄) ... φn(x̂M − x̄)

 (2.25)

and the diagonal matrix of the weighting function evaluations on the sample points

Wx̄ =

w0(x̂1 − x̄) 0 ... 0

0 w1(x̂2 − x̄) ... 0
...
0 0 ... wM(x̂M − x̄)

 (2.26)

F is the vector with the sample values

F =

f(x̂1)
f(x̂2)
...

f(x̂M)

 (2.27)

The Vandermonde matrix is constructed as

Vx̄ =

b(x̂1)Tx̄
b(x̂2)Tx̄
...

b(x̂M)Tx̄

 , b(x)x̄ =

φ0(x− x̄)
φ1(x− x̄)

...
φn(x− x̄)

 (2.28)

The form with the Vandermonde matrices facilitates the expression of the coefficients in
matrix form

ax̄ =
[
VT
x̄Wx̄Vx̄

]−1
VT
x̄Wx̄F (2.29)

Thus, (2.18) can be expressed as

f̂(x)x̄j = b(x)Tx̄
[
VT
x̄Wx̄Vx̄

]−1
VT
x̄Wx̄F = q(x) F (2.30)

q(x) = b(x)Tx̄
[
VT
x̄Wx̄Vx̄

]−1
VT
x̄Wx̄ (2.31)

National Technical University of Athens Page 29

2.4. Local Least Squares approximations

q(x) can be seen as the local shape functions of the sample values F.

An interesting and insightful version of the above local least squares, is given from the 0-
degree polynomials, i.e. {φ} = {1}. In such a case, solving for the only coefficient a0 in
(2.19), we get

a0|x̄ =

∑s
i=0wifi∑s
i=0wi

(2.32)

where wi = w(‖x̂i − x̄‖2) and fi = f(x̂i). Furthermore, the coefficient a0 is the value of the

approximation f̂(x̄) = a0|x̄, as defined in eq. (2.18).

This is the simplest notion of the local least squares, providing the simple form of a weighted
average. Additionally, the single local shape function q(x) is constant for a given stationary
point x̄, but variable with the stationary points,

q(x̄) =
wi(x̄)∑s
i=0wi(x̄)

(2.33)

This form of the weighted average, can make clear the fundamental role of the weighting
function and the impact on the resulted approximation. For instance, for the sake of better
local approximation, the eq. (2.32) makes apparent the need to assign larger weights to
sample points closer to the stationary point, and after a certain distance assigning negligible
or zero weights. That explains the need of a rapid decaying function with compact support,
both related to the order of approximation (i.e. the quality of the local approximation).
As the coefficient a0 defines the weighted average of the value f(x̄), for higher degree local
approximations, the coefficient a1 will define the local slope on the stationary point (as in
the case of the taylor series), the coefficient a2 the local curvature, etc.

Another interesting observation, is that the interpolation with appropriate weighting func-
tions becomes straightforward in eq. (2.32), i.e. we need to provide a weighting function
that will assign very large weights to closely distant sample points, and very small values
to far sample points, so that the close ones could dominate and strike out the effect of
the distant. Hence, when the stationary point is on the sample point position, we need a
weighting function that will assign a very large weight on that overlapped sample point, and
very rapidly decayed to assign very small weights (by some orders) to other close distant
sample points. In cases were the stationary point is overlapping a sample point, and the
close distant sample points experience small variations in value, the interpolation can be an
easy task for most of the weighting functions. Though, when close sample points experience
large variations in value, the weighting function should be powerful enough, in the sense of
the dirac function. By analogy, the same technique is applied in the penalty methods, to
introduce constraints on a described system.

Finally, all the above remarks, apply smoothly in the global approximation with the MLS
method (introduced in section 2.6), fact that can be seen by observing eq. (2.33) which
variates smoothly with the stationary points, and considering that the weighting function
is rapidly decayed, which permits a smooth fade-in and fade-out of sample points between
various adjacent stationary points in their influence balls B(x̄, r).

Page 30

Chapter 2. The least squares methods

2.5 Weighted Local Least Squares method (WLS)

One can exclusively use the local approximations, as analysed in section 2.4, around the
stationary points to evaluate the function f̂(x) on other domain points x ∈ Ω̄. Though,
especially for domain points far from the close vicinity of the stationary points, one can
get improved results and a global smoothness if the effect of multiple stationary points is
considered. In this case we employ a global approximation, based on the local approximations
that take place on the x̄ stationary points.

Assume that we need to approximate globally a function f(x), which is defined on a real
d-dimensional domain Ω̄ ⊂ Rd. Moreover, we have a set of N stationary points x̄ = {x̄i}Ni=1,
such that ∀x̄i ∈ Ω̄ an appropriate weighting function w(B(x̄i, ri)) is defined. Then, the local
least squares approximation exactly on each stationary point x̄i, is the best approximation
PS(f) under the weighted inner product (., .)w, as defined in section 2.4. For the rest of

the domain and any specific x ∈ Ω̄, the evaluation of the function f̂(x) will be based on a
subset of best local approximations. That subset corresponds to effective stationary points
x̄|x = {x̄i}si=1, 1 ≤ s ≤ N , within a positive range re > 0.

For any evaluation point x ∈ Ω̄, the subset of effective stationary points has members x̄i
with the following property:

‖x− x̄i‖2 ≤ re, 1 ≤ i ≤ s

Thus, the order of the global approximation f̂(x) depends on the density of the stationary
points, and the global smoothness stems from the smoothness of the weighting function w,
which is ruling smoothly the way that the local approximations from one stationary point
to another is estimated.

To preserve the definition of the global approximation f̂(x), ∀x ∈ Ω̄, every point in the
domain should have in range re at least one stationary point. A convenient way to confirm
that, is using the range re over each stationary point x̄i. Then N subdomains ωi ⊂ B(x̄i, ri)
can be defined, such that

ωi = {x | x ∈ B(x̄i, ri), ‖x− x̄i‖2 ≤ re ≤ ri}

Consequently, the problem deteriorates in populating the total set of stationary points x̄ =
{x̄i}Ni=1 with elements such that

N⋃
i=1

ωi = Ω̄

Interpreted as, there should be no holes in the union of the subsets, i.e. every point of the
domain Ω̄ should be effected by at least one local approximation.

Assuming all the above, the evaluation ∀x ∈ Ω̄ in a global smooth sense, is defined as
following

f̂(x) =
s∑
j=1

χj(x)
n∑
i=0

φi(x− x̄j)ai|x̄j , s ≤ N (2.34)

National Technical University of Athens Page 31

2.6. Moving Least Squares method (MLS)

where s is the number of the effective stationary points, and

χj(x) =
w(‖x− x̄j‖2)∑s
k=1 w(‖x− x̄k‖2)

The quantity χj(x) represents the coefficients of the convex linear combination, of the es-
timations given from s in number effective stationary points x̄j, in a simple first moments
method.

2.6 Moving Least Squares method (MLS)

The WLS method of the section 2.5, depends on the setup of the stationary points and
their influence ball. Such a method can be efficient and effective, when limited precision in
the global approximation sense is sufficient. Recall that the best approximation holds only
for the stationary points, the rest of the field is approximated by the approximations on
the stationary points. The idea in the Moving Least Squares (MLS) is to define as many
stationary points as the evaluation points, i.e.

x̄ ≡ x

Consequently, one gets the best approximation PS(f) under the weighted inner product
(·, ·)w, continuously over entire the domain. The smoothness of the global approximation,
after employing the moving local least squares, is inherrited from the smoothness of the
weighting function w, fact which is commented in Appendix B.

Besides the improved approximation results in MLS, which comes with a computational
cost for a large number of stationary points, the computations per stationary point can
be managed slightly diffrently, compared to the WLS. In WLS we had to solve for all the
coefficients ai of the normal equations (2.20) and store them, in order to have the most
of the available information (i.e. the first derivatives around the stationary point, when a
polynomial basis of degree n ≥ 0 is used). That available information was very valuable to
have a good approximation in the evaluation of the rest of the points x ∈ Ω̄. In the case of
the MLS, there is no need to keep that additional information, if one is interested to define
only the value f(x) exactly on the stationary point f(x̄). Therefore, one can solve and store,
only the coefficient a0 that evaluates explicitly the value f(x̄), i.e. employing the (2.18) we
have

f(x̄)|x̄ =
n∑
i=0

φi(x̄− x̄)ai |x̄ = a0 |x̄ (2.35)

In case of higher degree approximations, a good approximation of the gradients, e.g. ∂f(x)
∂x
|x̄, ∂f(x)

∂y
|x̄,

can be obtained from the coefficients corresponding to the linear monomials, but only on the
stationary point position x̄. More precise evaluations in the vicinity of the stationary point,
should be evaluated by the standard derivative of f(x)

∂f(x)

∂x
=

n∑
i=0

∂φi(x− x̄)

∂x
ai(x) + φi(x− x̄)

∂ai(x)

∂x
(2.36)

Page 32

Chapter 2. The least squares methods

In the case of zero degree polynomials, we can receive an order of smoothness from the
weighting function.

∂f

∂x
=
∂a0(x)

∂x
=

s∑
i=0

[(
∂

∂x

wi∑s
j=0 wj

)
f̂i

]
(2.37)

where (
∂

∂x

wi∑s
j=0 wj

)
=

∂wi
∂x∑s
j=0wj

− wi(∑s
j=0 wj

)2

s∑
k=0

∂wk
∂x

and s is the number of effective sample points.

The variation order of the shape functions (2.31), with x, i.e. dαq(x)
dxα

, depends on the variation
order of the weighting function w. Mirzaei [2015] provides the proves and the error estimates
of the derivatives in Sobolev spaces, with the corresponding error bounds under conditions
on the involved parameters. The involved parameters, are mainly the scaled support of the
weighting function and the degree of tha polynomial basis.

2.7 Analysis of the MLS computations and data structures

In this section, a thorough description of the MLS computations is presented, as a guideline
for all the involved data structures, sizes, compute complexities and patterns. In the next
subsections, two simple versions of the local least squares can be found, i.e. the zero and
1st degree in an explicit formula form. These can prove useful for the developement of more
efficient GPGPU algorithm designs.

In order to describe all the involved data structures, their size and the operations, the index
notation will be employed, and the corresponding index sets are shown in Table 2.1.

Index sets

N = {i ∈ N | 1 ≤ i ≤ d} spatial dimensions index set, where d is the number of the
spatial (domain) dimensions

M = {i ∈ N | 1 ≤ i ≤M} the sample points index set, where M is the number of the
sample points

E = {i ∈ N | 1 ≤ i ≤ N} the evaluation points index set, where N is the number of
the sample points

B = {i ∈ N | 1 ≤ i ≤ n} the monomials index set, where n is the number of mono-
mials for polynomials of degree n− 1

F = {i ∈ N | 1 ≤ i ≤ Q} the approximated fields index set, where Q is the number of
the fields

Table 2.1: Table of index sets used in computations’ notation.

In a standard way of using the index notation, there are two types of subscripts:

1. The free indices that occur once in a single term, and

2. the summed indices, which appear twice in a single term.

National Technical University of Athens Page 33

2.7. Analysis of the MLS computations and data structures

The summed indices are being used for contractions and we will use it here only for inner
product. As a deviation to the standard notation, and to represent the weighted inner
product as defined in section 2.3, the following will note a contraction as well

(u, v)w = uiviwi

Our very first need in data structures, is to store the given problem’s data and the output
data, see Table 2.2.

I/O data structures

Notation Indices Description

x̂ij or x̂j i ∈ N , j ∈M a matrix of the sample points spatial components

f̂ij i ∈ F , j ∈M a matrix of the approximated field values per sample point
(the field is assumed to be multicomponent, or conversely
multiple fields)

x̄ij or x̄j i ∈ N , j ∈ E a matrix with the evaluation points location

f̄ij i ∈ F , j ∈ E a matrix with the evaluations per point and per approxi-
mated field.

Table 2.2: I/O data structures

As a convention, we will adapt the short notation x̂i, and x̄i from the Table 2.2, implying
that the spatial components are incorporated.

Hereafter, the structure of the MLS computations will refer to a single evaluation point, i.e.
one single local approximation as defined in section 2.4.

The vector with the distances of the sample points from the evaluation point, expressed by
the ‖.‖2

di(x̄) =

d(x̂1 − x̄)
d(x̂2 − x̄)
d(x̂3 − x̄)

...
d(x̂M − x̄)

 , i ∈M (2.38)

The vector with the weight evaluations for all the sample point

wi(x̄) = w(di(x̄)), i ∈M (2.39)

The vector with the polynomial basis functions, i.e. {φi}i = 1n−1 in section 2.3, for a single
sample point

bi(x̂) =

b1(x̂− x̄)
b2(x̂− x̄)
b3(x̂− x̄)

...
bn(x̂− x̄)

 , i ∈ B (2.40)

The monomials bi, are evaluated at the sample points from a shifted coordinate system
placed on the current evaluation point, i.e. x̂i − x̄. For shorter notation, it will be written
as bi(x̂j), implying that we refer to a single current evaluation point which can be omitted

Page 34

Chapter 2. The least squares methods

in this text. Such monomials should form a complete space of polynomials up to the desired
degree. For example in the 1D case, a polynomial of 4th degree, can use the following basis

b = [1 x x2 x3 x4]

The 2D case for a polynomial of 3rd degree, can use the basis

b =
[
1 x x2 x3 y xy x2y y2 xy2 y3

]
The 3D case for a polynomial of 2nd degree, can have the basis

b =
[
1 x x2 y xy y2 z zx zy z2

]
A Vandermonde matrix with the monomials for all the sample points of a single evaluation
point

Vij = bj(x̂i) =

1 b2(x̂1) b3(x̂1) ... bn(x̂1)
1 b2(x̂2) b3(x̂2) ... bn(x̂2)
1 b2(x̂3) b3(x̂3) ... bn(x̂3)
1
1 b2(x̂M) b3(x̂M) ... bn(x̂M)

 (2.41)

i ∈M, j ∈ B

The weighted Vandermonde matrix

V w
ij = Vijwi =

w1 w1 ∗ b2(x̂1) w1 ∗ b3(x̂1) ... w1 ∗ bn(x̂1)
w2 w2 ∗ b2(x̂2) w2 ∗ b3(x̂2) ... w2 ∗ bn(x̂2)
w3 w3 ∗ b2(x̂3) w3 ∗ b3(x̂3) ... w3 ∗ bn(x̂3)
...
wM wM ∗ b2(x̂M) wM ∗ b3(x̂M) ... wM ∗ bn(x̂M)

 (2.42)

i ∈M, j ∈ B

Then the system matrix for a single evaluation point, is given as the following Gramian

Aij = VkiV
w
kj =

wkk wkb2(x̂k) wkb3(x̂k) ... wkbn(x̂k)

wkb2(x̂k) wkb2(x̂k)b2(x̂k) wkb3(x̂k)b2(x̂k) ... wkbn(x̂k)b2(x̂k)
wkb3(x̂k) wkb2(x̂k)b3(x̂k) wkb3(x̂k)b3(x̂k) ... wkbn(x̂k)b3(x̂k)

...
wkbn(x̂k) wkb2(x̂k)bn(x̂k) wkb3(x̂k)bn(x̂k) ... wkbn(x̂k)bn(x̂k)

 (2.43)

i ∈ B, j ∈ B, k ∈M

The system RHS vectors for a single evaluation point and for all the approximated fields

Fij = V w
ki f̂jk =

wkf̂1k wkf̂2k wkf̂3k ... wkf̂Qk

wkf̂1kb2(x̂k) wkf̂2kb2(x̂k) wkf̂3kb2(x̂k) ... wkf̂Qkb2(x̂k)

wkf̂1kb3(x̂k) wkf̂2kb3(x̂k) wkf̂3kb3(x̂k) ... wkf̂Qkb3(x̂k)
...

wkf̂1kbn(x̂k) wkf̂2kbn(x̂k) wkf̂3kbn(x̂k) ... wkf̂Qkbn(x̂k)

 (2.44)

i ∈ B, j ∈ F , k ∈M

We obtain the solution of the Q (the number of approximated fields) systems in number, as
following

cij = A−1
ik Fkj (2.45)

i ∈ B, j ∈ F , k ∈ B

National Technical University of Athens Page 35

2.7. Analysis of the MLS computations and data structures

2.7.1 Two straightforward special cases on the polynomial degree

The case of 0-degree
For the zero degree polynomial case, i.e. n = 1, the solution vector per approximated field,
is given straightforward as following

cj =
wkf̂jk
wkk

=
[
wk f̂1k

wkk

wk f̂2k

wkk

wk f̂3k

wkk
...

wk f̂Qk
wkk

]
(2.46)

The case of 1D and 1st-degree
For the first degree polynomial case, i.e. n = 2, the solution vector per approximated field,
is evaluated as following

c1j =
F1j − P1F2j

A11 − P1A21

(2.47)

c2j =
F2j − A21c1j

A22

where we take

A11 = wkk (2.48)

A12 = A21 = wkb2(x̂k)

A22 = wkb2(x̂k)b2(x̂k)

F1j = wkf̂jk

F2j = wkf̂jkb2(x̂k)

P1 =
A12

A22

=
wkb2(x̂k)

wkb2(x̂k)b2(x̂k)

as explained in section 2.6 and showed in relation (2.35), for the value of the field f̄ we
need only the coefficient c1j. With this front substitution form of Gauss elimination one can
calculate directly the first term.

The same coefficients with a back substitution, where one can have directly the derivative
coefficient.

c1j =
F1j − A12c2j

A11

(2.49)

c2j =
F2j − P1F1j

A22 − P1A12

where we take

A11 = wkk (2.50)

A12 = A21 = wkb2(x̂k)

A22 = wkb2(x̂k)b2(x̂k)

F1j = wkf̂jk

F2j = wkf̂jkb2(x̂k)

P1 =
A21

A11

=
wkb2(x̂k)

wkk

Page 36

Chapter 2. The least squares methods

The case of 2D and 1st-degree
For the first degree polynomial case, i.e. n = 3, the solution vector per approximated field,
is evaluated as following

c1j =
F1j − c2jA12 − c3jA13

A11

(2.51)

c2j =
F2j − P11F1j − c3j(A23 − P11A13)

A22 − P11A12

c3j =
F3j − P12F1j − P21(F2j − P11F1j)

A33 − P12A13 − P21(A23 − P11A13)

where

A11 = wkk (2.52)

A12 = A21 = wkb2(x̂k)

A13 = A31 = wkb3(x̂k)

A22 = wkb2(x̂k)b2(x̂k)

A23 = A32 = wkb2(x̂k)b3(x̂k)

A33 = wkb3(x̂k)b3(x̂k)

F1j = wkf̂jk

F2j = wkf̂jkb2(x̂k)

F3j = wkf̂jkb3(x̂k)

P11 =
A21

A11

P12 =
A31

A11

P21 =
A32 − P12A12

A22 − P11A12

as explained in section 2.6 and showed in relation (2.35), for the value of the field f̄ we
need only the coefficient c1j. With this front substitution form of Gauss elimination one can
calculate directly the first term.

�

National Technical University of Athens Page 37

Chapter 3

The parallelization of the MLS
method and implementation in CUDA

3.1 Introduction

In Chapter 2 the MLS method is analyzed as an abstract mathematical tool to approximate
functions. In mesh deformation applications, the MLS method is instantiated to the known
displaced boundary nodes (0 displacement data are included), as the given sample points-
data, and the unknown displacement of the interior nodes, as the evaluation points-results.
The most frequent case is that where all the boundary nodes will be prescribed with some
displacements (zero displaced fixed nodes are included), and the new positions of the interior
nodes are required.

In this chapter the parallelization of the MLS method is analyzed and CUDA algorithms are
proposed for the parallel execution of the computations. As stated in Chapter 2, the MLS
is a standalone local approximation method over a single evaluation point, i.e. it evaluates
the node displacement with an individual local least squares fit. Hence, a parallel algorithm
can be designed where the computations of each evaluation point are done independently
and without the need to exchange information between the computing units. This allows a
very easy coarse grain parallelism of the MLS computations.

Furthermore, in section 3.4, a fine grain parallelization is analyzed, which concerns the
computations of a single evaluation point. In section 3.3 an analysis of the computing time
is shown for a fully serialized MLS procedure. The results from that section in combination
with the analysis in section 2.7, assist to focus the parallelization efforts on the coefficients
evaluation task, exclusively. Thus, in this chapter, the case of the 0-degree local least squares
is presented and analyzed with an efficient algorithm design (i.e. the reduction algorithm).
Subsequently, the parallelization of the higher degree MLS method is analyzed, utilizing the
results from section 2.7. Finally, in section 3.5 the CUDA algorithm designs are presented,
along with the necessary parameters of the CUDA execution model.

National Technical University of Athens Page 39

3.2. Coarse grain parallelization of the MLS method

3.2 Coarse grain parallelization of the MLS method

In MLS method, the perfect data independency among the evaluation nodes, permits a
theoretically efficient parallel algorithm for which the total execution time converges to
the spent time for a single node evaluation, as the computing resources grow to infinity.
Moreover, there is no need for infinite resources, when a number of computing processors p
greater or equal than the number of the evaluation mesh nodes N , would be sufficient. The
theoretical minimum of the execution time (i.e. of one single node evaluation) is known as
the span time or critical length T∞ = TN . At this point we implicitly assumed that the MLS
method launched for a single node consists of fully dependent processes which are serialized
(i.e. a critical length). Subsequently, the span time TN will be investigated to parallelize as
well.

In most practical cases, the work will be done from a number of processors p ≤ N with
iterations. Then the total execution time will be greater than the span time, i.e.

Tp ≥ TN (3.1)

which is coined as the span law.
Assuming that the total execution time with no parallelization on a single processor is T1,
then the total execution time with p processors is constrained by

Tp ≥
T1

p
(3.2)

which is known as the work law.

Furthermore, Brent’s theorem guarantees the following bounds

Tp ≤ TN +
T1 − TN

p
(3.3)

or combined with the work law

T1

p
≤ Tp ≤ TN +

T1 − TN
p

(3.4)

Then according to the above, we can define the following useful notions

• The speedup

Sp =
T1

Tp
(3.5)

where substituting the upper bound of Brent’s theorem we get the Amdahl’s law

Sp =
1

TN
T1

+ T1−TN
T1p

(3.6)

In the denominator the first term gives a constant corresponding to the serial part of the
process and limiting always the overall speedup (large serial part (TN) limits drastically
the speedup). The second term expresses the gained speedup from the parallelized part
of the process (small parallelized part of the process (T1− TN) will result small overall
speedup even for a large number of processors p).

Page 40

Chapter 3. The parallelization of the MLS method and implementation in CUDA

• The parallelism
T1

T∞
(3.7)

which is the maximum possible speedup as p→∞.

• The efficiency
Sp
p
≡ T1

Tpp
(3.8)

which is the ratio of the execution times with and without parallelism. For Sp
p

= 1 the

algorithm is perfect linear on the input size (simple model), for Sp
p
> 1 the speedup is

super linear due to memory hierarchy effects. Both cases are considered efficient.

Explaining the MLS parallelization, assume that there are p processors available to evaluate
N in total interior mesh nodes and d independent components of the displacement. The
designed parallel algorithm should permit cases where p ≤ N by letting each processor
to iterate on N/p mesh nodes. Then the total execution time Tp will be bounded in the
limits given in eq. (3.4), with TN the evaluation time for one mesh node. This algorithm
is very easy to implement on a Multithreaded-Multicore CPU (or any parallel scheme with
multi-cpu and cluster platforms) for all the polynomial degrees of the method.

National Technical University of Athens Page 41

3.3. Fine grain analysis of the MLS execution time

3.3 Fine grain analysis of the MLS execution time

In this section the execution time for a serialized code of the MLS method is presented and
analyzed. The scope is to determine the parts of the process that is worthwhile to invest
some efforts to parallelize and achieve a close to optimal speedup. These parts are the one
that consume most of the execution time and there is sufficient data independency to design
a parallel algorithm. It is important to maximize the parallelizable part of the process, as
only then the available rich compute resources can give a good speedup. For more see the
Amdahl’s law in 3.2.

To measure the execution time of the MLS process for various polynomial degrees, a single
problem is used with the same parameters. The benchmark problem has a number of eval-
uation nodes N = 7110, and a number of the sample points M = 437. The serial code is
generally very well optimized and compiled with the optimization flag -O3 and the mavx
instruction sets enabled. The CPU that executed the computations, was the quad-core Intel
Core i7-3740QM, executing with one thread.

The global execution times for the mentioned problem and the hardware-software setup, for
polynomial degrees 0 − 4 are as following:

600ms, 700ms, 900ms, 1360ms, 2000ms

In more detail, in figure 3.1 the execution time for various polynomial degrees is presented.
In figure 3.1a the execution time of the coefficients evaluation process is compared with the
total execution time of the MLS process. The dominance of the process is aparent for all
the polynomial degrees in a slightly increased proportion as the degree elevates. In figure
3.1b and 3.2a, the various parts of the coefficient evaluation process are presented, with their
execution time, and figure 3.2b illustrates the time proportion of each part in the coefficients
evaluation process time.

Note that the solver of the linear system keeps a very low proportion of the execution time,
thus it will be not of any interest to parallelize. Moreover, explicit formulas can be derived
for the coefficient a0, after solving the gauss elimination analytically, which can assist the
parallel algorithm design overall, see 2.7.1.

The evaluation cost of the Gramian matrix A grows to a considerable level starting from the
2nd degree and dominating over the rest parts after the 3rd degree. The evaluation cost of the
weighting function, the monomials and the RHS is almost constant and considerable. The
latter evaluated quantities and the Gramian matrix are all related and dependent per sample
point (see section 2.7), thus all of them should be evaluated with a low communication cost
in the developed parallel algorithms.

Page 42

Chapter 3. The parallelization of the MLS method and implementation in CUDA

(a) Global execution times.

(b) Execution times per compute step.

Figure 3.1: Execution times.

National Technical University of Athens Page 43

3.3. Fine grain analysis of the MLS execution time

(a) Computing time (ms).

(b) Time fractions.

Figure 3.2: Time variations with polynomial degree, per compute step.

Page 44

Chapter 3. The parallelization of the MLS method and implementation in CUDA

3.4 Fine grain parallelization of the MLS method

In section 3.2, the main parallelization of the method has been shown, i.e. several adapted
nodes are evaluated in parallel, with the assumption that all the processes within the eval-
uation of a single mesh node are dependent and serial. Hence, a single local least squares
process time constitutes the so called span time T∞ of the entire process, which is the con-
vergence limit of the entire process time Tp as the number of the processors p increases

lim
p→∞

Tp = T∞ = TN

where TN is the equivalent span time when we are dealing with a finite number of adapted
mesh nodes N (i.e. interior mesh nodes typically).

In this section the computations within the local least squares are analyzed and efficient
parallelization algorithms are proposed, in order to reduce the span time TN and consequently
the entire process time.

First, the simple 0-degree local least squares is analyzed, where the computations are based
on one monomial and the complexity is lower. Following is the complexity analysis for the
general case of n in number monomials, where it is recognized that several parts should
be considered to parallelized separately, but with very low communication cost, as many
quantities can be evaluated once and shared.

3.4.1 The parallelization of the 0-degree local least squares

It is simple to start with the 0-degree local approximation as is described in eq. (2.32) of
section 2.4, and is repeated below for a stationary-evaluation point x

f(x) = a0(x) =

∑M
i=0 wi(x)fi∑M
i=0 wi(x)

where M is the number of effective (within the weighting function’s span) boundary nodes
with prescribed displacements (generally termed as sample points).

Observing the weighted average above, the sums on the numerator and the denominator
could reduce the span time, if the size M of the set of sample points per evaluation point
is significant, such that the set can be scattered in subsets to a p number of processors
and then gather the results back for the final summation. In CUDA, there is an equivalent
efficient algorithm design, known as the reduction algorithm, where we take advantage of
the memory hierarchy and fast access memory (i.e. the thread block shared memory). A
simple example of the reduction algorithm in real life, is the procedure followed in sports
competition finals, where in each round it remains half of the participants until the final
winner, with the assumption that all the games per round are happening at the same time
and the next round starts immediately after the end of all the games in the round, see figure
3.3 for a diagram representation (Kirk and Hwu [2012]).

The reduction algorithm is designed to process the data in tiles if p < M/2, where the
number of tiles is M/(2p), and each tile is processed in log2 (2p) iterations. The total number
of additions is the arithmetic sequence

∑
i=1

2p
2i

= 2p−1, i.e. O(2p) and implies the efficiency

National Technical University of Athens Page 45

3.4. Fine grain parallelization of the MLS method

Figure 3.3: The reduction algorithm in diagram representation. (Kirk and Hwu [2012])

of the algorithm
(

T1

log2 (2p)2p
≥ 1
)

. In the first iteration a pair of values is assigned to every

processor for the sum opperation, hence p processors can process up to 2p elements. The
results, p in number, are returned to the shared memory, and the second iteration is ready to
start, with p/2 processors being assigned a new pair of values from the previously returned
results. The procedure iterates with a reduced number of data and active processors by half
in each step. The algorithm terminates when at the last step a single processor will sum the
last pair of data, which is the result of 2p summed elements. The summation of the results
returned from the M/(2p) tiles, can be executed on the host processor, or by launching a
new reduction algorithm over the M/(2p) number of data.

If one reduction algorithm can be launched for entire the set of effective sample points per
evaluation point (a constant number of effective sample points is assumed), and NM/2
number of processors is available, then the span time of the entire MLS process can be
reduced to a smaller fraction, i.e.

T∞ = TNM/2 = O(log2M)

This design is a work efficient design to reduce the span time, but not resources efficient,
as after the first round of the reduction algorithm in the computations of each evaluation
point, a large amount of the processors are unemployed. Consequently, a very careful design
should be implemented to restrict the reservation of unemployed processors through entire
the process.

For a smaller number of available processors per evaluation point, p̄ ≤ M/2, the Brent’s
bounds are applied again for a single point evaluation (a single local least squares fit),
where the quantities are written with an overbar to avoid confusion with the entire process
quantities

T̄1

p̄
≤ T̄p̄ ≤ T̄M/2 +

T̄1 − T̄M/2

p̄
(3.9)

Page 46

Chapter 3. The parallelization of the MLS method and implementation in CUDA

where T̄1 is the former entire process time span (TN) with the processes in the local least
squares serialized, T̄M/2 is the work efficient time span but not resources efficient (TNM/2),
and T̄p̄ is the time span of the entire process.

In the very realistic case that our resources are limited and the total number of available
processors is M/2 ≤ p · p̄ ≤ NM/2, then an algorithm design where each point is evaluated
with p̄ = M/2 processors, has the following time bounds

T1

pM/2
≤ TpM/2 ≤ TNM/2 +

T1 − TNM/2

pM/2

⇔ T1

pM/2
≤ TpM/2 ≤ O(log2M) +

T1 −O(log2M)

pM/2
(3.10)

Such that

lim
p→∞

T1

pM/2
≤ TpM/2 ≤ TNM/2 +

T1 − TNM/2

pM/2

⇔ T1

NM/2
≤ TNM/2 ≤ TNM/2 +

T1 − TNM/2

NM/2
(3.11)

The right side states that the execution time is limited by the serial part of a single local
least squares process and the parallelization of the total evaluations. The left side is stating
that the execution time will be larger than the serialized execution time devided by the
number of processors parallelizing the evaluation of points. The speedup can be expressed
with eq. (3.5).

If our resources are even more limited, i.e. p · p̄ < M/2, or the design of the algorithm is
limiting the resources per local least squares computations p̄ < M/2 (i.e. the span time is
between the work efficient and the fully serialized, given by T̄p̄ of (3.9)), Then, using the
results from eq. (3.9) we obtained

T1

pp̄
≤ Tpp̄ ≤ T̄p̄ +

T1 − T̄p̄
pp̄

⇔ T1

pp̄
≤ Tpp̄ ≤ TNM/2 +

TN − TNM/2

p̄
+
T1 − TNM/2 −

TN−TNM/2
p̄

pp̄

⇔ T1

pp̄
≤ Tpp̄ ≤ TNM/2 +

(
T1 − TNM/2

pp̄
+
TN − TNM/2

p̄2p
p̄p−1

)
(3.12)

which is the eq. (3.10) for an arbitrary p̄ increased by the partial parallelization of the
local least squares process. The parenthesis is separating the span time TNM/2 and the two
parallelized processes with and appropriately reduced time.

Considering the above upper bound, the lower speedup bound is

Sp =
T1

Tp
=

T1

TNM/2 +
T1−TNM/2

pp̄
+

TN−TNM/2
p̄2p
p̄p−1

(3.13)

National Technical University of Athens Page 47

3.4. Fine grain parallelization of the MLS method

an estimation can be done by substituting the time T with the computational complexity,
e.g. T1 = N · TN , TN = O(M), TNM/2 = O(log2M)

Sp =
N · O(M)

O(log2M) + N ·O(M)−O(log2 M)
pp̄

+ O(M)−O(log2M)
p̄2p
p̄p−1

=
1

O(log2M)
N ·O(M)

+ N ·O(M)−O(log2 M)
pp̄N ·O(M)

+ O(M)−O(log2M)

N ·O(M) p̄2p
p̄p−1

(3.14)

where the term O(log2M)
N ·O(M)

vanishes very fast even for a low number of sample points (M).

Thus, the speedup is limited only by the available resources, as following

Sp =
Npp̄2

Np̄+ p̄p− 1

=
pp̄

1 + p
N
− 1

Np̄

(3.15)

Moreover, for large number of evaluation points N it does not matter how the resources
will be managed, between minimizing the span time or parallelizing the evaluation of nodes.
Finally, it proves that the algorithm design is efficient and scalable.

3.4.2 The parallelization of a higher degree local least squares

In the higher degree cases of the local least squares, the span time TN in eq. (3.4) involves
higher computational complexity which cannot be managed as one entity. The analysis of
the involved complexity is shown below, and further CUDA specific algorithm designs are
proposed in section 3.5. The results of the current parallelization of the span time Tp̄, can
be used as in the previous section, in eq. (3.12) to estimate the execution time bounds.

As shown in section 2.7, first we need the evaluation of the n monomials for M sample points,
which constructs a Vandermonde matrix with O(n ·M) computational complexity, further
this computational cost is doubled in order to compute the weighted Vandemonde matrix
V w. Then to construct the Gramian matrix A, we need the a matrix-matrix multiplication
of the two Vandermonde matrices that requires a cost of O(n2 ·M). The cost for the right
hand side is O(n ·Q ·M), where Q is the number of displacement components. Summarizing
the total cost to construct the normal equations of a single local least squares is

O(2n ·M + n2 ·M + n ·Q ·M) (3.16)

Taking under consideration that the Gramian matrix is symmetric, the second term can be
half of the computational cost, but the general order of the computational complexity is still
the same.

Parallelizing the Vandermonde matrix computations

Observing the necessary computations and the patterns that can be found in eq. (2.42)
and (2.43), there are quantities that can be computed in parallel per sample point and per
monomial, i.e. the first term in the computational complexity O(2n ·M) can be reduced,

Page 48

Chapter 3. The parallelization of the MLS method and implementation in CUDA

where the computations per sample point are all data independent, and the same can be
considered for the monomials to activate a massive parallel computation of the Vandermonde
matrices. This design suggests assigning one computing unit per element in the Vandemonde
matrices. One can observe that within the matrix, quantities are repeated, thus one approach
could be to compute them once and then store them in a shared memory for subsequent
access and construction of the Vandermonde matrices. Another approach which appears to
be more efficient for CUDA (lower communication cost), is to ask every computing unit to
evaluate for itself (and store in registers) in a serial manner the corresponding weight value,
the corresponding monomial value, and at the end the required element in the Vandermonde
matrix that was assigned as a task, which can be eventually stored in a shared memory.
For a CUDA algorithm design, this requires the definition of a computational grid with
appropriate size to fit all the monomial terms and the sample points and map one on one.
Though, to continue with the subsequent computations of eq. (2.44), and (2.45) we desire
the fastest possible access to the data for several computing units which will undertake the
rest of the work in cooperation. That arises a constraint, as the fast shared memory is
limited and is partitioned to make it available for several simultaneous groups of computing
units (thread blocks in CUDA). Moreover, the size of a thread block has a certain limit size
(max. 1024 threads for the current CUDA architectures), and the total number of allowable
registers are very limited and partitioned for several simultaneous thread blocks. The shared
resources of the shared memory and the registers, will permit an execution, but less thread
blocks will occupy the multiprocessor (SM). This can be an issue for some algorithms, when
the CUDA scheduler, while managing the thread blocks in the multiprocessor, will not find
enough thread blocks variant in the requested instructions, to fill the full pipeline of the
multiprocessor and overlap instructions of fetching and storing data or executing operations
in the ALUs, resulting lower performance. All the above reasons, are limiting the size of a
thread block and it can not be generally assumed that we can work on a computational grid
which maps one on one to the Vandemonde matrix elements.

In section 3.5, two algorithm designs are proposed, both designs preserve all the monomials
in the thread block but keep a subset of the sample points with size Mi. The size Mi

is suggested to be a power of two and greater than 32, i.e. 2k, k ≥ 5, as the CUDA
architecture is processing the instructions from groups of threads with size 32 under the
model SIMT (single instruction multiple threads), i.e. the thread blocks are sliced in pieces
of 32 threads when they are passed to the multiprocessor with one common instruction. The
latter slicing, is done in the dimension x of the thread block, so in that dimension the sample
points should be mapped, letting the dimension y for the monomials with more flexibility in
size, as their size is problem defined and essential to keep the full number in the thread block.
Retaining the full number of the monomials in the thread block, permits the evaluation of
the subsequent Gramian matrix and the RHS matrix per sample point, without expensive
communication costs to construct these matrices; recall that the algorithm is designed to
store all the Vandermonde matrix elements in the shared memory of the thread block.

The available subset of the sample points per thread block, permits the partial completion of
the normal equations of the local least squares. The final normal equations can be completed
either by iterations within one kernel launch over M/Mi number of sample point subsets, or
by subsequent summation from few subsets on the host. The former case is the first design of
section 3.5.1, and the latter case is the second design of section 3.5.2, which is launched with
the subsets of sample points in the same computational grid of one CUDA kernel launch,
but in different block threads so that the final summation is done on the cpu when the kernel
terminates.

National Technical University of Athens Page 49

3.4. Fine grain parallelization of the MLS method

Parallelizing the RHS matrix computations

The RHS matrix of eq. (2.45) is actually a matrix with small number of columns in the
application of mesh adaptation, as it signifies the unknown functions to approximate, i.e.
for 2D meshes it is 2, and for 3D meshes it is 3. From that perspective, the problem is exactly
the same with what is analyzed for the 0-degree local least squares, i.e. the computation of
the numerator of a weighted sum. That suggests the same efficient algorithm, which is the
reduction algorithm applied 2 or 3 times according to the number of dimensions of the mesh.

The reduction algorithm will be executed in the same kernel that was launched to com-
pute the Vandermonde matrices, with the available block size, as the necessary data of the
Vandermonde matrices V and V w, are already located in the fast shared memory and it is
desirable to avoid additional communication costs to relaunch a new kernel with a different
computational grid size. Unfortunatelly, that will result a large amount of threads in the
block being unemployed, especially for high degrees of polynomials, as we need only few of
them. Nevertheless, the resulted performance is still better than launching a new kernel,
with some trials of alternative designs.

To execute the reduction algorithm for one displacement component we need Mi/2 number
of threads, i.e. for a 2D mesh we need in total Mi number of threads in the thread block,
and for a 3D mesh we need 3Mi threads. One of the dimensions of the thread block, as
explained above, is already aligned with the size Mi and suggested to be 2k, k ≥ 5 generally.
The other dimension of the thread block is the one fitting the number of the monomials,
which dimension keeps the redundant additional threads.

It is worth to mention, that the two reduction algorithms for the two displacement compo-
nents for a 2D mesh, can be executed at the same time with one reduction algorithm for the
first half of threads and the second on the second half of threads. This is not destroying the
consistency of a warp of threads for the SIMT model, as the executed instructions are iden-
tical. For the 3D meshes, there will be two twins reduction algorithms and one additional
subsequently resting even more threads in the block, unfortunatelly.

Parallelizing the Gramian matrix computations

For the computations of the Gramian matrix, the same constraint of the thread block size
holds, i.e. the block size is defined to fit the needs of the Vandermonde evaluations, as it
has been found that keeping this evaluation as well in the same CUDA kernel, gives the best
performance results by avoiding extra data transferring costs, or re-evaluation of quantities.

The best performance design that has been found to compute the Gramian matrix, as pre-
sented in eq. (2.44), is through Mi iterations in each thread block, i.e. the elements of the
matrix are mapped one to one to the threads in the block, where each thread accumulates
the result from the available subset of Mi sample points in Mi iterations. From the first
point of view, it does not seem really efficient, though the problem of summing the results
of the Mi sample points, constitutes a difficult task itself without iterations. An alternative
solution could be using atomic operations, but it is not faster or different than the iterations.
Setting reduction algorithms for smaller subsets of the sample points Mi demand additional
shared memory which is not enough for high polynomial degrees. And finally, launching a
new kernel with approriate thread block size and an efficient matrix-matrix multiplication
does not give better performance.

Page 50

Chapter 3. The parallelization of the MLS method and implementation in CUDA

3.5 CUDA algorithm designs of the MLS method

Many details on the CUDA architecture and facts that should be considered while designing a
CUDA algorithm, are already given in section 3.4.2 while proposing parallelization schemes.
Here, the most important facts will be mentioned.

The processing flow, as shown in Figure 3.4 and in deeper detail, consists of

• the host instructor (a cpu) which will coordinate the process flow,

• a bidirectional communication of the GPU memory and the system memory, i.e. data
can be transmitted both directions at the same time without the intervention of the
cpu,

• the gpu has access to the system memory only on demand by default, some improve-
ments on the memory access are the host pinned memory where memory pages are
locked on the system memory for higher speed access from the gpu, and the unified
memory which keeps a virtual memory address space avoiding the page locking,

• the gpu receives an instruction from the host cpu to run a programme, which pro-
gramme is called kernel, in a single instruction multiple threads (SIMT) model, i.e.
one single instruction is executed on several threads which are currying their own data,
opposed to the single instruction multiple data (SIMD) model where a single instruction
of one thread is implying an operation on a vector of values,

• the gpu can initiate it’s own kernels in a recursive way,

• the gpu supports task parallelism by independent process streams, i.e. several kernels
can be running concurrently,

• the running kernels are distributing work packages in blocks (thread blocks) over one
or more multiprocessors (SM) see Figure 3.5,

• within each multiprocessor the parallel process is scheduled internally, where the process
is executed in two levels, the higher level of the thread blocks, and the subsequent level
of warps, both levels are scheduled optimally in order to maximize the infill of the
multiprocessor’s pipeline.

The last process part is the fundamental one that impacts the performance, i.e. if the reside
thread blocks in the multiprocessor are few and/or with poor variety of instructions to fill the
processing pipeline, the performance gets poor as the instructions cannot be overlapped. The
array on the right side of Figure 3.5, comprises the pipeline of a single multiprocessor, where
several computing units exist, as well as units for special operations, data communication
units, etc.

One of the reasons to have few thread blocks residing in the multiprocessor (SM occupancy
level), is overloading the registers in the kernel algorithm design (very limited resource),
and/or overloading the shared memory (limited resource also).

Another cause of poor performance is the latencies due to excessive global memory accesses
which is slow to access, or local shared memory accesses with conflicts (bank conflict issue).
Moreover, branches within the warps will result latencies, as the multiprocessor will execute
both ways of the branches and in each way some or all of the threads will be inactive.

National Technical University of Athens Page 51

3.5. CUDA algorithm designs of the MLS method

Figure 3.4: The global CUDA process flow.

Figure 3.5: CUDA architecture diagram.

There are many problems and algorithm implementations where data has to be shared
or communicated among the compute units, for such cases the memory hierarchy of the
processor architecture should be taken in advantage. Explaining, regarding the Figure 3.6,
the CUDA architecture memory hierachy provides a common (slow) memory space for all
the kernels running on the GPU, i.e. the global memory, additionally there is an L2 cache

Page 52

Chapter 3. The parallelization of the MLS method and implementation in CUDA

memory (not shown in figure) for frequently used data and/or constant memory data for
faster access. On each SM there is a limited amount of very fast shared memory which is
being partitioned over the number of residing thread blocks. The threads of each block can
access only their own partition of the shared memory, which is the space where they can share
data and communicate. If threads in different blocks need to communicate, the only common
space is the slow global memory. Finally, each thread that resides in a multiprocessor, has
its own memory space by occupation some of the registers (extremely fast memory next to
the computing units), which are shared among all the residing threads from all the blocks
in the multiprocessor.

Figure 3.6: CUDA memory hierarchy.

National Technical University of Athens Page 53

3.5. CUDA algorithm designs of the MLS method

3.5.1 CUDA algorithm design 1, A design with iterations over subsets of the
sample points

This algorithm is designed to process in parallel all the evaluation points or subsets of them,
which subset size can be set by a parameter of the algorithm. See table 3.1 for all the kernel
launching parameters. Every kernel launch is processing all the sample points within each
thread block by iterations, i.e. the size of the thread block Mi (in dimension x of the thread
block) that will determine the hosted number of sample points is set by a parameter of the
algorithm, highly recommended to be a power of 2, and the resulted iterations in the kernel
will be M/Mi in number.

the block contains the data for all the monomials in order to be able to calculate the partial
bbT which corresponds to the current sample points,

minimized data transferring by calculating bbT and bf in the same kernel launch,

several stationary points launched in a single kernel which can be controlled as a parameter

CUDA computational grid

Grid size type Size assigned

gridDim.x (Parametric, optimal 2n) Number of evaluated stationary points per kernel.

gridDim.y 1

blockDim.x (Parametric, optimal 2n) Size Mi of the subset of sample points per block

blockDim.y (Problem constrained) Number of monomials

Shared memory

2n ·Mi + n2

Compute streams

1

Table 3.1: CUDA kernel computational grid sizes and parameters, design 1

Page 54

Chapter 3. The parallelization of the MLS method and implementation in CUDA

3.5.2 CUDA algorithm design 2, A design where the subsets of sample points
are scattered to multiple thread blocks

This algorithm design is launching iteratively few kernels for subsets of the evaluation points
(or all the evaluation points if set by a parameter), which amount of kernels is a parameter
and can be adapted. A lower number of the parallel launched evaluation points can reduce the
requirements of global memory, or to control the performance for GPUs with a large number
of SMs. For each subset of parallel evaluated points, the kernel launches are adapting to
the sample points number of the problem and the sample points set to be scattered within
a thread block and several blocks in the computational grid. Thus, launching kernels with
the parameters in table 3.2, may result iterations over smaller subsets of sample points if
desired. Moreover, two more kernel launches may happen, if the scattering of the sample
points with the chosen parameters are letting residual sample points.

As suggested in section 3.4.2, the number of the sample points in a thread block should be
a number power of 2. Furthermore, this design as explained in the aforementioned section,
computes the summations of the Gramian matrices and the RHS matrices partially with
the available sample points in the thread block, and the last summations from different
thread blocks are executed subsequently on the host. This design, requires a certain global
memory amount and traffic, where the amount can be controlled as mentioned above with
the size and number of sample point subsets, and the traffic seems to be not affecting the
performance, as part of the computations are transferred to the host. Additionally, the part
of the computations transferred to the host, is quite serialized for the Gramian matrix, as
analyzed in section 3.4.2.

CUDA computational grid

Grid size type Size assigned

gridDim.x (Parametric, optimal 2n) Number of sample point subsets, M/Mi.

gridDim.y (Parametric, optimal 2n) Number of evaluated stationary points per kernel

blockDim.x (Parametric, optimal 2n) Size Mi of the subset of sample points per block

blockDim.y (Problem constrained) Number of monomials

Shared memory

2n ·Mi + n2

Compute streams

1

Table 3.2: CUDA kernel computational grid sizes and parameters, design 2

National Technical University of Athens Page 55

3.5. CUDA algorithm designs of the MLS method

3.5.3 CUDA algorithm design 3, A design with matrix-matrix multiplications
on the cuBLAS library

This version of algorithm is the simplest possible to implement, by implementing directly
the matrix-matrix multiplications of eq. (2.44) and (2.45), to derive the Gramian matrix
and the RHS matrix. The appropriate cuBLAS library function for the matrix-matrix mul-
tiplications, is the cublasGgemm.

To launch the cuBLAS function there is no need to define manually a CUDA computational
grid of threads. The function is launched only by passing the pointers to the input matrices
data, located in the device global memory. Furthermore, as parameters to the launched
function it should be passed, the sizes of the matrices, and the parameters α and β of the
following executed operation

C = αop(A)op(B) + βC

where we need α = 1 and β = 0. For more details the NVIDIA CUDA documentation is the
most complete source.

The cuBLAS function is launched once to derive the Gramian matrix, and twice to compute
the RHS for the x and y displacements components, separately, per evaluation point (i.e. an
interior mesh node). To enable the parallel execution of the 3 function launches per single
evaluation point, and generally for the concurrent evaluation of many evaluation points,
multiple computing streams are used which are able to run independent CUDA kernels
concurrently.

To launch the above computations the Vandermonde matrices should be first evaluated for
a sufficent number of evaluation points that will be evaluated concurrently. Thus, a custom
kernel is doing the preprocessing work, under instructions of parallel computations found in
section 3.4.2. The parameters of the launched custom kernel are found in table 3.3.

The performance of this design is not sufficient, and there is no control or insight of the
computations and the computational grid. A number of concurrent streams, larger than 25,
gives no additional speedup for a gpu with compute capabilities 3.0, Quadro K1000M, with
1 SM and 192 CUDA cores.

CUDA computational grid

Grid size type Size assigned

gridDim.x 2.

gridDim.y (Parametric, optimal 2n) Number of evaluated stationary points per kernel

blockDim.x (Parametric) Number of computing streams (32)

blockDim.y (Problem constrained) Number of monomials

Shared memory

Automatic in cuBLAS

Compute streams

32

Table 3.3: CUDA kernel computational grid sizes and parameters, design 3, a preprocessor kernel
to compute the Vandermonde matrices for the matrix-matrix multiplications with cuBLAS.

Page 56

Chapter 4

Performance results of the MLS
method on CUDA GPGPUs

4.1 2D test case 1

The coarse grain parallelization level of the method is very easy to implement for any type
of available parallel processors, i.e. by scattering the completely independent data to several
processors and following the SPMD model. Therefore, for this parallelization level, results
from CPU multi-core execution are included in the performance comparison charts. Results
from heteregenous processing, by sharing the evaluted points between the multi-core CPU
and the GPGPU, are presented as well.

All the compared cases are summarized as following

• CPU single thread, reference time as a serialized process*

• CPU 8 threads/ 4 cores

• CUDA algorithm design 1 (single/double precision)

• CUDA algorithm design 2 (single/double precision)

• CUDA algorithm design 3 (single/double precision)

• 50% work for a CPU with 7 threads and 50% work for the CUDA algorithm design 1

*the process in this case is partially parallelized with SIMD instructions by automatic opti-
mization from the compiler (-mavx flag enabled), augmented also by ILP, as the CPU is a
pipelined superscalar processor.

The hardware used for this comparison is:

• CPU Intel Core i7-3740QM Quad core

• GPGPU Quadro K1000M, 1 SM, 192 CUDA cores, Kepler architecture, Compute ca-
pability 3.0

The problem solved for the comparison is the one defined in section 3.3.

National Technical University of Athens Page 57

4.1. 2D test case 1

Below, graph representations can be found comparing the performance of each parallelization
scheme as defined above. The performance of each scheme is measured for various polynomial
degrees (0-6), in single and double arithmetic precision. The importance of the polynomial
degree is presented in section C.3.2, where higher mesh quality solutions can yield and
higher robustness is provided over the method’s parameters. Furthermore, for higher degree
polynomial solutions, i.e. from degree 5 and above, the single precision arithmetics are of
insufficient precision to give solutions, thus higher degrees (5+) should be combined with
slower double precision arithmetics on the GPU.

In figure 4.1, the global speed of the solution is illustrated for the various analysed cases.
Cases of higher polynomial degree were the bar is missing, is when the algorithm executed
in excessively large time.

Figure 4.1: Comparison graph of the performance speedup.

In figure 4.2 and 4.2, the execution time of each case is shown in (ms). Again cases assigned
with a very large execution time, are considered as non acceptable solutions.

The very high performance of the 0-degree algorithm was expected, as it is designed with
the efficient reduction algorithms, see 3.4.1. The x20 speedup that we can see, it should
be higher if the SIMD instructions are disabled on the CPU. Moreover, running the same
algorithm on a powerful GPU (with 10+ SM) this speedup should scale linearly to very large
values.

For the rest of the polynomial degrees, the results could be characterized good (considering
the weak GPU and the strong CPU) for a polynomial degree up to 4. Though the proposed
algorithm designs are not efficient, which becomes apparent when the problem scales in
size (higher polynomial degree) the speedup drops. The latter fact, exhibits the fact that
the second CUDA algorithm design is less efficient, as the speedup drops faster and higher

Page 58

Chapter 4. Performance results of the MLS method on CUDA GPGPUs

polynomial degrees are not able to accomplish in an acceptable time. Though, both of the
custom CUDA algorithm designs, are parametrized on the size of the data packages being
processed, a deeper investigation may give better results.

The difference between the single and double precision solutions is the expected one, less
than half of the perfomance for the slower double precision arithmetics, as exactly specified
from NVIDIA.

Regarding the algorithm design 3 (implemented with the cuBLAS), although the implemen-
tation is very easy and appealing, it performs poorly which suggests alternative designs. A
good try could be launching recursive kernels from a kernel (during this thesis no available
hardware was found with higher CUDA compute capabilities to allow this).

Figure 4.2: The execution time evolution of various parallel schemes, with the polynomial degree.

National Technical University of Athens Page 59

4.1. 2D test case 1

Figure 4.3: The execution time per polynomial degree for various parallel schemes.

Page 60

Chapter 5

Conclusions

There are plenty problems in computational mechanics which are solved on GPGPUs and
the mesh deformation stage exists in the process. Executing the mesh deformation on the
same high throughput compute devices would reduce the solving time further. The MLS
method exposes a perfect data independent coarse level parallelism, and a less parallelizable
fine grain parallelism that needs careful algorithm design.

Despite the fact that the importance of the higher polynomial degree MLS, for largely
deformed meshes with acceptable mesh quality, is acknowledged, there are two important
issues for the GPGPUs which degrade the performance. The fine grain parallelism becomes
a harder challenge when the MLS polynomial degree increases. There the required data
communication becomes more intensive, resulting lower performance. Balanced solutions
should be considered, where recomputations or iterations may prove more efficient, compared
to data sharing and communicating. Second, for very high polynomial degrees (e.g. degree
5 and above), the single precision arithmetics are insufficient to give valid solutions. Hence,
higher degree MLS executions should combined with the slower double precision arithmetics
on the GPGPU, dropping the performance even more. Nevertheless, the produced speedups
presented in this work, are expected to be much higher with powerful GPGPUs. In contrary,
the parallelization of the MLS method is an easy task for the simple 0-degree case. The
obtained results from the parallelization of the 0-degree MLS method in real applications,
are as efficient as were designed and theoretically expected.

The developed algorithms, generally expose good compute performance with very high
speedups for low polynomial degree MLS interpolations, e.g. up to x20 in the case of the
zero degree MLS method (known also as the Shepard’s method, or the Inverse Distance
Weighting method). The speedups for higher polynomial degrees are moderate, i.e. x5, but
the utilized hardware comprised of a very strong CPU and a GPGPU with poor compute
resources.

National Technical University of Athens Page 61

Appendix A

Elements from the approximation
theory

A.1 Approximation of functions

The approximation theory is concerned with how functions f can be approximated with
simple functions f̂ , and with estimating the upper bounds of the introduced errors ε, or even
evaluating the error in some cases. Furthermore, making approximations with a computer
restricts one to use simple functions from the class of polynomials, which are easy to handle
and evaluate numerically. The implicated accuracy does not have to be higher than the
underlying computer’s floating point arithmetic.

The space of polynomials Pn is of degree less than or equal to n and it is spanned by the
basis span{1, x, ..., xn} of dimension dimP = n+ 1.

In approximation of continuous functions f with polynomials, i.e. f̂ = pn ∈ Pn, there is
a fundamental theorem that guarantees the existence of an arbitrary good approximation
uniformly along the domain, which means there is a max error bound uniform for all the
points, as following

Weierstrass Theorem
Let f ∈ C[a, b]. Then for any ε > 0 there exists a polynomial pn ∈ Pn[a, b] for which

‖f − pn‖∞ ≤ ε (A.1)

There are many proofs of the theorem above, with an interesting proof construction coming
from S. Bernstein, which proves the existence of the uniform approximation polynomials
and provides them in a simple form, see Davis [1975]. The same theorem holds for functions
f(x) defined on real domains with N-dimensions, x ∈ Ω,Ω ⊂ R̄N .

The same results of approximation can hold even when the approximation is forced to in-
terpolate some values on distinct points. The following theorem guarantees the uniform
approximation.

National Technical University of Athens Page 63

A.1. Approximation of functions

Walsh Theorem
Let Ω̄ ⊂ RN a compact set, ωm = {xi|xi ∈ Ω̄, i = 1..m} a set of m distinct points,
f ∈ C(Ω̄), and pn ∈ Pn(Ω̄). Assume that f(x) is defined on Ω̄ and is uniformly
approximable by polynomials.
Then it is uniformly approximable by polynomials pn that satisfy the constraints

p(xi) = f(xi), i = 1..m (A.2)

Stone trying to prove the Weierstrass Theorem, showed that using algebra of functions from
the same function space of the function f , one can converge arbitrarily close to the function
f as soon as some properties hold.

Stone-Weierstrass Theorem
Let Ω̄ ⊂ RN a compact set, f ∈ C(Ω̄), f̂ ∈ S(Ω̄), where S is a subspace of C, C is
equipped with a metric ρ(C), and the following properties hold

• S contains all the constant functions

• ∀f̂1, f̂2 ∈ S, a ∈ R⇒ f̂1 + f̂2 ∈ S, af̂1 ∈ S, f̂1f̂2 ∈ S
• ∀x1, x2 ∈ Ω|x1 6= x2, there exists f̂ ∈ S such that f̂(x1) 6= f̂(x1)

Then S(Ω̄) is dense in C(Ω̄), i.e. ∀f ∈ C(Ω̄) there is a sequence {f̂n} ⊂ S such that∥∥∥f − f̂n∥∥∥
ρ(C)
→ 0 as n→∞ (A.3)

The result is more general and the first theorem is just a case where the used subspace of
functions S is of polynomials P, and the chosen metric is the supremum ‖.‖∞.

�

Page 64

Appendix A. Elements from the approximation theory

A.2 Best approximation

Note that the Stone-Weierstrass theorem, for all f ∈ C(D̄) with D̄ ⊂ Rd, guarantees the
existance of an appropriate solution space S ⊂ C which contains a desired approximation
for an arbitrary small error.

The notion of the best approximation, is related to a specifically given function f ∈ C(D̄), a
specific solution space S ⊂ C(D̄), and a specific metric ρ(C(D̄)). In such a specific framework,

the best approximation, is the solution with the minimum possible error, i.e. f̂b ∈ S, such
that ∥∥∥f − f̂b∥∥∥

ρ(C)
≤
∥∥∥f − f̂∥∥∥

ρ(C)
,∀f̂ ∈ S (A.4)

With a metric equipping the function space C, one can measure how close the functions f
and f̂ are, which is the base to define optimality criteria to minimize that measurement.

Evidently, the task of finding the best approximation is a minimization problem. The objec-
tive function to this minimization problem is the measuring function of the error, as following

E(f̂) =
∥∥∥f − f̂∥∥∥

ρ(C)
, f̂ ∈ S (A.5)

Some important questions regarding the best approximation are, if it always exists and it is
unique, or under which circumstances it is unique, the ability to estimate it, and if it has
any asympotic properties as one expands the solution space.

A.2.1 Existence of a best approximation

As stated in the previous section, the best approximation is a minimization problem of the
function E(f̂) : S → R, i.e. a minimization of a norm function among the elements in the
solution space S, see Eq. A.5.

To justify the existence of a solution of a minimized function, we need the property of
convexity for the solution and the minimized function itself.

Assume C is a complex linear space S ⊂ C. Then S is convex if for any f̂1, f̂2 ∈ S

λf̂1 + (1− λ)f̂2 ∈ S (A.6)

∀λ ∈ (0, 1)

Generally, the linear combination
n∑
i=1

λif̂i

is called a convex combination of a set {f̂i}

when λi ≥ 0 and

n∑
i=1

λi = 1

National Technical University of Athens Page 65

A.2. Best approximation

Assume S is a convex subset of a linear space C, then a function E(f̂) : S → R is said to be
convex if

E
(
λf̂1 + (1− λ)f̂2

)
≤ λE(f̂1) + (1− λ)E(f̂2) (A.7)

∀f̂1, f̂2 ∈ S, ∀λ ∈ [0, 1]

The norms as functions are generally convex and continuous. Furthermore, if we are dealing
with unbounded solution spaces S then the norm functions are also coercive. In practice the
solution spaces are finite-dimensional so we have the following results.

Assume C a normed space, and Sn ⊂ C is a closed and convex subset with n finite.
Then given an f ∈ C, there is an element f̂b ∈ Sn such that∥∥∥f − f̂b∥∥∥

ρ(C)
= inf

f̂∈Sn

∥∥∥f − f̂∥∥∥
ρ(C)

(A.8)

Briefly, the convexity and the boundedness of a function space Sn, can guarantee the exis-
tence of the best approximation. The space of polynomials Pn, as defined in the first section
of this chapter, is a finite dimensional, convex space.

For problems where a function synthesis (or reconstruction) is required out of a set of points
with provided values k in number, we have the following corollary for the best uniform
approximation.

Let C[a, b] be a closed space equiped with the norm ‖.‖∞, S = Pn with n ≥ 0, and
f ∈ C. Furthermore, a set of points P = {x0, x1, ..., xk} is given with k ≥ n. Then

there is a solution f̂b ∈ Pn to the minimization problem

min
f̂∈P

∥∥∥f − f̂∥∥∥
∞

(A.9)

find {ai}ni=0 such that min max
0≤i≤k

|f(xi)−
n∑
j=0

ajx
j
i |

The problem of an overdetermined system of linear equations belongs here as well.

Given p in number sets of {aij, fj}ni=0, 0 ≤ j ≤ p, and p > n. The following problem
has a solution

find {xi}ni=0 such that min max
0≤i≤p

|yi −
n∑
j=0

aijxj|

Page 66

Appendix A. Elements from the approximation theory

A.2.2 Uniqueness of the best approximation

For the uniqueness, the minimized function needs the property of the strict convexity. Fol-
lowing the definition of the convexity of a function in the previous section, if additionally
f̂1 6= f̂2 when λ ∈ (0, 1), then the function E(f̂) is strictly convex.

The uniqueness of the best approximation is based on the following two theorems

Assume C is equiped with a norm ‖.‖q, and S ⊂ C is a convex subset. Given that the

function ‖.‖pq is strictly convex for some p ≥ 1, then the best approximation f̂b ∈ S is
unique for the minimization problem

min
f̂∈S

∥∥∥f − f̂∥∥∥p
q

(A.10)

A space is strictly normed when ‖u+ v‖ = ‖u‖ + ‖v‖, and if for u 6= 0 and a non-negative
scalar λ it is v = λu.

Assume C is a strictly normed space, S ⊂ C is a non-empty convex subset, and f ∈ C.
Then the best approximation f̂b ∈ S is unique.

Two very important examples of such metric spaces, are the inner product space and the
Lebesque spaces Lp(Ω) equiped with a norm ‖.‖p, 1 ≤ p < ∞. The two example function
spaces, are both strictly convex and strictly normed, which fact implies the existence of a
unique solution in the best approximation problem.

The spaces Lp(Ω), 1 ≤ p <∞ are Banach spaces and they are concrete realizations of the
abstract completion of C(Ω̄) under the norm

‖f‖p =

[∫
Ω

|f(x)|pdx
]1/p

The best approximation minimization problem on the Lp(Ω) spaces, is defined with the
objective function

E(f̂) =
∥∥∥f − f̂∥∥∥p

Lp(Ω)

The latter norm function, is strictly convex on the space Lp(Ω), therefore it has a unique
solution.

The space L∞(Ω) is also a Banach space, but it is much larger than the space C(Ω̄) with the
∞-norm

‖f‖∞ = ess sup
x∈Ω
|f(x)|

The norm ‖.‖L∞ is not strictly convex, yet there are classical results stating the existance of
a best uniform approximation for important function classes, e.g. Chebyshev equi-oscillation
theorem, which is

National Technical University of Athens Page 67

A.2. Best approximation

Let C[a, b] be a closed space, S = Pn with n ≥ 0, and f ∈ C. Then there is a unique

solution f̂b ∈ Pn to the minimization problem

min
f̂∈Pn

E(f̂) = min
f̂∈Pn

∥∥∥f − f̂∥∥∥
∞

(A.11)

For a set of n+2 points, a ≤ x0 < x1 < ... < xn+1 ≤ b, the uniqueness implies that

f(xj)− f̂b(xj) = (−1)j min
f̂∈Pn

E(f̂) j = 0, 1, 2, ..., n+ 1 (A.12)

A.2.3 The best approximation in inner product spaces

The inner product spaces, are the linear spaces where the inner product can operate on any
two elements. The inner product is a generalization of the canonical dot product in R3, i.e.

(x, y) =
3∑
i=1

xiyi, ∀x, y ∈ R3

i.e. the inner product estimates the covariance of two elements in the space.

A complete inner product space is called Hilbert space. Or in other words, an inner product
space is a Hilbert space, if it is a Banach space under the inner product norm. A use-
ful example of a Hilbert space is the L2(Ω) space, which is an inner product space with
the cannonical inner product (the sum of the component products, where the components
correspond to the domain points)

(f1, f2) =

∫
Ω

f1(x)f2(x)dx

This inner product yields the L2(Ω) norm (as defined in the previous section)

‖f‖2 = (f, f)1/2 =

[∫
Ω

|f(x)|2dx
]1/2

In the previous section, the unique solution of the best approximation problem on strictly
normed and strictly convex spaces has been stated. Furthermore, the inner product space
has been brought as an example of such spaces.

Formally, setting a framework where the Hilbert space H, is a real valued metric space,
equiped with an inner product induced norm, we can write the following Lemma for the
uniqueness of a best approximation.

Let S be a convex subset of a real inner product space C. For any f ∈ C, f̂b ∈ S is its
best approximation in S if and only if it satisfies

(f − f̂b, f̂ − f̂b) ≤ 0, ∀f̂ ∈ S (A.13)

Page 68

Appendix A. Elements from the approximation theory

Using the proposition of the existence of the best approximation from the previous section
we have the theorem.

Let S be a non-empty, closed, convex subset of a Hilbert space C = H. For any f ∈ C,
there is a unique solution f̂b ∈ S from the following minimization

min
f̂∈S

∥∥∥f − f̂∥∥∥ (A.14)

We call the best approximation f̂b the projection of f onto the closed convex set S, and write
f̂b = PS(f). The operator PS : C → S is called the projection operator of C onto S. In
general PS is a nonlinear operator, particularly when S is a closed subspace, the projection
operator is linear.

The projector PS has the following two properties

• it is monotone

(PK(f1)− PK(f2), f1 − f2) ≥ 0 ∀f1, f2 ∈ C = H

• it is non expansive

‖PK(f1)− PK(f2)‖ ≤ ‖f1 − f2‖ ∀f1, f2 ∈ C = H

The last uniqueness theorem of the best approximation, is also true for convex and closed
finite dimensional subsets of inner product spaces.

�

National Technical University of Athens Page 69

A.3. The orthogonal projection operator

A.3 The orthogonal projection operator

The theorem on the best approximation uniqueness, in the last section, holds also for com-
plete subspaces of inner product spaces, which are Hilbert subspaces, and the best approxi-
mation f̂b ∈ S is characterized by the property

(f − f̂b, f̂) = 0 ∀f̂ ∈ S

Figure A.1: Simplified geometrical illustration of the best approximation in inner product spaces.

A geometric interpretetion of this property, under the assumption that the solution space is
orthonormal of dimension two, can be illustrated in Fig. A.1. There the solution space S is
represented as a plane and each point of the plane is a candidate solution. The approximated
function f is in a more rich space out of the plane, keeping a distance, the error f− f̂b, which
is orthogonal to the subspace S. The projection mapping PS is then called an orthogonal
projection operator. The properties of the orthogonal projection operator are summarized
in the next theorem.

Assume S is a complete subspace of an inner product space C. Then the orthogonal
projection operator PS : C → C is linear and self-adjoint i.e.

(PS(f1), f2) = (f1, PS(f2)) ∀f1, f2 ∈ C

In addition (Pythagorean theorem)

‖f‖2 = ‖PS(f)‖2 + ‖f − PS(f)‖2 ∀f ∈ C

and as a consequence
‖PS‖ = 1

An important special situation arises when the solution space Sn ⊂ C is defined with an
orthonormal basis span{φ0, ..., φn}. Then the element PSn(f) = f̂b ∈ Sn is the solution of
the minimization problem

min
f̂∈Sn

∥∥∥f − f̂∥∥∥
⇔ E(f ; ai) =

∥∥∥∥∥f −
n∑
i=0

aiφi

∥∥∥∥∥
2

, a0, ..., an ∈ R

Page 70

Appendix A. Elements from the approximation theory

From which we obtain the identity

E(f ; ai) = ‖f‖2 −
n∑
i=0

|(f, φi)|2 +
n∑
i=1

|ai − (f, φi)|2

Clearly the minimum of E(f ; ai) is achieved by letting ai = (f, φi), i = 0, ..., n. Thus the
orthogonal projection of f into Sn is given by

PSn(f) =
n∑
i=0

(f, φi)φi

since
‖f − PSn(f)‖ = min

f̂∈Sn

∥∥∥f − f̂∥∥∥→ 0 as n→∞

we have the expansion

f = lim
n→∞

n∑
i=0

(f, φi)φi =
∞∑
i=0

(f, φi)φi

where the limit is understood in the sense of the norm ‖.‖. The quantity PSn(f) is also
called the least squares approximation of f by the elements of Sn.

A.4 Orthogonal polynomials

A very important application of the orthogonal projectors is the least squares approximation
of functions by polynomials.

Let C = L2(−1, 1), and Sn = Pn(−1, 1) the space of polynomials of degree less than or equal
to n. Then an orthonormal polynomial basis for C is known, {φn ≡ Ln}n≥0, the normalized
Legendere polynomials.

Ln(x) =

√
2n+ 1

2

1

2nn!

dn

dxn
[(x2 − 1)n], n ≥ 0 (A.15)

For any f ∈ C its best approximation from Pn(−1, 1) is given by

PSn(f) =
n∑
i=0

(f, Li)L2(−1,1)Li(x)

More generally, let w(Ω) is a positive weight function and integrable on Ω = [−1, 1]. We
use the interval [−1, 1]; all other finite intervals [a, b] can be converted to [−1, 1] by a simple
linear change of variables. Then we can define the L2 weighted function space

L2
w(Ω) = {f | f measurable,

∫
Ω

|f(x)|2w(x)dx <∞}

is a Hilbert space with the inner product

(f1, f2)0,w =

∫
Ω

f1(x)f2(x)w(x)dx, ∀f1, f2 ∈ L2
w(Ω)

National Technical University of Athens Page 71

A.4. Orthogonal polynomials

and the norm

‖f‖0,w =
√

(f, f)0,w

Then again, two functions are said to be orthogonal if the inner product vanishes (f1, f2)0,w =
0.

The Gram-Schmidt procedure with the monomials {1, x, x2, ...} can be applied to construct
a system of orthogonal polynomials pn(x)∞n=0, such that the degree of pn is n. For any
f ∈ L2

w(−1, 1), the best approximating polynomial of degree less than or equal to N is

PN(f) =
N∑
n=0

ξnpn(x), ξn =
(f, pn)0,w

‖pn‖2
0,w

, 0 ≤ n ≤ N (A.16)

The best approximation PNu is charcacterized by the property that it is the orthogonal
projection of u onto the polynomial space PN(−1, 1) with respect to the inner product
(., .)0,w.

A generalization of the Legendre orthogonal polynomials and the first kind Chebyshev poly-
nomials, are the Jacobi polynomials related to the weight function w(α,β)(x) = (1− x)α(1 +
x)β,−1 ≤ α, β ≤ 1. for α = β = 0 it yields the Legendre polynomials, for α = β = −1/2 it
yields the first kind Chebyshev polynomials.

�

Page 72

Appendix B

Weighting functions for local weighted
least squares approximations

B.1 Weighting functions in general rational form

As analyzed in section 2.4, the weighting function has a fundamental role in the local least
squares approximation; primarily allowing the existence of the approximation, and further
controlling the character of the result, e.g. the degree of locality, which locality is closely
related to the order of the approximation (i.e. how good it is), the smoothness, the interpo-
lation, etc.

Below we write again the characteristics that the weighting function should possess in order
to be functional:

1. It should be a positive and continuous function

2. Compact support, i.e. w(x− x̄) = 0, x /∈ B(x̄, r), or in a weaker case w → 0, as x→∞
3. Rapidly decaying

4. Integrable

Some plots of the used weighting functions in this work, are illustrated in Figure B.1.

The general form of the weighting functions in local least squares, is the following rational

w(x) =
Q(x)

P (x)
(B.1)

The numerator has usually a smooth form of an analytic function e−sx
k
, or a polynomial

form as the Wendland C2 with high smoothness, as following

Q(x) =
(

1− x

r

)4 (
4
x

r
+ 1
)

(B.2)

After numerical experimentation in 1D and 2D problems, see in the next section the 1D
parametric analysis, the role of the numerator has been found negligible when a denominator

National Technical University of Athens Page 73

B.1. Weighting functions in general rational form

Figure B.1: Weighting functions used for interpolation, except the last one which is the C2 Wend-
land, a non-interpolant generally. The first three are simple inverse distance functions, in compar-
ison with the next three that are combined with the smoothening Wendland C2 function.

exists in the following form. The denominator has a very important role in the interpolation
ability of the local approximation, in the way that it has been explained in section 2.4. Thus,
it is usually a distance function, most commonly a simple monomial of the distance xa, which
transform the weighting function into a singular one on the center point, by resulting very
large values and very large decay speeds around the center. To dismiss the problem of the
undefined value on the center, an infinitesimal value ε is introduced. Specifically, we will
focus to the following class of weighting functions

w(x) =
Q(x)(
x
r

)a
+ ε

(B.3)

where r is the scaling parameter of the function’s support, more precisely it is the desired
size of the half-support, and a ∈ R+ is an interpolant parameter, i.e. certain values of the
parameter, according to the difficulty of the problem, will constitute the local approximation
an interpolant. For a = 0, one gets classical radial kernels, which are non interpolant for
largely variable values of closely spaced sample points, mainly because they lack of sufficient
decaying speed. In Figure B.1, weighting functions for various values of the interpolant
parameter a are shown.

The infinitesimal value ε in the denominator should be assigned as small as possible, adopted
to the machine numerical accuracy. The value ε = 1e − 12 is sufficient for operations with
single or double precision floating numbers.

Page 74

Appendix B. Weighting functions for local weighted least squares approximations

B.2 A parametric analysis on the parameters of the rational weight-
ing functions

In this section we solve a 1D problem with the MLS method, and variate the involved
parameters of the weighting function, to demonstrate and analyse the effect on the quality
of the global approximation. The same results can be extended to 2D and 3D problems,
assisting a better selection of the parameter values. This 1D benchmark problem is set to
contain small and large variations on the values of closely located sample points, moreover
it possesses a tough region (on the right side of the domain) which is difficult to interpolate
smoothly. First, for the 0-degree polynomial, we measure the interpolation quality of the
solutions for various admissible parameter values. Next, we setup a parametric analysis with
several combinations of the parameter values, on various polynomial degrees. In the latter
case, we plot the resutls of the parametric analysis in 3D surfaces for a better and direct
overview of the resutls.

The global approximation is desired to be interpolant, thus the quality metric of the approx-
imation is the total relative error on the sample points

‖erel‖2 =

 M∑
i=0

(
f̂(x̂)− f(x̂)

f(x̂)

)2
0.5

(B.4)

The MLS solutions are utilizing the inverse distance weighting functions, with the Wendland
C2 function on the nominator for smoothener

w(x) =

(
1− x

r

)4 (
4x
r

+ 1
)(

x
r

)a
+ ε

(B.5)

It is remarkable that the solutions without the Wendland smoothener, i.e. the nominator is
set to the constant value 1, are quite similar yielding similar error estimates.

Mainly, we examine the effect of the parameters a and r, as defined above, for various degrees
of the polynomials. Before starting with the main findings, we demonstrate the sensitivity
of the solution to the singularity correction factor ε, on the 0-degree approximation, with
interpolation parameter a = 4, and r = 0.05. We consider the following set of values

{ε} = {1e− 6, 1e− 8, 1e− 10, 1e− 12, 1e− 16}

and we get the corresponding relative errors

{‖erel‖2} = {0.2545, 0.1514, 0.2545, 0.1514, 0.0042, 9.568e− 5, 7.9723e− 5}

The plots of the solutions can be found in Figure B.2. We remark that generally the sensi-
tivity is small, except the difficult region on the right side of the domain. Though, values
above 1e− 12 are performing sufficiently good.

National Technical University of Athens Page 75

B.2. A parametric analysis on the parameters of the rational weighting functions

Figure B.2: Solution plots for variant singularity correction values ε. Polynomial degree n = 0.
Weghting function parameters a = 4 and r = 0.05. Total relative interpolation error for each
solution: ‖erel‖2 = {0.2545, 0.1514, 0.2545, 0.1514, 0.0042, 9.5680e− 05, 7.9723e− 05}

Page 76

Appendix B. Weighting functions for local weighted least squares approximations

The effect of the interpolation parameter (a)
First, we investigate the interpolation parameter a with the set of values

{a} = {1, 2, 4, 6, 8}

The degree of the polynomial is always n = 0, and the support parameter r = 1. The
analysis gives the corresponding relative errors

{‖erel‖2} = {0.0645, 0.0055, 9.5680e− 05, 0.1455, 0.2511}

The plots can be found in Figure B.3. We note that the interpolation parameter a has a
global effect on each sample point approximation, no matter of how difficult are the data.
The parameter value a = 4, seems to be an optimal one, achieving sufficiently good results.
Testing the same interpolation parameter values, with support parameter r = 0.05, the
results are improved as shown in Figure B.4 and assessed by the relative error metrics

{‖erel‖2} = {4.1028e− 02, 5.0504e− 03, 7.9290e− 05, 1.3483e− 06, 1.5700e− 07}

Figure B.3: Solution plots for variant interpolation parameter values a. Polynomial degree n = 0.
Weghting function parameter r = 1. Total relative interpolation error for each solution: ‖erel‖2 =
{0.0645, 0.0055, 9.5680e− 05, 0.1455, 0.2511}

National Technical University of Athens Page 77

B.2. A parametric analysis on the parameters of the rational weighting functions

Figure B.4: Solution plots for variant interpolation parameter values a. Polynomial degree n =
0. Weghting function parameter r = 0.05. Total relative interpolation error for each solution:
‖erel‖2 = {4.1028e− 02, 5.0504e− 03, 7.9290e− 05, 1.3483e− 06, 1.5700e− 07}

Page 78

Appendix B. Weighting functions for local weighted least squares approximations

The effect of the support parameter (r)
Next, we investigate the support parameter r, which parameter should be always related to
the spacing interval of the sample points, and it should not be interpreted as a general value
for all the problems. In this problem the spacing interval is constant everywhere dx̂ = 0.04,
except the right end of the domain where it is min dx̂ = 0.01. For this problem we choose
the following set of values, representing explicitly the size of the half-support

{r} = {0.02, 0.05, 0.1, 0.5, 1, 5, 50, 500}

The polynomial degree is n = 0, and the interpolation parameter a = 4. Then we have the
corresponding relative errors

{‖erel‖2} = {2e− 05, 7e− 05, 7e− 05, 7e− 05, 8e− 05, 9e− 05, 2e− 02, 2e− 01, 5e− 01}

The plots can be found in Figure B.5. All the solutions for r ≤ 1 are sufficiently accurate.
Note that there is an interaction between the interpolation parameter (a) and the span
parameter (r), as shown previously between the Figures B.3 and B.4, i.e. different values of
the parameter (a) will introduce a higher sensitivity on the (r) parameter and poor results.
Such cases can be seen in the following more general parametric analysis.

It is better to keep proper interpolation parameter values, providing slow or zero variance
with the values of (r), which can lead to simpler and general rules of support value (r)
selection. Moreover, large sensitivity in the parameter (r) will lead to selection of small
values, where one has to be careful not to exceed a minimum threshold that can constitute
the system of equations ill-conditioned, e.g. if the number of effective sample points within
the support is not at least the same as the degree of the polynomial.

National Technical University of Athens Page 79

B.2. A parametric analysis on the parameters of the rational weighting functions

Figure B.5: Solution plots for variant span parameter values r. Polynomial degree n = 0. Weghting
function parameter a = 4. Total relative interpolation error for each solution: ‖erel‖2 = {2.0300e−
05, 7.9290e− 05, 7.9609e− 05, 7.9727e− 05, 8.0148e− 05, 9.5680e− 05, 2.3941e− 02, 2.8402e−
01, 5.9267e− 01}

Page 80

Appendix B. Weighting functions for local weighted least squares approximations

A parametric analysis for various polynomial degrees
For greater generality, we variate the weighting function parameters (a) and (r) for the poly-
nomial degrees from 0 to 4. As above, we compute the total relative error of the interpolation
for the various cases, and then plot 3D surfaces where in the z-axis are the error values, in
x-y we choose two parameters of the (a), (r) and (n) (the degree of polynomial). All the
results can be summirized in 3 surfaces plots.

First, we choose in x-y plane the interpolation parameter (a) and the support parameter (r).
The interolation errors are plotted in 4 surfaces, one per polynomial degree, see Figure B.6.
We observe that for all the polynomial degrees, the optimal range of the parameter (a) is be-
tween the values 2 and 4, constituting the solutions insensitive to the support parameter(r).
Generally, all the polynomial degrees follow the same trends, and the differences in the in-
terpolation error are becoming more sensible for large support values (r). As expected, low
values of the interpolation paremeter (a), or no interpolation for a = 0, do not bring good
interpolation results for any size of the support. Futhermore, for small enough support pa-
rameter (r), i.e. in the order of the interval distance between the sample points, the total
interpolation error becomes sufficiently low and the solutions are almost insensitive to the
interpolation parameter a ≥ 2.

Figure B.6: The total relative error of interpolation, with variation of the interpolation parameter
(a) and the support parameter (r). Each surface is representing the error values in z-axis, for a
specific polynomial degree. Shown are the polynomial degrees from 0 to 4.

National Technical University of Athens Page 81

B.2. A parametric analysis on the parameters of the rational weighting functions

Next, we choose in x-y plane the support parameter (r) and the polynomial degree (n). The
interolation errors are plotted in 13 surfaces, one per interpolation parameter value

{a} = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10}

The results are shown in Figure B.7, where we see that interpolation values around a = 3,
give sufficiently good results for all the tested polynomials and support parameter values.
Values of a ≥ 4 are quite unstable in relation with the support parameter (r) and should be
avoided. Values of a ≤ 2 give a stable high interpolation error.

Figure B.7: The total relative error of interpolation, with variation of the the support pa-
rameter (r) and the polynomial degree (n). Each surface is representing the error val-
ues in z-axis, for a specific interpolation parameter (a). Shown are the interpolation values
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10}.

Page 82

Appendix B. Weighting functions for local weighted least squares approximations

At last, we choose in x-y plane the interpolation parameter (a) and the polynomial degree
(n). The interolation errors are plotted in 12 surfaces, one per support parameter value

{r} = {0.02, 0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10, 15, 20}

Note that the degree of the polynomial affects the condition of the system of equations in
combination with the support parameter. For instance the 4th and 3rd degree interpolation,
provides well behaved solutions for r ≥ 0.2, the 2nd degree for r ≥ 0.1, and the 1st degree
r ≥ 0.04 (i.e. the maximum sample points interval dx̂ in this benchmark problem). The
results are shown in Figure B.8, where we see that the minimum possible parameter value
(r), provides the lowest interpollation error among all the cases. Finally, we observe again
that the interpolation parameter (a) in range 2 ≤ a ≤ 4, gives an extra interpolation boost
and invariance to the degree n and the support r.

Figure B.8: The total relative error of interpolation, with variation of the interpolation pa-
rameter (a) and the polynomial degree (n). Each surface is representing the error val-
ues in z-axis, for a specific support parameter (r). Shown are the the support values
{0.02, 0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10, 15, 20}.

National Technical University of Athens Page 83

Appendix C

The performance of the MLS method
in mesh deformation problems

C.1 Introduction

The idea of this method is to determine the displacements of the interior mesh nodes for
which just a limited number of displacements are known on the boundaries. If a certain
model function describing the system of nodes is presumed, then the parameters of this
function are searched which explain the system best in terms of minimisation of the quadratic
residuals. Utilizing the MLS method this is done locally, launching a local least squares
approximation for each interior node, one by one. Then, the solution for the constant
parameter a0, determines explicitly the movement of each interior node, see sections 2.6 and
2.4. According to the developed theory in chapter 1 on the MLS method, all the nodes
with prescribed displacements (including the fixed nodes with 0 displacement) constitute
the sample points x̂ of the problem. The rest of the nodes for which the new position is
unknown, they are the stationary points x̄.

The problem of adapting a mesh to displacements on the boundary, can be described as
well as reconstructed displacement fields with given sample data on the boundaries. In this
approach, the fields are independent per displacement component (ux, uy, uz), such that the
MLS method is applied on each interior node independently as many times as the number
of the domain dimensions, e.g. 2 times for a 2D mesh and 3 times for a 3D mesh. If for any
reason we have no displacements on the boundaries in any of the directions, the method is
useless to apply in that specific domain component, as there is no correlation between the
displacement fields.

The displacements of the boundaries are prescribed explicitly as it is essential for the solved
problem, though the displacements on the interior nodes very close to the boundary are
determined with the MLS method, which should follow smoothly close to the prescribed
displacements on the boundary, in order to preserve the quality of the mesh on the bound-
ary. Hence, we would like the MLS approximation to yield smooth displacement fields which
will interpolate the displacements on the boundaries. A special care should be attained for
cases where we have large variations of displacements on closely spaced boundary nodes.
As demonstrated with several notions and 1D examples in sections 2.4 and B, such large

National Technical University of Athens Page 85

C.1. Introduction

(a) Interpolation parameter a = 0, polynomial de-
gree 1. Resulted 130 degenerated elements on the
boundary.

(b) Interpolation parameter a = 1.2, polynomial de-
gree 1. Resulted good mesh quality.

(c) Interpolation parameter a = 2.2, polynomial de-
gree 0. Resulted good mesh quality.

Figure C.1: The figure illustrates the failing result of a mesh adaptation, caused by applying a
non-interpolant MLS method and misinterpolating the boundary displacements. The example is
for the 1st degree MLS solutions with a) interpolation parameter a = 0, b) a = 1.2, c) 0-degree MLS
a = 2.2. Similar results are produced with higher degrees and large variations on the boundary.

variations can introduce large interpolation errors, if the correct parameters are not chosen
for the weighting function. The latter case, is shown in Figure C.1 for a 2D mesh adapta-
tion example solved with the 1st degree MLS method, and a Wenland C2 inverse distance
weighting function. Moreover, it has been shown that decreasing the support of the weight-
ing function can boost the local character of the MLS over an evaluation point, with the cost
that the variations of the displacements are becoming much more rapid decaying. The rapid
decaying displacements around the boundaries can be a problem of destroying the quality
of the mesh in that close region, letting the further points non-displaced.

The 0-degree MLS method with proper inverse distance weighting functions, also well known

Page 86

Appendix C. The performance of the MLS method in mesh deformation problems

as the Shepard’s method (see Shepard [1968]) that was developed for surface reconstruction
problems, has been proved extremely efficient to solve the problem of mesh adaption to
boundary displacements, overcoming the above mentioned difficulties. Though, the mag-
nitude of the boundary displacements in difficult cases (as the benchmark problem in the
following sections) is still limited. Moreover, the method is by some orders computationally
cheaper as we are dealing only with the constant polynomial parameter. Higher polyno-
mial degree MLS adaptations are giving improved interpolated results, in the same way of
implying an inverse distance weighting function.

In this chapter a performance analysis of the method is developed, to demonstrate its effec-
tiveness in mesh adaptation problems. First, we start with the consistency analysis of the
method, to confirm that it can represent some primative deformation modes, i.e. the affine
transformations. It is required that, given some simple boundary displacements, which cor-
respond to an affine transformation, the displacement patterns in the interior should be the
expected ones. These results are considered important, because any other imposed complex
displacements on the boundaries will be a synthesis of the fundamental, expected to behave
correctly as well. This concept is very common in finite elements methods, where it is proved
that the solution basis can represent correctly some primitive fields.

Next, the performance of the method on 2D mesh adaptation problems is analysed. Feasi-
bility and quality results are presented, after a vast number of cases on the parameters of
the general weighting function, see B. These analyses are oriented to reveal the role of each
parameter, the feasible values, and the optimal ranges for various polynomial degrees. The
feasibility is defined by adaptations without degenerated elements, and the optimality of the
parameters is linked with the mesh quality metrics.

C.2 Consistency tests of the IDW method on mesh deformation
applications

In this section the MLS method applied on the described mesh adaptation problem, is tested
in reliability to represent some expected fundamental displacement fields in the interior for
the corresponding displacements on the boundaries. The 1st degree MLS is behaving in an
excellent way representing exactly all the fundamental modes as expected. The 0-degree
MLS is shown to behave sufficiently good also. For cases where the 0-degree MLS locks
rigidly some regions of the mesh, the weighting function parameters can relax them yielding
a sufficiently good expected behavior.

The tested fundamental displacement fields are all affine transformations, i.e. translations,
rotations and stretches. For the latter type of displacements we know a priori the expected
displacement and gradient fields when the test domain is a simple one. In such a case the
errors in the fields can be measured straightforward.

Thus, all the consistency tests will be executed on a simple 2D square domain of dimension
9x9. We will use the L2 norms on the involved fields (displacement or gradient) over the
domain, to measure the magnitudes of the expected and approximated fields and define
errors

‖u‖ =

[∫
Ω

u(x)2dΩ

]0.5

(C.1)

National Technical University of Athens Page 87

C.2. Consistency tests of the IDW method on mesh deformation applications

To measure the approximated fields numerically we use the following discrete norm

‖u‖ =

[
n∑
i=1

u(x)2Ai

]0.5

(C.2)

where Ai is the area of a single element defined in the mesh.

Thus, to verify the results of every tested fundamental mode the following field measurements
will be checked
The L2 norm of the x-displacement field ‖u‖,
The L2 norm of the y-displacement field ‖v‖,
The L2 norm of the total displacements field ‖ut‖,
The L2 norm of the x-displacements gradx field ‖du/dx‖,
The L2 norm of the y-displacements grady field ‖dv/dy‖,
The L2 norm of the shear deformation field ‖du/dy + dv/dx‖.

In the following plots, the displacement fields are based on the evaluations on the nodes with
the standard MLS method results, i.e. the values of the a0 coefficient. The gradient fields are
derived from the gradient values on the nodes, which are estimated from the corresponding
linear coefficients ai of the MLS method. For the 0-degree MLS the gradient fields are
produced from the gradient values on the nodes, estimated as defined in eq. (2.37).

The MLS method for both the polynomial degrees, is launched with the simple inverse
distance weighting function

w(x) =
1(

x
10

)4
+ 1e− 12

with interpolation parameter a = 4 and support size parameter r = 10.

C.2.1 Consistency test on the rigid translation

First, the rigid translations is tested to verify the consistency of the displacement fields with
the expected ones.

We translate the nodes of one (or more) of the boundaries, letting the rest nodes free to
follow the move. The applied translation in this test is ux = 1 and uy = 1. We expect all
the nodes to move by the same displacement with no stretches applied, see Figure C.2, and
the following field measurements
‖u‖ = 9, ‖v‖ = 9, ‖ut‖ = 12.7279,
‖du/dx‖ = 0, ‖dv/dy‖ = 0, ‖du/dy + dv/dx‖ = 0

The test is successful for both of the MLS launches (both polynomial degrees), as the dis-
placement gradients are zero and all the nodes follow the expected movement. The field
measurements are confirmed with zero error, as shown in the right info panel in Figures C.2
and C.3.

The displacement and gradient fields for the 0-degree MLS are plotted in the figures C.4 and
C.5, indicating no defects.

Page 88

Appendix C. The performance of the MLS method in mesh deformation problems

Figure C.2: The meshes before and after the rigid translation ux = 1, uy = 1 of the square domain
with size 9x9. Adaptation with the 1st degree MLS method. On the right panel, the settings of
the MLS methods are shown, as long as the L2 displacement and gradient fields measurements.

Figure C.3: The meshes before and after the rigid translation ux = 1, uy = 1 of the square domain
with size 9x9. Adaptation with the 0-degree MLS method.

Figure C.4: The displacement fields after a rigid translation ux = 1, uy = 1 of the square do-
main with size 9x9. Adaptation with the 0-degree MLS method. On the top bar, the L2 field
measurements are shown.

National Technical University of Athens Page 89

C.2. Consistency tests of the IDW method on mesh deformation applications

Figure C.5: The displacement gradient fields after a rigid translation ux = 1, uy = 1 of the square
domain with size 9x9. Adaptation with the 0-degree MLS method. On the top bar, the L2 field
measurements are shown.

Page 90

Appendix C. The performance of the MLS method in mesh deformation problems

C.2.2 Consistency test on the rigid rotation

The rigid rotation is tested to verify the consistency of the displacement fields with the
expected ones.

The tested mesh is rotated by applying a rotation around the center point of the square on
the boundary nodes, letting the rest nodes free to follow the move. The applied rotation
in this test is θ = 45deg around the node x = 4.5, y = 4.5. We expect all the nodes to
rotate about the rotation point, with no stretches appearing, i.e. the local gradients of the
displacement fields should evaluate constant as following du/dx = 1 − cos (θ) = 0.292,
dv/dy = 1− cos (θ) = 0.292, du/dy + dv/dx = 0
‖du/dx‖ = 2.63, ‖dv/dy‖ = 2.63, ‖du/dy + dv/dx‖ = 0

The test is successful for the 1st degree MLS, as the displacement gradients are constant and
all the nodes follow the expected movement.

The 0-degree solution exhibits bad performance for a high interpolation parameter value
a = 4, because of the zero gradient property on the sample points (property of the interpoland
MLS method for 0-degree polynomial). The results are improved to a sufficient practical
degree, where an arbitrary rotation can be achieved with the expected displacement field,
if the interpolation parameter is reduced to a = 2. The gradient fields for the two MLS
solutions are shown in the figures C.9 and C.10, indicating no defects for the 1st degree and
slight defects for the 0-degree on the boundaries.

Figure C.6: The meshes before and after the rigid rotation of the square domain with size 9x9.
Adaptation with the 1st degree MLS method. On the right panel, the settings of the MLS methods
are shown, as long as the L2 displacement and gradient fields measurements.

National Technical University of Athens Page 91

C.2. Consistency tests of the IDW method on mesh deformation applications

Figure C.7: Adaptation with the 0-degree MLS method.

Figure C.8: Adaptation with the 0-degree MLS method and an optimizated interpolation parameter
a.

Figure C.9: The displacement gradient fields after a rigid rotation of the square domain with size
9x9. Adaptation with the 1st degree MLS method. On the top bar, the L2 field measurements are
shown.

Page 92

Appendix C. The performance of the MLS method in mesh deformation problems

Figure C.10: The displacement gradient fields after a rigid rotation of the square domain with size
9x9. Adaptation with the 0-degree MLS method and an optimed interpolation parameter a.

National Technical University of Athens Page 93

C.2. Consistency tests of the IDW method on mesh deformation applications

C.2.3 Consistency test on the constant grad du/dx

The constant gradients are tested to verify the consistency of the displacement fields with
the expected ones.

The tested mesh is stretched with a unit displacement on the left boundary and holding still
the right boundary. We expect the stretch to distribute in a uniform way within the interior
and receive a constant gradient du/dx on entire the field,
du/dx = 1/9, ‖du/dx‖ = 1, ‖dv/dy‖ = 0, ‖du/dy + dv/dx‖ = 0

The test is successful for the 1st degree MLS solution, as the displacement gradient du/dx
is constant and it has the expected value. The rest of the gradients are again correct with
zero constant value.

The 0-degree solution exhibits a poor performance for a high interpolation parameter value
a = 4. The results are improved to a sufficient practical degree, if the interpolation parameter
is reduced to a = 1.5. The gradient fields for the two MLS solutions are shown in the figures
C.14 and C.15, indicating no defects for the 1st degree and slight defects for the 0-degree.

Figure C.11: The meshes before and after the unit stretch in x direction of the square domain with
size 9x9. Adaptation with the 1st degree MLS method. On the right panel, the settings of the MLS
methods are shown, as long as the L2 displacement and gradient fields measurements.

Page 94

Appendix C. The performance of the MLS method in mesh deformation problems

Figure C.12: Adaptation with the 0-degree MLS method.

Figure C.13: Adaptation with the 0-degree MLS method and an optimized interpolation parameter
a.

Figure C.14: The displacement gradient fields after a unit stretch in x direction of the square
domain with size 9x9. Adaptation with the 1st degree MLS method and an optimed interpolation
parameter a.

National Technical University of Athens Page 95

C.2. Consistency tests of the IDW method on mesh deformation applications

Figure C.15: The displacement gradient fields after a unit stretch in x direction of the square
domain with size 9x9. Adaptation with the 0-degree MLS method and an optimed interpolation
parameter a.

Page 96

Appendix C. The performance of the MLS method in mesh deformation problems

C.2.4 Consistency test on the constant grad du/dy+dv/dx

The constant gradients are tested to verify the consistency of the displacement fields with
the expected ones.

The tested mesh is stretched in simple shear, with a unit displacement of the top boundary
to the right and a unit displacement of the bottom boundary to the left. We expect the
stretch to distribute in a uniform way within the interior and receive a constant gradient
du/dy + dv/dx on entire the field,
du/dy + dv/dx = 2/9, ‖du/dx‖ = 0, ‖dv/dy‖ = 0, ‖du/dy + dv/dx‖ = 2

The test is successful for the 1st degree MLS solution, as the displacement gradient du/dy+
dv/dx is constant with the expected value. The rest of the gradients are also correct with
zero constant value.

The 0-degree solution exhibits a poor performance for a high interpolation parameter value
a = 4. The results are improved to a sufficient practical degree, if the interpolation parameter
is reduced to a = 1.3. The gradient fields for the two MLS solutions are shown in the figures
C.19 and C.20, indicating no defects for the 1st degree and slight defects for the 0-degree.

Figure C.16: The meshes before and after a simple shear stretch (two opposite boundaries moved
by a unit in opposite directions) of the square domain with size 9x9. Adaptation with the 1st degree
MLS method. On the right panel, the settings of the MLS methods are shown, as long as the L2

displacement and gradient fields measurements.

National Technical University of Athens Page 97

C.2. Consistency tests of the IDW method on mesh deformation applications

Figure C.17: Adaptation with the 0-degree MLS method.

Figure C.18: Adaptation with the 0-degree MLS method and an optimized interpolation parameter
a.

Figure C.19: The displacement gradient fields after a simple shear stretch of the square domain with
size 9x9. Adaptation with the 1st degree MLS method and an optimed interpolation parameter a.

Page 98

Appendix C. The performance of the MLS method in mesh deformation problems

Figure C.20: The displacement gradient fields after a simple shear stretch (two opposite boundaries
moved by a unit in opposite directions) of the square domain with size 9x9. Adaptation with the
0-degree MLS method and an optimed interpolation parameter a.

National Technical University of Athens Page 99

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

C.3 The performance of the MLS mesh adaptation with paramet-
ric analyses on feasibility and quality

In this section the performance of the MLS method is demonstrated in 2D mesh adaptations.
The results are an extension of what is presented in Chapter 1 for 1D cases, see B. Though,
here the performance analysis is not handled with interpolation error estimates, but with
mesh quality metrics and a feasibility characterization by verifying non-degenerated mesh
elements. The degree of the polynomial basis, consists again the main parameter of the
analysis, as it can increase the performance of the method, though the goal is to find the
limits of the low degrees (i.e. 0 & 1 degree), which give simple and easily handled fast
algorithms. We limit the analyses up to the 4th degree polynomial, as it consists the limit
for accurate enough operations with single precision floating point numbers. Our interest in
single precision floating point numbers is a particular one, as the computations on graphic
processing units (i.e. CUDA and OpenCL implementations) with single precision are usually
more than twice fast as with double precision. The use of single precision numbers has a
slight effect on the quality results, especially for high degrees. There the linear systems are
of poor condition, and sensitive information for high degrees are being lost or corrupted.

The analysis is oriented around the properties and the parameters of the weighting function,

expressed in the general form of eq. B.3, where Q(d) =
(
1− d

r

)4 (
4d
r

+ 1
)

is the Wendland
C2

w(d) =

(
1− d

r

)4 (
4d
r

+ 1
)(

d
r

)a
+ 10−12

(C.3)

where we identify, the interpolation parameter a and the support size parameter r. Both of
the parameters can influence the success of the method, effecting on the form of the weighting
function and consequently on the character of the approximation with the MLS method.

The application pool is narrowed down to a single benchmark problem, to investigate the
method’s properties and abilities. For more applications one can refer to the preceding
work on the subject, see Τουρής [2016], altough the weighting functions used there are
non-interpoland, hence one can find only a partial performance presentation of the MLS
method. The test case is such that large displacement variations are occuried in closely
spaced boundary nodes. Such cases emerge the need for a strict interpolation on the bound-
ary displacements, as has been explained in the introduction of this chapter. Moreover, the
inital poor quality of some mesh elements is an extra chalenge. The benchmarked mesh has
an outer radius R = 11 and an inner radius r = 5, see Figure C.21. The total number of
the nodes is 7547, out of which 337 are located on the inner boundary and 100 on the outer
boundary. The total number of elements is 14657. The given mesh has the following quality
statistics, meanQ = 0.1672, maxQ = 0.793, std.dev.Q = 0.09.

The tested displacements are various rotations of the inner ”leaf” boundary as a rigid contour
around the global origin point, and a fixed outer boundary. Such rotations induce displace-
ments with various directions and magnitudes from the nodes on the inner boundary (sample
points) to the interior nodes (stationary points). Hence, the data are strongly variable for
close spaced nodes. The benchmark consists of various inner boundary rotation angles, i.e.
30deg, 45deg, 60deg and 80deg. The goal is to investigate the feasibility and the adapted
mesh quality, for every polynomial degree, and for some combinations of the weighting func-
tion parameter values, i.e. a and r. The set of values of the interpolation parameter a is

Page 100

Appendix C. The performance of the MLS method in mesh deformation problems

Figure C.21: Illustration of the benchmarked mesh. Outer radius R = 11, inner radius r = 5, 7547
total number of nodes, 337 nodes on the inner boundary and 100 nodes on the outer boundary.
Quality metrics meanQ = 0.1672, maxQ = 0.793, std.dev.Q = 0.09.

defined according to the various published research on 2D surface reconstruction problems,
the results in Chapter 1 for 1D cases, and numerical expirementation on the problem. The
support size parameter r, is defined considering the mesh dimensions, and more specifically
the inner and outer radii, the decaying speeds of the weighting function which is influenced
by the parameter a, and the defined polynomial degrees. Both sets of values are as below

a = {0, 1, 2, 3, 4, 5, 6}
r = {6, 8, 10, 12, 15, 18, 20, 25, 30, 40} (C.4)

Higher values of the support parameter r have been tested up to r = 200 but the metrics
seem to be invariable above the value of r = 40.

C.3.1 Feasibility analysis

In this section the feasibility of the MLS method is investigated, i.e. the ability to give a
solution without degenerated elements.

The results are presented in a graphical mode, i.e. color mapped 2D surfaces. There are five
surfaces (i.e. the number of different polynomials cases) per rotation angle case, see the four
rotation angles (i.e. 30deg, 45deg, 60deg, 80deg) in the Figures C.22, C.23, C.24 and C.25.

Each surface is plotting on the horizontal axis the interpolation parameter a, and the support
size parameter r on the vertical axis. There, every test case is represented by a grid lines
crossing point. The color map is set to represent the 0 degenerated elements cases with the
dark blue color (0 value), and every other case with one or more degenerated elements with
the dark red color corresponding to the value 1.

National Technical University of Athens Page 101

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

The parametric graphs, are indicating a broad enough domain of robustness in the two
parameters, in most of the cases eccentrically located on higher values of a and r for all the
polynomial degrees. Higher polynomial degrees seem to possess a broader robust range in a
parameter and a narrower one for the r parameter, compared to the lower degrees. As the
induced rotations are becoming higher and the problem more tough, for all the polynomials
the parametric domain of robustness is getting reduced, in a faster sense on lower degree
polynomials. For all the polynomials, as the rotation increases the range of a values is
narrowing down to a = 3, faster than the range of r, which tends to higher values in most
of the cases.

Page 102

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.22: Feasibility surfaces of MLS adaptations, for rotation angle of 30deg in the bench-
mark problem. The blue colored parametric space corresponds to a feasible adaptation with no
degenerated elements. Each surface corresponds to a polynomial degree, 0-4.

National Technical University of Athens Page 103

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.23: Feasibility surfaces of MLS adaptations, for rotation angle of 45deg in the bench-
mark problem. The blue colored parametric space corresponds to a feasible adaptation with no
degenerated elements. Each surface corresponds to a polynomial degree, 0-4.

Page 104

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.24: Feasibility surfaces of MLS adaptations, for rotation angle of 60deg in the bench-
mark problem. The blue colored parametric space corresponds to a feasible adaptation with no
degenerated elements. Each surface corresponds to a polynomial degree, 0-4.

National Technical University of Athens Page 105

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.25: Feasibility surfaces of MLS adaptations, for rotation angle of 80deg in the bench-
mark problem. The blue colored parametric space corresponds to a feasible adaptation with no
degenerated elements. Each surface corresponds to a polynomial degree, 0-4.

Page 106

Appendix C. The performance of the MLS method in mesh deformation problems

C.3.2 Mesh quality analysis

Besides the meaning of mesh quality regarding the correct and sufficient refinement fitting a
specific problem, another useful meaning is the mesh quality expressed through the regularity
of the mesh elements, i.e. elements which keep a symmetry or equivalence of the edges
or faces. This geometrical property has been proved important to describe mathematical
models with better accuracy, as they become less prone to the numerical accuracy limits of
a computing unit. The most common quality measures, representing the regularity of the
elements, are the skewness, the elements size variation smoothness, and the aspect ratio.

One of the most commonly accepted practice, is to measure the deviation of the mininum
and maximum angles, from an equiangle shape. For instance, such a mesh quality metric
for triangular mesh elements is the following

max

[
θmax − 60deg

120deg
,

60deg − θmin
60deg

]
(C.5)

The above values can be mapped by an analyst to a mesh quality characterization, as for
example in table C.1.

Mapping table of Equiangle skweness - Mesh Quality

Value of Skewness 0-0.25 0.25-0.5 0.5-0.8 0.8-0.95 0.95-0.99 0.99-1.00

Cell Quality Excellent Good Acceptable Poor Sliver Degenerate

Table C.1: A mapping table of equiangle skewness values and mesh quality. (Andre Bakker, mesh
quality in CFD)

The mapping of the table C.1 can be different and dependent on the special needs of the
solved problem, the required quality of the results, the faster convergence and analysis time
of some problems, the machine precision, etc.

With the above quality metric of eq. (C.5), the initial mesh has the following statistical
measures
meanQ = 0.1672, maxQ = 0.793, std.dev.Q = 0.09. The max quality measure indicates
that some mesh elements since the beginning are close to be qualified as poor.

The results are presented in a graphical mode, i.e. color mapped 2D surfaces. There are
five surfaces (which is the number of different polynomials cases) per rotation angle case,
plotting the meanQ values (each meanQ on the surface, is the mean value of Q among all
the elements in the adapted mesh), and five more surfaces plotting the standard deviation
values of the quality metric. The results for the 4 rotation angles (i.e. 30deg, 45deg, 60deg,
80deg), are shown in the Figures C.26, C.28, C.30 and C.32. Furthermore, the max quality
metric values for the same adaptation cases are given in Figures C.27, C.29 and C.31.

Each surface is plotting on the horizontal axis the interpolation parameter a, and the support
size parameter r on the vertical axis. There, every test case is represented by a grid lines
crossing point. The color map is set to represent the values, starting from 0 value (the dark
blue color, that corresponds to a perfect equilateral triangle), and up to the value 1 (the dark
red color, degenerated solution). The color map for the surfaces of the standard deviation
is set up to the value of 0.5.

National Technical University of Athens Page 107

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

Comments

First, it is observed that the max quality surfaces (max is worse quality as given in the table
C.1) are closely following the patterns of the feasibility surfaces. This proves a robustness
of the method, as the values of the weighting function parameters that give high quality
metrics in early time for lower deformation in the mesh, the same values of the parameters
will exhibit the degenerated solutions. And conversely, the most durable parameter values
have the better mesh quality for lower deformation. Generally, the max value surfaces can be
a reliable criterion with no prediction failure, and the necessary criterion if one is interested
in strict quality of each element.

The mean quality surfaces can indicate a globally good condition even for cases where the
solution is heavily degenerated, but locally. This case is the misinterpolation of the mesh
around the displaced nodes, where the deformation energy is all exhausted locally, the rest
of the nodes almost still, with the result of indicating the global condition seamingly good.
This fact is justified by prior analysis and comments on the interpolation properties of the
method, where it has been shown that the interpolation parameter (a) should be high enough
for the used polynomial. In all the figures of the mean quality value we can see that spurious
pattern of a seamingly good mesh overall. Thus, the mean quality surfaces can be a good
index for an overall good condition and smoothness, but to verify the local good condition
the max quality value surfaces is the best index, along with the standard deviation index to
determine if the bad quality is severe, or limited where some repair operations could take
place.

Regarding the quality metrics with variation of the polynomial degree, the higher degrees
are the most robust in acceptable deformation, more robust on the parameters on the inter-
polation parameter a, but slightly less robust on the weighting function support parameter
r, where higher values are preferred.

Observing the maximum mesh quality surfaces, we can deduce that the interpolation pa-
rameter a, with variation of the mesh deformation, is more robust around the value a ≈ 3
for the 0-degree polynomial, a ≈ 2 for the 1st degree, and a ≈ 2.5 for the polynomial degrees
2, 3 and 4. Furthermore, high values of the weighting function support size r seem to be
robust through various magnitudes of the mesh deformation.

We observe, that the 0-degree polynomial can handle a rotation up to 30deg with acceptable
max quality metric < 0.8 for an interpolation parameter a ≈ 3.5 and r > 15. The result is
illustrated in Figure C.34a.

The 45deg rotation can be performed with an acceptable max quality metric value Q ≈ 0.8
from the 1st degree polynomial, and the parameters a ≈ 2 and r > 25, see Figure C.34b.

And finally 60deg rotation can be performed with an acceptable max quality metric value
Q ≈ 0.8 from the 3rd degree polynomial, with a ≈ 3 and r > 30, the result is shown in
Figure C.34c.

For the two last cases, one can see the mesh being distorted closer to the exterior boundary,
which fact can be convenient to preserve the quality of the solution closer to the essential
inner boundary. Moreover, few large mesh elements with poor quality can be corrected by
the analyst mannually, or some additional algorithm.

Page 108

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS, mean quality. (b) 0-degree MLS, std. dev. of quality.

(c) 1st degree MLS, mean quality. (d) 1st MLS, std. dev. of quality.

(e) 2nd degree MLS, mean quality. (f) 2nd MLS, std. dev. of quality.

Figure C.26: Mesh quality surfaces, for a rotation angle of 30deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

National Technical University of Athens Page 109

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(g) 3rd degree MLS, mean quality. (h) 3rd MLS, std. dev. of quality.

(i) 4th degree MLS, mean quality. (j) 4th MLS, std. dev. of quality.

Figure C.26: Mesh quality surfaces, for a rotation angle of 30deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

Page 110

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.27: Max quality surfaces of MLS adaptations, for rotation angle of 30deg in the benchmark
problem. Each surface corresponds to a polynomial degree, 0-4. The excellent quality is at zero
level and the degenerated at the max value 1.

National Technical University of Athens Page 111

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS, mean quality. (b) 0-degree MLS, std. dev. of quality.

(c) 1st degree MLS, mean quality. (d) 1st MLS, std. dev. of quality.

(e) 2nd degree MLS, mean quality. (f) 2nd MLS, std. dev. of quality.

Figure C.28: Mesh quality surfaces, for a rotation angle of 45deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

Page 112

Appendix C. The performance of the MLS method in mesh deformation problems

(g) 3rd degree MLS, mean quality. (h) 3rd MLS, std. dev. of quality.

(i) 4th degree MLS, mean quality. (j) 4th MLS, std. dev. of quality.

Figure C.28: Mesh quality surfaces, for a rotation angle of 45deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

National Technical University of Athens Page 113

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.29: Max quality surfaces of MLS adaptations, for rotation angle of 45deg in the benchmark
problem. Each surface corresponds to a polynomial degree, 0-4. The excellent quality is at zero
level and the degenerated at the max value 1.

Page 114

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS, mean quality. (b) 0-degree MLS, std. dev. of quality.

(c) 1st degree MLS, mean quality. (d) 1st MLS, std. dev. of quality.

(e) 2nd degree MLS, mean quality. (f) 2nd MLS, std. dev. of quality.

Figure C.30: Mesh quality surfaces, for a rotation angle of 60deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

National Technical University of Athens Page 115

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(g) 3rd degree MLS, mean quality. (h) 3rd MLS, std. dev. of quality.

(i) 4th degree MLS, mean quality. (j) 4th MLS, std. dev. of quality.

Figure C.30: Mesh quality surfaces, for a rotation angle of 60deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

Page 116

Appendix C. The performance of the MLS method in mesh deformation problems

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.31: Max quality surfaces of MLS adaptations, for rotation angle of 60deg in the benchmark
problem. Each surface corresponds to a polynomial degree, 0-4. The excellent quality is at zero
level and the degenerated at the max value 1.

National Technical University of Athens Page 117

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS, mean quality. (b) 0-degree MLS, std. dev. of quality.

(c) 1st degree MLS, mean quality. (d) 1st MLS, std. dev. of quality.

(e) 2nd degree MLS, mean quality. (f) 2nd MLS, std. dev. of quality.

Figure C.32: Mesh quality surfaces, for a rotation angle of 80deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

Page 118

Appendix C. The performance of the MLS method in mesh deformation problems

(g) 3rd degree MLS, mean quality. (h) 3rd MLS, std. dev. of quality.

(i) 4th degree MLS, mean quality. (j) 4th MLS, std. dev. of quality.

Figure C.32: Mesh quality surfaces, for a rotation angle of 80deg in the benchmark problem. Each
pair in a row illustrates the mean & std.dev. of the quality, corresponding to a polynomial degree,
0-4. The excellent quality is at zero level and the degenerated at the max value 1.

National Technical University of Athens Page 119

C.3. The performance of the MLS mesh adaptation with parametric analyses on feasibility and
quality

(a) 0-degree MLS. (b) 1st degree MLS.

(c) 2nd degree MLS. (d) 3rd degree MLS.

(e) 4th degree MLS.

Figure C.33: Max quality surfaces of MLS adaptations, for rotation angle of 80deg in the benchmark
problem. Each surface corresponds to a polynomial degree, 0-4. The excellent quality is at zero
level and the degenerated at the max value 1.

Page 120

Appendix C. The performance of the MLS method in mesh deformation problems

(a) The 0-degree MLS performing an acceptable solution with max metric
value maxQ < 0.8, and a rotation of the interior boundary of 30deg.

(b) The 1st degree MLS performing an acceptable solution with max metric
value maxQ ≈ 0.8, and a rotation of the interior boundary of 45deg.

(c) The 3rd degree MLS performing an acceptable solution with max metric
value maxQ ≈ 0.8, and a rotation of the interior boundary of 60deg.

Figure C.34: The illustration of MLS solutions, with acceptable mesh qualities. Three deformed
meshes are presented for the lowest possible polynomial degree. The color indicates the quality
of the mesh element according to the ranges of the table C.1, from better to worse: green, cyan,
yellow (acceptable level), magenta, red, dark red.

National Technical University of Athens Page 121

Bibliography

Advanced Micro Devices. AMD Graphics Core Next Architecture, Generation 3, 2016.

K. Atkinson and W. Han. Theoretical Numerical Analysis: A Functional Analysis Frame-
work. Texts in Applied Mathematics. Springer, 2009. ISBN 9781441904584. URL
http://books.google.gr/books?id=Tg6p72yydEMC.

John T. Batina. Unsteady euler algorithm with unstructured dynamic mesh for complex-
aircraft aerodynamic analysis. AIAA Journal, 29, 03 1991. doi: 10.2514/3.10583.

Gerrit Becker, Michael Schäfer, and Antony Jameson. An advanced nurbs fitting procedure
for post-processing of grid-based shape optimizations. 49th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, 01 2011. doi: 10.
2514/6.2011-891.

T. Belytschko, Y. Y. Lu, and L. Gu. Element-free galerkin methods. International Journal for
Numerical Methods in Engineering, 37(2):229–256, 1994. doi: 10.1002/nme.1620370205.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620370205.

L.P Bos and K Salkauskas. Moving least-squares are backus-gilbert optimal. Journal of
Approximation Theory, 59(3):267 – 275, 1989. ISSN 0021-9045. doi: https://doi.org/10.
1016/0021-9045(89)90090-7. URL http://www.sciencedirect.com/science/article/

pii/0021904589900907.

Clarence Burg. Analytic study of 2d and 3d grid motion using modified laplacian. In-
ternational Journal for Numerical Methods in Fluids, 52:163 – 197, 09 2006. doi:
10.1002/fld.1173.

Lennart Carleson. On bernstein’s approximation problem. Proceedings of the American
Mathematical Society, 2(6):953–961, 1951. ISSN 00029939, 10886826. URL http://www.

jstor.org/stable/2031715.

Henri Casanova, Arnaud Legrand, and Yves Robert. Parallel Algorithms. Chapman &
Hall/CRC, 1st edition, 2008. ISBN 9781584889458.

J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming. EBL-
Schweitzer. Wiley, 2014. ISBN 9781118739327. URL https://books.google.lu/books?

id=q3DvBQAAQBAJ.

William S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Jour-
nal of the American Statistical Association, 74(368):829–836, 1979. ISSN 01621459. URL
http://www.jstor.org/stable/2286407.

National Technical University of Athens Page 123

http://books.google.gr/books?id=Tg6p72yydEMC
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620370205
http://www.sciencedirect.com/science/article/pii/0021904589900907
http://www.sciencedirect.com/science/article/pii/0021904589900907
http://www.jstor.org/stable/2031715
http://www.jstor.org/stable/2031715
https://books.google.lu/books?id=q3DvBQAAQBAJ
https://books.google.lu/books?id=q3DvBQAAQBAJ
http://www.jstor.org/stable/2286407

Bibliography

William S. Cleveland and Susan J. Devlin. Locally weighted regression: An approach to
regression analysis by local fitting. Journal of the American Statistical Association, 83
(403):596–610, 1988. ISSN 01621459. URL http://www.jstor.org/stable/2289282.

P.J. Davis. Interpolation and Approximation. Dover Books on Mathematics. Dover Pub-
lications, 1975. ISBN 9780486624952. URL https://books.google.lu/books?id=

2PaJAwAAQBAJ.

A. de Boer, M.S. van der Schoot, and H. Bijl. Mesh deformation based on radial ba-
sis function interpolation. Computers & Structures, 85(11):784 – 795, 2007. ISSN
0045-7949. doi: https://doi.org/10.1016/j.compstruc.2007.01.013. URL http://www.

sciencedirect.com/science/article/pii/S0045794907000223. Fourth MIT Confer-
ence on Computational Fluid and Solid Mechanics.

Christoph Degand and Charbel Farhat. A three-dimensional torsional spring analogy
method for unstructured dynamic meshes. Computers & Structures, 80(3):305 – 316,
2002. ISSN 0045-7949. doi: https://doi.org/10.1016/S0045-7949(02)00002-0. URL
http://www.sciencedirect.com/science/article/pii/S0045794902000020.

J. Donea, S. Giuliani, and J.P. Halleux. An arbitrary lagrangian-eulerian finite ele-
ment method for transient dynamic fluid-structure interactions. Computer Methods in
Applied Mechanics and Engineering, 33(1):689 – 723, 1982. ISSN 0045-7825. doi:
https://doi.org/10.1016/0045-7825(82)90128-1. URL http://www.sciencedirect.com/

science/article/pii/0045782582901281.

C. Farhat, C. Degand, B. Koobus, and M. Lesoinne. Torsional springs for two-dimensional
dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and En-
gineering, 163(1):231 – 245, 1998. ISSN 0045-7825. doi: https://doi.org/10.1016/
S0045-7825(98)00016-4. URL http://www.sciencedirect.com/science/article/pii/

S0045782598000164.

M Fenn and G Steidl. Robust local approximation of scatterred data. 31:317–334, 01 2006.

B.A. Finlayson. The Method of Weighted Residuals and Variational Principles: With Ap-
plication in Fluid Mechanics, Heat and Mass Transfer. Educational Psychology. Aca-
demic Press, 1972. ISBN 9780122570506. URL http://books.google.gr/books?id=

KHHVNESp5UoC.

B.A Finlayson and L.E. Scriven. The method of weighted residuals - a review. Applied
Mechanics Reviews, 19, 1966.

W. J. Gordon and J. A. Wixom. Shepard’s method of ”Metric Interpolation” to bivariate
and multivariate interpolation. Mathematics of Computation, 32:253–264, 1978.

M Harris. Optimizing parallel reduction in cuda. 21:104–110, 01 2007.

Brian Helenbrook. Mesh deformation using the biharmonic operator. International Journal
for Numerical Methods in Engineering, 56:1007 – 1021, 02 2003. doi: 10.1002/nme.595.

G. Dan Hutcheson. Moore’s law, lithography, and how optics drive the semiconductor in-
dustry, 2018. URL https://doi.org/10.1117/12.2308299.

Frederic J. Blom. Considerations on the spring analogy. International Journal for Numerical
Methods in Fluids, 32:647 – 668, 03 2000. doi: 10.1002/(SICI)1097-0363(20000330)32:
6〈647::AID-FLD979〉3.0.CO;2-K.

Page 124

http://www.jstor.org/stable/2289282
https://books.google.lu/books?id=2PaJAwAAQBAJ
https://books.google.lu/books?id=2PaJAwAAQBAJ
http://www.sciencedirect.com/science/article/pii/S0045794907000223
http://www.sciencedirect.com/science/article/pii/S0045794907000223
http://www.sciencedirect.com/science/article/pii/S0045794902000020
http://www.sciencedirect.com/science/article/pii/0045782582901281
http://www.sciencedirect.com/science/article/pii/0045782582901281
http://www.sciencedirect.com/science/article/pii/S0045782598000164
http://www.sciencedirect.com/science/article/pii/S0045782598000164
http://books.google.gr/books?id=KHHVNESp5UoC
http://books.google.gr/books?id=KHHVNESp5UoC
https://doi.org/10.1117/12.2308299

Bibliography

Antony Jameson. Aerodynamic design via control theory. Journal of Scientific Computing,
3, 12 1988. doi: 10.1007/BF01061285.

Antony Jameson. Optimum aerodynamic design using cfd and control theory. CFD Review,
3, 06 1995. doi: 10.2514/6.1995-1729.

Georgios K. Karpouzas, Evangelos M. Papoutsis-Kiachagias, Thomas Schumacher, Eugene
de Villiers, Kyriakos C. Giannakoglou, and Carsten Othmer. Adjoint optimization for
vehicle external aerodynamics. International Journal of Automotive Engineering, 7(1):
1–7, 2016. doi: 10.20485/jsaeijae.7.1 1.

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2012. ISBN 0124159923, 9780124159921.

Peter Lancaster and K Salkauskas. Surface generated by moving least square methods. 37:
141–141, 07 1981.

David Levin. The approximation power of moving least-squares. Math. Comput., 67(224):
1517–1531, October 1998. ISSN 0025-5718. doi: 10.1090/S0025-5718-98-00974-0. URL
http://dx.doi.org/10.1090/S0025-5718-98-00974-0.

H. Li and S.S. Mulay. Meshless Methods and Their Numerical Properties. Taylor & Francis,
2013. ISBN 9781466517462. URL https://books.google.lu/books?id=WFFwGJdRHrUC.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified graphics
and computing architecture. IEEE Micro, 28(2):39–55, March 2008. ISSN 0272-1732. doi:
10.1109/MM.2008.31.

Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable vertex en-
gine. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, pages 149–158, New York, NY, USA, 2001. ACM. ISBN 1-
58113-374-X. doi: 10.1145/383259.383274. URL http://doi.acm.org/10.1145/383259.

383274.

G.R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press,
2002. ISBN 9781420040586. URL https://books.google.lu/books?id=61rMBQAAQBAJ.

Wing-Kam Liu, Shaofan Li, and Ted Belytschko. Moving least-square reproducing kernel
methods (i) methodology and convergence. Computer Methods in Applied Mechanics and
Engineering, 143(1):113 – 154, 1997. ISSN 0045-7825. doi: https://doi.org/10.1016/
S0045-7825(96)01132-2. URL http://www.sciencedirect.com/science/article/pii/

S0045782596011322.

Xueqiang Liu, Ning Qin, and Hao Xia. Fast dynamic grid deformation based on delaunay
graph mapping. J. Comput. Phys., 211(2):405–423, January 2006. ISSN 0021-9991. doi:
10.1016/j.jcp.2005.05.025. URL http://dx.doi.org/10.1016/j.jcp.2005.05.025.

D.R. Lynch and K. O’Neil. Elastic grid deformation for moving boundary problems in two
space dimensions. 3rd International Conference on Finite Elements in Water Resources,
2, 1980.

Gia G. Maisuradze, Donald L. Thompson, Albert F. Wagner, and Michael Minkoff. Interpo-
lating moving least-squares methods for fitting potential energy surfaces: Detailed analysis
of one-dimensional applications. The Journal of Chemical Physics, 119(19):10002–10014,
2003. doi: 10.1063/1.1617271. URL https://doi.org/10.1063/1.1617271.

National Technical University of Athens Page 125

http://dx.doi.org/10.1090/S0025-5718-98-00974-0
https://books.google.lu/books?id=WFFwGJdRHrUC
http://doi.acm.org/10.1145/383259.383274
http://doi.acm.org/10.1145/383259.383274
https://books.google.lu/books?id=61rMBQAAQBAJ
http://www.sciencedirect.com/science/article/pii/S0045782596011322
http://www.sciencedirect.com/science/article/pii/S0045782596011322
http://dx.doi.org/10.1016/j.jcp.2005.05.025
https://doi.org/10.1063/1.1617271

Bibliography

D. H. McLain. Drawing contours from arbitrary data points. The Computer Journal, 17
(4):318–324, 1974. doi: 10.1093/comjnl/17.4.318. URL http://dx.doi.org/10.1093/

comjnl/17.4.318.

H.N. Mhaskar. Weighted polynomial approximation. Journal of Approximation Theory, 46
(1):100 – 110, 1986. ISSN 0021-9045. doi: https://doi.org/10.1016/0021-9045(86)90089-4.
URL http://www.sciencedirect.com/science/article/pii/0021904586900894.

H.N. Mhaskar. Introduction to the Theory of Weighted Polynomial Approximation. Series in
approximations and decompositions. World Scientific, 1996. ISBN 9789810213121. URL
https://books.google.lu/books?id=pQ8ET7hx_RMC.

Davoud Mirzaei. Analysis of moving least squares approximation revisited. J. Comput. Appl.
Math., 282(C):237–250, July 2015. ISSN 0377-0427. doi: 10.1016/j.cam.2015.01.007. URL
http://dx.doi.org/10.1016/j.cam.2015.01.007.

J Montrym and Henry Moreton. The geforce 6800. Micro, IEEE, 25:41 – 51, 04 2005. doi:
10.1109/MM.2005.37.

B Nayroles, Gilbert Touzot, and Pierre Villon. Generalizing the finite element method:
Diffuse approximation and diffuse elements. 10:307–318, 09 1992.

Andrew Nealen. An As-Short-As-Possible Introduction to the Least Squares, Weighted
Least Squares and Moving Least Squares Methods for Scattered Data Approximation and
Interpolation, 2004.

NVIDIA Corporation. NVIDIA GeForce 8800 GPU Architecture Overview, 2006. Tesla G80
Architecture.

NVIDIA Corporation. NVIDIA GeForce GTX 200 GPU Architecture Overview, 2008. Tesla
GT200 Architecture.

NVIDIA Corporation. Whitepaper CUDA Compute Architecture: Fermi, 2009.

NVIDIA Corporation. Whitepaper NVIDIA Fermi GF100 Architecture, 2010.

NVIDIA Corporation. NVIDIA GeForce GTX 680 GPU Technology Overview, 2012. Kepler
GK104 Architecture.

NVIDIA Corporation. Whitepaper CUDA Compute Architecture: Kepler GK110/210,
2014a.

NVIDIA Corporation. Whitepaper NVIDIA GeForce GTX 750 Ti, 2014b. Maxwell GM107
Architecture.

NVIDIA Corporation. Whitepaper NVIDIA Tesla P100, 2016. Pascal GP100 Architecture.

NVIDIA Corporation. Whitepaper NVIDIA Tesla V100 GPU Architecture, 2017. Volta
GV100 Architecture.

NVIDIA Corporation. CUDA C Best Practices Guide, 2018a. Version 10.0.

NVIDIA Corporation. Whitepaper NVIDIA Turing GPU Architecture, 2018b. Turing TU102
Architecture.

NVIDIA Corporation. NVIDIA CUDA C programming guide, 2018c. Version 10.0.

Page 126

http://dx.doi.org/10.1093/comjnl/17.4.318
http://dx.doi.org/10.1093/comjnl/17.4.318
http://www.sciencedirect.com/science/article/pii/0021904586900894
https://books.google.lu/books?id=pQ8ET7hx_RMC
http://dx.doi.org/10.1016/j.cam.2015.01.007

Bibliography

David Padua. Encyclopedia of Parallel Computing. Springer Publishing Company, Incorpo-
rated, 2011. ISBN 0387097651, 9780387097657.

David A. Patterson and John L. Hennessy. Computer Organization and Design, Fifth Edi-
tion: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 5th edition, 2013. ISBN 0124077269, 9780124077263.

Peter N. Glaskowsky. NVIDIA’s Fermi: The first Complete GPU Computing Architecture,
2009. A whitepaper for NVIDIA Corporation.

Philippe P. Pébay and Timothy J. Baker. Analysis of triangle quality measures. Mathematics
of Computation, 72(244):1817–1839, 2003. ISSN 00255718, 10886842. URL http://www.

jstor.org/stable/4100021.

Giuseppe Quaranta, Pierangelo Masarati, and Paolo Mantegazza. A conservative mesh-free
approach for fluid structure problems. 01 2005.

V. Rajaraman and C. Siva Ram Murthy. Parallel Computers: Architecture and Programming.
Prentice-Hall of India Pvt.Ltd, 2nd edition, 2016. ISBN 8120352629, 9788120352629.

Ryozi Sakai. A study of weighted polynomial approximations with several variables (i).
Applied Mathematics, Vol.08No.09:41, 2017. doi: 10.4236/am.2017.89095. URL //www.

scirp.org/journal/PaperInformation.aspx?PaperID=79144.

Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using moving least
squares. ACM Trans. Graph., 25(3):533–540, July 2006. ISSN 0730-0301. doi: 10.1145/
1141911.1141920. URL http://doi.acm.org/10.1145/1141911.1141920.

Thomas Sederberg and Scott R. Parry. Free-form deformation of solid geometric models.
volume 20, pages 151–160, 08 1986. doi: 10.1145/15886.15903.

Mohamed M. Selim and Roy P. Koomullil. Mesh deformation approaches -
a survey. Journal of Physical Mathematics, 7(2):–, 2016. ISSN 2090-0902.
doi: 10.4172/2090-0902.1000181. URL https://www.omicsonline.org/open-access/

mesh-deformation-approaches--a-survey-2090-0902-1000181.php?aid=76056.

Shuvam Sen, Guillaume De Nayer, and Michael Breuer. A fast and robust hybrid method
for block-structured mesh deformation with emphasis on fsi-les applications. International
Journal for Numerical Methods in Engineering, 111(3):273–300, 2017. doi: 10.1002/nme.
5465. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5465.

Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proceedings of the 1968 23rd ACM National Conference, ACM ’68, pages 517–524, New
York, NY, USA, 1968. ACM. doi: 10.1145/800186.810616. URL http://doi.acm.org/

10.1145/800186.810616.

Stuart R. Slattery. Mesh-free data transfer algorithms for partitioned multiphysics problems.
J. Comput. Phys., 307(C):164–188, February 2016. ISSN 0021-9991. doi: 10.1016/j.jcp.
2015.11.055. URL https://doi.org/10.1016/j.jcp.2015.11.055.

K Stein, Tayfun Tezduyar, and R Benney. Mesh moving techniques for fluid-structure inter-
actions with large displacements. Journal of Applied Mechanics, 70:58–63, 01 2003. doi:
10.1115/1.1530635.

National Technical University of Athens Page 127

http://www.jstor.org/stable/4100021
http://www.jstor.org/stable/4100021
//www.scirp.org/journal/PaperInformation.aspx?PaperID=79144
//www.scirp.org/journal/PaperInformation.aspx?PaperID=79144
http://doi.acm.org/10.1145/1141911.1141920
https://www.omicsonline.org/open-access/mesh-deformation-approaches--a-survey-2090-0902-1000181.php?aid=76056
https://www.omicsonline.org/open-access/mesh-deformation-approaches--a-survey-2090-0902-1000181.php?aid=76056
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5465
http://doi.acm.org/10.1145/800186.810616
http://doi.acm.org/10.1145/800186.810616
https://doi.org/10.1016/j.jcp.2015.11.055

Bibliography

Tilo Strutz. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least
Squares and Beyond. Vieweg and Teubner, Germany, 2010. ISBN 3834810223,
9783834810229.

Cassiano Tecchio, Edson Basso, Joao Luiz Azevedo, and Diogo Pio. Mesh improvement for
multiblock grids in store separation problems. 08 2014.

Laura Uyttersprot. Inverse Distance Weighting Mesh Deformation, A Robust and Efficient
Method for Unstructured Meshes. Master’s Thesis. Delft University of Technology, 2014.

Julien Vanharen, Rémi Feuillet, and Frédéric Alauzet. Mesh adaptation for fluid-structure
interaction problems. 06 2018. doi: 10.2514/6.2018-3244.

Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense linear algebra.
In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages
31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9. URL
http://dl.acm.org/citation.cfm?id=1413370.1413402.

H. Wendland. Konstruktion und Untersuchung radialer Basisfunktionen mit kompaktem
Träger. 1996. URL https://books.google.gr/books?id=4AG5HAAACAAJ.

Jeroen Witteveen and Hester Bijl. Explicit mesh deformation using inverse distance weight-
ing interpolation. 06 2009. doi: 10.2514/6.2009-3996.

Xingchen Zhang, Rejish Jesudasan, and Jens-Dominik Mueller. Adjoint-Based Aerodynamic
Optimisation of Wing Shape Using Non-uniform Rational B-Splines, pages 143–158. 09
2019. doi: 10.1007/978-3-319-89890-2 10.

Yong Zhao and Ahmed Forhad. A general method for simulation of fluid flows with
moving and compliant boundaries on unstructured grids. Computer Methods in Ap-
plied Mechanics and Engineering, 192(39):4439 – 4466, 2003. ISSN 0045-7825. doi:
https://doi.org/10.1016/S0045-7825(03)00424-9. URL http://www.sciencedirect.com/

science/article/pii/S0045782503004249.

Πέτρος Αποστόλου. Μετακίνηση-Προσαρμογή 2Δ και 3Δ Μη-Δομημένων Πλεγμάτων με
την Τεχνική των Στρεπτικών Ελατηρίων. Master’s Thesis. National Technical University
of Athens, 2015.

Κ. Χ. Γιαννάκογλου. Γένεση και προσαρμογή αριθμητικών πλεγμάτων. ΕΜΠ, Υπολογιστική
μηχανική, Αθήνα, 1999.

Χρήστος Ζέρβας. Παραμετροποίηση Μορφών και Προσαρμοστική Παραμόρφωση 3Δ Υπολο-
γιστικών Πλεγμάτων με χρήση Αρμονικών Συντεταγμένων. Εφαρμογή στην Αεροδυναμική
Βελτιστοποίηση. Master’s Thesis. National Technical University of Athens, 2018.

Κωνσταντίνος Κολοβός. Προγραμματισμός μεθόδου συναρτήσεων ακτινικής βάσης (RBF) για
τη μετατόπιση υπολογιστικών πλεγμάτων σε κάρτες γραφικών. Master’s Thesis. National
Technical University of Athens, 2015.

Αθανάσιος Κοντός. Προσαρμοστική Παραμόρφωση 2Δ/3Δ Δομημένων και Μη-Δομημένων
Πλεγμάτων με το Πρότυπο Κίνησης του Απαραμόρφωτου Σώματος. Master’s Thesis. Na-
tional Technical University of Athens, 2018.

Αθανάσιος Λιατσικούρας. Προγραμματισμός Μεθόδου Παραμόρφωσης Πλέγματος με

Συναρτήσεις Ακτινικής Βάσης και Προσταθεροποιητή για χρήση στην Αεροδυναμική

Βελτιστοποίηση. Master’s Thesis. National Technical University of Athens, 2015.

Page 128

http://dl.acm.org/citation.cfm?id=1413370.1413402
https://books.google.gr/books?id=4AG5HAAACAAJ
http://www.sciencedirect.com/science/article/pii/S0045782503004249
http://www.sciencedirect.com/science/article/pii/S0045782503004249

Bibliography

Μαρία Μαυρονικόλα. Παραμετροποίηση Μορφών και Προσαρμογή Υπολογιστικών Πλεγμάτων
με χρήση Αρμονικών Συντεταγμένων. Εφαρμογή στην Αεροδυναμική Βελτιστοποίηση Μορ-
φής 2Δ Πτερυγώσεων και Αγωγών. Master’s Thesis. National Technical University of
Athens, 2017.

Σ. Νεγρεπόντης, Θ. Ζαχαριάδης, Ν. Καλαμίδας, and Β. Φαρμάκη. Γενική Τοπολογία και
Συναρτησιακή Ανάλυση. Εκδόσεις Συμμετρία, 1997. ISBN 978-960-266-178-9.

Δημήτριος Παπαδημητράκης. Βελτιστοποίηση μορφής 2Δ πτερυγώσεων με εκειδικευμένη
μορφοποίηση βασισμένη σε καμπύλες και επιφάνειες NURBS. Master’s Thesis. National
Technical University of Athens, 2016.

Ιωάννης Τουρής. Προσαρμογή 2Δ και 3Δ πλεγμάτων σε μεταβαλλόμενα όρια με τη μέθοδο
των κινούμενων ελαχίστων τετραγώνων (MLS). Master’s Thesis. National Technical Uni-
versity of Athens, 2016.

Αλέξανδρος Γ. Τσολοβίκος. Προσαρμογή Υπολογιστικών Πλεγμάτων με Χρήση Γράφων
Delaunay - Εφαρμογές στη Βελτιστοποίηση με Χρήση της Συζυγούς Μεθόδου. Master’s
Thesis. National Technical University of Athens, 2018.

National Technical University of Athens Page 129

	Committee aproval
	Acknowledgements
	Abstract
	Contents
	Introduction
	Scope and applications of the mesh deformation techniques
	Mesh deformation methods
	Methods based on a continuous deformation field
	Methods based on explicit mesh distortion constraints

	Introduction to high performance computing and parallel processing
	Parallel computers
	Chip Multiprocessors
	High compute throughput with GPGPUs

	Work scope and outline

	The least squares methods
	Introduction
	Least Squares Approximation
	Weighted Least Squares approximations
	Local Least Squares approximations
	Weighted Local Least Squares method (WLS)
	Moving Least Squares method (MLS)
	Analysis of the MLS computations and data structures
	Two straightforward special cases on the polynomial degree

	The parallelization of the MLS method and implementation in CUDA
	Introduction
	Coarse grain parallelization of the MLS method
	Fine grain analysis of the MLS execution time
	Fine grain parallelization of the MLS method
	The parallelization of the 0-degree local least squares
	The parallelization of a higher degree local least squares

	CUDA algorithm designs of the MLS method
	CUDA algorithm design 1, A design with iterations over subsets of the sample points
	CUDA algorithm design 2, A design where the subsets of sample points are scattered to multiple thread blocks
	CUDA algorithm design 3, A design with matrix-matrix multiplications on the cuBLAS library

	Performance results of the MLS method on CUDA GPGPUs
	2D test case 1

	Conclusions
	Elements from the approximation theory
	Approximation of functions
	Best approximation
	Existence of a best approximation
	Uniqueness of the best approximation
	The best approximation in inner product spaces

	The orthogonal projection operator
	Orthogonal polynomials

	 Weighting functions for local weighted least squares approximations
	Weighting functions in general rational form
	A parametric analysis on the parameters of the rational weighting functions

	The performance of the MLS method in mesh deformation problems
	Introduction
	Consistency tests of the IDW method on mesh deformation applications
	Consistency test on the rigid translation
	Consistency test on the rigid rotation
	Consistency test on the constant grad du/dx
	Consistency test on the constant grad du/dy+dv/dx

	The performance of the MLS mesh adaptation with parametric analyses on feasibility and quality
	Feasibility analysis
	Mesh quality analysis

	Bibliography

