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Abstract  
 

In the present thesis, we investigate the application of certain asymptotic and variational 

methods to the classical water-wave problem, when the assumptions of weak nonlinearity and 

periodicity or narrowbandedness are made. Particularly, the methods of interest are the 

Multiple-Scales Method (MSM) [(Nayfeh 2008; Holmes 2012)] and Whitham’s Averaged 

Variational Principle (AVP) [(Whitham 1965a, 1965b, 1974; Jeffrey and Kawahara 1982)].  

 

Our focus lies primarily in the derivation, via those methods, of simpler, but nonlinear 

nonetheless, model equations that govern the propagation of weakly nonlinear, narrow-banded 

(i.e. slowly modulated) wavetrains, such as the nonlinear Schrödinger (NLS) equation. 

Although there is a standard, and well understood, procedure to achieve that by implementing 

the MSM [(Mei, Stiassnie, and Yue 2005)], in the case of the AVP there occur some issues that 

render its applicability and its connection with other, established methods, such as the MSM, 

unclear. The matter of that connection has been answered to a great degree by (Yuen and Lake 

1975) and (Sedletsky 2012, 2013, 2015, 2016), who showed that, given suitable ansatzes, the 

AVP leads to the NLS and other evolutionary equations, for waves in water of either infinite or 

arbitrary depth. However, in both cases, the vertical dependence of the velocity potential is a 

priori incorporated into the respective ansatz, and is inspired by the results of other formal 

perturbation methods. Namely, up to now, it seems that the AVP is not self-contained and, in 

order to ensure its consistency with other acknowledged results, a significant part of the solution 

(i.e. the vertical structure of the potential) has to be supplemented by “external” means.  

 

The main result of our work is that, in fact, the AVP is self-contained, as it can yield the 

appropriate vertical dependence by considering the admissible variations of arbitrary vertical 

functions. First, we apply our modification of the method to the case of weakly nonlinear, 

uniform wavetrains (Stokes waves), where we rederive the results of (Fenton 1985) 

variationally. Interestingly, in the context of the AVP, the two definitions of (Stokes 1847), 

regarding the wave celerity, arise naturally. Next, we do the same for slowly modulated 

wavetrains, where, relying again solely on the AVP, we conclude to results that are in complete 

agreement with those of (Sedletsky 2012, 2013). Therefore, our approach may be considered as 

a generalization of the works of Yuen, Lake and Sedletsky that renders Whitham’s AVP an 

autonomous and consistent method for the study of periodic or nearly periodic waves.  
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Chapter 1  
 

 

The Water-Wave Problem  
 

“…the next waves of interest, that are easily seen by everyone and which are 

usually used as an example of waves in elementary courses, are water waves. As 

we shall soon see, they are the worst possible example, because they are in no 

respects like sound and light; they have all the complications that waves can 

have.”  
 

FEYNMAN et al., The Feynman Lectures on Physics, Vol. I, Ch. 51, p. 7  

 

 

 

 

 

 

 

 

1.1. Introduction  
 

The study of gravity water waves (free-surface waves) constitutes, for many reasons, a scientific 

subject of fundamental theoretical, physical and practical importance. The efforts to understand 

their motion, under different circumstances and assumptions, have led, throughout the years, to 

numerous interesting and demanding mathematical problems [(Johnson 1997; Lannes 2013)], 

whose treatment has been requiring not only the use of the existing advanced mathematical 

results and techniques, but the development of new ones in various branches of mathematics. 

The propagation of water waves, further, defined by the interactions of the water with various 

factors, such as the seabed and the atmosphere, is associated with a vast amount of striking 

phenomena that render the Water-Wave Problem (WWP) one of the main topics of fluid dy-

namics and the theory of nonlinear dispersive waves [(Debnath 1994)]. Apart from those as-

pects, though, understanding the motion of water waves is also very important to applications 

of naval, marine, coastal and civil engineering or oceanography, among other fields, where the 

presence of such waves induces significant ramifications that need to be taken into account 

[(Stoker 1957; Newman 1977; Massel 1989; Mei, Stiassnie, and Yue 2005)]. Indicative exam-

ples are the design and optimization of fixed or floating offshore structures, vessels and wave-

energy converters, the safety of life at sea, the protection of the marine environment and the 

study of the effects of wave motion on coastal zones or on the physical properties of the ocean. 

As a consequence of their complex nature and their impact on such a broad range of scientific 

disciplines, water waves remain a very active field of research, for which new contributions 

appear constantly, including involved mathematical analysis and proofs, the derivation of new 

or enhanced model equations, numerical computations and experiments.  

 

The WWP, even when the simplifying assumptions of an incompressible, inviscid and irrota-

tional fluid are adopted, which allow for the description of the fluid motion via a scalar field 

(i.e. the velocity potential), is mathematically very difficult to handle. The reason for this is its 

inherent nonlinearity, owing to the nonlinear boundary conditions on the upper boundary of the 

fluid domain, i.e. the free surface, and to the fact that that boundary is unknown as well [(Stoker 

1957; Debnath 1994)]. Thus, although the WWP is an old problem, tracing back to 1687, when 
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Newton published his monumental work “Philosophiæ Naturalis Principia Mathematica”, and 

despite the great minds that dealt with it since then, up to the first half of the 19th century almost 

all the relevant contributions concerned the theory of the linearized problem. Authors of those 

contributions were, among others, Cauchy, Euler, Lagrange, Laplace and Poisson, and, further, 

Russel with his famous observation regarding the solitary wave, and Airy. Extensive infor-

mation as to that era of the WWP can be found in the historical survey papers of (Darrigol 2003) 

and (Craik 2004). A milestone, for the study of the nonlinear WWP, was the work of (Stokes 

1847), who, via a perturbative approach, presented solutions for the steady periodic problem, in 

the case of small, but finite nonetheless, waves (see (Craik 2005), for an overview of the life 

and work of Stokes, and Sec. 2.1, for a very brief outline of his approach and references to the 

consequent literature). Thereafter, many important works followed in the same direction, where 

the main goal was the derivation, under certain assumptions, of simplified models, which could 

be handled, up to a point, by the mathematical means available at the time. Such examples are 

the works of (Saint-Venant 1871), (Boussinesq 1872) and (Korteweg and De Vries 1895). A 

comprehensive account on the contributions of that period can be found in (Stoker 1957) and 

(Wehausen and Laitone 1960).  

 

The scientific production, in regard to the WWP, reached a peak in the 20th century, resulting 

in a countless number of contributions, and continues to this day with unabated intensity. During 

that period, rigorous mathematical results and new techniques of exact or asymptotic nature 

have been provided, striking features of water waves have been discovered and new simplified 

models, or improved versions of the existing ones, have been derived. A complete review of all 

those works, if possible, is out of the scope of this section. An extensive briefing on the subject, 

though, can be found in the books mentioned above and, also, in (Whitham 1974; Massel 1996; 

Dingemans 1997; Hunt 1997; Kuznetsov et al. 2002; Kharif, Pelinovsky, and Slunyaev 2008; 

Holthuijsen 2010; Osborne 2010; Ablowitz 2011; Constantin 2011; Bridges, Groves, and 

Nicholls 2016; Chalikov 2016). However, due to what follows later, we particularly refer to key 

contributions regarding the variational formulation of the classical WWP. The first relevant ef-

fort is that of (Petrov 1964), followed by (Luke 1967), who, in contrast to Petrov, introduced a 

kinematically unconstrained variational principle. Subsequently, (Zakharov 1968) presented the 

Hamiltonian formulation of the problem, which was later refined by (Craig and Sulem 1993) 

via the introduction of a proper Dirichlet to Neumann (DtN) operator. Closing that brief review, 

we should highlight the most distinct feature of that latter period; the rapid evolution of com-

puters that has allowed for the development of numerical schemes, capable of treating even the 

fully nonlinear WWP. State-of-the-art schemes, suitable for the fully nonlinear 3D problem are, 

e.g., the Zakharov/Craig-Sulem method [(Craig and Sulem 1993; Guyenne and Nicholls 2005)], 

the Higher Order Spectral method [(Dommermuth and Yue 1987; Liu and Yue 1998)], the 

Boundary Element Method [(Grilli et al. 1994; Grilli, Guyenne, and Dias 2001)], the method of 

Finite Differences [(Bingham and Zhang 2007; Engsig-Karup, Bingham, and Lindberg 2009)] 

and the Hamiltonian Coupled Mode Theory [(Athanassoulis and Papoutsellis 2015; 

Papoutsellis, Charalampopoulos, and Athanassoulis 2018)], which has evolved from the Con-

sistent Coupled-Mode System [(Athanassoulis and Belibassakis 1999, 2007)].  

 

In this era of high-performance computing, where the numerical treatment of the fully nonlinear 

WWP is feasible, the utilization of asymptotic methods can still be very useful. Specifically, the 

model equations that result from such approaches can provide proper initializations for the var-

ious advanced numerical schemes and, additionally, being computationally “inexpensive”, can 

be exploited for their enhancement. Motivated by that, in the present thesis we are concerned 

with the application of asymptotic methods to the WWP, under the assumption of waves of 

weak nonlinearity and narrow spectrum, towards the derivation of simpler model equations.  
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1.2. The classical problem of surface gravity waves  
 

In this work, we are mainly interested in the study of periodic or almost periodic progressive 

waves. Those waves, in the context of a homogeneous, incompressible and inviscid fluid, and 

in absence of surface tension, constitute special cases of the classical gravity WWP. Thus, to 

lay the foundations of what follows, we begin with the formulation of the latter.  

 

(a)  Differential formulation of the problem  
 

Let O x z  be a Cartesian coordinate system, where x  denotes the horizontal variable and z  

the vertical one, pointing upwards. We assume a uniform seabed of depth h , placed at 

z h , so that 0z  expresses the still surface of the fluid, when it is at rest. Further, 

( , )x t   denotes the free-surface elevation of the waves, around 0z . As a consequence, 

in the presence of waves, the fluid domain is defined by  
 

2
0( ) { ( , ) : , ( , ), }hD D t x z x X h z x t t t  ,  (1)  

 

where X  is the horizontal region that the fluid occupies and 0t  the starting time of the 

wave motion. Subsequently, the seabed and the free-surface boundaries are represented by  
 

2{( , ) : , }h x z x X z h       (2)  
 

and  
 

2
0( ) { ( , ) : , ( , ), }t x z x X z x t t t    ,   (3)  

 

respectively. Then, the 2D classical gravity WWP, for water of constant density  , over uni-

form bathymetry h , and under external pressure 0p , can be stated as follows [(Stoker 1957; 

Whitham 1974; Johnson 1997; Mei, Stiassnie, and Yue 2005)]:  
 

Given the water depth h , the water density  , the external pressure 0p  and the functions 

0 ( )x  and 0 ( )x ,  
 

find the free-surface elevation field ( ; )x t   and the velocity potential field ( , ; )x z t   

that satisfy the equations  
 

2 2

2 2
0

x z

 
 ,       in D ,   (4)  

 

0
z


,       on h ,     (5)  

 

0
t x x z

  
,     on     (6)  

 

and  
 

2 2

01

2

p
g

t x z




  
,     on  ,     (7)  

 

supplemented by appropriate lateral boundary conditions and initial conditions  
 

0 0 0 0 0( ; ) ( ), ( , ( ) ; ) ( )x t x x z x t x    .   (8)  
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Each of the above Eqs. (4)-(7) reflects an assumed physical feature of the fluid motion. In par-

ticular, Εq. (4) expresses the incompressibility of the flow, given its irrotationality, Eq. (5) the 

impermeability of the seabed and Eqs. (6) & (7) constitute the kinematic and dynamic bounda-

ry conditions of the free surface, respectively. The kinematic condition states that the free sur-

face consists of the same fluid particles, at all times, and, therefore, its motion is determined 

by the motion of those particles. The dynamic condition, on the other hand, being Bernoulli’s 

law on the free surface, ensures the continuity of the pressure field.  

 

The introduction of appropriate lateral boundary conditions and initial conditions of the form 

of Eq. (8) is necessary, as it renders the problem’s system of equations closed. Without those 

conditions, the fields   and   cannot be uniquely defined, as no information is contained in 

Eqs. (4)-(7), neither for their behavior on the lateral boundaries, nor their initial state, which is 

required by the t -differentiations of Eqs. (6) & (7).  

 

In absence of specific distribution of applied pressure along the free surface, and because the 

fluid is considered incompressible, 0p  may be a function of the temporal variable t  only, 

without affecting the fluid flow. Concurrently, the physical meaning of the velocity potential 

lies in its gradient. Thus, with a suitable transformation, it can “absorb” any function of t  

alone, preserving its physical essence [(Stoker 1957)]. We deduce, therefore, that   can be 

redefined, so that 0 ( ) /p t   is incorporated into it. Indeed, introducing  
 

0

0

1
( , ; ) ( , ; ) ( )

t

t

x z t x z t p s d s


  ,        (9)  

 

Eqs. (4)-(7) are rewritten as  
 

2 2

2 2
0

x z

 
 ,       in D ,   (4’)  

 

0
z


,       on h ,     (5’)  

 

0
t x x z

  
,     on     (6’)  

 

and  
 

2 2
1

0
2

g
t x z


  

,   on  ,     (7’)  

 

while the velocity field remains unchanged (   ) [(Stoker 1957; Clamond 2017)]. 

Henceforth, the uniformity of 0p  is assumed, namely 0 0 ( )p p t . Thus, both   and   are 

used, as they are equivalent from a physical viewpoint, with the understanding that the latter 

contains an additional dependence on t , as shown in Eq. (9).  

 

(b)  Variational formulation of the problem  
 

The classical gravity WWP admits an equivalent variational formulation, in terms of Luke’s 

unconstrained variational principle, due to (Luke 1967). Specifically, defining the Lagrangian 

density  
 



7 

2 2
1

[ ( ; ), ( , ; ) ]
2

h

x t x t g z d z
t x z




  

 ,    (10)  

 

and integrating it over the time interval 0 1[ , ]T t t  and the unbounded horizontal domain X , 

results in the action functional (1)  
 

[ , ] [ ( ; ), ( , ; ) ]

T X

x t x t d x d t  S .     (11)  

 

Then, Eqs. (4’)-(7’) arise as the Euler-Lagrange (EL) equations of the variational equation  
 

[ , ; , ] [ , ; ] [ , ; ] 0         


    S S S ,  (12)  
 

( , ) adm   , where adm  is the space of admissible variations and  S  and 

S  

are the partial Gâteaux derivatives of S , with respect to the fields   and  , and in the di-

rections   and   , respectively. In particular, calculating those derivatives [(Luke 1967; 

Whitham 1974)], it is true that  
 

2 2
1

2
T X z

g z d x d t
t x z





 
  

S   (13)  

 

and  

2 2

2 2

{ }t x x z z

T X h

T X h h

T X h

zT X

d z d x d t

d z d z d x d t
t x x

d z d x d t
x z

d x d
t x x z



 





   

 



 



    


 

 


 


S

.

z h
T X

t

d x d t
z





   (14)  

 

Hence, considering, in Eq. (12), arbitrary variations   and    that vanish on the bounda-

ries of T  (i.e. 0t t , 1t t ) and X  (i.e. | |x ) (2), and implementing the standard pro-

cedure of the calculus of variations [(Gelfand and Fomin 1963; Sagan 1969)], Eqs. (4’)-(7’) 

are recovered as follows. Since Eq. (12) holds ( , ) adm   , it must also hold for varia-

                                                 
(1) Assuming that the functional is well-defined.  

(2) In that case, the first integral of the rhs of the second equality of Eq. (14) vanishes, as it integrates out to the 

boundaries of T  and X .  
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tions   or    alone. Starting with the admissible variations    in Eq. (14), we initially 

take those arbitrary variations that vanish on the boundaries h  and   (i.e. on the seabed and 

on the free surface). As a consequence, by the standard argument of the variational calculus,  
 

D
   : 

2 2

2 2
0

x z

 
 ,      in D . 

 

is derived. Given that, we next take into account the arbitrary variations that vanish on the free 

surface, which lead to  
 

h




 : 0
z


,      on h , 

 

whereas, in a similar manner, variations that vanish on the seabed yield  
 






 : 0
t x x z

  
,    on  . 

 

Finally, considering the admissible variations  , from Eq. (13) we obtain  
 

  : 

2 2
1

0
2

g
t x z


  

,  on  , 

 

which completes the recovery of the problem’s differential formulation from its variational 

one. More details on the subject can be found in (Luke 1967), (Whitham 1974) and (Debnath 

1994).  
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1.3. The problem of steady periodic waves  
 

Based on the previous section, a special case of the classical gravity WWP is that of steady 

progressive waves. That is, travelling waves that propagate uniformly in the horizontal direc-

tion, with (phase) speed c , so as the wave motion appears to be independent of time (steady) 

in a reference frame moving with c  along the x  axis.  

 

For our purposes, steady and, in addition, periodic waves are particularly important. Hence, in 

this section, with the general problem of Sec. 1.2 as a starting point, we formulate the steady 

periodic WWP.  

 

(a)  Differential formulation of the problem  
 

Towards the pursuit of steady progressive waves, we assume that the respective fields   and 

 , which, in general, have to satisfy Eqs. (4)-(7) of Sec.1.2, are of the form [(Stoker 1957)]  
 

an( , ) ( )dz     ,      (1)  
 

where  
 

x c t .          (2)  
 

In that instance, deploying the chain rule, it is easily verified that  
 

{ , } { , } { , }c
t t


  

 
   ,                (3a)  

 

and  
 

{ , } { , } { , }
x x


  

 
   ,                 (3b)  

 

while the z -differentiation remains unaffected. Moreover, since the flow is supposed to be 

steady with respect to the moving frame (1), the external pressure 0p , in Eq. (7, Sec. 1.2) has 

to be independent of time. Namely,  
 

0 /p R ,          (4)  
 

R  being a Bernoulli constant (2) [(Landau and Lifshitz 1987; Vasan and Deconinck 2013; 

Clamond 2017)].  

 

As said before, we are interested in waves that are not only steady, but also periodic. Conse-

quently, introducing a characteristic length   (wave length), we assume that the fields   and 

  are such that  
 

( ) ( )      and ( , ) ( , )z z    .    (5)  
 

In other words, we consider the wave fields to be  -periodic, with period  .  

 

Naturally, searching for solutions of steady periodic waves affects the fluid domain D . To 

begin with, because of the form of the fields   and   in Eq. (1), it becomes  
 

2{( , ) : , ( ) }D z h z     .    (6)  
 

                                                 
(1) For the flow to be steady, its physical quantities (e.g. velocity, pressure) must be independent of time.  

(2) As a result, via Eq. (9, Sec. 1.2), we deduce that, up to an arbitrary constant, ( , ; ) ( , )z t z R t    , 

which is the general form of the redefined potential, in the case of steady waves.  
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Further, due to the  -periodicity of the waves, the domain   is confined within their periodic 

cell. Namely, for some 0 , 0 0[ , ]   . Without loss of generality, therefore, we 

set  
 

[0, ] .          (7)  
 

As for the vertical boundaries of D  , we keep the notations h  and  , for the seabed and 

the free surface, respectively, with the understanding that they refer to the periodic cell of the 

waves.  

 

Taking into account the above, and substituting Eqs. (1)-(4) into Eqs. (4)-(7) of Sec. 1.2, we 

formulate the steady periodic WWP as follows:  
 

Given the three lengths h  (water depth),   (wave length) and H  (wave height),  
 

find  
 

• the constants c  and R ,  

• the  -periodic free-surface elevation field ( )   ,  
 

( ) ( )     , 
 

• and the  -periodic wave potential field ( , )z  ,  
 

( , ) ( , )z z    , 
 

that satisfy the equations  
 

2 2

2 2
0

z




 
 ,    in D  ,     (8)  

 

0
z


,       on h ,     (9)  

 

0c
z

 

  

 
,    on  ,     (10)  

 

2 2
1

2
c g R

z


 

  
,  on  ,     (11)  

 

and that are subject to the constraints  
 

max min( ) 0, (0) ( / 2)d H       


.         (12a,b)  

 

Each constraint has a certain meaning. Eq. (12a) is the conservation of mass (for uniform  ) 

within the periodic cell, whereas Eq. (12b) essentially constitutes the definition of H , con-

straining  . The second equality of the latter equation is a choice that places the wave crest at 

the origin of the  -axis (i.e. 0 ) of the periodic cell’s coordinate system.  

 

(b)  Variational formulation of the problem  
 

As with the classical gravity WWP, the steady periodic one may be variationally reformulated, 

too. Given the Lagrangian density of Eq. (10, Sec. 1.2) and the subsequent action functional of 

Eq. (11, Sec. 1.2), we search for steady periodic solutions. We assume, therefore, the validity 
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of Eqs. (1)-(7) & (12). As a result, the action functional S  is confined within the periodic 

cell of the problem and the change of variables  
 

( , ) ( , )x t   , X  , 0 1[ , ]T    
 

occurs in it, with t  and   given by Eq. (2). Thus, S  is transformed as  
 

( , )
( , ) ( ( , ), ( , ) )

( , )
T X

x t
x t d x d t x t d d     

 
 

, 

 

the Jacobian being  
 

1( , )
1

0 1( , )

x x cx t

t t

 

  
. 

 

Further, in that case, the redefined potential   is shaped as (see Footnote 2)  
 

( , ; ) ( , )z z R      .       (13)  
 

Hence, for the action functional, we have that  
 

[ ( ), ( , ) ]R d d     

 

S      (14)  

2 2

2 2

1 0

1

2

1

2

( )

h

h

c g z R d z d d
z

d c g z R d z d
z

c





 
 

 
 

 


 

 

  

  


2 2

1
.

2
h

g z R d z d
z








 

 

 

The constant 1 0 0  , though, is indifferent regarding the variational equation of S  and, 

thus, can be omitted. Consequently, without any damage, we set  
 

2 2
1

2
h

c g z R d z d
z




 



  
S .  (15)  

 

Rendering S  in the above form stationary, demanding, that is, the satisfaction of the varia-

tional equation  
 

[ , ; , ] [ , ; ] [ , ; ] 0             S S S ,     (16)  
 

( , ) adm   , leads, as shown in the proof below, to  
 

D




 : 
2 2

2 2
0

z




 
 ,      in D  , 

 

h




  : 0
z


,      on h , 
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




  : 0c
z

 

  

 
,   on  , 

and  

   : 

2 2
1

2
c g R

z


 

  
, on  , 

 

which are no other than Eqs. (8)-(11). Therefore, the combination of Eqs. (15) & (16) with the 

constraints of Eq. (12), as essential conditions, reproduces the steady periodic WWP.  

 

Proof: Since the functional of Eq. (15) is constructed from the general functional of the classi-

cal gravity WWP, assuming steady periodic waves, it is already anticipated that it can provide 

us with their governing equations. Nevertheless, we prove that this is the case indeed.  

 

We consider the variational Eq. (16), with the functional S  given by Eq. (15). Calculating 

the functional derivative   S , we obtain  
 

[ , ; ] { }

( ) .z

h

z

z

h

z

h

c d z

c d z d z

d

d



 



 



   



  

 







 

      

 

S

    (a)  

 

Utilizing, further, Leibnitz’s integral rule, we find that  
 

( ) {( ) } ( )

{( ) } ( ) .

z

h h

z

h

d
c d z c d z c

d

c d z c

 

    



      

   
 

   

     

     

 

Thus,  
 

( )

( ) .

) (

h

z

h

h

d
c d z

d

d

d z

c

c

z



 







    




  

  

   

 

 (b)  

Moreover, since  
 

( )z z z z z
z

        , 

 

it is true that  
 

( )z z z

h

z z

h

d d z
z

z

 

        
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.z z z z
z z h

h

d z




           (c)  

 

Therefore, substituting Eqs. (b) & (c) into Eq. (a), the latter is shaped as  
 

( ) ( )

( )

z z

h h

z z
z z h

d
c d z d z

d d

c

 

  

  

 
 

   





    

     

S . 

 

Though, the term  
 

( )

h

d
c d z d

d



  




    

 

integrates out to the boundaries of  . Consequently, choosing variations    such that  
 

( 0, ) ( , ) 0z z      , 
 

that term vanishes. Hence, after all,  
 

( )

( )

z z z z h

h

z
z

d z

d

c



 

  

 
 

  





    

   

S .    (d)  

 

With   S  dictated by Eq. (d), the variational equation of the action functional becomes  
 

( )

0

( )

z z z z h

h

z
z

d z

d

c



 

  

 


  


    

   

,     (e)  

 

adm  , when admissible variations    are considered. So, following the standard 

procedure of the calculus of variations, we initially take those variations that vanish on the 

boundaries h  and  . As a result,  
 

( ) 0z z

h

d z d



   



    

 

must be true for arbitrary variations   , within the fluid domain D  . Thus, using the fun-

damental lemma of the variational calculus, we conclude that  
 

0z z     in D  .         (f)  
 

Given the above equation, Eq. (e) turns into  
 



14 

( ) 0z z
z h z

c d  
    



      .   (e1)  

 

Taking, therefore, into account those arbitrary variations that vanish on the free surface yields  
 

0z z hz h
d 



  .  

 

Hence, exploiting, once more, the arbitrariness of the admissible variations and the fundamen-

tal lemma results in  
 

0z z h
 .         (g)  

 

Then, inserting Eq. (g) into Eq. (e1), there remains  
 

( ) 0z zz
c d  

  



   .     (e2)  

 

Thus, in a similar manner, we are led to  
 

( ) 0z z
c  

  .       (h)  
 

Moving on to the functional derivative  S , we instantly find that  
 

2 21
[ , ; ] ( ) .

2
z

zc g z R d



      



   S  

 

As a result, working as before, we deduce that, for admissible variations  , the variational 

equation of S  gives  
 

2 21
( ) 0

2
z

zc g z R



    .     (i)  

 

Eqs. (f), (g), (h) & (i), which are derived as the EL equations of the variational principle of 

Eqs. (15) & (16), coincide with Eqs. (8)-(11). Thus, the proof is complete.        ■ 

 

A slightly different, but equivalent, variational reformulation, for the same problem, is ob-

tained as follows. Instead of using Eq. (13) for  , we adopt, for it, the form  
 

( , ) ( , )z z    ,        (17)  
 

leaving aside the additional t -dependence that arises from Eq. (9, Sec. 1.2). In other words, 

given Eqs. (10, Sec. 1.2) & (11, Sec. 1.2), we assume nothing more than fields   and   that 

correspond to steady periodic waves. Furthermore, introducing the Lagrange multiplier Q , we  

incorporate Eq. (12a) (mass conservation), divided by   (3), into the Lagrangian density . 

Thus, in the place of Eq. (14), we now have (4)  
 

[ ( ), ( , ) ] ( )
Q

d d d       
 

 

S  

                                                 
(3) As will be seen below, there is a strong connection between the Lagrange multiplier Q  and the Bernoulli con-

stant R . Thus, dividing (both sides of) Eq. (12a) by   aims at matching the dimensions of Q  with those of R .  

(4) Omitting again the indifferent constant 
1 0

  .  
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[ ( ), ( , ) ] ( )

{ [ ( ), ( , ) ] ( )}

Q
d d d

Q d

       


     


 







 

2 2
1

2
h

c g z d z Q d
z



 
 



  
.  (18)  

 

With S  given as in Eq. (18), and following once more the usual arguments of calculus of 

variations, its  -variation recovers Eqs. (8)-(10). The  -variation, on the other hand, 

leads to  
 

2 2
1

2
c g Q

z


 

  
,  on  . 

 

Comparing the above equation with Eq. (11), we see that the Lagrange multiplier of the con-

servation-of-mass constraint coincides with the Bernoulli constant R  (i.e. we can set Q R ). 

Furthermore, viewing Q  as a function that is constant throughout  , the functional S  can 

be regarded as  
 

[ , , ]Q S S . 
 

Then, Eq. (12a) emerges from the variation Q  of S . As a result, the stationarity of the 

functional of Eq. (18), together with Eq. (12b) as an essential condition (since Eq. (12a) is 

embedded into S ), constitutes an alternative version of the variational formulation of the 

steady periodic problem.  
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1.4. Some methods for the analysis of nonlinear water waves  
 

The mathematical treatment of the classical gravity WWP constitutes a very difficult task, due 

to the fact that, not only the upper boundary of the fluid domain - i.e. the free-surface - is un-

known, but also the (boundary) conditions on it are nonlinear (see Eqs. (6) & (7) of Sec. 1.2). 

Thus, in general, the involvement of an appropriate numerical scheme is required, to obtain 

solutions for the problem.  

 

Attacking the full WWP is not the only option, though. In fact, a very popular approach is the 

derivation of simpler model equations, out of the complete formulation of the WWP, by using 

asymptotic methods, under certain assumptions of smallness. Such assumptions may refer to 

the water depth, the seabed’s variation, the nonlinearity of the waves or the rate of their modu-

lation [(Papoutsellis 2016)]. The range of validity of the resulting simplified models is, of 

course, limited, but they are easier to solve and less demanding computationally.  

 

A full account on the various simplified models for the WWP or the asymptotic methods used 

for their derivation, is out of the scope of the present thesis. Our main interest, after all, as 

mentioned earlier, lies in the implementation of such methods under the assumptions of weakly 

nonlinear and narrow-banded wavetrains, aiming at their exploitation in the enhancement of 

numerical schemes and the determination of appropriate initializations for them. Nevertheless, 

some notable references on those subjects are the books of (Whitham 1974), (Jeffrey and 

Kawahara 1982), (Debnath 1994), (Dingemans 1997), (Johnson 1997), (Mei, Stiassnie, and Yue 

2005), (Ablowitz 2011) and (Lannes 2013). Here, the methods we focus on are the Multiple-

Scales Method (MSM) and the Averaged Variational Principle (AVP), which are suitable for 

the study of weakly nonlinear, narrow-banded (i.e. slowly modulated) wavetrains.  

 

The MSM is a singular perturbation method [(Nayfeh 2008; Holmes 2012)], which can be used 

for the asymptotic treatment of weakly nonlinear differential equations, ordinary or partial, of 

oscillatory type [(Murdock 1999)], in which the weak nonlinearity has a non-negligible, cumu-

lative effect, inducing phenomena that evolve in different temporal and/or spatial scales 

[(Kevorkian and Cole 2012)]. Therefore, the main idea of the method is the introduction of 

appropriate scales, which are viewed as independent variables, and the assumption that the so-

lution of the problem may be expressed as a function of those scales [(Sanchez 1996; Holmes 

2012)]. That function is then expressed as a perturbation expansion, with respect to a perturba-

tion parameter that represents the weak nonlinearity. As a result, substituted into the initial dif-

ferential equation, it leads to a perturbation hierarchy of differential equations, which can be 

solved sequentially. Usually, nonuniformities (secular terms) arise during the latter procedure, 

which, unresolved, lead to the breakdown of the orders of the asymptotic solution, rendering it 

nonuniform. The added independent variables (i.e. the introduced scales), though, increase the 

degrees of freedom, providing us with the capability of imposing proper solvability conditions 

that eliminate the aforementioned nonuniformities [(Jeffrey and Kawahara 1982; Holmes 

2012)]. Those conditions usually impose restrictions to a -yet- arbitrary, fundamental amplitude, 

which occurs from the recursive solution of the perturbation hierarchy and governs the solu-

tion’s oscillatory part. Their combination leads to a, so-called, amplitude equation [(Bender and 

Orszag 1984; Moloney and Newell 2004)], which determines that amplitude. The nature of the 

solvability conditions, the arguments that are used to derive them and the way they affect the 

asymptotic solution are not unique. On the contrary, they heavily depend on the problem and its 

possible nonuniformities [(Nayfeh 2011)]. There are several variants of the MSM. Here, we 

adopt the derivative-expansion method, which is thoroughly analyzed in the book of (Nayfeh 

2008), alongside an extensive literature review on the MSM and its applications. Other general 
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books about perturbation methods, that feature the derivative-expansion method, are those of 

(Bender and Orszag 1984), (Hinch 1991), (Murdock 1999) and (Holmes 2012), among many 

others. One more valuable reference is the work of (Jeffrey and Kawahara 1982), which deals 

with the asymptotic methods that are useful in the study of nonlinear waves, including the MSM 

as well.  

 

The other method of interest, the AVP, was devised by (Whitham 1965a, 1965b), aiming at the 

study of slowly varying dispersive wavetrains, and is generally applicable to periodic or nearly 

periodic waves. For its implementation, a variational formulation of the desired problem is re-

quired and suitable ansatzes, referring to its unknown governing fields [(Whitham 1974; Jeffrey 

and Kawahara 1982)]. Those ansatzes are functions of a variable that represents the fast, oscil-

latory part of the wave motion, i.e. the phase function [(Mei, Stiassnie, and Yue 2005)], and 

other quantities, which may be constant or slowly varying functions in space and time, depend-

ing on whether the waves are exactly or nearly periodic. Given those, the essence of the method 

is the following [(Whitham 1967, 1974; Karpman 1975; Jeffrey and Kawahara 1982)]. First, the 

ansatzes are substituted into the Lagrangian density. Then, since the latter becomes a function 

of the (fast) phase and other, slowly varying functions, it is averaged over that phase, under the 

assumption that, during that integration, the other quantities remain approximately constant 

[(Whitham 1974; Jeffrey and Kawahara 1982)]. In that way the, so called, averaged Lagrangian 

of the problem is obtained, which is a function of the aforementioned slowly varying functions 

alone. Replacing the Lagrangian with the averaged Lagrangian, the initial variational principle 

of the problem turns into Whitham’s AVP, whose action functional is now a functional in terms 

of the unknown, slowly varying functions contained in the ansatzes [(Debnath 1994)]. Accord-

ing to Whitham, taking the variations of that functional with respect to those functions, results 

in relations that determine the latter. Following the work of Whitham, (Lighthill 1965) examined 

the range of applicability of the former’s theory, whereas (Luke 1966), extending the method of 

(Kuzmak 1959) to pdes, partially justified Whitham’s approach by relating it to his systematic 

perturbation method. Not much later, (Bretherton 1968) examined the validity of the method in 

a wide class of linear systems, while (Hoogstraten 1968, 1969) also contributed to the justifica-

tion of the AVP for the cases of waves in shallow and deep water. (Whitham 1970), moreover, 

given that Luke worked with the Euler equations of the problem, applied the same ideas, for the 

justification of his method, directly on its variational principle. Subsequently, (Kurylev 1981), 

using the Klein-Gordon equation, highlighted the connection between the AVP and the WKB 

method, providing some results that further add to the validity of the former. A full justification, 

though, is still an open matter. Of course, numerous contributions have been made in regard to 

applications and extensions of Whitham’s method. Several of them are mentioned in Chapter 4. 

Here we confine ourselves with the work of (Kawahara 1977), who introduced a systematized 

version of the AVP, by essentially introducing the MSM into the variational formalism. Some 

valuable references, for a complete exposition to the method and a wider bibliographical guid-

ance, are the books of (Whitham 1974), (Karpman 1975), (Jeffrey and Kawahara 1982), 

(Debnath 1994), (Dingemans 1997) and (Berdichevsky 2009).  

 

Henceforth, the MSM and the AVP are considered known to some extent, and the same applies 

to the usual asymptotic arguments and definitions that are required (see the general books about 

perturbation methods, above). Nevertheless, attention has been paid to the sufficiently detailed 

explanation of the various steps, during the implementation of the methods, so that even a reader 

with little familiarity with them may be able to follow the text.  
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Chapter 2  
 

 

A consistent, autonomous approach to Stokes 

waves, using a variational method  
 

“Distress not yourself if you cannot at first understand the deeper mysteries of 

Spaceland. By degrees they will dawn upon you.”  
 

E. A. ABBOTT - Flatland: A Romance of Many Dimensions  

 

 

 

 

 

 

 

 

 

2.1. Introduction  
 

In his groundbreaking work, (Stokes, 1847) was the first to consider nonlinear solutions to the 

steady periodic WWP. He did so by implementing a systematic perturbation scheme, under the 

assumption that the steepness of the waves in search is small (but not infinitesimal). The essen-

tial steps of his method are the following. Given the equations of the steady periodic WWP, and 

exploiting the aforementioned assumption of small wave motion, the boundary conditions on 

the free surface are expanded into Taylor series around the known still-water level. In this way, 

the nonlinearity that occurs from the normally unknown upper boundary of the fluid domain 

ceases to exist. Moreover, for the wave fields (i.e. the free-surface elevation and the velocity 

potential), given their periodic nature, Fourier representations are adopted, with the particularity 

that their unknown coefficients constitute perturbation expansions in terms of the supposed 

small steepness. Inserting those representations into the equations of the wave motion, with the 

free-surface boundary conditions being in their Taylor-expanded forms, a perturbation hierarchy 

is produced, which can be solved successively for the perturbed Fourier coefficients. Doing that, 

approximate solutions of various orders can be obtained for the steady periodic WWP, provided 

that the included nonlinearity is weak. Such solutions are known as (perturbative) Stokes waves 

[(Whitham, 1974; Massel, 1989; Debnath, 1994; Dingemans, 1997; Johnson, 1997)].  

 

Stokes’ theory alone does not contain any information about the observational frame of refer-

ence of the waves under examination. Thus, the celerity c , which generally appears in the mod-

elling equations as an unknown quantity, is rendered indeterminate, due to the fact that there 

exists an infinite number of possible reference frames [(Clamond, 2017)]. One option, of course, 

is to study the waves with respect to a frame moving with c , where, as said in Sec. 1.3, the 

motion is steady and, consequently, the celerity is no longer explicitly involved in the problem’s 

equations. However, other, ‘fixed’ frames are of theoretical and practical importance, too, and 

their use is necessary. Then, c  reappears and needs to be determined [(Fenton, 1985, 1990)]. 

For that to be accomplished, though, an additional condition that specifies the appropriate 

‘fixed’ frame is required. Stokes, to remedy that issue, introduced two definitions for the 
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celerity, each of which is suitable for different applications [(Stokes, 1847; Dingemans, 1997; 

Clamond, 2017)]. His first definition requires the vanishing of the mean horizontal fluid velocity 

at a point below the trough level (1). Hence, the observational reference frame is either station-

ery, in absence of any uniform current, or moving with that current’s speed in case it exists. His 

second definition requires the vanishing of the mean horizontal mass transport, and is the proper 

one in laboratory conditions, where the waves are generated in wave tanks. There, the usually 

existent mass transport, in the direction of the wave propagation, is counterbalanced by a flow 

in the opposite direction. So, via the second definition, the laboratory becomes the observational 

reference frame. The use of either definition, therefore, specifies the frame in regards to which 

the waves are studied, allowing for the determination of their celerity.  

 

Although their nonlinearity is weak, Stokes waves reveal many remarkable features of the non-

linear wave motion, which the linear theory neglects. For example, their profile does not coin-

cide with the sinusoidal shape encountered in linear waves, but is characterized by sharper crests 

and flatter troughs. Namely, it resembles a trochoid. Another very important feature is that the 

nonlinear dispersion relation is a function, not only of the wavenumber, but of the wave ampli-

tude, too. Specifically, the dispersion relation of Stokes waves consists of the linear dispersion 

relation modified by higher order corrections that contain their amplitude. As a result, waves of 

the same wavenumber propagate with different phase speed for different values of their steep-

ness. Those corrections occur due to the rise of secular terms, during the implementation of 

Stokes’ procedure, and their subsequent elimination, which is achieved by expressing the wave 

frequency as a perturbation expansion. That treatment of the secular terms, introduced by 

Stokes, is now known as the Lindstedt-Poincaré method [(Nayfeh, 2008)]. Stokes was also the 

first to examine another nonlinear effect known as Stokes drift. In essence, based on the results 

of his work, he found out that the paths of the fluid particles are open curves. That is, the start 

and end points of the position of a particle, after a period, do not coincide, as is the case in the 

linear theory. The reason for this is the mass-transport velocity, which is a second-order mean 

velocity in the direction of propagation.  

 

The method of Stokes rests heavily on the assumed perturbation parameter, i.e. the slope of the 

waves, and that affects its range of validity as to the depth of the seabed. Generally, it is accurate 

for waves in water of arbitrary or infinite depth. In shallow water, on the contrary, it fails to 

yield correct results, due to the fact that the effective perturbation parameter is different [(Sobey 

et al., 1987)]. In that case, cnoidal theory is the appropriate one to employ [(Fenton, 1990)]. A 

more precise criterion, for the decision between the two theories, has been given by (Hedges, 

1995) in terms of the Ursell parameter.  

 

The originality and innovation of Stokes’ initial contribution have led, since then, to a great 

amount of efforts towards this direction. Except for that first work, in which he presented a 

third-order solution for deep-water waves and a second-order one for waves in water of arbitrary 

depth, (Stokes, 1880) also devised an alternative, inverse method, where the velocity potential 

and the stream function are viewed as the independent variables of the problem and the spatial 

coordinates as functions of them. In both of his works, Stokes used the term ka  for the wave 

steepness, where k  is the wavenumber and a  the lowest-order amplitude of the free-surface 

elevation. His latter approach has the advantage of requiring greatly fewer calculations, and that 

allowed him to extend his previous results by an order [(Stokes, 1880; Massel, 1989; Craik, 

2005)]. It suffers, however, from a smaller radius of convergence [(Drennan, Hui and Tenti, 

                                                 
(1) Which point is not important, as long as it is always immersed in the water, as the assumption of potential flow 

and the horizontal seabed result in a mean horizontal flow that is independent of the vertical position of the point 

[(Constantin, 2006)].  
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1992)] and is further limited in the sense that its generalization in three-dimensional fluid do-

mains or the case of uneven seabeds is not possible [(Dingemans, 1997)]. Following Stokes, 

(Wilton, 1914) extended his deep-water results to higher orders, without avoiding some errors, 

while (De, 1955) derived a fifth-order solution in the case of arbitrary depth and so did 

(Chappelear, 1961), pointing also out a mistake in De’s work. A fifth-order solution for water 

of arbitrary depth was obtained by (Skjelbreia and Hendrickson, 1960), too, via the physical 

plane this time. In all those approaches, Stokes’ first definition for the celerity was used. The 

second definition was utilized by (Tsuchiya and Yamaguchi, 1972), who gave a fourth-order 

solution based on it. Deviating from the established workflow, (Schwartz, 1974) treated the 

coefficients of the Fourier representations numerically. Thus, he was able to reach very high 

orders, and, in the process, deduced that the convergence of Stokes’ expansions is limited when 

ka  plays the role of the perturbation parameter, rendering the theory incapable of yielding the 

so-called highest wave. More importantly, he showed that expressing, instead, the steepness via 

the wave height, as / 2k H , restores that issue, with the aid, though, of Padè approximants. The 

approach of Schwartz was adopted, for deep water, by (Longuet-Higgins, 1975), who dealt with 

the calculation of the wave integral properties, for waves up to the highest. Further, (Cokelet, 

1977), working similarly, addressed the same problem, but in the case of water of arbitrary 

depth. Adding to the already existent Stokes solutions, (Tsuchiya and Yasuda, 1981) concluded 

to a solution by imposing conditions other than Stokes’ definitions for the wave speed. Later, 

(Fenton, 1985), being aware of the various disadvantages and, sometimes, mistakes of the pre-

vious attempts, developed a fifth-order theory free of them. In his version of Stokes waves, the 

perturbation parameter (i.e. the wave slope) is expressed as / 2k H , while the solution is solely 

presented in terms of the perturbation parameter and kh , h  being the (constant) depth of the 

seabed. Moreover, both of Stokes’ celerity definitions may be used, as well as uniform current 

may be incorporated, if existent. Fenton also examined the application of his theory to various 

practical problems, and gave guidelines as to its correct implementation in each case. Ever since 

its publication, his work is widely acknowledged and very popular in engineering applications.  

 

The perturbative Fourier series that Stokes introduced gave, as is natural, rise to the matter of 

their convergence, as an aspect of the more general one regarding the existence of such waves 

(periodic, of permanent form). While (Nekrasov, 1921) showed that a solution to the steady 

WWP exists, provided a sufficiently small steepness, (Levi-Civita, 1925) proved, under the 

same assumption and in the deep-water case, that the aforementioned series converge. The latter 

result was extended to water of arbitrary depth in the work of (Struik, 1926), for which several 

corrections were made by (Hunt, 1953). Subsequently, (Krasovskii, 1961) proved, inde-

pendently of the depth of the seabed, the existence of steady waves for all the steepness values 

for which the inclination of the free surface does not exceed / 6 . (Keady and Norbury, 1978), 

afterwards, obtained for the same problem a broader set of solutions that contains Krasovskii’s, 

whereas (Toland, 1978) showed that a solution to the steady WWP exists even for waves of the 

greatest height. An account on the theoretical aspects of Stokes waves can be found in (Toland, 

1996).  

 

Provided the existence of Stokes waves, another very important and independent matter is their 

stability. Postponed until the 1960s, that question was mainly answered by the work of 

(Benjamin and Feir, 1967), via a perturbation procedure, and those of (Lighthill, 1965, 1967) 

and (Whitham, 1967), via the AVP. From them, it turned out that Stokes waves are in fact un-

stable in deep water. Benjamin and Feir, in particular, discovered that they are characterized by 

a sideband instability, now known as the Benjamin-Feir Instability (BFI), which occurs when 

1.363kh . That finding led them to conjecture that, under the influence of sideband 
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perturbations, Stokes waves disintegrate. A decade later, though, (Lake et al., 1977), studying 

the long-term evolution of uniform wavetrains affected by side-band perturbations, both exper-

imentally and theoretically, concluded that, except for the BFI those wavetrains initially un-

dergo, they are generally governed by the Fermi-Pasta-Ulam recurrence. More on the instability 

of Stokes waves can be found in (Yuen and Lake, 1982), (Craik, 1988), (Debnath, 1994), (Mei, 

Stiassnie and Yue, 2005) and (Zakharov and Ostrovsky, 2009), among other sources (2).  

 

Despite the extensive literature on Stokes waves, especially in regard to the various methodo-

logical approaches used throughout the years, to our knowledge there does not exist any sys-

tematic procedure for their variational rederivation. A promising step towards the accomplish-

ment of such an endeavor, however, seems to be the utilization of Whitham’s AVP. This is 

exactly our aim in what follows: to examine how the AVP handles the weakly nonlinear steady 

periodic WWP and to compare its outcome with previous, accepted results, like Fenton’s.  

 

 

 

 

 

                                                 
(2) Here, we avoid any references to the nonlinear Schrödinger equation and its connection to the instability of 

uniform wavetrains, due to the fact that it constitutes the central element of the following chapters.  
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2.2. Derivation of Stokes waves by means of the AVP  
 

As mentioned before, we are interested in the study of the steady periodic WWP, via the AVP, 

when waves of small slope over uniform bathymetry h  are considered (i.e. perturbative 

Stokes waves).  

 

 

2.2.1. Prerequisites and assumptions for the unknowns of the problem  
 

A requirement, for the implementation of the AVP, is the existence of a variational formula-

tion of the problem at hand [(Whitham 1974; Karpman 1975)]. As stated in Section 1.3, the 

steady periodic WWP admits such a formulation,  
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( , , ) admR   , in which the respective action functional reads  
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with  
2 2

1

2
h
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
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  
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being its constrained, by the mass conservation within the periodic cell, Lagrangian. In those 

equations, ( )    is the free-surface elevation, ( , )z   the velocity potential and R  

the Lagrange multiplier of the mass constraint, which plays the role of a Bernoulli constant. 

Further, x c t , so that the fields   and   express steady progressive waves with phase 

speed (celerity) c  and, also, [0, ]  is confined within the assumed periodic cell.  

 

Another prerequisite is the introduction of proper trial functions for the problem’s unknown 

fields   and  . Thus, in accordance with the waves under examination, i.e. small-slope, peri-

odic waves (see, also, Section 2.1), we introduce the Fourier perturbation expansions 

[(Whitham 1967, 1974)]  
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respectively. As usual, 1  constitutes a perturbation parameter,  
 

2 /k    
 

is the wave number, g  the acceleration of gravity and  
 

( )k x c t k    (phase)        (6)  
 

the phase of the waves [(Mei, Stiassnie, and Yue 2005)], which, given the definition of k , 

brings the  -period (equal to  ) of the actual fields  ,   and the  -period (equal to 2 ) of 
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the trigonometric representations   and   into agreement [(French 1971)]. Further, we pos-

tulate that the celerity is also expressed in terms of a perturbation expansion, i.e.  
 

0

N

i
i

i

g
c c

k
 ,   (celerity)     (7)  

 

and so does the Bernoulli constant R . That is,  
 

1

N

i
i

i

g
R R

k
    (Bernoulli constant)    (8)  

 

[(Fenton 1985)]. As for the rest of the dimensionless coefficients of Eqs. (4) & (5):  
 

{ }i  allow for wave-induced mean elevation,  

{ }i ja  and { }i jb  are the coefficients of the harmonics, and  

{ } ( )i jK z  are unknown vertical functions.  
 

Note that, the assumption is made that the vertical dependence of   (at each harmonic and 

order) may be separated from the horizontal one (see Eq. (5)). Which is the exact form of that 

vertical dependence, though, is a question left to be answered by the AVP.  

 

 

2.2.2. Remarks on the perturbation parameter in use  
 

The perturbation parameter   expresses the smallness of the slope, and for its physical im-

plementation there exist various possibilities [(Schwartz 1974; Fenton 1985; Sobey et al. 

1987)]. In the present work,  
 

2

k H
 ,          (9)  

 

where H  is the wave height. That choice, of course, affects the ansatz of  , Eq. (4). To 

demonstrate that, we assume, as an example, a perturbation expansion of   up to 3( )O  . In 

that case, from Eq. (4),  
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But, via the definition of the wave height,  
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Thus, to satisfy Eq. (9), we have to set  
 

21 0a ,  31 33a a        (10)  
 

and, also, 11 1a . In what follows, though, the latter substitution is postponed until after the 

completion of the procedure dictated by the AVP. The reason for this is that the (nonvanish-

ing) coefficient 11a  indicates the effect of the fundamental component of   in the so called 
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averaged Lagrangian of the AVP. As will be clarified later, that effect is very important, as it 

is related with the determination of the celerity and, hence, the dispersion relation of the waves 

[(Whitham 1967, 1974; Bhakta 1988)].  

 

 

2.2.3. Relation between the AVP and the variational principle of exactly periodic waves  
 

Generally, the AVP method, for the periodic or nearly periodic WWP, consists of three main 

steps, given the problem’s variational formulation and appropriate ansatzes for its unknown 

fields. Those steps are [(Whitham 1974; Jeffrey and Kawahara 1982)]:  
 

a) the insertion of the ansatzes into the Lagrangian,  
 

b) the averaging of the Lagrangian, over the variable in which the periodicity occurs, and  
 

c) the substitution of the result of the averaging, namely the averaged Lagrangian, into 

the initial action functional of the problem, which is then viewed as a functional de-

fined on the unknown parameters/coefficients of the ansatzes.  
 

However, in the case of exactly periodic waves, as those considered in this section, the two 

last steps become redundant.  

 

To justify the above statement, we first assume that suitable trial functions ( )    and 

( , )z   are available, for the fields   and  , and, then, we use those functions in both 

the initial variational principle of the problem (see Eq. (1)) and its averaged one. In that spirit, 

let the vector 1( ) I
i ipP , I , denote the unknown constant coefficients, contained in 

the ansatzes   and  , and the Bernoulli constant R . Starting with the AVP, we insert   and 

  into . Thus,  
 

[ ( ), ( , ) ; ]   P .        (11)  
 

Then, the averaged Lagrangian, defined as  
 

1
[ ] [ ( ), ( , ) ; ] d   

 

P P , 

 

is substituted into the initial action functional (see Eq. (2)), so that  
 

[ ] [ ] [ ] [ ( ), ( , ) ; ]d d     
 

P P P PS S . 

 

But, skipping the steps (b) and (c), using, that is, Eq. (11) in Eq. (2) immediately, we arrive at 

the exact same result, that  
 

[ ] [ ( ), ( , ) ; ] d   


P PS S .     (12)  

 

As a consequence, when periodic waves are considered, whose ansatzes are such that their 

Lagrangian is of the form of Eq. (11), the, reshaped by the ansatzes, initial action functional 

coincides with that of the AVP. Hence, in that case, the introduction of proper trial functions 

into the variational principle of the problem is equivalent to the implementation of the AVP.  

 

Remark: In Eq. (12), S  is a functional with respect to the scalar elements of P . Its station-

arity, therefore, is achieved via the satisfaction of the variational equation  
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{ }( )i admp . In view of Eq. (13), the elements of P , i.e. the constant coefficients of the 

ansatzes and the Bernoulli constant, are regarded, throughout  , as constant functions. Thus, 

in that instance, adm  consists of variations constant in  .  

 

 

2.2.4. Implementation of the AVP  
 

After all the above considerations, we are ready to proceed with our main task. Namely, the 

study of the aforementioned small-slope waves via the AVP. In order to facilitate the demon-

stration of the procedure, we confine ourselves with waves up to 3( )O  . However, higher 

order waves may be considered, without any methodological complicacies, but with the price 

of extensive algebraic calculations (1,2).  

 

As stated in the previous subsection, to implement the AVP in periodic waves, it suffices to 

introduce the trial functions of their fields into the variational principle that governs them. For 

the periodic waves of small slope we are interested in, those functions are provided by Eqs. (4) 

& (5). Hence, they are of the form ( )    and ( , )z  , with k  . Inserting them 

into the Lagrangian of the problem, Eq. (3), and noting that  
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the latter becomes  
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Consequently, the respective action functional, Eq. (2), is shaped as  
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where its second form (3) occurs from the change of variables k  . Eqs. (14) & (15) are 

the general expressions of  and S , when   and   are functions of  , instead of  .  

 

The specific forms of the trial functions, searching for solutions up to 3( )O   and taking into 

account Eqs. (9) & (10), are  
 

                                                 
(1) As is commonly known, perturbation methods are generally accompanied by fearsome algebra. Although the 

AVP reduces, up to a point, the required calculations [(Whitham 1967, 1974)], still, without the aid of software 

of symbolic mathematics, higher-order perturbation expansions constitute a painful and tedious task.  

(2) For the algebra of the present section, Wolfram® Mathematica has been utilized. The required computational 

steps and the respective code can be found in Appendix A.  

(3) The term / 2   is just a (known) constant and, thus, indifferent in the context of rendering S  stationary. 

Due to that, we can omit it. However, the presence of 1 / 2  is desired, as it simplifies the form of the integrand, 

in the case where trigonometric representations are used for the unknown fields. So, hereafter,   is neglected.  
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for the free-surface elevation, and  
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for the velocity potential, and are obtained by truncating the terms of 4( )O   or higher in Eqs. 

(4) & (5). Normally, our next step would be to substitute Eqs. (16) & (17) into Eqs. (14) & 

(15). Though, in our case, observing Eq. (17), the additional difficulty of the unknown vertical 

dependence of   occurs, via the unknown functions { } ( )i jK z . As stated earlier, our intention 

is to let the AVP determine that dependence. In that direction, we work as follows.  

 

The vertical problem  
 

We view the problem of the determination of the functions { } ( )i jK z  as independent from the 

total one. In that context, the free-surface elevation  , in Eq. (14), can be considered as a pa-

rameter of the integration domain, rather than an unknown. Thus, for that vertical problem, we 

assume the Lagrangian density  
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Given Eq. (18), we put into effect the AVP. First, we insert Eq. (17) in Eq. (18), to rewrite 

vert  in terms of the functions { } ( )i jK z , and then define the averaged vertical Lagrangian  
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Doing the necessary algebra, the latter takes the shape  
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Afterwards, with vert  known, we examine the subsequent vertical action functional  
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and its variational equation  
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{ }( )i j admK . From that equation, we deduce that, essentially, the use of the perturba-

tion expansion of Eq. (17) leads, via its insertion in the Lagrangian of the problem, to a per-

turbation hierarchy of variational equations. Accordingly, starting with the lowest-order varia-

tional equation of that hierarchy, we solve the latter recursively. Therefore, we initially con-

sider the variational equation  
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Taking its 11K  variation gives  
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Thus, solving the above linear ordinary differential equation, we find that  
 

11 1 2( ) k z k zK z A e A e ,       (24)  
 

where 1A  and 2A  are arbitrary constants. Carrying that result to the higher orders of Eq. (22), 

it is easy to verify that the EL equation that arises from the variational principle  
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is satisfied identically, yielding nothing new. In particular, with 11 ( )K z  given by Eq. (24), the 

above principle admits only variations 21K . But those simply lead to  
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which confirms the above statement. Hence, we proceed with the fourth-order variational 

equation of the perturbation hierarchy,  
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As is evident from Eq. (20c), that equation admits variations 21K , 22K  and 31K . From 

the first two of those variations, there occur, respectively, the EL equations  
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and  
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Regarding the latter variation, 31K , as in the case of the 21K -variation of Eq. (22,ii), it re-

sults in an indifferent, identically satisfied, EL equation. Solving Eqs. (25) & (26), we con-

clude that  
 

21 1 2( ) k z k zK z B e B e           (27)  
 

and  
 

2 2
22 1 2( ) k z k zK z C e C e ,       (28)  

 

with 1B , 2B , 1C  and 2C  being arbitrary constants. Inserting, next, the above findings into Eq. 

(22) renders the variational equation  
 

,5 0vert

h

d z



                 (22,iv)  

 

unimportant, as its variations, 31K  and 32K , merely produce identities. As a consequence, 

there remains the last order of Eq. (22),  
 

,6 0vert

h

d z



 ,                (22,v)  

 

whose variations 31K , 32K  and 33K  yield, respectively,  
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,6 ,6 2
31 31 31

3131

: 0 ( ) ( ) 0
vert vertd

K K z k K z
d z KK

 , (29)  

 

,6 ,6 2
32 32 32

3232

: 0 ( ) 4 ( ) 0
vert vertd

K K z k K z
d z KK

  (30)  

and  

,6 ,6 2
33 33 33

3333

: 0 ( ) 9 ( ) 0
vert vertd

K K z k K z
d z KK

 . (31)  

 

The general solutions of Eqs. (29)-(31) are, in turn,  
 

31 1 2( ) k z k zK z D e D e ,       (32)  
 

2 2
32 1 2( ) k z k zK z E e E e        (33)  

 

and  
 

3 3
33 1 2( ) k z k zK z F e F e ,       (34)  

 

where, once more, {1,2}D , {1,2}E  and {1,2}F  are arbitrary integration constants. In this way, the 

z -dependence of the functions { }i jK , which are contained in  , becomes fully known.  

 

Summing up, the isolation of the vertical problem and its treatment with the AVP method is a 

procedure capable of providing us with the form of the vertical functions { }i jK , up to some 

arbitrary constants. It turns out that  
 

11 1 2( ) k z k zK z A e A e ,       (24)  
 

21 1 2( ) k z k zK z B e B e           (27)  
 

2 2
22 1 2( ) k z k zK z C e C e ,       (28)  

 

31 1 2( ) k z k zK z D e D e ,       (32)  
 

2 2
32 1 2( ) k z k zK z E e E e        (33)  

 

and  
 

3 3
33 1 2( ) k z k zK z F e F e .       (34)  

 

The exact knowledge of the z -dependence of { }i jK  allows us, as will be clearly seen below, 

to implement the AVP in the total problem considered and, hence, determine the unknown pa-

rameters of the fields   and  . In regard to the aforementioned arbitrary constants, they are 

viewed as parameters of  , just like { }i jb . Thus, finding them is also a matter for the AVP.  

 

The total problem  
 

With the vertical structure of   known, we return to the whole steady periodic WWP for 

waves of small slope. As a first step, given Eqs. (7) & (8), for the celerity c  and the Bernoulli 
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constant R , and Eqs. (24), (27), (28) & (32)-(34), for the functions { }i jK , we insert the trial 

functions of Eqs. (16) & (17) into Eq. (14). Consequently, defining the vector  
 

{ } { } { } { } {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}( , , , , , , , , , )i i i j i jR a b A B C D E FP    (35)  
 

of the parameters of the wave-field ansatzes and R , the Lagrangian is shaped as  
 

[ ( ), ( , ) ; ]   P . 
 

Afterwards, we substitute  into Eq. (15). As a result, the action functional of the problem 

becomes  
 

2

0

1
[ ( ), ( , ) ; ]

2
d



   


 PS .      (36)  

 

In it, because of the z -integration of Eq. (14), terms of the form  
 

( ( )) ( )nk h nk h nk
nS e e e           (37)  

 

are present. Thus, initially, it is not possible to express the outcome of the  -integration of 

Eq. (36) in terms of elementary functions. However, the distinction between orders, via the 

perturbation parameter  , and the fact that ( )O   allow us to approximate the quantities 
( )nke    with their Maclaurin series. Accordingly, we set  

 

1

0

( )
( )

!

M m
nk m M

m

nk
e O

m

   .         (38)  

 

Using Eq. (38) into Eq. (36), the previous difficulty of the  -integration is overcome. So, af-

ter the necessary algebraic calculations and keeping terms up to 6( )O  , we conclude to  
 

6

7

0

[ ] [ ] ( )i
i

i

O P PS S S ,      (39)  

 

where  
 

2

0
2

g h
S ,                  (39a)  

 

1 0S ,                   (39b)  

 

2 2
11 0 11 11 1 2 12

2 2 2 2 2
1 1 11 1 2

2 2 ( ) 2
4

4 ( )1 ( ) ,

{

}k h k h

g
a c a b A A

k

R b e A A e





S
            (39c)  

 

11 11 0 1 2 1 1 1 2 1 22

2 2
2 1 11 21 1 1 2 2

2 2 2
1 2 1 11 1 2 0 11 21 1 2

3

1

[ ( ) ( ) ] 2
2

2 [ ( ) ( 1)

)

]

2 ( ( ) ,

{

}

k h k h

g
a b c A A c A A R

k

R b b A B e A B e

b A A c a b B B

 



  

S

     (39d)  

 

and  
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33 0 11 2 11 11 11 22 1 1 2 22

2 2
0 22 11 2 1 22 1 2 22

2 4 2 4 2
22 1 2 11 1 22 11 2

2 2 2
11 1 11 1 2 31 1

3
0 33 11 11 11 1

4

0

8 ( ) 16 ( )
16

8 [ ( ) 2 ( ) ] 4

8 ( )( ) [8

4 2 2 ) 8 ( )

(8 ]

1

( 1

) {4 [ (

{

k h k h

k h

g
a c b A a a b b A C A C

k

c b a C C a C C a

b e C e C b A a b A

b A a b D e

c a a a b A c a

 

S

2
22 1 22 ) 

2
1 1 2 2 0 1 2 22 1 1

2 2
2 11 11 2 11 2 11 2 2 1

3 2
0 11 31 11 2 2 0 11 1 2

2
21 1 21 1 11 1 0 1 1 11 1

2
21 2 21 2 11 1 0 1

2 2 ] [ ( 2 ) 2

2 ] [8 ( )

] 8 [ ( 1) ( ) ]

4 [ ( ) 2 ( ) 4 ]

4 [ ( 1) 2 ( ) 4

}

1

k h

k h

k h

c c A c a c

c a b A b A b A

c a b b A D e c a D D

b B b B e a c c b A

b B b B e a c c

   

 

 

  1 11 2

2
1 3 2 1 3 2 2 3 1

]

8( 2 2 2 2 ) ,}

b A

R R R     

    (39e)  

 

while, avoiding their full expressions, due to their large size,  
 

5 5 1 33 1 2[   excluding  { , , , }]R b F FPS S                 (39f)  
 

and  
 

6 6 1 2[   excluding  { , }]R RPS S .               (39g)  
 

Next, given the above, we demand the vanishing of the first variation of S , i.e.  
 

6 6

0 0

0 0i i
i i

i i

    S S S ,    (40)  

 

for each admissible variation, in the sense of Eq. (13). That is, as with the vertical problem, 

owing to the appearance of orders within S , its stationarity occurs as a perturbation hierar-

chy of variational equations. Observing, therefore, that 0S  and 1S  have zero contributions, 

we begin with the variational equation  
 

2 0 S .                    (40i)  
 

Taking its admissible variations, we obtain  
 

2

1

1

1 1: 0 R 


S
,                (41’)  

 

2

1

1

1: 0 0R
R


S

,         (42)  

 

2
1 2

11 0 112

2

11

11
2 2

1 2

[coth( ) 1]
:

( )

2 )
0

(

k h

k h

e k h A A
b c

A
b a

b A e


S
,           (43’)  

 

2
1

1

1

1

2

1 0

11

[coth( )
: 0

1]

2

k h ae k h

bA
cA A

S
             (44’)  
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and (4)  

11

1 2 11

2

11 0

11 ( )
: 0a c

a

A A ba


S
.               (45’)  

 

Then, combining Eqs. (41) & (42), we deduce that  
 

1 0R ,          (41)  
 

while, at the same time, the system of Eqs. (43)-(45) yields  
 

11

11

2

coth( ) 1

2 coth( )

ak h
b

Ak h
,        (43)  

 

2
1 2

k heA A             (44)  
 

and  

0 tanh( )c k h .         (45)  
 

Substituting the above results into the higher orders of Eq. (40), 3S  becomes  
 

13
2

1 12

coth( )

2

g k h
c a

k
S . 

 

Thus, from the variational equation  
 

3 0 S ,                   (40ii)  
 

we get  
 

3

11 1

11

0: 0a c
a


S

.         (46)  

 

Continuing in the same manner, namely, updating the subsequent orders of Eq. (40) with the 

findings of the previous ones and deriving their EL equations, the variational equation  
 

4 0 S ,                  (40iii)  

gives  

2
2

2

12 1

4
: 0

csch(2 )

2

k h
R a



S
,    (47)  

 

4

2

2

2: 0 0R
R


S

,      (48)  

 

4

21

21

21 0: 0b
b

b
S

,      (49)  

 

                                                 
(4) The averaged action functional is defined on the parameters that are introduced by the ansatzes of the wave 

fields. Thus, no variations with respect to the celerity can be taken, as it preexists from the formulation of the 

steady periodic WWP. However, it remains unknown. Its determination, and the closure of the system of equa-

tions for the problem’s unknowns, comes from the 11a -variations at each order [(Whitham 1967, 1974; Jeffrey 

and Kawahara 1982; Bhakta 1988; Dingemans 1997; Y. V. Sedletsky 2012, 2013)]. That is here the role of 
11

a , 

which is otherwise unnecessary, as the amplitude of the elevation’s first harmonic is truly defined via  . Name-

ly, it just constitutes a convenient indicator as to the effect of that amplitude in the averaged action functional.  
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2
22

4

22

22

113

5cosh cosh

8s

( ) (3

h

)

in
: 0

( )

k h k h
a

k h
a

a
a

S
,  (50)  

 

22
11

22 2 3 2
2

4

22

22

3 coth( )

1
: 0

( ) ( 1)

k h

k h k h

ae k h
b

Ce e
b

b


S
,   (51)  

 

1

2

4

1
4

1: 0 k hC C
C

e C
S

      (52)  

and  

2
112

4

11 2

11

(4 )][8 cosh coth

8sin

( )
: 0

h sin) h(2 ( )

k h k h
a c

a k h k h
a

S
.  (53)  

 

Further, from  
 

5 0 S ,                  (40iv)  
 

we infer that  
 

5

11 3

11

: 0 0a c
a


S

,      (54)  

 

whereas the remaining variational equation  
 

6 0 S                    (40v)  
 

leads to  
 

6

3

3

3: 0 0R 


S
,      (55)  

 

6

3

3

3: 0 0R
R


S

,      (56)  

 

6

31

31

: 0b
b


S

 

3
11

31 6 2 7
2

7cosh(2 ) 10cosh(4 ) cosh(6 ) 23

( 1) coth( )
k h k h

akh kh kh

De e kh
b , (57)  

 

1

2

6

1
2

1: 0 k hD D
D

e D
S

,        (58)  

 

6

32 32

32

: 0 0a a
a


S

,      (59)  

 

6

32 32

32

: 0 0b b
b


S

,      (60)  

 

6

33

33

: 0a
a


S
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3
1633 1

14 15cosh(2 ) 6cosh(4 ) cosh(6 )
3

256 sinh ( )

kh kh kh
a a

kh
,  (61)  

 

6

33 33

3

34
1

2 7
3

1

2

[11 2cosh 2 ]( )

( 1) cot
:

h
0

( )

k h

k h
b b

b

ae k h

Fe k h


S
     (62)  

and  

1

2

6

1
6

1: 0 k hF F
F

e F
S

.      (63)  

 

In this way, the determination of the wave parameters is completed. Hence, the need for the 

presence of 11a  ceases to exist (see Subsection 2.2.2) and, as a consequence, we may now set  
 

11 1a ,          (64)  
 

in order to finally satisfy the desired definition of   (see Eq. (9)).  

 

Gathering all the above results, namely Eqs.(41)-(64), it is apparent that each one of the previ-

ously unknown wave parameters is now given by an expression provided by the AVP. Insert-

ing those findings into Eqs. (16) & (17), without forgetting Eqs. (24), (27), (28) & (32)-(34) 

regarding the vertical dependence, we have, up to 3( )O  , that  
 

3 2 3
3 2 3

1
( ) [ ( )]cos ( ) cos2 ( )cos3{ }Q k h Q k h Q k h

k
          (65)  

and  

3
1 313

2
2

3
33

( , ) [ ( ) ( ) ] sin

(

cosh[ ( ) ]

cosh[2 () sin) ]

c

2

( ) osh[3 ( ) sin3 ,]

{

}

k z h

k z h

k z

g
z S k h S k h

k

S k h

S k h h

   

 

 



  (66)  

where  

32

5cosh co( ) (3sh )
( )

8sin )h (

k h k h
Q k h

k h
,               (67a)  

 

63

3 14 15cosh(2 ) 6cosh(4 ) cosh(6 )

256
(

sinh
)

( )

k h k h k h
Q k h

k h
,           (67b)  

 

1 2csch( ) (2 )S k h k h ,                 (67c)  
 

42

tanh( )3

8 sinh ( )
( )S k h

k h

k h
,                   (67d)  

 

731

7cosh(2 ) 10cosh(4 ) cosh(6 ) 23

64 sinh
( )

( ) coth( )

k h k h k h

k h
S k h

k h
            (67e)  

and  
 

733

11 2cosh(2 )

64 sinh ( ) cot
)

h(
(

)

k h

k h h
S k h

k
.               (67f)  

 

Moreover, the celerity, Eq. (7), is shaped as  
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2

2

[8 cos ( 4h coth
tanh( )

8sinh s

) ] (

inh

)

( 2 ) ( )

k h k hg
c

k k h k h
k h  ,   (68)  

 

while the Bernoulli constant, Eq. (8), becomes  
 

2 csch(2 )

2

kg

k

h
R  .        (69)  

 

Those solutions are the same as the ones obtained by (Fenton 1985), in the case where Stokes’ 

first approximation for the wave celerity is used (see Sec. 2.1).  

 

Remark: Generally, the solutions of Fenton are expressed with respect to a reference frame 

moving with the wave celerity. In that frame, the undisturbed state of the fluid is a uniform 

flow in the negative direction and with magnitude the celerity. Thus, except for c , the only 

other quantities that can be directly compared with Fenton’s respective results are   and  , 

which he presents in terms of a stationary frame, too.  

 

That, however, is not the case for the Bernoulli constant. To compare its value with that of 

Fenton, we have to express it in the moving frame.  

 

To do so, we work as follows. The existence of R  implies that, essentially, the velocity poten-

tial contains an additional, linear t -dependence (see, also, Sec. 1.3). Thus, we introduce the 

redefined potential  
 

( , ; ) ( , )z t z R t    
 

and, afterwards, via a suitable Galilean transformation [(Clamond 2017)], we express it in 

terms of the moving frame as  
 

2 2

( , ; ) ( , )
2 2

m

x x ct

c c
z t c x t k x z c x R t   , 

 

where x  denotes the spatial variable in that frame. Therefore, in that instance, the Bernoulli 

constant becomes  
 

2 / 2mR R c . 
 

Inserting Eqs. (68)-(69) into the above, and keeping terms up to 3( )O  , we conclude that  
 

2

2

6 2cosh(2 ) cosh(4 )
tanh( )

2 8 sinh ( ) sinh(2 )
m

g g k h k h
k h

k k k h k
R

h
 , 

 

which coincides with the result given by Fenton.  

 

 

2.2.5. The case of wave-induced mean flow  
 

Up to now, we had assumed waves in absence of any current. For most situations, nonetheless, 

that is unrealistic, as some sort of current is almost always present.  

 

A special case of particular interest is the coexistence of waves with a mean flow induced by 

the waves themselves. Instances like that occur in closed wave tanks, among others, and, in 
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the context of Stokes’ theory, they are treated by using Stokes’ second approximation for the 

celerity (see Sec. 2.1). Hence, it is important to examine how the AVP handles such problems.  

 

In contrast with Eq. (5), we now allow for a wave-induced, and, thus, small, mean flow in the 

horizontal direction. Consequently, the velocity potential takes the form  
 

1

3

1 1

1

3

1

( , ; ) ( )sin ( )

( , ) ( ),

N i

i N
m f i i j i j

i j

N

i N
i

i

g
z x k x b K z j O

k

g
k x z O

k

    
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



 (70)  

 

where the dimensionless coefficients { }i  denote the wave-induced current. Although m f  

contains an explicit dependence on x , it does not cause any complicacies in the implementa-

tion of the AVP, as has been described so far.  

 

To show that, we note that, given the form of m f , during the passing from the classical 

gravity WWP to the steady periodic one (see Sec. 1.3), its x -differentiation gives  
 

1

N
m f i

i

i

g
k

x k
 



 
. 

 

So, instead of Eq. (14), the Lagrangian density of the problem is shaped as  
 

2
2

1

1

2

N

i
i

ih

g
ck k g z d z R

k z



  
 

  
. 

 

As a result, P  (see Eq. (35)) is enriched with the additional elements { }i , while the form 

[ ( ), ( , ) ; ]   P  and, hence, the form [ ]PS S  (see Eq. (36)) are preserved. 

That preservation enables us to apply the AVP in the same way, as before.  

 

Repeating the procedure of Subsection 2.2.4, and considering the additional variations { }i , 

we conclude to the exact same results, excluding, of course, the previously absent coefficients 

{ }i , and, also, the celerity’s coefficient 2c . Specifically, the coefficients of the wave-induced 

current turn out to be  
 

2

1

1

10 0: 


S
,      (71)  

 

2

4

2

2

coth( )
: 0

2

k h

k h




S
     (72)  

and  

6

3

3

30 0: 


S
.      (73)  

 

Namely, only 2  is different from zero, expressing a second-order mean flow in the negative  
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direction (i.e. opposite to the wave propagation). Moreover, for the coefficient 2c  we now 

have that  

4

11

11

: 0a
a


S

 

2 2

[8 cosh(4 )] 2sinh(2 ) sinh(4 )

8 sinh(2 ) ( )sinh tanh( )
c

k h k h

k h k h k h k h

k h k h
. (74)  

 

Thus, the celerity is altered, and the reason for that is the presence of the wave-induced cur-

rent. To verify that statement, it suffices to observe Eqs. (53), (72) & (74) (remembering Eq. 

(64)). Then, it can be easily deduced that  
 

2 2with wave-induced flow without wave-induced flo 2w
c c  .       (75)  

 

This time, the results of the AVP correspond to those of (Fenton 1985) when Stokes’ second 

approximation for the celerity is used.  

 

 

2.2.6. The case of (known) uniform current  
 

A different, but similar, and frequently encountered, situation is the presence of a known uni-

form current (1)U O  within the fluid domain [(Fenton 1990)]. If so, since we suppose that 

the value of that current is given, the consideration of separate coefficients { }i  is meaning-

less, as every horizontal flow, no matter its origin, has to be included in (the measured current) 
U  (5). Accordingly, in that case, the potential is expressed as  
 

1( , ; ) ( , ) ( )N
U z x U x z O    .     (76)  

 

Then, the Lagrangian of the problem becomes  
 

2 2
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2
h

ck U k g z d z R
z




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  
,  (77)  

 

and, as a consequence, the AVP can once more be deployed without any complicacies. The 

only disparity, in comparison to the case of wave-induced flow, is that, because U  is of (1)O , 

a component 0 (1)R O  is also included in the Bernoulli constant, Eq. (8), so as to take into 

account the dynamic pressure that the current induces.  

 

Implementing the AVP, we rederive, for each wave parameter, the findings of Subsection 

2.2.4, with the exception of 0R  and 0c . Particularly, for the latter, we get  
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and  
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(5) If we do include the coefficients 
{ }i

  in  , following the AVP, we conclude that either 
{ }

0
i

  or 0U .  
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Thus, in this instance, remembering Eqs. (7) & (8), the celerity is increased by the current’s 

speed U , while the quantity 2 / 2U  is added to the Bernoulli constant. Obviously, that is a 

generalization of the pure wave motion of Subsection 2.2.4, which can be recovered by setting 

0U .  

 

 

2.2.7. Concluding remarks  
 

The AVP provides us with a systematic approach for the study of steady periodic waves of 

small steepness, leading to results that are in complete agreement with those obtained conven-

tionally. Furthermore, it does so by requiring the inclusion of much less information within the 

ansatzes of the wave fields.  

 

For example, the a priori introduction of an appropriate vertical dependence is not needed. In-

stead, its determination can efficiently, and almost effortlessly, be achieved by isolating the 

respective vertical problem and treating it by means of that method.  

 

The same also applies to the wave celerity. No matter the specific case under examination 

(e.g. no current, unknown wave-induced current, known current), it is not necessary to as-

sume, for c , any of Stokes’ approximations. It rather suffices to configure the corresponding 

trial functions ( , in particular) accordingly, so as to reflect the various situations, and the 

rest is left to the AVP.  

 

Of course, neither the choice of Eq. (9) for the perturbation parameter is mandatory, nor the 

pursuit of solutions up to 3( )O  . Alternative expressions for   (e.g. k a ) can be used in 

the same way and, also, higher-order waves can be considered, without any complications as 

to the consistency of the results of the AVP with the respective ones from other methods.  

 

As a final note, we mention that, in the context of the AVP, the consideration of small-slope 

waves, which allows for order separation, perturbation hierarchies and asymptotic approxima-

tions, should not be indispensable. When (exactly) periodic waves are examined, the AVP is 

equivalent to the introduction of suitable ansatzes (e.g. Fourier expansions) into the problem’s 

Lagrangian. Thus, in principle, the method could yield a closed system of equations, for the 

wave parameters, without the adoption of orders. Of course, it would be complicated enough 

to demand the use of numerical methods, for the final evaluation of the ansatzes’ coefficients, 

under certain given data (e.g. k , h , etc.).  
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Chapter 3  
 

 

The Multiple-Scales Method in weakly non-

linear, narrow-banded wavetrains  
 

“Not ignorance, but ignorance of ignorance is the death of knowledge.”  
 

A. N. WHITEHEAD  

 

 

 

 

 

 

 

 

 

 

3.1. Introduction  
 

The striking findings of (Lighthill, 1965, 1967), (Benjamin and Feir, 1967) and (Whitham, 

1967), regarding the instability of uniform wavetrains (see, also, Sec. 2.1), led, as is natural, in 

the subsequent years, to an increased scientific interest for the evolution of weakly nonlinear, 

narrow-banded (i.e. slowly modulated) wave packets [(Mei, Stiassnie and Yue, 2005)]. A vast 

amount of efforts has been put into that direction and different approaches have been deployed, 

the most popular being the MSM, the AVP of Whitham and Zakharov’s Hamiltonian formalism 

[(Sedletsky, 2012)]. Here, we mostly focus on contributions whose main task is the derivation 

of the model equations of such wavetrains, deploying either the MSM or the AVP. The emphasis 

of this section, in particular, is on results obtained via the former method. Relevant works that 

use the approach of Whitham are the main subject of Section 4.1. A comprehensive overview 

of the developments and the literature on this fascinating topic in general can be found in the 

books of (Dingemans, 1997), (Johnson, 1997), (Sulem and Sulem, 1999), (Mei, Stiassnie and 

Yue, 2005), (Ablowitz, 2011), (Lannes, 2013) and (Bridges, Groves and Nicholls, 2016). Val-

uable other contributions, for the same purpose, are, among others, the works of (Hammack and 

Henderson, 1993) and (Dias and Bridges, 2005), and the review paper of (Zakharov and 

Ostrovsky, 2009).  

 

The endeavor, for the derivation of satisfying model equations, via systematic perturbation 

methods, that represent the evolution of slowly modulated wavetrains, lasts for decades. 

(Benney and Newell, 1967) were the ones to pioneer the nonlinear Schrödinger (NLS) equation 

for weakly nonlinear dispersive waves in general. A year later, (Zakharov, 1968) derived the 

NLS, too, but via an alternative route. Specifically, he did so by using canonical variables in the 

context of his Hamiltonian formalism. Afterwards, (Benney and Roskes, 1969) obtained the, so 

called, Benney-Roskes (BR) system of equations, which refers to the slow modulation of 3-

dimensional wave packets, whereas (Davey, 1972) studied the propagation of weakly nonlinear, 

narrow-banded wavetrains in the case of a medium that is, in addition, dissipative. (Hasimoto 

and Ono, 1972), subsequently, derived the NLS equation for slowly varying waves in water of 
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arbitrary depth. In a similar line of work, (Kawahara, 1973) implemented the derivative-expan-

sion version of the MSM (see Sec. 1.4 and (Nayfeh, 2008), for example) systematically in cases 

that lead to the NLS equation. (Davey and Stewartson, 1974), on the other hand, derived a sys-

tem of evolutionary equations for 3-dimensional wavetrains, which is now known as the Davey-

Stewartson (DS) system of equations. That system essentially constitutes an extension of the 

NLS equation to wavetrains that propagate in the horizontal plane of 3-dimentional fluid do-

mains. Later, (Dysthe, 1979) improved the ordinary NLS equation and its range of validity, in 

the case of deep water, by taking the perturbation expansions of the wave fields to the next 

order. His version of the NLS equation usually goes by the name “modified NLS equation”. 

(Peregrine, 1983), further, dealt with the evolutionary equations that describe slowly varying 

wavetrains and highlighted the cases in which their model equations can be reduced to the NLS. 

Moreover, he presented several analytical solutions of the NLS equation and investigated them. 

It should be mentioned, at this point, that the NLS equation is very important, not only because 

of its relative simplicity and the phenomena it brings out, but also due to the fact that it can be 

analytically solved via the inverse scattering transform [(Shabat and Zakharov, 1972; Zakharov 

and Shabat, 1973)]. Returning to the derivation of model equations, (Lo and Mei, 1985) intro-

duced minor modifications to Dysthe’s equation, while (Brinch-Nielsen and Jonsson, 1986) ex-

tended his results to 3-dimensional wavetrains in water of arbitrary depth. A decade later, 

(Trulsen and Dysthe, 1996) extended the modified NLS equation by relaxing the narrow-band-

width constraint, while (Trulsen et al., 2000) further improved their work via the use of pseu-

dodifferential operators that capture the full linear dispersive behavior. In a similar attempt, to 

enhance the modified NLS equation, (Sedletsky, 2003) extended the original work of Dysthe to 

waves in water of arbitrary depth and, in his turn, (Slunyaev, 2005) generalized the work of 

Sedletsky even more. It should be noted that, except for the work of Zakharov, all the above 

contributions, in regard to the derivation of the aforementioned model equations, involve some 

version of the MSM.  

 

Of course, a very important matter is whether or not all those results, obtained heuristically, are 

or can be mathematically justified. Although that topic diverges from our main goal, we should 

mention the works of (Craig, Sulem and Sulem, 1992), (Craig, Schanz and Sulem, 1997) and 

(Schneider, 1998). The first two rigorously rederived the model equations of 2-dimensional and 

3-dimensional slowly varying wave packets, while the third provided a rigorous derivation of 

the NLS equation from the Korteweg-de-Vries equation. For more information on this subject, 

the interested reader is referred to (Dias and Bridges, 2005) and the books of (Sulem and Sulem, 

1999) and (Lannes, 2013).  

 

In the remainder of this chapter, our interest lies in the derivation of model equations for weakly 

nonlinear, narrow-banded wavetrains in terms of the MSM. Our attention is especially focused 

on the intuition behind the implementation of the method to the WWP and to the assumptions 

that lead to the emergence of the NLS equation.  
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3.2. The effects of weak nonlinearity and narrowbandedness in the 

classical WWP  
 

As stated earlier, our intention is to use the MSM to study the evolution of weakly nonlinear, 

narrow-banded wavetrains. We do so for waves in a 3D fluid domain. Thus, first, we extend the 

2D differential formulation of the classical gravity WWP, given in Sec. 1.2, to the 3D case 

[(Stoker 1957; Johnson 1997; Mei, Stiassnie, and Yue 2005)]. Towards that, let O zx  be a 

Cartesian coordinate system, where ( , )x yx  expresses the horizontal variables and z  the 

vertical one, pointing upwards. Once more, we assume a seabed of constant depth h , placed at 

z h , and we denote the free-surface elevation, measured from the still-water level 0z , 

as ( ; )t  x . Then, the 3D fluid domain is expressed as  
 

3
0( ) { ( , ) : , ( , ), }hD D t z X h z t t t x x x ,  (1)  

 

where 2X  is the horizontal region of the fluid and 0t  the wave motion’s initialization time. 

Moreover, the boundary of the seabed is now represented by  
 

3{( , ) : , }h z X z h x x ,      (2)  
 

whereas the free-surface boundary is denoted with  
 

3
0( ) { ( , ) : , ( , ), }t z X z t t t    x x x .   (3)  

 

Consequently, instead of Eqs. (4’)-(7’) of Sec. 1.2, the differential formulation of the 3D clas-

sical gravity WWP consists of the following equations  
 

2 2 2

2 2 2
0

x y z

  
 ,      in D ,   (4)  

 

0
z


,       on h ,     (5)  

 

0
t x x y y z

    
,   on     (6)  

 

and  
 

2 2 2
1

0
2

g
t x y z


   

,    on  ,     (7)  

 

supplemented, again, by appropriate initial and lateral boundary conditions. As is usual the case, 

( , ; )z t  x  refers to the velocity potential. Alternatively, the kinematic and dynamic 

boundary conditions of the free surface can be combined into [(Mei, Stiassnie, and Yue 2005)]  
 

2 2
2

2

1
0

2
g

z tt

  u
u u ,      on  ,     (8)  

 

where u  is the velocity field of the fluid domain. In that instance, of course, the need 

for a second condition on the free surface doesn’t cease to exist. What is gained, though, is that, 

supposing that the unknown boundary can be somehow treated, one can first solve a boundary 

value problem that involves only ( , ; )z t x  and then, with ( , ; )z t x  known, find the free-

surface elevation via the free surface’s dynamic condition, for example. That set-up is very 

useful for our purpose, as will be seen clearly in what follows.  
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The main features of the wavetrains we want to study are their weak nonlinearity and the nar-

rowness of their bandwidth. As mentioned before, the nonlinearity of the WWP arises from the 

unknown upper boundary of the fluid domain, namely the free surface, and the (nonlinear) 

boundary conditions on it. Therefore, for a wave motion to be weakly nonlinear, the fields that 

determine it have to be small [(Debnath 1994)]. From Ch. 2, where Stokes waves are the main 

subject, it is known that weakly nonlinear periodic waves can be expressed in terms of their 

(small) steepness. Assuming, therefore, a characteristic wavenumber k , since the waves under 

examination are also narrow-banded, and a characteristic amplitude A  [(Bretherton and Garrett 

1968)], their weak nonlinearity implies that u ,   and   are of ( )O k A , where the steepness 

k A  is small. The smallness of those fields allows for the Taylor expansion of the velocity po-

tential and the free-surface boundary conditions around 0z  [(Mei, Stiassnie, and Yue 2005)]. 

Since powers of  ,   and the components of u  occur from that process, powers of the small 

steepness appear into those expansions. Up to 3( )O k A , the expansion of  , Eq. (7) and Eq. 

(8) yields, respectively,  
 

2 2
4

20

0 0

( )
2z z

z z

O k A
z z




 
  ,   (9)  

 

2
2 2

0 0

2 3
4

2

0

2
2

0
0 0

2 3
2

2

0

1 1

2 2

( )
2

1

2

2 2

z z

z

z
z z

z

t z t z

O k A g
z t

g
t z t

z z t






 

 









u u

u

u
4

0

( ) 0

z

O k A

  (10)  

 

and  
 

2 2
2

2

0

3 2 2
2

2 2

0

2 4 3
4

2 2 3

0

2 3 2 2

2 2 2

0 0

1

2

( ) 0
2

1

2

z

z

z

z z

g
z tt

g
z tz t z

g O k A
z t z

g g
z tt z t z







 






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

u
u u

u

u

u u
2 2 4 3

2 2

2 2 3

0

4

2

( ) 0.

z

g
z t z t z

O k A





u

 (11)  
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Thus, the assumed weak nonlinearity results in the appearance of scales in the nonlinear equa-

tions of the problem, via the appearance of powers of the steepness. Furthermore, it is known 

that in linear problems, where the principle of superposition stands, the superposition of har-

monics with similar frequencies leads to the formation of an envelope [(Stoker 1957; Debnath 

1994; Mei, Stiassnie, and Yue 2005)]. Inspired by that, given the narrowbandedness of the wa-

vetrains and that the weak nonlinearity should lead to slow energy exchange between the modes 

during their interaction, such wavetrains can be viewed as slowly modulated ones, around a 

carrier wave described by k  and A  [(Whitham 1974; Debnath 1994; Johnson 1997)]. Those 

observations constitute adequate indications for the use of the MSM.  
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3.3. The MSM in the governing equations of the problem  
 

This section is dedicated to the implementation of the MSM in the problem of weakly nonlinear, 

narrow-banded wavetrains. During that procedure, we follow closely (Mei, Stiassnie, and Yue 

2005).  

 

 

3.3.1. General set–up and derivation of the corresponding perturbation hierarchy  
 

As explained previously, we consider the wavetrains we want to study as wavetrains around a 

carrier wave of wavenumber k  and amplitude A  that experience slow spatiotemporal modula-

tions. Hence, considering the steepness k A  as the problem’s perturbation parameter  (1) (i.e. 

k A ), we put into effect the MSM [(Nayfeh 2008)]. First, therefore, we introduce, as inde-

pendent variables, the temporal scales  
 

i
iT t ,  0i ,       (1a)  

 

and, assuming that the wavetrains propagate in the x  direction, the spatial ones  
 

j
jX x ,  0j .       (1b)  

 

Allowing, also, for slow modulation alongside the y  axis, we additionally define the scales  
 

k
kY y ,  k .        (1c)  

 

Thus, hypothesizing that the unknown fields   and   depend on the above variables, we pos-

tulate, for them, the existence of asymptotic solutions of the form  
 

0 1 2 1 2 0 1 2( , , ; ; ) ( , , ,..., , ,..., ; , , ,...; )x y z t X X X Y Y z T T T      (2)  

and  
 

0 1 2 1 2 0 1 2( , ; ; ) ( , , ,..., , ,...; , , ,...; )x y t X X X Y Y T T T    .      (3)  
 

For those solutions, we further assume that they can be expressed by means of the asymptotic 

expansions  
 

1

n
n

n

           (4)  

and  
 

1

n
n

n

   ,         (5)  

 

where, 1,2,...n , { } { } { }( , , ; )n n j k iX Y z T   and { } { } { }( , ; )n n j k iX Y T  .  

 

The above Eqs. (2)-(5) are substituted into Eqs. (4), (5), (10) & (11) of the previous section and, 

also, the various derivatives contained in the latter acquire new forms, according to the chain 

rule. Specifically, using Eqs. (1)-(3), and with ( , )Q Q  denoting either ( , )   or ( , )  , it ap-

plies that  

                                                 
(1) The problem of weakly nonlinear, narrow-banded wavetrains is governed by three different kinds of scales, 

owed to the (small) steepness, the narrowness of the bandwidth and the assumed slow modulation. Generally, the 

determination of the relative importance of the various scales is not a trivial matter [(Dingemans 1997; Johnson 

1997)]. In the present context, nevertheless, the balancing of the effects of nonlinearity and dispersion is achieved 

by expressing them all via the same perturbation parameter   [(Benney and Roskes 1969; Slunyaev 2005)].  
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X X X
x
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t
T T T

Q Q QQ

Q Q Q

Q Q Q Q

 

 

 

.    (6a)  

 

In the same fashion,  
 

0 1 2

1 2

0 1 2

2

2

2

( ...)

( ...)

( ...)

X X X

x x

y y Y Y
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2
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x x

y y Y Y

t t
T T T T T T T T

Q Q Q QQ

Q Q

Q Q Q Q Q

 


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 (6b)  

 

Next, the aforementioned substitution is followed by some algebra and the grouping of the terms 

of like powers of  , up to 3( )O  . As a result, the Laplace equation becomes  
 

0 0 0 0 0 1

0 0 0 1

1 1 1 1 0 2

2
1 1 2 2 1

3
3 3 2

4
1 1 1

( ) ( 2 )

( 2

2 ) ( ) 0,

X X z z X X z z X X

X X z z X X

X X Y Y X X O

      

   

   

  (7)  

 

while the bottom’s impermeability condition turns into  
 

2 3 4
1 2 3 ( ) 0z z z O       .     (8)  

 

As for the dynamic and combined boundary conditions of the free surface, they are respectively 

shaped, on 0z , as  
 

0 0 1

0 0 0

2 1 0 1 0 0

2
1 1 2 2 1

2 2 3
1 1 1 , 1 3 3

1 2 1 1 1 2

( )

1
{( ) ( ) }

2

T T T

X z T z T

T T X X X X

g g

g

      

      

     
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1 0 0

0 0 0

1 2 1 , 1 2 , 1 1 , 2

2 4
1 1 , 1 1 1 1 1 , 1

1
( ) 0

2

z z T z T z T z

X X z z z z T z z O
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 (9)  

and  
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Consequently, we conclude to the perturbation hierarchy  
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    (11c)  

 

Hence, at each order of the perturbation parameter  , and given that we search for periodic 

solutions with respect to 0T , a boundary value problem for the respective potential component 

arises, composed of that order’s first three equations. Those boundary value problems, inde-

pendently of the order of  , are governed by the linear operators  
 

0 0 0, ( ) ( ) ( )X z X X z z ,   0h z ,              (12a)  
 

( )z ,               z h ,              (12b)  

and  

0 0
( ) ( ) ( )T T zg ,              0z .              (12c)  

 

Provided the velocity potential of an order, the corresponding elevation can be determined via 

the respective free surface’s dynamic boundary condition (last equation of each order).  

 

The first problem of the hierarchy is actually the linearized WWP and has, therefore, the known 

solution [(Stoker 1957; Debnath 1994; Johnson 1997)]  
 

0 0( )

1 1 1

cosh[ ( ) ]
( )

cosh( )

j k X Tg k z h
C j A e

k h





, 

 

where 1C  and 1A  are functions of the slow scales 1 2 1 2 1 2( , ,..., , ,..., , ,...)X X Y Y T T . That, and the 

form of the nonlinear forcing terms on the free surface, leads to higher order solutions that 
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contain not only the fundamental harmonic 0 0exp [ ( ) ]j k X T , but also higher ones, based 

on it. Thus, we represent each n  as (2) [(Davey and Stewartson 1974; Mei, Stiassnie, and Yue 

2005)]  
 

0 0( )
n

j m k X T

n nm

m n

e


  ,       (13)  

 

where { }n
nm m n  is a set of appropriate complex amplitudes. For those, it applies that 

1 2 1 2 1 2( , ,..., , ,..., ; , ,...)nm nm X X Y Y z T T   and, additionally, ,n m nm  , so that n  is 

real.  

 

The new assumed expressions for the potentials { }n , namely Eqs. (13), are inserted into the 

perturbation hierarchy and, hence, reshape it. In particular, for the first order of the latter we 

conclude to  
 

0 0

0 0

0 0

0 0

0 0

0 0

10

( )2
11 11

( )2
1, 1 1, 1

10

( )1
11

( )

1, 1

10

( )2
11 11

( )2
1, 1 1, 1

( )

( ) 0, 0

( ):

0,

( )

( ) 0,

z z

j k X T

z z

j k X T

z z

z

j k X T

z

j k X T

z

z

j k X T

z

j k X T

z

k e

k e h z

O e

e z h

g

g e

g e z















 

 



 





  

   0.

            (14a)  

 

Regarding the other orders of the hierarchy, due to the size of the equations they contain, they 

are included in Eqs. (14b) & (14c) of the Appendix C. As mentioned before, furthermore, the 

spatiotemporal scales, οn which the unknown fields depend, are considered as independent var-

iables [(Mei, Stiassnie, and Yue 2005; Nayfeh 2008; Holmes 2012)]. Thus, the nm -expres-

sions, which are functions of the slow scales only and accompany the harmonics (functions of 

the fast scales 0 0,X T  ) can be viewed as coefficients of the latter. As a consequence, the various 

equations, contained in Eqs. (14), are valid only when those coefficients are equal to zero, since 

each equation consists of a zero rhs (linear independence of the harmonics). Accordingly, there 

arises a boundary value problem for each nm . In that spirit, from the first order of the pertur-

bation hierarchy we obtain  

                                                 

(2) Another approach is to solve for 
n

 , at each order of the perturbation hierarchy, and, then, eliminate all the 

secular (that is, non–periodic) terms, since the solutions in search are supposed to be periodic. Ultimately, the 

outcome is the same, but this approach is obviously more involved in terms of the required calculations [(Johnson 

1997)].  
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10

10

10

2
11 11

1
11

2
11 11

2
1, 1 1, 1

1, 1

2
1, 1 1, 1

0, 0

0,

0, 0

0, 0

( ): 0,

0, 0

0, 0

0,

0, 0.

z z

z

z

z z

z

z

z z

z

z

h z

z h

g z

k h z

O z h

g z

k h z

z h

g z







 

 

  

 



  

              (15a)  

 

Similar results are derived for the other orders of the hierarchy, which are expressed via Eqs. 

(15b) & (15c) of the Appendix C.  

 

 

3.3.2. Determination of the complex amplitudes { }nm via the successive solution of the 

perturbation hierarchy  
 

We move forward with the solution of the boundary value problems of Eq. (15a), which happen 

to be homogenous. As for 10 , it is easily seen that  
 

10 { 1} { 1} { 1} 10 { 1} { 1} { 1}( , , ; ) ( , ; )X Y z T C X Y T .    (16)  
 

That is, it is an arbitrary function of the slow scales. Next, there remain 11  and 1, 1 , where it 

suffices to find one of them, since the other is its complex conjugate. Working with 11 , and 

given that in our case k  is real, from  
 

2
11 11 0z z k  , 

 

it occurs that its general solution is  
 

11 1 2
k z k zC e C e , 

 

where 1 1 { 1} { 1} { 1}( , ; )C C X Y T  and 2 2 { 1} { 1} { 1}( , ; )C C X Y T . Fitting, afterwards, the 

seabed’s boundary condition gives  
 

11 1 2

2
1 2 2 1

0 0

0 .

k z k z
z

z h z h

k h k h k h

k C e k C e

k C e k C e C C e


 

 

Thus, after some algebraic manipulations,  
 

11 { 1} { 1} { 1} 11 { 1} { 1} { 1}( , , ; ) ( , ; )cosh[ ( ) ]X Y z T C X Y T k z h .  (17)  
 

Using, then, the above expression into the boundary condition of the free surface, we obtain  
 

2 2
11 11 11

0
0 [ sinh( ) cosh( )] 0z

z
g C g k k h k h    . 
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Accordingly, for nontrivial solutions, we require that  
 

2 tanh( )g k k h ,           (18)  
 

which, of course, is the (known) dispersion relation that arises in the context of the linearized 

WWP (3) [(Stoker 1957; Whitham 1974; Debnath 1994)].  

 

Before proceeding with the solution of the boundary value problems of 2( )O  , it is possible 

to further shape 11 , by taking advantage of the dynamic condition of Eq. (11a). In particular, 

via Eqs. (13), (16) & (17),  
 

0 0( )

1 10 11{ cosh[ ( ) ] ( )}
j k X T

C C k z h e


 . 
 

As a consequence, inserting 1  into the aforementioned condition yields  
 

0 0

0

( )

1 1 1 11
0

1
cosh( ) ( )

j k X T

T
z

j C k h e
g g


   . 

 

Though, in general, 1  can be also written in the form  
 

0 0( )

1 { 0} { 1} { 0} { 1} { 1} { 1}( , ; ) ( , ; ) ( )
j k X T

X Y T A X Y T e


 ,  (19)  
 

where A  is an arbitrary, slowly modulated amplitude. With that being the desired expression 

for the elevation 1 , we obtain  
 

11 11

1
cosh( )

cosh( )

g
j C k h A C j A

g k h




, 

 

so that, after all,  
 

11 { 1} { 1} { 1} { 1} { 1} { 1}

cosh[ ( ) ]
( , , ; ) ( , ; )

cosh( )

g k z h
X Y z T j A X Y T

k h



.            (17’)  

 

That, of course, leads to the final form  
 

0 0( )

1 10

cosh[ ( )]
( )

cosh( )

j k X Tg k z h
C j A e

k h





.      (20)  

 

for the first-order component of the velocity potential.  

 

Next in line is the determination of the complex amplitudes of 2( )O  . The first we encounter 

is 20 , which is governed by the boundary value problem (see Appendix C)  
 

20

20

20

, 0

0,

0, 0.

0
z z

z

z

h z

z h

g z







                (15b,i)  

 

Thus, as in the case of 10  (see Eq. (16)), 20  constitutes an arbitrary function of the slow 

scales, too. In other words,  
 

20 { 1} { 1} { 1} 20 { 1} { 1} { 1}( , , ; ) ( , ; )X Y z T C X Y T .    (21)  
 

                                                 
(3) As mentioned earlier, the problem of Eq. (11a) or, equivalently, the problems of Eq. (15a), coincides with the 

linear WWP. As a consequence, the result of Eq. (18) is, essentially, a priori expected.  
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Moving on, the amplitude 21  results from the solution of  
 

1

1

2
21 21

21

2
21 21

cosh[ ( ) ]
2 , 0

cosh( )

0,

2 , 0.

z z X

z

z T

g k k z h
k A h z

k h

z h

g g A z

 




  

       (15b,ii)  

 

The above is clearly an inhomogeneous boundary value problem. Due to that, whether it has a 

solution or not is under question. In particular, invoking Fredholm’s alternative theorem [(Evans 

1998)], since the respective homogeneous problem has the nontrivial solution 11  (see Eqs. 

(15a) & (17’)), the problem of Eq. (15b,ii) is solvable if and only if the solvability condition 

[(Mei, Stiassnie, and Yue 2005; Ablowitz 2011; Nayfeh 2011; Holmes 2012)]  
 

0

02 2
21 21 11 21 11 11 21 11 21 11( ) ( )z z z z z z

h

h

k k d z           

 

is satisfied. The above is, of course, the application of Green’s theorem to 11  and 21 . But it 

further applies that  
 

2
11 11 0, 0z z k h z   

and  
2

21 21 21 ( ), 0z z k f z h z  , 
 

where 21 ( )f z  is the forcing term of the problem (15b,ii), i.e. the rhs of the differential equation 

towards 21 . Thus, the solvability condition becomes  
 

0

0

21 11 21 11 21 11

0

21 11 21 11 21 11
0 0 0 0

0

21 21 21
0 0

21

cosh[ ( ) ]
tanh( )

cosh( )

cosh[ ( ) ]

co

z z h

h

z z

h

z

h

f d z

f d z

k z h
f d z k k h

k h

k z h
f

    

    

 

0

21 21
0

tanh( ) .
sh ( )

z

h

d z k k h
k h

 

 

 

Moreover, exploiting the dispersion relation of Eq. (18), we finally get  
 

0

2
21 21 21

0

cosh[ ( ) ] 1

cosh( )
z

h

k z h
f d z g

k h g
   ,    (22)  

 

where the bracketed expression is the free surface’s boundary condition. Given Eq. (22), after 

making the necessary substitutions for 21f  and the aforementioned condition, we are led to  
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1 1

2
1 0

2 sinh(2 )
T X

k h
A A

k k h


,      (23)  

 

which is a necessary condition regarding the amplitude A , so that the final perturbation expan-

sion of the potential may be uniformly valid. However, from the theory of the linearized WWP, 

and using Eq. (18) again, it is known that the group velocity gC  is [(Stoker 1957; Whitham 

1974; Debnath 1994)]  
 

2
1

2 sinh(2 )
g

d k h
C

dk k k h

 
. 

 

Thereby, Eq. (23) can alternatively be written as  
 

1 1
0T g XA C A .                  (23’)  

 

Requiring the satisfaction of the above equation, the boundary value problem of Eq. (15b,ii) has 

a solution, which is the sum of 11  and a particular solution. To find one, using the method of 

undetermined coefficients [(Boyce and DiPrima 2012)], we postulate that it is of the form  
 

21, { ( )}cosh[ ( ) ] { ( )}sinh[ ( ) ]p M k z h k z h N k z h k z h , 
 

where M  and N  are the “coefficients” (functions of the slow scales, but constant towards the 

variable z  of the differential equation) that need to be determined. Inserting the above equation 

into Eq. (15b,ii) yields  
 

1

1

2
21, 21,

2

cosh[ ( ) ]
2

cosh( )

{ ( )}cosh[ ( ) ] { ( )}sinh[ ( ) ]

{ ( )}cosh[ ( ) ] { ( )}sinh[ ( ) ]

cosh[ ( ) ]
2

cosh( )

sinh[ ( ) ] cosh[ (

z z p p X

z z

X

g k k z h
k A

k h

M k z h k z h N k z h k z h

k M k z h k z h N k z h k z h

g k k z h
A

k h

M k z h N k z

 




1
) ] cosh[ ( ) ].

cosh( )

X Ag
h k z h

k k h

 

 

So, equating the coefficients of the like functions of z  (hyperbolic sines and cosines), we get  
 

1 1

2
0 and

cosh( ) sinh( )

X XA Ag
M N

k k h k hk




. 

As a result,  

1

21, 2
{ ( )}sinh[ ( )]

sinh( )

X

p

A
k z h k z h

k hk


 .    (24)  

 

The complex amplitude 22 , onwards, is determined via the solution of  
 

2

22 22

22

2 2 2
2

22 22 2

4 , 00

0,

3
4 , 0.

cosh ( )

z z

z

z

k h z

z h

g k A
g j z

k h

 



  


        (15b,iv)  
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As before, we once more have to deal with an inhomogeneous boundary value problem. This 

time, though, the differential operator is not the same as in the other instances. Thus, we have 

to examine whether or not the respective homogeneous problem admits nontrivial solutions and 

proceed accordingly. In that direction, the latter’s general solution is  
 

2 2
22, 1 2

k z k z
h C e C e , 

 

where 1,2 1,2 { 1} { 1} { 1}( , ; )C C X Y T . Fitting the condition at the bottom results in  
 

2 2 4
22, 1 2 2 10 2 2 0k h k h k h

z h z h
k C e k C e C C e . 

So,  
2 2 ( ) 2 ( )

22, 1 22, 22( ) cosh[2 ( ) ]k h k z h k z h
h hC e e e C k z h  , 

 

where, again, 22 22 { 1} { 1} { 1}( , ; )C C X Y T . Of course, 22,h  must also satisfy the homoge-

neous boundary condition of the free surface. Namely, for a nontrivial solution it is necessary 

that  

2 2
22, 22,

0

tanh(2 )
4 0

2
z h h

z

k h
g g k    . 

 

But that is opposed to Eq. (18), which must remain valid [(Mei, Stiassnie, and Yue 2005)]. As 

a consequence, it is not possible for the homogeneous problem to admit nontrivial solutions. 

Due to that, Fredholm’s alternative theorem states that the problem of Eq. (15b,iv) has a unique 

solution for each choice of data. Here the forcing is zero, which means that  
 

22 22 cosh[2 ( ) ]C k z h . 
 

To satisfy, subsequently, the free surface’s boundary condition, it must be true that  
 

2 2 2
2

22 22 20

2 2 2
2

22 2

3
4

cosh ( )

3
{2 sinh ( 2 ) 4 cosh ( 2 )} .

cosh ( )

z
z

g k A
g j

k h

g k A
C g k k h k h j

k h

  





 

 

Exploiting, in addition, Eq. (18), and the identities  
 

sinh(2 ) 2sinh( )cosh( )k h k h k h  

and  
2 2cosh(2 ) sinh ( ) cosh ( )k h k h k h , 

 

the above expression is shaped as  
 

2 2 2 2
2 2

22 222 4

3 3
4 sinh ( )

4cosh ( ) sinh ( )

g k A A
k h C j C j

k h k h
 


. 

Consequently,  
2

22 4

3
cosh[2 ( )]

4 sinh ( )

A
j k z h

k h
  .     (25)  

 

Given the above complex amplitudes, the combination of Eqs. (21), (24) & (25), while remem-

bering Eq. (13), yields  
 

2 20 2

cosh[ ( ) ]

cosh( )

g k z h
C j A

k h



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0 0

1

0 0

( )

2
2( )

4

sinh[ ( ) ]
( ) ( )

sinh ( )

3
cosh[2 ( ) ] ( ) .

4 sinh ( )

j k X T

X

j k X T

k z h
z h A e

k k h

A
j k z h e

k h









  (26)  

 

As for the elevation 2 , inserting Eqs. (20) & (26) into the free–surface condition of Eq. (11b), 

we obtain  

1

1

0 0

1

0 0

2 10

( )

2

2
2( )2

3

1

2 sinh ( 2 )

1
tanh( )

cosh( ){2cosh ( ) 1}
( ).

2sinh ( )

T

T

j k X T

X

j k X T

g

k
C A A

k h

A j k h h A j A e

k k h k h
A e

k h








  (27)  

 

 

At this point, there remains the treatment of the boundary value problems of the third order of 

the perturbation hierarchy. It should be noted that, now, the primary goal is not to actually find 

the amplitudes 3{ }m . Our main interest, instead, lies in deriving the appropriate solvability 

conditions that will allow as to fully determine the asymptotic expansions   and   up to 

2( )O   and render them uniformly valid.  

 

Before proceeding with the derivation of those conditions, it is very important to highlight some 

laborsaving facts. In particular, as seen in Eq. (26), there exists an arbitrary amplitude 2A  as 

part of the general solution of the problem (15b,ii). The same equation contains, additionally, 

the arbitrary function 20C , which constitutes the solution of the problem (15b,i). However, us-

ing Eqs. (20) & (26) into Eq. (4), it can be easily seen that   contains a total mean-flow com-

ponent  
 

10 20C C C  
 

and a total amplitude of the fundamental harmonic  
 

2A A A . 

One can write the fields   and  , and their solvability conditions (Eq. (23) and the ones to be 

determined from 3( )O  ), in terms of C  and A . Then, using asymptotic arguments, it can be 

revealed that, after all, the influence of 2A  and 20C , up to the desired 2( )O  , is included in A  

and 10C , respectively (4) [(Nayfeh 2008; Holmes 2012)]. Consequently, from now on we will 

be taking  
 

2 20 0A C .         (28)  
 

                                                 

(4) Specifically, using A  and C ,  ,   and their solvability conditions, up to 
2

( )O  , acquire the same forms as 

before, with the difference that 
2

A  and 
20

C  vanish and, additionally, A  takes the place of A . Equivalently, in the 

existing equations, one can set 
2

A  and 
20

C  equal to zero and keep A  as it is (with the understanding that, in 

essence, it expresses A ).  



55 

Moving forward, with the complex amplitudes 1{ }m  and 2{ }m  known, the boundary value 

problem that governs 30
  is shaped as  

 

1 1 1 1

1 1 1 1

30 10 10

30

30 10 1 2

, 0

0,

( ) ( ), 0,

z z X X Y Y

z

z T T X T

C C h z

z h

g C S A A S A A z







         (15c,i)  

 

where, using partially Eq. (23), as in (Mei, Stiassnie, and Yue 2005), to reduce the length of the 

subsequent expressions,  
 

3

1 1 2

2
( , )

tanh ( )
S S k h

k k h


       (s1)  

and  
2

2 2 2
( , )

sinh ( )
S S k h

k h


.       (s2)  

 

Obviously, the above problem is inhomogeneous and, additionally, the respective homogeneous 

problem has the nontrivial solution  
 

30, { 1} { 1} { 1} 30 { 1} { 1} { 1}( , , ; ) ( , ; )h X Y z T C X Y T . 
 

As a consequence, again via Fredholm’s alternative theorem, for the problem of Eq. (15c,i) to 

be solvable, a suitable condition must be imposed. That arises, as before, from the use of Green’s 

theorem, to 30C  and 30  this time. Therefore, it must be satisfied that  
 

1 1 1 1

1 1 1 1

0

0

30 30 30 30 30 30 30 30

0

10 10 30 30 30
0

10 10 30 30 30
0

( )

( ) ,

{ }z z z z z z
h

h

X X Y Y z

h

X X Y Y z

C C d z C C

C C C d z C

C C C h C

   





 

 

which, after some trivial calculations, becomes  
 

1 1 1 1 1 1 1 110 10 10 1 2( ) ( ) ( )T T X X Y Y X TC g h C C S A A S A A .  (29)  
 

The above equation constitutes a solvability condition that affects the derivatives of 10C  in 

relation to those of A .  
 

Keeping in mind that our objective, regarding the amplitudes of 3( )O  , is only the establish-

ment of solvability conditions, the last boundary value problem that we need to deal with is that 

of 31 . That is because, as with the case of 22 , the homogeneous versions of the boundary 

value problems that correspond to 32  and 33  do not have any nontrivial solutions, due to the 

dispersion relation of Eq. (18), whose validity has to be preserved. Thus, no solvability condi-

tions are derived in the process of solving for those amplitudes.  

 

The complex amplitude 31  is defined by the problem  
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2

31 31

31

2

31 31 1

31 , 0,

0, ,

, 0,

z z

z

z

k f h z

z h

g Q z

 



  

            (15c,ii)  

 

where  

1 1 1 1 2

1 1

31

2 cosh[ ( ) ]
( )

cosh ( )

sinh[ ( ) ]
2 ( )

sinh ( )

X X Y Y X

X X

f
g g k k z h

j A A A
k h

k z h
j A z h

k h

 



 

and  

2 1 1 1 1

1 1

1

2

2
10 10 3

2 2

2
2 ,

sinh ( 2 )

T T T T X

X T

Q
g h

g A j A j A
k

k
j g k A C j A C j S A A

k h






 

with  
3

2
3 3 5

cosh( )
( , ) {cosh(4 ) 8 2 tanh ( )}

16sinh ( )

k k h
S S k h k h k h

k h


.  (s3)  

 

Because of the same structure of the problems (15b,ii) and (15c,ii), the solvability condition of 

the latter arises from adjusting Eq. (22) as  
 

0

2
31 31 31

0

cosh[ ( ) ] 1

cosh( )
z

h

k z h
f d z g

k h g
   . 

 

After some calculations, the above equation yields the solvability condition  
 

2 2

1 1 1 1 1 1 1 1

1 1

2
2

10 10 32

2 2

1
2 tanh( )

1
2 0.

cosh ( )

T g X

g

Y Y X X T T T X

X T

A C A

C g h
j A j A j A j h k h A

k

k
j k A C j A C j S A A

gk h

 



 (30)  
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3.4. Derivation of the NLS equation  
 

At this point, a summary of the results obtained in the previous section should be made, for 

easier reference. In that spirit, the asymptotic representation of the velocity potential of slowly 

modulated wavetrains is  
 

0 0

1

0 0

10

( )2

2
2( )2 3

4

cosh[ ( ) ]

2 cosh( )

sinh[ ( ) ]
( )

sinh( )

3
cosh[2 ( ) ] ( ) ( ),

4 sinh ( )

j k X T

X

j k X T

C g k z h
j A

k h

k z h
z h A e

k k h

A
j k z h e O

k h





 





  



 (4’)  

 

whereas the respective representation for the free-surface elevation has the form  
 

1

1

0 0

1

0 0

2
10

( )2 2

2
2( )2 2 3

3

1

2 sinh(2 )

1
tanh( )

cosh( ){2cosh ( ) 1}
( ) ( ).

2sinh ( )

T

T

j k X T

X

j k X T

g

k
C A A

k h

A j k h h A j A e

k k h k h
A e O

k h
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 (5’)  

 

As for the unknown functions 10C  and A , moreover, they are subject to the solvability condi-

tions  

1 1
0T g XA C A ,                  (23’)  

 

1 1 1 1 1 1 1 110 10 10 1 2( ) ( ) ( )T T X X Y Y X TC g h C C S A A S A A   (29)  

and  
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1

10

2
2

10 32

2 2

1
2 tanh ( ) 2
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g
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T

C g h
A C A j A j A

k

j A j h k h A j k A C

k
j A C j S A A

gk h







   (30)  

 

where 1S , 2S  and 3S  are known expressions of the wavenumber k  and the uniform depth h  

(see Eqs. (s1)-(s3) of Sec. 3.3). Those conditions are exactly the means with which we can 

derive the evolutionary equations that govern the slowly varying functions 10C  and A .  

 

Several additional assumptions can be made for the wavetrains under examination, which lead 

to different model equations for them. One direction is to ignore the dependence of 10C  and A  

on the very slow spatiotemporal scales ( 2T , 2X  and 2Y ) and, then, solve Eq. (23’) for 
1T A , 

substituting the subsequent result into the higher-order Eqs. (29) & (30). Afterwards, adding Eq. 

(23’) to the latter as a final step, a new form of Eqs. (29) & (30) is obtained that corresponds to 

the BR system of evolutionary equations [(Benney and Roskes 1969; Mei, Stiassnie, and Yue 
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2005)]. Another approach is to preserve the dependence of 10C  and A  on 2T , excluding only 

their dependence on 2X  and 2Y . Then, setting  
 

1 1gX C T          (31)  
 

and assuming that 1( , ; )A A Y   and 10 10 1( , ; )C C Y  , where 2T , results in a modi-

fication of Eqs. (29) & (30), which, this time, is equivalent to the DS system of equations 

[(Davey and Stewartson 1974)].  

 

In addition to the above assumptions that lead to the DS equations, let us now ignore the de-

pendence of 10C  and A  on 1Y  as well, so that no modulation occurs alongside the y  axis. As 

a consequence, the aforementioned slowly varying functions acquire the forms  
 

10 10( ; ) and ( ; )A A C C    .     (32)  
 

It should be noted that the motivation for the introduction of the variable   emerges from Eq. 

(23’), which states that the modulational disturbance of the weakly nonlinear, narrow-banded 

wavetrains propagates with nearly (1) gC  [(Hasimoto and Ono 1972)]. Establishing, besides, 

Eqs. (32) leads to the immediate satisfaction of Eq. (23’). Taking into account those considera-

tions, and using the chain rule, it follows that (2)  
 

1

1

X

Q
Q Q

X





,                    (33a)  

and  

1

1

T g

Q
Q C Q

T





,                 (33b)  

 

where Q  denotes either 10C  or A . Thus, using Eqs. (33) into Eqs. (29) & (30), the latter acquire 

the forms  
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             (29’)  

and  
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           (30’)  

 

respectively. Integrating Eq. (29’) once with respect to  , yields  
 

1 2 2
10 2

| | ( )
g

g

S C S
C A K

C g h
  , 

 

( )K   being an arbitrary function of  , due to the  -integration. As a result, inserting the above 

into Eq. (30’), we obtain  
 

                                                 

(1) To the 
2

( )O   approximation, within which the solvability condition of Eq. (23’) occurs.  

(2) The variables (scales) are still considered independent with each other (initial assumption of the MSM). Namely, 

  is independent of 
1

T .  
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  (34)  

 

The above Eq. (34) constitutes the cubic NLS equation, which can further be written in the more 

compact form [(Mei, Stiassnie, and Yue 2005)]  
 

2| | 0j A A A A A     ,      (35)  
 

provided that  
 

2 2

2

1 1
tanh( )

2 2 2 2
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C dCg h d
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k C S C S
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gk h C g h



,                 (36b)  

and  

2
1 ( )

2 cosh ( )

gk C
k K

k h
 


.                 (36c)  

 

The parameter   is always positive, since   is always negative (see (Mei, Stiassnie, and Yue 

2005) and Appendix D). The sign of  , on the other hand, depends on the value of k h , affect-

ing critically the NLS equation’s predictions [(Sulem and Sulem 1999)], and its change occurs 

for 1.363k h , which corresponds to the BFI [(Benjamin and Feir 1967)]. Moreover, intro-

ducing the transformation [(Hasimoto and Ono 1972; Mei, Stiassnie, and Yue 2005)]  
 

( ; ) ( ; ) expA B j d      ,      (37)  
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and using it into Eq. (35), the same equation can also be expressed as  
 

2
0j B B B B    ,      (38)  

 

in terms of the redefined amplitude ( ; )B   .  

 

Introducing an appropriate transformation of the complex amplitude, which essentially means 

to write ( ; )A    or ( ; )B    in polar form, the NLS equation can also be formulated in terms 

of real functions, as a coupled system involving the magnitude and phase of that amplitude. For 

more on that, the interested reader is referred to (Mei, Stiassnie, and Yue 2005).  

 

The use of the NLS equation in the study of wavetrains, quantitatively or qualitatively, is out of 

the scope of the present thesis. Though, extensive relevant information is provided in the given 

literature of Sec. 3.1.  
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Chapter 4  
 

 

The Averaged Variational Principle in weak-

ly nonlinear, narrow-banded wavetrains  
 

“I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I- 

I took the one less traveled by, 

And that has made all the difference.” 
 

ROBERT FROST - The Road Not Taken 

 

 

 

 

 

 

4.1. Introduction  
 

In Ch. 3 we derived, under various assumptions, the evolutionary equations that govern the slow 

modulation of weakly nonlinear, narrow-banded wavetrains, by using the MSM. That method, 

however, is not the only one that can be implemented for the study of such wavetrains. Another, 

as also mentioned in Sec. 1.4, is Whitham’s AVP.  

 

The question arises, therefore, as to how the problem is viewed in terms of the latter method 

and how its results compare to those obtained otherwise. In other words, the matter in regard to 

the connection between the two methods is set.  

 

Except for the relevant literature of Sec. 1.4, many other contributions have been made 

throughout the years on the application of the AVP to the WWP (1). (Lighthill, 1967) used the 

AVP to study various special cases. (Whitham, 1967), concurrently, applied his method to linear 

and slowly modulated wavetrains, examined in more detail the derived evolutionary equations 

and, further, used the AVP to investigate the stability of periodic waves, relating his findings to 

those of (Benjamin and Feir, 1967). Subsequently, (Bretherton, 1968) studied various cases of 

wavetrains propagating in inhomogeneous moving media, whereas (Simmons, 1969) dealt with 

weak, resonant wave interactions, paying special attention to the interaction of capillary-gravity 

waves. (Chu and Mei, 1970), on the other hand, were the first to introduce the dispersive term 

now known as “Chu-Mei quotient” and noted the need for its inclusion to the theory of Whitham. 

Not much later, (Hayes, 1973) extended the results of Whitham to the case of waves that 

propagate in two spatial dimensions, while (Dysthe, 1974) slightly modified the AVP, as it had 

already been indicated by Whitham, to remedy the inadequacies of the latter’s approach in 

regard to the BFI. Until then, however, the precise connection between the AVP and other 

formal perturbation methods, in the context of the derivation of evolutionary equations such as 

the NLS, had not been clarified completely. Significant progress in that direction was made by 

                                                 
(1) The AVP has also been applied to problems of other scientific areas, but that is out of our scope.  
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(Yuen and Lake, 1975, 1982), who managed to derive the NLS equation for waves in deep 

water, via the AVP, by using an appropriate ansatz, for the velocity potential, that contained 

derivatives of the amplitude. Since then, the AVP has been applied to various other cases. For 

example, (Jimenez and Whitham, 1976) modified it to study problems that include small 

dissipation, (Peregrine and Thomas, 1979) investigated the evolution of wavetrains on large-

scale currents, (Easwaran, 1986) dealt with capillary-gravity Stokes waves in water of arbitrary 

depth and (Kirby, 1986), considering Stokes waves as well, examined their gradual reflection 

in varying seabed topography. In addition, (Bhakta, 1988) used the AVP to derive a nonlinear 

dispersion relation for the NLS. Years later, (Sedletsky, 2012), introducing some improvements 

to the approach of Whitham, concluded to the use of appropriate ansatzes that allowed him to 

derive the NLS equation for water in arbitrary depth, generalizing essentially the work of Yuen 

and Lake. In particular, he enriched Whitham’s trial functions by considering corrections that 

allow for phase shifting and, also, by taking into account the slow spatiotemporal variation of 

all the amplitudes that are included in the ansatzes, and not only the variation of the free-surface 

elevation’s fundamental amplitude. Subsequently, (Sedletsky, 2013) refined his earlier work, 

while (Sedletsky, 2015) reimplemented it using complex amplitudes. That allowed (Sedletsky, 

2016) to derive the DS system of equations in terms of the AVP.  

 

Despite the notable amount of contributions, regarding the study of the WWP via the AVP, up 

to now, and to our knowledge, there seems to exist a yet unresolved issue, which, in a sense, 

renders the method insufficient. As is known (see Sec. 1.4 and Ch. 2), the implementation of 

the AVP requires the use of appropriate ansatzes for the fields that govern the wavetrains under 

examination. But, to obtain the averaged Lagrangian for waves in water of either infinite or 

arbitrary depth, an integration with respect to the vertical coordinate is involved. Thus, the 

apparent need for the a priori knowledge of the velocity potential’s vertical dependence arises. 

To handle that matter, (Whitham, 1967, 1974), among others, utilized Stokes’ expansions, while 

(Yuen and Lake, 1975, 1982) used an ansatz, in which there was already embedded a suitable 

vertical structure. Similarly, (Sedletsky, 2012, 2013, 2015, 2016) introduced a trial function for 

the potential, where the dependence on the vertical coordinate was inspired by the results of 

(Slunyaev, 2005), which were obtained by using the MSM. In other words, before proceeding 

with the actual implementation of the AVP, it seems that the vertical dependence has to be 

already known by means of an “external” source.  

 

The above matter has, obviously, a negative impact on the AVP, as it renders it nonautonomous 

and restricts its applicability. Dealing, though, with the problem of uniform wavetrains (see Ch. 

2), we found out that, in that case at least, the AVP is in truth capable of yielding the vertical 

dependence by considering, first, the respective “vertical problem”. It is our intention, therefore, 

to examine whether or not that is true for slowly modulated wavetrains as well and, further, to 

evaluate the outcome of that approach, in comparison to the findings of Sedletsky, which 

coincide with the established results obtained via perturbation methods such as the MSM (see, 

also, Ch. 3).  
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4.2. Derivation of the NLS equation  
 

In what follows, we implement the AVP in the case of weakly nonlinear and narrow-banded 

(i.e. slowly modulated) wavetrains. We do so for waves centered around a carrier wave of wave-

number k  and frequency  , over a seabed of uniform depth h .  

 

 

4.2.1. Prerequisites and assumptions for the unknowns of the problem  
 

To utilize the AVP, we need a variational formulation of the problem at hand, which, in contrast 

with that of Ch. 2, is not steady. This time, therefore, we consider the general variational for-

mulation of Sec. 1.2, for the WWP, which reads  
 

[ , ; , ] [ , ; ] [ , ; ] 0             S S S ,     (1)  
 

( , ) adm   , where the action functional is  
 

[ , ] [ ( ; ), ( , ; ) ]

T X

x t x t d x d t  S      (2)  

 

and, regarding the Lagrangian density,  
 

2 2
1

2
h

g z d z
t x z



  
.    (3)  

 

As usual,   denotes the free-surface elevation and   the velocity potential. Moreover, X  

is the horizontal region of interest of the fluid domain and, respectively, 0 1[ , ]T t t  the time 

interval within which the problem is studied.  

 

Before proceeding with the determination of appropriate ansatzes for the fields   and  , which 

is also required by the method, a remark should be noted first. As is evident, three smallness 

parameters (parameters of (1)o ,that is) occur in the problem of narrow-banded wavetrains of 

weak nonlinearity, due to (see (Mei, Stiassnie, and Yue 2005), (Sedletsky 2012, 2013) and, also, 

Ch. 3):  
 

• the assumption of small wave motion (small steepness),  
 

• the narrowness of the spectrum, around the supposed carrier wave, and  
 

• the introduction of slow spatiotemporal scales, in which the waves are modulated.  
 

Generally, the relative values of those parameters depend on the proper balancing between the 

nonlinearity, the dispersion and the spectrum narrowness [(Debnath 1994; Ablowitz 2011)]. 

Referring, however, to Ch. 3, and assuming consistency between the MSM and the AVP, we 

express them all via the same perturbation parameter   (1) [(Sedletsky 2012, 2013)].  

 

Returning to the matter of the wave fields’ trial functions, we adopt as a basis the general form 

of the Fourier perturbation expansions of Sec. 2.2 (see Eqs. (4) & (5)). Yet, to comply with the 

nature of the problem, we generalize them allowing for the slow spatiotemporal modulation of 

the wave parameters. Namely, the unknown Fourier “coefficients” are now slowly varying func-

tion in space and time. That is not the only generalization we introduce, though. We additionally 

                                                 
(1) In deriving the NLS equation via the MSM, the balancing of the various effects is achieved by using a single 

perturbation parameter. For more details, see also Footnote 1 of Sec. 3.3.  
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allow for possible phase shifts at higher orders (2). Thus, dropping the use of dimensionless 

unknowns and keeping terms up to 
2( )O  , we conclude to the trial functions  

 

2
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and  
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



 (5)  

 

Those ansatzes generalize, in essence, the improved approach of (Sedletsky 2012, 2013). Evi-

dently, { }
ˆ{ , } i ja a  and { }

ˆ{ , } i jb b  constitute the amplitudes of the harmonics, some of which may 

be phase-shifted, while the unknown vertical functions { }i jK  may generally depend on the slow 

spatiotemporal scales as well. The reason for this is that, since the other unknowns are slowly 

varying functions of x  and t , the possible presence of such terms in the EL equations of the 

vertical functions cannot be excluded. As for the phase  , given the narrowness of the spectrum 

around the values ( , )k  , it reads [(Yuen and Lake 1975; Sedletsky 2012, 2013)]  
 

( , ) ( , )x t k x t x t   ,       (6)  
 

where for the function   we impose the constraint that its derivatives experience slow spatio-

temporal variations. Namely,  
 

( , ) and ( , )x x t tx t x t        .     (7)  
 

As a consequence, we end up with the generalized wavenumber  
 

( , ) ( , )x x xx t k x t              (8a)  
 

and the generalized wave frequency  
 

( , ) ( , )t t tx t x t        .      (8b)  
 

Thus, the ,x t -derivatives of   act as slow modulations of the basic values k  and  , respec-

tively (3). Regarding  , it constitutes a second-order, wave-induced mean elevation, whereas

                                                 
(2) The same freedom, with regards to the effect of phase shifting, can be considered in the case of the uniform 

wavetrains of Ch. 2, too. Though, it turns out that there do not occur any phase shifts in that instance and, as a 

result, the additional coefficients just vanish. First-order phase shifts can further be introduced as well. The phase 

difference between the respective terms of   and  , however, is always that of the linear case ( / 2 ). So, the 

use of cos ( )  in the first-order approximation of the one field induces the presence of sin ( )  in that of the other.  

(3) Alternatively, and in a more straightforward manner, introducing the functions ( , )k x t   and ( , )x t   , one 

can express   as  
 

     ( , ) [ ( , ) ] [ ( , ) ] [ ( , ) ( , ) ]x t k k x t x x t t k x t k x t x x t t                . 
 

But, then,  
 

     
1

( , ) ( , ) [ ( , ) ( , ) ] ( , )
x x x x

x t k k x t x k x t t x t k f x t
 

                   
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  is a function that incorporates, in this case of nonuniform wavetrains, the modulated exten-

sions of both the wave-induced mean flow and the Bernoulli constant (4) [(Whitham 1967, 1974; 

Dingemans 1997; Sedletsky 2012, 2013)]. The absence of other like terms is owed to the ex-

ploitation of the results of Ch. 2, where the first-order elements of the mean elevation, the Ber-

noulli constant and the wave-induced mean flow vanish trivially (5,6).  

 

 

4.2.2. Implementation of the AVP  
 

At this point, given the problem’s variational formulation and the above ansatzes for its un-

known fields, we are able to follow the procedure dictated by the AVP. As in the case of Stokes 

waves (Ch. 2) though, before addressing the total problem, first we have to deal with the com-

plicacy of the unknown vertical dependence of  , via the functions { }i jK . That necessity 

arises, as seen before, from the fact that, without that knowledge, the z -integration contained 

in the Lagrangian , Eq. (3), can’t be carried out. Accordingly, unless the presence of z  in 

{ }i jK  is known explicitly, it is not possible to move on with the study of the desired wavetrains.  

 

The vertical problem  
 

To overcome that difficulty, we initially consider the vertical problem, i.e. the problem of find-

ing the functions { }i jK , independently (see, also, Sec. 2.2). Therefore, viewing   merely as a 

parameter of the integration domain, we introduce the vertical Lagrangian  
 

2 2
1

2
vert g z

t x z

  
.        (9)  

 

Inserting Eq. (5) into Eq. (9), and averaging the latter with respect to the phase function, we 

obtain the averaged vertical Lagrangian  
 

2

0

1
( ; , ) ( , ; , )

2
vert vertz x t z x t d



     


.       (10)  

 

During the integration over  , the implicit assumption is made that the functions that vary 

slowly in x  and t  experience very little change within a period of the fast oscillations of the 

                                                 

and a similar result applies for 
t

 . That is, 
2

( , ) ( , )
t t

x t f x t        . Setting, therefore,  

     ( , ) ( , ) ( , )x t k x t x x t t      , 
 

those two ways of defining the phase are equivalent. However, leaving   completely arbitrary results in an un-

known parameter less and, also, in more compact relations [(Sedletsky 2012, 2013)].  

(4) As is known, the velocity potential of periodic waves can be written in an alternative form that contains the 

Bernoulli constant (see, also, Eq. (13, Sec. 1.3)). Then, in the case of slowly modulated (nearly periodic) wa-

vetrains, allowing additionally for wave-induced mean flow, instead of considering terms like  
 

     ( , ) ( , )x t x r x t t     , 

at each order of the potential’s ansatz, we equivalently use a single function ( , )x t   , as with  .  
 

(5) At first order, the linear theory is recovered, which does not include those (higher-order) effects [(Whitham 

1967, 1974; Debnath 1994)].  

(6) The Lagrangian contains only the derivatives of the potential, and not the potential itself, as only them have 

physical meaning. Upon differentiation of the potential with respect to x  and t , using the chain rule, the deriva-

tives 
x

  and 
t

  appear as second-order components (and not as first-order ones, like  ).  
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wave motion. Accordingly, while the integration is carried out, those slowly varying functions 

are viewed approximatively as constants [(Whitham 1974; Jeffrey and Kawahara 1982)]. That 

is an element of asymptotic nature, which characterizes the AVP when nearly periodic (instead 

of exactly periodic) waves are studied. After some calculations, and omitting the arguments of 

the various functions in an attempt to enhance the readability of the subsequent equations, Eq. 

(10) can be written as  
 

2 3 4 5
,2 ,3 ,4 ( )vert vert vert vertg z O    ,   (11)  

 

where  
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b


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Generally, after the averaging of the Lagrangian density, only slowly varying functions remain, 

regarding the variables x  and t . Thus, in the above equations, and throughout the remainder of 

this chapter, the notation x , t  is used for the slow scales x  and t . Namely, the ,x t -differ-

entiations contained in Eqs. (11) are differentiations in terms of the respective slow variables. 

With vert  known, the vertical action functional is shaped as  
 

{ } { } { },[ ] ( ( , , ), ( , , ),... )vert i j vert i j i j z

T X h

K K z t K z x t d z d x d tx



S , (12)  

 

where it should be reminded that, in the context of the assumed independent vertical problem, 

the free-surface elevation   is not treated as an unknown field. In that way, we are led to the 

variational equation  
 

4

,

2

0

0,

vert vert

T X h

i
vert i

i T X h

d z d x d t

d z d x d t





 

 

S

      (13)  

 

{ }( )i j admK . Hence, as in Sec. 2.2, the asymptotic character of the assumed trial function 

for the velocity potential results, in the context of the AVP, in a variational formulation that, in 

fact, consists of a perturbation hierarchy of variational equations. Naturally, we have to deal 

with that hierarchy sequentially. Starting with the lowest-order variational equation  
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, 2 0vert

T X h

d z d x d t



 ,                (13,i)  

 

and taking its 11K  variation, we obtain  
 

,2 ,2 2
11 11, 11

11, 11

: 0 0
vert vert

z z

z

K K k K
z K K

 . (14)  

 

The solution of the above differential equation leads to  
 

11 1 2( , , ) ( , ) ( , )k z k zK z x t A x t e A x t e ,     (15)  
 

where 1A  and 2A  are arbitrary functions that vary slowly in x  and t . Substituting Eq. (15) into 

the higher orders of Eq. (13), it is easy to verify that the 21K  variation of the next in line 

variational equation  
 

, 3 0vert

T X h

d z d x d t



                (13,ii)  

 

produces an EL equation that is satisfied identically. Thus, there remains the last equation of the 

variational perturbation hierarchy  
 

, 4 0vert

T X h

d z d x d t



 .              (13,iii)  

 

Considering, first, its variation with respect to 21K , the EL equation  
 

,4 ,4 ,4

21

21, 21, 21

1 2
2

21, 21

: 0
vert vert

k z k z
z z

vert

z x

K k K

K
z K x K K

e ef f


  (16)  

 

is yielded, where  

11 21 1, 1 11 21 21 11,

21 12
21 21

2
ˆ ˆ(

( ,
)

)
ˆ

xx x
f

b b A A b b b b
k t

b
f x

b


           (17a)  

and  

11 21 2, 2 11 21 21 11,

22 22
21 21

2
ˆ ˆ(

( ,
)

)
ˆ

xx x
f

b b A A b b b b
k t

b
f x

b


,           (17b)  

 

under, of course, the assumption that the amplitudes 21b  and 21b̂  do not vanish simultaneously. 

With the help of the method of undetermined coefficients [(Boyce and DiPrima 2012)], the 

solution of Eq. (16) turns out to be  
 

1 41 32 2( , , ) ( , ) ( , ) { ( , ) ( , ){ } }k z k zK z x t x t x t x te B z B e xB z B t ,(18)  
 

in which { }iB  are arbitrary, slowly varying functions. To be precise, in the actual solution via 

the method of undetermined coefficients, in the place of each { }iB  a combination of the forcing 
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terms of Eqs. (17) and the arbitrary functions of the respective homogeneous solution occur. Eq. 

(18) is the result of the redefinition of those arbitrary functions, given that the absorption of the 

various specific terms of Eqs. (17) into them has no effect on the solution of the total problem 

(7). The reason we proceed in that way is to simplify the form of the equations that follow in the 

next phase of the procedure, where, having determined the z  dependence explicitly, the AVP 

is applied to the total problem of slowly modulated wavetrains. Moving on with the 22K  var-

iation of Eq. (13,iii), we get  
 

,4 ,4 2
22 22, 22

22, 22

: 0 4 0
vert vert

z z

z

K K k K
z K K

 ,    (19)  

 

whose solution is  
 

2 2
22 1 2=( , , ) ( , ) ( , )k z k zz x t x t x tK C e C e ,     (20)  

 

where, again, 1C  and 2C  are arbitrary functions of the slow spatiotemporal variables. Conse-

quently, the vertical dependence of the potential’s trial function is given by Eqs. (15), (18) & 

(20), which are substituted into Eq. (5).  

 

The total problem  
 

At this point, we are able to return to the total problem and study it via the AVP. Thus, we first 

insert Eqs. (4) & (5) into Eq. (3), remembering that { }i jK  are expressed as above, so that the 

Lagrangian density becomes  
 

[ ( ; , ), ( , ; , ) ; ]x t x t   P ,      (21)  
 

P  being a vector of all the unknown wave parameters, in the ansatzes, that have to be found by 

the AVP. Namely,  
 

{ } { } { } { } {1,2} {1,2,3,4} {1,2}
ˆˆ( , , , , , , , , , )i j i j i j i ja a b b A B C  P .   (22)  

 

Then, carrying out the integration with respect to z , we subsequently introduce the averaged 

Lagrangian  
 

2

0

1
( ( , ) ) ( , ( , ) )

2
x t x t d



 


P P .     (23)  

 

As in Sec. 2.2, quantities of the form  
 

( )nk h nk h nk
nS e e e 

       (24)  
 

appear within the  -integral. So, to find the latter in terms of elementary functions, we approx-

imate the quantities nke   with their Maclaurin series, i.e.  
 

1

0

( )
( )

!

M m
nk m M

m

nk
e O

m

   ,      (25)  

 

                                                 
(7) As seen earlier (Sec. 2.2), the vertical problem aims only at finding the z -structure of the solution, whereas, 

knowing that structure, the determination of the unknown (and slowly varying, in this instance) terms of the an-

satzes is achieved by reapplying the AVP to the total problem. Hence, since upon the reimplementation of the AVP 

the dependence on z  is known explicitly, the form of the unknown arbitrary functions is unimportant, as, either 

way, the variational principle, containing all the information that defines the problem, will shape them accordingly.  
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exploiting the fact that ( )O   and, also, the order separation that the perturbative nature of 

the problem induces. After the use of Eq. (25) into Eq. (23), the  -integration is easily carried 

out, resulting in  
 

2 3 4 5
2 3

2

4
2

( )O
g h

    ,    (26)  

where  

2
11 1 2 11 11

2 2 2 2 2
1 2

2

11

1
{ 2 ( )

4

( )( ) 4 },1 k h k h

t

g a A A a b

k e A e A b h





            (26a)  

 

11 2 21 2 3 21

1 21 1 4 21

2 2
1 1 2 2 11

2
2 3 4 21 2 11

2
1 1 2 21 1 11

11 21 1 3 21 1 2 11

3

1
2{ [ ( ) ]

4

[ ( ) ]}

( 4 )

{2 ( ) }

{2 ( ) }

2 { ( ) ( ) }

x

x

x

t

k h

k h

b A a k h B B b

A a k B h B b

A k h A A A b

e A k B h B b A b

e A k B h B b A b

a g a B B b A A b















              (26b)  

and  

4 4 { } { } { } 11,{ , } { } 21,{ , }

{1,2} {1,2},{ , } {1,3} {1,3},{ , } {2,4} {2,4}, {1,2}

ˆ ˆˆ( , , , , , , , , , , ,

, , , , , , ) ,

x t i j i j i j x t i j x t

x t x t x

k a a b b b b

A A B B B B C

   
           (26c)  

 

omitting its full form due to its size. Having found , as a next step we introduce the corre-

sponding action functional  
 

[ ] ( ( , ) )

T X

x t d x d tP PS       (27)  

 

of the averaged problem, whose stationarity is supposed to yield the evolutionary equations of 

the unknown, slowly modulated wave parameters [(Whitham 1974; Karpman 1975; Jeffrey and 

Kawahara 1982; Debnath 1994)]. Accordingly, we obtain the variational equation  
 

4

2

0 0i
i

iT X T X

d x d t d x d t   S ,  (28)  

 

for each admissible variation of the elements of P . Once more, therefore, because of the orders 

that appear in , we essentially end up with a perturbation hierarchy of variational equations.  

 

The orders of the perturbation hierarchy are treated successively.  
 

Beginning with the lowest-order equation  
 

2 0

T X

d x d t ,                 (28,i)  

 

we derive, considering its admissible variations, the EL equations  
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2 2 2

11

11, 1111,

1 22
11 112 2 2

1 2

[coth ( ) 1]

: 0

,
2

x t

k h

k h

b
x b

A A
b e k

t b

a
e A

b

h
k A




         (29’)  

 

2 2 2

1

1, 1

112
1

1

,

1

1

[coth ( ) 1] ,

0

2

:
x

k h

t

a
A e k h

k b

A
x A t A A





           (30’,i)  

 

2 2 2

11

2

1

2

, 22,

1

2

[coth ( ) 1]

:

2

0
x t

a
A k h

k

A
x A t

b

A A





          (30’,ii)  

and  

11

2 2 2

11

11, 111

2 1

1

1 1

,

: 0

,
( )

x t

a
x a

a
g

A A b

t a a




             (31’)  

 

given that the EL equation that corresponds to the   variation is satisfied identically. From 

Eqs. (30’), we deduce that  
 

2
1 2

k hA e A .         (30)  
 

Using the above into Eq. (29’), we get  
 

11

11

2

[ coth ( ) 1]
2

a
b k h

k A


.       (29)  

 

Hence, via Eqs. (29) & (30), Eq. (31’) becomes  
 

2 tanh( )g k k h ,           (31)  
 

stating that the wavenumber and the frequency of the assumed carrier wave are connected with 

the linear dispersion relation. Those 
2( )O   results, i.e. Eqs. (29)-(31), are substituted into the 

higher orders of Eq. (28) [(Sedletsky 2012, 2013)].  

 

The next-order variational equation is  
 

3 0

T X

d x d t ,                (28,ii)  

 

in which the Lagrangian density 3  is reshaped, owing to the use of Eqs. (29)-(31), as  
 

23
2 2

11[coth( ) csch ( )] 2 c{ }oth( )
4

x tk h k h k h k k h a
k




  .          (26b’)  
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Consequently, from the admissible variations 11a  and    of Eq. (28,ii), we are led to the EL 

equations  
 

3 3 3

11

11, 1111,

2
1 0

2 sinh( 2 )

: 0
x t

xt

a
x a t a a

k h

k k h





 

              (32’)  

and  

11,

3

1 ,

3

1

2
1 0.

2 sinh(2

: 0

)

x

t

t

x

x t

k h
a a

k k h


 



             (33’)  

 

But, as is known, the quantity  
 

2
1

2 sinh(2 )
g

k h
C

k k h


        (34)  

 

is the group velocity of the linearized WWP [(Stoker 1957; Whitham 1974; Debnath 1994)]. 

Namely, after all,  
 

0g xt C           (32)  

and  

11,11, 0g xt Ca a ,        (33)  
 

meaning that the modulational disturbance of the slowly varying wavetrains under examination 

propagates with gC , up to the 
3( )O  approximation (8,9).  

 

Moving on, there remains the last variational equation of the hierarchy  
 

4 0

T X

d x d t ,               (28,iii)  

 

in which the form of 4  occurs from the use of the lower-order results for the wave parameters, 

i.e. Eqs. (29)-(33), into Eq. (26c). In other words, the followed procedure is that, each time a 

variational equation of a certain order is considered, the respective Lagrangian density is up-

dated with the results of the previous orders. Taking, first, into account the variations   and 

   of Eq. (28,iii), we obtain  
 

2 2 2
112

4 4 4

tanh ( )

: 0

[ h ( )s
4

]4c c t

x t

k k h
k a

x t

h


 

  



  (35)  

and  

                                                 
(8) See (Hasimoto and Ono 1972), (Sedletsky 2012, 2013) and Sec. 3.4.  

(9) Of interest is the connection with the conservation equations of Whitham [(Whitham 1974; Debnath 1994)].  
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4

11 11

4

,

4

coth 0

0

( ,

:

)

x

x x xt

t

k h a h

t

a

x




 





    (36)  

 

which constitute a system of equations that governs the coupled evolution of   and   (10). The 

rest of the admissible variations, except for the variations with respect to 11a  and  , lead to 

two systems of equations, through which we are able to determine the respective slowly varying 

functions. Specifically, the one system consists of the EL equations that correspond to the vari-

ations  
 

21 21 21 21 1 2 3 4
ˆˆ{ , , , , , , , }a a b b B B B B        ,     (s1)  

 

while the other involves the EL equations of the variations  
 

22 22 22 22 1 2
ˆˆ{ , , , , , }a a b b C C      .      (s2)  

 

From the system of Eq. (s1), we get (11)  
 

4 4 4
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21, 2121,
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21 11,
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, 21 1121,

1
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x t

x

x

a
bb

x b a
b

t b b 
 , (39)  

 

4 4 4

2

2,

2

2 11

21

22,

(coth (
,

:

1)

2

0

)k h
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t

B
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e
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B

k h

b


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   (40)  

 

4 4 4

3

3, 33

2
3 1 11

,
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[coth (

: 0

) 1]h
x

x t

k h k h
e B a

B
x B t B B

B
k b



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               (41’)  

 

                                                 
(10) Obviously, Eqs. (35) & (36) can be further combined into a single equation that involves only   and its 

derivatives. Solving that equation for  ,   can be readily determined via Eq. (35).  

(11) For details, see the symbolic code of Appendix B.  
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and  

4 4 4

4

4, 44,

4 11
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[coth ( )
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1]
.

2
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t

x

x

k h
a

k b

B
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B
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
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    (42)  

 

Similarly, the solution of the system of Eq. (s2) yields  
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22 11

4 4 4
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, 2222,
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5cosh( ) cosh(3 )

8sinh (
,

)

x t
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k h k h k
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   (43)  

 

4 4

22

4

22

22, 2222,

ˆ : 0
ˆ ˆ ˆ

ˆ 0
x t

aa
x a t a a

 ,  (44)  
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4 4 4
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2,

ˆˆ
ˆ ˆ
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ˆ

x t

b
x tb b b

b   (46)  

and  

4 4 4

1 1

1, 11,

4
2: 0 h

x t

kC C
x C t C C

e C .  (47)  

 

The reason that no equations are obtained for 2A , 2C  and 21b  is that their role in the ansatz of 

the potential (Eq. (5)) is essentially redundant. In particular, the expressions of the vertical func-

tions { }i jK , as derived by considering the vertical problem (Eqs. (15), (18) & (20)), introduce 

additional unknown slowly varying functions in Eq. (5) that, in fact, can be absorbed into the 

existing ones, without any impact on the freedom of that ansatz. Our choice to keep all those 

functions reflects the aforementioned absence of equations for the unnecessary ones. That is not 

a problem, though, at all. Upon substitution of the wave parameters into the ansatzes, the func-

tions 2A , 2C  and 21b  just vanish (see below), having no effect on the solution (12,13). However, 

that is not the case with 1B . Not only it is preserved in the final forms of   and  , but it also 

affects the evolutionary equations of 11a  and  , which occur by considering the respective 

admissible variations of the latter. The exact role of 1B , and the physical meaning of the 

                                                 
(12) The same happens in the study of Stokes waves via the AVP (Sec. 2.2).  

(13) Evidently, which unknown function becomes redundant is a matter of choice. For example, if Eq. (30) is solved 

for 
2

A , then 
1

A  will play that role and vanish, but that is not of any importance, as nothing will change with respect 

to the final solution. The AVP will just shape the rest of the unknowns accordingly.  
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additional freedom it induces, is unclear and its investigation should be a subject of future work. 

When that term vanishes, though, all the final results obtained via our approach coincide with 

those of (Sedletsky 2012, 2013). Thus, in what follows, we take  
 

1 0B .          (48)  
 

Consequently, Eqs. (37’), (38’) & (41’) reduce to  
 

21 11

1 2 [coth(2 ) 1]
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k h k h
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k
      (38)  

and  

3 11
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[coth( ) 1]
x

h h
B

k
a

k b


 .       (41)  

 

As for the remaining variations 11a  and  , inserting first Eqs. (37)-(48) into 4 , terms of 

the form  
 

2
11 11, 11 11, 11,( , , ) ( , , )) }{(x x x x xa aQ k h Q k h a a a   

 

appear in it. Yet, since we consider admissible variations that vanish on the boundaries, we can 

make the substitution  
 

2
11 11, 11,x x xa a a  

 

inside the Lagrangian, without any effect on the subsequent EL equation that corresponds to the 

variation 11a  (14) [(Gelfand and Fomin 1963; Sedletsky 2012, 2013)]. Our gain from that ac-

tion is a simplified form for 4 , but is nonetheless not necessary. Finally, we conclude to the 

EL equations  
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(14) Note that, if 11
2

1,( , , ) xS h aQ k  and 12 11 1 ,( , , ) x xaQ aS k h , then the respective EL equations, to-

wards the variation 
11

a , coincide. Namely,  
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where, as mentioned before, gC  is the linear group velocity and gC  its derivative with respect 

to  . Eqs. (49) & (50) constitute the coupled evolutionary equations of 11a  and  , and are the 

same with those obtained by (Sedletsky 2012, 2013). It should be noted that, for those two 

equations, the total averaged Lagrangian L  is considered, in order to combine the 
3( )O   and 

4( )O   contributions, regarding the evolution of 11a  and  , into a single equation, for each 

variation.  

 

At this point, after all the above steps, the unknown functions of the wave-fields’ ansatzes are 

expressed in terms of the fundamental amplitude 11a  and the phase modulation  . Using Eqs. 

(15), (18), (20), (29), (30) & (37)-(48) into Eqs. (4) & (5), the ansatzes of the free-surface ele-

vation and the velocity potential are shaped, respectively, as  
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As already stated earlier, the evolution of the fields   and  , which are included in them, is 

governed by Eqs. (35) & (36), whereas the evolution of 11a  and   is determined by Eqs. (49) 

& (50).  

 

 

4.2.3. Final remarks  
 

In conclusion, our approach, in which we use much more generic trial functions, leaving the 

vertical dependence arbitrary, leads to the exact same results as those of (Sedletsky 2012, 2013), 

who incorporates in his ansatzes an a priori known vertical structure that is derived by means of 

the MSM (see, also, Sec. 4.1). That consistency refers not only to the obtained evolutionary 

equations, but also to the vertical dependence of the potential and the form of the ansatzes in 

general. Besides, the findings of this chapter are in agreement with those of Ch. 3, where, again, 

we study the problem of weakly nonlinear, narrow-banded wavetrains, but via the MSM.  

 

The above evolutionary equations, for the slowly modulated functions 11a ,  ,   and   of the 

wave-field ansatzes, produce, under certain assumptions and combinations [(Yuen and Lake 

1975; Sedletsky 2012, 2013, 2016)] well known model equations for the propagation of slowly 

modulated wavetrains, such as the NLS or the BR and DS systems of equations. In contrast to 
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previous efforts, here we derived those equations based solely on the AVP, driven by the belief 

that variational principles, when correctly formulated, contain all the necessary information for 

the problem, so that no “external” help should be needed. Hence, our proposed implementation 

of the method could be regarded as a self-contained and consistent way to derive the NLS equa-

tion variationally.  
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Appendix A  
 

 

Implementation of the AVP for Stokes waves 

using Wolfram® Mathematica (Ch.2)  
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Appendix B  
 

 

Implementation of the AVP for slowly mod-

ulated wavetrains using Wolfram® Mathe-

matica (Ch.4)  
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Appendix C  
 

 

Supplementary equations of Chapter 3  
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Notation   : 0 0( )
( )

j n k X T
E n e


 

 

Equation (14b):  
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Equation (14c):  
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where  
 

1 1 1 1
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Equation (15b):  
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Equation (15c):  
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Appendix D  
 

 

Proof that the second derivative of the linear 

dispersion relation is always negative  
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The linear dispersion relation reads  
 

( ) tanh( )k g k k h  .       (1)  
 

Consequently, the group velocity ( ) ( )gC k k  is equal to  
 

2 2
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Given the above result, for the second derivative of   we have that  
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  (3)  

 

Using, though, the identities  
 

sinh ( 2 ) 2sinh coshx x x         (4a)  
 

and  
 

2 2cosh(2 ) sinh coshx x x ,       (4b)  
 

Eq. (3) can further be shaped as  
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Exploiting, now, the fact that  
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2 2 2 2
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and  
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Eq. (5) becomes  
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But,  
2 2cosh sinh 1x x .        (8)  

 

Thus, finally,  
 

2 2

2

2 2
1
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k h k h

k h k hk


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Since the nature of the WWP demands   to take positive values, it is obvious from Eq. (9) that 

  is always negative.  
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Conclusions and future directions  
 

In the present thesis, we mainly examined the AVP, implementing it in a manner that, as we 

saw, renders it self-contained. Particularly, motivated by the fact that variational principles 

should contain all the necessary information regarding the problem they correspond to, instead 

of using an explicit, “externally” obtained, vertical dependence for the velocity potential, we 

introduced arbitrary vertical functions, whose determination we left to the AVP. Doing so, we 

deduced that, both in Stokes waves and weakly nonlinear, narrow-banded wavetrains, the results 

of the AVP are in agreement with the respective findings in the context of systematic perturba-

tion methods. Hence, following that approach, the AVP seems to become an autonomous and 

consistent method for the study of periodic or nearly periodic wavetrains of weak nonlinearity.  

 

We believe that the full potential of Whitham’s method is not yet completely clear, especially 

after the new insights in regard to its capability in determining, each time, the appropriate ver-

tical structure of the problem. Nevertheless, some advantages are readily noticeable. First, the 

required calculations, in the context of the AVP, seem to be fewer. A truly important merit of 

the method, though, is that the variations with respect to the components that determine the first-

order free-surface elevation (fundamental amplitude and phase modulation) correspond to the 

solvability conditions we impose within the MSM [(Whitham 1970; Kurylev 1981)]. That is, 

the otherwise necessary invocation of Fredholm’s alternative theorem is replaced by certain 

admissible variations. An immediate consequence is that the symbolic implementation of the 

AVP constitutes a simpler and much more straightforward task, allowing for the relatively un-

hampered extension of the method to higher orders.  

 

Given our findings, the question arises as to future directions towards the exploitation of the 

AVP. Some of the ideas under our consideration are as follows. The AVP arises naturally when 

periodic waves are considered (see Ch. 2); it suffices to assume field representations (for the 

free-surface elevation and the velocity potential) in terms of the wave phase (variable in which 

the periodicity occurs). Thus, it would be interesting to use ansatzes without orders and inves-

tigate how the resulting (nonlinear systems of) EL equations for the unknowns compare with 

the (fully nonlinear) Fourier approximation method of (Rienecker and Fenton 1981). Another 

application refers to the study of the side-band instability of steady progressive waves via the 

AVP, and the relation of the subsequent results with those of (Benjamin and Feir 1967). 

(Whitham 1967) dealt with that matter, but not without inconsistencies. It is noteworthy, there-

fore, to determine whether or not the improvements introduced by (Sedletsky 2012, 2013) and 

us restore that issue. One more direction of work, of great scientific and practical importance, 

is to apply the AVP in the case of weakly nonlinear and narrow-banded wavetrains over a seabed 

that exhibits slow spatial variation (see, for example, the relevant works of (Berkhoff 1973), 

(Kirby 1986), (Massel 1993), (Porter and Staziker 1995) and (Dingemans 1997)).  
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