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Euxaplotieg
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TNV OIKOYEVELQ IOV KO GTOVG GTEVOVS LoV pidove. [ToAlol cuvddelpot, pilot Kot pPéAn
G okoyévelng pe Pondnoav pe v empéreln Tov KEWEVOL Ko pe petappioelc. H
oTHPIEN TOLG Kol 1 OETIKT TOVG EVEPYELD O TAPAUEIVOVY YOPAYUEVES GTI LLVIUN LOV KOl
ntav évo avektiumto ddpo yuo péva. Emopévmg, 10 eEAdy1oTo Tov Hmop® va KOve givat
Vo Lo1pooT® pali Toug T peydAn Lov xopd, Tov OAOKANPOV® QLT TV TPocsTdoeia.

Mo axopn mmyn evBappvvong, Mtav o VIELOLVOS TNG JMAGUOTIKNG OV
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Zuvoyn

AV M| SIMA®UATIKY EPYOGIO EMKEVIPMOVETOL GTNV OVATTVEN EVOC TOPAUETPIKOV
HOVTELOV, TTOL YPNCLUOTOIEITOL YLl TNV TOPAYWOYN YEOUETPIKOV HOVTIEA®Y VOLTIKOV
MKV, Tov ovamaplotOval and pio evieioa véatooteyn T-spline emedvein. H
Jldkacion oYEOIGHOD TOV TANLIGIOVL 1TNG YEMUETPIOG Kot ol oAyopiduot mwov
TOPOVGLALOVIOL TPOYPOUUUOTIOTNKOY KAVOVTOG ypnom g YAwococ C # péoa oto
Grasshopper, 1o omoio amotelel €va epydAEio TOPAUETPIKNG HOVIEAOTOINONG KoL
onTikoV Tpoypappatiopod Tov Rhinoceros 3D.

Mia and T1g KOpleg Aettovpyieg L TOV TOV TAPUUETPIKOD LOVTEAOV £YKELTAL GTNV
KOVOTNTA TOV VO TAPAYEL AV TOLOTO KOL YPIYOPO EYKVPES YEMUETPIKES OVOTAPUCTACELG
npomel@V (mTepLyLa Kot TAUVY) pe Paon éva pikpd GHVOAO GNUAVTIKOV TOPAUETPOV,
OV £(OVV YEMUETPIKT KO PLGIKT VTOGTACT. ALTH N AsrToLPYIKOTNTA aoterel Pacikn
npobmdOeon otav aviipetonilove 10 TPOPANUA TG PEATIGTOTOINGNS TOV GYEIOGLLOV
™G emMEAvelns daPopmv oynudtov, On®¢ To TTEPHY VOULTIKOV EMKOV Kot
OVELLOYEVVITPLAOV, TTOV £YOVV TOAVTAOKN YEMUETPIOL KOt 1 ardd0oT TOuG £MNpealeTon
oot amd ™ yEOUETPiO OVTY.

Emnpocbétmg, ypnowomoidvrag T-splines, o povtehomointhg onpovpyei opaid
Kol KoTdAANAQ Yoo ovaivon povtéra, to omoio sivon oe Béom va eEalelyovv v
xpovoPopa, amortnTiky Kot damavnpn dadikacio g petatponng evog CAD povtédov
og éva kotdAlnio Computer Aided Engineering (CAE). uvifwg n dadikacio avt
amoteAeiton  amd piol TPOGEYYIOTIKN TOPAY®YN TAEYLOTOS TOV TPOOvVOpEPHEVTOG
HovtéAOV. AvTdc 0 6TdY0G Umopel va emtevyBel HECHO TNG 1ICOYEMUETPIKNG AVAALGONG
(IGA), n omoia mapéyet pua dpeon kot oteviy oyéon peta&d CAD kot CAE.

H tehwkn amoitmon, mov tiBeton o€ avty ™ Swmhopatiky epyoacio, €ivor m
KovOTNTA TOV €ENGC TOPOAUETPIKOD HOVTEAODL VO OVOTOPAYEL KO VO OVOTTOPIOTA UE
akpifela veotauevo poviéda eiikwv. o ovtd 10 AOYO0, HL TPOGEYYION TG
Wageningen XZeipdc B éyel emtevybel péom ovtod TOL TOPAUETPIKOD HOVTEAOL.
Emnpocheta omv mopoamdve mpocdyyiorn, €va  TPIOOIICTATO HOVIEAO  EAMKOG
oxedopuévo otov OpenProp cuykpiveton AETTOUEPDS GE TYEOT LE TIG OMALTNGELS TOL
T-spline  mapapeTpikod HOVTEAOL, TPOKEWEVOD Vo EMLTELYHOVV GTOYOL GLYKPITIKNG
a&lohdynong.

AéEerg Kewdwa: Tapapetpikn Movtelonoinon, Avanapdotacn Novtikov Elikov, T-
splines, B-series, OpenProp, Rhino 3D, Grasshopper



Abstract

This diploma thesis is focused on the development of a parametric model used in
the generation of marine propeller geometrical model instances represented by one single
watertight T-spline surface. The designing process of the wireframe geometry and the
presented algorithms have been implemented in C# inside Grasshopper, a parametric
modeling and visual programming plug-in tool of Rhinoceros 3D.

One of the main functions of this parametric modeler lies in its ability to
automatically and quickly produce valid geometric representations of marine propellers
(blades and hub) based on a small set of geometrically and physically meaningful
parameters. This functionality is a major prerequisite, when dealing with the problem of
design/shape optimization of functional surfaces, such as marine propeller & wind
turbine blades, that possess complex geometry and geometrically-sensitive performance.

Further to this, by using T-splines, the modeler generates smooth, analysis-
suitable instances, which will eliminate the time-consuming, labor-intensive and costly
overhead of transforming a Computer Aided Design (CAD) model into an appropriate
Computer Aided Engineering (CAE) model, commonly through an approximate mesh-
model generation. This aim can be achieved by appealing to IsoGeometric Analysis
(IGA), which provides a direct and tight link between CAD and CAE.

The final requirement posed on this diploma thesis, is the capacity of the provided
parametric model in accurately reconstructing and representing existing propeller
models. Therefore, an approximation of Wageningen B-series has been accomplished
through the aforementioned parametric model. Additionally to the above approximation,
a prototype marine propeller 3D model is obtained from OpenProp and is compared in
detail with respect to the T-spline parametric model requirements, in order to achieve
benchmarking purposes.

Keywords: Parametric Modeling, Marine Propeller Representation, T-splines, B-series,
OpenProp, Rhino 3D, Grasshopper
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| Introduction

A. The Significance of Marine Propellers

Marine propellers lie submerged in water aft of the ship, they form an integral
part of a ship and have a significant impact on ship performance [1]. A ship propeller is
a mechanical device that transmits power by converting rotational motion into thrust. It
consumes the power produced by the engine and puts this power into thrust power [2].
The power transfer is enhanced by the particular geometry of the propeller. The propeller
consists of a revolving shaft with several blades attached to it. The propeller shaft
connects the engine with the marine propeller. As part of the power transmission, the
propeller shaft rotates due to a torque produced by the engine. The geometry [3] of the
propeller blades is designed in such a way that, when a propeller rotates, a force is
produced, which pushes the ship through the water. This force is known as thrust and it
comes from a pressure difference between the forward and rear surface of the airfoil-
shaped blade, and the water accelerated behind the blade. Most marine propellers are
screw propellers with fixed helical blades rotating around a horizontal axis or propeller
shaft. In consequence, the hydrodynamic performance of a marine propeller is tightly
linked to the geometric characteristics and the shape of its blades.

Designers and manufacturers of propellers define the efficiency of those as the
ratio of the power produced by the propeller (thrust) to the power consumed by the
engine. Propeller efficiency indicates how much energy is lost in the power transmission,
which is described above. Naturally, efficient propellers are desirable due to the
relationship between propeller efficiency and fuel consumption, where the fuel
consumption is the real indicator of ship performance. As stated at [4], fuel costs
represent as much as 50-60% of total ship operating cost, depending on the type of ship
and service. Taking into account the continuous increase in bunker price, improving the
propeller efficiency seems to be an unavoidable task for the global shipping industry.

Therefore, propeller design, it is one of the most basic scientific research topics
in Naval Engineering. Since the first use of marine propellers in 1850 much has been
said and published on the development of those, but there is much more to be done.
Unquestionably in today's times, the demand for higher efficiency is more intense than
ever and therefore propulsor designers are forced to adopt more complex geometries.
Fortunately, the propeller design process has been in explosive growth during the last
two decades due to the rapid evolution in computational power, which can lead to higher
accuracy models with better performance.
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B. CAD History

The use of computer systems to aid in the creation, modification, analysis, or
optimization of a design is called Computer-aided design (CAD) [5]. A CAD system is
a combination of hardware and software, that is used for making 2-D and 3-D models of
almost anything from jewelry to airplanes. The purpose of developing this kind of
systems is to increase the productivity of the designer, improve the quality of design,
improve communications through documentation, and to create a database for
manufacturing. CAD software is often referred to as CAD CAM software (‘(CAM' is the
acronym for Computer Aided Manufacturing). The usage of CAM software is to control
machine tools and related ones in the manufacturing of workpieces [6]. Its primary
purpose is to create a faster production process and tools with more precise dimensions
and material consistency. CAD-CAM systems exist today for all of the major computer
platforms, including Windows, Linux, Unix and Mac OS X and they are widely accepted
and used throughout the industry. These systems moved from costly workstations based
mainly on UNIX to off-the-shelf PCs. The increasing power of computers, and especially
the introduction of lower cost minicomputers with optimized Fortran compilers and
graphics capable terminals, made CAD software more accessible to engineers. The
Computer Software used to analyze CAD geometry tools that have been developed to
support these activities are considered CAE tools [7]. CAE tools are being used, for
instance, to analyze the robustness and performance of components and assemblies.

The beginnings of CAD [8] [9]can be traced to the year 1957, when the first
commercial numerical-control programming system named PRONTO developed by Dr.
Patrick J. Hanratty. As a result of the very high cost of early computers, large aerospace
and automotive companies were the earliest commercial users of CAD software. In 1960
Sketchpad, was developed by Ivan Sutherland and it was the first to ever use a total
graphic user interface, users wrote with a light pen on an x-y pointer display.

2D drafting applications were typically the first-generation CAD software
systems. Much of the early pioneering research in 2D CAD software was performed at
MIT's Mathematical Laboratory. In 1965 at Cambridge University's Computing
Laboratory began serious research into 3D modeling CAD software. In the meantime,
French researchers were doing also pioneering work into complex 3D curve and surface
geometry computation. Paul de Casteljau made fundamental strides in computing
complex 3D curve geometry and Bezier published his breakthrough research,
incorporating some of de Casteljau's algorithms, in the late 1960s.

In the mathematical field of numerical analysis, De Casteljau's algorithm [10] is
a recursive method to evaluate polynomials in Bernstein form or Bézier curves [11]. As
it is known, recursive functions can be easily implemented particularly when it comes to
a programming. So that is one of the main reasons that B-Spline curves [12] is purely
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evolved out of the availability of computers. The work of both Bezier and de Casteljau
continues to be one of the foundations of 3D CAD software to the present time.

3D wireframe features were developed in the beginning of the sixties, and in 1972
MAGI (Mathematics Application Group, Inc.) released the first commercially available
3D solid modeler Syntha Vision. In 1971, one of the most influential events in the
development of CAD was the founding of MCS (Manufacturing and Consulting Services
Inc.) by Patrick J. Hanratty, who wrote the system ADAM (Automated Drafting And
Machining). This interactive graphic design, drafting and manufacturing system was
written in Fortran and designed to work on virtually every machine, a huge hit that went
on to be updated to work on 16 and 32-bit computers. In today’s times, 80% of CAD
programs can be traced back to the roots of ADAM.

Solid modeling  further enhanced the 3D capabilities of CAD
systems. Throughout the 1980s, the CAD software market was inevitably shifting the
CAD software market to 3D and solid modeling due to the new generation of powerful
UNIX workstations and emerging 3D rendering. CAD software vendors had begun as a
collection of fast-growing companies benefiting from rapid advances in computer
hardware and a potential market that was expanding as falling computer prices and
maintenance costs made CAD software available to more users. NURBS, mathematical
representation of freeform surfaces, appeared firstly on Silicon Graphics workstations in
1989. Also, in 1989 T-FLEX and later Pro/ENGINEER introduced CADs based on
parametric engines.

Parametric modeling is a method based on algorithmic thinking and means that
the model is defined by parameters. It enables the expression of parameters to determine
the relationships between the design elements in order to define a set of multiple
solutions. A change of dimension values in one place also changes other dimensions to
preserve relation of all elements in the resulting design. In this regard, parametric design
can significantly improve the field of landscape architecture by providing new tools of
design investigation. So, the architects can set up more effectively the entire design
process.
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C. Parametric Models

The need for parametric models that will facilitate the automatic generation of
valid propeller model instances and enable the design optimization of blades has been
identified by several researchers, including Pritchard (1985) [13], Grasel et al (2004) [14]
and Koini et al. [15] for turbomachinery blades, Epps et al. (2009) [16] Calcani et al.
(2010) [17] Mirjalili et al. (2015) [18] and Herath et al. (2015) [19] for marine propellers.
However, the number of parametric models specifically designed and used for design
optimization of marine propellers are rather limited and are commonly build around the
computational package used for the assessment of the propeller model and/or the specific
characteristic the researchers are trying to optimize. Furthermore, the parameters
employed in the parametric models found in literature, e.g., [20] and [21], are mainly
appealing to coordinates of control points and there are limited cases where all, or most,
parameters have a physical meaning.

At the same time, various commercial, academic and open-source software
packages exist for the design and/or design optimization propellers. The commercial
tools include PSP and QPROP from MARIN (Maritime Research Institute Netherlands)
[22], PropCAD and PropElements from Hydrocomp Inc. [23] and many others. The list
of academic/open-source software tools includes XROTOR [24], JavaProp [25], JBlade
[26] [27], OpenProp [28] [29] [30] and PROP DESIGN [31].

XROTOR is an interactive program for the design and analysis of ducted and
free-tip propellers and windmills, JavaProp is a relatively simple piece of code based on
the blade element theory, JBLADE is an open-source propeller design and analysis code
based on David Marten’s QBLADE and André Deperrois’ XFLRS software tools,
OpenProp is a free software for the design and analysis of marine propellers and
horizontal-axis turbines based on Matlab [32] and PROP DESIGN is an open source,
public domain, aircraft propeller design software allowing the design of ducted or
unducted aircraft propellers with straight or swept blades and constant or elliptical chord
distributions. In all of above cases, propeller models are tightly linked to the
computational procedure employed (or assumed by the corresponding software tool) and
in no case these propeller models are the type of analysis-suitable models required in the
IGA context (see: “Motivational Background and Objectives”), i.e., smooth & accurate
geometric representations of propeller blades that can be directly used in analysis.
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D. Software

In this thesis, the software utilized is Rhinoceros. Rhinoceros [33] is a
commercial CAD application software and 3D computer graphics by Robert McNeel &
Associates. The geometry of Rhinoceros is based on the NURBS mathematical model,
which focuses on producing mathematically precise representation of curves and
freeform surfaces in computer graphics. Rhinoceros is mainly used in processes of
computer-aided design (CAD), computer-aided manufacturing (CAM), rapid
prototyping, 3D printing and reverse engineering in industries including architecture,
industrial design (e.g. automotive design, watercraft design), product design (e.g. jewelry
design) as well as for multimedia and graphic design [34].

The capabilities of Rhinoceros can be complemented and expanded in specific
fields like rendering and animation, architecture, marine, jewelry, engineering,
prototyping, and others [35] by plug-ins, which are available from both McNeel and
other software companies. One of the most well kwon McNeel plug-ins is a parametric
modeling and visual programming tool, called Grasshopper [36], that runs within the
Rhinoceros 3D computer-aided design (CAD) application and takes advantage of
Rhino's existing tools. This graphical algorithm editor has attracted many architects to
Rhinoceros due to its ease of use and ability to create complex algorithmic structures.
Grasshopper was developed by David Rutten at Robert McNeel & Associates and offers
new ways to expand and control the 3D design and modeling processes, including
automating repetitive processes.

It provides the users of Grasshopper the ability to use mathematical functions to
control or generate shapes and enables them to quickly change fundamental attributes of
a complicated model, such as a marine propeller, where a user might want even more
flexibility. Some of this flexibility can be accessed also from within Rhino by using the
built-in support for scripting languages like Rhinoscript or Python. These scripting tools
(Figure 1.2) offer powerful control over Rhino's modeling commands, including some
that are not available through the graphic interface of Rhino. Using scripting languages,
though, requires a fairly in-depth knowledge of computer programming techniques,
which, of course, many users don't have. Grasshopper combines the graphical approach
of working in Rhino with the powerful algorithmic techniques found in scripting.
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Figure 1.2: Complete Breakdown of all Rhino’s Developer Tools
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E. Motivational Background and Objectives

In Computer Aided Engineering fields an iterative process [37] to find an optimal
design is often required. This process consists of a modeling phase followed by a
numerical simulation and an analysis phase. The classical finite element method (FEM),
in which the finite elements are conforming with the physical boundaries of the model,
is a common choice for the second phase. The design-through-analysis (DTA) tools are
fundamental to simulate complex physical phenomena and systems, such as a marine
propeller. At Sandia National Laboratories, the anatomy of DTA the process has been
studied by Ted Blacker and more specifically the percentage of time devoted to each task
has been calculated and is summarized in Figure 1.4. This research has shown, that for
complex engineering designs (Figure 1.3 shows a typical automobile consists of about
3,000 parts, a fighter jet over 30,000, the Boeing 777 over 100,000, and a modern nuclear
submarine over 1,000,000) the transition from the geometric model to the simulation
model causes more than 80 % of the engineering effort. This approximation, 80/20
modeling/analysis ratio, seems to be a very common ratio in industrial area and there is
a strong desire to reverse it. For the purpose of overcoming the difficulties involved in
this transition process, various methodologies have been developed.

The most prominent method is Isogeometric Analysis (IGA) as proposed by
Hughes at [38] and later described in detail in [39]. IGA aims at bridging the gap
between the CAD model and computational analysis by utilizing the same shape
functions in CAD and FEA. This functionality allows to eliminate the troublesome &
time-consuming meshing process involved in the common engineering analysis
paradigm and at the same time preserve the exact geometry (no approximation via
meshing is required), while rendering possible the automatic data/model transfer
between CAD & CAE packages. This approach has been already successfully applied in
shape optimization of hydrofoils [40] [41] and ship hulls [42] [43] [44]. A DTA
framework can be created using combined Isogeometric Analysis (IGA) and a smooth
geometry of a model. The smoothness of the geometric model offers essential
computational advantages over the de-facto finite element method (FEM), in which the
finite elements are conforming with the physical boundaries of the model. By the term
smooth geometry, we usually mean that interelement continuity may be C", 0 < n < p,
where p is the polynomial degree of the basis. Isogeometric analysis has emerged as an
important alternative to traditional engineering design and analysis methodologies.
There are numerous candidate computational geometry technologies that may be used in
Isogeometric Analysis.
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The most widely used in engineering design are NURBS and they are ubiquitous
in CAD systems, representing billions of dollars in development investment. For
instance, NURBS is the only free-form surface type, that is supported in the IGES [45]
file format, the most popular format for data exchange between CAD software. Most of
the early developments in IGA focused on establishing the behavior of the smooth
bivariate and trivariate NURBS basis in analysis since NURBS geometry underpins
almost all major design packages.

While the smoothness of NURBS make them useful in isogeometric analysis,
NURBS are severely limited by the fact that they are four sided. In traditional NURBS-
based design, modeling a complicated engineering design often requires hundreds, if not
thousands, of NURBS patches, which are usually discontinuous across patch boundaries
and it very is difficult to join multiple these patches into a single watertight model. Also,
almost all NURBS models use trimming curves. So, designing a marine propeller in a
CAD system based on NURBS, is usually not suitable as a basis for analysis. Therefore,
development of technology meets the demands of both design and analysis.

T-splines [46] are a new mathematical formulation for surfaces and are a superior
alternative to NURBS, the current geometry standard in computer-aided design systems.
T-Splines models are mathematically watertight and are not limited to rectangular
domains. Thus, the designers are able to represent entire models with a single surface via
T-spline technology, which makes the models easier to analyze and optimize, and can
minimize the likelihood of mistakes in downstream processes. Commercial bicubic T-
spline surface modeling capabilities have been recently introduced in Maya [47] and
Rhino [48] two NURBS-based design systems. This facilitates their utility as a design
tool.

In this thesis, an IGA-based parametric design of a marine propeller using T-
splines technology framework implemented using the Grasshopper algorithmic
modeling interface for Rhinoceros 3D. Combining the increasing interest in designing
the optimal propeller shape, an automated optimization can fill the design space through
a parametric modeler with numerous designs that gravitate, guided by the optimization
algorithm, towards an optimal design.
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Il Geometric Tools for the Model

A. B-splines and NURBS

As background for our discussion of T-splines, a brief overview of B-spline and
NURBS curves, surfaces, and solids is provided focusing on those features, which are
important for understanding the generalization to T-splines. The cases considered here
consist of a single NURBS patch. However, the generalization to the multi-patch
NURBS case, it just involves a transformation between the control point indices of each
patch and the corresponding global control points.

A.i. Knot vectors and the B-spline basis

A knot vector is a non-decreasing sequence of real numbers that indicate
parameter values, denoted = = {51,52, ...,§n+p+1}, where &; € R is the i knot, p is the
polynomial degree of the B-spline basis functions, and n is the number of basis functions,
which comprise the B-spline. B-spline basis functions for a given degree, p, are defined
recursively in the parameter space by the Cox-de Boor recursion formula as follows:

_ (1 é4<¢<¢
Nao(€) = {O i otherwé;r; (11.1)

§—$a A Ny (6) + Satp+1—§

Npp(§) = To—c,
+p

Ny,
$atpr1 — $as1 ap=106) (11.2)

The de Boor algorithm [49] provides a standard method and is perhaps the most
famous of the existing algorithms for evaluation of B-spline basis functions and their
derivatives.
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From (/.1) and (/.2), one can verify that B-spline basis functions possess the
following properties:

i. Partition of unity:
Z NA,p(f) = 1' S; € [S;l' €n+p+1] (/1'3)
A=1

ii. Pointwise nonnegativity:
Nupn(@€) =0, A=1,2,..,n

(11.4)
iii. Linear independence:
n
ZCANA_p(E)=O ©cg=0, B=1,2,..,n (11.5)
A=1 )
iv. Compact support:
{E | NA,p (f) > 0) C [{TA' 5A+p+1] (/I6)
v. Control of continuity:
If a knot value has multiplicity k (i.e., & = &1 = -+ = &4x-1), then the basis

functions are CP~*-continuous at &;. When k = p, the basis is C° and interpolatory
at that location.

The first four properties ensure a well-conditioned and sparse matrix, while the
fifth allows continuity to be reduced to better resolve steep gradients [50].

An example of a quadratic B-spline basis for £ = {0,0,0,1,2,3,4,4,5,5,5} is
shown in Figure II.1. The basis is interpolatory at ¢ = 0,4, 5. If the first and last knot
values are repeated at least p times the knot vector is called open vector due to the use
of an open knot vector. Otherwise, the basis is C?~! = C? across element boundaries.
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Figure I1.1: Quadratic basis functions
A.ii. B-Spline Curves

A B-spline curve of degree p in R% is defined by a set of B-spline basis
functions, N = {N,,}’__ and control points P = {P}%_, as follows:

@)= Z PaNyp () (11.7)
A=1

Important properties of B-spline curves are:

i. Affine Covariance: An affine transformation of a B-spline curve is obtained
by applying the transformation to its control points.

ii. Convex Hull: A B-spline curve lies within the union of all convex hulls
formed by p + 1 contiguous control points (see [51] for the relationship between
the convex hull and the polynomial order of the curve).

iii. Variation Diminishing: A B-spline curve in R% cannot cross an affine hyperplane

of codimension 1 (e.g., a line in R?, plane in R3) more times than does
its control polygon [52].

In addition, B-spline curves inherit all of the continuity properties of their
underlying bases. This is illustrated in Figure /1.2, where a B-spline curve from the basis
shown in Figure I1.1. At the spatial location corresponding to parameter value &= 4, the
B-spline curve is only continuous. The B-spline curve interpolates the control point Ps
at this location. The use of open knot vectors ensures that the first and last control points,
P1 and Ps, are interpolated as well.
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Figure 11.2: Quadratic B-Spline curve with control points and control polygon

A.iii. NURBS curves

A NURBS (Non-Uniform Rational B-Spline) is defined by a knot vector
g ={¢,&, ., Enspr1} » @ set of rational basis functions R = {RA'I’}Z=1' and a set of
control points P = {P,}%-, as:

A=1
The NURBS basis functions are defined as:
Wy &)
Rap(§) = Tg) (11.9)

Where W (§)is the weight function and wB is the weight corresponding the B NURBS
basis function.

W) = Z wgNp ,(§) (I1.10)
B=1

For more efficient computation, a rational curve in R™ can be represented by a
polynomial curve in the projective space P™. Working in the projective coordinate
system allows the algorithms which operate on B-splines to be applied to NURBS. As
an example, if Pa is a control point of a NURBS curve then the corresponding
homogeneous control point in projective space is Py = {w,P,, w,}7. Thus, given a
NURBS curve defined in R™ by (/1.8) the corresponding B-spline curve defined in P™
is:

c) = Z PyN4p(8) (I1.11)
A=1
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A.iv. NURBS surfaces and solids

To maintain single-index notation, which is standard for T-splines, we introduce
a mapping, A, between the tensor product space and the global indexing of the basis
functions and control points. Leti = 1,2, ...,n,j =1,2,..,m,and k = 1,2, ..., L then in
two dimensions and in three dimensions we define:

A=m(@i—-1)+j (11.12)

AL ) =Uxm) -1 +IG-1) +k (11.13)

NURBS basis functions for surfaces and volumes are defined by the tensor
product of univariate B-spline basis functions. Let N;, (), M;,(n), and L;,({) be
univariate B-spline basis functions associated with the knot vectors
El = {gl' 52' "'J€n+p+1}’ ‘-::'2 = {771» 77%1 "'i?n+p+1}’ and ‘-:"3 = {{1'{2' "'l(n+p+1}- In
two dimensions, with A = A(i,j) and A = A(i,j)

Nip (M q(Mw,
P _ p\$IMjq
Ry (€,m) = o jrll Ny (f)qu (Mw; (11.14)

Where R} (&, 1) are the surface NURBS basis functions. Similarly, in three dimensions,
with 4 = A(i,j, k) and A = A(3, j, k)

Ni,p (E)A/I]q (U)Ll,r (()WA
?:1 Z;‘n=1 Z%Zl Ni,p (f)Mj,q (n)Li,r (()WA (H'15)

Ry (§m, Q) =

Where RY'?" (&,7, ) are the volume NURBS basis functions.

Given a control mesh {P,}, where A=1,2,...,(n xm) for surfaces, and
A=1,2,..,(nxmx1I) for volumes, we can define a NURBS surface and a NURBS

volume as it follows:
nxXm

SE¢n) = Z Ry (E,m)Py (11.16)
A=1
nxmxl
V(E,T])z Z Riq'r(z'n:Z)PA (1/17)
A=1
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NURBS inherit all of the important properties from their piecewise polynomial
counterparts and are shown below.

i.  Partition of unity

ii.  Pointwise nonnegative
iii.  Affine covariance
iv.  The convex hull property

The continuity of a NURBS object follows from that of the basis in exactly the
same manner as for B-splines. A B-spline object that does not use weights is called a
polynomial B-spline to distinguish it from a rational B-spline. Note that if all the weights
are set equal, a rational B-spline is reduced to a polynomial B-spline.

A.v. The index, parameter, and physical spaces

Figure 11.3 shows both the physical mesh and control mesh in the physical space
for a biquadratic NURBS surface generated from Z£!={0,0,0,1,2,2,2} and
Z£?2 =1{0,0,0,1,1,1}. Note that the control points are not generally interpolated by the
surface itself except of the corner control points, which are lying on the surface.

The physical mesh is comprised of the image of the parent domain under the
geometrical mapping. The curves in the physical mesh are the images of the knot lines.
In this case, we have two elements. The control mesh is comprised of the red control
points, the black lines connecting the control points, and the images of the knot spans
under a bilinear mapping.

Physical Mesh Control Mesh

Figure 11.3: The physical mesh and the control mesh of a biquadratic B-spline surface
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Figure 1.4 shows the domain of the mesh, a subset of the parameter space,
corresponding to the biquadratic NURBS surface, seen in Figure I1.3. The domain of the
mesh is simply the pre-image of the physical mesh. The NURBS mapping takes each
point in the parameter space to a point in the physical space, and the images of the knot
lines under the NURBS mapping create the boundaries of the physical elements.

0 1
Figure 11.4: A subset of the parameter space
The index space corresponding to the biquadratic NURBS surface, seen in
Figure 11.3, is shown in Figure 11.5. This point of view is very useful for developing
algorithms, as well as for building intuition about T-splines. In the index space, it is easy
to spot the knot lines at which the support of any given function will begin or end, as
well as which functions have support within any given element.

2
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26
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33
2
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Figure I.5: The index space
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B. T-Splines

This section gives a brief review of T-splines as presented in [46]. The notion of
T-splines extends to any degree, in this section the discussion is restricted to cubic T-
splines. Cubic T-splines are C? in the absence of multiple knots. A control grid for a T-
spline surface is named T-mesh. When a T-mesh forms a rectangular grid, the T-spline
reduces to a tensor product B-spline surface. Knot information for T-splines is expressed
using knot intervals [53], non-negative numbers assigned to each edge of a T-spline
control grid, that indicate the difference between two knots. Figure 11.6 [54] shows the
pre-image of a portion of a T-mesh in (s, t) parameter space.

N S G |
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5 d d
t4—<> ol 10 o 11 —
€ Fy e, F,
t3—()—() 9
(o] O O——
e - P3
3 € F,
t2—<> > P o o —
e 2
2
tl—c .
“Valal|dldldld]ld]|ad
1 2 3 4 5 6 7 8

“®, T T T T T T 1 T
SO Sl 52 S3 S 4 SS S6 S7 SS
Figure 11.6: Pre-image of a T-mesh

The d; and e; denote knot intervals, with red edges containing boundary-
condition knot intervals. A T-mesh is basically a rectangular grid that allows T-junctions,
hence the name T-Splines. A T-junction is a vertex shared by one t-edge and two s-edges,
or by one s-edge and two t-edges. Knot intervals are constrained by the by the following
rules:

Rule 1: The sum of all knot intervals along one side of any face must equal the sum of
the knot intervals on the opposing side. Thus, on face F1 in Figure I1.6, €3 +e4 = e6+e7,
and on face F2, d6 +d7 = d9.

Rule 2: If a T-junction on one edge of a face can legally be connected to a T-junction on
an opposing edge of the face (thereby splitting the face into two faces), that edge must
be included in the T-mesh without violating Rule 1. Legally connected means, that the
sum of knot vectors on opposing sides of each face must always be equal. For example,
a horizontal line would need to split face F1 if and only if e3 = e6 and e4 = e7.
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The motivation for Rule 2 is shown in Figure I1.7. In this case, is legal to have an
edge connecting A with P, and is also legal to have an edge connecting B with P.
However, these two choices will create different t knot vectors for P, so Rule 2 resolves
such ambiguity.

Figure I.7: Possible ambiguity

The knot coordinate system for a T-spline surface is used in writing an explicit
formula:

P(s,t) = (x(s,8),¥(s, ), 2(s, 1), w(s, 1)) = z PBi(s.) (19

Where P;(x;, y;, z;, w;) are control points in P*, whose weghts are w; and

. . 1 . . .
whoose Cartesian cooridantes are - (xi, Vi, ;). The Cartesian coordinates of points
i

on the surface are given by the following equation:

Z?:l(xil yi: Zi) B i(sl t)
Xisiw; Bi(s, t) (11.19)

In (11.18) B;(s, t) are the blending functions and are defined as follows:

B;(s,t) = N[sio, Si1, Siz» Siz» Sial (S)N[tio, tir, iz, tizs tia] (t) (11.20)

Where N{s;o, Si1, Siz2» Siz» Sia] () is the cubic B-spline basis function associated
with the knot vector

S; = [Si0» Si1s Siz» i3> Sial (1.21)
and N[t;o, ti1, tiz, tis, tia] (t) is the cubic B-spline basis function associated with

the knot vector
t; = [tio tin, tin, tiz, tial (11.22)
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The knot lines for blending functions are illustrated in Figure I1.8.

Si0 Si1 Si2 Si3 Si4

Figure 11.8: Knot lines for blending function B;(s, t)

The T-spline equation is very similar to the equation for a rational B-spline
surface. The difference between those equations is in how the knot vectors s; (//.21) and
t; (11.22) are determined for each blending function B; (s, t). The explanation of how we
inferred these knot vectors from T-mesh neighborhood of Pi is provided by the Rule 3:

Rule 3: The knot coordinates of P; are (s;, ,t;z) and the knots s;; and s;, are found by
considering a ray in parameter space R(a@) = (s;; + a, t;) and are the s coordinates of
the first two s-edges intersected by the ray (not including the initial (s;, , t;2)). The other
knots in si and ti are found in like manner.

We illustrate the above rule by a few examples. The knot vectors for Py in
Figure 1.6 are s; =[Sg,S1,S2,53,S4] and t; = [ty, ty,t, + €, ty, ts]. FOr Py,
Sy = [S3,54,55,S¢,S7] and  t, = [to, t1,ts, ty + €, ts]. FOr P3, S5 = [S3,S4,Ss,S7, Sg]
and t; = [ty,ty,t, + €6, 4, ts]. Once these knot vectors are determined for each
blending function B;(s, t), the T-spline is defined using (/1.18) and (/1.20).
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C. NURBS vs T-Splines

A NURBS surface is defined using a set of control points (Figure 11.9), which lie
topologically in a rectangular grid. Therefore, one of the major strengths of NURBS
surfaces is that they can exactly represent all quadric surfaces, such as cylinder, spheres,
ellipsoids, etc., as illustrated in Figure 11.10 [55]. Additionally, they possess useful
mathematical properties, such as the ability to be refined through knot insertion and
CP! continuity for degree p NURBS. They also are convenient for freeform surface
modeling and there exist many efficient and numerically stable algorithms to generate
NURBS objects.

Figure 11.10: Quadric primitives
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Certainly, in the case of a marine propeller, which is a more complex model than
the quadric primitives, using a typical NURBS surface for the representation of its
geometry will create a large percentage of superfluous control points, which they will
contain no significant geometric information, but merely are needed to satisfy the
topological constraints. Superfluous control points are a serious nuisance for marine
designers [56], because they require the designer to deal with more data and because
they make the model more difficult to fair. This deficiency of NURBS will cause gaps
and overlaps at intersections of surfaces, that cannot be avoided, leading to generation
of amesh. As an example, in the Figure 11.11 the hand geometry is modeled with multiple
NURBS patches and the location where patches intersect introduces gaps and overlaps.

Figure 11.11: Model of a hand comprised of multiple NURBS patches

Another serious problem with NURBS is that it is mathematically impossible for
a trimmed NURBS to accurately represent the intersection of two NURBS surfaces
without introducing gaps in the model. Additionally, it is impossible to represent most
shapes (including a propeller) using a single watertight NURBS surface.

On the other hand, T-splines address the fundamental limitations of NURBS and
can model complicated engineering designs, such as a marine propeller, as a single,
watertight geometry. Furthermore, NURBS are a special case of T-splines, so the
existing technology based on NURBS extends to T-splines. T-Splines models are a
solution to the gap/overlap problem of NURBS surfaces and significantly reduce the
number of superfluous control points. With fewer control points, such models are easier
to fair. In the Figure 11.12 a head model is shown, the NURBS model is defined by 4712
control points and the T-Spline model by 1109. The points with the red mark in the
NURBS model are superfluous.
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a. NURBS b. T-spline

Figure 11.12: Head modeled (a) as a NURBS and (b) as a T-Spline

In the Figure 11.13, the T-Spline model of the hand, introduced in Figure 11.11
eliminates gaps and overlaps and is a single watertight geometry.

a. NURBS b. T-Spline

Figure 11.13: A gap between two NURBS surfaces, fixed with a T-Spline
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A major difference between a T-spline control mesh (Tmesh) and a NURBS
control mesh is that T-splines allow a row of control points to terminate. The final control
point in a partial row is called a T-junction, hence the name T-splines. T-junctions enable
T-splines to be locally refined, by contrast NURBS refinement requires the insertion of
an entire row of control points. Refinement is the process of adding new control points
to a control mesh without changing the surface and it is an important basic operation
used by designers. T-mesh also, permits control points of valence other than four, as
illustrated in Figure I1.6. Control points with valence other than four are called star points
in some communities and extraordinary points in others. Star points give T-splines the
power to model any surface using a single T-mesh. A personal watercraft is depicted in
Figure 11.14 modeled as a NURS (13 surfaces) and as a T-spline (1 surface). The yellow
control points are star points. As mentioned before, a basic limitation of NURBS is that
the trimmed NURBS models are not mathematically watertight. However, using T-
splines it is possible to overcome this trimming problem. Any trimmed NURBS model
can be represented by a watertight trimless T-spline [57] and multiple NURBS patches
can be merged into a single watertight T-spline surface [58].
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Figure 11.14: Watercraft modeled (a) as a NURBS and (b) as a T-Spline
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These properties make T-splines an ideal discretization technology for
isogeometric analysis. Table 1.1 [59] lists several of the most critical and desirable
properties of a design-through-analysis discretization technology. It is interesting to note
that the largest group of properties are required to both design and analysis.

Table I1.1: A comparison of C° finite elements, NURBS, and T-splines

C°FE NURBS T-SPLINES

WATER TIGHT v N v
LINEARLY INDEPENDENT v v v
PARTITION OF UNITY PROPERTY v v v
AFFINE COVARIANCE v v v
PASS STANDARD PATCH TESTS v v v
LOCALLY REFINEABLE v < v
ACCOMMODATE EXTRAORDINARY POINTS v N v
TRIMLESS OPTION < < v
SIMPLY IMPLEMENTED IN FEA CODES v v v
USED IN DESIGN N v v
FORWARDS AND BACKWARDS COMPATIBLE M v v
WITH NURBS

EXACT REPRESENTATION OF CONIC N v v
SECTIONS

HIGHER-ORDER SMOOTHNESS < v v

36



lll Conceptual Marine Propeller Design

A. Marine Propeller Geometry

A.i. Blade Description

A brief discussion on propeller terminology and definitions is necessary to be
provided, before the description of the parametric model. This will allow the reader to
appreciate the complexity of the propeller geometry and follow later with more ease the
description of the parametric model construction approaches

Detailed descriptions of propellers & blade’s geometry can be found in several
publications, e.g., [60] [61] [62], but here are only presented the basic definitions, which
will facilitate the reader’s understanding of parametric models’ presentation in
“Construction Steps”. The coordinate system, which is adopted as the global reference
frame for this parametric model, was proposed by the ITTC in 1978 [63] and it is shown
in the Figure 111.1. The X-axis is positive, forward and coincident with the shaft axis. the
Y-axis is positive to starboard and the Z-axis is positive in the vertically downward
direction.

Blade reference line Propeller reference and

generator lines
. -~
, Generator line N

[ "
‘\ Propeller reference line \
\\ (Directrix, Spindle Axis) |
|
: Blade reference line
AB |
B—— —— - _
7~ / ~, %

5
\-
~—

~<{V

| P4 VZ

Figure Ill.1: Blade Reference Lines
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The propeller blade is defined about a line normal to the shaft axis called
“propeller reference line” or the “directrix”. Frequently synonymous with the propeller
reference line or the “directrix is the term ‘spindle axis’, as seen in Figure lll.1, the point
A is depicted, where this helix intersects the plane defined by the directrix and the X-
axis. Thus, the locus of all such points between the tip and root of the blade compose
thus generator line.

A common three-bladed marine propeller, along with its major constituent parts,
is shown in Figure I11.2. A propeller blade has two main hydrodynamic surfaces. The face
(or pressure side) of the propeller is that part of the propeller seen, when viewed from
astern and along the shaft axis and corresponds to the surface area of the blade that
experiences high pressure and faces the flow downstream. On the other hand, the back
of the blade is the surface, which faces forward, faces the flow upstream and experiences
low pressure. The root of the blade comprises the area of the blade that attaches to
propeller’s hub (a filleted blade area that guarantees structural strength and smooth
transition between the hub and the blade), while the farthermost point of the propeller
along the span-wise/ radial direction is called the blade tip. Propellers are divided into
right-handed and left-handed ones. When viewing the propeller from stern, a right-
handed propeller rotates clockwise and the leading edge of each blade will be furthest
edge along the hub. The edge to the left is called trailing edge. Similarly, the left-handed
propellers rotate in a counterclockwise direction.

Tip
__ Mother Blade

e

\ Y
3rd Blade \
\\V%

Spindle Axis vesaSy,
Propeller Reference Line W2 Z4% f.:
y )

<
<
N

+ve downwards

Figure Ill.2: Marine propeller parts
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A series of hydrofoil sections, such as the one shown in Figure 111.9, are commonly
used to generate the blade surfaces of a propeller (Figure 111.3) [64]. The blade may be
generated via a single hydrofoil, appropriately transformed in the span-wise direction, or
via multiple, differently-shaped hydrofoil profiles for different areas of the blade, e.g.,
root, mid and tip areas. Each hydrofoil section forming the blade is located at a
corresponding radius, R; < R, where R is the propeller’s radius, and lies on a cylinder
with the same R; radius and axis coincident to the propeller’s shaft axis. Further to this,
hydrofoils are commonly rotated/twisted about the reference line by the so-called pitch
angle and translated according to the skew and rake of the propeller. The terms pitch,
skew and rake are described below. Finally, as it is shown in Figure 11l.2, the blades of a
marine propeller are identical to the mother blade.

. Helical line
Cylindrical surface

\
\
| X
/
/

Blade section

Figure Il1.3: Cylindrical Blade Section Definition
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A.ii. Pitch

As described previously, a blade section is located at specified radius R; placed,
so that its chord line is rotated via a ¢; angle about the reference line (Z-axis); see Figure
111.4. In the Figure 1114 is also shown, a surface of a cylinder of radius R; rolled out to its
fully developed length 27mR;.

Thus, when this surface is wrapped around a cylinder of radius R;, the chord line
forms part of a helix on the cylinder in the same manner as a screw thread. This angle ¢;
is called pitch angle or helix angle and is given by the following equation.

L, Pi
¢i = tan™' () (111.1)
L

In one revolution of the cylinder, a point on the helix travels p; distance,
measured normally on OX direction, and is named pitch of the section. Frequently, the
pitch is supplied as dimensionless values p;/Dcalled pitch to diameter ratios. Each

section of the blade can have a different pitch angle ¢; and therefore the pitch at % =

0.7, where R is the propeller radius, is commonly used as a representative value (the
nominal pitch).

pitch (Pi)

Shaft axis

Figure Ill.4: Geometrical Representation of Pitch
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A.iii. Skew & Rake

Skew is defined to be the displacement of a section along its chord line direction.
Skew is also specified in angular form, called the skew angle. The skew angle 6; of a
particular section at R; is shown in Figure /1.5 and is the angle between the reference line
and the midchord point of the section on the transverse place on the YZ plane. In Figure
111.5, the two different types of propeller skew: balanced and biased skew designs, are

also depicted.
0

N x=r/R
Balanced skew
design

!/
&
Y
(Projected view)

Zy Distance CD = rf,(x)

Biased skew
design

N

Figure Il.5: Skew in Angular Form Definition

Rake corresponds to an aft or forward displacement (Figure /11.6) of the section
along the shaft-axis. The terms rake and skew have a cross-coupling component due to
the helical nature of blade sections. Propeller rake is induced when the sections are
displaced along the pitch helix and is divided into two components: generator line rake
(ig)and skew induced rake (is). The total rake of the i section with respect to directrix
(ir) is given by:

iTl' = iSl' + iGi (/I/Z)
In cases, when the generator line is a linear function of radius, it is meaningful to

talk about propeller rake (i) or a propeller rake angle (6;,)These terms are measured
at the propeller tip as shown in Figure 1ll.6, where the propeller rake angle is given by:

_ ip
0, = tan™! (E) (111.3)
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Figure 111.6: Tip Rake Definition

Figure 111.7 is presented in order to clarify the meaning of the skew induced rake
consider of a section. In this Figure, an unwrapping cylindrical section at some radius R;
between the tip and root of the blade is illustrated. Skew induced rake is the component,
measured in the X-direction, of the helical distance around the cylinder from the mid-
chord point of the section to the projection of the directrix when viewed normally to the
YZ plane. The following Equation (/1.4) gives the skew induced rake of i*" section.

Is; = Tl tan(;)

(111.4)

Generator
Total Rake —
Rake | Skew =

Induced Rake - -
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Figure Ill.7: Definition of Total Rake
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A.iv. Propeller Outlines and Area

There are four basic outlines, which describe the propeller blade shape:
1. The projected outline.
2. The developed outline.
3. The expanded outline.
4. The swept outline.

The projected outline is the view of the propeller blade, when the propeller is
viewed along the shaft center line. The helical sections in this view, are defined in their
appropriate pitch angles and the sections are seen to lie along circular arcs whose center
is the shaft axis. This view together with the developed and expanded views is illustrated
in Figure 111.8. From this Figure it is clear that the projected area Ap is given by

R
Ap - Zj (BTE - BLE) TdT (I/I,5)

Th

The developed outline is related to the mentioned above projected outline. It is a
helically based view, but the pitch of the sections has been reduced to zero and is used
to give an appreciation of the true form of the blade and the distribution of chord lengths.
In Figure 111.8 is shown this view in relation to the projected outline. it is necessary to
integrate the area under the developed profile curve numerically if a precise value is
required. For most purposes, to calculate the developed area it is sufficient to use the
approximation for the developed area Ap as being, where Ag is the expanded area of the
blade.

Ap ~ Ag (111.6)

However, several researchers have developed empirical relationships for the
estimation of the developed area. A relationship, like this, proposed by Burrill [65] for
non-skewed forms, is

Ap

An =
P (1.067 — 0.229P/D) (11.7)

In general, the developed area is greater than the projected area and slightly less
than the expanded area.
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The expanded outline is not really an outline, it could more correctly be termed a
plotting of the chord lengths at their correct radial stations about the directrix. In this
outline, the pitch angle of each section is reduced to zero. However, this view is used to
give an idea of the blade section forms used, as these are frequently plotted on the chord
lengths, as seen in Figure 111.8. The expanded area is the simplest of the areas that can be
calculated and is given by following the relationship:

R
AEsz cdr

Th

(111.8)

Blade area ratio is either the projected, developed or expanded blade area,
depending on the context, divided by the propeller disc area Ao:

(A 44,
[ 4o nD?
{ Ap 44
A, mD? (111.9)

|4z 44,
\AO - D2

Leading edge

//

\(\ /Prcjected outline \\
Developed outline Expanded outline

Figure I11.8: Outline Definition
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A.v. Section Geometry and Definition

A hydrofoil is a specialized version of the airfoil [66] that is manufactured to
work in water. The shape of the hydrofoil plays a vital role for the construction of a
marine propeller and Figure /11.9 shows a typical airfoil and illustrates various items of
airfoil terminology [67].

The mean line or camber line of a hydrofoil comprises the locus of equidistant
points between the upper and lower sides. The points where the camber line meets the
hydrofoil coincide with the leading and trailing edge points of the hydrofoil and the
straight line connecting these two edge points, is called the chord line or simply chord
(¢). The maximum distance between the mean/camber line and the chord line is called
camber, while the hydrofoil thickness is the maximum distance between its upper and
lower side.

thickness
camber

Flow leading edge trailing edge

Pper Side

- ——
—_——
T —
—_—

chord line

>

chord length (c)

Figure 111.9: Airfoil Terminology
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B. Hydrofoil Mother Concept

In this model, for the generation of the blade the “Hydrofoil Mother” concept has
been adopted, and it is referring to a hydrofoil, that functions as a geometrical basis for
all hydrofoil sections. The process, that is followed to design the “Hydrofoil Mother” or
the initial hydrofoil is described in “Step 1. Parametric Model of a Generic 2-D Hydrofoil”
and leads to a B-spline shaped-foil. The control points of the initial hydrofoil are
transformed into the 3D-space (see “Step4. Blade Cage ) in order to create the T-spline
blade cage.

The first transformation is related with the sizing of the hydrofoils and their radial
positioning along the wingspan and Figure 111.10 illustrates this transformation of 30 B-
spline curves (sections). The part of C# code, which is used for the first transformation
of the sections is shown on Table Iil.1.

Figure I11.10: Hydrofoil Sections Positioned and Sized



Table Ill.1: Part of C# code for the 15t Transformation

//sizing airfoils of every section
List<Point3d> Profilel = new List<Point3d>();
for (j = @; j <= Profile_F.Count - 1; j++)

{

Point3d pt = new Point3d();

//first section(connection with hub)

//Profile_F bounding rectangle airfoil

if (1 == 0&& 1 == 1)

{
pt.X = -1.0 * RotationSign * Profile_F[j].Y / Thickness_mother * ThicknessRatio[i] * Diameter * 1.2;
pt.Y = -1.0 * RotationSign * (Profile_F[j].X / ProfileLength -0.5) * ChordLengthRatio[i] * Diameter * Chord_mother *1.2;
pt.Z = 0.0;

}

//sections except from the last and the first one

else if ((i < NumberSections - 1) && (i>1))

{
pt.X = -1.0 * RotationSign * Profile[j].Y / Thickness_mother * ThicknessRatio[i] * Diameter;
pt.Y = -1.0 * RotationSign * (Profile[j].X / ProfileLength -0.5) * ChordLengthRatio[i] * Diameter * Chord_mother;
pt.Z = 0.09;

}

else

{
pt.X = -1.0 * RotationSign * Profile_F[j].Y / Thickness_mother * ThicknessRatio[i] * Diameter*®.5;
pt.Y = -1.0 * RotationSign * (Profile_F[j].X / ProfileLength -0.5) * ChordLengthRatio[i] * Diameter * Chord_mother;
pt.Z = 0.0;

Profilel.Add(pt);

}

Subsequently in the second transformation, the control points of the profiles are
rotated via the pitch angle of each section around the Z axis, as seen in Figure 111.11 The
following basic rotation matrix rotate vectors by an angle & about the Z-axis, in three
dimensions, using the right-hand rule and is used in C# code on Tablelll.2.

cosf —sinf O
R,(0) =|sin® cos® O (111.10)
0 0 1

Table I11.2: Part of C# code for the 2" Transformation

//rotation of the blade (pitch)

List<Point3d> Profile2 = new List<Point3d>();

for (j = ©; j <= Profilel.Count - 1; j++)

{
Point3d pt = new Point3d();
pt.X = Profilel[j].X * Math.Cos(Angle) - Profilel[j].Y * Math.Sin(Angle);//rotation matrix
pt.Y = Profilel[j].Y * Math.Cos(Angle) + Profilel[j].X * Math.Sin(Angle);//rotation matrix
pt.Z = Radius + Profilel[j].Z;//Profilel values only last section
Profile2.Add(pt);

i
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Figure I1l.11: Hydrofoil Sections Rotated via Pitch Angle

Finally, the control points of the hydrofoils are displaced due to the rake and the
skew of each section. In the third transformation (Table 111.3), parallel to this
displacement, the sections are also warped, because they are lying on the surface of
cylinders, as seen in Figure /11.3. The impact of the third transformation on the control
points is shown in Figure I11.12.

Table IV.6: Part of C# code for the 3™ Transformation

//Projection of the Profile2 on a cylinder with axe on X and radius = Radius (of every
section)

List<Point3d> Profile3 = new List<Point3d>();

for (j = @0; j <= Profile2.Count - 1; j++)

Point3d pt = new Point3d();
Theta = Profile2[j].Y / Radius - RotationSign * Skew[i] + GeneralRotation;

pt.X = Profile2[j].X - RakeRatio[i] * Diameter;
pt.Y = Profile2[j].Z * Math.Sin(Theta);
pt.Z = Profile2[j].Z * Math.Cos(Theta);

Profile3.Add(pt);




Figure 111.12: Hydrofoil Sections Warped and Displaced via Rake and Skew

The way, that the control points of the sections projected on the cylinders with
radius equal with their corresponding section radius is depicted in Figurelll.13. The terms
shown in the below Figure are defined in the above parts of C# codes.

Zn

Profile2[jl.Y

<V

Profile2[jl.Y

Figure I1.13: Schematic Representation of a Control Point Projected on a Cylinder

49



IV Construction Steps

A. Working Interface

The working interface [68] of the parametric modeler is shown in the figure
below. The main window is called canvas and an algorithm is developed by dragging
components (functional blocks) and connecting them with wires. The program flows
from the left to the right and the components are divided into groups depending on
their function in the model. Finally, the generation of a marine propeller T-spline
control cage is a 6-step process and each construction step is described in detail below.

Parametric Model of Marine Propeller

Myl 3
[

A

IS~

sawesrropmer [ e
T I B

= =
Generic Propelier (NURBS Curves) ™01 ‘G—LI =
—m— a5
=) || D 1
[T
— -
Generic Propeller (Graph Mappers) ﬁ.i‘

l\\l.m\l“l\&'l

Figure IV.1: Grasshopper Interface of the parametric model
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B. Step 1. Parametric Model of a Generic 2-D Hydrofoil

The designing process of a marine propeller begins with a parametric model for a
generic 2-D hydrofoil [41], which is shown in the red group of components (Figure IV.2).

=
==
==
-
-
-
=
==

Figure IV.2: Building the Parametric Model for a Generic 2-D hydrofoil inside Grasshopper

This model creates a closed cubic B-Spline curve that represents a hydrofoil, using
a set of 8 parameters (Table IV.1). Except of the chord’s length parameter (L), all the others
are defined using nondimensional ratios, so that their values range always from 0 to 1. The
chord length is a free parameter and functions as a scale for the hydrofoil geometry.

Table IV.1: Parameters for the Construction of a Generic 2-D Hydrofoil

Nr. Name Description Symbol Actual Range
1 | Length Length of hydrofoil’s chord L free
> | Max width Max:mum width of suction max_z
side wrt chord 500 5
3 | Camber width Camber maximum width max_c [0,0.091max_z]
wrt chord
Max-width Longitudinal position of L 7L
4 .. . L, . X_Z_max - —
position suction side’s max width 5’ 10]
Max-camber- Longitudinal position of 7x _Z_max
5 . .Y , , X_C_max
width position | camber’s max width [
jon-si ion’s si z_max
6 Suction-side Suc.t{on s side angle at a b [arc tan ( _ ) 89]
angle trailing edge wrt chord - L —x_z_max
Camber angle at trailing
7 | Camber angle edge wrt chord abp [0,a_b]
8 | Tip Leading edge form factor tip [0.1,0.9]
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The construction of the parametric model initiates with the definition of four
simple Bezier curves, that are employed in the generation of the final cubic B-Spline
curve. The upper part of the hydrofoil is consisted of two parts: a simple cubic Bezier
curve and a simple quadratic one for the fore and aft part respectively. The first control
point of the cubic curve is located at (0,0) while the last one is at (x_z_max, z_max). The
positions of the two interior control points are controlled by the tip form factor parameter.
Specifically, the first point lies on the line segment defined by (0, 0) and (0, z_max),
while the second on the segment defined by (0, z max) and (X_z_max, z_max).

The camber curve is designed in a similar way using two quadratic simple
Bezier curves. The construction of these two curves is equivalent to the curves referring
to the hydrofoil suction side with X_z_max, z_max and a_b being replaced by x_c_max,
¢ max and a_b_p. A merging algorithm [69] of two B-spline curves into one B-spline
curve has been developed. So, the suction side and the camber curve can be represented
by one B-spline curve respectively. Thereupon, the pressure side of the hydrofoil is
constructed by mirroring the suction side about the camber curve.

Finally, the two curves corresponding to upper and lower part of the hydrofoil
have also been merged and as a result a closed B-spline curve is generated, which
represents the 2-D hydrofoil model. This method leads us to a cubic B-spline curve
without superfluous control points, which is consisted of 12 control points (Figure IV.3).
The geometrical definition of the 8 parameters is depicted in the figure below.

X_C_max

Lendgth

Figure IV.3: 2-D Hydrofoil Model
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C. Step 2. Basic Parameters

Thereafter, the user chooses the basic parameters for the construction of a marine
propeller, which are described in Table IV.2. A different set of basic parameters is used
in order to approximate a B-series propeller model.

Number Sliders are used to import numerical values to the parameters. A number
slider is a special interface object that allows quick changing of individual numeric

values.
Table IV.2: Basic Parameters for the Construction of a Generic Marine Propeller
Basic Parameters
Generic B-series

Name Description Usage Range Usage Range

Diameter Diameter of the Propeller v Non-negative v Non-negative
number number
Blades Number of Propeller Blades 4 [2,7] v [3,7]
Hub Di Hub Di -
ué iameter | Hub lamefer divided by v [0.130,0.200]] v about 0.167

Ratio Propeller Diameter
Number o Number of Hydrofoil Sections

tber of of Hydrof v [7,30] v [7,15]
sections composing the Blade
Rotation X (°) | Angle of Rotation around X-axis v [—90,90] 4 [—90,90]
Right Handed | Direction of Propeller Rotation 4 True or False 4 True or False

Expanded Area divided by Disc
Ac/A x x v . .
/Ao Area (Blade Area Ratio) [0.3,1.05]

P/D Pitch to Diameter Ratio x x 4 [0.6,1.4]
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In the Figure V.4 the basic parameters, which mentioned above, with their number
sliders inside Grasshopper.

B-series Basic Parameters |

Figure IV.4: Basic Parameters with Number Sliders inside Grasshopper
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D. Step 3. Radial Parameters

In the third step, a set of radial parameters is defined (Table IV.3), which are
affecting the blade’s geometry along the wingspan. Each parameter is obtained as a ratio
of quantities and these are separated in three categories.

Table IV.3: The Categorized Radial Parameters

RADIAL PARAMETERS

Mapping Sectios

Posiotioning Sections Hydrofoil Shape Changin .
g ¥ P ging Control Points
Name Description Name Description Name Description
Defining the
Sections_Ratio D/str/bfjtuon of the Chord._Ratio Determing Chorcf pitch Ratio thatlon via
Sections along Length of the Section Pitch Angle
wingspan
. . Determing Thickness .| Rotation via
Thick R kew_R

ickness_Ratio of the Section Skew_Ratio Skew Angle

M
Rake_Ratio (?vement

via Rake

In the first category, only the Sections_Ratio parameter is contained and is utilized
in order to have a desirable section spacing along the wingspan. This parameter is a
driver for the rest of the Radial Parameters, because the radial position of the sections
follows the distribution of the first graph. The second category of parameters is defining
the chord length and the thickness of each hydrofoil section. Using the parameters of the
third category, namely the skew angle, the rake and the pitch of the propeller; the
hydrofoil sections are mapped into the 3-D space (see Hydrofoil Mother Concept).
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There are three options (Figure 1V.6) to create the radial distributions of those
parameters. According to the first one (light red group in Figure IV.6), the distributions
are created with the help of Graph Mappers components. This Grasshopper tool allows
the user to remap a set of numbers, which lie on X-axis, using the curve onto the Y-axis.
The red vertical lines in Figure IV.5 are representing the numerical values on X-axis and
their number is defined on the previous step with the Number Sections parameter. In our
model we choose, as a graphic type, a cubic Bezier curve and six Graph Mappers
components are used, which are depicted in the Figure IV.5. In this way, different
propeller shapes can be generated interactively, by changing the positions of the control
points (vide the little circles in the Figure IV.5). The problem with this method is that the
control points can change only by mouse movements, so by designing the propeller in
this way, the parametric model cannot be a part of an optimization process. Therefore,
the parametric model has been enhanced with a second option.

4 Sections ratio P q Pitch_ratioc P q' Rake ratio \P

05 -2 03:02
'—’_’_’_’_——4)
=t ﬁ [ E
© O O O -
& [o-1] | [o-7] 0:1
q Skew_ratio J) q' Thickness_ ratio b 4 Chord Ratio P
-90 90 i 0:1
L (P Dy 0!
o:1 o

Figure IV.5: Generating Distributions of Radial Parameters with Graph Mappers

In the same manner with the Graph Mappers methodology, a set of cubic Bezier
curves has been utilized for the generation of the radial distributions mentioned above.
The difference between these options, is that in the second one, the graphs have been
constructed with a set of in-house C# codes (light blue group in Figure IV.6) and the
positions of the control points can be changed by a set of number sliders. The purpose of
the code is to create the radial distributions of the parameters to follow a propeller logic.
In the same time, the code can offer a great deal of variety in the resulting shapes, which
IS necessary in an optimization algorithm.
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The third option (light green group in Figure IV.6) is related with the creation of
Wageningen B-series Graphs, which will be discussed in the next Chapter. The path, that
the algorithm will follow depends on the user’s decision (Figure IV.7).

T

Figure IV.6: Three options to create the Distributions of the Radial Parameters

Figure IV.7: Decision Making
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E. Step4. Blade Cage

A set of in-house C# codes components have been developed aiming to build the
control cage of the blade. In our model, the “Hydrofoil Mother Concept” has been
adopted. In order to create the control cage of the blade, a set of control points has to be
mapped via the radial parameters (Table 1V.3). The control points of all sections have
been generated from the control points of the initial hydrofoil, hence the name “mother”.

As mentioned before, each section is formed by a control polygon contained by
12 control points. The control points of each section should be transformed as described
in “Hydrofoil Mother Concept”. In the Figure IV.8 the control points are shown with red
mark and the blue lines connecting these points define the blade cage. The order of the
sections is from the root of the blade to its tip. So, the first section is referring to the
section at the root of the blade and the last section is located at the tip of it.

Figure IV.8: Control Points Mapped into the 3-Dimensional Space
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For the generation of the blade cage an additional shape of Hydrofoil is utilized
and it is also generated from the “Hydrofoil Mother”. It is called “Bounding Hydrofoil”
because of its shape (Figure I1V.9).

I / Control Points with the same Vertical Position

1" Group Y 2™ Group 3% Group 4" Group 5" Group
10)

—— Extra Lines for the Tip Section
—— Bounding Hydrdfol
—— Hydrofoil Section's Palygon

Figure IV.9: Bounding Hydrofoil Model

This hydrofoil is used on the tip and on the root of the blade. These areas were an
issue for our designing process due to the following reasons.
e Achieve the proper smoothness of the fillet area through the control cage
e The blade and the hub of a propeller are extended in different directions
e Closing of the control cage at the tip, but not with a single point

The fillet area of the propeller implemented by using two, close to each other,
adapted bounding hydrofoils sections (Figure 1V.10). The only purpose of this area is to
connect the hub with the blades by maintaining the mechanical strength of the propeller,
resulting an hydrodynamically inactive zone. Therefore, thicker sections (rectangle) are
employed in the generation of the fillet. The fillet radius is also a parameter of the model
and it can change from the radial distance between the first and the second section.

N

) Y%

Figure IV.10: Two Nearby Sections for the Generation of the Fillet Area
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The construction of a single watertight T-spline surface of a propeller is a difficult
task, because as mentioned before the blade and the hub of a propeller are extended in
different directions. In consequence, the control points of the first section must be located
in proper positions, so the hub can receipt the blades of the propeller. The way that the
root section points adjusted is explained below. These 12 control points are separated
into 5 groups depending on their vertical position on the expanded view of the section
(Figure 1V.9). For each group of points, one circle is defined, in which one point of the
group is lying in the circle mentioned above. The rest of the points, which don’t belong
to the topology of the created circles, are being moved, in order each group of points to
belong to their adjacent circle (Figure IV.11).

1" Group

2" Group

rd [
3" Group - _|. .
4"Group 1| — -
5"Group » ,
N Initial Root Section

ﬂ/;?-:;f" —— Adjusted Root Section
) h

|

\ 1

/ z

Figure IV.11: Adjustments at the Control Points of the First Section

The closing of the blade’s tip was always a trouble for the propulsor designers. In
our model, we use an adapted bounding hydrofoil (see: Figure IV.12, red section) for the
representation of the tip, because it’s not desirable, the cage to close on a single point.
For this adaptation some extra lines are used as illustrated in Figure IV.9. This set of
control points are also lying topologically on a rectangular grid. Additionally, the last
section should be very thin and long in order to approximate the tip of the blade.
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Figure IV.12: Last Section of the Blade Cage

Once, the Blade cage is constructed, the rest blades of the propeller are generated
by rotating the initial cage via the following angle.

_2n(i—1)

@ 1 i=12,..,Z (IV.1)

Where Z is the number of Blades and i is representing the serial number of the
rest blades. The Figure 1V.13 shows three blade cages of a marine propeller.

Figure IV.13: Three Blade Cages of a Marine Propeller
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F. Step 5. Hub Cage

Subsequently, the parametric model creates a proper hub, which will be connected
with the blade cage. The shape of the hub is in a simplicity a cylinder that closes on the
front with a cap. The approximation of the hub is attained by using a set of polygons in
a row, which are connected to each other. The closing of the hub (cap) is created by
decreasing the radius and the sides of the polygons. The polygons that are utilized, are
divided in two categories.

The polygons of the first category are illustrated in the Figure 1V.14 with black
mark and they are called initial polygons. The construction process begins with these
polygons, that are five, as many as the groups of the control points at the root section. In
each of these groups corresponds a circle (Figure 1V.14). The radius of those circles is
equivalent with the radius of the polygons, that initially produced and their centers are
located in the same position. So, the root section points are also part of the initial
polygons. The longer the length that the blades are covering over the perimeter of the
circle, the smallest the number of polygon sides and conversely.

Therefore, the initial number of polygons is declared exclusively from the
thickness of the root section and from the number of blades. In our model, the number
of the initial polygon sides can receive only specific values, which are the following: 8,
12, 16, 24, and 32. Numbers greater than 32 were rejected, because they make the
propeller model more complex. Those values have been chosen, because they are
multiple of number 4 and in this model (last section-polygon should be a 4-sided
polygon.)

The second category of polygons is shown in Figure 1V.14 with red color. When
viewed from astern and along the shaft axis, five of those polygons are in front of the
blades and another five are behind. The order of construction in each side of the second
category polygons is from the main body of the hub to its edge. These polygons are
regular and the first section-polygon has as many sides as the initial polygons and the
last one is a 4-sided polygon. The distances of the polygons and the reduction of their
sides is accomplished in a way, that the symmetry of the hub surface is kept, hence the
chosen numbers multiple of four.

In order to achieve C2 continuity and a smooth surface, the helical line of the blade
should also continue in the hub. This is achievable by maintaining the value of the pitch
angle at the root and by rotating the regular polygons via this pitch angle.
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Four-sided Polygon Section

v,

Figure IV.14: Construction of the Hub Cage Using a set of Polygons in a Row
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G. Step 6. Control Cage of the Marine Propeller

The process of generation of a marine propeller T-spline control cage inside
Grasshopper is shown in the Figure IV.15.
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Figure IV.15: Process of Designing a Marine Propeller with T-splines inside Grasshopper

The T-spline surface is constructed in the last component of the above figure,
which uses the command of Rhino: tsFromLines [70]. The tsFromLines command
provides a way to create complex surfaces, that are closer to the desired final shape than
the default primitives. The workflow of creating a T-spline surface from lines is the
following:

a. Creating the control polygon
b. Connecting control polygon edges correctly (see: Figure IV.17)
c. Running the tsFromLines command
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The Figure 1V.16 shows the star points of the T-spline mesh of the propeller and
they are located at the hub, tip and the fillet area. The star points or the extraordinary
points are interior T-mesh vertices that are not T-junctions and whose valence do not
equal four. In last two figures of the section, a curvature analysis has been accomplished
inside Rhino using a Gaussian surface [71] [72] and an evaluation of marine propeller
surface smoothness and continuity using the Zebra [73] command.

As a last remark, we need to mention here that the processing time, i.e., the time
required for building the control cage of a model instance, requires around 1-2 secs on
an entry level standard PC. Further to this, an additional time of up to 30 secs might be
required for the T-spline surface construction, especially if a smooth tessellation is
required for visualization purposes.

The superiority in smoothness for a T-spline surface model is also extended to the
basis used for its representation. Specifically, the single cubic T-Spline surface modeling
the propeller geometry exhibits overall C? continuity, limited to G! in the vicinity of
extraordinary points (illustrated in Figure IV.16).

Figure IV.16: Star points on the T-mesh of a Marine Propeller
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Figure IV.17: Entire Control Cage of Marine Propeller
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Figure IV.18: Marine Propeller Curvature Analysis using Gaussian Surface

Zebra Options
Stripe direction ——
(®) Horizontal
() Vertical
Stripe size

Thin ~

Stripe color

[] Show isocurve
Adjust Mesh...
Add Objects

Remove Objects

-

Figure IV.19: Evaluation of Marine Propeller Surface Smoothness and Continuity using Zebra
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V Model Instances

A. Wageningen B-series

Various generic shapes are produced by this parametric model. This variety is also
including real marine propeller models and it is feasible to a user of the modeler to
receive any propeller he desires, by applying to the algorithm the proper data input. As
part of this parametric model, an approximation on the geometry of the Wageningen B-
Screw Series [74] using T-Splines technology has been carried out.

Wageningen B-Screw Series [75] is the most extensive and one of the oldest
propeller series, due to its simplicity is also one of the most widely used. The B-series
was originally presented in a set of papers presented by Troost [76] referred to as the
“Troost series”. The number of blades of B-Series propellers ranging from 3 to 7, blade
area ratios ranging from 0.30 to 1.05 and the pitch to diameter ratio values are between
0.6 to 1.4. The main feature of B-series is, that the propellers have constant pitch with
the exception of 4-bladed propellers. The XY-ZZ notation is used to denote the propeller
series, where (X=B) denoting the “B-series”, Y is the number of blades and ZZ is the
blade area ratio (Ae/Ao).

Table 1V.2 shows the parameters, that are utilized for the construction of a B-series
propeller, which is defining completely the geometry of the B-series model. The
challenging part of building a B-series blade was not only the creation of the appropriate
radial functions of the parameters (Table IV.3), but also the drawing of a hydrofoil
section, which corresponds to the B-series definition.

The below Figure depicts the process of generating the cloud of the B-series
propeller points inside Grasshopper, as shown in Figure V.2.

Figure V.1: Generating the Cloud of the B-series Propeller Points inside Grasshopper
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The overall geometric properties of the original Wageningen B-series are known
from [77]. So, calculating the formulas given by a cloud of points lying on the surface
of the required blade is generated. The resulting points are part of 8 sections located at
0.2 r/R, 0.3 r/R, ..., 0.9 v/R (Figure V.2), and each section consists 40 points.

DBn’R
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Figure V.2: A Cloud of a B-series Propeller Points

In consequence, depending on the position of the resulting points, the distributions
of the radial parameters are set up. In order to approximate the 2-D profiles of a B-series
blade, we develop an evolutionary algorithm [78] by utilizing the parametric model for
the generic hydrofoil. The outcoming sections are very close to the B-series definitions
(Figure Vv.3). A generic platform for the application of Evolutionary Algorithms is
provided within Grasshopper, as shown in Figure V.4, and it is named Galapagos [79].
This Grasshopper component can optimize a shape, so that it best achieves a user defined
goal. The parameters (Table IV.1), except of the chord length of the hydrofoil, are the
genes of the algorithm. Galapagos can try these 7 numerical values in various
combinations, and each combination, or genome, produces a unique hydrofoil shape.
Counting the distances between the B-series points and the outcoming hydrofoil shapes
(curves in Figure V.3), the maximum value of these distances is saved. The goal or fitness
function of the algorithm is to minimize the aforementioned maximum distance.
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Figure V.3: Comparison of B-series sections with a set of Approximated Sections

Figure V.4: Generating a B-series Hydrofoil Using Galapagos Generic Platform

In this way, by applying an evolutionary algorithm, an appropriate “Hydrofoil
Mother” is produced. Thereafter, all the required data are set for the continuation of the
designing process. Following the same design strategy with the construction of a generic
propeller cage, which is described in the previous chapter, the creation of a B-series
propeller has been accomplished.
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Table V.1 shows the extent of the series in terms of a blade number versus blade
area ratio matrix. The 20 blade area-blade number configurations, which are shown below,
gives a summary of the series. For completeness purposes Figure V.5 illustrates 4 geometric
model instances of B-series propellers.

Table V.1: Summary of the Wageningen B-Screw Series

Blade Number (2) Blade Area Ratio Ae/Ao
2 0.30
3 0.35 0.50 0.65 0.80
4 0.40 0.55 0.70 0.85 1.00
5 0.45 0.60 0.75 1.05
6 0.50 0.65 0.80
7 0.55 0.70 0.85
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Figure V.5: Four Geometric Model Instances of B-series propeller
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B. OpenProp

For benchmarking purposes, a prototype marine propeller 3D model, obtained
from OpenProp software package, was used. Openprop is an open-source software
package used for the design and analysis of marine propellers and horizontal axis
turbines. The standard required input for generating a 3D marine propeller model in
OpenProp includes the number of blades, the propeller & hub diameter, the template
hydrofoil’s mean line and thickness, along with distributions for chord length, blade
thickness, pitch, skew and rake along the radial direction; see default OpenProp
geometry input parameters in Figure V.6. The OpenProp 3D model corresponding to this
default set of parameters is depicted in Figure V.7.

(4 OpenProp - [m] X

Single Design ~

OpenProp v3.3.4

Specifications Blade Design Values Inflow Profile Values | Options
Number of blades: 3 R c/D Cd t0/D | Skew @ XsiD r ValVs | Vt'Vs (®) Propeller
Rotation speed 200 02 | 016 | 0.008 0.0329| 0 0 O Turbine
e T
Rotor diameter (m): 2 0.3 0.1812 | 0.008 | 0.0281 0 0

[] chord optimiza..
Reguired thrust (N): | 25000 04 |02024 0.008 | 0.0239 0 0 Viscous forces
Ship speed (mis): 5 05 |02196| 0.008 | 00198 0 0

[] optimization pi...
Hub diameter (mj): 0.4 06 |0.2305] 0.008 | 0.016 0 0

Geometry plots
Fluid density 1000 07 102311 0.008 | 0.0125 0 0 [ Performance c..

# radial panels: 20 08 02173 0.008 | 0.0091 0 0 Airfoil type

# chordwise 20 09 |0.1807 | 0.008 | 0.006 0 0 LTI T
095 |01383| 0008 (0045 0 | O N e type.
1 | 0001 0008 O 0 0 waca 65010 B
Ducted Propeller Non-dimensional Parameters Tools

Thrust Ratio: 1 J=VinD = 0.75 CT= 063662 | | Filename DefaulPropelier
Duct section drag 0.008 L = omega*R/\V = 4. 18879 KT = Ti(rho*n*2*D"4) = 0.140625
duct D/ prop D: 4 Load | Save | RunOpenPr..

Figure V.6: Default Geometry-Input Parameter Values for OpenProp

Figure V.7: Default OpenProp 3D Propeller Model
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Figure V.8: Default OpenProp Radial Distributions of Basic Geometrical Quantities

In sequel, the use of the parametric model in approximating the default OpenProp
3D propeller model is demonstrated. The comparison is limited to the propeller blade,
which is the most complex and decisive geometrical element for the propeller’s
performance and the process has as follows:

i. The basic parameter values, Diameter (D), number of blades and the number of
sections are set to 2, 3 and 16 respectively.

ii. The parameters described in Table IV.1 are employed in approximating the
NACAG65A010 hydrofoil profile.

iii. The distributions for chord length, thickness and pitch angle depicted in Figure V.8
are approximated using the corresponding mechanisms built in the parametric

model (see: “Step 3. Radial Parameters”).
iv. The T-spline corresponding 3D propeller model is then automatically generated;
see Figure V.9 and consists of 884 control points (including the hub component).

The first thing that is assessed, is the approximation level achieved by the
parametric model when compared to the OpenProp prototype surface blades. To this end,
points from 20 sections belonging to one OpenProp blade are generated and compared
them against the corresponding sections of this thesis model. In Figure V.9, the
corresponding results for the T-spline generated blade is presented. It is easy to see that
the overall deviation is larger and that there is a region (red colored region), in with the
surface deviations exceed 1cm. This average deviation is around 3.8x1073 m. A detailed
comparison of deviations in all generated sections are included in Table V.2.
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Specifically, for each section we present the average and max deviations achieved
by each parametric model when compared to OpenProp’s prototype blade. Deviations
are presented both as distance values (Av. Dev., Max. Dev.) and percentages of the
section’s chord length (Av. Per, Max. Per). Finally, each section’s chord length, as
approximated by each model, is also included in the comparison.
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Statistics
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Standard deviation: 0.00336

Figure V.9: Point-surface Deviations between OpenProp Generated Point Set and the corresponding T-spline Blade Surface
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Table V.2: Comparison of OpenProp sections with T-spline Parametric Model

Section #0 (0.200 r_R)

Section #1 (0.263 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00702 0.01978 0.34671 2.03% 5.70% 0.00563 0.01332 0.34086 1.65% 3.91%
Section #2 (0.325r_R) Section #3 (0.387 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00522 0.01212 0.36299 1.44% 3.34% 0.00575 0.01236 0.385176 1.49% 3.21%

Section #4 (0.447 r_R) Section #5 (0.506 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00574 0.01236 0.40535 1.42% 3.05% 0.00537 0.01206 0.422928 1.27% 2.85%
Section #6 (0.563 r_R) Section #7 (0.618 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00496 0.01246 0.436891 1.13% 2.85% 0.00453 0.01216 0.446082 1.02% 2.72%
Section #8 (0.670 r_R) Section #9 (0.720 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00403 0.011452 | 0.449488 0.91% 2.55% 0.00366 0.01107 0.446361 0.82% 2.48%
Section #10 (0.766 r_R) Section #11 (0.808 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00336 0.01081 0.43633 0.77% 2.48% 0.0031 0.0100 0.41953 0.74% 2.41%
Section #12 (0.847 r_R) Section #13 (0.882 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00282 0.00917 0.39728 0.71% 2.31% 0.0024 0.0087 0.37045 0.69% 2.34%

Section #14 (0.913 r_R) Section #15 (0.939 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.

0.00231 0.00896 0.337891 0.68% 2.65% 0.00213 0.00883 0.294328 0.71% 3.00%
Section #16 (0.961 r_R) Section #17 (0.978 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.
0.00177 0.00707 0.23812 0.74% 2.97% 0.00194 0.00581 0.175485 1.11% 3.31%
Section #18 (0.990 r_R) Section #19 (0.998 r_R)

Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per. Av. Dev. | Max. Dev. | Chord (L) | Av. Per. | Max. Per.
0.0028 0.00499 0.112106 2.03% 4.45% 0.002658 0.005091 0.04909 5.42% 10.39%

The approximating accuracy, at this point of development, is not reaching the
desirable accuracy, but the smoothness exhibited by the parametric model with respect
to both its representation bases and surface quality, makes it certainly attractive for a
propeller-design optimization environment powered by an IsoGeometric Analysis
Boundary Element Method solver for the assessment of blades’ performance.
Furthermore, the small number of control points, which normally leads to a small number
of degrees of freedom (number of unknowns) for the linear system appearing in the
context of the BEM formulation, is an additional and equally important benefit.
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C. Special Designs of Marine Propellers

This section shows the ability of the parametric model in producing a big variety of
generic propeller shapes. Figure V.10 illustrates four marine propeller models and the
basic parameters for the construction of each model are shown in Table V.3.

These four models were selected, because of their properties. The properties, that each
propeller model possess are described, as follows.

i.  The first model is a two-bladed propeller. Two-bladed propellers are not usually
used in marine propeller engineering. Furthermore, the hub diameter of this
model is taking the maximum value of the parameter, as shown in Table IV.2.

ii. The Model B is a highly skewed propeller with three blades. The advantages and
disadvantages of highly skewed propellers compared with conventional propellers
are examined at [80].

iii. The Model C is a very thin propeller with four blades. Due to the propeller’s
thickness, a few sides of polygons are employed to build the hub as explained in
“Step 5. Hub Cage”. Also, the number of the sections of the blade cage is 7, hence
the small number of control points (448), that define the T-spline surface. Using
few blade sections leads normally to a small number of control points and to a
small number of degrees of freedom (number of unknowns) for the linear system
appearing in the context of the BEM formulation.

iv. The last model is a left-handed propeller, which is consisted of 1940 control
points. Further to this, 30 sections (maximum value of this parameter) are
employed for the generation of the blade cage. A big number of blade sections
can lead to a better approximation of an existing propeller model.

Table V.3: Properties of the Four Generic Propeller Models of Figure V.10

Model A Model B Model C Model D
Diameter (m) 1 1 1 1
Hub Diameter Ratio 0.250 0.200 0.167 0.167
RightHanded True True True False
Number of Blades 2 3 4 5
Number of Sections 11 15 7 30
Number of Control Points 584 848 448 1940
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Figure V.10: Four Generic Propeller Model Instances
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VI Conclusions and Future Work

This work is focused on the creation of a geometric parametric model, capable of
generating various marine propellers model instances represented by a single watertight
T-spline surface, which are suitable for engineering analysis following the IsoGeometric
Analysis paradigm.

Further to this, it has been demonstrated that the parametric model can quickly
and automatically produce valid geometric representations of marine propellers, based
on a small set of geometrically and physically meaningful parameters. A subset of these
parameters is firstly used in the construction of a template hydrofoil profile, which is
later copied and transformed in the span-wise direction on the basis of a series of
distribution laws defined by the remaining part of parameters. These distribution laws
describe the scaling, rotation and translation of the template profile and specifically
correspond to chord length, thickness, pitch, rake and skew propeller distributions.

Also in this thesis, the parametric model’s approximation capacity in
reconstructing existing marine propellers have been tested. Initially, an approximation
on the geometry of Wageningen B-Screw Series, one of the most widely used propeller
series has been accomplished. Following this approximation, a benchmark case has been
examined using the OpenProp’s default propeller model in comparison with the
presented T-spline model. The quantitative results, that came up from this comparison
are encouraging, but still ways of enhancing the model’s approximating accuracy needs
to be investigated more.

So, combining the increasing interest in designing the optimal propeller shape,
this parametric model seems to possess the required properties, i.e., robustness,
automatic and quick instance generation, for their introduction to an automatic design
optimization framework.

Finally, the aforementioned parametric model constitutes part of the work carried
out in a research project entitled “Shape Optimization of Lift and Thrust generating
surfaces with the aid of IsoGeometric Analysis” and the ultimate test for the model will
be performed via the project-specific isogeometric analysis propeller solver, which is
currently under development. This computational solver will investigate in depth the
appropriateness of the model for engineering analysis, in an isogeometric context, and
simultaneously will further check its performance in covering the feasible design space
in the context of shape optimization.
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Appendix A: Propeller Model Utilized

In all chapters of this thesis except of the chapter “Model Instances”, a specific
model of a marine propeller is illustrated, in order for the reader to understand better the
modeling process and not to be confused with a big variety of shapes. This specific model
is a B3-60 propeller and is illustrated inside Rhino in Figure A.1 and the values of the
Basic Parameters, that assigned in the model are shown in Table A.1.

Table A.1: Basic Parameters for B-60 Propeller

Diameter (mm) 250
AE_A0 0.6
Blades 3
P_D 1
Hub Diameter Ratio (unitless) 0.167
Number of sections 15
Rotation X (°) 11
Right Handed True

Figure A.1: B3-60 Propeller inside Rhino
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The hydrofoil section mother, that is used for the construction of the above
propeller is shown in Figure A.2 and the parameters of this section with their values are
shown in the Table A.2. These values were exported by the evolutionary algorithm, as
described in “Wageningen B-series” section.

Table A.2: Hydrofoil Mother Parameters with their Values for B3-60 Propeller

max_z 0.130
max_c 0.324
X_z_max 0.178
X_c_max 0.604
ab 0.390
abp 0.930
tip 0.394

\

Figure A.2: Hydrofoil Section Mother for B3-60 Propeller

In Figure A.3, the distributions of the radial parameters of the B3-60 propeller are
depicted. In the horizontal axis the values are ranging from 0 to 1 and in the vertical axis
the parameters are taking their real-unit values. Therefore, the graph of skew angle
(measured in degrees) differs in length, from the others.
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Appendix B: Wageningen Screw B-series

The overall geometric properties of the original Wageningen B-series are shown
in Table B.1.

Table B.1: Dimensions of Wageningen B-propeller series

Dimensions of four-, five-, six- and seven bladed B-screw series
Sr
r/R %A z a,/c, b,/c, p-4r—8Z
E/Ao A, B,
0.2 1.662 0.617 0.350 0.0526 0.0040
0.3 1.882 0.613 0.350 0.0464 0.0035
0.4 2.050 0.601 0.351 0.0402 0.0030
0.5 2.152 0.586 0.355 0.0340 0.0025
0.6 2.187 0.561 0.389 0.0278 0.0020
0.7 2.144 0.524 0.443 0.0216 0.0015
0.8 1.970 0.463 0.479 0.0154 0.0010
0.9 1.582 0.351 0.500 0.0092 0.0005
1.0 0.000 0.000 0.000 0.0030 0.0000
Dimensions of three-bladed B-screw series
¢, Z Sr_ A.—B.Z
/R — a,/c, b,./c, p " T
D Ag/Ao A, B,

0.2 1.663 0.616 0.350 0.0526 0.0040
0.3 1.832 0.611 0.350 0.0464 0.0035
0.4 2.000 0.599 0.350 0.0402 0.0030
0.5 2.120 0.583 0.355 0.0340 0.0025
0.6 2.186 0.558 0.389 0.0278 0.0020
0.7 2.168 0.526 0.442 0.0216 0.0015
0.8 2.127 0.481 0.478 0.0154 0.0010
0.9 1.657 0.400 0.500 0.0092 0.0005
1.0 0.000 0.000 0.000 0.0030 0.0000

A,, B, = constants in equation for S,./D

a, = distance between leading edge and generation line at r

b, = distance between leading edge and location of maximum thickness

¢, = chord length of blade section thickness at radius r

s, = maximum blade section thickness at radius r

In the Figure B.1, the geometric blade section parameters of a Wageningen B-
series propeller are depicted.
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Figure B.1: Definition of geometric blade section parameters of Wageningen B-series propellers

Referring to the Figure B.1, note the following:

LE = leading edge

TE = trailing edge

MT = location of maximum thickness

DI = location of directrix

Yface» Yback = vertical ordinate of a point on a blade section on the face and
on the back with the respect to the pitch line

tmax = maximum thickness of blade section

t; . t .. = extrapolated blade section thickness at the trailing and

leading edges

V1, V, = tabulated functions dependent onr/R and P

P = non — dimensional coordinate along pitch line from position of maximum
thickness to leading edge ,(where P = 1) and from position of maximum
thickness to trailing edge (Where P = —1)

The required coordinates of the profiles can be calculated by means of formulas,
as shown int the equations (B.1) and (B.2), analogous to the formulas given by Van Gent
and Van Oossanen [81] and Van Oossanen [82].

Yface = 4 (t_max _tt.e.)
for P < O{
Yoack = (V1 + Vo) (t_max—t,e) + tee (.1)
for P > O{ Yface = Vi(t_max —t;,)
— Wpaer = (V1 + V) (t_max _tl.e.) + te. (B.2)

Values of tabulated functions V1 and V2 are given in Table B.2. Also, the values
of the tie. and tte. are usually chosen in accordance with rules laid down by classification
societies or in accordance with manufacturing requirements.
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Table B.2: Values of V; and V. for use in equations (B.1) and (B.2)

Values of V1 for Use in the Equations

r/R ‘ P -1.0 -0.95 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 0
0.7-1.0 0 0 0 0 0 0 0 0 0 0
0.6 0.0382 | 0.0169 | 0.0067 | 0.0022 | 0.0006 0 0 0 0 0
0.5 0.0522 | 0.0420 | 0.0330 | 0.0190 | 0.0100 | 0.0040 | 0.0012 0 0 0
0.4 0.1467 | 0.1200 | 0.0972 | 0.0630 | 0.0395 | 0.0214 | 0.0116 | 0.0044 0 0
0.3 0.2306 | 0.2040 | 0.1790 | 0.1333 | 0.0943 | 0.0623 | 0.0376 | 0.0202 | 0.0033 0
0.25 0.2598 | 0.2372 | 0.2115 | 0.1651 | 0.1246 | 0.0899 | 0.0579 | 0.0350 | 0.0084 0
0.2 0.2826 | 0.2631 | 0.2400 | 0.1967 | 0.1570 | 0.1207 | 0.0880 | 0.0592 | 0.0172 0
0.15 0.3000 | 0.2824 | 0.265 | 0.2300 | 0.1950 | 0.1610 | 0.1280 | 0.0955 | 0.0365 0
+1.0 | +0.95 | +0.9 | +0.85 +0.8 +0.7 +0.6 +0.5 +0.4 +0.2 0
0.7-1.0 0 0 0 0 0 0 0 0 0 0 0
0.6 0.0382 | 0.0169 | 0.0067 | 0.0022 | 0.0006 0 0 0 0 0 0
0.5 0.1278 | 0.0778 | 0.0500 | 0.0328 | 0.0211 | 0.0085 | 0.0034 | 0.0008 0 0 0
0.4 0.2181 | 0.1467 | 0.1088 | 0.0833 | 0.0637 | 0.0357 | 0.0189 | 0.0090 | 0.0033 0 0
0.3 0.2923 | 0.2186 | 0.1760 | 0.1445 | 0.1191 | 0.0790 | 0.0503 | 0.0300 | 0.0148 | 0.0027 0
0.25 0.3256 | 0.2513 | 0.2068 | 0.1747 | 0.1465 | 0.1008 | 0.0669 | 0.0417 | 0.0224 | 0.0031 0
0.2 0.3560 | 0.2821 | 0.2353 | 0.2000 | 0.1685 | 0.1180 | 0.0804 | 0.0520 | 0.0304 | 0.0049 0
0.15 0.3860 | 0.3150 | 0.2642 0.223 0.1870 | 0.1320 | 0.0920 | 0.0615 | 0.0384 | 0.0096 0
Values of V: for Use in the Equations
r/R | P -1.0 -0.95 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 0
0.9-1.0 0 0.0975 | 0.1900 | 0.3600 | 0.5100 | 0.6400 | 0.7500 | 0.8400 | 0.9600 1
0.85 0 0.0975 | 0.1900 | 0.3600 | 0.5100 | 0.6400 | 0.7500 | 0.8400 | 0.9600 1
0.8 0 0.0975 | 0.1900 | 0.3600 | 0.5100 | 0.6400 | 0.7500 | 0.8400 | 0.9600 1
0.7 0 0.0975 | 0.1900 | 0.3600 | 0.5100 | 0.6400 | 0.7500 | 0.8400 | 0.9600 1
0.6 0 0.0965 | 0.1885 | 0.3585 | 0.5110 | 0.6415 | 0.7530 | 0.8426 | 0.9613 1
0.5 0 0.0950 | 0.1865 | 0.3569 | 0.5140 | 0.6439 | 0.7580 | 0.8456 | 0.9639 1
0.4 0 0.0905 | 0.1810 | 0.3500 | 0.5040 | 0.6353 | 0.7525 | 0.8415 | 0.9645 1
0.3 0 0.0800 | 0.1670 | 0.3360 | 0.4885 | 0.6195 | 0.7335 | 0.8265 | 0.9583 1
0.25 0 0.0725 | 0.1567 | 0.3228 | 0.4740 | 0.6050 | 0.7184 | 0.8139 | 0.9519 1
0.2 0 0.0640 | 0.1455 | 0.3060 | 0.4535 | 0.5842 | 0.6995 | 0.7984 | 0.9446 1
0.15 0 0.0540 | 0.1325 0.287 0.428 0.5585 | 0.6770 | 0.7805 | 0.9360 1
r/R ‘ P | +1.0 | +0.95 | +0.9 | +0.85 | +0.8 +0.7 +0.6 +0.5 +0.4 +0.2 0
0.9-1.0 0 0.0975 | 0.1900 | 0.2775 | 0.3600 | 0.5100 | 0.6400 | 0.7500 | 0.8400 | 0.9600 1
0.85 0 0.1000 | 0.1950 | 0.2830 | 0.3660 | 0.5160 | 0.6455 | 0.7550 | 0.8450 | 0.9615 1
0.8 0 0.1050 | 0.2028 | 0.2925 | 0.3765 | 0.5265 | 0.6545 | 0.7635 | 0.8520 | 0.9635 1
0.7 0 0.1240 | 0.2337 | 0.3300 | 0.4140 | 0.5615 | 0.6840 | 0.7850 | 0.8660 | 0.9675 1
0.6 0 0.1485 | 0.2720 | 0.3775 | 0.4620 | 0.6060 | 0.7200 | 0.8090 | 0.8790 | 0.9690 1
0.5 0 0.1750 | 0.3056 | 0.4135 | 0.5039 | 0.6430 | 0.7478 | 0.8275 | 0.8880 | 0.9710 1
0.4 0 0.1935 | 0.3235 | 0.4335 | 0.5220 | 0.6590 | 0.7593 | 0.8345 | 0.8933 | 0.9725 1
0.3 0 0.1890 | 0.3197 | 0.4265 | 0.5130 | 0.6505 | 0.7520 | 0.8315 | 0.8920 | 0.9750 1
0.25 0 0.1758 | 0.3042 | 0.4108 | 0.4982 | 0.6359 | 0.7415 | 0.8259 | 0.8899 | 0.9751 1
0.2 0 0.1560 | 0.2840 | 0.3905 | 0.4777 | 0.6190 | 0.7277 | 0.8170 | 0.8875 | 0.9750 1
0.15 0 0.1300 | 0.2600 | 0.3665 | 0.4520 | 0.5995 | 0.7105 | 0.8055 | 0.8825 | 0.9760 1
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