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Evuyxapioticg

Apxikd 9a nbeda va ekPPAc® HE ToV o JePHO TPOTI0 TG EUXAPIOTIEG OU IIPOG TOV erBAETOVIA
pou, op. kabnynu) Fempyto Zourdvo yla v eprmotoouvr), kabodnynorn, Borifsia kat urootr)pisn
O0Aa autd ta xpovia. H pabrjteuon mAdl t1ou amoteAel 1oV IO ONpavilko mapdayovia yia ) owa-
BPOpP®OT] HOU ©G PUOIKOU, KaB®wg €ITioNg KAl ONPAVIIKY ITapaKatadnKn 1000 yla Ti§ YVOOEIS 000
KAl yla Tov 1porno okeWng, douleldg, diedaywyng mg epeuvnukng dadikaociag kabog kat yia tov
oeB8aopo Katl tnv adooinorn oto avukeipevo. Agidel va onueio® Ot 1) 0X€on Hag, 1 oroia petpd
161 mepinou 6éxka Xpovia, HTav AYoyn Kt eAmidm va ouveyioel @g TETola Kat oto JEAAoV, 1000 ot
EMOTNHOVIKO 000 KAl OE MPoo®IuKo emirnedo. Emiong, 9éAwm va tov euxaplotom yia my ukaipia
TIOU 10U €600E VA OUPHETEX® KAl VA OUVEIOPEP® OTO £1r)010 H1eBvEG ouveSplo puolkng otnv Keép-
KUpd, OT0 OIoio €ival KUplog Slopyavetng, Kabog £miong Kat yia v evOAppuvon Kal MPOTPOTT)
VA EMOKEPT® ONPAVIIKOUG EMIOTIOVEG OT0 £EWTEPIKO KAl VA CUPHETACX® Ot diadopa ouvédpla.

®a 1bsda emiong va suxaplotjoe deppad tov Ap. ABavdoio Xat¢notaupakidr), 1600 ya v
roAvutiun Bor|fela Kat oUVEITPOPA TOU OTNv KO pag S0Udeld, 000 KAl yia tnv dyoyn @lAogevia
10U 0t SUO0 EMOKEWPELS EMOTNHOVIKOU TEPIEXOPREVOU ota 1§pupata mou epyalotav Kat epyadetat,
Katd 1§ omnoieg éAaBa eviog Alymv NPEPOV CUPMTUKVOEVT] YVOOT] KAl ONPEi®oa EMOTNIIOVIKL KAl
epeuvnuky) ripoodo. Ilapd 1o veapo g nAikiag tou, pe ) oUAeld TOU Kat Ty mopeia Tou aroteAet
1n6n Aapnpo nmapddeypa.

Emiong, 9a 10eAa va suxapiotfjom tov Ap. Ilaviedr) Mavouooédn yia v dyoyrn ouvepyaoia,
e1d1ka 6oov adopd otr dnpooisucn g Mo MPOoPATng KOwng pag doudeiag, kabog énade kata-
AuTIKO podo napepBaivoviag Katl avipetnioviag GUoKoAa Kat AeTtd onpeia mou IposruYav.

Emiong, 9a n6gda va euxapiotjom toug 6U0 cuvermBAEnovieg pou, kabnyntég M'ewpylo Koutoo-
vurna kat Nikédao Tpdaka yia tv forBeid toug oe mowkida 9épata 6Aa autd ta xpovia.

Emiong, 9a nBela va ekppdaom 11§ suxapiotieg pou otig Dr. Larisa Jonke xkat Prof. Patrizia
Vitale ywa tnv BorBeia, ouvelodopd Kat @lAogevia Toug KATA T1§ EMOKEYPELG POU Otd 18pUpata rmou
epydadovtat.

TéAlog, mépa amod 10 OKOYEVEIAKO KAl @AKO TiepiBaAdov, dev Sa propouca va napaleipw
Va €UXAPIOTHO® T1] OUVIPOPO HOU yla TtV otpidn Kal v UMopovr] 6Aa autd ta SUokoAa Kat
dnuoupyika xpovia. Ernopéveg, kat np SiatpiBr) avty eivatl apiepopévn o pag Kat tov yato pag.






Elwcayayn)

H Baputikr) aAAnAenidpaor) otig pelg Kat t€0oeptg S1a0TACELS TTEPTYPAPETAL EMTUX MG Ao T [evikr)
Bewpia tng Lxeukomtag tou Einstein otig omoieg n Baputnta Sewpeital og pia 1610tta 1ou X®-
poxpovou. ITapoAa autd, n nieprypadr| g faputikig addnAenibpaong ermbExetatl pia evaAAaKTKL
TIPOOEYY10T1), authVv g dewpiag Babpidag tov opddev CUPPEIPIOV TOV SE®POUHEVOV XDPOXPOVRV,
otig oroieg ta nedia Padbpidag tautonolovvtat pe 1o vielbein katto spin connection. H Baputn-
1a otug tpelg Sactacelg ewvatl akplBng 1ooduvapn pe pia dewpia Babpidag tuirou Chern Simons
g opadag I1SO(1,2), eve av mepldapBavetal 1 KOOPOAOYKY otabepd TOTe Ol aviiotolxeg opadeg
etvat ot SO(1,3) kat SO(2,2), avadoya pe 10 mpoonpo mg. H tetpadidotatn mepimoon sivat
Atyo o mepimdokn, plag kat av Yewprjoovpe pia dewpia Padbnidag ISO(1,3), mapd to yeyovog
OTl 01 PETACXNATIONOl TRV MESIOV KAl 01 EKPPACELS TOV TAVUOT®OV KAPITUAOTNTAG TIPOKUITIOUV ©G
avapévetal, Umapxetl éva KwAupa oto duvapiko koppdu g Sewpiag, 61011 Sev propet va opiotet
€ auto Tov TPoTo Karola Spaocr, 1 Hopdr g ornoiag va cuprirtet pe v Einstein-Hilbert.
Qot600, 10 Mapanave npoBAnua erepvietal Sewpaviag pia SO(1,4) avaddoiwtn Spaon pe v
tautdypovy ouprnepiAnyn evog Babuwtou mediou ot YepAwdn avanapaoctaor. To medio autd
enayel myv aubopuntn napabiaon tng ocupperpiag kat odnyet ot {nroupevn Einstein-Hilbert
b6pdon. ErmuAéov, undpyet éva mapopotlo mpoypappa oto ornoio 1 PBapvutna Weyl petagppdadetat
EMTUX®S ©S pia dewpia Babuidag ng tetpadiactatng cuppopong opadag, SO(2,4). Tlapopoiwg,
OV IEPITIOON aUTr), KAMO010g Servael pe pia dpaon tirou Yang-Mills kat pe v ermBoAr) ou-
YKEKPIPEVROV OUVOEOHU®V, OTTAEL TNV ETUITAEOV CUPHETPIA, KataAryoviag pe pia Sewpia tautdéonun
pe auvtfjv g Bapuntag Weyl.

Ol apanave KATAOKEVUEG PITOPOUV va PeTapepBoUV 0To TAAIO0 NG P HETAOETIKAG YEOE-
tpiag. ITo ouykekplpéva, oty reploxy) vYPnlav evepyelav (kAipaka Planck) n petaBetukomnta tov
OUVIETAYHEVOV TOU X®POU UItopet va dewpnOel 0Tt aipetatl, EMOPEVOS 01 QPUOIKEG dewplieg otV Te-
P1OXT] AUTL)V IIPETIEL vad TPOITOIT0ON 00UV KataAAnAa. Autr eival n ouoia IOV EpYACI®V ITOU GUVOETOUV
v napouoa diatpBn, dndadn n diepsvvnon g Paputikig alAndenidpaong oto P petabetiko
mAaiolo epyaoiag.

Auto emmtuyxavetat ouvdualoviag tny METUXNPEVE meptypadn tg Papuntag og dewpiag Pab-
1idag otig Tpelg Katl 1€0oep1g S1a0TACELS PE TNV KAA®G OP1OPEVT KATAOKEUT) Yempiodv Padbpidag oe un
PETaBeTIKOUG X®POUG, HE ATTOTEAECHA TNV KATAOKEUT) Baputik®v PovitAev &g Senplov Badpidag oe
Bn petabetikoug (aocageig) xwpoug. Apxikd, douAéwape otnv tplodidotaty nePintwor, T600 otV
Lorentzian, 6co kat otnv EukAeidela nepintwon, xpnotporotwviag 6Uo acapeig X®Poug, Ol 0roiot
opidovtal g @uAdorioinoelg v plodactatwv Minkowski kair EukAeideiou xopov and acagr)
uniepBoloe1dr) kat acageig opaipeg, aviiotorxa. H kataokeur] 10v Sewpiov Babpidag odrjynoe otnv
€CEUPEDT TV PETAOXNPATIOR®V oV rediov Pabuibag (vielbein kat spin connection) xkat tov ek-
(PPACERV TOV TAVUCT®OV KapmuAotntag Kabwg eriong kat oty dpaocn tinou Chern-Simons, aro
v oroia e§axBnkav o1 eSlomoeig kivnong. Eivat a§loonpeinto 6t 0Aa ta anoteAéopata avayoviat
oe autd g tpodlactatng dewpiag g Papuintag tou Einstein katd v Sempnorn tou petabett-
KoU opiou. 'Enetta, emikevipebrkape oty terpadiactaty nepinmoorn oty onoia o pn HetadeTikog
XWPOG TTOU Yewprjoapie Tav 1 acapng ekdoxr| tou terpadiactatou xwpou de Sitter. ITapopoing
HE v Tp1odiactaty nepini®or), akodoubwviag v kabiepopévr diadikaoia Kataokeung Yemplov
Babnidbag oe i PeTaBeTIKOUG XOPOUG, UTIOAOYi{ovTal o1 pPetacXnpatiopol v nediov Babnibag kat
01 EKPPACELS TOV TAVUOT®V KAPIUAoTtag Kabwg kat opidetatl apyxika pia dpdon turou Yang-Mills,
1 ouppeTpia g oroiag rapabiadetatl anod v ermBoAr katdAAndwv ocuvdéopwv. Ta amoteAéopata
Kdl OtV MEPIUTIOON auTtr] cUvAdouv Pe autd tng cUppopdng Bapuintag oto PETabeTiko 0p1o.
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Abstract

Gravitational interaction in three and four dimensions is successfully described by Einstein’s
theory of General Relativity (GR) in which gravity is considered as a geometric property of space
and time. However, its description admits an alternative description, that of a gauge theory
of the groups of symmetries of the spacetimes considered, in which the gauge fields of the
theory are identified as the vielbein and the spin connection. Gravity in three-dimensions is
exactly equivalent to a Chern-Simons gauge theory of ISO(1,2), while if cosmological constant
is included, the corresponding gauge groups are the SO(1,3) and SO(2,2) (dS3 and AdS3 groups)
depending on its sign. In the four-dimensional case, things are more complicated, since con-
sidering a gauge theory of ISO(1,3), despite yielding correct expressions for the transformations
of the fields and the curvature tensors, there is a drawback in the dynamic part, that is there
is no option for an action to recover the Einstein-Hilbert one. Nevertheless, this issue in nicely
addressed by considering an SO(1,4) gauge invariant action of Yang-Mills type and include a
scalar field in the fundamental representation. Inclusion of the scalar field induces a sponta-
neous symmetry breaking which leads to the desired Einstein-Hilbert action. Moreover, there
is also a similar programme in which Weyl gravity is successfully translated as a gauge theory
of the four-dimensional conformal group, SO(2,4). In this case, too, one begins with an action
of Yang-Mills type and breaks the redundant symmetry by imposing certain constraints (e.g.
the torsionless condition), resulting with a final action which is identical to the one of the Weyl
gravity.

The above constructions can be nicely translated in the framework of noncommutative ge-
ometry. Specifically, in the large-energy regime (Planck scale), commutativity of the coordinates
of the space is naturally assumed to be lifted, therefore, physical theories have to be modified
along these lines. This is the essence of the projects that compose this thesis, that is giving
insight in the gravitational interaction in this noncommutative regime.

This is achieved by combining the successful description of gravity as gauge theories, in
three and four dimensions, with the well-defined construction of gauge theories on noncom-
mutative spaces leading to constructions of gravitational models as gauge theories on noncom-
mutative (fuzzy) spaces. First, we worked in the three-dimensional case, in both Lorentzian
and Euclidean signature, employing two fuzzy spaces for each case which are defined as fo-
liations of the three-dimensional Minkowski and Euclidean space by fuzzy hyperboloids and
fuzzy spheres, respectively. The construction of the gauge theory led to the transformations of
the gauge fields, the curvature tensor expressions and an action of Chern-Simons type, which
after variation, produced the equations of motion. It is remarkable that all results reduce to
the ones of the Einstein’s three-dimensional theory of gravity when the commutative limit is
considered. Afterwards, we focused on the four-dimensional case, in which the noncommu-
tative space considered was the four-dimensional fuzzy de Sitter space. Again, following the
procedure for constructing the noncommutative gauge theory of gravity, transformations of the
fields, curvature tensors and an action of Yang-Mills type were obtained. The results in this
case are related to the ones of the gauging of the conformal group, in the commutative limit.
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Introduction

In 1915, Einstein coined the description of gravitational interaction as being mediated by the
curvature of the spacetime itself in his theory of General Relativity. General Relativity is an
extremely successful theory, passing all tests since then, such us the so-called classical tests
of General Relativity (the perihelion precession of Mercury’s orbit, the deflection of light by
the Sun and the gravitational redshift of light), the recent detection of gravitational waves or
the more recent direct observation of a black hole. However, gravity, through the geometric
description of General Relativity, is formulated in a completely different way compared to the
description of the rest of the interactions (electromagnetic, weak and strong), which is based
on the principle of gauge invariance. Therefore, towards the direction of the unification of all
interactions, although unification of the three interactions described as gauge theories is, at
least, easier to conceive and formulate, gravity is left outside from this picture. Thus, in order
to include the gravitational interaction in a unified scheme along with the rest, an alternative
approach of gravity, which would also recover the successful results of General Relativity, as
a gauge theory seemed like a first step to the direction of unification of all interactions. In
middle 1950’s, Utiyama pioneered in this field of gauge-theoretic approach of gravity [1], in
which he showed that gravity can be regarded as a gauge theory of the Lorentz group, SO(1,3),
but the formulation was far from perfect because of the ad hoc introduction of the vierbein. This
problem was, at least partly, solved by Kibble [2] taking into consideration the inhomogeneous
Lorentz group (Poincaré group 1SO(1,3)) as gauge group, identifying both the vierbein and the
spin connection as gauge fields of the theory. Still, the whole undertaking of the description
of gravity as a gauge theory was no convincing, because there was no action originating from
a gauge theory of the Poincaré group that could take the form of Einstein-Hilbert action and
therefore dynamics of the General Relativity in four dimensions could not be retrieved. However,
in 1980, Stelle and West [3] (see also [4-6]) addressed the above problem, considering an SO(1,4)
gauge invariant action of Yang-Mills type along with the introduction of a scalar field in the
fundamental representation of the group. By the inclusion of an appropriate potential term,
the scalar field induces a spontaneous symmetry breaking leading to an action which is of the
desired Einstein-Hilbert form. Therefore, although there is a fundamental difference between
gravity as a gauge theory and the rest due to the mixing of the gauge transformations with the
spacetime coordinates through the identification of the gauge fields, eventually gravity can fall
into a common class with the other interactions.

Also, in the late 1970’s, another contribution in the approach of four-dimensional gravity
as a gauge theory was made, this time concerning conformal gravity and supergravity [7, 8].
Specifically, a gauge theory of the four-dimensional conformal group, SO(2,4) was constructed,
with the vierbein and spin connection being identified again as some of the gauge fields. There-
fore, it is understood that, in this case, too, the translational part of the internal symmetry has
to be be related with the general coordinate transformations. The transformations of all gauge
fields and the component curvature tensors were obtained following the standard procedure
and the action proposed was of Yang-Mills type making use of the square of the curvature
tensor. The SO(2,4) gauge symmetry of this action was broken with the imposition of certain
constraints, such as the torsionless condition, leading to the scale invariant Weyl action. There-
fore, it was shown that Weyl gravity can be also described as a gauge theory of the conformal

group.

'For a textbook we propose [9].
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Furthermore, another contribution supporting the relation between gravity and gauge the-
ories was the formulation of Einstein’s three-dimensional gravity as a gauge theory of the
three-dimensional Poincaré group, 1SO(1,2) or of the three-dimensional de Sitter and Anti de
Sitter groups, SO(1,3) and SO(2,2), respectively, when a cosmological constant is included [10].
The equivalence of the three-dimensional Einstein’s gravity to the ISO(1,2) gauge theory was
achieved by considering a pure Chern-Simons interaction, instead of the ordinary Yang-Mills in-
teraction. Moreover, in ref. [10] it is claimed that the quantized version of the three-dimensional
gravity is a renormalizable theory, a fact that is not evident when gravity is formulated in the
standard metric-depended formalism. Also, it is commented that for the four-dimensional grav-
ity that is not the case. Therefore, three-dimensional gravity is equivalent to a Chern-Simons
gauge theory.

At this point the discussion about the equivalence between gravity and gauge theories is
concluded. Now, since our purpose is to translate the above programme to the noncommutative
framework, let us move on with a short introduction on noncommutative geometry [11]. The
first implication of spacetime noncommutativity was made in the early days of quantum field
theories by the pioneers in the field of quantum mechanics, most notably Heisenberg. The whole
idea was based on the postulation that a noncommutative structure for spacetime coordinates
at very small scales could lead to the introduction of an effective ultraviolet cutoff [12, 13]. It
was claimed that this cutoff, originating from noncommutativity, would regulate the ultraviolet
divergences of the quantum field theories such as quantum electrodynamics. However, at
the same time, the renormalization programme proved to be successful, therefore, the bad
timing made noncommutativity to be set aside for a while. The whole idea of noncommutativity
became interesting again in 1980’s, when the generalized notion of a differential structure in
the noncommutative framework was achieved [14], along with the definition of a generalized
integration [15].

In quantum mechanics, a quantum phase space is defined by replacing the variables of
the canonical position, x;, and momentum, p;, with Hermitian operators &;,p;, respectively,
which obey the Heisenberg commutation relations [Z;, p;] = ihd;;. The notion of a point of a
phase space is no longer meaningful, with the notion of the Planck cell replacing it, recovering
the ordinary phase space in the A — 0 limit. In analogy to the above quantization of phase
space, a noncommutative spacetime is defined by replacing the spacetime coordinates !t by
Hermitian generators i of a noncommutative C*-algebra of functions [16-32], which obey the
commutation relation [#,47] = 6%, in complete analogy to the Heisenberg’s commutation
relation. Since the coordinates do not commute, they cannot be diagonalized at the same time,
therefore the place of the manifold is taken by a Hilbert space of states. In analogy to quantum
mechanics, a spacetime uncertainty relation is induced, Az*Az/ > %|9U |. The noncommutative
framework described so far is particularly interesting because it admits the description of both
particle physics and gravity models in conditions in which the commutativity of coordinates can
be naturally relaxed (e.g. at the Planck scale).

First let us comment on the gravity case. Taking into consideration the relation of gravity
and gauge theories as discussed earlier and motivated at the same time by the existence of
noncommutative gauge theories [33], it is natural to apply them for the construction of non-
commutative gravity models. Such an approach is followed in Refs. [34-38]. Similarly, this
has been studied also in three dimensions, making use of the relation to Chern-Simons gauge
theory mentioned earlier [39-41]. The above works share a common feature, that is the non-
commutative deformation is constant (Moyal-Weyl) and the construction of the theories is made



using the corresponding x-product and the Seiberg-Witten map [42]. Alternatively, one can use
another type of noncommutative geometries, the matrix geometries, in order to work on quan-
tum gravity [43, 44]. Several approaches have been suggested in recent years, mainly based
on Yang-Mills matrix models [45-55], pointing once more at direct relations among noncom-
mutative gauge theories and gravity. For another approach see Refs. [56-58], where a solid
indication that the degrees of freedom or basic modes of the resulting theory of gravity can be
put in correspondence with those of the noncommutative structure has been presented. In this
case, the usual symmetries such as coordinate invariance are built-in, and the commutator of
coordinates can have arbitrary dependence on them. In general, attempting to formulate gravity
in the noncommutative setup, the price one has to pay is that noncommutative deformations
generically break Lorentz invariance. For certain types of noncommutative spaces, it is possible
to define deformed symmetries which are preserved, as for example in the case of K-Minkowski
spacetime [59, 60], which appears as a solution of the Lorentzian IIB matrix model in Ref. [61].
However, there are special types of deformations, in fact some of the very first noncommuta-
tive geometries ever considered, that constitute covariant noncommutative spacetimes [12, 13].
This spirit was recently revived in Ref. [62], where the authors discuss a realization of this idea
and construct a noncommutative deformation of a general conformal field theory defined on
four-dimensional dS or AdS spacetime. Another four-dimensional constructions were pursued
in Refs. [63-66]%.

Now, let us say a few words about the particle physics models which can be accommo-
dated in the framework of noncommutative geometry, specifically in the noncommutative gauge-
theoretic approach [23] (see also [18,25,26]). A very interesting development in the framework
of the non-commutative geometry is the programme in which the extra dimensions of higher-
dimensional theories are considered to be non-commutative (fuzzy) [67-77]. This programme
overcomes the ultraviolet/infrared problematic behaviours of theories defined in noncommuta-
tive spaces. A very welcome feature of such theories is that they are renormalizable, versus all
known higher-dimensional theories.

The outline of the present thesis is as follows. In chapter one, we write down the necessary
preliminaries, that is the non-coordinate basis of the tangent space at a point of a manifold and
the vierbein formalism of the theory of general relativity, in which its results are reproduced
making use of the vierbein and the spin connection instead of the metric. Then, employing the
vierbein formalism, the description of specific gravity theories as gauge theories is reviewed.
More specifically, first we recall the three-dimensional Einstein’s gravity case, in which the
results are exactly reproduced through the construction of a Chern-Simons gauge theory of
ISO(1,2) for vanishing cosmological constant and SO(1,3) and SO(2,2) for positive or negative
cosmological constant, respectively. The key point in this approach is that the gauge fields of the
theory are identified to the dreibein and the spin connection. Then, we recall the corresponding
works in the four-dimensional case. Despite the fact that the form of the Einstein-Hilbert action
does not admit an ISO(1,3) gauge-theoretic interpretation generalizing the three-dimensional
case, alternative ways have been employed. A convincing and straightforward way is to consider
the SO(1,4) as the gauge group, in which the gauge fields are again identified as the vierbein and
the spin connection. Moreover, a scalar field in the fundamental representation of SO(1,4) has to
be introduced in order to induce a spontaneous symmetry breaking, resulting with the Einstein-
Hilbert action if the initial action is SO(1,4) gauge invariant of Yang-Mills type. Concluding this

2See also [56, 57].
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chapter, we review the corresponding case of the Weyl gravity, which is described as a gauge
theory of the four-dimensional conformal group, SO(2,4). The transformations of the fields and
the curvature tensors are obtained following the standard procedure, but the action is initially
defined to be SO(2,4) gauge invariant of Yang-Mills type. In this case too, the symmetry has
to be broken and it is induced by the imposition of certain constraints (such as the torsionless
condition) rather than spontaneously. The final action is the scale invariant Weyl action.

In chapter two, the framework of noncommutative geometry is studied in the two descrip-
tions, that is the one with functions and the %x-product and the other with matrices and the
ordinary matrix product, which is the one we use in the construction of our models later. Then,
we focus on the very important covariant noncommutative space that is the fuzzy sphere and
introduce it in a comparative way to the ordinary sphere. We conclude this chapter with a
very important and useful section for our purposes, in which we recall the formulation of gauge
theories on noncommutative spaces.

In chapter three, we give some information about the specific noncommutative (fuzzy) spaces
we employ in our works, on which we construct our gravitational models. More specifically,
we review the definition of the ]Ri (and its Lorentzian analogue) and also we define a four-
dimensional fuzzy de Sitter space [78] and comment on its properties compared to other fuzzy
spaces.

In chapter four, we write down the main body of the thesis that is based on our corresponding
publications. First, we build a gravitational model in the three-dimensional case [79]%, making
use the three-dimensional covariant fuzzy spaces defined in chapter 3. For the construction of
the model, we follow the standard procedure of the gauge-theoretic approach, as it is explained
in chapter one, obviously translated in the noncommutative framework. The expressions of
the transformations of the gauge fields (noncommutative versions of the dreibein and the spin
connection) and their corresponding component curvature tensors are obtained and then the
action is given along the lines of a Chern-Simons functional. In the four-dimensional case,
after the definition of the fuzzy de Sitter space in chapter 3, we went on following the standard
procedure generalizing the one of the three-dimensional case [78]. In this case, a symmetry
breaking mechanism had to be employed for breaking the symmetry of the Yang-Mills action
we considered in the beginning and result with an action with Lorentz symmetry.

The next chapter is devoted to the conclusions of our works. In the appendix, except for
appendix A, the rest are calculations and technical (mathematical) details, which were useful
for building our models. Appendix A is related to some previous works that we reviewed re-
cently [75-77]*. More specifically, it consists of works in which the noncommutative geometry
framework is employed for the construction of particle physics models. Specifically, a four-
dimensional N' = 4 supersymmetric Yang-Mills theory is initially considered, consisting of a
specific particle spectrum. The particle content is filtered out by an orbifold projection and the
resulting theory is a gauge theory with reduced, N’ = 1 supersymmetry with a particle content
consisting only of the fields that survived the projection. From the resulting superpotential,
along with the introduction of soft supersymmetry breaking terms, the scalar potential is ob-
tained, which, when minimized, produces a vacuum of the theory that can interpreted as three
fuzzy spheres. In other words, after the breaking, the resulting theory mimics the results of a
dimensional reduction of a higher-dimensional gauge theory with fuzzy extra dimensions. As
for the final gauge group, the most favoured one is the trinification group, that is an SU(3)3

3See also [80, 81].
“For the original papers see [73, 74].



unified theory that is also chiral.

To sum up, the main part of the thesis is the translation of the programme of describing
gravitational theories as gauge theories to the noncommutative framework. Also, for complete-
ness, the reviewed work of a particle physics model using fuzzy spaces as extra dimensions is
also included.
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Kepalawo 1
IlepiAnwr

1.1 Ewaynyn

To 1915 o Einstein katoyUpwoe v neptypadr) g Paputikig aildnAenidpaong og va opeidetat
OTNV KAPITUAOTNTA TOU X®POXPOVoU Kabautou otnv 'evikr Oswpia tng Zxeukotrag. H Sswpia tng
Zxeukotntag arotedel pia anod g mAéov emIUXNPEveg Sewpieg, MEPVOVIAS OAOUG TOUG EAEYXOUG
anod v yévvnorn g, onwg Ta Asyopeva "KAaowka teot g evikng @swpiag g Zxetkotntag”
(tnv mpomdpeuon 10U nepindiou tou Eppr), v eKTporr) 10U OTOS anod Tov Ao Kat ) Baputiki
petatormon mpog oto £pubpd), n mpoéoPatn avixveuorn OV BApUTIK®V KUPATI®V Kdl 1] aKopd ITo
npoodatn mapatpnon pelavrg onng. Qotoco, n Papuinta, PEOK® TG VEOHUEIPIKLG IIEPIYPAPNS
ano 1 Fevikr Oewpia g LXETKOTNTAG, S1ATUTIOVETAL PE €vav eVIEA®S H1aPOPETIKO TPOIIO CUYKPL-
TIKA P Vv nepypadr] Tov urodortev adAnAemdpdosmv (nAektpopayvnuikn, achevng Kat 10xuUpr))
n omoia Pacidetal ounv avarlowinta Babpidag. Emopéveg, oty kateubuvon tou otdXou ToAA®V
EMOTNPOVOV VA EVOTIOIO0UV OAEG TIS aAAnAermidpdoelg, mapoAo Mou 1 EVOITOiN o yid Tig TPEIS aA-
AnAemdpdoeig ot omnoieg meprypadovial og Sewpieg Badbpidag eival eukoddtepo va katavonBel kat
va Satunedel, n PBaputikn PEVEL EKTOG AUTAS g £kovag. Emopéveg, yia va cuprepldngBeti n)
Baputikr aAAnAenibpaon oe éva mpoypappa evortoinong padi pe 1g unoAotrieg aAAnAemdpdaoelg,
10 TIPOTO Pripa sival va anotuneBel plia evaAAaKTiKi IIPOCEYY1oT Yid TV Ieptypadr] g faputntag
®g dewpiag Pabpidag, n omoia mpérel va avanapayayet ta anotedéopata g levikng @swpiag ng
Txeuomtag. Ilepi ta péoa tou pnyoupevou aidva, o Utiyama npotonidopnoe oto niedio g mept-
ypaong g Bapuintag g Sewpiag Padbnidag [1] vrtootnpidoviag ot n Bapuinta propet va 1600t
®g pia Sswpia Pabpidag ing opddag Lorentz, SO(1,3). 'Ouwg, 1 ouvoAikr) Statuniworn Sewpndnke
®G atedng A0yw g aubaipeng eloaynyng tov vierbein. To mpdBAnpa autd AuOnke, touAdxi-
otov pepkag, anod tov Kibble, [2] o oroiog Sedpnoe wg opdda Pabpidbag v avopoloyevr) opada
Lorentz, 6nAadr) tv opdda Poincaré (ISO(1,3)), tautonowwvtag ta vierbein kat spin connection wg
ta niedia Badbpidag g Yewpiag. 'Opwg, akOpn KAl PETA A0 AUTHV TNV TPOIIOTI0INCT T0 OUVOAIKO
eyxeipnpa dev katdpepe va meioetl v Kowotnta ot 1 Baputnta propel va neprypapel og Sewpia
Babuidag 61011 Hev propouvoe va apaxBei n katdAAnAn Spdon (Einstein-Hilbert) pie évav ouvern)
Kat un kateubuvopevo tporo. ITapdra autd, to 1980 ot Stelle kat West avupetomoayv to rapa-
nave npoBAnpa dewpaviag pia SO(1,4) avardointy dpdon tunou Yang-Mills pe tv rapdAAnAn
e1oaynyn evog fabpetou niediou ot Sepedindn avanapdotaon g opddag [3] (BAtme emiong [4-6]).
To Babpwto nedio emayel aubopuntn napabiaon g oupperpiag odnywviag oe pia dpaon, 1 pop-
@1 ng oroiag eival n emmbupnt g Einstein-Hilbert. Enopéveg, mapdlo mmou n meptypadrn g
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Baputikng aAAnAeniidpaong Siagpoportoteitat arod 11§ UTTOAOLTEG UTTO TV £vvold OTL 0TV IIPAOT ava-
P1yvUovial OUClaoTiKA Ol E0MTEPIKEG CUPHETIPIEG PE TIG XDPOXPOVIKEG, €V TEAEL 1] Baputnta propet
va 9ewpnBel ot eprtirtietl o pia Ko Yedpnorn e 1§ urtodoireg aAAnAermbpaoceig.

Emiong, ota telAn g dexkaetiag tou 1970, eneteUyBn akopa [ia ouvelopopd OTnV YEVIKOTEPT)
Yewpnon Paputikev Jenpliv g Sewptov Pabpibag, auvt) ) @opd avadopikd pe Ty ocUPHopPdI
Baputnta [7-9]. Mo ocuykekpéva, n opada Padbpidbag mou ypnoworoteitat sivat np SO(2,4), pe
ta vierbein kat 1o spin connection va tautorolouvial, eK10g AaAAwv, g dravuopatika nedia Bab-
nidag. Emopévag, eivat xkatavontd ot KAl 0 aUTV TV MEPITIOON T0 KOPHPATL TIOU OXETi{eTatl
€ TOUG YEVVNTOPES TOV PeTabeoemy Sa TIPETEL VA CUCXETIOTEL € TOUG YEVIKOUG HETACKHIATIO0US
ouvietaypévev. Ot petaoxnpatiopol tov nediov Katl ol EKPPAcElS TOV TAVUOTOV KAPITUAOTTAG
ATIOKTOVIAl oUpdeva e v kabiepopévn dadikaoia eve n apyikn dpdon mou ulobeteital eivat
wnou Yang-Mills. H apywkn ocuppetpia SO(2,4) apaBiddetal péo® g ermBoOANG OUYKEKRPIHEVOV
OUVOEoP®V, OTIOG 1) OUVONKI PUNOEVIKNG OTPEWPNG, 1€ amoTéAeopa v amnoktnon piag dpdong n
€kdpaor g oroiag ouprirtetl pe avtr) g Spaong Weyl. Enopévag, amodeixbnke ot n faputn-
ta Weyl propel va niepiypagel 1ocoduvapa og denpia Babuidag tng terpadiactatng cuppopdpng
opadag.

ErumA¢éov, akopa pia ouvelopopd mpog Tnv KATeubuvon g CUCKETIONG Paputikav Sempiiv
pe Sewpieg Pabpibag amotedei n Satuniwon g tpodiactaing Einstein Paputniag og Sewpiag
Babnidbag g tprodiactaing opadag Poincaré, ISO(1,2) 1) tov tpiodiactatov opadev de Sitter kat
Anti de Sitter, SO(1,3) kat SO(2,2), avtiotoixa, otav rnepthapBavetal KoopoAoyikr otabepd [10].
H avuotoixion avapeoa oty tpiodiaotaty Bapuvinta kat v ISO(1,2) Sewpia Badbpidag emeteukOn)
pe ) Sevpnorn piag Chern-Simons aAAnAenibpaong, avti piag tonou Yang-Mills. Emopéveg, 1
plodiaoctatn Paputnta propel va neptypadel enakpBog og pia apyr)g Chern-Simons Sswpia.

Aedopévou OT1 0 OKOTIOG 114G €ival va PETadPACOUNE TV IAPAIIdve OUdTnon yid IV aviloto-
ixton PBaputikov dewprav pe Jewpleg Babpidag oto pn petabetikd mAdaiolo epyaoiag, ag mpoxw-
PNOOUHE 1€ TNV £10AY®Y] TG £Vvolag NG U HPetafeukotnag tov ouvietaypévav [11]. H mpon
vi€n g PN PEtabeTKOINTAG TOV CUVIETAYHEVROV ITpaypatornow)fnke katd ) Sidpkela g Sepe-
Alwong oV KBavTiK®V Jempldv ediou aro T0Ug P®IOIIOPOUS TG KBAVIIKNG QUOIKLG 1€ ANOTEPO
OKOITO 11 laxeiplon tov avaduopevav unepwdwv aroxkiioenv. YmootnpixOnke ot 1 el10aywyr
G 11 HPETAOETKOTNTAG T®V CUVIETAYHEVOV Sa PUIOPOoUsE va EMAYAYEL TNV E10AYDYI] EVOG EVEPYOU
uneplwdoug opiou [12, 13]. Qotooco, v i61a mepiodo, 10 IPOypapla g EMAVAKAVOVIKOIIO0NG
€dmoe Auoelg 010 mapandve mPoBAnia Katl yia 1o AOyo auto 1) 16éa g | petabetkotnag mepaoce
otV apavela. H 6An 16¢a enmavhABe oto mpookrvio katd 1 dexkaetia tou 1980 otav n yevikeu-
Bévn évvola 1apopikou [14] kat 0AOKANP®TIKOU Aoylopou [15] SepeAdibnke yia pn petabetikoug
X®POUG.

Avarkadoviag v nepintwon g KBAVIIKIG QUOLKIG, 1] OTI0ld AETTOUPY 0 OV TNYI] ERITVEUONG
yvia m Sepedioon 10U | PETafeTikoU TTAAIoI0U £pyaciag, 01 KAVOVIKEG OUVIETAYHEVEG TOU XOPOU
OV PACE®V, T; KAl p; aviikadiotavial amnod t1oug epuitiavoug mivakes Z; Kat pj, 01 0Itoiot UNaKoUouv
v nepipnpn petabetikn) oxéon tou Heisenberg, [Z;, p;] = ihd;;. H évvola tou onueiou oto xopo
TRV PACERV TTAUEL va £XEl onpaacia pe mv eévvola g kuywedibag Planck va v avukabiotd, pe v
avaxtnon tou ocuvniopévou Xwpou va oupBaivel oto 6po A — 0. Ze avadoyia pe v napandave
KBAVI®ON TOU X®MPOU IOV QPACE®V, £vag I PETAOETIKOG XDPOoG opidetal PEo® NG avilkataotaong
TV X®POXPOVIKOV CUVIETAVIEV®V, T;, AId EPUITIAVOUS yevvijtopeg & piag pn petaBetikng C* dA-
yeBpag ouvaptrioewv [16-32], o1 oroiot 1kavortolouv ) PETaBeTIKY OXEOT) [ii, &I | = 10", oe TAnPN
avadoyia pe ) petabeukr) oxéon tou Heisenberg. Epocov ot ouvietaypéveg Se petatiBeviat, dev
propouv va daywvoriolnfouv tautoxpova, EMOPEVES 1 €vvola tng roAdarndotntag aviikadiotatal
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anod autrv evog xopou kataotdoswv Hilbert. e avaloyia pe tv kBaviikn Quokr), epgavidetatl pia
X©OPOXPOVIKY| oxéon anpocdiopiotiag, Azt Azd > %]9¢j|. Le 0,11 apopd 10Ug H1KOUG Plag OKOIIoUg, Ot
11 petabetkoi xwpot eivat 1daitepa eviiapépovieg Kat Xprioot Kabmg Prtopouv va PlAogevrjoouv
TV KATAOKEUT] 1000 0OUATS1aKoOV 000 Kdl BAPUTIK®V LOVIEAGV.

[Ipota, ag acxoAnBoupe pe v nepinmoon g Paputtag. AapBdvoviag unoyn ) ox€on a-
vapeoa otig Baputikég dewpieg kat TG dewpieg fabnidag, Onwg aut) oudnOnke mapandve, Pe v
tautdypovn Urnapén Kadmg depediopéveav denpiov Babuidag os un petabetuikovg xopoug [33], e-
vatl @UOKO va TG XP1O1H10TIIO|C0ULE HE OKOTIO TV KATACEUT] 1] PETADETIKOV BAPUTIKOV HOVIEAGV.
Mia t€tola ipoogyylon akodoudnonke otig avapopég [34-38]. [Tapopoing, pedéteg €xouv yivel kat
yla myv plodidotatn) nepint®orn ocupnepldapBavoviag ) oxéon pe tig Chern-Simons Sswpieg fab-
pidag [39-41] otuig omnoieg avapepdHnkape nmapandve. ‘'OAeg o1 mapandave doUuleiEg potpadoviatl duo
KOlvd XOPAaKINPEloTIKA, OTL 1] PN petabetiky napapopdwor eivatl otabepr| (Moyal-Weyl) kabmg kat
o1l yivetal Xp1jon ToU aviioTol0u x—y1VOHEVOU Kal 1) anelkovion Seiberg-Witten [42]. EvaAAaxti-
Kd, eivat Suvatdv KATI010G va XP OO 0eL Evay S1adOPETIKO TUTIO JI) PNETABETIKAOV YEDHETPLOV,
TG YEDUETPIEG TIIVAK®V, £101 WOTE va doUAéwel mave otnv kBavukn Bapuinta [43, 44]. Emiong,
APKETEG Tpooeyyioelg €xouv mpotabel ta tedevtaia xpovia, kuping Paoctopéveg oe Yang-Mills po-
viéAa vakev [45-55]. Ta pia akopa nmpoogyyion i tou dépatog PAsne avadopég [56-58], otig
ortoieg rtapouotadetal pia otépen £voelln ot ot Babpoi edeubBepiag g tedikrg Sewpiag Paputntag
HITOPOUV VA CUCXETIOTOUV € aUToUug Piag 1r PETABETIKIG KATAOKEUNG. L€ APKETEG TEPLTINOELG,
o1 poortdBeieg va dratunwbel n faputnta oe P PETaBeTIKOUG XDPOoUg epdavidouv v naboyevela
OTlL Ol Un petabetikég mapapopdpmoelg napabiadouv 1 ocuppetpia Lorentz. Ta cuykekpipévoug
TUMOUG Y1 PETAOETIKOV XWpwV, ival Suvatdv va oplotouv nmapapopPeOPEVES OUPHETPIEG O1 OTTo-
teg dratnpouvial, onewg yia rapddsiypa otnv nepimeorn 1ou Xopodxpovou k—Minkowski [59, 60].
Qot1600, UTTAPXOUV CUYKEKPIHEVA €101 MMAPAPOPPOOERDV Ta Oroia AaroteAoUv ouvaAloimtoug Hr)
PETabeTIKOUG XOPOUG, HAAlota TET0101 £ivatl KAIO101 Ao ToUg MPWIoug rmou depedinbnkav [12, 13].
Ze autnv 1 Baon, omv avagopd [62], ot cuyypageig oudntovv pia mpaypdioon mg 18éag autng
Kal Kataokeuaouy pia pn petabetikn napapopdoon piag ouppopoeng Sewnpiag nediou, oplopévn
otov tetpadidaotato de Sitter (11 Anti de Sitter) xwpo. TéAog, yia MEPIOCOTEPEG KATAOKEUES OTIG
téooep1g Slaotdoelg PAére avagopig [63-66]1.

Topa, ag MEPACOUHE 0TI KATAOKEUEG POVIEAGV 0OPATIBIAKNS QUOIKHAS 01 OrToieg gplAogevouviat
oto TAaiolo epyaociag g pn PEIABeTIKNG YEOUETIPIAG, OUYKEKPIPEVA ®G dewpieg Padbpidag [23]
(ertiong PAéme [18,25,26]). Mia roAu evdiapépouoa e§€A€n oty kateubuvorn autr] anotedei to
mPOypapia Katd to oroio ot €§tpa Siactdaocelg peyalodiaotatav dewpiov Sempouvial un peta-
Jetkég (aoapeig) [67-77] kabwg Eerepvouv T1g TPOBANIATIKEG CUNIEPIPOPES NG avapgng urte-
pwbdoug/unEpubpou o1 omoieg epdavidovial oe Sewpieg oe P pertabestikoug xwpoug. Ermiong, éva
TTOAU £UXAPIOTO XAPAKINPLOTIKO elvatl 0Tt 1€toleg Yempieg eival emavaravovikonoinotpeg, os avtibe-
on P 0AeG TI§ UTIOAOEG PeyaAlodiaotateg dewpieg.

O okeAetog G replAnYng ota eAANVIKA £Xel OGS €§1G: ApYX1KA avapépoupie Alyeg Paoikég rmAn-
podopieg yia Vv neptypadn Baputikev dewpiov og Jewptov Badbpidag. 'Encita, divovial yevikeg
MANPOQOpPIeg Yia T 1) PETAOETKN YEOPETPia KAl MG AUt dlatunevetal Kat petd egeidikevoupe
0€ OUYKEKPIIEVOUG CUVAAAOI®TOUG acadei§ XHDPOUG 01 OIToiot ival arnapaitntol yid Vv KATAOKEUT)
TRV PoVIEA®V pag. Autd ivat dUo, 1o pato adopd pia ekboyr Iplodiactaing Papuintag wg ewpia
Babnibag nmave tov cuvaAloiwto acapr] X®pPo R§ [79]2 evo o Sevtepo avapépetatl otnv terpadi-
aotaty Baputita XTopévn nave oe €vav terpadiactato ouvaddointo acadr) xwpo [78], fuzzy dS,

'Eniong PAére [56,57].
2Ertiong PAéme [80,81].
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TOV OTI010V KATAOKEUACA}IE Y1d TOV OKOITO AUTO.

KAeivoviag, n epyacia apopd otnv KAtaoKeUr] BapUTiKOV POVIEA®V O 11 PETABETIKOUG X®POUG
pe oxomo 1 dlepeuvnon g Paputikhg adAnAemidpaong otig TPEg Katl t€ooeplg d1aotdoelg, o€
OUVOMKEG KATA TIG OIOIEG 1] 1N HETAOETIKOTNTA TOV CUVIETAYHEV®V TiBETAL OE 10X U.

1.2 H Baputnta og decwpia Badpidag otig Tpeig Kal téooeplg Sia-
otaocelg

Ag pedetooupe mpota v tplodiactaty Einstein Bapuita kat ) oxéon g pe Sewpia Pabd-
pidag [10]. Twa va avadeixbel n oxéon autr), mpErel va Ypnotporoinei o (tpodiactatog) vielbein
@oppadiopog g Ievikhg Oswpiag g LXETIKOTNTIAG, OTOV OIOI0 avti yid T HEIPIKY] XPNOiHo-
roouvtal ta vierbein kat spin connection og duvapikég petebAntég. Lug tpeig draotaoelg, ya
pia moAdarddtnua, M, n Einstein-Hilbert §pdor, anouocia UAng kat KOOPOAOYIKNG otabepdg, ot
opoug vielbein kat spin connection eivat:

1
SEH3 = 16-C / e, (Ovwpa — Opwra + eabcwl/bwpc) : (1.1)
M

MetaBoAr) oty naparave Spdon g 1pog 1o 1nedio e odnyel otig nediakég e§lowoeig tou Einstein
OTO KeVO:

Rva = Ouwpa — Opwya + eabcwybwpc =0, (1.2)

eVR PeTaBoAn ®G 1pog To 1edio w 0dnyel ot ouvONKn PNSEVIKES OTPEWYNG:
T, = 0Oue," — Ove,' + eabcwubeyc — 6abcwybeuc = Dye," = Dye,' =0, (1.3)

orou n D e,/ opidetat wg:
De = e, + eabcw#beyc . (1.4)

[Mapandve €xet yivel Xprjon 10U emavaopiopou wu“ = %eabcw#bc.

Av otnv niapanave dpdon, (1.1), Sewpriooupe o1t ta vielbein kat spin connection cupBoAidovrat
ouMoyikd and éva niedio A, ote 1 Spdon ypdgetat cav AdA+ A3, pia popen ) oroia naparépret
OTn YEVIKI] Popor| evog ouvaptnooeidoug Chern-Simons otig tpeilg dtaotdoelg. Auto Seiyvel mpog
Vv Kateubuvon cUoXETIoNO0U TG Tplobidotatng Bapuntag pe pia Chern-Simons Sswpia fadbpidag.
Aropévet va BpeBel n katdAAnAn opada Pabnidag, £tor wote va ypadtel n avtiototxn Chern-
Simons 6pdon kat va ermBeBaiwbdei ot1 ouurtintel pe v plodiactatn Einstein-Hilbert §pdon,
(1.1).

Eotw 6t 1 kataAAnAn opdda Babpidag eival n ISO(1,2). Agiel va onpeiwbei ot ev yével 1o
Chern-Simons cuvaptnooeidég opiletat yia amdég alyeBpeg Lie. Emopéveg, dev eival mpodpaveg
ot puropet va kataokeuaotei pia Chern-Simons Sewpia Babnidag tng ISO(1,2), exktog edv ermBe-
BaiwBei ot nf Chern-Simons aAAnAenidpaon prnopet va opiotel yia v vnioyrnela opada. Me adda
Aoyla, auto nou srudioketat eivat 1 e§gUpeor piag avaddointng tEPaymvikng popeng mg ISO(1,2)
aAyeBpag Lie. TlapdAdo mou yua auBaipetn 6idotaon, dnAadr yia v opdada ISO(1,n-1), kat 1€to1o
bev 10XUEL, 0T CUYKEKPLIEVT) TIEPIITIOOT) OOV 1 = 3 UTIApP)el Pia avaddointn Kat pn eKGUAlopEvn
pop®n, n oroia sivat n:

tl"(Jan) = dab » tI‘(Pan) =0, tl"(Jan) =0, (1.5)
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orou J, = %eabCJ be eivat o1 tpeig yevvrtopeg Lorentz kat P, ot Tpeig PETaBEveLg, oUVATIOTEAGVTAG
toug €81 yevvrjtopeg g opadag ISO(1,2). Ot maparndve YEVVATOPES TKAVOITOI0UV TV MAPAKAT®
aAyeBpa, onwg auty Siverat anod g £§ng Petabetkeég oxEoelg:

[Ja; Jb] = fabct]c y [Jaypb] = 6abcj:)C y [Paa Pb] =0. (1.6)
To endpevo Brjpa sivatl va ypagtet n ouvaddoiotn napaywyos:
Dy=0,+[Au, ], (1.7)

orou A, (x) eivat n ouvoxr) Babpidag, n ornoia avarrtuooestatl MAve otoug YeEVVATOpeS g aAyeBpag
g ISO(1,2), apou naipvel Tia€g o autn:

Au(z) = e, (2) Py + w,' (z)Ja - (1.8)

v napanave éKGpaor g ouvoxng Babpidag, A, yia xabe yevvrtopa £xet avateBei €va Siavu-
opatuko riedio. To vielbein medio £xel emouvapBei otig petabéoetg, eve yla 10 KOPPATL TOV OTPOPOV
10 avtiotorxo nedio eivatl to spin connection.
E% opilopou, n nmapaywyog Du petaoxnpatidetal ouvaddoimta, divoviag tov kavova PETAo))-
patiopou ou A, )
0A, = —Dye=—0,—[Ay €, (1.9)

orou € = €(x) eival n mapdperpog petacxnuatopou Babpidag, n oroia, apou eivat otoieio g
ISO(1,2) aAyeBpag, propel va avarttuyBel otoug yevvitopeg:
e(z) = &"(@)Pa + A*(2) Ja (1.10)

pe &% (x) xat \%(x) va eivat anelpootég apapetpot. Tuvduadoviag g elonoetg (1.8), (1.10) pe wyv
(1.9) xat kavovtag xpron g diyeBpag tov yevvniopav, (1.6), o1 kavoveg PETAOXNIATIONOU 1OV
dlavuopatikev nediov e kat w Bpiokoviat:

de, = —0,€" — e“bceub)\c — eabcwubgc , (1.11)
w,® = —0pA* — e wpe - (1.12)

Ot mapandve petacnpatiopol Badbpidag dev cuprinrouv pe 10Ug oUVNBEl PETATKNATIONOUS
ouvietaypévev. IIapodo 1ou ot pecaiot 0pot TV NAPANAve £§1000E®V PIITOPOUV va TauTorotfouv
®G Torukol petacxnpartiopoi Lorentz, , apou 10 . €xel avuotoixnBel pe tov yevvrjtopa Lorentz,
J¢, otov petaoxnpatiopd Padpidag, ot unddourrot dpot Sev eival avayvepiotpot arod v mpetr
pata. Av givat mbavo va cCUCXETIOTOUV 01 TIAPATIAVE EKPPACELS TOV PETACXNIATIONOV TV Tediav
Babuidag pe 1oug SrapopopopPpiopoug, 1ote Sa propouv va Jewpnbouv 10o0dUvapol pe Toug peta-
OXNHATIOPOUG CUVIETAYHEVAV Kal, TNV 1d1a wpa, autd Sa anotedei emmBeBaimon ot ) ISO(1,2) sivat
N KatdAAnAn opdda Babpidag ya v npooeyylon g tpodiactatng Einstein Bapuintag og Sew-
plag Babpidag. Puokd, n 6paon rou Sa npocdiopiotel Sa mpémetl va eival avaddoint Katw anod
T0Ug petacyxnpatiopoug Babpidag oe avuotoyia pe v tprodidotatn Einstein-Hilbert pdon, 1
ortoia eivatl avadAoietn KATe arod 1oug PEtaoXnNatiopoug ouvietaypévav. H oxéon avapeoa otoug
81apopoopP10110UG KAl TOUG PETACKNIATIONO0US Badbpidag culntiEtal apéomg PETd tov Kaboplopno
g 6pdong KAl TV aviiotolXev e§1000e®V Kivnong.

[Ipoxwpwviag otnv Kataokeur) g dewpiag Babuidag g ISO(1,2), 1o emodpevo Brijpa sivat va
UTIOAOY10TOUV Ol OUVIOTOVIEG TAVUOTEG KAPIMUAOTNTAS tev rediov Pabuidag, kavoviag xpron g
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ouvnOiopévng @oppovAag, dnAadn g Xprong tou PeTabétn g ouvaddointng IapaAywyou tng
Sewpiag Babnibag, D,;:

Ry, = [Dy, D)) = 0,A, — 9,A, + [Au, A, (1.13)

orou A, etvat n ouvoxn Babnidag g e§iowong (1.8). Epdoov o tavuotrig Suvanung nediov, R, .,
naipvel TpEg otnv aidyeBpa tng ISO(1,2), propei va avartuxOel 0ToUg YEVVITOPES TNG:

Ry = T, (2) Pa + R,8(2) a (1.14)

omov o1 7} xat R, 7 efval 01 0UVIOTOVIES TAVUOTEG KAPITUASTITAG O1 OIo{ot OXeTidoviat pe ta e Kat
w, avtiotoxa. Zuvduddoviag ) @éppovda (1.13), pe 1o avartuypa (1.14) kat avukadiotoviag to

A, pe v ékppaon (1.8), aroKt@vIat ot EKPPACELS TRV TAVUCTOV KAPITUAGTITAG :

1, = Oue,” — Ove," + e“bcwubeyc " T (1.15)

RHS = OuWyq — OpWyq + eabcwubwlf , (1.16)

01 OTT0101 ATTOTEAOUV T1G TP1001A0TATEG EKOOYKES TOV EKPPACERV TG OTPEWYNG KAl KAPITUAOTNTAG TOU
divovtat otig oxéoeig (1.3) xat (1.2).

TéAog, yia v 0AOKANp®OT TG £1KOVAG, ArTopPével va kabopiotel 1 §pdon g Sswpiag. Kata-
okeuadoviag pia dewpia Padbpidag otig 1pelg draotdoetg, n podavrg ermAoyr) eivat va Semprjocoupe
10 ouvaptnooelbég Chern-Simons:

Scs:/ tr(AAdA+AAAAA):/ trA, (0,4, — 0, A, + [Ay, A Pd3z . (1.17)
M M

AvukaOiotoviag Je v Ekppaoct) g ouvoxrg Babpidag, A, onwg divetat ot oxéon (1.8), pepkoi
0pO1 TG TAPATIAV® SPAcNS PIATPAPOVIAL ATIO TNV EPAPHOYT] Tou ixvoug, (1.5), otoug yevvrtopeg,
odnywvtag otnv akoloubn ékppaon:

/ Pe ! ((8,,wpa — Opwya + wybwpceabc) + (Ovepa — Opeva + (wybepc - eybwpc)eabc)> . (1.18)
M

O mpwtog 0pOg £ival avayvepiol1og @g 0 TAVUOTHG KAPITUAGTHTAG Kal 0 HeUTEPOG WG O TAVUOTHAS
otp€Yng, onwg divoviat otn oxéon (1.16). Aoyw tng embuuntng SO(1,2) (Lorentz) avaldoidtntag

g tedikng dpdaong, ermBdalldetatl n cuVOrKn PNdevikng otpéyng, 6ndadn 71, pa = 0, 1 emopévag 1
napandve ékpaon g dpdong naipvet v akdAoubn popepn°:

Scg = / "Pe (é?ywpa — OpWya + wybwpceabc> , (1.19)
M

n omoia eivat ibia pe ) Spdon g prodidotatng Pputntag g Fevikhig Bewpiag Tng LYXETKOTNTAG,
(1.1). MetaBoAr] wg 1pog to 1edio e Sivel v avapevopevn egiowor Kivnong, 1 oroia eivat o

Syinv avagopd [10] ivetat évag evaAAaKTIKGG Kal EUPHIATIKGG TPOMOS yia va aroktBei 1 8pdor Chern-Simons,
EEKVOVTAG Ao £va TOroAoy1KO avaAAoieto g popdng fY trR A R oe pia tetpadiaotatn modAardotnia, Y. Eubeig
urioAoytiopot 0dnyouv oe pia 0AOKANPOON MOCOTNTa 1) oroia ypddetal oav pia OAKI MAPAY®YOS Kl EMOPEVRS TO
oloxAnpepa nave ot Y avdayetat oe oAokArpepa ave wmy M, érmou M eivat 1o tprodiactato 6pto mg Y. H éxppaon
tou oAoxkAnpopatog oty M tautoroteital og to Chern-Simons ouvaptnooeidég to oroio cuprtirntet pe v Einstein-
Hilbert 6pdon. To mAesovéktinpa g MPOOEYYIoNg autng eival 0tt n ouvlnkn pndevikng otpeyng dev xpeladetat va
ernBAnOei.

19



HNdeviolog Tou Tavuot) Kaprnuidttag, R, = 0, o ovprmeon pe myv egiooon (1.2). Enopévaeg,
uropei KAro1og va vrootnpiget ot n tpiodiactatn Baputnta prnopei va neprypadei wg pia Chern-
Simons 9ewpia Babuidag g ISO(1,2). Aev eivat meptttd va avagpepbel o1 1 mapanave Spdon
elval avadAointn KAt and Toug petacknpatiopous Babnibag tov Stavuopatikev nediov e, w, g
eClonong (1.12). Ztug mapakdie ypappés akodoubei n oulfnon yla ) oxEon avdapeoda otoug
petaoxnpatiopoug Badpidag kat toug dradopopopdiopovs n oroia avaBAnOnke vopitepa.
ApYiKad, €0t 01 petacxnpatiopoi t@v vielbein kat spin connection kdtw ano toug Stadopo-
HOPP10110UG OV Tapdyovial arto éva dtavuopa, v¥. H kabiepopévn mapaperporoinorn v peta-
OXNPATIOP®OV auToV, de u“ Kat Swua, yivetal péom tov napayeoyev Lie katd prkog tou Stavuopatog

—vY:

Se“‘l =L _ye, = =00y, — (00" )e," = —v"(0ve, — Ope,’) — Ou(v¥e,’) , (1.20)
dw,' =L yw, = —0v"0w, — (90w, = =" (0w, — Ouw,") — Ou(v”w,?) . (1.21)

‘Eotw n apopd Seu‘l — de, kar Ytoviag £ = e,'v” xar A* = w,"v” vrodoyidetat:
de, —de,' = —v"(Ove,’ — Oue,’) — 0(ve,") + Oule,v”) + e pwyet” + €W pecv”
= —v"(Dye,' — Dye)') (1.22)

orou xpnotponoOnxke n éxppaon g L, (1.4). H napanave éxppaon pndevigetat and ) ouv-
9nkn g pndevikng otpéyng 1 orwoia ermbAndnke ya Adyoug avaddowtntag Lorentz g dpdong.
[Mapopoing, £0te tpa n dapopd 5wlf — (5wua kat 9éroviag A\ = w, " mpoxurttet:
Swlf‘ —dw," = —v"(Oyw," — Ow,") — O(v"w,") + 9u(v'w,") + eabcwubv”wyc
=v"(Ouw," — &,wﬂa + eabcwubwyc) =v"Ry, . (1.23)

H napandve ékppacet undevidetat ano v e€iowon kivnong?, nAadr ano tov pndeviopo tou tavu-
ot kapnuAotntag. Enopéveg, oupmnepaivetal 6t o1 petaoxnpatiopoi fabpidag eivat 10oduvapiot
€ TOUG PETAOXNPATION0US TV Stapopopopdiop®v on-shell, mou onpaivel 611 o1 petacynpatiopol
1oV niebiov fabpidag 100papidouv yla ToUg YEVIKOUG PETAOYXNHATIONOUS CUVIETAYHEVOV OE QUTHV
MV MPOCEYY10n PEO® dewpiov Badbnidag. H avapevopevrn availowtnta g §pAacng KAT® ard toug
petaocxnpatiopous Badpidag e€aopadilet i yevikr cuvadllowwtnta g dewpiag pe tov 1610 1poIIo
TIOU 01 YEVIKOl PETAOXNIATIONOol ouvistaypévev aprjvouv avaddoiot) v Sgis. Erurmiéov, ermbe-
Bawwvetat ot 1 ISO(1,2) eival n kataAAnAn opdda yla tv Kataokevn g tpodidotatng faputntag
wg 9ewpiag Paduidag®.

H napanidve avdaduon ndve ot oxéon wng plodiactaing Papuintag kat g ISO(1,2) Chern-
Simons Yswpiag Pabuidag pmopet va yevikeutel KAl otV MEPIIOON KATd v oroia reptdapBave-
Tat Koopoloyiky otaBepda. H mapoucia 1ng kabiotd 10V X®POXPOoVo G KAPITUAOPEVO, ETTOPEVROG
urtdpxouv 6U0 aviioTolKol X®POXPOoVvol avadoyd He To POoonpo g otabepdg, ot piodiactatot de
Sitter kat Anti de Sitter, pe opadeg 1ooperpiov g SO(1,3) katr SO(2,2), avtiotoxa. IIpokepévou
va ouoxetotel 1 plodidotatn Paputnta napoucia KOOPOAOYIKLG otabepdg pe Sewpieg fadbpidag,
etvatl Aoyiko va 9empnBouv o1 mapandave opdadeg wg opadeg Babnidag, dedopévou o n ISO(1,2)
douleye ayoya yla v emninedn nepinmwon. H Siadikaoia yia to xtioipo tov Senpiov auvtov sivat

4¥tov poppaAiopd Palatini tov goppaiiopd Palatini auty sivat iy éxkgpaon g (1.2)
SH ISO(1,2) eivat n opdda mou MeptypAPet Tig 100NETPieg Tou Tpiodidctatou xopou Minkowski, kabiotéviag v pia
OX1 Kat 1000 tuxaia ermioyr).
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n 161a pe authv mou meplypadnke avadvuka veopitepa ya v ISO(1,2). H koopoloyikr) otabepd
UneloEpyeTal ot Yempia PEO® NG PETAOETIKIG OXEONG TOV YEVVITOP®V TV Petabéosny, 1 oroia
etvat topa pn pndevikn. Emiong, n tporornoinon auty) emdEPEL TV £10Ay®Y £VOG ITAPAIIAVE OPOU
otnVv £KQPAOCT] TOU PETAoXNPatiopoy tou nediou spin connection tng (1.12), 6nAadn:

56“{1 - Mga _ €abce,ub)\c . eabcwubgc 7 (1.24)
dw,' = =9\ — e“bcwub/\c — )\eabceubﬁc , (1.25)

KaO(G Kat €vav EMITAEOV 0pO OtV EKPPAOCT] TOU Tavuot] Kaprudottag g (1.16), dndadr):

TW“ = 0ue,) — 81,6”“ + eabcwubeyc — eabcwybeﬂc , (1.26)

R, = Ouwva — Oywpa + eabc(wubw,f + )\eubeyc) . (1.27)

‘Ooov agopd ot §pdon v YewpPlwv autrv, aut anoktiEtal péow tou Chern-Simons cuvaptn-
00€160Ug, TIAA1 0 OUNITIOOT P Vv Tplodtaoctatn Einstein-Hilbert 6paorn ng levikng @swpiag ng
ZXeUKOTTAg OTIS TPElS H1a0Tdoelg apousia KooPoAoy1KG otabepdg.

1.3 Tetpadiaoctatn Einstein Baputnta wg dswpia Badpidag

Av 1 Tevikn Bswpia g Lxeukottag oug téeoeplg draotaoelg pnopet va neprypadel og dewpia
Babnibag arotedel éva apdideyopevo {tnpa. Zinv avagopd [10] avadépetat ot ) terpadiaotatn
Baputnta dev propet va rieprypadei og Fewpia fabpibag €€ attiag tng popong ng dpdong Einstein-
Hilbert, n oroia eivat g popprg [ AN AN (dA+ A?) ka1 pia tétowa Spdon dev propei va e§axOet
ano pia Sewpia fadbpidag. [Mapodo rou pia t€tota Spdon dev poépxetat amno pia Sewpia fabupidag,
UMAPYEL €vag HI TEIPIPIPEVOS TPOIOg va aroktnBel Sexvoviag and pia §paon turou Yang-Mills.
210 RepAAalo autod, avakaAoUpe v KATaoKeun autr, 6nAadn v nepiypadr) g tetpadiaotatng
Baputntag og Sewpiag fadbpidag.

'Oneg otnv 1p1od1aotatn nepint®or), MPOTa ano 0Aa MPEMel va ermonpavoei ot yivetal xpron
10U QoppaAtlopou vielbein yla tnv Kataokeur] autr). Anouocia KOOPOAOYKKG otabepdg, n opdda
TRV 100PETPIOV TOU Xwpoxpovou Minkowski sivat eivatr n ISO(1,3) (n opdda Poincaré) kat sivat
auty) ou da dewpnbel wg n opdada Pabpidbag, oe cupPmvia pe v PLodlactatn nepimtoon. H
adyeBpa Poincaré aroteAeital anod 8éka yevvrtopeg, t1g 1i€ooepig petabéoetg, P, kat toug €81 peta-
oxnpatiopoug Lorentz, My, o1 0rmoiot 1Kavorotouy Ti§ MApaKATe PeTafetikég oxEoelge:

[Map, Mea] = dnpaieMap) s [Pay Mpe] = 2005 Py 5, [Pas Po] =0, (1.28)

orou 7 = diag(—1,4+1,+1,+1) eivar n terpadidotat petpikr ou xopdxpovou MinkowskKi.
Axoloubwviag tnv kabiepwpévn dadikaoia, opidetal apyikd n ocuvadloiewtn Mapaywyos:

D=0, +[Au, ], (1.29)

orou A, (x) etvar ) ouvoxn Babuidag. To avarttuypa g ouvoxrg Badbpidag rdve otoug yevviitopeg
tou ISO(1,3), 6ivel v ékppaon:

Au(z) = e (v)Pa + wlfb(x)Mab , (1.30)

50 cupBoA1o16G [ ] UIIOVVOEL TNV AVTICUPIETPIKOTITAS TOV SEIKTOV ITOU BPicKOVIal eVidg ToV AyKUAGV, yid mapabstypa
na[ch] = %('nabpc - nacpb)~
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OIIoU Td € /f KAt w Hab €xouv tautoron el g ta dravuopatika niedia fabpidag yia tig petabioeig kat
T0UG petacxnpatiopoug Lorentz, aviiotoxa. E§ opiopou, o petacxnpatiopog mg napayoyou D,
eival ouvadAoinTog, EMOPEVES, 0 KAVOVag PETACXNHATIONOU yla ) ouvoxr) Babpidag A, Sivetat
arno ) oxeon:

A, =Dye=0,+[A, €, (1.31)

orou € = €(z) eivat n nmapdpetpog TouU petacynuatiopoy Babpidag, n oroia wg otoixeio g
adyeBpag g ISO(1,3), propet va avartuyBel dveo oToug 6EKA YEVVITOPES :

e(x) =&"(x) Py + %le(w)Mab : (1.32)

6mou £%(z) kat A®(z) aneipootég mapdnetpot. Tuvbuaopdg v (1.30), (1.31) xat (1.32) obnyet
OTIG EKPPACELS TOV METACXNHATIORAOV TV Tediov:
de,t = Ot 4w, — Xye,l (1.33)

Sw, ™ = FpA™ + X%w [ — Nw 1 (1.34)

Ot tavuoteg kapnAomrag, 7,70 kat Rﬂﬁb, IoU avtiotolouv ota mnedia Babpidag, e kat w, arwo-

KTOVIAL aro 1ov oplouo tou tavuoty duvapng nediov, R, tou A,
Ry, =Dy, Dy = 0,A, — 0 A+ [Au, A] (1.35)

EMELTA ATIO AVATTIUYHA TOU MAVE OTOUG YEVVITOPES :

1
Ryy =T,/ Po+ S R0 Ma - (1.36)
Enopéveg, ouvbudaloviag tig oxéoelg (1.30), (1.35) kat (1.36), ot eKPPACELS TOV TAVUCTOV KAWITU-
Aontag eivat ot:

T, = 0ue," —0Ove,’ — wuabel,b + w,f‘beub ,

ab __ ab ab ac b ac b
R, =0,w," — 0w,” —w, w,, +w, w

12 M pne o (1-37)

Ol OIMOlEG CUNITITTOUV HE AUTEG TOU ATIOKT®VIAL Souldsvoviag pe tov vielbein @oppadiopo wng
Fevikhg Oswpiag tng LXEUKOINTAG OTIS TE00EP1S H1a0TACELS.

Qg 66 n eprypadr) g terpadiactatng Papuintag og dewpiag Pabnibag extudioostal pe Evav
eubu tporo. Ilpoyxwpaviag, Aortov, oto Huvapiko Koppdt g dewpiag, n npopavng ermoyrn ivat
pia dpdon tunou Yang-Mills tng Poincaré opddag. 'Opwmg, pia tétola ermdoyr) dsv odnyel, €0tw
éppeoa, omv anoktnon tg Einstein-Hilbert §pdong, emopéveg 1o eyxeipnua ng reptypadpng
g terpadidaotaing Einstein Bapuintag og piag Sewpiag Pabpidag tou ISO(1,3), deixvel va pnv
EMITUYXAVETAL, OGS uTtootnpidetatl otnv avapopad [10]. Ao tnv dAAn pepld, kamolog Sa propouos
va urnootnpifet 6t n 6pdon Einstein-Hilbert 9a propovoe va xtiotel ard avaAAointeg oootnteg,
IPOEPXOHEVESG aTto Toug tavuoteg g (1.37). ITio ouykekpipéva, 10 fabpwto Ricei S9a propouos
va IMPOKUYEL A TOV TAVUOTY] KAPIUAdtntag, Ruﬁb Kal KAvovtag XPHorn autou tou avalloi®tou
Krarolog Sa pnopovoe va kataokeudoetl tedikd v Einstein-Hilbert §pdon [84]. INapdda autd,
Unapyetl €vag evallaktkog Kat Atyotepo kaBodnyouevog Tpoog va KATAaAngel KAMo10g e v
Einstein-Hilbert §pdon, petaxeipidoviag 1o petabetukd kat Lorentz koppdtt pe évav mo eviaio
1po10, Baciopévog o o H1a100NTIKA KAl QUOIKA ETTIXEIPTIATA.
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[Ipotiotwg, mpérnet va onpewbet ot 1 {nrovpevn 6paon ogeidet va eivatl avaiAoint KAT® Ao
TOUG petacynpatiopoug Lorentz kat 0x1 aro trv CUVOAIKY] apX 1K1 CUPHETPIA 1] OTIola MEPLEXEL KAl
TG petabeoelg. Enopévmg, mpog auty) v Kateubuvor), pHropet va xpnotponotn et évag pnyaviopog
aubopunng napabiaong g APX1KNG CUHHETPIAG PEO® NG £10aY®YHS VoS Babpwtou niediou [3,4].
Me autdv tov TpOro ermruyyavetal 1 eAdttoon v Padpov edeubepiag kat aropével va eleyBel
€Av uropeil Kanoog va katadrel pe ) Spaon Eistein-Hilbert, enetta ano v napabiaon g
ouppetpiag, §exkivoviag anod pia dpdon tinou Yang-Mills. Ta va propéoet va ocuprnieptAn et
0 PNXaviopog g aubopuning napabiaong g CUPHETpiag, 1 aApXKn ouppelpia ng dewpiag
rpernet va adAdadel ano v Poincaré otnv tetpadiactatn de Sitter. H ermdoyn) tng opddag autrg
etvatl otpatnyiky 616t epltdapBdvet tov 1610 apBuod yevvniopev pe autiyv g opadag Poincaré,
pe 1 Sagopd o1 6Aol 01 YEVVITOPES TG opadag Pmopouv va ypadtouv emi iocoig opotg, pe ta
avtiotoxa media Pabpidbag va ermdéxoviat évav eviaio oupBoAiopod, £otwm wAB JA/B = 1...5.
'Etot, 10 Babpetd nedio, ¢, avatibetat ot epediwdn avarapdaotaon g SO(1,4) kat endyet
mv auBopuntn napabiaon g oupperpiag, aro to SO(1,4) oto SO(1,3), dnAadn n oupperpia
edattovetat oty Lorentz, pe t€éooepig anod toug §éka yevvrjtopeg (Tig petabioelg) va onave.

Zuykekpipéva, rataokeualoviag pia apyn SO(1,4) Seswpila Padbpidag, n ouvoyxn Padnidag
givat A, = wMAB Map, 6rou ta Mg, eivat ot 6éka SO(1,4) yevvrtopeg Katl O aviiotolog TavVUOTr|g
duvapng nediou divertar amo v (1.35) wg:

AB AB AB A CB A  CB
F 7 =0w,”” —0w,” tw,/cw,”” —w, cw, " . (1.38)

Ot avaldAointeg mocotnteg ot oroieg ouviotouv v SO(1,4) avaddoiotn dpdon mpémel va Kata-
OKEUAOTOUV 0g OPOUG TOU MApArndave tavuotr] duvapng nediou. H povn avaddoiotn mooodtnta nou
Hropel va Kataockeuaotel pe autdv Tov Tporo Kat va eivat emiong MoAUGVUNIKY oG pog to F,
elval 1 MapaKAT® TOMMOAOYIKA avaAAointn nmoootntd, yveott oG deiking Pontryagin:

S = / d' e F AP e . (1.39)

IMa va @uogevrioel Tov Topéa g aubopuning rnapabiaong g oupperpiag, n nAapanave SpAo)
tportoroteital £tol ®ote va repltdapbavetl eva Badbpwtd medio, ¢, padi pe pia mapdpetpo m e
diaotdoeig aviiotpodou PrKoug:

Sso(1,4) = /d49€ (m¢A€ABCDERHVBCRp(PE€MVpU + Mo¢pa +m™2)) (1.40)

orou 1) petaBAnu) A = A(z) g§unnpetei 1o poho evog moAdardaciaott) Lagrange, eruBailoviag tov
ouvdeopo yia 1o Babpwto nedio:
o =—-m72. (1.41)

AlwaAéyovtag pia ouykekpipévn Babpida yia to fabpwto nedio:
¢=¢"=(0,0,0,0,m™") & ¢*(z) =0 xat ¢’(z) =m ", (1.42)

1 1N PNSEVIKY TP Tou ¢° (z), endyet v napaBiaon g SO(1,4) oupperpiag, otnv SO(1,3). H
dpaon, (1.40) avayestal oty apakdim EKPEAct), oty oroia eivat epgpavrg n cupperpia Lorentz:

Sso(1,3) = /d4xe“”p"Fw,“prUCdeabcd ) (1.43)
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1 5

Optdovtag ta media Babpidag elf =m" wua KAl avantuoooviag tov tavuoty duvaung mnediou,

E, = FWABMAB = FW“bMab + Fu?,5Ma5 g (1.38), anoktadvial ot MapPAKAT® EKPPACELS:

5

FM‘; = mTWa , (1.44)
b b 2 b b

F7 =R, —m(ejle,) —ele)), (1.45)

O11I0U TW“ Kat Ruﬁb etvat o1 ISO(1,3) ouvictwvieg tavuoteg kaprmudotntag g (1.37). Ipodavag,
oF “?,5 bev eivat napov om dpdon petd v napabiaon mg oupperpiag, ondte tbetar 7, = 0. O
1ndeviopdg Tou tavuotr) g otpeéPng odnyet oe pia oxéon avdapeoa ota nedia Babpidag, ypagoviag
10 spin connection oav cuvaptnon tou vielbein. Ta va kataAngoupe ot 6X£0n AUy, TPOXWEOULE
roAAardaoidadoviag kat ta dUo péAn g e§iowong tou pPndeviopou g otpéywng pe uo vielbein:

b b
ere’ L, = ele’y (Ehef — e, —w, ey + W, e#b> =0, (1.46)

érerta Sewpoviag KUKAKEG petabéoelg otoug eAeubepoug Seikteg Lorentz, a, ¢, d kat ipocbagat-
POVTAG TG TPELG OXEOELG TTOU IIPOKUITIOUV, 1] {NTOUHEVE EKPPAOCT] IIPOKUITIEL BG :

1

Wyab = 5 (Quab - Quba - Qabu) s (1.47)

OTIOU O TIAPAKAT® OPLOH0G EXEL XP1O10TION Ot :
Qabc = 2€Ma€l/ba[u€,/}c . (1.48)

Twpa, av n napandve £kppaocn tou F Wab, (1.45), ewoaxbei o 6pdon Sso(1,3) TS e8iowong
(1.43), tote, 1 €kPpaon otV oroia KATaAnyel KATO10¢ PIopel va ypadtel otnv napakdaie® opado-

nompévn Popen :
Sso(1,3) = /d4xe“l’p"eabcd (Rwﬂlb + mQ(e#‘leVb - eﬂbel,“)) (Rpcfd + mQ(epCeUd — epdecf)>

4 vpo ab cd 2 aby_c_d d,c 4 a, b b, a c, d d, c
:/d 2e"P? € g (R/w R, +2m°R,; (ep € — €, es)+m (e# e,/ —ee, )(ep ey — €, 6,,))

= /d4$6uup06abcd (‘CRR + mQEeER + m4£eeee) . (1.49)

O nipwtog 6pog, LR, 6ev ouvelopepel otg £§1000e1G Kivrong kabog aroteAei évav Gauss-Bonnet
1010A0Y1KO Opo (BAsme [85]). O 6eutepog 0pog, Leer, OXeTiletal pe ) Babuwtr) kaprnuddtnta Ricci,
£VH 0 TPiTog OPOG TaUTOIOIEiTal MG Pia KoopoAoyiky otabepd tang m?. Adyw g otabepdg autrg,
N P€y10Tta CUPPETPIKT) AUOoT TV MEdlak®v e§l00ocmv eivatl o xopog de Sitter:

Fw,ab =0 = Ruﬁb = m2(e#ael,b - el,ae#b) . (1.50)
Ze mepimwon mou 1 KOopoAoyiky otaBepd eivatr pndév, n Avon avayetat otov emninedo Xwpo
Minkowski.

'‘Ocov apopd Otr| YEVIKI] OUVAAAOI®TNTA, AUTH] AVAKTIATAl A0 TOUG PETAOYATIOPO0US TV TTE-
blov Babuidag (1.31), onwg autoi oxetidoviatl pe toug dapopopoppiopods. Axkodouboviag v
161a dladikaoia kat unoAoylopoug Orwg oty TP1d1aotaty) MePintaor), KATAANYEl KATIO0G HE TV
tetpadiaotaty ekboxr) v eSlonewnv (1.22) kat (1.23). Enopéveg, AapBdavoviag unioyn i ouvorkn
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ndevikr|g otpeéyng Kat Vv e§lowon Kivnong, 1 teAikr) 6pdon sivatl avaAAoint KATe ard toug Yevi-
KOUG PETA0XNHATIONOUG OUVIETAYHEV®OV, adoU ival avaAAoidtn KAT® arto ToUg PETAOXATIOHRoUS
tov nebiov Babnidag.

Zuvoyidovtag, sival mpaypatt Suvatod va nieprypadet i terpadiactatn Baputnta cav pia Sewpia
Badnidag’. O1 peracynpaTopol eV Mediov e Kat w Pnopovv va MPOKUYWOUV av EEKIVIOEL KATIO10G
pe pia ISO(1,3) 9swpia Babuibag, Opwg mpoxkepévou va Katalriel pe ) {nrovpevr Einstein-
Hilbert 6pdon), eivat artapaitnto va Sewprjoet g opdda Babupidag tnv de Sitter kat va oupreptddaBet
éva Pabpeto nedio os pia ocuykerppévr Babpida ya myv enaywyn piag auboppuning rapabiaong
g ouppetpiag, Sekvaviag ard pia MOAUGVUNIKY, ®§ IPOg Tov tavuot] duvaung nediou paon,
wnou Yang-Mills. Ilpdaypartt, n tedikn 6paon eivat availointn KAT® Ao T0U§ PETAoXATION0US
Lorentz kat tautonoteital ermtuyxng og n dpaon Einstein-Hilbert.

1.4 Tetpadiaoctatny Zuppopon Paputnta

Zto Repdadato autd, avakadoulle TV IIPOCEYYLoT g Tetpadidotatng ouppopdng Paputntag og Se-
wplag Pabpidag [7,8,86,87]. Zuykekpipéva, kataokeuadetal pia Sewpia Babnidag ing ouppopeng
onddag, SO(2,4), kat tedkd aroxktiétat 1) Paputnta Weyl. ITpokejiévou va KataAniel KAOog pe
mv Baputnta Weyl, AapBavel xopa pia apabiaon g apxikig ocuppetpiag Babpidag, avtr) m go-
pa oY1 aubopunta pe my £10ayeyn KAanoo Babpmtou nediou, aAAd pe tnv emBoAr] CUYKEKPIHEVOV
ouvbéopmv. ‘Onwg OTlg IIPONYOUEVES TIEPUTIVOELS, £T01 KAl O aUTl], 1 opdda mmou Padbpcverat
etvat n opdda vV XWPOXPOVIKOV CUPHEIPIOV, TiepldapBaviag 1ig petabéoelg, ol omoieg oxetido-
Vidal Pe ToUG YEVIKOUG PETaoXpatiopous Badpidag kate amod toug oroioug opeidetl va mapapével
avaddoiotn 1 teAikr dpdon. H oxéon avapeoa oty “eontepikn” cupperpia tov petabéosnv Kat
TOUG PETAOYNLATIOPOUG OUVIETAYHEVAV ETTITUYXAVETAL HE TNV £10ay®YH Tou vielbein g rediou fabd-
nibag twv petabéoewv. H avapiln tov e00TepIKOV CUPHETPIOV HE TIS XWPOXPOVIKEG eival akpiBmg
autd 1ou Kab1otd UV KATAOKEUL] TETOIRV Jenplov SEXOPL0TY 08 OXE0n HE TS YPARHKES Sewpieg
Babnidbag sowtepk®OV opAdnv cuppeTpiag.

Ziv npoogyyon g terpadiaotatng cuppopdng Paputntag og Sewpilag fabuidag, wg opdda
Babuidag Yewpeitat n SO(2,4), 1 oroia aroteAeital and SeKATIEVIE YEVVITOPES, TOUG £§1 PLETAOXTIIA-
tiopoug Lorentz, M, 11 t€ooepig petabéoetg, P,, T0UG T€00EP1G CUPPOPPOUG PETAOYXNIATIOROUG,
K, xat tov petaoxnpatiopd kAipaxkag, D. Ot yevvr|topeg autol 1KAvoItolouV g MapakAte peta-
Yetkeég oxéoeig o1 omoieg kaBopilouv v ddyeBpa:

]
[Mab, Pe] = mbePa — NacPs
[May, K] = mpe Ko — NacKy ,
[Pa, D] = Py,
[Kq, D] = —K, ,
[Ka, By) = —2(NapD + Map) (1.51)

OTIOU 7)yp €1vAL 1 KUPI®G JTIKT) TeTpadidotaty PEIPIKY] TOU XwpoXpovou Minkowski. H kataokeur)
g Sewpiag Pabpidag ekivd pie 1oV 0p101106 TG GUVAALOIRTNG TTAPAYOYOU KAl € TOV IIPOCd10ptoRo
g ouvoxng Padpidag, n omoia wg otoixeio tng ddyeBpag SO(2,4), propel va ypadtel oe 0poug tov

"Qotd00, Ot 0g pia apynig ISO(1,3) 9ewpia Badpidag.
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YEVVITOP®V
1
Ay = e Po+ 5w, Moy +buD + f, Ko, (1.52)

orou éva medio Babpidag £xer avriotonBel oe kAOe évav yevvritopa. Ta mebia Pabpidag mou
oxetiovtal pe ug petabeoelg €xouv tautonoindei pe 1o vielbein, eve autd mou oxetioviat pe
T0UGg petaoynpatiopoug Lorentz tautormolovviatl pe 10 spin connection, 6nog otig IPonyouUpeveg
nieputtooets. H ouvoxr) Badnidag, A, urnakovet 1ov MapakAte Kavova PETaoXNPatiopou :

0A, = Dye=0ue+[A,, €], (1.53)

orou € = ¢(x) eivarl pla nmapdpetpog n onoia avrkel oty ddyeBpa Babuidag kat yia autév tov
Aoyo prnopet va ypaotel og:

1
e:{aPa+§)\ DN+ kD + p °K, . (1.54)

Zuvbudalovtag tig oxéoelg (1.52), (1.53) rat (1.54), odnyeitatl KATIO10§ OTOUG KAVOVEG PETACKIATL-
opou v diadopwv rediov Badbnidag:

de,! = 0u€" + wuabfb —bu&" = Ne, by ke, (1.55)
8w, = 0™ — 2w 2N, — 4 f [ogt — 4 o bl (1.56)
Oby = Ouk — 28" fra + 2p"€pa (1.57)
5f,% = Oup® +w, oy +bup © = A fu — wf, (1.58)

O tavuotrg duvapng nediou g Sewpiag Sivetal anod v Kabiepwpévr EopoUAa :
Fu = 0,A, —0,A,+ [Au, AL . (1.59)

e oupgpevia pe ) oxéor (1.35), 1o avamtuypa tou tavuotr] duvapng rnediou mave otoug YEVVITOPES
ypdoetal og:

Fu =R, Py + 2R#ng b+ RuwD+ R,SK, . (1.60)

O1 OUVIOTEOVIEG TAVUOTEG KAPTTUAOTNTAG O1 Ortoiol ouvodeuouv Kabe yevvrtopa g aiyeBpag urio-
Aoyidovtat énetta amo ouvduaopo tev oxéoswv (1.59), (1.52) kat (1.60). Ot ekppdoetg toug Givovial

®g €81

Ruﬁ = 0ue,’ — Ove,' + wlf‘bel,b —w, % — 2bjue,] (1.61)

=T — 2bje,9 (1.62)

R, ab = Oy, ab &lwuab _ wﬂacwybc +w,3° w _ 8€[Laf }] (1.63)
= RO —se 1), (1.64)

Ry = Ouby — by + 4e, fja (1.65)

= Ouf," — Ouf,* + w0, b — w0, b + 20,15 (1.66)

OI10U T,SB)“ Kat Rg?ab €lva 01 TAVUOTEG OTPEYPNG KAl KAPMUAOTNTAG tng tetpadiaotatng Poincaré

Baputintag, onwg divoviat otnv e§ioworn (1.37).
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'Onwg avadepdnke vopitepa, otnv mepineor mnou egetadetat, n tedikn dewpia anoxktiétal vote-
pa aro TtV ermBoAr] CUYKEKPIHIEVOV OUVOEOP®V, €101 OOTe va eival avaAloietn KAT® aro Ttoug
YEVIKOUG HETAOXNHUATION0US ouvietaypévav. Ia va emrteuyBel autd, npénet va oupBei n “aviad-
Aayn” avdpeoa Otoug YEVIKOUG HETACXNHATIONOUS OUVIETAYREVRV (rou oupBoAiloviat pe X) rat
otig petabéoelg, mou onuatvel Ot 1 teAkn opdda mpémet va eivar n apxikn, G=SO(2,4), mAnv
g petabioelg, dnrady H = SO(2,4) — {P} eni X. AxoloubBoviag myv idia Sadikaocia orwg
ot tpdidotatn nepinmtoon, n dapopd avdapeod OTOUG HPETACKNHATIONOUS TRV MEdSi®V KAl TOUG
dlagpopopopPlopoug, Seu“ — 56;, uriodoyidetal kavoviag Xpron twv e§lowoewy (1.22) kat (1.55):

de, —de,t = (Ve + Ou(vVe,t) — v dLe,) — (3#5 ¢4+ wu“bé’b — b &=\ beub + Ke:) .

®¢tovtag ¢ = vVe’, Y = vYw,Y) kat K = vYb,, n napandave dapopd maipvel v axocioudn
Hopon :

Seﬂa —de,! =" ((‘Leu“ —Ope) — w““be,,b + wl,“be“b +bue,’ — b,,ef) = _'UVRHS . (1.67)
Eivai mpogavég 0tt 1 ouvOnkn rou artatteitat yia va anadiayei KA010g aro 10 PETabeTiko KOPPATL
mg Yewpiag, PE TOUG PETACKNHUATIONOUS TOV CUVIETAYHEVOV va Taipvouv 1 9éon toug, eivatl o
HNdevionog g otpEyng: 3

RWa =0. (1.68)

Enopévag, 9¢tovtag tn otpéyn ion pe 1o pndev, o1 YeEVVITopeg NG apxikng opadag, SO(2,4), orave
kat n vnioopada H €xet og yevvrjtopeg toug M, D xkat K. Eruridéov, nipokeipiévou va eruteuyBel n
P — X evaddayn yua 6Aa ta niedia, mpémnet va ermBAnOei kat o napakate ouvdeopog [7]:

R, e =0. (1.69)

[Tpoxepdpe tOpa He Tig AUOELIS TV Maparave ouvdééopav, (1.68) kat (1.69), os 6poug tov avedap-
mtev nediav, e, xat by,.
Ia tov mpwto ouvdeopo, Tov pndeviopo g otpewng, (1.68), akoAoubeitat n) id1a UTIOAOY10TIKY

rnopsia onwg otny tetpadiactaty Einstein nepinmowon, kataAnyoviag otnv mMapaxkat® oxXeon :

1 /. . )
w0, = =5 (Vo — Quva — Q) = —w,(€) + 2%, (1.70)
OTIoU Qabc = 2el ae”bé[uey]c eivatl to ouppopPo avaloyo tou Qgpe g TeTpadlactatng nepinteong,
(1.48), pe ) pepikn napdyeyo dye,’ va enavaopiletatl wg éue,/a = (Ou + by)e,, 6nAadn v Weyl
(D) ouvaAdoiotn mapdyeyo Kat w #ab(e) elval n ékppaon tou spin connection os 6poUg ToU vielbein
oty tetpadidotaty nepintwor, n onoia divetat aro ) oxéon (1.47). Emiong, opidetat o tavuotnig
R#Sb, o ortoiog eivat o tcwuorr']§ Rﬂﬁb He TN HEPIKD MApAyyo, J,, va €xel avukataotabei amno )
ouvaAdoiet napayewyo Weyl, 9, = 0, + by, piag kat Sa @avei Xpro1pog MAPAKATR.

Ia tov 6evtepo ouvdeopo, (1.69), Adyw ng ékPppaong (1.64), onv oroia 0 TAVUOTHG KAPITU-
Aotntag Ruﬁb ekPpaletal os OpouUg g KapmnuAotntag g Bapuintag Poincaré ouv évav 6po mou
nepiéxet to medio f,*, etval duvatd va Aubel adyeBpika wg npog to f,*, oe 6poug tou tavuotr Ricci:

b]

R,ey =0 = ROel, —8el'f ) =0. (1.71)
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AapBavovtag uniéyn 1o avartuypa Weyl tou tavuotr) Riemann®:

2 2
Rywpe = Cvpo T o (gu[p olv ~ GulpRoln) — ngu[pgalv g (1.72)

orou C, 0 elvat o tavuotg Weyl, o oroiog eivat axvog, R, eivat o tavuotnig Ricci kat R etvat to
Babuwtod Ricci. Avukadbiotoviag tyv (1.72) oty (1.71) kat moAdardaociadoviag pe to ¢g%%, Bpioketat
ott:

R~ R =4f" (1.73)

ab v arpb
RO)™e", — 8¢ ") =0 = ;

1
(n—1)(n— 2)
R(O)abeyb

ornov R kat R = e/, o?,;" etvat txvn tou tavuotr) kaprndoumtag g Poincaré rnepinte-

ong, R,(?V) . Tia n = 4, anoktiétat n Avor tou deutepou cuvbeoou:

1 1
a a (l
Amo g Auoeilg tov 6o ocuvdéiopwv, (1.70) kat (1.74), porUITEL OTL wu“b e wﬂab(e, b) kat fua =

fua(e, b), mou onuaivetl out ta nedia Babpidag w kat f éxouv exPppaoctet oe OPOUG TOV AVEEAPTNTGOV
rnebiov Babuibag, e kat b.

H avadAoiot Spaon kate and v vnioopdda H katl t10Ug PETaoXatioplous OUVIETAYHEVRV,
X, eivat:

w(e,b)

1
Sw =25 [ dweweac™ (R,R ") 1.75
w 8a2/ T€abed€ w ) o (1.75)

otv oroia ot §vo ouvbeopot, (1.70) kat (1.74), éxouv ouurnepdngOei. Ailel va onpelwdel ot
n Auorn tou devtepou ouvdeopou, (1.74), Sa propouce va €xel MPOKUWEL Ao T PeTaBoAr] tng
napandave dpdong, (1.75), av nrav ypappévn os 0poug rou riebiou Badbpidag f (mpwv v anadoipn
10U), wg eSiowon kivnong. H éxkdppaon tou tavuory) R, 2%, apou AngBouv umowrn ot OXECEIS TV

W ’
Wuab(ea b) xat i (e,b), mpoxkUITtel WG £EHG:
f(ed)
ab _ 0)ab la 1 b] [a b] ab
[R,uu }w(e,b) = — <R.EW) - 26[M RV} — ge[u V] ) C;w , (1.76)

(0)ab

OTI0U C’M‘Lb etvat o tavuotng Weyl kat tautdxpova, oty kKaprnudotnta Poincaré, R,y g napa-
Ave EKPPaong, £Xel oUPMEPIANPOel 0 avtiotoiyog ouvdeopog, (1.47). Zuykekpipéva:
fu=0

™ = RO (w(e) = - [Fw)] " (1.77)
.

Zwnv mpotedeutaia oxéon, (1.76), eival mpopaveg ot 11 0 TAVUOTHG Kaumuddtntag g dewpiag,
e,b
ey
pag Kat aradeigetat, pnopet va twebel b, = 0. ‘Enetta and v emdoyn b, = 0 (yvoot) xat og
K-Babuida), to povo ave§dpunto nedio Pabuidag oty Spdorn eivat 1o vielbein, e, enopévog n Spaon
etvat avaAdointn KAT® arnod toug PETAoKHATtiopous KATPaKag Kal Toug oUPHopdoug PHeEtaoXnia-
TIopoug, adou, ot avtibeon pe toug petaoxnpatiopoug Lorentz, 6Aa ta puowkd nedia petaoxnpa-
tidovtal terpippéva KAt aro T1oug CUPHoPPOoUS Petackniatiopous v K, kat autd oupbaivetl kat
pe 1o vielbein, §%e = 0, onwg eivat eppavég ot oxéon (1.55). Eniong, 1o niedio b, mou oxetigetat

ETELTA ATIO T CUUIEPIANYI TV OUVOEoUGYV, [R etvat ave§dptntog ano to nedio b, kat,

8xtnv avagopd [9], eficwon (15.25), Propei KATIO06 va BPet TV Anattoupevn) oxéon, Hdn oty {Tovpevn p1oper.
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HE TOUG PETAoXNATIoNous KAtpakag etvatl to povo nedio g dewpiag 1o oroio petaoxnpatidetat
HE 11N TEPIPIHEVO TPOTIo KAT® Ao toug petacknpatopous v K. Enopéveg, pag kat n §pdon
givat mAéov avefdpn and 1o by, etval kat avaddoie kate anod toug K-petaoxnpatopoug 9,
A6y ng apouociag tng K-avaddodntag, KArmoog 9a Propouce va Urootnpigetl Ot 1) cUppeTpia
g tedikng dpaong eivart X ® D ® K. Qotéoo, £netta and v ermdoyn b, = 0, ot petacxnuatiopot
1OV OUPPoPP®V Petacxnuatiopov dev eivatl rua ave§aptnrot. [Mpayupart,, autd yivetat katavonto
and v ékPpaon Tou petacxnuatiopol Babpidag tou by, (1.57), amouocia tou 6pou MOU EPIAEKEL
ta &%, agou n ocupperpia X 1OV YEVIKOV PETAOXNHATION®V OUVIETAYHEV@V Ttaipvouv tr) 9eorn toug
otV TeAIKY oupperpia:

1
Oby = Ouk +2p%pq = p* = —56”“8u/<; . (1.78)

H napandve oxéon, n omoia mpokurtel ano tn diatpnorn piag ouvOnkng Badbpidag, ovopddetat
Kavovag avarrtuypatog [9] kat exppdlet pia napaperpo Pabpidbag mou €xel kabopiotei (p) oe
opoug piag aAAng mapapérpou Pabpidag n oroia mapapével otn dewpia (k). Xuvowiloviag, 1
tedikr) dpdorn eivatl avaddoint) kAte anod toug petacknpatiopoug X @ D, ot oroiot artoteAouv
TOUG YEVIKOUG PETACXNIATIONOUS CUVIETAYHEV®VY Kal Toug Weyl petaoxnpatiopous KAipakag.

Enopéveg, xpnowonowmviag I oxEon avapeod ot PEIplKy Kat ta vielbein, n ékppaon wng
dpaong, Sy, (1.75) propet va ypagtei oe dpoug tou tavuotr] Weyl kat teAKd TIPOKUITTEL 1] YVROTT)
bdpdaon Weyl:

1 1 1
Sw =5 / d'2 /G0y O = — / dz/g (wa - 3R2> : (1.79)

[Tépa amo v naparndave ermdoyr g napabiaong g oUPPeIpiag, mpoteivoupe €vav evai-
Aakuko Tpomo napabiaong g apxKng oupperpiag, autn) ) @opd He KatdAndn t oupperpia
Lorentz. Auté Sa pmnopouoce va oupBel pe ) oupnepidnyn dvo Babpetov nediov ot depedmdn
avarnapaotaon g SO(2,4) opadag Babuidag [88]. Autdg o tpdrog arotedel yevikeuon tng pe-
Yo60Aoyiag ou akoAoubnBnke otnv tetpadidortaty nepintwor, otnyv onoia n oupperpia de Sitter
rapaBiadetal pe kataAndn ) Lorentz, amo éva Babuwtd nedio otn Sepehindn avanapdotaor. E-
rmAéyoviag ouykerpipévr Babpida ya ta §vo autd Babpwtd nedia Sa propouos va smayayet my
auBopnnn napaBiaon tng cupperpiag oe pia mo mAnpn Sewpia oty ornoia neptAapBavoviatl ma-
pardve nedia, népa and auvtd g Padbpidag. Ailet va onuetwbel ot ) terpadidotaty ouppopen
Yewpia Pabuidag propet va odnynoet oty dpdaorn Einstein-Hilbert emmAéyoviag pia aAAn dradpopr)
HE v emAoyn ouviiou®v, OM@G autr) Mmou meptypdoetat oty avapopd [89]. ITio cuykekpipéva,
eruyelpnpatodoyeitat 6t av ot Svo tavuotég R(P) kat R(K) teBouv tautdxpova ioot pe to pndev,
10Te Ao T0Ug ouvdEopoug g dewpiag rmpokurttel Ot ta avtiototya nedia Paduidag, ua, e Ma etvat
avadoya kat b, = 0.

Avare@adaiovoviag, LeKvoviag e ) ouppopdn opdda, SO(2,4), wg dewpia Padbpidag rat
akoAoubaoviag v kabiepopévn dadikaocia Kataokeung dewplov Padpidag X®poxpovike®v ocuppe-
TPV, OPIOTNKE 1 CUVAAAOIRTH TTAPAYRYOS PEOK TG ouvoxns Babpidag ki émetta oe kAbe yevvritopa
g opddag avriotorxr|Onke éva nedio Babpidag. Lin ocuvéxela, untoAoyiopol 0drynoav otoug peta-
oXNPatiopoug tev rediov Pabpidag Kat otig EKPPACEIS TOV AVIIOTOX®V TAVUOTOV KAPITUAOTNTAG.

9%tv avagopd [9], 1o ermyeipnua yia v K-avadlowdtnra napouciadetat aviiotpopa. Me Atya Adywa, n K-
avaddowwtnta g e, b-e§aptnuévng dpaong ermBarAetal kat apxhv, emopéveg, plag kat to vielbein petacynpartidetat
HE TETPIHHEVO TPOTIO KAT®M AITO TOUG petacXnpatiopove v K, kat 1o b, 6xt, 1o tedutaio npérnet va tebet i0o e 1o pndév
wote va egaopaliotet n K-avaddowmta g 8paong.
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[Tpoxkepévou 1 tedikr) Yewpia va eival avadlointn KAT® Ao 10 PETaOeTIKO KOPPATL, O IIPXOTOG OUV-
b6eopog mou ermBANOnKe rtav o PNdeVIoROg TOU TEVUOTI] NG OTpEWng, divoviag £tot ) duvatotnta
va eKPPACTOUV 01 PETADE0ELS PECH TOV VEVIK®OV HETACKHATION®OV TV ouvistaypévev. H Avon tou
ouvdeopou autou katéotnoe 1o nedio spin connection wg e§aptnpévo amno ta nedia e kat b. 'E-
IELTd, ITAAL yia AOYoug g YEVIKNG ouvaddoidtntag, ermBANOnKe £vag rmapandave ouvdeopog, autr)
) POPA OXETIKOG HE TOV TAVUOTH KapruAotntag tou My,. Ao tov ouvdeopo autov, 1o redio Bab-
nidag f, to oroio oxetidetal pe T0Ug CUPHOPPOUG PeTacXnuatiopols, K, EKPPACTNKE 08 OPOUG
10U tavuot Kat Babpwtou Ricci. Emopéveg, §Uo and tg t€ooepig opadeg twv nediov Badpidag
EKPPAOTINKAV 0 OPOUG TO®V AAAaV §Uo. Yotepa amo 1 cUPIEPIANYI OV ArTOTEAEOPAT®V TOV OUV-
déopwv, n apxikr) §pdon tunou Yang-Mills naipvetl pia pop@r) otnv omnoia v oupnepldapbavetat
10 miedio Babnidag b, kat yia tov Adyo autd 10nke ico pe 1o pndév. Me autov tov 1pdro, n dpdon
aUEl va MEPLEXEL TO POVO Iedio mou petaocXnpuatidetal pe pn tEPIPHPEVO TPOTIO KAT® A0 TOUG
OUPPOPPOUG PETACKNHIATIONOUG, TI0U onjaivel 6t 1 teAkn dpdon eivar K-avaddoietn. Qotooco,
n K-avaddowomnta dev anotedet ave§aptntn cuppetpia énetta and v emdoyn Babnidag tou b,
Kal, yld Tov AOYO autov, anoppo@lETal armo Ty UMOAOIT TEAIKN] CUPHETPia Katl dev epdavidetat
pntd. Enopéveg, n ouppetpia tng teAdikng dpdong (dpdon Weyl) aroteAeital and toug yevikoug
HETAOXNATIOROUS CUVIETAYHEVRVY, X, KAl TOUG PETACXHATIONOUS KATIAaKAG IOV Iapdyovial and
tov yevvntopa D. Tedikd, sivat 9gpté va onpeidooupe ot 1 oUppopon Paputnta (kat pe v
napaBiaon g ouppetpiag n Paputnia Weyl) propet va niepypaget emruxog og dewpia Babnidag
g ouppoppng opasdag SO(2,4).
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1.5 Ot pn peradstikoi xdpor 5%, R3 kat dSH

1.5.1 H aca¢rg opaipa

£10 KeEPAAA10 AUTO CUYNTAPE TNV IO TUTTIKY MEPITTOOon 1 Petabetikou xopou Lie-turou, dndadr)
g acadoug oPpalpag 5’% [93]. Katapyxdag, évag acadng X®pog opiletal og pia Siakpitr) IIpocEyyion
HE€0® TUVAK®V £VOG OUVEXOUG X®POU He v 1810tnta ot diatnpouvial ot wooperpieg. Me dAAa
Aoyla, eivat évag pn PETtabeTikog XwPog o ortoiog Siatnpel 11§ 100PETPiEg TOU PETABETIKOU avAAoyou
tou. 'Evag apketd ouvernrg tporog va depeAd1nbel o x®pog autdg eival PEO® Piag OUYKPITIKIG
MPOCEyYIoNG Je T ouvnBiopévn opaipa, S2.

H ouvrbng ogaipa, S?, prnopet va optotei oav pia urornoAAamdtta tou eUukAeibelou Xdpou
piag Sidotaong napamnave, dniadn tou R3, pe 11§ Kapteoiavég ouvietaypéves Tq,a = 1,2,3, va
KAVOTITO10UV TNV MAPAKAT® OUVONKI epnBArntiong:

3
inzx%—i—x%—i—m%:RQ, (1.80)
a=1

orou R eivatl pia otaBepd n oroia gpunvevetal og 1 aktiva mg opaipag. H opaipa Siérnetat and
pila mpogavr) reEPIoTPOPIKY] CUPHEIPIa 1 oroia rapapetporioeitat aro tyv opada SO(3) (opada
ooperplov). H opdada SO(3) mapdyetat amod 1oug IpeElS TEAEOTEG OTPOPOPHNS Ol OrToiot opidoviatl g
Ly = —i€gperp0. KAl Priopouyv £Ii0NG va ypadtouv 08 OPOUS TOV OPAIPIKGOV CUVIETAYHEVQY, O, ¢,
wg L, = —£L0;, orou i = 6, ¢ xat € eivatl o1 ouviotdoeg v Siavuopdtev Killing. O tedeotng
Laplace ywa ) opaipa opietat amo ) oxéon:

1 g
L? = —R*Ag = —R*—0;(9"\/99;) , (1.81)
\/g 7 f J
omou g;; eival 0 PEIPIKOG tavuotrg g opaipag. Ta 16r0diavuopata tou tedectr] autou eivat ot
YVOOTEG OPalpIKEG appovikeg, Vi, (0, ¢), ot onoieg opidovtat wg:
Y;™(0, ¢) = Net™®P™(cos ) , (1.82)

orou P etvat ta ouoxeuigépeva modvwvupa Legendre. Ot odpaipikés apHovViKEG UTIAKOUOUV TG
MAPAKAT® ouvOnKeg opBoOKAVOVIKOTTAG:

/dQYEanl/m’ = 01/ Oppn - (1.83)

Ag dewpriooupe twpa pia ouvdapton, f(6,¢), nave owm opaipa, S2. Aebopévou Ot ot opaipt-
KEG APHOVIKEG arotedovv éva MARpeg Kat 0pHoyevio oUotnua ouvaptroemyv, 1 cuvaptor f(6, ¢)
propel av ypagtei oav avdrntuypa rmave oto oUVOAO auto:

00 l

F0,0) =" cmYim(0,9) (1.84)

=0 m=-I

OTIOU Cyyy, €lval piyadikol ouvieAeoteg.
Ag IpoX®PNooUNE T®pa Pe v acadr) ekdoxn g opaipag, S%. H acagng opaipa sivat évag
1N petabetikog X®WPog, IMou onpaivel Ot 01 oUvaptroelg IoU e§apTtOVvVIal ard Ti§ OUVIETAYHEVES
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(tedeotég) Sev petatibevial KAT® Ao 10 oUvNOeg yivopevo. Ag dOOo0UE NEPIKEG AETITOPEPELEG OTO
MEG KATAOKEUALETAL 0 XDPOG AUTOG, SEKIVAOVTAG Ao TG 1810TTEG TG KAVOVIKIG odaipag.

Mia Sakprroroinpévn ekdoxrn g odaipag propet va nmpokuyet aviikabiotoviag v diyeBpa
WV ouvaptoeav Yy, (0, ¢) mave o opaipa, pe éva oUvolo ard ouvietaypéveg, Ylm(H,d)) ot
oroieg Hev Temepvouv pia ouykekppévn T ya to I, ag ) oupBodicoupe pe N. Enopévag, pia
quvdptr]or] f (0, ¢), mave o opaipa ypaPetal g avarruypd Iave oto IENEPACHEVO GUVOAO TV
Yim:

N l
Z Z lmfflm . (1.85)
1=0 m=—I

Twopa, av dewprjooupie éva yivopevo 6U0 TETOI®V OUVAPTHOE®V, TOTE auto Sa cupreplAapBavel 6poug
pe 1o [ va @rdvetl éxpt KAmola cUYKeKpIpévn Tiyn, 4, n omoia eivat j = 2,10 ) onoia &enepvdet
10 avatepo 0pto, IV, rmpdyua mou cupaivel ot n "Koppévn”™ dAyeBpa tov ouvaptrjoev Sev KAgivet
KAT® arod v rpdn tou roAdardaciacpou. 'Evag apketd Kopwog Katl AroteAeopatikog Tporog va
KAtaArgel KArmoiog pe pia dAyeBpa €to1wv ouvaptoenv eival va demproet £va 81apopetikod TUIo
YlWop£VoU, TO OTT010 £ival | PETabfetiko, IO CUYKEKPIEVA, £va YIVOUevo Tivakev. Enopéveg, o
autv 1 dlakpironoinon g opaipag, n tornobEtnon ave opiou otV T TS OTPOPOPIIG KAt apd
otV npenv anelpodiaoctaty diyebpa, anodnpievetat and pia nenepaocpévn (N + 1)-8idotat un
petabetikn ddyeBpa. Autdg 0 H1aKPITOTIONPEVOS XWPOGS opiletal wg 1 acapng odaipa.

O mo euBug tporog va datunwbel n acadrng opaipa eivat va Sewpndei aut 1 "KoAoBn” pn
petabetikn adyeBpa g pia dAyeBpa mvAK®OV 08 KATIO0V IEMEPACHEVO S1avuopatiko X®po. I'a tov
Adyo autd, éotw ot tpetg (N + 1)-6idotatot mivaxeg J,, a = 1,2, 3 o1 oroiot oxnpartiouv pia aon
yia v (N +1)-81dotat pn avayeyiomn avanapdotaocn g SU(2). Ot yevvntopeg J, 1Kavoroouy
Vv NMApaKkAte® Petabetiky] oxeon :

[Jaa Jb] = t€abede - (1.86)

miong, agou ol IivakKeg IMOU avariaplotouv ToUG YEVVITOPE empouvtal OTl Ppiokoviatl oe
E ou o 0 0 0 0 Jy Sewpo (0}

pia pn avayeyiowin avanapdotaocr, n tar ou tedeotr) Casimir oe autiv v (N + 1)-6idotaty
avartapaotaon givat:

N (N
ﬂ:aﬁ+J3+ﬁ::2(2+4>mNH, (1.87)

Enopéveg, n acaopng oq)oupq 52 > OO erinebo acdgeiag N, elvat o pn petabetikog X®OPOg ToU
OIT0I0U Ol OUVIETAYHEVEG, X, = X¢ ya = 1,2,3, opidoviat wg ot (N + 1) x (N + 1) eppavoi
nivakeg ot oroiot givat avaloyol v yevwnuopev, J,, g (N + 1)-8idotatng pn avayeyiopng
avanapaoctaong g SU(2), dniadn):

X, = kg, (1.88)
omou k eival n1 otaBepa avaldoyiag n omnoia rpocdlopidetat anod 1o yeyovog Ot ot Xa etvat ouvtie-
Taypéveg piag (aocagpoug) opaipag Kat dpa MPETEL va 1KAVOITO10UV T0V oUVOEoHO

3
2: + X34+ X3 =12, (1.89)

orou 7 eival n axktiva g acagoug opaipag. Aapbdavoviag UTIOYn TNV €KPPAOCT] TOU TeAEOTH
Casimir twv yevvnuopov J, g SU(2), énwg autr) divetat oy e&iowon (1.87) kat avukabiotdviag

1°H tpr) aut) rpoxUITet and T oUVOEoT) TOV PEVIOTGY TGV, N, oV 8U0 GTPOPOPHGV.
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TIG OUVIETAYHEVEG, X, oe 0OpPOUG TV YEVVNTIOP®YV, onwg Sivoviat owv ediowon (1.88), aroxtiétatl 1
€KAo g MapapeIpou avaloyiag, K:

K= —— ' —nT, (1.90)

(5 +1)

1
: FE)

X, ypagoviat og:

OTIoU Ay = KA1 eNopéveg, Sekvoviag aro v e§ioworn (1.88), ot rivakeg-ocuvietayHEVeg,

Ry=hdy = —— ] = ANt . (1.91)

(5 +1)

Emiong, n oupnepigpopd 10U YIVOPEVOU SUO TEAEOTWV-OUVIETAYREVOV OlveTdl amod 1 PeTabeTiKy)
TOUG OX£€0T), 1] Ortoia IPOKUITIEL Ao T PETtabetike 0X€on TV yevvnuopwv J, tng SU(2), (1.86):

[Xaa Xb] = i’feachc = Z.)\NCachvc ) (1.92)

OTT0U &yive Xprion g oxeong (1.90) kat Cype = régpe.
Topa, eivat duvatov ot ouvietaypéveg X, va enavaopiotovv @G Ol MAPAKAT® AVIEPUITIavol

mivakeg, X :
1 % 1
— X, =—

Xa = -
1RT r

J, . (1.93)

H petaBetikr) toug oxéon, (1.92), kabwg kat o ouvdeopog g axtivag, (1.89), enavaopifoviatl og:

3 —2
A
(X, Xp] = Cope X, and § XoXo = -5, (1.94)
r
a=1
ortou Cype opitetat topa wg Cupe = <2<, H dAyeBpa g acapoug opdipag meptypddetat 10oduvapa

p
Kat ano g 6vo Paoceg.

Emiong, a&idel va onpeiwbei ot o1 ouvaptroelg, Yy,,, TOU IEMEPACIEVOU CUVOAOU OTO OIT0i0
avarrtuooetal pia ouvdaptnon f, mave oty acadr) opaipa, (1.85), cival yvootég og o1 acageig
OPAIPIKEG APHOVIKEG KAl divovial anod g ekppaocelg [94]:

Vi =10 ) flm), X X (1.95)
a

o1 ortoieg eivat ol acapeig avadoyeg eEKPPATELS TIOU MEPYPAPOUV TIS OPALPIKEG APILOVIKEG OE OPOUG
TV KAPTECIAVOV OUVIETAYHEVOV

Yim(0,0) = Y fim), a2 (1.96)

)

Kat otig 600 meputiwoetg, o féllmal glvatl évag Axvog CUPHETPIKOG tavuotrg g SO(3) tagng .
Ermiong, o1 acagdeig odpaipikéG appoVvIKEG UTTAKOUOUV ot Pia ouvOrkr opbokavovikotntag 1 oroia
Hlvetal amo:

Try (}A/}In}}/m/) = 0 O (1.97)

orou, to Try oupBoAiletl tnv rpdgn tng oAokANpPwong.
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1.5.2 O aca¢rg xopog R3

'Oneg reptypAPnKe oTo IIPONYOUEVO KeEPAAalo, 1 acadrg opaipa eivat €vag P PETabeTikOg XwPog
0 0110106 aroteAel Pia MPOOEYY10n THG KAVOVIKG 0daipag o€ 0pOoUg IIVAK®V KAl Ol CUVIETAYHEVES
g wavortolouv v SU(2) petabetikr) oxéon, (1.92), padi pe v ouvOrkn Casimir, (1.89), n onoia
ouolaotika arnotedei Tov ouvdeopo yua v aktiva. O Xxopog R:;’\ elvatl évag prn petabetikog Xwpog 1
eplypagn tou omnoiou Baciletatl ounv acadpn opaipa.

Ag dewpriooupe Vv epintoon g acadpoug oPpaipag Kat ag TtV TPOIIOMO|C0UE HUE TOV e81g
TPOI0: €0t® 0Tl yia Kabe ouykekpipévo A (BAére (1.92)), aipetat n ouvlrkn Casimir, (1.89), to
OTT010 Onuaivel 0Tl Ol TVAKES TOV OUVIETAYHEVRV, X, EMMTPETETAL va @IA0SEVOUVIAL ard avayw-
yiowueg avartapaotdoetg g SU(2). H avayeyliopotnia 1oV avarnapaotdoe®V EMITPENEL TV Ypadr)
TV VARGV, X, 0 PMAoK Slaywvia poppn and pn avayeyioles avarnapaotdoelg, OTig OIoieg 1)
ouvOnkr Casimir 1oyUet akopa yia kabe Eexoplotd Nmlox, pe adAa Adyila, kKabe PrAoK meptypaget
pia acagn opdaipa. Emopévag, o R:f\ propel va ypadtel g €éva eubu abpoiopa anod acadelg opa-
ipeg 6Awv v mbavev aktivev, ot oroieg kabopiloviat artd N € N (N eival n 1pn mg 1poxX1aKAg
otpopopurg, 1): [91,95-97]:

R = Y Si= P Mat(N,C). (1.98)

2NeN 2NeN

Ernopévag, o Ri propet va 18wbel oav pia diakpit] @uAAoroinon Tou p1odidotatou eUKAeidelou
X®POouU ard modAardég acageig opaipeg, pe KAOs acapr) opaipa va eivat éva @uAAdo tng @uAldo-
rnoinong. Me avaloyo tporo opifetal o acadng X0pos R, o ortoiog aroteAel @UAAOTOiNON TOU
tprodidotatou xwpou Minkowski aro acagr) uniepBoAosibr) [100].

1.5.3 O aoca¢rng de Sitter xopog

10 RepdAalo autd kataokeudadoupe pia acadr] ekdoxr tou xopou de Sitter, d.Sy [78], o oroiog
opidetatl ®g unoywpPog tou reviadiaotatou xopou Minkowski pe petpikn) nap = diag(—1,1,1,1,1).
Zuykekpléva, 1 oxéon epBartiong eivat:

nBrpep = R?, (1.99)

orou A, B=0,...,4.

[TpoKe£VoU va @TIASOUHE TV acadr] EKS0XH TOU MApArtdve X®POU, Ol OUVIETAYHEVES TIPETTEL
va avukatactabouv ano tedeotég piag aAyeBpag A, n omoia avarapiotatat and mivakeg Kat emo-
HEVRG UTIaKoUoUV Pia Petabetike] OXE0T YEVIKNG HOPPHG:

(X4, XB] =i0ap(X), (1.100)

OTI0U 10 0 4p EVOOUATOVEL TOV TUTO TG 1n petabeukotntag. Av 10 045 Sswpouviav wg £vag avti-
OUPHETPIKOG, otabepog tavuotng [12], tote, n avaddowwtnta Lorentz Sa napabialotav, Sedopévou
ot 9a unpPxe MPOTiPNOon oty Kateubuvorn. AvakaA®viag v Mepmon g acadoug opaipag,
otnv oroia o1 ouvietaypéveg Sev petatiBeviat cupgeva pe v (1.92), 10 045 g MapaAnave ye-
VIKNG oxéong 9a nrav ke A%XC- Auto onpaivel 61l 0 petabeng twv SUo ouvistaypévav, dnAadn
bU0 tedeotég avadoyol tov SU(2) yevvntopav, rapdyet éva rmoAAarnAdolo evog oTotXeiou eviog tng
SU(2) aAyeBpag, sSaopadidoviag v cuvaddowdta (o1 cuvietaypéveg petaoxnuati¢oviatl oav dia-
VUOHATa KAT® aro Ti§ EPLoTpodEg, 6nAadr) tnv opdda 100peTpliv Tou X®pou). Akodouboviag v
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161a pebododoyia 6mwg otV acapr opaipd, yla v KATAOKEUL TOU IAPOVIog acapoug Xwpou de
Sitter, o1 pn pertanBépeveg ouvietaypeveg 9a EMpere va tautoronouv PE KATTO10UG YEVVITOPES
g opadag wopetplav, dnAadr) g SO(1,4). ITapdda autd, pia tétola ermAoyr) 6ev eival ETTUXNG
eneldr) 1 TAUTONOINOT) TOV CUVIETAYHEV®V P yevvntopes g SO(1,4) mapabialet i ouvadAoidtn-
1a, agou n dAysBpa Sev KAeivel, ouykekppéva, 10 0 4p tou 8e§l0U pédoug g oxéong (1.100) dev
propet va avatebei oe yevvrtopeg tg adyeBpag SO(1,4). Qotdoo, n diatrpnon g cuvaiAoidtn-
tag odeidet va Angdel aflopatikd, eropéveg Karola opdda peyadutepng ouppetpiag mpernet va
XpnoworonOei, otv omnoia 9a kataoctei duvatr) 1 CUPNEPIANYI OA®V TOV YEVVITOP®V KAl NG
HI PEetabetKOINTag £VIOG AUTHG, HE TV 1810TTa 01 OUVIETAYHEVES va Petaoxnpati¢ovial oav da-
vuopata KAate ano 1 6paon g opadag Lorentz. I[Ipoxkeiévou va emiteuyBel auto, 1 eAaxionn
EMEKTAON NG oupperpiag odnyel otnv voBEnon g opadag SO(1,5). Xapwv eukodiag, ya tn da-
TUNIOOT) NG aparave pebodoAoyiag, Xpnotponoloviie v eUKAEidela mePimTeon, Evvomviag Otl 1)
opada oupperplwy enekteivetal ano tmv SO(5) oy SO(6).

Ag dempriooupe toug Sekarévie yevvrtopeg g SO(6) kat ag toug ocupBodicoupe oav J4p, pe
A, B =1,...6, wavoromviag v apakate PUetabetiky ox£orn :

[JaB,Jep) = i(dacIBp + 0BDJAc — dcJap — 0apJIBC) - (1.101)

Avantioooupe 10Ug mapandve yevviropes ot evav SO(4) ocupBoAilopod kail eravaopi{oupe toug
YEVVITOPES ©G:

1 1 A 1
Jmn = %@mm Jm5 = XXma Jm6 = ﬁpmy J56 = §h 5 (1.102)
orou m,n = 1,...,4. H niapduetpog A €xet ewoaxBei yia Siaotatikoug Adyoug xkat X, Py, Omn

TAUTOIIOI0UVIAl @G Ol CUVIETAYHEVEG, OPHEG KAl TAVUOTHG HI pertabetukotntag, aviiotoixa. Ot
OUVIETAYHEVEG KAl Ol OPHEG IKAVOITOIOUV TIG TIAPAKAT® PNETADETIKEG OXEOELG:

A2 h
)\2
(X, Pal = ihdunh, (X, B] = i P (1.104)
_h
[P, b] = diyg X, (1.105)

ano 1§ omnoieg oty rpaty, (1.103) yivetat katavonto Ott 0 PETABETNG TV CUVIETAYHEVOV KAETVEL
oto SO(4) xoppat tng SO(6) opadag. H adyeBpa 1oV PETAcXNPATION®V T@V OCUVIETAYHEVOV £lval 1)
egng:

[ X, Onpl = 1h(0pmpXn — ImnXp) (1.106)

[P Onpl = ih(Omp P — OmnPp) (1.107)

[Omn: Opal = i(SmpOng + 62qOmp — OrpOrmg — OmgOnp) (1.108)
[h, O] =0 (1.109)

H npotn petabetuikn oxéon, (1.103), deixvel 61 01 ouvietaypéveg petaoxnpati¢oviat oav diaviopa-
1a KAte and 1) dpdaon g opadag neplotpodwv, (1.108), srmBeBaiwvoviag v MALOV ONIAVIIKY)
1616tta g ouvadAoldntag tou Xwpou. H nmapandave aidyeBpa, oe avtiBeon pe v ddyeBpa Heisen-
berg (BAérie avagopa [102]), erubéxetal avanapaoctdoelg rernepacpévng dStaotaong yia 1oug Xy,
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P, xat Oy, ETOPEVROG £€XOUNE KATAOKEUACEL £Vav X®PO 0 0rtoiog aroteAel éva menepacpévo kBa-
VIIKO ouotnpa. XuprieptdapBavoviag v mepin®orn mg acadoug odpaipag Kat tou ]R;;’\ X®pot oav
Kat autdév ovopddoviat acagdeis ouvaddoimtol xopot [62, 63, 103]. 'Onwg Sa meptypayoupe ap-
YOTEPA HE AETTTOPEPELA, KAVOULE XP10n TOU XOPOU AUTOoU yid TV KATAOKEUN TOU TETPAd1dotatou
Baputikou poviédou wg pn petadetikng dewpiag Badpidag.

Zvvajjoiwtog tavvotig dvvaung mediov tou acagoug dSy

Ev yével, o tavuotng 6uvaung rnediou ypadetal g 0 PETaBENG TV OUVAAAOIDTOV CUVIETAYHEVOV
ouv évav £E8tpa Opo rou ouveloPpépet otnv ouvaddowtnta. [a 1g HU0 MEPUTIWOELS TG KAVOVIKIG
Kat Lie-tumou pn) petabetkotntag o1 EKPPACEIS AUTEG €ivatl ot:

T = [Xa,Xb] — 104, Fop = [Xa, Xb] — iCabCXc . (1.110)
O naparnave 6pog oxetiletat pe 10 6eli PEAOG TV PETAOEUK®OV OXECEDV TOV CUVIETAYHEVOV TOUG
[Xa, Xp] =04 , [Xa, Xp] =iC 5 X, . (1.111)

IV KaVOVIKI] MEPIMt®or), OV OIoid Ol CUVIETAyHEVeS petacynpati{ovial pe prn ouvadloioto
P00, 0 £8tpa OPOg eival évag AVIICUPHEIPIKOG 0Ttabepog Tavuotrg, eve ot ouvaAloieotn Lie-
TUIoU Iepimaon o £€tpa 0pog neplAapBavel 11§ CUVIETAYHEVES e YPAP KO Tporo. H napoucia
tou £§1pa Opou ot Kabepia ard TG MePUTIROEIS Paiveral va XaAdet tnv avaloyia pe ) petabetkn
TIEPIMIOOT), WOTO0O £ival ArapaitnIog EPOCOV 0 AUTOV oPelAetal 1 CUVAAAOIOTTA TOU TAVUOTH.
Edw, otnv nepimwon tou acadoug de Sitter xdpou tov ornoiov Sepedidvoupe [78], o tavuotng
Pn petabstikotntag eivat évag otabepog avIloOUPHETPIKOG TAvVUoTHS (Yevvrjtopag g opddag oup-
HETPL®V), TIAPATIEPITOVIAS OE Hia OXEOT HE TNV KAVOVIKY| MEPITI®OOT, dAAd eriong aroteAel évav
oUvaAAoirTo P PETABETIKO XDPO (PTIAXTNKE KATA AUTOV TOV TPOTIO), TIAPATIEPITIOVTIAS OtV TIEPIMTI®-
on Lie-tunou. Emopévag, eivatl appldeyopevo o mola MePintao:) Katatdooetal 1) 0 acadrg XHpog
de Sitter. H antdvinon eivat ot 6ev prnopet va katataxdei oe kapia ano tig U0 autég MePUTIOOELS,
enopévag rnpénet va egetaotel Eexmwpiotd. ‘Onwg @aiverat oty rpotn oxéon g (1.103), o acagpng

Xxwpog de Sitter opiletal og:
2

[Xa, Xp] = i%@ab ®1, (1.112)

ortou 1 eivat évag p X p povadiaiog mmivakag kat p ivat r 61dotacn) g avanapaotaong g EKACTOTE
onddag Badbpibag. Adyw tng avedaptnoiag anod tg ouvietaypéveg tou He§10U PEAOUG TG IAPATIAVE
eClonong, (1.112), tov ouvietaypévav, X,, 0 ipopavig oplopog Tou tavuoty duvanng nediou Sa

Hrav:
2

- A
Fop = [Xa, Xp] — i7 © Ol . (1.113)

Av Sswprjocoupe évav petaoxnuatiopo Badpidag tou tavuotr §Uvaung nediov, dF,y, tote, cubeig
UTtIoAoY101101 061 yOUV OT0 MAPAKAT® ATIOTEAECHA

2

Sy = e, Fig] — i%[e,@ab 21], (1.114)

orou € = €(X) eivar pia napaperpog Babpidag. Emiong, to yeyovog ot ot ouvietaypéveg, X, Kat
EMTOPEVRG O TAVUCTHG 11 petabetkotntag, Ogqp, ival avadAoimtol KAT® aro T0Ug PETAoXIATIoNo-
Ug Babpibag, 6. X, = 60,4 = 0, éxer AngOel undwn otov uroAoylopd. Qotd0o0, OV MAPATIAVE
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Ekppaon eival epdaveg ott o tavuotr| Suvapung nediou dev petacxnuatidetal pe cuvaAAoi®wto TPOIo
(epdoov Bev urtapyet kKavévag A0yog yla tov Seutepo petabétn tou de§lou péloug va eSapavidetar)
OTIOG OTI§ KAVoViKI Kal Lie-tumou mepimttooelg. Ma va SiopBwooupe 1o mapandve, pn embu-
HNT0 anotédeopd, 0 Oplopog Tou tavuotn duvapng nediou mpérel va tporortoindel kKatdAAnia,
OUYKEKPIEVA OtV aKOAoUO1 popor):

. A iX2 .
Fap = [Xa, Xp] = O » (1.115)
OII0U @ab etval évag tavuotrg rmou opidetat og:
Ou = Ouwp @1+ By , (1.116)

orou B, sivat éva pn aBehiavo niebio 2-110pdr|g, 1o oroio maipvet emiong tipég otnv diysBpa Bab-
pidag g exkaotote ewpiag Pabpidag. Enopévag, urmodoyiopoi 06nyouv otnv akoAoubrn) €éKkppaor)
TOU (armelpootou) PETACYNHATIOROU T0U Tavuotr) duvapng rediou:

0Fu = ile, Fay] (1.117)
0 010106 £ival €évag ouvaddoimwtog petaoxnpatiopog. Edm xAeivel to kepddaio oto oroio yiverat

N MEPLYPADN] TOV ACAPOV XOP®V TOUG Ortoioug Sa XpnotHoIo)0oOUE Y1id TV KATAOKEUL] de®plov
Babnidag.
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1.6 Tplobiaotatn Bapitnta wg dewpia BadOpidag oe pun petadetiro-
UG Xwpoug

Y10 KeEPAAA10 aUTO KAtaokeuadoupe €va 1pioddotato Baputiko 1oviedo wg dewpia Badbpidag oto
BN petabstiko miaiowo [79] (BAéne emiong [80, 81]) petappdadoviag v aviiotoiXn MPOCEYYLoT NG
tplodlaoctatng Fevikng Oswpiag g Zxeukomtag Onwg avty neptypadetat oav dewpia Padbpidag
tou ISO(1,2), (xkepddawo 1.2), otnv omoia ot Poincaré kat (A)dS opdadeg Sewprbnkav wg opadeg
Babuidag. I'a 1o eyxeipnpa autd, S€toupe os epappoy) ) YeVIKY pebododoyia yia v KataoKeUr)
oV dewprov Badbpidag oe pn petabetukoug xwpoug [33] kat egeibikevoupe ya v nepinworn
10U OUVAAAOIETOU XOPOU ]Ri Kat tou Lorentzian avdAoyou tou, R}\’Z.

'Onwg oudnmoaype oto Kepddato 1.2, ta anotedéopara g 1podidotatng Paputntag Einstein
avaktovial emruxog ano pia Chern-Simons dewpia Babpidbag tng Poincaré opddag, 1SO(1,2),
pe ) ouvoxn Pabuidag va kodkoroiel v mAnpogopia yia ta vielbein kat spin connection.
Ebdw, otoxevoupe oe €va tpiodidotato (pun petabetiko) Paputiko HOVIEAO pie 9eTiKr) KOOHOAOY1-
K1 otaBepd, eropéveg n avtiotorxn opdda cupperpiag n omoia Babpwvetat eivar n SO(1,3) ya
1 Lorentzian nepimworn, eved yla v euxkAeidela sival n SO(4) [104], pe aviiotoixoug Xwpoug
mou @1Aogevouyv 11§ Yewpieg, TOUg Ri rat Ri’z. Zug 6Uo autég meputOoetg, 1 MAnpodopia yua ta
vielbein kat spin connection eprnepiExetatl ot ouvaddoietn ouvietaypévn. 'Epnvevon yua 1o 6Ao
EYXElpNPa amotéAeocav o1 IIPONyoupeveg SOUAEIEG TTIOU TiEPIEXOvTAl OTlg avapopeg [34-38], otig omo-
ieg o1 ouyypageig Sewpouv 011adeg 01 OITOiEG XP1OII0IIOI0UVIAL Yid TV KATAOKEUT] TeTpadldotatev
HOVIEA®V X®PIS KOOPOAOY1KI] otabfepd. ZUYKEKPIPEVA Yid TNV TP1001A0TATY] TEPIMIOOT], OXETIKEG
bdouleiég Sivoviatl otig mapakate avapopég [39-41, 105]. ZuyKkpliikA He TV IIPOCEYY1oT] 1ag, OTig
napanave 60uldelég o1 mapapopdwoelg Bacidovial oto x-yivopevo Tou Kabe X®pou Katl Xp1olpo-
rnoteital n anekovior) Seiberg-Witten [42], eve otnv d1kid pag mepinmoon Xpnotponolovviatl ot
AVATIAPAOTACELS TOV TEAECT®V PEC® TUVAKGV.

'Onwg avapépape apanave, ot opadeg Babuidag mou xpnotponolovpe eivat ot SO(1,3) kat
SO(4) avdldoya pe to av eivat Lorentzian 1 euxkAeideiog 0 xOpog. @swpoupe Aotrov coduvapa
g oruv opadeg Spin(1,3) xkat Spin(4), o1 oroieg eival pe ) ogpd To0ug 1wopoppeg pe tg SL2,C)
rat SU(2)xSU(2), avtictoixa. @Oa mpoXwprjooupe e v avadutiki) neptypadr) g Lorentzian
nepimeong. 'Enetta n Siadikacia yla v eukAeibela eivat ) i61a.

H Lorentzian mepintoon

Zug pn aBedlaveg pn petabetikeég dewpieg Pabpidag, 1o yeyovog o1l Ol aviiPetabETeg TV Yev-
vntopav g opadag Sev kAeivouv, dnAadr mapdyouv teAeotég ot oroiol Hev amotedouv otoiyeia
g aAyeBpag. Ilpopavwg, to id10 mPodBAnua cuvavidtal Kat oty IMePInen mou egetadoupe yia
toug yevvrtopeg tng SL(2,C) Sewpiag Babuidag. Enopévag, yia va emepaotel 1o mpodBAnpa autd,
10 TIP®TO Prjjpa givatl va mpoodlopicoulie Vv avanapdotaon oty ornoia Bpiokovial o1 YEVVATOPES,
OV MEPIMI®Oon Pag €ivatl 1) OIvopLlakn avanapdotaoct), OtV oItoia ot £§1 YEVVITopeg avarapiota-
viat arno toug petabiteg twv Lorentzian y-mvak®v, CUYKEKPLIEVA

1 1
EABzifyAB:Z[ryfh’YB]a A7B:17"')4‘ (1.118)

HEeKIvVIag ano v napakate oxeon [106]:

vyl = 25[[2551’]] + 45{57/;]17} +ieag®Prs (1.119)
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TIPOKUITIOUV Ol TIAPAKATE PETAOETIKEG KAl AVIINETAOETIKEG OXECELG TV YEVVITOP®V

[vaB,Yep] = 8nacVD)B) 5 (1.120)
{vaB;vep} = dcnapl + 2ieapcps (1.121)
OTIOU 75 = 97Y1727Y37Y4. TNV MAPATIAVE avilpetabeuky oxéor, (1.121), ta pova otorxeia mou

apAyovIal aro aviPetabEteg tov YeEvvniopmVv g alyeBpag oe autr)v ] CUYKEKPIPEVI] avarid-
paotaor giva o tetpadidotatog povadiaiog mivaxkag, 1 kat o v5. Emopéveg, ta 6o autd otoyeia
MPETEL va oUPTEPANPO0UV otV dAyeBpa, erneKteivovidg v ot pia oktadiaotatn aiyeBpa, n oroia
eivat akp1Bog auty) g GL(2,C) pe oUvodo yevvniépav 10 {yag, Vs, i1}

Twpa ipoxwpdpe os éva SO(3) avamuypd @V APATIave YEVVNTOP®YV, Yid A0Yyoug KAtdAAnAng
tautornoinong v nediov fadpidbag mou Sa eloaxbouv oe Atyo. Enopéveg, opidoupie toug yevvito-
peg 7% = €™y, KAl Y4 = Yaa. BE @, b, ¢ = 1,2,3. Autoi 01 EMAVAOPIONOL TOV VEVWITOP®V 1AG
EITTPETIOUV VA {AVAYPAWOUE TIG NETADETIKEG KAl aviipetabetikég oxeoelg tov (1.120) xkat (1.121)
og 0poug TV SO(3) avarmtuypATeV TOV YEVWITOP®OV

[7%,7%) = =4¢™Fe , [Tar o) = —d€abe¥” s [Fas W] = €aved” (1.122)

{7.3") = ~8nal, {7a,7"} = 4idon5 . {Far W} = 201 (1.123)

3 =0%71=0, {75} =47, {v*7}=4", (1.124)
61iou otnv tedeutaia oe1pd Ypnotporowdnkav ot oxéoelg (72, yA8] = 0 kat {7°, v} = ieABCP o p.

Enopéveg, katadrnyoupe oe pia dewpia pe opada Badbpidag v GLE2,C). O tpiodiaotatog
X®POG ITIOU XPIOTHOITOI0ULE Yid TNV KATaoKeun tng dewpiag eival o RLQ, 6nAadn n @uldomnoin-
on tou Tpodidotatou xopou Minkowski arnd acagr uniepBoAoeidr|, OTIOU Ol TPEIS CUVIETAYHEVEG,
dnladn ot tedeotés X, €xouv tautornonOei pe moAdarmddoila v yevvniépev mg SU(1,1) oe pia
avayeyioyn avanapdaotaor). [Ipokeiévou va mpox@prooupe Pe TV KataoKeun g Senpiag fab-
nidag, eloayoupe 1 cUvaAdoi®tn CUVIETAYHEVT, 1] Ortoia givat:

X=X, +A,, (1.125)

orou p = 0,1,2 eivar o1 xepoxpovikoi Seikteg kat A, eivat n ouvoxn Badpidag. H tedevtaia
elval ouvaptnon wv tedectov-cuvietaypévav, X, 1 oroia maipvel tipég oty dAyeBpa GL(2,0),
ermopévag, av yla v opa cupBolicoupe Toug yevwntopeg cuddoyikd og 1%, érov a = 1,...,8,
TOTE AVATTUOOETAL TIAV® OF AUTOUS KOG :

Au(X) = AL(X) T . (1.126)

[Tpémet va onpewdet 011 avapeoa ota nedia Padbpidag, .AZ(X ) Kat toug yevvrtopeg 1'%, 1o oUvnBeg
ywopevo dev Sa eixe vonua, yla auto kat aviikadiotatal and 1o Tavuotiko YivOPEVO Plag Kat Ta ITe-
6la Badpidag eivatl cuvaptioelg twv ocuvietaypevay, dndadn N X N miivakeg Kat ot yevvrtopeg eivat
4 X 4 mivakeg (ormvoplakr avarnapdotaocn). Topa ypadoupe t cuvoxr] Badbpidag wg avarrtuypa
ndve otoug yevrtopeg, 7% = {7, 34, 11,75}:

Au(X) =€ (X) @ Fa + w, (X) @ Fa + Au(X) @il + A, (X) ® 75, (1.127)

1 X p1o111011010U11€ TO GUVOAO TGV Y-TMVAKGV OITRG 0Tnv avadopd [36]. ZupBoAiouie Tov Yo mvaka og Y4 Kat Se@poupie
10 oto1Xeio Maa = —1 oV KUping Setkr) tetpadiaotaty petpiky) Minkowski rnou xpnoiporniolovpe. BAéne ermiong [107]
yla TEPLO0OTEPES AETTTOPEPELES.
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orou ta nedia Pabpidag rmou avatibeviat otoug 7, Katl Y, YEVVITOPES £XOUV Tautomnoufei g 1o
vielbein, e}, (X) xat 1o spin connection, w,'(X), avtiotoixa, akodoubevrag Ty avtiotoixn tauto-
rnoinon pe ) petabeuky nepinteoorn, (1.8). Ebd, Adye g pn petabeukotntag €Xoupe el10ayayet
&vo napartdve U(1)-turov nedia Babpidag, ta A, (X) rat AM(X). Eriong, 9swpovpe v na-
papetpo Badbpidag, €(X), n oroia naipvel tipég otnv opdda Badpidag xat ermopéveg avarrtvoostat
OTOUG YEVVI|TOPES OAV:

€(X) = £(X) @ Fa + A (X) ®Fa + €0(X) ® i1 + & (X) @75 . (1.128)

'Exovtag mAgov ypawel 11§ eKPPACELS g ouvoxns Pabpibag katl g mapaperpou petacynpatt-
opou Pabpidag, mpox®pdpe pe oV IPOocSloploRo OV HETAoXNPATIoN®V v nediov Babnidag,
XPTOHOTOIMVIAG TOV Kavova HETAoXNHATIONoU g ouvadoiotng ouvietaypévng, 60X = [e, X|:

(56; = —i[ X, + A, & + 2{ww, fc}eabc + 2{ew, )\C}eabc + 2i[Aq, flu] + 2i[€0, Wya) + i[€0, €pual
a . a abe 1 abe i a A . a 4 ~ a
G = =i + A X 2 A = ey €3+ L% Ay +ileo, w7+ 5ol

§A, = —i[X,, + Ay, e0] — 167, epa + 4[N, wha] — (€0, AL

§A, = —i[X, + Au, &) + 266, wua) + 20\, epa) + ileo, A - (1.129)

Zto onpeio autod, eetaloupe HU0 onpavuka opla rou apopouV OTOUG ITAPATIAVE KAVOVES HETAOYT)-
Hatopou twv rediov Badpidag. Ipotov, av eixape Sekvrjoel tv Kataokeur) g Sewpiag Pabuibag
OTOV X®WPO ]Ri’2 pe pia aBedavr) opada, U(1), tote n avtiototxn ouvaddoietn ouvietaypévn Sa nrav
armid n X p = X, + A, Kat and 1ov yvooto Kavova HETacXNHatiopou, 9a anoktovoape tov jeta-
oxnpauopo tou niediov §A4,, = —i[X,, €] + i[ep, A,]. 6rou € n avtiotoxn napdperpog petaoyn-
patiopou Babpidag. Autr) n aBehavr) Sewpia Babpibag uvroBdoketl katw anod mv GL(2,C) Szwpia
Babnidag mou xtidoupe kat yiveratr avudnm Sétovrag eua,wu“, fl# = 0 padl pe 1g avtiotoikeg
Mapapérpoug ioeg pe 1o pndév. Ernopévag, o povog 1n TEIPTHHIEVOS PETACXIATIONOG TS £51000TG
(1.129) 9a fnuav o 04, = —i[X,,, €g] +i[eo, AL]. 0 omoiog eivat tautdonpog pe OV Kavova petaoyn-
patiopou evog niebiou Babuidag piag pn petabetikng Maxwell Sewpiag Babpidag, onwg avapépape
napanave. Enopévag, katadlaBaivoupe o1t o topéag Maxwell eival dvia iapaov eite 1o vielbein
etvat tetpiapévo, eite 0x1. To Seutepo 0p1o eival 1o petabetiko, oto oroio ta ermrnpodcbeta rnedia
Oe OX£0n e autd g Paputikng dewpiag armooudevyvuvial Kal eMOPEVEG PItopoulie va Jéooupe
A, = ‘Zl# = 0. Emiong, oto 0p1o autod, 1 €0OIEPIKY MIAPAYOYION AVAYETAL OTr) OUVNO1oPEVT OUpP-
@ava pe my anewovion [X,, f]| — —id,f. Enopévag, ot EKPPAcels oV PETAOXHATIOROV TRV
erioviov nedinv, e,*, w,* onwg arnoktbnkav oty eiowon (1.129), yivovrar:

o ®p
56; = —0,8" — 4§bwuceabc — 4)\beuceabc ,
5wﬂab == —au)\a + fbey,ceabc - 4)\bwuceabc . (1 130)

Ot napandave ekppdaocelg Supidouv autég tng MPooeyyong g tplodlactatng faputntag og dewpiag
Babnidbag pe Ytk koopodoyikn otabepd, (1.27) kat yivovial tTautdonpieg He AUTEG EMELTA ATIO TNV
Yempnon v Mapakdte EMAVAOPIOPR®V TOV YEVVNTOP®V, MAPAPEIPOU PeTacXniatiopou Badbpibag
Kat niediov Pabpidbag:

_ 2i 3 2i VA 1
Ya — ﬁpa s Ya — —4Ja 5 4)\61 — )\a y fﬁ — —é‘a y Cua — geua N OJ'LLa — _Zwﬂa .
(1.131)
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Enopéveg, oto petabetikod 6pto, ot petacyxnpatiopoi twv nediov Babuidag tng tpiodiacatng Sswpiag
Baputntag avakiovial EMmMIUyX0G.

[Ipoxwpwvtag pe v Kataokeur) g dewpilag Badbpidag, 1o emdpevo Prjpa eivatl va uroAoyiotet
o tavuotng 6uvapng nediou o onoiog Sivel 1§ eKPPACELS TOV TAVUOTOV Kaprudotntag. O 1avuothig
duvaung rediou €xel v MAPAKAT® PopPdL

Ruw = [Xu, X)) —iXC0X, . (1.132)

O tavuotrg R, (X) maipvel tipég oty dAyeBpa, omodte propet va ypagrtel og avantuypa nave
OTOUG YEVVITOPEG :

Ruw(X) =T,4(X) ® Yo + R,HX) @ Fa + Fun(X) @il + Fju(X) @75 - (1.133)

Yuvbudloviag tg edlonoelg (1.125), (1.127), (1.132) xkat (1.133), amokiovpe 11§ MAPAKAT® EK-
@PACELS Y1d TOUG TAVUOTEG KAPUITUAOTITAG

TWa =i[X,+ Ay e —i[ X, + A, e#‘z] — geabe ({eub, woet + {wpp, €ve})

+ 2Z ([w/j,aﬂ AV] - [wyaa Alt]) - Z‘AC('u,z/pepa I (1134)
R/“? = i[XM + Al“wua] - i[XV + AV?"upa] + et (%{e,uba euc} - Q{W,ub,u-)uc})
+4 ([E,f,fiu] — [ey“,flu]) —iAC fw," (1.135)

Fuy = i[X, 4+ A, Xy + A)] —ile,l, eva) + 4ilw, ", wya] — i[Ay, Ay) — INC2(X, + A,) , (1.136)
Fuy = i[Xy + A A)) —i[Xy + Ay, Ay + 26 ([e,f woa) + [, €va]) — iIAC,LA, . (1.137)
Aice1l va onpewwbel ot av dewprjooupe 10 PETaBETIKO OP10, 01 EKPPACEIS TV HU0 MPATOV CXECEDV

OUMIUIITOUV HE TIG avIioTolxeg g tplodidotatng Papuintag, (1.27), énetta ano v Ulob£tnon tov
enavaoptlopev g (1.131).

H ecureibeia nepintwon

'Onwg avagépape oty apxr) ou kKepadaiou, n opdada Padbpidag yia v mepintwon avt eivat
n SU(2) x SU(2). Iapopoing, A6y® T0U 6Tt 01 AVIIPETADETEG TV YEVVIITOP®V eV KAeivouv eviog
g dAyeBpag, mpoodiopidoupe vV avanapdactacn Kal €MEKTIEIVOURE v dAyeBpa pe mapandve
otoixeia 1oug tedeoTéG MOU MPOKUITIOUV ard toug avupetabiteg, katadnyoveag pe m U(2) x U(2)
©g opdda Babnidag g dewpiag. Kabe U(2) avarapiotatat and toug mivakeg Pauli kat tov po-
vabiaio mivaka, emopéveag n U(2) x U(2) opada Babpidag 9a eprdékel toug raparde 4 x 4
ivaKeg:

JLf:((B“ 8>7J0L=<(1) 8), Kat J§:<8 f),ﬁ:(g g) (1.138)

IMapoAa autd, MPEIEL va £11A0TE MPOCEKTIKOL KATA TV TAUTOIIOINoT T®V 1 Petafetk®v rediov
Babnidag vielbein kat spin connection. I'a ) owotr) tautornoinon tev nediov Babpidag, ot yev-
VITOPEG TIOU Je@POoUE ival Ol MAPAKAT® :

Lfos O 1o, 0
PaZ%(JaL—Jf)=2<% —%)’ Mazé(Jf+Jf)=2<UO 0a>’ (1.139)
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KaOag emiong:
1=JE+Jl, w=Jb-JF. (1.140)

H napandave popdr) 1oV yEVVNTOP®V IKAVOITIOI0UV TI§ AVALEVOHEVEG HETADETIKEG KA1 AVTIIPETAOETIKEG
OX£0E1G, O1 OTIOIEG ATIOKTMVIAL XP1OTHOIO)VIAS TG aviiototyeg yia toug niivakeg Pauli:

[Paa Pb] = t€gpcMe , [Pa’ Mb] = tegpe e s [Maa Mb] = tegpeMe s
{P., P} = 30w, {Po, My} = 30av5, {Ma, My} = 2601,
[75;Pa] = [757Ma] :07 {'757Pa}:2Ma ) {75;Ma}:2pa . (1.141)

‘EMettd, TauTonovIag tov XOpo rdve otov orotov tidoupe tn Jewpia Padbpidag wg tov R3, mpo-
Xwpape 6nwg otnv Lorentzian niepirntwon opidoviag tn ouvaAAoimtn CUVIETAyHEVD:

X=Xy ®il+ef@Pitw! @M+ A,®il+A,®7, (1.142)
KaO(G Kat v mapdperpo petacxnpatopou Babpibag:
e=E8"@P, + N @M, +e®@il+é&®7; . (1.143)

O Kavovag PETacXnNPATiopou TG oUVaAAoimTng Mapay®you MAPAyEl TOUG PETATKIATIONOUS TV
rniebiov Badbuibag, onwg oty e§iowon (1.129) kat Kavoviag XPHon Tou OPIoRoU TOU Tavuaotr] duva-
Bng rediou KataAnyoupe 1€ TOUG TAVUOTEG KAPMUAOTNTAG, ITapOl0l0ug e autoug tng Lorentzian
nepimoong, (1.137).

H 6paon yia v ypwodiaotarn un pertadeukn Baputnia

Ia va oAokAnpoooupe v €1KOva, MPENEL va npocdilopicoupie ) 6pdon ng Sewpiag. Egoocov
01 XWPO1 0Toug ortoioug Houdevoulie eival IP1od1ACTATOL, EPITVESHIEVOL ATTO TNV IIPOOEYY1on NG Ba-
putntag Einstein og Sewpiag Badbpidag, onwg reptypdpnke oto kepaiato 1.2, n mpodavng ermAoyn
etvat pia dpaorn turou Chern-Simons. I'a v Lorentzian niepimtoon, ]R}\’Q, n 6pdon [108

112 givar:
1 ,
Sy = ?Tr <;(J’“”JXMX,,Xp - szMX”> : (1.144)
MetaBoAr) tng raparnave Spaocng odnyet otig e§l000elg Kivnong:
(X, X)) — 2im°C, X, =0, (1.145)

n omoia ermbExetal @G Auorn ToV XOPO R}Z, via 2m? = X. Emiong, av eixape &exwvrost pe myv
161a Spaon yua v eukAeibela nepinmwon, Rg’\, 1 povn Sapopa Sa frav 6u 1o CHP Ja énpene va
avtuikataotadei and o #V? xat n napdperpog 9a mpoékurtte 2m? = —\.

Ia va swoayayoupe ta nedia Pabpidag otnv napandave Spdorn, (1.144), eite mpémet va e-
@prooupe dlatapayég oty mapardve Auvorn, (1.145), avikabiot®viag Tig CUVIETAYHEVESG e TIG
oUVaAAOIRTEG EKBOXEG TOUG, £1TE VA KAVOUHE TNV AVIIKATACTACT aUtH oto erirnedo g §pdong kat
va kataAndoupe pe tg e§10woe1g Kivnong ernetta ano PetaBodr) mg dpdaong wg mpog ta rnedia. H
EPPAVIOT TOV eIV CUVETIAYETAL TNV ERPAVIOT] TOU 1XVOUG MAVK OTOUG YEVVNTOPES, trg. Ta un

2Mapépowa dpdon eixe mpotabei kar o dovdewd [54] yia v mepypadr Paputnrag otn fuzzy opaipa. BAéme
eriong [109].
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undevidopeva iXvn OV YEVWITOP®V AMOKIOVIAL SEKIVOVIAS AId TS EKPPACEIS TV AVIIPETAdeTtov
otn oxéon (1.124):
tra(Ya¥e) = 4nab »  tra(Ya¥s) = —167ab - (1.146)

Enopévag, n 6paon pnopet va ypadtel oe 0poug tov nediov Badpidag wg:
1 . o R
§= g (507X, X, X, - 3X,X") (1.147)

O1tou 10 TPwto ixvog, Tr agopd toug N X N 1mivaxkeg rmou avarapiotouv TS CUVIETAYHEVEG KAl
10 Seutepo ixvog trg agopd toug 4 X 4 mivakeg IOV AvaraplotoUv ToUG YEVVITOPESG NG opadag
Babnidag GL(2,C). H napandve dpdon, (1.147) prnopet va ypagtei oe 6poug tou R, g oxéong
(1.132) ocav:

§ = s Trtrg (i X, Ry.) + 5y (1.148)

orou Sy = —%Trtrg()z MX #) kat pndevitetat oto 6po A — 0. Kavoviag Xpron v eKpAoewv
IOV (VOV ITAVe OToug yevvrtopeg, (1.146), owv ékppaon tng Spaong (1.148), amoxktoupe Vv
aKkoAoubn ékppaon:

S = TriCH? <e,uaTUp“ — 4w Ry — (X + Ay)Fyp + A, pr)

— %Tr (e:e“a —dw,twl, — (X 4+ Ap) (XH 4+ A) + Au;w) : (1.149)

Aile1l va onpewwbei ot av dewprjooupe 10 PETABETIKO OP10 KAl EPAPPOCOUHE TOUG EMAVAOPIOHIOUG
mg (1.131), n napanave ékppaocn g Spaong, (1.149), avayetat oe autv g TPOO1ACTATG
Einstein Baputntag, n ornoia nepiypdagetatl oto kepddato 1.2, se1dka oy (1.19).

TeAlewwvoviag NV KATAOKEUT], TIPOXM®PAE HE T PETABOAT] TG apaAriave dpdong g mpog td
dlagpopa nedia. Ot e€1000e1g Kivnong AMOKIOVIAL KAl £ivatl Ol IapaKat® :

T, =0, RS=0, Fu=0 F,=0. (1.150)

[TaA1, onwg eivatl avapevopevo, oto PETaBeTikO 0p10, 01 HUO0 MMPOTEG AvAyovIadl O AUTEG TG TP1od1-
atatng Papuvintag Einstein.

Zuvoyidovtag, oto KedpAAalo autd KATAOKEUAOAE £va TP100140TaTo BapUTIKO POVIEAO ITapoucia
KOOPO0AOY1KIG otafepdg og pia Sswpia Babpidag oto pn petabetkd miaioco epyaociag. Akodou-
Swvtag v kabiepopévn 6ladikaoia, opioajpe ) cUvaAAoiRT CUVIETAYHEVH] KAl A0 TOV KAvVOVA
HETaoXNIATIoPoU thS KAtaAnSape e T0UG PETaoXNUatiopous v nediov Badbpidag tng dewpiag,
énetta aro €va SO(3) avarmtuypa. 'Enerta opioape tov tavuotr] 6Uvapng nediou Kal artoKtoape
TG EKPPACELS TOV TAVUOT®V KapmuAotntag. TéAog, kavoviag xpron tou tavuoty duvapng nediov,
nipoteivape pia 6paon tirou Chern-Simons kat kataAniape pe 11§ £§l000e1g Kivnong. Agidet va
toviotel 0Tl Ta MaPAnAvVe AroteAéopata avayovial og autd g tpodiactatng Baputikng Sewpiag
Einstein katd ) dewpnon tou petabstikou opiou.
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1.7 Tetpadraoctaty Bapitnta wg dewpia Padpidag oc pn petadett-
KOUG X®OPOUg

210 RePAAalo autod, eMeKIEVOUE TO MEPIEXOIIEVO TOU ITPONyoUHevou Kepadaiou oty tetpadiaota-
) niepimtwon [78]. ITio ouykekpipéva, 0 TETPadlaotatog oUVAAAOINTOG XM®POG TIOU XP1O1HOTIO0UHE
etvat o terpadiaotatog acadng xopog de Sitter o oroiog meptypdPinKke AEMTOPEPWSG OTO KEPAAAL0
1.5.3. 'Onwg avapépbnke oto KePpAAAlo auto, otnv €ukAeidela ekova, 1 opada TV 100HETPLOV
npénetl va enektabet otnv SO(6) yia Adyoug cuvaddowwtntag. Ot s1apopot yevvitopeg g opadag
auUTH§ TAUTOMOONKAV e TEAEOTEG Ol OIOI0l AVIIOTOLXOUV O (UOIKEG TTOCOTNTEG, OMWSG Ol OUVIE-
Taypéveg, ol OpHEg Kat ot otpodoppeg. Ilpokepévou va Siatunioooupe v Paputnia oG dewpia
Babnidbag otov mapandave acadrn Xweo, ermAéyoupe va Badbpdooupe tmyv SO(5) péylotn vnoopdda
g SO(6) opdadag cuppetpiag. Xpnowornowwviag ta evbederypéva gpyaleia kat pebodolroyia, Ge-
Kivape va kataokeudooupe pia SO(5) Sewpia Padbpidbag opwg Adyem tou Ot o1 avipetadeteg v
yevvntopev 6ev kAgivouv péoa otnv aAdyeBpa, n opdda Babpidag oty onoia KATaAryoupe TeAKdA
etvat 1 SO(6) xU(1) oe pa ouyekppévn avanapaotaorn. H opdda Babuidag pe v oroia kata-
Afgape ya ) Satinwon g Baputikng Sewpiag (kuping 1o koppdat SO(6)), eaivetatl va oxetidetat
pe ) ouppopdn opada oty eurAeibeta ekdoyxn g. Emopévag, Adyn tng ouprttwong avtng, Sa
propéooupe va Sopriooupie £va PETABeTIKO Oplo ) P petabetikng Sewpiag Badbpidag mou ka-
Ta0KeUAloUPe Katl 010 6p1o autd 9a OUYKPIvOUPE Ta anoteAéopatd pag pe autd tng oUppopdng
Baputntag, oneg meplypadinke oto Kepdaiawo 1.4.

1.7.1 H opdda Badpidag rai n avanapaoctacy tng

ZKOIEVOUHE VA KATAOKEUACOUNE £va TeTpadlaotato i Petabetikd PBaputiko poviédo wg dewpia
Babnibag g opadag 1wV CUPHETPIOV £vog TeTpadlaotatou ouvaAloiwtou acadoug xwpou. O
X0pog mou ermAéyoupe eivatl o ouvaddoiwtog acagrg d.Sy (Onwg eptypadtnke oto kepdAao 1.5.3),
0 OTI010g @EPEL ) CUPHETPia ToU petabetikoy avaloyou tou, dndadn v SO(1,4), SO(5) oy
eukAeibela nepinteorn rou xpnowonotovpe. ‘Onwg e&nyfoape oto 1.5.3, n oupperpia autr mpéret
va enektabel ya ) datrpnon g ouvaddowwtniag. Enopéveg, n opada n oroia kataAryet va
@A ogevel TOug TeEAE0TEG TRV ouvietaypévav eivat ) SO(6). 'Etot, Kat aviiotolyia Je Ti§ MEPTIOOLELG
ot oToieg 1) Baputnta reptypdoetat og Yenpia Pabuidag tov opddwv 100PETPIOV TOV XDPXV OTOUG
OTT010UG KATAOKEUALETAl, OV MeEPIMI®On autr] g opdda Babupidag ermdéyetatl n SO(5) unoopdada
g ouVoAkr|g SO(6) otnv ornoia kataAniape petd v dievpuvon g opddag 100PETPLOV.

[TapoAa autd, onwg mapatnprOnKe KAl oty IP1o01a0tatn) MePinMI®or), 1) EUITAOKL TV AVIl-
petabetwv otnv Kataokeur] pn petafetikov dewpidv Babpidag sivar avanogpeuktn. Asdopévou
0Tl y1d Tuxdia avanapdotaocn) TV YEVVNTOP®V o1 aviiietabiteg Sev kAeivouv, ermAEyoupe pla ou-
YKeKp1EVH avarapdotaon Kat enekteivoupe tyv aAyeBpa ocupneptliapBavoviag toug teAeoTEG ITOU
TIPOKUITIOUV A0 TOUG AVIIHETADETEG MG YEVVITOPES. XNV MEPIMTOON HaAG AUTO €XEl WG ATIOTEAE-
opa Vv enéktaon g apxikng opadag Babpidag, SO(5) oty SO(6) X U(1), pe TOUG YEVVIITOPPES
va avanapiotaviat ano 4 X 4 mivakeg. LUYKEKPIHEVA, Ol IIVAKEG ITOU AvaIriaplotouv toug dexa-
£81 yEVVITOPEG KATAOKEUAOVIAL 0av OUuvOUAoHol TOV TE00AP®V EUKAEIBEIOV Y-TIIVAK®VY Ol Oroiot
1KAVOITO10UV TV MAPAKAT® YVOOTL AVIIPETAOETIKY) OXEOT) ¢

{To, T} = 2001 , (1.151)

orou m,n = 1,...4. Emiong, o mivakag I's, o ornoiog opietat wg I's = ['1I'9I'sTy, mpémnet va
ouprieplAneBei. Enopéveg, ot yevvriitopeg tou SO(6) koppatiou ) opadag fadbpidag eivar:
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"E&1 yevviitopeg tov otpogmv: My, = —ﬁ[Fa, Iy = —%I‘an ,a <b,

(4)
(71) Téooepig YEVVATOPES TV OUPHOPP®V petacynpatopov: K, = %Fa,
(7i7) Téooepig yevvrtopeg tov petabéoewv: P, = —%I’af5,

(iv) "Evag yevvntopag tov petacXnpatopov kAipakag: D = —%Fg,
eve ya to xoppat U(1):

(v) O povadiaiog mivakag, 1.

Ot y-mivakeg xtidoviat and toug mivakeg Pauli:

01 0 —i 1 0

®G TAVUOTIKA YIVOUEvVd TRV 0!
IMN=01®0c, T'o=01®0y, TI's=01®o03, (1.153)

F4:0‘2®1, F5:O'3®1. (1.154)

O1 akp1Beig ERPPATELS TOV YEVVNTOP®V TOU OpioTnKav rapandve oav cuvduacpoi tov I'-mvakev
HIIopouV tHpa va ypadtouv oe 6poug tewv rmvakev Pauli. Zuykekpipéva, ot ouviotwoeg tou My

sivat:
Mij = —%I‘Z-Fj = %1 Ko, My = —%F4Fk = —%0'3 K o , (1.155)
wou K, sivat:
K; =13y, Ki=1iTy, (1.156)
wu P, sivat:
P =55, Py=—5I4l;5, (1.157)

orou a = i,4 kat ¢, j, k = 1,2, 3. 'Exoviag eKPPACEL TOUG YEVVITOPEG O OPOUG TRV mvakev Pauli,
Bpiokoupe 11g akOAoubeg PeTaBeTIKEG TOUG OXEOELG:

(Ko, Kp) = iMgy , [P, Py) = iMyp
[P,,D| =iK,, [Kq B =10apD, [Kq D]=—iP,
[Ka, Mye] = i(dacKy — dapKe)
[Pa, Mye] = i(0acPy — OapPe)
[Map, Mea] = i(dacMpq + dpaMac — SpeMad — SaaMpe)
[D, Map] = 0. (1.158)

Enopévag, epoocov n opada Pabpibag, o1 yeEVvTopeg KAl 01 PETADETIKEG TOUG OXETELS £XOUV TIPOO-
Oloplotel, pnopoupe va cuveyxicoupe pe v Kabiepopévn Sadikaoia yla v KATAGKEUD g 1N
petabeuikng Yewpiag Padbpidag.
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1.7.2 Kataokeun tng Sswpiag padpidag

[Tpetiotwg, opioupie ) ocuvalointn ouvietaypévn g dewpiag, n onoia diveral aro v MAPAKAT®
EKPpaon:

A~

X =Xn®1+ A,(X), (1.159)
orou m = 1,...4. ET opiopou n ouvietaypévn Xm petaocyxnpati¢etal cuvaddointa, dnAadn :

6 X = ile, Xl (1.160)

orou € = €(X) eival n mapapetpog petacxnpatiopou Badpidag n oroia eivat cuvaptnon v ou-
vietaypévev tou d.Sy, ot onoieg eivar N X N mivakeg, érou N eivat n §1dotaon g avanapdotaong
otnv oroia PBpiokovtatl ot ouvietaypeves. Emiong, n mapaperpog € eivat otorxeio g aiyeBpag
SO(6)xU(1), (1.158), n oroia avartapiotatat arto 4 X 4 mivakeg. T'a tov Adyo auto, priopoupe va
) YPAWOoUHE oav avarntuypa nave otoug Sekaédl yevvrjtopeg g adyeBpag, dndabr:

€X)=e(X)@14+£Y(X)®@ Ko+ &(X) @D+ A?(X) @ My +£4(X)® P, . (1.161)

Kd&6e 6pog otnv napanave £Kdppaocn eivat €éva tavuotiko ywvopevo v N X N mvakev (ouvietay-
pévev) kat v 4 X 4 ruvakev (yevvniopev), enopéveg, kabe opog eivatl évag 4N x 4N mivakag.
AapBavoviag unoyn ot o1 ouvietaypéveg, X,,, 6ev ennpeadovial ano tov petacnpatiopo Rab-
nidag, dnAadn 6X,, = 0, Bpiokoupe tov Kavdva PeTACXNPATIOROU TG ouvoxrs Babuidag, A,
n oroia spgaviotke oy e§iowon (1.160). H cuvoyxn Badnibag, A,,, sival pia cuvaptmon tov
OUVIETAYHEVOV-TUVAKGVY, Xy, TOU acapoug dSy. H A, (X) naipvet ipég otnv adyeBpa SO(6) x U(1)
KAl yla Tov AGY0 autov Propel va avamtuyfel mmave oto oUVOAO TeV YEVVNTOP®V, KATd TTapOoHolo
TPOTIO OTIOG I TTAPAPETPOG PeTaoXNPatiopou Pabuidag, (1.161), 6nAadn:

An(X) = 4 X))@ Py +w,%(X) @ My (X) +0,2(X) @ Ko(X) 4 m(X)@D4a,m(X)®1 . (1.162)

Zinv napandve £KPEAct), yiveralt Katavonto Otl £Xoupe eloayayel éva rnedio Pabpidag yia kabe
yvevvntopa. ITA¢ov, €xoviag mpoodiopiost ) ocuvoxn Babpidag, (1.162), n ouvardoiwtn ocuvietay-
pévn, (1.160) ypagpetatl og §ng:

X =Xm®@14+e%X) QP4+ w,®X)® My 4+ Ko+ am @D +an®1.  (1.163)

EmumAéov, oty SO(6)xU(1) Sewpia Pabpidag mou katacksudaloupe, aropével va kabopiotel o
tavuotng Suvaung nediou. 'Onwg avadépape oto keparao 1.5.3, ouykekpipéva oy e§lowon
(1.115), o tavuotrg §uvapng nediou ya tov acadr) Xwpo dSy, divetat ano v ékdppaon:
R R i\2 .
R = [Xins Xo] = == O - (1.164)
O napandave tavuotrg, Ry, maipvel tipég oty adyeBpa tng opadag Babuidbag, enopévag propet
va avarttuyBel oe 6poUg TOV TAVUCTOV KAPITUAOTNTAG

Ron(X) = R, (X))@ Map+R,, (X)OPa+R,, (X)) QK44 Ry (X))@ D+ Ry (X )®1 . (1.165)

mn

Ty ediowon (1.164), unieioépyetat 1o medio 2-popdr), By, yia to omoio cudnioape oty e§iowor)
(1.115). E@ooov 10 B,,, maipvel tipég oty ddysBa SO(6)xU(1), autd onpaivel 6t propei va
avarttuyBel oTtoug YEVVITOPEG TNG:

Byn = Bmn @1+ B, *® Py + B, ®® My, + B, * ® Kq + Byn © D | (1.166)
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10 oroio petacynuatidetal cuvaldoimta:
6Bpmn = il€, Omnl (1.167)

Kdl apa maipvoupe Tov PETAoXNUATIONO TOU @mn, 6nAadn 5(:),% = ile, (:)mn} Y10 onpueio auto
€XOUlE OTNV KAToX1) pag 0Aad ta otoixeia rou eivat anapaitnta yia tov kabopiopo teov petacynpatt-
OOV TOV MEdIOV KAl TOV EKPPACERDV TOV TAVUCTOV KAPITUASTTAG. ZUVEXI{OUHE HE TV Kataypadr)
IOV ATOTEAEOPATOV PAG:

O1 RKavoveg TV PETAOXNHATIOR®V oV dekagdl nebiov Babpibag sivar:

G = X, AU = il X + 0, 0,8] — 24€°, b8} — S0 w0} — (% e
+ Z[ c? erg] €abed T %EO’ wnid] €abed T 5[A6d7 ELm]eabcd - i[fcy bm]Gabcd (1.168)
e v e e Loy L

(5677(; = [ m,§ ] [amaé ] + 1[6076m] - {5 ;am} + {607bm} + Z{)\ b,enlfb} - Z{&”wmb}

+ 6%, w,p €abed — IA, b0 €abed (1.169)

~ a 1 a ca ~

5bm [Xm7§a] [am,§ ] + Z[607 m] {&b b} - 2{607 em} + §{>‘ b bnl")b} + {§ 7am}

+ i[)\bcv erg]Gabcd + Z[g ) wnid]eabcd (1.170)
dam = 7Z[Xm) 60] [am’ 60] + Z[éaa m] + 1[607am] + ;[)‘abv ] [Saa m] (1.171)

0l = _Z[Xm7 50] [am7 50] + Z[607 am] + {fay m} {fan 73} + - P\ad ]eabcd (1.172)

O1 Kavoveg PETACXNATIONO0U Tewv rediov Badpidag 2-poper) divoviatl og &g :

5an = _i[@mn7 60] - ’i[an, 60] + i[gaa er?] + i[gg, an] + %[)‘(lba er?b] + %[gm ana]
(1.173)

0Byn = _i[@mny gD] - /L[an7 6~D] + i[€07 an] + {gay ana} - {Ea, } + = [)\ab mn ]eabcd

(1.174)
5Bt = —ilOmn €] — il B €]+ ile, Byl ~ €%, Boun) + {0, B’} + 5 X% B
- i{gb, IO +41€°, B,5 % eapea — i[A anb]éabcd (1.175)
5Bt = ~ilOmn, €]~ ilBns €] + ilet, Byl — {6 Bt} = 2(e0 B} + 5 X4, B
+{€% By} + 5 [Abc B, eaved + i[€", Byt eabed (1.176)
6B,,,% = —i[@mm, \?] — i[Byn, A + i[eo, B,,,%] — 2{¢%, B,,,%} — 1{x;,BWfC — %{éa,émj
+i[¢%, Byleabea + 2.[607 Bt eabed + = [/\Cd Bon] — [€€, B, eaed - (1.177)
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O1 eRPPACEIS T®V TAVUOTOV KAPIuAdtntag eivat:

Ropn = [Xma an] - [Xna am] + [ama an] + [bn(}” bna] + [&ma an]

1. a ih

+ 2[Wm )wnab] + [emm en] - ﬁan

Rmn = [me an] + [amy &n] - [Xna dm] - [an7 dm] - Z‘{bmm ena} + i{bna; 673}
1 ab cd ih
+ §€abcd[wm , Wh ] - Fan
ng = [Xm7 bna} + [a’m) bn ] [Xnv bm] [anv brg,] + i{bmba wrgb} - i{bnbv chLLb}

[~ a [~ a c c ih

+ Z{aﬂh €n } - Z{anv em} + eade([enlzu Wn d] - [enb7 wmd]) )\QB

Ryt = X, €] + [am, €] = [Xn, €] = [an, €] + i{bys, @n} — i{by", G}
ih ~
— ([by b Cd] (b, P w ])Gabcd - Z{wm senp} + i{w,” 7emb} 2 B,
Rmn [Xm?w ] + [am,w ] [Xn,w ab] [an?wrsb] + 27‘{()73? bnb} + ([ m> n] [bnc7 m])eade

1

+ 5([dm,wn0d] [@n, w,5))€aped + 2i{w, %, w,? } + 2i{e,%, e,2} — —B (1.178)

O1 nmapandve eKPPACEIS TOV TAVUOTOV KAPMUAOTNTAG OTP@VOUV TOV OpOPO0 yid TOV OPlopo 1§
dpdong ng Yewpiag. Tpv mpoxwprjcoupe oto Koppatt g Spaong, agidet va onpeli®ooupe ot ta
napanave anotedéopata (1.172) kat (1.178) avayoviat ota avtiotorya anoteAéopata g CUPHoP-
ong Baputntag wg Sewpiag Babpidag n oroia nmeprypddpnke oto KepdAailo 1.4, CUYKEKPIEVA OTIG
eClonoeig (1.58) kat (1.61)-(1.66), avtiotoixa, érnetta and ) Jedpnorn tou petabetikou opiou. 1o
oplo autd, to U(1) nebio Babpidag mou ouvdéetal pe ) pn PETabeTkOTIA TOU XOPOU, ArtooUde-
uyvutal, enopéveg n dewpia Pabpidag oto petabetiko oplo eival n SO(6), dnAadr n opdda mou
Xpnowporo)fnKe yla v meptypadn g ouvppopeng Bapuntag (otnv euxkAeidela ekboyn wg).

1.8 Ot oUvdeoporl yia tnv napabiaon tng ouppetpiag

Ia 1o duvapiko koppdtt g Sewpiag, 9a fTav avapevoevo va ypadIel 0 0poug TV TAVUCTOV Ka-
prudotntag, ot ortoiot divovratl oty egiowor (1.178). Areubeiag Secpnon piag Yang-Mills §paong
Ya mepieypade ) Sewpia, avaddoiewtn kKatw amo v SO(6)xU(1) ocupptepia Padbpidbag. Qotdoo,
n ouppetpia Padbpidag g Spdong pe v oroia ermBOupoUpe va KataAnioupe ekppaletal Péowm
g ouppetpiag Lorentz. (otnv eukAeibela exkdoxn 1ng), EMOPEVROG, TIPEMEL VA €AATIOOOUNE TNV
nAeovalouoa ouppetpia. ‘Onwg oudnmOnke oto kepadaio 1.4 yia v nepimiaon g terpadiaota-
g ouppopeng Paputntag, n oupperpia eAatt®Onke pe v emBoAr] CUYKEKPIPEVOV OUVONKQV,
KataAnyeviag os pia Spaon pe oupperpia Weyl. Emiong, oto 1610 kepddato oudnoaye éva e-
vaddaktké osvaplo napabiaong tng ouppetpiag pe katdAngn autv ) @opd uia §paon n oroia
va ogBetal ) Lorentz ouppetpia, émerta and v ewoaynyrn duo Pabpetov nediov ot Sswpia.
Agdopévou ot gpeig dev embupoupe va eloayayoupe nieplocotepa nedia ot Sewpia, mpoxwpdpe
pe v emBoAr] oUyKeKpIPEVOV ouvdEoumVv, ot ortoiot 9¢Aoupe va pag odnyroouv oe pia Lorentz-
avaAdointn tedikn dpdon.

O 1o eubUg TPOITOg £ival va MPAYHATONOW|OOUNE TV Imapandve napabiaon g oupperpiag
elvat va Yswprioouiie pia reploplopévn) dewpia, otV Oroia 01 CUVICTOVIEG TAVUOTEG KAPITUAOTNTAS
etvat 6dot pndév, extdg anod autoug Tou oxetiovial Pe v emBupntr] UMOAOUTOPEVT CUPHETPIa.
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Ornote, piag kat 9éAoupe va ordoet 1 apXikr oupperpia, SO(6) X U(1) kat va katadnioupe pe pia
teAdkr) ouppetpia SO(4)xU(1), ot povor pn pndevikoi tavuoteg Sa €mperne va eivat ot Rm‘,llb(]\/[ )
kat Ry, (1). Qotéoo, n mpooéyyion auty obnyet oe pia unép-mieplopiopévn dewpia, mpdaypa to
OT010 YiveTal KAtavontd Aarod v KATapErpnon v Badpov edeubepiag mou ermdouv amno v mna-
paBiaon g oupperpiag. Emopéveg, kpivetal omotd va ermBdaAoupe i teTptppévoug ouvBEooug,
eCaopadiloviag 1ov 00otd apOuo v Babpov edeubepiag. H mpotn ouvOnkn eivat:

R, P)=0, (1.179)

dnAadn n ouvOnkn pndevikng otpéyng, n oroia ivat avapevopevn. EmmAéov, n mbavr) eppnveia
t0U b,? wg 6eutepou vielbein g ewpiag 0bnyei oty mbavoéta va eppnveutel og Sipetpiky, oty
omoia opwg de otoxevoupe. Enopéveg, odnyoupaocte va Aucoupie tov ouvdeopo (1.179), Sewpoviag
e,2 = b2, RataAnyeviag ev téAel oe pia ékdpaorn yia to spin connection, ww‘fb OUVaPTIOEL TRV
nedlov e,7, am, . a va anokooupe v akpBr) EKPpacr Tou w,,‘fb, anod v eriduon tou
ouvdeopou, (1.179), kavoupe XPr)0n IOV IIAPAKATE TAUTOTI®OV

1
O = € epga ke 0fgal9" = allotl (1.180)
Enopévag, n ouvOnkn (1.179) naipvel v akoAoubn popor) :
€Pe, i wWned) — i{w, 2, ey} = —[Dpm, e,%] — i{e,%, an} , (1.181)

orou Dy, = X, + @y, 6nAadr, 1 ouvaddoietn ouvietaypévn pag aBediavng Sswpiag Pabpidag.
H napanave eiowon ypdgetal og:

e“de[e b w,fd] = —[Dm,e€,)] Kat {w;{b, envt = {em,an} . (1.182)

m

Kdvovtag xprion v tauvtotjtev (1.180), ot napandve e§lomoelg odnyouv oty erubupntr) ox£orn :
0,0 — —%e”ﬁ(—eade[Dm, end] + 3 {e. ) @Y. (1.183)
Zupgeeva pe v avagopd [110], o pndeviopodg tou tavuotr) duvapng nediou piag Sewpiag
Babuidag Sa propouoe va enaydayetl tov pndeviopo tou avtiototxou rniediou Pabpidag. Av to emi-
Xelpnpa avto nrav epappootio oty MEPII®ot] pag, 9a amlonolouoe 11§ EKPPACELS TOV TAVUOTOV
KAPmuAodtntag Kl eMOPEVRS autnv g dpdaong. 'Opwg, auto dev propei va xpnotpornoinbet oty
01k pag nepinmeon kKabwg n tavtonoinorn tou vielbein wg mediou Pabpidag tng Sewpiag urovoet
MV avapign) TV E0RTEPIKGOV CUPHETPIOV HE TS XOPOXPOoVIKEG. Ermopévag, dsdopévou ou 1o viel-
bein Jewpeital 611 eival avuotpéWipio oe 6AoV TOV X®OPO, 1] U0O£TN 0T TOU IAPATIAVE ETTLXEIPIILATOS
(pn6eviopog tou vielbein) 9a odnyouoe oe ekpuAiopévo mivaka vielbein kat teAikd o€ EKPUAITPEVO
petpko tavuotr) [10]. Qotdoo, Sa propovoape va 9éooupe a,, = 0, epdoov dev emdéxetal ye-
OUETPIKNG gppnveiag. O mpoobiloplopog autdg tou rediou PBabnidag a,, Sa tpomororoet emiong
Vv €KPpaor) Tou spin connection oe 0poug twv urodonev nediov, (1.183), kataAnyoviag os pia
aKoOpa armAouotepn TeEAK) €KPPaAoT yia 10 spin connection wg rpog 1o U(1) nedio Badbpidag, ap,
Kat to vielbein:

w, 3¢ = ze”ge“bcd [Din, €nd - (1.184)

"Evag evaAAaktikog 1porog va kataAnioupe pe v ermbupnt) SO(4) cuppetpia petd v na-

paBiaon g SO(6), eivat va ripoBadoupie To eruxeipnpa mou avarntuiape oty nePin®or mg oup-

popong Paputntag, otV rapovod Hr HETAOeTKY mepinoon, dndadn va cupnepldaBoupe duo

Babpeta nedia ot Sepediwdn avantapaotaon g SO(6) endyoviag pia auBopuntn napabiaon g

ouppetpiag. Efpaote meneiopévol 6t autdg o 1porog rapabiaong g ouppetpiag Sa odnyrjoet oe
ouvbeopoug 1006Uvapoug Pe autoug Tou Jemprjoapie.
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1.9 H &paon

Agou Aowov emBadape T0Ug oUVOECHIOUG Yia v napabiaon g oupperpiag, €ival okOTpo va
ypAwoupe 11§ EKPPACELS TOV TAVUOTOV KAPMUAGTNTag AapBdavovidag toug uroyn, agou auteg dSa
etvat o1 ekppaocelg ot oroieg Sa xpnotpononBouv ot Spdorn g Seswpiag. Or akpiBeig ekPpAaoelg
TOV EMEIOVIOV TAVUOT®OV KAPITUAOTITAG, HETA TG Ye@POelg e #“ = b#a kat a, = 0, etvat:

Ryn = [Xm, an] = [Xn, am] + 2[e,?, eval + 5[0, woab] — 35 Bmn (1.185)
R = eapcalw,i, w, ] — & By, (1.186)
Ry = [Xin, €] + [am, €] = [Xn, €] = [an, €] + i{emp, "} — i{en, wii'}
+ eapeal[en wi] = [e, 0m]) = 35 Byt (1.187)
Rt = [Xin, 0] + [am, 0] = [Xn, w’] = [an, 0] + difens, e} + 2i{win®, w0 o} — 35 By -
(1.188)
ab

Ot napandve eKPpAoelg oG Oroieg 10 w,;,” avukabiotatar ano v éxkppaor) (1.184), eivar ot
TEAIKEG EKPPAOELS TOV TAVUOTOV £MMEta anod v napabiaon g oupperpiag. Ipwv mpoxwprjooupe
pe tov mpoadloplopo g Spdong g Paputikng Sewpiag, ag oxoAdiacoupe ev ouviopia tr 6paon
tou £&tpa miediou 2-10peng, By, 1 oroia 9a cupnepianebei otnv tedikry Spdor.

'Eote o tavuotrg §uvapng nediov, 7:lmnp, T0U 2-poporng riediou Babpidag:

A 1 A A A oA A oA
Honnp = 5 ([Kims Onpl + [Xns Oprn] + [Xp, Oran] ) - (1.189)

O napanave tavuotng duvapng nediou petaxnpatidetal ouvaiAoieta KAT® anod Evav Petacynia-
Topo Babnidag. Mpaypaty, autd priopei va arnodeixBel Eekvoviag aro v EKPPact) T0U PeTAoXn-
patiopou tou rnediou:

~ 1

5Hmnp =5

. ([5Xm, Onp + [Xm 00mp] + [6X 1, Opm] + [Xn, 6Opm] + [0Xp, Oman] + [X,, 5émn])

(1.190)

Xpnotono)viag ToUg Kavoveg PETACXIIATION0U TV X, kat ©,,,., ot oroiot Sivovrat oug €§i-

owoelg (1.160) kat (1.167), avtictorxa, padil pe v tauvtotnta Jacobi, Bpiokoupe tov MApAKAT®
RAVOVA PETACXUATIONO0U :

Hmnp = i€, Hum) , (1.191)

o ortoiog eivatl ouvaAdoiwtog. Katd ta yveotd, yia va Bpebouv ot akpiBeig eKPpAOEIS TV TAVUOTOV,
avartyoocoupe Tov H 0Tto 0UVOAO TRV YEVWNTOP®V TG AAyeBpag:

A~

Honnp = Hnp © 1+ Hypp@ © Py + Hyp8 @ My + Hyp @ Ko+ Hypn @ D, (1.192)

Kat urtodoyidoupe tov KAOe CUVIOTOVIA TAVUOTE] XP1NOH0IIOIROVIAS TOV 0P1OH0 TOU TavUoTt) duvapng
niediov, Hinp. Emopéveg, éoov agpopa otn 6paon tou nediou 2-popeng, Sa cupnepdapbaverat
HOVO 0 KIVNTIKOG OPOG, O OTI010G givat:

S = Trtr Hypnp H™™ . (1.193)

Ag £TIOTPEYOUIE TWPA OTOV ITPOCOI0PIoH0 TG OUVOAIKNG Spdaong g Sewpiag fadpidag. H 1o
Aoykr) erndoyr) ivat i §pdorn va eivat tunou Yang-Mills, eropéveg Sa ypagpetat g eEng:

S =Trtrl (Rmanemm + ?Zmnpﬂm”p) , (1.194)
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orou Tr eivatl 10 iXvog mave OTOUG IivaKeg IMOU AVAIIAPIOTOUV TG OUVIEtaypéveg, eve tr eivat
10 IXVOG TAV® OTOUG YEVVITOpeS g dAyeBpag. ASidel va onuewwbdel ou n nmapanave dpdon e-
tvat avaAdoietn KATe anod toug petacxnpatiopous Babpidag, epooov o tavuotng Suvapng mnediou
petaoxnpatidetal pe ouvaAloito Tporo:

68 = TiT5 (6RR + RIR + 6HH + HOH) = Tr(ile, RIR + iR[e, R] + i[e, H]H + iH[e, H]) = 0 ,
(1.195)
orou xprnotpornofnkav ot e§lowoelg (1.117), (1.191) kat n 1d10tta g KUKAKOTNTAg T0U iXVoug.
Ermiong, o mpotog 6pog tng raparnave dpdaong, (1.194), ocupnieptdapBavetl tov tavuotr duvapng
niediov g Sewpiag Babuidag, eve o Seutepog eivatl o (1 TOMOAOYIKOG) KIVNTIKOG 0pog Tou mediou
2-p0p@r]. O tedeotrig ['s €xel oupreptAn@Oel mpPokeIEVOU va QIATPAPIOTOUV O1 TIEPICCOTEPOL OPOL
Kat, yia 1o SO(4) X U(1) koppatt, va diatnpnOei o 0pog rmou rieplAapBavel TOV TAVUOTH KAPITUAOTNTAG
Rm‘ﬁf’. Enopévag, n 6paon (1.194) yiverat:
S =2Tr(R,, R, “eapea€™ ™ + AR pn Ry €™ + éHmnngmnpcdeabcd + %ﬁmanm”P) . (1.196)
Avukadiotoviag 11§ eEKPPACEIS TV TAVUOTOV Kapruddtntag v eSlonoewv (1.185)-(1.188) kat
ekppaloviag 10 w og Opoug TV Urodomev nedinv, (1.184), tote petabolrn) tng dpaong ®g mpog ta
niebia Badpidag 9a odnyouvoe oug edlonoeig kivriong. Agidet va onpewwooupe ot 1o €§tpa nedio
2-poporig anooculeuyvutal Katd 1 de®dpnorn tou petabetikou opiou, cuvenmg dev avapévetal va
napatnenOei otig XapnAég evépyetes.
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1.10 Zupnepaocpata

H &watpi8r) avtr] anotedeital amno 11§ mo npoopateg SOUAEIEG 11ag OTIG OToieg aoXoAnOnkape pe
tov ouvduaopo d6uo dadopetik®V mMAalciov epyaociag. To mpoto eivar n meprypadr dwadopav
Baputikav Senpliav wg denpldv Pabpibag kat to Sevtepo sivar n pn petabetkn) yeoperpia. O
OUYKEPAONOG TV SU0 Maparndve MAaloi@v mtuyXaveral HEom g Urnapgng Kaid Sepsdiopiveov
Yewprov Babpidag otoug pn PeTabeTIKOUG XWPOUS.

Zuykerppéva, Katd 1 61K pag anoyr, n douleld mou apopd oto terpadlactato Paputiko
HOVIEAO TO OTIOI0 KATAOKEUAOA}LE, OUVEIOPEPEL KUPIMG o dUo Krateubuvoelg. H mpotn eivat ot
6lvoupe pia emrtuyr) KATAOKEUR] €vOg TeTpadldotatou ouvaAlointou acapoug XHpou pe TPOIo O
oroiog propet va yevikeutel Kat oe dAAeg repmtooelg. Asutepov, dwoape pia meptypadn ya wmy
Baputiky] aAAnAemidpacn ot KATAOTACEIS OTIG OTOIEG 1] 11 HETADETIKOTNTIA TOU XOPOU HUITOPEL va
dikatodoynBet (rt.x. kAipaxka Planck) kat katagépape va ) cuvbEooupie pe ) ouppopdn faputnta
oto petabetiko opto. Ipotepatdinta pag oto pEAAov eivat va peletrjooupie v Lorentz avadAoiotn
dpdon otnv oroia KataAngape Kat va mpoorabrjooUE va Ty CUCXETICOUE He v tetpadidotatn
6paon Einstein-Hilbert.






Chapter 2

Gravity as a gauge theory in three and
four dimensions

In this chapter we briefly review the correspondence of three-dimensional and four-dimensional
gravity theories to gauge theories. We start with recalling the non-coordinate basis and the
vielbein formalism, setting up a framework which is independent of the metric tensor. Consid-
ering the appropriate symmetry groups for each case taking over the role of the gauge groups,
the vielbein and the spin connection are identified as the gauge fields of the theory. Then,
the standard procedure for the construction of gauge theories is followed, but also non-trivial
techniques are used depending on the particularity of each case.

2.1 The non-coordinate basis and vierbein formalism of General
Relativity

2.1.1 The non-coordinate basis and definition of the vierbein field

The theory of General Relativity (GR) can be reformulated employing the vierbein formalism [82].
In the conventional, coordinate-based, formulation of GR, at any point p of a manifold, there
exists a tangent space 7}, on which any four-vector V' € T}, can be spanned on a differential
basis given by the partial derivatives of the coordinates of p, é, = J,. Also, at the point p,
a cotangent space T; (dual space of T},) is defined and is spanned by the differential forms,
é* = dz#. The above two bases satisfy the relation é¢* ® ¢, = 14.

The freedom of decomposing a vector V' € T}, on any orthonormal basis of 7}, leads to the
choice of the unit vectors to be independent of the coordinates (tetrad basis), é,, with inner
product (é4,€y) = 74y, where 74, = diag(—1,1,1, 1) is the metric of the Minkowski spacetime.’
Therefore, an arbitrary set of coordinate-depending vectors, é,(z) of the tangent space, T}, can
be expressed in terms of the non-coordinate basis, é,, as:

eu(r) = e, (z)éq 2.1)

where eua(x) are the components of a 4x4 invertible matrix incorporating all the coordinate

information. The whole transformation matrix e Ma(x) is called vierbein. Its components, along

'In case the manifold is Riemannian, the inner product of a vector and its dual is (éa7 éb) = 04p. The case studied
in the current subsection the manifold is considered to be pseudo-Riemannian.
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with the ones of the inverse vierbein field, e/, (), satisfy the orthonormality conditions:

eu(@)e(x) =0y,  eg(x)ely(x) =0y . (2.2)

The inner product of the vierbein and the inverse vierbein is given employing the metric tensor,

Guv:
gul/(x)eua<‘r)eyb(m) =Mab , O g,ul/(x> = 6;(%)@,})({[‘)77@1) 5 (2.3)

where, from the second branch of the above equation, the vierbein field admits the interpretation
of the "square root" of the metric. Therefore, in the same sense that a metric tensor and its
inverse are used for lowering or raising spacetime tensor indices, the vierbein and its inverse are
used for switching manifold (greek) indices to Lorentz (latin) ones and vice versa, respectively.
Also, greek and latin indices of the vierbein itself are raised and lowered using the metric tensor,
Juv» of the manifold and the Minkowski flat metric, 7,5, respectively.

2.1.2 The vierbein formalism and Palatini action

It is known that two vectors defined on a flat space are identical if they have the same magnitude
and direction. Therefore, it is understood that if we consider a vector of the space and translate
it to a different position, we end up with a vector that shares the same magnitude and direction
with the initial one. However, when a vector field is considered on a curved (Riemannian) man-
ifold, the presence of curvature will distort the parallel transport and give a vector of different
direction and magnitude. The difference between the initial vector and the one transported is
a vector that includes a multiplicative factor, Ff;l,, that is called the affine connection. It can be
easily proven that the above correction to the distortion caused by the curvature of the manifold
is included in the definition of the covariant derivative of a tensor, V,T"?. For example, the
covariant derivative of a vector is:

ViV =0, VF + FZAVV . (2.4)

For a higher rank tensor, there would be terms similar to the last one in the above equation,
for every index of the tensor.

The expression of the covariant derivative, involving the affine connection, both defined
above, is the one that applies in case the tensors carry exclusively manifold indices. When a
tensor bears Lorentz indices (non-coordinate basis), the correction to the partial derivative is
not expressed by the affine connection, but from its non-coordinate analogue, that is the spin
connection. Accordingly, each latin index of the tensor admits a correction term, that is the
tensor contracted with the spin connection, as follows:

VTS = 0,T% + w2 T — w,T% . (2.5)

Therefore, depending on the basis (coordinate or non-coordinate) on which the tensor is ex-
pressed, one has to employ the covariant derivative with the appropriate connection.

Now, if one considers a covariant derivative, [),,, that acts on an object that carries both
spacetime and Lorentz indices (e.g. on the vierbein), one would obtain a mixed expression with
corrections of both kinds of covariant derivatives, including both the affine and spin connec-
tions:

DTy = 0,Thy — T, Tox — w, 3 Toe - (2.6)
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The relation between the affine and the spin connection is obtained after considering the co-
variant derivative of a vector, V¥, in the coordinate and the non-coordinate bases:

VV =V, V’da @ 0, = (0,V" + T/\V)dat ® 9, , 2.7)
VV = (V,V9)dat @ éq = (0,V* + w, A V0)da! @ é, . 2.8)

Converting the second equation from the above two into the coordinate basis and equating it
with the first one, one obtains the relation of the connections:

W,y = eV“eAbFZ/\ — e’\bﬁue/\“ =e""Vyep . (2.9)
The above expression can be rewritten as:
Ope, — e T, +wihe, =0 = Dye =0. (2.10)

The last equation obtained above, D e’ = 0, is the well-known tetrad postulate, which is
often considered axiomatically. Also, if the affine connection is considered as metric compatible,
i.e. the covariant derivative of the metric is everywhere vanishing, V,g,,, = 0, starting from
the relation Vunab = 0 and taking into consideration the (2.3) and (2.9), one concludes to
Wpab = —Wyba» that is the antisymmetricity property of the spin connection with respect to the
two Lorentz indices.

It can be easily proved that the affine connection, I‘ﬁu,
the general coordinate transformations, due to an extra term. Therefore, if the connection Fi‘ﬂ

is considered, in which the lower indices of I u/}/

does not transform as a tensor under

have been interchanged, it is found that the
term that renders it as a non-tensor object, coincides with the corresponding one of Ffly. Thus,
subtracting the above two connections, the part of the transformation that renders each one of
them as non-tensor objects is eliminated and therefore their difference produces a tensor that
is called the torsion tensor. Specifically:

T, =T), T, . (2.11)

From the above definition, it is obvious that the torsion tensor is antisymmetric in its lower
indices. Therefore, if the connection is symmetric, F;\W = F,))H, the torsion tensor is identically
equal to zero and the connection is called torsion-free.

Now, let a manifold endowed with a metric, on which an affine connection is defined. If
the properties of the metric compatibility and the symmetricity of the connection (torsion-free
connection) are taken into account, then it is proved, in a very straightforward way, both the
existence and uniqueness of the affine connection for the specific manifold by obtaining an
expression of the connection depending on the metric of the manifold [83]. Specifically:

1
F});,V = §g)\p(augl/p + &Jgpu - 8pg,uu) . (2.12)

The above expression of the affine connection is the one used in general relativity and it is
known as the Levi-Civita connection or Christoffel symbols.

Returning to the vierbein formalism, in which the notation of differential forms is adopted,
the expression of the antisymmetric torsion tensor (torsion two-form) can be easily obtained in

terms of the vierbein and spin connection, starting from the tetrad postulate:
Dueyb = Oﬂeyb —T el + wubcel,c =0, (2.13)

j2%

Dyel =0duel —Ted +wlel=0. 2.14)
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Subtracting the above two equations and making use of the torsion tensor definition, (2.11),
one obtains:
T/;\V = e’\aTWa =0ue,’ —Ove, tw, e, —w e, (2.15)

Including explicitly the form notation:
1
e =eyldrt, Wy =whdat, T = §Tw,adx“ Adz” (2.16)

one obtains the compact expression of the torsion two-form in terms of the vierbein and spin
connection one-forms:
T% = de + w% A el . 2.17)

The notion of curvature, which, as we mentioned in the beginning of the section, is respon-
sible for the mismatch in the parallel transport and consequently for the introduction of the
affine connection, is parametrized by the Riemann tensor, R’ ouv- Its expression with respect to
the affine connection is obtained after considering the commutator of two covariant derivatives,
which measures the difference between parallel transporting a vector (or a tensor in general)
first one way and then the other, minus the opposite ordering [83]. Calculations lead to the
expression:

Vi VIV = (0,10 = 0,10, + T0\ 0, =TT )V — (T, — T3, )VaV? . (2.18)

Apparently, the last term is the torsion tensor, (2.11), while the first one is identified as the
Riemann tensor:

[V, Vo VP =R VT —T) VAV . 2.19)
Therefore, the expression of the Riemann tensor is:
R, = 00, — 0,10, + 10 T, —T0, ), . (2.20)

By definition, the above tensor is antisymmetric in p <> v and depends exclusively on the affine
connection and its derivatives, meaning that it is a general, metric-independent, expression
without any extra properties (metric compatibility) considered yet. The Riemann tensor has
a number of properties (Bianchi identity, antisymmetricity) that reduces the number of its
independent components. Also, consideration of the following trace:

Ry =R, (2.21)

that is the contraction of the upper index with the middle lower one, defines the Ricci tensor.
This tensor is symmetric to the p <> v interchange, in case the affine connection included is
the Christoffel symbol. Now, the trace of the Ricci tensor defines the Ricci scalar:

R=R: =g" R, . (2.22)

In the vierbein formalism, the analogue of the Riemann tensor is the curvature two-form. The
starting point is the same with the above analysis for defining the Riemann tensor, that is the
commutator of the covariant derivative, acting this time (not on a vector but) on the vierbein,
which carries mixed indices:

(VuVe = ViuVi)edp = Roouwey + (Th, = T0,)Vaepd - (2.23)
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Making use of the vierbein for turning two indices of the Riemann tensor from greek to latin:
Rpaul/ - epaeg-bRab,uV ; (2.24)

replacing it to the equation (2.23) and using the relation (2.9), calculations and employment of
the second equation of (2.3) lead to the expression of the curvature two-form in terms of the
vierbein and the spin connection:

Ry = Opwyab — Opwpab + Wpacw,y — Wyacw), p - (2.25)
Adopting the differential form notation (2.16), along with:
Ry = %Rabwdw“ ANdx¥ = %Rabcdec Aet (2.26)
the expression of the curvature two-form, (2.25), takes the following compact form:
Rap = dwgp + wae AW, . (2.27)

Obviously, the curvature two-form is antisymmetric under the interchange of its indices.
Now, aiming at the direction of defining the action, the following integral is considered:

1
I= / ieabcdea Aeb AR (2.28)

The Hodge duality map, that is the "star" operator, in the four-dimensional case, is a map of
n—forms to (4 — n)—forms and is defined as:

1 1
(e AL Ne") = meal“‘“’a7l+l...a4ea"+ Ao Ne™ (2.29)

and, especially for n = 2, it can be written as:

1
*(e A e??) = We“1“2a3a4e“3 Aett . (2.30)

Therefore, applying the above in the %eabcdea Aeb part of the integrand of (2.28), the correspond-
ing integral can be written as:

I= /R“b Ax(eq Aep) . 2.31)

Using the (2.26), the above expression of the integral becomes:
1 ab ¢ d
§R d€S N et N x(eq Nep) (2.32)
where e A e? A x(eq A ) is the inner product of (e A e?) and (e, A ep), explicitly:
1
/ iRabcd(ec Aedieqs Ney)e (2.33)

where € is the volume form and it is straightforward to show that it is equal to the Jacobian
factor, that is the \/—gd*x. Therefore, the above integral takes the following form:

I= / R™ (3¢5 — 650%)e = / dz/—gR . (2.34)
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In the above analysis it is shown that starting from the integral (2.28), one can result with the
integral of the Einstein-Hilbert action. Therefore, the complete action could be written as:

1 1 a b cd 1 4
[ \/ — . 2.
S = 167G / 26abcde ANe’ NR e /d x gR (2.35)

The initial formulation of general relativity (Einstein gravity), in which the metric tensor is
considered as an independent field, is also known as the second order formulation of gravity.
The action consisting of the curvature two-form that is, as shown, equivalent to the Einstein-
Hilbert action and consists of the frame and spin connection fields, is the tetradic Palatini action,
also known as a first order formulation of gravity. The latter is a formulation of great importance,
especially when fermions are coupled to gravity and have to be added in the Palatini action.
Also, for our purpose, the vierbein formalism of general relativity is fundamental because it is
the one employed when trying to translate the results of general relativity to a gauge-theoretic
language.

2.2 Three-dimensional Einstein gravity as a Chern-Simons gauge
theory

Let us first study the three-dimensional Einstein gravity and its relation to a gauge theory [10].
In order to designate the above relation, one has to employ the (three-dimensional version of
the) vielbein formalism, briefly reviewed in the previous section, in which, instead of the metric
tensor, the vielbein and spin connection are the ones considered as the dynamical variables.
In the following analysis, the vielbein is considered to be invertible, in relation to the fact that
in general relativity the metric tensor (that is related to the vielbein as given in (2.3)) is non-
degenerate and therefore the inverse metric tensor exists. The case in which the vielbein is not
everywhere invertible is considered to be unphysical (singular) in classical general relativity.
Nevertheless, the latter is a key point in the quantization of three-dimensional gravity, making
the renormalizability of the theory apparent, as well® [10].

In three dimensions, for a manifold M, the Einstein-Hilbert action in the vielbein formalism,
without the inclusion of cosmological constant and matter, is:

1
e"Pe (Oywpa — Opwya + eabcwybw ). (2.36)

[ —
EH3 167TG M ® P

Variation of the above action with respect to the w field, yields the torsionless condition, which,
using (2.15), can be written as:

b b
T#Va = oue,)’ — &,e#‘z + € wupeve — € wipene = Dyet — D,,eu“ =0, (2.37)

where D¢, is defined as:
De) = 0ue, + e“bcw#be,,c . (2.38)

Also, variation of the same action with respect to the other fundamental variable, e, yields the
vacuum Einstein equations of motion:

Ryva = Oywpa — pwva + €apew, /w5 =0 . (2.39)

2Moreover, it is a theory with vanishing beta function (finite).
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The expressions of the torsion and curvature 2-forms given in (2.37) and (2.39), are the three-
dimensional analogues of the four-dimensional expressions, (2.15) and (2.25), respectively,
that are obtained from the respective analysis of three-dimensional general relativity in the

dreibein formalism. Also, in this three-dimensional case, the redefinition of the spin connection
a __ 1 eabc
2

Wi

Wybe, is admitted and it is also taken into account.

Now, in (2.36), if one denotes collectively the vielbein and spin connection as a gauge field A,
then the action is written as AdA 4 A2, which is the general form of a Chern-Simons functional
in three dimensions. This is pointing at the direction of the relation of three-dimensional gravity
with a Chern-Simons gauge theory. All one has to do, is to find the appropriate gauge group and
result with an action that is of Chern-Simons form and coincides with the three-dimensional
Einstein-Hilbert action, (2.36).

Let us consider the ISO(1,2) to be the appropriate gauge group. It is crucial to mention
that the Chern-Simons functional is defined on simple Lie groups. Therefore, it is not straight-
forward to develop a Chern-Simons gauge theory of ISO(1,2), unless it is confirmed that the
corresponding Chern-Simons interaction exists for the candidate gauge group. In other words,
what we seek is an invariant quadratic form on the ISO(1,2) Lie algebra. Although for arbitrary
dimensions, i.e. for ISO(1,n-1), this does not hold, for the n = 3, ISO(1,2), group there exists
an invariant and non-degenerate form, which reads:

tr(JoPy) = 0ap , tr(PyPy) =0, tr(JuJp) =0, (2.40)

where J, = %eabc J' are the three Lorentz generators and P, are the three translations, together
comprising the six generators of the ISO(1,2) group. The above generators satisfy the following
algebra as given by their commutation relations:

[Jaa Jb] = 6achc y [Jaa Pb] = fabcPc , [Pa7 Pb] =0. (2.41)
The next step is write down the gauge covariant derivative:
Dy=0,+[Au, ], (2.42)

where, A, (x) is the gauge connection, that is expanded on the generators of ISO(1,2), since it
is taking values in it:
Au(z) = e (2) Po + w,' (z)Ja - (2.43)

In the above expression of the gauge connection, A,, for every generator, a component gauge

field has been assigned. The vielbein (dreibein) field has been attached to the local translations

while for the rotational part (Lorentz transformations), the attached field is the spin connection.
By definition, Du transforms covariantly giving the transformation rule of A:

0A, = —Dye =0, — [Au €, (2.44)

where € = ¢(z) is the gauge transformation parameter, which, being an element of the 1SO(1,2)
algebra, can be expanded on its generators:

e(x) =4 x) Py + X () g (2.45)

with £%(z) and A*(z) being infinitesimal parameters. Combining equations (2.43), (2.45) with
(2.44) and making use of the algebra of the generators, (2.41), one obtains the transformation
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laws of the gauge fields e and w:

de, = —0,8" — e“bceub)\c — eabcwubgc ) (2.46)
Sw,t = =0\ — e wpc . (2.47)

The above gauge transformations do not coincide with the ordinary coordinate transformation
law. Although the middle terms of the above equations can be identified as the local Lorentz
transformations, since )\, is corresponded to the Lorentz generator J¢ in the gauge transfor-
mation, the rest of the terms are not recognizable at once. If it is possible to associate the
above expressions of the transformations of the gauge fields to diffeomorphisms, then they will
be considered equivalent to the coordinate transformations and, at the same time, it will be
a confirmation that ISO(1,2) is the appropriate gauge group for the gauge-theoretic approach
of three-dimensional Einstein gravity. Of course, after the action of the gauge theory will be
given, it will have to be invariant under the above gauge transformations, in the same spirit the
three-dimensional Einstein-Hilbert action is invariant under diffeomorphism in the coordinate
based formulation of three-dimensional gravity. The relation between diffeomorphisms and
gauge transformations is discussed right after the determination of the action and its equations
of motion.

Advancing in the construction of the gauge theory of ISO(1,2), the next step is to calculate
the component tensors of the gauge fields, using the usual formula, that is the commutator of
the covariant derivative of the gauge theory, f)u:

Ry, =Dy, D)) = 0, A, — 9, A, + [Au, A, (2.48)

where Au is the gauge connection given in (2.43). Since R, is valued in the algebra of ISO(1,2),
it can be expanded on the generators:

Ry =T, (x)Pa+ R, J(z)Ja (2.49)

where the 7" and R,/ are the component curvature tensors, associated to e and w, respec-
tively. Combining the formula (2.48), with the expansion (2.49) and replacing the A, with its
expression, (2.43), one results with the expressions of the component tensors:
TW“ = oue,) — 8,,6: + eabcwube,,c — e“bcwybeuc , (2.50)
R, = Ouwva — Opwpa + eabcwﬂbwlf , (2.51)
which are the three-dimensional versions of the expressions of the torsion and curvature two-
forms given in (2.37) and (2.39).
Finally, to complete the picture, the action of the theory has to be determined. Constructing

a gauge theory in three dimensions, the obvious choice is to consider the Chern-Simons action
functional:

Sos = / r(AANdA+ AN AN A) = / AL (0, A, — Dy Ay + [Av, A ) Pdz . (2.52)
M M

After replacing with the expression of the gauge connection, A4, given in (2.43), some terms of
the above action are filtered out by the trace, (2.40), acting on the generators, leading to the
following expression:

/ e“ypeua ((8,,wpa — Opwyq + wl,bwpceabc) + (Ovepa — Opeva + (wybepc — el,bwpc)eabc)) . (2.53)
M
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The first term is obviously recognizable as the curvature tensor and the second term of the
above relation as the torsion tensor, both given in (2.51). For the sake of the desired SO(1,2)
(Lorentz) invariance of the final action, the torsionless condition is imposed, that is T, pa =0,
therefore the above expression of the action takes the following form?®:

Scg = / ePe (8pra — OpWya + wl,bwpceabc> , (2.54)
M

which is identical to the action of three-dimensional gravity of general relativity, (2.36). Variation
with respect to the e field gives the expected equation of motion, which is the vanishing of the
curvature tensor, I?;,,, = 0, coinciding with the expression of (2.39). Therefore, one can state
that three-dimensional gravity can be described as a Chern-Simons gauge theory of ISO(1,2).
It is not redundant to mention that the above action is invariant under the gauge transforma-
tions of the component fields e, w, given in (2.47). In the following lines, the discussion about
diffeomorphisms and gauge transformations that was postponed earlier is given.

First, let us consider the transformations of the vielbein and the spin connection under a
diffeomorphism, which is generated by a vector field, v”. The standard parametrization of these
transformations, denoted as de Ma and dw M“, are given by the Lie derivatives along the vector —v":

de, = L ye, = —v"0pe, — (00" )e,)! = —v”(0ve,' — Ope,') — Ou(v”e,’) (2.55)

—v" 0w, — (00" )w," = =0 (Oyw," — Opw,’) — Ou(v”w,") . (2.56)

a __

<.
5“’# = E_Uwﬂ

Next, let us consider the difference Se#“ — de, and set {" = e,'v” and A" = w,"v":

de,! —de,! = —v"(Ove, — Ope,’) — O(v”e,!) + Oyule,v") + e pwyct” + €W peycv”
= —"(Dye, — Dye,?) 2.57)

where the expression, (2.38), of D, has been used. The above expression vanishes by the
constraint of vanishing torsion (torsionless condition), which was imposed for reasons of Lorentz

invariance of the action*. Now, in turn, let us consider the difference Sw““ — 5wﬂ‘1 and set again
A = w oY
Swlf — 0w, = —v"(Opw," — Ouw,") — (v w,") + 9u(v’w,”) + e“bcwubv”wyc
= 00w, — ayw/f + e“bcwubww) =v"Ry, . (2.58)

The above expression vanishes by equation of motion®, that is the vanishing of the Ricci tensor.
Therefore, one concludes that the gauge transformations are equivalent to the diffeomorphism
transformations on-shell, which means that the gauge transformations of the fields compensate
for the coordinate transformations in this gauge-theoretic approach. The expected invariance of
the action under the gauge transformations ensure the general covariance of the theory, in the

°In Ref. [10] there is an alternative and heuristic way to obtain the Chern-Simons action beginning with a
topological invariant of the form |, y ttRA R on a four-dimensional manifold, Y. Straightforward calculations lead to
an integrand expressed as a total derivative and therefore the integral on Y reduces to an integral on M, where M
is a three-dimensional boundary of Y. The expression of the integral on M is identified as the Chern-Simons action
functional of three-dimensional gravity. The advantage of this approach is that the torsionless condition does not
have to be imposed.

*In the Palatini formalism, this condition is obtained as an equation of motion, (2.37).

5In the Palatini formalism, this is the expression of (2.39)
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same spirit the invariance of Sgps does, under the general coordinate transformations. More-
over, it is confirmed that ISO(1,2) is the appropriate group for constructing three-dimensional
gravity as a gauge theory®.

The above analysis of the relation of three-dimensional gravity and ISO(1,2) Chern-Simons
gauge theory can be generalized in case a cosmological constant is included. The presence of
a cosmological constant renders the spacetime curved, therefore there are two corresponding
spacetimes, depending on the sign of the constant, three-dimensional de Sitter and Anti de
Sitter, with isometry groups the SO(1,3) and SO(2,2), respectively. In order to relate the three-
dimensional gravity with cosmological constant to gauge theories, it is reasonable to consider
the above groups as the gauge groups, since ISO(1,2) worked perfectly for the flat case. The
procedure of building these gauge theories is the same as the one described before, for ISO(1,2).
The cosmological constant is introduced in the gauge theory through the commutation relation
of the translations, which is now non-zero. Also, this modification induces the insertion of an
extra term in the expression of the transformation of the spin connection, (2.47), namely:

56“{1 _ uga _ Eabceub)\c _ Gabcwubfc , (2.59)
dw, = —FA" — €W de — AeCente (2.60)

and another extra term in the expression of the curvature tensor of (2.51), that is:

1, = 0Oue,’ — Ove,' + ewpene — eCwpe e (2.61)

R, = Ouwya — Oppa + eabc(w“bwl,c + )\e:elf) . (2.62)

As for the action of the gauge theory, it is obtained after consideration of the Chern-Simons
functional, again coinciding with the three-dimensional Einstein-Hilbert action of general rela-
tivity in three dimensions with cosmological constant.

2.3 Four-dimensional Einstein gravity as a gauge theory

Whether or not general relativity in four dimensions can be described as a gauge theory is
a complicated issue. In Ref. [10], it is mentioned that four-dimensional gravity cannot be
described as a gauge theory, because of the expression of the Einstein-Hilbert action, which
has the general form [ A A A A (dA + A?) and such an action cannot be retrieved by a gauge
theory. Although such an action functional does not originate from a gauge theory, there exists
a non-trivial way to obtain the Einstein-Hilbert action in a gauge-theoretic approach, starting
from a Yang-Mills-type action functional. In this section, the construction of four-dimensional
gravity as a gauge theory is reviewed, so for the kinematics (transformations of the gauge fields),
as for the dynamics (action and equations of motion).

Like in the three-dimensional case described in the previous section, first of all, the vierbein
formalism has to be employed for the construction of the gauge theory of gravity. In absence of
cosmological constant, the isometry group (symmetries of the metric) of the Minkowski space-
time is ISO(1,3) (the Poincaré group) and it is the one that will be considered as the gauge group,
in accordance with the three-dimensional case, where isometry groups of the Minkowski, dS

5The ISO(1,2) is the group describing the isometries of the three-dimensional Minkowski spacetime, rendering its
choice not a random guess.
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and AdS were considered as the gauge groups. The Poincaré algebra comprises of ten genera-
tors, four local translations, P, and six Lorentz transformations, M, satisfying the following

commutation relations”:

[May, Meg] = dnpqieMay) 5 [Pa, Me] = 20 Py 5 [Pa, P] =0, (2.63)

where 7,, = diag(—1,+1,+1,+1) is the four-dimensional Minkowski metric. Following the
standard procedure, the gauge covariant derivative is defined as:

D,=0,+1[A,"], (2.64)

where A, () is the gauge connection. Expansion of the connection on the generators of ISO(1,3)
gives the expression:
Au(x) = e () Po + w,™ () My , (2.65)

where e u“ and w ““b are identified as the component gauge fields for the translations and Lorentz
transformations, respectively. By definition, transformation of the D, is covariant, therefore,

the transformation law for the gauge connection A, is given by:
0A, =Dye=0,+[Au €, (2.66)

where ¢ = €(z) is a gauge transformation parameter, which, as an element of ISO(1,3) algebra,
it may be written as an expansion on the generators:

e(x) =&%(x) Py + %le(w)Mab , (2.67)

with £%(x) and )\“b(:z:) being infinitesimal parameters. Combination of (2.65), (2.66) and (2.67)
leads to the expression of the transformation of the component gauge fields:

56“{1 _ #ga + w’uabgb _ abeub ’ (2.68)
Sw, ™ = A + X%w [ — Nw 1 (2.69)

The corresponding field strength tensors, T,/ and Ruﬁb, of the component fields, e and w, are
obtained by the definition of the field strength tensor, R, of A,:

Ry, =Dy, D)) =0,A, — 0,A, + [Au, Al (2.70)

after its expansion on the generators:

1
Ry =T,/ P + 5Rmi‘bMab . (2.71)

Therefore, combining (2.65), (2.70) and (2.71), the expressions of the component tensors are:
TWa = 0ue,) — &,e,f — wuabel,b + w,,“beub ,

ab __ ab ab ac b ac b
R, = 0w, - 0w,” —w, w,. +w, w

123 14 pne o (2-72)

where the above expressions coincide with the ones found for the torsion and curvature two-
forms in the vierbein formalism description of general relativity in (2.15) and (2.25).

“The [ ] notation implies antisymmetricity of the indices inside the brackets, Nap P = %(nach — NacPs).
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Until this point, the construction of the gauge-theoretic version of four-dimensional gravity
has been unfolding in a straightforward way. Moving on to the dynamical part of the theory,
the obvious choice would be an action of Yang-Mills type of the Poincaré group. Nevertheless,
in order to claim a successful relation of four-dimensional gravity to a gauge theory, it is
necessary to result with the Einstein-Hilbert action, which is, of course, not of Yang-Mills type.
In that sense, the answer to the question whether four-dimensional general relativity could be
related to a gauge theory would be negative and the corresponding argument in ref. [10] would
be confirmed. However, one could claim that the Einstein-Hilbert action could be built out
of invariants including the tensors obtained in (2.72). Specifically, the Ricci scalar invariant
could be built using the curvature tensor, Ruﬁb and an action including this invariant could
be constructed recovering the Einstein-Hilbert action [84]. However, there is still another -less
guided- way to result with Einstein’s gravity, treating the Lorentz and translational part in a
more unified way, based on more intuitive and physical arguments.

First, it has to be noted that the desired action has to be invariant under the Lorentz
transformations and not under the total Poincaré symmetry. Therefore, in order to reduce the
symmetry of the action, a spontaneous symmetry breaking mechanism can be employed by the
inclusion of a scalar field [3, 4]. The above is the indicated way to reduce the extra degrees
of freedom and it is left to be seen if, after the symmetry breaking, it is possible to result
with the correct (Einstein-Hilbert) action, from the initial action of Yang-Mills type. For the
present purpose, in order to achieve the incorporation of the spontaneous symmetry breaking
mechanism, the gauge group, i.e. the gauge symmetry of the action of Yang-Mills type, has to
be the de Sitter, SO(1,4), group, instead of the Poincaré®. The choice of the de Sitter group is
strategic, in the sense that it comprises of the same number of generators as the Poincaré, but
carries an extra and useful virtue, that is all generators can be considered on equal footing,
denoting them all with a single gauge field, let us say w, LAB ,A, B =1...5, since it is a semisimple
group. Therefore, the extra scalar field, ¢, is assigned to the fundamental representation of
SO(1,4) and induces the spontaneous symmetry breaking, from SO(1,4) to SO(1,3), i.e. the
symmetry is reduced to the Lorentz with four out of ten generators, the translations, to have
been broken.

Specifically, constructing a pure SO(1,4) gauge theory, the gauge connection for the gauge
field, quB , would be AM = w#AB Map, where Myp are the ten SO(1,4) generators and the
corresponding field strength tensor would be given by (2.70) as:

F WAB = 8MwVAB - &,w#AB + wMACwVCB — wyAcwEB . (2.73)
The invariants which could serve as components for the SO(1,4) action have to be constructed
in terms of the above field strength tensor. The only invariant that can be constructed this way
and also being polynomial with respect to [}, is the topological invariant, Pontryagin index:

S = / d*ze" " F AP Fpoap . (2.74)

It is worth-noting that along these lines, that is building invariants from the field strength
tensor, a non-polynomial action containing square roots of the field strength tensor was pro-
posed in ref. [5], resulting to an expression of an action that was SO(1,3) gauge invariant, after
some appropriate gauge fixing. The presence of the square root and the absence of a scaled

8Also, the Anti-de Sitter group, SO(2,4), could be employed.
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quantity for fixing the vierbein dimensionality [3] was promoted to an alternative and more con-
sistent construction, considering a de Sitter invariant, polynomial action that will eventually
lead to an invariant action under the Lorentz group. As we mentioned earlier, the indicated
way is to begin with a polynomial action and include a scalar field, ¢¢, along with a dimension-
ful parameter, m (inverse length). The action concentrating the above features comes from a
modification of (2.74), specifically:

Sso(1,4) = /d4x (mqueABCDER“fcRPJDEGWW + Mo pa + m_2)) , (2.75)

where the variable A = \(x) serves as a Lagrange multiplier imposing the constraint for the
scalar field®:
¢pa=—m"7. (2.76)

Picking a specific gauge for the scalar field:
¢=¢"=1(0,0,0,00m™") & ¢%x)=0 and ¢’(z) =m ", 2.77)

the non-zero value of ¢° (z) induces the symmetry breaking of SO(1,4) to the little group, SO(1,3).
The action (2.75) reduces to the following expression, in which only the Lorentz symmetry is
manifest!©:

Sso(1,3) = /d4a?e“”p0FWaprUCdeabcd ) (2.78)

1

Defining the scaled gauge fields e, = m™ wlf‘r’ and decomposing the field strength tensor,

Fp= FWAB Map = FW“bMab + F #?,5Ma5 of (2.73), the following expressions are obtained:

5

Fp=mT,}, 2.79)
b b 2 b b

E,’ =R, —m (eﬂaey — eVaeu) , (2.80)

where TW“ and Rwﬁlb are the ISO(1,3) component curvature tensors of (2.72). Of course, the
F u‘fﬁ field strength is not present in the action after the symmetry breaking and thus 7,/ = 0
11 The vanishing of the torsion tensor (torsionless condition) leads to a relation of the gauge
fields, writing the spin connection with respect to the vierbein. In order to result with this
relation, first one has to contract the spacetime indices:

b b
ele’ L, = ele’y (E)ue,f‘ — e, —w, ey + W)’ eub> =0, (2.81)

and then do cyclic permutation of the free Lorentz indices a, ¢, d and add and subtract the three
resulting equations. Solving with respect to the spin connection, the result is:

1
Wypab = 5 (Q,uab - Quba - Qab,u) ) (2.82)

where the following definition:
Qabc = 26'u‘aeyba[uey}c s (283)

°It is worth-noting that the above action is even under parity transformations.

This is exactly the SO(1,3) action obtained in ref. [5] and originated from the non-polynomial one. The symmetry
breaking version described here [3, 4] gives the same expression but in a more natural and physical way.

1t would be present if we were considering a general gauge.
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has been employed.
Now, if the above expression of F Wab, (2.80), is inserted into the action SSO(1,3) of (2.78),
then the resulting expression can be grouped into three terms:

Sso(1,3) = /d4xe””p"eabcd (RM,‘,‘b + mQ(eM“eVb — eube,/“)) (Rp;d + m2(epcegd — epdeac)>

4 b d 2 b d d 4 b b d d
= /d xe"P7 € aped (Ruﬁ R, +2m R [P(eyje, —ejes) +m'(ele, —ee])(eje, —e, e;))

= /d4$€w’pg€abcd ('CRR + mz*ceeR + m4£eeee) . (2.84)

The first term, LR, does not give any contributions to the field equations because it is the in-
tegrand of the Gauss-Bonnet topological invariant (see [85]). The second term, L..p is the Ricci
scalar curvature (Einstein-Hilbert) action, (2.35) and the third is identified as a cosmological
constant of order m?. Because of this constant, the maximally symmetric solution of the field
equations is a de Sitter space:

Fw,“b =0 = Rw‘}b = mz(euael,b - eyaeﬂb) . (2.85)
In case the cosmological constant is zero, the solution is flat, or in other words, the trivial
maximally symmetric space, that is the Minkowski spacetime.

As for the general covariance, it is recovered by the relation of the gauge transformations,
(2.66) and diffeomorphisms. Following the same procedure and calculations as in the three-
dimensional case, one ends up with the four-dimensional versions of (2.57) and (2.58). There-
fore, taking into consideration the torsionless condition and the equation of motion of vanishing
curvature, general covariance is ensured.

Therefore, to conclude, it is possible to describe four-dimensional gravity of general relativity
as a gauge theory!2. The transformations of the gauge fields, e and w, can be obtained starting
with the Poincaré group as the gauge group. However, in order to result with the Einstein-
Hilbert action, it is necessary to consider as a gauge group the de Sitter group and include a
scalar field in a fixed gauge for the induction of a spontaneous symmetry breaking, starting
from a Yang-Mills type, polynomial action with respect to the field strength tensor. Indeed, the
resulting action is invariant only under the Lorentz group and is successfully identified as the
Einstein-Hilbert action.

2.4 Four-dimensional Conformal gravity

In this section, the gauge-theoretic approach of the four-dimensional conformal gravity is briefly
reviewed [7, 8, 86, 87]. Specifically, a gauge theory of the conformal group, SO(2,4), is con-
structed, and eventually, the theory of Weyl gravity is obtained. In order to end up with Weyl
gravity, a breaking of the initial gauge symmetry has to take place, this time not spontaneously
with the inclusion of some extra scalar field, but with the imposition of certain constraints.
Like the two cases of three-dimensional and four-dimensional Einstein gravity, in this case,
too, the group to be localized is a spacetime symmetry group including translations, which
has to be related to the general coordinate transformations, since the resulting gauge theory

>But not as a pure ISO(1,3) gauge theory
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must be generally covariant, being a gravitational theory. The relation between the "internal”
translational symmetry and coordinate transformations is achieved by introducing the vierbein
and identify it as the gauge field associated with the translations. The mixing of internal and
spacetime symmetries is precisely what makes the building of such gauge theories special in
comparison to the linear gauge theories of internal symmetry groups.

At this point, it is given a rather nice opportunity to discuss a little further the two ap-
proaches of the previous cases of three-dimensional and four-dimensional Einstein gravity
theories, so far as the methodology followed for resulting with the correct actions and the way
the translational part was treated [8]. In the four-dimensional case, for the dynamical part of
the theory, the initial gauge group was considered to be the G=SO(1,4). The Lorentz subgroup
H=SO0(1,3) of G was gauged by the linear gauge fields, while the part of translations was gauged
by the non-linear gauge fields, identified as the vierbein. The translations were considered to
be a spontaneously broken internal gauge symmetry. As for the invariance under the general
coordinate transformations (let us denote them X), it was assumed externally. The symme-
try of the resulting theory was SO(1,3)®X. In the three-dimensional case, another approach
was followed. The initial gauge group G=ISO(1,2) was treated as a linear internal symmetry
group, without making any distinction between the translation and Lorentz parts. General co-
ordinate transformations, X, were externally introduced and the final group was the subgroup
H=S0(1,2) times the X. Requirement of invariance of the resulting action under the transla-
tional part consequently led to imposition of constraints, specifically the torsionless condition.
In other words, as it was shown, the constraints gave the possibility to express the transla-
tions as a combination of the Lorentz transformations and the diffeomorphisms. Therefore,
the translations could be traded with the general coordinate transformations. In the present
construction of conformal gravity as a gauge theory, the same strategy is employed as in the
three-dimensional case, in which the symmetry breaking takes place by imposing constraints
based on physical arguments and not spontaneously with introduction of extra fields.

In the gauge-theoretic approach of the four-dimensional conformal gravity, the gauge group
is considered to be the SO(2,4), which comprises of fifteen generators, six Lorentz transforma-
tions, Mg, four translations, P,, four special conformal transformations (conformal boosts),
K, and the dilatation (scale transformation), D. These generators satisfy the following commu-
tation relations which determine the SO(2,4) algebra:

[ ab7

cd| = MeMad + NaaMye — Nac Mpa — MpaMac ,
[Map, Pe] = MbePa — NacPy
[Map, K] = mpe Ko — NacKyp ,
[Pa, D] = P,
[Kq, D] =
[Ka, P] = _2(77abD + M) (2.86)

where 7, is the mostly positive four-dimensional Minkowski metric. The construction of the
gauge theory begins with defining the covariant derivative and specifying the gauge connection,
which, as an element of the SO(2,4) algebra, can be written in terms of the generators:

1
Ay = e Po+ 5w, Moy +buD + f," Ko, (2.87)

where a gauge field has been introduced for each generator. The gauge fields attached to
the translations have been identified as the vierbein, while the ones associated to the Lorentz

71



transformations are identified as the spin connection, just like in the previous cases. The gauge
connection, A,,, obeys the following infinitesimal transformation rule:

§A, = Dye =0+ [Ay e, (2.88)

where € = ¢(z) is a parameter that belongs to the gauge algebra and for this reason it can be
written as:

1
€= Pat A BN+ kD + p °K, . (2.89)

Combining the relations (2.87), (2.88) and (2.89) leads to the transformation rules of the various
component gauge fields:

de,l = 08" + wjbgb — b€ — N%e,l + kel (2.90)
8w, = 0™ — 2w 2N, — 4f [oeP — 4 o "] 2.91)
0by = Ouk — 28° f,w +2p%pa (2.92)
5f0 = 0up" +w, oy +bup = Xy — K (2.93)

The field strength tensor of the theory is given by the standard formula:
Fu = 0,A, —0,A, +[Au, AL . (2.94)

In accordance with equation (2.70), expansion of the field strength tensor on the generators is
written down as:

Fuy = R,\P, + ZRM?”M b+ RuD+ R,OK, . (2.95)

The component curvature tensors that accompany each generator of the algebra can be cal-
culated after combining the relations (2.94), (2.87) and (2.95). Their expressions are given as
follows:

ﬁmf = due,’ — e, + w#abel,b — w,/“be#b — 26[#61,‘]1 (2.96)

=T — 2bp.e, (2.97)

R, = 0w, = w0, — w0l +wwl —8e 0 ) (2.98)
(0)ab la p b]

= RO —8e, ], (2.99)

Ry = 0uby — by + e fja - (2.100)

NV = }Lf ¢ aljfua + w'uabfl/b - wyabfub + 2b[ufy}a ) (2~ 101)

where T,Sl,) and R,(w) 0)ab are the torsion and curvature component tensors of the four-dimensional

Poincaré gravity of the previous section, given in (2.72).

As mentioned earlier in this section, in this case the resulting gauge group is found after
imposing certain constraints for the sake of invariance of the final theory under the translations,
too. In order to achieve this, one has to trade the translations with the general coordinate
transformations (denoted by X), which means that the resulting gauge group should be the
initial, G=SO(2,4), minus the translations, i.e. H = SO(2,4) — {P} times X. Following the
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same procedure as in the three-dimensional case, the difference between a diffeomorphism and
the gauge transformation, 5(3“‘1 — (56;, is considered using (2.57) and (2.90):

de, — de,' = (v”&,eua + 0, (vVe,t) — vV Oye,l) — (8“5 %4 wuabﬁb — b, £ =X\ beub + /16““> .

Setting £* = v”e,!, A = v"w, ", and k = v"b,, the above difference takes the following form:

de, —de,! =¥ (61,65 —Oue,) — w#“beub + wl,“beub +bue) — bl,eua) = —v”Ruﬁ . (2.102)

It is obvious that the constraint that is needed for getting rid of the translational part of the
theory, with a coordinate transformation making up for them, is the vanishing of the torsion:

Ro=0. (2.103)

Therefore, setting the torsion to zero, the generators of the initial group, SO(2,4), break and the
subgroup H is generated by M, D and K. In addition, in order to achieve the P — X exchange
for all fields, the following constraint has to be imposed [7]:
R, ey =0. (2.104)

Let us now proceed with the solutions of the above constraints, (2.103) and (2.104), in terms of
the independent fields, e," and b,.

For the first constraint, the torsionless condition, (2.103), following the same computational
procedure as in the four-dimensional case, one ends up with the relation:

1
o 2 = = (wa Qe — Qabu) = —w, ™ (e) + 2bloe V) (2.105)

where Qabc = 2¢h, ae”bé[uey] . is the conformal analogue of {2, of the four-dimensional Einstein

case, (2.83), with the partial derivative d e, redefined to 3,&,,“ = (0, + by)e,”, that is the Weyl
(D) covariant derivative, and wuab(e) is the expression of the spin connection in terms of the
vierbein in the four-dimensional Einstein case, given in (2.82). Also, along the same lines, we
can define the tensor Rm‘}b, which is the tensor Rw?b, again with the partial derivative, d,, to
have been replaced with éﬂ = 0y, + by, that is the Weyl (D) covariant derivative, since it will be
useful later.

For the second constraint, (2.104), due to the expression of (2.99), in which the curvature

tensor Rﬂﬁb is expressed in terms of the curvature of Poincaré gravity plus an extra term

containing f,°, it is possible to solve for f, algebraically, in terms of the Ricci tensor:
Rybe =0 = R{)%e’, —8e " f,) =0. (2.106)
Employing the Weyl decomposition of the Riemann tensor!3:
2 2
Ruvpe = Cuvpo +——5 (9o Roly = 9ulpRoln) — ngH[pgg]y ) (2.107)

BIn [9] eq. (15.25), one may find the relation already in the desired form.
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where C),,,; is the Weyl tensor, which is traceless, meaning that a contraction on one of its
indices is equal to zero, 7, is the Ricci tensor and R is the Ricci scalar. Replacing the (2.107)
in (2.106) and contracting with ¢g°”, one results with:

(0)ab v [apb] _ 1 ap _ pa _ a
R,,,"eh, 86[Mfy] =0 = —(n—l)(n—Q)e“R R} =4f", (2.108)

where R“a = Rff,),)abe”b and R = € aRu‘l are contractions of the Poincaré curvature tensor, Rff,),)ab.
For n = 4, one results with the solution of the second constraint:

a 1 a ]' a
he=-7 (Ru - e R> , (2.109)

The solutions of the two constraints, (2.105) and (2.109), show that w/fb = w/fb(e, b) and
= f/f(e, b), which means that the gauge fields w and f have been expressed in terms of
the independent gauge fields, e and b. Moreover, the second constraint fixed the gauge field
of special conformal transformations, f, as understood from the resulting expression, (2.109),
rendering it as a non-propagating gauge field.

The invariant action under the subgroup H and the coordinate transformations, X, or the

action with H ® X invariance, is:

S = [ drzegugetve (R bR o “ed (2.110)
w = 8@2 abed ny po f(e,b) 9 .

in which the two constraints, (2.105) and (2.109), have been included. It is worth-noting that

the solution of the second constraint, (2.109), could have been derived from variation of the

above action, (2.110), if it was written also in terms of the f gauge field (before elimination of

f), as an equation of motion. The expression of the Ruﬁb tensor, after taking into consideration

the relations for wu‘lb(e, b) and f,*(e,b), is found to be:

f(eb) a 1 a
[R ab} :_<R(0)ab_26[RbJ_e[eblR>:_0ab (2.111)

B L w(e,d) (g =] 37k v py o
where C’“‘f,b is the Weyl tensor and in the Poincaré curvature RLO,,)ab in the above equation, the
corresponding constraint, (2.82), has been included. Specifically:

RO)ab = RO (4y(e)) = — {Rz’;(w)]b L (2.112)
=

In the penultimate relation, (2.111), it is obvious that the expression of the curvature tensor of
e,b
/“3 b] f)((e,b)) ’
since it drops out, one may set b, = 0. After the fixing of b, = 0 (known as the K-gauge), the
only independent gauge field of the action is the vierbein, e and, therefore the action is scale and
proper conformal invariant, since, in contrast to the Lorentz boosts, all physical fields transform
only trivially under the conformal boosts generated by K, and so does the vierbein, 65e = 0,
as it is evident in (2.90). Also, the dilatation gauge field, b, is the only field of the theory which
transforms non-trivially under K,. Therefore, since the action is no longer dependent of b,,, the

the theory, after the inclusion of the constraints, [R is independent of the field b, and,
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whole action is K-invariant'4. Due to the presence of K-invariance, one could support that the
symmetry of the final theory is X ® D ® K. However, after the gauge fixing of b, = 0, the special
conformal transformations are no longer independent transformations. In fact, this becomes
transparent if the expression of the gauge transformation of b, (2.92), is considered, without
the term involving £%, since the X symmetry of general covariance makes up for it in the final

symimetry:
1
0b, = Ouk +2p%€pq = p* = —56/“18”/1 . (2.113)

The above relation, originating from the preservation of a gauge condition, is called decomposi-
tion law [9] and expresses a gauge-fixed symmetry parameter (p%) in terms of gauge parameters
of symmetries that remain in the theory (k). Concluding, the final action is invariant under the
X ® D transformations, which consists of the general coordinate transformations and the Weyl
transformations.

Therefore, employing the relation between the metric and the vierbein, (2.3), the expression
of the action, Sy, (2.110), can be written in terms of the Weyl tensor and finally takes the form
of the well-known Weyl action:

Sw = % / d* 2\ /GOy OMNP = % / dz\/g (wa — ;R2> . (2.114)
Besides the above symmetry breaking, we suggest another possible way of breaking the initial
symmetry, this time to the Lorentz. This could occur with the inclusion of two scalars in the
fundamental representation of the SO(2,4) gauge group [88]. This comes as no surprise, since
it is just an extension of the way the de Sitter group (and not the Poincaré for reasons explained
in the section 2.3) is broken down to the Lorentz by a scalar in the fundamental of SO(1,4),
as described in the previous section for the case of the Einstein gravity. These two scalars
could induce a spontaneous symmetry breaking in a complete theory including matter fields,
giving rise to the constraints that lead to a resulting four-dimensional action respecting Lorentz
symmetry. It is worth-noting that the four-dimensional conformal gauge theory can lead to the
Einstein-Hilbert action by choosing a different route of symmetry breaking, that is by imposing
constraints, as it is explained in Ref. [89]. More specifically, it is argued that if both tensors
R(P) and R(K) are simultaneously set to zero'®, then from the constraints of the theory it is
understood that the corresponding gauge fields, flﬁ e/f are equal - up to a rescaling factor -
and b, = 0.

Now, let us recapitulate in order to conclude this section. Starting from the conformal gauge
group, SO(2,4), and following the standard procedure of building gauge theories of spacetime
symmetry groups, a gauge connection was defined and one gauge field was assigned for each
generator. Then, calculations led to the transformation rules of these gauge fields and the
expressions of their corresponding component curvature tensors. For the sake of translational
invariance of the final theory, the first constraint that was imposed was the vanishing of the tor-
sion tensor, giving the opportunity to express the translations as a combination of the general

“In ref. [9], the argument about K-invariance is presented inversely. In other words, K-invariance of the e, b-
dependent action is imposed in principal, therefore, since the vierbein is trivially transforming under K and the
dilatation is not, the latter must be zero in order to result with a K-invariant action.

®The consideration of the vanishing of both tensors at the same time is supported by the fact that, since it is
desired to result with the Lorentz symmetry out of the initial SO(2,4), the vacuum of the theory can be considered
to be directly SO(4) invariant, which means that every other tensor, except for the R(M), has to be vanishing [78].
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coordinate transformation and the residual symmetry, H, in other words, trading the trans-
lations with the general coordinate transformations. The solution of this constraint rendered
the spin connection field to depend on e and b fields (b is the dilatation field). Then, again
for reasons of general covariance, an additional constraint was imposed, this time related to
the curvature tensor of M,,. From this constraint the gauge field f, which is related to the
generators of the conformal boosts, K,, was expressed in terms of the Ricci tensor and scalar.
Therefore, two out of the four groups of gauge fields were expressed in terms of the other two.
Then, the unique action was written down, in which the dilatation field was cancelled out from
the calculations giving the opportunity to set it equal to zero. This way, the action ceases to
contain the only field that transforms non-trivially under the conformal boosts, which means
that the final action is K-invariant, too. However, K-invariance is not an independent symmetry
after the gauge fixing and, for this reason, it was absorbed by the rest of the residual symmetry
and did not appear in the final, residual symmetry of the theory. Therefore, the invariance
group of the final action (Weyl action) consisted of the general coordinate transformations, X,
and the Weyl transformations generated by D. Eventually, it is legit to remark explicitly that
conformal gravity can be successfully described as a gauge theory of the SO(2,4) gauge group.
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Chapter 3

Noncommutative spaces and gauge
theories

In this section we give some information about the framework of noncommutative geometry and
then we focus on the description of some specific and important noncommutative spaces, some
of which we employ for the building of the models in the next sections. Also, we write down the
methodology that has to be followed in order to construct gauge theories on these fuzzy spaces.

3.1 The noncommutative framework

Noncommutativity of coordinates is a notion that may be regarded to be contradictive to our
perception of space structure. The whole idea that two space coordinates cannot be measured
with precision at the same time may seem to defy our intuition. Nevertheless, in general, the
notion of noncommutativity is not as radical as may sound, since it has been encountered before
in different cases for some other physical quantities. The most common, macroscopic example
is the case of the vector of angular momentum, the components of which do not commute with
each other. Moreover, in quantum mechanics any two conjugate variables are noncommutative,
for example position and momentum, being subjected to an uncertainty relation.

Quantum mechanics is more than just another example in which noncommutativity of
variables of physical quantities is encountered; it is the source of inspiration for the foundation
of the framework of noncommutative geometry! [11]. Specifically, in quantum mechanics, the
phase space of canonical position, ¢, and momentum, p;, gets quantized, replacing them with
their corresponding Hermitian operators &, pj, which apparently do not commute. In contrast,
they obey the Heisenberg commutation relation:

[, ] = ihd,” . (3.1)

Along these lines of quantizing a classical phase space, the quantization of a space would take
place if its coordinates, x* would be replaced by operators, ¢, of a C*-algebra? of functions

'For a more historical and motivation-oriented description of the birth of noncommutativity see the introduction,
Section 1.

pAC* -algebra is a complex algebra A of continuous linear operators on a complex Hilbert space with two additional
properties:

e A is a topologically closed set in the norm topology of operators.
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on the space, let us call it A, obeying a commutation relation analogous to the Heisenberg
commutation relation, that is:
[, 49] = i6% (z) | (3.2)

where 6% (x) is a quantity, which in general depends on the coordinates, parametrizing the type
of noncommutativity of the space®. More details on the nature of #” are given later in the
current section.

3.1.1 The matrix representation

Let us focus on the C'*-algebra A for a while. This algebra is necessarily associative and
optionally commutative. So, let us first consider a commutative algebra A and an element of
this algebra, which is a configuration of a classical complex scalar field on a space /M. The most
typical example of a commutative and associative algebra is that of functions on a manifold M,
taking complex values, with addition and multiplication given by:

(f+9)(@) = flx) +9(x) and  (f-g)(x) = f(x)g(z) . (33)

Now, the most illustrative example of a noncommutative algebra is that of NV x N matrices with
complex entries, that is the algebra Mat(/N, C). Generalizations of the Mat(N, C) are the matrix
algebras of N x N matrices, with entries elements of the algebra A, which are called Mat(N, A).
Addition and multiplication for this algebra are defined in accordance to the matrix addition
and multiplication, in terms of those in A. This matrix representation of a noncommutative
algebra, A, with operators as elements, suggests a very smooth way to think of this algebra,
since it is quite familiar to the case in quantum mechanic in which the differential operators
can be represented by matrices acting on the vectors of the Hilbert space [90].

Now, in order to formulate noncommutative field theories, it is necessary to define the oper-
ations of derivation, e;, and integration, [ Tr. These two operations must satisfy the following
properties:

e The Leibniz rule: e;(AB) = e;(A)B + Ae;(B). This property combined with linearity
means that the derivation of a constant is vanishing.

o The integral of the trace of a total derivative is vanishing: [ Tre;(A4) = 0.
e The integral of the trace of a commutator is vanishing: [ Tr[A, B] = 0.

Following from the above properties, a nice candidate for the derivation is e;(A) = [d;, A], where
d; is an element of the algebra A. Since for general nonommutative algebras using matrices
separation between the notation of the integral and the trace is not possible, we will denote the
integration with the single symbol of the trace.

The above definition of derivations and integrations allows one to study noncommutative
field theories, with the operators of the algebra A to be represented by matrices. Indeed, this
is the representation we adopt, viewing the operators as matrices, in the construction of such
theories in the next sections.

e A is closed under the operation of taking adjoints of operators.

5The 7 in the right-hand side is involved because the commutator of Hermitian operators is anti-Hermitian.
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Nevertheless, an alternative way to study noncommutative field theories is to associate the
operators of a noncommutative algebra and ordinary multiplication with an algebra of functions
of commuting variables equipped with a deformed product. In the next section we review the
basics around this subject through the cases of the two very common (and interesting) cases of
noncommutative spaces, the canonical and Lie-type.

The canonical case (Moyal space), the Lie-type case and Weyl quantization

In the previous section, #” was introduced in equation (3.2) as the noncommutativity parame-
ter, which, regardless its expression, is an antisymmetric tensor, since the left-hand side of the
same equation is also antisymmetric. Now, depending on its expression, this parameter defines
the kind of noncommutativity of the space.

The canonical case

Let us now introduce the canonical case, which is the simplest example of noncommutativity
and is defined by 6% (z) = 6%, that is # is a N x N constant (complex) antisymmetric tensor,
independent of the coordinates. The commutation relation of the coordinates is written down
as:

[2',27)=60Y , d,j=1,...,N. (3.4)

Noncommutative spaces defined by the above relation are denoted as ]Rév and, especially for the
N = 2 case, Rg is called the Moyal space (or Moyal plane).

The Lie-type case

Another very interesting case is that of Lie-type noncommutativity, in which the noncommuta-
tivity parameter, 0;;, is linearly dependent on the coordinates. The corresponding commutation
relation is given by: N

(7,29 = iCV, @ i, j=1,...N, (3.5)

where C* i, are complex numbers. The resemblance to the Lie-algebra structure is striking and
that is why the noncommutativity is called Lie-type. A very interesting case of this type is for
N = 3, where the above relation is actually the definition of the SU(2) algebra. In general, we
are going to deal with this N = 3 case a lot, since two noncommutative spaces we employ in the
building of our models are based on it, namely the fuzzy sphere, S% and R3, which we discuss
later in detail.

Weyl quantization

Previously, we gave some insight on how to work with noncommutative algebras, repre-
senting the operators that are elements of A by matrices. There is also an alternative and
equivalent way of treating this issue, by associating the operators of the noncommutative alge-
bra with classical (commuting) functions that are subjected to a different kind of multiplication,
that is called the Moyal-Weyl x-product. In other words, one can use a mapping from operators
that do not commute to functions that commute and upgrade the product from the ordinary for
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the operators to the x-product for the functions. This correspondence of operators to functions
is one-to-one and is called the Weyl correspondence (or Weyl quantization) [33].

Let f(z) be a function, admitting Fourier expansion, depending on the canonical variables xt.
We define an operator W( f) as:

1 I
T / d" ke (k) 3.6)

W = 5

where f(k) is the Fourier transformation of the function f(z):

5 1

—ik;xd 1
F4) = G [ e 1@ f(w) =

[PORE / d"ke*s® f(k) 3.7

and the operator Z replaces the variable z in f in the most straightforward way. Multiplication
of operators defined in (3.6) yields new operators. The crucial point is to examine whether the
product of two such operators, which are associated to classical functions through (3.6), can
be also associated to classical functions. Let us assume that such a correspondence exists, i.e.
there exists a function which is associated to the product of two operators W (f)W (g) and is
denoted as f % g. Then, multiplication of the two operators must give:

W(H)W(g) =W(fxg) = (2717)n / A kd"pe™® P F(k)g(p) . (3.8)

If the product of the two exponentials yields a linear combination of Z, then the function f x g
will exist. For the calculation, the Baker-Campbell-Hausdorff formula:

XY — XY 5 [XY 15 (X XYY Y, X)) = 57 VXX Y )+ (3.9)

has to be employed. Therefore, in the canonical case, (3.4), the above formula gives the following
result:

pikid pipsdT _ ki@ +ip;dd + 1 [ikid ip;27]+0

S T .10

Therefore, replacing the above result in the expression of the product of the two operators, (3.8),
one is led to the expression:

W(fxg)=

1 ; 6i i Qi 3
g | S ). .11

The expression of the f * g is obtained from the above relation, if one replaces the operators &'
with the variable z¢, that is the inverse substitution of the one employed to define W(f)in (3.6):

1 ; i gidy. T
9= [ ahrpetts 2100 fgg ()
T
i 8 _gij 8
frg=e?o Jaylf(x)g(x)\y%z . (3.12)

The last equation is the definition of the Moyal-Weyl x-product.
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Following the same procedure for the Lie-type case, (3.5), one may result to a similar result.
Specifically, the Baker-Campbell-Hausdorff identity, (3.9), in this case leads to the following
expression for the product of the two exponentials:

eikiiieipji‘j _ ePi(kyp)i’i — eki+Pi+%9i(/ﬁp) ] (3.13)

In the above relation, it is implied that every term in the Baker-Campbell-Hausdorff identity
gives a result linear with respect to &. Therefore, g;(k, p) concentrates all the information about
the noncommutativity of the group. Therefore, the x-product for the Lie-type case is found
accordingly:

1 - v
Fra= g [ @R fEp)
o ;0

fxg = e85 f(y)g(2) 232 . (3.14)

Starting from (3.12), it is straightforward to find 2’ x 27 for the canonical case®:

i, 0 0 T s
Also, z; x x; is given by:
T * T = 1) — %9”’ . (3.16)

Combining the above equations, (3.15) and (3.16), one obtains the expression of the x-commutator:
[2; ¥ 2] = 07 (3.17)

which is the algebra defined in (3.4), where the operators have been replaced by functions and
the ordinary product by the x-product.

It is worth-noting that the choice of the above Weyl correspondence is not unique. Let us
focus on the x-product of the canonical case. In equation (3.6), the replacement of canonical
variable ' happened in the most symmetric way, that is with the operator * (Weyl ordering),
or equivalently, ¢’** = (ex)**. However, one may define infinite number of %-products, all
resulting to the same algebra, (3.4). More explicitly, let us add a constant symmetric matrix A%
to the ¥ in (3.12), or equivalently, take the following modification of the relation (3.15):

' x ! = xtad + %9” + AV (3.18)

The above expression of the x-product of two canonical variables is a generalization of (3.15),
which, in the operator language, corresponds to a different way of ordering. Indeed, the choice
A% = L5 leads to a new x-product, that is (ex)*? = ¢ibe=Lk*/4 which physically means
that instead of using the ordinary waves for the Fourier expansion of the fields, wave packets
of width /L/2 have been used. The above generalization, (3.18) leads to the same algebra,
[z ¥ x5] = 0", therefore different versions of a field theory which correspond to different
x-products resulting from different A;;, are all related by a field redefinition [91].

Concluding, in the previous section we mentioned that operators belonging to a noncom-
mutative algebra A can be represented by matrices, with multiplication the ordinary matrix

*For avoiding confusion, z;, z; are elements of the commutative algebra.
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product. However, in the current section, we also studied an alternative way of treating the
operators of such an algebra, that is replace them by ordinary, commutative functions with
multiplication the x-product. Those two different approaches are related in the sense that for
an action with fields multiplied with a x-product, it is possible to be viewed as a matrix model.
This is true because, the algebras of function equipped with the x-product are actually operators
with ordinary multiplication which act on a Hilbert space, therefore they can be represented
by matrices [92]. From now on, we employ the matrix representation for the coordinates of the
noncommutative spaces on which we work®.

3.2 The fuzzy sphere

Construction of the Fuzzy sphere

In this section we discuss the most typical, Lie-type case of noncommutative space, the fuzzy
sphere, S% [93], employing the matrix representation of its coordinates. First of all, a fuzzy
space is defined as a discrete matrix approximation of a continuous manifold with the addi-
tional property of preserving the isometries. In other words, it is a noncommutative space that
preserves the isometries of its commutative analogue. A very instructive way to introduce the
fuzzy sphere, which is followed here, too, is to formulate it in a comparative way to the ordinary
sphere, S2.

The ordinary sphere, S? can be defined as a submanifold of the Euclidean space of one
dimension higher, that is the R3, with its Cartesian coordinates z,,a = 1,2, 3, satisfying the
constraint:

3

inzx%—}—x%—{—x%zR?, (3.19)

a=1
where R is a constant identified as the radius of the sphere. The sphere admits an obvious
rotational symmetry which is parametrized by the SO(3) group (isometry group). The SO(3) is
generated by the three angular momentum operators which are defined as L, = —icgp.2p0. and
can be also written in terms of spherical coordinates 0, ¢, as L, = —£.0;, where i = 6, ¢ and &'
are the components of the Killing vectors. The Laplace operator is defined on the sphere by the
relation:

1 ii
L’ = —R*Ag = —RQE&(g 7/90;) (3.20)

where g;; is the metric tensor of the sphere. The eigenvectors of the above operators are the
well-known spherical harmonics, Y}, (6, ¢), which are defined as:

Y;™(6, ¢) = Net™®P™(cos ) , (3.21)

where P/ are the associated Legendre polynomials. The spherical harmonics obey the following
orthonormality condition:

/dQ}/lInY/m/ = 01/ O - (3.22)

5A methodology to recover the matrix representation starting from the x— product is given in ref. [92]
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Let us now consider a function, f(6,¢), on S 2. Since the spherical harmonics form a complete
and orthogonal set of functions, the function f(, ¢) can be expanded on this set:

0 l

=0 m=—1

where ¢;,,, are complex coefficients.

Let us now move on with the fuzzy version of the sphere, S%. The fuzzy sphere is a noncom-
mutative space, which means that functions depending on the coordinates (operators) defined
on it do not not commute under the ordinary product. Let us give an explanation on how this
fuzzy space is derived starting from properties of the ordinary sphere.

A discretized version of the sphere can be achieved by replacing the algebra of functions,
Yim (0, ) on the sphere with the set of functions, Ylm(e, ¢), which do not exceed a specific value
of [, let us denote it N. Therefore, a function, f (0, ¢), on the sphere is written as an expansion

on the finite set of Ylm:
N l
f = Z Z CtmYim - (3.24)
=0 m=—1

Now, if we consider a product of two such functions, then it will involve terms with [ up to a
specific value, j, namely j = 2N ,° exceeding the upper limit, NV, which means that the truncated
algebra of functions does not close under multiplication. A very elegant and efficient way to
result with an algebra of those truncated functions is to consider a different type of product
which is noncommutative, more specifically, a matrix product’. Therefore, in the discretization
of the sphere, the truncation replaces an infinite-dimensional commutative algebra of functions
with a finite, (/V 4 1)-dimensional noncommutative algebra. This discretized space is defined
as the fuzzy sphere®.

The most straightforward way to formulate the fuzzy sphere is to consider this truncated,
noncommutative algebra as a matrix algebra on some finite-dimensional vector space. For this
reason, let us take the three (/N + 1)-dimensional matrices J,,a = 1,2,3 that form a basis
for the (N + 1)—dimensional irreducible representation of SU(2). The generators J, satisfy the
following commutation relation:

[Jas Jb] = i€apede - (3.25)

Also, since the matrices representing the generators .J, are considered to be set in an irreducible
representation, the value of the Casimir operator in this (/N + 1)-dimensional representation®
is: N /N

J2:J12+J22+J§:2<2+1> 1n41, (3.26)
Therefore, the fuzzy sphere, S%, at fuzziness level N is the noncommutative space whose
coordinate functions, X, = X% a = 1,2,3 are defined as the (N + 1) x (N + 1) Hermitian

SThis value is obtained from the addition of the maximum values, NN, of the two angular momenta.

“Alternatively, given the equivalence of the matrix realization of the operators of a noncommutative space to
the function realization with a modified product, one could define an appropriate x-product in order to introduce
noncommutativity.

8That is the reason why the fuzzy spaces, in general, are considered as matrix approximations of ordinary spaces.

The standard Casimir operator definition for an N-dimensional irreducible representation is J* = i(N 2 1.
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matrices which are proportional to the generators, J,, of the (N + 1)-dimensional irreducible
representation of SU(2), that is:
Xo =Ky, (8.27)

where x is the proportionality constant that is determined by the fact that the X o are coordinates
of a (fuzzy) sphere, therefore they have to obey the constraint:
3

> XoXo= X7+ X5+ X5 =17, (3.28)

a=1
where 7 is the radius of the fuzzy sphere. Taking into consideration the expression of the
Casimir operator of the generators J, of the SU(2) given in (3.26) and replacing the expression
of the coordinates, X, in terms of the generators given in (3.27), one results with the expression
of the proportionality constant, «:

r

K= ———— = ANT, (3.29)
7 (z+1)
where \y = m and therefore, starting from (3.27), the coordinate matrices, Xa are
written as: o X r
Xo=kdy = ————J, = AnrJy . (3.30)
(3 +1)

Also, the behaviour of the product of two coordinate operators is given by their commutation
relation, which is calculated using the commutation relation of the J, generators of SU(2),
(8.25): o

[Xa, Xb] = iHGachc = i)\NCachc N (3.31)

where the relation (3.29) has been used and Cyp. = regpe.
Now, one may redefine the coordinate matrices, X,. and work with the following, anti-
Hermitian ones, X,:
.LXCL — l
1RT 1
The commutation relation, (3.31), and the radius constraint, (3.28) are redefined as:

Xo = Ja . (3.32)

3 -2
A
(X4, Xp] = Cppe X, and E XoXo =2, (3.33)
r
a=1
where Cg. is now defined as Cy. = 6“7,’”. The algebra of the fuzzy sphere is equivalently

described by both bases.

We should also note that the functions, Yj,,, of the finite set which spans a function, f ,
on the fuzzy sphere, (3.24), are known as fuzzy spherical harmonics and are given by the
expression [94]:

1...a

Vi =70y fllm), X X (3.34)
a

which is the fuzzy sphere analogue of the expression that gives the classical spherical harmonics
in terms of the Cartesian coordinates:

Yim(0,0) = Y fim), a0 o (3.35)
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In both cases, f(gllm)al is a traceless symmetric tensor of SO(3) with rank /. Also, the fuzzy
spherical harmonics obey an orthonormality condition, which is given by:

Ten (il Vi ) = wrdmns (3.36)

where, as we explain in the following paragraph, Try stands for the integration operation.

Differential calculus and integration on the fuzzy sphere

Let us now mention some aspects about the differential calculus and the integration on the
fuzzy sphere that will be useful in the following sections.

Along the lines of the general discussion in 3.1.1, integration on the fuzzy sphere is defined
by the following mapping:

1 1
= / a0 - LTey (3.37)

Differential calculus on the fuzzy sphere is three-dimensional and SU(2)-covariant [67].
According to section 3.1.1, the derivation is associated with the commutator of an element of
the algebra on the fuzzy sphere. Therefore, the derivations of a function f , along X, are given
by: . X

ea(f) = [Xa, f] - (3.38)

Consequently, the Lie derivative on the function f is given by:
Lof =X, f]- (3.39)
Now, let 0% be an 1-form dual to the vector field, ¢, that is:
(eq,0%) = 6° . (3.40)
Therefore, the exterior derivative, d acting on a function, f , yields:
df = [Xa, f]0° . (3.41)
Also the action of Lie derivatives on a vector of fuzzy sphere is obtained:
Lalen)] = Lalenf) = ev(Laf) 2 [Lay L0)f = CaneLef = Capceef = Laey = Cancee,  (3.42)
since the Lie derivative satisfy the Leibniz rule and the SU(2) Lie algebra commutation relation:

[La, Ly] = Copclec . (3.43)

Moreover, starting from (3.40), one obtains the action of Lie derivative on 1-forms:

3.42
( 4 )

Laley, 0°) =0 = (Laep,0°) = —(ep, LaH°) La60° = Copeb® . (3.44)

The above definitions and calculations of the differential calculus on the fuzzy sphere are very
important for the construction of our models.
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3.3 Gauge theory on fuzzy spaces

In this section the methodology that is followed in order to build gauge theories on fuzzy spaces
is described. In the beginning general features applicable on fuzzy spaces in general [33] are
presented without specialization, unless necessary.

First, let us consider a scalar field, ¢(X), which is an element of the noncommutative
algebra, A and a gauge group, (G. An infinitesimal gauge transformation is given by the relation:

56(X) = ia(X)p(X) (3.45)

which is a covariant transformation rule of the field ¢(X) and a(X) is an infinitesimal gauge
parameter depending on the coordinates, being a local gauge transformation. Also, it should be
remarked that the transformation a(X) could be Abelian or non-Abelian, depending on where
the parameter belongs. Specifically, if a(X) belongs to the algebra A, then it is an Abelian
transformation, whereas if it belongs in Mat(A), that is an algebra of matrices with entries
elements of A, then it is non-Abelian. It is worth-noting that a gauge transformation on the
coordinate X does not affect it, meaning that:

0X,=0. (3.46)

Recalling the case of the ordinary gauge theories, the transformation of a partial derivative of a
field, (0,¢())", is not covariant and similarly in the fuzzy case too, the transformation of the
product X,¢(X):

0 (Xap(X)) = iXpa(X)o(X) , (3.47)

is not covariant!?, since i X,a(X)@(X) # ia(X)X,¢9(X), since X, and a(X) are both elements
of the noncommutative algebra, A. Therefore, just like in the ordinary gauge theories, in which
the next step would be to define a derivative that would transform covariantly, here, too, one
has to define the fuzzy analogue of the covariant derivative, which is called covariant coordinate,
denoted as X,'!, which, by definition, fixes the transformation of the product X,¢(X) to be
covariant:

§(Xop(X)) = ia(X) X p(X) . (3.48)

From the above equation, one results with the transformation of the covariant coordinate:

60X, = i[a(z), X4] . (3.49)
The covariant coordinate, Xa, is related to the coordinate, X, as follows:

Xo=Xo+ Au(X), (3.50)

where A,(X) is an element of the algebra A and is the noncommutative analogue of the gauge
potential of the ordinary gauge theories. The transformation of the gauge field, A,(X), is

101t is not a covariant transformation in the sense that it does not transform linearly, as the field ng(X ) does, as
obtained in (3.45).

"'Until now, we had seen that X, was denoting the Hermitian operators of the coordinates of the fuzzy sphere,
(8.27). However, throughout the thesis we are using the anti-Hermitian operators, X,, given in (3.32), to denote
the coordinates of the fuzzy sphere, therefore, from now on, we commit X, o to denote the covariant coordinate of a
gauge theory.
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obtained in a straightforward way, starting from the transformation property of the covariant
coordinate, given in (3.49):

§Aq = ila(X), Ag(X)] — i[Xa, a(X)] . (3.51)

Until this point, the above analysis has been carried out without having specified the fuzzy
space and it applies for all cases of noncommutative gauge theories. Moving on, for the con-
struction of gauge-theoretic models, the next object that is necessary to be defined is the field
strength tensor. Again, drawing lessons from the ordinary case, the field strength tensor is gen-
erally defined as the commutator of the covariant derivatives. However, in the noncommutative
framework, this definition is not valid and there is no general formula applicable to all cases.
Therefore, one has to define the field strength tensor in different ways, depending on the type of
noncommutativity. Here, the field strength tensors for the canonical and Lie-type cases, (3.4)
and (3.5), are defined and, later on, the definition of the field strength tensor is provided each
time another fuzzy space is introduced.

Field strength tensor of the canonical case

The field strength tensor for the canonical case is defined as:
Top = [Xay Xp) — i04p - (3.52)

Replacing in the above expression the equation (3.50), in which the covariant coordinate and
the gauge field are related, then one ends up with an alternative expression for 7,;'2:

Top = [Xa, Ap) — [Xp, Aa] + [Aas A, (3.53)

in which the analogy to the ordinary gauge theories is manifest, judging from (let us say) the
(2.70). Moreover, it is important to check the transformation property of the above tensor, T,;:

5Tab = [Xa, 5Ab} — [Xb, (5Aa] =+ [(SACL,A(,] =+ [Aa, (SAb] . (3.54)

Replacing with the expression of the transformation of the gauge field, (3.51) and making use
of the Jacobi identity, the final expression for the transformation of 7y, is obtained:

8T = ila, Typ) - (3.55)

The above result of the transformation of the field strength tensor shows that it transforms
covariantly under the gauge transformation.

Field strength tensor of the Lie-type case

In the Lie-type case, the corresponding field strength tensor is defined as:

Fop = [Xo, Xp] —iCpf Xe (3.56)

2From now on we drop the explicit writing of the X -dependence for the sake of notational simplicity and will only
be recovered in case of possible confusion.
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where the C,° is related to the totally antisymmetric tensor. Repeating the procedure followed
for the canonical case, first one ends up with the following expression for Fj:

Fop = [chAb] - [Xba Aa] + [AaaAb] - iCabCAc ) (8.57)
and then its gauge transformation rule is obtained:
5Fab = i[a, Fab] , (3.58)

which is also covariant.

Instead of working with matrices, one can employ ordinary, commutative functions to con-
struct a gauge theory on a noncommutative space. If so, one has to replace in the above
expressions, such as the transformation of the gauge field and the field strength tensor, the
operators with functions and the ordinary product with a multiplication given by a x-product
defined for each space. The two ways of building gauge theories are equivalent, but we employ,
as said before, the matrix realization.

A last and important point we would like to stress concerning the non-Abelian noncom-
mutative gauge theories, is the manipulation of the anticommutators and, consequently, the
generic issue regarding the determination of the algebra in which the gauge fields are eventu-
ally valued. Let us consider a non-Abelian gauge group, GG, with generators denoted as 7%, the
gauge parameter, €(X) and the gauge fields, A,,(X). The commutator [e, A] is encountered in
the construction of a noncommutative gauge theory, for instance in (3.51) and can be written
more explicitly as:

e, A] = [T, AT = %{ea,Ab}[T“, ) + %[ea, AT, Ty | (3.59)

where the spacetime indices have been suppressed for simplification of the expression. In the
ordinary gauge theories in the commutative regime, the anticommutator of the first term in
the right-hand side is reduced to a product of the two elements and the last term is trivially
vanishing, since the commutator of two functions, €, A, is zero. Therefore, one does not have
to deal with the anticommutator {7% T°} at all in the commutative case. However, in the
noncommutative case, the commutator of the last term is not vanishing, since functions of X
no longer commute and therefore one has to pay attention on the anticommutator {7%, Tb}. In
general, the anticommutator of the generators of a Lie algebra in an arbitrary representation,
does not yield generators of the algebra, but instead, elements outside of it, in other words they
do not close. Thus, restriction to the specific initial (matrix) algebra is not achievable and further
considerations have to be taken. The first option is to employ the universal enveloping algebra,
which means that every element (product of generators) produced by the anticommutator has
to be included in the algebra, meaning that one would result with an infinite-dimensional
algebra including every possible outcome of the anticommutators. Although this option is
valid, the fact that the algebra would be infinite is not desirable for our purposes. The second
option to overpass this drawback is to fix the representation of the generators, so that the
anticommutators of the generators will produce only a limited number of operators outside the
algebra and then include them all in the initial algebra as generators. Therefore, the final gauge
group will be enlarged with the outcomes of the anticommutators, all accommodated in a fixed
representation'3. The second option is the one we adopt in the next sections in the construction
of our gauge theories on noncommutative spaces.

5This way, the enlargement of the algebra is limited leading to a larger but finite set of generators.
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Chapter 4

The fuzzy spaces Ri and Ri\’Q

4.1 The fuzzy space R}

As we described previously in section 3.2, the fuzzy sphere is a noncommutative space which is a
matrix approximation of the ordinary sphere and its coordinates satisfy the SU(2) commutation
relation, (3.31), along with the Casimir relation, (3.28), which is actually the radius constraint.
The R?)’\ space is a noncommutative space, the description of which is based on the fuzzy sphere.
Let us consider the fuzzy sphere case and modify it in the following way: for a fixed \ (see
(3.31)), one relaxes the Casimir condition, (3.28), which means that the matrices of the coordi-
nates, X, are allowed to live in reducible representations. The reducibility of the representation
allows one to write the matrix X, in a block diagonal form of irreducible representations, in
which the Casimir condition still holds for each distinct block, in other words, each block de-
scribes a fuzzy sphere. Therefore, Rif\ can be written as a direct sum of fuzzy spheres with all
possible radii determined by NV € N (IV is the value of the angular momentum, [) [91,95-97]:

R = > Sk = P Mat(N,C). (4.1)
2NeN 2NeN
Therefore, the ]Ri can be viewed as a discrete foliation of three-dimensional Euclidean space by
multiple fuzzy spheres, with each fuzzy sphere being a leaf of the foliation. Although the above
matrix description would be enough for our purposes, it is instructive to include the description
of ]Ri through the construction of its x-product.

Let us now pick up the thread from 3.1.1 section, specifically from the Weyl quantization
part, in which the Fourier expansion was used for the function f(z) and then the Weyl ordering
led to the corresponding x-product of RZ. Then it was noted (under (3.17)) that the choice of
the Weyl correspondence is not unique. Indeed, proving the point, one may define:

1y ;0.2
p= T 4.2)

V20

and then, using (3.17) and (4.2), it is straightforward to obtain the x-commutator [z ¥ Z] as:
[z¥z]=1. (4.3)

Then, having the above relation at hand and since any function f(z, Z) can be expanded as:

f(2,2) = frmz"2", (4.4)

90



it is possible to employ, instead of the Fourier expansion of the functions, the above Laurent
expansion in order to define an operator, like the one in (3.6). Instead of the Weyl correspon-
dence, this time the harmonic oscillator creation and annihilation operators aT, a (see Appendix
B) are used, obtaining an operator which is "normal ordered". This change in the ordering is
the reason why the resulting x-product of the Rg X Rg is a different one! and, as it will be shown
in a while, it is the specific x-product that leads to the one of R?j\. In order to get the reduced
x-product for the R?, a noncommutative version of the Hopf fibration® has to be employed, with
which it will be shown that the algebra of functions of Ri is equivalent to a sub-algebra of the
functions defined on Rg x R2, which are also invariant under the transformation:

z1 — €%, 29 — €Y%z, (4.5)

or equivalently, in the coset space language, Ri = (Rg X Rg) /SY. In other words, the desired
Ri *-product will be obtained as a reduction from the *-product of the four-dimensional Moyal
plane, Rz x RZ, which is obtained by using the normal ordering. Therefore, summing up the
procedure, first the desired x-product on the four-dimensional Moyal plane is obtained, making
use of the harmonic oscillator basis and the coherent states and then the x-product of the
Ri is obtained as a reduction from the first, employing a noncommutative version of the Hopf
fibration.

In order to result with this noncommutative version of the Hopf fibration, the first step is
to start with setting the four-dimensional coordinates to be noncommutative, that is to employ
the four-dimensional noncommutative space Rg X Rg (instead of R?* or (CQ) which is defined by
the following commutation relation of its coordinates:

[Za H Zb] = Oab , (4.6)

as found in (4.3). As we mentioned before, the C*-algebra, A, is considered to be either a
commutative algebra of functions equipped with a %x-product, or noncommutative algebra of
operators with the ordinary product. Switching to the operator language, the coordinates z,, Z,
are replaced by the creation and annihilation operators, ajl, ap,a,b = 1,2, of a system of two
uncoupled harmonic oscillators satisfying the commutation relation, [a,, a;g] = 04, (B.2), which
is actually an operator version of (4.6). The eigenstates of this two-dimensional harmonic
oscillator system are denoted as ]n1n2> (see equation (B.6)) and are built by acting successively
with the creation operator on the vacuum state, defined in (B.8).

Now, as a generalization of the definition of the coherent states® for a z € C, to any vector
7 € C? a coherent state can be assigned:

122

zaaz
|2) = |z122) = e 2 ¢ "|00) , (4.7)

! Although the x-commutator was given in (4.3), the z x Z and Z % z are yet to be found.

>The Hopf fibration is a predecessor of the fiber bundle and describes a 3-sphere in terms of a 2-sphere and a
circle (1-sphere). More specifically, it is a map (projection) from a 3-sphere to a 2-sphere such that every point of
the 2-sphere originates from a specific circle of the 3-sphere [98,99]. This means that the 3-sphere is made of fibers
(circles) one on every point of the 2-sphere. This scheme is written as: S* < 3 & 52, meaning that the S* (fiber
space) is embedded in S* (total space) and p : S* — S? (Hopfs map) projects the S* on S? (base space). For
further (technical) details see Appendix C.

SNecessary information for the present work about the coherent states is given in Appendix D.
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where |Z]2 = 2z = z,2,. Also, for this C? case, for two coherent states 7,7, according to (D.8),
the non-orthogonality relation is:

2222 o
177 _ 1

(M2 =e 2 2117, (4.8)

and according to (D.7), the (over-)completeness relation is:

1
)

d*z|Z) (2] = (4.9)

where d?Z = d%z1d% 2.

Now, having at hand the above machinery, let us proceed with obtaining the desired *-
product on Rg X Rg. As mentioned earlier, for this purpose, it is necessary to associate the
operators of the noncommutative algebra to commutative functions with the modified product,
in other words, to find a correspondence between them. Let us consider an operator f € Ay,
where A, is the algebra noncommutative algebra generated by the creation and annihilation
operators. To this operator a function f € A4 is associated, where Ay is the algebra of functions
on Rg X Rz, generated by z, and Zz,:

#1112 = f(22) . (4.10)
The product of two operators, f , g will give the x-product f * g:

(F*9)(E2) = @fole) = 5 [ Eaafimiml @1

where the completeness relation has been employed. The quantities (7] £l and (7jg|Z) are
obtained using the translation, acting twice on the functions f(Z,Z) and g(Z, ), using (4.10)
and the fact that (z|z) = 1:

2 AE) _ —n EfIE D _ ASIE+T- 2 _ (D)

e @ ong " 0zq = —— = g , (4.12)
(z]2) (212 + 1) (224177 2) (Z177)

ol a2 (Fl917) _ —z2 (F4MglE)  (F+i—Z912) (71912

(&} Na € Za = e Na = = = - = p— = = (413)
(z]2) (Z+72)  (F+7-272) (2

The above double action of the translation operators (on n7-independent functions) can be written
in each case as an ordered exponential, as it is shown in the following equations:

C@fln _ @afi-z+a _ @k
#12)  @i-Z2+2) (@D

5 (ana) , (E12) _ FT- 291D _ (912 w15

(#212)  F+i-22) ({712

In the first relation, the derivatives are ordered to the right in each term in the Taylor expansion

and they act also to the right, while in the second relation, the derivatives are ordered to the left

in the terms of the expansion and they act also to the left. Replacing the above normal ordered

expressions, (4.14) and (4.15), into (4.11), one obtains:

7 _
e(”]a—za)ﬁ . f(z, g) — e(na_za) 2

e

(4.14)

5 _
L eBzq o= a) g(Z,2) =:e

5 1 S pl 3 a*za b a Za 3 i
UG5 = 5 [(@AFED: 0 @ P g5 wae)
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In order to determine the x-product, the measure d?7j and the scalar product |(Z]77)|? are speci-

fied. In analogy to the measure in the z € C case, (D.6), the 1 d?f measure is #dRe(m)dI m(n1)dRe(n2)
dIm(nz). The product |(Z]7)|? is obtained easily, starting from the non-orthogonality relation,

(4.8). Therefore, one obtains:

172 _ 1212 | 5 A2 122 | 5 _—
1P = <+) ( ; +zn> = el @17

Therefore, the integral (4.16) takes the following form:

O N 0 PO i .
(fx9)(z,2) = 7T2/d277f(  2) : ePma laRa) o2 plla=Za)5 L g 2)
1 - 8. _=2,.- 8 -
— 72 dQﬁf(gj g)eaZaT]a In‘2+7]a32a‘g(z’ 2’) , (4.18)
T

where in the last line, a change of variables took place and the ordering of the exponential
function was omitted. In the last expression of the above equation, the integrand is Gaussian
and the result after the integration is:

5 7
(f % 9)(2,2) = f(Z,D)ev 75 (2, 5) . (4.19)

This is the resulting expression of the x-product of the four-dimensional Moyal plane, induced
by the normal ordering and it is known as Wick-Voros x-product [92]. Using the above relation,
the x-product of the coordinates z,, Z, of Rg X Rg is found to be:

5 3 o 9
ZHZ =249 0%Z, =z, |1+ — | 2o = 242+ 1, (4.20)
0z, 0Z,

and similarly, zZ* z = Z,7,. The difference of these two results confirms equation (4.3), in which
[z%z] =1

Now that the x-product of the four-dimensional Moyal plane is obtained, the calculation
of the R?)’\ *-product as a reduction from the Wick-Voros x-product, (4.19), is possible. For
this purpose, besides the coherent states, attention is turned in the usual two-dimensional
harmonic oscillator basis, ), defined in (B.9). However, it turns out that the most effective
), is given by (B.17).

The coherent states can be expanded in the Schwinger basis as:

0o JL m=j ;
v/ (25)!
(2)) |jm) . 4.21)

=V, =, (j +m)l(g —m)

Next, in order to result with the x-product of the ]R?)’\, the noncommutative version of the Hopf
fibration is employed. For this reason, the subalgebra A3 C Ay is considered, generated by

A 1
the X* ialcr;baf and the corresponding subalgebra of functions of A3 C A4 is given by the

) 1 ) .y
relation (C.16), z' = §Zaaébzb. Writing X* in the angular momentum basis, given in (B.10),

4The relevant discussion is under (4.6).
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expressing X9 in terms of the number operator®, (B.12), of Appendix B:

A 1 1
XO = 5@1;1[(1@ = §N s
X = 3 (aaag + a2a1) =3 (Jy+Jo),
A ] 1
X% = —% (a{ag — a£a1> =5 (Jy—J2)
N 1
X3 = 3 (a];al — a%@) =J,, 4.22)
and calculating the Z?:l X', one obtains:
. . . 1 1
X'+ X2+ X3 = 1+ J_)%— G J_)+J2
1 N (N 0,

where the expression of the Casimir operator, (B.13) has been used. The Casimir operator
commutes with every generator of the algebra, therefore, one is led to the crucial conclusion that
X0 commutes with all X*’s and therefore, the subalgebra A3 can be defined as the subalgebra
of A4 of all elements commuting with X0.

Vi(a',a) e Ay | [X, fl=0 = feAs. (4.24)

Let us translate the above condition for an operator f € 1213 to the language of functions:

— =
4.19) 1_ 8 8
= §zaza 14+ —

= % (2000 — 2a0a) f(2,2) = Lof(2,2) - (4.25)

Therefore, the elements of the algebra, A3 are functions of z,, Z, which belong to the algebra
of functions A4 that are also subjected to the constraint £y f(z,z) = 0. It is worth-noting that
the operator £, when acting on a *-product of functions f(z, Z), g(z, Z) is actually an operator
of derivation:

Lo(f*g) = (Lof)*g+ fx(Log) , (4.26)

which is easily confirmed by straightforward calculations in both sides. Therefore, if the func-
tions f(z,Z), g(z, Z) belong to the subalgebra As, it is deduced from the above equation, that
Lo(f *g) =0, since Lof(z,2) = Log(z,Zz) = 0. This is an important result because it implies
that the subalgebra Aj is closed under the Wick-Voros x-product, i.e. if f,g € A3 = f*xg € As.
The property of closure along with the fact that all functions of A3 can be expressed in terms of
2, 20, allow the redefinition of the Wick-Voros x-product in terms of the x%’s and their deriva-
tives. To see this, the derivations on functions of A3 are recalled:
0 1, 0 0 10 o
872@ = izbaba@ , 872@ 28$Z Oap?b - (4.27)

5The function z° is given as 20 = %éa Za, as given in (C.18)
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Also, using the relation for the product of two Pauli matrices, oo’ = 691 + i€’*o* and the
definitions of z° and z’, which are 20 = 1zz and ' = %Zaaébzb, respectively, one obtains

2
another useful relation, that is:
Zyoi, 00 20 = 2(09 20 + ieik gk | (4.28)

Now, using the above two relations, (4.27) and (4.28), the expression of the Wick-Voros x-
product, (4.19), takes the following form in a straightforward way:

(f % g)(@) = ez H 5055 1 (0 g (5) | ums - (4.29)

The above equation gives the x-product between any functions of A3 and, considering its Taylor
expansion, produces the following relations:

S 1 9 o1 .. 1 . g
i =11 ~rsmn,.0 - mnk .k i — ol = (515 ,.0 - ijk, k
' * T +2(5 x + e a:)—axm—axn 'l =2'x +2(5 x” 4 i€ )
o 1 .. .
o) * ot =z + 5(5”x0 — ieldkghy (4.30)

The difference of the above two equations produces the x-commutator of the Ag:
(2% % 27] = ieTkah (4.31)

Also, from the x-product of As, (4.29), one obtains two more interesting relations, specifically:

) 1. 1
2%zt = 2% + 5352 , 20 %29 = 20 (xo + 2> , (4.32)
where the expressions ' = Vziz? and hence gﬁ? = ;”—8 Also, from the first of the above
equations it is understood that:
[0 * 2] =0. (4.33)

The commutator [x° * 27] of (4.31) shows that the subalgebra A3 can be viewed as an algebra
of functions on the Ri with the x-product that of (4.29). The commutator of the corresponding
coordinates in the operator language, recovering the constant 6 = A, would be:

(X X9 = ixéik xk (4.34)

It should be remarked that if one had chosen the Moyal product instead of the Wick-Voros
product, then the reduction would be indeed achieved but the corresponding three-dimensional
*-product would be expressed in a more complicated way.

4.2 The fuzzy space Ri’Q

The above construction of the fuzzy space ]Ri based on SU(2), that is the foliation of the three-
dimensional Euclidean space by fuzzy spheres of different radii, has a direct analogue in the case
of the Minkowski signature based on SU(1,1). In this case, the three-dimensional Minkowski
space is foliated by a set of fuzzy hyperboloids of different radii.
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First, in general, the n-dimensional de Sitter space, dS,, is a maximally symmetric Lorentzian
non-compact manifold with constant, positive curvature and is the Lorentzian analogue of the
n-sphere. It is defined as an embedding in the (n + 1)-dimensional Minkowski space through

the relation 7,z%z® = r2, where 1., = diag(—1,1,...,1) is the (n+1)-dim Minkowski metric, in
the same way as the n-sphere is defined as an embedding in the (n + 1)-dimensional Euclidean
space through the equation J,z%z" = r?, where 6, is the metric of R"*!, §,;, = diag(1,...,1).

The AdS,, space is also a maximally symmetric Lorentzian non-compact manifold with constant,
negative curvature and is obtained from the same embedding as the d.S,, space replacing > —
—r?, and considering the metric n;b = diag(—1,1,...,1,—1). In all above cases, r specifies
the curvature radius. Below, there are the three cases of Sy, dSys, AdS4, specified in the four-
dimensional case:
5
Z =pata’ =12 = il vl =12 (Sy) (4.35)
a,b=1
5
Z = nupr?a’ =12 = —ai4ad vttt a2=12  (dSy) (4.36)
a,b=1
5
Z =2t =r? = —at4ad+ad4a? —22 =12 (AdSy) (4.37)
a,b=1
Now, let us consider the two-dimensional cases of the non-compact spaces with constant cur-

vature, i.e. the dSy and AdS>°. According to the above, the de Sitter and Anti de Sitter defining
relations are:

nabx“xb =7 = —x% + x% + x% = r? (4.38)
npria’ = —r? = 22 +ad—ai=—? = 22 a3+ al=12, (4.39)

It is evident that d.S, is obtained from AdS> by switching x; and z3 in (4.39) and changing
the overall sign of the metric [100] and vice versa. That is the reason why, in the specific
two-dimensional case, both cases reduce to one, that is known as the one-sheeted hyperboloid.
The isometry group of the hyperboloid is the SO(1,2), or its cover SU(1, 1)?. The generators of
SU(1,1), J,, satisfy the following commutation relations:

[J1,Jo] = —iJs, [Jo,J3) =iJ1, [J3,J1] =iJ2, (4.40)

from which it is possible to extract the structure constants, C',°, of the algebra, namely C5 =
—0231 = —0312 = —1, with their indices getting lowered or raised by the (mostly positive) three-
dimensional Minkowski metric, 7., = diag(1, 1, —1). Therefore, the structure constants with all
indices lowered, Cy., are determined by the relation:

[Jay ] = iCyfTe = [Jay Jp] = iCapen®Jy (4.41)
and are found to be C23 = C31 = (315 = 1. Also, the Casimir operator is given by the relation:
3
J= P Jady=J7+ 55 (4.42)
a,b=1

SThere is another one, the Lobachevsky plane, H?, which completes the list with all three such spaces.
“The SU(1,1) covers the SO(1,2) group in the same way as the SU(2) double-covers the SO(3).
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As in the SU(2) case, in order to study the irreducible representations of the group, it is conve-
nient to define the ladder operators, J+ = J; £iJ2. From this study, it is shown that all unitary
irreducible representations are infinite-dimensional, while all finite-dimensional are not unitary
8

Now, in analogy to the fuzzy sphere, it is possible to define the fuzzy two-dimensional hy-
perboloid space, de in terms of three Hermitian operators (matrices), specifically the rescaled
generators of SU(1,1), namely X, = AJ, (in analogy to (3.27)), and identify them as the coordi-
nate operators (matrices) of the fuzzy space. The commutation relation they satisfy is:

[Xo, Xp] = iAC, X, (4.43)

where C abc are the structure constants of the SU(1,1) algebra. However, in order to result with a
fuzzy version of the hyperboloid, its coordinates must satisfy an operator-analogue of the radius
constraint, given in (4.38). This constraint in the operator language coincides with a modified
Casimir relation of the SU(1,1) generators, that is the relation (4.42) in terms of Xj:

3
> n™Xa X, =N - 1), (4.44)
a,b=1

where j(j — 1)? is the eigenvalue of the Casimir operator, .J2.

In analogy to the definition of the fuzzy space Rg’\, the fuzzy space Riz is defined after
relaxing the Casimir constraint of the coordinates, (4.44), allowing the coordinates to live in
(infinite-dimensional) reducible representations, which means that they can be described in
a block diagonal form, with each block being an irreducible representation of SU(1,1), that is
a fuzzy hyperboloid. Therefore, representation reducibility induces the definition of Rig as a
foliation of fuzzy hyperboloids of all different radii. This concludes the study of the two three-
dimensional fuzzy spaces that will be used for the construction of three-dimensional gravity

models as noncommutative gauge theories.

4.3 Noncommutative covariant spaces and fuzzy dS,

In this section we construct a fuzzy version of the dS; space [78], which was defined in
(4.36), as a submanifold of the five-dimensional Minkowski spacetime with metric nap =
diag(—1,1,1,1,1). Specifically, the embedding relation reads:

n*Prazp = R, (4.45)
where A, B = 0,...,4 and summation of the indices is implied.
Now, in order to obtain the fuzzy version of the above space, its coordinates must be replaced
by operators of an algebra A, represented by matrices and therefore satisfy a commutation
relation of general form of (3.2), that is:

[Xa,XB] =i0ap(X), (4.46)

8For more information about the classification of the unitary irreducible representations of SU(1,1) see [101].
9The spin value j is associated with the dimension of the matrix representing the operators of the coordinates,
specifically (25) = N.
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where 6 4p incorporates the type of noncommutativity. If 6 45 was considered to be a constant
antisymmetric tensor (canonical case) [12], then Lorentz invariance would break, since there
would be a directional preference. Recalling the fuzzy two-sphere case (Lie-type case), in which
the coordinates do not commute according to (3.31), the 6 4p of the above, general relation is
K€ AgX ¢- This means that the commutator of two coordinates, that is two rescaled SU(2) gener-
ators, produces an (obviously rescaled) element within the SU(2) algebra, ensuring covariance
(coordinates transform as vectors under rotations). Following the same methodology as in the
fuzzy sphere, for the construction of the present fuzzy de Sitter space, its noncommutative
coordinates should be also identified to some generators of its isometry group, that is SO(1,4).
Nevertheless, such a choice is not successful, because identification of the coordinates with
SO(1,4) generators breaks covariance, because the algebra is not closing, specifically, the 04p
of the right-hand side of the (4.46) cannot be assigned to generators of the SO(1,4) algebra.
However, preservation of covariance has to be taken axiomatically, therefore in order to be
preserved in this case, a group of larger symmetry has to be employed, in which we will be
able to include all generators and noncommutativity in it, with an appropriate identification,
that is the coordinates to transform as vectors under the action of the Lorentz transformations.
In order to achieve this, the minimum extension of the symmetry leads to the adoption of the
SO(1,5) group. For convenience, to facilitate the formulation of the above scheme, we employ
the Euclidean signature from now on, meaning that the symmetry group is extended from SO(5)
to SO(6)'°.

Let us consider the fifteen generators of SO(6) by J4p, with A, B = 1,...6, satisfying the
following commutation relation:

[Jag,Jcp] =i(0acIBD + 0BDJAC — dBCIAD — 0ADIBC) - (4.47)

Now, let us perform a decomposition of the above generators in an SO(4) notation and redefine
the generators as:

1 1 A 1
Jmn = ﬁ@mm Ims = XXma JIme = %Pma J56 = ih ) (4.48)
where m,n = 1,...,4. The parameter A has been introduced for dimensional reasons and

X, P, ©Omn are identified as the coordinates, momenta and noncommutativity tensor, respec-
tively. Coordinates and momenta satisfy the following commutation relations:

A2 h
)\2
[(Xon, Pa] = ihbmaht,  [Xon,b] = i% Py (4.50)
. h

where the first one, (4.49) is of interest, in which it is manifest that the commutator of coor-
dinates close to the SO(4) part of the total SO(6) symmetry group. The algebra of spacetime
transformations is:

(X, Onp] = i1(0mp X — Omn X ) (4.52)

In the Euclidean signature, the study that follows could be viewed as it is about the construction of the fuzzy
four-sphere.
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[P, Onp] = i5(6mpPr — S Py) (4.53)
(O Opg) = ih(0mp©Ong + 01gOmp — 0rpOmg — OmgOnp) (4.54)
[h, O] =0 (4.55)

Again, the first commutation relation, (4.49), shows that coordinates transform as vectors under
the action of the Lorentz group (group of rotations, (4.54)), confirming the important virtue of
covariance of the space. The above algebra, in contrast to the Heisenberg algebra (see ref. [102]),
admits finite dimensional representations for X,,, P, and 0,,,, thus we have obtained a model
of spacetime which is a finite quantum system. Including the fuzzy two-sphere, ]R‘}\ and R}\Q
spaces like the one above are called fuzzy covariant noncommutative spaces [62,63,103]. As we
will describe in detail later, this space is employed for the construction of our four-dimensional
gravity model as a noncommutative gauge theory.

Covariant field strength tensor on fuzzy dS,

As we described in section 3.3, the field strength tensors of the canonical and Lie-type nonom-
mutativity, (3.52) and (3.56) respectively, can be written as the commutator of the covariant
coordinates plus an extra term:

Top = [Xa, Xp) — i0ap,  Fap = [Xa, Xp] —iC X, . (4.56)

This extra term is related to the right-hand side of the commutation relations of their coordi-
nates:
[Xa, Xp] =04 , [Xa, Xp] =iC 1 Xe . (4.57)

In the canonical case, in which the coordinates commute in a non-covariant way, the extra term
is an antisymmetric fixed tensor, while in the covariant Lie-type case the extra term involves
the coordinates in a linear way. The presence of this second term in each case, although it
seems to spoil the analogy to the commutative case, is a necessary ingredient because it is its
contribution that makes the field strength tensor to transform covariantly, as shown in (3.55)
and (3.58).

Now, in the present fuzzy de Sitter case we are formulating [78], the noncommutativity
tensor is a constant antisymmetric tensor (generator of the symmetry group), pointing at a
relation to the canonical case with constant noncommutativity, but also it consists a covariant
space (it was built this way), pointing at the Lie-type case. Therefore, it is controversial into
which case the fuzzy de Sitter space should fall. The answer is that it cannot be classified into
any of these two cases, therefore, it should be examined explicitly. As shown in the first relation
of (4.49), the fuzzy de Sitter space is defined as:

2

A
[(Xa, Xp] = 7O ®1, (4.58)

where 1 is a pXp unit matrix, where p is the dimension of the representation of the gauge
group!!. Because of the independence of the right-hand side of the above commutation relation,
(4.58), of the coordinates, X,, the obvious definition of the field strength tensor would be:

SN 22
Fop = [Xa, Xp] — i7 @ Oal . (4.59)

"!This will be clear later when we develop a gauge theory on this space.
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If we consider a gauge transformation of the field strength tensor, §F;, then straightforward
calculations lead to the following result:

2

0F,, = [6, Fab] - i%[e, O ® ]1] , (4.60)
where € = €(X) is a gauge parameter. Also, the fact that the coordinates, X,, and consequently
the noncommutative tensor, O, are invariant under the gauge transformation, § X, = 60, =
0, has been taken into consideration in the calculation. However, in the above expression it
is evident that the field strength tensor does not transform in a covariant way (since there is
no reason for the second commutator in the right-hand side to vanish) like in the canonical
and Lie-type cases, (3.55) and (3.58). In order to ameliorate the above undesirable result,
the definition of the field strength tensor has to be modified appropriately, specifically in the
following form:

. s s ir? .
Fap = [Xa, Xb] = O (4.61)
where éab is a tensor defined as:
Oup = Oup © 1+ Bap , (4.62)

where B, is a non-Abelian 2-form gauge field, which also takes values in the considered gauge
group of the theory under construction. Therefore, calculations lead to the following expression
of the (infinitesimal) transformation of the field strength tensor:

6Fab = i[e, Fab] , (4.63)

that is a covariant transformation.

This concludes the section for the description of the fuzzy spaces we are going to employ
for constructing gauge theories on them. Also, it includes information about the methodology
and steps to follow for their construction and we are going to follow them, too, in building such
models (particle and gravity) in the next sections.
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Chapter 5

Noncommutative three-dimensional
gravity as a gauge theory

In this section we construct a three-dimensional gravity model as a gauge theory in the non-
commutative framework [79] (see also [80,81]) as a careful translation of the gauge-theoretic ap-
proach of the Einstein’s three-dimensional general relativity (section 2.2), in which the Poincaré
or (A)dS algebras were gauged. For this undertaking, we put into use the general methodology
of the construction of gauge theories on noncommutative spaces (section 3.3) and specialize for
the two three-dimensional covariant fuzzy spaces, Ri and Ri’Q (section 4). With this toolkit at
hand, we follow the standard procedure and move on with the construction of the model.

As we discussed in section 2.2, the results of the three-dimensional Einstein gravity were re-
covered by a Chern-Simons gauge-theoretic approach of the ISO(1,2), Poincaré algebra, with the
covariant derivative (or more precisely the gauge connection (2.43)) encoding the information of
the dreibein and spin connection. Here, we aim at a three-dimensional (noncommutative) grav-
ity model with positive cosmological constant, therefore the symmetry group to be gauged is the
SO(1,3) in the Lorentzian case [104] and the SO(4) in the Euclidean one, with the corresponding
fuzzy spaces accommodating these gauge theories being the R?)’\ and Ri’Q. In these two cases,
the information of the dreibein and spin connection are incorporated into the covariant coordi-
nates. The whole undertaking was initially inspired by the ones considered in refs [34-38] in
which the authors consider group structures that refer to four-dimensional cases without cos-
mological constant. Especially for the three-dimensional case, relevant refs are the [39-41,105].
Compared to our approach, in the above works the deformations are based on the x-product of
each space considered and the Seiberg-Witten map is employed [42], while in our approach the
matrix representation of the operators of the noncommutative algebra is used.

As we mentioned above, the gauge groups we use in the two signatures are the SO(1,3)
and SO(4). We turn to their double groups, which are the spin groups Spin(1,3) and Spin(4),
which are, in turn, isomorphic to SL(2,C) and SU(2)xSU(2), respectively. Let us now split the
discussion of the two signatures, for better understanding.

The Lorentzian case

In the end of section 3.3, we discussed in detail the generic issue encountered in the non-
Abelian, noncommutative gauge theories, that is the non-closure of the anticommutators of the
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generators of the algebra. Obviously, the same feature appears in this case, too, for the gener-

ators of the SL(2,C) gauge group. Therefore, according to the general treatment, the first step

is to fix the representation, namely the spinor representation, in which the six generators are

represented by commutators of the four-dimensional Lorentzian gamma matrices, specifically:
1 1

ZAB:§PYAB:Z[’YA7’)/B]’ A,B:1774 [51)

The commutation and anticommutation relation of the above generators are obtained starting
from the following product relation [106]:

[YaB;vop] = 8najcYD)B) 5 (5.2)
{vaB;vep} = dncnapl + 2ieapcps (5.3)

where 75 = 717273 74. In the above anticommutation relation, (5.3), the only two elements
that are produced by the generators of the algebra in the specific representation are the four-
dimensional unit matrix, 1 and the -5 matrix. Therefore, according to the indicated treatment,
these two elements have to be included in the algebra, extending it to an eight-dimensional one,
that is precisely the GL(2,C) generated by the generators {yap, 75,41}

Now, we move on with an SO(3) decomposition on the above generators, for reasons of
appropriate identification of the gauge fields that will be introduced in a while. Therefore, we
define the generators 7¢ = eabc%c and ¥, = 7a4, with a,b,¢c = 1,2,3. These redefinitions of
the generators allow us to rewrite the commutation and anticommutation relations of (5.2) and
(5.3) in terms of the SO(3) decomposed generators:

[’7% ﬁb] = _4€abc,?c , [ﬁaa ﬁ/b] = _4€abc’7C s [ﬁm’?b} = Eabcﬁ/c (5.4)
{(3%,4" = =8nwl, {307} =460y, (a0} = 271 (5.5)
3 =0%71=0, {¥"Fa} =47, {".7"}=i", (5.6)

where in the last line the relations [y?, v4%] = 0 and {7, ¥4} = ieABP~cp have been used.
Therefore, we have ended up with a theory with gauge group the GL(2,C). The three-
dimensional space we employ for the construction of this theory is the R1’2, that is the foliation
of the three-dimensional Minkowski spacetime by fuzzy hyperboloids, discussed in 4.2, in which
the three coordinates, namely the operators X,,, (4.43), have been identified as the rescaled
SU(1,1) generators in a reducible representation. In order to proceed with the construction of
the gauge theory, following the steps discussed in 3.3, we introduce the covariant coordinate,
(3.50), which is given as:
Xy=X,+A,, (5.7)

where © = 0,1,2 is a space index and A, is the gauge connection. The gauge connection is
a function of the operator-coordinates, X w which also takes values in the algebra GL(2,C),
therefore, if its generators are denoted collectively as 7%, where @ = 1,...,8, then it can be
expanded on them as:

Ap(X) = AL(X) T . (5.8)

It should be noted that between the gauge fields, A% (X) and the generators T, the ordinary
product would be meaningless and it is replaced by the tensor product because the gauge fields

'We use the set of gamma matrices as in ref. [36]. We denote their 7o matrix as 4 and also consider the n4 = —1
in the mostly positive four-dimensional Minkowski metric we employ. See also [107] for more details.
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are now functions of the coordinates which are not mere variables but NxN matrices and the
generators are 4 X4 matrices (spinor representation). Now, we write down the explicit expansion
of the gauge connection onto the generators, T% = {3%, 7,,41, 75 }:

Au(X) = e, (X) ®Fa + W, (X) @0 + Au(X) @il + Ay (X) ® 75 , (5.9)

where the gauge fields attached to the 7, and 7, generators have been identified as the dreibein,
e;(X) and the spin connection, w,/(X), respectively, following the corresponding identification
in the commutative case, (2.43). Here, due to noncommutativity, we have introduced two more
U(1)-type (Maxwell) gauge fields, the A, (X) and flu (X). We also consider the gauge parameter,
€(X), which is also valued in the algebra of the gauge group and therefore, it also expanded on

its generators as:
€(X)=&X) @Y + A (X) ®Fa + (X)) ®il + €(X) @75 . (5.10)

Having written down explicitly the expressions of the gauge connection and the infinitesimal
transformation parameter, we proceed with the determination of the transformations of the
component gauge fields, using the standard transformation rule of the covariant coordinate,
(3.49)%:

Se, = —i[Xp + Ay € + 2{wpp, Ec3e™ + 2{eup, A} + 22‘[&, Au] + 2ilé0, wya] + ile0, €pa]

a . a abc 1 abe a ~ ( a
Sw, = —i[ X+ Ay A + 2{wpp, Ac ke — 5 tews €™ + b [g pl +ileo, W]+ 5[0, e
0Au = —i[Xy + Ay, eo] — i[€", epal + 4[N, wpa] — i[éo, Au] )
0A, = —i[X, + A, &) + 20[€%, wua] + 20\, epa) + ileo, AL - (5.11)

At this point we stress two important comments on the above transformation rules of the gauge
fields, regardlng two limits. First, had we started with the construction of a gauge theory on
the R1? \~ space with an Abelian, U(1), gauge group, its covariant coordinate would be just X
X, + A, and from its standard transformation rule we would obtain the transformation rule
(5AM = —Z[X 1, €0] +i[€o, A,] for the gauge field, where ¢ is the corresponding gauge parameter.
This Abelian gauge theory lies under the GL(2,C) gauge theory we build and this becomes
manifest if we set e;', w, ", fl# = 0 and their corresponding parameters equal to zero. Therefore,
the only non-trivial transformatmn in (5.11) would be the d A, = —i[X,,, €o] + i[€o, A,], which is
identical to the transformation rule of a noncommutative Maxwell gauge field, as we mentioned
above. Thus, we understand that the Maxwell sector is always present whether the dreibein
is trivial or not. The second limit is the commutative one, in which the additional fields to the
ones related to the gravity disentangle, so we can set 4, = flu = 0. Also, in this limit, for the
inner derivation becomes the ordinary derivative according to the mapping [ X ws f | — 10, f (see
3.1.1). Thus, the expressions of the transformations of the surviving fields, e;',w," obtained in
(5.11), become:

(56: = —0,§" — 4£bwuceabc — 4)\176#06“1"3

5“}# = —0u\" +£beuce — AN pwc€” abe (5.12)

2Here, due to the definitions of the generators of the gauge group, instead of the (3.49) we use the 6X = e, X ].
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The above expressions resemble the ones in the gauge-theoretic approach of the Einstein three-
dimensional gravity with positive cosmological constant, (2.62) and become identical to them
after the consideration of the following redefinitions of the generators, gauge parameters and
gauge fields:

\/X a a 1

Yo — \2/%Pa s Yo — —A4da, 4hg — A4, fj% - =", e, — 5 6 Wa _Zwua .

(5.13)
Therefore, in the commutative limit, the transformations of the fields of the three-dimensional
gravity are successfully recovered.

Moving on with the construction of the gauge theory, the next step is to calculate the field
strength tensor which will yield the expressions of the component curvature tensors. As we
mentioned in section 3.3, since the fuzzy space we work on is of Lie type, according to equation
(3.56), the field strength tensor will have the following form:

Ruw = [Xu, X)) —iXC 0 X, . (5.14)

The curvature tensor R, (X) takes values in the algebra, therefore it may be written as expan-
sion on the generators:

Ruw(X) =T, 4(X) ® Yo + R, HX) @ Fa + Fu(X) @ il + Fjup(X) ® 75 - (5.15)

Combining the equations (5.7), (5.9), (5.14) and (5.15), we obtain the following expressions of
the component curvature tensors:

lea =i[X,+ Ay e —i[ X, + Ay, elf] — 9ebe ({ewps woe} + {wups eve})

+2i ([w,u,av AI/] - [wl/a? A/L]) - i)‘cpypepa ’ (516)
Rlﬂ(/l = i[XN + AM’ wl/a] - i[XV + Ay, wﬂa] + ebe (%{euba 61/0} - Q{Wuba Wuc})
+ ; ([euCL?AV} - [GVQ,AH]) - Z.)\C/u/pwpa 9 (517)

Fuy = i[X, + Ay, Xy + A)] —ile,l, eva] + 4ilw,* wya] — i[Ay, A)) —iNC,0(X, + A,), (5.18)
Fuy = i[X, + Ay, A)) — i[Xy, + Ay, A+ 2i ([e, wya] + [0, €va]) — IAC, P A, . (5.19)

It is remarkable that, considering the commutative limit, the expressions of the above first two
relations coincide with the ones of the three-dimensional Einstein gravity, (2.62), after employ-
ing the redefinitions of (5.13).

The Euclidean case

As we mentioned in the beginning of the section, the gauge group for this signature is the
SU(2)xSU(2). Again, due to the fact that the anticommutators of the group do not close, we
have to fix the representation and extend the algebra with the extra elements produced by the
anticommutators, resulting with the U(2) xU(2) as the gauge group of the theory. Each U(2) is
represented by the Pauli matrices and the unit matrix, therefore, the U(2)xU(2) gauge group
will involve the following 4 x4 matrices:

2 0 10 0 0 0 0
ch:(% O)JOL:(O 0), and Jf:(o . >,J§:<O 1>. (5.20)
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However, one should be careful in identifying correctly the noncommutative dreibein and spin
connection gauge fields. For the correct interpretation of the gauge fields, the generators we
consider are the following:

1 o 0 1 o 0
—1lgL _ gRy _ = a _1¢7L Ry _ = a
Pa_2(Ja ‘]zz) 2( 0 _0_a>7 Ma 2(Ja +Ja> 2< 0 O_a), (5.21)
and also:
1=Jl+J8, w=JF-J8. (5.22)

The above form of the generators satisfy the expected commutation and anticommutation rela-
tions, which are obtained using the corresponding ones for the Pauli matrices:

[Paa Pb] = Z.eabcjwc y [Pm Mb] = ieabcpc , [Ma> Mb] = Z'fabcjwc s
{Pu, Py} = 30a1, {Pa, My} = 30apv5, {Ma, My} = 3001,
[’75,Pa] = [’)/5,Ma] =0 y {’}/5,Pa} = 2Ma 5 {75,Ma} = 2Pa . (5.23)

Then, identifying the underlying space, on which the above gauge theory is constructed, as

the Rf{ (see section 4.1), one proceeds as in the Lorentzian case with defining the covariant

coordinate: B
Xp=Xu®il+te,®@P,+w,' @M, +A,@il+ A, @75, (5.24)

and then the gauge parameter as an expansion on the generators, too:
e={"@P+ X" @My +e®il+&® 5. (5.25)

The transformation rule of the covariant coordinate produces the transformations of the com-
ponent gauge fields, in the same spirit as in the (5.11) and employing the definition of the
field strength tensor of Lie-type noncommutativity, one results with the component curvature
tensors, similar to the ones in the Lorentzian case, (5.19).

Action of fuzzy three-dimensional gravity

In order to complete the picture, we have to determine the action of the theory. Since the
fuzzy spaces, on which we construct the gauge theories are three-dimensional, inspired by the
gauge-theoretic approach of Einstein’s three-dimensional gravity described in section 2.2, the
obvious choice is to employ an action of Chern-Simons type. For the Lorentzian case, ]R}\’2 the
action [108]° is:

1 .
So= 5T (;CW”XMX,,XP - sz“X“> . (5.26)

Variation of the above action leads to the field equation:
(X, X)) — 20m°C, X, =0, (5.27)

which admits as solution the space, R}2, for 2m?2 = A. Also, had we started with the same
action for the Euclidean case, Ri, the only difference would be that the C**? would be replaced
by the €#*# and the parameter would be 2m? = —\ (for details see Appendix E).

SA similar action was proposed in Ref. [54] for a gravity theory on the fuzzy sphere. See also [109].
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Now, in order to introduce the gauge fields of the theory into the above action, (5.26),
one could either consider fluctuations of the above solution, (5.27), replacing the coordinates
with the covariant coordinates, or in a less straightforward way, replace the coordinates with
the covariant coordinates in the action and then, after variation, obtain the field equations.
Eventually, the action would be written in terms of the gauge fields and, therefore, a trace
over the gauge indices, trg should be involved. The non-vanishing traces of the generators are
obtained starting from the expressions of the anticommutators in (5.6):

tra(Fa) = 4Map s tra(aV) = —160a, , - (5.28)

Therefore, the action written in terms of the gauge fields is:
1 . NP oA
§ = yTring (507X, %,%, - 3X,X") . (5.29)

where, the first trace, Tr is over the NxN matrices representing the coordinates and the second
trace trg is over the 4 x4 matrices representing the generators of the gauge group GL(2,C). The
above action, (5.29) can be written in terms of the curvature tensor Rw/ of (5.14) as:

8 = g Trtrg (iIC" X, Ryp ) + Sh | (5.30)

where S) = féTrtrg(X MX #) and vanishes in the limit A — 0. Now, using the explicit form
of the trace over the generators, (5.28), in the action given in equation (5.30), we obtain the
following expression:

S = 2 TeiCH” (e#aTVpa — AW R, S — (X + Au)Fyp + A, pr)

- %Tr (e#“e“a —dw,lwhy — (X + Ap) (X + AF) + leufl“) . (5.31)

It is worth-noting that if we consider the commutative limit and apply the redefinitions in (5.13),
the above action, (5.31), reduces to the one given in the Einstein’s three-dimensional gravity,
described in section 2.2, specifically in (2.54). However, in the present case, noncommutativity
implies the introduction of an additional sector, which cannot be decoupled, unless we consider
the commutative limit.

Concluding the construction, we move on with the variation of the above action with respect
to the various gauge fields. The equations of motion are obtained to be*:

T,0=0, RA=0, Fuo=0 F,=0. (5.32)

Again, as expected, in the commutative limit, the first two reduce to the ones of the three-
dimensional Einstein’s gravity theory (see section 2.2).

To sum up, in this section we constructed a three-dimensional gravitational theory (with
cosmological constant) as a gauge theory in the noncommutative framework. Following the
standard procedure, we defined the covariant coordinate and from its transformation rule we
obtained the transformations of the component gauge fields of the theory attached to the gen-
erators of the (extended due to the non-closure of the anticommutators) algebra, after an SO(3)
decomposition. Then, due to the Lie-type classification of the three-dimensional space we used,

*For a detailed calculation see Appendix E.
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we employed the appropriate expression for the field strength tensor and obtained the expres-
sions of the component curvature tensors of the theory. Then, using the field strength tensor
we proposed an action of Chern-Simons type and eventually, from variation with respect to the
gauge fields, we obtained the equations of motion. It is worth-noting that the above results
reduce to the ones of the three-dimensional Einstein’s gravity theory in the gauge-theoretic
approach, when the commutative limit is considered.
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Chapter 6

Noncommutative four-dimensional
gravity as a gauge theory

In this section we extend the context of the previous section (the construction of a three-
dimensional gravitational model as a noncommutative gauge theory) to the four-dimensional
case [78]. More specifically, the four-dimensional covariant space we employ is the fuzzy de
Sitter space, fuzzy dS,, which was described in detail in section 4.3. As mentioned there, in the
Euclidean signature, the group of isometries must get extended to the SO(6) for reasons of co-
variance. The various generators of this group were identified with operators which correspond
to physical observables, such as the coordinates, momenta and angular momenta. In order to
formulate gravity as a gauge theory on the above fuzzy space, we choose to gauge the SO(5)
maximal subgroup of the SO(6) symmetry group. Using the standard toolkit and procedure,
we begin to construct an SO(5) gauge theory but due to the non-closure property of the anti-
commutators of the generators, (3.59), the gauge group we eventually consider, as we explain
later, is the SO(6)xU(1) in a fixed representation. The gauge group with which we end up for
the formulation of our gravitational theory (specifically the SO(6) part), appears to be related
to the conformal group in the Euclidean signature. Therefore, due to this coincidence, we will
be able to consider a commutative limit of the noncommutative gauge-theory we build and, at
this limit, compare our results with the ones from the gauge-theoretic approach of conformal
gravity, described in section 2.4.

6.1 The gauge group and its representation

We plan to build a noncommutative four-dimensional gravitational model as a gauge theory of
the group of symmetries of a four-dimensional noncommutative covariant space. The space
we choose is the covariant fuzzy dS,; space (described in 4.3), which carries the symmetry of
its commutative analogue, that is the SO(1,4), SO(5) in the Euclidean signature we employ.
As we argued in section 4.3, this symmetry had to be enlarged because the identification of a
subset of the generators with the coordinate operators could not provide a commutation relation
that would respect covariance. The minimally enlarged symmetry that could fix the problem
was the SO(6), which we adopted. Therefore, thinking along the lines of the four-dimensional
commutative case of the Poincaré gravity (section 2.3), in which the isometry group was gauged,
here, we gauge the isometry group of the fuzzy dS,, i.e. the SO(5), as seen as a subgroup of the
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SO(6) group we resulted after the enlargement.

However, as explained in section 3.3, in noncommutative gauge theories, the involvement
of the anticommutators of the generators of the algebra is inevitable. Of course, the anticom-
mutators of the generators (in arbitrary representation) of an algebra do not necessarily yield
operators belonging to the algebra and this is exactly the case for the generators of the cho-
sen gauge group, SO(5). The indicated prescription for this drawback is to choose a specific
representation, in which the generators belong, and include the operators produced by the
anticommutators into the algebra, considering them as generators, too. This will result in the
extension of the initial gauge group to one with larger symmetry. In our case, application of this
recipe leads to the extension of the initial gauge group, SO(5), to the SO(6)xU(1) group' with
generators being represented by 4x4 matrices, i.e. the representation should be fixed to the 4 of
SO(6). Explicitly, the matrices representing the sixteen generators of the SO(6) xU(1) group are
constructed, as combinations of the four y-matrices? (in the Euclidean signature) which satisfy
the following well-known anticommutation relation:

{To, T} =261 , 6.1)

where m,n = 1,...4. Also, the I's matrix, defined as I's; = I'{I'2I'3I'4, has to be included.
Therefore, the generators of the SO(6) part of the gauge group are the following:

(1) Six Lorentz rotation generators: My, = —%[I‘a, Iy = —%Fafb ,a <b,
(i1) Four generators for conformal boosts: K, = 1T,
(7i1) Four generators for translations: P, = —%I‘QF5,
(iv) One generator for special conformal transformations: D = —%Fg,

and for the U(1) part:
(v) The unit matrix, 1, generator.

The I'-matrices are built out of the Pauli matrices:

01 0 — 1 0

as tensor products of o; as:
I''=01®01, Ti=01®o02, I's=01®o03, (6.3)

I'y=09®1, I's=03®1. (6.4)

The explicit expressions of the generators defined above as combinations of the y-matrices can
now be written in terms of the Pauli matrices. In particular, the components of M, are:

Mij:—%I‘iFj:%I(@ak , M4k:—%F4Fk:—%03®ak , (6.5)

'The extension of the gauge group SO(5) to SO(6)xU(1) is a coincidence with the SO(6) symmetry related to the
fuzzy dS4 space and should not be confused.

2Notational caption: as space indices we use the latin letters m,n, . . . while as gauge indices we use the a, b, . ..
latin letters.
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of K, are:
K;=3T;, Ki=1iTy, (6.6)

of P, are:
P=—5ITs, Py=—5T4ls, (6.7)

where a = i,4 and 7, j, k = 1,2, 3. Having expressed the explicit expressions of the generators
in terms of the Pauli matrices, the following commutation relations are obtained:

(Ko, Kp) = iMgay , [P, Py) = iMyp
[P,,D| =iK,, [Kq B =10apD, [Kq D]=—iP,
[Ka, My] = i(dacKp — dapKc)
[Pa, Mye] = i(0acPy — dapPe)
[Map, Mea] = i(8acMpq + SpaMac — SpeMad — SaaMpe)
D, My] = 0. 6.8)

Therefore, since the gauge group and the explicit expressions of the generators and their com-
mutation relations are determined, we can now move on with the standard procedure for the
building of the noncommutative gauge theory.

6.2 Construction of the gauge theory

In order to move on with the construction of the SO(6) xU(1) gauge theory, one has to introduce
the covariant coordinate of the theory, which is defined by the following relation:

X =Xm @1+ An(X), (6.9)
where m = 1,...4. By definition the coordinate Xm obeys a covariant gauge transformation
rule, that is:

0Xm =ile, X s (6.10)

where € = ¢(X) is the infinitesimal gauge parameter which is a function of the coordinates of
dS,, which are N x N matrices, where NV is the dimension of the representation in which the
coordinates are described. Also, € takes values in the algebra of SO(6)xU(1), (6.8), which is
represented by 4 x4 matrices. For this reason, it is possible to express it as an expansion on
the sixteen generators of the algebra, that is:

€(X)=eo(X) @1+ (X))@ Ko+ &(X) @D+ X(X) @ My, + £4(X) ® P, . 6.11)

Each term in the above expression is a tensor product of the N x N matrices (coordinates) and
the 4 x 4 matrices (generators), therefore, each term is a 4N x 4N matrix. Now, taking into
consideration that the coordinate X, is not affected by the gauge transformation, i.e. 6X,, = 0,
one can find the transformation property of the A,,, introduced in the equation (6.10). In
analogy to the commutative case, the transformation property of A,,, (3.51), indicates that it
can be interpreted as the potential, that is the gauge connection of the theory. In our case, A,,
is a function of matrices-coordinates, X,,, of the fuzzy dS;. The A,,(X) takes values in the
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SO(6)xU(1) algebra, meaning that it can be spanned on its generators, in a similar way to the
gauge parameter, (6.11), that is:

An(X) =4 X))@ Py 4w, (X) @ Map(X) 45,2 (X) @ Ko(X) 4 am(X)@ D4 a,n(X)®1 . (6.12)

In the above expression, it is understood that we have introduced one gauge field for each
generator. The component gauge fields depend on the coordinates of the space, X,,, meaning
that they are NV x N matrices. Again, for the same reason as in the expansion of the gauge
parameter, (6.11), each term in the above expansion of the gauge connection, (6.12), isa 4N x4N
matrix. Now, having determined the gauge connection, (6.12), the covariant coordinate, (6.10)
is written explicitly as:

X=X @1+ ¢,%X) @ Py +w,2(X) @ Moy + 5,2 @ Ko+ @ D+ ay @ 1. (6.13)

Furthermore, in the SO(6)xU(1) gauge theory we develop, the field strength tensor remains to
be determined. As we argued in section 4.3, equation (4.61), the field strength tensor for the
fuzzy dS, space, is given by the expression:
R R i\2 .
Rmn = [Xmu Xn] - ?emn . (6.14)
The above tensor, Ry, is valued in the algebra of the gauge group, therefore it is expanded in
terms of its component curvatures as:

Ron(X) = R, (X))@ My+R,, “(X)QPy+R,, (X))@ Ko+ Ry (X )@ D+ Rypn (X)®1 . (6.15)

mn

In (6.14), the introduction of the 2-form field B,,,, of which we discussed in (4.61), is taking
place. Since it is also valued in the gauge algebra, SO(6)xU(1), it can be expanded on the
generators as:

Byn =Bmn ®1+ B, *® P, + B, ®® My +B,,*® Ky + Bpn ® D (6.16)

which transforms covariantly as:
OBn = i€, Omn] (6.17)

and gives the transformation of é)mn, namely (5@mn = i[e, @mn] At this point, all that is neces-
sary for the determination of the transformations of the gauge fields and the expressions of the
component curvatures is written down. Here, we write down only their resulting expressions
and many intermediate steps and explicit calculations are given in Appendix F.

111



The gauge transformation rules of the sixteen gauge fields are obtained to be the following:

60'}77(11{) = 71.[Xm’ )\&b] o i[am’ A ] + 2[60, } - 2{5 7bm} - 7{)‘ ¢ Wm } - 7{611, m}
+ Z[ c7 erg]eabcd + = D) [607 md]eabcd + = 2 [)\ cd ELm]eabcd - i[gcy bm]Gabcd (6.18)
1 1 -
Feyt = i €] = o ]+ le0 ]~ 160} + (oo b2} + (N2} = 1)
+i[€%, w i eabea — 1A, b0 €abed 6.19)
5bm [mega] [am,§ ] + 71[607 m] {&H mb} - 2{607 n?b} +5 {A b m} + {éa dm}
+ i[)\bcv em]GCLbcd + Z[S ) wrgdkabcd (6.20)
dam = _'L[Xm, 50] [amy 50] + Z[éaa m] + Z[Eo,am] + ;[)‘abv m ] [Saa m] (6.21)
Ol = _Z[Xm? 60] [am7 60] + 1[607 am] =+ {fay n(}b} {5(17 73} + 5 p\ad ]eabcd (6.22)

The gauge transformation rules of the 2-form gauge fields are given as:

dBmn = _i[Gmm 50] - i[Bmm 60] + i[gaa er?] + 2‘[6@, an] + %P\ab; er?b] + %[gan erﬂ

(6.23)
0Bmn = —i[Omn, &) — i[Bin, €] + ile0, Bmn] + {€as B} = {&as B } + 5 P\ab By “J€abed
(6.24)
3B = —ilOmm, €] By €]+ ile0, By — (€% Bran} + {6 Bt} + 110% Bl
- %{51), AP} +4[€°, Bt leabed — iA Byt €abed (6.25)
5Byt = 1O €] — 1B, €]+ ilet, Byt~ (6 B} — 2060, Bt} + 5134, B
+{€% Bun} + [Abc By leabea + 1€, By eatea (6.26)

1 1 - -
OB,y = =ilOmn, X = i[ Byun A™) + ile0, Bru"] = 2%, By} = 51N Buun} = 516 B

STeC (% cd 1 c
+1i[¢, B eabed + 5[6073 d]ﬁabcd+ [)\ . Buan] — €%, Boueaped - (6.27)
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The expressions of the component tensors of R,,,, of (6.14) are found to be the following:

Ropn = [Xma an] - [Xna am] + [ama an] + [bn(}” bna] + [&ma an]

1. a ih

+ 2[Wm )wnab] + [emm en] - ﬁan

Rmn = [me an] + [amy &n] - [Xna dm] - [an7 dm] - Z‘{bmm ena} + i{bna; 673}
1 ab cd ih
+ §€abcd[wm , Wh ] - Fan
ng = [Xm7 bna} + [a’m) bn ] [Xnv bm] [anv brg,] + i{bmba wrgb} - i{bnbv chLLb}

[~ a [~ a c c ih

+ Z{aﬂh €n } - Z{anv em} + eade([enlzu Wn d] - [enb7 wmd]) )\QB

Ryt = X, €] + [am, €] = [Xn, €] = [an, €] + i{bys, @n} — i{by", G}
ih ~
— ([by b Cd] (b, P w ])Gabcd - Z{wm senp} + i{w,” 7emb} 2 B,
Rmn [Xm?w ] + [am,w ] [Xn,w ab] [an?wrsb] + 27‘{()73? bnb} + ([ m> n] [bnc7 m])eade

1

+ 5([&,71, w,% = [an, w, ) €aped + 2i{w, 2, w,0 .} + 2i{e,?, e} — —B (6.28)

The above expressions of the component curvatures pave the way for the introduction and
explicit expression of the action of the theory. Before we move to the part of the action, we should
note that the above results of the transformations of the fields, (6.22), and their corresponding
curvatures, (6.28) reduce to the respective results of the gauge-theoretic approach of conformal
gravity, described in section 2.4 (modified for the Euclidean curvature), specifically equations
(2.93) and (2.96)-(2.101), respectively -up to some tuning of the numerical coefficients- after
considering the commutative limit. In this limit, the U(1) gauge field, that was introduced due
to noncommutativity, decouples, therefore the gauge theory in the commutative limit is the
SO(6), that is the conformal gravity, in euclidean signature.

6.3 The constraints for the symmetry breaking

For the dynamic part, the action of the noncommutative theory of gravity should be written down
in terms of the curvature tensors, given in (6.28). Straightforward consideration of an action
of Yang-Mills type would result to a theory, invariant under the SO(6)xU(1) gauge symmetry.
However, the gauge symmetry of the action, with which we would like to end up, is expressed
by the Lorentz group (in the Euclidean signature), therefore, we have to reduce the redundant
symmetry. As discussed in section 2.4 in the case of the four-dimensional conformal gravity,
the symmetry was reduced imposing specific constraints resulting to an action respecting Weyl
symmetry. Also, in the same section, we argued that it is possible to result with an action
with Lorentz symmetry, after the introduction of two scalars in the fundamental representation
of the initial, conformal gauge group, inducing a spontaneous symmetry breaking. In the
current noncommutative case, we aim at a Lorentz invariant action, but given that we prefer
not to introduce any matter fields, we proceed with adopting the option of the imposition of
appropriate constraints that would lead to the desired final symmetry.

The most straightforward way to realize the above breaking is to consider a constrained
theory in which the component curvature tensors are all set to zero, except for those related
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to the remnant symmetry. Since we want to break the initial SO(6) xU(1) symmetry and result
with a vacuum with SO(4) xU(1) remnant symmetry, the only non-vanishing tensors would be
the R,,%(M) and R,,,(1). However, this approach leads to an over-constrained theory, that is
evident after counting the degrees of freedom that survive the breaking. Therefore, it is rather
wise to impose non-trivial constraints, ensuring the correct number of the degrees of freedom.
The first constraint we impose is the following:

R, (P)=0, (6.29)
that is the torsionless condition, which is rather anticipated, recalling the cases of Einstein
and conformal gravity in previous sections. Furthermore, the possible interpretation of b, as
a second vierbein would give a theory with two metrics or two vierbein, which is not desirable
in our case. Therefore, we are led to solve the constraint (6.29), considering e, = b,%, leading

to an expression of the spin connection w,?’ as a function of the fields, €,%, G, Gr,. It is worth-
mentioning that the imposition of the torsionless condition along with e, = b2, results in

the correct number of degrees of freedom, leading to the noncommutative theory of the four-
dimensional gravity with (broken) symmetry SO(4)xU(1).

In order to go on with obtaining the explicit expression resulting from solving the constraint
of the torsionless condition, which relates the spin connection field to the rest of the gauge
fields, we employ the following two identities:

1
3!

abed

6}2’;; = €""pong  and 5?g%afgh — glfonl (6.30)

Therefore, the constraint (6.29) takes the following form:
€Uy, wned) — H{w,, enp} = —[Dim, e,"] — i{e,%, an} (6.31)

where D, = X, + an,, that is the covariant coordinate of an Abelian gauge theory. The above
equation is written as follows:

eab"’d[enl;, wnCd] = —[Dp,e,’] and {wn‘ib, env} =1{e2,an} . (6.32)

Making use of the identities (6.30), the above two equations lead to the expression of the spin
connection with respect to the rest of the fields:

0 = = e (e Dy ) 51 e, ). (6.3

According to ref. [110], the vanishing of a field strength tensor in a gauge theory constructed
on a simply connected space means that, locally, its corresponding gauge fields may vanish as
well. Should this argument be applicable in our case, it would simplify the expressions of
the curvature tensors and, thus, that of the action. Nevertheless, it cannot be applied in our
case, because identification of the vierbein as a gauge field of the theory, implies the mixing
of gauge theory (internal symmetries) and geometry (spacetime symmetries). Therefore, given
that the vierbein is considered to be invertible at every point of the space, adoption of the above
argument (setting the vierbein to zero) would lead to degenerate vierbein matrices, inducing a
degenerate metric tensor of the space [10]. However, we could set a,, = 0, since it does not
admit a geometric interpretation. This fixing of the gauge field a,, will also modify the expression
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of the spin connection with respect to the other fields, (6.33), producing an even simpler and
final expression of the spin connection in terms of the vierbein and U (1) gauge field, a,,, which
reads:

w, ¢ = Zenge“b‘:d [Dn, €nd] - (6.34)
At this point, it is useful to punctuate that the U(1) field strength tensor, R,,,(1) is not chosen
to be zero, which means that this U(1) part of the symmetry, which is related to the noncommu-
tativity, remains unbroken in the resulting theory after the breaking, since it is still a theory on
a noncommutative space. Its corresponding field, a,,, would vanish in the commutative regime
in the broken theory, in which noncommutativity is relaxed and a,, decouples. Thus, in this
limit, the theory would be just described by the gauge group SO(4).

An alternative way to result with the desired SO(4) as remnant symmetry, after the breaking
of SO(6), is to extrapolate the argument we developed in the conformal gravity case to the present
noncommutative case, that is to include two scalar fields in the fundamental representation of
SO(6) inducing a spontaneous symmetry breaking. We are confident that this kind of symmetry
breaking would lead to constraints equivalent to the ones we considered.

6.4 The action

Now that we have imposed the constraints for breaking the symmetry, it is helpful to write the
expressions of the curvature tensors since it will be them that will be used in the action. The
explicit expressions of the non-vanishing tensors, taking into consideration the fixings e, = b’
and a, = 0 are:

Riyn = [Xim, an] — [Xn, am] + 2[e,)"; eva] + 21w, wy ) — %an , (6.35)

R = %eapealw, . — 45 By (6.36)
R = [Xm, 1] + [am, €] = [Xn, €] = [an, €] + i{emp, wo' } — i{ens, w,i"}

+ eavea([e,2, w0, — [e,0, w,c4]) — ;—’;Bmg , (6.37)

Ryl = (X, 0,2 + [am, 0,2] = [Xn, 0,2 = [an, w, 2] + di{e,2, e,0} + 2i{w,2, w,l .} — 4B, .

(6.38)

The above expressions in which the gauge field wn‘;b is also substituted by the expression (6.34)

obtained by the constraint, are the final expressions of the tensors after the symmetry breaking.

Before we move on with the determination of the action of the gravitational theory, let us briefly

comment on the action of the extra 2-form field, B5,,,,,, which will be included in the total action.
Let us define the field strength tensor, flmnp, of the 2-form gauge field:

1
3

Honmp = <[X7mé)np] + [Xon, Opm] + [Xp,@mn]> . (6.39)

The above field strength tensor transforms covariantly under a gauge transformation. In fact,

this can be shown starting from the expression of the transformation of the 2-form field:

o = 5 ([6Xm, O1p] + [Xons 801p] + [6X 0, O] + [Xns 60pma] + [6X,, O] + [ X, 5@mn])
(6.40)
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Making use of the transformation properties of Xm and é)mn given in equations (6.10) and
(6.17), respectively, along with the Jacobi identity, we find the following transformation rule:

Hmnp = i€, Hum) » (6.41)

which is covariant. Next, in order to find the explicit expressions of the tensor, one has to
expand the { on the generators of the algebra:

Honnp = Hynp @ 1+ Hppp8 @ Py + H,p 8 @ Moy + H,ppp o @ Ko + Hypnp @ D (6.42)
and calculate each component using the definition of the field strength tensor ﬂmnp. So, as far
as the action of the 2-form is concerned, it will include only the kinetic term of the gauge field,
which is:

S =Trtr HpnpH™"™? . (6.43)

Now, we return to the determination of the action of the gauge theory. The most reasonable
choice for the action is that of Yang-Mills type, therefore it is given as:

S:num(wmﬁﬁm”+%mﬂwﬂ, (6.44)

where the Tr is the trace over the matrices representing the coordinates (takes the role of the
integration of the commutative case) whereas the tr is the trace over the generators of the
algebra. It should be noted that the above action is gauge invariant, since the field strength
tensors transform covariantly:

65 = Trl's (RRARIR+IHH+HIH) = Tr(i[e, RIR+iR[e, R]+ile, H|H~+iH]e, H]) = 0, (6.45)

where the equations (4.63), (6.41) and the cyclicity property of the trace have been used. Also,
the first term of the above action, (6.44), includes the field strength (curvature) tensor of the
gauge theory, while the second one is the (non-topological) kinetic term of the 2-form field. The
I's operator has been included in order to filter out most of the terms and, for the SO(4)xU(1)
part, to keep the term including the curvature tensor R,,?*. The action (6.44) becomes:

~ 1 4 ~
S= 2Tr(RmriLbRrst€abcd€mnrs + 4Ry Ryse™" + gH ameandeabcd + g

mnp

mnpH™"?) , (6.46)

where for the above expression of the action written in the desirable SO(4) notation (a, b, c,d =
1,...4), we began from the action expressed in the SO(5) notation (4, B,C, D =1,...,5) for the
gauge indices, calculated the trace of the generators filtering out most of the terms and then
decomposed the remaining terms to the SO(4) notation. The commutation and anticommutation
relations for the generators of the algebra are given in (F.4).

Replacing with the expressions of the component tensors given in (6.35)-(6.38) and express-
ing the w gauge field in terms of the rest of the surviving gauge fields, as given in (6.34), then
variation with respect to the (surviving) gauge fields would lead to the equations of motion. We
should remark that the extra 2-form gauge field, that was introduced for the sake of the covari-
ance of the transformation of the field strength tensor of fuzzy dS,, decouple in the commutative
limit and therefore it should not be expected to be observed.
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Chapter 7

Summary and Conclusions

This thesis consists of our most recent works in which we engaged ourselves with combining two
different frameworks. The first is the description of various gravity theories as gauge theories
and the second is the framework of noncommutative geometry. The matching of the above two
different frameworks is accomplished due to the existence of the well-defined formulation of
gauge theories on noncommutative spaces. Also, after our recent reviews on previous works, it
was advisable to include (in Appendix A) the construction of a particle physics model involving
fuzzy extra dimensions, giving a more complete picture about all interactions of nature and
their relation to the framework of noncommutative geometry. In this section, we sum up the
whole context of the thesis, we write down our conclusions and we comment on the virtues of
our contributions in the subject.

In the beginning we recalled some well-established works in which gravitational theories are
interpreted as gauge theories. In general, the procedure of the construction of ordinary non-
Abelian gauge theories is followed, but with some modifications due to the peculiarity of the
nature of the gravitational interaction. More specifically, the gauge groups that are considered
in each case do not parametrize internal symmetries but spacetime ones. In that sense, the
vielbein, which is strongly related to the metric of the spacetime, has to be considered as gauge
field in all cases that are included in the thesis. Also, diffeomorphism invariance has to be
present, therefore it has to be related with the transformations of the fields. The above general
coordinate invariance is necessarily respected, therefore the latter functions as a motivation
for the imposition of certain constraints in the theories. These constraints break the initial
symmetry of the corresponding action in each case, leading to the appropriate ones if one
begins with the obvious consideration of action of Yang-Mills type. Also, particularly in the
four-dimensional case, the breaking of the symmetry may take place in a spontaneous way,
after the inclusion of an extra scalar field in the theory, leading to the Einstein-Hilbert action.

Then, we proceeded with providing the necessary information about the noncommutative
framework and its realizations, namely the matrix and x—product ones. Next, we recalled the
most typical example of a covariant fuzzy space, as a matrix approximation of the ordinary
2-sphere, which is of major importance in our models. The coordinates on the fuzzy sphere
are large N-dimensional matrices and are identified as the rescaled SU(2) generators in the N-
dimensional representation while the Casimir operator produces the radius constraint. Then,
we recalled the construction of the fuzzy space R:;’\, which is a foliation of the Euclidean space
by multiple fuzzy spheres of different radii. The coordinates of this space are parametrized
also by the generators of the SU(2), but their representation is considered to be reducible.
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This consideration allows the matrices of the coordinates to be written in a block diagonal
form of irreducible representations of SU(2) or, in other words, as a "block diagonal form of
fuzzy spheres", designating the foliation structure. In this specific space, we describe in detail
the methodology for obtaining the corresponding x—product, which can be generalized for the
calculation of the x—product of other fuzzy spaces. Also, in analogy to the Ri we included
the description of its Lorentzian analogue, namely the R1’2, which we also employed in the
construction of our models. The latter is a fuzzy space that is a foliation of the three-dimensional
Minkowski spacetime by fuzzy hyperboloids. The last fuzzy space which we described in detail
is a fuzzy version of the four-dimensional de Sitter space. Along the lines of previous attempts of
constructing a four-dimensional covariant spacetime, our construction of fuzzy dS; was based
on considering its isometry group SO(1,4) and try to identify part of its generators as coordinates
of the space. However, preservation of covariance was violated, therefore, in order to restore it,
we considered a larger group, the SO(1,5) in which such an identification would be possible.
In this case, too, the coordinates are represented by N-dimensional matrices, related to the
generators of the group. Next, we recalled the methodology of constructing gauge theories on
noncommutative spaces, which was crucial for our purposes.

Moving on, we wrote down the construction of our models of noncommutative gravity. First,
a three-dimensional gravity model as a noncommutative gauge theory was constructed. The
background space that was employed is the Ri and the corresponding gauge group was the
U(2)xU(2). Then, after the identification of the gauge fields, the procedure of the construction
of gauge theories on noncommutative spaces was followed and the expressions of the trans-
formations of the gauge fields and the component curvature tensors were obtained. Also, an
action of Chern-Simons type was proposed and the equations of motion were obtained. It is
worth-noting that the above expressions and results reduced to the ones of the corresponding
(commutative) three-dimensional Einstein gravity.

Having gained a good amount of experience from the above construction, our next step
was to construct a noncommutative gravity model in four dimensions. For this purpose, we
considered the four-dimensional fuzzy de Sitter space to be the background space of the theory.
The gauge group that was initially considered was the SO(1,4), viewed as a subgroup of the total
symmetry, SO(1,5). However, due to noncommutativity, the gauge group that was eventually
considered was the SO(1,5)xU(1). Again, following the standard procedure, the expressions of
the various gauge fields and the component curvature tensors were obtained. For the dynamic
part of the theory, the action that was proposed was of Yang-Mills type, bearing the initial
gauge symmetry. However, since we wanted to result with an action with Lorentz symmetry,
SO(1,3)xU(1), we imposed specific constraints which broke the gauge symmetry. Again, the
commutative limit of the theory produces results that coincide with the ones of conformal
gravity.

From our perspective, the above work of the four-dimensional noncommutative gravity con-
tributes a lot in two aspects. The first is that we have accomplished a successful construction
of a four-dimensional covariant fuzzy space, in such a way that can be generalized for other
spaces, specifically by enlarging the symmetry and introducing a 2-form gauge field. Second,
we managed to give a description of the gravitational interaction in a regime in which the coordi-
nates can be considered as noncommutative (e.g. Planck scale), and relate it with the conformal
gravity in the commutative, low-energy limit. Our priority in the future is to study the Lorentz
invariant action we obtained and attempt to relate it with the four-dimensional Einstein-Hilbert
action, with aspirations of connecting the large and low-energy regimes for the gravitational
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interaction.
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Appendix A

Fuzzy spaces and particle physics
models

In this first appendix, reviewing less recent works [67-74]', we present the involvement of
fuzzy spaces, especially the fuzzy sphere, in particle physics models and stress out some of
their important features. First, we describe a dimensional reduction starting from a higher-
dimensional theory, in which the extra dimensions are considered to be fuzzy, as an application
of the gauge theories on noncommutative spaces. Then, we describe a particle physics model,
in which one starts with a four-dimensional gauge theory and the fuzzy extra dimensions are
generated dynamically as interpretations of certain vacua of the theory, that is a theory that
resembles the latter dimensional reduction of a higher-dimensional theory over fuzzy coset
spaces (fuzzy spheres).

A.1 Dimensional reduction on fuzzy spaces

Let us now start with a noncommutative Yang-Mills gauge theory, with gauge group the U(P)
and generators denoted as T, on a space that consists of the four-dimensional Minkowski
spacetime and a Lie-type fuzzy coset space (like the fuzzy sphere), namely M* x (S/R)r. The
action of the theory is given as:

Szél;/d‘lkartrFMNFMN , (A.1)
where trg is the trace over the generators of the gauge group and £Tr (k is related to the radius
of the coset space and the spin value, for details see section 3.1.1) is the integration over the
noncommutative coordinates, which are described by Nx N matrices. Also, Fjsy is the field
strength tensor which consists of both four-dimensional and extra-dimensional components,
written explicitly as Fiyyy = (F, ws Fla, F,;). The exclusively extra-dimensional field strength
tensor part is given in (3.56) and (3.57), in terms either of the covariant coordinate, we denote
it ¢, or the coordinate, X, and the gauge connection, A,:

Fy = [Xa,Ab] — [Xb,Aa] + [Aa,Ab] — CabcAc . (A.2)

'For more recent reviews on these works see [75-77]
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The mixed components of the field strength tensor are:

Fuo = 0uda + [Ap, b0l = Dyptba (A.3)

where D, ¢, is the covariant derivative of the ordinary gauge theory, acting on ¢,, which is
identified as a scalar field if seen from a four-dimensional point of view. Replacing the above
expressions of '}, and Iy, in the action (A.1), one obtains:

S= /d4xTrtr (ﬁFjV + 3 (D) — V(¢)) , (A.4)

where V (¢) is identified as the potential, coming from the F 3b term, explicitly:
V() = —ﬁTrtrFabF“b

= = 1o Tt (160,000, ) — ACus" 0 + 2R (a.5)

The fact that from a four-dimensional point of view the ¢, can be understood to behave like a
scalar field, leads to the observation that the action (A.4) can be naturally interpreted, in total,
as an action in the four-dimensional Minkowski spacetime, M*, containing besides the kinetic
term of the four-dimensional gauge field, A,, a kinetic term of a scalar field D, ¢, plus mass
and interaction terms as understood by the expression of the potential, V(¢,). In this four-
dimensional interpretation of the above higher-dimensional theory, a gauge transformation
of the U(P) gauge theory, A(z#,X?), on the total space can be also understood as a gauge
transformation of a gauge theory in four dimensions, specifically:

Azt X4 = Mzt XOT! = ML (@er)yThT! (A.6)

where in the first step the gauge transformation is expanded on the generators T, since it
takes values in the algebra of U(P). In the second step, the infinitesimal gauge transformation,
A(z*, X%), depends on both M* coordinates, z* and the extra-dimensional coordinates, X¢,
or even better \ is a function of X®. However, the coordinates X% are NxN (anti-)Hermitian
matrices, therefore they can be expanded on the generators of a U(N) group in the fundamental,
N-dimensional representation. Therefore, the A"/ (z#) can be identified with the Kaluza-Klein
modes of the \!(z#, X?). A very important feature of the above construction becomes manifest
after the realization that the A\"/(z*) field can be considered to be taking values in the Lie
algebra of Lie(U(N))®Lie(U(P)), that is the Lie algebra Lie(U(NP)). The above understanding of
the \! (x”) as a field in four dimensions taking values in the Lie(U(NP)) can be adopted for
the rest of the fields (gauge and scalar fields) of the theory. This means that a dimensional
reduction of a gauge theory defined on a M 4 x (S/R)F space induces the enhancement of
the starting gauge group. Specifically, one may start with a higher-dimensional Abelian gauge
theory and achieve symmetry enhancement after a dimensional reduction, resulting with a non-
Abelian gauge group in the four-dimensional theory. A rather undesirable feature is that the
scalar fields that appear due to the reduction are set in the adjoint representation, rendering
the triggering of the electroweak symmetry breaking impossible. In order to overcome this
difficulty, one can employ different kinds of dimensional reductions, in which the nice feature
of the enlargement of the symmetry still holds (see for example fuzzy CSDR [67] (see also [111])).
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A.2 Dynamical generation of fuzzy spaces as extra dimensions

In this appendix we review a very interesting project, that is the construction of a particle physics
model involving fuzzy extra dimensions, which carries the important features of renormalizabil-
ity, chirality and phenomenological viability. In order to ensure renormalizability, instead of the
dimensional reduction of a gauge theory on a space which has fuzzy extra dimensions (see previ-
ous subsection A.1) the reverse procedure was considered, that is to start with a renormalizable
theory in four dimensions and reproduce the results of a higher-dimensional theory reduced
over fuzzy coset spaces [69-72]. More specifically, one starts with an N' = 4 Supersymmet-
ric Yang-Mills (SYM) theory [112] defined on the four-dimensional Minkowski spacetime, M 4
equipped with an appropriate set of scalar fields and a suitable potential, which leads to certain
vacua that could be identified as -dynamically generated- fuzzy extra dimensions, including also
a finite Kaluza-Klein tower of massive modes. The whole idea of dimensional deconstruction
has been introduced earlier, see [113, 114]. Later, an attempt to include fermions took place,
but the best one could achieve (for some time) was a model containing mirror fermions in bifun-
damental representations of the low-energy gauge group [71,72]. Although mirror fermions do
not exclude contact with phenomenology [115], exactly chiral fermions are certainly preferable.

A.2.1 N =4 SYM field theory and Z; orbifolds

Let us consider an N' = 4 supersymmetric SU(3N) gauge theory defined on Minkowski spacetime
with a particle spectrum (in the A = 1 language) consisting of an SU(3N) gauge supermultiplet
and three adjoint chiral supermultiplets ®',i = 1,2,3. The component fields of the above
supermultiplets are the gauge bosons, A,, u = 1,...,4, six adjoint real (or three complex)
scalars ¢%, a = 1,...,6 and four adjoint Weyl fermions ¢, p = 1,...,4. The scalars and Weyl
fermions belong to the 6 and 4 irreducible representations of the SU(4)r R-symmetry of the
theory, respectively, while the gauge bosons are singlets. At this point, for reasons of filtering
the particle spectrum, the orbifold projection technique is involved (similar to the one developed
in [116]), specifically making use of the Z3 discrete group. For the introduction of the orbifold
structure, the Zs has to be viewed as a subgroup of SU(4) g symmetry. The Z3 can be embedded
into SU(4)r in more than one -not equivalent- ways, with the choice of the embedding affecting
the amount of the remnant supersymmetry [116]:

e Maximal embedding of Z3 into SU(4)g leads to non-supersymmetric theories, therefore it
is excluded.

e Embedding Z3 into a subgroup of SU(4)g:

- Embedding into an SU(2) subgroup would lead to N' = 2 supersymmetric theories
with SU(2)r remnant R-symmetry.

- Embedding into an SU(3) subgroup would lead to N' = 1 supersymmetric theories
with U(1)g remnant R-symmetry.

The desired remnant supersymmetry falls into the last option. Let us consider a generator
g € Zs3, labelled by three integers, @ = (a1, az, ag) [117], which satisfy the following relation:

a1+ as +a3 =0mod3 . (A.7)
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The above relation implies that Zs is embedded into the SU(3) subgroup, i.e. the remnant
supersymmetry is the desired A/ = 1 [118]. The various fields of the theory transform differently
under SU(4)g, therefore the Z3 will act on them in a non-trivial way. Gauge and gaugino fields
are both singlets under SU(4)g, therefore the geometric action of the Zj rotation is trivial.
The action of Z3 on the complex scalar fields is represented by the matrix 7(9)1‘]‘ = 05w,
where w = eQ‘Tﬂ and the action of Zs on the fermions is given by y(g)ij = 5ijwbi, where b, =
—%<CLZ‘+1 + a;y2 — a;), modulo 3. In this case, the three integers describing the generator g
are (1,1, —2), which means that a; = b;. The matter fields transform non-trivially under a
gauge transformation, therefore Zs acts on their gauge indices, too. This action is given by the
following matrix:

1y 0 0
Y3 = 0 wly O . (A.8)
0 0 w?l

It is not obligatory that these blocks have the same dimensionality (see e.g. [119-121]), however
they do, offering to the projected theory the property of anomaly freedom.

After the orbifold projection is performed, the particle spectrum of the theory consists of the
fields that rermain invariant under the combined action of Z3 on the “geometric”? and gauge
indices [117]. Also, concerning the gauge fields, the projection is given by A, = 734,75 L
Therefore, taking into consideration the expression of the 3 matrix, (A.8), the initial gauge
group breaks down to the H = SU(N) x SU(N) x SU(N) in the projected theory.

The complex scalar fields transform in a non-trivial way under a gauge symmetry trans-
formation and the R—symmetry, therefore the projection is given by ¢} = wl=Jta ot J» Where
I, J are gauge indices. Therefore, J = I + a;, meaning that the scalar fields that survive the
projection have the form ¢; j,, and transform under the gauge group of the projected theory,
H, as:

3-((N,N,1) + (N,1,N) + (1,N,N)) . (A.9)

Similarly for the fermions, both gauge group and R—symmetry transformations are non-trivial,
with the projection being w} J= wl=7 *biwé ;- Therefore, the fermions that survive the projection
are of the form WL I+b; and are accommodated in the same representation of the scalars, (A.9),
manifesting the N’ = 1 remnant supersymmetry. It is worth-noting that the representation of
the scalars or fermions, (A.9), of the projected theory are anomaly free. Therefore, fermions
belong to chiral representations of H, divided into three generations, since the initial particle
spectrum, before the orbifold projection, contains three ' = 1 chiral supermultiplets.

Now, let us focus on the part of interactions of the theory after the orbifold projection. The
projected theory is an A/ = 1 supersymmetrc gauge theory, therefore the interactions of the
fields that passed through the orbifold filter are all included in the superpotential. However, to
specify it explicitly, one has to begin with the interactions of the initial ' = 4 SYM theory [112],
which are expressed by the following superpotential:

Wi—a = €3 Tr(D' DI D) | (A.10)

where ®!, &/, ®* are the chiral superfields. Therefore, the interactions in the projected theory

%In case of ordinary reduction of a 10-dim A/ = 1 SYM theory, one obtains an N = 4 SYM Yang-Mills theory in
four dimensions having a global SU(4)r symmetry which is identified with the tangent space SO(6) of the extra
dimensions [122-125].

124



N =1 gauge theory are given by the superpotential:

(proj) _ E: i j k
Wy=1" = 6Z]k¢1’1+ai¢l+aiyl+ai+aj®I+ai+a]’71‘ (A.11)
I

In order to obtain the vacuum of the theory, one has to extract the information for the scalar
potential from the above superpotential.

A.2.2 Dynamical generation of twisted fuzzy spheres

As stated, the superpotential Wf/r‘i]l (A.11), produces the following scalar potential:

Vi () = iTr (16", 671116, ¢7]) . (A.12)

where, ¢' is the scalar part of the superfield, . The above scalar potential, Vf}rzojl(qb) is mini-
mized by vanishing vacuum expectation values (vevs) of the fields, therefore, in order to result
with non-vanishing solutions admitting interpretation as vacua of a noncommutative geometry,
specific modifications have to be made, that is the introduction of soft N' = 1 supersymmetric
terms of the following form?®:

1 2 it L ik
Vssp =5 ) mid"o' + 5> hid'¢T¢" + hec. (A.13)

? ivjvk

with h;;, = 0 unless i + j + k = 0 mod3. The introduction of SSB terms is not disturbing, since
an SSB sector is necessary for a supersymmetric model to have phenomenological viability, see
e.g. [126]. Also, the D-terms of the theory are introduced:

1 1
Vp = §D2 = §DID1 , (A.14)

where D! = qﬁZTI @' and T! are the generators of the gauge group, represented by the same
representation as the corresponding chiral multiplets. Putting together all terms consisting the
potential, the expression of the total potential of the theory is:

V =V 4+ Vasp +Vp . (A.15)

One can choose properly the parameters mf and h;j;, of the relation (A.13), specifically mf =
1 and h;j = €;;;. Thus, the scalar potential, (A.15), takes the following form:

1

V:Z

(FTFI +Vp (A.16)
where the tensor F is defined as:
Fii = [¢%, ¢ — ieT* (™)1 . (A.17)

The first term of the scalar potential, (A.16), is positive, therefore, the minimum of the potential
is:
S ) & S 9
[0, ¢ = ieij(")' . ¢'(¢") = R, (A.18)
5The SSB terms that will be inserted into VJ{}T:U{ (¢), are purely scalar. Although this is enough for our purpose,
it is obvious that more SSB terms could be involved in order to obtain complete SSB sector [126].
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and [R?, '] = 0. The form of the first relation in (A.18) implies the relation to a fuzzy sphere,
(3.31). This gets even more manifest, after the introduction of untwisted fields, ¢*, defined as:

o' =Qf", (A.19)
where (2 # 1 satisfying the relations:
P =1, [2¢]=0, Q' =07" (¢ =¢ & (¢ =0¢". (A.20)

Therefore, from equation (A.18) and making use of the &Z the interpretation of a fuzzy sphere
becomes evident:

[0, &) = ied", &' = R?, (a.21)
confirming the fact that the vacuum of the potential generates a (twisted) fuzzy sphere, 512\, Next,
specific configurations of the twisted fields satisfying the relation (A.18), ¢, can be obtained.
Such a configuration is:

¢' = Q13 @ Ny , (a.22)

where )\’t ) are three N XN matrices, representing the three SU(2) generators in the /NV-dimensional
irreducible representation and 2 is the matrix:

010
Q=0ely, QB=(00 1|, QB=1. (A.23)
1 00

According to the relation (A.19), which expresses the relation between twisted and untwisted
fields, the “off-diagonal” orbifold sectors, (A.9), take the following block-diagonal form:

‘ 0 (Atay) (v,m,1) -0 X 0 0
(X)) (v,1.v) 0 0 0 0 Al

The untwisted fields generating the ordinary fuzzy sphere, &’ are now in a block-diagonal form.
Seperately, each block is identified as a fuzzy sphere, since each one satisfies the corresponding
defining commutation relation (A.21). Thus, the vacuum of the theory, (A.24), has taken the
form of three fuzzy spheres, with relative angles 27/3. In other words, in accordance to the
orbifold projection, the solution ¢ is equivalent to the solution of the three fuzzy spheres. It is
also worth-noting that the tensor F'/ of the equation (A.17), is identified as the field strength
tensor of the spontaneously generated fuzzy extra dimensions, that is given in (3.56). The term
Vp of the potential causes a change on the radius of the fuzzy sphere (in a similar way to the
case of the ordinary fuzzy sphere [69, 72, 127]).

A.2.3 Chiral models after the orbifold projection - The SU(3). x SU(3), x SU(3)r
model

The gauge group of the initial gauge theory, SU(3N), breaks spontaneously in various ways,
therefore, the resulting gauge group after performing the orbifold projection is not unique. The
minimal, anomaly free unified models* are found to be the SU(4) x SU(2) x SU(2), SU(4) and

*Similar approaches have been studied in the framework of YM matrix models [128]
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SU(3)? of which the case of interest is the last one, that is the trinification group, SU(3). x
SU(3)r, x SU(3)r [129, 130] (see also [131-135] and for a string theory approach see [136].).
First, the integer IV is decomposed as N = n+3 and then the following embedding is considered:

SU(N) D SU(n) x SU(3) x U(1) . (A.25)
Thus, the embedding for the gauge group SU(N)? is the following:
SU(N)? D SU(n) x SU(3) x SU(n) x SU(3) x SU(n) x SU(3) x U(1)3. (A.26)

The three U(1)s are not taken into account® and as for the representations, they are decomposed
according to the embedding of (A.26), as:

SU(n) x SU(n) x SU(n) x SU(3) x SU(3) x SU(3),

(n,m,1;1,1,1) + (1,n,7;1,1,1) + (7,1,n;1,1,1) + (1,1,1; 3,3, 1)

+(1,1,1;1,3,3) + (1,1,1;3,1,3) + (n,1,1;1,3,1) + (1,n,1; 1,1, 3)
+(1,1,n;3,1,1) + (n,1,1;1,1,3) + (1,n,1;3,1,1) + (1,1,n; 1,3, 1) . (A.27)

Now, taking into consideration the decomposition of (A.25), the gauge group breaks to the
SU(3)3, under which the surviving fields from the projection transform as:

SU(3) x SU(3) x SU(3), (A.28)
((3,3,1) + (3,1,3) + (1,3,3)) , (A.29)

which correspond to the desired chiral representations of the trinification gauge group, with the
quarks and leptons of the first family transforming as:

d u h de d° d° N E¢ v
g=\|d u h | ~(3,3,1),¢=| v v u | ~3,1,3),A=| E N¢ e | ~(1,3,3)
d u h he h¢ h° ve et S

(A.30)

respectively. It is remarkable that this theory can be upgraded to a two-loop finite theory (for
reviews see [137-139]) giving phenomenologically testable predictions [131], too.

To summarize this section, application of an orbifold projection on an A/ = 4 gauge theory
in four dimensions with a specific particle content, leads to another gauge group and different
(less) amount of supersymmetry, depending on the way the discrete symmetry of the orbifolding
is embedded in the R-symmetry group. Then, the form of the superpotential after the projection
leads to a vacuum of the scalar potential which can be interpreted as dynamically generated
fuzzy extra dimensions. Eventually, the above scheme leads to a unified theory, accommodat-
ing chiral fermions. Concluding, fuzzy extra dimensions can be used for constructing chiral,
renormalizable and phenomenologically viable field-theoretical models.

SBecause of anomalous gaining mass by the Green-Schwarz mechanism and as a result they decouple at the low
energy sector of the theory [120].
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Appendix B

The Schwinger basis

The algebra of angular momentum can be written as an algebra of two independent harmonic
oscillators, that is the Schwinger construction [140]'. Let us consider two simple harmonic
oscillators, the +-type and the —type. For each oscillator, annihilation and creation operators
are defined, denoted by a, al and a_, aT_, respectively, satisfying the following commutation
relations:

[ai,a;] = 6ij ) B.1)

where 7, 7 = +, —. The above commutation relations are written more explicitly as:
[a+,a1] =1, [a_,a ]=1, Jap,a']=[a_,al]=0. (B.2)
Also, the number operators are defined as:
Ny = a1a+ , N_= ala_. (B.3)
Their commutation relations with the a;-r, a; operators are given as:

[Ni,a;] = —aidij , [N,-,a}] = ajézj (no summation) , (B.4)

or, more explicitly as:
[Ny ,ay] = —ay [N+,ai] = ai . IN_,a_]l=—a_, [N_,al]=adl . (B.5)

Due to the last relation of (B.2), the number operators, Ny, N_, of the two oscillators commute.
Therefore, the two operators share a common set of eigenfunctions, denoted by |nyn_), with
eigenvalues ny and n_, respectively. The eigenvalue equations for N are:

Nilngn_) =ny|nin_), N_|nyn_)=n_|nyn_). (B.6)
The creation and annihilation operators, airt, a+, act on the above eigenstates as:
a1|n+n,> =y +1nge+1n"), a'|nan_) = /n_ + 1lngn_+1),

ar|nygn_) =/nilny —1In_), a_|nin_) = /n_|jnyn_ —1). (B.7)

ISee also [141, 142]
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The most general eigenstates of N, N_ are obtained by applying al successively on the vacuum
ket, which is defined as:
a+|00) =0, a—_|00)=0. (B.8)

Therefore, the general eigenstate of N, N_ are obtained :

oy — (@b el

Next, in order to make contact with the angular momentum algebra, one defines:

100) . (B.9)

1 1
Jy = aia_ . Jo=day, J. = 5 <a1a+ — aT_a,_) =3 (Ny —N_) . (B.10)
It is straightforward, starting from (B.2), to confirm that the above defined generators satisfy
the SU(2) algebra:

[, Je] = tdy, [Jy,J]=2J,. (B.11)

Also, for the expression of the Casimir operator, it is convenient to define the total number
operator, N, to be:
N=N;+N_= aia.,r +ala_ , (B.12)

with eigenvalues. ny 4+n_. Therefore, the Casimir operator is given by the following expression:

J2=J§+;(J+J_+J_J+)=J§<Z+1> : (B.13)
The above definitions, besides being motivated by algebraic reasons, admit also a physical
interpretation. More specifically, if the quantum unit of the +-type oscillator is associated
with spin up (particle with m = 1/2), while the —-type oscillator is associated with spin down
(particle with m = —1/2) and the eigenvalues n.,n_ are the corresponding number of spins up
and spins down, then the J. operator, by definition, destroys a spin down unit and creates a
spin up unit. This means that the spin angular momentum is increased by 1. Likewise, the J_
operator acts inversely. The .J, operator counts 1/2 times the difference of ny and n_, that is
the z—component of the angular momentum. In general it has been set & = 1.

Now, the action of the .J,, J+ operators on the eigenstates |nyn_), is given after taking into
consideration the (B.7):

1
Jenyn_) = §(N+ — N_)|ngn_) = =(ny —n_)ngn_) . (B.14)

It is worth-noting that in the above relations of the action of the operators on the eigenstates,
the total number of particles, ny 4 n_ is constant. Also, the above relations reduce to the
familiar action of J,, J+ operators, after the change:

ny - j+m, n_- — j—m, or
ny +n_ ny —n_

= = — B.15
J 9 ;o m 5 ( )
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Therefore, taking into consideration the (B.13) and (B.14), one obtains:

Jilnan ) =G —m)G+m+Dlj+m+1,j-m—1),

Jolngn ) =/ G+m)G—m+1)j+m—1,j—m+1),

Jelnin_) = J.|j +m,j —m) =mlj + m)|j —m) ,

Jngn_) = J?|j+m,j—m) =j(+1)|j+m,j—m). (B.16)

The general ket written down in (B.9), can be written now in the following form:

T \j+m(, T \i—m
ljm) = a3 )7 (a) 0) , (B.17)

VI +m)l(G —m)!

where |0) is the vacuum Kket.
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Appendix C

Quaternions and Hopf fibration

Let us consider first the case of the complex numbers, C. The simplest compact Lie group is
the circle, S* 2 SO(2), which can be parametrized by e = cos @+ isin § (Euler’s formula)! from
which it can be understood as the group of elements absolute value equal to one in the complex
numbers plane, C, that is the unitary group U(1).

Quartenions is a four-dimensional number system which can be viewed as an extension of
the complex numbers and can be understood in analogy to them. Let us consider the compact
Lie group of the 3-sphere, S® 22SU(2). The picture is completely analogous to the circle case
discussed above with the difference that complex numbers have to be upgraded to Hamilton’s
quartenions, H, meaning that SU(2) can be understood as the group elements of norm equal to
one in H, that is the symplectic group Sp(1). A quartenion number is written as:

g=a+ib+jc+kd, a,bc,deER, (C.1)
and multiplication between 1, j, k is given by the following matrix:
IENENEREY
11715k
illi]-1] k|4
-1 i
kK|i|k|j|-]-1

—
—e
1

=

Table C.1: Multiplication table of i, j, k.

Extending the notion of associating the ordered pair (a,b) to a complex number or a 2x2
real matrix, giving the opportunity to adopt a sum, product and absolute value for (a, b), to the

cosf —sinf

'An element, Ry = .
sinf  cos@

) of SO(2) behaves the same as the complex number of unit absolute value,

0

. 0 -1 .
01 )—l—sm@( 1 0 ),wheretheba51s

z9 = cos 0+ sin 0,. This is manifest when Rjp is written as Rg = cos 0 (

matrices 1 = ( é (1) ) andi= ( (1) _01 ) have been used. It is easily checked that 12 = 1, li = il =i,i* = 1,

which means that the matrices, 1, i behave the same as the complex numbers 1, 7. In fact, the matrices of the form
a —b
b
Therefore, all complex numbers are represented by 2x2 real matrices, with the determinant giving the absolute
value of the complex number [143].

=all4+bi,a,b € R behave the same as the complex numbers a + bi under addition and multiplication.
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ordered quadrupes (a, b, ¢, d) of real values, namely the quaternions, it is possible to write them
a+1td —b—ic
b—ic a—1id

10 . [0 -1 . (0 —i (0
]1_<0 1)’ “(1 0>’ ‘]_<—i 0)’ k‘(o —z'>' (€.2)

Addition and product of two such quaternion matrices produce matrices of the same form. Also,
the squared absolute value of a quaternion, ¢, is retrieved by the determinant of the matrix form
of quaternion. From the above matrix representation of ¢, it is understood that, for ¢ # 0, the
explicit formula of the inverse quaternion is ¢~ ! = m(a — bi — ¢j — dk). For the
quaternion ¢, the quaternion conjugate, ¢, is defined as ¢ = x; — tx2 — jrs — ix4 and therefore,
it is straightforward to calculate that ¢g to be:

down in a 2x2 complex matrix form, g = < ) = al + bi + ¢j + dk, where:

q7 = q* = (z1 + w2 + jog + kvg)(v1 — izg — jas — kay) = 2% + 23 + 25 + 27 . (C.3)

The quaternions ¢ = a+bi+cj +dk of unit absolute value (unit quaternions) define the 3-sphere
S3 in R*%:

S3 = {unit quartenions} = {g=a+ib+jc+kd|a®+ b+ +d* =1} . (C.4)
Now, let us define the pure imaginary and pure real quaternions, p, r, respectively:
p=bi+cj+dk, r=a, (C.5)

which, for the imaginary quaternions, a three-dimensional space, that is denoted as Ri+Rj+Rk
(R3 for short), is formed. It is obvious that the sum of two imaginary quaternions is also
imaginary, but this is not true for the product. Let u = (0, u1, u2,us) and v = (0, vy, v2,v3) be
two imaginary quaternions. Their product, using the Table C.1, gives:

uv = —(u1v1 + ugv2 + uzvs) + (ugvs — uzva)i — (u1v3 — uszvy)j + (u1ve — uguy )k . (C.6)

In the above expression, it is manifest that the product of two imaginary quaternions can be
expressed in terms of two other products in R3, the scalar, u-v and the vector, u x v. Therefore,
in terms of these products in R3, the product of two imaginary quaternions, (C.6), can be written
as:

UV = —u-v+uxXv. (C.7)

Since the first term (scalar product) is real, it is understood that the product of two imaginary
quaternions is also an imaginary quaternion, if v - v = 0, that is in case u and v are orthogonal.
Also, since the second term, the cross product, is imaginary, shows that the uv is real only if
u X v = 0, that is if u, v are on the same line. In the particular case in which the imaginary u is
a unit quaternion, |u| = 1, the (C.6) becomes:

w=—u-u=—|u=1. (C.8)

Thus, every unit vector in Ri + Rj 4+ Rk is a square root of —1.
Now, let us consider a quaternion, s, with |s| = 1. This can be written in a generalized Euler
formula, that reads:
s =cosf +usinf , (C.9)
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where ¢ is an imaginary unit vector (u2 = —1). In analogy to the complex number case in which
a unit complex number, z, corresponds to a rotation in the complex plane, the unit quaternion,
s, corresponds to a rotation of the Ri + Rj + Rk. The difference to the complex numbers case
is that this rotation is not induced by mere multiplication, because the multiplication of the
quaternion s and an imaginary quaternion, let us call it w, is not necessarily an element of
Ri + Rj + REk. Instead, the mapping that is employed is the following:

w — silws, (C.10)

which it is shown that it is actually an imaginary quaternion, since s~ = cos — usinf. The

above mapping is called a conjugation by s. This is exactly the kind of mapping that is used to
project the 3-sphere to a 2-sphere through the Hopf fibration. Let us call this projection 7(s),

that is 5% —- S2, which is specifically given by (C.10), for w = k2, that is:
n(s) = sks™1. (C.11)

It is worth-noting at this point that multiplication of quaternions is not commutative. This is
the reason why the above function does not reduce to 7(s) = k. Recalling (C.4):

SB={s=a+bi+tcj+dk||sP=a’+b"+F+d° =1}, (C.12)
calculations in (C.11), using the Table C.1, lead to:

n(s) = (no,m,n2,m3) = (0, 2ac + 2bd, 2cd — 2ab, a’ — b -2+ d2)
= 2(ac + bd)i + 2(cd — ab)j + (a® — b* — S + d*)k . (C.13)

Since the real part of the quaternion is vanished, the 7(s) is an imaginary quaternion in the
subspace R3. Raising the components of 77 to the square and adding them, the absolute value
is obtained:

nl*> = (2ac + 2bd)? + (2cd — 2ab)* + (a* —b*> —* +d*)? =1, (C.14)

where |s|? = 1, since s is a unit quaternion, has been used. Therefore, starting from the unit
S3 space, that is the points of R* that with distance from the origin equal to the unit, described
by a unit quaternion, one results with the unit S?, through a specific projection mapping, n(s).

The Hopf fibration can be equivalently understood as:
S3={Z=(21,2) €C? | Zaza = 1} — S? ={&= (2! 22, 23) e R%}, (C.15)

with the ¢ (i = 1,2,3) components being related with the z, (¢ = 1,2) components through
the relation: 1
z' = gzaagbzb : (C.16)
where zZ, are the complex conjugates of z, and oflb are the matrix elements of the three Pauli
matrices. The above relation leads to the following expressions for the x's:
11 . o_ Lo s_ L.
T = 5 (Z120 + Z221) , a° = 5 (2120 — Zo21) , a° = 5 (2121 — Za222) . (C.17)

2The k is one of the three "special numbers" used for defining a quaternion.
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Using the above expressions for the z's, one can calculate the following sum:

. 1
Z(wl)Q = i(gaza)2 = xOQ ) (C.18)
i=1
where 2V = %Eaza = 1 due to the radius constraint in S3. The above description of the Hopf
fibration, (C.15), can be derived from the one with the quaternions, (C.12), we described before.
First, the expression of 7, second line of (C.13), has to be rewritten in terms of the Pauli
matrices instead of the i, j, k, employing their 2x2 matrix representation, (C.2). It is easy to
find that:
i=—ioy, j=—io1, k=io3. (C.19)
Therefore, the quaternion 7, (C.13), can be now written as:
n = 2(ab — cd)ioy — 2(ac + bd)icy + (a® — b* — % + d?)ios , (C.20)

where i0; are the generators of the SU(2) algebra. The components of the imaginary unit
quaternion obtained in (C.20) can be redefined in terms of a vector in C? with components
21, 22. Specifically, the definition would be:

z21 = \/5(@ —id), zy= \/i(b —ic) , (c.21)

with a, b, ¢, d being the real numbers which constitute the quaternion s, defined in (C.12). Using
the above redefinitions, (C.21), one obtains:

1 1 1
5 (Z122 + 2221) = 2(ab — cd) = 2(ab—cd) = 5(210%222 + Zoilz) = 5%0(111)% , (C.22)
1 1 1
5 (—iZ122 +iZ221) = —2(ac — bd) = —2(ac —bd) = 5(210%222 + 2903 21) = §2aa§bzb ,

(C.23)
L - 2 32 2., 2 2 42 2, p_ L. 1 922 L ab
5(2121—@7:2) =a“"—-b'—c"+d° = a*-b"—c"+d° = 5(2103 21 + 2205°22) = 57052 -

(C.24)

Therefore, the components of the three-dimensional real space coordinates are given by the
above relations, in terms of the two vectors, z1, 22 and the Pauli matrices, (C.16). The constraint
to which they are subjected is obtained if we take the sum of the square of the above coordinates,
let us call them z%,i = 1,2, 3:

3 2
2 1/ _ - - _ _ 1_ C.15
Zﬂfz =1 ((2122 + 2221)2 + (—iZ122 + 12221)2 + (Z121 — 2222)2) = (22a2a> L (C.25)
i
Therefore, using the radius relation of the S, the radius relation of the S? space is obtained.
We should also note that the obtained expressions of the 2 coordinates, (C.16) are invariant
under the following transformation:

2 —s €% , Z— ez , (C.26)
specifically shown in the following relation:

. 1 o 1. .
—/ / — _
= izaaébzb =3¢ Y R §Za0'2b2b =z'. (C.27)

Therefore, due to this invariance, the above Hopf fibration can be viewed as coordinates on
S?=CP' =S3/U(1).

zt — (2
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Appendix D

The Coherent states

The canonical coherent states are defined for each complex number 2z € C by a unitary transfor-
mation', which, acting on the vacuum state,
of the annihilation operator. Specifically:

0), produces a coherent state, that is an eigenstate

|2) = e*' ~72|0) . (D.1)

Using the Baker-Campbell-Hausdorff formula, (3.9), the above formula becomes:

|z) =e 2 emte*z“\m . (D.2)

Expanding the exponential, e~ ** and recalling the definition of the vacuum, (B.8), that is a|0) =
0, the above equation takes the following form:

2|2

2) = e 2 %' |0) . (D.3)

Also, expanding the ¢ in the above equation:

5 ©0
—lz|

2 gt
z)=e€ 2 ———=10) ,
2 2 Jeiviil”

(D.4)

and introducing the harmonic oscillator eigenstates, |n), of the number operator, (B.6), that is
N|n) = n|n) (N = a'a), which are given by equation (B.9), that is |n) = T%GT|O>’ one obtains

the following expression of the coherent state:
o2 o 2"
Z)y=e 2 —1n) . (D.5)
=T i)

Let us now briefly mention some properties of the coherent states, |z). They form an over-
complete basis? for the Hilbert space, H, meaning that every state can be expressed as a

zal—za

!'Specifically, this operator is called displacement operator, D(z), and is defined as D(z) = e
%Instead of the term basis, the tight frame term is technically more accurate [144].
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superposition of the coherent states in a non-unique way, that is a single ket can be decom-
posed in different ways in terms of the same set of vectors®. [Martinazzo] In order to obtain the
(over-)completeness expression, let us start with considering the following integral:

1 2 |n m| —|z\2 nzm j2
7T/d z|z)(z Z\/T 2"ZMd (D.6)

where d’2z = d(Re(z))d(Im(z)). Introducing the polar coordinates, z = |z|e’, then d?z =
|z|d|2|d6* and the above equation becomes:

1 |n) (m| a2 2 o
— [ d*2]2)(z| = e PPz 2] d) 2 / eftn=m)qg
> [ e ZW ) [

- Z[nﬁn,m’ e L2 22w

o0
=3 I [ s
n

- Z mzf'”’n! =1 (D.7)

In turn, the property of overcompleteness is responsible for the non-orthogonality of these
states®. Indeed, definition of the coherent states, (D.5), gives the following non-orthogonality
condition for two of them, z1, z2:

2112 12?1 lz 2 22
(21]22) = (n] <€_ et Z@{%‘) n) = (21]z) =€ 2 TH2TE (D.8)
mn.

n=0

The last property of the coherent states being normalized, (z|z) = 1, concludes the necessary
information about the canonical coherent states for our purpose.

5This ambiguity, although it seems to be unwieldy, makes the coherent states particularly important and useful
in the field of quantum optics.

*More explicitly: dz = dRe(|z|e*’)dIm(|z|e*) = dRe(|z|(1 + i0))dIm(|z|(1 + i0)) = d|z|d(|z|0) = |z|d|z|db.

0n the contrary, a complete set of states allows to express a function as a superposition in a unique way and
thus to be orthogonal.
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Appendix E

Three-dimensional noncommutative

gravity as a gauge theory: Calculations
of the field transformations, curvature
tensors and equations of motion

Calculations for the expressions of the transformations of the fields, (5.11):

0X, = 0e,f @ Fq + 0w, ® o+ 0A, ®il+ 04, ® 75 =6, X,
=" %+ AN @V +e®@iL+ @75, Xy ®il+e, @V +w," @+ A, @il+ Ay @ 73]
=6 ® e, X, @ 1] + [A* @ g, X, ® i1] + [eo ® 11, X, @ i 1] + [€) @ 75, X, @ 1]
+ 6% @ Far €0 @ W] + [ © T, w,) © ] + [6% @ Vo, Ap ® i1 + [€* ® T, Ay @ 5]
+ [)‘a ®'~ya,eub ® ;Yb] + [/\a ®'~Ya7wub ®’~Yb] + [/\a ® 5’(1714# ® i]l] + [)‘a ®’~Yaa;1u ® 75}
+leo®il e ® o) + [0 ®il,w,* ® Fa] + [0 ® i1, Ay @ i1] + [eo ® i1, Ay @ 5]
+ [0 ® 75,6, ® Va) + [E0 ® 5, w," ® Vo] + [0 ® 75, Ay ® 1] + [E0 ® 5, Ay ® 73]
O (X1, €Y ® o — i[X 0, A @ Fa — i[ X, €0] ® i1 — i[ X, é0] @ 75
+306% 1@ (Fa W} + 3{€% €0} @ o W) + 365,71 ® {Fa, W} + 3{6% 0,7} © [Far T)
+ €%, Ay) ® Fa + 5[€% 4] ® {Farv5}
+ 3621 ® B} + 3% 601 @ o] + 500001 P B} + 5% 02} @ B ]
A% Au] ® o+ 310% Al © {Fa, 75}
+ ileo, €] ® Ya + ileo, w,'] ® Yo + i[e0, Ayl @ i1+ ileo, Ay @ s
+ 3lé0, 6,11 ® {75, Ya} + 3160, w,"] ® {75, Fa} + ilé0, Al ® 75 — i[é0, Au] @ i1
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5.4)—(5.6) . - ; 5 ; ' ' €
(6-4H_66) —i[ X, £ ® Yo — i[ Xy, A @ Yo — i[ Xy, €0] ® i1 — i[ Xy, €0] @ 75

+3[€% el] ® 2nap 1+ 3{E% €,0} ® €ane¥ + 3[€%, w 0] ® dibarys + ${E% w,)} ® (—4eapcT”)

+ 6%, Ayl © o + 3[€% ALl @ 17"

+ 3" e,) ® (idays) + 3{A el @ (—4eacT) + 3A% w,] @ (—8nap 1) + 3{A", w, "} ® (—4e®°5°)
+ A% A © A + 3N AL ® 47,

+ ileo, el ® Ya + ile0, w,'] @ Ya + i[€0, Ap] ® i1+ i[e0, Ap] @ 5

+ 360, €,"] ® iFa + 3[E0, w, "] ® 4iq + i[E0, Au] ® 5 — i[E0, Ay ® i1 =

(56Ha = —i[X, + A, €% + 2{wuw, fc}eabc + 2{euw, )\c}eabc + 2i[ A, flu] + 2i[€0, wua) + il€0; €pal
a . a abe 1 abce i a A . a 4 ~ a
dw,® = —i[ X, + Auy A + 2{wpup, AcJe®© — i{eubvfc}e be 4 5[5 s Apl +ileo,w,'] + S [€0,€,']

iz 2
6A, = —i[X, + Ay, €] — i[€% eua] + 4[N W] — i[60, A,
§A, = —i[X, + Ay, &) + 266 wua) + 20\, epa) + ileo, Ay -
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Calculations for the expressions of the component curvature tensors, (5.19):

Ruv = T (X) ® Yo + R,2(X) @ Fa + Fu(X) @ i1+ Fjup(X) @ 95 = [Xp, X)) —iAC,0 X,
=[X,Qil+e!®F+w®Fa+ A, ®il+ A, ®75, X, ®il+e,’ ®Fa+w," @ Ta
+ A, @il+ A, @] —iAC, (X, ®il+ e ®F+w, ®Fa+ Ap ®il+ A, ®s5)
= i[X,, X, @ i1+ i[X 1, 0,2] @ Yo + i[Xp 0,8 @ Fa + [ X, A)) @ i1+ i[X,,, A,)) @75
+ile s X)) @70+ 3lef €] © {Fa, W} + 5{e,ls e © Fas ] + 3les w1 @ {Fas 0}
+5{ed W} © B, %) +iled, A © 70 + led, A © (Fa s} + 3{es A} © Fa, 73]
+ilw X ©Fa + 5w €@ {Fas Mo} + 5{ws € © Fas W) + 5w 0,1 © {Fas T}
+ 3w, W)} ® Fa, Tl + i[w,?, A © Yo + 3w,", A] ® {Fa, ¥5} + 3{w," Au} ® [Fa, 5]
+i[Ay, X)) @1+ [Ay, €, @ Fo +i[Ay, 0, @ o +i[Ay, A)) @ il +i[A,, A)] ® s
+i[A,, X)) @95 + 3[Au, 6] @ {75, 70} + 2{Au €7} @ [15,9a] + 2[Au, 0, @ {75, a}
+ 3{ A4, w, "} @ [15, 7] + i[Ap, A] @95 — i[Ay, A)] @1 —iXC,Y (X, ® il + e ® Yot
tw ®Fa+ A, ®il+A,Q75)
= i[X,, X, @ i1+ i[X,,, 6,7 @ Yo + [ Xy w0, "] @ Fa + [ X, A)] @ i1+ [ X, A)] @ 75
+ile, Xol @90+ 3le,t el @ 21+ 3{e,! €.} ® eane” + 3lel,w,”] @ 4idayys
+5{ed W} @ (—eane?®) + [e, A] @ Fa + 3le,, A] @7 + ilw,, X,] © T
+ 3w, €] © 4idarys + 3{w, €} ® (—deane?®) + w0, @ (—8nas 1)
+ 3w, w1} ® (—deweT) +ilw,, A ® Fo + 3w, A © 4670 + i[Ay, X)) ® i1
+i[Au, €7 @ Yo + i[Au, w0, @ Fo +i[Ay, A)) @ i1+ i[Ay, A ® s +i[A,, X,] @5
+ 1AL M @i, + A AL, w0, © 4i, +i[A,, A @95 — i[A, A @il
—iACE (X @it e @ Tut o @ Fa+ Ay @i+ A, @ 15)
= i[Xu, X, @14 i[X,,, 6,7 @ Yo + [ Xy 0,7 @ Fa + [ Xy A)] @ i1 +4[ X, A)] @ 75
+ile,, Xu] @ Yo +ile,), eva] ® 11+ %{eub, e, } ® eanc¥” + 2ile,, wpa] ® ¥5
—2{e,), w, Feape ®F* +iile,l, A @ Va + e, A @A +ilw,, X)) ® Fa
+ 2iw,’, eva] ® V5 — 2{wub, e, feabe @ 7" + diw,’, wya] @ i1)
— 2{w,, w,YeapcF* + ilw,, Ay] ® Fa + 2ilw,, Ay] ® Fq + i[Ay, Xy ® i1
+i[Ay e @Yo +i[Au, w,) ] @ Fa +1[Au, A @D+ i[A,, A)) @ v5 +i[Au, Xu] @ 5
+ LA €7 ® Ao + 2i[A, w0, @ Yo +i[Ay, A @95 — i[A, A @i
—iXCE (X, @i+ el @ t+w! ®Tu+ A, @il+4,07%) =
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TWa =i[X,+ Ay e — i X, + A, eu‘l] — eabe ({ewps woe} + {wups eve})
+2i ([, A = [0, A,]) = iACfe
Rmf =il X, + Ay, w) =i X, + Ay, wu“] + eabe (%{e#b, eve} — 2{wpp, wyc})
+ % ([eua,fl,,] — [e,,“,flﬁ) —iAC fw),
Fup = i[Xu + A X + A —ile,f, eva) + 4ilw,® wia] — i[Ay, A)] —iXC0 (X, + Ay) |

Fuy = i[X, + Ay, A — i[Xy, + Ay, A+ 2i ([e, wya] + (0,8 €va]) — IAC, P A, .

2

Variation of the action (5.27) and determination of the parameter m~ so as the spaces Rig and

Ri are solutions of the field equations derived from the action:

) :
680 = Fm (;C“VPXMXVXP — mQXuX“>

o
= T %CW” (6X, X, X, + X,0X, X, + X, X,0X,) — m2(6X, X" + X#(SX“)]
L
= T %C’“’P (X, X,0X, — X,X,0X, — X,X,0X,) — 2m2X“6XN]
L .
— Tr %C“VP[XV, X, - %C“VPX,,XV - 2m2X“] 5X,
g
LT .
= 5 %C“VP[X,,, X, + éC’“’"[Xl,, X, - 2m2X“] X,
T
= g—QTr %C“VP[XZ,,Xp] — 2m2X“] 0X,=0 =

%C“VP[XV, X,] — 2m2 X" =0
% A CPP[X,, X)) — 2m2Chn, XH = 0

(3
_5(
(X, X5] — 26m*C _{'X,, =0 (E.1)

5168 — 008%)[ Xy, X, — 2m?Crpny X* =0

Taking into consideration the commutation relation of the coordinates for R}\’Z, (X, X =
iACuf X, one finds m? = \. Had we started with the R?)’\ action, with the only difference to the
above being the structure constants, €,,,,, one results with m? = -\

140



Calculations from the action (5.29) to the form of (5.30):
1 A A ..
5= 3Tixg (507X, %, X, - 3X,X")

1 . o L
= 5 Trirg (402 X,uX,, X,) - 3 X, X7)

1 P ¢ X, X
C2Y ~ Trtrg (%C“VPXM(RW) +iACypo X7) = %XMX“)

P
= 912Trtrg (%C“V’)X#Rup — 3O Clpe X X7 — %X#XM>
= 912Trtrg (%C’WpX#Rup — %(—25@)2#)2” - %XMX”
= glzTrtrG (%C“VPXNRW - %XMX“)
_ G;QTYU“G <Z'CMVPX'#’RVP) — éTrtr(;(f(uf(”)

— Tt (10" X, Ryp) + 1

where we set S) = —%Trtrg(XMX”).
Calculations from (5.30) to (5.31):

1 . -
5= 52T (z’C’W”XuR,,p) — e Trtrg (X, X")

5.9),(5. : v ; ~ 5 ) A
PORM L Tyt O ((XH®Z]1—|—€Ma®’Ya+w,f®’7a+14u®ln+‘4ﬂ®75)'

(T,)®%+ R, @9+ F,®il+F,,® 75))
— g2 Trtr ((XM Ril+ el ®Fa+w! @Y+ Ay ®@il+ A, ®7s)-

(X“®i]1+e“b®7ya—i—w“b@’ya—i—A“@i]l—i-[l“@%))
7/' o ~ o~
= @TrCNVP (%aTupb ® trg (oY) + wuaRl,pb R trg(FaV) — (Xu + A Fp @ trgl+ ALF,, ® trg ]1)
— éTr (e’fe“b ® tra(YaYp) + wu“w“b @ tra(FaW) — (X + A (XH 4+ AN @ trg1 4 A, A* @ trg Il)
520 2
3g2
— %Tr (e““e”‘a —Awfwh — (X + Ap) (XF 4+ AF) + lew‘i“) :

O (T i~ (ot A A1E)

Variation of the action (5.31) with respect to the gauge fields. We give the detailed calculations
of the variation with respect to the e gauge field and the rest are obtained accordingly.

= 2 meome(s o 6T, " 0e R, — (X + Ap)oeFyp + Ao I, 22 Te(26e e
= —2TI‘ ( elﬂlTI/p +eua eTI/p _4(,(]“@ e vp _( 12 + H/) e Vp+ pe l/p) - @ I‘( 6:“‘ e a) .

Oe
S 39
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We break down the above expression and calculate each term separately:

20 .2 .
3—g2TrC“ Penadel,, — S—QQTI"(%eM et) =
27/ vV a - a aoc
= gTrC“ Pea(i[ X, + AL, de, | —i[X,+ Ay, de,t] — 2¢ b ({devh, wpe} + {wup, depe }

2\
— iACype0e”®) — @Tr(%“adeua)

9
= jTrC”Vp(i[X,, + Ay, epade,’] — il Xy + Ay, epalde,” —i[ X, + Ay, epade,’] +i[X, + Ap, epalde’

b
— 2" (epaderpwpe + €uaWpcdluh + €pawibdepe + €uadepcwp))

27/ 14 oa 2 e a
— gTrC“ PINCyprepade’ — S—Trz/\( 208)e%,de,,")
o
= 3—;2TrC“”p( i[X, + Ay, epa]5 —i[X, + A, eya]ée# - abc({eua,wpc}ée,,b + {epa, wup}oese))
2 ovp 2 . uvp o a
_ gTrC iACyppeoade!” 392 = L ACHPC pe a(SeM
2
= éT rCHP(i[ Xy + Au, epalde, — [ X, + Ap, evalde, — 26" ({ eyt Wpe }0€pa + {€pes Wb }0€pa))
0 .
3 L TYCupCYP7 i A rabe® — 3;2 TreiACHPCly e, 3,
24
- iﬂmw)( i1X, + Avsepalde,t —i[X, + Ap evalde,d — 2eae({e,l,w, 06, + {efw, Y oe,))
0
- B—QQTrC”V'DCVpUi)\eUaéeHa - éTri)\C“”pC,,pae"aéeu“

22 v . . c a
= 3—92TrC“ P[Xy + Ausepa) — i Xy + Apseva) — 2eape({e,} w,t+{e,)w wl}) — 2iACypo€%)de,

0O (b )

3g°
21 ) - -
éTrCW (4 (B ({Oerns eped + {evnsdepel) + 5([0e,7, Ay = [de,, AL)) ) )
@T rCH7P (f2eabc(wwéeybepc + Wua€pcdevh + Wualub0€pe + Wuadepclup)

—2i(wpalde,, A,] — wyalde 2, Ay]))

—T crve ( abc({epm Wua}561/b + {ew, w“a}éepc)

392
—2i([wpabe,’s Ap] — [Wya, Aplde," — [wyuade,”, Ay] + [wua,fly]éep‘l))
21 v A a
= 52 IO (~2eae(le ) + 1l D) = 2l Ag] — [opa, Au)) b,
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&TI“CWP (_(Xu + Au>5eFl/p) =

32 .
- ;;QTrCWp (—(Xp + Ap)(—ilde,’s epa] —ile,", depa]))
- ;i]izTrC#vp (—ilepar (X + Ap)de,’] +ilepa, Xu+ Aulde,” + ileva, (Xp + Ap)depal — ileva, Xy + Apulde,’)
_ 32;2%(7“’” (i[X0 + Ay, €pa] —i[X, + Ap, eval) b,
2 P
S T (AudeFrp) =

— ;quTrCWPAM (2i[0e,", wpa) + (W, 5€pa))

= 32;2Tr0“”” (21'[121“(56”&, wWpa] — 2i[Ay, wpalde," + 2i[w,*, Audepa] — 2ifw,”, A#]‘Sepa>

- ?ZQTrC’Wp% ([wya, A, = [Woa, [1”]) de,;’

Combining the above calculations, the J.5 becomes:

21 . . .
0eS = g—ngrC’“’p (Typa +i[ X, + Ay, epa] —i[ X, + Ap, eva] — 26abc({e,jb,wpc} + {epc,wyb}) — 2iACype€’,

- 2€abc({epcvab} + {eyb’wpc}) = 2i([wya, Ap] - [wpa; Au])

Xy + Ay, epa] — i[X, + Ay, eyl + 2i[wpa, Ay] — 2i[wpa, Ay]) Se,t

27 . ) :
= 3—g2TrC“Vp (T,,pa +2i[X, + Ay epa] — 20X, + Ay, eva] — deane({e), wy b+ {e,, w,}) = 20ACypoe’,
Hilwya, Ay) — 4w pa, Ay])

23
= 3792']?1'0'“‘”%) (Tupa + 2T1/pa) =0 = Tl/pa =0.
In the above calculations, among others, the antisymmetricity of the structure constants, the
trace invariance under cyclic permutations, the vanishing of the trace of a commutator (see
section 3.1.1) and the expressions of the component field strength tensors, (5.19), have been
used. Variation with respect to the rest of the gauge fields is carried out in a similar way.
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Appendix F

Four-dimensional noncommutative
gravity as a gauge theory: Calculations
of the field transformations and
curvature tensors

In this appendix, we present steps and calculations for the transformations of the gauge fields
and the component curvature tensors for the four-dimensional gravity as a noncommutative
gauge theory. In the end, we check whether our results are valid, after the consideration of the
commutative limit.

In the main body, in section 6.2, we provided all definitions and necessary information for
the set-up of the gauge theory. For a better flow, all calculations that should lie in the text after
equation (6.15) are moved in this appendix. So, picking the thread from there, we move on with
the calculation of the transformations of the gauge fields and the expressions of the component
curvature tensors.

Instead of proceeding with using the transformation rule of the covariant coordinate, (6.10),
for a straightforward calculation of the transformation of the sixteen gauge fields of the theory,
for calculative reasons, first we employ an SO(5) notation and then, applying a decomposition,
we return to the SO(4) notation we have already adopted. As we explained in section 6.1,
for reasons of anticommutation closure, the generators of the gauge group SO(6)xU(1) are
encountered in a fixed representation given by 4 x4 matrices:

1
2

1 1
Ta, —5Tals, =515 (F.1)

1 ]
17 M(zb - _Z[Favrb] — _irarlb 2

For the upgrade to the SO(5) notation, we introduce the matrices I' 4, which satisfy the following
anticommutation relation:
{T'4, I} =204p1, (F.2)

with A, B = 1...5. Taking this into consideration, the above generators, (F.1) can be rewritten
in the following compact form, in terms of the I' 4 matrices of equation (F.2):

7
1, T'a, Map= —Z[FAarB] . (F.3)
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In this SO(5) notation, the algebra of the generators and their anticommutation relations are
found to be the following [145]:

[Mag, Mcp) =i(6acMpp + dppMac — 0pcMap —SapMpc) ,
Car, Myp] =i(0ppT'Ny — dunT'p),
{Mup,Tc} = eapcpEMpE,

1
{Map,Mcp} = 5(5,405317 —dapdpc)l + €apopelE (F.4)

Next, we turn all components of the gauge theory into the SO(5) notation, specifically, the
covariant coordinate is written as:

X =Xm @1+ A,(X)@ 1+ APX)@T5 + A (X)® Mygp , (F.5)
the gauge parameter as:
€(X) =e(X) @ 1+ 4X)@Ta + MB(X)® Map (F.6)
and, accordingly, the field strength tensor as:
ih -

F@mn ® ]1 9 (F7)

an == [XmaXn] -
which is decomposed on the generators of SO(6)xU(1) in the SO(5) notation:
Fpn = Frn(1) @ 14 F,,A(T4) @ Ta + F,,,B(Map) ® Map . (F.8)

Now, after rewriting the algebra and the expressions related with the gauge theory, we may
proceed with the calculations. The transformation rule of the covariant coordinate is:

6 X =ile, X . (F.9)

Replacing the expressions in (F.5) and (F.6) into the above rule, we obtain the transformations
of the component gauge fields in the SO(5) notation:

0A,®1= <—’i[Xm,€0] [Am,E()] + ’L[{:A, ] [)\ B,A ]) ® 1, (F.10)
SAR ®T 4 = (—i[Xm, &Y — i[Am, Y +ileo, AL — {€8, AP+ {5, A2}

%P\BC AP ]EABCDE) @Iy, (F.11)

AP @ Myp = <—z’[Xm, MB] — [ A, VB +ileg, AAB] —2{e A, AP} + [g A PElespepE

+ %[/\CD A E]GABCDE — *{/\ mBC}> QR Map . (F.12)

From the field strength tensor definition, (F.7), its expansion, (F.8) and the definition of the
covariant coordinate in the SO(5) notation, (F.5), we obtain the following expressions of the

145



component curvature tensors:

1 ih
an ®@1= <[Xm7An] - [Xna Am] + [Ama An] + [Anila AnA] + §[An‘?Bv AnAB] - ;an) ®1
(F.13)
anA(FA) @Iy = ([va AnA] + [Amv AnA] - [Xnv Ani?] - [Ana Arrl?] + Z.{AmBa AnAB}
. 1 1
—i{A P, Anp} - §6ABCDE[A$JB, ACP] - %an ) ®Ta (F.14)
anAB(MAB) ® MAB = ([Xm7 AnAB] + [Amv AnAB] - [Xn? AWI?B] - [An7 An?B] + 2Z{A7r1?7 AnB}
1 ih
+5 (A AP = (AL A easepe + 2i{AC, A} = ;2 anAB> ® Map.  (F.15)

Next, in order to go back to the previous notation and express the above results, (F.12) and
(F.15), in the desirable, SO(4) language, we proceed with the following decompositions of the
SO(5) generators:

Ly — (0 =2K,,T5=-2D), Map — (Mg =—L1[[4,Tp), My = —iT,I's =PF,) . (F.16)
Accordingly, we decompose the gauge fields to the SO(4) notation:
ANB 5 (AP =0 AB =Y, AL 5 (A2=b2A0=dn), An— am, (F.17)

and also the 2-form gauge field:

as well as the components of the SO(5) gauge parameter:
Mg = QapAas = &), €02 (48 =) —e. (F.19)

Applying all the above decompositions and identifications on the expressions of the transfor-
mations of the gauge fields in the SO(5) notation, (F.12), we obtain the corresponding transfor-
mations in the desired SO(4) notation:

B = =X, A] = i, X] e, 0] — 2E% B2} — A% il — (€7 e}
+i[¢, e, eqbed + %[50, Wt €abed + 5[)\“1, am)€abed — 1[€%, by €abed (F.20)
. ca . ca . a a ~ ~ a 1 a 1 - a

5617(; = —Z[Xm,f ] - Z[amag ] =+ 7’[607 em] - {f 7am} + {607 bm} + Z{)‘ bs 672} - 1{€b7wmb}

+ i[é.C? wrgd]ﬁabcd - i[)‘Cda bTZ]Eabcd (F.21)

~ a 1 a ca ~

6bm [Xm,g ] [amaé ] + 1[60, m] {éb’ b} - 2{60’ em} + 5{)‘ b> bnl;} + { 7am}

+ [N, e, eapea + i[€", W] €abea (F.22)
5am = _i[XTm 60] - i[amv 60] + i[éaa brg] + i[g()? &m] =+ ;P‘ab? ] [ga’ m] (F.23)
5dm = [Xm’ EO] - Z[amy 50] + 1[607 am] + {gav :L} {gav 75} + = P‘ad Wy, ]eabcd . (F.24)
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Similar procedure is followed for the calculation of the transformation rules of the 2-form com-
ponent gauge fields:

0Byn = _i[®mn>60] - i[an,Eo] +i[£aaBm;] +i[gOaan] + ;[)\abaB ] [gaa ]

(F.25)
6Bimn = —i[Omn, €] — i[Bmn, €0] + ileo, Bmn] + {€as Bt} — {€as Bt} + 5 P\ab o J€abed
(F.26)
B = —i1Omns€) = il B, €]+ ile0, By~ {€%, By} + (o0, B} + 10N Bt
- i{gln Y +4[€°, B, S eabea — iIAY, ByyMleabed (F.27)
5Byt =~ €] — il B €]+ il Byt = (6 Bt} = 20 B} + 51N By
+{€% B} + 5 [Abc B, eaped + 11", By €abed (F.28)
5B = 1O X] — B K] 4 ile0, By] = 2067 Bt} = 51N B} — {0 B!
+i[€%, Byeabea + %[go, Bieabea + P\Cd Brin) — 1€ By J€abed - (F.29)

Also, we do the same for the component curvatures. The SO(4)-notation expressions of the
component tensors of R, of (6.14) are obtained starting from (F.15):

Rmn = [me an] - [X’mam] + [am7 an] + [brgv bna] + [dmv dn]

1w a ih
+ §[wm ,wnab] + [emm en] - men (F.30)
Rmn = [er an] + [an’n an] - [X’VM &m] - [an7 dm] - i{bmay ena} + 'i{bnaa enal}
1 ab cd ih
+ §6abcd[wm y Wh ] - Fan (F.31)
Ryt = [Xm, 0,81 + [am, b, = [ X, byt] = [ams byst] + i{bmb, s} — i{bnp, wit}
e~ a (o~ a c ¢ h
o ifan, e} = i{an, e} + apcallens, @, = e, w")) = 55 Bt (F.32)
Rm: = [Xm, €] + [am, '] = [Xn, €] = [an, €] +i{by, @n} — i{b,", G }
i
([b b cd] [b b ])Gabcd — Z{wm ,enb} + z{wn ,emb} 2 B a (F.33)
Rmn [vaw ] + [am,w ] [Xn,w ab] [aTM ab] + 27’{bm? n} + ([ m» n] [bnc7 m])eade
1
+ 5([dm, W, % = [an, w, ) €aped + 2i{w, 2, w,0 .} + 2i{e,?, e} — —B (F.34)
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