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Abstract 
 

In motorsports, developing well engineered solutions is essential for designing a 

competitive race car. The need for reaching the limits of engineering is even more 

intense in Formula Student applications. This work deals with the complete 

development of a gearbox for a single-cylinder powered Formula Student vehicle. 

The optimal solution for a set of gear ratios is examined using both an analytical and 

a simulation-based approach. A stochastic optimization method is employed for the 

latter. The contribution of gear upshift and downshift engine speeds is also taken 

under consideration. Results are being extracted and combined from different 

Formula Student tracks and generalized conclusions are made for selecting 

appropriate gear ratios. The gearbox mechanical design is also being analyzed. 

Finally, choosing a non-conventional manufacturing method enabled designing 

beyond the existing gear module standards. 
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Περίληψη 
 

Τν θηβώηην ηαρπηήησλ απνηειεί έλα ηκήκα ηνπ ζπζηήκαηνο κεηάδνζεο θίλεζεο ελόο 

νρήκαηνο, ν ζρεδηαζκόο ηνπ νπνίνπ απνζθνπεί ζην λα επηηύρεη ηελ θαηάιιειε ζρέζε 

κεηαμύ ζηξνθώλ θηλεηήξα θαη ηαρπηήησλ νρήκαηνο. Καζόηη θάζε θηλεηήξαο ζπλήζσο 

έρεη δηαθνξεηηθή ζπκπεξηθνξά ζπλαξηήζεη ησλ ζηξνθώλ ηνπ θαη θάζε όρεκα 

δηαθνξεηηθό εύξνο ηαρπηήησλ αλαιόγσο κε ην πεδίν ρξήζεο ηνπ, είλαη πξνθαλέο όηη ν 

ζρεδηαζκόο ελόο θηβσηίνπ ηαρπηήησλ πξέπεη λα είλαη άξξεηα ζπλδεδεκέλνο κε ηνλ 

εθάζηνηε ζπλδπαζκό θηλεηήξα-νρήκαηνο. 

Απηή ε εξγαζία πξαγκαηεύεηαη ηνλ ζρεδηαζκό ελόο θηβσηίνπ ηαρπηήησλ γηα ην 

αγσληζηηθό κνλνζέζην ηνπ 2019 ηεο θνηηεηηθήο νκάδαο Prom Racing ηνπ Εζληθνύ 

Μεηζόβηνπ Πνιπηερλείνπ. Τν θηβώηην απηό πξννξίδεηαη λα αληηθαηαζηήζεη ηελ 

ππάξρνπζα ιύζε πνπ πξνζθέξεη ν θαηαζθεπαζηήο γηα ηνλ κνλνθύιηλδξν θηλεηήξα 

KTM 500 EXC, κε ηνλ νπνίν είλαη εμνπιηζκέλν ην κνλνζέζην ηεο νκάδαο. 

Η ελ ιόγσ νκάδα ζρεδηάδεη θαη θαηαζθεπάδεη έλα πιήξσο ιεηηνπξγηθό κνλνζέζην, κε 

ζθνπό ηελ ζπκκεηνρή ζηνπο δηαγσληζκνύο Formula Student. Λακβάλνληαο ππ όςηλ 

ηνπο θαλνληζκνύο ησλ δηαγσληζκώλ, όια ηα ζπκκεηέρνληα κνλνζέζηα ζρεδηάδνληαη 

θάησ από θνηλά πιαίζηα. 

Η κειέηε ηεο επίδξαζεο ησλ ζρέζεσλ κεηάδνζεο ζηηο επηδόζεηο ηνπ κνλνζέζηνπ 

πξαγκαηνπνηήζεθε κέζα από δύν δηαθνξεηηθέο πξνζεγγίζεηο. Καη αξρήλ, εμεηάζηεθε 

αλαιπηηθά ην ζελάξην επηηάρπλζεο ζε επζεία γξακκή. Με απηόλ ηνλ ηξόπν 

δηαπηζηώζεθε πσο, πέξαλ από ηηο ζρέζεηο κεηάδνζεο, ζεκαληηθό ξόιν παίδνπλ νη 

ζηξνθέο ηνπ θηλεηήξα ζηηο νπνίεο πξαγκαηνπνηνύληαη αλεβάζκαηα θαη θαηεβάζκαηα 

ηαρπηήησλ. Επηδηώθνληαο ειαρηζηνπνίεζε ηνπ ρξόλνπ επηηάρπλζεο, αλαπηύρζεθαλ 

δηάθνξεο αλαιπηηθέο αλαδξνκηθέο ζρέζεηο γηα ηελ εύξεζε ησλ βέιηηζησλ ζηξνθώλ 

αλεβάζκαηνο ηαρπηήησλ θαη ησλ βέιηηζησλ ζρέζεσλ κεηάδνζεο. 

Μέζα από ηελ πξνεγεζείζα αλάιπζε δηαπηζηώζεθε πσο δηάθνξα ζελάξηα νδήγεζεο  

κέζα ζε κηα πίζηα αγώλσλ ηαρύηεηαο δελ θαιύπηνληαη από κηα απιή επηηάρπλζε ζε 

επζεία γξακκή. Καηά ζπλέπεηα, ζε κηα δεύηεξε πξνζέγγηζε, δηακνξθώζεθε έλα 

κνληέιν πξνζνκνίσζεο γηα ην κνλνζέζην, ώζηε λα εμεηαζηεί κε κεγαιύηεξε αθξίβεηα 

ν ρξόλνο πίζηαο. Σηελ κνληεινπνίεζε απηή, ρξεζηκνπνηήζεθε έλα θακππιόγξακκν 

ζύζηεκα ζπληεηαγκέλσλ γηα ηελ ηνπνινγία ηεο πίζηαο θαη ηεο επηζπκεηήο ηξνρηάο 

εληόο απηήο. Έπεηηα, κε βάζε έλα full-car model, δηακνξθώζεθαλ νη δπλακηθέο 

εμηζώζεηο ηζνξξνπίαο δπλάκεσλ θαη ξνπώλ. Γηα ηνλ πξνζδηνξηζκό ησλ θάζεησλ 

δπλάκεσλ ζηα ειαζηηθά, πξαγκαηνπνηήζεθε κηα αλάιπζε ηεο ιεηηνπξγίαο ηεο 

αλάξηεζεο θαη δηακνξθώζεθε έλα ζύζηεκα δύν δηαθνξηθώλ εμηζώζεσλ γηα ηελ 

θιίζε (pitch) θαη ηελ πεξηζηξνθή (roll) ηνπ ακαμώκαηνο. Η ζπκπεξηθνξά ησλ 

ειαζηηθώλ κνληεινπνηήζεθε ζύκθσλα κε ηελ Magic Formula πνπ αλαπηύρζεθε από 

ηνλ Pacejka. 
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Πέξαλ από ηελ πξναλαθεξζείζα θύξηα κνληεινπνίεζε, πξαγκαηνπνηήζεθε αλάιπζε 

ηεο ιεηηνπξγίαο θαη ησλ ππνινίπσλ ππνζπζηεκάησλ ηνπ κνλνζέζηνπ. Απηά 

πεξηιακβάλνπλ ην ζύζηεκα κεηάδνζεο θίλεζεο θαη ην δηαθνξηθνύ πεξηνξηζκέλεο 

νιίζζεζεο, ην ζύζηεκα πέδεζεο θαη ην ζύζηεκα αιιαγήο ηαρπηήησλ. Επηπιένλ, 

δηακνξθώζεθε έλα κνληέιν γηα ηνλ νδεγό, θύξηα ζηνηρεία ηνπ νπνίνπ απνηεινύλ ν 

πεξηνξηζκόο ησλ πιεπξηθώλ θαη εγθάξζησλ επηηαρύλζεσλ κέζσ ελόο κνληέινπ 

friction ellipse, ε δηακόξθσζε κηαο επηζπκεηήο ηξνρηάο ζηελ πίζηα θαη ελόο PID 

ειεγθηή γηα ην ζύζηεκα δηεύζπλζεο κε ζηόρν ηελ αθνινύζεζε απηήο ηεο ηξνρηάο. 

Τα απνηειέζκαηα ρξόλνπ πίζηαο ησλ πξνζνκνηώζεσλ ρξεζηκνπνηήζεθαλ γηα ηελ 

εύξεζε ηνπ ζπλδπαζκνύ ζρέζεσλ κεηάδνζεο. Μηα ζηνραζηηθή ηερληθή 

βειηηζηνπνίεζεο αλαπηύρζεθε θαη εθαξκόζηεθε γηα απηόλ ηνλ ζθνπό. 

Τα απνηειέζκαηα ηεο αλαιπηηθήο πξνζέγγηζεο θαη ηεο ζηνραζηηθήο βειηηζηνπνίεζεο 

γηα ηξεηο δηαθνξεηηθέο πίζηεο δηαγσληζκώλ Formula Student ζπγθξίλνληαη, 

δηαθξίλνληαο θάπνηα γεληθά ζπκπεξάζκαηα ζηνλ βέιηηζην ζρεδηαζκό ηνπ θηβσηίνπ 

ηαρπηήησλ. Τα απνηειέζκαηα γηα θάζε κηα  αλάιπζε πξνθύπηνπλ δηαθνξεηηθά, όκσο 

κε θαηάιιειν ζπλδπαζκό επηηπγράλεηαη έλα αξθεηά ηθαλνπνηεηηθό απνηέιεζκα γηα 

όιεο ηηο πεξηπηώζεηο. 

Τέινο, πξαγκαηνπνηείηαη ν κεραλνινγηθόο ζρεδηαζκόο ηνπ θηβσηίνπ. Κάζε βαζκίδα 

κεηάδνζεο πινπνηείηαη κε θαηάιιειν ππνινγηζκό ησλ νδνληώζεσλ, ιακβάλνληαο ππ 

όςηλ ζέκαηα θαηαζθεπαζηκόηεηαο θαη αληνρήο. Η δηάηαμε ησλ ηαρπηήησλ θαη ν 

ηξόπνο ελαιιαγήο ηνπο εμεηάδεηαη γηα ηνλ ζρεδηαζκό ελόο ηκήκαηνο ηνπ ζπζηήκαηνο 

αιιαγήο ηαρπηήησλ. Η αληνρή ηνπ θπξίσο ζώκαηνο ησλ νδνλησηώλ ηξνρώλ 

κειεηάηαη κε ρξήζε πεπεξαζκέλσλ ζηνηρείσλ. 
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1. Introduction 
 

1.1 Problem Statement 
 

The general purpose of a gearbox is to be a part of the powertrain connecting the 

engine of a vehicle and its wheels, while facilitating a certain or a multiple number of 

drive ratios. The presence of drive ratios is necessary since a vehicle’s engine and the 

vehicle itself always operate within a certain range of speeds. Moreover, the behavior 

of an engine, for example its efficiency and output torque, usually differs according to 

its rotational speed. These two simple aspects outline a significant outcome; the 

design of a gearbox must be performed so as to produce a tailor-made solution for a 

given engine and the desired vehicle performance. 

The design presented in this work is to be implemented in the race car of the Formula-

Student team Prom Racing (figure 1). Prom Racing is a team of the National 

Technical University of Athens that was founded in 2008 and has been active ever 

since, having designed and manufactured three race cars up to this time. Therefore, all 

the design efforts are placed upon maximizing the performance of the vehicle that this 

team develops and, more specifically, of the new fourth vehicle to be designed and 

manufactured in the team’s history, dedicated to participate in Formula Student 

competitions of 2019. 

 

 

Figure 1: The Logo of Prom Racing 

 

As a first general assumption, it can be said that the purpose of the gearbox to be 

designed within this work, is such that maximizes the performance of a Formula-

Student type racing vehicle. However, even though all vehicles of this type seem to 

share similar concepts, they do not share the same characteristics. The main reason is 

that, even though restrictions are posed upon the engine from the regulations of the 

competition, the number of cylinders is not specified. Single, double, triple and four 

cylinder engines are all very popular in Formula Student vehicles. With that being 

said, the rotational speed range, as well as the amount of torque produced, can vary 

significantly from vehicle to vehicle.  

Usually, multi-cylinder vehicles are heavier but more powerful, while single cylinder 

ones are lighter but less powerful. This is a very distinct difference between Formula 
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Student vehicles. For example, the 2018 race car of Prom Racing (figure 2) is using a 

single cylinder KTM engine, while CAT Racing (figure 3), a very competitive team 

from the University of Coburg, is using a 4 cylinder Yamaha engine. Both vehicles 

seem to be very similar and build upon the same concept. However, this is 

comparison is not close to reality, should the difference of engine and possibly vehicle 

dynamics be taken under consideration. 

 

 

Figure 2: A Formula Student vehicle by Prom Racing 

 

 

Figure 3: A Formula Student vehicle by CAT Racing 
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Therefore, the scope of the gearbox to be designed is such that serves the needs of the 

specific car designed by the team. That being said, engine performance and vehicle 

dynamics, influencing the speeds of the car on the track, should be taken under 

consideration. 

 

1.2 About Formula Student competitions and their regulations 
 

Formula Student competitions are fully defined, both in their organizational aspects, 

as well as in the engineering design and limitations of the participant vehicles, by a 

series of regulations. Up to the year of 2016, these regulations were written and 

published by the Formula SAE (Society of Automotive Engineers) and hence were 

referred to as FSAE rules. Competitions were held worldwide and organized by 

different committees, but all adhered to those rules. Usually, most of them would 

make minor changes to those rules, which would be active in the specific competition 

only. 

As of 2017, the German based competition FSG (Formula Student Germany) 

announced they would be establishing their own set of rules. Quickly, most European 

competitions also announced that they would follow the FSG [1] instead of the FSAE 

rules. From that period and onwards, both set of regulations exist, having mainly 

minor differences between each other. However, since Prom Racing team has, up to 

the present year, plans for participating at European competitions, the vehicle to be 

designed adheres to the FSG rules. 

According to the FSG rules, the competition objective is to challenge “[…] teams of 

university students to conceive, design, fabricate, develop and compete with small, 

formula style, race cars”. In addition “The competition is split into the following 

classes: 

• Internal Combustion Engine Vehicle (CV) 

• Electric Vehicle (EV) 

• Driverless Vehicle (DV) (which are either CV or EV) “ 

The vehicles that have been designed by the team, as well as the new vehicle to be 

designed, are all combustion vehicles.  

All competitions include, as described by the rules, Static and Dynamic events. 

During the Static events, the car is stationary and participants are tested for their 

knowledge mainly upon, but not only limited to, different engineering fields. During 

the Dynamic events, the vehicle races in a series of tracks and is evaluated mainly 

based on its times. Points are being extracted out of each event and the ranking is 
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based upon those points. The maximum points that can be gathered can be seen at 

Table 1. 

 

 

Table 1: Maximum points for each event 

 

Concerning the dynamic events, the points are granted using different calculation 

formulas containing the time taken to accomplish each event. A brief explanation of 

each dynamic event, as well as its scoring can be seen at Table 2. It must be 

mentioned that details such as penalties and special cases of the rules are not 

mentioned in this table. 

Concerning the vehicle itself, FSG rules specify that the “[…] vehicle must be open-

wheeled, single seat and open cockpit (a formula style body) with four wheels that are 

not in a straight line”. Many technical regulations and limitations concerning the 

design and strength of several components of the vehicle, such as the chassis, 

suspension and aerodynamic devices, are also present within the rules.  

The engine of combustion vehicles is also restricted. The rules state that “The 

engine(s) used to power the vehicle must be piston engine(s) using a four-stroke 

primary heat cycle with a displacement not exceeding 710 cm
3
 per cycle. Hybrid 

powertrains, such as those using electric motors running off stored energy, are 

prohibited”. It is also stated that a single circular restrictor must be placed at the air 

intake system so that all air passes through it. The diameter of the restrictor should be 

20mm or 19mm, depending on whether gasoline or E85 fuel blend is used. 
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Event Track Brief Explanation Scoring Formula* 

Skid Pad 

Two circles in a 

figure of eight 

pattern 

Driver performs 2 

laps at each circle, 

with the 2
nd

 being 

timed 
    

(
    
     

)
 

  

      
     

Acceleration Straight of 75m 

Driver accelerates 

fully in a straight 

line 
    

    
     

  

   
     

Autocross 
Closed track, less 

than 1.5km 

Driver performs a 

single timed lap     

    
     

  

    
     

Endurance 

Closed track 

(similar or the 

same with the 

Autocross track) 

2 Drivers perform 

multiple timed laps, 

11 km driven per 

driver, includes non-

timed driver change 

   

    
     

  

     
+25 

Efficiency Endurance track 

Measured fuel burnt 

during the endurance 

event 
   

    
     

  

    
    

  
 

Table 2: Description of Dynamic events 

*      is the team’s time 

*      is the time of the fastest vehicle multiplied by a factor different for each event 

*     ,        and      are the minimum, the team’s and the maximum efficiency factors recorded 

respectively, where the efficiency factor calculated as   
         

           
, where      and       are the 

minimum and the team’s used fuel volume respectively 

 

1.3 The Motivation 
 

The main reason why the original gearbox of the engine does not perform in the most 

effective way for Formula Student applications is the speed range the vehicle is 

expected to attain. As mentioned earlier, FSG rules limit the displacement of the 

vehicle’s engine to 710 cm
3
. This makes performance motorcycle engines be the first, 

if not the only choice for Formula Student teams. Usually the weight of those 

motorcycles is not far from that of a Formula Student vehicle. This makes the first 

gear ratio usually adequate for both applications. Most of the motorcycles however, 

are expected to reach at least 150 km/h, whereas top speeds for combustion vehicles 

in Formula Student competitions rarely exceed 105 km/h. Therefore, the last gear 

ratio cannot satisfy both requirements. 

The teams that do not change the engine’s standard gearbox change the final drive 

ratio of the transmission, so as to improve the inadequate last gear ratio. With this 

technique, all the gear ratios increase, therefore giving more torque to the wheels, 



12 
 

rendering this modification beneficial. Even in this case though, usually the matching 

of the final gear ratio to the desired top speed alters some of the rest of the gear ratios 

in a non-beneficial way. One reason justifying this fact is that, at some gear ratios, the 

resultant engine speed might be at a range where the output torque is low. The driver 

might decide to downshift a gear, but the next lower gear results in too high engine 

speed. 

Another significant reason more usual than the one mentioned earlier, is the presence 

of too many gear shifts. A gear shift takes a non-negligible amount of time so as to be 

completed. Within this period, no engine torque is transferred to the wheels. If this 

dead time appears for example during a gear upshift, but the resultant torque at the 

wheels is not adequately increased in comparison to the torque before the gear 

change, then the gear change is not beneficial. Of course, the gear change must be 

performed as the engine always has a maximum speed limitation. 

Besides the improvement in the performance of the car, a gearbox design is also a 

significant study than can be presented at the Engineering Design event of the 

competitions. Usually, most of the well reputed teams perform this design; therefore 

the absence of such a study is usually a negative aspect for the design judges. 

 

1.4 Project Constraints  
 

As mentioned earlier, the gearbox that will be designed is designated for the fourth 

vehicle of the Formula Student team Prom Racing. Consequently, the project is 

constrained to serve the design of the aforementioned vehicle, as well as the resources 

and capabilities of the team. All those constraints can be easily concentrated and are 

presented at Table 3. 

 

Constraint Description 

Time 
The project started in February 2018 and should be completed 

before the testing period of the vehicle in April 2019. 

Budget 
The money to be spent for outsourced manufacturing services 

should not exceed 5000€. 

Engine 

The engine of the vehicle will be a 2012 KTM 500 EXC 

motorcycle engine. Output torque and engine speed relation is 

known and will not change significantly. The gearbox should 

replace the already existing gearbox of the engine. 

Shifting System 

Electronically controlled shifting system, capable of receiving 

data from multiple sensors. Mean shifting time is approximately 

to 0.2 sec, measured from the previous year’s vehicle. 

Vehicle 
Chassis, suspension and aerodynamic package as designed by the 

team, according to the FSG rules. 
Table 3: Project Constraints 



13 
 

1.5 Literature Review  
 

In the automotive industry, the design of a gearbox is a study that usually focuses on 

fuel economy. Both analytical work, as well as algorithms based on vehicle 

simulation, have been published for the optimization of fuel consumption. However, 

as far as the design of a gearbox for improved racing performance, little published 

work exists. Optimization algorithms using vehicle dynamics simulation, given a 

certain vehicle and race track, are most common. Savaresi et al. [2] have used a 

simple one dimensional simulator performing acceleration and braking in a specified 

track. Using this, they run a set of possible gear ratios of a 6-speed gearbox, for 

determining the optimal solution as the one that minimizes lap time.  

More specific work focusing on Formula Student applications is also seldomly 

published. Most of the projects that deal with transmission design for combustion 

vehicles mainly focus on the mechanical design, rather than on the selection of gear 

ratios. Avgerinos (Απγεξηλόο) [3] used the design of progressive and geometrical 

gearbox architecture, to define multiple different concepts for the gear ratios. These 

were tested for their performance in multiple Formula Student events using the 

commercial vehicle dynamics software CAR MAKER [4]. 

In this work, an effort to combine already existing knowledge and a new approach 

will be integrated. An analytical optimization will be used as a first approach. 

Conclusions will be taken from this analysis and a vehicle dynamics simulation will 

be used for determining the most suitable gear ratios. 
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2. Methods used for determining gear ratios 
  

2.1 The influence of multiple competition events 
 

Given a description of the overall concept of Formula Student through the respective 

rules and regulations, it is clear that a measure of the performance of a Formula 

Student vehicle is the number of points it receives in a competition. Concerning the 

Static events, it is evident that a well justified gearbox design will result to extra 

points in the Engineering Design event. The rest of the static events are not directly 

connected with such a project. Any indirect influence to those events will not be taken 

under consideration. As a result, the development of the gearbox should aim at 

increasing the performance of the vehicle in the Dynamic events. 

Concerning the Dynamic events, again not all get influenced by the gearbox design. 

Particularly, the Skidpad event should be considered as a traction limited and not 

engine power limited race. The vehicle should perform small radius cornering as fast 

as possible. This means that relatively low speeds are attained, allowing the usage of a 

drive ratio that can provide the wheels with more than sufficient torque. 

Another example is the Fuel Efficiency event. In general, Formula Student is mainly a 

race and not a fuel efficiency competition. This is clear, as 325 points are granted for 

the best time in the Endurance event, whereas only 100 points will be gained for best 

fuel efficiency in the Endurance track. In addition, the fuel efficiency competition is 

only a 10% of the overall points, whereas all the rest of the dynamic competitions can 

add up to 57.5% of the total score. 

Besides that fact, when a large radius in a track is encountered, a race driver will 

always decide to accelerate using the entire engine load capacity. This prevents 

almost any fuel economy to be achieved in straight lines. Therefore, only near-steady 

speed parts of the track will have a chance of better fuel economy. This fact 

significantly limits the extent up to which fuel consumption can be decreased by 

designing a new gearbox. 

Nevertheless, if a gearbox would be designed so as to improve fuel economy, design 

efforts would be placed on using an appropriate gear ratio for partial engine load 

conditions. For this reason, it is necessary to know the relationship between engine 

speed and fuel consumption for the power output of the engine, also known as brake 

specific fuel consumption (BSFC).  An example of a BSFC map can be seen in figure 

4. Unfortunately, given the limited time the team has for tuning the engine on a 

dynamometer, full load conditions are mainly tuned. Partial load is also examined, but 

in a limited number of engine speed and engine load combinations. This practice 

results to decent fuel economy, but does not provide enough information so as to 

construct a BSFC map. 



15 
 

 

Figure 4: Typical BSFC map 

 

Concluding, the performance in only three Dynamic events will be considered in the 

process of selecting gear ratios. Those are the Autocross, Endurance and Acceleration 

events. The points granted by those events are given by the FSG rules to be: 

 

                       

        
     

  

   
     

 

(1) 

 

                    

         
     

  

    
     

 

(2) 

 

                   

          
     

  

     
    

 

(3) 

where Tmin is the time of the fastest vehicle and Tteam is the team’s time recorded for 

each event. 

In general, if the behavior of the vehicle and the driver can be modeled and simulated, 

an approach of searching for the drive ratios that maximize the sum of the points for 

the three events can be adopted. This is a classic case of optimization. However, as 

every method of this kind, an initial point is required. Moreover, a solution that might 
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come as result which is considered to be an optimum is likely to be a localized 

optimum, as it is far from some generally acceptable guidelines for the design of a 

gearbox. 

At this point, it is evident that there is a need of calculating a set of gearbox gear 

ratios that can be considered as a generally fair design and decent starting point. For 

this reason, before executing a simulation so as to maximize the points, a more 

analytical and simplified approach will be used. 

 

2.2 The analytical method 
 

Lap performance of the vehicle can be modeled as a series of straight lines with 

acceleration and braking and turns at constant speed or with acceleration under 

torque, limited by tire traction. Within this modeling, an important assumption has 

been made. More specifically, it was assumed that the engine is not under full load 

during turning. This is because, at each turn, significant values of lateral acceleration 

will be achieved and traction will be greatly limited by the tires, due to combined 

lateral and longitudinal acceleration. Therefore, as a first approach, it is logical that 

only the time spent during straight line acceleration is examined. 

Considering the acceleration of the engine rotational masses negligible compared to 

the mass of the vehicle and neglecting tire rolling friction, the equation of motion in 

the case of straight line acceleration is:  

 
  ̈  

   ( )

 
 
 

 
    ( ̇)

  (4) 

where n is the engine speed, m is the total vehicle mass, T is the engine crankshaft 

effective torque as measured at the wheels,    are the final transmission ratios of each 

gear (k) (k=1,2,…,m), R is the loaded rolling radius of the tire and 
 

 
    ( ̇)

  is the 

aerodynamic drag.  

Neglecting any tire slippage, the engine speed in rpm is coupled with the vehicle 

speed as: 

 
 ̇  

 

  

 

  
  (5) 

Therefore, eq. (5) can be rewritten as: 

  ̇    ( ) (6) 

where the function: 

 
  ( )  

 

 
*
  

 

  
 

  
 ( )  

 

  

 

 
    

 

  
  + (7) 

is different for each gear (k). 
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Let n1,k and n2,k (figure 5) be the range of engine speeds for which the engine is 

operating at each gear (k). Then the time spent at each gear (k) can be found by 

integration of eq. (6): 

 
  

 → 
 ∫

  

  ( )

    

    

 (8) 

 

It is now obvious that the total lap-time spend during straight line acceleration is: 

    ∑(   )

 

  (                   ) (9) 

where the indicator (s) changes for each straight line. 

The preceding analysis reveals that, except for gear ratios     for each gear (k), there 

are more parameters to be examined. These are the engine speeds                for 

each gear (k) and straight line (s). Therefore, in an attempt to minimize straight line 

lap-time ΔT, the engine speeds and gear ratios are examined separately. 

 

 

Figure 5: Engine speed range 

 

As mentioned earlier, engine speed is coupled with vehicle speed. The track speeds of 

the vehicle are dependent upon: 

 The length of the straight lines 

 The radius of the turns 

 The way turns of different radius, or turns and straight lines, are being 

interchanged between each other 

Therefore, it can be understood that the shape of the track will influence engine 

speeds                at each straight line (s). To waive this constraint, it will be 

n1 

n 

T 

n2 n
1
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attempted to examine each straight line separately. Therefore, at each individual 

straight line, the acceleration time can be calculated as: 
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where gs and Gs is the first and final ratio used at each straight line (s). 

During each gear upshift, from gear (k) to gear (k+1), the shifting system will ‘kill’ 

the engine load by disabling ignition and fuel delivery. Due to friction the engine 

speed will decrease and, over the shift time, the car speed will remain approximately 

steady. Using this assumption, from eq. (5) it follows that: 
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Substituting to eq. (10) yields:  
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It is obvious that all engine start speeds        are dependent upon         , except for 

        , which cannot be changed. Also, the speed         cannot be changed. 

Therefore, the speeds        can be optimized for k=gs, gs+1,…, Gs-1 by finding the 

root of the derivative of eq. (12): 
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It is now obvious that the problem is the same for every straight line (s). Eliminating 

the indicator s, the relationship above can be rearranged and rewritten as: 

 
 (    )  

    
  
 (
    
  
    ) (14) 
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Eq. (14) leads to valid solutions only for     <nmax, where nmax is the maximum speed 

of the engine. Additionally, to obtain a minimum for the time ΔT, the derivative 
   

     
 

must be negative for every speed bellow the selected     . Equivalently: 

 
 ( )  

    
  
 (
    
  
 )                          (15) 

 

It can be noted that, by multiplying both sides of eq. (14) with     , a more compact 

relation arises using only the engine effective output power P, measured again at the 

wheels: 

 
 (    )   (

    
  
    ) (16) 

 

Eq. (16) indicates that, in an ideal engine maintaining constant power, there is no need 

for gear shifting. However, engine power usually increases for all engine speeds and 

decreases only slightly, if not at all, close to the engine maximum speed nmax. Since 

       , eq. (16) evidently shows that there is no need for shifting into another gear 

at an engine speed where output power has yet not started decreasing. As a result, the 

optimal gear shift speed will usually coincide with nmax. 

Since the selection of shift speeds becomes independent for every track straight line 

(s), from this point onward the indicator (s) will be eliminated when referring to shift 

speeds      and     . It is also evident that the selection of shift speeds becomes 

independent from the aerodynamic drag. 

Examining the gear ratios now, should the same methodology be used as before, it is 

evident that the derivative of eq. (12) with respect to the gear ratios is: 
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(17) 

differs in the cases k=gs, gs+1<Gs-2, k= Gs-1 and k= Gs. Therefore, each straight line 

cannot be directly examined independently. To once again eliminate this constraint, 

the following percentages-frequencies of usage are employed: 

 P1,k: the usage frequency of ratio ik so as to begin accelerating with a mean 

engine speed of      ̅̅ ̅̅ ̅  
  

    
       , while within the straight line there is a 

satisfactory gear change from gear (k) to gear (k+1) 

 P2,k: the usage frequency of ratio ik so as to begin accelerating with a mean 

engine speed       ̅̅ ̅̅ ̅  
  

    
       , while within the straight line no gear change 

occures 
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 P3,k: the usage frequency of ratio ik  as an intermediate gear ratio, so as to 

accelerate from        
  

    
       to       

 P4,k: the usage frequency of ratio ik  as an intermediate gear ratio, so as to 

accelerate from        
  

    
       to a mean engine speed of     ̅̅ ̅̅ ̅        

 Pstart: the usage frequency of ratio i1 as a starting gear from nstart to      
 

Taking the percentages-frequencies of usage under consideration, instead of 

expressing the straight line lap-time for each straight line separately, the total straight 

line lap-time can be rewritten as: 
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(18) 

where m is the number different gear ratios. It is evident that for the first and last gear: 

 
{
           

           
} (19) 

 

The percentages P1,k , P2,k , P3,k , P4,k and Pstart will mainly depend upon the race-track. 

Even if it is considered that they are independent from the gear ratio selection, the 

relations resulting the equation 
   

   
   will depend upon those percentages. Also, it 

is essential that the speeds     ̅̅ ̅̅ ̅ and     ̅̅ ̅̅ ̅ are known. This indicates the need for a lap-

time simulation. 

However, as a first approximation, it may be considered that at each turn, due to the 

fact that the driver has reached the speed that describes the maximum lateral 

acceleration, the corner speeds are approximately constant. Therefore, the acceleration 

from each entry in a corner, continues from the same point after the exit from the 

corner. This enables the simplification of the problem above as being a single straight 

line acceleration problem. In this case the following sets of equations arise: 
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This simplifies straight line lap-time as:  
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Differentiating eq. (21) with respect to the gear ratios ik for k=2,3,…,m-1 yields: 
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For 
   

   
   the following recursive relationship can be obtained: 
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Note that with differentiation of eq. (7): 
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Differentiating eq. (21) with respect to the first gear ratio i1 yields: 
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For minimizing the lap-time in respect to the first gear ratio 
   

   
  , hence: 
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The torque at the wheels while the 1
st
 gear is engaged usually reaches the maximum 

torque due to tire traction Tr,max. The subscript (r) refers to the rear wheels, since the 

vehicle is rear-wheel driven. This means that the inequality i1T(n)>Tr,max is being 

satisfied for certain engine speeds n. Then, during starting, the following strategy is 

adopted: 

 Maintaining constant torque Tr,max at the wheels, using the clutch, up to the 

engine speed n for which i1T(n)=Tr,max 

 Full clutching up to nmax 

The strategy above supposes that  (     )  
      

  
  (    ), where       is the 

engine speed at maximum output torque. 

 

What follows from the assumptions above is that the starting engine speed can be 

calculated as: 
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 (27) 

Usually, the torque in the engine speed range of              does not have 

any other local maximum or minimum. Therefore, the derivative of the engine torque 

with respect to the engine speed does not change sign and so, if eq. (27) is satisfied, 

the following calculation can take place: 
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If the gear ratio i1 is too big, then 
      

  
  (    ) and eq. (27) cannot be satisfied. In 

this case, an appropriate choice for the starting engine speed would be            . 

Likewise, if the gear ratio i1 is too small, then 
      

  
  (     ) and the starting 

engine speed should be chosen as             . In both cases above, it is evident 

that 
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Finally, differentiating eq. (21) with respect to the final gear ratio im yields: 
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It is evident that 
   

   
  . This indicates that lap-time always decreases as the final 

gear ratio increases. One constraint that can be imposed to the design is that of 

maximum speed Umax. Therefore, given a maximum speed, the final gear ratio is 

calculated as: 

 

   

 
       

    
 (30) 

 

The set of eq. (14), (23), (26), (27) and (30) can be solved as a system for finding the 

gear ratios and corresponding shift engine speeds. 

 

2.3 Lap-time simulation: equations of motion, suspension and tire 

modeling 
 

As mentioned previously, a simulation of the behavior of the vehicle and the driver 

can be combined with an optimization approach, aiming to maximize the sum of the 

points for the Dynamic events of interest. The basic vehicle modeling analysis 

performed for this method is examined in this section. All the implementation of the 

simulation is performed in Matlab [5]. An accountable portion of the modeling is 

taken from Tremlett et al. [6]. 

 

2.3.1 Coordinate system and transformations 

 

The coordinate system of the vehicle body frame is placed on the center of gravity, 

with the z axis pointing towards the ground, as seen in figure 6.  It is evident that the 

vehicle is considered to be symmetrical around the longitudinal x axis, directed 

towards the front of the vehicle. The corresponding x, y and yaw velocity can also be 

seen in this figure. 

A curvilinear coordinate system is adopted for the race track and the desired trajectory 

to be followed. The track coordinate system will follow the centerline of the edges of 

the track and will in general not coincide with the desired trajectory. Therefore, the 

equation describing the curvature (θ) as a function of the distance (s) on the curve will 

be different for the two systems. 
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Figure 6: Vehicle coordinate system 

 

As seen in figure 7, to define the position of a frame in relation to the curvilinear 

system, the following set of numbers is required: 

 The length (s) along the curve of the curvilinear system 

 The offset distance (sn) from the curve of the curvilinear system 

 The angle (β) of the frame relative to the tangent of the curve of the 

curvilinear system 

 

 

Figure 7: Curvilinear coordinate system 

 

The position of the vehicle frame will be determined in relation to the curvilinear 

system of the desired trajectory to be followed. The differential equations relating the 

vehicle motions to the coordinate system can be described by: 
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where U is the total vehicle speed and ς is the side slip angle that can be calculated 

as: 

 
  √        (34) 

      
  
  ⁄  (35) 

 

2.3.2 Equations of motion - Force and moment equilibrium 

 

Different simplifications exist for describing the equations of motion. The simplest 

model consists of only one mass and therefore one degree of freedom, on which 

longitudinal and lateral forces are exerted. The steering and suspension dynamics are 

not taken under consideration, as no moments are calculated. This model has a fair 

performance on general motorsport applications. However, in Formula Student where 

the tracks involve rapidly changing turn radii, results might be inadequate from a 

simulation utilizing this approach. 

Another very common model is the half car, or bicycle car model. This is a two 

dimensional approach, where the vehicle width is considered negligible. Steering and 

suspension dynamics are also involved in this analysis. This enables the model to 

simulate the transitional phases of entering and exiting a turn. It is a well performing 

model and has been used to simulate Formula Student vehicles quite frequently. 

Criens et al. [7] as well as Singh & Palanivelu [8] used a bicycle car model to build a 

Formula Student vehicle simulator.  

Having introduced steering dynamics, the bicycle car model adds an extra input to the 

vehicle as a system. Steering in a manner that keeps the vehicle under control and on 

a specified track, is a difficult but essential parameter of the simulation. The weak 

point of this analysis is the absence of roll dynamics and the influence of the different 

speeds at the inner and outer wheels during turning. These parameters can have some 

effect, especially in Formula Student tracks where the track radius is often 

comparable with the width of the car.  

 

A step ahead into including these features is introducing a full car model. This model 

includes all four tires of the car and all equations of motion. The difficulty of 

performing this change can be considered less than the one required to create a 
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steering control. Therefore, the implementation of a full car model provides the 

simulation with greater accuracy, without requiring excessive additional analysis. 

This model is also very common within Formula Student applications. Dos Santos [9] 

used a full car model in a simulation accounting for suspension compliance. Brown 

[10] used a full car model so as to design an all-wheel torque vectoring system. Harsh 

[11] used a full car model so as to create a simulation and evaluate the influence of 

different systems of the vehicle ON its performance. 

Concerning the vehicle model utilized in this work, a full car model is used.  The top 

view defining the forces and distances required to express the longitudinal, lateral and 

yaw motion equations can be seen in figure 8. 

 

 

Figure 8: Top view of the vehicle 
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The equations of motion of the vehicle rigid body frame can be written as: 

  ( ̇     )               (36) 

  ( ̇     )               (37) 

    ̇               (38) 

 

Using figure 8, the external sum of forces and moments can be expressed as: 
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2.3.3 Tire vertical loads and suspension modeling 

 

Concerning roll and pitch motions of the vehicle, the steady state weight transfer will 

be examined first. Further definition of the forces and distances in a side view of the 

vehicle can be seen in figure 9.  Any change in the distances due to suspension 

movement will be considered negligible. Requesting for                and 

                           , the steady-state tire loads are easily calculated as: 
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where the values        ,        ,        ,        express the steady-state variation of 

the tire normal loads due to pitch and roll moments and are equal to: 
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where μ is the front distribution of the vehicle torsional stiffness, also referred to as 

front mechanical balance.  
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The aerodynamic drag and downforce are expressed as: 
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respectivelly. 

 

 

Figure 9: Right view of the vehicle 

 

The heave motion of the vehicle will now be ignored and therefore tire loads are 

expressed as: 
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Following the modeling proposed by Vilela & Barbosa [12], the suspension can be 

modeled as a torsional spring for roll angles. The roll moment exciting the suspension 

at steady state is the lateral force               , multiplied by the distance of the 

center of gravity and the roll axis. This distance creating a leverage, can be seen in 

figure 10. The roll axis of the suspension can be defined as the geometrical instant 

axis of roll rotation. Since the left and right suspension stiffness is the same, any 

torque exerted around the roll axis results to rotation and not translation. 

 

 

Figure 10: Roll axis and roll axis leverage 

 

Likewise, the pitch moment is the longitudinal force              , multiplied by the 

distance of the center of gravity and the pitch axis. However, in pitch, the front and 

rear suspension stiffness might be different. This means that a torque exerted around 

an arbitrary pitch axis can result to a combined rotation and translation. To deal with 

this problem, for pitch only, the lateral position of the pitch axis will be considered 

such that upon exerted torque, only rotation occurs. Following the distances seen in 

figure 11, the position of the pitch axis can be calculated as: 

                  (47) 

where kfront and krear are the front and rear axle suspension vertical stiffness, including 

tire compliance. 

Considering the dynamic conditions of roll and pitch, damping and moment of inertia 

acceleration should be taken under consideration. Therefore, the motion equations for 

pitch and roll can be written as: 

       ̈        ̇                          (48) 

        ̈         ̇                         (49) 

where Iroll and Ipitch are the roll and pitch moments of inertia round the roll and pitch 

axis, croll, kroll and cpitch, kpitch are the roll and pitch damping and stiffness coefficients 

of the suspension and hr and hp are the roll and pitch moment leverages respectively. 

hr 
roll axis 
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Figure 11: Position of pitch axis 

 

The wheel vertical load variation due to pitch can be found considering the 

suspension stiffness and damping: 
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 (50) 

where crear and cfront are the damping coefficients of the rear and the front axle of the 

suspension. It is evident now that there will be a translation for every pitch speed  ̇ 

around the pitch axis since (                    )  (                     )   . 

This is true, unless the suspension damping follows the relationship: 
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 (51) 

 

Therefore, for simplifying this analysis, eq. (51) will be considered as satisfied. In this 

case, pitch stiffness and damping can be calculated as: 
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Using the equations above, wheel load variation due to pitch can be simplified as: 
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where 

 
      

      

 
  

      

 
 ̇  (55) 

 

The wheel vertical load variation due to roll can be found as: 
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(56) 

As with the case of pitch, damping in roll motions is considered to follow the 

relationship: 
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In this case, considering the definition of the roll stiffness distribution: 

 
  

           

                      
 (58) 

wheel vertical load variation due to roll can be simplified as: 
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where 

 
      

     
     

  
     
     

 ̇ (60) 

 

The roll stiffness can be calculated using a parallel and series spring connection 

model: 
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The total wheel vertical load variation can be expressed as the superposition of the 

loads from roll and pitch: 
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Proper combination of eq. (64) yields: 
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The final step in this analysis is finding the dynamic equations for the roll and pitch 

quantities       and      . This can be done by starting from eq. (48) and (49). More 

specifically, for roll motions it is calculated that: 
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In steady state  ̈    and therefore: 
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Substituting to the eq. (67) yields:  
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From eq. (60) it follows that: 
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Likewise, the corresponding equation for pitch becomes: 

         ̈            ̇                        ̇                    (71) 

 

The preceding analysis results to a separate differential equation for the quantities 

      and      , involved in wheel vertical load variations described in eq. (64). The 

steady state quantities         and         can be obtained using subscript (s) in eq. (65) 

and (66). 

 

2.3.4 Tire modeling 

 

The x and y coordinates of the forces appearing in eq. (39) to (41) refer to forces 

resulting the friction of the tires and the road. A tire model links those forces with the 

dimensionless slip quantities of slip ratio Κ and slip angle α. These are defined as:  
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where the x and y axis are defined in the tire coordinate system as shown in figure 12 

and Re is the tire loaded rolling radius. 

 

 

 

Figure 12: Tire slip kinematics 
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Therefore, the slip quantities can be calculated for each individual tire as: 
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 (74) 

 

{
 
 
 
 
 

 
 
 
 
     (     )  

     

    
  
 

    (     )  
     

    
  
 

      
     

    
  
 

      
     

    
  
 

 (75) 

 

For this simulation, the semi-empirical 1996 Pacejka’s Magic Formula is used and 

more specifically, with incorporation of the similarity method introduced by Pacejka 

in 2002 [13]. In this modeling, two series of parameters are extracted using pure 

longitudinal and lateral slip separately. The combined longitudinal and lateral 

situations are determined by a theoretical slip analysis. The theoretical longitudinal 

slip ζx, lateral slip ζy and equivalent slip ζ are used for this purpose. Neglecting 

camber angle effects, these can be calculated from the slip ratio and slip angle as: 
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  √        (78) 

 

It should be noted that, for 90°<α<180°, a negative sign should be added in eq. (77).  

The resulting longitudinal and lateral forces can then be found using the Magic 

Formula expressions, neglecting camber angle effects: 
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For the longitudinal parameters: 
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where     is a reference tire normal load and 
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) (85) 

is the slope for Κ=0. 

For the lateral parameters: 
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where 
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)+ (90) 

is the slope for α=0. 

The fitting of the Magic Formula equations was performed so that, for pure slip 

conditions: 

             (91) 

             (92) 

Therefore, the tires coefficients of friction can be expressed as: 

       (93) 

       (94) 

 

A summary of the parameters required for the Magic Formula can be seen in table 4. 
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Parameter Description 

Fz0 Reference normal load 

ιx Max longitudinal friction scaling factor 

ιy Max longitudinal friction scaling factor 

pKx1 Max longitudinal stiffness coefficient 

pKy1 Max cornering stiffness coefficient 

pKx3 Max longitudinal stiffness coefficient 

pKy2 Max cornering stiffness coefficient 

pCx1 Longitudinal shape factor 

pCy1 Lateral shape factor 

pDx1 Max longitudinal friction coefficient 

pDy1 Max lateral friction coefficient 

pDx2 Longitudinal friction load dependency factor 

pDy2 Lateral friction load dependency factor 

pEx1 Longitudinal curvature factor 

pEy1 Lateral curvature factor 
Table 4: Pacejka Magic Formula coefficients 
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3. Vehicle subsystems and driver modeling 
 

3.1 Modeling of engine and transmission 
 

The engine output torque has been measured in cooperation with GearTech 

Engineering L.T.D. at a Dynapack™ hydraulic dynamometer, connected to the 

driving wheels of the vehicle. The measurement was performed under slowly 

increasing engine speed, so as to render rotational mass acceleration effects 

negligible. Instead of directly using the measured torque, the end result was fitted 

with a polynomial equation as: 
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 (95) 

 

This fitting was performed so that the simulation results would not be influenced by 

any localized anomalies on the output torque. 

The differential that distributes the torque to the rear wheels is a Limited Slip type 

one. This means that an internal torque is exerted between the two outputs of the 

differential. There are two states in the operation of the differential: 

 If the torque difference between the two outputs of the differential is bellow a 

specified value called bias torque Tbias, then the two outputs rotate with the 

same speed, therefore σ3=σ4. 

 If the bias torque is reached, then the two outputs are allowed to rotate with 

different speeds. In this case, the differential cage rotational speed is: 

 
      

     
 

 (96) 

 

The limited slip differential that is fitted in Prom Racing’s vehicle is a Salisbury type 

Limited Slip Differential and in such an application, the bias torque is: 

                       (97) 

where Tin is the input torque to the differential cage, Τp is a constant preload and 

L.U.T. is the lock up torque constant. Usually, a constant named torque bias ratio 

(T.B.R.=Tmax/Tmin) is used instead of L.U.T. The relationship between lock up torque 

constant and torque bias ratio is: 
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The internal bias torque is applied by friction discs, placed symmetrically inside the 

differential. Due to friction, less output torque is applied on the faster rotating wheel 

and more torque is applied on the slower rotating wheel. Therefore, the equation for 

torque delivered to the two wheels under the differential slip condition is: 
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 (99) 

 

The transmission of the vehicle consists of three distinct drive ratios: 

 the primary drive ratio from the engine crankshaft up to the clutch ip 

 the gearbox drive ratio ig 

 the final drive ratio from the gearbox to the wheels 

A schematic of the system can be seen in figure 13. 

 

 

Figure 13: Schematic representation of the transmission 

 

The total drive ratio of each gear (k) is 

             (100) 
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Considering that, the speed of the engine can be calculated as: 
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 (101) 

 

Since the engine torque has been measured as the effective torque delivered to the 

wheels, neglecting any difference to the mechanical efficiency of each gear of the 

gearbox, the torque delivered to the differential is: 

               
 

  
 ̇ (102) 

where Jeng is the equivalent moment of inertia of the rotational parts of the engine, 

calculated at the crankshaft speed. 

Finally, the longitudinal force delivered to the wheels during acceleration is: 
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(103) 

where    is the moment of inertia of the wheels. 

In general, the slip ratios that correspond to tire longitudinal forces bellow the 

maximum tire force, can be considered relatively small. However, if rotational speeds 

σ3 and σ4 of the rear wheels are left unconstrained, extreme wheelspin can occur, 

should the torque of the engine provide the tires with force exceeding the tires 

maximum longitudinal force. In order to prevent this wheelspin, a traction control 

strategy should be employed, limiting the engine torque. 

The rotational speed of the wheels affects the torque delivered to them, due to 

acceleration of their moment of inertia. This torque difference is usually small, 

assuming that excessive wheel spin does not occur. For this reason, instead of 

implementing a traction control strategy, the force delivered to the wheels will be 

limited by the maximum longitudinal force of the tires. The rotational speeds of the 

wheels will not be considered as separate variables. Instead, the slip ratios will be 

calculated using the torque applied to the wheels and the tire model.  
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Considering small slip ratios, the engine speed can be found by altering eq. (101) as: 
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During acceleration, the total x-coordinate of the force due to tire longitudinal forces 

can be calculated as: 
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Considering that the slip ratios of the wheels are relatively small, therefore    
    

  
 

for every wheel (i), substitution to eq. (105) yields: 
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Finally, attributing all the acceleration force to the rear wheels as                  

yields: 
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(108) 

It should be noted that, during starting, considering the engine speed to be steady, eq. 

(107) should be transformed as: 
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Therefore, for each distinct time moment, rear wheel forces will be calculated in the 

following manner: 

 The sum of rear tires’ forces is calculated from eq. (107) or (109).  

 The differential is supposed to be in a non-slip state, therefore σ3=σ4. 

Combining this equality with eq. (74) yields: 
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)  (    ) (    

  
 
) (110) 

Using this relationship between slip ratios and the sum of the rear tires’ forces from 

eq. (107) or (109), the force of each individual wheel can be calculated. The 

maximum total force         can also be calculated, for the non-slip state of the 

differential. 

 The required torque difference between the two wheels is calculated as 

|          . If it does not exceed the bias torque, found from eq. (97), then the 

differential will be considered to be in a non- slip state. Otherwise, the differential 

slips, and the torque values of the two rear wheels are calculated from eq. (99). The 

maximum total force         can also be calculated from eq. (99), for the slip state 

of the differential. 

 

3.2 Modeling of braking system 
 

The braking system consists of two hydraulic circuits, one for the rear and one for the 

front wheels. These deliver the same amount of torque to the left and right wheels, but 

not to the front and rear axle. A steady distribution of brake force kbf to the front 

wheels is attained and therefore, the torque delivered to each wheel is calculated as: 
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where to torque 

                            (112) 

is a positive value proportional to the force applied to the brake pedal.  

As with the case of engine acceleration, if the wheels moment of inertia is considered 

to be small, then the same equations that apply for torque also apply for the tires 

forces during braking: 
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where 

                                  (114) 

is again a positive quantity proportional to the force applied to the brake pedal.   

Using eq. (113), the following calculation can take place: 
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Requesting that none of braking forces exceeds the maximum tire longitudinal force 

capacity, it follows that: 
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3.3 Modeling of shifting system 
 

When a gear change is performed, either upshift or downshift, the engine output speed 

must be decoupled from the wheels, at least for a certain period of time. If (k) is the 

currently engaged gear, then eq. (104) states that: 
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(118) 

During a gear upshift, the shifting system disables the engine output torque by seizing 

fuel delivery and ignition. The currently selected gear will therefore easily disengage 

and the next gear will subsequently easily engage. Because fuel injection and ignition 

have been disabled, due to engine friction, the engine speed will decrease during the 
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time elapsing between the current gear disengagement and the next gear engagement. 

As a result, the engine speed will approach the value of 

  
  

 

    

  
  . This enables a near-smooth engagement of the next gear. In addition, 

any anomalies upon the engine speed not matching the value of 
  

 

    

  
   can be 

smoothened by drivetrain compliance. Therefore, it can assumed that during the 

upshift of a gear, the vehicle speed remains constant: 

                                            (119) 

 

During a gear downshift, the shifting system will make use of the clutch so as to 

disengage the engine torque. The previous gear will be engaged and the clutch will re-

engage the engine to the rest of the transmission. Since no engine torque reduction is 

performed and considering the time needed for a gear change to be negligible, the 

momentum of the engine-wheels-vehicle system can be considered as unchanged: 
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The shifting system performs a gear change when the engine speed reaches a lower or 

upper limit, the downshift and upshift engine speed respectively. For starting, an 

increased initial engine speed will be used, so as to improve launch acceleration time. 

As a result, the starting engine speed nstart is be maintained while starting, as 

calculated from eq. (27). 

Following the analytical methodology presented in the previous chapter, the speeds 

n2,k calculated from eq. (14) are used as upshift engine speeds, potentially different for 

each gear (k). 

As far as downshift engine speed is concerned, using eq. (11), it can be calculated that 

           
  

    
. However, if near constant speed is maintained, then should the 

engine speed be close to the downshift speed defined by eq. (11), a gear change will 

drive the engine speed back to the upshift speed. Then, if acceleration is to follow, a 
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gear shift will be again required. It is now evident that the first gear change was 

unnecessary and that a lower downshift engine speed should be chosen.  

Let t1 and t2 be the elapsing times so as to accelerate from the downshift to the upshift 

engine speed, with and without a gear downshift respectively. Considering that any 

gear shift takes a specific time to complete, the times t1 and t2 can be calculated using 

eq. (8): 
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It is evident now that the best engine shift speed is such that satisfies the equality: 
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It must be mentioned here that the shift time was included only once when calculating 

the acceleration time   . This is true in the case where the downshift from gear (k) to 

gear (k-1) is performed while not accelerating, for example while braking, and the no-

acceleration state continues at least up until the end of the gear change. Usually, this 

is the most common scenario. However, if acceleration is present while deciding to 

downshift, then the shift time should be included twice as 2Δtshift.  

In addition, due to the constraints of the track, the driver might not accelerate up to 

    , but to a lower engine speed.  It is evident that the preceding analysis is valid if 

the maximum engine speed the driver would wish to accelerate to is at least 

      
  

    
. Due to the fact that the shifting system of the vehicle is not capable of 

predicting the aforementioned states, a set of steady and not altering engine downshift 

speeds will be used. 

If          , then it can be easily found that            
  

    
. It will now be 

proven that for           the resulting engine downshift speed is: 
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By differentiation of eq. (121) and (122) with respect to     , it follows that: 
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However, when mentioning about the valid solutions of eq. (14), it was stated that: 
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Performing the substitution {
 →    
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Therefore 
   

     
 

   

     
 for every            

  

    
. As it can be seen in figure 14, the 

direct outcome of this inequality, is that eq. (123) can only be satisfied for      

      
  

    
. 

Additionally, it must be mentioned that there should be no gear downshift at 

intermediate engine loads. This is because the driver has not requested for full engine 

torque and a downshift so as to improve acceleration time by increasing wheel torque 

would be undesirable. 
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Figure 14: Downshift speed solution 

 

Last but not least, should the engine speed reach very low values for the first gear, 

then there is no previous gear so as to increase engine speed. To eliminate this 

problem, the driver will re-enter into a starting mode using the clutch and increase the 

engine speed up to the starting engine speed nstart. 

 

3.4 Driver Modeling 
 

The driver controls all the inputs of the vehicle as a system. In this case, these inputs 

are the steering, the engine load and the braking force. To begin with, considering the 

physical abilities of the driver, all the driver inputs are limited by a maximum rate of 

change. Additionally, a time constant of Δtdriver is introduced as a reaction time. This 

time will be used for manipulating the driver’s input to the pedals using a first order 

differential equation: 
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(129) 

where the instructed pedal position is such that the force resulting for acceleration or 

braking, depending on the pedal used, is limited. For the throttle pedal only, if the 

instructed pedal position is 0% or 100%, then the maximum rate of change is applied. 

It should be noted that the same equation does not apply to the steering angle, as a 

different steer control method will be implemented later on. 
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The upper limit of the acceleration excreted on the vehicle is given by the tires’ limits. 

A good approximation of the tires’ limits in the case where longitudinal and lateral 

forces are present is the friction ellipse: 
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However, when the longitudinal force reaches this limit, the tires cornering stiffness 

decreases significantly, rendering the vehicle very difficult to control. For this reason, 

the driver always chooses a limited traction for the longitudinal and lateral 

acceleration: 
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where the x traction limit might be different for acceleration and braking. Considering 

that the loss of controllability mentioned due to decrease in cornering stiffness occurs 

when the two front, or the two rear tires, together reach the limit of traction, the final 

equation describing the acceleration or braking applied by the driver becomes: 
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where 

 
(          )     ((

       

             
)

 

 (
       

             
)

 

) (134) 

 

In order to decrease the complexity of the solution, the lateral forces Fy1, Fy2, Fy3 and 

Fy4 used in eq. (132), (133) and (134) are calculated using the slip ratios of the 

previous simulation time step. 

 

3.5 Desired Trajectory 

 

The problem of determining the best path the vehicle must follow so that it performs 

the best time on the race track is known as the racing line problem. Xiong [14] dealt 

with his problem by constraining the lateral acceleration of the vehicle as: 
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where Φ is the tires’ coefficient of traction. The time spent in a racetrack will be: 
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Therefore, an approach to minimize the integral ∫ √        
 could increase the 

potential of the driver to minimize lap-time. In [13], a nonlinear solver and an 

artificial intelligence approach were incorporated for solving this minimization 

problem. In the artificial intelligence approach, a dimensionless parameter defined as: 
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   )   ) (137) 

was used for deciding the deviation from the track centerline. The quantities θ1 and θ2 

are the curvatures of a near and a more distant point on the track. 

The optimization methods however did not always lead to desired results. In 

continuous turns, the methods seemed to produce a curve once heading to the inner 

and then to the outer limit of the track. Moreover, the computational time was not 

always satisfactory. 

In general, many different methods have been used for determining the optimal racing 

line. However, in Formula Student, the tracks are usually narrow. Track widths of 

about 3.5m to 5m are more usual, while the car width is usually about 1.2m. This 

leaves little advantage for reducing times by using a better racing line.  

Instead of dealing the problem with an optimization approach, a general method is 

employed, one that is usually preferred by racing drivers in practice. A typical racing 

line in a straight-turn-straight situation can be seen in figure 15. The driver evidently 

seems to be trying to maintain a high radius track. For doing so, he deviates towards 

the inside of the turn. Before and after the turn, he deviates towards the outside of the 

turn.  

One way of achieving this is considering every part of the track that has a relatively 

large curvature abs(θ)>θmin and can therefore be considered as a turn. For those track 

parts, the following equation can be chosen: 

    (                          )    ( )
                     

 
  (138) 

where the corner cutting coefficient is a percentage of the maximum possible 

deviation from the track centerline the driver will chose, so as not to exit the limits of 

the track. Every other part of the track is close to a straight line and the deviation    

can be chosen by linear interpolation. The negative of the values of the deviations of 
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the two most adjacent turns will be used for this interpolation. The resulting deviation 

will not be a continuous function. Therefore, smoothing of the results is required. 

 

 

Figure 15: Typical racing line 

 

Another method involves using the parameter defined eq. (137) instead of the sign 

function: 

 
   (                          ) 

                     

 
 

 

(139) 

This method senses the increase or decrease in track radius and deviates accordingly.  

However, the track itself might have a centerline that is not smooth. This means that, 

even if the deviation    is smoothened, the end result might be a curve of non-smooth 

radius. Therefore, after calculating the desired trajectory, additional smoothing is 

required so as to obtain a good result.  

 



51 
 

The final method used incorporates both eq. (138) and (139). Two different results are 

computed and then the average is taken. A flowchart describing each distinct step can 

be seen in figure 16. 

 

 

Figure 16: Racing line calculation flow chart 

Create equidistant points on 

the track centerline 

Calculate sn1 of the 

equidistant points using 

method 1 

Calculate sn2 of the 

equidistant points using 

method 2 

Smooth sn1 using 

moving average filter 

Smooth sn2 using 

moving average filter 

sn=(sn1+sn2)/2 

Find (x,y) coordinates 

resulting the calculated sn 

Smooth x and y points 

separately using sgolay 

filter 

Interpolate x and y points 

separately using splines 

Calculate curvature of the 

desired trajectory using the 

spline interpolation 

Start 

 End 
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3.6 Velocity planning 
 

Having specified the desired trajectory and considering that its curvature is a smooth 

function of the path length, it may be assumed that the maximum speed the driver 

should be attaining at every point in the track is the maximum steady state speed in a 

constant radius. This upper limit in speed can be easily determined by running the 

simulation in a constant radius turn, up to the point where the speed converges to a 

constant value. 

However, performing a simulation for a large number of radii is a time consuming 

procedure. In order to avoid this method, the maximum speed is first analytically 

calculated. More specifically, taking the steady state for eq. (37), (38), (40) and (41), 

assuming zero lateral velocity, small steer angles and neglecting the vehicle width, for 

a turn of positive radius ξ, it follows that: 
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Taking the inner and outer wheel lateral forces to be the same         and     

    yields: 
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The tire normal loads can be calculated from eq. (43) as: 
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Wheels 2 and 4 have less vertical load and are therefore more prone to slippage. The 

maximum theoretical velocity so as to reach tire slippage for wheel 2 can be found as: 
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Likewise, for wheel 4: 
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Therefore, the theoretically approximated maximum, speed is: 
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(146) 

 

Having defined the theoretical approximation, a traction fitting factor is used as a 

function of the radius: 

 
                        ( )  (

     ( )

         ( )
)

 

 (147) 

where the true maximum speeds umax are found by running the simulation for a 

constant turn radii. A small number of different radii are used for the calculation of 

the traction fitting factor. Subsequently, maximum speeds are found for every point in 

the track as: 

 
     ( )           ( )√                        ( ) (148) 
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Having calculated the maximum speeds in the track, the points where braking is 

required can now be defined as such that the driver can marginally decelerate to the 

permitted speed. Those braking points are found while the simulation is running. 

More specifically, if the simulation comes to a point where        ( ), then a 

braking point must be defined at a previous position in the track. So as to reject any 

slight anomalies in maximum speed which the driver might ignore, the exceedance of 

maximum speed is being checked only if at least one of the following inequalities is 

satisfied: 

             (149) 

                     (150) 

                     (151) 

 

where        is a percentage of 
                     

 
. It should be mentioned that the 

quantities       , (max drift angle) and (max track angle) act as filters upon the 

maximum speed and should therefore be chosen small enough so that the driver does 

not completely ignore the maximum speed. 

To find the previous track position where braking must commence, an initial braking 

attempt is performed. Deceleration is measured from that attempt and a new braking 

position is defined using steady deceleration approximation.  

Both acceleration and braking deceleration are estimated in the following ways: 
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where       is the simulation time step, a1 is the acceleration approximation and a2,u 

and a2,s are the deceleration approximations using speed and length. The time 

moments (t_accel_end) and (t_brake_start) are not exactly the same, as there is 

always a transitional phase between acceleration and braking due to the time taken to 

release the throttle pedal. 

Taking the time (t_brake_start) as the current braking starting point, a new point must 

be defined earlier or later in the track, depending upon whether the speed at the end of 

the previous braking attempt was greater or smaller than the desired maximum speed. 

Figure 17 illustrates the case where the new braking point must be after the current 

one. The driver will keep accelerating for an extra time of Δt1 and then brake up to the 

desired speed umax. The equations describing those motions are: 
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                 (157) 

where spbs and upbs are the previous braking starting point length and speed, sbe  is the 

required braking end point length and unbs is the new braking starting speed. 

 

 

Figure 17: New braking point approximation 

 

Eliminating the new braking start speed and braking time, eq. (155), (156) and (157) 

can be solved for Δt1: 
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The time Δt1 is added to the acceleration end time (t_accel_end) and a new braking 

procedure is performed. It must be mentioned that, in order for this method to 

converge, relaxation is required for the calculated time Δt1, when the algorithm is not 

close to a solution. 
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3.7 Steering system and steering control 
 

The steering system links the steering wheel angle δsteer with the front wheel steer 

angles δ1 and δ2. Neglecting toe angles, for zero steering wheel angle, the front wheels 

should both align with the vehicle longitudinal axis. As a result, since the car is 

symmetric, it follows that:  

    (      )      (       ) (159) 

 

Using this equation, the behavior of the steering system is modeled using a third order 

polynomial: 

             
          

           (160) 

             
          

           (161) 

 

Implementing a steering control scheme that will enable the car to follow the desired 

trajectory is a difficult task. The approach used in this study, follows a technique for 

driverless vehicles introduced by Hoffmann et al. [15].  In an effort to exponentially 

decrease the deviation from the track centerline, a response would be desired that 

follows the equation: 

  ̇              (162) 

 

However, from eq. (32) it follows that  ̇      (   ), where the angles β and ς 

have been defined in figure 7. Therefore, the limit in the rate of change is  ̇   . To 

account for this, the desired response equation is modified as: 
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For a small deviation from the track centerline, eq. (163) can be approximated as an 

exponential decrease. Linking this result with eq. (32) yields: 
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Geometrically, this equation can be explained as the driver’s wish to point the vehicle 

velocity to a desired direction. This direction is defined using a look ahead distance of 

U/kp,s, as the adjacent side of the right triangle seen in figure 18. 

 

 

Figure 18: Desired vehicle direction 

 

The steering will now be controlled based upon the error between the current and the 

desired angle: 
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Maintaining the same result, the desired (β) angle is redefined as  
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) (166) 

and the angle error as: 

         (167) 

 

The steering wheel angle will be controlled using a PID controller on the angle error: 

  ̇       (        ̇     ̈ ) (168) 

where ki, kp and kd are the controller integral, proportional and derivative gains. 
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In order to tune those gains, a simple linearized bicycle car model is used. Taking eq. 

(38) and (41), assuming small velocity and steer angles and neglecting the vehicle 

width yields: 

    ̇   (       )   (       ) (169) 

 

For the lateral tire forces, using the cornering stiffness coefficient, assuming small slip 

angles and neglecting lateral velocity, it follows that: 

                (170) 
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where Ca,f and Ca,r are the cornering stiffnesses of the front and rear axle and δ is a 

mean steer angle between δ1 and δ2. In order for the slip angle af to adequately 

describe the sum of slip angles a1 and a2, as well as for the ratio δsteer/δ, also called the 

steer ratio, to be a least fluctuating value, the angle δ is calculated using the following 

equation: 

 
     

           
 

 (174) 

 

Performing a substitution in eq. (169) using eq. (170) to (173), a single differential 

equation arises for the yaw rate: 

  ̇        (175) 

where the quantities A and B are calculated as: 
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Using eq. (32) and (33) the yaw rate and the error angle can be linked to the deviation 

from the track centerline: 
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Substituting in eq. (168) and (175) yields: 
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 (179) 

 

Considering that δsteer= ksteer δ, where ksteer  is the steer ratio, the two equations above 

can be combined so as to form the closed loop differential equation: 
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where the constants: 
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Therefore, the closed loop characteristic equation is: 
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Due to the high order of the system, it is difficult to predict its response for every 

arbitrary value of the gains. Instead, a certain response will be suggested and the gains 

are calculated so that this response is satisfied. Considering stability, the following 

form is proposed for the characteristic equation: 
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Therefore, the system of equations relating the gains to the desired response constants 

are: 
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It can observed that A is the inverse of the time constant of the open loop eq. (175). 

Let ι=A/η1. Then, requesting for the time 1/η to be the dominant time constant of the 

system, the following inequality applies:   ⁄     ⁄ ⇒        
 
 ⁄ . Substituting 

ι and ιmax to the equations for the gains yields: 
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The two set of equations solved for the proportional gain   
  can be combined and 

rearranged in terms of the look ahead distance gain     : 
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This third degree equation does not have trivial solutions for 
    

 
. It can however be 

easily solved by factorization if ι=1. As the dominant time constant (1/η) and 

damping ratio (δ) of the response can still be chosen, letting ι=1 simplifies the 

selection of gains: 
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Therefore, three valid solutions can be obtained: 
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Requesting for the look ahead distance gain to be independent of the speed of the 

vehicle, the following final solution arises: 
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4. The optimization technique 
 

The primary step into creating an optimization technique is defining the objective 

function. As mentioned earlier, in general, the maximization of the Acceleration, 

Autocross and Endurance scores using the gear ratios is the combination that 

improves the overall performance of the vehicle in Formula Student competitions. 

However, following the outcomes from the analytical examination of gear ratios 

performed, it is reasonable that a change in gear ratios which may be beneficial for 

one event will probably impair the vehicle performance in another. In the 

Acceleration event for example, the optimal gear ratios are dependent only upon the 

performance of the engine and the tire grip for the starting gear ratio. In the 

Endurance race however, results will be greatly influenced by the speeds attained in 

the track. The same should apply for the Autocross race, with the slight difference 

that, since only a single lap is run, the initial part of the track will be closer to an 

acceleration run. 

It is now evident that optimizing the scores of each event individually will probably 

lead to a different result than optimizing the sum of the scores. As examined later, 

while reviewing the results of the simulation and the optimization procedure, finding 

a global optimum is a difficult task for a single event. Therefore, the combination of 

multiple events might easily lead to a localized optimum, increasing the performance 

in a single event only. Additionally, this is not the only setback, as the Autocross and 

Endurance tracks vary from a competition to another.  

In order to overcome the problems mentioned, the improvement to the total score 

resulting a change in gear ratios can be examined. From eq. (1) to (3) describing the 

scores, it can be observed that the total score of the Autocross and Endurance events 

is much greater than that of the Acceleration event. Furthermore, the type of engine of 

the vehicle should also be considered. A single cylinder engine has a low power 

output compared to multi-cylinder engines. Even though it allows the design of a 

lighter vehicle with overall improved cornering performance, the total power to 

weight ratio is decreased. As a result, it is a fact that most single cylinder vehicles 

have higher acceleration times that multi-cylinder ones. Having a low Tmin/Tteam ratio 

in eq. (1), where Tmin is the time of the fastest vehicle and Tteam is the team’s time 

recorded for the event, renders the acceleration score considerably difficult to 

increase. This fact points out that the optimization method should include the 

Acceleration event, but should be directed towards improving the performance in 

Autocross and Endurance. 

Considering now the difference between Autocross and Endurance events, usually the 

two respective tracks have minor differences, if not any at all. However, in the 

Autocross event, a single lap is run starting from a very low speed, rendering the first 

part of the track similar to an acceleration run. In contrast, in the Endurance event, 

almost 90% of the laps are run successively. This repetition in laps also enables the 
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driver to improve his/her performance. The similarity of the tracks of the two events 

implies that both can be satisfactory improved at the same time, but the difference 

between them renders the Endurance event more stable, as it is not prone to initial 

conditions and due to the driver’s capability of attaining more consistent lap-times. As 

a result, for the available tracks, only the times of intermediate laps will be examined. 

Last but not least, a strategy should be employed so as to combine the results of 

multiple tracks from different competitions. For a single track, it is evident that an 

objective function to be minimized can contain just the lap-time: 

             (190) 

 

Even though all Formula Student tracks are similar, unfortunately they are not 

identical. Some might involve a less amount of tight corners and others longer straight 

lines. Considering eq. (2) and (3), both Autocross and Endurance scores are linear in 

comparison to the scoring factor: 
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Therefore, when comparing the data of multiple competitions, a combination of the 

resulting scoring factors is necessary so as to decide upon the final result. One method 

involves forming the objective function to be maximized as the sum of the scoring 

factors: 

  (     )  ∑     
 

 (192) 

 

If the simple case of two tracks is now examined, when the objective function is 

optimized, the following relation applies: 

 
    ⇒  (     )    (     ) (193) 

 

This means that, at the optimal solution, a change in gear ratios that increases the 

score of competition 1 by one point will decrease the score of competition 2 by one 

point as well. However, if at the optimal solution            , then that might not be 

a desirable situation. For example, if 200 and 300 points are achieved at the 

Endurance events of competitions 1 and 2 respectively, then it is logical that an 

addition of some points in competition 1 would be desirable, even though more points 

would be subtracted from competition 2. In this sense, a new objective function can 

be introduced that follows the relationship: 
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or equivalently: 

               (195) 

 

Generalizing the solution for more tracks: 
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Another advantage with this objective function is that the best times      need not be 

included in the optimization criteria. 

The constraints of the gear ratios optimization problem are obviously such that a 

decreasing sequence in gear ratios is preserved. So as to not allow two sequential gear 

ratios to be exactly the same, a critical gear ratio slightly over one is introduced so 

that: 
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Letting the equation above be valid for k=1,2,…,m-1 the following system of m-1 

constraints is obtained: 
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Having defined the objective function and the constraints, a method to solve the 

optimization problem must be employed. Since the entire simulation is realized and 

performed in Matlab, one method would be using the optimization algorithms already 

existing in the software. The most common application performing a constrained 

optimization of multiple variables is ‘fmincon’. Several algorithms can be chosen in 

this function, most of them relying upon the gradient of the objective function.  

However, upon making a change in gear ratios, a new gear might suddenly engage 

during acceleration that did not engage before. In the same manner, another gear 

might not engage at all. In addition, due to the time step of the simulation, there might 
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be slight differences in the braking points between a gear ratio set and another. All 

these factors result in a sudden change in lap-time, rendering the objective function 

non-differentiable at some points. Setting the differentiation step appropriately can 

solve this problem, but not consistently. 

In order to overcome the problems resulting from the non-smooth nature of the 

objective function, an approach of testing a number of different gear ratios is be used, 

similar to a Monte Carlo simulation. Let i0,k for k=1,2,…,m be the initial gear ratios. 

A random set of gear ratios will now be produced and tested. At first, performing a 

rough investigation, the random numbers will be selected with the following 

maximum, mean and minimum values: 

        (       )        (199) 

              (200) 

        (       )        (201) 

where the value of the range is a percentage of the mean gear ratio. 

After a certain number of runs, determined so as the method cannot improve the 

objective function significantly relatively to the number of runs performed, a new 

mean point ibest,k  is set, as being the value of the best performing gear ratios so far. 

This mean point will from now on be renewed after every run is performed. The 

algorithm now enters a more precise search, with the new maximum, mean and 

minimum values being symmetrically defined as: 
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The symmetric placement using the equations above aids in not rejecting any of the 

random numbers, due to violation of the constraints when ratiocrit=1. 

The most common distribution using an upper and lower limit is the beta distribution. 

This distribution is used for generating the random numbers and its parameters can be 

calculated as: 
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where the exponent is a quantity affecting the variance of the distribution. Greater 

exponent results to decreased variance. An exponent of 1 is used for the first rough 

search and an exponent of 2 for the final search. 

Having considered all of the facts mentioned above, the optimization procedure will 

involve the following steps: 
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 Examination of the times in the acceleration event. The analytical method is 

used as an initial point. The best number of gear ratios to be used is 

determined manually, by evaluation of the results. 

 The result for best acceleration time is taken as an initial point for the lap-time 

optimization. The optimal result is found for each track individually. The best 

number of gear ratios to be used is again determined manually, by evaluation 

of the results. 

 The different results are examined as to how close their gear ratios are. By 

trial and error, an attempt is performed for moving a gear ratio resulting the 

optimization of one track, towards the set of gear ratios better for another 

track. New intermediate gear ratios might be introduced. 

 All the tracks are simultaneously examined using an objective function 

 The end result is compared to the gear ratios set for best acceleration. 

Modifications so as to improve acceleration time might be examined. 
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5. Results 
 

5.1 Vehicle and driver constants 
 

The different parameters involved in the analysis of the preceding chapters are part of 

the specifications of the race car designed. The majority of the parameters describing 

the vehicle and its systems are presented in Table 5. 

Description Symbol Value 

Total vehicle mass, including driver M 250 kg 

Vehicle yaw moment of inertia Iz 80 kgm
2 

Vehicle roll moment of inertia around the roll 

axis 
Iroll 31 kgm

2
 

Vehicle pitch moment of inertia around the 

pitch axis 
Ipitch 190 kgm

2
 

Equivalent moment of inertia of the rotational 

parts of the engine  
Jeng 0.01 kgm

2
 

Equivalent moment of inertia of all tires, 

including coupled drivetrain 
Jw 0.87 kgm

2
 

Rear weight distribution Rd 53% 

Wheelbase L 1.53 m 

C.O.G. height from ground H 0.286 m 

Front track width Bf 1.238 m 

Rear track width Br 1.115 m 

Front suspension vertical stiffness ksusp,front 2*36 N/mm 

Front tires vertical stiffness ktire,front 2*115 N/mm 

Front anti-roll bar stiffness krollbar,front 400 Nm/deg 

Rear suspension vertical stiffness ksusp,rear 2*21 N/mm 

Rear tires vertical stiffness ktire, rear 2*121 N/mm 

Rear anti-roll bar stiffness krollbar, rear 1100 Nm/deg 

Suspension total damping ratio Ζ 0.8 

Aerodynamic center of pressure rear 

distribution 
rda 51% 

Aerodynamic center of pressure height from 

ground 
ha 0.65 m 

Aerodynamic drag constant CDA 1.45 m
2 

Aerodynamic lift constant CLA 3.65 m
2
 

Differential Lock up Torque constant for 

acceleration 
L.U.T. acceleration 0.6 

Differential Lock up Torque constant for 

deceleration 
L.U.T. deceleration 0.42 

Differential preload Tp 25 Nm 

Front brake distribution kbf 61% 

Shifting system shift time constant Δtshift 0.2 sec 

Engine max speed nmax 9500 rpm 
Table 5: Main parameters of the race car 
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Concerning the performance of the engine, the output torque and power, as well as the 

fitment of the polynomial proposed in eq. (95) can be seen in figure 19. Due to the 

fact that data are not available for low engine speeds, a linear interpolation is 

performed up to a zero torque engine speed of nmin. The fitting constants are included 

in table 6. 

 

 

Figure 19: Dynamometer data and fitment 

 

Parameter Value 

t0 0.0516918197632723 Nm 

t1 -1.23488590256679 Nm/1000rpm 

t2 8.54112836523757 Nm/(1000rpm)
2 

t3 -9.29629686749032 Nm/(1000rpm)
3
 

t4 -5.47925706182441 Nm/(1000rpm)
4
 

nmin 2000 rpm 
Table 6: Engine torque fitting parameters 

 

A plot of the steering system behavior and the steering system constants can be seen 

in figure 20 and table 7 respectively. 
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Figure 20: Wheel steer angles 

 

Parameter Value 

c1 0.270812004247308 deg/deg 

c2 0.000087022604859 deg/(deg)
2 

c3 0.00000121824745 deg/(deg)
3
 

δsteer,max 110° 
Table 6: Steering system parameters 

 

The data used for the tires fitted in the 2018 race car are obtained from the Formula 

SAE Tire Test Consortium (FSAE TTC) and are analyzed in the software 

OptimumTire [16]. The fluctuation of the results for pure lateral and pure longitudinal 

slip conditions is illustrated in figure 21. The final values of the parameters are 

included in table 7. 

Parameter Value 

Fz0 780 N 

pKx1 47 

pKy1 45 

pKx3 -0.4 

pKy2 1.5 

pCx1 1.5 

pCy1 1.4 

pDx1 2.626 

pDy1 2.472 

pDx2 -0.3063 

pDy2 -0.5544 

pEx1 -0.4 

pEy1 0 
Table 7: Tire model coefficient values 
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Figure 21: Tire data in OptimumTire 

 

The data presented above are extracted from tests performed in a high friction surface. 

It is generally recommended that a friction scaling factor of ι=ιx=ιy=2/3 is used for a 

well-paved road.  
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The tires fitted in the 2019 project race car are a version of the ones modeled, from 

the same manufacturer, but with a lower profile. After a series of test runs, it was 

determined that the vehicle performance was significantly benefitted by this change. 

Unfortunately, data for these low-profile tires are not available to the team. So as to 

account for the increased performance of the new tires, the friction scaling factor was 

raised to a value of ι=ιx=ιy=0.75. This value was determined accordingly to the 

change in lap-times recorded during the test runs. The loaded rolling radius of these 

tires is approximately Re=0.199 m. 

Last but not least, the parameters needed to model the driver are determined 

appropriately, following measured data. Traction limit factors are tuned so that the 

measured vehicle speed profile during deceleration or acceleration, as well as the 

speeds attained in turns of known radius, match the outputs of the simulation. Using 

the values measured for throttle position and steering wheel angle, the driver’s 

response constant as well as the maximum rate of change of his inputs can be 

determined. These values are placed in table 8. It should be noted that, during the 

acceleration event, the traction limit x factor should be raised to 80%. 

 

Parameter Value 

traction limit x, acceleration 70% 

traction limit x, braking 70% 

traction limit y 92% 

Δtdriver 0.3 sec 

Max steering wheel rate 300 deg/sec 

Max steering throttle rate 3 sec
-1 

Table 8: Driver parameters 

 

5.2 Gear ratios resulting from the analytical method 

 

For performing the analytical optimization, two parameters are required. The first one 

is the rear wheels maximum torque due to tire traction Tr,max. For a rear wheel drive 

vehicle, this value can be easily calculated in the steady-state, considering weight 

transfer: 

          
  

  
 
   

(                )
  (                ) (207) 

 

The second parameter is the top speed expected at the end of the acceleration. 

Following measured data from competitions, a typical top speed for a combustion 

racecar in the acceleration event is about Umax=100 km/h. 
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Considering that the gearbox to be designed should replace the manufacturer’s 6 

speed solution for the engine, it would be difficult to exceed the number of 6 gear 

ratios. Therefore, different setups from 3 up to 6 different gear ratios are examined. 

The resulting gear ratios, engine starting speed, engine upshift speeds and 

theoretically calculated acceleration time are presented in table 9. 

 

Gear 

number 

3 speed 4 speed 5 speed 6 speed 

ik 
nstart/n2 

(rpm) 
ik 

nstart/n2 

(rpm) 
ik 

nstart/n2 

(rpm) 
ik 

nstart/n2 

(rpm) 

1 13.3 
8280/ 

9500 
13.7 

8560/ 

9500 
13.9 

8640/ 

9500 
13.9 

8660/ 

9500 

2 9.37 9500 10.7 9500 11.6 9500 12.1 9500 

3 7.13 - 8.59 9500 9.74 9500 10.5 9500 

4 - - 7.13 - 8.27 9500 9.20 9470 

5 - - - - 7.13 - 8.08 9420 

6 - - - - - - 7.13 - 

Accel. 

Time 

(sec) 

3.70 3.67 3.66 3.66 

Table 9: Gear ratios, engine start and shift up speeds resulting from the analytical optimization 

 

It is evident that a greater number of gearbox gear ratios results to decreased 

acceleration time. This is logical since more tractive power is available when the gear 

ratios are placed in higher proximity one to the other.  However, the shift time was not 

considered in this analytical approach, a factor that actually increases the overall 

acceleration time as the number of gear ratios increases, as it will be seen later on in 

the next chapter. 

As far as the upshift engine speed is concerned, the calculated values reach the 

maximum engine speed the most of the times, while dropping slightly lower than that 

only when the ratio of successive gear ratios ik-1/ik is low. It can be also noted that the 

resulting ratio ik-1/ik is constantly decreasing as the gear number k increases. This can 

also be seen in figure 22. As a result, the engine speed drop between n2,k and        

    
    

  
⁄  decreases for higher gear numbers. This is a significant outcome and is a 

common practice in gearbox design. 
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Figure 22: Ratio of successive gear ratios ik-1/ik 

 

5.3 Vehicle simulation results and comparison with measured data 
 

Besides the total lap-time, which is the final result of the simulations, several other 

outputs can be presented so as to prove the validity of the overall results. To begin 

with, it should be mentioned that three different tracks are used in the simulations. 

The most recent data available and the competitions where the team has plans in 

participating were considered. The aforementioned tracks are all Endurance race 

tracks of the competitions of Germany (F.S.G.) in 2016, Austria (F.S.A.) in 2015 and 

Hungary (F.S. East) in 2018. The track layout as well as the racing line computed are 

both illustrated in figures 23 to 25. 

The speeds in the longitudinal and lateral axis can be seen in figure 26. As expected, 

the y-coordinate of the speed is significantly lower than the x-coordinate one.  

The deviation from the desired trajectory is depicted in figure 27. With a proper 

choice of the time constant used in the gains of the steering PID controller, this 

tracking error is kept low at all times.  

Lap-time convergence is examined in figure 28. It is evident that all laps after the first 

one share very similar lap-times. This is logical since, after the first lap, the speed 

reached before the first turn of the lap exceeds the traction limited maximum in-turn 

speed. 

The data presented in figures 27 and 28 result runs performed in the race track of 

Germany. The first lap is included only. 
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Figure 23: Austria 2015 Endurance track and racing line 

 

Austria 2015 
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Figure 24: Germany 2016 Endurance track and racing line 

 

Germany 2016 
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Figure 25: Hungary 2018 Endurance track and racing line 

 

 

Hungary 2018 
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Figure 26: Vehicle speeds 

 

 

Figure 27: Deviation from racing line 

ux 

u
y
 

t (sec) 

S
p
ee

d
 (

k
m

/h
) 

20 

80 

0 

100 

60 

120 

40 

-20 
0 10 20 30 40 50 60 70 80 

Vehicle Speeds Germany 

-0.8 

s n
 (

m
) 

0.2 

0.4 

-0.4 

-0.6 

-0.2 

0 

0 10 20 30 40 50 60 

Deviation from racing line Germany 

t (sec) 

70 80 



79 
 

 

Figure 28: Lap-time versus lap number 

 

Last but not least, a comparison between measured and simulated in-track speeds for 

the Hungarian competition can be seen in figure 29. This comparison was performed 

using input data that correspond to the setup of the racecar in that specific 

competition. A representative lap was isolated from the available data and aligned 

with the simulation data. It should be noted that differences are expected in this graph, 

as the tarmac was relatively damp. 

 

Figure 29: Simulation and telemetry speed comparison 
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5.4 Gear ratios optimization for acceleration 
 

When examining the solutions of the analytical optimization for straight line 

acceleration, it was noted that an increase in the number of gear ratios results to 

decreased acceleration time. However, when adding the gear shift time in the analysis, 

this observation no longer holds. The times and maximum speeds resulting a 75m 

acceleration event for the calculated gearboxes are presented in table 10. 

 

 3 speed 4 speed 5 speed 6 speed 

Acceleration time 

(sec) 
4.46 4.50 4.56 4.60 

Maximum speed 

(km/h) 
96.7 95.26 93.7 92.0 

Table 10: Simulation results of the gearboxes calculated using the analytical optimization 

 

A further investigation into the acceleration response of the simulation yielded the 

following three assumptions for the acceleration time: 

 It is difficult to decrease the acceleration time lower than the results obtained 

for a 3-speed gearbox, when a greater number of gear ratios are used. 

 A decrease is observed as first the gear ratio decreases, up to the value 

matching the rear tires traction limited torque to the maximum output torque 

of the engine as i1=Tr,max/T(nTmax). 

 A decrease is observed as final the gear ratio increases, up to the value 

matching vehicle maximum speed to the maximum speed of the engine, 

calculated using eq. (30). 

After considering the factors mentioned above, a minimization of the acceleration 

time is attempted using the stochastic algorithm mentioned in the previous chapter. 

Starting from four gear ratios, the algorithm brought the last two gear ratios close one 

to the other. Merging those and continuing the optimization lead to the gearbox 

described in table 11. A diagram showing the best lap-time found versus the iteration 

number, with the 3-speed analytically found optimal gearbox as a starting point, can 

be seen in figure 30. 

Finally, two observations should be noted: 

 Acceleration time of the best performing 4-speed gearbox is 4.45sec, just 

0.04sec apart from the 3-speed one. 

 The acceleration time is generally insensitive close to the optimal solution. For 

example, the time does not change for the 3-speed solution shown in table 11, 

if the last gear ratio ranges between 6.9 and 7.3. This means that the solution 
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presented might not be the exact optimal, but is such that yields the optimal 

result. 

 

Gear number ik 
nstart/n2 

(rpm) 

1 12.2 
6800/ 

9500 

2 8.32 9500 

3 7.05 - 

Acceleration time 

(sec) 
4.41 

Maximum speed 

(km/h) 
96.5 

Table 11: Gearbox resulting stochastic optimization of 75m acceleration 

 

 

Figure 30: Best lap-time versus iteration number for 75m of acceleration 
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5.5 Gear ratios optimization for in-track performance 
 

The stochastic algorithm is applied upon the tracks of Germany, Austria and Hungary. 

Four laps are run in total and the average of the three last lap-times is used as an 

objective function to be minimized, therefore excluding the first lap.  

Before running the optimization algorithm, several observations are performed 

concerning the three tracks: 

 The top speed in the track of Austria is about 85 km/h, whereas in both the 

tracks of Germany and Hungary is near 100 km/h. 

 The lowest speeds attained vary between roughly 25 km/h and 35 km/h. 

 The in-track local minimum and maximum speeds do not vary significantly 

with a change in gear ratios. 

 The usage of gears varies between the tracks, given the same gearbox. For 

example, the first gear might be used in one track, but not at all in another. 

 The usage of the shift time Δtshift only once in eq. (123) calculating the engine 

downshift speed, is not necessarily the best assumption for all tracks.  

 

In paragraph 2.2, it was mentioned that the optimal value of last gear ratio is such that 

matches the engine maximum speed with the vehicle top speed. This outcome was 

confirmed when simulating the acceleration event in the previous chapter. 

Considering that the top speeds reached in-track are known and that they occur in a 

straight line of significant length, the last gear ratio can be determined for all tracks. 

However, it is evident that no valuable result will emerge from doing so separately for 

each track, since the final gearbox design will include only one set of gear ratios 

common for all tracks. 

In order to overcome this set back, the final gear ratio is set accordingly to the 

maximum speeds of the tracks of Germany and Hungary. It may also be observed that 

this speed is the same as the one attained at the end of the 75m acceleration run during 

the acceleration event. The localized maximum speed of the track of Austria may also 

be considered by proper calculation of the nearest prior gear to the final gear. 

However, this constraint would affect the performance in the rest of tracks and is 

therefore not being performed. 

Last but not least, the choice of downshift engine speeds should be taken under 

consideration. Introducing these as extra variables to the optimization scheme would 

increase the complexity of the system and the likelihood of finding a localized result. 

For this reason, for the first set of runs, the downshift speeds were chosen to be the 

same for all tracks. A quick investigation indicated that the usage of twice the shifting 

time as 2Δtshift in eq. (123) resulted to improved lap-times. Therefore, this method was 

incorporated as a first approximation.  
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Following the 3-speed optimal result of the Acceleration event, three different gears 

are examined initially. The resulting gear ratios for each individual track can be seen 

in table 12 and the course of the optimization is illustrated in figures 31 to 33. 

The resulting gear ratios vary significantly from one track to another. However, it 

may be observed that, besides the common last gear, three different gear ratios seem 

to appear amongst the results. Successively, these have the approximate values of 

11.5, 10.5 and 9. However, not all appear in each result individually. In an attempt to 

create a design adequately performing in all tracks, a 4-speed solution is proposed, 

containing these three observed ratios and the fixed final gear ratio.  

 

 Gear ratios 

Gear number Austria Germany Hungary 

1 Not used 11.6 10.6 

2 10.4 8.68 9.11 

3 6.82 6.82 6.82 
Table 12: Results by examination of each track separately 

 

 

Figure 31: Best lap-time versus iteration number for the track of Austria 
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Figure 32: Best lap-time versus iteration number for the track of Germany 

 

 

Figure 33: Best lap-time versus iteration number for the track of Hungary 
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After performing several runs so as to examine whether the proposed 4-speed gearbox 

has a satisfactory performance, it is determined that slightly higher lap-times of the 

per-track optimized results can be reached. Further refinement of the results by 

altering the engine downshift speeds differently per track, yields to additional 

improvement. Determining the gear ratios set   [                        ] as a decent 

starting point, all the tracks were examined and their lap-times were combined using 

an objective function. Two objective functions have been proposed in eq. (192) and 

(196). So as not to account for a minimum lap-time, used for the denominator of the 

scoring factors, eq. (196) is used. The resulting gear ratios, downshift engine speeds 

and the time used in eq. (123) for calculating them are included in table 13. A graph 

of the resulting lap-times versus the iteration number of the algorithm can be seen in 

figure 34. 

  Downshift engine speeds/ Time used in eq. (123) 

Gear number Gear Ratios Austria Germany Hungary 

1 12.6 - - - 

2 10.3 3000/ 2Δtshift 3000/ 2Δtshift 3600/ 2Δtshift 

3 8.67 4100/ Δtshift 3800/ 2Δtshift 4100/ Δtshift 

4 6.82 5600/ Δtshift 4800/ 2Δtshift 5600/ Δtshift 
Table 13: Results for the combination of three tracks 

 

 

Figure 34: Best objective function lap-times versus iteration number for the combination of three tracks 
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5.6 Final results and modifications 
 

At first, the acceleration event time is examined for the 4-speed gearbox, determined 

for best in-track performance. Running the respective simulation results to a time of 

4.44 sec, just 30 msec above the 3-speed gearbox for optimal simulated acceleration 

time. This outcome is logical, should the two gearboxes be compared. The values of 

tables 11 and 13 indicate that the 4-speed solution nearly identical to the 3-speed one, 

with an intermediate gear added between the first and second gear. The constant 

decrease in the ratio between successive gears is no longer maintained, but the 

acceleration time does not increase significantly. 

Therefore, the resulting 4-speed gearbox is a well performing solution for all of the 

dynamic events. However, it cannot be the final design due to two facts that have yet 

not been considered. To begin with, the first gear ratio is not adequately large for 

enabling the driver to start the vehicle easily. It may match the engine maximum 

output torque to the maximum tire limited torque, but that is beneficial in the case of 

an intense launch for acceleration. When a driver normally starts the vehicle, he or she 

rarely holds the clutch at the point of engagement for a long period of time. That 

being mentioned, the thrust provided by the engine is relatively low. If the momentum 

of the engine is not sufficiently large, then the engine stalls. 

The operation of normally starting the vehicle can be easily modeled by considering 

the rate of change in momentum, between two distinguished time moments. At first, 

the clutch is disengaged, the engine is at an initial speed and the vehicle is stationary. 

After the clutch has been engaged, the vehicle is moving coupled to the engine. Using 

the thrust of the engine torque, conservation of momentum states that: 

 ∫    
           
        

 (     
   

    

  
 )

 

  
             

 

  
             

 
(208) 

Using eq. (208), and considering the data measured from the 2018 vehicle, an initial 

engine speed of ndisengaged=5500rpm and a torque thrust of ∫    
           
        

      

were determined as typical for the case of staring the vehicle. The resulting engaged 

engine speeds were typically close, or lower than, 2000rpm, lower than the selected 

idle speed of about 3000 rpm, therefore leading to frequently stalling the engine. 

Requesting for the engaged engine speed to be at least at the idle speed, results to a 

gear ratio of i1=20.6. 

The other fact that has not been considered is that gear ratios are inherently rational 

numbers. Not every set of the gear ratios calculated is possible to be implemented, as 

the number of teeth of the gear sets involved is limited. The total drive ratio is the 

product of the primary, the gearbox and the final drive ratios. Considering that both 

the gearbox and the final drive ratio can be altered, limiting the number of the teeth of 

their gear sets results to a set of possible gear ratios ipossible,k. After calculating those, 
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the most suitable set of gear ratios can be determined as such that minimizes the sum 

∑                  . The limitations set to the teeth of the gearsets as well as the 

resulting gear ratios can be seen in tables 14 and 15 respectively. 

 

 Gearbox Final Drive 

Limitation Gear 1 Gear 2 Gear 1 Gear 2 

Maximum number of teeth 14 14 12 33 

Minimum number of teeth 36 36 14 40 
Table 14: Limitations on the number of gear teeth  

 

Gear 

number 

Desired Gear 

Ratios 

Best achieved 

Gear Ratios 

Teeth of gearbox 

gear 1 

Teeth of 

gearbox gear 2 

1 20.6 20,357 14 36 

2 12.6 12,667 20 32 

3 10.3 10,245 17 22 

4 8.67 8,7083 20 22 

5 6.82 6,8371 22 19 
Table 15: Resulting gear ratios and number of gearbox gear teeth 

 

Due to the fact that it is possible to select two and not just one gear set, the best gear 

ratios achieved are very close to the ones desired. In fact, the values differ by 1%, if 

not less. This justifies the examination of the gear ratios directly as real numbers and 

not performing a rational number conversion at every simulation. 

Finally comparison between the simulated times of the calculated 4-speed gearbox 

and the already existing gearbox of the 2018 race car can be seen in table 16. 

Designed gearbox Former gearbox 

Acceleration Austria Germany Hungary Acceleration Austria Germany Hungary 

4.44 66.12 74.33 60.69 4.51 66.50 74.25 60.86 
Table 16: Comparison between designed and already existing gearbox 
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6. Discussion and conclusion 
 

Following the observations and the results presented in the previous chapter, several 

conclusions may be extracted, concerning the calculation of the gear ratios. At first, 

an examination of the single straight line acceleration problem yields the following: 

 With an increase in the number of gears, the potential in decreasing 

acceleration time is enhanced, since more tractive power is available when the 

gear ratios are placed in higher proximity one to the other. However, when the 

shift time is considered, this observation is reversed.  

 The best method to place the gear ratios is such that the ratio of successive 

gear ratios ik-1/ik is constantly decreasing as the gear number k increases. In 

this case, the engine speed drop between n2,k and            
    

  
⁄  

decreases as the gear number increases. 

 The final gear ratio should match the expected maximum vehicle speed with 

the engine maximum speed. 

 The first gear ratio should match the maximum driving tires torque limited due 

to traction with the maximum torque of the engine. 

 The upshift engine speeds coincide with the engine maximum speed, unless 

the ratio of successive gear ratios is very close to one. 

Concerning in-track performance now, the topology of the track determines the 

speeds attained, influencing the results of the best gear ratios: 

 The resulting ratio of successive gear ratios ik-1/ik might not be a constantly 

decreasing number. 

 As with the case of acceleration, the final gear ratio should match the expected 

maximum vehicle speed with the engine maximum speed. 

 Obtaining a gearbox that performs well in a multiple number of tracks 

involves investigating which gear ratios are used on each track separately. The 

final solution may use all of those ratios so as to satisfy the needs of all the 

tracks. 

 Decreasing the downshift engine speed lower than the value of      

      
  
    
⁄  results to decreased lap-time. The downshift engine speeds 

should be chosen appropriately and potentially different in every track. 

Finally, the improvement of in-track lap-time resulting the gearbox optimization is 

typically not more than half a second, or about 0.7%. This outcome might not seem 

adequately satisfactory. However, so as to attain a similar decrease, a weight 

reduction of 5% is necessary in the vehicle total mass. It should be noted that, in 

Formula Student applications, the overall weight of the car is considered very 

significant and design efforts are pushed to their limits. Therefore, achieving a 5% 

decrease, or roughly 10kg, is not a task easy to achieve.  
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Last but not least, the observations mentioned above are all coupled with the engine 

and the expected speeds of the vehicle. Typically, most race cars have double the 

maximum speed and triple the engine power of a Formula Student race car. As a 

result, the choice of a five speed gearbox for covering speeds of zero to 100km/h, 

would be entirely different in the speed range of zero to 200km/h. The ratio between 

successive gears would inevitably increase and the shift time would become less 

important compared to the total acceleration time. 
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7. Mechanical design and manufacturing of the gearbox 
 

7.1 Design constraints and manufacturing method 
 

As mentioned when posing the overall constraints of the project, the gearbox to be 

designed should replace the already existing solution of the manufacturer. 

Considering the additional limitation of budget for outsourced manufacturing, leads to 

adopting an approach of minimizing the number of parts to be redesigned and 

manufactured. More specifically: 

 The first gear ratio, comprised out of a 36 and 14 teeth gear set, is 

implemented by the existing gearbox first gear ratio, which is identical. The 

ability of choosing a final drive ratio aided in pursuing this identicalness. 

 The transmission shafts on which the gears are connected to are not changed. 

This selection was made possible by the fact that only one gear of the first 

gear ratio is attached with one axle, whereas the rest are removable. 

 The original sequential ‘dog-box’ engagement type of the gears is used. This 

also enables the usage of most of the existing mechanical components of the 

shifting system. 

The number of teeth of the gear sets of the calculated gearbox has been found after 

posing a maximum and a minimum limit. Considering that the center distance of the 

transmission shafts is fixed to the design of the engine, changing the number of gears 

alters the module and the contact ratio of the gearing. A large number of teeth results 

to a low module and therefore small sized teeth that lack in bending strength. On the 

other hand, a very small number of teeth leads to decreased contact ratio. 

Last but not least, the manufacturing method must be decided. The most common way 

of producing gears is by means of hobbing. The material is then being case carburized 

around the tooth flank so as to increase local strength. The end result is ground so as 

to remove any warping introduced during the heat treatment and achieve a low 

surface roughness. The drawback of this method is that the module of the gearing 

must follow a standard size for which hobbs are available. Introducing a profile shift 

coefficient can remedy for this problem. However, it is possible that the required 

amount of profile shift cannot be achieved. Additionally, case hardening the material 

does not improve its properties anywhere but near the tooth flank. 

Since the gears can be straight-cut, another manufacturing method is considered, as 

proposed by Bouquet et al. [17]. A near-net shape for the internal pockets and holes of 

the gear can be achieved at the beginning. The material is then being hardened and the 

shape of the teeth is formed after the heat treatment by a wire-EDM process. In this 

way, the material properties can be maintained throughout the gear by performing a 

through hardening, while a tooth shape of high accuracy can be achieved. 
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Additionally, any parameters of the tooth profile may be chosen, without any 

restrictions due to the limitations of the manufacturing process.  

What must be considered is the surface quality of tooth flank. The wire-EDM process 

cannot achieve an adequate surface finish, such that a grinding method is capable of. 

However, since the overall shape of the tooth is accurate, the remaining unevenness of 

the surface can be removed by a running-in method. Ioakimidis (Θσαθεηκίδεο) [18] 

used a running-in method for correcting warping anomalies on a bevel 90 degrees 

gear set. By little or none at all net torque being transferred from one gear to another, 

the profile of the teeth was shifted by a maximum of 0.15mm, using appropriate 

speeds and grit of polishing paste. 

 

7.2 Gear arrangement and shifting mechanism design 
 

The engagement type and main shifting mechanism of the gears is illustrated in figure 

35. Extruded pin-like geometries, commonly referred to as gear ‘dogs’, on a gear 

wheel that linearly slide, match a set of pockets on an adjacent gear wheel. The 

pockets are larger than the ‘dogs’, allowing for easier gear engagement. The linear 

movement of the sliding gear is accomplished by means of a retaining device, the 

shift fork, which follows a groove on a rotating cylinder, the shift drum.  

 

 

Figure 35: Engagement and shifting mechanism of gears 

 

In some similar gearbox configurations, the sliding parts are not the gears themselves, 

but a set of separate ‘dog’-carrying rings. Implementing this approach was not 

shift drum 

Shift forks follow grooves in 

shift drum moving left and right 

shift fork 

sliding gear 

gear ‘dogs’ 
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pursued, as it would require the manufacturing of additional parts and the 

modification of the transmission axles so as to resolve spatial issues.  

During each gear change, the shift drum will rotate by an angle Δθ. The resulting 

displacement of the shift fork that is coupled to the sliding gear should be: 

                                                 (209) 

where the initial and final clearance distances are measured before and after the 

engagement.  

So as to easily design the curve of the displacement (x) in relation to the angle (θ), for 

0<θ<Δθ and 0<x<Δx, instead of the angle, the proportional projected length of the 

outer diameter of the shift drum is used: 

 
                  

                   

 
 (210) 

The curve designed is wrapped around the shift drum and embossed on its cylindrical 

surface. The resulting surface is then being offset evenly to both directions. 

A Bezier curve was used for designing the gear displacement. For best gear shifting, 

the gear engagement and disengagement should be performed quickly. Therefore, so 

as to increase the derivative     ⁄ , the control points of the Bezier curve are set as 

close as possible. When the gear change is performed using a single sliding gear, the 

distance of the control points is limited by a minimum radius on the curve. In the case 

where two sliding gears are used, an intermediate point halfway through the total 

angle Δθ is defined. On that point, the previously engaged gear has disengaged and 

attains a certain clearance distance. The same clearance is attained by the new gear to 

be engaged. The derivative at the position where the gears are engaged is set to zero, 

so that no torque is transferred to the shift drum from transverse loads on the gear.  

The arrangement of the gears of the original KTM gearbox and the custom gearbox 

can be seen in figures 36 and 37 respectively. It is evident that the gears utilizing a 

higher gear ratio, which induces greater loads to the system, are placed close to the 

ends of the transmission shaft, so as to reduce bending loads on the shaft.  

The final positioning is also restricted by the fact that the grooves on the shift drum 

cannot intersect one another. This defines certain boundaries for the movement of the 

sliding gears and the size of their adjacent gears. For example, of the three sliding 

gears in figure 37, the rightmost position of the leftmost one cannot be very close to 

the leftmost position of the intermediate one. As a result, the leftmost sliding gear -5
th

 

gear of the custom gearbox- might have to interfere with the adjacent gear -2
nd

 gear of 

the custom gearbox. To prevent this, the adjacent gear must have a large root 

diameter, while the rightmost gear a small tip diameter. 
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Figure 36: Original KTM gearbox configuration 

 

 

Figure 37: Custom gearbox configuration 

 

KTM configuration: 2 6 4 3 5 1 

Δx Δx 

Δx Δx Δx Δx 

Custom configuration: 2 5 3 4 1 

Δx Δx 

Δx Δx Δx Δx 
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7.3 Basic module and gear teeth strength calculations, choice of 

material 

 
Since no restrictions are imposed to the tooth shape from the manufacturing method, 

the module of the gearing does not have to attain a specified value. Let 1 and 2 be the 

gears of the input and output transmission shafts respectively. Considering a zero 

profile shift coefficient, the module can be calculated as: 

 
  

    
     

 (211) 

where α12 is the distance of the transmission shafts and z1,z2 are the number of teeth of 

gears 1 and 2 respectively.  

In fact, if eq. (211) holds, then the profile shift coefficients X1 and X2 are not 

necessarily zero. Instead: 

        (212) 

 

Therefore, the profile shift coefficient is an unconstraint design variable. Other ones 

include the pressure angle of the gearing and the addendum and dedendum heights, 

defining the tip and root diameters. Considering that, the following approach is 

adopted: 

 module is set according to eq. (211) 

 the pressure angle is chosen to follow the standardized value of 20°  

 the addendum and dedendum coefficients are chosen according to the 

standardized values of 1 and 1.25 respectively 

 the profile shift coefficients that follow eq. (212) are determined so as to 

maximize tooth strength 

 the addendum and dedendum coefficients are changed, if the resulting tip and 

root diameter need to change for spatial reasons in the gearbox design 

 the pressure angle is changed, if problems such as undercutting or low contact 

ratio occur 

All the respective calculations are performed with the aid of the KISSsoft gear 

calculation software [19]. The service life is found according to ISO 6336 method B 

[20], with incorporation of the graphical method as proposed by Obsieger [21]. The 

maximum engine output torque and respective speed are used for this calculation. The 

width of each gear set is determined from this analysis, by requesting a service range 

of approximately 2500km, estimated for 2 years of complete testing, competing and 

post-season testing of the racecar, using an additional factor of safety of 1.5. The 

percentage of usage of each gear over the distance traveled is calculated from the 

results of the simulation runs performed. The required life time and percentage of 

usage of each gear set are included in table 17. 



95 
 

Gear number Usage (over distance) (%) Required Lifetime (Hrs) 

1 1 0,42 

2 2 0,52 

3 20 4,2 

4 55 9,9 

5 22 3,1 
Table 17: Percentage of usage and required lifetime for each gear set over a range of 2500km 

 

Last but not least, lifetime calculations depend upon the choice of material. An 

increased surface compression strength as well as an adequate fatigue strength are 

both necessary for obtaining high gear tooth strength. As mentioned previously, the 

manufacturing method employed allows for a through hardening of the material. 

Considering these parameters, a high-strength tool steel is selected. 

For acquiring the material properties mentioned, high values of surface hardness 

should be achieved. However, as hardness increases dramatically, the material 

becomes brittle and difficult to machine. Accounting for those two factors, the tool 

steel chosen is the UDDEHOLM CALMAX® [22] tool steel. The stress-strain 

diagram measured by Brøndsted et al. [23] and illustrated in figure 38 indicates that 

this tool steel is more ductile than others.  

 

 

Figure 38: Stress-strain diagram for UDDEHOLM CALMAX® and other tool steels 

 

A summary of the heat treated material mechanical properties, as given by the 

supplier, can be seen in table 18. It should be noted that the numbers used for the 

calculation of gear teeth strength are taken according to ISO 6336 figures 5 and 6 for 
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‘ME’ quality alloyed through hardened wrought steels and the maximum diagram-

given surface hardness. 

 

Hardness (HRC) 54-56 

Yield strength Rp0.2 (MPa) 1400 

Ultimate tensile strength Rm (MPa) 2100 

Elongation at break (%) 4 

Yield compressive strength Rp0.2 (MPa) @56HRC 1900 

Ultimate compressive strength Rm (MPa) @56HRC 2300 
Table 18: UDDEHOLM CALMAX® material data summary according to supplier 

 

7.4 Finite element analysis 
 

In order to design the main body of the gears, a F.E.A. model was developed in 

Solidworks [24] for the engaged position of each gear. The compliance of the 

transmission shafts is excluded from this analysis and replaced with appropriate radial 

or circumferential displacement constraints. A frictionless contact set is defined 

between the ‘dogs’ of one gear and the pockets of the respective mating gear.  

So as to accurately calculate the contact stress around the gear tooth flank, a contact 

set combined with a significantly refined mesh should be employed between the teeth 

of the driving and driven gears. However, this combination would excessively 

increase the solution time. Therefore, since the contact stress and tooth bending stress 

have already been examined in KISSsoft, a bonded contact set is utilized in this 

analysis, so as to allow for a faster design and evaluation cycle, each time a change is 

performed in the design of the gear. 

The resulting stress contour plots are illustrated in figures 39 to 43. In figure 39, only 

the designed gear that engages the first gear is depicted. Examination of the results 

reveals that an increased factor of safety is attained compared to the material’s yield 

strength. This is a result of three factors: 

 A minimum gear rim thickness 4mm is used, for avoiding impaired tooth 

stiffness and stress concentration around the root fillet. 

 The length of each internal spline was limited due to the spline strength 

 A minimum pocket radius of 4mm is utilized, for easier machining. 
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Figure 39: First gear engagement stress contour plot 

 

 

Figure 40: Second gear engagement stress contour plot 
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Figure 41: Third gear engagement stress contour plot 
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Figure 42: Fourth gear engagement stress contour plot 
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Figure 43: Fifth gear engagement stress contour plot 
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