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Abstract

In motorsports, developing well engineered solutions is essential for designing a
competitive race car. The need for reaching the limits of engineering is even more
intense in Formula Student applications. This work deals with the complete
development of a gearbox for a single-cylinder powered Formula Student vehicle.
The optimal solution for a set of gear ratios is examined using both an analytical and
a simulation-based approach. A stochastic optimization method is employed for the
latter. The contribution of gear upshift and downshift engine speeds is also taken
under consideration. Results are being extracted and combined from different
Formula Student tracks and generalized conclusions are made for selecting
appropriate gear ratios. The gearbox mechanical design is also being analyzed.
Finally, choosing a non-conventional manufacturing method enabled designing
beyond the existing gear module standards.



Mepianym

To xKipdTI0 TOYLTATOV ATOTEAEL VOl TUNIO TOV GLGTHUATOG UETAOOONG Kivong evag
OYNLLOTOG, O GYESIOGLOC TOL OTTOI0V AMOGKOTEL GTO VOl EMTVYEL TNV KATAAANAN GYEoM
HETOED GTPOP®V KIvNTHPO Kol ToyuTHTOV oxnpotos. Kabott kdbe kivnmpog cuvibmg
EXEL OLOPOPETIKN] GULUTEPLPOPE GLUVOPTNOEL TOV GTPOP®V TOV Kol KAOE Oymuo
SLPOPETIKO EVPOG TOYVTNTOV OVOAIY®G LE TO TTEDIO ¥PNOMG TOV, Vol TPOPAVES OTL O
oxeOOGUOC VO KIPOTIOV TaYLTNTOV TPENEL Vo €lvar dppNnTa. GLVOESEUEVOSG LLE TOV
EKAOTOTE GLVOLACUO KIVITHPO-OYXNHOTOC.

Avt N epyacio TPOyLOTEVETOL TOV OYEOOUO €VOG KIPOTION TOLTATOV Yo TO
ayoviotikd povobésio tov 2019 g pormtikng ouddag Prom Racing tov Efvikov
MetooPov TToAvteyveiov. To kifdtio awtd TPoopileTor Vo OVTIKOTAGTNCEL TNV
VILAPYOVCA AVOT) TOV TPOCPEPEL O KOTOACKEVOOGTNG Y10 TOV LOVOKVAIVOPO KIvnThpa
KTM 500 EXC, pe tov omoio givat e£omAiopévo 1o povobésto g opudoa.

H ev Moyw opdda oxedidlel kot kataokevdlel Eva TANP®G AEITOLVPYIKO povobéato, pe
OKOTO TNV GLUUETOYN 6TOVG dtoywvicpovg Formula Student. Aappdvovtog v oy
TOVG KAVOVIGHOUS TV SOYOVIGU®MV, OA0L TO CUUUETEYOVTO povobéata oyedtdlovTot
KAT® oo Kowva TAaicta.

H pehétn mg enidpaong tov oyécewv HeTAO0oNS OTIS EMOOCELS TOV HOVOBEGION
TpoypatoromOnke péoa amd dVo dapopetikés tpoceyyioels. Kat apynv, eetdotke
aVOALTIKA TO ogvaplo emrtdyvvong oe evbela ypapp. Me oavtév tov TpoOTO
dumotdbnke mwg, TEPaV and TG GYECELS UETAOOONS, ONUAVTIKO polo mailovv ot
OTPOPEG TOV KIVITNPO OTIG OTOIEG TPOLYLOTOTOOVVTAL AVERACLLATO KOl KATERAGLOTO
TOYLTNTOV. Emdudkoviag eAoylotonoinsn tov ypovov EmTAYLVONG, avamTyyOnKoy
OLAPOPES AVOAVTIKEG AVAOPOLUKES GYECELS YO TNV €VPECT TV PBEATIOTOV GTPOPDOV
avERAGLOTOG TOYLTHTOV KOl TOV BEATIOTOV GYEGEMV LETAGOOTC.

Méoa and v mponyndeica avirlvor domiot®inKe Tmg dAPopa GEVAPLLL 0d1YNONS
HECO GE U0l TOTO AyOVOV TOXDTNTOG 0EV KOADTTOVTOL OO 0L OTAY) EMLTA(VVOT| GE
evbeia ypopun. Kotd ovvémela, oe o dgbtepn mpocEyylon, Opopeadnke &va
HOVTELO TPOGOUOIMoNG Yo TO LovoBEG1o, MoTE Vo eEETOOTEL Le peyaAvTEPT akpifeia
0 ¥pOvo¢ ToTOG. XTNV HOVTEAOTOINGN avTY|, XpNoomomOnke &va KAUTLUAGYPOLLLLO
GUGTNUO GUVTETAYUEVOV Y10 TNV TOTOAOYIO TNG TIOTOS Kot TNG EMBLUNTNIG TPOYLOG
evtog avtig. ‘Emerta, pe Paon éva full-car model, dwpopeddnkav ot duvopukég
e€lomoElg 100ppoTiag dvvapE®Y Kot port®dv. [ Tov Tpocdopiopd tov kdbetwmv
Juvlpemv oTo €AOCTIKA, TPAYHOTOTOWONKE it avdAvon g Asrtovpyiog G
avaptnong kot Oopopeadnke éva cHotnuo dVO JPOPIKAOV eEICMGEMY Yo, TNV
KAion (pitch) kot v mepiotpoen (roll) tov apoédpatog. H ovumepipopd tov
EAAOTIKOV povielomoldnke coppova pe v Magic Formula tov avortoydnke amod
tov Pacejka.



[Tépav amd v mpoavagepbeica KOplo povieLomoinon, Tpaypatorodnke avdivon
™G Astovpyiog Kol TOV VTOAOIT®V VLTOGLOTNUAT®V TOL povoBEéciov. Avtd
TEPIAAUPAVOVY TO CUOTNUO HETAGOONC KIVNomG Kot TO Ol0pOpPIKoy TEPLOPIGUEVTS
oAloBnong, to ovoTnua TEOMONG KOl TO GVUGTNUA OAAAYNG TaxLTHTOV. Emmiéov,
dtpopemdnke €va Lovtédo ylo Tov 0dnyo, KVPLo GTOoLKElo TOV 0TOioV AMOTEAOVY O
TEPLOPICUOG TV TAELPIKAV KOl EYKAPOIOV EMTAYVVOEDV UECH €VOC LOVIEAOL
friction ellipse, n dwpdpewon o embountig tpoylig oy miota kat evog PID
eLEYKTN Y10 TO cVoTNU S1ELOVVONG LE GTOYO TNV AKOAOVONGN G TNE TNG TPOYLAC.

Ta amotedéopato ypOVOL TGTOC TOV TPOCSOUOIDCEMY YPNCLUOTOMONKAY Yo, TNV
ebpeon  TOL  oLVOVACHOV  OY€cE®V  HETAdOONG. Ml GTOYOOTIKN  TEXVIKN
BeAtioTtomoinong avamtiyOnKe Kot EQUPUOCTNKE Yo AVTOV TOV GKOTO.

Ta amoteléopato TG AVOAVTIKNG TPOGEYYIONG KOl TNG OTOYACTIKNG PEATIGTOMOINGNG
Yoo TPES OPOPETIKEG TioTeg Olayovicpumv Formula  Student  ouykpivovrar,
dtoKpivovtog KATowo YEVIKA GUUTEPACUATO G6TOV PBEATIOTO oYedlooUd ToV KIPmTiov
tayvTov. Ta arotedéopata yio KOs i ovOAVOT TPOKVTTOVY SLUPOPETIKA, OUMGC
LE KOTAAANAO GLUVOLOCUO EMTLYXAVETOL VO OPKETA IKOVOTOMTIKO OMOTEAEGLOL Y10l
OAEG TIC MEPMTMGELS.

Téhog, mpaypatonoteitar 0 PNxovoroyikog oyedtacpog tov Kipwtiov. Kdabe Pobuida
LeTAO0oNS VAOTOLEITOL e KOTAAANAO VITOAOYIGUO TV 030VIMGE®V, AAUPAVOVTOS LT
oyv Béuata KataokevoosotTntog kot avtoyns. H dwdtaén tov toayutitov kot o
TPOTOG EVOALAYNG TOVG e€eTdleTal Yo TOV GYEOAGUO EVOG TULOTOS TOL GUGTNHOTOC
oAayng tayvtteov. H avioyn 1tov kuplg COHOTOS TOV 030VIOTOV TPOYDOV
LEAETATAL LLE YPNOT) TETEPUGUEVMOV GTOLYEIWDV.
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1. Introduction

1.1 Problem Statement

The general purpose of a gearbox is to be a part of the powertrain connecting the
engine of a vehicle and its wheels, while facilitating a certain or a multiple number of
drive ratios. The presence of drive ratios is necessary since a vehicle’s engine and the
vehicle itself always operate within a certain range of speeds. Moreover, the behavior
of an engine, for example its efficiency and output torque, usually differs according to
its rotational speed. These two simple aspects outline a significant outcome; the
design of a gearbox must be performed so as to produce a tailor-made solution for a
given engine and the desired vehicle performance.

The design presented in this work is to be implemented in the race car of the Formula-
Student team Prom Racing (figure 1). Prom Racing is a team of the National
Technical University of Athens that was founded in 2008 and has been active ever
since, having designed and manufactured three race cars up to this time. Therefore, all
the design efforts are placed upon maximizing the performance of the vehicle that this
team develops and, more specifically, of the new fourth vehicle to be designed and
manufactured in the team’s history, dedicated to participate in Formula Student
competitions of 20109.

-

R A C | N G

Figure 1: The Logo of Prom Racing

As a first general assumption, it can be said that the purpose of the gearbox to be
designed within this work, is such that maximizes the performance of a Formula-
Student type racing vehicle. However, even though all vehicles of this type seem to
share similar concepts, they do not share the same characteristics. The main reason is
that, even though restrictions are posed upon the engine from the regulations of the
competition, the number of cylinders is not specified. Single, double, triple and four
cylinder engines are all very popular in Formula Student vehicles. With that being
said, the rotational speed range, as well as the amount of torque produced, can vary
significantly from vehicle to vehicle.

Usually, multi-cylinder vehicles are heavier but more powerful, while single cylinder
ones are lighter but less powerful. This is a very distinct difference between Formula



Student vehicles. For example, the 2018 race car of Prom Racing (figure 2) is using a
single cylinder KTM engine, while CAT Racing (figure 3), a very competitive team
from the University of Coburg, is using a 4 cylinder Yamaha engine. Both vehicles
seem to be very similar and build upon the same concept. However, this is
comparison is not close to reality, should the difference of engine and possibly vehicle
dynamics be taken under consideration.

Figure 2: A Formula Student vehicle by Prom Racing
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Figure 3: A Formula Student vehicle by CAT Racing



Therefore, the scope of the gearbox to be designed is such that serves the needs of the
specific car designed by the team. That being said, engine performance and vehicle
dynamics, influencing the speeds of the car on the track, should be taken under
consideration.

1.2 About Formula Student competitions and their regulations

Formula Student competitions are fully defined, both in their organizational aspects,
as well as in the engineering design and limitations of the participant vehicles, by a
series of regulations. Up to the year of 2016, these regulations were written and
published by the Formula SAE (Society of Automotive Engineers) and hence were
referred to as FSAE rules. Competitions were held worldwide and organized by
different committees, but all adhered to those rules. Usually, most of them would
make minor changes to those rules, which would be active in the specific competition
only.

As of 2017, the German based competition FSG (Formula Student Germany)
announced they would be establishing their own set of rules. Quickly, most European
competitions also announced that they would follow the FSG [1] instead of the FSAE
rules. From that period and onwards, both set of regulations exist, having mainly
minor differences between each other. However, since Prom Racing team has, up to
the present year, plans for participating at European competitions, the vehicle to be
designed adheres to the FSG rules.

According to the FSG rules, the competition objective is to challenge “[...] teams of
university students to conceive, design, fabricate, develop and compete with small,
formula style, race cars”. In addition “The competition is split into the following
classes:

* Internal Combustion Engine Vehicle (CV)
* Electric Vehicle (EV)
* Driverless Vehicle (DV) (which are either CV or EV) “

The vehicles that have been designed by the team, as well as the new vehicle to be
designed, are all combustion vehicles.

All competitions include, as described by the rules, Static and Dynamic events.
During the Static events, the car is stationary and participants are tested for their
knowledge mainly upon, but not only limited to, different engineering fields. During
the Dynamic events, the vehicle races in a series of tracks and is evaluated mainly
based on its times. Points are being extracted out of each event and the ranking is



based upon those points. The maximum points that can be gathered can be seen at
Table 1.

CV &EV DV
Static Events:
Business Plan Presentation 75 points 75 points
Cost and Manufacturing 100 points 100 points
Engineering Design 150 points 300 points
Dynamic Events:
Skid Pad 75 points 75 points
Acceleration 75 points 75 points
Autocross 100 points 100 points
Endurance 325 points -
Efficiency 100 points 75 points
Trackdnve - 200 points
Overall 1000 pomnts 1000 points

Table 1: Maximum points for each event

Concerning the dynamic events, the points are granted using different calculation
formulas containing the time taken to accomplish each event. A brief explanation of
each dynamic event, as well as its scoring can be seen at Table 2. It must be
mentioned that details such as penalties and special cases of the rules are not
mentioned in this table.

Concerning the vehicle itself, FSG rules specify that the “/.../ vehicle must be open-
wheeled, single seat and open cockpit (a formula style body) with four wheels that are
not in a straight line”. Many technical regulations and limitations concerning the
design and strength of several components of the vehicle, such as the chassis,
suspension and aerodynamic devices, are also present within the rules.

The engine of combustion vehicles is also restricted. The rules state that “7he
engine(s) used to power the vehicle must be piston engine(s) using a four-stroke
primary heat cycle with a displacement not exceeding 710 cm® per cycle. Hybrid
powertrains, such as those using electric motors running off stored energy, are
prohibited”. It is also stated that a single circular restrictor must be placed at the air
intake system so that all air passes through it. The diameter of the restrictor should be
20mm or 19mm, depending on whether gasoline or E85 fuel blend is used.

10



Event Track Brief Explanation Scoring Formula*
Two circles in a Driver performs 2 T 2
. . . laps at each circle, e !
Skid Pad figure of eight with the 2™ being 715 (Tteam) 435
pattern timed 0.5625
Driver accelerates Tnax 1
Acceleration |  Straight of 75m fully in a straight 715 Tteam 435
line ' 0.5 '
AULOCTOSS Closed track, less Driver performs a 7?’"# -1
than 1.5km single timed lap 95.5 % +4.5
Closed track 2 D_nverg perform
g multiple timed laps, T
(similar or the . ~nax g
Endurance : 11 km driven per 300 Tteam__1 95
same with the o 0.333
driver, includes non- :
Autocross track) . .
timed driver change
Measured fuel burnt Ifm—””‘ -1
Efficiency | Endurance track | during the endurance 100 E“L
min __
event 1
max

Table 2: Description of Dynamic events
*T team is the team’s time
* Tmax 15 the time of the fastest vehicle multiplied by a factor different for each event

*Emin » Eteam and Ep,q, are the minimum, the team’s and the maximum efficiency factors recorded
. . Tmin'Vimin
respectively, where the efficiency factor calculated as E = T where V,in and V,eqm are the

team’V team

minimum and the team’s used fuel volume respectively

1.3 The Motivation

The main reason why the original gearbox of the engine does not perform in the most
effective way for Formula Student applications is the speed range the vehicle is
expected to attain. As mentioned earlier, FSG rules limit the displacement of the
vehicle’s engine to 710 cm®. This makes performance motorcycle engines be the first,
if not the only choice for Formula Student teams. Usually the weight of those
motorcycles is not far from that of a Formula Student vehicle. This makes the first
gear ratio usually adequate for both applications. Most of the motorcycles however,
are expected to reach at least 150 km/h, whereas top speeds for combustion vehicles
in Formula Student competitions rarely exceed 105 km/h. Therefore, the last gear
ratio cannot satisfy both requirements.

The teams that do not change the engine’s standard gearbox change the final drive
ratio of the transmission, so as to improve the inadequate last gear ratio. With this
technique, all the gear ratios increase, therefore giving more torque to the wheels,
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rendering this modification beneficial. Even in this case though, usually the matching
of the final gear ratio to the desired top speed alters some of the rest of the gear ratios
in a non-beneficial way. One reason justifying this fact is that, at some gear ratios, the
resultant engine speed might be at a range where the output torque is low. The driver
might decide to downshift a gear, but the next lower gear results in too high engine
speed.

Another significant reason more usual than the one mentioned earlier, is the presence
of too many gear shifts. A gear shift takes a non-negligible amount of time so as to be
completed. Within this period, no engine torque is transferred to the wheels. If this
dead time appears for example during a gear upshift, but the resultant torque at the
wheels is not adequately increased in comparison to the torque before the gear
change, then the gear change is not beneficial. Of course, the gear change must be
performed as the engine always has a maximum speed limitation.

Besides the improvement in the performance of the car, a gearbox design is also a
significant study than can be presented at the Engineering Design event of the
competitions. Usually, most of the well reputed teams perform this design; therefore
the absence of such a study is usually a negative aspect for the design judges.

1.4 Project Constraints

As mentioned earlier, the gearbox that will be designed is designated for the fourth
vehicle of the Formula Student team Prom Racing. Consequently, the project is
constrained to serve the design of the aforementioned vehicle, as well as the resources
and capabilities of the team. All those constraints can be easily concentrated and are
presented at Table 3.

Constraint Description

The project started in February 2018 and should be completed

Time before the testing period of the vehicle in April 20109.
Budget The money to be spent for outsourced manufacturing services
should not exceed 5000€.
The engine of the vehicle will be a 2012 KTM 500 EXC
Engine motorcycle engine. Output torque and engine speed relation is

known and will not change significantly. The gearbox should
replace the already existing gearbox of the engine.

Electronically controlled shifting system, capable of receiving
Shifting System | data from multiple sensors. Mean shifting time is approximately
to 0.2 sec, measured from the previous year’s vehicle.

Chassis, suspension and aerodynamic package as designed by the

Vehicle team, according to the FSG rules.

Table 3: Project Constraints
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1.5 Literature Review

In the automotive industry, the design of a gearbox is a study that usually focuses on
fuel economy. Both analytical work, as well as algorithms based on vehicle
simulation, have been published for the optimization of fuel consumption. However,
as far as the design of a gearbox for improved racing performance, little published
work exists. Optimization algorithms using vehicle dynamics simulation, given a
certain vehicle and race track, are most common. Savaresi et al. [2] have used a
simple one dimensional simulator performing acceleration and braking in a specified
track. Using this, they run a set of possible gear ratios of a 6-speed gearbox, for
determining the optimal solution as the one that minimizes lap time.

More specific work focusing on Formula Student applications is also seldomly
published. Most of the projects that deal with transmission design for combustion
vehicles mainly focus on the mechanical design, rather than on the selection of gear
ratios. Avgerinos (Avyepwvoc) [3] used the design of progressive and geometrical
gearbox architecture, to define multiple different concepts for the gear ratios. These
were tested for their performance in multiple Formula Student events using the
commercial vehicle dynamics software CAR MAKER [4].

In this work, an effort to combine already existing knowledge and a new approach
will be integrated. An analytical optimization will be used as a first approach.
Conclusions will be taken from this analysis and a vehicle dynamics simulation will
be used for determining the most suitable gear ratios.

13



2. Methods used for determining gear ratios

2.1 The influence of multiple competition events

Given a description of the overall concept of Formula Student through the respective
rules and regulations, it is clear that a measure of the performance of a Formula
Student vehicle is the number of points it receives in a competition. Concerning the
Static events, it is evident that a well justified gearbox design will result to extra
points in the Engineering Design event. The rest of the static events are not directly
connected with such a project. Any indirect influence to those events will not be taken
under consideration. As a result, the development of the gearbox should aim at
increasing the performance of the vehicle in the Dynamic events.

Concerning the Dynamic events, again not all get influenced by the gearbox design.
Particularly, the Skidpad event should be considered as a traction limited and not
engine power limited race. The vehicle should perform small radius cornering as fast
as possible. This means that relatively low speeds are attained, allowing the usage of a
drive ratio that can provide the wheels with more than sufficient torque.

Another example is the Fuel Efficiency event. In general, Formula Student is mainly a
race and not a fuel efficiency competition. This is clear, as 325 points are granted for
the best time in the Endurance event, whereas only 100 points will be gained for best
fuel efficiency in the Endurance track. In addition, the fuel efficiency competition is
only a 10% of the overall points, whereas all the rest of the dynamic competitions can
add up to 57.5% of the total score.

Besides that fact, when a large radius in a track is encountered, a race driver will
always decide to accelerate using the entire engine load capacity. This prevents
almost any fuel economy to be achieved in straight lines. Therefore, only near-steady
speed parts of the track will have a chance of better fuel economy. This fact
significantly limits the extent up to which fuel consumption can be decreased by
designing a new gearbox.

Nevertheless, if a gearbox would be designed so as to improve fuel economy, design
efforts would be placed on using an appropriate gear ratio for partial engine load
conditions. For this reason, it is necessary to know the relationship between engine
speed and fuel consumption for the power output of the engine, also known as brake
specific fuel consumption (BSFC). An example of a BSFC map can be seen in figure
4. Unfortunately, given the limited time the team has for tuning the engine on a
dynamometer, full load conditions are mainly tuned. Partial load is also examined, but
in a limited number of engine speed and engine load combinations. This practice
results to decent fuel economy, but does not provide enough information so as to
construct a BSFC map.
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Fuel Consumption Map [g/kW-Hr]
B. Georgi, et al., SAE972686 (1997)
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Figure 4: Typical BSFC map

Concluding, the performance in only three Dynamic events will be considered in the
process of selecting gear ratios. Those are the Autocross, Endurance and Acceleration
events. The points granted by those events are given by the FSG rules to be:

15 - Tmin _ 1

T,
Acceleration Score = 71.5““# + 3.5 (@))

125 Topin _ 4

T,
Autocross Score = 95.5 teg"és + 4.5 )

1333 Tpin _ 4

Tteam
E = 2 3
ndurance Score = 300 0.333 + 25 3)

where Tnin 1S the time of the fastest vehicle and Tieam is the team’s time recorded for
each event.

In general, if the behavior of the vehicle and the driver can be modeled and simulated,
an approach of searching for the drive ratios that maximize the sum of the points for
the three events can be adopted. This is a classic case of optimization. However, as
every method of this kind, an initial point is required. Moreover, a solution that might

15



come as result which is considered to be an optimum is likely to be a localized
optimum, as it is far from some generally acceptable guidelines for the design of a
gearbox.

At this point, it is evident that there is a need of calculating a set of gearbox gear
ratios that can be considered as a generally fair design and decent starting point. For
this reason, before executing a simulation so as to maximize the points, a more
analytical and simplified approach will be used.

2.2 The analytical method

Lap performance of the vehicle can be modeled as a series of straight lines with
acceleration and braking and turns at constant speed or with acceleration under
torque, limited by tire traction. Within this modeling, an important assumption has
been made. More specifically, it was assumed that the engine is not under full load
during turning. This is because, at each turn, significant values of lateral acceleration
will be achieved and traction will be greatly limited by the tires, due to combined
lateral and longitudinal acceleration. Therefore, as a first approach, it is logical that
only the time spent during straight line acceleration is examined.

Considering the acceleration of the engine rotational masses negligible compared to
the mass of the vehicle and neglecting tire rolling friction, the equation of motion in
the case of straight line acceleration is:

. ulmy 1 N2
mx = R —EpCDA(x) ()

where n is the engine speed, m is the total vehicle mass, T is the engine crankshaft
effective torque as measured at the wheels, i, are the final transmission ratios of each
gear (k) (k=1,2,...,m), R is the loaded rolling radius of the tire and %pCDA(a'c)Z is the
aerodynamic drag.

Neglecting any tire slippage, the engine speed in rpm is coupled with the vehicle
speed as:

. TR 5)
T 300
Therefore, eq. (5) can be rewritten as:
n = fi(n) (6)
where the function:
1[30%° w1 R
=—|—— -—= — 7
fre(n) g T BOZPCDAikn ()

is different for each gear (k).
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Let nyx and nyk (figure 5) be the range of engine speeds for which the engine is
operating at each gear (k). Then the time spent at each gear (k) can be found by

integration of eq. (6):
"2k dn
AT = f (8)

It is now obvious that the total lap-time spend during straight line acceleration is:

AT = (UT) = F(najes Maes » i) ©)
N
where the indicator (s) changes for each straight line.

The preceding analysis reveals that, except for gear ratios i, for each gear (k), there
are more parameters to be examined. These are the engine speeds ny ¢, N, s for
each gear (k) and straight line (s). Therefore, in an attempt to minimize straight line
lap-time AT, the engine speeds and gear ratios are examined separately.

Figure 5: Engine speed range

As mentioned earlier, engine speed is coupled with vehicle speed. The track speeds of
the vehicle are dependent upon:

e The length of the straight lines
e The radius of the turns
e The way turns of different radius, or turns and straight lines, are being
interchanged between each other
Therefore, it can be understood that the shape of the track will influence engine
speeds n,s,Ny ks at each straight line (s). To waive this constraint, it will be
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attempted to examine each straight line separately. Therefore, at each individual
straight line, the acceleration time can be calculated as:

N2,gs,s Ny js N2,Gss
An_f @@) Z:f ﬁ@) wﬁﬁﬁ (10)

where gs and Gs is the first and final ratio used at each straight line (s).

During each gear upshift, from gear (k) to gear (k+1), the shifting system will ‘kill’
the engine load by disabling ignition and fuel delivery. Due to friction the engine
speed will decrease and, over the shift time, the car speed will remain approximately
steady. Using this assumption, from eq. (5) it follows that:

l
Nik+1,s = Nok,s % (11)
Substituting to eg. (10) yields:
Nn2,gs.s %1 N2,js MN26Gss  dn
AT, = f + z f (12)
S1M$mm)_% ”1_ﬂm) mss fa. ()

It is obvious that all engine start speeds n, ; ; are dependent upon n, ;_ s, except for
Nig.s » which cannot be changed. Also, the speed n,; s cannot be changed.

Therefore, the speeds n, s can be optimized for k=gs gs+1,..., Gs-1 by finding the
root of the derivative of eq. (12):

04T} _ 4.0 f”zlgs's z f”z s dn | _ o
= — =
a"2,k,j 0Ny i s n1g fgs (n) 0Ny y s _n fj (n)

the terms not containing

Ny ks Vanish N2k,s N2 k+1,s dan
f f =0=
a"zks T e 1ka(n) fk+1(n)

1 li+1 1

i
Jre (”z.k,s) K frs1 ( 'i:l nz,k,s)

=0=

I li+1
= fr (nz,k,s) = et fk+1( i nZ,k,s) (13)

It is now obvious that the problem is the same for every straight line (s). Eliminating
the indicator s, the relationship above can be rearranged and rewritten as:

L1, (k41
T(n2 k) = _ZT(ﬁnz k) (14)
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Eq. (14) leads to valid solutions only for n; ;, <Nmax, Where nmay is the maximum speed

of the engine. Additionally, to obtain a minimum for the time AT, the derivative aa:r
2,k

must be negative for every speed bellow the selected n, ;. Equivalently:

T(n) > ﬂT (ﬂ n) for every speed n < n, (15)

3%

It can be noted that, by multiplying both sides of eq. (14) with n,, a more compact
relation arises using only the engine effective output power P, measured again at the
wheels:

P(ny) =P (lI;_Zan,k> (16)

Eqg. (16) indicates that, in an ideal engine maintaining constant power, there is no need
for gear shifting. However, engine power usually increases for all engine speeds and
decreases only slightly, if not at all, close to the engine maximum speed Npmax. Since
ix+1 < ix, €0. (16) evidently shows that there is no need for shifting into another gear
at an engine speed where output power has yet not started decreasing. As a result, the
optimal gear shift speed will usually coincide with Npax.

Since the selection of shift speeds becomes independent for every track straight line
(s), from this point onward the indicator (s) will be eliminated when referring to shift
speeds n,, and ny,. It is also evident that the selection of shift speeds becomes
independent from the aerodynamic drag.

Examining the gear ratios now, should the same methodology be used as before, it is
evident that the derivative of eq. (12) with respect to the gear ratios is:

Gs—1

0AT; 9 (™95 dn d J"ZJ' dn
dip,  dix ), fgs(n) |9 WD)
Jj=9gs+ (17)
a [M26Gs dn
oy
Oig Jp, ;. )

differs in the cases k=gs, gs+1<Gs-2, k= G;s-1 and k= Gs. Therefore, each straight line
cannot be directly examined independently. To once again eliminate this constraint,
the following percentages-frequencies of usage are employed:
e Py the usage frequency of ratio ix so as to begin accelerating with a mean
engine speed of 7, > == nZk 1, While within the straight line there is a

satisfactory gear change from gear (k) to gear (k+1)
e P,y the usage frequency of ratio ix So as to begin accelerating with a mean

engine speed 7y, > il—"nzl,{_1 , While within the straight line no gear change
k-1
occures
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e P3y: the usage frequency of ratio iy as an intermediate gear ratio, so as to
accelerate from n,;, = i,:_:nz'k‘l to 1y

e P,y the usage frequency of ratio iy as an intermediate gear ratio, so as to
accelerate from n,;, = i;—’_‘lnz,k_l to a mean engine speed of 1, ,, < ny

e Psan: the usage frequency of ratio i; as a starting gear from Ngart t0 15 4

Taking the percentages-frequencies of usage under consideration, instead of
expressing the straight line lap-time for each straight line separately, the total straight
line lap-time can be rewritten as:

AT:Pstarf:fnZ‘1 an ‘|‘P11fnZ‘1 dn +P21fn2‘1d_n
Nsta th1( ) fi(n) 11 fi(n)
"2 dn 25 dn
+Z e B T ) B (18)
M2, dn M2y dn
+P3ff NON f 5
T2 "2

where m is the number different gear ratios. It is evident that for the first and last gear:

{P3,1:P4,1:0}

P3,m = Pl,m =0 (19)

The percentages P1k . Pok Psk . Pak and Psare Will mainly depend upon the race-track.
Even if it is considered that they are independent from the gear ratio selection, the

relations resulting the equation ‘ZA—iT = 0 will depend upon those percentages. Also, it
k

is essential that the speeds 17, and 7, are known. This indicates the need for a lap-
time simulation.

However, as a first approximation, it may be considered that at each turn, due to the
fact that the driver has reached the speed that describes the maximum lateral
acceleration, the corner speeds are approximately constant. Therefore, the acceleration
from each entry in a corner, continues from the same point after the exit from the
corner. This enables the simplification of the problem above as being a single straight
line acceleration problem. In this case the following sets of equations arise:

{ k=1:P1‘1=P2‘1=0andpstart=1 \L
1

Jk=2,3,..., —1=>P,,=P,,=P,, =0and P;,, =
m 1,k 2,k 4k ana rsg (20)
k=m=P,, =0and P,,, =1
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This simplifies straight line lap-time as:

m-—

e J;lm;nfl(") z f L f,(n) f W;ml f,j(r;) 21)

Differentiating eq. (21) with respect to the gear ratios ik for k=2,3,...,m-1 yields:
the terms not containing

AT mz_l 0 fnz,j dn 0 j‘m dn g s DaRish
FI i | i —|t5 .
Qi = iy l.jl—ilnz‘j_lf}'(n) iy i,;"flnz,m-lfm(")

AT 0 f"lk dn 0 j‘”z’“l dn
==
i, 0iy Ty fk(n) iy Jikrry,  frer1(n)

N 0AT _ Ny k-1 1 N jnz'k afk (Tl) dn
. . l' . . 2
iy k-1 f, (ﬁnz,kq) il:Ijlnz‘k_l dig  fir()

li+1 Ny

(22)

oAT

For——=20 the following recursive relationship can be obtained:
dig

lk+1 Ny Ny k-1 1

. 2 i -

" free (%nz,k) b1 fr (_nZk 1)
[ i @
e,y Ol fE(M)

lk—1

Note that with differentiation of eq. (7):

_ = a2
di, m|m R2 Ty +357PC04 ikZ"l (24)

Differentiating eq. (21) with respect to the first gear ratio i, yields:
0AT 0 ("' dn d (™2 dn

— = +|. =
di;  0i nsm”fl(") a1, ;_Zn“fz(")
2,

=

0AT ldnstart 1 "2 dfi(n) (n) dn l
iy diy  fr(seare) Nstart 611 fi2(n)
i n
L2 2 2,1 (25)
it fa ( ny, 1)
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For minimizing the lap-time in respect to the first gear ratio ?—iT = 0, hence:
1

i_Z N1 dNstart 1 _fnz’l afl(n) dn

ilzfz (i:_inz'l) - diy  fi(Mstare) B 611 f1 (n) (26)

Nstart

The torque at the wheels while the 1% gear is engaged usually reaches the maximum
torque due to tire traction T, max. The subscript (r) refers to the rear wheels, since the
vehicle is rear-wheel driven. This means that the inequality i1T)>Tmax IS being
satisfied for certain engine speeds n. Then, during starting, the following strategy is
adopted:

e Maintaining constant torque T, max at the wheels, using the clutch, up to the
engine speed n for which i1 Tn)=T max
e Full clutching up to Nmax

The strategy above supposes that T, ;> TT'Z‘“" > Tinyay)r WNEIE Ny, is the

engine speed at maximum output torque.

What follows from the assumptions above is that the starting engine speed can be
calculated as:

Tr.max
T(nstart) = il (27)

Usually, the torque in the engine speed range of np,ge <N < Ny, does not have
any other local maximum or minimum. Therefore, the derivative of the engine torque
with respect to the engine speed does not change sign and so, if eq. (27) is satisfied,
the following calculation can take place:

dnstart dNseare dT(nstart) dT(nstart) 1 (27)
diy dT(nsmrt) diy diy dT |Tl = Ngpar
dNgeart __ Ty max 1
diy it dT |n Nstart 29

T max

If the gear ratio iy is too big, then == < T(nmax) and eq. (27) cannot be satisfied. In

this case, an appropriate choice for the starting engine speed would be ng; gt = Nmax-
Likewise, if the gear ratio iy is too small, then Trlﬂ > Tingma,) and the starting
1

engine speed should be chosen as ng;qrt = Nrmax- IN both cases above, it is evident

that &start _ .
diq

Finally, differentiating eq. (21) with respect to the final gear ratio in, yields:

94T 9 fm dn__
Oim Oy ) m,  fon ()
m-—1
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. . . . . 2
0l lm-1 fin (i:n"zl nz,m—l) l;’f Ny m-1 dim  fra(n) (29)

s 0AT _ _|mema 1 N fm f,(n) dn

It is evident that Z‘,‘—T < 0. This indicates that lap-time always decreases as the final

lm
gear ratio increases. One constraint that can be imposed to the design is that of
maximum speed Unax. Therefore, given a maximum speed, the final gear ratio is
calculated as:
T
_ %anax (30)

l =
" Umax

The set of eq. (14), (23), (26), (27) and (30) can be solved as a system for finding the
gear ratios and corresponding shift engine speeds.

2.3 Lap-time simulation: equations of motion, suspension and tire
modeling

As mentioned previously, a simulation of the behavior of the vehicle and the driver
can be combined with an optimization approach, aiming to maximize the sum of the
points for the Dynamic events of interest. The basic vehicle modeling analysis
performed for this method is examined in this section. All the implementation of the
simulation is performed in Matlab [5]. An accountable portion of the modeling is
taken from Tremlett et al. [6].

2.3.1 Coordinate system and transformations

The coordinate system of the vehicle body frame is placed on the center of gravity,
with the z axis pointing towards the ground, as seen in figure 6. It is evident that the
vehicle is considered to be symmetrical around the longitudinal x axis, directed
towards the front of the vehicle. The corresponding X, y and yaw velocity can also be
seen in this figure.

A curvilinear coordinate system is adopted for the race track and the desired trajectory
to be followed. The track coordinate system will follow the centerline of the edges of
the track and will in general not coincide with the desired trajectory. Therefore, the
equation describing the curvature (k) as a function of the distance (s) on the curve will
be different for the two systems.
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C.0.G.

Figure 6: Vehicle coordinate system

As seen in figure 7, to define the position of a frame in relation to the curvilinear
system, the following set of numbers is required:

e The length (s) along the curve of the curvilinear system

e The offset distance (s,) from the curve of the curvilinear system
e The angle (B) of the frame relative to the tangent of the curve of the
curvilinear system

radius=1/k

Figure 7: Curvilinear coordinate system

The position of the vehicle frame will be determined in relation to the curvilinear
system of the desired trajectory to be followed. The differential equations relating the
vehicle motions to the coordinate system can be described by:
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. Uxcosp —uysinf U cos(B + )

= (31)
1—ks, 1—ks,
Sp = uxsinf +uy,cosp = Usin(f + ) (32)
b w- kuxcosﬁ — Uy, sinf kU cos(f +) (33)
1— ks, 1—ks,

where U is the total vehicle speed and v is the side slip angle that can be calculated

as.
U= /uxz + uy? (34)

— ux
tantp = "/y, (35)
2.3.2 Equations of motion - Force and moment equilibrium

Different simplifications exist for describing the equations of motion. The simplest
model consists of only one mass and therefore one degree of freedom, on which
longitudinal and lateral forces are exerted. The steering and suspension dynamics are
not taken under consideration, as no moments are calculated. This model has a fair
performance on general motorsport applications. However, in Formula Student where
the tracks involve rapidly changing turn radii, results might be inadequate from a
simulation utilizing this approach.

Another very common model is the half car, or bicycle car model. This is a two
dimensional approach, where the vehicle width is considered negligible. Steering and
suspension dynamics are also involved in this analysis. This enables the model to
simulate the transitional phases of entering and exiting a turn. It is a well performing
model and has been used to simulate Formula Student vehicles quite frequently.
Criens et al. [7] as well as Singh & Palanivelu [8] used a bicycle car model to build a
Formula Student vehicle simulator.

Having introduced steering dynamics, the bicycle car model adds an extra input to the
vehicle as a system. Steering in a manner that keeps the vehicle under control and on
a specified track, is a difficult but essential parameter of the simulation. The weak
point of this analysis is the absence of roll dynamics and the influence of the different
speeds at the inner and outer wheels during turning. These parameters can have some
effect, especially in Formula Student tracks where the track radius is often
comparable with the width of the car.

A step ahead into including these features is introducing a full car model. This model
includes all four tires of the car and all equations of motion. The difficulty of
performing this change can be considered less than the one required to create a
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steering control. Therefore, the implementation of a full car model provides the
simulation with greater accuracy, without requiring excessive additional analysis.
This model is also very common within Formula Student applications. Dos Santos [9]
used a full car model in a simulation accounting for suspension compliance. Brown
[10] used a full car model so as to design an all-wheel torque vectoring system. Harsh
[11] used a full car model so as to create a simulation and evaluate the influence of
different systems of the vehicle ON its performance.

Concerning the vehicle model utilized in this work, a full car model is used. The top
view defining the forces and distances required to express the longitudinal, lateral and
yaw motion equations can be seen in figure 8.

Figure 8: Top view of the vehicle
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The equations of motion of the vehicle rigid body frame can be written as:

m(ux - wuy) = ZFx,external
m(uy + wux) = ZFy,external
Lw= ZMz,external

Using figure 8, the external sum of forces and moments can be expressed as:

ZFx,ext = COS51Fx1 + COS52Fx2 - SinSlel - Sin52Fy2 + Fx3 + Fx4
+ Fp
ZFy,ext = Sin51Fx1 + Sin62Fx2 + COS51Fy1 + COS62Fy2 + Fy3 + Fy4_

By (.. : By
EM, oxe = (€c0S81Fy; — c0s6,F,) >~ (5ln61Fy1 + Sln52Fy2) >

B
+ (Fy3 — Fyy) Er + a(sind; Fyq + sind,F,,)
+ a(cosSlel + cos52Fy2) - b(Fy3 + Fy4)

2.3.3 Tire vertical loads and suspension modeling

(36)
37)
(38)

(39)
(40)

(41)

Concerning roll and pitch motions of the vehicle, the steady state weight transfer will
be examined first. Further definition of the forces and distances in a side view of the
vehicle can be seen in figure 9. Any change in the distances due to suspension
movement will be considered negligible. Requesting for XF, xternqs = 0 and
UMy externat = My externar = 0, the steady-state tire loads are easily calculated as:

( b F. b
le,s = 0.5m (Zg + EZ) + AFZl,S

b Fb
FZZ,S = 05m (_g + E_) + AFZZ,S

L L
a Fa

FZ3,S = 0.5m (Zg + Ez) + AFZ3,S
a Fa

kFZ4,S = 0.5m (Zg + Ez) + AFZ4—,S

(42)

where the values AF,, s , AF,, ¢ , AF,3 , AF,, s express the steady-state variation of

the tire normal loads due to pitch and roll moments and are equal to:

h h hq bg—b
rAFZI,S =0.5(- _ZFx,external + zf_EFy,external - FD —+ FL
L Bf L L

h h h ba—b
AFZZ,S =0.5 <_ ZZFx,external - ZEB_fZFy,external - FD Ta + FL aL )

h h
AFy3,s = 0.5 (ZZFx,external +2(1-9) B_rZFy,external + Fp T + F .

L

hq ag—a

h h h -
LAFZ‘},S =0.5 (ZZFx,external - 2(1 - E) B_TZFy,external + FD Ta + FL 2a a)

(43)

where & is the front distribution of the vehicle torsional stiffness, also referred to as

front mechanical balance.
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The aerodynamic drag and downforce are expressed as:

respectivelly.

1
FD = EPCDAuxZ

1
FL = EpCLAuxZ

(o8 T O
aerodynamic

forces center $

Figure 9: Right view of the vehicle

(44)

(45)

The heave motion of the vehicle will now be ignored and therefore tire loads are

expressed as:

( b F. b
b Fb

Fzz =0.5m (Zg + EZ) +AF22
a F;a
a L a
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Following the modeling proposed by Vilela & Barbosa [12], the suspension can be
modeled as a torsional spring for roll angles. The roll moment exciting the suspension
at steady state is the lateral force —XF,, .yternar » Multiplied by the distance of the
center of gravity and the roll axis. This distance creating a leverage, can be seen in
figure 10. The roll axis of the suspension can be defined as the geometrical instant
axis of roll rotation. Since the left and right suspension stiffness is the same, any
torque exerted around the roll axis results to rotation and not translation.

roll axis

Figure 10: Roll axis and roll axis leverage

Likewise, the pitch moment is the longitudinal force XF, ¢yternai » multiplied by the
distance of the center of gravity and the pitch axis. However, in pitch, the front and
rear suspension stiffness might be different. This means that a torque exerted around
an arbitrary pitch axis can result to a combined rotation and translation. To deal with
this problem, for pitch only, the lateral position of the pitch axis will be considered
such that upon exerted torque, only rotation occurs. Following the distances seen in
figure 11, the position of the pitch axis can be calculated as:

kfrontap = krearbp (47)
where Kgont @nd Kyear are the front and rear axle suspension vertical stiffness, including
tire compliance.

Considering the dynamic conditions of roll and pitch, damping and moment of inertia
acceleration should be taken under consideration. Therefore, the motion equations for
pitch and roll can be written as:

Irollf + Crollf' + krollr = _hrZFy,external (48)

Ipitchij + Cpitchp' + kpitchp = hpZFx,external (49)
where Iyo and lyireh are the roll and pitch moments of inertia round the roll and pitch
axis, Cron, Kroir and Cpitcn, Kpitch are the roll and pitch damping and stiffness coefficients
of the suspension and h; and h;, are the roll and pitch moment leverages respectively.
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pitch axis

Figure 11: Position of pitch axis

The wheel vertical load variation due to pitch can be found considering the
suspension stiffness and damping:

( keront Cfront .
Ale,pitch = - 7”2071 pD — 7”2071 ap,p
k c
Front Front
AFzz,pitch = - 7”2071 app — 7”2071 ap,p (50)
4
_ krear Crear , .
AFZ3,pitCh - prp + 2 bpp
k c )
LAFZAI-,pitCh = % bpp + % bpp

where Crear and Ceront are the damping coefficients of the rear and the front axle of the
suspension. It is evident now that there will be a translation for every pitch speed p
around the pitch axis since (AF;1pitcn + AF 22 pitcn) — (AFz3pitcn + AF 24 piten) # 0.
This is true, unless the suspension damping follows the relationship:

Cfront _ Crear

CrrontQp = Crearb (51)

p =
kf ront krear

Therefore, for simplifying this analysis, eq. (51) will be considered as satisfied. In this
case, pitch stiffness and damping can be calculated as:

2 5 (47)
kpitch = kfrontap + krearbp =
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L2

= kpitch = 1 1 (52)
+
kfront krear
2 2 (51)
Cpitch = Crrontdp” + Crearbp ==
LZ
= Cpitch = 1 1 (53)

Cf ront Crear

Using the equations above, wheel load variation due to pitch can be simplified as:

.
Ale,pitch = AFZ,IJ

N| =

AFzz,pitch = AFz,p

N| =

, (54)
AFZ3,pitCh = EAFZ,P

1
kAFZAI»,pitCh = EAFz,p
where

kpitch Cpitch . (55)

App == P+

The wheel vertical load variation due to roll can be found as:

(AFzz,roll - Ale,roll)Bf = kroll,frontr + Croll,frontr
AFzz,roll = _Ale,roll

(AFZ4,roll - AFZ3,roll)Br = kroll,rearr + Croll,rearr
AFZ3,T‘0U = _AFZ4,roll

r —
2 B 2 B
1 kroll front 1 Crollfront
AF, =71+ -—a7
ZZ,T'OU 2 Bf r 2 Bf r

1 kroll,rear _ lcroll,rear .

AFZ3,T‘Oll = _E Br r 2 BT.

AF _ 1 kroll,rear r 1 Croll,rear .
Z4,T'Oll 2 B_r. 2 B,r

(56)

\

As with the case of pitch, damping in roll motions is considered to follow the
relationship:

Croll,front _ Croll,rear

(57)

kroll,front kroll,rear
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In this case, considering the definition of the roll stiffness distribution:

E — kroll,front (58)

kroll,front + kroll,rear
wheel vertical load variation due to roll can be simplified as:

Ale,roll = - _’f f Fz,r
1 Bf + B,
AFzz,roll = E’f B AFz,r
) f
By + B, (59)
AFz3,roll =—-3 (1 - S;) Fz,r
B,
f r
AFZ4,TOU =5 (1 - E) AFz,r
\ 2 )
where
k o
AFz,r — roll r+ roll 7 (60)

B;+B,  B;+B,

The roll stiffness can be calculated using a parallel and series spring connection
model:

1 1 s 1
krou front sz sz (61)
ktire,front 2 ksusp,front 2 + krollbar,front
1 1 1
= + 5
kroll,rear Bf Bf (62)

ktlrerear 2 ksusp,rear 2 +kr0llbar,rear

kroll = kroll,front + kroll,rear (63)

The total wheel vertical load variation can be expressed as the superposition of the
loads from roll and pitch:

AF;, = Ale,pitch + Ale,roll
AF,; = AFZZ,pitCh + AFzz,roll
AF,3 = AF ;3 pitch T AFZ3 roll
AFz4 AFz4 ,pitch + AF24 roll J
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( 1 1 _B;+B,
AF,; = — EAFz,p - Ef Bf AFZ,r
1 1 _B;+B,
AF,, = — EAFz,p + EE B AFZ,r
=4 ! (64)
1 1 B + B,
AF,5 = EAFZ,p - E 1-¢) B, AFz,r
1 1 Bf + B,
LAFZ4 = EAFz,p + E (1 - E) B, AFZ,r
Proper combination of eq. (64) yields:
1 1
Abp =5 (AFz3 + AF,,) — 5 (4F; + AF;;) (65)
By B,
AFZ,r = (4Fy, _Ale)m'i' (4F,4 _AFZ3)m (66)

The final step in this analysis is finding the dynamic equations for the roll and pitch
quantities AF,,. and AF,,,. This can be done by starting from eq. (48) and (49). More
specifically, for roll motions it is calculated that:

.. , (60)
Lout + Crou? + kyrour = _hrZFy,external =
(60) I h,.2F.
roll P+ AFz,r — _ r< 1y, external (67)
B; + B, B + B,
In steady state # = 0 and therefore:
h,XF.
AFer — _ T y,external (68)
~ B + B,
Substituting to the eq. (67) yields:
Bf + B
# =L —"(4F,,, - 4F,,) (69)
. Iroll w '
From eq. (60) it follows that:
kroll Croll > kroll Croll (69)
AE, . = r r=>AF,. = T
zr Bf + Br Bf + BT‘ zr Bf + BT Bf + Br'
(69) .. k 1 Croll . .
== AFz,r = IL (AFz,r,s - AFz,r) + Ir_o (AFz,r,s - AFz,r) =
roll roll

= IrollAFz,r + CrollAFz,r + krollAFz,r = CrollAFz,r,s + krollAFz,r,s (70)
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Likewise, the corresponding equation for pitch becomes:

IpitchAﬁz,p + CpitchAFz,p + kpitchAFz,p = CpitchAFZ,p,s + kpitchAFz,p,s (71)

The preceding analysis results to a separate differential equation for the quantities
AF,, and AF,,, involved in wheel vertical load variations described in eq. (64). The
steady state quantities AF, . ; and AF, ,, ; can be obtained using subscript (s) in eq. (65)
and (66).

2.3.4 Tire modeling

The x and y coordinates of the forces appearing in eq. (39) to (41) refer to forces
resulting the friction of the tires and the road. A tire model links those forces with the
dimensionless slip quantities of slip ratio K and slip angle a. These are defined as:

R,wy;
K = eLtire 1 (72)
ux,tire
u .
tana = —22° tire (73)
ux,tire

where the x and y axis are defined in the tire coordinate system as shown in figure 12
and Re is the tire loaded rolling radius.

ux,tire

d’—-—\ (Dtire

Uy tire

L

T > ux,tire

S S S

Figure 12: Tire slip kinematics
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Therefore, the slip quantities can be calculated for each individual tire as:

Rewl

Kl =
cos(8;) (ux +

w %) + sin(61) (uy + aw)

Rewz

cos(62)(ux—
R.w
K= e
ux+a)7r
R.w
K,=—22——1

B
L Uy — 0>

.
tan(6;
tan(6,
tanas

tana,

\

a)%) + sin(8,) (uy + aw)

aa)+uy
W=7
ux+w7f
aw+uy
C@)=—f
e — L
ba)—uy
ux+w%
bw —u,
wr—alr

-1

-1

(74)

(75)

For this simulation, the semi-empirical 1996 Pacejka’s Magic Formula is used and
more specifically, with incorporation of the similarity method introduced by Pacejka
in 2002 [13]. In this modeling, two series of parameters are extracted using pure
longitudinal and lateral slip separately. The combined longitudinal and lateral
situations are determined by a theoretical slip analysis. The theoretical longitudinal
slip oy, lateral slip oy and equivalent slip ¢ are used for this purpose. Neglecting

camber angle effects, these can be calculated from the slip ratio and slip angle as:

K
T+ K|

_ tana
YT +K]|

o= faxz + 0,2

It should be noted that, for 90°<a<180°, a negative sign should be added in eq. (77).

(76)
(77)

(78)

The resulting longitudinal and lateral forces can then be found using the Magic
Formula expressions, neglecting camber angle effects:
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o
E, = ;xFZstin[CxArctan((l —E,)B,o + ExArctan(Bxa))] (79)

E, = %FZDysin [CyArctan ((1 — Ey)Bya + EyArctan(Bya))] (80)

For the longitudinal parameters:

Cx = pCy1 (81)
_ F,—Fy
Dx - Ax prl + prZ F—O (82)
zZ
Ey, = pIE<x1 (83)
By = —— 84
* = C.D.F, (84)
where F,, is a reference tire normal load and
Fz - FZO
Ky = P Frexp (pKoa =) (85)
Z
is the slope for K=0.
For the lateral parameters:
C, =pCyy (86)
_ F,—Fz
Dx - Ay prl + prZ F—O (87)
VA
Ey = pIE<y1 (88)
By = o (89)
C,D,F,
where
K, = pK,;F,osin |2Arct i (90)
y = pPKy1Fzesin rctan PKy2F g

is the slope for a=0.

The fitting of the Magic Formula equations was performed so that, for pure slip
conditions:

Fx,max = E,Dy (91)
Fy max = F;zDy (92)
Therefore, the tires coefficients of friction can be expressed as:
D, = Dy (93)
@, =D, (94)

A summary of the parameters required for the Magic Formula can be seen in table 4.
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Parameter

Description

F.o Reference normal load

Ax Max longitudinal friction scaling factor

Ay Max longitudinal friction scaling factor
PKx1 Max longitudinal stiffness coefficient
PKy1 Max cornering stiffness coefficient
PKx3 Max longitudinal stiffness coefficient
PKy2 Max cornering stiffness coefficient
pPCx1 Longitudinal shape factor
pCy1 Lateral shape factor
pDy1 Max longitudinal friction coefficient
pDy1 Max lateral friction coefficient
pDyo Longitudinal friction load dependency factor
pDy, Lateral friction load dependency factor
PExi Longitudinal curvature factor
PEy1 Lateral curvature factor

Table 4: Pacejka Magic Formula coefficients
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3. Vehicle subsystems and driver modeling

3.1 Modeling of engine and transmission

The engine output torque has been measured in cooperation with GearTech
Engineering L.T.D. at a Dynapack™ hydraulic dynamometer, connected to the
driving wheels of the wvehicle. The measurement was performed under slowly
increasing engine speed, so as to render rotational mass acceleration effects
negligible. Instead of directly using the measured torque, the end result was fitted
with a polynomial equation as:

- j
n
T(TL) - tO + Z tj (m) (95)
j=1

This fitting was performed so that the simulation results would not be influenced by
any localized anomalies on the output torque.

The differential that distributes the torque to the rear wheels is a Limited Slip type
one. This means that an internal torque is exerted between the two outputs of the
differential. There are two states in the operation of the differential:

e If the torque difference between the two outputs of the differential is bellow a
specified value called bias torque Tyias, then the two outputs rotate with the
same speed, therefore wz=wma.

e |f the bias torque is reached, then the two outputs are allowed to rotate with

different speeds. In this case, the differential cage rotational speed is:
w3 + Wy

The limited slip differential that is fitted in Prom Racing’s vehicle is a Salisbury type
Limited Slip Differential and in such an application, the bias torque is:

Thias = Tp + |Tin| - L.U.T. (97)
where T;, is the input torque to the differential cage, T, is a constant preload and
L.U.T. is the lock up torque constant. Usually, a constant named torque bias ratio
(T.B.R.=Tmax/Tmin) is used instead of L.U.T. The relationship between lock up torque
constant and torque bias ratio is:

T.B.R.—1
U.T. = 7——— 98
L.UT T.B.R.+1 %8)
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The internal bias torque is applied by friction discs, placed symmetrically inside the
differential. Due to friction, less output torque is applied on the faster rotating wheel
and more torque is applied on the slower rotating wheel. Therefore, the equation for
torque delivered to the two wheels under the differential slip condition is:

_ Tin + Sign(w4 B (‘)3)Tbias

T3
. 2 =
_ Tin — Sl.gn(w4 — w3)Thias
T, =
2
1+ sign(w, — w3)sign(Ty,,)L.U.T. sign(w, — w
T, = gn(wy 3)sign(Ti,) Tin+g(4 3)T
N 2 2 P (99)
1 —sign(wy — w3)sign(Ty,)L.U.T. sign(w, — ws3)
The transmission of the vehicle consists of three distinct drive ratios:
e the primary drive ratio from the engine crankshaft up to the clutch i,
e the gearbox drive ratio iq
e the final drive ratio from the gearbox to the wheels
A schematic of the system can be seen in figure 13.
piston-crankshaft
primary — gearbox gear
driveratioi, ratios ig final drive
clutch ratio i, chain drive
| 1 differential
_ F1
ke
wheel 3 wheel 4
Figure 13: Schematic representation of the transmission
The total drive ratio of each gear (k) is
ik == ipig,kif (100)
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Considering that, the speed of the engine can be calculated as:

30 . (96) 30 w3+ wy (74
n = ?lk(l)diff:)n = ?lkT:)
B B
30 i, (1+K3) (ux + a)Tr) + (1+K,) (ux - wTr) (101)
>n=——
"SR, 2

Since the engine torque has been measured as the effective torque delivered to the
wheels, neglecting any difference to the mechanical efficiency of each gear of the
gearbox, the torque delivered to the differential is:

= = 71- .
Ty =Tiy — lk]eng %Tl (102)
where Jeng Is the equivalent moment of inertia of the rotational parts of the engine,
calculated at the crankshaft speed.

Finally, the longitudinal force delivered to the wheels during acceleration is:

( —Jw1@1
Fy = V};
e
—]wzd)z
F., =
< X2 Re .
Fo.= T3 — Jwsws (103)
x3 Re
Ty = Jwa®s
kFx‘l' - Re

where J,,, is the moment of inertia of the wheels.

In general, the slip ratios that correspond to tire longitudinal forces bellow the
maximum tire force, can be considered relatively small. However, if rotational speeds
w3 and o4 of the rear wheels are left unconstrained, extreme wheelspin can occur,
should the torque of the engine provide the tires with force exceeding the tires
maximum longitudinal force. In order to prevent this wheelspin, a traction control
strategy should be employed, limiting the engine torque.

The rotational speed of the wheels affects the torque delivered to them, due to
acceleration of their moment of inertia. This torque difference is usually small,
assuming that excessive wheel spin does not occur. For this reason, instead of
implementing a traction control strategy, the force delivered to the wheels will be
limited by the maximum longitudinal force of the tires. The rotational speeds of the
wheels will not be considered as separate variables. Instead, the slip ratios will be
calculated using the torque applied to the wheels and the tire model.
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Considering small slip ratios, the engine speed can be found by altering eq. (101) as:

s, e+ o) (1= 0%)
"R, 2

=

30 i
- 104
= R, tx (104)

During acceleration, the total x-coordinate of the force due to tire longitudinal forces
can be calculated as:

. . (103)
Fx,accel = Fxlsln61 + szsln62 + Fx3 + Fx4_ = Fxl + sz + Fx3 + Fx4 —

103 Ts + Ty — Jy101 — JwoWo — JwzWsz — Jwa@
( )Fx,accel _1s 4~ Jwiws ]V;; 2 = Jw3®Wz = Jia@y
e
> F _ Tin = Jw1@1 = Jw2@2 = Jwa W3 = Jwa®y
x,accel — Re (105)
Considering that the slip ratios of the wheels are relatively small, therefore w; = Zxi
e
for every wheel (i), substitution to eq. (105) yields:
Tin . Jw (8% r. . TnoJy (109
Fx,accel = R_e — Uy 7 = Iy tot = _elk - Lk]eng %R_e - uxR_ez -
T . ikzjeng +] .
= Fx,accel = - -

L Weng Hw 106
R, ™ RZ X (106)

Finally, attributing all the acceleration force to the rear wheels as Fy gocer = Fyz + Fya
yields:

T ixJong +
Fx3+Fx4= . k]eng ]w.

—g, - — 107
ReFlk 0 Rez N ( )
(Fx1 =
Fip =0
F, =23
173 TR, (108)
T,
F —
k x4 Re

It should be noted that, during starting, considering the engine speed to be steady, eq.
(107) should be transformed as:

T
Fyz + Fyy = =1 _]iux

109
Re lg Rez ( )
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Therefore, for each distinct time moment, rear wheel forces will be calculated in the
following manner:

3.2

The sum of rear tires’ forces is calculated from eq. (107) or (109).
The differential is supposed to be in a non-slip state, therefore wz=ws.
Combining this equality with eq. (74) yields:

(1+K5) (ux + w%) - (1+K,) (ux + w%) (110)

Using this relationship between slip ratios and the sum of the rear tires’ forces from
eq. (107) or (109), the force of each individual wheel can be calculated. The
maximum total force F,; + F,, can also be calculated, for the non-slip state of the
differential.

The required torque difference between the two wheels is calculated as
|Fy3 — Fys|Re. If it does not exceed the bias torque, found from eq. (97), then the
differential will be considered to be in a non- slip state. Otherwise, the differential
slips, and the torque values of the two rear wheels are calculated from eq. (99). The
maximum total force F,; + F,, can also be calculated from eq. (99), for the slip state
of the differential.

Modeling of braking system

The braking system consists of two hydraulic circuits, one for the rear and one for the
front wheels. These deliver the same amount of torque to the left and right wheels, but
not to the front and rear axle. A steady distribution of brake force kp: to the front
wheels is attained and therefore, the torque delivered to each wheel is calculated as:

( 1 .
T, = _EkbfTbrakeSlgn(wl)

1 .
T, =—- E kbfTbrakeSLgn(wZ)

where to torque

§r2 (111)
T; = —5(1 — Kp ) TorakeSign(ws)
1 .
T2 = ) (1- kbf)TbrakeSlgn(w4-)
Thrake = |T1| + |T2| + |T3| + |T4| (112)

is a positive value proportional to the force applied to the brake pedal.

As with the case of engine acceleration, if the wheels moment of inertia is considered
to be small, then the same equations that apply for torque also apply for the tires
forces during braking:
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( . By
Fyi =— Ekbex,brakeSLgn(ux +w 7)

1 ] Bf
Fyp = — Ekbex,brakeSlgn(ux - w?)
(113)

1 ) B,
Fy3 =— E (1 - kbf)Fx,brakeSlgn(ux + w?)

1 ) B,
\Fx4 = - E (1 - kbf)Fx,brakeSlgn(ux - w?)
where

Fx,brake = IFxll + |Fx2| + |Fx3| + |Fx4| (114)
IS again a positive quantity proportional to the force applied to the brake pedal.

Using eg. (113), the following calculation can take place:

F _IFx1|+|Fx2|_|Fx3|+|Fx4|
x,brake kbf 1— kbf

(115)
|Fx1| = |Fx2|
LlFx3| = |Fx4|

Requesting that none of braking forces exceeds the maximum tire longitudinal force
capacity, it follows that:

Fx,brake,max =

_ . <2min(|Fx1,max|» |Fx2,max|) zmin(lFx3,max|r |Fx4,max|)> (116)
= min )
kbf 1 - kbf

3.3 Modeling of shifting system

When a gear change is performed, either upshift or downshift, the engine output speed
must be decoupled from the wheels, at least for a certain period of time. If (k) is the
currently engaged gear, then eq. (104) states that:

30 iy
Npefore gear change = ? R_ Uy, before gear change (117)
e
30 i,
? R Ux,after gear change fOT' a dOWTlShlft
_ e
nafter gear change — 30 ik+1 . (118)
7 Ux,after gear change fOT' an upShlft
e

During a gear upshift, the shifting system disables the engine output torque by seizing
fuel delivery and ignition. The currently selected gear will therefore easily disengage
and the next gear will subsequently easily engage. Because fuel injection and ignition
have been disabled, due to engine friction, the engine speed will decrease during the
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time elapsing between the current gear disengagement and the next gear engagement.
As a result, the engine speed will approach the value of

_ 30ik41
T Re

u,.. This enables a near-smooth engagement of the next gear. In addition,

ik+1

any anomalies upon the engine speed not matching the value of ? -

u, can be

smoothened by drivetrain compliance. Therefore, it can assumed that during the
upshift of a gear, the vehicle speed remains constant:

ux,after gear change — ux,before gear change (119)

During a gear downshift, the shifting system will make use of the clutch so as to
disengage the engine torque. The previous gear will be engaged and the clutch will re-
engage the engine to the rest of the transmission. Since no engine torque reduction is
performed and considering the time needed for a gear change to be negligible, the
momentum of the engine-wheels-vehicle system can be considered as unchanged:

Jw ik—l]eng T _
MUy qfter gear change + R_ Wy after gear change R % Nafter gear change —
e e
_ Jw lJeng ™
= MUy pefore gear change + R_ Wy pefore gear change R % Npefore gear change
e e

ik-1"Jeng+) ix”J gtlw
-1 JengtJw — eng Jw
= (m + R—ez) Uyx,after gear change = (m + R, ) Uyx,before gear change

ikzjeng +]w

R,”
ik—lzjeng + ]w
R,*

m +

= ux,after gear change — ux,before gear change (120)

m +

The shifting system performs a gear change when the engine speed reaches a lower or
upper limit, the downshift and upshift engine speed respectively. For starting, an
increased initial engine speed will be used, so as to improve launch acceleration time.
As a result, the starting engine speed ng,t IS be maintained while starting, as
calculated from eq. (27).

Following the analytical methodology presented in the previous chapter, the speeds

N2k calculated from eq. (14) are used as upshift engine speeds, potentially different for

each gear (k).

As far as downshift engine speed is concerned, using eq. (11), it can be calculated that

Ny = nz,k—lil_k- However, if near constant speed is maintained, then should the
k-1

engine speed be close to the downshift speed defined by eq. (11), a gear change will
drive the engine speed back to the upshift speed. Then, if acceleration is to follow, a
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gear shift will be again required. It is now evident that the first gear change was
unnecessary and that a lower downshift engine speed should be chosen.

Let t; and t, be the elapsing times so as to accelerate from the downshift to the upshift
engine speed, with and without a gear downshift respectively. Considering that any
gear shift takes a specific time to complete, the times t; and t, can be calculated using

eq. (8):

t, = f T _dn 121
R (121)
J‘nz,k—1 dn nzk dn
t, = . —+ At
2 nlyklkizl fk_l(n) - . lk fk (n) Shlft (122)

It is evident now that the best engine shift speed is such that satisfies the equality:

tﬁfn”f:l(rrlo =f 11fk , ) f

£t jnz,k—ukl—'fl dn jnz,k—1 dn
= Alsnife = - -
shif nak fie(n) nl‘klli—;lfk—l(n)

dn
(n) + Atshlft

(123)

It must be mentioned here that the shift time was included only once when calculating
the acceleration time t,. This is true in the case where the downshift from gear (k) to
gear (k-1) is performed while not accelerating, for example while braking, and the no-
acceleration state continues at least up until the end of the gear change. Usually, this
is the most common scenario. However, if acceleration is present while deciding to
downshift, then the shift time should be included twice as 2 Atspif.

In addition, due to the constraints of the track, the driver might not accelerate up to
n, k., but to a lower engine speed. It is evident that the preceding analysis is valid if
the maximum engine speed the driver would wish to accelerate to is at least

n2,k—1ii_k- Due to the fact that the shifting system of the vehicle is not capable of
k-1

predicting the aforementioned states, a set of steady and not altering engine downshift
speeds will be used.

If Atgnife = 0, then it can be easily found that n,, = nZ,k—lii_k- It will now be
k-1

proven that for Atgp,; . > 0 the resulting engine downshift speed is:

ik
Nyx <Ngk-1 _ik (124)
-1
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By differentiation of eq. (121) and (122) with respect to n, 4, it follows that:

at 1
L= (125)
ony k fx ("1,k)
ot fie=t
2 _ _ 'k (126)

an lk—l
Lk fr- 1(n1k i

However, when mentioning about the valid solutions of eq. (14), it was stated that:

0AT (13)
<0 foreveryn <n,, =

0n2,k
1 lg+1 1
= <
firm) i Feu (—nst) (127)
k-k—-1

Performing the substitution i, Yields:
n-n—

lk

1 - iy f ir_q - N
. oreveryn—— n
fo_ 1( [ 1) ik—1 frr(m) Iy 2l
I

lg—1 1 .

[ l
> — e > — foreveryn <nyj_q . (128)

Fer ( [ 1) fr(m) lg—1
9%

Therefore atz > 24 for every ny , < Ny p— 1— As it can be seen in figure 14, the

ony
direct outcome of this inequality, is that eq. (123) can only be satisfied for ny, <
lk
Nok—17 et
Additionally, it must be mentioned that there should be no gear downshift at
intermediate engine loads. This is because the driver has not requested for full engine
torque and a downshift so as to improve acceleration time by increasing wheel torque
would be undesirable.
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- - N1k
solution Iy

Nog-—17—""
lk—1

Figure 14: Downshift speed solution

Last but not least, should the engine speed reach very low values for the first gear,
then there is no previous gear so as to increase engine speed. To eliminate this
problem, the driver will re-enter into a starting mode using the clutch and increase the
engine speed up to the starting engine speed Ngart.

3.4 Driver Modeling

The driver controls all the inputs of the vehicle as a system. In this case, these inputs
are the steering, the engine load and the braking force. To begin with, considering the
physical abilities of the driver, all the driver inputs are limited by a maximum rate of
change. Additionally, a time constant of Atgriver IS introduced as a reaction time. This
time will be used for manipulating the driver’s input to the pedals using a first order
differential equation:

At griver % (pedal position) + pedal position (129)
= pedal position instructed
where the instructed pedal position is such that the force resulting for acceleration or
braking, depending on the pedal used, is limited. For the throttle pedal only, if the
instructed pedal position is 0% or 100%, then the maximum rate of change is applied.
It should be noted that the same equation does not apply to the steering angle, as a
different steer control method will be implemented later on.
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The upper limit of the acceleration excreted on the vehicle is given by the tires’ limits.
A good approximation of the tires’ limits in the case where longitudinal and lateral
forces are present is the friction ellipse:

2 2
(Fx) 20 (130)
o5 T\oF

However, when the longitudinal force reaches this limit, the tires cornering stiffness
decreases significantly, rendering the vehicle very difficult to control. For this reason,
the driver always chooses a limited traction for the longitudinal and lateral
acceleration:

F, 2 R, 2
( : ) + 2 <1 (3
(traction limit x)®, F, (traction limit y)®, F,

where the x traction limit might be different for acceleration and braking. Considering
that the loss of controllability mentioned due to decrease in cornering stiffness occurs
when the two front, or the two rear tires, together reach the limit of traction, the final
equation describing the acceleration or braking applied by the driver becomes:

4 ] 2
traction
Fy accer = (traction limit x) Z(cpx iFyj) j 1-— ( 24 ) (132)

. traction limit y
]:

2

4
tractiony
x,brake (traction limit x) Z( xJ ZJ)\] (traction limit y) ( )
]:

where

Fu+F, \ Fps +Fp  \°
(traction y)? = min ( 4 4 ) ,< (134)
Y (pylel + (pyZFZZ (py3F23 + (py4Fz4-

In order to decrease the complexity of the solution, the lateral forces Fy1, Fy,, Fys and
Fya used in eq. (132), (133) and (134) are calculated using the slip ratios of the
previous simulation time step.

3.5 Desired Trajectory

The problem of determining the best path the vehicle must follow so that it performs
the best time on the race track is known as the racing line problem. Xiong [14] dealt
with his problem by constraining the lateral acceleration of the vehicle as:
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S
Q

mU?k < dmg = U < — (135)

where @ is the tires’ coefficient of traction. The time spent in a racetrack will be:

dt 1 1
t = J. dt = —ds = f —ds > —— f Vkds (136)
ds U Jeg

track track track track

Therefore, an approach to minimize the integral ftmck\/Eds could increase the

potential of the driver to minimize lap-time. In [13], a nonlinear solver and an
artificial intelligence approach were incorporated for solving this minimization
problem. In the artificial intelligence approach, a dimensionless parameter defined as:

P = min (max (lea;(z; , —1) , 1) (137)

was used for deciding the deviation from the track centerline. The quantities k; and «;
are the curvatures of a near and a more distant point on the track.

The optimization methods however did not always lead to desired results. In
continuous turns, the methods seemed to produce a curve once heading to the inner
and then to the outer limit of the track. Moreover, the computational time was not
always satisfactory.

In general, many different methods have been used for determining the optimal racing
line. However, in Formula Student, the tracks are usually narrow. Track widths of
about 3.5m to 5m are more usual, while the car width is usually about 1.2m. This
leaves little advantage for reducing times by using a better racing line.

Instead of dealing the problem with an optimization approach, a general method is
employed, one that is usually preferred by racing drivers in practice. A typical racing
line in a straight-turn-straight situation can be seen in figure 15. The driver evidently
seems to be trying to maintain a high radius track. For doing so, he deviates towards
the inside of the turn. Before and after the turn, he deviates towards the outside of the
turn.

One way of achieving this is considering every part of the track that has a relatively
large curvature abs(k)>xmin and can therefore be considered as a turn. For those track
parts, the following equation can be chosen:

s, = (corner cutting coef ficient)sign(x) frack Wldt’;_car wideh (138)

where the corner cutting coefficient is a percentage of the maximum possible
deviation from the track centerline the driver will chose, so as not to exit the limits of
the track. Every other part of the track is close to a straight line and the deviation s,
can be chosen by linear interpolation. The negative of the values of the deviations of
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the two most adjacent turns will be used for this interpolation. The resulting deviation
will not be a continuous function. Therefore, smoothing of the results is required.

-
—
-

—
- - -

Figure 15: Typical racing line

Another method involves using the parameter defined eq. (137) instead of the sign
function:

track width — car width

s, = (corner cutting coef ficient) P > (139)

This method senses the increase or decrease in track radius and deviates accordingly.

However, the track itself might have a centerline that is not smooth. This means that,
even if the deviation s,, is smoothened, the end result might be a curve of non-smooth

radius. Therefore, after calculating the desired trajectory, additional smoothing is
required so as to obtain a good result.
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The final method used incorporates both eq. (138) and (139). Two different results are
computed and then the average is taken. A flowchart describing each distinct step can
be seen in figure 16.

Create equidistant points on
the track centerline

Calculate s,; of the Calculate sp, of the
equidistant points using equidistant points using
method 1 method 2
Smooth sp; using Smooth sp, using
moving average filter moving average filter

| |
v

Sn:(Sn1+Sn2)/2

V

Find (x,y) coordinates
resulting the calculated s,

4

Smooth x and y points
separately using sgolay

v

Interpolate x and y points
separately using splines

¥

Calculate curvature of the
desired trajectory using the
spline interpolation

Figure 16: Racing line calculation flow chart
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3.6 Velocity planning

Having specified the desired trajectory and considering that its curvature is a smooth
function of the path length, it may be assumed that the maximum speed the driver
should be attaining at every point in the track is the maximum steady state speed in a
constant radius. This upper limit in speed can be easily determined by running the
simulation in a constant radius turn, up to the point where the speed converges to a
constant value.

However, performing a simulation for a large number of radii is a time consuming
procedure. In order to avoid this method, the maximum speed is first analytically
calculated. More specifically, taking the steady state for eq. (37), (38), (40) and (41),
assuming zero lateral velocity, small steer angles and neglecting the vehicle width, for
a turn of positive radius p, it follows that:

2
u
m? = Fyl + Fyz + Fy3 + Fy4 (140)
0 = a(Fy, + Fy2) — b(Fy3 + Fyy) (141)

Taking the inner and outer wheel lateral forces to be the same F,; = F,, and F
F,, yields:

1b u?
| Fyr=Fya =57 S
| la o (142)
\Fye = Fya =57 )
The tire normal loads can be calculated from eq. (43) as:
b u? hq b,
21—05<m2g+25 m?_FDL—i_FLT)
b u? hq b,
F,, =05 ng 2§ — m__FDT—i_FLT)
< a h o u? h, a, (143)
F,3 = 0.5 mrg +2(1 —S)B—rm?+FD—+FLT>
a h  u? h, a,
\FZ4 =0.5 (ng —-2(1- E)B—rm? + Fp T + F, T)

Wheels 2 and 4 have less vertical load and are therefore more prone to slippage. The
maximum theoretical velocity so as to reach tire slippage for wheel 2 can be found as:
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(142)and (143) 1 b u?
FyZ = (Dyzez =EZmF =

b h  u? hq b,
=0.59,,(m— g 2§ — m?—FDL+FLL

2

Yoo + o w 2 hL (1 CAh“ ! CAb“) =
mp—yzmg 27, Ebem pZ'ODb Z'OLb

u? D29
b, 1 . h £ h) (144)

p (1
1-, (m(zPCLAb EPCDATa)_Z%B_f

Likewise, for wheel 4:

u? B Dy4g
N Y U U A e (145)
1 ¢y4<m(2pCLA a t2PCrA a) 2 a/L B,
Therefore, the theoretically approximated maximum, speed is:
Umax,th =
( )
PPy29
1 b, 1 h h
o B )2 5
. /L °r (146)
= min «
pd)y4g
1 a 1 h 1-¢h
1-dy, <% (L4528 +5pCpa72) - ZT;?B—)
\

Having defined the theoretical approximation, a traction fitting factor is used as a
function of the radius:

2
u
traction fitting factor (,) = (ﬂL@) (147)
max,th (p)

where the true maximum speeds Umax are found by running the simulation for a
constant turn radii. A small number of different radii are used for the calculation of
the traction fitting factor. Subsequently, maximum speeds are found for every point in
the track as:

Umax (p) = Umax,th (p) \/traction fitting factor (, (148)
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Having calculated the maximum speeds in the track, the points where braking is
required can now be defined as such that the driver can marginally decelerate to the
permitted speed. Those braking points are found while the simulation is running.
More specifically, if the simulation comes to a point where U > U4y (), then a
braking point must be defined at a previous position in the track. So as to reject any
slight anomalies in maximum speed which the driver might ignore, the exceedance of
maximum speed is being checked only if at least one of the following inequalities is
satisfied:

ISnl > Snimax (149)
|| > max drift angle (150)
|8 + Y| > max track angle (151)

track width—car width
2
quantities s, mqx, (Max drift angle) and (max track angle) act as filters upon the

maximum speed and should therefore be chosen small enough so that the driver does
not completely ignore the maximum speed.

where s, nqx 1S @ percentage of . It should be mentioned that the

To find the previous track position where braking must commence, an initial braking
attempt is performed. Deceleration is measured from that attempt and a new braking
position is defined using steady deceleration approximation.

Both acceleration and braking deceleration are estimated in the following ways:

_ U(t_accel_end) - U(t_accel_end—&tsim)

a, = 152
1 5t (152)
a _ U(t_brake_start) - U(t_brake_end)
2U ™t brake_start — t_brake_end (153)
a _ S(t_brake_start) — S(t_brake_end)
2,8 (t_brake_start — t_brake_end)? (154)

U(t_brake_start)

t brake_start — t_brake _end
where &ty IS the simulation time step, a; is the acceleration approximation and ay,

and as are the deceleration approximations using speed and length. The time
moments (t_accel_end) and (t_brake start) are not exactly the same, as there is
always a transitional phase between acceleration and braking due to the time taken to
release the throttle pedal.

Taking the time (t_brake_start) as the current braking starting point, a new point must
be defined earlier or later in the track, depending upon whether the speed at the end of
the previous braking attempt was greater or smaller than the desired maximum speed.
Figure 17 illustrates the case where the new braking point must be after the current
one. The driver will keep accelerating for an extra time of At; and then brake up to the
desired speed umax. The equations describing those motions are:

54



1 1
Spbs — Spe = uprAtl + EalAtlZ + UppsAt; + EaZ,SAtZ2 (155)

Unps = Umax — az,uAtZ (156)
Unps = Upps + A14t; (157)
where Spys and Ups are the previous braking starting point length and speed, spe is the
required braking end point length and unps is the new braking starting speed.

nbs

(081

obs o

max

At At

Figure 17: New braking point approximation

Eliminating the new braking start speed and braking time, eq. (155), (156) and (157)
can be solved for At;:

1 205, —a
= <1 — e 28 a1> Aty?
az,u

a; a; azs
+ 1+4—)—— — 1—— At
lUpbs ( az,u> Uo (upbs umax) < a2,u>l 1 (158)

- Ea’u (upbs - umax)l - (Spbs - Sbe) =0

The time At; is added to the acceleration end time (t_accel_end) and a new braking
procedure is performed. It must be mentioned that, in order for this method to
converge, relaxation is required for the calculated time At;, when the algorithm is not
close to a solution.
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3.7 Steering system and steering control

The steering system links the steering wheel angle dswer With the front wheel steer
angles 4; and &,. Neglecting toe angles, for zero steering wheel angle, the front wheels
should both align with the vehicle longitudinal axis. As a result, since the car is
symmetric, it follows that:

81 (Ssteer) = ~02 (~85t0er) (159)

Using this equation, the behavior of the steering system is modeled using a third order
polynomial:

6; = C365teerz + C265teerz + ¢105tcer (160)
02 = C305teer” — C20steer T C10steer (161)

Implementing a steering control scheme that will enable the car to follow the desired
trajectory is a difficult task. The approach used in this study, follows a technique for
driverless vehicles introduced by Hoffmann et al. [15]. In an effort to exponentially
decrease the deviation from the track centerline, a response would be desired that
follows the equation:

S.'n,d = _kp,ssn,d (162)
However, from eq. (32) it follows that s,, = Usin(S + y), where the angles p and vy

have been defined in figure 7. Therefore, the limit in the rate of change is s,, < U. To
account for this, the desired response equation is modified as:

kp,ssn,d
. KpsSna 2 (163)
- (27)

For a small deviation from the track centerline, eq. (163) can be approximated as an
exponential decrease. Linking this result with eq. (32) yields:

Spnd =

kp,ssn,d
Usi _ kp,ssn,d . _ U
sin(Bg + ) = = sin(Bq +Pq) = =
1— (Icp,ssn,d)2 1— (kp,ssn,d>2
U U
k,ss
= tan(By + Yg) = — 2214 (164)

U
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Geometrically, this equation can be explained as the driver’s wish to point the vehicle
velocity to a desired direction. This direction is defined using a look ahead distance of
Ulky s, as the adjacent side of the right triangle seen in figure 18.

look ahead
distance

N tangent line

Figure 18: Desired vehicle direction

The steering will now be controlled based upon the error between the current and the
desired angle:

(84 ) ~ (Ba+1ba) =+ + Arctan (227 (165)

Maintaining the same result, the desired (B) angle is redefined as

Ba = —¥ — Arctan (kp';sn> (166)

and the angle error as:

Be =B — Ba (167)
The steering wheel angle will be controlled using a PID controller on the angle error:

Ssteer = _(kiﬁe + kpﬁe + kdﬁe) (168)
where ki, k, and Kq are the controller integral, proportional and derivative gains.
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In order to tune those gains, a simple linearized bicycle car model is used. Taking eq.
(38) and (41), assuming small velocity and steer angles and neglecting the vehicle
width yields:

I,& = a(Fy, + F,;) — b(Fy3 + Fy4) (169)

For the lateral tire forces, using the cornering stiffness coefficient, assuming small slip
angles and neglecting lateral velocity, it follows that:

Fyl + Fyz = Ca’faf (170)
Fy3 + Fy4 = Ca’rar (171)
§—ap = —— (172)
f , U
w
@ =22 (173)

where C,¢ and C,, are the cornering stiffnesLs{es of the front and rear axle and & is a
mean steer angle between 6; and &,. In order for the slip angle a; to adequately
describe the sum of slip angles a; and a,, as well as for the ratio dswer/d, also called the
steer ratio, to be a least fluctuating value, the angle ¢ is calculated using the following
equation:

cotd, + cotd,

cots = ————— (174)

Performing a substitution in eq. (169) using eq. (170) to (173), a single differential
equation arises for the yaw rate:

@+ Aw = B§ (175)
where the quantities A and B are calculated as:

_ azCa,f + sza,r

176

ul, (176)
C

B =22 (77)
I,

Using eq. (32) and (33) the yaw rate and the error angle can be linked to the deviation
from the track centerline:

cos(B+y)

B =w—kU W s
1—ks, =
$n = Usin(B+¢) = U(B +1)
Sp = Uﬁ. = U(w — wg)

kp,s Sn (=

Pe=B—PamB+Y+—F—
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Sn
W = W +U
Sp + Kp sSn (178)

e~y

=

Substituting in eq. (168) and (175) yields:
§, + A8, = BUS — Ulwss + Awgs]

. 1. .. 3} . (179)
Osteer = -7 [kasy + (kp + kpska)$n + (ki + kpkps)$n + kikp s5n]

Considering that dsieer= Ksteer 0, Where Ksweer 1S the steer ratio, the two equations above
can be combined so as to form the closed loop differential equation:

s®, + (A + Bky)s, + B(ky' + kpska')$n + B(ki' + kyp'kyp s)$n

180
+ Bk;'k) sSp = —Ulwss + Aws;] (180)
where the constants:
(11— ki
kl /ksteer
o kp
6 =" oo (181)
1 _ kg
kk / Ssteer
Therefore, the closed loop characteristic equation is:
S*+ (A+ Bky)S® + B(ky' + kpska')S* + B(ki' + kp'kps)S (182)

+ Bkik,s =0

Due to the high order of the system, it is difficult to predict its response for every
arbitrary value of the gains. Instead, a certain response will be suggested and the gains
are calculated so that this response is satisfied. Considering stability, the following
form is proposed for the characteristic equation:

choosing t={wn
=

S+1)E+1)(S?+ 2{w,S + w,2) =0

S4+(T1+3T)S3+:—[31’1+T(2+(i2)]52+’52 [;_2+T1(2+(i2>]s (183)

T
=0

+€2
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Therefore, the system of equations relating the gains to the desired response constants

are:
(A+ Bk, =1, 4+ 37

1
B(k +kpskd —T[3T1+T( (2)]

A

B(ki' + ky'ky,s) = T2 [(—2 +1 (2 + %)]

(184)

It can observed that A is the inverse of the time constant of the open loop eq. (175).
Let A=A/t;1. Then, requesting for the time 1/t to be the dominant time constant of the

system, the following inequality applies: 1/T > 1/T1 2 A< pax = A/T. Substituting

A and Amax to the equations for the gains yields:

I Ay
A+Bkd=3T+I

B(k,' + kpska') —T[S +r<2+{12>]

Bk +ky'kys) = 72 [(—2 +3 (2 + (—2)]

3 A

ps = (_ZI)

Bkk

[ER

Bkd —3T+(__

S

1
Bky, + ky T [3 + Anax (I — 1)] =1 [3 +7T (2
T3 A 1k
T Bl =7 | (
kpsC2 A P {2
Bk; =

60

4

2)
3l

p,si ky (2 1)




( 1
Bk! =3t + (Z_ 1)A
1
B}, = r[3 +r(2 + )] ky st [3 . (/1 1)]
= < 1 3 A (185)

B - [+ 32+ )| -

kPS ( (2 kp,szg2 A
BK! = 3 A
U kpe2 A

The two set of equations solved for the proportional gain k;, can be combined and
rearranged in terms of the look ahead distance gain k., :

1 Ky s\ | 1\ (kps\”
2 amen (G- )] () - (575424 3) ()
+[_ Amax(zJ,l)]@_’lmﬂl:
2 2 2 T 1 2
This third degree equation does not have trivial solutions for X221t can however be

easily solved by factorization if A=1. As the dominant tlme constant (1/t) and
damping ratio ({) of the response can still be chosen, letting A=1 simplifies the
selection of gains:

kps\® 1\ (kps\2 1 1\ kps 1
3(.[) (3Amax+2+(2)( ) +[(—2+/1max<2+(—2)]T—/1max(—2=0
2

ky s ky s 1\ (kps 1
> [(522) <] [3(%2) = (24) () 4| =0 wem
Therefore, three valid solutions can be obtained:

@)lw
fﬂ- =

{ 2 t (2 / (188)

for ¢ > 1.366
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Requesting for the look ahead distance gain to be independent of the speed of the
vehicle, the following final solution arises:

( 3t

kg = Eksteer
(rd)e g
< kps =1 6 for { > 1.366
A4 13 (189)
ki = Emksteer
T 1
kp = 5 [3(,4 —kys)+T (2 + Z_Z)] Ketoor
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4. The optimization technique

The primary step into creating an optimization technique is defining the objective
function. As mentioned earlier, in general, the maximization of the Acceleration,
Autocross and Endurance scores using the gear ratios is the combination that
improves the overall performance of the vehicle in Formula Student competitions.
However, following the outcomes from the analytical examination of gear ratios
performed, it is reasonable that a change in gear ratios which may be beneficial for
one event will probably impair the vehicle performance in another. In the
Acceleration event for example, the optimal gear ratios are dependent only upon the
performance of the engine and the tire grip for the starting gear ratio. In the
Endurance race however, results will be greatly influenced by the speeds attained in
the track. The same should apply for the Autocross race, with the slight difference
that, since only a single lap is run, the initial part of the track will be closer to an
acceleration run.

It is now evident that optimizing the scores of each event individually will probably
lead to a different result than optimizing the sum of the scores. As examined later,
while reviewing the results of the simulation and the optimization procedure, finding
a global optimum is a difficult task for a single event. Therefore, the combination of
multiple events might easily lead to a localized optimum, increasing the performance
in a single event only. Additionally, this is not the only setback, as the Autocross and
Endurance tracks vary from a competition to another.

In order to overcome the problems mentioned, the improvement to the total score
resulting a change in gear ratios can be examined. From eq. (1) to (3) describing the
scores, it can be observed that the total score of the Autocross and Endurance events
is much greater than that of the Acceleration event. Furthermore, the type of engine of
the vehicle should also be considered. A single cylinder engine has a low power
output compared to multi-cylinder engines. Even though it allows the design of a
lighter vehicle with overall improved cornering performance, the total power to
weight ratio is decreased. As a result, it is a fact that most single cylinder vehicles
have higher acceleration times that multi-cylinder ones. Having a 1ow T min/Tieam ratio
in eq. (1), where Tni, is the time of the fastest vehicle and Tieam iS the team’s time
recorded for the event, renders the acceleration score considerably difficult to
increase. This fact points out that the optimization method should include the
Acceleration event, but should be directed towards improving the performance in
Autocross and Endurance.

Considering now the difference between Autocross and Endurance events, usually the
two respective tracks have minor differences, if not any at all. However, in the
Autocross event, a single lap is run starting from a very low speed, rendering the first
part of the track similar to an acceleration run. In contrast, in the Endurance event,
almost 90% of the laps are run successively. This repetition in laps also enables the
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driver to improve his/her performance. The similarity of the tracks of the two events
implies that both can be satisfactory improved at the same time, but the difference
between them renders the Endurance event more stable, as it is not prone to initial
conditions and due to the driver’s capability of attaining more consistent lap-times. As
a result, for the available tracks, only the times of intermediate laps will be examined.

Last but not least, a strategy should be employed so as to combine the results of
multiple tracks from different competitions. For a single track, it is evident that an
objective function to be minimized can contain just the lap-time:

F = Lap Time (190)

Even though all Formula Student tracks are similar, unfortunately they are not
identical. Some might involve a less amount of tight corners and others longer straight
lines. Considering eq. (2) and (3), both Autocross and Endurance scores are linear in
comparison to the scoring factor:

s.f.= Tmin/,.

team

(191)

Therefore, when comparing the data of multiple competitions, a combination of the
resulting scoring factors is necessary so as to decide upon the final result. One method
involves forming the objective function to be maximized as the sum of the scoring
factors:

F(S-f-j) = Z s-fj (192)

J

If the simple case of two tracks is now examined, when the objective function is
optimized, the following relation applies:

dF = 0=d(s.f.1) = —d(s.f.;) (193)

This means that, at the optimal solution, a change in gear ratios that increases the
score of competition 1 by one point will decrease the score of competition 2 by one
point as well. However, if at the optimal solution s. f.; # s. f.,, then that might not be
a desirable situation. For example, if 200 and 300 points are achieved at the
Endurance events of competitions 1 and 2 respectively, then it is logical that an
addition of some points in competition 1 would be desirable, even though more points
would be subtracted from competition 2. In this sense, a new objective function can
be introduced that follows the relationship:
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_d(s.fq) N d(s.f.5) .

dr = S.fa s.f.
S>F=In(s.fq)+In(s.f,)=Wn(s.fqs.f.) (194)
or equivalently:
F=s.fqsf., (195)

Generalizing the solution for more tracks:

Farp =] |5£ (196)

J
Another advantage with this objective function is that the best times T,,;,, need not be
included in the optimization criteria.

The constraints of the gear ratios optimization problem are obviously such that a
decreasing sequence in gear ratios is preserved. So as to not allow two sequential gear
ratios to be exactly the same, a critical gear ratio slightly over one is introduced so
that:

I .
—— = ratiogi =
L+

lp17At1Oi — 1 < 0 (197)

Letting the equation above be valid for k=1,2,...,m-1 the following system of m-1
constraints is obtained:

—1 ratiogit 0 0 iy 0

0 -1 ratiog iy 0 L]0 (198)
0 0 —1 ratiocric | Lin, 0

Having defined the objective function and the constraints, a method to solve the
optimization problem must be employed. Since the entire simulation is realized and
performed in Matlab, one method would be using the optimization algorithms already
existing in the software. The most common application performing a constrained
optimization of multiple variables is ‘fmincon’. Several algorithms can be chosen in
this function, most of them relying upon the gradient of the objective function.

However, upon making a change in gear ratios, a new gear might suddenly engage
during acceleration that did not engage before. In the same manner, another gear
might not engage at all. In addition, due to the time step of the simulation, there might
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be slight differences in the braking points between a gear ratio set and another. All
these factors result in a sudden change in lap-time, rendering the objective function
non-differentiable at some points. Setting the differentiation step appropriately can
solve this problem, but not consistently.

In order to overcome the problems resulting from the non-smooth nature of the
objective function, an approach of testing a number of different gear ratios is be used,
similar to a Monte Carlo simulation. Let ipx for k=1,2,...,m be the initial gear ratios.
A random set of gear ratios will now be produced and tested. At first, performing a
rough investigation, the random numbers will be selected with the following
maximum, mean and minimum values:

imin,k = (1 - range)imean,k (199)
imean,k = iO,k (200)
imax,k = (1 + 7"ange)imean,k (201)

where the value of the range is a percentage of the mean gear ratio.

After a certain number of runs, determined so as the method cannot improve the
objective function significantly relatively to the number of runs performed, a new
mean point ipestk IS Set, as being the value of the best performing gear ratios so far.
This mean point will from now on be renewed after every run is performed. The
algorithm now enters a more precise search, with the new maximum, mean and
minimum values being symmetrically defined as:

, . . (lmeank-1 ~ lmeank lmeank ~— lmeank+1 (202)
bnink = lmeank — MIN 2 , 2

lmeank = lbestk (203)
. . . imean,k—l - imean,k imean,k - imean,k+1
lmax,k = lmeank T mln( > , ) (204)

The symmetric placement using the equations above aids in not rejecting any of the
random numbers, due to violation of the constraints when ratiogi=1.

The most common distribution using an upper and lower limit is the beta distribution.
This distribution is used for generating the random numbers and its parameters can be
calculated as:

[ —1i

a=1+2-exponent - —=T¢1 (205)
‘lmax - lmin
i — i

B =142 exponent  —— T (206)

lmax — imin
where the exponent is a quantity affecting the variance of the distribution. Greater
exponent results to decreased variance. An exponent of 1 is used for the first rough

search and an exponent of 2 for the final search.

Having considered all of the facts mentioned above, the optimization procedure will
involve the following steps:
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Examination of the times in the acceleration event. The analytical method is
used as an initial point. The best number of gear ratios to be used is
determined manually, by evaluation of the results.

The result for best acceleration time is taken as an initial point for the lap-time
optimization. The optimal result is found for each track individually. The best
number of gear ratios to be used is again determined manually, by evaluation
of the results.

The different results are examined as to how close their gear ratios are. By
trial and error, an attempt is performed for moving a gear ratio resulting the
optimization of one track, towards the set of gear ratios better for another
track. New intermediate gear ratios might be introduced.

All the tracks are simultaneously examined using an objective function

The end result is compared to the gear ratios set for best acceleration.
Modifications so as to improve acceleration time might be examined.
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5. Results

5.1 Vehicle and driver constants

The different parameters involved in the analysis of the preceding chapters are part of
the specifications of the race car designed. The majority of the parameters describing

the vehicle and its systems are presented in Table 5.

Description Symbol Value
Total vehicle mass, including driver M 250 kg
Vehicle yaw moment of inertia I, 80 kgm*”
Vehicle roll moment of inertia around the roll 2
axis IroII 31 kgm
Vehicle pitch moment of_lnertla around the Lyt 190 kgm?
pitch axis
Equivalent moment of inertia_of the rotational Jan 0.01 kgm?
parts of the engine g
Equivalent moment of inertia of all tires, 2
including coupled drivetrain I 0.87 kgm
Rear weight distribution Rd 53%
Wheelbase L 1.53m
C.0.G. height from ground H 0.286 m
Front track width Bt 1.238 m
Rear track width B, 1.115m
Front suspension vertical stiffness Ksusp,front 2*36 N/mm
Front tires vertical stiffness Kiire front 2*115 N/mm
Front anti-roll bar stiffness Krollbar front 400 Nm/deg
Rear suspension vertical stiffness Ksusp,rear 2*21 N/mm
Rear tires vertical stiffness Kiire, rear 2*121 N/mm
Rear anti-roll bar stiffness Krolibar, rear 1100 Nm/deg
Suspension total damping ratio 4 0.8
Aerodynamlc_cer)ter _of pressure rear d, 519
distribution
Aerodynamic center of pressure height from h, 0.65m
ground
Aerodynamic drag constant CpA 1.45 m*
Aerodynamic lift constant CLA 3.65m’
Differential L(;((::lé eLJIZrZSE)?]ue constant for LUT. scceloration 0.6
Differential L%%Ié ;2 r'l;;)igc?]ue constant for L.U.T. geceteraton 0.42
Differential preload Ty 25 Nm
Front brake distribution Kot 61%
Shifting system shift time constant Alghift 0.2 sec
Engine max speed Nmax 9500 rpm
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Concerning the performance of the engine, the output torque and power, as well as the
fitment of the polynomial proposed in eq. (95) can be seen in figure 19. Due to the
fact that data are not available for low engine speeds, a linear interpolation is
performed up to a zero torque engine speed of ny,. The fitting constants are included

in table 6.
60 60
50 e 50
) /;:A%\‘ .
. ,/[ S eeeees T(Nm)
£ /r/ =
2 30 7 . 30 £ — — Lowspeed prediction
= /
;7 — -P(Hp)
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/
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2000 4000 6000 8000 10000
n (rpm)
Figure 19: Dynamometer data and fitment
Parameter Value
to 0.0516918197632723 Nm
t1 -1.23488590256679 Nm/1000rpm
t, 8.54112836523757 Nm/(1000rpm)?
ts -9.29629686749032 Nm/(1000rpm)°
ty -5.47925706182441 Nm/(1000rpm)”

A plot of the steering system behavior and the steering system constants can be seen

Table 6: Engine torque fitting parameters

in figure 20 and table 7 respectively.
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The data used for the tires fitted in the 2018 race car are obtained from the Formula
SAE Tire Test Consortium (FSAE TTC) and are analyzed in the software
OptimumTire [16]. The fluctuation of the results for pure lateral and pure longitudinal
slip conditions is illustrated in figure 21. The final values of the parameters are

/
%
&
61 (deg)
- = 52 (deg)
20 40 60 80 100 120
Ssteer (deg)

Figure 20: Wheel steer angles

Parameter Value
C1 0.270812004247308 deg/deg
Co 0.000087022604859 deg/(deg)*
C3 0.00000121824745 deg/(deg)’
8steer,max 110°

Table 6: Steering system parameters

included in table 7.

Parameter Value
Fo 780 N

PK1 47
pPKy1 45
pKX3 -0.4
pPKy2 1.5
pCX1 15
pCy1 1.4
pDya1 2.626
pDy; 2.472
pDyo -0.3063
pDy, -0.5544
PEx1 -0.4
pEy]_ 0

Table 7: Tire model coefficient values
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Figure 21: Tire data in OptimumTire

The data presented above are extracted from tests performed in a high friction surface.
It is generally recommended that a friction scaling factor of A=A,=1,=2/3 is used for a
well-paved road.
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The tires fitted in the 2019 project race car are a version of the ones modeled, from
the same manufacturer, but with a lower profile. After a series of test runs, it was
determined that the vehicle performance was significantly benefitted by this change.
Unfortunately, data for these low-profile tires are not available to the team. So as to
account for the increased performance of the new tires, the friction scaling factor was
raised to a value of A=A,=A,=0.75. This value was determined accordingly to the
change in lap-times recorded during the test runs. The loaded rolling radius of these
tires is approximately Re=0.199 m.

Last but not least, the parameters needed to model the driver are determined
appropriately, following measured data. Traction limit factors are tuned so that the
measured vehicle speed profile during deceleration or acceleration, as well as the
speeds attained in turns of known radius, match the outputs of the simulation. Using
the values measured for throttle position and steering wheel angle, the driver’s
response constant as well as the maximum rate of change of his inputs can be
determined. These values are placed in table 8. It should be noted that, during the
acceleration event, the traction limit x factor should be raised to 80%.

Parameter Value
traction limit x, acceleration 70%
traction limit x, braking 70%
traction limit y 92%
Algriver 0.3 sec
Max steering wheel rate 300 deg/sec
Max steering throttle rate 3sec’

Table 8: Driver parameters

5.2 Gear ratios resulting from the analytical method

For performing the analytical optimization, two parameters are required. The first one
is the rear wheels maximum torque due to tire traction T, max For a rear wheel drive
vehicle, this value can be easily calculated in the steady-state, considering weight
transfer:

m
Trmax =1d g @, (traction limit x) (207)

1-— %(Dx(traction limit x)

The second parameter is the top speed expected at the end of the acceleration.
Following measured data from competitions, a typical top speed for a combustion
racecar in the acceleration event is about Uma=100 km/h.
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Considering that the gearbox to be designed should replace the manufacturer’s 6
speed solution for the engine, it would be difficult to exceed the number of 6 gear
ratios. Therefore, different setups from 3 up to 6 different gear ratios are examined.
The resulting gear ratios, engine starting speed, engine upshift speeds and
theoretically calculated acceleration time are presented in table 9.

3 speed 4 speed 5 speed 6 speed
Gear
number ik nstart/nZ ik nstart/nz ik nstart/nz ik nstart/nz
350 5550 5610 5560
5 4
! 133 9500 137 9500 13.9 9500 139 9500
2 9.37 9500 10.7 9500 11.6 9500 12.1 9500
3 7.13 - 8.59 9500 9.74 9500 10.5 9500
4 - - 7.13 - 8.27 9500 9.20 9470
5 - - - - 7.13 - 8.08 9420
6 - - - - - - 7.13 -
Accel.
Time 3.70 3.67 3.66 3.66
(sec)

Table 9: Gear ratios, engine start and shift up speeds resulting from the analytical optimization

It is evident that a greater number of gearbox gear ratios results to decreased
acceleration time. This is logical since more tractive power is available when the gear
ratios are placed in higher proximity one to the other. However, the shift time was not
considered in this analytical approach, a factor that actually increases the overall
acceleration time as the number of gear ratios increases, as it will be seen later on in
the next chapter.

As far as the upshift engine speed is concerned, the calculated values reach the
maximum engine speed the most of the times, while dropping slightly lower than that
only when the ratio of successive gear ratios ix.1/ix is low. It can be also noted that the
resulting ratio ix.1/ix is constantly decreasing as the gear number k increases. This can
also be seen in figure 22. As a result, the engine speed drop between nyx and ny ;44 =

Mok lk+1/ik decreases for higher gear numbers. This is a significant outcome and is a

common practice in gearbox design.
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Figure 22: Ratio of successive gear ratios i,.,/ix

5.3 Vehicle simulation results and comparison with measured data

Besides the total lap-time, which is the final result of the simulations, several other
outputs can be presented so as to prove the validity of the overall results. To begin
with, it should be mentioned that three different tracks are used in the simulations.
The most recent data available and the competitions where the team has plans in
participating were considered. The aforementioned tracks are all Endurance race
tracks of the competitions of Germany (F.S.G.) in 2016, Austria (F.S.A.) in 2015 and
Hungary (F.S. East) in 2018. The track layout as well as the racing line computed are
both illustrated in figures 23 to 25.

The speeds in the longitudinal and lateral axis can be seen in figure 26. As expected,
the y-coordinate of the speed is significantly lower than the x-coordinate one.

The deviation from the desired trajectory is depicted in figure 27. With a proper
choice of the time constant used in the gains of the steering PID controller, this
tracking error is kept low at all times.

Lap-time convergence is examined in figure 28. It is evident that all laps after the first
one share very similar lap-times. This is logical since, after the first lap, the speed
reached before the first turn of the lap exceeds the traction limited maximum in-turn
speed.

The data presented in figures 27 and 28 result runs performed in the race track of
Germany. The first lap is included only.
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Austria 2015

Figure 23: Austria 2015 Endurance track and racing line
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Germany 2016

Figure 24: Germany 2016 Endurance track and racing line
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Hungary 2018

Figure 25: Hungary 2018 Endurance track and racing line
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Figure 27: Deviation from racing line
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Last but not least, a comparison between measured and simulated in-track speeds for
the Hungarian competition can be seen in figure 29. This comparison was performed
using input data that correspond to the setup of the racecar in that specific
competition. A representative lap was isolated from the available data and aligned
with the simulation data. It should be noted that differences are expected in this graph,
as the tarmac was relatively damp.

Telemetry and Simulatipn velocity cqmparison for Hungary
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Figure 29: Simulation and telemetry speed comparison
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5.4 Gear ratios optimization for acceleration

When examining the solutions of the analytical optimization for straight line
acceleration, it was noted that an increase in the number of gear ratios results to
decreased acceleration time. However, when adding the gear shift time in the analysis,
this observation no longer holds. The times and maximum speeds resulting a 75m
acceleration event for the calculated gearboxes are presented in table 10.

3 speed 4 speed 5 speed 6 speed
Acceleration time 446 450 456 460
(sec)
Maximum speed
(km/h) 96.7 95.26 93.7 92.0

Table 10: Simulation results of the gearboxes calculated using the analytical optimization

A further investigation into the acceleration response of the simulation yielded the
following three assumptions for the acceleration time:

e It is difficult to decrease the acceleration time lower than the results obtained
for a 3-speed gearbox, when a greater number of gear ratios are used.

e A decrease is observed as first the gear ratio decreases, up to the value
matching the rear tires traction limited torque to the maximum output torque
of the engine as i1=Tmax/TTmax).

e A decrease is observed as final the gear ratio increases, up to the value
matching vehicle maximum speed to the maximum speed of the engine,
calculated using eqg. (30).

After considering the factors mentioned above, a minimization of the acceleration
time is attempted using the stochastic algorithm mentioned in the previous chapter.
Starting from four gear ratios, the algorithm brought the last two gear ratios close one
to the other. Merging those and continuing the optimization lead to the gearbox
described in table 11. A diagram showing the best lap-time found versus the iteration
number, with the 3-speed analytically found optimal gearbox as a starting point, can
be seen in figure 30.

Finally, two observations should be noted:

e Acceleration time of the best performing 4-speed gearbox is 4.45sec, just
0.04sec apart from the 3-speed one.

e The acceleration time is generally insensitive close to the optimal solution. For
example, the time does not change for the 3-speed solution shown in table 11,
if the last gear ratio ranges between 6.9 and 7.3. This means that the solution
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Lap-time (sec)

presented might not be the exact optimal, but is such that yields the optimal
result.

Gear number i Nstart/ N2
(rpm)
6800/
1 122 | geqo
2 8.32 | 9500
3 7.05 -
Acceleration time 4.41
(sec)
Maximum speed
(km/h) 96.5

Table 11: Gearbox resulting stochastic optimization of 75m acceleration

Min lap-time versus iteration 75m Acceleration
4.54 T T T T T T T

4.52

o
Ul

H
>
(00)

>
~
D

4.44

442 |

4.4 1 1 1 I 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Iterations

Figure 30: Best lap-time versus iteration number for 75m of acceleration
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5.5 Gear ratios optimization for in-track performance

The stochastic algorithm is applied upon the tracks of Germany, Austria and Hungary.
Four laps are run in total and the average of the three last lap-times is used as an
objective function to be minimized, therefore excluding the first lap.

Before running the optimization algorithm, several observations are performed
concerning the three tracks:

e The top speed in the track of Austria is about 85 km/h, whereas in both the
tracks of Germany and Hungary is near 100 km/h.

e The lowest speeds attained vary between roughly 25 km/h and 35 km/h.

e The in-track local minimum and maximum speeds do not vary significantly
with a change in gear ratios.

e The usage of gears varies between the tracks, given the same gearbox. For
example, the first gear might be used in one track, but not at all in another.

e The usage of the shift time Atg,i; only once in eq. (123) calculating the engine
downshift speed, is not necessarily the best assumption for all tracks.

In paragraph 2.2, it was mentioned that the optimal value of last gear ratio is such that
matches the engine maximum speed with the vehicle top speed. This outcome was
confirmed when simulating the acceleration event in the previous chapter.
Considering that the top speeds reached in-track are known and that they occur in a
straight line of significant length, the last gear ratio can be determined for all tracks.
However, it is evident that no valuable result will emerge from doing so separately for
each track, since the final gearbox design will include only one set of gear ratios
common for all tracks.

In order to overcome this set back, the final gear ratio is set accordingly to the
maximum speeds of the tracks of Germany and Hungary. It may also be observed that
this speed is the same as the one attained at the end of the 75m acceleration run during
the acceleration event. The localized maximum speed of the track of Austria may also
be considered by proper calculation of the nearest prior gear to the final gear.
However, this constraint would affect the performance in the rest of tracks and is
therefore not being performed.

Last but not least, the choice of downshift engine speeds should be taken under
consideration. Introducing these as extra variables to the optimization scheme would
increase the complexity of the system and the likelihood of finding a localized result.
For this reason, for the first set of runs, the downshift speeds were chosen to be the
same for all tracks. A quick investigation indicated that the usage of twice the shifting
time as 2Atghir; in eq. (123) resulted to improved lap-times. Therefore, this method was
incorporated as a first approximation.
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Following the 3-speed optimal result of the Acceleration event, three different gears
are examined initially. The resulting gear ratios for each individual track can be seen
in table 12 and the course of the optimization is illustrated in figures 31 to 33.

The resulting gear ratios vary significantly from one track to another. However, it
may be observed that, besides the common last gear, three different gear ratios seem
to appear amongst the results. Successively, these have the approximate values of
11.5, 10.5 and 9. However, not all appear in each result individually. In an attempt to
create a design adequately performing in all tracks, a 4-speed solution is proposed,
containing these three observed ratios and the fixed final gear ratio.

Gear ratios
Gear number Austria Germany Hungary
1 Not used 11.6 10.6
2 10.4 8.68 9.11
3 6.82 6.82 6.82
Table 12: Results by examination of each track separately
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Figure 31: Best lap-time versus iteration number for the track of Austria
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Figure 32: Best lap-time versus iteration number for the track of Germany
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Figure 33: Best lap-time versus iteration number for the track of Hungary
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After performing several runs so as to examine whether the proposed 4-speed gearbox
has a satisfactory performance, it is determined that slightly higher lap-times of the
per-track optimized results can be reached. Further refinement of the results by
altering the engine downshift speeds differently per track, yields to additional
improvement. Determining the gear ratios set i = [12.5] 10.5 | 8.5 | 6.82] as a decent
starting point, all the tracks were examined and their lap-times were combined using
an objective function. Two objective functions have been proposed in eq. (192) and
(196). So as not to account for a minimum lap-time, used for the denominator of the
scoring factors, eq. (196) is used. The resulting gear ratios, downshift engine speeds
and the time used in eq. (123) for calculating them are included in table 13. A graph
of the resulting lap-times versus the iteration number of the algorithm can be seen in
figure 34.

Downshift engine speeds/ Time used in eq. (123)
Gear number | Gear Ratios Austria Germany Hungary
1 12.6 - - -
2 10.3 3000/ 2Atghis 3000/ 2Atghist 3600/ 2Atghit
3 8.67 4100/ At 3800/ 2Atghist 4100/ Atghirt
4 6.82 5600/ Atshit 4800/ 2 Atghift 5600/ Atspist

Table 13: Results for the combination of three tracks
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Figure 34: Best objective function lap-times versus iteration number for the combination of three tracks
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5.6 Final results and modifications

At first, the acceleration event time is examined for the 4-speed gearbox, determined
for best in-track performance. Running the respective simulation results to a time of
4.44 sec, just 30 msec above the 3-speed gearbox for optimal simulated acceleration
time. This outcome is logical, should the two gearboxes be compared. The values of
tables 11 and 13 indicate that the 4-speed solution nearly identical to the 3-speed one,
with an intermediate gear added between the first and second gear. The constant
decrease in the ratio between successive gears is no longer maintained, but the
acceleration time does not increase significantly.

Therefore, the resulting 4-speed gearbox is a well performing solution for all of the
dynamic events. However, it cannot be the final design due to two facts that have yet
not been considered. To begin with, the first gear ratio is not adequately large for
enabling the driver to start the vehicle easily. It may match the engine maximum
output torque to the maximum tire limited torque, but that is beneficial in the case of
an intense launch for acceleration. When a driver normally starts the vehicle, he or she
rarely holds the clutch at the point of engagement for a long period of time. That
being mentioned, the thrust provided by the engine is relatively low. If the momentum
of the engine is not sufficiently large, then the engine stalls.

The operation of normally starting the vehicle can be easily modeled by considering
the rate of change in momentum, between two distinguished time moments. At first,
the clutch is disengaged, the engine is at an initial speed and the vehicle is stationary.
After the clutch has been engaged, the vehicle is moving coupled to the engine. Using
the thrust of the engine torque, conservation of momentum states that:

tdisengaged Td mRZ+Jw\ T T
t= t+t——=)n - —MNg;
ftengaged ]eng i? 30 engaged ]eng 30 disengaged (208)

Using eq. (208), and considering the data measured from the 2018 vehicle, an initial

engine speed Of Ngisengages=5500rpm and a torque thrust of fttdiseng‘;ged Tdt = 5Nms
engage

were determined as typical for the case of staring the vehicle. The resulting engaged
engine speeds were typically close, or lower than, 2000rpm, lower than the selected
idle speed of about 3000 rpm, therefore leading to frequently stalling the engine.
Requesting for the engaged engine speed to be at least at the idle speed, results to a
gear ratio of i;=20.6.

The other fact that has not been considered is that gear ratios are inherently rational
numbers. Not every set of the gear ratios calculated is possible to be implemented, as
the number of teeth of the gear sets involved is limited. The total drive ratio is the
product of the primary, the gearbox and the final drive ratios. Considering that both
the gearbox and the final drive ratio can be altered, limiting the number of the teeth of
their gear sets results to a set of possible gear ratios ipossivie k. After calculating those,
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the most suitable set of gear ratios can be determined as such that minimizes the sum
Yk lipossiblex — ik|- The limitations set to the teeth of the gearsets as well as the

resulting gear ratios can be seen in tables 14 and 15 respectively.

Gearbox Final Drive
Limitation Gear 1 Gear 2 Gear 1 Gear 2
Maximum number of teeth 14 14 12 33
Minimum number of teeth 36 36 14 40

Table 14: Limitations on the number of gear teeth

Gear Desired Gear | Best achieved | Teeth of gearbox Teeth of
number Ratios Gear Ratios gear 1 gearbox gear 2
1 20.6 20,357 14 36
2 12.6 12,667 20 32
3 10.3 10,245 17 22
4 8.67 8,7083 20 22
5 6.82 6,8371 22 19

Table 15: Resulting gear ratios and number of gearbox gear teeth

Due to the fact that it is possible to select two and not just one gear set, the best gear
ratios achieved are very close to the ones desired. In fact, the values differ by 1%, if
not less. This justifies the examination of the gear ratios directly as real numbers and
not performing a rational number conversion at every simulation.

Finally comparison between the simulated times of the calculated 4-speed gearbox
and the already existing gearbox of the 2018 race car can be seen in table 16.

Designed gearbox Former gearbox
Acceleration | Austria | Germany | Hungary | Acceleration | Austria | Germany | Hungary
4.44 66.12 74.33 60.69 451 66.50 74.25 60.86

Table 16: Comparison between designed and already existing gearbox
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6. Discussion and conclusion

Following the observations and the results presented in the previous chapter, several
conclusions may be extracted, concerning the calculation of the gear ratios. At first,
an examination of the single straight line acceleration problem yields the following:

With an increase in the number of gears, the potential in decreasing
acceleration time is enhanced, since more tractive power is available when the
gear ratios are placed in higher proximity one to the other. However, when the
shift time is considered, this observation is reversed.

The best method to place the gear ratios is such that the ratio of successive
gear ratios ix.1/ix is constantly decreasing as the gear number k increases. In

this case, the engine speed drop between nyx and njpiq = Nk l"“/l-k

decreases as the gear number increases.

The final gear ratio should match the expected maximum vehicle speed with
the engine maximum speed.

The first gear ratio should match the maximum driving tires torque limited due
to traction with the maximum torque of the engine.

The upshift engine speeds coincide with the engine maximum speed, unless
the ratio of successive gear ratios is very close to one.

Concerning in-track performance now, the topology of the track determines the
speeds attained, influencing the results of the best gear ratios:

The resulting ratio of successive gear ratios ix.1/ix might not be a constantly
decreasing number.

As with the case of acceleration, the final gear ratio should match the expected
maximum vehicle speed with the engine maximum speed.

Obtaining a gearbox that performs well in a multiple number of tracks
involves investigating which gear ratios are used on each track separately. The
final solution may use all of those ratios so as to satisfy the needs of all the
tracks.

Decreasing the downshift engine speed lower than the value of n;, =

Ny -1 Lk/ik—l results to decreased lap-time. The downshift engine speeds

should be chosen appropriately and potentially different in every track.

Finally, the improvement of in-track lap-time resulting the gearbox optimization is
typically not more than half a second, or about 0.7%. This outcome might not seem
adequately satisfactory. However, so as to attain a similar decrease, a weight
reduction of 5% is necessary in the vehicle total mass. It should be noted that, in
Formula Student applications, the overall weight of the car is considered very
significant and design efforts are pushed to their limits. Therefore, achieving a 5%
decrease, or roughly 10kg, is not a task easy to achieve.
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Last but not least, the observations mentioned above are all coupled with the engine
and the expected speeds of the vehicle. Typically, most race cars have double the
maximum speed and triple the engine power of a Formula Student race car. As a
result, the choice of a five speed gearbox for covering speeds of zero to 100km/h,
would be entirely different in the speed range of zero to 200km/h. The ratio between
successive gears would inevitably increase and the shift time would become less
important compared to the total acceleration time.
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7. Mechanical design and manufacturing of the gearbox

7.1 Design constraints and manufacturing method

As mentioned when posing the overall constraints of the project, the gearbox to be
designed should replace the already existing solution of the manufacturer.
Considering the additional limitation of budget for outsourced manufacturing, leads to
adopting an approach of minimizing the number of parts to be redesigned and
manufactured. More specifically:

e The first gear ratio, comprised out of a 36 and 14 teeth gear set, is
implemented by the existing gearbox first gear ratio, which is identical. The
ability of choosing a final drive ratio aided in pursuing this identicalness.

e The transmission shafts on which the gears are connected to are not changed.
This selection was made possible by the fact that only one gear of the first
gear ratio is attached with one axle, whereas the rest are removable.

e The original sequential ‘dog-box’ engagement type of the gears is used. This
also enables the usage of most of the existing mechanical components of the
shifting system.

The number of teeth of the gear sets of the calculated gearbox has been found after
posing a maximum and a minimum limit. Considering that the center distance of the
transmission shafts is fixed to the design of the engine, changing the number of gears
alters the module and the contact ratio of the gearing. A large number of teeth results
to a low module and therefore small sized teeth that lack in bending strength. On the
other hand, a very small number of teeth leads to decreased contact ratio.

Last but not least, the manufacturing method must be decided. The most common way
of producing gears is by means of hobbing. The material is then being case carburized
around the tooth flank so as to increase local strength. The end result is ground so as
to remove any warping introduced during the heat treatment and achieve a low
surface roughness. The drawback of this method is that the module of the gearing
must follow a standard size for which hobbs are available. Introducing a profile shift
coefficient can remedy for this problem. However, it is possible that the required
amount of profile shift cannot be achieved. Additionally, case hardening the material
does not improve its properties anywhere but near the tooth flank.

Since the gears can be straight-cut, another manufacturing method is considered, as
proposed by Bouquet et al. [17]. A near-net shape for the internal pockets and holes of
the gear can be achieved at the beginning. The material is then being hardened and the
shape of the teeth is formed after the heat treatment by a wire-EDM process. In this
way, the material properties can be maintained throughout the gear by performing a
through hardening, while a tooth shape of high accuracy can be achieved.
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Additionally, any parameters of the tooth profile may be chosen, without any
restrictions due to the limitations of the manufacturing process.

What must be considered is the surface quality of tooth flank. The wire-EDM process
cannot achieve an adequate surface finish, such that a grinding method is capable of.
However, since the overall shape of the tooth is accurate, the remaining unevenness of
the surface can be removed by a running-in method. loakimidis (Imakewpiong) [18]
used a running-in method for correcting warping anomalies on a bevel 90 degrees
gear set. By little or none at all net torque being transferred from one gear to another,
the profile of the teeth was shifted by a maximum of 0.15mm, using appropriate
speeds and grit of polishing paste.

7.2 Gear arrangement and shifting mechanism design

The engagement type and main shifting mechanism of the gears is illustrated in figure
35. Extruded pin-like geometries, commonly referred to as gear ‘dogs’, on a gear
wheel that linearly slide, match a set of pockets on an adjacent gear wheel. The
pockets are larger than the ‘dogs’, allowing for easier gear engagement. The linear
movement of the sliding gear is accomplished by means of a retaining device, the
shift fork, which follows a groove on a rotating cylinder, the shift drum.

Shift forks follow grooves in
shift drum moving left and right

Figure 35: Engagement and shifting mechanism of gears

In some similar gearbox configurations, the sliding parts are not the gears themselves,
but a set of separate ‘dog’-carrying rings. Implementing this approach was not
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pursued, as it would require the manufacturing of additional parts and the
modification of the transmission axles so as to resolve spatial issues.

During each gear change, the shift drum will rotate by an angle Ag. The resulting
displacement of the shift fork that is coupled to the sliding gear should be:

Ax = dog length + initial clearance — final clearance (209)
where the initial and final clearance distances are measured before and after the

engagement.

So as to easily design the curve of the displacement (x) in relation to the angle (¢), for
0<p<A¢ and 0<x<Ax, instead of the angle, the proportional projected length of the
outer diameter of the shift drum is used:

shift drum diameter
projected length = ¢ f > (210)

The curve designed is wrapped around the shift drum and embossed on its cylindrical
surface. The resulting surface is then being offset evenly to both directions.

A Bezier curve was used for designing the gear displacement. For best gear shifting,
the gear engagement and disengagement should be performed quickly. Therefore, so

as to increase the derivative dx/ de’ the control points of the Bezier curve are set as

close as possible. When the gear change is performed using a single sliding gear, the
distance of the control points is limited by a minimum radius on the curve. In the case
where two sliding gears are used, an intermediate point halfway through the total
angle Ao is defined. On that point, the previously engaged gear has disengaged and
attains a certain clearance distance. The same clearance is attained by the new gear to
be engaged. The derivative at the position where the gears are engaged is set to zero,
so that no torgue is transferred to the shift drum from transverse loads on the gear.

The arrangement of the gears of the original KTM gearbox and the custom gearbox
can be seen in figures 36 and 37 respectively. It is evident that the gears utilizing a
higher gear ratio, which induces greater loads to the system, are placed close to the
ends of the transmission shaft, so as to reduce bending loads on the shaft.

The final positioning is also restricted by the fact that the grooves on the shift drum
cannot intersect one another. This defines certain boundaries for the movement of the
sliding gears and the size of their adjacent gears. For example, of the three sliding
gears in figure 37, the rightmost position of the leftmost one cannot be very close to
the leftmost position of the intermediate one. As a result, the leftmost sliding gear -5"
gear of the custom gearbox- might have to interfere with the adjacent gear -2" gear of
the custom gearbox. To prevent this, the adjacent gear must have a large root
diameter, while the rightmost gear a small tip diameter.
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KTM configuration: 2 6 4 3 5 1

€€ — — — —
AX | AX Ax | AX
Figure 36: Original KTM gearbox configuration
Custom configuration: 2 5 3 4 1
AX AX
% — — “K——
€€ ——00080D000———————0000000——
AX | AX Ax | AX

Figure 37: Custom gearbox configuration
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7.3 Basic module and gear teeth strength calculations, choice of
material

Since no restrictions are imposed to the tooth shape from the manufacturing method,
the module of the gearing does not have to attain a specified value. Let 1 and 2 be the
gears of the input and output transmission shafts respectively. Considering a zero
profile shift coefficient, the module can be calculated as:

2
m = A2 (211)
zZ1+ z,

where o4, is the distance of the transmission shafts and z4,z, are the number of teeth of
gears 1 and 2 respectively.

In fact, if eq. (211) holds, then the profile shift coefficients X; and X, are not
necessarily zero. Instead:

X, =-X, (212)

Therefore, the profile shift coefficient is an unconstraint design variable. Other ones
include the pressure angle of the gearing and the addendum and dedendum heights,
defining the tip and root diameters. Considering that, the following approach is
adopted:

e module is set according to eq. (211)
e the pressure angle is chosen to follow the standardized value of 20°
e the addendum and dedendum coefficients are chosen according to the
standardized values of 1 and 1.25 respectively
e the profile shift coefficients that follow eq. (212) are determined so as to
maximize tooth strength
e the addendum and dedendum coefficients are changed, if the resulting tip and
root diameter need to change for spatial reasons in the gearbox design
e the pressure angle is changed, if problems such as undercutting or low contact
ratio occur
All the respective calculations are performed with the aid of the KISSsoft gear
calculation software [19]. The service life is found according to 1SO 6336 method B
[20], with incorporation of the graphical method as proposed by Obsieger [21]. The
maximum engine output torque and respective speed are used for this calculation. The
width of each gear set is determined from this analysis, by requesting a service range
of approximately 2500km, estimated for 2 years of complete testing, competing and
post-season testing of the racecar, using an additional factor of safety of 1.5. The
percentage of usage of each gear over the distance traveled is calculated from the
results of the simulation runs performed. The required life time and percentage of
usage of each gear set are included in table 17.
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Gear number | Usage (over distance) (%) Required Lifetime (Hrs)
1 1 0,42
2 2 0,52
3 20 4,2
4 55 9,9
5 22 3,1

Table 17: Percentage of usage and required lifetime for each gear set over a range of 2500km

Last but not least, lifetime calculations depend upon the choice of material. An
increased surface compression strength as well as an adequate fatigue strength are
both necessary for obtaining high gear tooth strength. As mentioned previously, the
manufacturing method employed allows for a through hardening of the material.
Considering these parameters, a high-strength tool steel is selected.

For acquiring the material properties mentioned, high values of surface hardness
should be achieved. However, as hardness increases dramatically, the material
becomes brittle and difficult to machine. Accounting for those two factors, the tool
steel chosen is the UDDEHOLM CALMAX® [22] tool steel. The stress-strain
diagram measured by Brendsted et al. [23] and illustrated in figure 38 indicates that
this tool steel is more ductile than others.

3000 T stress (MPa)

o Calmax
o G7
x ASP 23

Figure 38: Stress-strain diagram for UDDEHOLM CALMAX® and other tool steels

A summary of the heat treated material mechanical properties, as given by the
supplier, can be seen in table 18. It should be noted that the numbers used for the
calculation of gear teeth strength are taken according to ISO 6336 figures 5 and 6 for
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‘ME’ quality alloyed through hardened wrought steels and the maximum diagram-
given surface hardness.

Hardness (HRC) 54-56

Yield strength Ryo.2 (MPa) 1400

Ultimate tensile strength R, (MPa) 2100
Elongation at break (%) 4

Yield compressive strength Ry, (MPa) @56HRC 1900

Ultimate compressive strength Ry, (MPa) @56HRC 2300

Table 18: UDDEHOLM CALMAX® material data summary according to supplier

7.4 Finite element analysis

In order to design the main body of the gears, a F.E.A. model was developed in
Solidworks [24] for the engaged position of each gear. The compliance of the
transmission shafts is excluded from this analysis and replaced with appropriate radial
or circumferential displacement constraints. A frictionless contact set is defined
between the ‘dogs’ of one gear and the pockets of the respective mating gear.

So as to accurately calculate the contact stress around the gear tooth flank, a contact
set combined with a significantly refined mesh should be employed between the teeth
of the driving and driven gears. However, this combination would excessively
increase the solution time. Therefore, since the contact stress and tooth bending stress
have already been examined in KISSsoft, a bonded contact set is utilized in this
analysis, so as to allow for a faster design and evaluation cycle, each time a change is
performed in the design of the gear.

The resulting stress contour plots are illustrated in figures 39 to 43. In figure 39, only
the designed gear that engages the first gear is depicted. Examination of the results
reveals that an increased factor of safety is attained compared to the material’s yield
strength. This is a result of three factors:

e A minimum gear rim thickness 4mm is used, for avoiding impaired tooth
stiffness and stress concentration around the root fillet.

e The length of each internal spline was limited due to the spline strength

e A minimum pocket radius of 4mm is utilized, for easier machining.
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Figure 39: First gear engagement stress contour plot
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Figure 40: Second gear engagement stress contour plot

97



wak Mises [MAmma 2 [(MPa))
350
2610
210

140

l:?l:|
0

Figure 41: Third gear engagement stress contour plot
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Figure 42: Fourth gear engagement stress contour plot
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Figure 43: Fifth gear engagement stress contour plot
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