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Abstract

Osteoarthritis (OA) is the most common form of joint disease and a major cause of disability, par-
ticularly in the second half of life. It is a whole joint disease involving several tissues: cartilage,
synovium, meniscus and subchondral bone. Until today, many disease-modifying treatments, fo-
cusing on one tissue pathogenesis, have been studied. However they had limited success. Thus,
the integration of all tissues might be necessary to increase an understanding of the disease. In
this diploma thesis pathway and network-based approaches were used to develop a functional
description of this multi-tissue disease.

Differential Expression Analysis and Weighted Gene Co-Expression Network Analysis were
implemented using four microarray datasets corresponding to the four tissues. Through WGCNA,
a set of modules were identified. Highly correlated modules were merged creating meta-modules.
The genes included in each meta-module were used for the identification of important pathways
through Pathway Analysis. As a final step, candidate drugs for OA were evaluated.

The Pathway Analysis underlined the correlation of the constructed meta-modules with spe-
cific biological functions. Pathways related to the immune system and the extracellular matrix
were identified as common pathological mechanisms between the tissues. Furthermore, many
signalling pathways known for their connection with OA pathogenesis were identified. The main
targets of 11 drugs were detected. The drug evaluation consisted of checking if the drug’s targets
were included in any meta-module. 3 out of 11, Sorafenib, Raloxifene and PD169316 satisfied
this criterion. First experimental results on drug screening independently identified Sorafenib
and PD169316 as the most promising compounds from a similar library of 9 drugs.

In summary, statistical and correlation based approaches could be applied in parallel to iden-
tify molecular mechanisms involved in multiple tissues in OA. Further work will try to incorpo-
rate into drug evaluation the results of the Pathway Analysis and the network properties.
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Περίληψη

Η οστεοαρθρίτιδα είναι μία από τις πιο συνήθεις ασθένειες των αρθρώσεων και μία από τις

πιο σημαντικές αιτίες εμφάνισης αναπηρίας στη μέση ηλικία. ΄Εχει πλέον αναγνωριστεί ως

ασθένεια όλης της άρθρωσης και περιλαμβάνει αλλαγές στο χόνδρο, στην αρθρική μεμβράνη,

στη κνήμη και στο μηνίσκο. Μέχρι σήμερα, δεν έχει βρεθεί φάρμακο κατα της οστεοαρθρίτι-

δας καθώς οι έρευνες επικεντρώνονται στην παθογένεια μόνο ενός από τους 4 ιστούς/οστά.

Συνεπώς, σε αυτή την διπλωματική εργασία η ενσωμάτωση δεδομένων από όλους τους εμπλε-

κόμενους στην οστεοαρθρίτιδα ιστούς/οστά πραγματοποιείται προκειμένου να κατανοηθούν

πληρέστερα οι μηχανισμοί παθογένειας της ασθένειας.

Σε αυτή τη διπλωματική εργασία πραγματοποιήθηκε γονιδιακή ανάλυση και ανάλυση δι-

κτύων συνεκφραζόμενων γονιδίων, χρησιμοποιώντας δεδομένα από τέσσερα πειράματα, ένα

για κάθε ιστό/οστό. Μέσω της ανάλυσης δικτύων συνεκφραζόμενων γονιδίων βρέθηκαν

σύνολα που περιλάμβαναν συσχετιζόμενα σε όλα τα δείγματα γονίδια. Τα αλληλοσυσχετι-

ζόμενα σύνολα ενώθηκαν δημιουργώντας μετα-σύνολα. Τα γονίδια του κάθε μετα-συνόλου

χρησιμοποιήθηκαν για την εύρεση σημαντικών βιολογικών μονοπατιών μέσω της ανίστοιχης

ανάλυσης. Τέλος, υποψήφια φάρμακα κατα της οστεοαρθρίτιδας αξιολογήθηκαν.

Η ανάλυση βιολογικών μονοπατιών υπογράμμισε τη συσχέτιση των μετα-συνόλων με συ-

γκεκριμένες βιολογικές λειτουργίες. Βιολογικά μονοπάτια που σχετίζονται με το ανοσοποιη-

τικό σύστημα και την εξωκυτάρια μήτρα αποδείχθηκαν σημαντικά και στους 4 ιστούς/όστα.

Επίσης βρέθηκαν σηματοδοτικά βιολογικά μονοπάτια, γνωστά για το ρόλο τους στην οστεο-

αρθρίτιδα. 11 φάρμακα αξιολογήθηκαν σύμφωνα με το αν περιλαμβάνονταν οι βασικοί στόχοι

τους σε κάποιο μετα-σύνολο. 3 από τα 11, τα Sorafenib, Raloxifene και PD169316 ικανοποιο-
ύσαν αυτό το κριτήριο. Μία αρχική ανεξάρτητη πειραματική έρευνα αξιολόγησε 9 φάρμακα και

βρήκε τα Sorafenib και PD169316 ως πιο ελπιδοφόρα φάρμακα κατα της οστεοαρθρίτιδας.
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Εν συντομία, μέθοδοι που βασίζονται στη στατιστική και στην αλληλοσυσχέτιση δεδο-

μένων χρησιμοποιήθηκαν μαζί προκειμένου να ανακαλύψουν σημαντικούς μηχανισμούς πα-

θογένειας της οστεοαρθρίτιδας. Μελλοντικά θα γίνει προσπάθεια να συμπεριληφθούν τόσο

τα δίκτυα συνεκφραζόμενων γονιδίων όσο και τα βιολογικά μονοπάτια στην αξιολόγηση των

φαρμάκων.
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CHAPTER 1

Introduction

1.1 Osteoarthritis

Osteoarthritis (OA) is the most common degenerative joint disorder that affects one or several
diarthrodial joints, including small joints (such as those in the hand) and large joints (such as the
knee and hip joints). The incidence of OA increases with age and by 65 years approximately
80% of the population has some radiographic evidence of disease. Primary signs include pain,
transient morning stiffness and crepitus on joint motion (a grating sound or sensation produced
in the joint) that lead to instability and physical disability.[1]

OA can be classified as primary (or idiopathic) and secondary. Primary OA results from a
combination of risk factors, with increasing age and obesity being the most prominent. Other
risk factors include sex, joint biomechanics and genetic factors.[2] Secondary OA is based on
the attribution to recognized causative factors, such as trauma, surgery on the joint structures and
abnormal joints at birth.

Osteoarthritis is now considered a disease of the whole joint [3], including alterations in
the articular cartilage, subchondral bone, ligaments, capsule and synovial membrane, ultimately
leading to joint failure as shown in figure 1.1. Among the structural damages to the joint are loss
of cartilage, osteophyte formation, subchondral bone changes and meniscal alterations.
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Figure 1.1: (a)Diarthrodial joints join two adjacent bones that are covered by a layer of spe-
cialized articular cartilage and are encased in a connective tissue capsule lined by a synovial
membrane, consisting of a thin cell layer of macrophages and fibroblasts [3],(b)Cross-section of
the articular surface of a diathrodial joint illustrating schematically

Cartilage Degeneration

The articular cartilage is composed of water (≥ 70%) and organic extracellular matrix com-
ponents, mainly type II collagen and aggrecan or other proteoglycans. The cartilage matrix is
avascular and aneural and is populated by a single cell type: the chondrocyte. In OA, the cartilage
matrix undergoes striking changes in its composition and structure. Initially, surface fibrillations
appear and, as the pathological process continues, deep fissures associated with exfoliation of
cartilage fragments develop, ultimately leading to delamination and exposure of the underly-
ing calcified cartilage and bone. As the disease progresses, the proteoglycans become depleted
followed by the erosion of the collagen network, which marks irreversible progression.

Periarticular Bone

The bone beneath the articular cartilage is organized into a plate-like layer of cortical bone and a
contiguous region of cancellous bone. OA is accompanied by increases in the volume, thickness
and contour of the cortical plate, alterations in the state of bone mineralization and material
properties, changes in the subchondral trabecular bone architecture and bone mass, the formation
of bone cysts, and the appearance of bone marrow lesions and osteophytes. Bone may also
undergo direct physical damage that results in the formation of microcracks or fissures within
the cortical or trabecular bone. Subchondral bone cysts (fluid-filled holes) are a common feature
of advanced OA.
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Synovium

The synovium includes the synovial membrane and the fluid. In OA, the role of synovial inflam-
mation in the pathophysiology of OA is now widely accepted. Synovitis has been considered
secondary to the cartilage changes yet findings indicate that synovial inflammation could be a
component of the early events leading to the clinical stage of OA. Synovial inflammation leads
to the production and release of pro-inflammatory cytokines and several other inflammatory me-
diators.

1.2 Drugs

Topical, oral and injectable pharmacological treatments are available for individuals with OA.
Current therapies are at best moderately effective pain relievers, and it is worth noting that studies
report that most people with OA have persistent pain despite taking all their prescribed therapies.
First-line therapies include topical NSAIDs and oral paracetamol. Until today,a number of po-
tential disease-modifying pharmacological therapies have been investigated with disappointing
results.[4] However the chance of successful OA drug development may improve in the future as
a consequence of shift of focus into system-oriented studies.[5]

1.3 Systems Biology

Systems orientated research offers the possibility of identifying novel therapeutic targets and rel-
evant diagnostic markers for complex diseases such as osteoarthritis. Systems orientated studies
treat cells and tissues as biological systems. A biological system is a set of elements (e.g., genes,
proteins, and metabolites) with multiple and diverse functions; these elements interact in a spe-
cific and non linear manner to produce coherent behaviours over time. Interaction networks may
be generated from the elements of a biological system which can facilitate an understanding of
the architecture,activity, and key players in that system.

Network-based Systems orientated studies make use of known or inferred functional and
physical interactions between the elements of a system or can be developed from statistical as-
sociations (e.g., correlations between expression values). Data are often collected from disparate
sources and organized into a coherent structure that can be interrogated by graph theory or logical
(probabilistic) approaches. Network medicine postulates a ”disease module” hypothesis, where
disease-associated genes or proteins are likely share the same topological neighbourhood in a
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network. Defining communities of network elements (genes, proteins) is a useful way to identify
elements that have a close relationship, shared functionality, or disease association.

A systems biology approach to comprehending OA is founded on the hypothesis that OA is a
multi-system disorder resulting from the dysfunction of a number of networks that, together, alter
the homeostatic balance of the joint. Therefore, comprehensive and multisystem approaches are
necessary to understand the complexity of OA and direct the development of innovative treatment
strategies.

To date most studies, pertaining to using a systems approach in OA research, are princi-
pally based on interrogation of a single ”omics” survey in a single tissue at a single time point.
Goldring et al [6] emphasised the importance of cytokines in initiation and progression of OA
cartilage. Melas et al [7] re-established important genes to OA pathogenesis in cartilage like
IL1B, TNF,IL6, as well as discovered some new key-players. Mariani et al [8] underlined the
importance of MAPK pathway and Wnt signalling pathways in OA cartilage. Brophy et al [9]
studied the meniscus of OA and non-OA patients. He identified key players in meniscus os-
teoarthritis pathogenesis. Park et al [10] studied the gene expression profile in osteoarthritis
synoviym, identified important genes and pathways and compared the findings with the ones
derived from studies focusing on osteoarthritis cartilage. Interestingly, his study concluded that
OA cartilage and OA sunovium are driven by different pathological mechanisms.

The need for a different approach has emerged, for the integration of all tissues related to
OA.[11] To that end, this diploma thesis uses co-expression networks in order to identify bi-
ological functions and elements important to all tissues involved in OA. Weighted Gene Co-
expression Network Analysis was chosen for the construction of the co-expression networks, as
it has provided important insights in the OA mechanisms, common across the species [5]
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CHAPTER 2

Theory

In this chapter the theory of the methods used in this diploma thesis is presented.

Firstly, background correction and normalisation of the microarray data will be discussed.
These two procedures are of high importance, as they ensure that any analysis afterwards pro-
vides significant biological insights. In the next section, Differential Expression Analysis will be
presented, one of the most basic analyses done in every microarray data in order to distinguish
whether there is a difference in the expression levels of the genes between samples belonging
to different conditions. Then Pathway Analysis will be presented. Pathway analysis uses as
input the results of the Differential Expression Analysis and provides more biologically mean-
ingful results like altered biological processes among samples of the different conditions. The
next section will refer to a different way of analysing the microarray data,the construction of a
network taking into account the data’s topological properties. Specifically, Weighted Gene Co-
Expression Network Analysis will be discussed. Finally methods to ensure the stability of such
networks will be presented.

2.1 Background Correction and Normalisation

The goal of most microarray experiments is to survey patterns of gene expression by assaying
the expression levels of thousands to tens of thousands of genes in a single assay.
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Typically,DNA or RNA is first isolated from different tissues, developmental stages, disease
states or samples subjected to appropriate treatments. The DNA or RNA is then labelled and
hybridized to the arrays using an experimental strategy that allows expression to be assayed and
compared between appropriate sample pairs. Common strategies include the use of a single
label and independent arrays for each sample (single-Dye), or a single array with distinguishable
fluorescent dye labels for the individual RNAs (Dual-Dye). Regardless of the approach chosen,
the arrays are scanned after hybridization and independent grayscale images, typically 16−bit
TIFF (Tagged Information File Format) images, are generated for each pair of samples to be
compared. These images must then be analysed to identify the arrayed spots and to measure the
relative fluorescence intensities for each element.

The hypothesis underlying microarray analysis is that the measured intensities for each ar-
rayed gene represent its relative expression level. Biologically relevant patterns of expression
are typically identified by comparing measured expression levels between different states on a
gene−by-gene basis. But before the levels can be compared appropriately, a number of transfor-
mations must be carried out on the data to eliminate questionable or low−quality measurements
and to adjust the measured intensities to facilitate comparisons between classes of samples.

2.1.1 Background Correction

Background Correction is the process of removing background noise from the signal intensi-
ties. Background noise is the measurement of signal intensity that is caused by either auto-
fluorescense of the array surface or by non-specific binding. In other words, background noise is
the proportion of the measured intensities that do not reflect the expression of the genes.

In two-channel studies the data extracted from the image processing consist of a measure for
the spot intensity and its local background, for each spot on the array and for its color. Similarly,
in one channel experiments, the data extracted from the image processing consist of a measure
for the spot intensity and its local background, for each spot on the array.[12] One of the first
methods used in the bibliography for correcting the spot intensities is by simply subtracting the
background intensities. If TrueIntensity(i) denotes to the true signal intensity of the gene i, then
TrueIntensity(i) is calculated as shown in equation 2.1.

TrueIntensity(i) = PM(i)−MM(i) (2.1)

where PM(i) and MM(i) denotes the measured spot intensity of the gene i and its local
background, respectively.
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One of the most common problems of simple subtraction as a background method is that
it can result to some values being negative. Therefore, when the background corrected data
are log2-transformed, missing values are obtained. This leads not only to loss of information but
also to bias. Therefore, many methods trying to eliminate this phenomenon were introduced, like
replacing every negative value after background correction with a standard small positive value.
However, simple subtraction has many other disadvantages as it simplifies the background noise
existing in the data.

These disadvantages that methods depending on the simple subtraction of the background
intensities have, led to the appearance of a new approach regarding the background correction of
the data. For a given probe p, let θp denote the expression level of p, that is, the concentration
of RNA transcripts homologous to probe p in the unlabelled sample, and ips the background-
corrected spot intensity as measured on array s. A simple model relating ips to θp is

ips ∼ ks ∗ap ∗θp , p = 1, . . . ,P, s = 1, . . . ,S (2.2)

where ks is an array−specific constant of proportionality and ap is a probe−specific constant.
There are P probes and S arrays.[12] The model states that for a given array, the intensities ips

are proportional to the expression levels θp with coefficients that vary for the different probes.

Rewriting in the log−scale (using, by convention, base 2 logarithms) and introducing an error
term, the above equation becomes as follows

log2 ips = log2 ks + log2 ap + log2 θp + eps, p = 1, . . . ,P,s = 1, . . . ,S (2.3)

For the identification of the parameters ap,ks and eps many methods exist in the bibliography,[13],[14]
with the most popular one being RMA by Irizary et al [15]

2.1.2 Normalisation

Single−Dye cDNA microarrays

The backgroundcorrected spot intensities should reflect the abundance of the corresponding tar-
get genes in the samples. However, often the relation is not that of simple proportionality: the
true signals may be distorted in various ways. One of these is spatial bias. Spatial bias is the
presence of regions with overall higher or lower intensity levels across the samples, as shown in
figure 2.1.
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Another form of distortion may appear when data from replicate arrays are compared graph-
ically and various forms of systematic departure from the identity line are observed. This phe-
nomenon is termed relative intensity bias according to David Edwards [12] and can be connected
to array effects, systematic errors or difference in the average relative expression levels across
samples. Some of the distortion that may appear in the data plots are shown in figure 2.2

Figure 2.1: Spatial Background Bias [12]

Figure 2.2: Examples of relative intensity bias [12]

Dual-Dye cDNA microarrays

For Dual−dye cDNA microarrays, the purpose of dye normalization is to balance the fluores-
cence intensities of the two dyes used (green Cy3 and red Cy5 dye) as well as to allow the



2.1 Background Correction and Normalisation 9

comparison of expression levels across experiments (slides). Dye bias can be most obviously
seen in an experiment where two identical mRNA samples are labeled with different dyes and
subsequently hybridized to the same slide. In this situation, it is rare to have the dye intensities
equal on average and often the intensities are higher for the green dye.

This bias can stem from a variety of factors including physical properties of the dyes (heat
and light sensitivity, relative half−life), efficiency of dye incorporation, experimental variability
in probe coupling and processing procedures, and scanner settings at the data collection step.

Furthermore, the relative gene expression levels (as measured by log ratios) from replicate
experiments may have different spreads due to differences in experimental conditions, including
unequal quantities of starting RNA or systematic bias. Some scale adjustment may then be
required so that the relative expression levels from one particular experiment do not dominate
the average relative expression levels across replicate experiments.

There are various methods available in the bibliography for the normalisation of both the
dual−dye and the single-dye cDNA microarrays. One of the most frequently used normalisation
methods is the ” quantile normalisation ”. The goal of quantile normalization is to make the
distribution of probe intensities the same for arrays i = 1, . . . , I. The normalization maps probe
level data from all arrays,i = 1, . . . , I, so that an I -dimensional quantile– quantile plot follows
the I -dimensional identity line.

2.1.3 Methods

In the figure 2.3 many of the available methods of background correction and normalisation can
be seen.

2.1.4 MA Plots

Almost always, biological comparisons made on microarrays are very specific in nature, i.e. only
a small proportion of genes are expected to be differentially expressed. Therefore, the remaining
genes are expected to have constant expression and so can be used as indicators of the whether
the background correction and normalisation method used is appropriate for the data.

Dual-Dye cDNA microarrays

For a spot j, j = 1, . . . p, let R j and G j denote the measured fluorescence intensities (after back-
ground correction and normalisation) for the red and green dyes, respectively. In order to test if
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Figure 2.3: Different methods of background correction and normalisation. For further infor-
mation regarding the background correction methods look into [13],[16],[14],[12],[17],[18] For
further information regarding the normalisation methods look into [19],[20],[21],[22], [14]
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bias and background noise is successfully removed from the data, it is useful to plot the log in-
tensity ratio M = log2

R
G vs. the mean log-intensity A = log2

√
RG as described by Yang et al [21]

An M vs. A plot amounts to a 45o counter-clockwise rotation of the (log2G, log2R)-coordinate
system, followed by scaling of the coordinates.

In the M vs. A plot the points should be scattered around the zero line, with only a few of
them having great M values. If the points are scattered around a line parallel to the zero line or
a line that displays a gradient, the data have remaining bias and some systematic errors have not
been successfully removed. This is also indicated if the points in the plot display curvature.

Single-Dye cDNA microarrays

In single-Dye cDNA data, it is straightforward to adapt the same approach proposed by Yang et
al. [20] for the Dual-Dye cDNA data in order to check if spatial and intensity bias are successfully
removed from the data. The method as changed for adapting to one-channel data can be described
as follows.[12]

If V 1 = (V 1
1 , . . . ,V

1
P ) and V 2 = (V 2

1 , . . . ,V
2
Ṗ ) encodes the log2, background corrected and nor-

malised intensities of the genes’ expressions of the samples belonging to either group 1 or 2
respectively:

M =V 1−V 2 (2.4)

A =V 1 +V 2 (2.5)

As in the Dual-Dye microarrays the points in the M vs. A plot should be scattered around the
zero line. Anything else indicates that there is still bias in the data.

2.2 Differential Expression Analysis

One of the reasons to carry out a microarray experiment is to monitor the expression level of
genes at a genome scale. Patterns could be derived from analysing the gene expression data of
the genes, and new insights could be gained into the underlying biology.

Fundamental to the task of analysing gene expression data is the need to identify genes whose
patterns of expression differ according to phenotype or experimental condition. Such an analysis
called Differential Expression Analysis and most times focuses on identifying the genes which
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change their expression among samples belonging to one of two conditions, eg. healthy and
diseased.

In order to identify if one gene is differentially expressed in the two conditions, two measures
should be calculated, a measure of magnitude and a measure of significance. In a Differential
Expression Analysis, these two measures are calculated for each and every gene, separately.

2.2.1 Measure of magnitude

Assume that an experiment population consists of N samples. From N samples, m are control
samples (eg. normal) and N-m are case samples (eg. diseased). Furthermore, assume that Eg(i)

encodes the expression level of the gene g of the ith sample. The calculation of the measure of
magnitude aims to clarify if there is an important and constant difference in the expression of the
gene g among the two groups. In other words, it answers the biological question of whether the
expression of the gene g is importantly higher or lower in the case population compared to the
control population (eg. disease vs normal samples). Usually, as a measure of magnitude is used
the log2 FoldChange which is is calculated as shown in equation 2.6.

Econtrol =
∑iecontrol Eg(i)

m
(2.6)

Ecase =
∑ jecase Eg( j)

N−m
(2.7)

= log2
Ecase

Econtrol
(2.8)

(2.9)

In the log2 FoldChange, the mean value of the genes’ expression levels of control and case
samples, Econtrol and Ecase respectively, are used. In this way, it is ensured that the observed
difference in the expression between the groups is constant and not found by chance. The 2−
f old logarithm is used in order to easily interpret the results. For example, a log2 FoldChange

of 1 means that the average expression of the gene in the case samples is doubled compared to
the one of the control samples.

2.2.2 Measure of Significance

The measure of significance answers the following biological question:
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” Is the observed difference in the expression level of the gene g between the control and

the case samples statistically significant? ”

In order to answer this question a statistical hypothesis is tested and a p-value is calculated.
The p-value is the probability that the null hypothesis is true. In Differential Expression Analysis
the null hypothesis is that the difference in the expression levels of the gene depends on the
change of the condition.

Assume that x(i) and y(i) with (i = 1,N) are the values of two continuous variables, X and Y

respectively. In statistical analysis the dependence of the variable Y from the variable X can be
tested by fitting best a linear regression through the points (x(i),y(i)) and calculating the linear
coefficient R2. Mathematically, a simple linear regression can be written as shown in equation
2.10

Y = b0 +b1X (2.10)

In equation 2.10, b0 and b1 are two unknown constants that represent the intercept and slope
terms in the linear model. Together, b0 and b1 are known as the model coefficients or parameters.
The goal is to estimate b0 and b1 in order the line to fit best the available data. In other words,
b0 and b1 should be calculated so that the line is as close as possible to the given points. There
are a number of ways of measuring closeness. However the most common approach involves
minimizing the least square criterion. Let ŷ(i) = b0+b1x(i) be the prediction of the linear model
for Y based on the ith value of X. Then

ei = y(i)− ŷ(i) (2.11)

represents the ith residual,which is the difference between the ith observed response and the
ith predicted by the linear model value.

The residual sum of squares (SS) is calculated as shown in equation 2.12

SS = e2
1 + e2

1 + e2
2 + . . .+ e2

N (2.12)

The least square approach chooses the b0 and b1 in order to minimize the SS. An example of
best fit using the least square approach can be seen in the figure 2.4

After the identification of the line that best fits the available data, R2 can be calculated. The
R2 statistic provides an alternative measure of fit. It takes the form of proportion− the proportion
of variance explained− and so it always takes a value between 0 and 1. R2 can be calculated as
shown in the equation 2.13
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Figure 2.4: Best fit Line

R2 =
T SS−RSS

T SS
(2.13)

TSS measures the total variance in the response of Y and can be thought of as the amount of
variability inherent in the response before the regression is performed. It is calculated as shown
in equation 2.14

T SS =
SS(Ymean)

N
(2.14)

In contrast, RSS measures the amount of variability that is left unexplained after performing
the regression and can be calculated as shown in equation 2.15

RSS =
SS( f it)

N
(2.15)

Hence, T SS−RSS measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion of variability in Y that
can be explained using X . An R2 statistic that is close to 1 indicates that a large proportion of the
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variability in the response has been explained by the regression, therefore that the variable X and
Y are greatly dependent.

Finally in order to establish that R2 is statistically important, and therefore the correlation
between the two variables, a p−value is calculated using F−test. For the calculation of the
p−value, the F variable is defined according to the equation 2.16

F =
SS(mean)−SS( f it)

SS( f it)
∗

N− p f it

p f it− pmean
(2.16)

where p f it encodes the degrees of freedom of the linear fit and is equal to the model parameters,
hence 2. Similarly, pmean encodes the degrees of freedom if there was no linear relationship
between the variables X and Y . In that case the slope parameter would be equal to zero and
therefore the model parameters would be reduced to 1. The p-value is defined by checking the
corresponding to the sample size and degrees of freedom F-distribution, as shown in figure 2.5.

Figure 2.5: F-Distribution

In the differential expression analysis, the variable X is categorical, as it corresponds to the
state of the samples (control or case study), and therefore it can take only two values, 0 or 1 . On
the other hand, the variable Y is continuous, as it corresponds to the gene expression levels of the
gene g. That is:

Y (i) = Eg(i) (2.17)



16 Chapter 2. Theory

In order to find in this case if the correlation of the variables X and Y is significant, the same
procedure, as explained for the two continuous variables, can be followed. In other words, a
linear regression that best fits the data should be defined and then the statistical R2 should be
calculated and tested for its significance by an F−test. In this case, though, the linear regression
that best fits the data is not defined by the least square approach, but is calculated by the equation
2.18

Y = X ∗ [EcontrolEcase]
T + residuals (2.18)

where Econtrol and Ecase are defined as in the measure of magnitude. X is a Nx2 matrix which
plays the role of a switch between the two conditions(control and the case Samples.)

Figure 2.6: (a)Best linear fit in the differential expression analysis,(b)The matrix X

Usually differentially expressed genes are the ones in the genome that have:

log2FoldChange≥ 1.5 (2.19)

pvalue ≤ 0.05 (2.20)

However these values are no solid and it is up to the researcher to decide.
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2.3 Gene Set Analysis

The analysis of genome-wide expression data involves the task of compiling a list of statistical
significance of all genes over multiple conditions, enabling the identification of differentially
expressed genes. Many approaches have been developed for that matter. However, arriving
at a list of significant genes does not alone necessarily facilitate the biological problem. To
overcome this, methods based on statistical hypothesis tests have been developed that shift the
analysis from individual genes to sets of genes.[23] Gene Set Analysis (GSA) has the advantage
of incorporating existing biological knowledge into the expression analysis. As an example of
a common approach, Gene Ontology (GO) terms can be used to define gene sets, thus enabling
the identification of, e.g. statistically significant biological processes, through the use of GSA.
Gene sets are not restricted to GO terms, as they can be defined in an unlimited number of
ways, correlating to anything from metabolic or signalling pathways to transcription factors and
chromosomal positions. There are currently two major types of GSA procedure for incorporating
biological knowledge into Differential Expression Analysis. The first type can be referred to as
the over-representation approaches and the second type as the aggregate score approaches.[24]

Over-representation analysis can be summarized as follows : First, form a list of candidate
genes, that is genes which are considered differentially expressed (Differential Expression Anal-
ysis). Then, for each gene set, we create a two−by−two table comparing the number of can-
didate genes that are members of the category to those that are not members. The significance
of over-representation can be assessed, for example, using the hypergeometric distribution or its
binomial approximation. A limitation of the over-representation approach is that it ignores all
the genes that did not make the list of candidate genes. Therefore, the results will be highly
dependent on the cut-off used in constructing this list.

The aggregate score approach, does not have this limitation. The methods that depend on
the aggregate score approach takes a list of gene-level statistics as an input and, based on these
statistics, calculate a gene set statistic for each gene set being analysed. In the list, all genes of
the original expression dataset can be included, thus these methods do not require any a priori
significance cut-off. Due to this advantage they have gained scientific focus over the past few
years.

The GSA work-flow as described by Leif Varemo et al [23] starts with calculating the gene set
statistics with various methods, followed by the significance estimation. Finally the significance
of its gene set is estimated by implementing the consensus scoring approach. This procedure can
be seen in figure 2.7.
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Figure 2.7: Gene Set Analysis Workflow [23]

2.3.1 Gene Set Statistics

There are many ways to calculate the gene set statistics. Some of them, take as input a list of
the genes p-values,whereas some of them take as input a list of the genes t-values. In other
words, some conclude in the calculation of the gene set statistics the sign of the genes regulation
(t−values), whereas other do not (p−values). Methods that frequently are used for the calculation
of the gene set statistics are shown in the table ??

Methods used for the calculation of Gene Set Statistic

Fisher’s combined probability test
PAGE

Stouffer’s method
Reporter features

Tail Strength
Wilcoxon rank-sum test

Mean
Median

Sum
Gene Set Enrichment Analysis (GSEA)

Of these methods GSEA is by far the most popular and most frequently used in the GSA.
[25] For that reason, will be analysed further.

Gene Set Enrichment Analysis(GSEA)

GSEA takes as input a list of genes and their measure of significance, specifically their t-values.
The genes can be ordered in a ranked list L, according to their differential expression between
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the classes. Given an a priori defined set of genes S, the goal of GSEA is to determine whether
the members of S are randomly distributed throughout L or primarily found at the top or bottom.
For that reason, an enrichment score (ES) is calculated that reflects the degree to which a set S is
overrepresented at the extremes (top or bottom) of the entire ranked list L . The score is calculated
by walking down the list L, increasing a running-sum statistic when a gene in S is encountered
S and decreasing it when a gene not in S is encountered. In particular, if "i" is denoted to a gene
of the list "L" the enrichment score (ES) is calculated as follows:

ES(S) = max(Phit−Pmiss) (2.21)

Phit(S, i) = ∑
ieS, j≤i

| r j |p

NR
with (2.22)

NR = ∑
ieS
| r j

p and (2.23)

Pmiss(S, i) = ∑
i/∈S, j≤i

1
N−NH

with (2.24)

NH = ∑
i/∈S
| r j |p and (2.25)

N = NH +NR (2.26)

2.3.2 Assessing Gene Set Significance

Each gene set statistic can be converted into a p-value that estimates the statistical significance
of that gene set. By definition, the p-value of a gene set statistic is the probability to observe a
new gene set statistic that is equal to or more extreme than the given gene set statistic.

This probability can be estimated provided a null distribution, i.e. the probability distribution
of the gene set statistic. For 5 of the 11 gene set statistics, theoretical null distributions, defined by
continuous functions, can be used to estimate the p-values. In all 11 cases, the null distributions
can also be estimated by a permutation approach. This approach can be performed in two ways,
either by randomizing the genes, referred to as gene sampling, or by randomizing the sample
labels, referred to as sample permutation. Gene sampling is carried out for each gene set by
randomly taking a sample of genes (of the same number as in the gene set) and recalculating the
gene set statistic. This is repeated a large number of times (e.g. 10 000 times) to give a discrete
null distribution. The gene set p-value is simply the fraction of random gene set statistics that
are equal to or more extreme (in general larger) than the original gene set statistic. Sample
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permutation is similar to gene sampling; however, in this case, the original sample labels are
randomized, and all the gene-level statistics, and subsequently all the gene set statistics, are
recalculated based on the new labelling. This procedure is also repeated a large number of times,
and the p-values are calculated in the same way as described for the gene sampling. The choice
of permutation approach is tightly connected to the underlying null hypothesis. When using
gene sampling, the association of a gene set with the phenotype is compared with the association
of the rest of the genes to the phenotype. On the other hand, by using sample permutation, the
association of a gene set to the phenotype is compared with its association to random phenotypes.

As a final step of the analysis, the gene set’s p-values are adjusted for multiple testing with one
of the known methods. The result of a GSA is a list of gene set adjusted p-values, indicating the
significance of each gene set. Usually, as a cut-off threshold for identifying the most significant
gene sets is:

ad j.pvalue ≤ 0.05 (2.27)

2.3.3 Consensus Scoring of gene sets

A further step of the analysis is to assign the resulting gene set p-values to the appropriate direc-
tionality class which depends on the statistical test.

Three directionality classes can be defined: the non-directionality, the mixed-directionality
and the distinct directionality. The non-directional class contains gene set p-values where the
information about direction of differential expression is omitted, so that significant gene sets
can be interpreted as affected by differential expression in general. For the mixed-directional
class, a gene set can be significantly affected by differentially expressed genes in either or both
directions. Finally, the distinct-directional class aims to identify gene sets that are significantly
affected by regulation in a distinct direction.

By using various combinations of gene-level statistics, gene set statistics, significance esti-
mation methods and directionality classes, different unique GSA runs can be performed. Each
run will produce a list of gene set p-values for some or all of the directionality classes. To achieve
a consensus result, the different gene set p-value vectors belonging to the same class are aggre-
gated to produce a consensus score for each gene set and class. The aggregation is based on
ranking the gene sets according to their P-value and using rank aggregation approaches to yield
a consensus score for each gene set. Two simple approaches are to use either the mean or the
median of the ranks of a given gene set as the consensus score.
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As the p-values of the gene sets depends highly on the method used for calculating the gene
set statistic and for defining the null distribution, it is more robust to use a consensus score for
the identification of the most important gene sets. For example, one can choose the gene sets that
were ranked in the top five of one of the categories as the most important.

2.4 Weighted Gene Co-Expression Network Analysis

Networks can be used to describe the pairwise relationships between n nodes (which are some-
times referred to as vertices). For example, networks can be used to describe the relationships
between n genes. A correlation network is a network whose adjacency matrix is constructed on
the basis of pairwise correlations between numeric vectors. The numeric vectors may represent
observed quantitative measurements of variables. For example, the gene expression levels (tran-
script abundances) across different samples can be represented by a numeric vector. The aim
of Weighted Gene Co-Expression Network Analysis (WGCNA) is to identify clusters of genes
highly co-expressed, as well as, the "key" genes in these clusters.[26],[27]

2.4.1 Network Construction

Methods for defining an adjacency matrix are also known as network construction. The network
adjacency matrix can be defined by transforming a similarity or dissimilarity matrix, a symmetric
matrix, or even a general square matrix. Multiple similarity matrices can be combined into a
single consensus network, which allows one to define consensus modules. For the construction
of the WGCNA network the dissimilarity topological overlap matrix is used.

Pearson’s Correlation

The Pearson correlation (also known as sample correlation) between two vectors x and y is
defined as follows:

cor(x,y) =
cov(x,y)√

var(x)var(y)
(2.28)

cov(x,y) =
∑

N
u (xu−mean(x))(yu−mean(y))

N−1
(2.29)

The first step for constructing the WGCNA network is calculating the pearson correlation
matrix. The pearson correlation matrix is a square symmetric matrix with number of rows and
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columns equivalent to the number of genes. If xi and x j (i, j = 1 . . .N) are the vectors containing
the gene expression levels across the different samples of genes x and y respectively, the matrix’s
elements can be described:

DatXi j = cor(xi,x j) (2.30)

Adjacency matrix

A correlation network adjacency matrix is constructed on the basis of the pairwise correlations
cor(xi,x j). The adjacency matrix can either be weighted or unweighted. The unweighted adja-
cency matrix results in a network where only highly correlated nodes are connected, and there-
fore a sparse network. The weighted adjacency matrix results to a network where all nodes are
connected and the correlation between the nodes is shown by the thickness of the line.

A weighted adjacency matrix can be either signed or unsigned. The signed weighted network
takes into consideration the sign of the correlation whereas the unsigned treats the negative and
the positive correlation the same. An unsigned weighted adjacency matrix can be defined as
follows:

Ai j =| DatXi j |β (2.31)

A signed weighted adjacency matrix can be defined as follows:

Ai j = (0.5+0.5DatXi j)
β (2.32)

where in both cases the power parameter is required to satisfy β ≥ 1.

An unweighted correlation network can be defined by thresholding the absolute values of the
correlation matrix, i.e.,

Ai j =

1, i f | DatXi j |≥ φ

0, i f | DatXi j |≤ φ

(2.33)

A basic disadvantage of the unweighted network is that whether two nodes are connected or
not, depends exclusively on the cut-off value φ of the step function. For example, two nodes
whose correlation is φ +∆φ are considered correlated and are connected in the network, whereas
two nodes whose correlation is φ−∆φ are considered not correlated and are not connected in the
network. Therefore, the resulting network depends highly on the cut-off value φ . The weighted
network tries to eliminate this problem by smoothing the step function. This is achieved through
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the introduction of the parameter β . Higher the β , closer the power adjacency function to the
step function, as shown in figure 2.8.

Figure 2.8: Step function vs Adjacency power function for various powers β

As shown in figure 2.8 a weighted correlation network constructed with the power adjacency
function depends on the parameter β . Since each parameter value of an adjacency function
leads to a network with different topological properties, the choice of the parameter value can be
guided by desirable topological properties.

In WGCNA the parameter β of the constructed weighted correlation network is chosen in
order for the network to exhibit approximate scale-free topology. Scale-free topology networks
consists of a few genes with great connectivity and usually larger heterogeneity and cluster sep-
arability. Furthermore, many biological networks, like the metabolic, have been found to exhibit
approximate scale-free topology properties. In order to find if the choice of a parameter β has
lead to an approximate scale-free topology network, the general connectivity of each gene is
calculated:

GConi = ∑ai j (2.34)

as well as the frequency of each connectivity GConi. Then both the connectivity and the fre-
quency are log10 transformed. In order for the network to have approximate scale-free topology
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the plot of the connectivity∼ frequency should be linear with a scale-free index R2 close to 1.
In practice, an R2 ≥ 0.8 is enough to consider that the network exhibits approximate scale-free
topology properties.

Dissimilarity overlap matrix

In practice, an original network adjacency matrix Aoriginal is often transformed into new network
adjacency matrix denoted by A. For example, a transformation can be used to change the topo-
logical properties of a network. An adjacency function AF is defined as a matrix valued function
that maps an n×n dimensional adjacency matrix Aoriginal onto a new n×n dimensional network
adjacency. The topological Overlap Matrix(TOM)-based adjacency function replaces the adja-
cencies of the original adjacency matrix Aoriginal by a measure of interconnected adjacencies that
are based on shared neighbours.

TOMi j =
(∑u(aiuau j))+ai j

min(GConi,GCon j)+1−ai j
(2.35)

Basically, the TOMi j is a measure of the common neighbours that the genes xi and x j share.
The topological overlap measure can serve as a filter that decreases the effect of spurious or
weak connections, and it can lead to more robust networks. Since the Aoriginal adjacency matrix
is sparse (many zeroes) and susceptible to noise, in most cases it is advantageous to use TOMi j

for the construction of the network.

Figure 2.9: TOM is a measure of the common neighbours that two nodes share
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TOMi j matrix,similarly with the adjacency matrix Ai j are based on the similarities between
the genes. However, the WGCNA uses dissimilarity measures in order to find the clusters of the
co-expressed genes. Consequently, the dissimilarity topological overlap matrix is calculated, as
a final step and the basis for the construction of the network in WGCNA.

DISTOMi j = 1−TOMi j (2.36)

2.4.2 Module Identification

Detecting clusters (also referred to as groups or modules) of closely related objects is an im-
portant problem in data mining in general. Network modules are often defined as clusters.
Partitioning-around-medoids (PAM) clustering and hierarchical clustering are often used in net-
work applications. Partitioning-around medoids (aka. k-medoid clustering) leads to relatively
robust clusters but requires that the user specifies the number k of clusters. Hierarchical clus-
tering is attractive in network applications since (a) it does not require the specification of the
number of clusters and (b) it works well when there are many singleton clusters and when cluster
sizes vary greatly. However, hierarchical clustering requires the user to determine how to cut
branches of the resulting cluster tree. Toward this end, in WGCNA one can use the dynamic
hybrid method which combines the advantages of both hierarchical clustering and partitioning-
around-medoids clustering.[28]

Partitioning-around-medoids

Partitioning-around-medoids (PAM) is a clustering procedure that implements an iterative algo-
rithm for minimizing the within-cluster scatter. Assume that Cl(i) encodes a cluster assignment,
i.e., Cl(i) = q if the ith object is in the qth cluster (where q = 1, . . . ,k indexes the k clusters).
Then the within cluster scatter with regard to the dissimilarity matrix Di j, WithinScatter(Cl,Di j)

is defined as follows:

WithinScatter(Cl,Di j) =
1
2

k

∑
q=1

∑
Cl(i)=q

∑
Cl( j)=q

di j (2.37)

A medoid can be defined as that object of a cluster, whose average dissimilarity to all the
objects in the cluster is minimal, i.e., it is the most centrally located object inside a given cluster.
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PAM is a classical partitioning technique of clustering that clusters the data set of n objects
into k clusters where the integer k is a user-supplied parameter and is generally applicable since
it can input any dissimilarity measure.

Hierarchical Clustering

Hierarchical algorithms find successive clusters based on previously defined clusters. These
algorithms can be either bottom-up (agglomerative) or top-down (divisive).

Agglomerative hierarchical clustering treats objects as separate clusters and merges them
into successively larger clusters. Hierarchical clustering creates a hierarchy of clusters which
may be represented in a tree structure called a dendrogram or cluster tree. The root of the tree
consists of a single cluster containing all objects, and the leaves correspond to individual objects.
Agglomerative hierarchical clustering has two inputs: (a) a pairwise dissimilarity measure (eg.
DissTOM matrix)and (b) a method for constructing an inter-cluster dissimilarity measure. The
inter-cluster dissimilarity measure(also known as linkage method or agglomeration method) is
based on the pairwise dissimilarities between objects inside the clusters.

In WGCNA, the inter-cluster dissimilarity between two clusters clustq1 and clustq2 is defined
as the average dissimilarity between the objects of each cluster.( average linkage hierarchical
clustering)

daverage(clustq1,clustq2) =
∑ieclustq1 ∑ jeclustq2 di j

| clustq1 || clustq2 |
(2.38)

where di j denotes the pairwise dissimilarity between objects i and j, | clustq1 | and | clustq2 |
denotes the number of objects in clustq1 and clustq2, accordingly.

For the identification of the clusters of genes, one can choose a threshold dissimilarity height
to cut the dendrogram. Then clusters are defined as the separate branches below the cut height.
This algorithm is also known as Static cut Algorithm.

Another way of identifying the clusters is by implementing an algorithm that respects the
morphology of the dendrogram. This algorithm is also known as Dynamic Cut Algorithm. The
algorithm implements an adaptive, iterative process of cluster decomposition and combination
and stops when the number of clusters becomes stable. It starts by obtaining a few large clusters
by the static tree cut. The joining heights of each cluster are analyzed for a characteristic pattern
of fluctuations indicating a sub-cluster structure; clusters exhibiting this pattern are recursively
split. To avoid over-splitting, very small clusters are joined to their neighbouring major clusters.
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Hybrid Method

The Hybrid cut tree method is a bottom-up algorithm that uses both a cluster tree and a dissimi-
larity measure as an input. As a hybrid between hierarchical clustering and partitioning-around-
medoids (PAM) clustering it may improve the detection of outlying members of each cluster.
The hybrid cluster detection proceeds along two steps. First, branches that satisfy specific crite-
ria for being clusters are detected. Next, all previously unassigned objects are tested for sufficient
proximity to clusters detected in the first step; if the nearest cluster is close enough, the object is
assigned to that cluster.

2.4.3 Hub-genes

Co-expression modules identified by clustering are often large, and so, it is important to identify
which genes in each module best explains its behaviour. A widely used approach is to identify
highly connected genes in a co-expression network. These genes are called hub genes. Hub
genes are frequently more relevant to the functionality of the networks than other nodes. This is
also the case in biological networks, although mathematical derivations show that this is only the
case for intra-modular hub genes (as opposed to inter-modular hub genes). Intra-modular hubs
are central to specific modules in the network, while intermodular hubs are central to the entire
network. To identify hub genes, centrality measures, mainly ”betweenness centrality”, are often
used. Genes with high betweenness centrality are important as shortest-path connectors through
a network. Betweenness centrality can be measured as shown in equation 2.39

BetweenessCentrality(v) = ∑
s 6=v6=t

σst(v)
σst

(2.39)

where σst is the total number of shortest paths from the node s to the node t and σst(v) is the
total number of those that pass through the node v.

2.4.4 Eigengenes

Identified co-expression modules usually form a biologically meaningful meta-network that re-
veals a higher-order organisation of the transcriptome. The analysis for constructing the meta-
network can be viewed as a network reduction scheme that reduces a gene co-expression network
involving thousands of genes to orders of magnitude smaller meta-network involving module
representatives (one eigengene per module).
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Figure 2.10: Expression levels (y-axis) of module genes (grey lines) and the eigengene (black
line) across microarray samples (x-axis).

A module eigengene is defined as the first principal component of the expression matrix of
the corresponding module.[29] It is always more robust than the modules. For that reason, it is
advantageous to use the eigengenes of the modules for defining the correlation of the modules
with the disease. Furthermore, a module’s genes that have a high correlation with its eigenegene
are usually the ones that are the hub-genes.

Eigengenes of different modules often exhibit high correlations. If the eigengenes are indexed
by capital letters, for example EJ denotes the eigengene of the Jth module, then the connection
strength (adjacency) between two eigenegenes EJ and EI can be defined as:

aeigenIJ =
1+ cor(EI,EJ)

2
(2.40)

These connection strength can be used to define the meta-network, also known as eigengene
network. Since eigengenes form a network, same module detection procedures like the ones
mentioned before can be used to identify modules comprised of eigengenes, the meta-modules.
In WGCNA, meta-modules are detected as branches of the resulting cluster tree by using average
hierarchical clustering. The resulting meta-modules are sets of positively correlated eigengenes.
Meta-modules may reveal a higher order organization among gene co-expression modules. Fur-
thermore, meta-modules,as well as the eigengenes, are highly robust to noise.

Both the eigenegenes and the meta-modules can be used for further meta-analysis like dif-
ferential eigengene network analysis or meta-module preservation analysis in different datasets(
different tissues).
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Figure 2.11: Workflow of the Weighted gene Co-Expression Analysis(WGCNA)

2.5 Module Stability Analysis

Many module detection methods, like WGCNA, identify groups of genes whose expression pro-
files are highly correlated. For such modules to be biological meaningful, their stability is of
high importance. However, the modules identified by cluster analysis can be strongly affected by
noise and outlying observations. Further, many clustering methods can be considered non-robust
in the sense that a small change in the underlying network adjacency can lead to a large change
in the resulting clustering (for example, previously separate clusters may merge or a cluster may
be split).

There are many ways that the robustness of the clustering method and the stability of the
identified modules can be examined. For example, one may perform the network analysis and
module identification repeatedly on artificial data sets derived from the original data or add vary-
ing amounts of random noise to the data.

Let’s assume the construction of N artificial datasets. The network analysis and module
identification of each artificial dataset will lead to N new sets of modules. Hypothetically, if
clusti is denoted to a module of the original network , then in order for that module clusti to be
considered stable it should be included to every new set of modules. In reality, this is rarely the
case. For that reason, the clusti is considered stable if there is a module clust j in each new set of
modules that contain a great percentage of its genes. Larger the average percentage, more stable
the original clusti. If the above-mentioned hypothesis is true for either all or the great majority
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of the modules of the original dataset, then the clustering method can be considered robust, and
the constructed original network with its clusters biologically meaningful.

There are two major methods to construct artificial expression datasets. The first method
of defining an artificial expression dataset is by removing randomly a small percentage of the
Samples, usually less than 10%. The second method is by re-sampling the original dataset,
allowing for the multiple repetition of a sample. In other words,the new dataset will consist of
randomly chosen samples of the original dataset, and one sample can be chosen multiple times.

Implementing the first method one can check if the clustering of the genes will be affected by
the loss of information. The second method concludes to almost entirely different datasets and it
is a more demanding stability test. However, in small datasets (small number of samples) there
is a possibility that the new artificial dataset consists of a very small proportion of the original
samples. This is a consequence of allowing the repetition of samples multiple times in the new
dataset and lead to not informative results.
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CHAPTER 3

Results

This chapter provides an overview of the diploma thesis. The application of the methods analysed
in the theory chapter will be presented and the results will be discussed. Each section corresponds
to one part of the analysis done in this diploma thesis and depends on the results of the previously
presented sections.

3.1 Datasets

The purpose of this diploma thesis, as described in the Introduction, is to detect common patho-
logical mechanisms among the tissues involved in knee-osteoarthritis: cartilage, synovium,meniscus
and subchondral bone. In this respect, four microarray datasets where used, one microarray
dataset for each tissue affected, as shown in table 3.1. All the microarray datasets derive from
Gene Expression Omnibus (GEO). GEO is a database repository of high throughput gene ex-
pression data and microarrays.

Synovium

GSE55235 is a genome-wide transcriptomic dataset from 79 individuals. It includes 20 healthy
controls, 26 osteoarthritis patients and 33 rheumatoid arthritis patients. The Affymetrix tech-
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Microarray datasets used GEO Accession

Synovium GSE55235
Cartilage GSE117999

Subchondral Bone GSE51588
Meniscus GSE98918

Table 3.1: The GEO Accession of the datasets used in the analysis

nology (specifically Affymetrix Human Genome U133A Array ) was used to identify gene tran-
scripts that were expressed differently in the synovial tissues of the joints of the samples.

For the purpose of this diploma thesis, the 33 rheumatoid arthritis patients were excluded
from the analysis.

Cartilage

GSE117999 is a genome-wide transcriptomic dataset that includes 24 Samples. 12 Patients un-
dergoing arthroscopic partial meniscectomy (APM) without any evidence of OA and 12 patients
undergoing total knee arthroplasty (TKA) due to end-stage OA were consented. Cartilage was
garnered from the non-weight bearing site of the medial intercondylar notch. The Agilent tech-
nology (specifically Agilent-072363 SurePrint G3 Human GE v3 8x60K Microarray) was used
to probe differentially expressed transcripts between the healthy and the OA cartilage.

Subchondral Bone

GSE51588 is a genome-wide transcriptomic dataset. For its creation total RNA from regions
of interest from human OA (n=20) and non-OA (n=5) knee lateral and medial tibial plateaus
(LT and MT) were isolated. The Agilent technology (specifically Agilent-026652 Whole Human
Genome Microarray 4x44K v2) was used to probe differentially expressed transcripts between
the healthy and the OA subchondral bone regions.

For the purpose of this diploma thesis, only the 20 OA samples and the 5 normal samples
corresponding to knee medial tibial plateau were used. This decision stemed from 2 reasons.
Firstly, an important difference in the gene expression levels was observed between the knee
lateral and medial plateaus of the same samples. Subsequently, the use of both LT and MT sam-
ples would conclude in loss of biological information. Secondly, comparing the gene expression
levels between LT and MT it was obvious that the knee medial tibial palteaus was more affected
by osteoarthritis than the LT.
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Meniscus

GSE98918 is a genome-wide transcriptomic dataset from 24 individuals. It includes 12 healthy
controls and 12 osteoarthritis patients. The Agilent technology (Agilent-072363 SurePrint G3
Human GE v3 8x60K Microarray) was used to identify gene transcripts that were expressed
differently in meniscus tissues obtained from the OA and non-OA samples.

3.2 Background Correction and Normalisation

For background correction and normalisation, RMA and quantile normalisation were chosen in
all datasets. The combination of these methods was chosen because it resulted in MA plots
scattered around the zero line, which could not be achieved with any other method. This can be
seen in figure 3.1 where the MA plot of each dataset is presented. The package ” limma ” in the
programming language R was used for the application of the methods.[14]

(a) (b)

(c) (d)

Figure 3.1: MA plots of the four datasets after background correction and normalisation
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3.3 Differential Expression Analysis

Before finding the differentially expressed genes in each tissue, the samples of each dataset were
divided into two groups,normal and diseased. Then, both normal and diseased samples of each
dataset were hierarchically clustered according to their genes’ expression, as shown in figures 3.2
: 3.5. From the resulting dendrograms, possible outliers in the microarray datasets were detected
and removed.

Specifically, as shown in figure 3.2 there were two outliers in the normal samples of the
meniscus dataset, the 11th and the 12th control sample, whereas no outliers could be detected
among the normal samples of the subchondral bone dataset. Furthermore, it is clear from figure
3.3 that no outliers could be detected in the normal samples of the synovium dataset. On the
other hand, the 11th normal sample in the cartilage dataset was greatly different from the rest
of the samples and therefore it was considered an outlier and removed. Regarding the diseased
samples, as can be seen in figures 3.4 and 3.5, the microarray datasets corresponding to meniscus,
subchondral bone and synovium had no outliers. On the other hand, in the cartilage dataset the
15th and 19th diseased samples were outliers and therefore, they were removed.

Once the outliers in each dataset were removed, the differentially expressed genes (DEGs) in
each dataset were detected. For the detection of the DEGs the package ”limma” in the program-
ming language R was used.[14] In order for a gene to be considered differentially expressed, the
two conditions described in equation 3.1 should be true:

log2FoldChange≥ 1.5 (3.1)

ad j.pvalue ≤ 0.05 (3.2)

From figure 3.6 to figure 3.9 the volcano plots of the four datasets are presented. The points
colored with orange correspond to the DEGs of each dataset. Red color was used to emphasise
the genes that had | log2FoldChange |≥ 2. In other words, the points with red color correspond
to genes whose expression between the normal and the OA samples had a 4-fold increase or
decrease. Finally, genes that had | log2FoldChange |≥ 2.5 were named in the volcano plots.
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Figure 3.2: Hierarchical clustering of the Normal Samples in Mensicus and Subchondral Bone
Dataset
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Figure 3.4: Hierarchical clustering of the OA Samples in Mensicus and Subchondral Bone
Dataset
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Figure 3.6: Volcano plot of the Meniscus Dataset

Figure 3.7: Volcano plot of the Subchondral Bone Dataset
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Figure 3.8: Volcano plot of the Synovium Dataset

Figure 3.9: Volcano plot of the Cartilage Dataset
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As depicted in the volcano plots, the Subchondral Bone dataset had the greatest number of
DEGs. In particular, 712 genes were differentially expressed between the normal and the dis-
eased samples, while 112 genes had | log2FoldChange |≥ 2. It is worth mentioning that it was
the only dataset having genes with | log2FoldChange |≥ 4.

In the synovium dataset, 126 genes were differentially expressed between the normal and the
diseased samples with 47 of them having | log2FoldChange |≥ 2. Respectively, in the meniscus
dataset, 69 genes were DEGs and just 14 genes had | log2FoldChange |≥ 2.

Finally, the cartilage dataset had the least number of DEGs identified. Specifically, 32
genes were expressed differently between the normal and the OA samples with no DEG hav-
ing | log2FoldChange |≥ 2.

The Venn Diagram of the four datasets is shown in figure 3.10. Not one gene was identified
as differentially expressed in all four datasets. The genes that were differentially expressed in
three out of four datasets, as well as their functions are presented in table 3.2.

Figure 3.10: Venn Diagram of the four datasets regarding their DEGs
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DEGs Function

FAP encodes protein(homodimeric integral membrane gelatinase) involved in the
control of fibroblast growth or epithelial-mesenchymal interactions during de-
velopment, tissue repair, and epithelial carcinogenesis

COL5A2 encodes an alpha chain for one of the low abundance fibrillar collagens,
closely related to type XI collagen

MXRA5 encodes protein involved in extracellular matrix remodelling

APOD encodes a component of high density lipoprotein, closely related with the
enzyme lecithin involved in lipoprotein metabolism

DEFA3 encodes a protein ( defensin, alpha 3) found in the microbicidal granules of
neutrophils and likely plays a role in phagocyte-mediated host defense

S100A8 encodes a protein, involved in the regulation of a number of cellular processes
such as cell cycle progression and differentiation. This protein may function
in the inhibition of casein kinase and as a cytokine.

DEFA4 encodes protein (defensin, alpha 4) which is found in the neutrophils; it
exhibits corticostatic activity and inhibits corticotropin stimulated corticos-
terone production

CSN1S1 encodes protein (casein alpha s1)

Table 3.2: The common differentially expressed genes in 3 out of 4 datasets
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3.4 Weighted Gene Co-Expression Network Analysis

For the Weighted Gene Co-expression Analysis (WGCNA), only the diseased samples of the four
microarray datasets were used. Consequently, in the analysis were included 12 OA Samples of
the meniscus dataset, 12 OA samples of the synovium dataset, 25 OA samples of the subchondral
bone dataset and 10 samples of the cartilage dataset. The construction of a weighted signed
network was chosen, as such a network would provide more meaningful biological insights.

The aim of WGCNA is to group together genes that are highly co-expressed across the sam-
ples of a dataset, forming clusters. For the identification of the clusters, the co-expression net-
work is constructed first, using the adjacency matrix as a basis. In this case, we had four datasets
and we aimed to find modules that were common to all four datasets. In order this to be achieved,
the co-expression network of each dataset was constructed. Then genes that were highly co-
expressed consistently were grouped together. In other words, gene A and gene B would be
clustered together if they were highly co-expressed in all four datasets.

Before constructing the networks and identifying the clusters, the power β was calculated in
order the network to exhibit approximate scale-free topology properties. As can be seen in figure
3.11, in all datasets but synovium dataset, a power β equal to 12 would result in networks with
scale free topology R2 = 0.8. However, the network constructed from the synovium dataset if a
power β = 12 was chosen, would have an R2 ∼ 0.5. This would affect the consensus modules
identified by WGCNA and would result to modules highly driven from the synovium dataset,
and therefore not important biologically.

For that reason, a power β = 20 was chosen, as with this power the network constructed
from synovium dataset was closer to exhibit approximate scale free topology properties. The
constructed consensus network can be seen in figure 3.12. The different colors correspond to
different modules identified.

From the 11461 genes included in the analysis, 2850 were clustered in 37 modules. The
number of genes included in each module can be seen in the table 3.3. In the grey module were
assigned all the genes that were not considered members of any other module. In other words,
the grey module contains all the genes that could not be clustered in co-expression modules. For
the application of the WGCNA the package ”WGCNA” in the programming language R was
used.[26],[28]
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Figure 3.11: (a) Plot of Scale free topology Model Fit index∼ Soft threshold power β .(b) Plot of
Median Connectivity ∼ Soft threshold power β .(c) Plot of Mean Connectivity ∼ Soft threshold
power β . (d) Plot of Max Connectivity ∼ Soft threshold power β .
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3.5 Meta-Modules

Meta-modules are clusters of highly co-expressed modules. As shown in figures 3.13 : 3.16 some
of the identified modules are highly correlated, and therefore can be merged together, creating
meta-modules. The meta-modules can be detected as brances of the dendrograms or as the red
boxes in the diagonal of the heat maps.

As shown in figures 3.13 : 3.16, the modules identified by WGCNA are clustered differently
in each dataset. For example, in the meniscus dataset all modules can be clustered to 3 meta-
modules as cutting the dendrogram to a height between 0.4 and 1.2 will result to three distinct
brances. On the other hand, in the synovium dataset the number of the possibly identified meta-
modules depend on the chosen cutting height in the dendrogram. Respecting the shape of the
dendrogram in figure 3.15, it is safe to assume that the modules can be clustered into 6 meta-
modules. The modules are clustered according to their gene’s correlation in a specific dataset
and therefore the identified meta-modules highly depend on the dataset used. For instance, the
genes belonging in two modules may be highly co-expressed in the synovium dataset and not
co-expressed in the meniscus dataset. Consequently, the respective modules will be clustered
together only in the synovium dataset.

The most important conclusion of the meta-modules identification in the different datasets
was that most of the identified by WGCNA modules were correlated and therefore they should
be merged before a meta-analysis could be performed. Clustering the modules as shown in the
heatmaps of the cartilage and meniscus dataset would conclude to three huge meta-modules and
it could lead to very general results in the meta-analysis. On the other hand , clustering the
modules as shown in the heatmap of the subchondral bone dataset would result to many small
meta-modules and could lead to lack of results. Consequently, the modules were clustered as in
the synovium dataset, creating 6 meta-modules.

In order to have a better picture of the meta-modules, the co-expression networks of the 2850
genes belonging to the meta-modules were constructed, as shown in figures 3.17 : 3.20. The
different colours were used to distinguish which genes belong to each meta-module. As shown
in figure 3.19 all meta-modules despite dark green are distinct from each other. This is normal,
considering that the meta-modules were identified using the synovium Dataset. The genes of
the dark green meta-module are scattered in all the constructed networks. Furthermore, it can
be easily seen that in all other networks than synovium the purple and pink meta-module,as
well as, the light green and the light cyan are merged topologically. For the construction of the
co-expression networks of the meta-modules genes the program Cytoscape was used.
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Figure 3.13: Hierarchical Clustering and Heatmap of the modules in the Meniscus Dataset.Each
” MEXX ” with XX being a number corresponds to a module.



3.5 Meta-Modules 49

M
E5

M
E2

7
M

E0
M

E2
6

M
E2

1
M

E1
4

M
E8

M
E2

M
E1

M
E1

1
M

E1
8

M
E2

9
M

E2
2

M
E7

M
E2

8
M

E3
0

M
E2

0
M

E3
7

M
E1

6
M

E1
9

M
E3

4
M

E3
6

M
E3

2
M

E3
5

M
E9

M
E3

1
M

E3 M
E1

2
M

E2
4

M
E3

3
M

E1
3

M
E1

0
M

E2
3

M
E2

5
M

E4
M

E1
5

M
E1

7
M

E6

0.
0

0.
5

1.
0

 

0

0.2

0.4

0.6

0.8

1

M
E5

M
E2

7
M

E0
M

E2
6

M
E2

1
M

E1
4

M
E8

M
E2

M
E1

M
E1

1
M

E1
8

M
E2

9
M

E2
2

M
E7

M
E2

8
M

E3
0

M
E2

0
M

E3
7

M
E1

6
M

E1
9

M
E3

4
M

E3
6

M
E3

2
M

E3
5

M
E9

M
E3

1
M

E3
M

E1
2

M
E2

4
M

E3
3

M
E1

3
M

E1
0

M
E2

3
M

E2
5

M
E4

M
E1

5
M

E1
7

M
E6

ME5
ME27

ME0
ME26
ME21
ME14

ME8
ME2
ME1

ME11
ME18
ME29
ME22

ME7
ME28
ME30
ME20
ME37
ME16
ME19
ME34
ME36
ME32
ME35

ME9
ME31

ME3
ME12
ME24
ME33
ME13
ME10
ME23
ME25

ME4
ME15
ME17

ME6

Figure 3.14: Hierarchical Clustering and Heatmap of the modules in the Subchondral Bone
Dataset.Each ” MEXX ” with XX being a number corresponds to a module.
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Figure 3.15: Hierarchical Clustering and Heatmap of the modules in the Synovium Dataset.Each
” MEXX ” with XX being a number corresponds to a module.
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Figure 3.16: Hierarchical Clustering and Heatmap of the modules in the Cartilage Dataset.Each
” MEXX ” with XX being a number corresponds to a module.
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Figure 3.17: Network construction of the module’s genes in the Meniscus Dataset. Each color
correspond to one of the 6 meta-modules.

Figure 3.18: Network construction of the module’s genes in the Subchondral Bone Dataset. Each
color correspond to one of the 6 meta-modules.
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Figure 3.19: Network construction of the module’s genes in the Synovium Dataset. Each color
correspond to one of the 6 meta-modules.

Figure 3.20: Network construction of the module’s genes in the Cartilage Dataset. Each color
correspond to one of the 6 meta-modules.
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3.6 Pathway Analysis

Until this point of the analysis, genes whose expression levels were highly correlated between
the samples of the four datasets were clustered together into modules. Then, modules that were
highly correlated according to the synovium dataset were clustered together, creating 6 meta-
modules.

The basis of a co-expression network analysis is that genes which are highly correlated, usu-
ally serve a common biological purpose. Therefore, each meta-module corresponds to biological
functions and pathways that are common between the four tissues. In other words, the identifica-
tion of the meta-modules assures that there are some common pathological mechanisms among
the tissues involved in knee-osteoarthritis.

Pathway analysis was performed to each meta-module, in order to find its related pathways,
using the package ” piano” [23] in the programming language R. For the Pathway analysis, the
method ”Gene Set Enrichment Analysis(GSEA)” was used. GSEA takes as input a vector of
gene’s t-values. As the meta-modules were identified using the synovium dataset, it was chosen
to use the synovium dataset gene’s t-values for the Pathway Analysis. The identified pathways
in each cluster can be seen in the tables 3.4 : 3.9

Pathways that have been studied for their importance in OA pathogenesis are presented in
table 3.10, as well as a reference of the respective studies. In table 3.11 some of the identified
pathways that are related to other diseases are presented. For the treatment of the presented
diseases, drugs are studied originally used to treat arthritis. In the table 3.11 a reference of
respective studies are presented also.

Purple meta−module

REACTOME SIGNALING BY RHO GTPASES
REACTOME TRANSCRIPTION

REACTOMEPOST_TRANSLATIONAL_PROTEIN_MODIFICATION

Table 3.4: The pathways identified in the purple meta-module.

Royal blue meta-module

none

Table 3.5: The pathways identified in the royal blue meta-module.
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Pink meta-module

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION
NABA_COLLAGENS

Table 3.6: The pathways identified in the pink meta-module.

Dark green meta-module

KEGG_CELL_ADHESION_MOLECULES_CAMS
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION
KEGG_TYPE_I_DIABETES_MELLITUS

KEGG_LEISHMANIA_INFECTION
KEGG_ASTHMA

KEGG_AUTOIMMUNE_THYROID_DISEASE
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS

KEGG_ALLOGRAFT_REJECTION
KEGG_GRAFT_VERSUS_HOST_DISEASE

KEGG_VIRAL_MYOCARDITIS
REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION

REACTOME_IMMUNE_SYSTEM
REACTOME_ADAPTIVE_IMMUNE_SYSTEM

Table 3.7: The pathways identified in the dark green meta-module.

Light cyan meta-module

KEGG_SPLICEOSOME
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON

ST_JNK_MAPK_PATHWAY
PID_TAP63_PATHWAY

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT
REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS
REACTOME_MRNA_PROCESSING

REACTOME_CLEAVAGE_OF_GROWING_TRANSCRIPT_IN_THE_TERMINATION_REGION_

Table 3.8: The pathways identified in the light cyan meta-module.
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Light green meta-module

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION
NABA_MATRISOME_ASSOCIATED

NABA_MATRISOME

Table 3.9: The pathways identified in the light green meta-module.

Pathways Reference

REACTOME_SIGNALING_BY_RHO_GTPASES Mengxi et al [30]
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON Gardiner et al [31]

ST_JNK_MAPK_PATHWAY Loeser et al [32]
PID_TAP63_PATHWAY Taniguchi et al [33]

REACTOME_TCA_CYCLE_AND
_RESPIRATORY_ELECTRON_TRANSPORT Mobasheri et al [34]

Table 3.10: Pathways that were studied for their connection with Osteoarthritis

Pathways Reference

KEGG_TYPE_I_DIABETES_MELLITUS Zhang et al [35]
KEGG_LEISHMANIA_INFECTION Roder et al [36]

KEGG_ASTHMA Huo et al [37]
Kruse et al [38]

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS Zhang et al [39]
KEGG_GRAFT_VERSUS_HOST_DISEASE Blatt et al [40]

Table 3.11: References of studies using drug repositioning from arthritis for dealing with the
presented diseases
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3.7 Stability Analysis

In order for the modules identified by WGCNA to be biologically meaningful, they should be
stable. In other words, they should not be affected by small changes in the co-expression matrix.
In this diploma thesis, the stability of the constructed networks and therefore the stability of the
identified modules was established with two different procedures. Each procedure was repeated
50 times.

The first procedure consisted of randomly removing 10 % of the samples of each microarray
dataset. Consequently, four new datasets were created. These datasets were used for conducting
WGCNA in the same way with the original ones. Specifically, new networks were constructed
and a new set of common modules were identified. Finally, for the stability analysis, the new set
of modules was compared with the original one. In the second procedure, we used re-sampling
of the samples for defining the new datasets. Afterwards, as in the first procedure, new networks
were constructed and a new set of modules were identified and compared with the original set.

In figures 3.22 and 3.23 the modules identified in each run of the first and second procedure
respectively are depicted, as well as the original modules. It can be easily seen that most of the
original modules were constantly identified. As shown in figure 3.21 ∼ 75 % on average of the
genes belonging to the original modules could be identified in the modules of each run.

Figure 3.21: Boxplot of the percentage of the genes belonging to the original modules that were
identified in the modules of each run
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Gene dendrogram and module labels from resampled data sets

fastcluster::hclust (*, "average")
consTomDS
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Gene dendrogram and module labels from resampled data sets

fastcluster::hclust (*, "average")
consTomDS
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Figure 3.22: Module Identification in 50 new datasets derived from the original datasets with
removing randomly 10 % of the Samples
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Gene dendrogram and module labels from resampled data sets
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Gene dendrogram and module labels from resampled data sets
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Figure 3.23: Module Identification in 50 new datasets derived from the original datasets with
Re-Sampling
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3.8 Drugs

As the final step of the diploma thesis a list of drugs either available in the laboratory or found
in previous studies were evaluated. Firstly, their main targets were identified according to the
on-line database DrugBank. Then it was checked if any of their identified targets was gene of the
meta-modules. The drugs evaluated, as well as their main targets can be seen in the table 3.12

Drugs Targets

Canakinumab IL1B
Adalimumab TNF, IL1A

Celecoxib PTGS2, PDPK1, CA2, CA3, ABCB5, ABCG2, ABCB1
Carprofen PTGS2, PTGS1
SP600125 MAPK inhibitor
Raloxifene ESR1, ESR2, SEPRINB9, TFF1
PD169316 TGFB, TGFA
SB202190 TBRI
Sorafenib BRAF, RAF1,FLT4 KDR, FLT3, PDGFR, KIT, FGFR1, RET, FLT1
Clomifene ER1, SHBG
Imperatorin ERK

Table 3.12: The drugs evaluated and their main targets.

From the drugs evaluated, Raloxifene, PD169316 and Sorafenib had targets that were genes
of meta-modules.

3.9 Comparison with in vitro experiments

A setup as presented by Neidlin et al [41] has been used to experimentally evaluate the efficacy
of drugs from table 3.12. Specifically, Imperatorin, SP600125, SB202190, PD169316, Rego-
rafenib, Sorafenib, Clomifene, Rapamycin, Raloxifene were tested in this experiment. In brief,
healthy and degrading (OA) cartilage tissue explants were treated with each of the drugs for
24h. After stimulation for 24h the supernatant was retrieved and analysed with a bead-based
sandwich ELISA assay (Luminex xMAP) for a set of 26 cytokines that included major play-
ers involved in inflammation, cartilage degeneration and osteoarthritis: (PEDF, CXCL11, IL13,
ZG16, IL4, GROA, IFNG, CYTC, IL8, IL17F, IL12A, TNFA, IL1A, TFF3, IL6, ICAM1, IL10,
FST, S100A6, CXCL10, PROK1, CCL5, IL20, TNFSF12, FGF2, MMP9). The response was
used as a measure to evaluate drug efficacy. In other words, degrading tissue treated with drug
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A should produce a response as close as possible to healthy untreated tissue. Figure 3.24 shows
the relative absolute distance (fluorescence intensities of treated disc - fluorescence intensities of
healthy disc/fluorescence intensities of healthy disc) for drug treatments with concentrations of
1µM and 10 µM respectively.

Figure 3.24: The relative absolute distance between healthy and treated with the drugs of table
3.12 cartilage tissue

The above independent experimental drug screening study identified also Sorafenib and
PD169316 as promising compounds.
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CHAPTER 4

Discussion

OA is a multi-tissue disease, including cartilage degradation, meniscus and subchondral bone
alterations and synovium inflammation. The purpose of this diploma thesis was to identify
common pathological mechanisms among the four tissues. To that end, Differential Expres-
sion Analysis and Weighted Gene Co-Expression Network Analysis were implemented using
four microarray datasets corresponding to the four tissues. Through WGCNA, 37 modules were
identified including 2850 genes. Highly correlated modules were merged creating six meta-
modules. The genes included in each meta-module were used for the identification of important
pathways through Pathway Analysis. As a final step, candidate drugs for OA were evaluated.

Through the above-mentioned analysis we have identified meta-modules closely related to
specific functions. The pink and the light green meta-module are related to extracellular matrix.
This is an interesting finding considering that biological functions related to extracellular matrix
has been only reported to cartilage OA. The dark green meta-module includes many pathways
related to the immune system and inflammation. Furthermore, it includes pathways related to
other major diseases. Interestingly, drug repositioning from arthritis have been studied for treat-
ing a great number of these diseases as shown in table 3.11. Finally, the light cyan meta-module
includes many signalling pathways with a great number of them being reported in recent studies
for their correlation with OA, as shown in table 3.10.
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The drug evaluation done in this diploma thesis, has concluded to Sorafenib, Raloxifene and
PD169316 as the most promising drugs for OA treatment. An experimental drug screening study
testing 9 drugs identified independently Sorafenib and PD169316 as promising compounds.

Choosing the Weighted Gene Co-Expression Analysis to be the chore of this diploma thesis
stems from many reasons. WGCNA allows the integration of multiple heterogeneous datasets
and therefore provides a better understanding of complex diseases like osteoarthritis, while Dif-
ferential Expression Analysis could only be implemented in each dataset separately. Further-
more, DEGs depend on multiple statistical hypothesis and the cut-off threshold chosen by the
researcher for the measures of magnitude and significance. Consequently, there is a statisti-
cal uncertainty of whether the DEGs are correlated with the disease or not. On the other hand
WGCNA does not involve multiple hypothesis testing and therefore limits the discovery of false
positives and true negatives. Moreover, it has not a strict threshold, but encounters the relations
of all genes in order to find the co-expression modules.

However, as with any method available in the bibliography, it has its limitations. First of
all, as the adjacency matrix depends on the original microarray dataset, the constructed network
and therefore the identified modules are influenced by the machine used to generate the data as
well as the background correction and normalisation methods used in the data. Furthermore, the
WGCNA results depend on the sample size, as small sample size means that the network could
not exhibit approximate scale-free topology. Another disadvantage of WGCNA concerns the in-
tegration of multiple datasets that correspond to heterogeneous tissues, states etc. Tissue-specific
or condition specific co-expression modules may not be detectable in a co-expression network
constructed from multiple tissues or conditions because the correlation signal of the tissue or
condition-specific modules is weakened by a lack of correlation in other tissues/conditions.

As far as the implementation of WGCNA in this diploma thesis is concerned, one limitation
would be that the synovium dataset was generated by Affymetrix technology whereas the other
datasets were generated with Agilent technology. Furthermore, it should be beneficial to check
what proportion of the genes in each meta-module were responsible for the enriched pathways
found. For instance, it may be the case that the pathways identified in the dark green meta-
module conclude only 50 % of the genes included in that meta-module. In this way , we could
identify biological function-specific genes in the meta-modules. Moreover, it would be beneficial
to check if the modules are preserved in normal tissues and if the genes belonging to the meta-
modules have a different expression in the normal samples.

In conclusion, there are many studies published that try to identify important functions in OA
using ”omics” data of only one tissue.[8],[7],[9] However, OA is a disease of the whole joint and
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therefore the integration of datasets of all tissues is needed so as to understand OA pathological
mechanisms. This diploma thesis, is the first attempt to our knowledge to integrate all four
tissues with promising results. We have managed to detect pathways, already established for their
relation to OA, like signalling by rho GTPases.[30] Furthermore, we identify new pathways that
play an important role to all four datasets and may be important to understand OA pathogenesis.
Finally, drugs showing possible OA adverse properties were found both in this analysis and an
independent experimental study.

As further work, we consider expanding the list of drugs for evaluation. Furthermore, we
would try to incorporate into the drug evaluation the results of the Pathway Analysis and the
network properties. Finally, new experiments will be performed.
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