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Abstract

Anomaly Detection is a field of Machine Learning used by systems to identify
observations that differ from the majority of data and are often linked directly to
unexpected behaviour, errors, and other forms of novelties.

Common applications of Anomaly Detection include but are not limited to cre-
dit card fraud detection, machinery or computer behaviour monitoring, network
intrusion detection, real-time analytics, etc.

In this thesis we study algorithms and methods for Anomaly Detection that
enable identification of outliers both in real-time, in order to prevent unwanted
events as soon as possible, and at a big scale, since the volume of data in our era is

growing exponentially.
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Chapter 1

Introduction

1.1 Motivation

Anomaly Detection (or Outlier Detection) is a field of Machine Learning with
many important applications. It is used by systems to identify items or observa-
tions with peculiar characteristics, which cause them to differ from the majority of
data. The detection of such anomalies translates directly to detection of unexpected
behaviour, errors, and other forms of novelties.

The applications are endless; credit card fraud detection, machinery or computer
behaviour monitoring, network intrusion detection, analytics, etc.

However, when applying Anomaly Detection, it is crucial to leverage computation
methods and engineering principles that enable detection at a big scale, as nowadays
the amount of data produced daily is massive and the growth rate is exponential.

Also, the nature of Anomalies (which are directly related to unwanted events),
compels us to minimize the latency of Anomaly Detection Systems, so that action
can be taken as soon as possible. This requirement has led to the development
of algorithms and systems that operate in real-time, and process the data in an
“online”, or “streaming” manner, meaning that processing is done on-the-fly, as
soon as data is collected, in contrast to the more classic “batch” way of processing,

which requires a-priori knowledge of the whole dataset.

1.2 Objectives

The objective of the current thesis is to study anomaly detection methods and
algorithms, then implement the most suitable of them to operate in real-time and
in an on-line manner, and finally perform tests and examine the characteristics and

capabilities of each of them, in the context of Big Data.

11



12 Chapter 1. Introduction

For the implementation we have to make use of a Distributed Stream Processing
Framework (Apache Flink), which will enable us to perform our computations on a
computational cluster of machines instead of a single processor, and also process the
data as a stream. This way we are able to achieve high throughput (thanks to the
high parallelization of distributed computing) while also keeping the system latency

to a minimum.

1.3 Thesis Outline

In Chapter 2 we will define the fundamental terminology and conventions used
throughout this work. We also briefly present some of the most well known al-
gorithms for Anomaly Detection, what stream and batch processing is, and what
stream processing framework we will use. In Chapter 3 we present the four algo-
rithms that met our requirements, we explain why we chose them and what are their
characteristics, and we also provide some implementation details. In Chapter 4, we
carry out experiments using the algorithms, and examine how they behave on differ-
ent datasets, both synthetic and real, and what is their performance when executed
on a single machine and on a cluster. We also present a convenient way we used to
automate the deployment of our cluster. In the final Chapter, 5, we summarize the
current work’s findings and recommend some possible extensions that would make

the project an integrated production-ready Anomaly Detection system for Big Data.



Chapter 2

Background

2.1 Machine Learning and Anomaly Detection

Machine learning, a subset of Artificial Intelligence, is the study of algorithms
and statistical models that computer systems use, to effectively perform a specific
task without being explicitly programmed [5]. Machine learning algorithms build
a mathematical model based on sample data, and make predictions or decisions
relying on patterns and inference.

The process of the mathematical model creation is called training, and the sample
data used for this cause are called training data.

The most commonly used “structure” to represent data, and the one we will
use throughout this thesis, is that data are comprised by a number of examples or
instances, the total number of which is the length or size of the dataset, which are
basically vectors (one-dimensional arrays). These vectors are of the same length m,
also called the dimensionality of the dataset. The values of the elements of each of
these vectors correspond to the values of the respective ezample , for each of a total
of m features. Therefore, we can say that our data forms a matrix with dimensions
n X m, n being the size of the dataset.

There are three Machine Learning paradigms, regarding the way of “learning”

or training:

e Supervised Learning, in which the ML model adjusts its parameters by getting
feedback using a labelled dataset, .i.e. a training dataset whose examples are

accompanied by a “correct” or “expected” value,
e Unsupervised Learning, for when the dataset is unlabelled,

e Reinforcement Learning, that uses a different learning approach involving soft-

ware agents and actions in an environment in order to maximize a cumulative

13



14 Chapter 2. Background

reward.

The most common applications of Machine Learning are Classification and Re-
gression, which use Supervised Learning methods, Clustering, which uses Unsuper-
vised Learning methods, and Anomaly Detection, for which there are Supervised,
Semi-Supervised and Unsupervised methods.

One of the goals of the current work is to explore one of these particular cate-
gories, Anomaly Detection.

Anomaly Detection, as the name suggests, is the identification of observations
that deviate from normal ones. These deviating observations are called anomalies
or outliers. According to Aggarwal [4], an outlier is an observation which deviates
so much from the other observations as to arouse suspicions that it was generated
by a different mechanism. We care about identifying anomalies as soon as possible,

because they are almost always linked to unwanted events.

2.2 Overview of Anomaly Detection Algorithms

According to [8], the Anomaly Detection techniques are:
e (Classification based

— Neural Networks-based

— Bayesian Networks-based

— Support Vector Machine (SVM)-based
— Rule based

Nearest-Neighbor-based

Clustering-based

Statistical

Information theoretic

e Spectral

, to which we will add the Ensemble-based algorithms.
In the next few subsections, we will explore the characteristics of some algo-
rithms, and choose those that seem the most promising according to our goals and

we will later implement and evaluate in Chapters 3 and 4.
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Neural Networks-based methods

Neural Networks are widely used nowadays mainly for Classification purposes, and
have also been studied in the context of Anomaly Detection. They are very effective
for problems with complex non-linear hypotheses and many features.

A Neural Network consists of layers of interconnected artificial neurons, like the
ones shown in figure 2.1. Each neuron receives the inputs to the system (or inputs
from neighboring neurons, in the case of neurons found in deeper layers), applies
some weights to each input, aggregates them, and maps them to an output through

an actwation function.
: Wi
g“ﬂ

Figure 2.1: Artificial Neuron, the building block of a Neural Network

A Neural Network gives predictions by propagating its inputs through all its
layers of neurons and hence produces one (or more) outputs. This process is called
feed-forward. The training of a Neural Network is basically the adjustment of its
weights according to a (labelled) training set. One common method for this task
is by defining a cost function, for estimating how far are the outputs or predictions
of the Neural Network compared to the actual ones, and then by readjusting the
weights “following” the gradient of this cost function, with respect to the weights.
This gradient is found by computing the errors, .i.e. the distances of the predicted
outputs from the actual ones, and propagating them back through the network,
towards the input. This process is called back-propagation and the optimization
method is called gradient descent.

To apply for Anomaly Detection, the most simple way would be to use an out-
put layer of one neuron, the output of which would be a binary descriptor, 1 for
anomalies, 0 for normal observations, but there more effective methods that this
one.

An interesting method was proposed in [12]. The authors used an “Elman Recur-
rent Network”, which showed better results compared to the standard multi-layered
perceptron we described above. The Elman RNN, is a three-layered Neural Network,
which, additionally to the neurons, has a set of context units. Each context unit’s

inputs are the outputs of the neurons of a layer, and the nodes’ outputs are fed
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back to the same neurons of the same layer. This recurrent layout allows the RNN
to retain information between inputs. The measure of anomaly of each sequential
event is the difference between the output at time ¢ and the input at time 7 4 1.
This approach yields good experimental results, but it suits better for time-series
Anomaly Detection, i.e. for Anomaly Detection in series of data whose sequence

and ordering matters, and not for all cases.

Another method proposes the use of a Replicator Neural Network [13], a variant
of the classic multi-layered perceptron, where the input and output layers have the
same size, but the hidden layers have smaller sizes. During training, the Replicator
Neural Network is fed with normal data, and is required to reproduce the input
at the output layer, which forces the hidden layers to learn a compressed version
of the input. Then, during inference, the MSE (mean square error) between the
produced output and the input is calculated. If the MSE is low, then the example
was probably normal. But if the MSE is high, the data point is most likely an

anomaly.

The downside of using Neural Networks though is that they require a lot of data
to be trained at a satisfactory degree, and most importantly, they have notoriously
heavy computational costs, which have even led to introduction of new special hard-

ware.

Bayesian Networks

A Bayesian Network is a probabilistic graphical model, that represents a set of
variables and their conditional dependencies via a DAG (directed acyclic graph)
and conditional probability tables (CPT). Due to their ability to represent causal

relationships, they can be used to predict consequences of actions.

Bayesian Networks have been employed for Anomaly Detection, mostly in the
form of dynamic Bayesian Networks, whose difference is that they “evolve” over
time. In [14], the authors deployed a dynamic Bayesian Network for this cause but
their approach is constructed for two streams, and they state that adding more
streams is a non-trivial task. Hence, the approach is not really suitable for handling

a large amount of streams.

Ensemble-based algorithms

This category includes algorithms that employ an ensemble of weak classifiers based
on random number generation, which are then averaged. If the ensemble is big
enough, the negative effects of randomness are cancelled out and the classification

capabilities are strong.

Such algorithms are the Isolation Forest, Half-Space Trees, and the Lightweight
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On-line Detector of Anomalies, all of which were selected and implemented, with
details in Chapter 3. The reasons why they were selected are presented in the same

chapter.

Nearest-Neighbor-based methods

Nearest-Neighbor methods are data-centric methods, meaning that they don’t use
a model. The most popular in this category is the KNN algorithm, k-nearest neigh-
bor, which has been used extensively for Classification, and has later been used in
outlier identification [18]. The anomaly scores assigned to a sample is based on the

distance to its k-th nearest neighbor.

KNN It has received criticism for not being able to detect outliers in data with
clusters of different densities. Later, LOF [6] was introduced (Local Outlier Factor),
which solved this problem, and yielded better results. Another notable method
falling in this category is the Stochastic Outlier Detection algorithm [15].

However, despite being quite effective sometimes, KNN-based methods have a
major drawback; the anomaly score they assign to samples is driven by the nearest
neighbor search, which is an operation with O(n) time, making the algorithms have
a total time complexity of O(n?). Such complexities are absolutely forbidding for

large scale applications.

Support Vector Machine (SVM) methods
Support Vector Machines is a powerful Machine Learning method used mostly for

Classification, but it has also been applied to Anomaly Detection, especially the
One-Class SVM (or 1-SVM).

The original SVM is a solution to the two-class classification problem. It works
by using two parallel hyperplanes that separate the data in two classes, so that
the distance between them is as large as possible. The region bounded by these two
hyperplanes is called margin, and the maximum-margin hyperplane is the hyperplane
that lies halfway between them. Finding this maximum-margin hyperplane, which is
then used to classify data points, is an optimization problem solved using Lagrange

Multipliers.

The linearity of the hyperplane can be relaxed and non-linear kernels can be used
too. Nevertheless, the kernel needs to be picked beforehand and it can be difficult
to decide which kernel suits the data best. Also, SVM methods are super-linear,
with complexities of O(n3d), n being the size of the dataset and d the number of

features.

Statistical techniques
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In statistical based approaches, the aim is to learn a statistical model for a normal
behaviour of a dataset. Thereafter, the observations that are not (or have low prob-
ability to) fit into that model are marked as outliers. Usually the statistical model
is a particular distribution, the parameters of which are estimated using Maximum
Likelihood Estimates (MLE).

The downside of these algorithms is that a priori knowledge regarding the un-
derlying distribution of the dataset is required, which is not always available [24].

In terms of data streams, the authors of [28] have used a Gaussian Mixture Model
to assign anomaly scores to the incoming data points.

An algorithm from this category (Multivariate Gaussian) was selected and all

the relevant details are presented in Chapter 3.

Spectral techniques

Spectral techniques try to find an approximation of the data using a combination of
attributes that capture the bulk of the variability in the data [8]. Such techniques
are based on the assumption that data can be embedded into a lower dimensional
subspace in which normal instances and anomalies appear significantly different.

Thus the general approach adopted by spectral anomaly detection techniques is
to determine such subspaces (embeddings, projections, etc.) in which the anomalous
instances can be easily identified. Such techniques can work in an unsupervised as
well as a semisupervised setting.

Several techniques use Principal Component Analysis (PCA) for projecting data
into a lower dimensional space. A normal instance that satisfies the correlation
structure of the data will have a low value for such projections while an anomalous
instance that deviates from the correlation structure will have a large value.

These techniques however are only useful when the features of the dataset are
actually correlated, and projection to a lower dimensional space is therefore feasible.
Also, the complexity of their training is often O(nd®) or O(nd?), where d is the
number of features, making the techniques unusable to highly dimensional data.

When not used for Anomaly Detection by themselves, PCA and other related
algorithms are very useful for supporting other algorithms by reducing the dimen-
sionality of the data, which not only speeds up the program execution (for all algo-

rithms), but can also make some algorithms detect anomalies with greater precision.

2.3 Batch vs Stream Processing

Now there are two ways of data processing, batch processing and stream pro-

cessing, each one having advantages and disadvantages and being more suitable to
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some applications, when compared to the other.

Batch processing is the more “traditional” way, in which the dataset usually
“sits” in a database (or storage system in general), and is processed “as a whole”.
This allows for more flexibility to build complex algorithms, which are usually the
most effective. Nevertheless, it is generally slow, and unavoidably adds a big “lag”
between the time the data is collected, until the time that they have been processed
and meaningful results have been extracted from them.

On the other hand we have stream processing. A stream of data is a continuous
flow of data instances, that theoretically never ends (has infinite length), and passes
only one time through a stream processing system, before a prediction or decision is
made based on this particular example and the model. The model may have been
built on batch data first and loaded for inference, or built entirely on-line. On-line
models are updated by every instance passing through.

With this way of processing, the time required to extract information from the
data, since their acquisition, also know as latency, is minimized to the point where
we can talk about “real-time” processing. Stream processing is absolutely manda-
tory for some types of applications because of their very nature, such as real-time
analytics, event processing, machine monitoring, network intrusion detection, credit
card fraud detection, sensor networks, fleet control etc. In such scenarios we want
insight as fast as possible, from infinite flows of data, and multiple sources, using
finite processing resources such as computational power and memory. There are
also cases that may not have minimum latency as a necessary requirement, but
the sizes of the datasets we handle are so enormous that force us to process the
data in a streaming-like manner, because the we cannot afford algorithms with time

complexity worse than O(n).

2.4 Distributed Stream Processing

In modern applications, where having reliable and at the same time fast systems
is crucial, the industry is quickly adopting the paradigm of distributed computing. A
distributed system is a computing system whose components are located on different
networked computers, which communicate and coordinate their actions by passing
messages to one another, in order to achieve a common goal.

The advantages of using distributed systems over single computers, are numer-

ous:

e Better Performance, i.e. greater amount of useful work accomplished, com-

pared to the time and resources used
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e Better Scalability, i.e. the ability to handle a growing amount of work in a

capable manner or be enlarged to accommodate that growth.

e Higher Availability, i.e. The proportion of time a system is in a functioning

condition.

e Fault Tolerance, .i.e The ability of a system to behave in a well-defined manner

once faults occur

e Cost-effectiveness, as distributed systems use commodity hardware, which is

a lot cheaper than supercomputers.

In our case, where we want to process streams of data, using distributed systems

to do so has two extra benefits:
e Lower Latency, i.e. shorter period between collection of data and output,
e Higher Throughput, i.e. greater volume of data processed per unit of time.

However, not all algorithms can be implemented (at least efficiently) to run on
distributed platforms and definitely not all can be used to process streams. In this
thesis, we have chosen to implement and assess only algorithms that can run in a

distributed way and process data on-line.

2.4.1 Comparison of relevant Frameworks

When building applications to run on distributed systems, it is preferable to
use a suitable framework because it offers great abstraction taking care of all the
consensus and coordination processes a distributed system needs to implement in
order to be functional and reliable. By using such frameworks, a programmer only
writes relatively high-level code, and the framework with its distributed runtime
takes care of the rest.

The most popular, open-source software frameworks used for distributed stream
processing are Apache Spark, Apache Storm, and Apache Flink. After a short pre-
sentation of each of them, we will select one to use and explain the reasons that led

to this decision.

Apache Spark

Spark is a distributed general-purpose cluster-computing framework, that was ini-
tially created as a faster alternative to Hadoop MapReduce. Leveraging in-memory
computation, instead of the disk-intensive computation that Hadoop uses, it is more

“memory hungry” than Hadoop but also hundreds of times faster. This fact led to
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the quick adoption of Spark in the industry and growth of its popularity. The core
data abstraction for Spark is the “RDD”, Resilient Distributed Data store. It has
libraries for Graph Processing, Machine Learning and can process data in batch
“and” on stream. However, it processes streaming data in micro-batches, and for

this reason it cannot achieve very low latencies (near real-time).

Apache Storm

Distributed, (purely) stream processing computation framework. It uses custom
created “spouts” and “bolts” to define information sources, and manipulations (also
known as transformations) to allow distributed processing of streaming data. It was
inspired from Hadoop MapReduce as well, and was initially seen as the streaming
alternative to Hadoop, at a superficial level. It uses a similar general topology struc-
ture to a MapReduce job, with the main difference being that data is processed in
real time. The downside of Storm is that it a bit old, and is not very functional with-
out its library called “Trident”. Trident adds many features and abstractions that
other computational engines offer by default, them being stateful stream processing,
distributed querying of the data in the streams, joins, aggregations, grouping, func-
tions, and filters. In addition to these, Trident adds primitives for doing stateful,
incremental processing on top of any database or persistence store. Trident also has

consistent, exactly-once delivery semantics .

Apache Flink

Flink is a distributed stream processing framework. While built mostly for streams,
Flink’s runtime supports the execution of batch programs and iterative algorithms
natively. It provides a high-throughput, low-latency streaming engine as well as
out-of-the-box support for event-time processing and state management. Flink ap-
plications are fault-tolerant in the event of machine failure and support exactly-once
delivery semantics. Moreover, it has libraries for graph processing, machine learning

and a rich collection of data transformations and aggregations.

According to [16], who carried out a series of experiments and benchmarks to iden-
tify the strengths and weaknesses of each of these engines, Flink is the processing
framework with the best performance in most cases, so we decided to use this one.
The choice of framework though is not restrictive, as they all use very similar APIs

and they all run on the Java Virtual Machine.

!"'We define these terms in the following pages
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2.4.2 Apache Flink

In this section we will go through the features of Apache Flink [2], an overview
of its distributed runtime and how it works under the hood, and also an overview

of its programming model and APIs.

Zookeeper

First of all Flink in highly available setups depends on Apache Zookeeper, like other
distributed engines of the Apache Foundation, to monitor the state and health of
cluster. Zookeeper, which we will use and deploy in our cluster along with Flink, is
a centralized service for distributed systems similar to a hierarchical key-value store,
used to provide a shared distributed configuration service, synchronization service,
and naming registry for large distributed systems. Zookeper can be viewed as an
atomic broadcast system, through which updates are totally ordered. It is based on

the Zookeeper Atomic Broadcast (ZAB) coordination protocol.

Programming Model
Concerning the Flink’s programming model, Flink offers access to many layers of

abstraction. The layers are from low to high:

e Stateful Stream Processing: The lowest level which contains Flink’s basic ab-
stractions and building blocks, the stream, the state and time. It allows users
to freely process events from one or more streams, access the consistent fault
tolerant state and register callbacks at event time or processing time (we dis-

cuss the Flink’s time concept later).

e DataStream/DataSet APIs: Expressive core APIs for bounded/unbounded
data streams and bounded data sets respectively. They offer lots of common
building blocks for data processing like joins, aggregations, windows, state,
etc. The DataSet API offers additional primitives on bounded data sets, like

loops/iterations.

e Table API: Declarative DSL centered around tables, follows the relational
model (schema, comparable operations etc). Goes through optimizer before

execution.

e SQL: Closely interacts with the Table API to execute SQL queries.

For our implementations and experiments we will interact exclusively with the
DataStream API, as it offers all the tools and expressiveness we need.
To write a program for Flink, one needs to be aware of its Dataflow Model. The

Dataflow Model can be visualized as a DAG (directed acyclic graph), of which the
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edges are streams and the nodes are transformations on these steams. Each Dataflow
DAG has one or more source nodes and one or more sink nodes, from which the
data enter the computational graph and leave from respectively. Sources and sinks
can be files from the local filesystem or persistent systems such as Amazon Kinesis,
Apache Kafka, HDFS, Apache Cassandra, ElasticSearch and more, for which Flink
provides ready-to-use connectors.

These Dataflows are inherently parallel. Each stream breaks in stream parti-
tions according to the parallelism (number of operator subtasks) of corresponding
operators. Streams can transport data between two operators in a one-to-one (or
forwarding) pattern, or in a redistributing pattern. All this terminology is presented

intuitively in figure 2.2 in page 25, which was compiled by images found in [2].

Distributed Runtime
Now we will see how the Dataflow model looks like in the distributed runtime of
Flink. For distributed execution, Flink first optimizes the flow by chaining operator
subtasks together into tasks if possible. A parallel instance of a task is called a
subtask. Fach subtask is executed by one thread. Chaining is important, because
it reduces the overhead of thread-to-thread handover and buffering, and increases
overall throughput while decreasing latency. In addition, execution is of course
pipelined, meaning that operators start executing as soon as the previous ones have
produced output, and obviously they don’t wait for them to finish their execution
on the entire stream first. In figure 2.2, the sample dataflow is executed with five
parallel threads, because it has five subtasks.

These threads are executed in the Flink runtime, which consists of two types of

Processes:

e The JobManagers (or masters), coordinators the distributed execution. A
highly-available setup requires a quorum of JobManagers, on of which is the

leader and the others are standby.

e The TaskManagers (or workers), who execute the subtasks in task slots, for
which it is a good practice to set their total number equal to the number
of CPU cores of the machine. A TaskManager is actually a JVM process.
Tasks in the same process (thus in the same JVM) share TCP connections
and may also share data, further reducing the per-task overhead and allowing
for better resource utilization. Flink needs exactly as many task slots as the
highest parallelism used in the job. If no parallelism is specified explicitly in

a program, Flink will run it with the maximum value.

The distributed runtime can be seen in figure 2.3, taken from [7]. The client
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is the interface to the runtime, used to submit programs for execution and receive

reports.
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Figure 2.3: Flink’s Distributed Runtime [2]

Flink can be deployed in a standalone cluster, which is the method we chose for
the experiments in this thesis, or deployed using cluster resource managers such as
YARN or Mesos.

Guarantees

e Fxactly-once Delivery Semantics: Contrary to at-most-once semantics which
can lead to lost messages and at-least-once semantics which can lead to dupli-
cate processing, ezractly-once semantics guarantee that each message will be
processed exactly one time and no message is lost, even if nodes in the cluster

die unexpectedly.

e Fault Tolerance: Flink implements fault tolerance using a combination of
stream replay and checkpointing, which enable the system to recover from

failed nodes.

Flink offers many more guarantees and abstractions, but they are out of the

scope of the current work.
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Chapter 3

Implementation of Selected

Algorithms

In this Chapter we present four algorithms that we chose for Anomaly Detection,
describe their models, their characteristics, and we also provide some implementa-
tion details and define their parameters, which we will later use in the evaluation
phase in Chapter 4.

We also provide all the possible distributed settings for each algorithm, for which
we will use the following convention; “distributed” training or inference (or “on-
cluster”) is the respective action when executed, well, on the cluster, and “local”

training or inference means “on a single computer”.

3.1 Multivariate Gaussian Model

Anomaly Detection using a Multivariate Gaussian Model [21] is one of the sim-
plest statistical-based anomaly detection techniques, yet it is often the most simple
ones that are the most effective. It is based on the hypothesis that data are fol-
lowing the Gaussian (Normal) distribution. The idea is to create a model from the
observations using this assumption, and apply it to newer observations to determine
whether they are anomalies or normal.

Concretely, given an example z ~ N(u, X)),z € RY 2 = [11,29,...,24)7, its

probability density function is

bl ®) = s ew (- 3lo =) o= ) 10

where 1 € R? is the mean and ¥ € R?*? is the covariance matrix.

27



28 Chapter 3. Implementation of Selected Algorithms

Now assuming that variables x; ~ N (u;, 07) are all independent, we get:

d

p(a) = plar, 2o, ..., 24) = play; i, 07)p(xa; pra, 03) . p(wa; pa 03) = | [ plajs g, 7).
j=1

where:

p(a;p,0°) = \/21_70 exp ( — %)

To train the model ([21]) (which actually consists of the values u;,0?,Vi €

[1,...,d]), one needs to:

e Calculate u; = %23;1 xz(»j ), where n is the number of training examples (the

size of the training dataset),
e Calculate 0? = %Z?ﬂ (Igj) — i)

Then, in the evaluation phase, given a new example x, we compute:

_ T (= w)?
p(z) 11 N exp( a7 )

and we flag = as anomaly is the value of p(z) is smaller than a threshold value e

(hyperparameter).

3.1.1 Features

The assumption that all dataset features are independent is of course a strong
hypothesis, but it leads to a model which offers great computational benefits, .i.e.
it scales much better in large datasets, plus it can be easily implemented with func-
tional operators, which are present in the APIs of all modern Big Data frameworks.
It is also applicable to datasets with a large number of features and/or few training
examples, whereas for the full Multivariate Gaussian model, the number of training
examples must be greater than the number of features, otherwise the covariance
matrix ¥ is non-invertible and therefore we cannot use the model.

Also, we can reduce whatever negative effects this decision may have, simply
by identifying (computationally or even intuitively), which features are related to
each other, and add to our datasets extra features to express this correlation. For
example, in a dataset in which we know that feature x; grows in value “together”
with feature x5, we can add the values i—; as an extra feature and the algorithm will
perform as expected.

To train the model, a relatively small number of unlabelled data is needed. Then

both training and inference can be performed on batch data, or on-line.
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3.1.2 Implementation

This algorithm can be implemented in a Big Data framework in a very straightfor-
ward way, if the functional operators map and reduce are available. Assume that our
training data are n d-dimensional vectors ) = [ 29 20T 5 e 1, n].

Then the values of vectors 1 and o2 can be computed by:

// Scala

dataSet
.map { x => (x, pow(x, 2), 1) }
.reduce { (x1, x2) => (x1._1 + x2._1, x1. 2 +x2._2, x1..3 +x2._.3) }
.collect()

This way, by having the tuple T = [Z;;l ), > i1 (2 ))2, n| available at any
point of the computation (when training or evaluating, in batch or on stream), we

have access to all parameters of the model p and o2 at any time by calculating;

Sie T, XL @) T 1),
ETTT TR T o T Ty

We have chosen to implement this algorithm with batch training and of course
on-line deployment (because of some particular characteristics of the framework
used). We also added a function that suggests automatically a good threshold value
to use, by using a labelled dataset and finding the value e that maximizes the F1

score of the results.

Parameters

This algorithm does not have any parameters of its own. We only added a hyper-
parameter which we will call Iter (integer), which will be the number of iterations
it will do over a labelled evaluation dataset, in order to find a good threshold value.
By default it has a value of 100.

Distributed Settings

This algorithm’s both training and inference routrines can be programmed easily to
run in a distributed way. One option is to train on-cluster (or locally for smaller
datasets) and then employ the same model in all parallel instances (mappers) for
on-line inference, and the other option is to not use training at all, and make the
algorithm run purely on-line. In the latter each parallel instance will build its own

model.
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In our experiments we implemented on-cluster training and then on-cluster in-

ference!.

3.2 Isolation Forest

Isolation Forest [19] utilises the concept of isolation to detect anomalies in the

dataset. It takes advantage of two quantitative properties that anomalies have:
e Anomalies are the minority, consisting of fewer instances, and

e They have feature values which are very different from those of normal in-

stances.

These two characteristics make anomalies susceptible to isolation, meaning that they
are more likely to be isolated from other instances when the dataset is randomly
partitioned.

This algorithm works by recursively randomly partitioning the dataset until it
reaches a particular depth or isolates a point. To represent the partitions, it uses
a special kind of binary search tree (BST) called iTree. The idea is that anoma-
lies, since they lay further from the rest observations, will require a lower number
of random dataset partitions to become isolated, whereas normal observations, will
need a higher number, as they are close to other normal points. This translates
to respectively shorter and longer path lengths (or distances from the root node) in
each 77Tree. The anomaly score that is inferred for an example during the evaluation
stage is based on this path length value. For example, in fig. 3.1, we can see that
point x, requires on average fewer “cuts” to be isolated, than point x;.

The model of Isolation Forest is composed of an ensemble of iTrees. Each ¢Tree
is built on a subsample of the original dataset. The use of subsamples has some very
useful properties (see section 3.2.1). Each subsample is formed by randomly picking
instances from the whole dataset without replacement.

The anomaly score for a data point is the average value of the path lengths

acquired by “passing” the data point from each ¢7ree.

3.2.1 Features

Most model-based anomaly detection algorithms construct a profile of normal
observations, and then identify as outliers the instances that do not conform to this

normal profile, like the Gaussian-based algorithm we described earlier. However,

!The on-cluster training has only one layer of “reducers”, which creates a bottleneck. When

used in enormous datasets one may want to use multiple layers of reducers.
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Figure 3.1: Example of data partitioned by the Isolation Forest algorithm [19].

this approach often causes a high computational complexity for data of higher di-
mensionality, and, because the model is optimized to profile normal points, and not
to detect anomalies, it often ends up with too many false positives, or few true
positives (not to mention that most of the times a labelled dataset is mandatory for
the training phase). Isolation Forest is different from such algorithms because its
model isolates anomalous instances instead of profiling the normal ones, requires no
labelled dataset (it is an unsupervised algorithm) and is also robust when applied
at data with high dimensionality.

Also, most distance-based and density-based methods do not handle the effects
of swamping and masking [20] well, having poor performance in such cases. Swamp-
ing is the when normal instances are too close to anomalies, causing them to get
incorrectly flagged, and masking is the situation in which too many similar anoma-
lies form a small cluster, concealing their presence. Isolation Forest alleviates the
effects of these two situations by operating on random subsamples of the original
dataset.

Another great feature of Isolation Forest is that it has a linear time complexity.
Specifically, a complexity of O(tlog ) in the training phase and O(ntlog) in the
evaluation stage, where 1 is the subsampling size (256 is the recommended value), ¢
is the number of iTrees in the forest ensemble (around 100 is a good choice) and n the
size of the dataset. In addition, it has a relatively small memory footprint because
of the subsampling, making it able to handle extremely large and high-dimensional

datasets without requiring much memory.
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3.2.2 Implementation

Despite being a great algorithm, it has a downside. Isolation Forest is not effi-

ciently parallelizable for clusters of machines. This is due to a number of reasons:

e During the training phase, each subsample (from which the corresponding
iTree is built), has to be created by randomly picking instances from the whole
dataset, without replacement, and all the subsamples must be of equal size.
In the case that the dataset is stored centrally, the source node in the DAG
of computation has to do all the subsampling and then pass the subsamples
to the worker nodes so that each parallel slot can build one or more iTrees.
The subsampling at the source node creates a bottleneck. In the case that the
dataset is stored in a distributed way (e.g. in HDFS), the creation of equally-
sized subsamples is painfully difficult and inefficient because each source node
that loads some blocks from the distributed storage has to be aware of how
many instances each other source node has picked for the formation of the
same subsample. A naive approach to this would be, instead of picking random
instances to form a subsample, to use the whole block from the distributed
storage as a subsample for training. This is wrong, as the subsamples are not

random anymore and the trees become “biased”, leading to incorrect results.

e During the inference phase, if each tree “lives” in a different node, each example
from the input stream, in order to be evaluated, has to be broadcast to all
worker nodes, and then the result of each of them has to aggregated with
the rest, so that the average path length (and thus the anomaly score) can be

calculated, which again, creates a bottleneck, leading to limited scalability.

Then one might wonder, “why even chose the algorithm then?”. Well, it has a
remarkable characteristic; Contrary to existing methods where large sampling size
1s more desirable, isolation method works best when the sampling size is kept small
[19]. Large sampling size reduces iForest’s ability to isolate anomalies, as normal
instances can interfere with the isolation process and therefore reduces its ability to
clearly isolate anomalies. The anomaly detection capabilities also cap at a subsample
size of around v = 256, and thus, there is no need to increase it further. In addition,
as it shown in [19], the model converges quickly even with a small ensemble size, so
there is no need to increase the number of trees too much (fig. 3.2).

These qualities (small subsample size, few trees) allow us to train the model cen-
trally, in a single machine, and then export the trained model. The saved model is
then loaded by all parallel instances of the cluster, and then the evaluation stream
can be partitioned, achieving on-line inference with maximum parallelism and max-

imum throughput.
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Figure 3.2: Average path converges quickly [19].

One advantage of training centrally, is that there is no network overhead in the
training procedure. Network I/O would cause a big delay, to process rather small
subsamples (a job that does not require a whole node to be involved). Obviously
the tradeoff is not worth it. In addition, while training centrally, since the trees are
independent from each other, their creation can still be done in a parallel manner
(if the machine has more than one core).

They way we serialize the model is by traversing in a preorder fashion each tree,
forming an array of nodes, ordered by the way they were visited. Then we put these
arrays in a meta-array, and export this as a JSON. Deserialization then follows the

salne process in reverse.

Parameters

Our implementations of IForest have a number of parameters:
e Auto (boolean): If set to false, contamination mode is used.

e Contamination (float): Contamination is a value between 0 and 1, indicating
the expected percentage of anomalies. If we know for example that in our
dataset, 5% of the observations are anomalies, we can use this fact to yield
better predictions. By default IForest flags every point with score > 0.5. In

Contamination mode, it will flag the top n scores, where n is the number of
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anomalies calculated with the contamination parameter.
e NumTrees (integer): The number of trees present in the ensemble
e SubsampleSize (integer): The subsample size

Distributed Settings

This algorithm, as we clarified earlier, cannot be efficiently trained on-cluster, but it
also doesn’t need to. The model is trained centrally (using multiple threads for the
trees is possible), then the created model is exported, and loaded by each parallel

instance of the cluster. Then on-line inference is possible efficiently on-cluster.

3.3 Half-Space Trees

This algorithm [25] is quite similar to the Isolation Forest, in the sense that its
model is an ensemble of trees too. However, it uses a different approach to rank
anomalies, a concept called “mass” [26], and, contrary to the Isolation Forest, it can
be trained and deployed on-stream, as it is mainly an online algorithm.

The trees that this algorithm uses closely resemble full binary search trees (well-
balanced BSTs). Each internal (non-leaf) node represents a random partitioning of
the data. More specifically, HS-Trees selects a random feature every time and cuts
the data recursively, right at the mid-point of the range of the selected feature.

Now the training and the inference is done using two windows, namely a “refer-
ence” and a “latest” window. Every new example that is fed to the algorithm by
the data stream, is used to make a prediction (to yield an anomaly score), using
the model built in the reference window, and is also used to update the model by
updating the model in the latest window. Obviously when the latest window is full,
the reference window is discarded, the latest becomes the reference, and a new latest
is created.

Each arriving example goes through each node of the model in the latest window,
by following the comparisons made with the corresponding splitting feature and
value. For example, if the 2-featured example [0.1,0.3] goes through a node with
splitting feature 2, at value 0.5, the feature will follow the left node, because 0.3 <
0.5. This continues recursively until a leaf-node is reached. Each leaf-node keeps
counter that is incremented as soon as an example “falls” into this leaf (we can
think of them as buckets). The value of this counter is referred to as mass. As
it is evident, data points which fall into leaf-nodes with low mass, are likely to be
anomalies, since a low mass profile is caused by a “sparse” area of the data space.

This behaviour is demonstrated in figure 3.3.
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Figure 3.3: Example of data partitioned by a simple HS-Tree [25]

Afterwards, the example goes through the reference window, so that an anomaly
score can be calculated. With the same procedure, we find out in which leaf-node
the example belongs, and we use the mass in that leaf-node to calculate the anomaly
score. This is done for every tree in the ensemble, and the final anomaly score is

calculated as the total sum of these scores.

3.3.1 Features

HS-Trees is a powerful algorithm, as it achieves high detection rates while using
constant memory to process infinite data streams. It has an amortized time com-
plexity of O(t(h + 1)) [25], where t, h, 1 are all small-valued hyperparameters, and
of course there is no dependence on the size of the input.

It requires no previous knowledge of the dataset, although, to bootstrap the
algorithm properly, an approximate range of each feature needs to be provided,
in order to estimate the range in which the splits need to belong. Also, because
its performance is contingent on the diversity of each randomly created tree, these
ranges need to be a bit randomized before the creation of each tree. The original
paper [25] though, recommends that the data are normalized in the range [0, 1].

One key characteristic of HS-Trees, is that it has the ability to adapt to evolving
streams. Some data streams may change slowly over time, causing a “shift” of the
normal observations. Due to the windowed nature of this algorithm, it is able to
keep its model up-to-date and not suffer from concept drift, which can cause other
algorithms to flag everything as outliers.

If the algorithm is used on evolving streams, it is recommended that it doesn’t
update the model after the end of every window, but after a fixed number of changes,
where a change is defined as a difference in the number of anomalies found during
a window session. For example, if we are identifying 3 anomalies on every window,

and they suddenly become 0 for one window, it is not recommended to update the
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model immediately, but instead increase a counter of changes by 1 and only update
if the behaviour continues in the upcoming windows.

Concerning the randomizations, as with Isolation Forest and other ensemble
based algorithms, the negative effects of using random number generation is can-

celled out by aggregations (e.g. summations to calculate the mean).

3.3.2 Implementation

The algorithm is not hard to implement, especially if recursion is used, as de-
scribed in the original paper [25]. However, the recursive implementation is slightly
slower because of the amount of function calls. An implementation with iterations
over an array that represents the full binary tree (with node ¢ having its children at
positions 2i+ 1, 2i 4 2), is somewhat faster (array-structured data often make better
use of the CPU caches too, leading to faster executions).

Also, there is no need for two windows. One window can be used (basically a
counter), with each leaf-node having two variables, namely r and [, corresponding
to the values that each window would have. We infer scores based on the r value,

and at the same time update the [ value.

Parameters

The parameters of HSTrees in our implementations are the following:

e NumTrees (integer): Number of trees in the ensemble.

e SizeLimit (integer): Optimization parameter used to stop access to nodes

with too small mass.
e MaxDepth (integer): Maximum depth of each HSTree

e WindowSize (integer): Size of the window

We also used a hyperparameter to help with the estimation of a good threshold value.
Because this algorithm is purely on-line, we had to come up with a way to estimate
a good threshold automatically so that we could perform the experiments with the
other algorithms, some of which don’t even require always a threshold (IForest).

This hyperparameter is called EstNumAnomalies and is used in Chapter 4.

Distributed Settings

With HSTrees being purely on-line, the best option here is to let every parallel in-
stance build its own ensemble of HSTrees, and this is what we did. Another option
would be to have only one universal ensemble, a central model, and infer all the

streams from this but this of course is not scalable.
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3.4 LODA (Lightweight On-line Detector of Anoma-
lies)

LODA [22], as the name suggests, is a lightweight, model-based, ensemble-based
detector that can operate to identify deviating samples on both batch and streaming
data.

The model of LODA is comprised of a collection of k one-dimensional histograms
(denoted h;,i = 1,..., k), each approximating the probability density of input data.
Input data (e.g. x € R?) is projected into each histogram via k projection vectors,
denoted w; € R i = 1,....k [22]. The output of the algorithm, the anomaly score
for data point z, is proportional to the negative log-likelihood of the sample, and

given by:
Lk
score(z) = % ;logﬁi(xTwi)

The closest the score is to zero, the more likely it is that x is an anomalous example.
The sparse projection vectors w; are the means to diversify individual histograms,
and are created at the algorithm initialization, by generating a set of k& d-dimensional
vectors with v/d non-zero elements drawn from N(0,1).

Now the histograms can be of three types, namely fixed-bin, equi-width and on-
line histograms [23]. Each of these options has different properties and drawbacks

which are presented in table 3.1.

3.4.1 Features

LODA, like HS-Trees, can keep its model updated when deployed on-line with-
out suffering from concept drift. LODA however does not require any preliminary
operations on the data, (unlike HS-Trees, which requires normalization in the range
[0, 1] of each example), and only requires features to have approximately the same
scale [22], which is a more relaxed condition.

LODA is also robust against data with missing values meaning that it delivers
satisfactory results even when some variables are absent. This is done by calculating
the output only from those histograms whose projection vector has a zero one the
place of missing variables [22].

The time complexity of LODA is O(kd) and the space requirements are constant
(actually when using the equi-width histograms they can in theory grow indefinitely,
but this can be prevented by either discarding bins that have not been updated for
a long time (after a concept drift for example), or by redefining the widths of the

bins and some sort of merging).
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Histogram type  Advantages Disadvantages

Fixed-Bin Constant space require- For a good choice of num-
ments and O(1) time for ber of histogram bins it is
updates and access to the required that the range of
probability estimate value  the data is at least approxi-

mately known beforehand

Equi-Width O(1) time for updates and Required space is not re-
access to the probability stricted and can theoreti-
estimate value, does not cally grow infinitely
require knowledge of the
range of the data

On-Line Constant space require- Not as fast as the fixed-bin

ments, does not require any

or equi-width histogram

knowledge of the data range

or distribution beforehand

Table 3.1: Comparison of types of histograms for LODA

3.4.2 Implementation

In [22], it is shown that the equi-width histogram delivers by far the best results,
and is also the best choice for on-line deployment. If some sample data are available,
a value for the bin-width can be easily determined. The data structures we used to
represent the histograms are simple hash-maps with keys k = | X ], where x is the

value to be inserted.

Parameters

LODA has the following parameters in our implementations:
e NumFeats (integer): Must equal the number of features of the dataset
e BucketWidth (float): The width of the bins (or buckets)
e NumVectors (integer): Number of projection vectors in the ensemble

Two extra hyperparameters which we had to add like in previous algorithms: TrainSize
(integer), which is the number of instances in the beginning of the stream that should
update the model but not be used to infer anomaly score, since the model will not
be ready yet, and ProbSumBorder (float), the threshold.

Distributed Settings
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LODA, thanks to its similarities with HSTrees, has the same exact distributed set-

tings.






Chapter 4

Experiments

4.1 Infrastructure

For the following experiments, we used two types of infrastructure, a personal
laptop and an ensemble of Virtual Private Servers which formed the actual compu-

tation cluster we used to run Apache Flink and the distributed environment on.

The experiments that were conducted in order to compare the detection capabil-
ities and efficiency of the algorithms, both on synthetic datasets and real ones were
done on the personal machine, using implementations in Python v3.6 (based on the

NumPy scientific computing library).

The other experiments we did to study how the algorithms can perform at scale,
when deployed in a distributed environment on top of a distributed stream processing
framework, were of course conducted on the cluster, using implementations in Scala
v2.11 and the APIs of Apache Flink v1.6.1.

This cluster comprised of 4 “worker” nodes, and 1 “master” node, each one being
a VPS, a Virtual Machine essentially, created on the OpenStack platform. Due to
the abstraction that OpenStack offers, we cannot be sure if the VMs were hosted
on the same physical machine or not, but this is of minor importance as small

differences in the latency will fade out as the cluster becomes bigger.

Each node has 2 vCPUs (2 cores of a physical CPU), and 4GB of RAM, and
40GB of storage space (HDDs), running Ubuntu 16.04. These resources may seem
quite limited but they are more than enough for the JVM to run the JobManager

and TaskManager processes of the Flink runtime.

With these settings, we can achieve a maximum parallelism value of 2 x4 = 8.
This should be enough to determine the throughput of the system in relation to the

amount of parallelism.
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4.1.1 Computation Cluster Automation

When dealing with distributed platforms, i.e. when deploying systems across mul-
tiple machines, one can immediately understand the difficulties that emerge when
it comes to setting the correct system environment and framework configurations.
To face these problems, we decided to use an open-source provisioning, deployment
and configuration management tool, Ansible [1].

Ansible is incredibly useful, because with the use of simple modules that it pro-
vides, declarative YAML files, variables and templating, one can fully automate
the whole process of application deployment and configuration, and restore every
system’s state in the case of an event that causes changes.

The main reason we selected Ansible over other provisioning tools, is the ease
of use and the fact that the only requirement for the target machines is an SSH
connection. Other tools usually require the installation of client software, but with
Ansible, it is possible to create a VM from OpenStack and have it directly and
automatically install all the packages needed and run our services, without even
logging in to the machine.

Ansible works by checking the system state we define via some special instruc-
tions, and restoring this state when needed (idempotency). For example, if we need
a package installed in a group of nodes, we will use the Ansible module that corre-
sponds to the package manager of our target OS, and then declare that this package
should be in the state present. Then, every time we run Ansible, it will log via SSH
into every node belonging in this group (defined in an Ansible hostsfile) and make
sure that the package is indeed installed. If it is not, it will install it and inform us
about it at the end of the run.

In our use case, our Ansible Playbook as it is named, firstly downloads, config-
ures, installs and runs Apache Zookeeper, a dependency of Flink, as a service (with
systemd) and then does the same steps for Apache Flink itself. But besides the
obvious benefits of such great automation, less perplexity and complexity, easier
management, time efficiency, smaller probability of making mistakes etc., there is
also something we gain which is far more important: Abstraction.

The cluster setup is not longer dependent on which and how many nodes we
want in our ensemble. By editing the Ansible hostsfile, we can specify directly the
hostnames (or IP addresses) of the nodes we want to belong in the group that runs
for instance Zookeeper, and in the group of nodes running Flink, and then run
Ansible, which will take care of the rest.

More specifically, Ansible will firstly log into every node and gather informa-
tion from each machine, and then store that information in a JSON object called

hostvars. Then it will go ahead and use the templates that we have written and
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by using these along with the information collected and some variables we have
specified, it will generate all the necessary configuration files, check if the corre-
sponding ones in the VPSs are different, and update them if they are. For exam-
ple, in our setup, the configuration files of Apache Flink have a property called
maxParallelism, which has to be set manually. With Ansible and hostvars, we
find out how many vCPUs we have in the cluster, sum them up, and set this pa-
rameter automatically. So even if we add a new node with a four core CPU, ansible
will update this parameter correctly in the configuration files.

Also, in case that something goes wrong with the VMs or say, for industrial
deployments, we want to change cloud provider, this change is a matter of a few

Ansible commands.

4.2 Datasets

To assess the performance and gain some insight on the behaviour of each algo-
rithm in relation to the type of data it is fed with, we used both artificially created
datasets (synthetic) and real ones.

For the synthetic ones, we created datasets formed by clusters of data points and
other points scattered around these clusters. The rationale for this decision comes
from the definition of anomalies and normal observations; Since normal observations
are the norm, they lay close to each other usually creating dense areas, which we
will refer to as “blobs”, while novelties fall outside of these areas.

The number of clusters present in our dataset is a characteristic we later examine,
and we will refer to it with the term clusterization.

These clusters are each comprised by data points following a Gaussian distri-
bution. So on the one hand we generate the normal observations (the inliers) to
form these clusters, and then generate the outliers from the uniform distribution
(representing the noise), randomly scattered across an area slightly larger than the
area the blobs cover (possibly included in the blobs too).

The outliers make up a percentage of 5% of all observations, a quite realistic
scenario. The total number of observations, along with the total number of features

4

and the clusterization number are “variables” for our performance measurements.
For a real world dataset, we used the KDD Cup 99 dataset from the UCI ma-
chine learning repository, which is well-known in the field of Anomaly Detection,
Classification, and especially Network Intrusion Detection, and used very often in
relevant benchmarks.
We chose this dataset because it is labelled, it contains about 4.9 million exam-

ples, and it also has a high number of features, 41, out of which 7 are categorical
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and 34 continuous.

For the accuracy and efficiency experiments running in a personal computer,
we did not use the whole dataset. We used a reduced version (10% of the origi-
nal) and only the HTTP and SMTP components. More specifically, we created a
dataset from the observations of SMTP observations with a size of 9723, 125 of which
(1.2%) are observations connected to network attacks (anomalies). We removed 3
non-numerical features (strings), which leaves us with 38 features, and used 0-1 as
labels instead of the original labels (strings describing the type of the corresponding
attack). We will refer to this dataset as the SMTP dataset. The second dataset
created from the HTTP rows, has 64293 rows with 2407 being anomalies (3.7%).
In this HTTP dataset we did not include many features, and only chose the 3 most
important for the kinds of attacks relevant to HTTP according to [17], and also the
most accessible (in a real world application) which are the connection duration, the
number of source bytes and the number of destination bytes.

Finally, for the measuring of throughput in the distributed environment, we used
the full KDD dataset (4,940,210 examples) as we needed a good amount of data to

stress the distributed setup for the experiments.

4.3 Measurements

4.3.1 Evaluation Metrics

In the field of Machine Learning, especially when the application is Classification,
which is similar in a sense to Anomaly Detection, the most simple metric used to rank
the performance of the algorithm is the ratio of the number of correct predictions,
to the total number of predictions. However, this approach is not very suitable for
Anomaly Detection applications, because in such cases, the number of outliers is
usually very small in relation to the size of the dataset (about 1-5%).

A simple example to understand the inapplicability of this metric for our cause
would be the following; Suppose we have an algorithm that classifies our observations
correctly 95% of the time. In most classification applications this is considered a
good accuracy score, but in the context of Anomaly Detection, where we can have
for example a dataset with 5% of the total points being outliers, this algorithm may
completely fail to flag any anomaly as such, and still deliver a 95% classification
accuracy.

Thus, we will have to use a different metric. Popular options include [11] Loga-
rithmic Loss, which works well for Multi-Class Classification (which is not our case),

Mean Absolute Error and Mean Squared Error, good for Regression (again, not our
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case), and metrics based on the numbers of True Positives (T'P), True Negatives
(T'N), False Positives (FP), and False Negatives (F'N), such as the F1-Score (or
balanced F-Score) and AUC (Area Under Curve) methods. Generally, F-Scores
and AUC scores are good for Anomaly Detection algorithm evaluation because they
penalise mispredictions based on their type, and not only on their numbers.

To define the metrics, we will to define first 4 key ratios:

o Sensitivity = T;Jr%

e Specificity = %

e Precision = 7p5p

e Recall = =L~ (same with Sensitivity)
TP+FN

Intuitively, expressed with the terms of Anomaly Detection, Sensitivity (or Re-
call) measures the proportion of actual anomalies that are correctly identified as
such, Specificity measures the proportion of actual normal observations that are
correctly identified as such, and Precision measures the ratio of correct classifica-
tions as anomalies (positives) to the number of all observations labelled as anomalies
by the detector.

The choice of what measure to use depends on the type of the application. For
example in applications such as fraud detection, where it is crucial to not mislabel
an actual fraudulent transaction as normal, we want to have a model with high
Sensitivity (or Recall), whereas in applications where the cost of having a false
positive is high, we want to increase the model’s Specificity and Precision. For
example, in email spam detection, labelling a non-spam email as spam has a greater
cost than the opposite.

Now based on these ratios, we have:

o F1 Score = 2LrecisionsRecall 41 o harmonic mean of precision and recall, and
Precision+ Recall? ’

e AUC Score, which is of two types:

— AUC ROC, or AUROC which stands for Area Under Receiver Operating

Characteristic curve, and

— AUC PR, for Area Under Precision Recall curve.

The F1 score keeps a balance between Precision and Recall, giving equal im-
portance to both. This is why it is used quite often as a good ranking method
for Anomaly Detection algorithms. However, as we emphasized before, evaluation

should be consistent with the actual application and requirements. In the current
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work, since we are performing a more generalized evaluation and comparison, it is
not improper to use the F1 score as a metric.

Another fact that favours the selection of this metric is that it can be used to
evaluate an Anomaly Detection system in an on-line manner.

The downside with the F1 score however is that it is dependent on the threshold
value selected for classification (which is basically a hyperparameter and requires
tuning for every dataset the algorithm is applied onto). The absense of a good
threshold value leads sometimes to poor F1-Scores, failing to provide a more hollistic
view of an algorithm’s effectiveness.

This problem is solved with the use of the AUC metrics. These do not depend
on the setting of the threshold hyperparameter, as they average over all possible
thresholds. It has two types: AUC ROC and AUC PR. The AUC ROC (or AUROC)
metric is the area under the ROC curve [27], which is the curve formed by plotting
the Sensitivity (or True Positive Rate - TPR) against the False Positive Rate (FPR),
defined as Fpi%. The AUC PR is the area under the curve formed by plotting
Precision against Recall.

Between these two metrics, we chose the first, AUROC, because AUC PR is,
according to [9] best for skewed datasets, i.e. datasets suffering from the class im-
balance problem. The class imbalance problem appears when the total number of a
class of data (positives in our case) is far less than the total number of another class
of data (negatives). Since the datasets we have used, both synthetic and real have
a decent percentage of anomalies (around 5%), there is no need to use the AUC
PR metric, which is more “limiting” in the sense that it does not account for true
negatives at all.

Finally, as a measure of the performance in the cluster we used the throughput,
as it is commonly used in such cases. The throughput of a system is defined as the

rate at which the system can process data.

4.3.2 Detection Accuracy

The first characteristic we are going to examine is the number of “clusters”
present in the dataset.

Each dataset used consists of 1000 data points, 5% of which are outliers. For the
number of features, we created datasets with 2 features because with that setting,
it is possible to create scatterplots in 2D and visualize in a very intuitive way the
performance and behaviour of each algorithm.

The settings for each algorithm are shown in table 4.1. The explanation of each
of these settings can be found in Chapter 3.

For the Multivariate Gaussian algorithm, judging by the scatterplots in figure 4.2,
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Algorithm Settings Algorithm  Settings

Gauss Iter: 1000 [Forest Auto: True
NumTrees: 100
SubsampleSize: 256

HSTrees NumTrees: 50 LODA NumPFeats: 2
SizeLimit: 25 BucketWidth: 1
MaxDepth: 5 NumVectors: 100
WindowSize: 256 TrainSize: 500
EstNumAnomalies: 50 ProbSumBorder: -4.1

Table 4.1: Parameter settings for the Clusterization Experiments

we can see that it is very effective for the dataset containing only 1 cluster, which
is expected, since the algorithm’s model is created from the exact same distribution
from which the inliers are drawn. However, we can see that as the clusterization
number increases, the algorithm fails to flag some outliers as anomalies, in particular
those that lie in between the blobs. This is happening because in order to determine
if a data point is an anomaly, a probability threshold is used, as described in Chap-
ter 3, and this threshold corresponds to the border of an area in the contour plot of
the Gaussian Model, outside of which everything is flagged as an outlier. This can

be visualized by the red curve in figure 4.1.

Figure 4.1: Visualization of the probability threshold of the Gaussian Model

Obviously, the observations that lie between two or more blobs, will have a
probability value greater than the threshold and therefore cannot be flagged. This is
a weakness of the Multivariate Gaussian algorithm, which may limit its applicability
to some datasets.

For the Isolation Forest performance in relation to the number of clusters in
fig. 4.3, we can see that there may be a connection between the number of clusters

in the data and the “aggressiveness” of the algorithm towards the outliers. For
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Figure 4.2: Multivariate Gaussian performance vs. Clusterization

instance, when having 4 clusters, the algorithm is labelling too many negatives as

positives (we have a high number of False Negatives).

Next, we have the Half-Space Trees in figure 4.4. Despite being an online al-
gorithm, it does a good job detecting anomalies in general, though it takes some
time to bootstrap the model (a certain number of instances equal to the WindowSize

parameter to be exact).

We observe however that, it misses some outliers, those that lie in lane-like areas
extending from a blob vertically and horizontally, especially those that lie in the
crossing of two such areas (from two different blobs). This weakness probably has
to do with the fact that the splits of the plane that the algorithm uses to profile the

mass of an area are vertical to the axes.

The phenomenon is observed less frequently when the number of the features of
the dataset is high, or when the number of HS Trees used in the ensemble is high.
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Concerning the LODA algorithm, by observing the figure 4.5 one can infer that
LODA is quite robust, but requires, like the HSTress, some initial data streamed
in order to bootstrap its model (the more the better) and begin giving correct
predictions.

Also, its hyperparameters need fine tuning, especially the threshold used and the
BucketWidth. The author of the original paper [22] claims that the hyperparameters
BucketWidth and NumVectors of LODA can be determined automatically, however

this is true only for when sample data of reasonable size are available a-priori.
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Figure 4.5: LODA performance vs. Clusterization

The results of each algorithm’s performance is evaluated via measuring the F1
scores and Area Under ROC curve scores (AUROC), and are summarized in the
graph 4.6.

In the graph 4.6 we can see that all algorithms exhibit a “drop” in the their
accuracy scores, when the number of clusters in the dataset increases. Only Isolation
Forest and LODA manage to keep a somewhat high AUROC score. The F1 scores
are quite low in the case of hstrees and loda because of the bootstrapping time they

need, which can cause them to miss some anomalies. The Mult. Gaussian algorithm
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Figure 4.6: Detection metrics of different algorithms vs. Clusterization

also faces a drop because as we mentioned before, misses some positives (therefore
since FPT = F1J, together with the Isolation Forest, that ends up flagging too
many inliers as anomalies (FN1T = F1J).

The next characteristic we are going to experiment on is the accuracy as a
function of the number of features in the dataset. The synthetic datasets used
are comprised of 1000 examples, 5% of which are anomalies, have clusterization

number of 1, and the number of features ranges from 5 to 100 features.

The results of this experiment are shown in the graph in figure 4.7. The settings
of the algorithms are the same as before (table 4.1), changing only the NumFeats
parameter of LODA (which is necessary, since the model can’t be built if NumFeats

does not equal the actual number of features in the dataset).

As we can see, [Forest and HSTrees have no issue with datasets of high dimen-
sionality (they perform even better). LODA however seems to “struggle” with high
dimensional data when it comes to prediction accuracy, but further investigation is
needed in order to conclude, because it may be because of improper hyperparameter
settings (especially BucketWidth). Finally, it is quite evident in the graph that the

Mult. Gaussian algo is inadequate for high dimensional data. The F1 scores drop
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dramatically at approximately 20 features in our synthetic dataset. This happens
because the probability calculated (which is a product of m factors, m being the
number of features), becomes an extreme number (either too small, or too big, de-
pending on the data), causing the process of finding a good threshold to be a difficult
task. If for example we have a normalized dataset, in the range [0, 1], and m = 20,

the probability values can easily reach 1072,
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Figure 4.7: Detection metrics for different algorithms vs. Number of Features

4.3.3 Overall Time Efficiency

In this section we will compare experimentally the time complexity of each al-
gorithm, both for the training phase and the inference phase.

The first experiment will be the measurement of the total time elapsed, in relation
to the size of the dataset. For this comparison we used synthetic datasets, with one
cluster, five features and the number of examples ranging from 1000 to 100000. The
results are shown in figure 4.8.

For the Mult. Gaussian, the measured time is the sum of the seconds needed for

training, inference, and evaluation (in order to find a good threshold value). For
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the IForest, it is the sum of seconds elapsed again for training and inference (the
threshold value is constant, no need for calculation), and for the HSTrees it is the
time for inference (since the “training” is done concurrently), plus the time to find a
good threshold based on the scores of the predictions. Finally, for LODA the times
shown are the times for inference (and also training which, like HSTrees, is done at

the same time on-line).

In figure 4.8, it is obvious that all the algorithms have linear time complexity,
and this characteristic is what makes them very scalable. Especially LODA and
HSTrees require only one pass on the data for both updating their model and giving

predictions, when deployed for on-line evaluation.
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Figure 4.8: Total execution times for different algorithms vs. Size of Dataset

Next, we will examine how the number of features in the dataset affects the
execution time. In figure 4.9 we can see that no algorithm is affected by the number

of features, as the time needed stays constant when the number of features is growing.
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4.3.4 Evaluation on KDD Cup 99 Dataset

The synthetic datasets are good for understanding the behaviour of each algo-
rithm, but when it comes to choosing an algorithm for a specific task or real world
application, it is very important that we put our algorithms to the test and, using
the correct metrics, decide which one performs best.

In our case, we have narrowed down our initial choices of Anomaly Detection
algorithms by selecting those that are suitable for large scale on-line inference, and
now we will investigate how they perform against the KDD Cup 99, a real dataset.
As we mentioned in section 4.2, for the accuracy and efficiency tests we will use the
HTTP and SMTP parts of this dataset.

For the HTTP dataset, we used the settings presented in table 4.2, and the
measurements from the experiments are shown in table 4.3.

We can see that the Multivariate Gaussian algorithm achieved very high F1
and AUROC scores (0.97 and 0.99 respectively) and is also the fastest. This big

difference in time of execution is because of many reasons:

e The Mult. Gaussian algorithm has a small model, as it doesn’t use big ensem-
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%)

Algorithm  Settings

Algorithm  Settings

Gauss Tter: 1000

HSTrees NumTrees: 100
SizeLimit: 500
MaxDepth: 10
WindowSize: 5000

TForest

LODA

EstNumAnomalies: 3000

Auto: True
NumTrees: 100
SubsampleSize: 256
NumPFeats: 3
BucketWidth: 1
NumVectors: 200
TrainSize: 30000
ProbSumBorder: -8.65

Table 4.2: Parameter settings for the HT'TP KDD Experiments

Algo F1 Score

AUROC Score

Total Time (s)

Gauss 0.9707
IForest  0.5709
HSTrees 0.8344
LODA  0.1333

0.9900
0.9716
0.9907
0.7667

2.566

46.425
86.458
35.856

Table 4.3: F1, AUROC Scores and execution times for each algorithm, on the HTTP

KDD dataset

bles like those of the other algorithms,

e [t is not recursive, like the IForest or HSTrees, and therefore it does not have

the negative impact of the overheads that slow repetitive function calls intro-

duce,

e Was entirely implemented with NumPy, which is optimized for matrix-based

numerical computations at a low level, while the others, despite leveraging

NumPy whenever possible, they suffer more from the high level and therefore

slower Python runtime.

The results of HSTrees are quite satisfactory as well. LODA on the other hand

performed very poorly, but it may be because of incorrect hyperparameter settings.

If this is the case, the difficulty of setting the hyperparameters of LODA correctly

in before, especially without having sample data (which is common is some appli-

cations), should be added to the negative characteristics of the algorithm.

Next we run the same experiments on the SMTP dataset. The algorithm param-

eters were set to the same values with those shown in table 4.2, with the only differ-

ences being the parameter EstNumAnomalies of HSTrees which was set to 170, and

the parameters NumFeats, and thresholding values TrainSize and ProbSumBorder
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of LODA, which were set to the values 38, 1000 and -4.79 respectively. respectively.
The results are visible in the table 4.4.

Algo F1 Score AUROC Score Total Time (s)

Gauss 0.6833 0.9861 1.217
[Forest  0.9626 0.9640 7.623
HSTrees 0.6891 0.9044 15.159
LODA  0.7123 0.8814 6.073

Table 4.4: F1, AUROC Scores and execution times for each algorithm, on the SMTP
KDD dataset

In this dataset the best results are achieved with the Isolation Forest algorithm,
which scores 0.96 for the F1 metric and 0.96 for the AUROC metric. Notable are

also the results of Multivariate Gaussian.

4.3.5 Execution with Apache Flink

For our last experiment, we will measure the rate at which data can flow through
our distributed Anomaly Detection system, also known as throughput. We executed
each of the four algorithms on the cluster, using implementations in Scala, for various
amounts of dataset size and cluster parallelism.

For the streaming process, a node reads the dataset stored as a file in its filesys-
tem, and forwards each line of the file representing a data point, to the other parallel
instances (which may be hosted in the same machine or across the network on an-
other machine), the mappers. The mappers will then map every point they receive
to their model (and also update it in the case of HSTrees and LODA), and then
make a prediction based on this model anomaly or not). After that, they write
their predictions on their local filesystems. The actual topology is the one shown in
figure 4.10.

Because for our experiments we used a file as data source, the action of reading
the file from the disk is done with parallelism 1. This fact, along with the fact that
network 1/0 is faster than disk 1/0, especially for this particular cluster that uses
HDDs instead of SSDs for storage, leads to the creation of a bottleneck in our setup,
restricting the max throughput.

To find out what is the max throughput value, we measured how long it takes
for the whole dataset file (4898431 lines) to be read by a program. This action was
timed at 23 seconds, therefore the max achievable throughput is about 212975 lines

(or datapoints, since each line represents one example), per second.
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Figure 4.10: Topology used for on-line inference in Flink

The execution of our experiments in Flink was pipelined, meaning that the dat-
apoints were streamed by the time they were read from the disk. Thus, the times
measured to calculate the throughput were actual computation times, and the disk
I/O operations did not affect the result in a negative way.

Concerning the first experiment, with variable dataset size, we kept the paral-
lelism at the max possible value that could be achieved in a cluster of four nodes,
with 2 vCPUs each, i.e. 8, and measured for each algorithm how much time it takes
to process a stream created from the KDD dataset, using each time a different per-
centage of the dataset size (25%, 50%, 75% and 100%). Then we divided the number
of tuples included in this dataset portions by the time the execution lasted to get the
throughput, and we plotted the findings, which are shown in figure 4.11. The pa-
rameters of HSTrees were NumTrees:50, MaxDepth:10 and WindowSize: 1000, and
LODA’s parameters were set to BucketWidth:10 and NumVectors:100. IForest
used an ensemble of NumTrees: 100, created with SubsampleSize:256.

We observe that the best throughput is accomplished with the Multivariate Gaus-
sian, which manages to reach the maximum possible throughput we calculated ear-
lier, about 212975 rows per second. LODA reaches 100000 rows second, HSTrees
70000 and IForest 96000. Again, the success of Multivariate Gaussian is because of
the extremely small model size, and because it does not have to make any initializa-
tions. The other algorithms need more time to update their models, and also need
some time to initialize it in the first place, especially IForest which has to load its
model from an external file, as we described in Chapter 3 and build it.

By looking at figure 4.11, we also notice that the throughput is increasing along
with the size of the dataset, while one might expect it to be constant. This increase is
because the parallelism for this experiment was kept constant and at the maximum
possible amount. As more nodes are added to the cluster, the total initialization
time increases, and if the dataset is not big enough, a big amount of parallelism may

add so much overhead that may not be worth it. In the realistic case where the data
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Figure 4.11: Throughput of different algorithms on Apache Flink vs. Size of KDD
Subset

streams are infinite this is not a problem though, as the data never ends, but it is
good to keep it under consideration when dealing with batch data at scale. In this
experiment, where the stream was finite, if the dataset is small, the total overheads
(mostly caused by the network I/0) increased the total time of execution, making
the calculated throughput value drop. That is why we chose the last throughput
measurement as the closest to the true throughput for each algorithm, because it
corresponded to the largest dataset streamed through the system.

Next we will measure how parallelism affects the throughput. The settings are
the same as before. The only change in the execution is the amount of parallelism
in the cluster, that is essentially the amount of parallel mappers to use. The results
are demonstrated in figure 4.12.

It is evident, and also expected, that by increasing the parallelism, the through-
put of all algorithms also increases.

In conclusion, we can also perform a rough estimate of the latency of our system,
i.e. the seconds needed for an example to go through and “come out” as a prediction
from the models. For the Mult. Gaussian, this time would be about 4.7us, for the
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[Forest 10.4us, for HSTrees about 14.5us and for LODA 9.2us.






Chapter 5

Conclusions

5.1 Discussion

5.1.1 Comparison with Other Implementations

By the time of writing this thesis, no open-source implementations for Half-Space

Trees and LODA exist, according to our best knowledge.

Concerning the Isolation Forest, a good open-source implementation is present
in the scikit-learn Machine Learning library for Python. In terms of performance,
when compared to the scikit-learn implementation, ours is slower, but yields the
same ROC AUC scores. However, scikit’s [Forest does not offer a way to export
the model in some form, while our IForest can export the trained model as a JSON
that can be loaded by a Flink’s (or other framework’s) parallel instance to perform
inference on streams of data. In addition, no implementation of IForest could be

found in Scala.

For the Multivariate Gaussian algorithm, since it is a very versatile algorithm,
implementations can be found in various forms, but no implementation exists using
the DataSet or DataStream APIs of Flink. Also there is no implementation of the

pure on-line version.

Flink does offer out-of-the-box some Machine Learning algorithms, in the Flink-
ML library, but only one is for outlier detection, the SOS algorithm (Stochastic
Outlier Detection), which is only implemented for batch processing and has a super-

linear complexity of at least O(n?).

The code written for this thesis will be open-sourced in the near future.
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5.1.2 Possible Extensions

Anomaly Detection System Improvements

When writing programs to run on a framework, one needs to be aware of the specific
framework’s features and the way these can be leveraged in order to achieve the best
possible result. In the case of Flink, its official documentation [2] mentions a few
ways that can make the execution run faster. The first way is by using function
annotations that give Flink important high level information such as which fields of
the tuples representing the data are forwarded unchanged during transformations,
or not forwarded at all. Other optimizations include the use of tuple indexes instead
of field names, reusing Flink object to relieve pressure on the garbage collector and
more [3].

Also, in all our Flink experiments we used a single source and sink for our
streams. In a realistic scenario, the streams of both input and output data are
numerous. In stream processing applications, raw data are often collected in a
message queue, then they are fed in a parallel manner into the stream processor,
and after processing they are rewritten (also in parallel) in the message queue for
persistent storage (historical data) and/or consumption by the actual application.

Thus, a nice addition that would make our setup a realistic system would be a
message queue. A widely distributed message queue is Apache Kafka.

Another addition that would complete our system would be a distributed key-
value store such as Apache Cassandra or Redis. Depending on the application, a
join with historical data may be required. For example, in the case of Credit Card
Fraud Detection, some necessary features the system would make use of would be
the distance from the last executed transaction, or the time elapsed since then. This
information must be acquired for each individual transaction, and the best way this
can be done in a fast and scalable manner is through a low latency distributed
key-value store.

Finally, a useful addition for large scale assessment would be the calculation
of evaluation metrics online, directly in Flink. For example, the F1 Score can be

calculated with the following transformations:

// Scala
labelledDataSet
.map {
row =>
val flag = if (applyModel(row._1) < epsilon) 1 else O
val actual = row._2

// (truePositives, falsePositives, falseNegatives)
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(flag & actual, flag & (° actual), (7 flag) & actual)
}
.reduce { (x1, x2) => (x1._1 +x2._1, x1..2 + x2._2, x1._.3 + x2..3) }
.map { x => fiScore(x._1, x._2, x._3) }
.collect () .head

, Wwhere epsilon is the threshold, row._1 is the example vector and row._2 is the

label with the actual value.

Algorithm Improvements

A good practice before running any of the four algorithms would be to do a PCA
first (Principal Component Analysis), in order to find relevant features. This can
lead to a decrease in the number of featues, making the algorithms run faster and be
more precise in identifying outliers, especially the Mult. Gaussian algorithm, which
was built on the hypothesis that features are independent. While this is almost
never true in practice, a PCA run first would help us find all correlated and only
use those that are actually unrelated.

For the HSTrees and LODA algorithms, there are some things that can be stud-
ied. For example a non-windowed version of HSTrees, or a windowed version of
LODA following the paradigm of HSTrees might be interesting. One other addition
to these two would be a Contamination parameter, like the one of IForest. If the
percentage of anomalies in the dataset is known or at least possible to be estimated
beforehand, then maybe a mechanism for adjusting automatically the threshold for

both algorithms may be feasible.

5.2 Concluding Remarks

In this work, we explored Anomaly Detection, in the context of Big Data. Our
requirements were on-line inference of anomaly scores, so that we could achieve
detection in real-time, and also distributed, so that we could identify outliers at a
big scale.

We chose four algorithms, namely Multivariate Gaussian, Isolation Forest, Half

Space Trees and LODA, each having its own strengths and weaknesses:

e Multivariate Gaussian: Best scores in most synthetic and real datasets, super
lightweight model, very fast, reached the maximum possible throughput when
run on-cluster, easy to estimate a good threshold. Not very good for data in
more than one clusters, high dimensional data, or data with non-independent

features. (PCA recommended)
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e [solation Forest: Very robust, very good scores on real datasets, has “auto”

mode -no need for estimating threshold-, strong against swamping and masking
and has no problem with high-dimensional data. However, it can’t be trained
in a distributed manner efficiently, and also, showed a high number of false

negatives on multi-clustered data.

Half-Space Trees: Purely on-line algorithm (model is updated on-the-fly), op-
erates in windows. Good performance on real datasets. Suitable for evolving
streams, has no problem with high-dimensional data. Hard to find a good
threshold value, needs sample data (or at least a good estimation of the ranges
of the values of each feature) or normalized data. Exhibited a bit high latency

on-cluster when compared to the other algorithms, because it has a big model.

Lightweight On-line Detector of Anomalies: Also purely on-line, but not win-
dowed and runs slightly faster on-cluster than HS-Trees. Suitable for streams
with missing values and for streams with concept drift. Nevertheless, without
sample data it is very hard to find a good threshold and parameters. Not very
good scores on the real datasets. Also, requires features to have approximately

the same scale.

We also explored a promising engine for distributed stream processing, Apache

Flink, and also Ansible, a tool that helps with the infrastructure when dealing with

large clusters. Lastly, we suggested some possible extensions to our system and some

improvements to the algorithmic setups.
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Kegpdrawo 1

Eicoaywyn

1.1 Kivntea

H Aviyveuon Avouaiioy etvor tedio tne Mnyovixric Mddnone e molhéc xou ornuo-
VTIXEG eQopuoYES. Xpenowomolelton and GUCTHUNTA Yo TOV EVIOTIONO TURATNRHOEWY
ue W1dlovTa yopaxTnelo Txd, mou cuvidng oyetiovtal ye avemdiunteg e€eiielc. Xu-
VAVELS EQUPUOYES EfVAL 0 EVTOTIOUOC XAOTIOV TUO TWTIXMY XAUPTWY, aviyveuon emtdécewy
o€ BixTud UTOAOYLO TGOV X.0. OE€houUe OUwC 1) dladacio auTr vo uropel vo yivel o

MEY AT xAldaXaL, XAl OF TEUYUAUTIXG YPOVO.

1.2 Emnwowwiesg

Ou otoyot e moapolong epyaciog etvon 1 ueEAETN uedddwy xou ahyoplduwy yia A-
viyveuon AVoUaAy, ag VO GE TEAYHATIXG YEOVO ot o ETEQOU O XAIUXWOLIO
mepBdhhov. o Toug Adyoug awtolg Vo acyohniolue ue Aviyveuon Avouolidy oe
ouveyeic poég dedopévmv (“streams”) xou EXTENECT VTV OE XUTUVEUNUEVO UG THUO-

TA.

1.3 Opyvdvwon Kegparatlwyv

Y10 xe@dAono 2, Topoucldloupe TNV VEUEAMOT 0pOAOYId Xl TOUC TO YVOOTO-
U¢ ahyoplduoug yiar Aviyveuorn AVoUoAGY, XoadOe xal TO TEOYRUUUATIOTIXO TAXLGLO
(framework) mou Yo yENOWOTOCOUUE Yot TNV EXTEAEOT] TWV TEWOPUETWDY. XTO XE-
(pdhano 3, ToEoUCIALOUPE TOUC TEOGERIC ETAEYVEVTES ahyopidoUS, EVE GTO XEPIAMO
4, UEAETHUE T1) CUUTEPLPORE TOUG OF TEAUYUAUTIXES o AUTOCYEDLEC GUANOYEC DEDO-
UEVWV (datasets). Télog, oto AEPIANMO D TPOTEVOUNE PEPEC ETUTAEOV TEOCUHXES

070 GUOTNUA OOTE UTO VoL ATOTEAEGEL OAOXANPWUEVT Ao Yo cloTrua Aviyveuong

11
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Avepohioy xon €€8yoUUE XATOL CUUTERAOUOT Yo TOUS oAYopilUoUC.



Kegdhaio 2

Oeswpntind YT rolBopVpo

2.1 Mnyovixry Madnorn xow Aviyvevorn Avopo-

ALV

H Mnyaviery Ménon etvon tedlo tne Teyvntic Nonuooivng nou aoyolelton ye T
UEAETT OAYORITUWY %ol GTATIO TV JOVTEAWY TOU TOL UTOAOYLO TIXE GUC THUNTO YT
OLUOTIOLOUY YLOL TNV EXTEAEST) MLaG EPYAOTOG Ywpls Vo yeetdleTon Vol TEOYROUUATIO TOOY
avohutd [4]. Tétotor ohyopriuot ytilouy apyxd évor podnuatixd poviélo (mpomorvn-
on) ue Selypor SeBopévmv xar UGTERA TO YENOWOTOVY Yla Vo dwoowy TpoPA&pels oe
VEQ DEDOUEVAL.

To dedouéva auTd amotehoLvTon amd dlaviouatd, oTta ool Vo AVAPEPOUUCTE e
Tov 6po examples, To medla Twv dtavuopdtwy Yo Aéyovton features, xou To prxog Twv
OLVUOUGTWY DLdoTaoT’ Twv 6edouévey 1) dimensionality.

Trdoyouv Teelc xatnyopiec Mnyovixrc Mdnong:
e Supervised Learning, pe dataset mou qépet Tic avouevoueveg evoelele,
e Unsupervised Learning, ue dataset ywpic evoeilele,

e Reinforcement Learning, uio dSopopetint| Tpoceyylorn mou dev Yo ueheToouue

oto mhaiota Tng mapolong epyactoc.

[ Aviyvevon Avepolny utdeyouv uédodol Tou EUTInTOUY XUplwe oTIC 600 TEWTES
xatnyoplec.

Youpowva pe tov Aggarwal [3], n Aviyveuon Avepolidv aoyoleltol UE TOV eVTo-
TOUO TAPATNEHOEWY ToU elval T0c0 WBLELoUcES WOTE Vo xvolv utodlec yio To 6TL

OTNLtoLEY UMY aTd EVIEADG DLUPORETING UNYAVIOUO OO TIC XUVOVIXEC.

13
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2.2 YOvodn dadéoipuwy alyoplduwy

Yopgwva pe v iy [7], urdpyouv ot e€¥c xatnyoplec olyopituwy Aviyvevong

Avouohiov:
e Booiopévol oe Classification

— Baowouévolr oe Nevpwvind Abxtua
— Bootopévol oe Bayesian Networks
— Boowopévol oe Support Vector Machine (SVM)

— Bootopévol og Rule
e Boowouévol oe Nearest-Neighbor
e Booiopévol oe Clustering
o YtotioTixol ahyodpriuot
o daouatixol

, otig onoteg Yo mpooécoupe xou Toug Bactouévoug o Ensemble.

Nevpwvixd Aixtua
To Nevpwvind Aixtua yenowonowoivton evpéwe yia Classification, xou €youv eqogpuo-
OTEL EMTUYOS X0 0TO YWeo TN Aviyveuong Avouahioy.

‘Evo Nevpwvixd Aixtuo amotehelton and dlacuvoedeuévoue ‘Nevpwvee’ onwe o et

%ol OUEVOC oTNY exova 2.1.

w1

P

Yyfuo 2.1: Teyvntog Nevpwvag

[ Aviyvevon Aveuolioy €youy tpotadet didpopa povtéha, 6mwe to “Elman Re-
current Networks” [11] xou to Replicator Neural Networks [12].
To apynuixd aut®y TV Pedddwy (xor 0 Aéyog mou dev To EMAEYOUUE €V TEREL)

elvon T0 UEYAAO UTOAOYLOTIXO XOGTOC TOUG.
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Bayesian Networks
‘Eva Mrobavo Aixtuo ebvan éva mdavotind ypapxd LovIERO Tou EYEL YPTNOYLOTOL-
noel emtuy®e xou yior Aviyveuon Aveuahidv, alid dev LTEEYEL TEOTOC VoL YEIRLOTEL

ToAamhéc poéc dedouévmv elo6dou, Topd wbvov dvo [13].

ANyobpripol Baciopévolr oe Ensembles

Avth 1 xatnyopia mepthauBdver alyopiduouc pe povtéia mou amoteholvTon amd €val
olvolo acVevav classifiers. Tétolol aryodpriuol eivan o Isolation Forest, Half-Space
Trees, Lightweight On-line Detector of Anomalies, ot onolot €youv dhot emheyel xou

ol AdYoL Tou 0BHYNoOY OTNY ETAOYT] TOUC TUEOUCLALOVTOL GTO XEPIANO 3.

ANyobpripol Baociopévor o Nearest-Neighbor uedésoug

Tétolec pédodor nepthopBdvouy x-veopeot verynBop [17], Aocak Outhiep Pactop [5]
xou Ytocnaotic Outhiep Actegtiov [14], mou mopd TV anoteheopotixdTnTd Toug €YouY
TOAUTTAOXOTNTA TOUALYLOTOV O(nZ), EMOUEVKC €Vl ATAYOREVTIXY 1) YPHON TOUC OF

UEYSAO OYXO BEDOUEVWV.

Support Vector Machine (SVM) pé9odo.
Ewwd 1o 1-SVM elvon oAl yvewoté oto medlo tng Aviyveuone Aveuahicyv, ahhd ot
xohOTEpES pédodol efvor TohuwvuXoU yedvou (O(n3d)), tedyuc Tou xadioTé adlvarn

N yenon toug oe peydha datasets.

YtatioTixeg wEdodot

O oTaTIo TINES TEYVIXES YENOWOTOLOUVTAL OTAY 1) XUTAVOUT| TWV BEBOUEVWY vl V-
ot [23]. Hopadelypoto tétowwy uedbdmy etvon ta Gaussian Mixture Models [27]. Ané
auTh T xoTnyopta emAé€aye Evay ahyodpriuot factouévo otny IloAuvdidotatn Kavovixr

Katavour, mtou avahieton 610 xe@dhato 3.

Pacuatinég TEYVIXES

Ye vty Ty xatnyopla eunintouy ahydprduol 61wg o PCA (Principal Component
Analysis), nou ynopolv e xatdhhnho mhaioto vo yenotponomdolv yioo Aviyveuon A-
VOUIALGY. AucTuyng oune tétoleg uédodot eivol TOAWVLIIXO) YPOVOU WS TEOS TOV
aprdud Ty features (cuvhdoe O(nd?)), Tou xadioTd avdppootn T Yehon Toug Yia

OEDOUEVIL UEYIATS OLUO TUOTC.
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2.3 Batch xou Stream Eneepyacia dsdopévwyv

O Batch tpdmoc eneepyaoioc anoutel 6ho 1o dataset va elvon drardéoio and mew,
eve PE Tov Stream Tpoémo eneepyaldyacte Tor dedouéva xadoe autd ‘eéouv’. H e-
ne€epyacio Téve oe stream BedoPEVLY EYEL cav CUVETELN TNV EAYWYY| TWV ATOTEAE-
OUGTLY G TOAD X0 YEOVIXO OLAC TN, OUCLUCTIXG OF TEAUYUATIXO YPOVO, XATL TOU

emdnNToVUE, YU qUTO xou EMAEYOUUE auTH TN uédodo enelepyaoiog.

2.4 Koataveunuévn encelepyacio corg 0S00UEVWLY
XenoWonolo0UE XATAVEUNUEVA CUCTARNTA YLoTl TEOGPECOUV:
o Kalltepn ambddoon
o Kolitepn xhpoxmouotnta
o Awxdeoyodtnro (availability)
e Avoyr oe o@dhpoTa
e Muixpotepo xdoTOC
[0t TIC amoUTACELS UAG, TROCPEPOLY ETUTAEOV:
o Muxpbtepn xoduotépnon (Latency)

o KolUtepn Pudpoanédoon (Throughput)

2.4.1 Xyetxd frameworks

[o Tov oxomd pac toupdlouv ta TpoypauUoTio Tixd mhaioto Apache Spark, Apa-
che Storm, Apache Flink, ané ta onola emiéyouue to Flink yioati obugwvo ye v

Ny [15] €yet v xahltepn anddoon YLol TIC TEPIOOOTERES EQPUOUOYEC.

2.4.2 Apache Flink

ITooypaupatiotiné Moviélo
To API tou Flink amoteheiton and ta e&rc otpduoTas

e Stateful Stream Processing

e DataStream/DataSet APIs
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e Table API
e SQL

Eueic Yo ypnowonomooupe 1o 20 otpmua yior to netpduatd poc, DataStream/DataSet
APIs.

[ vor ypdier xavelc éva tpdypouuo yia to Flink, npénet vor yvwpeilel to povtéro
coric dedouévwv tou (Dataflow Model). Autéd napouctdleton extevidc otny etxdva 2.2

ot oekido 19, mou gTidyTnxe amd exdvee mou Peloxoviar oty Tyh [2].

Katavepnuévn Adtadn

To Flink mow mpofel oe extéleor tng Tonoloyiag mou unofdilouye, xdvel xdmoteg BeA-
TIOTOTOLACELS Xo LOLRALEL TIC anmopaiTnTES BlEpYUoieg Xt UETATEOTES Tou Vo Yivouy
oto stream oe viuata threads Tou GuUVOAOU TV UNYAVNUATOY TOU EYOUUE OTO XAUTO-
vepnuévo pog mepiBdirov. Now we widh oge now e Aotagrow HodEh AooXG MXE v
Ne OloTEYPUTED puvtde o Phwvx.

To viuato autd exterolvton oto Flink runtime oe 600 timoug diepyaoumy:
e “JobManagers”.
e “TaskManagers”.

H xotoveunuévn Sudtaln gaiveton otnyv emxéva 2.3, ond ) nnyn [6].

Flink Client Task Manager #1
" E ,,? Task Task Task
8 g Slot Slot Slot
Flink Program & g
i 2.1 @ @@
b
“:g'l Graph Builder & Optimizer 2 284,58
5 5255l E
3 g i HE Memory/I0 M
& = emo anager
2 JobManager |¢—EZ5 =
E Dataflow Graph | Network Manager |

L >
) ' } Data
» Streams

£
-]
% Task Manager #2
Scheduler ﬁ . Task Task Task
— > Slot slot | Slot

Checkpoint Coordinator

Eyhua 2.3: To xotoveunuévo tepBdihov tou Flink [2]
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To Flink ymopel va otniel oe xoataveunuevo clotnua eite uévo tou elte e 1
Boreia mpoypoupdtwy 6meng o YARN.
Evyyuroeig

e FExactly-once Delivery Semantics

o Avoyn} o€ CQANIOTA, TOU ETMITUYYAVETAUL UE OLBPOQOUC UNYOVIOUOUS TOU TEO-
oépet To Flink
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DataStream<-tring> lines = env.addSource |

B} — 5
new FlinkKafkaConsumer <>(.}}; ouree

DataStream <Zvent> events = lines.map ((line) -> parse (line}); :|— Transformation

DataStream<Statisti » stats = events
-keyBy ("id" )
. timeWindeow (Time.seconds (10}))
. apply (new MyWindowAggregaticnFuncticn ());

= Transformation

stats. addSink (new RollingSink (path)); } Sink
Source Transformation Sink
Operator Operators Operator
¥ N -
Stream Stream keyBy()f  Stream _ | Streaming Dataflow
Source map() window( )/ Sink fcondensed view)
apply()
" -
Op»e*rabar
""""""""""""" *, gmmmaaaRasn, I o '-\_ . Y "._ - —
i keyBy()/
Source map() it window( )/
[ [17 i oapply()
" i
:
Dpajamr Stream Sink ]
subtask 3 Partton i | Streaming Datafiow
J i (parallelized view)
] i keyBy()/
Source map() i window()/
21 21 ioapply()
£02

E ]
StV ST . WiveeotlV ST Wictitis' W

@ parallelism=2 parallelism=1

| keyBy()/
window( )/
apply()

. RS = —

Streaming Dataflow
(condensed wview)

keyBy()/

i window()/ !
¢ apply()
[1] .
o T ........... Sink | Streaming Dataflow
rfﬁd)—. 1y (parallelized view)
....................... /
; \ .
EokeyBy()/ |
Powindow()/
apply() i
21 |

Eyfua 2.2: To poviéro porc dedopévwy tou Flink [2]






Kegpdiowo 3

YAonoinon EmiAeyuevowy
AAyopilduwy

3.1 Iloiudidotatn Kavovixr Koatavoun

[pdxertar yio otatiotind ohyoprduo [20]. Trodétoupe 6Tt tar Bedopéva pog oxo-
houdouv 11 Hohudido tatn Kavovixr, Koatavous.
D o nopotfenon © ~ N(p, ),z € REz = [21,29,..., 247, 1 ouvdptnon

TuxvoTNTOG TavoTnTag Elvor

bl ®) = s e (= 50— 057w - ) 9

6mou 1 € R ebvon n péom i xanw B € R elvan o nbvoncag uvdiopavorg.
Av o1 z; ~ N (s, 07) elvar SAes avebdptnteg, nalpvoupe:
d
p(x) = p(x1, 22, .., 2a) = P(x1; 1, 03)p(T2; i, 03) - . p(2a; pa, 07) = Hp(xﬁ M 0]2');
j=1

oTou: . ( 2

2 r—H )
T, o = ex —
P o) = s p(- 5

T var mporovhoouue to poviého ([20]) (ue mopopétpouc w02, Vi € [1,...,d)),

TEETEL VO UTOAOYCOUUE:

o L = %Z}Ll xm, omou n ebvar 0 apriudg TV Tapatnecswy oo dataset, xau

e o7 =150 (2l — )?
Kotd to otddio tng extiunong (evaluation), yio wa véa topatiienon o, urtohoyilou-

ue:

pl) = H e (- (gl

7

21
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X0 ‘UAEXGPOVUE’ TO T w¢ aveuahia, av 1 Tuh p(x) ebvar uxedteen omd Evo Kot

€ (UmepmopPdUETPOC).

3.1.1 XopaxtnploTixd

Mrmogel 1 unédeon e avelaptnolag v elvon Woyver, oAl odnyel oc TepdoTia
uToAoyloTixd TAcovexTidato. Enlong 6,11 apyntnd umopolv va tpoxidouy and authv

™V anogoot, avtpetotilovia ue Ty Pordeia evéc PCA mowv tnv npomdvnon,.

3.1.2 7Ylowoinon

7 ’ 7 4 7 14 ’
O alybpriuog autdc LhoTolelton oyeTnd ebxoAa ue onotodrrote framework mapéye

Map-Reduce evépyeieg. Luyrexpueva, oy €YOUUE DEDOUEVY TTOU ATOTEAOVUVTOL ATth N

Srovbopata didotoong d, pe 2V = [xgj),xgj), o ,xgj)]T,j € [1,...,n], téte avd Tdoo
otyur| €youpe dadéoo to didvuopa T = [Z?Zl ), Z;‘:l (:p(j))2, n] ue tov e&nc
TEoTO:

// Scala

dataSet

.map { x => (x, pow(x, 2), 1) }
.reduce { (x1, x2) => (x1._1 + x2._1, x1._2 + x2._2, x1..3 + x2..3) }
.collect()

"Totepa, GAEC OL TUPGUETEOL TOU HOVTEAOU 4 XOL o? umohoyilovtar ¢ e€hc:

Sea® e, X @9 T 7o),
T T T e T T

IMopduetpor
Iter, mou ypnowomnotelton yio extiunomn evég xahol threshold.

AvEanTugr 0TO XATAVEUNUEVO CUOTNUA
23T TELPAUATOL JOG XEVOUPE XUTAVEUTUEVY TIeOTOVN oY), batch, xaw UoTepa epapuoyr oe

véa dedouéva oTo stream.

3.2 Isolation Forest

To Isolation Forest [18] ypnotpomotel Ty 1d€o TS amopHorwons Yo ToV EVIOTIOUS

TWV AVOUUALDY.
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O oAyopLiuog autodg Boukelel ywpellovTag avadeouxd TUY L TOV ¥ MEO TAURATNEToE-
oV UEypl Eva cuyxexpévo Bddog 1) uéypet Vo atopoveoel xdrolo onueto. Xenotuomnotel
war cUAAOYY €vog eldoug duadxol Bévtpou Tou Aéyeton ¢ Tree.

H Aerrouvpyia BaciCetor oto yeyovéde otL ta avipaeda onpeia, dvtag mo atopovwiéva
ard ta vrddowna, Oa yperdlovtar Atydtepes diapepioeis tov ywpou yia va amopovwdoly,
Tpdyua mov avTioTolyel o€ HIKpOTEPO VPOoS Twy OEVTPWY TOU HOVTEAOV, €V Ta Kavovikd
onueia Ya ypedlovtar Tepioodtepes TopéS kal dpa peyaAlTepa PNkn UovoTaTicy.

Hopdderypa uTdpyet otnv exdva 3.1.

X,

Yyhuo 3.1: Topdderypa extéleonc Isolation Forest [18].

3.2.1 XoapaxtneltoTixd

To Isolation Forest efvau 1oyupd Evavl 6€ TEQITTWOELS TOU EvVo EVIOVA TA (POUVOUE-
va swamping, masking [19]. H nokumhoxdtntd tou eivan ypopuxr. To xdde dévtpo

ToU povTéLoL YTileTon amd €va Tuyako UTO-OelyUa TOU GUVOAOU TOV TUQUTNENCEWY.

3.2.2 7YAlorolnom

AucTuymg 0 ahyopripog auTtog dev umopel Vo Tpomovnlel amodoTIXG UE XUTOVEUT
uévo teomo. Butuyde duwe, enetdr) ta urodelypata emBdihetan [18] vor etvon oyetind
UxEol UeyEdoug, UTopoUUE Vo OEYTOUUE Vo TROTOVELTOL XEVTEXS %ot VO TEQY VoL OLVE-
Balouye TO TEOTOVNUEVO UOVTEND GTO XATAVEUNUEVO GUGTNUN Ylal Vo Oivel amoTeAEopa-
ToL TAVR oTo onpeia TV streams.

Autd axpBdc xEvae xon GTOL TELRAUATA OE ETOUEVO XEPAANLO, TEOTOVHOVTAS TO UO-
VTEAO XEVTEE X Vo TEPA GELpLoTOLOYTAC TO w¢ JSON, ue wo preorder mpooméhiaon

Tou xde BEvTpou, xou UOTEPU POPTWVOVTOS TO UoVTEAD ot xdle mapdhinio instance

TOU CUGTHUNTOS UOC YOl EQUPUOYT).
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IMapduestpor
Or vhomoloelg pag yenowonotoly T e€AC TapaUéTEOUS:

e Auto (boolean)
e Contamination (float)
e NumTrees (integer)

e SubsampleSize (integer)

3.3 Half-Space Trees

Autéc o ahyédprduog [24] Aettovpyel xotevdeiov tévew oto stream. ' xdie mo-
EUTARNOT TOU ELGEQYETAL, QUTY| YENOYLOTOLETOL 0" EVOC YLAL VOL AVIVEWCEL TO HOVTEAO
xou o €Tépou Yo var 0woel TedPAedn. Xenowonotel ‘mapddupa’, xau To LOVTELO TOU
elvon éva 6UVOLO amd BuAdXS BEVTEA.

Kde dévtpo and autd ytileton wg e&nc: Ta dedopéva dioywpetlovton avadpoutxd
xou Tuyoda, x6Bwvtag xdde @opd Tov YWeo ToupatnenoEwy ot péon (Tyéc axpoiwy
TOEATNEHCEWY Ol 500). Ta PUANYL TWYV BEVTPWY AVTIOTOLY 00V GE TEQLOYES TOU YOEOU,
xot 0 apiUdC TV TUPATNENROEWY TOU TEPTOLY GE oUTEC amoteholy T udla [25] g
TEPLOYTG.

H pdla outy| otn ouvéyela yenowdomoteiton yioo Ty extiunorn tou Baduol avewpoiiog

TV Tapatnerocwy. H ouunepipopd tou aiyopiuou gaivetar otny eixdva 3.2.

X

Yyfuo 3.2: Hopdderypa extéleonc ohyoptduou HS-Trees [24]

3.3.1 XopaxtnploTixd

Xpetdleton uévo €va mépaoua amd To OEBOUEVA, OTOTE TEOPUVMS EVOL YEOUULXOU

yeovou. Ernione unopel vo yetplotel dedopéva mou ahhdlouy avd Sl Tt (evolving
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streams), dnhadr dev el mpoBAnuo av eqapuoctel oe streams pe concept drift.
Qlot600 €yl éva apvntixd, meénel amd ey Vo 0wdel wio extiunon yio To gdpog
TGV Tou xdie feature TwvV BEBOUEVGLV UAC, 1) VO £YOUUE XAVOVIXOTOLNUEVA BEBOUEVL

oo elpoc [0, 1].

3.3.2 7YAloroinon

O ahyopriuog autde dev elvar 6OGX0AOC GTNY LAOTIOIMGT, EWBWXS Ay Yenoluoroinel
avadpour|. otdoo wor vhomolnor ue yerion mivaxo yio xdie TAYjpeg Buadixd BEVTEO
Yo Aty o yeryoen.

IMapdpetpor
To povtého yenowonotel Tig €€1g TapUPETEOUS:
e NumTrees (integer)
e SizelLimit (integer)
e MaxDepth (integer)
e WindowSize (integer)

[ot Ty EXTEREOT) TRV TELRAUUATOLY YEEWC TNXE Lo eTLTAEOY UTEp-TapdeTeoS: EstNumAnomalies.

AvédnTtugy o0To RATAVEUNUEVO VO TN
Y10 xataveunuévo olotnua, xdle mapdhinio instance ytiler To Six6 Tou UovTELO
HS-Trees.

3.4 LODA (Lightweight On-line Detector of Anoma-
lies)

O ahydprduoc AOAA [21], etvon xadopd on-line odydprduoc. To yovtéro tou amap-
tiletan amo k povodidctata Iotoyeduuata b, = 1,..., k, mtou To xadéva mpooeyyilel
NV TUXVOTNTA TWHAVOTNTUC TV BEBOUEVWY ELWGODOU.

"Eva dedopévo eisbdou € R mpofdiheton oe x8e 1otéypoppa péow evoc dia-
VUoUdTOC TeoBoA i w; € R i=1,.. .k [21]. O Bodude avwporiog diveton amd T
oyEon:

_ 1 - log 5 (27
score(x) = ~Z ; og pi(z" w;)

‘Oco 1o xovTd 670 undéy, tHco mo mavd elval N ToEUTHENOT VoL EVaL AVEUOAT.

To wtoypdupata eivar Tpldv TOnwY, fixed-bin, equi-width xou on-line [22].
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3.4.1 XopaxtneloTixd
O LODA bev €yel mpoBhnua Ue 6e80UEVHL TOU TOROUGIALOUY SOVSETT OPIPT, 1) HOVT|

TOL amalTNoN Yo To OEBOUEVA ELGOOOU EIVAL VO EYOLY TWES TWV PENTURES TERITOU GTNV
(Btar TéEn peyédouc.
Enlong elvon amoteheoyatindg oe dedouéva mou dev efvar TATEY, xo EYEL YROUULXN

TOANUTTAOXOTNTAL.

3.4.2 7Ylowoinon

Y10 [21], amodewmvietor 6Tt to equi-width o Toypdupata givor T TO ATOTEAEOUO-

TIXd, OTOTE YPNOUWOTOLOUPE oUTd, X0t Tot VAOTOOUPE Ye hash maps.
IMopduetpor
Xpnowomnotel Ti¢ axdroudeg ToRUPETEOUS:
e NumFeats (integer)
e BucketWidth (float)
e NumVectors (integer)
Optlouue 8o €&tpa unepmapouéTEoug Yo extiunon tou threshold: TrainSize (inte-

ger), ProbSumBorder (float).

AvanTtugr 0TO XKATAVEUNUEVO CUOCTNUA

Opolwe pe Tov HS-Trees.
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ITetpduota

4.1 Ymodoun

Xenowono{dnxe ocvvoho unohoyictwv (cluster) amoteholyevo and téocepic xOy-
Boug, o xaévag ex Twv onolwy éyel ta e€rg yapaxtneiotind: 2 vCPUs, 4GB RAM,
40GB HDD. Amé loywouwd yenowomotfdnxay Python 3.6, NumPy, Scala 2.11,
Apache Flink 1.6.1.

4.1.1 IMTopopetporoinor cluster

Moty Tapapetponoinon, autouatonoinon xat dtayeipnon twv puiuicewy (config-
uration management) yenotponotioaue Ansible [1].

To Baowdtepo TAcovéxTNUa TG YeNoNg Tou eV AdYw epyaheiou elvon 1 ‘agpaipeon’
(abstraction) mou Ttpoo@épet otV LTOBOUT. XENOWOTOLOVTIS TO UTOPOVUE EUXONAL VoL
TpocVugepaicouns Gooug Xt OTOLUEC xOUBOUS VENOUUE XaL UE TO TAUTNUA EVOC XOU-
uToU opdyovTal auTOUoT To apyelar plong xon eYXadlo TOVTOL GTOUC amapaiTnToug

x0uPoug 6hou Tou cluster.

4.2 Acdougva

To datasets mou ypnoylomotinxoy yiar o TelpduoTo HToy 800 WV TEYYNTE X
TEOLY HOTLXGL.

To teyvntd etyov petafinté oprdud clusters (1-4), aprduéd features (5-100) xou
apriud mopatnenoeny (1,000- 100,000). o npoypoatixd dataset emié€ope 1o KDD

Cup 99 ané o omnoio emhélope o €N “KoppdTiol TOU:

o II\fpeg (prig To categorical features xou e cwotéc evoeiZeic-labels): ‘Eyet

uéyedoc 4.9 ex. napatnerioeic xou 34 features

27
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e SMTP: Méyedoc 9723, 38 features, 1.2% nocootd mopovcioc avmuoiddy
o HTTP: Méyedog 64293, 3 features, 3.7% nocootd mopovcioc avmuohiddy

To clusters oto teyyNnTd chvolo xatooxeudotnxay oaxoroudwvtac Ty Kovovix
Kotavour, xou or avwuaiieg tnv Ouoldpopen xatavour. To features emhéydnyay
AowBdvovtog ut'ddgy xar T Ty [16].

4.3 Metproslg

4.3.1 MeTeuxeg

Yuvrdeig emhoyée ebvon [10]:

o Sensitivity = TPTJF%
e Specificity = %
e Precision = TPTJF%

Recall = TPTJF% (B0 pe Sensitivity)

xou Bactopéveg ot auTég elvan oL

__ o PrecisionxRecall
e FI Score = 2Precisicm+Recall

e AUC Score, 500 tUTWV:

— ROC AUC
— PR AUC

Amé autég eméyouue va yenowonotiooude Tic F1 score yiati divel (on onuacta
oe Precision, Recall xou ROC AUC, yuoti 8iver eixdva twv amoteleopdtony ywelc va

eCaptdron omd Ty T xatwiiou yio Tic tpofBiédelc [26] [8].

4.3.2 AxpiBeia tpoAédewy

To mpdto oTotyeio mou e€etdloupe elvar o oprlude twv clusters oto dataset. Ta

amotehéopata patvovton oTny ewova 4.2.
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Eyfuo 4.1 Awnodntiny tpocéyyion tne Aettovpylog Tou poviéhou tne [loAuvdidotatng
Kavovurc Koatavouric

—&— gauss —i— iforest -8l hstrees —4- loda

Fl Scores

ROC AUC Scores

T T
1.0 2.0 3.0 4.0
NMumber of clusters in the dataset

Yyfuo 4.2: Metpuixég yua dtdpopoug aryopiduoug cuvaptrioet aprduol Clusters

Yy exoéva 4.2 nopatneolue 6Tt Ghot oL alyoprduol ydvouv ot anddocT), 660 TO
uéyevog twv clusters auldveTton oTor BEBOYEVIL O LUYHEXQIIEVY, 1) AmOOOOT) TOU UO-
viéhou Kav. Kotavouric anodidel yetpdtepa yiotl xotahryer v ‘xuxAmvel ta clusters’,
yévovtag ok tor evotduecd toug. To IForest xotokfiyel va onuodeder Tohhd onueia
TOU OEV EWVOL AVOUXA{ES (False Negatives), evéy o HS-Trees, YOVEL X0 oUTOG ETELDY)

Tou Ceelyouy Ta eEVOLdUESa onuceia, ETEWY TO cuyxexpwévo dataset €yel uévo 600
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features xou o xotator Tou eivon ot yéorn. Téhoc o LODA bev ydvel t600, eivor
MW ATOOEXTY| 1) AmOBOGT Tou, dedouévou 6T elvan xadapd on-line adydprduoc.
Yy exodva 4.3, gaivoval ot amodocElC TwV ahyOptiuwy cuvVopTAoeL Tou apliuol

features.

—8— gauss —i— iforest --fl-- hstrees —— loda

10 { g

0.9 1

0.8 1
0.7 1

Fl Scores

0.6 1
0.5 1

1.00 4

0.98 +

0.96

ROC AUC Scores

0.94

T
20 40 60 80 100
MNumber of features in the dataset

Yo 4.3: Metpuée yia didpopoug ahyoplduoug cuvaptrioet aprduol Features

O Gauss 0iyvel vo duoxoheleTon oc ToAudLdoTATo OEdOPEV, Yiatl yiveTonw ToAD
0UOXOAN 1) €VpECT) CWOTAC TS xaTw@Alov, xadne xar o LODA, Aéyw duoxoiiog
€0pEOTC OWOTWY ToEUUETEWY. ATevavtiag, ol dhhot 800 aAyopLriuol BeV €youv xavéva

TEOBANUA UE TOAUDLACTAUTO DEDOUEVAL.

4.3.3 Xpovog extéleong

Koutovtag tny exdva 4.4 eivon mpogavég otL 6hot ol alyodprduot etvar yoouuxo0

Yeovou.

4.3.4 Merpnoeic oto KDD Cup 99 Dataset

To anoteréopata yio o HTTP dataset gaivovtan otov mivoxa 4.1 xan yio to SMTP

otov Tivaxa 4.2.
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—&— (gauss —i— [forest --fl-- hstrees —4- loda

Time of execution

T T T T
0 20000 40000 60000 80000
Mumber of examples in the dataset

Yyfuo 4.4: Xpdvor extéheong ouvapthoel ueyédoug dataset

Algo F1 Score AUROC Score Total Time (s)

Gauss 0.9707 0.9900 2.566

[Forest  0.5709 0.9716 46.425
HSTrees 0.8344 0.9907 86.458
LODA  0.1333 0.7667 35.856

Hivoag 4.1: F1, AUROC Scores xa ypovol extéheone oto HTTP KDD dataset

Algo F1 Score AUROC Score Total Time (s)

Gauss 0.6833 0.9861 1.217
[Forest  0.9626 0.9640 7.623
HSTrees 0.6891 0.9044 15.159
LODA  0.7123 0.8814 6.073

Hivoxac 4.2: F1, AUROC Scores xou ypovol extéreone oto SMTP KDD dataset

Kot oto 800 clvoha Eeympilel o Gauss yioti tetuyaivel TOA) xoAéC anodocElC e

TOAD Uxpo yeovo. Ou héyol mou autd cuuPaivel efvan emeldy| €xel To mo uxed Yoviého,
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0eV £yel avadpouxd Bruata oty vAoToinoY| Tou, xat elvon VAoTolnuévog e framework

Tou Behtiotonotel uTohoylopols e TivaxeS (Toug omoloug YENoLUOTOLEL TOAL).

4.3.5 Exztéheon oto Apache Flink

Y10 melpopo autd petpdue throughput oto cluster. H tomoloyio gaiveton otnv

exodva 4.5.

Yyfuo 4.5: Tomohoyla yio v extéleon oto Flink

Ynv ewodva 4.6 gatveton 1) adEnon g puIUATOBOoTS CUVIPTACEL TNG TUEUAANALOC,
TOU €lVoll TEOPAVKS AVUUEVOUEVO.

AloomnuelwTo elvon to yeyovog 6Tt o Gauss ayyiCet T péylotn duvaty| puipamoédo-
on, onwe umoloyileton Bdoel TG TayUTNTOC TWV BIOXWY TWV UNYUVARATWY X0t TNG

Tonohoylag.
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—8— (gauss —i— iforest -8l hstrees —4- loda

200000 -

175000 ~

150000 ~

125000 ~

100000

73000 -

I NrOUgNPUL (EXaMpIes per second)

30000 +

25000 -

1 2 3 4 5 6 7 8
Parallelism

Yyfuo 4.6: Puduanédoon aryoplduwy oto Apache Flink cuvaptrioel [opariniiog
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>0vodn

5.1 Xulrtnon

5.1.1 X0yxplomn pe AAAES UAOTOLNOELS

['evixd 6ev uTdpy 0LV AVOLY TOU XWOLXA VAOTIOLOELS TWV EV AGY L ahyopliuwy, extodg
omo to [Forest, mou undpyel oto scikit-learn. H 71 undpyouvca auty| viomoinom duwe
0EV €YEL TPOTO GELRLOTIOMNONG TOU MOVTEAOU, WOTE Vo UTopel var poptwiel UoTepa yia

on-line inference, eve 1 dixY| pog vAomoinorn to unocTnellel aUTO.

5.1.2 TITvdavéc snextdoelc

i€ €V OAOXANPOUEVO GUCTNHA Vol UTOPOVGE XAUVELG VoL YPNOLIOTIOW|OEL VoL message

queue yLo vor TETUYEL TopaAANAla Ty source operators yeyaAbtepn omod 1.

5.2 Amnoteiéopoata
Or aiyopiduot mou eetdoaue Arav ol e€nc:

o Iloludidotoarn Kov. Katavour): Eiye to xaAbtepa scores xon otor Te) VAT 0hAdL Xaut
ota mporyoTixd datasets, Toug UixEOTEPOUS YEOVOUS EXTEAECTC XOL XEVTELXS XalL
oto cluster, xou émooce To Yéyloto duvatod throughput. (dotéco dev elvon mOAD
X0\ emhoyn yior tohudtdoTortor dedouéva 1 un-aveEdotnto Sedopéva (npoteivetat
PCA).

e Isolation Forest: IToA) xaAd scores ota mpaypatixd datasets, dSuvatd evavtiong
TEQIMTOOEWY swamping, masking, oautouatn emhoyn threshold, moAd xohn o-

T6000T| Ue TOALOLAG Tortar dedopgva. T apynTind Tou elvon 6Tl mpomoveitar povo
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AEVTEIXE xou o€ dedopéva Ue ToMAS clusters xdvel flag moAAEC xavovixég mapatn-

er|oELC.

e Half-Space Trees: Kodopd on-line adydpriuoc, Aertovpyel o napddupa. ITord
xahY) amodooT ota mparypotind datasets. Kotdhinhog yua evolving streams, »ou
0eV €yel TEOBANUO e BeBOUEVA HEYSAWY BlaoTdoEwy. §2oTdc0 elvar 50oX0AO Vo
exTWROoEL xovelg €var o6 threshold, xon ypetdleton xavelc va 0GoEL VPO TYWDVY
Tou xdie feature, €otw oo mepimou. Elye Ayo ueydio latency yiatl €yet ueydro

UOVTENO.

e Lightweight On-line Detector of Anomalies: Enionc xadopd on-line olydprd-
uog. Tegyer AMyo mo yeryopa amd tov HS-Trees, xatdAAniog xan yiow un mhren
oedopéva, pe 1 ywelc concept drift. TIoAd dOoxolo va Beel xavelg Tig xotdhhnheg

TOEUUETEOUG.

IIépa amo toug olyoplduoug eetdoaye enlone to Apache Flink xou tnv Ansible.

Téhoc, mpoteivaye xdmoteg miavég emexTdoelc.
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