
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

DIVISION OF SHIP HYDRODYNAMICS

DIPLOMA THESIS

MARINE PROPELLER OPTIMIZATION USING

OPEN SOURCE CFD

Theofanis Papakonstantinou

Thesis Supervisor: Prof. G. Grigoropoulos

Committee Member: Prof. G. Politis

Committee Member: Prof. G. Papadakis

Athens, February 2019

 Marine Propeller Optimization using open source CFD

2

Abstract

Due to the continuous increase in computing power, Reynolds-averaged Navier Stokes CFD

simulations have become an integral part of propeller design. Moreover, advances in computer

technology led to the development of modern CAD/CAE systems like CAESES that allow for

parametric design and shape optimization by tightly coupling CAD to CFD.

The goal of this project is to investigate and validate open-source CFD tools that can be used to

evaluate the open water characteristics of a propeller and can automated in order to support an

optimization process. Then, develop a computationally cheap methodology inside CAESES that

will eventually be used to optimize a propeller with the limited computational resources available.

The efforts are focused on the difficulties of the automation the grid generation process, that still

remains a bottleneck in optimization studies with CFD. The search leads to the selection of

OpenFOAM to simulate the flow and cfMesh to generate the computational grid. The steady state

Moving Reference Frame approximation is used to model the rotation and the flow is solved for

one of the blades, using periodic boundaries. The turbulence is modelled with the k-ω SST

turbulence model.

The method used is validated using the Potsdam Propeller Test Case (PPTC) by comparing

simulation results to experimental data. A parametric model for the PPTC is created, CFD

automation is achieved and the propeller is optimized, by modifying the radial distributions that

define the blade shape. The optimization is performed using the Sobol sequence and the Tangent

Search Method that are available in CAESES.

Finally, basic geometrical operations that are essential for the connection of a 3D propeller model

to the CFD setup are scripted and automated inside CAESES, minimizing the manual effort needed

to get a fast and rough calculation of any imported propeller blade. The scripts developed are

validated with two powerboat propellers, by comparing the acquired CFD results to Vortex Lattice

results.

Keywords:

CFD, OpenFOAM, MRF, Open Water Characteristics, Propeller design and optimization, Grid

Generation, CAESES, k-ω SST, CFD automation, CAD/CAE systems

 Marine Propeller Optimization using open source CFD

3

Περίληψη

Λόγω της συνεχώς αυξανόμενης υπολογιστικής ισχύος, οι Reynolds-averaged Navier Stokes CFD

προσομοιώσεις έχουν γίνει αναπόσπαστο κομμάτι της σχεδίασης ελίκων. Επιπλέον, οι εξελίξεις

στην τεχνολογία υπολογιστών οδήγησαν στην ανάπτυξη μοντέρνων συστημάτων CAD/CAE όπως

το CAESES που παρέχει δυνατότητες παραμετρικής σχεδίασης και βελτιστοποίησης, η οποία

επιτυγχάνεται με την σύζευξη CAD με CFD.

Σκοπός της εργασίας αυτής είναι η αναζήτηση και επαλήθευση ελεύθερου λογισμικού που μπορεί

να χρησιμοποιηθεί για τον υπολογισμό των χαρακτηριστικών έλικας σε ελεύθερη ροή αλλά και

να αυτοματοποιηθεί για να υποστηρίξει μια διεργασία βελτιστοποίησης. Έπειτα, να αναπτυχθεί

μια υπολογιστικά φθηνή μεθοδολογία μέσα στο CAESES που τελικά θα χρησιμοποιηθεί για την

βελτιστοποίηση μιας έλικας, λαμβάνοντας υπόψιν την περιορισμένη υπολογιστική ισχύ που

διατίθεται. Οι προσπάθειες εστιάζονται στις δυσκολίες της αυτοματοποίησης της γένεσης του

υπολογιστικού πλέγματος, διεργασία που παραμένει εμπόδιο στις μελέτες βελτιστοποίησης με

CFD. Η αναζήτηση οδηγεί στην επιλογή του λογισμικού OpenFOAM για την προσομοίωση της

ροής και του εργαλείου cfMesh για την γένεση του υπολογιστικού πλέγματος. Η μέθοδος μόνιμης

ροής Moving Reference Frame χρησιμοποιείται για να μοντελοποιήσει την περιστροφή και η ροή

λύνεται για ένα από τα πτερύγια χρησιμοποιώντας περιοδικά σύνορα. Η τύρβη μοντελοποιείται

με το μοντέλο τύρβης k-ω SST.

Για την επαλήθευση της μεθόδου χρησιμοπoιείται η έλικα του Potsdam (PPTC) συγκρίνοντας τα

αποτελέσματα των προσομοιώσεων με πειραματικά δεδομένα. Έπειτα αναπτύσσεται

παραμετρικό μοντέλο για την έλικα αυτή, η αυτοματοποίηση των CFD εργαλείων επιτυγχάνεται

και η έλικα βελτιστοποιείται, μεταβάλλοντας τις ακτινικές κατανομές που ορίζουν το σχήμα του

πτερυγίου. Η βελτιστοποίηση γίνεται χρησιμοποιώντας την ακολουθία Sobol και την μέθοδο

Tangent Search που παρέχονται στο περιβάλλον CAESES.

Τελικά, βασικές γεωμετρικές διεργασίες που απαιτούνται για την σύνδεση ενός τρισδιάστατου

μοντέλου έλικας με τον επιλύτη μέσω του CAESES προγραμματίζονται και αυτοματοποιούνται,

ώστε να ελαχιστοποιηθεί η χειροκίνητη προσπάθεια που απαιτείται για τον άμεσο υπολογισμό

των χαρακτηριστικών ελεύθερης ροής οποιασδήποτε έλικας. Οι αλγόριθμοι που αναπτύσσονται

εφαρμόζονται και επαληθεύονται σε δύο έλικες ταχύπλοων, συγκρίνοντας τα CFD αποτελέσματα

με Vortex Lattice αποτελέσματα που διατίθενται για τις έλικες αυτές.

Λέξεις κλειδιά:

CFD, OpenFOAM, MRF, Χαρακτηριστικά ελεύθερης ροής, Σχεδίαση και βελτιστοποίηση έλικας,

Γένεση πλέγματος, CAESES, k-ω SST, Αυτοματοποίηση CFD διεργασιών, Συστήματα

CAD/CAE

 Marine Propeller Optimization using open source CFD

4

 Marine Propeller Optimization using open source CFD

5

Acknowledgements

This thesis is submitted in partial fulfillment of the requirements for the degree of Naval

Architecture and Marine Engineering at the National Technical University of Athens. It was

undertaken at Friendship Systems AG, Potsdam, Germany, developer of the software CAESES.

 Firstly, I would like to thank my supervisor at NTUA, Professor Grigoris Grigoropoulos, who

gave me the chance to work on such an interesting and challenging topic. I would also like to thank

Professor Gerasimos Politis for his guidance and the valuable input he provided throughout the

project as well as Professor George Papadakis for his support. The founders of the company, Dr.

Stefan Harries and Claus Abt, for their support, the pleasant environment they provided and for

introducing me to the fantastic world of simulation-driven design. Special thanks also go to the

whole team of Friendship Systems especially to Heinrich von Zadow, Carsten Futterer and Paulo

Macedo, this thesis would not have been possible without their help and guidance.

I express my deepest gratitude to my family, for their endless support throughout all my years of

studies. My close friends and colleagues at NTUA, with whom I spent my studies and share

countless memories. Finally, I would like to thank my beloved girlfriend Evangelia for all her love,

understanding and support.

 Theofanis Papakonstantinou, February 2019

 Marine Propeller Optimization using open source CFD

6

Contents
Abstract ... 2

Περίληψη .. 3

Acknowledgements ... 5

List of Figures ... 8

List of Tables .. 10

Nomenclature .. 11

Abbreviations .. 11

Symbols... 12

Operators ... 13

1 Introduction ... 14

1.1 Method Outline .. 16

1.2 Thesis Outline .. 17

2 Theory .. 18

2.1 Propeller Performance ... 18

2.2 Governing Equations ... 20

2.3 Turbulence and RANS .. 22

2.4 Turbulence Modelling: SST k – ω Model ... 23

2.5 Moving Reference Frame .. 25

2.6 Near Wall Treatment .. 27

2.7 Discretization .. 29

2.8 SIMPLE Algorithm ... 32

2.9 CAD - Parametric Modelling .. 34

2.10 Grid Generation ... 36

2.11 Propeller Optimization .. 39

3 Software ... 45

3.1 Geometry - Friendship Framework – CAESES .. 45

3.2 Solver - OpenFOAM ... 47

3.2.1 Introduction to OpenFOAM .. 47

3.2.2 Structure of an OpenFOAM Case .. 49

3.2.3 Compiling OpenFOAM Applications and Libraries .. 50

 Marine Propeller Optimization using open source CFD

7

3.3 Grid Generation - CfMesh... 52

4 Method ... 53

4.1 The Test Case - PPTC ... 53

4.2 Pre Processing - Geometry Cleanup .. 54

4.3 Domain Construction .. 56

4.3 Grid Generation .. 59

4.4 CFD Setup ... 65

4.4.1 Flow conditions .. 66

4.4.2 Boundary Conditions .. 66

4.4.3 Wall Treatment .. 69

4.5 Building the Parametric Model ... 70

4.6 CAESES - OpenFOAM coupling ... 76

4.7 Running the case in parallel .. 79

5 Validation and Results ... 80

5.1.1 Mesh quality metrics .. 80

5.1.2. Grid Independence Study .. 85

5.1.4 Convergence ... 87

5.1.5 Comparison with experimental data ... 90

5.2 Optimization Phase and results ... 100

5.3 Process Automation and Validation .. 106

6.1 Conclusion .. 112

6.2 Suggestions for future work .. 113

Bibliography ... 114

Appendix A ... 118

Appendix B ... 122

 Marine Propeller Optimization using open source CFD

8

List of Figures

Figure 2.1 Open water test setup ... 18

Figure 2.2 Turbulent boundary layer ... 28

Figure 2.3 OpenFOAM cell definition [6] (left), face definition [32] (right) 29

Figure 2.4 The SIMPLE algorithm flow chart [5] ... 33

Figure 2.5 Qualitative assessment of geometric modelling techniques [13] 35

Figure 2.6 Cell types used in CFD codes ... 36

Figure 2.7 Unstructured mesh using Pointwise for the PPTC .. 38

Figure 2.8 Fidelity of numerical methods for propeller simulation [17] 40

Figure 3.1 Phases of product development [11] ... 45

Figure 3.2 Meta Surface creation process in CAESES [29] .. 46

Figure 3.3 Overview of OpenFOAM structure [32] .. 48

Figure 3.4 Case directory structure [32] ... 49

Figure 3.5 C++ Class mechanism [32] ... 51

Figure 3.6 Directory structure for an application.. 51

Figure 3.7 Meshing process stages ... 52

Figure 4.1 CAD Geometry of the PPTC propeller... 54

Figure 4.2 Detail of the trailing edge near the fillet ... 55

Figure 4.3 Complete watertight geometry including the shaft ... 55

Figure 4.4 First step of the domain construction ... 56

Figure 4.5 Domain construction .. 57

Figure 4.6 Domain construction ... 58

Figure 4.7 Final STL to be exported ... 59

Figure 4.8 Geometry preparation .. 60

Figure 4.9 Surface mesh on the propeller blade and shaft .. 61

Figure 4.10 Monitoring the mesh quality in Paraview .. 62

Figure 4.11 Prism layers at the wall .. 63

Figure 4.12 Refinements near the tip .. 63

Figure 4.13 Volume mesh around the blade without cylinder volume refinements 64

Figure 4.14 Volume mesh around the propeller with cylinder volume refinements 65

Figure 4.15 Boundary Conditions ... 66

Figure 4.16 Profile definition ... 70

Figure 4.17 Radial distributions (left), Parametric blade with tip (right) 71

Figure 4.18 Trailing edge fillet (left), Hydrofoil Section comparison (right) 72

Figure 4.19 Camber distribution ... 73

Figure 4.20 Thickness distribution .. 74

Figure 4.21 Pitch Distribution ... 75

Figure 4.22 Watertight parametric blade ... 75

Figure 4.23 Software connector ... 76

Figure 5.1 Aspect Ratio for a quadrilateral element [47] .. 80

Figure 5.2 Definition of non-orthogonality [48] ... 81

file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705855
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705857
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705858
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705859
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705861
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705864
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705867
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705869
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705872
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705873
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705874
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705882
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705885
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705887
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705890

 Marine Propeller Optimization using open source CFD

9

Figure 5.3 Skewness between neighbor cells [49] ... 81

Figure 5.4 Concave faces (left), Concave cells (right) .. 83

Figure 5.5 Low quality faces at the tip .. 84

Figure 5.6 Low quality faces at the fillet ... 84

Figure 5.7 Grid independence study ... 85

Figure 5.8 Y+ values on the propeller blade corresponding to the medium mesh 86

Figure 5.9 Residuals of the simulation for J=1.2 .. 87

Figure 5.10 Calculated forces for J=1.2 .. 88

Figure 5.11 Calculated moments for J=1.2 ... 88

Figure 5.12 Thrust coefficient for J=1.2 ... 89

Figure 5.13 Torque coefficient for J=1.2 .. 89

Figure 5.14 Comparison with experimental data... 90

Figure 5.15 Pressure distribution on the suction side for advance coefficients from J=0.2 to

J=0.8 ... 92

Figure 5.16 Pressure distribution on the suction side for advance coefficients from J=1 to

J=1.4 ... 93

Figure 5.17 Pressure distribution on the pressure side for advance coefficients from J=0.2

to J=0.8 ... 94

Figure 5.18 Pressure distribution on the pressure side for advance coefficients from J=1 to

J=1.4 ... 95

Figure 5.19 Streamline’s behavior on the leading edge ... 96

Figure 5.20 Iso-surfaces of Q = 20000 colored with the velocity magnitude for J=0.6 97

Figure 5.21 Mesh plane cut .. 98

Figure 5.22 Axial velocity distribution for J=0.6 ... 98

Figure 5.23 Pressure field around the blade on y=constant for J=0.6 99

Figure 5.24 Vorticity Magnitude plot near the leading edge and tip for J=0.6 99

Figure 5.25 27 Sobol designs for the first DoE ... 101

Figure 5.26 Influence of parameter pitchMax on KT .. 102

Figure 5.27 Influence of parameter ThicknessStart on open water efficiency 102

Figure 5.28 Camber1 values for every run ... 103

Figure 5.29 PitchMaxPos values for every run .. 103

Figure 5.30 Views of the Wageningen B-series and of the custom design [55].................... 107

Figure 5.31 Wageningen B-Series geometry preparation (left), domain construction (right)

... 108

Figure 5.32 Open water chart for Wageningen B-series ... 108

Figure 5.33 Pressure distributions on the suction side (left) and the pressure side (right) for

J=0.6487 ... 109

Figure 5.34 Custom made geometry preparation (left), domain construction (right)........ 110

Figure 5.35 Open water chart for Wageningen B-series ... 110

file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705894
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705898
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705909
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705911
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705912
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705913
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705915
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705917
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705919
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705920
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705923
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705923
file:///C:/Users/Γιαννης/Desktop/EnaVimaPrinToTelos.docx%23_Toc536705924

 Marine Propeller Optimization using open source CFD

10

List of Tables

Table 4.1 Potsdam Propeller Test Case Geometry .. 53

Table 4.2 Flow conditions ... 66

Table 4.3 Boundary Conditions for pressure and velocity .. 67

Table 5.1 Number of cells of each type ... 82

Table 5.2 Comparison of with experimental data .. 91

Table 5.3 Design variables and bounds ... 100

Table 5.4 New design variables .. 104

Table 5.5 Open water characteristics obtained with OpenFOAM and Vortex lattice for the

Wageningen B-Series propeller ... 109

Table 5.6 Open water characteristics obtained with OpenFOAM and Vortex lattice for the

Wageningen B-Series propeller ... 111

 Marine Propeller Optimization using open source CFD

11

Nomenclature

Abbreviations

Symbol Definition

AMI

BREP

CAD

Arbitrary Mesh Interface

Boundary Representation

Computer Aided Design

CAE Computer Aided Engineering

 CFD

DOE

DNS

 GPL

Computational Fluid Dynamics

Design of Experiment

Direct Numerical Simulation

General Public License

ITTC

LES

International Towing Tank Conference

Large Eddy Simulation

MRF

NURBS

PFF

PPTC

RANS

STL

SST

Moving Reference Frame

Non-uniform Rational Basis Spline

Propeller Free Format

Potsdam Propeller Test Case

Reynolds Averaged Navier-Stokes

Stereolithography

Shear Stress Transport

 Marine Propeller Optimization using open source CFD

12

Symbols

Symbol Definition

α Vector

β* Turbulence model coefficient

β1 Turbulence model coefficient

δij Kronecker delta

η Open water efficiency

γ Blending factor

κ Von-Karman constant

λ Lamda viscosity

μ Dynamic viscosity

ν Kinematic viscosity

ω Rotation vector, specific dissipation

φ General variable

ρ Density

σ Cavitation number

τ

D

Stress tensor

Propeller diameter

J Advance Coefficient

k Turbulence kinetic energy

KQ Torque coefficient

KT Thrust coefficient

m Mass

n Number of propeller revolutions per second

p Pressure

p0 Ambient pressure

q Source term

Q

r

Torque

Position vector

R Reynolds stress tensor

 Marine Propeller Optimization using open source CFD

13

Re Reynolds number

S Strain stress tensor

Sf Face area vector

T Thrust

u+ Dimensionless velocity

uτ Friction velocity

V Volume

U Velocity

w Weight factor

y+ Dimensionless wall distance

Operators

∇𝑨 Gradient of vector 𝑨

 ∇  𝑨

 ∇ × 𝑨

 Divergence of vector 𝑨

 Curl of vector 𝑨

 𝑨  𝑩 Inner product of vectors 𝑨 and 𝑩

𝑨 𝑩

𝐷

𝐷𝑡

𝜕

𝜕𝑡

 Outer product of vector𝑨 and 𝑩

 Total derivative in time

 Partial derivative in time

 Marine Propeller Optimization using open source CFD

14

1 Introduction

For many years, the design and selection of a vessel’s propeller has been a matter of investment

cost. Nowadays, the increase of bunker price along with environmental concerns and regulatory

requirements necessitate ship owners to reduce fuel consumption, leading propeller manufacturers

in the search for more efficient propeller designs.

Propeller performance is expressed through the open water characteristics that are

evaluated with the open water test, a model scale experiment in a towing tank. While these

experiments are accurate and trustworthy, they are time consuming and expensive. Moreover, the

flow behavior and performance prediction may differ between model scale and full scale due to

the difference in the Reynolds number. Apart from the experimental methods, the hydrodynamic

performance of the propeller can also be evaluated with numerical tools such as the lifting line

method, lifting surface, boundary element methods (BEM) and CFD methods. Each method

considers different levels of neglected effects that define its computational cost and accuracy. The

selection of the appropriate method depends on the task, the phase in the propeller design process

and the computational power available. Focusing on propeller optimization, BEM methods are

used widely in the initial phases of propeller design. They are well tested, reliable and many design

variants can be generated and evaluated automatically and fast. At the final stages of propeller

design, more expensive viscous CFD computations are used to validate the BEM analysis and fine-

tune the design.

CFD methods are being used more and more for propeller simulations, due to the rapid

development of computational power. Reynold Averaged Navier-Stokes (RANS) methods have

evolved to the point where they can be applied in industrial applications to predict the propeller’s

performance, include the propeller-hull interaction and run in full scale to investigate scale effects.

RANS methods offer several advantages over the potential-flow methods. They can model the tip-

vortex roll up and flow separation phenomena and predict propeller performance accurately at off-

design conditions. However, even if computational power is not much of a problem, applying these

methods requires a lot of effort and time to model and prepare the geometry for the simulation.

A number of CFD packages and techniques are available that can be used for propeller

simulations. Commercial packages like STAR-CCM+ or ANSYS are widely used since they offer

friendly graphical user interfaces, advanced meshing algorithms and tutorials. However, the cost

for an annual license may be prohibitive. The CFD package used in this thesis is OpenFOAM, an

open-source CFD toolkit based on C++. Due to its open-source nature, OpenFOAM is used

extensively by both the academia and the industry for complex propeller simulations, usually along

with commercial grid generators. There are several techniques that can be used to simulate rotating

machinery with CFD. Three popular approaches are the sliding grid, mixing plane and the frozen

rotor approach. The frozen rotor approach is used in this work, also called the Moving Reference

Frame (MRF) method. It is the most computationally cheap method of the three but is expected to

yield reasonably accurate results [1]. The flow around the operating propeller is unsteady. The

MRF approach is a steady state approximation where different zones of the domain are given

rotational speed without actually moving the mesh. To model the rotation, the governing equations

 Marine Propeller Optimization using open source CFD

15

are written as observed from a relative coordinate system that follows the propeller movement.

While this steady state approximation cannot capture the transient phenomena accurately, it can

provide reasonable estimates of the flow behavior and accurate prediction of the propeller

performance.

Recent developments in CAD/CAE systems allowed the use of parametric models. The

CAE system used in this work is CAESES. It is capable of generating flexible parametric models

that are CFD-ready, minimizing the time needed for the preparation of the geometry for simulation.

Within CAESES, the parametric geometry can be coupled to an external CFD package that

evaluates the performance of the model. By tightly coupling the parametric geometry to CFD,

optimization algorithms can be employed and hundreds of designs can be generated and evaluated

automatically. The potential gains of the optimization are limited only by the computational

resources available. The main difficulties that are typically faced are related to the automation of

the CFD processes. Regarding propeller optimization problems with CFD, an issue that persists is

the automation of the grid generation process.

Marine propeller design and optimization is a very complex procedure involving numerous

factors. Apart from the open water characteristics, strength requirements and cavitation need to be

considered as well. The propeller optimization problem can be posed as multi-objective or single-

objective, depending on the number of the factors that are considered. In the present work, no

considerations regarding strength or cavitation are made and the problem is set as single-objective,

to increase open water efficiency.

In this project, open-source tools are investigated and connected to the propeller geometry

inside CAESES. The automation of the grid generation process is achieved with the use of cfMesh,

an open-source unstructured grid generator that is compatible with openFOAM. Due to the

limitations of cfMesh, generating meshes of acceptable quality has been a demanding process.

Since a short computation time is sought, the flow is solved for one of the blades using periodic

boundaries. The turbulence model used is the k-ω SST.

 Marine Propeller Optimization using open source CFD

16

1.1 Method Outline

The Potsdam Propeller Test Case (PPTC) is used for the validation of the OpenFOAM – cfMesh

configuration and the optimization study. The method initiates with the pre-processing of the

PPTC geometry that is available online. The geometry contains open edges and gaps and requires

treatment before the meshing process. In order to run the computations with the one blade passage

approach, a flexible periodic domain is constructed using the advanced design capabilities of

CAESES. The periodic domain, the propeller blade and shaft are combined for the mesh generation

process. OpenFOAM and cfMesh are configured carefully to achieve optimal mesh quality,

robustness and stability of the computations. Simulations are carried out for a wide range of

advance coefficients and are compared to experimental data.

As a next step, a parametric model of the PPTC is constructed within CAESES to fully

match the initial geometry. The execution of the grid generator and the solver is automated within

a script, resulting in closed loop that can be used to optimize the propeller. Because of the limited

computational resources, only a small number of parameters can be activated for the optimization.

Therefore, the selected parameters should have maximum impact on the propeller blade. To make

sure that the simulation results are independent from the mesh resolution a grid dependency study

is carried out. To perform the optimization, the Sobol sequence is used to provide insight into the

systems behavior and identify promising designs that are eventually fine-tuned with the Tangent

Search Method. Both of the algorithms are available in CAESES.

 In the end, using the programming language inside CAESES, processes that are needed to

connect a 3D propeller blade to cfMesh and solver, like the shaft, hub and domain construction are

automated within scripts. The scripts are tested with two powerboat propellers, where the CFD

results are compared to Vortex lattice results.

 Marine Propeller Optimization using open source CFD

17

1.2 Thesis Outline

This thesis report is divided into 6 chapters. Chapter 1 includes the introduction, goal of the project

and method outline. Chapter 2 describes the theoretical background, including the propeller

performance, CFD basics, CAD and grid generation techniques, as well as the concept of

optimization. In chapter 3, the software used are presented. Chapter 4 describes the

implementation, from pre-processing to grid generation and then from parametric modelling to

software connection. In chapter 5, the results from the simulations carried out for the validation

are presented, as well as the optimization phase. Finally, chapter 6 ends with the conclusions and

suggestions for future work.

 Marine Propeller Optimization using open source CFD

18

2 Theory

2.1 Propeller Performance

Propeller performance is evaluated by measuring the thrust (T) produced by the propeller and the

torque (Q) needed to drive the propeller. Thrust and torque are measured in an open water test,

which is carried out in a towing tank or a cavitation tunnel with the model scale propeller operating

in uniform flow. The experiment is typically done by moving the propeller forward through the

towing tank using a towing carriage as shown in Figure 2.1. The measurements are performed for

a number of operating points depending on the loading of the propeller which is usually controlled

by adjusting the speed of advance (U) and keeping the propeller revolutions constant.

Figure 2.1 Open water test setup

By applying dimensional analysis and assuming that the free surface has no effect on the propeller

performance, the measured thrust and torque are expressed as non-dimensional coefficients KT and

KQ [2] . The coefficients KT and KQ are given as a function of a non-dimensional speed called

advance coefficient (J).

 𝐾𝑇 =
𝑇

𝜌𝑛2𝐷4
 (2.1)

 𝐾𝑄 =
𝑄

𝜌𝑛2𝐷5
 (2.2)

 𝐽 =
𝑈

𝑛𝐷
 (2.3)

 Marine Propeller Optimization using open source CFD

19

Above, the density of the water in the towing tank is denoted as ρ, n is the rotational speed of the

propeller, D is the diameter of the propeller, T is the thrust, U the speed of advance, and Q the

torque.

Furthermore, the open water efficiency (η) is introduced as the ratio of the thrust

horsepower (THP) to the delivered horsepower (DHP) as seen below.

𝜂 =
𝑇𝐻𝑃

𝐷𝐻𝑃
=

𝑇 𝑈

2𝜋𝑛𝑄
=
𝐾𝑇

𝐾𝑄

𝐽

2𝜋
 (2.4)

The series of obtained characteristics KT, KQ and η are presented in an open water diagram

where they are plotted on the ordinate, while J is plotted on the abscissa. The open water diagram

contains all the information necessary to define the performance of a propeller at a particular

operating condition and theoretically, it is applicable to any propeller having the same geometric

form. This however, is not entirely true, since the open water characteristics are, to some extent,

influenced by scale effects and cavitation.

Cavitation is a complex two-phase flow phenomenon. The operating propeller produces

thrust by forming a variable pressure field around the blade surface, suction on the back of the

blades and pressure on the faces of the blade. Depending on the loading of the propeller, the suction

can be so great, that the absolute pressure approaches the vapor pressure of the water at a specific

temperature and small cavities containing water vapor form. Once cavities enter regions of higher

pressure, they will collapse violently producing noise, vibration and material erosion. Apart from

the aforementioned problems, moderate levels of cavitation are not expected to cause significant

impact on the propulsion performance [2]. Cavitation is expressed with the non-dimensional

quantity, cavitation number, which is defined as

 𝜎 =
𝑝0−𝑝𝑠

1

2
𝜌𝑈2

 (2.5)

where p is the absolute static pressure at the shaft center line, and ps is the vapor pressure at the

ambient temperature.

As mentioned above, scale effects affect the propeller performance as well. Whilst open

water tests are performed on model scale propellers with low Reynolds numbers (Re), full scale

propellers operate at much higher Reynolds numbers. The Reynolds number is defined as

 𝑅𝑒 =
𝑈 𝐷

 𝑣
 (2.6)

where v is the kinematic viscosity of water. This difference on the Reynolds number corresponds

to different viscous boundary layers. Turbulent flow over the blade surface is expected for full

scale propellers however that is not the case for model scale propellers where laminar flow can

prevail over significant parts of the blade. An analytical procedure is suggested by the 1978 ITTC

committee, in order to quantify and take into account the viscous scale effects. [2] Nowadays, full

scale CFD simulations are carried out as well, but the computational cost still remains high.

 Marine Propeller Optimization using open source CFD

20

2.2 Governing Equations

As any mechanical system, the dynamics of fluids are a governed by the conservation laws,

specifically, conservation of mass, conservation of momentum and conservation of energy. In the

marine CFD, the water temperature is assumed to be fixed and the energy equation is not included.

Conservation of mass

 The conservation of mass law states that the quantity of mass is conserved over time. The

continuity equation can be written as [3]:

𝜕𝜌

𝜕𝑡
+ ∇ (𝜌 𝑼) =

𝜕𝜌

𝜕𝑡
+

𝜕𝜌 𝑈𝑖

𝜕𝑥𝑖
= 0 (2.7)

Where ρ is the density and U is the velocity vector. For the majority of marine CFD simulations,

the flow is considered to be incompressible. Setting ρ = constant in the above equation simplifies

the equation to:

∇  𝑼 =
𝜕𝑈𝑗

𝜕𝑥𝑗
= 0 (2.8)

Conservation of Momentum

The conservation of momentum states the fundamental second law of Newton. According to the

law, the net force applied on the fluid element equals its mass times the acceleration of the element.

 𝐅 = 𝑚
𝐷𝑈

𝐷𝑡
 (2.9)

Where F is a force vector and m is the mass and
𝐷

𝐷𝑡
 is the total time derivative expressed as:

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑼 ∇= 0 (2.10)

The conservation of momentum per unit volume can be written as:

 𝜌
𝜕(𝑼)

𝜕𝑡
+ 𝜌∇ (𝑼𝑼) = −∇𝑝 + ∇  𝜏 + 𝜌𝒒 (2.11)

𝜌
𝜕(𝑈𝑖)

𝜕𝑡
+ 𝜌

𝜕(𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑞𝑖 (2.12)

 Marine Propeller Optimization using open source CFD

21

Where the term 𝜌∇ (𝑼𝑼) is called convection term. For Newtonian fluids, the shear stress

tensor can be expressed through the velocity gradients and viscosity. [3]

 𝜏 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝛿𝑖𝑗𝜆 (∇  𝑼)⏞

=0

 (2.13)

where μ is the dynamic viscosity and λ the λ-viscosity that vanishes since the divergence of

velocity is zero for incompressible flows. Kinematic viscosity ν is defined as:

𝜈 =
𝜇

𝜌
 (2.14)

Dividing the equation 2.13 by density gives:

𝜏

𝜌
= 𝜈𝑒 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.15)

The stress tensor can be written in a shorter form using the strain rate tensor S.

𝜏/𝜌 = 2𝜈𝑆 (2.16)

Where the strain rate tensor S is defined as:

𝑆 =
1

2
(∇𝑼 + (∇𝑼)𝑇) (2.17)

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)) (2.18)

Assuming that the density ρ is constant we can divide the equation 2.11 by ρ. Introducing the shear

stress, we get the momentum equation in differential form for an incompressible Newtonian fluid,

stating the conservation of momentum for every point in space:

𝜕𝑼

𝜕𝑡
+ ∇ (𝑼𝑼) = −∇(

𝑝

𝜌
) + ∇  (2𝜈𝑆) + 𝒒 (2.19)

𝜕(𝑈𝑖)

𝜕𝑡
+

𝜕(𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗
= −

𝜕(
𝑝

𝜌
)

𝜕𝑥𝑗
+

𝜕(2𝜈𝑆𝑖𝑗)

𝜕𝑥𝑗
+ 𝑞𝑖 (2.20)

 Marine Propeller Optimization using open source CFD

22

2.3 Turbulence and RANS

The phenomenon of turbulence was first identified by Osborne Reynolds. With experiments he

performed in 1883, injecting a painted jet in the middle of pipe he observed that there is a laminar-

turbulent transition between laminar and turbulent flow. This transition is affected by the Reynolds

number. Fluid flows in industrial applications are high-Reynolds-number flows and turbulent.

Turbulent flow is unsteady, three dimensional and chaotic. Turbulent flow is fully described by

the Navier-Stokes equations that have been introduced above. There are three approaches to

turbulence. The Direct Numerical Simulation (DNS), Large Eddy simulation (LES) and the

Reynolds Averaged Navier-Stokes (RANS).

 The DNS methods solve the Navier-Stokes equations for all the scales of turbulence.

Turbulent eddies very in scale. The small eddies require very fine grids, and the large eddies

require large computational domains. Therefore, even if the DNS methods are valid and accurate,

the simulation cost is too expensive for engineering applications. With LES methods, only the

large-scale eddies are computed directly. The effect of the smaller eddies is taken into account

using additional stresses obtained from the turbulence theory. Even though LES methods are not

as expensive as the DNS methods, they still require great computational resources.

 The RANS are the most commonly used in industrial applications and the present work.

With the RANS approach, only the vortices of largest scale according to the size of the domain are

resolved, and the rest of the turbulence is modelled with a turbulence model. With the RANS

method, the governing equations are averaged in time. Velocity and pressure are decomposed into

the mean (time-averaged) and fluctuating components.

𝑼 = 𝑼̅ + 𝑢′ (2.21)

𝑝 = 𝑝̅ + 𝑝′ (2.22)

Where the time average of velocity U is defined as:

𝑼(𝒙)̅̅ ̅̅ ̅̅ ̅ = lim
𝑇→∞

1

𝑇
∫ 𝑼(𝒙, 𝑡)𝑑𝑡
𝑇

0
 (2.23)

And the time interval T has to be larger than the time scale of turbulence. Now, the time averaged

velocity U is introduced to the continuity and momentum equation. The continuity equation

remains the same, since it is linear in velocity. However, the momentum equation contains the

non-linear convection term. Therefore, the time averaged momentum equation becomes

𝜕𝑼

𝜕𝑡
+ ∇ (𝑼𝑼) = −∇(

𝑝

𝜌
) + ∇  (2𝜈𝑆) + 𝒒 + ∇ R (2.24)

Including the new term R is called Reynolds stress tensor, a symmetrical second order tensor.

The Reynolds stress tensor can be written in index notation as Rij = −𝑢𝑖
′𝑢𝑗′̅̅ ̅̅ ̅̅ . This new term

is problematic, since it introduces six unknowns in the equations. Now, the number of unknowns

exceeds the number of equations resulting in the well-known closure problem. In order to close

the system, new relations have to be defined.

 Marine Propeller Optimization using open source CFD

23

According to the Boussinesq assumption, the Reynolds stresses can be expressed as:

 Rij = −𝑢𝑖
′𝑢𝑗′̅̅ ̅̅ ̅̅ = 2𝑣𝑇𝑆𝑖𝑗 −

2

3
𝑘𝛿𝑖𝑗 (2.25)

Thus, turbulence is modelled with two terms. The turbulent viscosity 𝑣𝑇, and the turbulent kinetic

energy, 𝑘. 𝛿𝑖𝑗 is the Kronecker delta, 𝑣𝑇 is a scalar object, dependent of the flow field and the

kinetic energy 𝑘 is defined as:

𝑘 =
1

2
𝑢𝑘
′ 𝑢𝑘′̅̅ ̅̅ ̅̅ ̅ (2.26)

2.4 Turbulence Modelling: SST k – ω Model

The SST k-ω model was first introduced in 1994 by F.R. Menter. This turbulence model combines

the advantages of both the k-ω and k-ε models. It includes two equations to model the effect of

turbulence, one is for the turbulence kinetic energy, k, and the second one for specific dissipation

rate, ω. The turbulent viscosity can be defined as:

 𝑣𝑇 =
𝑘

𝜔
 (2.27)

The model equation for the turbulence kinetic energy 𝑘:

𝜕𝑘

𝜕𝑡
+ ∇ (𝑈𝑘) − (∇ 𝑈)𝑘 − ∇ (𝐷𝑘,𝑒𝑓𝑓∇ 𝑘) = min{𝐺 , 𝑐1𝛽

∗𝑘𝜔} −

𝛽∗𝜔𝑘 (2.28)

The model equation for the turbulence kinetic energy 𝜔:

𝜕𝜔

𝜕𝑡
+ ∇ (𝑈𝜔) − (∇ 𝑈)𝜔 − ∇ (𝐷𝜔,𝑒𝑓𝑓∇ 𝜔) =

𝛾(𝐹1)𝐺

𝑣𝑇
− 𝛽(𝐹1)𝜔

2 −

(𝐹1 − 1)𝐶𝐷𝑘,𝜔
(2.29)arh

In equation 2.28, the term 𝐺 is called turbulent kinetic energy production and is given as:

𝐺 = 2𝑣𝑇|𝑆|
2 (2.30)

 Marine Propeller Optimization using open source CFD

24

In equations both 2.28 and 2.29 the coefficients 𝐷𝑘,𝑒𝑓𝑓 and 𝐷𝜔,𝑒𝑓𝑓 are defined as below:

𝐷𝑘,𝑒𝑓𝑓 = 𝑎𝑘(𝐹1)𝑣𝑇 + 𝑣

 𝐷𝜔,𝑒𝑓𝑓 = 𝑎𝜔(𝐹1)𝑣𝑇 + 𝑣 (2.31)

The coefficients 𝛾(𝐹1), 𝑎𝑘(𝐹1), 𝑎𝜔(𝐹1)𝑣𝑇, 𝛽(𝐹1) are filtered between the model

coefficients by the function 𝐹1 according to equation 2.33.

 (𝛾 𝛼𝑘 𝛼𝜔 𝛽)
𝛵 = 𝐹1(𝛾 𝛼𝑘 𝛼𝜔 𝛽)1

𝛵
+ (1 − 𝐹1)(𝛾 𝛼𝑘 𝛼𝜔 𝛽)2

𝛵
 (2.32)

With the following values:

𝛾1 = 0.5532 𝑎𝑘1 = 0.85034 𝑎𝜔1 = 0.5 𝛽1 = 0.075

𝛾2 = 0.4403 𝑎𝑘2 = 1.0 𝑎𝜔2 = 0.85034 𝛽2 = 0.0828

The coefficient 𝛽∗ present in equation 2.28 is constant with a value 𝛽∗ = 0.09 and 𝑐1 = 10. The

switching between the ω- and ε-equations is

𝐹1 = tanh(𝛤
4) (2.33)

Where

𝛤 = min {𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝛽∗𝜔𝑦
;
500𝑣

𝜔𝑦2
) ;

4𝑎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦
2] ; 10}

(2.34)

 𝐶𝐷𝑘𝜔 =
2𝑎𝜔2

𝜔
(∇𝑘 ∇𝜔) (2.35)

Where 𝐶𝐷𝑘𝜔 ≥ 1 10
−10. The turbulent viscosity 𝑣𝑇 is calculated with the Bradshaw

modification:

𝑣𝑇 =
𝑎1𝑘

max (𝛼1𝜔;𝛽1𝐹2
1

√2
|𝑆|)

 (2.36)

Where 𝑎1 = 0.31. 𝐹2 is a switching function that depends on the wall distance defined as

𝐹2 = tanh (𝛤2
2) (2.37)

And 𝛤2 = min [max (
2√𝑘

𝛽∗𝜔𝑦
;
500𝑣

𝜔𝑦2
) ; 100] (2.38)

 Marine Propeller Optimization using open source CFD

25

2.5 Moving Reference Frame

As discussed in the introduction, the time-dependent problem of rotating geometries can be

simplified into a steady state problem by modifying the reference frame according to the rotational

movement. In the OpenFOAM implementation that is used in this thesis and analyzed below, the

absolute velocities are solved with the equations expressed in the relative coordinate system. [4]

For any vector 𝒂 the time derivative is experienced in a different way by an observer in the inertial

coordinate system and an observer in the rotating coordinate system. Their relation is expressed

as:

𝐷𝒂

𝐷𝑡
|
𝐼
=
𝐷𝒂

𝐷𝑡
|
𝑅
+ 𝜔 × 𝒂 (2.38)

Where 𝜔 is the rotation vector. Defining as 𝒓 the position vector indicating the displacement

from the origin and using it in equation (2.38), the relationship between the relative and absolute

velocities is derived.

 𝑼𝐼 =
𝐷𝒓

𝐷𝑡
|
𝐼
=
𝐷𝒓

𝐷𝑡
|
𝑅
+ 𝜔 × 𝒓 = 𝑼𝑹 + 𝜔 × 𝒓 (2.39)

The equation 2.38 is now used again for the inertial velocity.

𝐷𝑼𝐼

𝐷𝑡
|
𝐼
=
𝐷𝑼𝐼

𝐷𝑡
|
𝑅
+ 𝜔 × 𝑼𝐼 =

𝐷(𝑼𝑅+𝜔×𝒓)

𝐷𝑡
|
𝑅
+ 𝜔 × (𝑼𝑅 + 𝜔 × 𝒓) = (2.40)

𝐷(𝑼𝑅)

𝐷𝑡
+
𝐷𝜔

𝐷𝑡
× 𝒓 + 2𝜔 × 𝑼𝑅 + 𝜔 × 𝜔 × 𝒓

The momentum equation 2.19 is rewritten below. As is, the equation is expressed in the inertial

coordinate system using the absolute velocity. Using the equations described above, the

momentum equation can be rewritten and expressed in the relative coordinate system using the

relative velocity. The pressure is not influenced by the change of the frame of reference since it is

a scalar quantity.

𝐷(𝑼𝛪)

𝐷𝑡
= −∇(

𝑝

𝜌
) + ∇  (2𝜈𝑆) + 𝒒

 Marine Propeller Optimization using open source CFD

26

The diffusion term ∇  (2𝜈𝑆) requires some special treatment.

 ∇  (2𝜈𝑆) = ∇ [𝜈(∇𝑼𝛪 + (∇𝑼𝛪)
𝛵)]=

 ∇ [𝜈(∇(𝑼𝑹 + 𝜔 × 𝒓) + (∇(𝑼𝑹 + 𝜔 × 𝒓)
𝛵)] =

 ∇ [𝜈(∇𝑼𝑹 + ∇(𝜔 × 𝒓) + (∇𝑼𝑹 + ∇(𝜔 × 𝒓)
𝛵)] = (2.41)

 ∇ [𝜈(∇𝑼𝑹 + ∇(𝜔 × 𝒓) + (∇𝑼𝑹)
𝛵 + (∇(𝜔 × 𝒓)𝛵)] =

 ∇ [𝜈(∇𝑼𝑹 + (∇𝑼𝑹)
𝛵) + 𝜈(∇(𝜔 × 𝒓) + ∇(𝜔 × 𝒓)𝑇⏟

=0,∇(𝜔×𝒓) 𝑖𝑠 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

)] =

 ∇ [𝜈(∇𝑼𝑹 + (∇𝑼𝑹)
𝛵)]

It can be seen that the diffusion term can be expressed using both the absolute and relative velocity.

If we also consider that the source term in the momentum equation 𝒒 independent of the frame of

reference, the momentum equation can be expressed in the relative coordinate system.

𝐷𝑼𝑅

𝐷𝑡
= −∇(

𝑝

𝜌
) + ∇  [(𝜈(∇𝑼𝑹 + (∇𝑼𝑹)

𝛵)) + 𝒒

 −
𝐷𝜔

𝐷𝑡
× 𝒓 − 2𝜔 × 𝑼𝑅 − 𝜔 × 𝜔 × 𝒓 (2.42)

Now,
𝐷𝑼𝑅

𝐷𝑡
 can be expanded further to include the absolute velocities.

𝐷𝑼𝑅

𝐷𝑡
=
𝜕𝑼𝑅

𝜕𝑡
+ ∇(𝑼𝑅𝑼𝑅) =

𝜕𝑼𝑅

𝜕𝑡
+ ∇  (𝑼𝑅𝑼𝛪 − 𝑼𝑅𝜔 × 𝒓)

𝜕𝑼𝑅

𝜕𝑡
+ ∇  (𝑼𝑅𝑼𝛪) − ∇  𝑼𝑅⏞

=0

(𝜔 × 𝒓) − 𝑼𝑅 ∇(𝜔 × 𝒓)

𝜕𝑼𝛪

𝜕𝑡
+
𝜕(𝜔× 𝒓)

𝜕𝑡
+ ∇  (𝑼𝑅𝑼𝛪) − 𝜔 × 𝑼𝑅 (2.43)

We can now substitute equation 2.43 to equation 2.42 and if we assume that 𝜔 is constant in

time, equation 2.42 takes the following form:

 Marine Propeller Optimization using open source CFD

27

𝜕𝑼𝐼

𝜕𝑡
+ ∇  (𝑼𝑅𝑼𝛪) = −∇ (

𝑝

𝜌
) + ∇  [(𝜈(∇𝑼𝑹 + (∇𝑼𝑹)

𝛵)) + 𝒒 +

 𝜔 × 𝑼𝑅 − 𝜔 × 𝜔 × 𝒓

𝜕𝑼𝐼

𝜕𝑡
+ ∇  (𝑼𝑅𝑼𝛪) = −∇ (

𝑝

𝜌
) + ∇  [(𝜈(∇𝑼𝑰 + (∇𝑼𝑰)

𝛵)) + 𝒒 −

 𝜔 × 𝑼𝐼 (2.44)

The above equation expresses the momentum equation in the moving reference frame. Only two

changes are observed in comparison to the original momentum equation 2.11. The first one is on

the convection term, and the second one is an additional source term 𝜔 × 𝑼𝐼.

2.6 Near Wall Treatment

The presence of the wall influences turbulent flows. The region near the wall that is affected by

viscosity is called boundary layer. Turbulent boundary layers have been the subject of both

experimental and computational research over the years. Experiments indicate that the boundary

layer is made up of three layers, the viscous sublayer, the buffer layer, and the log-law or fully

turbulent layer. The division depends on the non-dimensional quantities: dimensionless wall

distance y+ and dimensionless velocity u+ defined as:

 𝑢+ =
𝑈

u𝜏
 (2.45)

 𝑦+ =
𝑦u𝜏

𝜈
 (2.46)

 Where u𝜏 is the friction wall velocity defined as:

 u𝜏 = √
𝜏𝑤

𝜌
 (2.47)

 Marine Propeller Optimization using open source CFD

28

Figure 2.2 Turbulent boundary layer

The viscous sublayer corresponds to values 𝑦+ ≤ 5. Within this region, the flow is almost laminar

and is dominated by viscosity related effects, 𝑢+ is directly proportional to 𝑦+.

 𝑢+ = 𝑦+ (2.48)

The log-layer extends from 𝑦+ = 35 to 𝑦+ = 350. Within this area, the flow is mainly affected

by turbulence. The profile of the non-dimensional velocity obeys a logarithmic relationship as seen

below:

𝑢+ =
1

𝜅
ln(𝐸 𝑦+) (2.49)

Where both 𝜅 and 𝐸 are experimental constants with 𝜅 = 0.41 and 𝐸 = 9.8.

The area in-between the aforementioned regions is called buffer layer corresponding to values

 5 ≤ 𝑦+ ≤ 35. Within this layer, the effects of both viscosity and turbulence are important.

Two main approaches can be distinguished for the treatment of the near-wall region. With the first

approach, the viscous sub-layer is not resolved. Semi-empirical formulas called wall functions are

used to calculate the region that is affected by viscosity and bridge it to the with the fully-turbulent

sub-layer. This approach is widely accepted and used because it is significantly cheaper than the

second approach and reasonably accurate. With the second approach, the whole boundary is

simulated using small cells close to the wall. This approach yields more accurate results but is in

general not preferred due to its simulation cost.

 Marine Propeller Optimization using open source CFD

29

Figure 2.3 OpenFOAM cell definition [6] (left), face definition [32] (right)

2.7 Discretization

The Navier-Stokes equations described above are non-linear partial differential equations. Due to

the non-linear terms, the equations cannot be solved directly, instead numerical methods need to

be applied. In order to solve the equations, they need to be transformed into a set of algebraic linear

equations that can be solved iteratively. There are several methods to achieve this, the finite

volume method, the finite element method and the finite difference method. The most common

approach in CFD that is also used in OpenFOAM is the finite volume approach. In the finite

volume method, the computational domain is subdivided into a number of discrete finite volumes

called cells. Then, the governing equations are integrated over each cell, and using the Gauss

divergence theorem the integrals containing the divergence term are converted to surface integrals.

[5] The equations are then reformulated on each cell, as a set of linear algebraic equations. Before

we introduce the basic principles for the derivation of the algebraic equations, some basic

OpenFOAM terminology is introduced.

A typical cell in OpenFOAM is depicted in Figure 2.3. The group of cells that define the

computational domain should not overlap and fill the domain completely. The equations are solved

in the cell centers (P and N). Every cell is bounded by a set of flat faces (f in the Figure 2.3) and

there is no limitation on the number of the faces or their alignment. A mesh of this type is called

‘arbitrarily unstructured’. [6]

 Every face is owned by one adjacent cell called neighboring cell. The definition of a face

is presented in Figure 2.3(right). Each face is an ordered list of points and the ordering is such that

two neighboring points are connected by an edge. The face normal vector 𝑺𝒇 can be seen in Figure

2.3. Its direction is defined by the right-hand rule, according to the point numbering on each face.

The volume of a cell is defined as 𝑉𝑃.

 Marine Propeller Optimization using open source CFD

30

The Navier-Stokes equations are in the form of a general transport equation. In order to present

how the terms of the equations are discretized, a general form of a transport equation is used. For

a fluid property φ:

𝜕𝜑

𝜕𝑡
+ ∇ (𝑼𝜑) = ∇(𝑎∇𝜑) + 𝒒𝜑 (2.50)

Integrating the equation over a control volume V we get:

∫
𝜕𝜑

𝜕𝑡

𝑉
𝑑𝑉

⏞
𝑡𝑖𝑚𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

+ ∫ ∇ (𝑼𝜑)

𝑉
𝑑𝑉⏞

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

= ∫ ∇(𝑎∇𝜑)

𝑉
𝑑𝑉⏞

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

 + ∫ 𝒒𝜑

𝑉
𝑑𝑉⏞

𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

 (2.51)

The integration of both the time derivative and the source term is simple, the terms are multiplied

by the cell volume 𝑉𝑃. The time derivative can be approximated using the implicit Euler method,

or the more accurate Backward method. [6]

To integrate the convection and diffusion terms, the Gauss divergence theorem is applied. In a

general form it can be written as:

∫ ∇

𝑉
φ 𝑑𝑉 = ∫ φ

𝑆
𝑑𝑺 (2.52)

Surface 𝑺 is encloses the volume 𝑉𝑃 , φ is any tensor field and the ∇ symbol any tensor

product. For example, ∇ × curl or just ∇ (gradient).

∫ ∇ (𝑼𝜑)

𝑉
𝑑𝑉 = ∫ φ𝑼

𝑆
 𝑑𝑺 (2.53)

We can then approximate the surface integral on the right part of the equation 2.53 as the sum of

discrete surfaces 𝑺𝒇.

∫∇ (𝑼𝜑)

𝑉

𝑑𝑉 = ∫φ𝑼

𝑆

 𝑑𝑺 =∑𝜑 𝑼

𝒇

 𝑺𝒇

(2.54)

Performing the same steps for the diffusion term, the discrete form of the transport equation is

obtained:

𝑉𝑃
𝜕𝜑

𝜕𝑡
+∑𝜑 𝑼

𝒇

 𝑺𝒇 =∑(𝑎∇

𝒇

𝜑) 𝑺𝒇 + 𝑉𝑃𝒒𝜑

(2.55)

 Marine Propeller Optimization using open source CFD

31

The values of the variables (∇φ, 𝛼, 𝜑, 𝑼) by default are expressed in the cell centers (P, N

according to the notation used in Figure 2.3). In order to evaluate the surface integrals in equation

2.55 above, the variables need to be expressed on the surfaces. To achieve this, differencing

schemes are used. The differencing scheme is important for the convergence of the method. The

efficient differencing scheme should have the following attributes:

• Conservativeness

• Boundedness

• Transportiveness

for a detailed description of them, the reader can refer to [5]. The most common schemes are

presented briefly below [6]:

Central differencing (CD) or Linear Interpolation is a second-order accurate but unbounded

scheme. Τhe value of a variable on a face 𝜑𝑓 is defined as:

𝜑𝑓 = 𝑤𝜑𝑓 + (1 − 𝑤)𝜑𝛮 (2.56)

Where 𝑤 is a weight factor defined as 𝑤 =
𝑓𝑁̅̅ ̅̅

𝑃𝑁̅̅ ̅̅
, 𝑓𝑁̅̅ ̅̅ is the distance between 𝑓 and the cell

center, and 𝑃𝑁̅̅ ̅̅ is the distance between the cell centers 𝑃 and 𝑁.

Upwind Differencing (UD) determines 𝜑𝑓 depending on the direction of the flow. This scheme

is bounded at the expense of accuracy. The upwind interpolation of 𝜑𝑓 is written as:

𝜑𝑓 = {
𝜑𝑝 , 𝑼𝑓 𝑺𝑓 ≥ 0

𝜑𝑁 , 𝑼𝑓 𝑺𝑓 < 0
 (2.57)

Blended Differencing (BD) schemes combine the aforementioned UD and CD schemes, aiming

to combine the boundedness of the UD scheme with the accuracy of the CD scheme. Τhe value of

a variable on a face 𝜑𝑓 is defined as:

𝜑𝑓 = (1 − 𝛾)(𝜑𝑓)𝑈𝐷
+ 𝛾(𝜑𝑓)𝐶𝐷

 (2.58)

Where 𝛾 is a blending coefficient.

 Marine Propeller Optimization using open source CFD

32

2.8 SIMPLE Algorithm

Within the Navier-Stokes equations 2.19, there are four unknown quantities, the pressure and three

velocity components U. The extra equation that we can use is the conservation of mass 2.8,

however this equation does not include the pressure. Therefore, special treatment is needed for this

problem, that is often called the pressure-momentum coupling problem. [7]

In order to derive the pressure equation, a semi-discretized form of the momentum equation is used

[8]:

𝑎𝑃𝑼𝑃 = 𝑯(𝑼) − 𝛁𝑝 (2.59)

Where 𝑯(𝑼) = ∑ 𝜶𝜨

𝑵 𝑼𝑵 (2.60)

Using equation 2.59 we can express 𝑼:

 𝑼𝑷 =
𝑯(𝑼)

𝒂𝑷
−

𝟏

𝒂𝑷
𝛁𝑝 (2.61)

The discretized form of the continuity equation is:

𝛁𝑼 = ∑ 𝑺 ∙ 𝑼𝒇𝒇 = 𝟎 (2.61)

Velocities on the face of the cell are expressed as:

𝑼𝒇 = (
𝑯(𝑼)

𝒂𝑷
)
𝒇
− (

𝟏

𝒂𝑷
)
𝒇
(𝛁𝑝)𝒇 (2.62)

Substituting equation 2.62 to equation 2.61, the following form of pressure equation is derived:

 𝛁 ∙ (
𝟏

𝒂𝑷
𝛁𝑝) = 𝛁 ∙ (

𝑯(𝑼)

𝒂𝑷
) = ∑ 𝑺 ∙ (

𝑯(𝑼)

𝒂𝑷
)
𝒇

𝒇 (2.63)

The discretized incompressible Navier-Stokes system is:

𝑎𝑃𝑼𝑃 = 𝑯(𝑼) − ∑ 𝑺 𝒑𝒇𝒇
 (2.64)

∑ 𝑺𝒇 ∙ [(
𝟏

𝒂𝑷
)
𝒇
(𝛁𝑝)𝒇] = ∑ 𝑺 ∙ (

𝑯(𝑼)

𝒂𝑷
)
𝒇

𝒇 (2.65)

The form of these equations shows linear dependence of velocity on pressure. This inter-equation

coupling needs special treatment. Two approaches are distinguished. The simultaneous algorithms,

that solve the complete systems of equations at the same time over the whole domain, and the

segregated approach, where the equations are solved in sequence. The second approach is used in

this thesis with the SIMPLE algorithm.

 Marine Propeller Optimization using open source CFD

33

The SIMPLE algorithm which stands for Semi-Implicit Method for Pressure Linked Equations,

has been originally proposed by Ratnakar and Spalding [9], it is widely adopted in marine CFD

and it is primarily used for steady state problems. In order to achieve stability and fast convergence

rate, it is important to estimate the relaxation factors for the fields and equations. The basic steps

of the algorithm are presented in the flow chart below.

Figure 2.4 The SIMPLE algorithm flow chart [5]

 Marine Propeller Optimization using open source CFD

34

2.9 CAD - Parametric Modelling

Computer aided design has evolved rapidly in the past decades. The beginnings of CAD are traced

back to the year 1957, when Dr. Patrick J. Hanratty developed PRONTO, the first commercial

numerical-control programming system [10]. A few years later, Ivan Sutherland created

SKETCHPAD, the first program ever to use a complete graphical user interface. The invention of

the 3D CAD is attributed to the French engineer Pierre Bezier, that developed UNISURF serving

as a design tool for the automotive industry. In 1989, T-FLEX and Pro/Engineer introduced

software based on parametric engines.

 CAD tools today are used extensively in many different industries. They are used in

aerospace, automotive, architecture, computer animation and ship design. CAD systems in

shipbuilding increased the ease of design, speed of construction and reuse of information. Today,

naval architecture design software is used in the fairing of 2D curves like sections and waterlines,

in 3D curve and surface design, but also for hydrostatic, resistance and strength calculations. The

need for more efficient and optimal designs opened the way to parametric modelling.

 Parametric modelling is the definition of a product by means of important descriptors. [11]

The objects and features created are modifiable by the use of parameters. This allows for many

designs to be generated easily by modifying the parameters that define the model. Constraints can

be set to the parameters, as well as relationships between them, resulting in complex geometric

models. These models can be used in optimization studies by coupling the parametric geometry to

an external software or code that evaluates the hydrodynamic or structural performance of the

model.

Three main categories of geometric modelling can be distinguished in computer-aided

design [12], conventional, partially parametric and fully parametric modelling.

• Conventional modelling uses a low-level definition of geometry. Shapes are defined by

completely independent objects that do not carry any problem specific information. Applying

fundamental changes to the model requires for the model to be rebuilt from scratch.

• Partially parametric modelling allows for changes to an existing shape. These changes are defined

and controlled by the means of parameters. Some representatives of partial parametric modelling

techniques are morphing, free-form deformation and shift transformation. Partially parametric

models are typically easy to set up when compared to fully parametric model.

• Fully parametric modelling features shapes that are defined entirely by the means of parameters.

A fully parametric model can be looked as a system that takes parameters as input and produces a

shape as an output [11]. These parameters define the purpose and essence of the product. Building

an efficient parametric model whose parameters will have maximum influence on the performance

(e.g. hydrodynamic) requires experience and understanding of the attribute that is evaluated.

 Marine Propeller Optimization using open source CFD

35

Figure 2.5 Qualitative assessment of geometric modelling techniques [13]

According to [13] and the aforementioned classifications, the techniques can be plotted in 2D

diagrams and be ranked for their effectiveness, efficiency, cost per variant, flexibility as well as

about the required know-how as seen in Figure 2.5 below.

 Marine Propeller Optimization using open source CFD

36

Figure 2.6 Cell types used in CFD codes

2.10 Grid Generation

In the finite volume method, a finite number of control volumes (CV) are required for the

numerical computations. These control volumes are called cells and a group of these cells

constitutes a mesh or grid. Even though modern mesh generation techniques, algorithms and

software have evolved significantly, grid generation remains a significant challenge for CFD,

especially for complex geometries like the propeller blade. Moreover, for the optimization of flow

exposed shapes using CFD, automatic and robust grid generation is a prerequisite. This need for

complete automation of the mesh generation process is a common bottleneck in optimization

processes of complex geometries using CFD.

 Three very basic categories of grids can be distinguished, structured, unstructured and

hybrid. The basic difference between structured and unstructured lies in the form of the data

structure that defines the grid. A structured grid of quadrilaterals consists of a set of coordinates

and connectivities that naturally map into elements of a matrix. Thus, neighboring points in a mesh

in the physical space are the neighboring elements in the mesh matrix. [14] In this way, the

elements are restricted to quadrilaterals in 2D and hexahedra in 3D. With an unstructured mesh,

the points cannot be represented in computer memory just as two- or three-dimensional matrices.

Additional information needs to be provided. For any point, the connection with other points must

be defined explicitly. These meshes usually employ triangles in 2D and tetrahedra in 3D, however

hexahedral, pyramids or polyhedral cells can also be present.

Hybrid meshes, as the name suggests, contain both structured and unstructured portions.

Typically, parts of the domain that are easy to mesh have structured grids, while unstructured grids

are applied in the complex parts. The interface of the two meshes however can be difficult to

handle.

Basic characteristics of the aforementioned categories and their comparison is discussed

briefly below in the basis of four important metrics.

 Marine Propeller Optimization using open source CFD

37

• Degree of quality and control

This is an area where structured grids are supreme. Unstructured and hybrid meshing

algorithms are highly automated, sacrificing control. Structured grid generation requires careful

node placement inside the domain around the geometry. This provides maximum control on the

generated mesh as well as high quality. Generating a high-quality structured mesh around a

complex geometry can be very time consuming, however the result will most likely worth it. Also,

the wall-near cells can be controlled easily making grid refinement studies easier to carry out.

• Flow alignment - Convergence

Structured grids are aligned in the flow direction leading to faster and better convergence in

CFD solvers. In unstructured grids, the flow alignment is not guaranteed.

• Computational memory required

As mentioned above, in unstructured grids the connection between the points must be defined.

For this reason, they require large computational memory for storing elements and a connectivity

table to link them. Structured meshes, on the other hand, do not require any connectivity table. As

a result, CFD computation time is typically less in structured meshes.

• Automation

Despite the superior numerical properties of the structured grids, unstructured grids have

somehow prevailed in industrial applications, mostly because of their ease of use and automation.

Especially for optimization studies, with a structured mesh, special care and thought needs to be

spent in advance so that the node placement (topology) will allow the generation of high quality

meshes for every variant. On the other hand, unstructured meshes require minimum user effort.

Given a geometry and some settings, the grid generator can provide meshes of sufficient quality

even for very difficult geometries.

For the purpose of this thesis, the suitable grid generator should be most of all, able to be

integrated in an automated closed loop, meaning that it has to be triggered and successfully

executed with a few command lines, but also be capable of meshing a complex shape like the

propeller blade with sharp edges.

There are several open source solutions compatible with OpenFOAM that meet these

requirements. [15]

• blockMesh – Generates block structured grids for simple geometries

• snappyHexMesh – This is an automated hex-core poly mesher with some inflation layer

capabilities

 • cfMesh – This is an automated hex-core poly mesher that allows for retaining edges and can

subdivide first layer of cells to create pseudo boundary layer mesh

• SALOME – It is capable of generating tetrahedral, hexahedral and prism meshes and exporting

them in OpenFOAM file format. Mesh generation routines in SALOME can be automated using

python scripts. This software also provides a GUI and can be used as a pre-processor. However,

no previous work is found to indicate that it will be suitable for the propeller case.

 Marine Propeller Optimization using open source CFD

38

Figure 2.7 Unstructured mesh using Pointwise for the PPTC

BlockMesh combined with snappyHexMesh is the most common choice in OpenFOAM

applications but literature review indicates that it will most likely not be the best choice for the

propeller case, mostly because of the inability of snappyHexMesh to generate prism layer cells of

sufficient quality on sharp edges. For this reason, the efforts in this thesis are focused on cfMesh.

These open source tools use some sort of cut-cell approach instead of a bottom-up approach

(e.g. extrusion - starting from the geometry wall and building cells in the wall normal direction)

that is commonly used in commercial software (Pointwise, ANSA) and they do show some

important advantages. They are automatic, stable and robust, they can handle complex arbitrary

geometries and they can run in parallel using distributed memory. However, all of them sacrifice

control over the surface mesh and boundary layer cells in favor of automation. [16]

SnappyHexMesh and cfMesh provide boundary layer tools, but they both suffer from severe

limitations including overall boundary layer thickness and lack of control over initial cell height

that are important for the control of the y+ values. Also, the quality of the boundary layer cells that

can be generated is not guaranteed. The difficulties faced and workarounds used in this thesis are

described in detail in the Method – Grid generation section. On the other hand, the meshing

algorithms in commercial packages, structured or unstructured have advanced to provide

maximum control on the boundary layer cells, reduce overall cell count, as well as a user-friendly

GUIs. Automation is achievable using scripts to replace the manual procedures that take place

inside the grid generator. A plane cut of an unstructured mesh built with Pointwise for the Potsdam

Propeller Test Case is depicted in Figure 2.7 below. One can see how the high-quality prismatic

layers are stretched nicely in the wall normal direction, the rest of the domain is filled with

tetrahedra cells.

 Marine Propeller Optimization using open source CFD

39

2.11 Propeller Optimization

Optimization as a concept is used everywhere, in scheduling everyday life, finance, decision

making and, of course, engineering. Optimization can be defined as a continuous manipulation of

a system to find better solutions with limited resources. [17] Mathematically, it can be expressed

as the problem of finding a vector 𝒙∗ ∈ ℝ for which,

𝑓(𝒙∗) = min 𝑓(𝑥) (2.66)

Subject to

𝑔𝑖(𝒙
∗) 0 i = 1,… . , I inequality constraints, (2.67)

ℎ𝑗(𝒙
∗) = 0 j = 1,… . , J equality constraints, (2.68)

xk
l  𝑥k xk

u k = 1,… . , K box constraints. (2.69)

In practical shape optimization studies, the goal is to maximize or minimize some attribute of the

design, called objective. To achieve this, changes are applied to some aspects of the design. These

are called variables, and the objective is a function of these variables. In most applications, many

attributes are evaluated and they are related and often conflicting, (i.e. low cost and high

performance), defining multi-objective optimization problems. For a multi-objective optimization

problem, no single solution exists that optimizes each objective at the same time, on the contrary,

a number of Pareto optimal solutions exist. A solution is called, Pareto optimal, or non-dominated

if none of the objective functions can be improved in value without degrading some of the other

objective values [18].

A wide number of techniques and algorithms are available in order to solve optimization

problems [17]. Researchers may use algorithms that terminate in a finite number of steps, iterative

procedures that converge to a solution, or heuristics that can lead to approximate solutions [19].

During the past decades, numerous optimization algorithms have been developed. For

example, genetic algorithms (GA), successive quadratic programming (SQP), particle swarm

optimization (PSO), simulated annealing (SA), infeasibility driven evolutionary algorithms

(IDEA) and the quasi-Newton method, among others [20]. These algorithms can be categorized

into two major categories, gradient-based and gradient-free methods [21]. For the gradient-based

optimization algorithms (e.g., SQP and quasi-Newton approaches), the advantage is the fast

convergence; however, the disadvantage is that they may get stuck at locally optimal solutions.

For the gradient-free optimization algorithms (e.g., SA, GA, IDEA, and PSO), the convergence is

not guaranteed, but they can be used to perform global optimization.

 Marine Propeller Optimization using open source CFD

40

 There is no general approach or guidelines regarding optimal optimization. Each

engineering problem is unique and the selection of the methods utilized depends on the

computational power available and the task at hand.

Marine propeller design and optimization is a very complex process involving numerous

factors. The optimum design should not only be more efficient, it also has to produce less noise

and vibrations. Cavitation and strength requirements need to be considered as well. For example,

thin and narrow blades are expected to show better hydrodynamic properties but there are

limitations regarding the blade strength, according to classification requirements [22]. Moreover,

during its lifetime the propeller operates in varying inflow conditions, different sea states and

revolutions. Thus, propeller optimization is multi-disciplinary and multi-objective procedure

where successive compromises need to be made between performance and requirements.

There is a wide variety of numerical simulation tools that can be used to evaluate the

performance of a propeller. Depending on the method used, different optimization techniques are

utilized. Typically, especially in the early phases of the propeller design, boundary element

methods are used for optimization, because many variants can be generated and evaluated

automatically and fast. At the end of the design process, more demanding CFD computations are

employed that are able to predict the viscous flow effects. [22] In the figure below, the methods

available are ranked according to the time they require and the physical phenomena they neglect.

One can notice that fully unsteady RANS or large eddy simulations cannot be employed for an

optimization task. With these methods, depending on the computational power and the mesh

density, evaluating one variant may take even weeks.

Figure 2.8 Fidelity of numerical methods for propeller simulation [17]

 Marine Propeller Optimization using open source CFD

41

Optimization processes are often seen as a black box, that given some input design

variables the algorithms used will automatically provide the best outcomes. Global optimization

techniques like genetic algorithms are not far from that. Genetic algorithms can handle the whole

optimization process, from variant creation to assessment, crossover and mutation and finally

giving pareto fronts. [23] Genetic algorithms have been used widely to deal with multi-objective

propeller optimization problems. More specifically, the NSGA-II algorithm has been used

extensively to perform global optimization in naval architecture and specifically in multi-objective

propeller optimization considering even cavitation constraints [24] . According to [25], the success

of the NSGA-II algorithm depends on the population number, probability of crossover and

probability of mutation. Literature review indicates that an initial population of 100 variants are

needed for the algorithm to converge and reach satisfactory results, that means 100 propeller

performance evaluations only for the initial population. Keeping in mind that a number of

generations will be generated and evaluated as well, the total number of evaluations required is

large. In the work referenced, the authors relied on B-series polynomials to evaluate the propeller

performance, thus computational time has not been an important factor. In optimization studies

using CFD, simulation time and computational resources can be very restrictive.

In the present work, steady state RANS computations are used to evaluate the propeller

performance and the computational resources available are not sufficient to perform global

optimization using for example the NSGA-II algorithm.

For this reason, the search for the optimal design is an interactive process. The success of

the process depends heavily on the robustness of the grid generator, the quality of the parametric

model and the impact of the design variables on the blade shape.

According to [11], two major approaches can be distinguished for optimization in

simulation driven design. These are parameter-based optimization and parameter-free

optimization. The first approach relies on parametric models whereas the second one uses topology

optimization and adjoint simulation. The parameter-based optimization approach is used in this

thesis and for this reason the rest of the section refers to it.

First of all, the standard format of an optimization problem can be summarized using the following

five elements. [11]

• Objective(s): They define the attribute(s) of the design that is to be improved

• Free variables: These are the aspects of the designs that can be modified

• Constraints: These are restrictions applied to the free variables or attributes of the design

• Fixed parameters: They are aspects of the design that influence its behavior but are kept

constant on purpose

• Noise: Other factors that influence the system but are beyond our control

 Marine Propeller Optimization using open source CFD

42

In order to perform shape parameter-based optimization, the following components are required.

• Variable geometry: A parametric model that is controlled by the means of a

number of variables

• Pre-processing: Generation of watertight models that can be meshed

• Simulation:

1. Discretizing the fluid domain into a finite number of cells

2. Solving the governing flow equations

• Post-processing: Evaluating the results by visualizing the flow data

• Optimization & Assessment: Generation and assessment of a number of variants.

Harries [11] suggests a two-phase approach for shape optimization. These two phases are

exploration and exploitation. This approach is also followed in this thesis, and its main attributes

is discussed briefly below.

Once the parametric model is constructed, a selection is made on which parameters will be

activated as design variables. The number of these design variables defines the size of the design

space. With the exploration phase, the designer actually searches through the design space trying

to understand the influence of the design variables on the attributes that are evaluated and detect

areas of interest.

During the exploitation phase, the designer searches locally in the promising regions

identified at the exploration phase. This can be done by removing the parameters of less

importance, or by modifying the bounds of the parameters.

An efficient way to explore the design space is to perform Design-of-Experiments (DoE).

Design of experiments can be defined as a series of statistical methods used to understand and

evaluate a systems behavior and more specifically, how the input factors influence the output

variables. A successful design of experiment will provide maximum understanding of the system’s

behavior with the minimum cost. A popular algorithm used to perform DoEs that is also used in

the present work is the Sobol sequence introduced by the Russian mathematician Sobol I.M in

1967.

The Sobol sequence is a quasi-random or low discrepancy sequence. Quasi-random

generators are deterministic in contrast to pseudo random generators. The Sobol sequence can fill

up a space with points that are distributed more uniformly than a pseudorandom number generator.

[26] An example of how the Sobol sequence fills up a two-dimensional space is depicted in Figures

2.9 below. The Sobol sequence proved to be very helpful in the present work. It generates

combinations of the design variables that fill up the multi-dimensional design space evenly,

providing insight about their influence and selection.

 Marine Propeller Optimization using open source CFD

43

Figure 2.9 The first 1024 points of a two-dimensional Sobol sequence

Once the exploration phase is completed and promising design candidates are found, they can be

fine-tuned to produce the best possible outcome. This phase is called exploitation or formal-

optimization.

 Typically, the designer selects a group of the best designs discovered during the exploration

phase and uses an optimization algorithm for every selected design in order to advance towards

local optima. Ideally, the exploitation phase will bring out a global optimum; however

computational resources usually limit the search iterations and the number of the designs selected

from the exploration. In most cases, the designer doesn’t know if the optimized design is actually

a global optimum, but this not the goal after all, since any improvement on the objectives is

welcome.

 Marine Propeller Optimization using open source CFD

44

In the present work, the exploitation is performed using the Tangent Search Method, originally

proposed by proposed by Hilleary [27]. The T-Search is a gradient-free method that can be very

efficient for local optimization problems (Figure 2.10) with a single objective goal; inequality

constraints can be set as well. It detects a descent search direction in the design space towards the

objective. According to [28], T-Search is characterized by efficient operation within the admissible

region with satisfactory performance along the boundary of that region. The algorithm starts by

exploratory moves (modifying one variable at a time) to detect promising directions and global

moves (modifying many variables at a time) making steps along the identified directions towards

the improvement of the objective. [29]

During this project, no considerations regarding cavitation or strength requirements are

made. Introducing these requirements in the overall process and implementing them into a closed

automated loop to include them in the optimization would be very demanding exceeding the limits

of a thesis project. For example, to evaluate the propeller blade strength, finite element analysis

would have to be carried out using advanced commercial CAE software (Abaqus, ANSYS). Thus,

the optimization problem is set as single objective; to improve the open water efficiency. During

the exploitation phase, the objective set to the T-Search algorithm is to minimize KQ.

Figure 2.10 Optimization algorithm searching for optimum designs [30]

 Marine Propeller Optimization using open source CFD

45

Figure 3.1 Phases of product development [11]

3 Software

3.1 Geometry - Friendship Framework – CAESES

CAESES® is a parametric CAD platform for fast and comprehensive design studies using external

simulation tools, developed by Friendship Systems AG. It is an evolved version of the Friendship-

Modeller, presented by Harries in 1998 and a result of extensive research at Technical University

of Berlin. CAESES is capable of creating flexible and smooth 3D geometries using design

parameters, setting constraints, importing and exporting geometries of various types, coupling

geometry to external CFD packages and performing optimization.

CAESES helps and aims to move CFD analysis and optimization studies at earlier phases

of the product development of flow-exposed shapes (hulls, propellers, turbines). These studies are

typically carried out in the final stages of the development of a product where the potential gains

of an optimization study are restricted [11]. Moreover, 3D models at this phase usually contain

information and detail (e.g. when they are intended for production) that are irrelevant to the

evaluation of the hydrodynamic performance. Thus, time and effort needs to be spent on

defeaturing the 3D models to open the way for the CFD analysis (cleaning, meshing, solving, post-

processing). With CAESES, the resulting models are clean, robust, CFD-ready and able to be

contained in closed automated optimization loops.

 Marine Propeller Optimization using open source CFD

46

The software offers a powerful object-oriented scripting language that is easy to learn and

manipulate, with auto-completion capabilities, syntax highlighting and even a debugger. Anything

that a user can do with the graphical user interface (e.g. imports-exports, geometry generation,

geometry manipulation) can be coded and automated inside scripts called Feature Definitions.

Feature Definitions are also used to create the most smooth and flexible surfaces available in the

software, called Meta Surfaces. In order to construct a Meta Surface, the user has to define a cross-

sectional curve in a Feature Definition with parameters defining its geometrical aspects. This

Feature Definition serves as an input to a Curve Engine along with 2D curves that control the

distribution of the predefined parameters. Now, the Curve Engine carries all the information that

defines the surface. Finally, the surface is materialized with the Meta Surface object. The process

is illustrated in Figure 3.2 below.

These flexible surface objects along with the F-splines (fairness-optimized splines), allow

the designer to create complex parametric surfaces with maximum control. Moreover, imported

geometry can be modified using partially parametric techniques like free-form deformations,

morphing and shift transformation.

Figure 3.2 Meta Surface creation process in CAESES [29]

Finally, CAESES provides a number of optimization tools and algorithms suitable for various tasks

and optimization problems (e.g. Sobol, Brent, TSearch, NSGA-II, Dakota), as well as post-

processing tools to visualize the flow data and utilities to visualize the optimization results, for

example the influence of the parameters, pareto fronts and so on.

.

 Marine Propeller Optimization using open source CFD

47

3.2 Solver - OpenFOAM

3.2.1 Introduction to OpenFOAM

OpenFOAM, which stands for Open Source Field Operation and Manipulation, is the leading free

open source CFD software, owned by the OpenFOAM Foundation and distributed exclusively

under the General Public License (GPL) [31]. OpenFOAM was created by Henry Weller in the

late 1980s aiming to provide a more flexible and powerful simulation platform than FORTRAN.

The main idea was to develop a code based on the Finite Volume Method to solve systems of Partial

Differential Equations using C++ and object-oriented programming.

 It was developed on the basis of the C++ programming language, due to its object-oriented

features and flexibility. Object oriented languages, like C++, offer the mechanism of classes that

can be used to declare types and associated operations for each mathematical object. OpenFOAM

makes use of this functionality, by defining the scalars, vectors and tensors that appear in the

equations which describe the fluid flow, as objects. For example, the velocity field U is an object

that belongs to the class vectorField, which derives from the classes vector and field, and inherits

their properties. This object-oriented approach does not only make the codes clearer and more

compact, but also much easier to develop and maintain, since the code development is contained

in specific regions of the code, i.e. the classes themselves, and inheritance helps reduce duplication

of the code.

 Moreover, the models are implemented in such way, so that the Partial Differential

Equations (PDEs) are expressed in their natural language (equation mimicking). Consequently, the

syntax of the code that involves tensor operations, closely resembles the equations that are being

solved. For example, the following differential equation

can be written in an OpenFOAM file, as seen below

In this way, the source code is comprehensible and given the open source nature of OpenFOAM,

it is easier for users and developers to modify existing solvers or create new ones. Deep knowledge

of C++ programming is not necessarily needed to write a new solver, however basic understanding

of C++ code syntax and the principles of object-orientation and classes are essential.

 Marine Propeller Optimization using open source CFD

48

 To this day, OpenFOAM has received high customization and extension of its

functionalities, and is widely used both in the academia and the industry. New versions are released

to the public every year, containing a great collection of precompiled applications and features

able to solve anything from complex fluid flows involving chemical reactions, turbulence and heat

transfer, to solid mechanics and electromagnetics. Apart from being totally free of charge and

customizable, OpenFOAM has many more benefits to offer like parallel computing and powerful

pre- and post-processing utilities. However, the lack of a Graphical User Interface (GUI) makes

the learning curve for new users quite steep.

OpenFOAM’s pre-built applications fall into two categories: solvers, that are designed to

solve a specific problem; and utilities that are designed to perform tasks that involve pre- and post-

processing, meshing and data manipulation. [32]

Figure 3.3 Overview of OpenFOAM structure [32]

There is a great variety of different solvers, so they are divided in the following categories:

• Basic CFD codes

• Incompressible flow

• Compressible flow

• Multiphase flow

• Direct numerical simulation (DNS)

• Combustion

• Heat transfer and buoyancy-driven flows

• Particle-tracking flows

• Discrete methods

• Electromagnetics

• Stress analysis of solids

• Finance

 Marine Propeller Optimization using open source CFD

49

The utilities can be divided in the following categories:

• Pre-processing

• Mesh generation

• Mesh conversion

• Mesh manipulation

• Post-processing

• Post-processing data converters .

• Surface mesh tools

• Parallel processing

3.2.2 Structure of an OpenFOAM Case

Executing an OpenFOAM application requires proper setting of the CASE directory that will

contain files (dictionaries) where all the parameters involved in the simulation are specified. The

basic CASE directory structure can be seen in Figure 3.4. The main directories are constant and

system and a number of time directories that are created during the simulation containing the

simulation data. The functionalities of these directories are described below.

Figure 3.4 Case directory structure [32]

 Marine Propeller Optimization using open source CFD

50

• The constant directory:

This directory contains dictionaries where the physical properties for the application are specified,

such as the turbulence model or the value of the viscosity. A subfolder called polyMesh is also

included, containing a set of files that describe the mesh used in the simulation

• The system directory:

In this directory, all the parameters regarding the solution procedure are selected. The three most

important files are: controlDict, fvSchemes, fvSolution. In the controlDict, run control

parameters are specified, including the start and end time of the simulation, the time step as well

as the time interval between saving data. The fvSchemes dictionary includes the discretization

schemes used in the solution and the fvSolution contains the equation solvers, tolerances and other

algorithm controls (i.e. Relaxation factors).

• The time directories:

During the simulation, time directories are written depending on the settings specified in the

controlDict. These time directories contain files of data for particular fields, i.e. pressure. These

data are initial values and boundary conditions that are required to start the simulation, usually

specified in time directory ‘0’, or result data that are saved in the selected time step (i.e. 900).

 When all the necessary directories are set, the user can start the simulation by executing

commands in the terminal. These commands trigger utilities or solvers that are responsible for the

generation of the computational grid, running the computations and post-process the data. If the

user desires to run the computations on multiple processors, dedicated utilities are available that

will decompose the domain and run the solver in parallel. In a post-processing stage, the user can

recompose the domain and visualize the flow data. The commands used can be written in a single

executable, and the whole process can be easily automated. At the post-processing stage, the data

contained in the time directories can be visualized in the open source software Paraview, that

comes built with OpenFOAM or can be downloaded separately. Paraview can be used to visualize

and inspect the mesh, create colored plots with the flow data, visualize streamlines and so on.

3.2.3 Compiling OpenFOAM Applications and Libraries

As stated above, users are free to customize the codes available in OpenFOAM or develop their

own. Compilation is an integral part of this process and for this reason, some basic information

about compiling OpenFOAM applications will be described below.

 Since OpenFOAM is a C++ library, the compilation process is eventually the same as the

one used to compile C++ applications. However, OpenFOAM uses its own wmake compilation

script that is based on the standard UNIXmake utility, commonly used in UNIX/Linux systems.

Wmake though, is more versatile, easier to use and can be actually used to any code, not only the

OpenFOAM library. Before describing how wmake is used, some basic aspects of C++ need to be

introduced. In C++, a class is defined in a file that contains its attributes such as object construction

and data storage and takes a .C extension. This file can be compiled independently of other code

into an executable library file called shared object library with the .so extension. That being said,

when a new piece of code is to be compiled i.e. newObject.C that uses another class i.e. oldObject,

 Marine Propeller Optimization using open source CFD

51

oldObject.C doesn’t need to be recompiled, and newObject.C will call the oldObject.so library that

was created when oldClass.C was compiled in the first place. This is known as dynamic linking.

 Another important aspect is that every piece of code contained in a .C file has an associated

.H file. This piece of code, will most likely require properties and functions from other classes, so

every used class needs to be declared through a class declaration that is contained in a file with a

.H extension. In order to link the .C and .H files, the command #include ‘otherObject.H’ is stated

at the beginning of the new code contained in a .C file. The .H files are called dependencies. The

procedure described above is illustrated in Figure 3.5.

Figure 3.5 C++ Class mechanism [32]

OpenFOAM applications are typically organized using the convention that the source code

of each application is placed in a directory with the same name as the application. They are made

up of two files a .C and a .H. By navigating to the folder containing these two files and executing

the command wmake the application is compiled. To perform the compilation successfully,

wmake requires two extra files located in a subfolder named Make, these are called options and

files. Options contains the paths to the .H and .so files needed for the compilation, while files

contains a list of a the .c source files that have to be compiled, as well as the path and name of the

executable to be created.

Figure 3.6 Directory structure for an application

 Marine Propeller Optimization using open source CFD

52

Figure 3.7 Meshing process stages

3.3 Grid Generation - CfMesh

CfMesh is a library for unstructured automatic volume mesh generation that is built on top of

OpenFOAM. It is developed by Creative Fields Limited, headed by Dr. Franjo Juretic, principal

developer of the tool and managing director and founder of Creative Fields. The purpose behind it

was to develop a grid generator that is robust and simple to use, but also easy to learn and extend.

CfMesh is an open-source tool, licensed under the GPL license and compatible with all the recent

versions of OpenFOAM.

The library supports various 2D and 3D workflows to generate meshes of arbitrary cell

types. The current workflows generate cartesian, tetrahedra and polyhedral meshes. All workflows

are parallelized for shared memory machines and use all available computer cores while running,

accelerating the meshing process. [33]

CfMesh requires the input geometry in a form of surface triangulation and a set of user

defined settings that control the cell sizes and refinements. Some stages of the meshing process

are depicted in Figure 3.7 below with the trailing edge of the propeller blade as an example. The

process starts by creating a template based on the input geometry, then the template is adjusted to

match the input geometry. Finally, boundary layers are generated according to the user’s settings.

The process is designed to be able to handle poor quality input geometries that may contain gaps.

 Marine Propeller Optimization using open source CFD

53

4 Method

4.1 The Test Case - PPTC

The Potsdam Propeller Test Case is selected as the basis of the computations and the optimization

study. Detailed description of the geometry and experimental data including open water

characteristics, velocity field measurements as well as cavitation patterns are provided by the SVA

Potsdam (Schiffbau-Versuchsanstalt) and are available online [34]. The Potsdam Propeller Test

Case was part of the SMP’11 Workshop on Cavitation and Performance and the data is intended

to offer research groups the possibility to test and validate their calculation methods. The basic

characteristics of the propeller can be seen in the Table 4.1 below.

 The geometry is available in many file formats. Apart from the traditional propeller

drawings, including the radial distributions and the projected and developed outlines, the geometry

is available as a 3D IGES/STEP/3dm file including the hub, fillet and shaft but also as a PFF file

(Propeller Free Format), a common format used by design companies and classification societies

that proved to be particularly helpful for the creation of the parametric model later on.

Table 4.1 Potsdam Propeller Test Case Geometry

Propeller Diameter D [mm] 250.0000

Pitch at r/R=0.7 P0.7 [mm] 408.7500

Pitch at r/R=0.75 P0.75 [mm] 407.3804

Mean pitch Pmean [mm] 391.8812

Chord length at r/R=0.7 C0.70 [mm] 104.1670

Chord length at r/R=0.75 C0.75 [mm] 106.3476

Thickness at r/R=0.75 t0.75 [mm] 3.7916

Pitch ratio P0.7/D [-] 1.6350

Mean pitch ratio Pmean/D [-] 1.5675

Area ratio AE/A0 [-] 0.7790

Skew θ [] 18.8000

Hub diameter ratio dh/D [-] 0.1500

Number of blades Z [-] 5

Direction of rotation

right-handed

 Marine Propeller Optimization using open source CFD

54

Figure 4.1 CAD Geometry of the PPTC propeller

4.2 Pre Processing - Geometry Cleanup

As a first step for the validation of the OpenFOAM-cfMesh configuration, the original geometry

provided online has to be prepared for the mesh generation process. The PPTC is a controllable

pitch propeller, and this results in a 0.3mm gap between the hub and the propeller blade near the

leading and trailing edge. At the pre-processing stage, this small gap has to be removed since a

watertight STL1 is required by the grid generator. The tip area needs special treatment as well.

 As imported into a CAD system, in this case that is CAESES, the geometry comes as a set

of different Brep2 Parts. These individual parts have to be combined into a single Brep, that will

finally be exported as an STL file and will be given to the grid generator. CAESES provides the

functionality of Boolean Operations between Breps and this functionality is extensively used

throughout this thesis. Boolean Operations between Breps in CAESES are quite powerful and

robust, leading to significant reduction of the time spent on pre-processing and clean ready for

meshing models. A specific Boolean operation is available that creates a smooth fillet between the

hub and the propeller blade, this operation is used to replace original fillet and remove the gap. In

the picture below, on the left one can see the small gap between the fillet and the blade as well as

the red curves in their connection, indicating that they are different Brep Parts. On the right part,

the new fillet is visible, and the Brep Parts are connected into a single Brep.

1 STL: Abbreviation of “stereolithography”. A common file format in 3D CAD systems
2 Brep: Abbreviation of “Boundary representation”. Method of representing geometry in CAD systems using the

limits

 Marine Propeller Optimization using open source CFD

55

Another deficiency of the original CAD geometry is a gap at the tip region. A new surface is created

to fill the gap and all the different Brep parts are combined in a watertight solid as seen in Figure

4.3.

Figure 4.3 Complete watertight geometry including the shaft

Figure 4.2 Detail of the trailing edge near the fillet

 Marine Propeller Optimization using open source CFD

56

4.3 Domain Construction

A computational domain that will be discretized into a finite number of cells is needed for the CFD

computations. In the case of the propeller, that is usually a cylinder. However, when simulating the

open water test in straight flow, one can use the one blade passage approach, take advantage of the

axial flow symmetry and solve the flow for one of the blades using periodic boundaries. In this

way, the volume of the computational domain is reduced significantly and consequently the

number of cells needed for the computations is reduced as well, leading to shorter simulation time.

The time needed for the computations is a very important factor in an optimization study, especially

when the computational power is limited, since it will determine the size of the design space and

the number of variants to be explored.

 The periodic domain is constructed so that the periodic sides are kept as far from the blade

as possible. For the construction of the domain, the Meta-Surface technology is utilized, that was

briefly presented in the Software Section. Firstly, two points are extracted from the leading and the

trailing edge, at the radial position corresponding to the maximum chord length of the blade. The

two points are connected with a line that is extended in both directions. The edges of this line and

two more points controlling the start and the end of the domain, will be used as the weighted

control points of a NURBS curve. The weights of the control points can be modified in order to fit

the propeller sufficiently. This NURBS curve is the core of the MetaSurface that will be created in

the next step.

Figure 4.4 First step of the domain construction

 Marine Propeller Optimization using open source CFD

57

Two more curves are essential, one straight line passing through the center of the shaft and

hub (curve 1 in Figure 4.5), and a curve defining the upper bound of the domain (curve 3 in Figure

4.5), constructed in a similar way as the curve 2. Intersecting the curves 1,2,3 at a specific position

along the Z axis gives the curve 4. However, getting intersections at specific Z locations,

generating the in-between surface patches and then merging them would not provide a smooth 3D

surface. Also, preserving the continuity between the parts would be very difficult. That can only

be accomplished with a FMetaSurface. Firstly, a Feature Definition needs to be created that given

three curves, it will export an FintersectionCurve, this can be done with a single line command

inside the Feature Definition. This Feature Definition is then given to a FCurveEngine where it is

connected with these 3 curves and a parameter that ‘runs’ from 0 to 1. Now, all the information

needed to construct a surface is contained in this FCurveEngine.

 The FCurveEngine is then given to a FMetaSurface that creates a fair and smooth surface

by sweeping along these curves given some user defined boundaries, in this case, the location on

the Z axis. By default, the generated meta surface information is used for the creation of a NURBS

surface that can be visualized, used for more operations or get exported. With this FmetaSurface,

two new surfaces are generated using the object FImageSurface, that transforms the initial

FmetaSurface by rotating it around the Z axis, creating two identical surfaces that enclose between

them one fifth of the whole domain. The FimageSurface object is a very useful tool, since it allows

for all kinds of transformations. It can also be used to isolate parts of the surface that serves as a

source, by specifying bounds for the U and V parameters.

Figure 4.5 Domain Meta-surface creation Figure 4.5 Domain construction

 Marine Propeller Optimization using open source CFD

58

 With the two periodic surfaces that have been created, two Breps are generated illustrated

with blue and red color in Figure 4.6. As a next step, a cylinder is created defining the boundaries

of the computational domain. All the surfaces including the cylinder are contained into Breps and

are distinguished with the use of different colors. Using colors to distinguish the different Breps is

essential in the overall process, since they will be identified as different patches by cfMesh and

OpenFOAM. This is quite helpful for the configuration of OpenFOAM for example for the setting

of the boundary conditions.

The inlet can be seen in Figure 4.6 colored with pink and it is placed 3R upstream, where R is the

radius of the propeller. The outlet is placed 10R downstream and the cylinder radius is 7R. The

distances are selected so that the disturbance of the flow caused by the geometry does not influence

the flow on the boundaries. They are based on experience and relevant work found at [35], [36]

and [37].

 At this point, all the geometry needed for the computations is created and the last part is

combining them all together in a single watertight solid that will be exported as a Multicolor STL

file. The Brep tessellation can be seen in Figure 4.7, one can notice the difference of tessellations

between the red and the pink Brep. CAESES offers a number of ways to control the tessellations

of a Brep. The user can, for example, limit the value of the angle between two adjacent triangles

or control the maximum edge length. By increasing the density of the tessellations, the quality of

the final exported STL file is improved and performing Boolean operations between the different

Breps is easier, however the final STL file becomes heavier and the visualization slower. Higher

density is used at the blade edges, to capture the geometry sufficiently, and lower density is used

at the inlet and outlet. The final solid illustrated in Figure 4.7 is exported as a Multicolor STL file

and is ready for meshing with cfMesh.

Figure 4.6 Domain construction

 Marine Propeller Optimization using open source CFD

59

4.3 Grid Generation

According to [38], grid generation is estimated to take up to 80% of the whole analysis time in

industrial applications. Moreover, the mesh quality has a great impact on CFD results and special

attention should be paid in this part of the process. In the present work, a significant amount of

time had to be spent to configure cfMesh properly to achieve the desirable grid quality.

 Meshing a geometry like the propeller blade with sharp edges is quite demanding,

especially with an open-source software like cfMesh. Most commercial unstructured grid

generators can detect automatically the surface curvature and adjust the density of the surface mesh

to capture the edges and maintain the mesh quality. However, cfMesh does not support this

functionality and the control of the cell size in specific regions has to be assisted, utilizing the

capabilities of CAESES.

 Using cfMesh is quite straightforward and simple geometries can be meshed easily.

CfMesh is executed with a terminal command in a folder with a proper OpenFOAM folder

structure, containing the STL file that is going to be meshed along with a C++ dictionary file called

meshDict, contained in the system folder. The open-source version of cfMesh comes with four

available meshing workflows [33], these are Cartesian, 2D Cartesian, Tetrahedral and Polyhedral.

Excluding 2D Cartesian, all the other meshes have been tried and tested for the task at hand. As

the names suggest, the tetrahedral workflow creates meshes consisting of tetrahedral cells and

Polyhedral creates meshes consisting of arbitrary polyhedral cells. The Cartesian workflow proved

to be the most efficient. The generated mesh consists predominately of hexahedral cells with

polyhedral in the transition regions between cells of different size.

 The grid generation process is controlled with inputs in the meshDict file. Two mandatory

settings need to be set, the name of the file that is going to be meshed (surfaceFile) and the default

size used for the meshing job (maxCellSize). With these basic settings, cartesianMesh can be

executed and ran, however the mesh quality will most likely suffer. A number of options are

available to control the cell size locally and improve the mesh quality.

Figure 4.7 Final STL to be exported

 Marine Propeller Optimization using open source CFD

60

 As stated above, the meshing process is assisted by CAESES. In CAESES, the surfaces are

parametric, with U and V parameters running in the domain [0,1] x [0,1]. Using the FimageSurface

object with specified U-V bounds, the propeller blade is split, with the leading edge, trailing edge,

fillet and tip separated and contained into different Breps, that will be eventually recombined.

Figure 4.8 Geometry preparation

In Figure 4.9, one can see how the cell size is controlled. The parts distinguished with colors are

identified as patches by cfMesh and the cell size can be controlled on each patch with entries in

the meshDict file. The difference in the cell size is visible between the patches, small quadrilateral

faces are generated on the leading edge and tip colored with purple and white, while larger ones

on the central area of the blade, and the shaft.

Fluid flows close to walls are characterized by high gradients [39]. With unstructured grid

generators, prism layers are usually used to resolve the boundary layer, and they are very important

for the accuracy of the computations. The thickness and number of prism layers is chosen

depending on the turbulence model, wall functions and Reynolds number. But this topic is

described in detail in the Wall Treatment section. CfMesh is able to generate prism layers at the

walls, using the appropriate commands in the meshDict file, where a number of options are

selected. However, once the generation of prism layers is activated, the quality of the generated

mesh deteriorates significantly, and extra care needs to be taken. An iterative procedure is needed,

where almost all the possible combinations of parameters are tested.

 Marine Propeller Optimization using open source CFD

61

Figure 4.9 Surface mesh on the propeller blade and shaft

While cfMesh is running, it provides information about its behavior and its internal optimization

algorithms. For example, the number of skewed cells it identifies and the optimization loops used

to get rid of them. With the proper commands, the mesh generation procedure can be stopped, and

the mesh can be visualized at a specific time of the process. In this way, the user can identify the

root of the low-quality cells and make the appropriate changes in the settings.

 The lack of GUI makes the overall process quite demanding. It is a trial and error process,

carried out by applying changes to the meshDict and monitoring the quality of the generated mesh

and the convergence of the simulations. The mesh quality is evaluated using the command

checkMesh -allTopology -allGeometry. The output is a detailed quality report, including all kinds

of statistics, like the number of cells of each type (hexahedra, polyhedral, prism) and the quality

constraints that are violated, non-orthogonality, aspect ratio, skewness and so on. The results of

the report of the mesh used are presented in the Validation section.

 The mesh is also inspected visually, using the OpenFOAM’s post-processing software

Paraview. Most low-quality cells are detected at the sharp edges of the geometry, these are the

leading edge, trailing edge, fillet and tip. In the Figure 4.10 below, one can see the low-quality

cells generated at the leading edge, colored with red and blue.

 Marine Propeller Optimization using open source CFD

62

Figure 4.10 Monitoring the mesh quality in Paraview

Ideally, ten to twenty prism layers are desired to resolve the boundary layer, and achieve accurate

results [40], [41]. In this case, increasing the number of prism layers, reduces the mesh quality

significantly. After many iterations, a maximum number of five prism layers could be generated

with the mesh quality kept at acceptable levels. The prism layers are illustrated in Figure 4.11,

where a view of the leading edge and a section of the 3D grid is depicted. One can notice the

difference in height from the last prism layer to its neighbor cell. A smoother, more gradual

transition is desired.

 CfMesh offers a number of utilities [33], i.e. mesh manipulation and conversion routines.

The improveMeshQuality utility is thoroughly tested for this application. The smoother that is

applied actually ensured a gradual transition from the last prism layer to its neighbor cell, but

required about one hour to execute and had insignificant impact on the calculated forces, it was

therefore not used.

 A smooth transition in cell size is also needed within the domain, from the very small cells

of the edges to the much larger cells at the inlet and outlet. To achieve this, refinements are

specified by activating the refinementThickness option that is applied on specific patches. The

effect of these refinements is depicted in Figures 4.11 and 4.12. This option controls the distance

of the wall that the specified on the patch cell size, is kept constant. These options not only ensure

a smooth transition in cell size, but also make sure that a sufficient amount of high-quality

hexahedral cells will be placed at the vicinity of the propeller blade, keeping the transition areas

that are filled with polyhedral cells, away from the wall. These polyhedral filled transition regions

can be seen in Figures 4.11 and 4.12.

 Marine Propeller Optimization using open source CFD

63

Figure 4.11 Prism layers at the wall

Figure 4.12 Refinements near the tip

In Figure 4.12, the refinements near the tip region are visible, they are needed not only to improve

the mesh quality, but also to capture the trailing vortices.

 Marine Propeller Optimization using open source CFD

64

Figure 4.13 Volume mesh around the blade without cylinder volume refinements

Periodic boundary conditions are applied to the sides of the domain. The boundary condition

typically used in OpenFOAM to couple periodic sides is called cyclic, and the faces on each

coupled patch must have the same topology. In our case, due to the nature of the grid generator

and the geometric form of the domain, the faces of the cells at the periodic boundaries do not match

completely. The Potsdam Propeller has five blades, and even with the flexible domain that is used

the leading and trailing edge are quite close to the periodic sides. As stated above, small cells are

used at the leading and trailing edge of the blade and this results in small cells on the left periodic

side near the leading edge, and small cells on the right periodic side near the trailing edge. This

mismatch is depicted in Figure 4.13 above. Consequently, the resulting surface meshes on the

periodic sides are quite different and the cyclic boundary condition cannot be applied.

 The specific boundary condition that is applied is called cyclicAMI, where AMI stands for

arbitrary mesh interface. This boundary condition was introduced in OpenFOAM v2.1.0. to enable

simulation across non-matching adjacent interfaces. With the AMI procedure, each face accepts

contributions from the partially overlapping faces of the neighbor patch, with weights defining this

contribution as a fraction of the intersecting areas. For each face, a sum of weights close to 1 is

needed to ensure the convergence of the simulations. [42]

 However, due to the mismatch of the periodic sides, the sum of weights deviates from 1

causing the cyclicAMI condition to fail and the simulations to diverge. To overcome this difficulty,

a cylinder volume refinement is specified near the propeller blade illustrated in Figure 4.14. This

refinement constraints the cell size inside a specified cylinder and the matching of the periodic

sides is achieved. Moreover, it helps to capture the complex flow phenomena around the blade

more accurately and ensures a smooth transition in cell size.

 Marine Propeller Optimization using open source CFD

65

 All these refinements used to increase the mesh quality, also increase the cell count and the

simulation time. A reasonable compromise needs to be made between the mesh quality and the

computational cost. The number of cells that is finally used for the validation study is selected with

a grid dependency study that is presented in the Validation section. Another difficulty is that the

mesh settings selected have to ensure flexibility and stability during the optimization phase, where

a number of different variants will be created and cfMesh will have to generate a grid of adequate

quality for each and every one of them.

Figure 4.14 Volume mesh around the propeller with cylinder volume refinements

4.4 CFD Setup

From the solvers available in OpenFOAM, simpleFOAM is selected, a steady-state solver for

incompressible flows with turbulence modelling, using the SIMPLE algorithm to couple pressure

to velocity [43]. This section contains the settings of the simpleFOAM solver.

 Marine Propeller Optimization using open source CFD

66

4.4.1 Flow conditions

The flow conditions for the open water experiment are chosen to match the ones provided by SVA

for the open water test in the towing tank [34]. These conditions can be seen in Table 4.2 below.

Table 4.2 Flow conditions

Water density (for T=17.5) ρ [kg/m3] 998.67

Kinematic viscosity of water (for T=17.5) ν [m2/s] 1.07E-06

Rate of revolutions n [1/s] 15

Advance Velocity VA [m/s] 0.75-5.25

4.4.2 Boundary Conditions

The equations of fluid motion will be solved for a certain computation domain that is restricted by

boundaries. Boundary and initial conditions need to be set on them. The equations will be solved

under the specified conditions.

Figure 4.15 Boundary Conditions

 Marine Propeller Optimization using open source CFD

67

The Dirichlet boundary condition is applied on the inlet for velocity, defining a constant value to

match the advance coefficient that is simulated. The simulations are executed for a wide range of

advance coefficients with the revolutions kept constant while the inlet velocity varies.

 The no slip boundary condition is applied on the propeller, hub and shaft. It ensures that

the fluid sticks to the wall and moves with the same velocity as the wall. As a common practice

for incompressible solvers, the pressure on the outlet is set to a fixed value of 0. The cyclicAMI

boundary condition is applied on the periodic boundaries. In OpenFOAM, the Dirichlet boundary

condition is expressed as fixedValue, whereas the Neumann condition is expressed as

zeroGradient. The slip condition is applied on the mantle. It defines the velocity component

normal to the wall as zero, preventing the flow to pass through it, and the tangential to the wall

component of velocity as zeroGradient. The pressure and velocity boundary conditions for all

boundaries can be seen in Table 4.3 below.

Table 4.3 Boundary Conditions for pressure and velocity

Boundary Velocity boundary condition Pressure boundary condition

Inlet Dirichlet Neumann

Outlet Neumann Dirichlet

Propeller No Slip Neumann

Left Periodic Side CyclicAMI CyclicAMI

Right Periodic Side CyclicAMI CyclicAMI

Mantle Slip Neumann

Shaft No Slip Neumann

Furthermore, initial values for the turbulent quantities need to be set on the boundaries. They can

be estimated by restricting the turbulence intensity between 0.5% and 1%. Also, the turbulence

viscosity ratio approximately 10 as seen below. The values depend on the fluid velocity, so they

are recalculated for every advance coefficient.

 0.5% < 𝐼 =
√
2

3
𝑘

|𝑼𝑖𝑛𝑙𝑒𝑡|
< 1% (4.1)

𝜈𝛵

𝜈
=

𝑘

𝜈𝜔
≈ 10 (4.2)

 Marine Propeller Optimization using open source CFD

68

To measure the thrust force and torque acting on the blades and obtain the open water

characteristics KT and KQ, a function needs to be defined in the controlDict.

As discussed in the Theory Section, the MRF approach is used to model the rotation, also

called the “Frozen Rotor Approach”. For propeller simulations with the MRF approach (Multiple

Reference Frames), the mesh is usually divided into two different cylindrical domains, one moving

and one stationary. However, the interface between the rotating and stationary regions needs

special treatment. To avoid this, the entire domain is referred to as a single moving reference frame.

Depending on the solver, there are different ways to set up the MRF case [44]. In the present work,

the rotation is included by configuring a dictionary called MRFProperties located in the constant

folder. Inside this dictionary, rotational movement can be applied on a specified cellZone, by

defining the rotational velocity (omega), the position of the axis of rotation (origin), and the

directional vector of the axis of rotation (axis). Since the entire domain is to be included to a single

moving reference frame, the entire domain needs to be contained in a cellZone. To achieve this,

the topoSet utility is used. It can manipulate cellSets, faceSets and pointSets, with proper settings

in a dictionary called topoSetDict that is placed in the system folder.

 Part of the MRFProperties file can be seen below, omega is the specified rotation in radians per

 second, here corresponding to 15 revolutions per second as the PPTC case. Non-rotating patches

are also specified as seen below.

Code 1. MRF Dictionary

MRF1

{

 cellZone rotating;

 active yes;

 nonRotatingPatches (inlet mantle outlet left right);

 origin (0 0 0);

 axis (0 0 1);

 omega -94.25;

}

 Marine Propeller Optimization using open source CFD

69

4.4.3 Wall Treatment

The flow near the wall is the most interesting part of fluid simulations, but the most difficult to

predict. As stated in the Theory Section, there are two approaches to model the near-wall region.

Either use wall functions, semi-empirical formulas that are able to handle the region between the

wall and the fully-turbulent region at low cost, or place a sufficient number of short -in the wall

normal direction- cells to resolve the boundary layer up to the wall.

In optimization studies, the wall function approach is usually selected, since the shorter

computation time allows for more designs to be explored. Depending on the approach followed, a

suitable wall mesh resolution is selected by controlling and monitoring the dimensionless quantity

y+ that expresses the distance of the center of the first cell to the wall. Values of y+ values over 30

are desirable with the wall function approach. With automatic grid generators, controlling the

height of the boundary layer cells for curved geometries can be quite challenging and achieving

the proper y+ is difficult but important for the accuracy of the results.

The flow field needs to be calculated first in order to calculate the dimensionless quantity

y+, so a number of simulations are executed to properly set the y+ values on the propeller blade.

In a first approach, y+ values over 30 are desired. These y+ values can be acquired without the use

of prism layers easily, and simulations converge quickly. The results however deviate from the

experimental measurements, since prismatic layers are essential even with the use of wall

functions. Ideally 10 prism layers would be sufficient for a wall function mesh with y+ values kept

over 20-30 for the main area of the blade.

Trying to generate prism layers and control the y+ on the blade surface introduced a number

of problems that have been analyzed in the Grid Generation section. When the prism layers are

activated, very small cells are needed at the edges of the blade to maintain the mesh quality, and

the prismatic cells generated are very short corresponding to low y+ values. CfMesh offers three

main options to control the generation of prism layers. The number of the layers, the thickness

ratio and the maximum thickness of the first layer. The number of layers is restricted to 5 to keep

the mesh quality to acceptable levels. The thickness ratio controls the thickness between two

successive layers. This option does not offer much flexibility either, a value of 1.3 was selected as

the maximum possible. Controlling the maximum thickness of the first layer does not help at all

in the specific case. On the other hand, controlling the minimum thickness could help increase the

wall distance and y+ values, but this option does not exist, and the distance of the first cell from

the wall can only be controlled with the cell size. Taking the above under consideration, and given

the Reynolds number of the simulation, y+ values over 20-30 are impossible to achieve with prism

layers.

 That being said, the second approach is followed. According to [45], placing the first cell

in the buffer layer should be avoided. To achieve this, small cells are used and the five prism layers

that can be generated are placed in the viscous layer, keeping the y+ values below 2.

 Marine Propeller Optimization using open source CFD

70

4.5 Building the Parametric Model

The first set of computations for the validation study was executed using the original geometry

provided by the SVA. For the optimization study that will follow, a fully parametric propeller

blade needs to be developed that will match the original geometry. To make sure that the baseline

design of the parametric model matches the original propeller, simulations are executed for all

advance coefficients again. In this section, the construction of the parametric blade is discussed.

CAESES offers a dedicated entity for blade design called FGenericBlade. With this object,

arbitrary user-defined radial functions for rake, skew and pitch can be combined with arbitrary

profile definitions. In this way, a fully parametric propeller blade can be created in a few minutes.

The software also provides a selection of commonly used profiles like NACA profiles or NACA

Four-Digit-Series. For the purpose of this thesis, the profile used is custom made.

Blade design in CAESES initiates with the definition of the profile which is encapsulated

in a Feature Definition, in a small piece of code. Firstly, both the camber line and the thickness

distribution are defined with B-Spline curves. As a next step, given the camber line, two offset

curves are created using the thickness distribution. The offsets are then scaled on the X axis

according to the chord. The parameterization lies in the fact that the coordinates of the control

points of the curves as well as the chord are arguments in a code contained in the Feature

Definition. The coordinates of the control points are multiplied with coefficients. Later on, the

coefficients will be adjusted to make sure that the resulting blade matches the original geometry

as close as possible.

Figure 4.16 Profile definition

The next step is to set up a FCurveEngine by means of the recently created Feature Definition that

contains the profile definition. The profile is selected as the base curve of the FCurveEngine. In

this engine the profile’s scalar parameters are linked to radial distributions i.e. camber, camber

position, maximum thickness and so on. These radial functions will determine the coordinates of

the control points contained in the Feature Definition, thus defining how the sections will form in

the 3D space.

 Marine Propeller Optimization using open source CFD

71

Figure 4.17 Radial distributions (left), Parametric blade with tip (right)

Any curve type available in CAESES can be used as radial function. The functions have to

be designed in the normalized space "[rhub,1.0]" where "rhub" is the normalized hub radius. They

are defined in the xy-plane in the range [0,1] x [0,1], where the x-coordinate corresponds to the

normalized radius. The rake function is expected to be normalized with respect to the real radius.

The skew radial function can be defined either by the angle ‘θs', or the distance 's' of the mid-chord

position to the projected flow axis. The radial function for the pitch value can be defined either as

a function of the pitch angle 'Φ' using degree or as the common value 'P', i.e. the distance moved

forward by the helical line during one revolution. The pitch value 'P' is normalized with respect to

the radius. [29]

The FGenericBlade object can now be used. Within this object, the radial distributions of

pitch, skew and rake will be linked to the FCurveEngine, that carries the hydrofoil related

information. The parametric blade object is depicted in Figure 4.17 on the right. It spans from the

“rhub” to 0.99 times the radius leaving the tip area empty. A special feature is available that creates

a smooth tip, preserving the continuity at the edges and making sure that no gaps exist. The smooth

tip is also easier to mesh, it can be seen in Figure 4.17 marked with yellow.

As mentioned above, the geometry of the PPTC is available online and it includes the radial

functions that are needed at this point. Some pre-processing is necessary to adjust them in the

format that CAESES expects. As extracted for example from the propeller drawing, the radial

functions are actually just a number of points. These points are interpolated with the object

FInterpolationCurve, and these curves are then linked to the FCurveEngine and FGenericBlade.

In our case, the radial functions are known in advance. If this wasn’t the case, CAESES

offers another powerful tool called Blade Analysis Tool. With this feature, provided a list of

surfaces that define a blade, CAESES automatically constructs a fully-parametric blade including

the radial distributions.

 Marine Propeller Optimization using open source CFD

72

Figure 4.18 Trailing edge fillet (left), Hydrofoil Section comparison (right)

So far, a fully parametric single blade is created with U and V parameters running from zero to

one, U in the chordwise direction and V in the radial direction. The blade can now be scaled

according to the radius. The blade is compared with the original in two ways, by comparing the

3D models in the 3D view but also by comparing the 2D profiles using the PFF propeller format.

The 3D comparison helps to identify geometry deviations related to the pitch, skew and rake

distributions. The radial distributions for these geometric features are finetuned to increase the

matching. Propeller Free Format (PFF) is a common way to exchange propeller geometry data.

CAESES supports the functionality of importing and exporting PFF files. The PFF file that is

provided by the SVA is imported into CAESES and the 2D profiles can be visualized in 2D. At

the same time, the profiles of the parametric model can be visualized in 2D and be plotted against

the PFF ones as seen in Figure 4.18 on the right, with the colorful hydrofoils representing the

original PFF sections. The coefficients defined inside the Feature Definition are adjusted to match

the original hydrofoil sections.

 At Figure 4.18 on the left, a view of the trailing edge is depicted. The original PPTC

propeller features a very thin trailing edge. To properly mesh this trailing edge and successfully

generate prism layers, the cell size along this edge had to be reduced significantly, increasing the

total number of cells. In the parametric model, the trailing edge is designed to be blunter and more

curved, making the prism layer generation easier for cfMesh. To investigate the influence of this

change on the calculated forces and torque, the computations are executed again. Comparing the

results shows that the influence is insignificant and the new trailing edge can be used for the

optimization study. This change helped to decrease the computational cost significantly, bringing

the cell count down from approximately 2.700.000 cells to 1.800.000 saving up to three hours of

simulation time for each design.

 Marine Propeller Optimization using open source CFD

73

At this point, the radial distributions are Intersection curves passing through the data points. This

however is not particularly helpful for the optimization study that will follow, where a number of

parameters will be activated and a number of designs will be explored. Usually, there are eleven

to twelve points defining each radial distribution, corresponding to values of 0.2,0.25,0.

3…0.9,0.95,1. Introducing parameters to control the abscissas or ordinates of these points would

give at least 10 parameters for each distribution, that means up to 50-60 parameters for the whole

blade. This number of parameters defines a design space impossible to handle, even with

substantial computational power. That being said, the intersection curves need to be approximated

by curves that can be controlled with fewer parameters. We need as few parameters as possible

with as much control on the curve as possible. At the same time, a selection needs to be made on

which radial distributions will be activated for the optimization. Even if only 2 parameters are

activated for each distribution, there are seven distributions, these are functions controlling the

camber of the sections, the position along the chord where the specified camber is applied, the

chord length, the pitch-ratio, the rake, the skew and the thickness. Experience at Friendship

Systems suggests three functions to be enabled, these are the pitch, camber and thickness.

The camber distribution along the blade is approximated with a 3rd degree B-spline with 4

control points as seen in Figure 4.19 below. Two parameters are introduced, the first one controls

the abscissa of the 3rd control point, and it is named camber1. The movement is indicated with red

arrows in Figure 4.19 below. The second parameter controls the ordinate of the 2nd control point

(camber2), the movement is indicated with the green arrows below.

Figure 4.19 Camber distribution

 Marine Propeller Optimization using open source CFD

74

Figure 4.20 Thickness distribution

A feature called FCurveGenericBasic is used to approximate the pitch ratio and the thickness

distribution. The feature creates a multi-segmented planar curve where the plane and elevation,

number of intermediate points, abscissa and ordinate values for every point can be controlled.

Tangents at every point and fullness values for the single curve segments can be set as well. The

feature helps to achieve maximum control on the curve with as few parameters as possible. At

first, the parameters of the feature are adjusted to fit the baseline curve to approximate the original

data points, as seen in Figure 4.20. Two parameters are then activated as design variables, these

are the ordinates at the start (thicknessStart) and end (thicknessEnd) of the curve. In order to

visualize how these parameters affect the 2D curve, two random alternatives are presented in

Figure 4.20. In the first alternative, the ordinate at the start of the curve is reduced, whereas the

ordinate at the end is increased. The exact opposite is illustrated with alternative 2. One can notice

how reducing the ordinate at the start of the curve affects the whole curve up to the intersection

with the Baseline curve. Same goes for the parameter controlling the ordinate at the end.

 A similar strategy is employed for the pitch ratio distribution. In this curve however, an

intermediate point needs to be defined. The baseline design is then fitted to approximate the

original points, by adjusting the ordinates at the start and the end, the tangents at the start and the

end as well as the fullness of the two parts. The intermediate point is depicted with a yellow mark

in Figure 4.21. In this case, two parameters are activated, they control the abscissa (pitchMaxPos)

and ordinate (pitchMax) of the intermediate (yellow) point. Two alternatives are illustrated in

Figure 4.21. Alternative 1 is generated with a decrease in abscissa and an increase in the ordinate.

The exact opposite is carried out to generate the Alternative 2.

 Marine Propeller Optimization using open source CFD

75

Figure 4.21 Pitch Distribution

At this point, the parametric blade has been created. New parametric surfaces for the hub, cap and

shaft are created as well. No changes will be applied on them during the optimization phase, they

were created just to make the assembling into a single Brep easier. For their creation, the

FCurveGenericBasic feature is used. The parameters are adjusted to match the profile of the

original hub and shaft. Surfaces of revolution are then created by rotating the 2D curve around the

Z axis. In order to prepare the geometry for cfMesh, the blade is treated exactly as the original

geometry. The blade is split, the edges are separated using the FImageSurface object and then they

are all recombined into a single watertight Brep as seen in Figure 4.22 on the right, with a fillet

operation between the blade and the hub. The blade is then extracted from the periodic domain and

the domain including the blade is exported as a colorful STL file.

Figure 4.22 Watertight parametric blade

 Marine Propeller Optimization using open source CFD

76

Figure 4.23 Software connector

4.6 CAESES - OpenFOAM coupling

In order to run an any optimization algorithm, the whole process of creating the geometry, setting

up the simulation case, creating the mesh, running the simulation and finally extracting the

simulation results has to be completely automated. The parametric model has already been created

and upon request, any design variant can be generated and be exported in any file format. Now, in

order to contain the whole process into a closed loop, the Software Connector available in CAESES

is used. The Software Connector can be seen in Figure 4.23 where the parametric geometry shown

as the ‘STL’ box, is coupled to the input dictionaries that OpenFOAM requires in order to

successfully execute and run. Result files and values are connected as well.

The simulation has to be executed manually once, and then any simulation output data can

be connected as result values, for example the calculated forces included in the forces.dat file

shown on Figure 4.23. In the same Figure, one can notice how the calculated forces are extracted

from the output files. Two parameters, eval_Tpress and eval_Tvis are used to extract the pressure

and viscous forces calculated by OpenFOAM with the command Runner01.getResults(). At the

top left side of the same Figure, these parameters are used to calculate KT.

 Marine Propeller Optimization using open source CFD

77

As discussed in Chapter 3, OpenFOAM requires a proper directory structure to execute, containing

the files that are necessary to trigger the OpenFOAM utilities. With all the connections properly

set, the Runner shown in the middle of Figure 4.23 reproduces this folder structure for every

variant. For every design we ask for, the Runner copies the exported STL geometry that includes

the blade and overall domain, to a proper OpenFOAM folder structure along with the necessary

dictionaries. One final step is left. Somehow, for every geometry, the OpenFOAM utilities and

solver need to be executed. The Runner is able to execute local applications in every folder

generated so we need to contain all the essential OpenFOAM utilities into a single executable.

This is a common situation in OpenFOAM applications. The workaround is to include all the

terminal commands that execute the utilities in an Allrun script. Executing this script in the

terminal makes sure that the utilities will be ran, one by one. The Allrun script is shown and

analyzed below.

Code 2. Allrun script

nProcs=1

touch case.foam

cartesianMesh

scaleMesh 0.001

topoSet

setsToZones

createPatch -overwrite

checkMesh -allTopology -allGeometry

setsToZones -noFlipMap

simpleFoam

gnuplot Residuals

gnuplot Forces

simpleFoam -postProcess -func yPlus

foamToVTK

s

• nProcs=1: This command declares that only one processor will be used for the simulation.

During this thesis, some computations ran in parallel and some serial. OpenFOAM can be

configured easily to run in parallel significantly reducing computational time. These

configurations will be discussed later on.

 Marine Propeller Optimization using open source CFD

78

• touch case.foam: This command creates a dummy file called case.foam. The file is

actually empty, it is needed to open the simulation results in the post-processor Paraview.

• cartesianMesh: It triggers the grid generator cfMesh that creates the computational grid

according to the settings specified in the meshDict dictionary.

• scaleMesh: This command scales the entire mesh.

• topoSet: This utility was briefly discussed in the CFD setup section. It operates according

to the settings set in the topoSetDict. In our case, two operations are specified in the

topoSetDict. CylinderToCell and setToCellZone, the first one selects all cells with cell

center within a bounding cylinder whose dimensions are selected to include the whole

computational grid and puts them into a cellSet. The second operation transfers the created

cellSet to a cellZone, because the MRF can be applied in a cellZone but not a cellSet.

There is no significant difference between a cellZone and cellSet. Both can be used to

isolate groups of cells, to enable the use of utilities on them.

• createPatch -overwrite: This utility handles the periodic sides. New patches are

constructed from the left and right periodic sides. They are coupled as neighbors and the

cyclicAMI boundary conditions is applied. The tolerance of the matching can be increased

if the simulations diverge due to mismatch.

• checkMesh -allTopology -allGeometry: As discussed in the Grid Generation section, this

utility is of great importance. It provides a detailed quality report but also creates cellSets

for all the low-quality cells. CheckMesh actually detects the cells whose quality metrics

exceed the threshold values, examples are skewed cells, concave cells and so on. The

quality metrics will be analyzed in detail in the Validation section.

• setsToZones -noFlipMap: Creates a cellZone out of all existing cellSets. It is required in

order to visualize the low-quality cells that checkMesh detected in Paraview and perform

a visual quality check.

• simpleFOAM: This command triggers the solver. The solver operates according to the

settings set in the dictionaries fvSchemes, fvSolution and controlDict. The turbulence

model is specified in the turbulenceProperties dictionary located in the constant folder.

The solver can be configured to stop after a selected timestep or when the residuals fall

under a specified value. In the controlDict the user specifies with the writeInterval option

at what timesteps to save the calculated flow data. Only the last time step is selected to

save computer memory. The solver generates a large amount of data and not all of it is

needed.

 Marine Propeller Optimization using open source CFD

79

• Gnuplot: The gnuplot graphing utility is used to retrieve graphs for the residuals and

forces. Pictures of the graphs are generated so they can be monitored afterwards for every

design. In this way, after a number of designs are explored, the user can navigate through

the designs in CAESES and check the convergence curves and residuals.

• simpleFOAM -postProcess -func yPlus: This command calculates the y+ values on every

patch (shaft, blade and so on). It can only be triggered at a post processing stage when the

flow field has been calculated.

• foamToVTK: This post-process utility converts the flow data from the OpenFOAM

format to VTK format. In this way, any VTK-based graphics tool can be used to process

the case.

4.7 Running the case in parallel

With minimal effort, the setup can be configured to run in parallel. The method of parallel

computing that OpenFOAM uses is known as domain decomposition. [46] With this method, the

geometry and associated fields are split into pieces and allocated to separate processors for

solution. The process involves: decomposition of the mesh and fields, running the application in

parallel, and finally, post-processing the decomposed case. The parallel running uses the public

domain openMPI implementation. [31]

 The modifications are based on the existing described Allrun script shown in Code 2. At

first, the nProcs is changed to specify the number of processors available for use. Using all the

processors of the computer may cause problems to CAESES, since it also needs some

computational power to handle the whole process. Then, before simpleFOAM is executed, the

computational grid needs to be split up. The decomposePar utility is used to handle this operation,

with settings specified in the decomposeParDict located in the constant folder. Three options are

set. The first one is the numberOfSubdomains, that is set to match the nProcs. The second one

is the method of decomposition. There are four available options [31], in our case, the scotch

method is used. Lastly, the neighbor patches specified in the createPatch utility need to be kept in

the same processor, this can be done with the preservePatches constraint.

Now, the solver can run in parallel with the command mpirun simpleFOAM -parallel.

The mesh and field data need to be reconstructed after the simulation has finished in order to post-

process the case. This can be done with the commands reconstructParMesh -constant -mergeTol

1e-6 and reconstructPar -latertTime. With the mesh reconstructed the y+ utility or any other post-

processing utility can be triggered.

 Marine Propeller Optimization using open source CFD

80

5 Validation and Results

5.1.1 Mesh quality metrics

With automatic grid generators high quality meshes are difficult to accomplish. On the other hand,

mesh quality has a great impact on CFD results. In the Grid Generation section, the efforts made

and methods used in this thesis have been described thoroughly. This section deals with the quality

of the generated mesh in terms of mesh quality metrics and criteria. In OpenFOAM, the mesh

quality is assessed with the utility checkMesh. This utility provides a detailed report that includes

the violation of some predefined quality criteria. These reports are created for every design

generated in the optimization phase and some meshes violate these predefined criteria. Some of

these violations are more critical than others and they need to be discussed. The problematic cells

are mainly related to the sharp edges of the blade and most of them could be resolved by applying

refinements. Some errors however still persist. The main parameters that control the mesh quality

in OpenFOAM are the aspect ratio, the non-orthogonality, and the skewness of the cells.

The aspect ratio for triangular and tetrahedral cells, is described as the ratio between the

maximum cell length l to the minimum height of the cell, h, as seen in equation 5.1 below:

𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
max (𝑙𝑖)

max(ℎ𝑖)
 (5.1)

For quadrilateral and hexahedral cells, the idea is the same, however the formulation changes in

order to take into account all the edges of the cells in every coordinate direction:

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
max (𝑒1,𝑒1,𝑒1,…,𝑒𝑛)

min (𝑒1,𝑒1,𝑒1,…,𝑒𝑛)
 (5.2)

As depicted in Figure 5.1, 𝑒𝑖 is the average edges length in the coordinate direction i, while n

represents the all possible coordinate directions (2 for 2D elements such as quadrilaterals, 3 for

3D like hexahedral cells).

Figure 5.1 Aspect Ratio for a quadrilateral element [47]

 Marine Propeller Optimization using open source CFD

81

Non-orthogonality is defined as the angle 𝜃 formed by the face vector 𝑺𝒇 and the vector 𝒅𝑷𝑵, that

connects the cell centers P and N of two neighboring cells with the same face, and face center f.

The angle 𝜃 can be seen in Figure 5.2 below. According to [8], non-orthogonality affects the

accuracy of the discretization of the diffusive terms related to the transport equations and it can

deteriorate the accuracy of the solution, increasing the computational time if its value is higher

than 70°. However, for a mesh to be considered invalid the non-orthogonality needs to exceed the

90° mark.

Figure 5.2 Definition of non-orthogonality [48]

Skewness occurs when there is a deviation between the location of the face center, f, and where

the center-to-center vector meets the face, f, as seen in Figure 5.3. Skewness, ε can be calculated

from the expression 5.3 below.

 𝜀 =
f−f 

dPN 
 (5.3)

Figure 5.3 Skewness between neighbor cells [49]

 Marine Propeller Optimization using open source CFD

82

Part of the checkMesh output for the baseline design (PPTC) can be seen in the Code 3 below. The

aspect ratio should be as close to 1 as possible and the standard threshold in OpenFOAM is set to

1000. In our case, the maximum aspect ratio is 46.94. As stated above, non-orthogonality should

be less than 90°. Industry reasonable numbers are typically 80°- 85° and values less than 70° are

rather unlikely. The predefined threshold in OpenFOAM is set to 70°. In this case the maximum

non-orthogonality encountered is 84.18 with 92 faces exceeding the threshold. The maximum

skewness detected is 5.87 with 136 faces exceeding the limit that is set to 4. The aspect ratio and

non-orthogonality ratings are quite satisfactory. Lower levels of skewness would be desired but

they could not be achieved. The skewed cells are located at near the trailing edge of the blade.

 The total number of cells of each type is shown in Table 5.1 below. The mesh is dominated

by hexahedral cells with prism cells at the propeller blade. The difficult regions are filled with

pyramids, tetrahedra and polyhedra.

Code 3. CheckMesh output for baseline design

Overall domain bounding box (-0.171135 -0.499958 -0.375) (0.499994 0.397107 1.25)

 Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

 Mesh has 3 solution (non-empty) directions (1 1 1)

 Boundary openness (-3.79792e-15 -1.32471e-15 1.39821e-16) OK.

 Max cell openness = 1.14047e-15 OK.

 Max aspect ratio = 46.9349 OK.

 Minimum face area = 4.43744e-11. Maximum face area = 0.000913717. Face area magnitudes OK.

 Min volume = 2.91823e-16. Max volume = 1.97263e-05. Total volume = 0.254678. Cell volumes

OK.

 Mesh non-orthogonality Max: 84.1793 average: 8.0599

 *Number of severely non-orthogonal (> 70 degrees) faces: 92.

 Non-orthogonality check OK.

 <<Writing 92 non-orthogonal faces to set nonOrthoFaces

 Face pyramids OK.

 ***Max skewness = 5.87447, 136 highly skew faces detected which may impair the quality of the

results

 <<Writing 136 skew faces to set skewFaces

Table 5.1 Number of cells of each type

hexahedra 1621428

prisms 36634

pyramids 17709

tetrahedra 23877

polyhedra 90901

 Marine Propeller Optimization using open source CFD

83

Figure 5.4 Concave faces (left), Concave cells (right)

The three basic quality measures described above, are evaluated using the utility checkMesh.

Including the -allTopology -allGeometry gives a more detailed report with more groups of cells

of low quality. No official guidelines are found to evaluate the importance and influence of these

groups of cells. At the 7th OpenFOAM Workshop, Engys [50] presented a guide that deals with

these groups ranking them according to their importance. This guide, along with the efforts made

during the course of the thesis sum up the following.

Low Volume Ratio Faces. These faces can cause problems during simulations. A great

number of these faces were generated close to the edges. However, most of these faces were

eliminated after applying the refinements that control the cell size at a distance from the wall.

Concave Cells/Faces. These cells and faces are not as bad as the Low volume ratio faces.

A great number of these cells are contained in the mesh. They can be seen in Figure 5.4. It was

observed that a great number of these cells and faces was generated even without the propeller

included in the domain. Most of these cells are located in the transition areas where there is a

sudden reduction in cell size. Their existence did not influence the convergence of the simulations.

Low Quality Tet Faces. Similar to the concave, their severity is ranked low. It was observed

that these cells occur when trying to generate prism layers. They are formed along the edges of the

blade, the leading and trailing edge, fillet and tip.

In the end, the meshes used for the validation and optimization study are not perfect. Even

though a significant amount of time has been spent on fine tuning the settings to improve the mesh

quality, the thorough check still detects cells of low quality. However, the basic quality criteria are

kept under acceptable levels and the simulations converge to accurate results.

 Marine Propeller Optimization using open source CFD

84

Figure 5.5 Low quality faces at the tip

Figure 5.6 Low quality faces at the fillet

 Marine Propeller Optimization using open source CFD

85

5.1.2. Grid Independence Study

In CFD simulations, we need to validate that the solution is independent of the mesh resolution.

For this reason, a grid independence study is conducted and the simulations are performed for a

sequence of three mesh resolutions, coarse, medium and fine. It is noted that the results presented

here are referring to the baseline design of the parametric model, that features the curved trailing

edge, for advance coefficient J=1.2 that is also used for the optimization.

The first simulation is performed with a coarse mesh of 1049482 cells. This initial

simulation helps to make sure that the boundary conditions are correct and to get a rough estimation

of the calculated forces and the y+ values on the blade. For the medium mesh, smaller cell size is

selected on the surface patches, on the refinement thickness and the cylinder refinement and the

cell count increases to 1806552. A difference of 1.7% is observed for 10KQ and about 2% for KT.

For the finest grid used, the cell size selected is even smaller leading to 2994760 cells. A deviation

of only 0.6% is observed and mesh convergence is achieved. For all the meshes, five prism layers

are generated on the propeller blade. For the rest of the work, the medium mesh resolution is used.

The y+ values corresponding to the medium mesh are presented in Figure 5.8, they are kept below

2 for the main area of the blade.

Figure 5.7 Grid independence study

10K
Q
 K

T

 Marine Propeller Optimization using open source CFD

86

Figure 5.8 Y+ values on the propeller blade corresponding to the medium mesh

One of the difficulties faced in this thesis is the limited computational power that is restricted to a

notebook with an i5 processor of 2.5GHz. Convergence is achieved in about 1.5, 4 and 8 hours for

the coarse, medium and fine mesh respectively. That being said, exploring 30 designs requires 120

hours of computational time.

 Marine Propeller Optimization using open source CFD

87

5.1.4 Convergence

The convergence of the simulations is monitored closely. The forces, torque and residuals values

for the pressure, velocity and turbulent quantities are written in a log file for each iteration. Gnuplot

commands are included in the Allrun script that is executed for every design generated. The

measured forces and torque are measured for one blade and they are transformed into the thrust

and torque coefficient. The convergence curves are presented from figures 5.9 to figure 5.13. The

residuals are stable, KT and 10KQ have changed very little in the last 500 iterations (approximately

0.01%).

Figure 5.9 Residuals of the simulation for J=1.2

 Marine Propeller Optimization using open source CFD

88

Figure 5.10 Calculated forces for J=1.2

Figure 5.11 Calculated moments for J=1.2

 Marine Propeller Optimization using open source CFD

89

 Figure 5.12 Thrust coefficient for J=1.2

Figure 5.13 Torque coefficient for J=1.2

 Marine Propeller Optimization using open source CFD

90

5.1.5 Comparison with experimental data

The simulations are performed for a wide range of advance coefficients from J=0.2 to J=1.4 and

the calculated open water characteristics are compared with the experimental data presented in the

open water chart presented in the Figure 5.14 below. The results from the viscous openFOAM

analysis that are presented below correspond to the mesh classified as medium. The experimental

data are found in the report provided online by the SVA [34]. Specifically, “Potsdam Propeller

Test Case (PPTC) – Open Water Tests with the Model Propeller VP1304 – Report 3752”. In order

to compare the results at the same advance coefficients, the open water characteristics are extracted

from the polynomials provided in the report 3752 page 2.11 as seen below.

Table 5.2 Coefficients of polynomials

p a0 a1 a2 a3 a4

KT 0.955438 -0.346932 -0.629537 0.586304 -0.175174

 10 KQ 2.076022 -0.949651 -0.719299 0.873861 -0.306054

Valid in the area 0 <= 𝐽 <= 1.677, 𝑝(𝑥) = 𝑎0 + a1 x + a2 x
2 + a3 x

3 + a4 x
4

Figure 5.14 Comparison with experimental data

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

η
, 1

0
K

Q
, K

T

J

Experimental

openFOAM

 Marine Propeller Optimization using open source CFD

91

Table 5.2 Comparison of with experimental data

J KT(CFD) KT(EFD) ΔKT[%]

0.2 0.8792 0.8653 1.5810

0.4 0.7516 0.7490 0.3459

0.6 0.6315 0.6246 1.0926

0.8 0.5119 0.5034 1.6605

1 0.3964 0.3901 1.5893

1.2 0.2779 0.2825 -1.6553

1.4 0.1690 0.1717 -1.5976

J KQ(CFD) KQ(EFD) ΔKQ[%]

0.2 1.9500 1.8638 4.4205

0.4 1.6873 1.6292 3.4434

0.6 1.4597 1.3964 4.3365

0.8 1.2402 1.1780 5.0153

1 1.0300 0.9749 5.3495

1.2 0.7979 0.7760 2.7447

1.4 0.5720 0.5588 2.3077

J η0(CFD) η0(EFD) Δη0[%]

0.2 0.1435 0.1478 -2.9965

0.4 0.2836 0.2927 -3.2087

0.6 0.4131 0.4271 -3.3890

0.8 0.5256 0.5441 -3.5198

1 0.6125 0.6369 -3.9837

1.2 0.6652 0.6952 -4.5099

1.4 0.6583 0.6847 -4.0103

The obtained results are quite satisfactory especially when compared to simulation results from

various research groups from the academia (University of Genua, TUHH) and the industry (Berg,

HSVA, VOITH) presented at the Second International Symposium on Marine Propulsors (smp’11)

that took place in 2011. [34] In the published results, deviations up to 10% and 20% corresponding

to advance coefficients J=1.2 and J=1.4 are observed, while most of the research groups used

commercial solvers and grid generators.

 In the obtained results, a maximum percentage difference of 1.66% is observed for KT, a

5.35% for KQ and a maximum of 4.5% difference on the open water efficiency. The prediction of

KT is quite accurate, however the CFD calculations seem to overpredict the torque coefficient.

This overprediction of KQ is also observed in the results presented at the smp’11. The results are

also in agreement with Da-Qing’s [51] work, where a 3% and 5% error difference is observed for

KT and KQ respectively. The deviation observed on KQ could be caused by the weakness of the

boundary layer mesh as discussed in the grid generation section.

 In the Figures below, the pressure distributions on the suction and pressure side of the blade

are presented for advance coefficients from J=0.2 to J=1.4.

 Marine Propeller Optimization using open source CFD

92

J=0.2 J=0.4

J=0.6 J=0.8

Figure 5.15 Pressure distribution on the suction side for advance coefficients from J=0.2 to

J=0.8

 Marine Propeller Optimization using open source CFD

93

J=1 J=1.2

J=1.4

Figure 5.16 Pressure distribution on the suction side for advance coefficients from J=1 to

J=1.4

 Marine Propeller Optimization using open source CFD

94

J=0.4 J=0.2

J=0.6 J=0.8

Figure 5.17 Pressure distribution on the pressure side for advance coefficients from J=0.2

to J=0.8

 Marine Propeller Optimization using open source CFD

95

J=1 J=1.2

J=1.4

Figure 5.18 Pressure distribution on the pressure side for advance coefficients from J=1 to

J=1.4

 Marine Propeller Optimization using open source CFD

96

J=0.6 J=1.4

Figure 5.19 Streamline’s behavior on the leading edge

High overall pressure is observed on the pressure side and lower pressure on the suction side. As

expected, the loading is larger at lower J values indicated by the red areas on the pressure side of

the blade for J=0.2 to J=0.8. On the suction side, flow separation is observed along the leading

edge that is more intense for lower J values.

 Observing the pressure distributions one can also notice how the advance coefficient

determines the location of the stagnation point. For low advance coefficients, the stagnation point

is located on the pressure side and moves towards the suction side as the J increases. The same

behavior is depicted in Figure 5.19 where the streamlines passing through the leading edge are

visualized. For J=0.6, the flow hits on the pressure side of the blade decelerating, and the

streamlines are colored with blue. At the rest of the pressure side, the flow follows the blade

accelerating gradually. The streamlines find their way around the leading edge when they separate

from the blade and accelerate, forming a vortex. On the right side, for J=1.4, the stagnation point

moves towards the suction side and the streamlines follow the blade smoothly.

 Marine Propeller Optimization using open source CFD

97

The Potsdam propeller is designed to generate a tip vortex [34] and visualizing the vortex is

important for the validation of the computations. One way to visualize the vortical structures

around the blade is the Q criterion [52]. The Q criterion defines a vortex as a spatial region where

𝑄 =
1

2
[|𝜴|2 − |𝑺|2] > 0,

that is, when the Euclidean norm of the vorticity tensor dominates over the Euclidean norm of the

rate of strain tensor. Where the vorticity tensor is defined as 𝜴 =
1

2
[∇𝒗 − (∇𝒗)𝑇], and the

rate-of-strain tensor as 𝑺 =
1

2
[∇𝒗 + (∇𝒗)𝑇]. For a greater value of Q, stronger vortices will

appear. In OpenFOAM, there is an implemented function object that calculates Q at a post-

processing stage. Iso-surfaces can then be generated in Paraview. Iso-surfaces of Q=20000 are

illustrated in Figure 5.20 below and colored with the velocity magnitude. Fine grids are needed to

capture the vortices. They stop where the refinements end downstream as seen in the Figure 5.21

where a plane cut of the 3D mesh is depicted as well. The axial velocity distribution is depicted in

Figure 5.22 below.

Figure 5.20 Iso-surfaces of Q = 20000 colored with the velocity magnitude for J=0.6

 Marine Propeller Optimization using open source CFD

98

Figure 5.21 Mesh plane cut

Figure 5.22 Axial velocity distribution for J=0.6

 Marine Propeller Optimization using open source CFD

99

In the Figure 5.23 above, the pressure field around the blades is illustrated. As expected, suction

is observed upstream and high pressure downstream behind the blade. Also, the circle colored with

blue indicates that a vortex passes through.

Figure 5.24 Vorticity Magnitude plot near the leading edge and tip for J=0.6

Figure 5.23 Pressure field around the blade on y=constant for J=0.6

 Marine Propeller Optimization using open source CFD

100

5.2 Optimization Phase and results

As discussed in the Theory section, the optimization process is conducted in two phases. The

exploration phase that is performed using the Sobol algorithm and exploitation phase, performed

with the Tangent Search Method. Both of the methods are implemented in CAESES and can be

triggered, provided that the overall setup is robust and reliable.

Starting with the exploration phase, a design of experiment is carried out in order to gain

insight into the design space. The Sobol algorithm produces sequences of the parameters aiming

to fill the multi-dimensional space evenly. The Sobol sequence offers two significant advantages.

The first one is that the generation of variants can be stopped and be restarted at any time, since

the parameter combinations generated do not rely on any previous simulation. The designer can

for example explore a first set of 10 Sobol designs in one run, and then, if no useful information is

acquired, decide to run the next 10 designs. The second advantage is that, provided that the

parameter bounds are the same, a Sobol sequence can be reproduced, since the parameter selection

is not random. This attribute can be useful if the designer wants to make sure that the mesh

resolution does not influence the ranking of the variants.

In order to get full understanding of the design space defined by n number of design

variables, 3n variants need to be explored. [30] For the first DoE five parameters are activated,

meaning that 243 designs have to be evaluated. Using the mesh classified as medium, the

simulation time is 4 hours, that means that 40 days of computations are needed. Since this

simulation cost cannot be afforded, a more humble approach is followed. According to [11], n

times n variants can provide a reasonable appreciation of the system’s behavior and in the first

DoE 27 variants are explored. The design variables and their bounds are presented in the Table 5.3

below. The parameters and their selection are discussed in detail above in the Building the

parametric model (4.5) section. The simulation results are presented in the Figure 5.25 where they

are ranked according to the open water efficiency.

Table 5.3 Design variables and bounds

Parameters Lower Bound Baseline Upper Bound

pitchMax 1.62 1.635 1.65

pitchMaxPos 0.65 0.68 0.71

thicknessEnd 0.008 0.01 0.012

thicknessStart 0.088 0.108 0.118

camber1 0.05 0.19 0.15

 Marine Propeller Optimization using open source CFD

101

Figure 5.25 27 Sobol designs for the first DoE

From the above results we can see that KT values are within a range or 3% with the minimum

KTMin = 97,51% KTBaseline, and the maximum KTMax= 103.9% KTBaseline..About the same fluctuations

are observed for 10KQ, with 10KQMin = 97,3% 10KQBaseline and 10KQMax= 103.6% 10KQBaseline. The

design corresponding to the highest efficiency shows a 0.8% improvement in open water efficiency

that comes from a 1.12% decrease for KT and a more significant 1.89% decrease for 10KQ. Even if

some improvement has been made, this design cannot be accepted as optimum since KT is less

than the baseline design. The optimum design should produce at least the same thrust as the

baseline design. On the Figure 5.26 the influence of the parameter pitchMax on KT is depicted.

Increasing the parameter pitchMax, increases KT and vice versa. On the Figure 5.27, one can notice

the influence of the parameter ThicknessStart on the open water efficiency. Decreasing the

thickness of the blades, increases the open water efficiency. Figures 5.28 and 5.29 show how the

Sobol designs are spread evenly, with two parameters Camber1 and PitchMaxPos as an example.

 Marine Propeller Optimization using open source CFD

102

ThicknessStart

Figure 5.27 Influence of parameter ThicknessStart on open water efficiency

O
p

en
 w

a
te

r
ef

fi
ci

en
cy

PitchMax

K
T

Figure 5.26 Influence of parameter pitchMax on KT

 Marine Propeller Optimization using open source CFD

103

Run

Run

Run

C
a

m
b

er
1

P

it
ch

M
a
x

P
o
s

Figure 5.29

Figure 5.29 PitchMaxPos values for every run

Figure 5.28 Camber1 values for every run

 Marine Propeller Optimization using open source CFD

104

In order to avoid designs with less KT than the baseline the pitchMax parameter is deactivated.

Also, since a smaller design space will be easier to explore, the two thickness related parameters

thicknessStart and thicknessEnd are deactivated as well. After all, thinner blades are expected to

yield higher efficiency but there are strength limitations that are not considered in this work. One

more parameter is activated for the camber function resulting in three parameters and 30 designs

are investigated. We now have a new design space, totally different than the previous one and

much smaller. The bounds of the parameters are kept the same as in the first Sobol sequence, since

they resulted in about 3% difference for KT and 10KQ.

Table 5.4 New design variables

Parameters Lower Bound Baseline Upper Bound

pitchMaxPos 0.65 0.68 0.71

camber1 0.05 0.1 0.15

camber2 0.008 0.01 0.015

Figure 5.30 30 Sobol designs

 Marine Propeller Optimization using open source CFD

105

Figure 5.31 T-Search results

The simulation results from the second Sobol sequence show that indeed almost all designs with

less KT than the baseline are avoided. Many designs are found that perform better than the baseline.

The best design corresponds to a 1.94% increase in open water efficiency attributed to a 2.16%

increase in KT and only 0.22% increase in 10KQ.

At this point, the exploration phase has been finished and the exploitation phase initiates.

Starting from the best Sobol design which is the one corresponding to an 1.94% increase in open

water efficiency the T-Search algorithm is executed that will search locally around the promising

candidate trying to detect an even better design. The objective that is set to the T-search algorithm

is to minimize 10KQ. In contrast to the Sobol algorithm, every design generated by the T-search

algorithm depends on the simulation result of the previous design. The algorithm is stopped after

10 iterations with a 0.4% decrease in 10KQ compared to the best Sobol design.

Overall, a 2.3% increase in open water efficiency is achieved coming from a 2.11% increase in KT

and an insignificant 0.2% decrease in 10KQ compared to the baseline design. It is important to

mention that this design is not necessarily the global optimum since the local search with the T-

Search algorithm was executed only for the best Sobol design. It is possible that starting from

another Sobol design, there would be more room for improvement with the local search. However,

due to the limited resources, the local search is carried out only for one candidate.

 Marine Propeller Optimization using open source CFD

106

5.3 Process Automation and Validation

As discussed in the Software section, any operation in CAESES can be executed with commands

inside a Feature Definition and any design process can be scripted and automated. During the

course of this thesis, the process of importing a propeller model, splitting the blade, generating the

periodic domain, performing the necessary Boolean operations and then coupling the geometry to

OpenFOAM has been performed a number of times for different propellers. In this context, an

effort is made to automate the entire process from geometry import to the calculation of the open

water characteristics. The goal is to minimize the manual effort needed to get a rough calculation

of the open water characteristics of a propeller.

To begin with, the Software Connector containing the OpenFOAM configuration can be

exported as a file and be imported in a new project with a new propeller. Moreover, in any

OpenFOAM dictionary connected as an input file, for example the meshDict that controls the

mesh generation, parameters can be introduced as entries. In this way, basic configurations that

change in the CFD setup, for example the inlet velocity, rpm, end time of the simulation, density

and so on, can be controlled by parameters through CAESES and easily be adjusted. Geometrical

features like the diameter or pitch can be linked to these parameters reducing the manual effort

needed.

Automating the import and splitting of the blade could not be achieved. There are too many

ways and file formats to import a propeller. The imported geometry could include the hub and

shaft or not, it can be a BrepPart or an STL and taking all of these parameters under consideration

would be an exhaustive process of doubtful results. As expected, another bottleneck is the grid

generation process. Grid generation with cfMesh is a trial and error procedure, performed by trying

out settings, visualizing the resulting mesh and checking the convergence of the computations.

However, the configuration of the grid generator can be automated somehow. The workaround

that is used is to keep cell size ratios between for example the cell size in the volume refinement

and the leading edge constant and as a function of the diameter. The mesh configuration used for

the PPTC is used as a guideline.

No obstacle exists in the automation of the domain construction process. These are

operations performed in CAESES and they can be easily encapsulated inside a Feature Definition.

Thus, a Feature Definition is created that given two points, one on the leading and one on the

trailing edge, the watertight blade geometry as well as a Brep containing the hub, shaft and cap

and some basic parameters like the propeller diameter and the size of the domain, it will

automatically generate the needed surfaces and perform the necessary operations to export a Brep

ready to be given to the grid generator. The generation of the hub, shaft and cap is also scripted

and automated within a separate Feature Definition.

In Figure 5.32, part of the code is presented responsible for the generation of two circles

needed for the domain construction. On the same Figure on the right, the executed feature exports

the final Brep along with the colors needed to apply the boundary conditions. In the end, the only

manual effort needed is the preparation of the blade surface (splitting, merging with colors).

 Marine Propeller Optimization using open source CFD

107

Figure 5.32 Example of the feature (left), Feature output (right)

Figure 5.30 Views of the Wageningen B-series and of the custom design [55]

In order to investigate the flexibility of the OpenFOAM setup and the Feature Definitions that have

been developed, simulations are carried out for two more powerboat propellers. The propeller

geometry of these two propellers is available in an IGES file format. Their performance has been

evaluated using the Vortex Lattice Method (VLM) and the results are provided to the author for

comparison. The first propeller is a Wageningen B-series propeller depicted on the left, and a

custom design on the right.

 Marine Propeller Optimization using open source CFD

108

Figure 5.31 Wageningen B-Series geometry preparation (left), domain construction (right)

The propeller blade has to be treated manually first. The edges of the blade are separated and

connected into the same Brep again but with different colors. This will allow the control of the cell

size on every part separated. The feature definition that has been created is used to generate the

hub shaft and cap and the two solids are then combined into a single Brep as seen in Figure 5.34

on the left. The feature definition responsible for generating the domain is then used, as seen in

Figure 5.34 on the right. The mesh settings are adjusted according to the propeller diameter and

the final mesh consists of 2135613 cells.

Figure 5.32 Open water chart for Wageningen B-series

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0,60 0,70 0,80 0,90 1,00 1,10

η
, 1

0
K

Q
, K

T

J

openFOAM

Vortex Lattice

 Marine Propeller Optimization using open source CFD

109

Figure 5.33 Pressure distributions on the suction side (left) and the pressure

side (right) for J=0.6487

Table 5.5 Open water characteristics obtained with OpenFOAM and Vortex lattice for the

Wageningen B-Series propeller

OpenFOAM

Vs[m/s] n[rps] J KT 10KQ η0

2.5720 11.7300 0.6487 0.3799 0.8034 0.4882

6.1730 24.2800 0.7494 0.3197 0.6828 0.5584

9.2600 30.5700 0.8911 0.2306 0.5172 0.6323

16.3760 48.0700 1.0021 0.1658 0.3938 0.6715

Vortex

Lattice

Vs[m/s] n[rps] J KT 10KQ η0

2.5720 11.7300 0.6487 0.3879 0.8025 0.4990

6.1730 24.2800 0.7494 0.3275 0.6888 0.5659

9.2600 30.5700 0.8911 0.2425 0.5313 0.6472

16.3760 48.0700 1.0021 0.1715 0.3958 0.6911

The open water characteristics obtained from the viscous openFOAM analysis are in agreement

Vortex Lattice method. The maximum percentage difference is observed is 5.16% for KT for

advance coefficient 0.8911. For the open water efficiency, the maximum percentage difference is

2.91% for advance coefficient 1.002.

 Marine Propeller Optimization using open source CFD

110

Figure 5.34 Custom made geometry preparation (left), domain construction (right)

The same procedure is followed for the custom-made propeller as well. The blade is split manually,

and the rest part of the process is performed automatically using feature definitions. The mesh

consists of 2531350 cells.

Figure 5.35 Open water chart for Wageningen B-series

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0,60 0,70 0,80 0,90 1,00 1,10

η
, 1

0
K

Q
, K

T

J

openFOAM

Vortex Lattice

 Marine Propeller Optimization using open source CFD

111

Table 5.6 Open water characteristics obtained with OpenFOAM and Vortex lattice for the

Wageningen B-Series propeller

OpenFOAM

Vs[m/s] n[rps] J KT 10KQ η0

2.5720 11.7300 0.6450 0.4025 0.8323 0.4964

6.1730 24.2800 0.7494 0.3433 0.7193 0.5692

9.2600 30.5700 0.8911 0.2631 0.5582 0.6534

16.3760 48.0700 1.0300 0.1838 0.4120 0.7313

Vortex

Lattice

Vs[m/s] n[rps] J KT 10KQ η0

2.5720 11.7300 0.6450 0.3835 0.7922 0.4969

6.1730 24.2800 0.7494 0.3288 0.6851 0.5724

9.2600 30.5700 0.8911 0.249 0.5307 0.6744

16.3760 48.0700 1.0300 0.1769 0.3850 0.7530

For this propeller, the differences observed are slightly higher. More specifically, 10KQ is

predicted up to 6.5% higher (J=1.03) with OpenFOAM compared to the VLM and KT up to 5.3%

(J=0.8911). For open water efficiency the maximum percentage difference is 3.2% for J=0.8911.

Overall, for both propellers, the open water efficiency calculated with OpenFOAM is slightly

lower for all advance coefficients, due to the high prediction of KQ. However, the OpenFOAM

analysis is in agreement with the VLM that the custom design performs better than the Wageningen

– B series.

 Marine Propeller Optimization using open source CFD

112

6.1 Conclusions

The goal of the present work was to evaluate the propeller open water characteristics using open-

source CFD and secondly to develop a closed optimization loop inside CAESES, automating the

CFD tools utilized in order to optimize a propeller. The workflow is designed to be as

computationally cheap as possible, using the one blade passage approach, the MRF method to

model the rotation and the k-ω SST to model the turbulence. The validation is performed with the

Potsdam Propeller Test Case by visualizing the pressure and velocity fields and by comparing the

open water characteristics with experimental data. A maximum percentage difference of 1.66% is

observed for KT, a 5.35% for KQ and a maximum of 4.5% difference on the open water efficiency.

Grid independence is achieved using about 1.8 million cells corresponding to four hours of

computation time with an i5 processor of 2.5GHz. A parametric model is constructed inside

CAESES for the PPTC. The model is designed so that the parameters have maximum impact on

the blade shape. A closed optimization loop is realized within CAESES, where the execution of

all the OpenFOAM and grid generation utilities are automated. A two-phase approach is followed

for the optimization, starting with the exploration phase that is carried out with the Sobol sequence

and the exploitation phase performed with the Tangent Search Method. The best design shows a

2.3% increase in open water efficiency with a 2.1% increase in KT. Partial automation of the

methodology used was achieved aiming to accelerate the connection of any new propeller model.

The features developed were put to use with two powerboat propellers. The results acquired are in

agreement with relevant Vortex Lattice results.

Throughout this thesis, CAESES has been used as a pre-processor, blade design tool,

parametric CAD modeler, software connector and the core of the optimization process. It proved

to be a versatile and powerful software with unlimited capabilities. To fully take advantage of

these capabilities, the designer needs to use the feature programming language. When it comes to

propellers, a number of entities and pre-programmed scripts called features are available that

accelerate and simplify the propeller design process resulting in watertight models ready for

meshing.

CfMesh is a simple, robust and fast unstructured grid generator that can be very efficient

for simple shapes. Even though it served sufficiently for the task at hand, configuring its settings

and manipulating the quality of the resulting mesh proved to be a very demanding, time-consuming

trial and error process. Without the pre-processing and preparation of the blade with CAESES that

allowed the local control of the cell sizes, the desirable mesh quality may not have been achieved.

OpenFOAM is a powerful simulation toolbox that can serve as a reliable tool for propeller

analysis. Visualization of the flow field can be done with the open-source pre-processor Paraview.

The lack of licensing costs and issues make it tempting choice for CFD analysis. With minimum

effort, openFOAM simulations can be configured to run in parallel, reducing simulation time,

opening the way to full scale simulations. However, due to its open-source nature, the learning

curve for a new user is quite steep since the only assistance provided comes from the online

community.

 Marine Propeller Optimization using open source CFD

113

6.2 Suggestions for future work

Most of the choices made and approaches followed in the thesis project were related to the

computational cost. Provided that more computational power is available, transient simulations

could be carried out using the openFOAM solver PimpleDyMFOAM that allows for dynamic

meshes. The transient solver is expected to yield more accurate predictions of the propeller

performance. Another issue of interest is the effect of the periodic boundaries on the results of the

simulations. This modification would be very simple and easy to perform since the mesh and solver

settings do not require changes.

Using the parallelization capabilities of openFOAM, full scale simulations would be viable as well.

The scale effects on propeller open water performance are always a subject of interest in marine

hydrodynamics. With variable propeller geometry easily generated with CAESES, numerical

simulation results can be compared for model scale and full scale propellers with specific

geometrical features (highly skewed, different blade area ratios).

Another suggestion is to use and validate commercial grid generators like ANSA, Pointwise or

gridPro. These tools are compatible with openFOAM and provide maximum control on the

boundary layer resolution. Thus, the control of the y+ values on the propeller blades would not be

an issue. This will allow the use of wall functions and will bring down the cell count allowing for

more designs to be explored. However, their automation will require more effort and

considerations than cfMesh.

Finally, regarding propeller optimization, a very interesting application would be to connect

CAESES to a BEM code that will be able to evaluate a great number of designs in short time.

Then, global optimization could be performed using an evolutionary algorithm like NSGA-II that

is already implemented in CAESES.

 Marine Propeller Optimization using open source CFD

114

Bibliography

[1] T. TURUNEN, T. SIIKONEN, J. LUNDBERG and R. BENSOW, "Open-water

computations of a marine propeller using OpenFOAM".

[2] J. Carlton, Marine Propellers and Propulsion, 2012.

[3] F. M. White, Viscous Fluid Flow, 2006.

[4] "https://openfoamwiki.net/index.php/See_the_MRF_development," 2018. [Online].

[5] S. P.Polyzos, Calculation of the Hydrodynamic Resistance of Appendages on Conventional

Vessels, Athens, 2017.

[6] C. J. Greenshields, "OpenFOAM Programmer's Guide," 2015.

[7] T. Holzmann, Mathematics Numerics, Derivations and OpenFOAM, Leoben, 2017.

[8] H. Jasak, Error analysis and estimation for the finite volume method with application to

fluid flows, London: PhD Thesis, Imperial College of Science, Technology and Medicine,

1996.

[9] S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, 1980.

[10] "www.wikiversity.org," [Online].

[11] S. Harries, Practical shape optimization using CFD, Berlin: Friendship Systems, 2015.

[12] K. Hochkirch, S. Harries and C. Abt, Modeling meets Simulation - Process integration to

improve design, 2004.

[13] C. Abt and S. Harries, Qualitative assessment of available geometric modelling techniques,

2007.

[14] J. Thompson, Handbook of grid generation, 1999.

[15] J. Kortelainen, "Meshing Tools for Open Source CFD - A Practical Point of View," 2009.

[16] J. Rhoads, "Effects of grid quality on solution accuracy," OpenFOAM Workshop 2014, 3

July 2014.

[17] F. Vesting, Marine Propeller Optimisation - Strategy and Algorithm Development,

Gothenburg, Sweden, 2015.

[18] "https://en.wikipedia.org/wiki/Multi-objective_optimization," 2018. [Online].

 Marine Propeller Optimization using open source CFD

115

[19] "https://en.wikipedia.org/wiki/Mathematical_optimization," 2018. [Online].

[20] E. F. Campana, D. Peri, Y. Tahara, A. Pinto and F. Stern, "A comparison of global

optimization methods with application to ship design.," Processings of the 5th Osaka

Colloquium on Advanced Research on Ship Viscous Flow and Hull Form Design , 2005.

[21] W. Luo and L. Lan, "Design Optimization of the Lines of the Bulbous Bow of a Hull

Based on Parametric Modeling and Computational Fluid Dynamics Calculation,"

Mathematical and Computational Applications, 2016.

[22] S. Harries, K. Lorentz, J. Palluch and E. Praefke, "Appification of Propeller Modeling and

Design via CAESES," 2018.

[23] J. Jung, K. Lee, I. Song and J. Han, "Design of marine propellers using genetic algorithm,"

2007.

[24] J.-H. Chen and Y.-S. Shih, "Basic design of a series propeller with vibration consideration

by genetic algorithm," Marine Science and Technology, 2007.

[25] J.-b. Suen and J.-s. Kouth, "Genetic algorithms for optimal series propeller design," Built

Enviroment, 1999.

[26] "https://en.wikipedia.org/wiki/Sobol_sequence," 2018. [Online].

[27] R. Hilleary, The Tangent Search Method of Constrained Minimization, Monterey US:

Postgraduate School, 1966.

[28] M. Save and W. Prager, "Structural Optimization," Mathematical Programming, vol. 2, no.

Mathematical Programming, 1990.

[29] Friendship Systems, "CAESES Documentation," 2018.

[30] K. Mizzi, Y. K. Demirel, C. Banks, O. Turan, P. Kaklis and M. Atlar, "Design optimisation

of Propeller Boss Cap Fins for enhanced propeller performance," Applied Ocean Research,

2017.

[31] CFDDirect, "The Architects of OpenFOAM," 2018. [Online].

[32] C. J. Greenshields, "OpenFOAM User Guide," The OpenFOAM Foundation, 2018.

[33] D. F. Juretic, "CfMesh User Guide," Zagreb, 2015.

[34] SVA, "Schiffbau-Versuchsanstalt Potsdam," 2018. [Online].

[35] S. Subhas, "CFD Analysis of a Propeller Flow and Cavitation," International Journal of

Computer Applications 55 , October 2012.

 Marine Propeller Optimization using open source CFD

116

[36] T. Watanabe, "Simulation of steady and unsteady cavitation on a marine propeller using

RANS CFD code," Fifth international Symposium on Cavitation, November 2003.

[37] J. Yao, "On the propeller effect when predicting hydrodynamic forces for manoeuvering

using RANS simulations of captive model tests," 2015.

[38] J. A. C. Y. B. TJR Hughes, "Isogeometric analysis: Cad, finite elements, nurbs, exact

geometry and mesh refinement," Computer methods in applied mechanics and engineering,

2005.

[39] L. Davidson, Fluid mechanics, turbulent flow and turbulence modeling, 2018.

[40] P. A. Keun Woo Shin, "CFD Analysis of Scale Effects on Conventional and Tip-Modified

Propellers," Fifth International Symposium on Marine Propulsors, 2017.

[41] T. Turunen, "Analysis of Multi-Propeller Marine Applications by Means of Computational

Fluid Dynsmics," Master's Thesis, 2014.

[42] "OpenFOAM Documentation," [Online]. Available: www.openfoam.com.

[43] W. M. H K Versteeg, An Introduction to Computational Fluid Dynamics, 2007.

[44] H. Nilsson, "Rotating machinery training at OFW10," 2015.

[45] S. C. S. Salim, "Wall y+ strategy for dealing with wall-bounded turbulent flows,"

Proceedings of the International MultiConference of Engineers and Computer Scientists

2009, 2009.

[46] A. AlOnazi, Design and Optimization of OpenFOAM-based CFD Applications for Modern

Hybrid and Hterogeneous HPC Platforms, Dublin, 2013.

[47] Gambit, "User guide".

[48] "CFD online," [Online]. Available: www.cfd-online.com.

[49] F. Moukalled, L. Mangani and M. Darwish, The Finite Volume Method in Computational

Fluid Dynamics, An Advanced Introduction with OpenFOAM and Matlab, Springer, 2016.

[50] Engys, "A comprehensive tour of snappyhexmesh," 7th OpenFOAM Workshop, 2012.

[51] L. DA-Qing, "Validation of RANS predictions of open water performance of a highly

skewed propeller with experiments," Conference of Global Chinese Scholars on

Hydrodynamics, 2002.

[52] G. Haller, "An objective definition of a vortex," J. Fluid Mech., 2005.

[53] F. Feruglio, "Hydrodynamic study of a bow of a combatant hull," 2018.

 Marine Propeller Optimization using open source CFD

117

[54] "https://en.wikipedia.org/wiki/Sobol_sequence," 2018. [Online].

[55] S. Harries, K. Lorentz, J. Palluch and E. Praefke, "Appification of Propeller Modeling and

Design via CAESES".

 Marine Propeller Optimization using open source CFD

118

Appendix A

With cfMesh, a number of propellers have been tried, good results have been obtained in

comparison with the experimental data and the overall experience with cfMesh is satisfactory.

However, an issue that persists is the generation of prism layers at the blade wall while maintaining

the quality of the mesh in acceptable levels. While this has been achieved for the propellers that

have been tried, it has proven to be a very time-consuming trial and error process. In this context,

a promising solution would be to use a hybrid approach, with a structured grid around the blade

including viscous layer blockings combined with an unstructured mesh for the rest of the domain

created by an automatic unstructured grid generator like cfMesh which will easily create high

quality hexahedral cells in the areas that are easy to discretize. After some research, no open-source

tool is found to support the functionality of a smooth structured grid around a twisted geometry

like the propeller blade. However, a tool called Cfdmsh is found, a python library structured

meshing based on the grid generator SALOME. SALOME is an open source tool that supports

automation using python scripts, it is widely used both for CFD and FEM simulations and shows

good compatibility with OpenFOAM.

 The library (cfd-mesh) is quite limited in 3D, however it is possible generate viscous layer

blockings around extruded geometries or surfaces of revolution but also around twisted wings. The

last case is selected for evaluation, and the first issue to be examined is the possibility of combining

the two meshes in a file format OpenFOAM can handle.

 OpenFOAM offers two utilities for the connection of different meshes, these are

StitchMesh and MergeMesh. MergeMesh takes the meshes from two different cases and merges

them into the master case. It reads the system/controlDict of both cases and uses the startTime, so

special attention needs to be paid if the meshes are moving. The utility is triggered with the

command:

$mergeMeshes <case1> <case2>

With <case1> as the master case. In the unified mesh, the two meshes will keep their boudnary

conditions. StitchMesh is responsible for coupling two uncoupled mesh regions, belonging to the

same case. The utility is triggered with the command:

$stitchMesh masterPatch slavePatch

For partially overlapping patches < -partial> < -toleranceDict> can be added after <slavePatch>

that will help couple non-conforming patches.

 Marine Propeller Optimization using open source CFD

119

 SALOME exports the mesh in UNV file format, and different patches can be distinguished.

Separating the external surface mesh as a different patch is important for the stitching of the meshes

later. The mesh can be converted to OpenFOAM format using the command ideasUnvToFoam

<filename.unv> with the unv file located in a valid OpenFOAM folder structure, that is including

a valid controlDict file. It is then possible to run the mesh conversion routine, and this will create

a folder called polyMesh within the constant folder, with the mesh in OpenFOAM format

including the patches seperated.

Figure 1. Geometry to be

meshed including the surface

mesh

Figure 2. Structured grid around

the bended wing

Figure 3. Slices of the grid around the bended wing

 Marine Propeller Optimization using open source CFD

120

After the creation of the structured mesh around the wing as seen above the next step is to generate

the surrounding mesh with cfMesh and another issue that arises is the file format the cfMesh can

handle. CfMesh requires a closed STL as an input, together with the mesh settings. Salome

supports the functionality of exporting the mesh as an STL file. For the creation of the domain

including the wing CAESES is used, with the outer boundary of the bended wing’s mesh imported

as an STL into CAESES, boundaries for the domain are created and all are exported in STL format

using the trimesh operations available in CAESES. The boundaries are placed randomly since at

this point the stitching and merging of the meshes is examined.

With the mesh for the domain created with cfMesh, the two meshes are merged with the

mergeMesh command successfully. However, all the efforts that have been made in order to stitch

the two meshes were unsuccessful due to the mismatch of the surface meshes to be coupled. The

underlying reason seems to be the fact that cfMesh creates its own surface mesh and does not

conform to the given STL. For the stitching of the two patches, the surface mesh corresponding to

the wing is specified in cfMesh, and the cell size can be controlled locally. Different cell sizes are

tried for the wing area as seen below, however the discontinuities and gaps at the interface of the

two grids could not be avoided. In the three figures below, one can see the two patches, grey with

black edges for SALOME and red with blue edges for cfMesh.

Figure 4. Domain generation

 Marine Propeller Optimization using open source CFD

121

Figure 5. Alterations on the mesh resolution to increase interface matching

Figure 6. Alterations on the mesh resolution 3D view

 Marine Propeller Optimization using open source CFD

122

Appendix B
The finite volume schemes and solver settings used are presented below.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// * //

solvers

{

 p

 {

 solver GAMG;

 smoother GaussSeidel;

 tolerance 1e-05;

 relTol 0.01;

 }

 U

 {

 solver smoothSolver;

 smoother GaussSeidel;

 nSweeps 2;

 tolerance 1e-08;

 relTol 0.1;

 }

 "(k|omega)"

 {

 solver smoothSolver;

 smoother GaussSeidel;

 tolerance 1e-6;

 relTol 0.1;

 }

}

SIMPLE

{

 nNonOrthogonalCorrectors 3;

 consistent yes;

 residualControl

 {

 p 1e-4;

 U 1e-4;

 "(k|omega)" 1e-4;

 }

}

relaxationFactors

{

 p 0.7;

 U 0.7;

 "(k|omega)" 0.7;

}

// *** //

 Marine Propeller Optimization using open source CFD

123

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | cfMesh: A library for mesh generation |

| \\ / O peration | |

| \\ / A nd | Author: Franjo Juretic |

| \\/ M anipulation | E-mail: franjo.juretic@c-fields.com |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object fvSchemes;

}

// * //

ddtSchemes

{

 default steadyState;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) bounded Gauss limitedLinearV 1;

 div(phi,k) bounded Gauss limitedLinear 1;

 div(phi,omega) bounded Gauss limitedLinear 1;

 div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 Marine Propeller Optimization using open source CFD

124

 default linear;

}

snGradSchemes

{

 default corrected;

}

fluxRequired

{

 default no;

 p;

}

wallDist

{

 methodmeshWave;

}

// *** //

