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Amayopegbetor 1 ovilypaen, omofnKevon Kol dlavoun Tng mapovoag epyaciag, €& olokAnpov 1
TUARATOG AVTAG, Yo EUmoptkd okond. Emttpénetan n avatdmmaon, arodnkevon kot S1vopn Yo 6Komo
un KePOOOKOMIKO, EKTALOEVTIKNG | EPEVVNTIKNG (VONG, VIO TNV TPOoUTOOEST] VL avapépPETaL 1| TNYN
mpoéAevong Kat va, dtatnpeitor To Tapdv pnvopd. Epotipoto mov apopobv ) xpromn g epyaciog yio
KEPOOOKOTIKO GKOTO TPEMEL VO OTEVOVVOVTAL TPOG TOV GLYYPUPEX.

Ot améyeELS Kol TO. GUUTEPACLLATO, TOV TEPLEYOVTOL GE OVTO TO £YYPAPO EKOPALOVV TOV GLYYPAPEN
Kal 0gv mpémetl vo epunvevdel Ot avtimpocwrevovy TIg enionueg 0éoelc tov EBvikod MetooPiov
[MoAvteyveiov.






Hepiinyn

Ta tedevtaio xpovia, N 0EOMOTIO TOV YNEOKOV GLGTNHATOV anelheitan ev puépet e€attiog Twv
€EAPETIKA SUVOUIKOV POPTOV EPYUCIOC, TOV dEGOUEVMV EIGOJOV TOV ¥PNOTOV KOl TV OTEAELDY TOV
TEPIPAAAOVTOC KOl TOV VAIKOD 7OV EIVOL YVOOTEG G KOTOUOKELAGTIKY peTafAntotra. H tedevtaio
TPOKAAEL ovnovyieg Yoo TNV aSOMGTN AELTOVPYIO TOV GUOTHUATOC, KOOMC Pmopel va dnpovpynoet
COUALOTO OTO GTPMLLO VAIKOD TOV UTOPEL VO TPOKAAEGOLV SVAdIKH AAON Kol Vo, EXNPEAGOVY TN GL-
voMkm amddoon tov towt. [a va petplactel avt 1 petafAntotnta, n fropnyoavio Exel avamtdéet pio
oelpd teyvikav alomiotiag, dtabeoyuotntag kot cuvinpnong (RAS). Avtég ot teyviég, petald dAlmv,
avtiotafuilovv Tig emdpdoslg TS KOTACKEVUOTIKNG HeTaPfAntdtTog Kot eEac@aiilovy agldmioTeg

EMBOGEIS AVTOALAGOVTAG 1OV, TEPLOYT TLPLTIOV N YPOVO EKTELEGNG.

e ooty ) oatpPn mapovoidlovpe vav eleyktn PID mov Oa ektelel duvopikég aAloyég Taong
kot cuyvotntag (DVFS) yio va avtictabuicel T emntdcelg Tov KabuoTepoemy EXOVAPOPEG TOL
TpoKaAovvTaL amd Tov RAS pmyoviopo kot va dtoyelptotet Tig ypovikég mpobecpieg. Emmiéov, 1 amo-
TEAEGUOTIKOTNTO TOV EAEYKTN pHoG B0 SOKIHOGTEL OTOV [ GAAN TOVTOXPOVN EPAPUOYT TPEXEL OTOV
010 eme€epyaotn, TPOGOUOLALOVTAG LK AAAT TEPIMTOOT) SLVOUICUOD POPTOV EPYAGIAG. ZVYKPIvOLE
T pebBodoroyia pag pe Toug e&€xovieg adyopiBpovg DVES tedevtaiog texvoloyiog Kot omodeikvhove
TIc PeAtiopéveg emdodoelg Tov PID peiwvovtog mapdiinio tyv kotavaloon evépyelag. TE oG, Tapov-
oldlovpe o ékdoon Tov ereyktn PID mov otoygdel ot diayeipion g Oeppoxpaciog Tov GUGTAATOC,
KaBmg 01 BepIOKPUCIOKOTL TEPLOPIGLOT EIVOL TPOTAPYIKNG CNUAGIOG GTO CUYYPOVO EVOMUATOUEVE, GU-

OTNLOTOL.

To mpoypaupd pag avorntoccetal oty mhokéto iMX6Q-SABRE-SD and v NXP, evd emikevipo-
VOLOOTE GE U0l PEOAICTIKT EPAPLOYN GE TPAYLLATIKO YPOVO. AVOAVTIKA, 1| EPUPHLOYN LOG TPOEPYETUL
OO TOV TOLEN TV TNAETIKOIWVMVIOV KOl AVOLEVETOL VO EKTELECTEL GE TLUTIKEC EVOMUATOUEVEG TAOT-
eopuec. Emopévag, culntape Evav gleyktn kAgiotov Bpodyov mov ypnotonotei to DVES yio va nepip-
picel T dakvdUAVOT TG ATOO0GNC ¥PNCULOTOIMVTAG L0 PEAMOTIKY] EPOPLOYN LE XPOVIKOVS TEPLOPL-

opovG.

AéEerg KA e01d

Evoopatopéve Xvotipata, PID, A&omiotio, Atafecipotnra, Agitovpykdtnta, punyoviopoi RAS,
Kotaokevaotikn Metapintotra, Metafintotnta e anodoons, Avvapuky Kipdkoon Tdaong ko

Yvyvotmrag, DVFS, ARM, Zvotuota [loAdodv Eneéepyactav



Abstract

In recent years, dependability of digital systems has been threatened partly due to highly dynamic
workloads, user input data, environment and hardware imperfections known as process variability.
The latter causes concerns for the reliable operation of the system as it can generate faults in the hard-
ware layer that may cause binary errors and affect the overall performance of the chip. To mitigate
this variation, the industry has developed a series of Reliability, Availability and Serviceability (RAS)
techniques. These techniques, among others, counter the effects of process variability and ensure de-

pendable performance by trading-off either power, silicon area or execution time.

In this thesis we present a PID controller that will perform Dynamic Voltage and Frequency Scaling
(DVFS) switches to counter the effects of RAS-induced rollback delays and manage timing deadlines.
In addition, the efficiency of our controller will be tested when another concurrent application is running
on the same CPU, simulating another case of workload dynamism. We compare our methodology
with prominent state-of-the-art DVFS algorithms and prove the PID’s enhanced performance while
minimizing energy consumption. Finally, we present a version of the PID controller that aims to manage
the system’s temperature, as meeting temperature constraints is of paramount importance in modern

embedded systems.

Our scheme is deployed on the iMX6Q-SABRE-SD board from NXP while we focus on a realistic,
real-time application that is streaming in nature. In detail, our application is drawn from the telecom-
munication domain and is expected to run on typical embedded platforms. Therefore, we discuss a
closed-loop controller that utilizes DVFS to account for performance variation using a realistic appli-
cation with timing deadlines.

Key words

PID, Reliability, RAS mechanisms, Process Variation, performance variability, DVFS, iMX6Q
Board



Acknowledgements

First of all, I would like to wholeheartedly thank Professor Dimitrios Soudris for giving me the op-
portunity to work on this thesis. His valuable advice helped me immensely in this work and his research
experience and passionate teaching in my undergraduate classes had a direct impact in developing my

interest for embedded systems.

Moreover, this thesis would not be possible without the help and support of Michail Noltsis. His
constructive advice and experience in the subject matter urged me to work on this thesis and create
significant results that we are proud to present to the public. His insight definitely peaked my interest

in working with embedded systems and the scientific community in general.

Finally, I would like to thank my family and friends for their continuous support throughout my
studies in NTUA.

Nikolaos R. Zampelis,

Athens, April 17,2019



Extevig Ilepiinyn

H Propunyovio kataokeung 0AoKANp®UEVOY KOKAOUATOV EYXEL CUUUOPPMDEL e TNV Guikpyven TG
TEYVOLOYIOG TOPAYDYNG TOV TEPLYPAPEL O VOLOG TOL Moore yia To Tehevtaio 40 ypovia Kot BeAtiooe
TNV amdO00T TOV EVEOUUTOUEVOV GLOTNLATOV dpaoTikd. Kabmg ta pikpotepa tpaviictop kot ta Ko-
ADIL0L GOVIESTG TOVG EIVOAL GUGKEVUCUEVE GE OAOEVO KOl UIKPOTEPEG TEPLOYES TUPLTION, 1) GUVOALKY
ATO00GT] TOL OAOKANPOUEVOD OLEAVETAL AOY® TV TEPIGGATEP®V APOUNTIKAOV AEITOVPYIDY TOV TPALY-
LLOTOTTOL00VTOL 0VA AETTO KoL TNG AYOTEPTG EVEPYELNG TOV OTaLTEITAL Y10 TNV TpoPodoaio Tov. Trv idwa
OTIYUN], TO KOGTOG TOPAY®YNG YIMAd®V TAUKISIV Tupttiov Tov To Kaféva mePIEYEL SIGEKOTOUUDPLOL
tpaviioTop oe o nrépa ExeL yivel OA0 Kot KPOTEPO, TPAYLLO TTOL 0dNYEL G€ pia, avepyOuevn Ploun-

xavio Tout Tov £xel SLUUOPPAOCEL TOV 210 aidva Omwg Tov EEPOLLLE OTHLEPQ.

AVt 1 OUIKPUVOT TNG TEXVOAOYIOG TAPAYW®YNS, OOGTOGO, OVIILETOMILEL ONUEPO CNUOVTIKES TPO-
KANGOELG TOV TIPEMEL VA avTILETOTIoTOVY. H amaitnon yio 6A0 kot mo ypryopa Kot a&lOToTe TOLT,
KOVA VO TPEXOVV OAO KOl TTLO OTTOLTNTIKEG EQOPLOYES Y10 TOVG KOTOVAAWMTES, PPIoKEL AVTIHETMOTO TO
TPOPANUATO TNG KATAGKEVAGTIKNG HETAPANTOTNTOC, TNG dtdyvong e Beplrokpaciog Kot Tng Koto-
vaiwong evépyewag[1]. O 0pog ’KATACKEVAOTIKY] HETAPANTOTNTA” TEPLYPAPEL TO PAIVOUEVO KATA TO
omoio dVo TpaviicTop OHOIWG GYEIUCUEVO KOl KATOOKEVAGIEVO LEPIKE VOVOLLETPO LOKPLE pmopel va
EULPAVIGOVV S10POPETIKE NAEKTPIKA KO SOUIKA YOPAKTNPLOTIKA eEa1Tiog avomToQevKT®V attidv|2][3].
Kotaokevoaotikn petafAntomra vanpye ovékadey oty mopaywyikn dadtkacio]2] aAld Ta teAevtaia
XPOVIKL, amd TOTE TOL 01 JLOTAGELS TV TpaviicTop £ptacay Tov kKOuPo Tmv 90 vavopuéTpov, Tpokaie
oYL LOVO OTMAELES GTNV TOGOTNTA TOPAYOYNS (APOV TOAAN OEV IKOVOTOLOUV TO GYEIOCTIK( YOPOKTY-

PLOTIKA) 0AAG Kot TPOKAAEL Slakvpaven oty €0puoun Asttovpyio TV oAokANpouéEvev[3].

Emumiéov, n anddoon TV cOYYPOVOV EVEOUATOUEVOV GCUCTNUATOV MNPealeTal amd T SVVOLIKN
(OGO TOL TOL POPTOV EPYOCING TOVG. ZNUEPA, Ol EPAPLOYES EVEPYODV LLE 1010ITEPA SVVOLUKO TPOTO MG
TPOC TOVE TOPOVG GLGTNLOTOC TOV ATALTOVY KOl TOVG YPOVIKOVS GTOYOVG TOVE. AVTOC O SUVOLLGHOG
elvar 10 amotélecpa 1060 COUALATOV OV GYeTICovTal pe To VAKS [2] 660 KOl amaiTiGE®Y TOL Ao-
YIGLUKOD OTT®G 01 EQAPLOYEG PapEDY VITOAOYIGUOV Kot 1 LETAPANTOTNTA OTO €100 KoL T GCLYVOTNTA
TV 0d0pUEVOV €16050V. Emopévag, kabiotatal 6o Kol 7o EPQavES OTL aVTOG 0 SLVALUGHOG ETNPEdleL
TIG EMOOGELG TOV GLGTILATOG KO TPETEL VoL ANPBEl vITOYN KaTh TOV GYESIAGLO TOV TEPLOPICUAOY TOV

GLGTHLATOG MG TPOG TNV EVEPYELN KO TIG YPOVIKEG OMOKPIGELG.

Emmpocherta, evd 1 Propunyavio duckoAievetal va teplopicet Tig dStaoTdcels TV Ttpaviictop mepat-
TEP®, TO OPLO TNG TAGNG TOV OTOLTOVV OVTEG Ol GLOKEVEG £XEL CTAUOTIOEL VO LELDVETAL, OTWS TPOTEVE

apykd to Movtého Kiypdkmong tov Dennard, pe amotélecpo pia pacTiky avénon e KaTovAaAmong



EVEPYELNG Kol TNG Beplokpaciog TOV CLGTAOTOG TOV AMEIAEL TNV OUOAT OTOS0GT TOV OAOKANPOLE-
vovu. Kot evdd otovg emitpaméllong vIToAOYIGTEG KOl TOVG OLKOUIGTES TO TOUT WYOYOVTOL SOTAVOVTOG
EVEPYELDL OE AVEULOTNPESG KOl AALEC TEYVIKEG EVEPYNG WOENG, 1 EMAOYN AT dgv ivan dobécun oe
LIKpEG cLoKEVEG Omwg Ta smartphones, ta tablets kot dAla pikpd Systems-on-a-Chip (SoC) and 10
7edI0 TOV EVOOUATONEVOY cvotnudtov. H Bropumyovio, telkd, oavayKaoTnKe vo aveyTel T0 Qovo-
pevo Dark Silicon: v avaykaidtnto 10V VIOyopeVEL OTL LOVO €va TN TV TpaviicTop TOV To1T
Oa Tpopodoteital To 1610 ¥PoviKO S1AGTNUA TPOKEYWEVOD TO COGTNHO VO, TEPLOPILETUL GE AVTTNPOVG

TPoUTOAOYIGHOVS 1oYvOG Kot Oepuokpaciog[4].

[TopGAANAQ LE TNV OVTILETMOTION TOV TPOAVAPEPOLUEVOV ATEIADV, 1| BloUnyoviot TOV EVEOUAT®-
HEVOV cuoTNUATOVY TPENEL Emiong va elvar og Béomn va dtao@oiicel TV a&lOToTiO TOV GUGTHLATOG.
"Evo. evooUOT®IEVO GUGTN IO OVAIEVETOL MG EL TM TAEIGTOV, VO OVTATOKPIVETOL GE TPUYLOTIKO YPOVO
KOl VO TETVYOIVEL TOLG GTOYOVG TOV ATOPEVYOVTOS TOVG KIvVODVOUG OV TOPOVCIAGTNKAY TOPUTAV®.
Ievikevon awtod eivol 1 AmaiTnon T0 EVOMUOTOUEVO GUGTHLLATA VO, THPOUV TIC TpoBecilieg Tov Ka-
Bopilovtar a priori, e&acpariovtag TapdAinio v opBOTNTA TOV GLOTNUATOC. XZVYKEKPLEVA, YLO
Vo SLGPOALCTEL 1] CMGTH AEITOVPYIC TOV GLGTHLATOS, 0 KAASOC £yl avomTUEEL TOALAPIOLES TEYVL-
kég Aélomiotiog, Atabeoiudmrag kot Agitovpykotrog (Reliability, Availability and Serviceability
RAS)[5].

[pog avt) v KoatevbLVoT, e avt) T dlatpiPr| Topovctdlovpe Evav eheykth PID mov otoyedel
OTNV AVTIYETMOTION T®V OMOTEAEGLATOV TOL SUVALK®V POPT®V pyuciog Kot Tov mopeupdosmv RAS
YPNOHOTOLDVTAG TNV TEXVIKT NG Avvapikig Kiydkmong Tdong kot Zuyvotntog (Dynamic Voltage
and Frequency Scaling DVFES). EmimAéov, to mpdypappd pog Aappdvet vroyty ) dayeipion g Oep-
LOKPAGIOG TOV GVOTAUATOG o€ Kovovikd emineda. H epappoyn Paciletar oto £pyo HARPA g Ev-
poraikng Evaonc kot 6Aog o Bpdyog aicONTNpov-QApLOYNG-EAEYKTN OVOTTUGGETOL GE TEPALATIKO
VKO, ovuykekpipéva oty TAakéta NXP iMX6Q-SABER-SD[6].

MeTafAnTéTnTe 6T1) O100IKOGIN TAPAYOYNS

Mio onUavTIKi TNy SUVOUKNAG OTOKPLOTC T AELTOVPYIC TOV GCLGTHLATOG, TOL OTLLLOVPYEL EAATTO-
LatiKd LAIKOL gival 1 KataokevaoTtikn petafantotnta. Xwpiletor og 600 peydieg Katnyopies: eviaio
1 CLGTNUATIKY LETOPANTOTNTA KOl TVYOLO LETABANTOTNTA EMIONC YVMOOTH MG TOPAYOYIKT LETUPANTO-
mra [2]. Evd kot o1 600 kotnyopieg cuvndmg mpokaiohy topodikd cdApota Kot exnpedlovy ta idia
NAEKTPIKA YAPOKTNPLOTIKA TOV TpovicTop, SNAadT TO PEVLLA SLOPPONG, TI GLUYVOTITO AELTOVPYING KoL
NV téon KaTOEAiov Vip, EKONADOVOVTOL HECH SLOPOPETIKAOV TNYDV Kol GUVERMS XPEGLoVTOL dl0po-
PETIKEC LeBAOOLE Y10 VO AVTILETORIGTOVV. ATO TN Lo TAELPE, 1 eviaio peTafANTOTNTO 0QEileTOL O
HKPEC aAAaYEC aTOo TtEpIPdAlov TG dladikacio Tapaywyng Kot ennpealel Oia ta tpoviictop og éva
dioko e Tov 1010 Tpomo. Ot KOpLeC TNYEG GLOTNUATIKNG HeTafAnTdTTOG Elval 1 otTikn S10pbwon ey-
yomtag (OPC)[7], n tpaydta pnkovg axpung (LER) kot 1 tpaydmra mhdtovg axung (LWR)[8][9]
Kol TapoArayég 6to dnAektpikd moAng [10] [2]. [a mapddetypa pia pukpr| ardKALoT 6TV OTTIKT TOL

QmTOG £VOG epyaireion AMboypagiag umopel va mpokaiécet Eva 0AOKANpo TAaKIO0 va €xel TpaviicTop
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HE HKPOTEPO 1 LEYOADTEPO TAATOG KOVOALOD amd OTL GYESAOTNKE OpYIKA. AVTOG O TOTOG UETOPAN-
ToTNTag VIMPEE TAVTOTE GTNV TOPAY®YIKT dtadtkocio kot 1 Bropunyavio &xel avamtdéel pe emttuyio

TOALOVG TPOTOVG AVTIUETMMIONG TG amoteAéopatal11].

Ao ™V GAAN TAELPA, 1 TAPOYOYIKT UETAPANTOTNTO TOPOVGIAGTNKE HOVO amd TOTE TOV 1) Ploun-
yovia £pBace otov katackevaoTikd kOpPo tov 90 nm. Evé n peiowon tov tpaviictop cuveyiotnke,
0l EMATAOGELG TNG KATOUOKEVAGTIKNG LETARANTOTNTOG £X0VV 0oderyBel SVOKOAES VO AVTILETMOTIGTOVV,
KaO®OG To ELUTTOUATO, VAKOD TTOL TIG TPOKOAODY GUVOEOVTOL GUECO [LE TIG LIKPES SIUOTAGELG TV TPALV-
Clotop. [Ipémetl va onpelmdel 6T1 N KATAOKEVOGTIKY HETOPANTOTNTA LUITopEl Vo ymPIoTEL TEPALTEP® GE
dvo xatnyopies: e&-apyng petafAntotnta, dSNAadn HETAPANTOTNTO TOL TPOKOAEITAL OO ECMTEPIKES
TMYEG Katd T0 0TAd10 KATAGKELNG TG O1dtalng mupttiov, Kot ypovikd eEaptdpevn HETaPANTOTNTA
OV TPOKOAEITOL Kot evioyveTon amd eEmTepikéc mNyég O6mmg N Beprokpacio Aettovpyiog, n vypacio

K0l 0 EPYACLOKOG POPTOG TNG GLOKELNG.

Meta&hd ahiwv, pio onuavtiky ottio e&-apyng LETOPANTOTNTAG ival Ol TUYXAIES SIOKVUAVCELS EM-
ovtevoenv (Random Dopant Fluctuations RDF)[12]. Ed® kot dexoetieg 1 Propnyavia epeutedel Tig
moAeg TV Tpaviictop MOS e dtopa Tpocpitemv £T01 DGTE VO EAEYYETAL OMOTEAEGUATIKA 1] TAON KO-
TOEAoL V. Kat evd o€ moadaidtepoug texvorloyikovg KOBovg ot SlaoTtdoelg tng TOANG Tav apKeTE
UEYOLEG DOTE 1) GLYKEVIPMOT TOV TPOSHEEDV Vo gival apeAnTEN, TAEOV GUVOVTAUE £V POIVOUEVO
OOV 0 aplBRdC TOV UTOH®Y TOV €YoVV TPoouyBel Kot o1 dluoTdcelg TG TOANG Elval OPKETA pKpOL
MOTE VO PNV 10YVEL TAEOV 0 VOLOG TV LeYOA®V aptBudv. Emouévac, 1 T0606Tmo TV ATOI®Y TPO-
opiEewv pmopet va tpokarécetl 600 tpaviioTop, 10 Eva dimAa 610 GALO, VO £X0VV SLUPOPETIKEG TAGELG

KOTOPAIOV Ko EMOUEVAG VO AELTTOVPYOVV SLPOPETIKA 1] VO KATOVOADVOLV TEPICCOTEPT| EVEPYELD.

A Electsical potential
PO

Source

Channel

Figure 0.1: RDF n tpayvtta og éva MOS tpaviictop umopodv va giedyovv petaforég oty téon
KaT®@Aiov tov[11]

EmimAéov, n cuveyng Aettovpyio tov tpaviictop, 101KA GE GCLGTHLATO TPUYUATIKOD Y¥POVOV, EVEP-

YOTOLEL UNYOVIGLOVG YPAVGTG TOV EXNPedovy TV a£loToTio TOV TOIT Kot 0d1yo0v og vmoPddpion
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™G amdd00MG. AVTEC Ol EMTTAOGELS YivOvTol OA0 Kol o asntég kabmg avEdvetorn Beppokpacio Aet-
Tovpyiag Tov cvothiuatog. Kanowa agloonpeionta goavopeva Tov TpokaAohy ¥povikd eEapTaUEVT |Le-
TaBANTOTNTO KOl GLUVOEOVTOL GTEVE e avEnpéveg Beppokpacieg eivar 1 Etopon Ogpumv Popéwv (Hot
Carrier Injection HCI)[13][14], n Xpovikd-E&aptdpevn Kataotpoepn Ammiextpikod (Time-Dependent
Dielectric Breakdown TDDB) kat, kuping, Kata-@eppokpascio Actddeia g Taong KatweAiov (Bias
Temperature Instability BTI)[15][16][17][18]. Evé® avtd ta tpofAinuata exnpedlovv kupiong to oei-
d1o ¢ mOANG Tov TpaviioTtop, Kol TEMKA TO Vi TOV, DIAPYOVV EMIONGC PALVOLEVH TOV TPOKAAOHY
YPOVIKA-EEUPTOUEVT LETAPANTOTNTA TOV SLOUGVVOETIKOV GUPUAT®V TV TpaviicTtop énwg 1 HAgktpo-
petagopd (Electromigration EM)[19] kot Avtofépuavon [13][20].

Agdopévov 6t BTI €yet amoderyBel o To onpavTiKog TapdyovTog TG Xpovikd eEapTdpevng peto-
BANTOTNTOC, N €PELVNTIKY] KOWVOTNTO £)EL avortTVEEL OV Pacikég Bewpieg yia va tnv eEnynost. H mpot
Ko 1 Tokodtepn Bempia givar to poviédo Audyvonc-Avtidpaong (Reaction-Diffusion RD) [21][22].
Av10 10 povtéro vtodnimvet 6t BTI propet va e&nynbel amd t Bpavon tov Si-H deopmv ot diemti-
eaveta Si/ o&ewdiov. Evd ta dropo vdpoydvou dtoyEovtat oty THAN, 1) LEWOVOTITO TOV GOPEWV, EMIONG
YVOOTN G “TpOTES”, KvohvTal Yo va TApovv T1 B£61 Tovg 6To JIKTVLO ONLIOVPYDOVTAG £TGL Toyideg
@optiov mov petaxvovy to Vi, tov tpaviictop [15]. Qotdc0, avti 1 TPocEyyion dev EXEL TEPTYPAYEL
TIPS TO TPOPANLUA KOl OTjHepa VTOKAOIOTOTOL [LE L0 TO KAVOTOHO Bempio TOV EMKEVTPMOVETAL
oe atélelec. Avtd eival To 0TOUIKO HOVTEAD TIOL €104YeL £va ThAvoTIKO GTolXElo 6TV Tpoomddeia
eENYNONG TOV EMATOGE®V TOV GYNUOTILOUEVOV EAATTOUATOV. AVTIpAcKEL e To poviého RD, kabdg
TPOTEIVEL OTL 01 TAYideg TOV dNULOVPYOVVTUL OO EAATTMUOTO UTOPOVV ETIONG VoL EKKEVOBOV Kol oL

OTOPAiTNTO VO POPTIGTOVV Kol LOVO 01 POPTIGUEVES peTatomilovv to Vi [21].

TéNOG TPEMEL VO OVOPEPOVLLE TOVG, OYL AYOTEPO CNUAVTIKOVG, UNYAVIGHLOVG TOV 001)YOUV GE LETO-
BAntéTTa TG 0mddoong Tov GLOTNUATOS. AVTE gival TO COUOTION KOCUIKNG Kot ETIYELNG 0KTIVOPO-
Moag, OTmG T0. COUATIOW GAP Kot 1) KOGLUKT aKTivec vynAng evépyetag [2][20]. Ot dactdoslg tov
tpoviioTtop gival TOP OPKETE LKPEG DOTE COUATIONW AKTIVOBOAING, TTOV ¥TLTOVV TVYAiN TAV® TOVG,
UTOPOVV VAL A0ENGOVY 1 VAL LLELOGOVV TNV TAGCT] TOVG Y1, EVO APKETE CTIUAVTIKO XPOVIKO SLAGTN L0 OCTE
TO OMLOVPYOVUEVO GPAApN Vo d1adideTan og AAAa TpaviicTop kot TeEMKA va tébet g Kivouvo 1 6ot
AeLTovpyio. TOLVAGIOTOV EVOC VTOGLGTHIATOG TOV TOT. AVTO TO PALVOUEVO givol cuVNOME EPPOVEG
070, GLOTNHATA VIS Kol avaeépeTtol og “bit flip”, enedn 10 copotido axtivoforicg pumopel va
avactpéyel £va bit uvAung amd 0 og 1 KoL 1O OVTIGTPOPO KoL VO, OVAYKAGEL TO GUGTNUO Vo, dtopdoet
AovBaopéva dedopéva pvnune. Kavovikd to bit Ba yupicel nicwm ot 600TH TOL KOTAGTOCT Kol TO
o@aipa Ba avtiotpael Ywpig vo mpokaiéosetl Tepattépw PAAPN. Qotdco, edv 1 aktivofolrio Tpoka-
Aécel dloTapayn TG POPTIONG GE £Va. KPIGULO GUGTILO, IITOPEL VO TOPOVGLacTEL Suoieitovpyio OA0L

Tov TTpoidvtog[23].
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Mé0oodor dwayeipiong evépyerag kot Oeppokpaciag

AWTICTOVETAL, EMOUEVMG, OTL 1 KATOUOKEVAGTIKY UETARANTOTNTO EMOEVAOVETOL 0md TV avénon
TV Oepuokpacidv Tov cuotuatog. Emmiéov, n kataviloon evépyelag e&aptdtal exiong og ueydlo
Babuod and ™ Beprokpacio. TNV TPAYLOTIKOTNTO, 1] CTOTIKY 1GYVG, £VO ONIAVTIKO 6TOLYEI0 TNG GLVO-
AMKNG KOTAVIA®ONG EVEPYELNG TTOL NTOV AUEANTER TPV otd 10 xpovio, Exel Lo eKOETIKN GyEon Ue T
Bepurokpoacio Tov cuotnuatog [24]. Eropévac, n dwoyeipton g Beplokpaciog Tov GLGTAUATOG Kot 1)
dlatpnon g o€ acPoAN enineda eivat {OTIKNAG oNUaciog yio Ty flopnyovic EVEOUATOUEVEY GLOTI-
pdtov, £101Kd apov To Movtédo Kipdkmong tov Dennard otapdnoe va epapudletar ota tpoviictop.
Kot eved o1 emitpoméiol vToAOYIOTES KOl 01 OPTTOL VTOAOYIGTES YPTCULOTOIOVV TOVG OVEULOTIPES KO
dAheg teyvohoyieg Yoéng yio TV Yo&n tov eneEepyastdVv, 1 ETA0YN avT) dev gival dtabéoun yu
OLOKEVEG YEPOG. Tehkd, yperalopacte vo avalnTioove AAAOD TIV OTOTELEGUATIKY dloyElpIoT TOV

BepLokpacIdV.

Meta&d ALV TEYVIKOV TOV ¥PNCILOTOI00VTOL € peydlo Babud, n Avvapkn Kipdkoon Taong
kot Zvyvomtog (DVES) etvor pia evpémg yvoot) texvikn yio 0 Stoyeiplon g KoTavoAoKOUEVNG
1oYVOG LE TN HETAYMYT TNG TAONG KoL TNG GLYVOTNTOC AELTOVPYiog TOV oOoTnUoToc. H duvapukn oyog
EYEL TETPAYOVIKT GYEoN UE TNV €QapUOlOUEVT TAOT] TOAAUTAAGIUGUEVT LLE TI] GLUYVOTITA AEITOVPYIOG,
EMOUEVOG EMMpedleTot dueca katl eAEyyeTot o€ peyaro Baduo amd to DVES. EmmAéov, n otatikn ioy0g,
OV KOTOVOADVETOL 0TO TO, PEVUATA S10PPONG TNG TOANG TOV TPOVEIGTOP, EXEL IO YPOULIKT GYECT| UE
™V €@approlopevn Taon aAld Lo KBETIKT oyéon e TN BEPLOKPACia TOV GLGTIHLUTOG TOL EMNPEALEL
dpaotikd TNV otatikn 1oyd [24]. O evaicOntog €leyyog mov emitvyydvetor pe o DVFS givan {oTikng
ONUACIOG Y10 TO EVOOUUTMOUEVO CUGTHLATO TTOL TPETEL VO, EE0TKOVOLLOVY TAVTOYPOVO OGO TO SuVaTOHV
meplocdTePN evépyela kot vo Eacparifovv a&iomioteg emdooels. 'Eva evdiapépov pyo mov Paciletan
ot 0péAN Tov DVFES mapovoidletat oto [25]. H AMD kot Intel £xovv emiong eicaydyet pebodoroyieg
v Tov £Aeyyo g 1oyvog e Tig "Cool n’Quiet” kot ’SpeedStep” teyvoloyieg avtiotorya [26][27]. Tnv
0w otiyun, o mopnvag Tv Linux mepiéyet tov eheykti CPUFreq mov amoteAel KoAd Tapadeiypa yio
evépyeteg DVES, g1dkd ot ”On demand” kot ”Conservative” Aettovpyieg tov [28]. e tnv axpifeta,
Ba ocvykpivovpe Tov PID gheykti HOG HE LO TOPOAAOYT TOV «GLVINPNTIKOV» EAEYKTN TOGO MG TPOG

TNV 0mod00m 0G0 Kol MG TPOG TNV KUTOVAA®MGCT) EVEPYELOC.

Oocov apopd v arotedecpatikn dwayeipion g Oeppoxpaciog, n épguva Exetl emkevipwbel e mpo-
YPOLLLOTO, KATAUEPIGLLOD EPYOCIMV KOl OVASIOVOUT POPTOV EPYACING GE TOAAATAODG TUPTVEG TPOKEL-
pévov vo, ikavoroindovv ot Oepuikég mpodiaypapés oxedioong [29][30][31]. To DVFS nailel emiong
onNUaVTIKO pOAO, KaBDC 1 pOOLIGN TNG TAGC TOV GLUGTHLATOG GE YOUNAOTEPQ EMIMEDH UTOPEL VO EXEL
OTUOVTIKEG EMOPACELS oTT Beppokpacio Tov cuotiuotog [3][32]. Evag unyoaviopudc Tpofieyng Oeppo-
kpaciog avapépetar ot Biproypaeia [33], kabmg kat Evag ereyktn PI yia tn Oeppuxn dwayeipion [34]
Kot évag aAyopidpog Bepporpaciokng diayeipiong mov ypnoiponolel tovg unyoviopuovg CPUFreq tov
Linux oce ARM enelepyaotn [35]. Oa cuykpivovpe TiG TPooTABELES LOG LLE AVTOV TOV GUYKEKPIUEVO
alyopifuo oto Kepdrato 4. Ocov apopd oyeTikég epyacieg mov Eyvay amd ) Propnyoavia, ta Intel
Pentium 4 ka1 o1 ene€epyaotég g IBM PowerPC £yovv 101 evoopatdosl Asttovpyieg dtayeipiong
Oeppoxpaciog [36][37].
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PID gheykTiS Y10 ELAYLGTOTOIN G| TOV EMTTAOGCEMV TS PETUPANTOTNTOG

2y mopovca epyacio o mtapovoidoovpe pia epoppoyn tov eheykti PID mov Ba petpldocet Tig emt-
TTOOELG TNG KOTOOKEVOGTIKNG LETAPANTOTNTOG OT®G GVTH TPOGOUOIALETOL LLE GOAALOTO EIGUYOUEVA
amo to ypnotn. Kébe popd mov o yprotng elodyet £va GOAALN 6TO GOGTNLLO, O EAEYKTNG KaTaAafaivel
0T1, AOY® KOTOOKEVAOTIKNG HETAPANTOTNTOG, £)XEL Yivel kdmolog AdBog vmoroyiopds. Erouévag, po-
vtilel vo emoTpéPel 6TV TEAEVTOIO AGPOAAT KATAGTUOT OOV Ol VIOAOYIGUOL NTOV CwoTol. ALTA 1M
emavaeopa eivat évog RAS unyoviopdc yvootog g rollback. Akoun, o eAeyKTig TPENEL VO GPOVTIGEL
VoL TNPOVVTAL Ol ¥POVIKEG TTpoBeauies TG e€eTalopevng ePapPUOYNG OKOUN KAl 0V DITAPYOVV ampOPAe-
TTEG, SUVAIKES Epyaciec oto cvotna. O gheyktng PID dovievet mbve amd po epapproyn aviyveoong
paopatog Tov avartuydnke and v etoupeio Thales [38], pion peaAoTIKY EQAPLOYN Y10 EVOOUOTM-
LEVO, CLUGTNUATO OO TOV TOUEN TOV EMKOWVOVIAV TNG 0Toiag o1 mpobecpieg ivar kpioyleg yio )
OWOTH AELTOVPYIO TOL GLGTILOATOG. ZVYKEKPILEVO, 1 EQAPLOYY| EKTEAEL YOPAKTNPICUO ONLLOTOG TWV
kavolmv GSM. H 18¢éa tov gheyktn ivon va avéfoetl T cuyvotnta Aettovpyiog Tng TAAKETAG OTOTE
vrdpyel Kabvotépnon and Tic Tpobecpieg TG EQapLOYNC. £2¢ ek TOVTOV, 1| AVAYKN Y10 GOGTH TOPUKO-
AovOnon TV YPovIKGV KaBVGTEPNGE®DY TOL EIGAYOVTAL OTOV GUUPOIVEL KATOLO COAAL KOl EKTEAEITOL

éva rollback, eivan amapaitntn yio v TpoondOeld pog.

I'o to okomd awtod, glodyovpe o LeBodoAOYio Yo VO EVIOTIGOVIE CMOGTE TOTE TOPOVOIAGTNKE
&va GOALUO, LE £VO. UNYOVICUO ETOVAPOPAS 0T TEAELTAiO GmoTd onueio Asttovpyiog. [Ipodtov, n
eV AMOY® EQUPLOYN TPEXEL OTNV OVOLOOTIKY GUYVOTNTO AELITOLPYIONG TG TAAKETOC VIO GLVONKES Y®-
pig COUAUATO KOl GUAAEYETOL P10 VTTOYPOPT TOV TEPIAAUPAVEL SESOUEVA TYETIKG LE TO, TOPAYOLEVOL
OTOTEAEGLOTOL KOl GUYKEKPIUEVE YPOVIKE dtaothpata. Etval otn @bon ¢ epapoyng 0TL o€ Opioéva
omnueia TG TOPELOG TNG, 01 VTOAOYIGHOT UTOPOVV vV, ETOVAANPBOVVY GV ypelaotel. Educdtepa, 1 epap-
poyn umopel vo emavaAdfet tov adyopOpod aviyvevonc yia dtopopetikd koviiio GSM. Avtd smitpénet
napepPaocels emavapopdg N rollback interventions. Ta dedopuéva TG eKTEAESTC YWPIG GOEAALATO CUA-
Aéyovtal o€ apyelo OV TEPLEYEL TO XPOVO KOl TV LIOYPOPN TNG EQAPLOYNG OTO CLUYKEKPLULEVO YPOVO
mov ovopagovtol ’ypucd ixvn” N “golden traces”. Xtn cuvéyeln, VIO KAVOVIKT AEITOVPYiO TOV GLOTH-
LOTOG - TEPIUEVOVTAG OSNAUON COAALOTA -, OL VITOYPOOES TNG EPAPHOYNG Ba cLAAEYYBOVV Kot TAAL Ko
0o cuykpiBodv pe To ¥pLGO iYvog oTo GuYKeEKPIEVA Xpovikd draotipata. To dedopéva amodniedo-
vtol og éva apyeio mov ovopdleton Signatures.txt”. To péyebog tov apyeiov givarl pkpdtepO amd 2
kilobytes.

Topa mov To 6(GTA amoTEAEGHLATA TNG EPAPUOYNS Etval YvmaTd oTov punyavicpd RAS, pia kovovikng
EKTEAEON KATW a0, eAeyyoueveg amo PID, adiayéc DVFS umopet va Egkivioet. Zoaipo vdpyet 6tav
T OTOTEAEGLLOTOL TTOV VITOAOYILOVTOL GTO GUYKEKPIUEVE YPOVIKG OLOGTIHOTO OEV TOPAYOVY TNV 1010
VIOYPOAPT OTMG OTIV EKTEAEOT YOPIG COAAATA. Oempovpe OTL 0 LOVOS TPOTOG TOV UTOPEL va. Yivel
aVTO €ivarl Eva GEAALN VALKOD. ['a To Adyo avTo, Yo va otapatioovpe v Aavlacévn Aettovpyio Tov
GLGTHLATOG KOl VO, S10GQUAICOVLE TN AELTOVPYIKY 0pBOTNTA, KAVOLLLE Lo enovapopd / rollback otnv
TEAEVTOI0. CMOTA VTOAOYIGUEVT VTTOYPAPT] KOL ETAVEKKIVOOUE TNV EPUPHOYN OO TO GLYKEKPIUEVO
onueio ehéyyov. H dradikacio autr|, 61000, £16AYEL KABVGTEPNON GTO GVGTNLLO OTTOTE TAEOV VITAPYEL

Kivouvog va Yacovpe TV TEMKT Tpobecpiio TG EPAPUOYNS.
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Application Code Comparator

Application Domain Memory Domain

Figure 0.2: H meprypoen tov unyovicpod RAS. To chotnuo eEAEYYEL TIC CMOTEG VITOYPOUPES LLE OVTEG
T "ypucd iyvn” aAlmg kavel emavapopd / rollback

Ye ovtd 10 onueio mapovoldlovpe ™ HETARANTH TOV YPTGLOTOLIOVLE Y10 VO TOPOVGLACOVE YPO-

VIKEG OMOKAIGELG.

Definition. Slack (s[n]) eivoun xpoviki dtapopd mov vdpyet dtav To GHOTUO TAPAyEL TNV (S0 VITO-

TP KaBdG SOVAEDEL GTIV OVOLLOGTIKE GUYVOTNTA from KOL TNV TPEYOVGH cuyvoTnTa f[n]

s[n] = tyep — tin] (0.1)

OMOV TO e f AVOPEPETAL GTO XPOVO AVOPOPAG KoL TO t[n] 6TO Y¥POvo Aettovpyiog 6TV TPEXOVGA G-
yvotnTa. Emopévmg, twa ypovikn kabvotépnon tapovstdletar pe apvntikd slack kot onuaivel 6t n
TAOKETO TPETEL VO, AVENGEL TN GLYVOTNTO AEITOVPYING TNG Yo Vo TPOAGPEL TNV mpobecpio evd BeTicd
slack onpaivel 611 giplacte Pnpootd oe YpOHVO Kot LITOPOVLE VO LELWGOLVLLE TN GLYVOTNTO AEITOVPYioG
v va eEowovopncove evépyeta. Eivan mpooavég 0t BEATIOT Ypron Tov Ay Hog Oo kpoTnoet
7o slack o710 0.

Eivatl mpopavéc amd tmpo 6t 1 avdykn evollayng LeTaED TOAMATADY TIUOV GLYVOTNTOG KOl TOCNG
gtval ToAD onUovTIKY Yo TV gpyacio pog. Qotdco, 1 epyostaciokn dwabecypuotnta DVFES yio v
mhokéTa pog, v iMX6Q arnd v NXP, sivar meproptopévn. Ilposeépel Lovo v OVOUOGTIKY GU-
yvotnta 792 MHz, o apyn cvyvomta 396 MHz kot pia ypiyopn cuyvotnta ota 996 MHz. Avt n
dtpopemon dev Ponbdet ta melpdpatd pog. EmmAéov, n apyltektovikn g TAAKETOS EMITPETEL PEYL-
oto apfpod 50 onpeimv cuyvotntog Tov Kupaivovtal and 396 MHz émg 996 MHz. Avtd ta onpeia dev
elvar dwaBéoipa pe ta Tpoemleyuéva mTpoypdlppata T TAaKETOC. AVTOC givol 0 AOYOg TOv YPMOLLO-
TOLOVLE VO KavoUpylo Tpoypappe mov avortiydnke arnd tnv Thales mov enttpénel 66a tepiocdTEPQ
onueia BElovpe (€wg kot 50) kar yewpileron 1ic DVFS allayég. Mo peiétn yuo 1o moco onpeio 6o
npénel vo, emhéEovpe o tn PEATIOT amddoon tov PID pag pmopei va Bpebel apyotepa oe avtd to

Kepdhato. Ta onpeia mov emdéyovpe paivovtar otovg [ivakeg 3.1 ko 3.2.

®a mTapovcidcovpie Tdpa tov PID gleyitn mov anopaciletl Tig aAlayég DVES couemva pe v tyum

tov slack. To 6vopa PID mpoépyetar amd ta apyikd g epdong Proportional-Integral-Derivative” mov
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TEPLYPAPEL TNV 0KOLoVON e&icwan mov ypnoyomotei o PID:

mn] = kps[n] + (s[n] — s[n —1))kq+ (m[n — 1] + s[n]k;) (0.2)
N———
proportional differential integral

omov 1o s[n] opileton otnv E&icmon 0.2. To proportional tunpa, mov oyetiletar Gueca pe o k€pdog k)
mapdyel £vo. amotéAespa Tov givar avaAioyo pe ™ pétpnon tov slack. To integral pépog, mov meprypd-
QeTaL LE TO KEPOOG k;, TEPLEYEL TPOTYOVLEVEG TILEG TNG TIUNG TOV VIToAoYileTan amd Tov PID, emouévmg
amoterel Tn pvnun” tov eheykrr. To integral Tunpa, pe fdon to k€pdog kg, Aapupavet vdymn v Khion
TOV CQAALOTOG Kot evepYel oG To mpoPrentikd pépog g e&icmong. H vroloyilopevn T, mov opi-
{eton €6 mg m[n], €lvat 0 TOAAOTAACIOGTAG GLYVOTNTOG TTOL Oa KPavTtioTel kot Bo oTpoyyviomonOei
TPOC TNV TANGIECTEPN T TOV AVTITPOoOTEVEL £va onpeio DVES oto chotud pog.

O eheyknc PID givai 1o Bropnyovikd TpoOTUTO 6TOV KAGSO TNG UNYOVIKAG CUGTILATOV KOl GTOVG
YDPOVG £pYOTING OOV Ol EAEYKTEG TPETEL VO, £AGPAAIfovY TV a£l0ToTio Kot TNV 0oPAAELR TOV XPT)-
01N, 0T TO. epyooTdoia Kot To Srwhothpua. [IpocBétovtag og avtd, avayvopiletar n dypnotn evon
g eicmong. Mmopei va koatovondel kot vo avartoyBel amd pnyovikovg evkolo Kot givar puéypt on-
pepa. £vog ToAD a&lomoTog EAEYKTNG, TaPE TOVG TOAAOVC TT1o eEEMYUEVOLC ELEYKTEG OV oyed1dlovTon
KO KOTOOKELALOVTOL. LT GUVEYELL, AKOAOLOOVV HEPIKE POGTKA YOPOKTNPIGTIKA TNG AEITOVPYING EVOG

PID gleykty], Tpomomompéva dGTe Vo ToPLdlovy 6ToVG OKOTOVE TV TEPAUATOV LLOG.

o
3yl

o

—k =0.5,k =0.01,k =0.2
—k =04,k =0.01,k ,=0.2
—k =0.25,k =0.005,k =03 .
—k =02,k =0.01,k ,=0.2

©

©

'
—_
©

©

Slack (#Sample Count Period)
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Time (#Sample Count Period)
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Figure 0.3: PvBuiceig tov kepddv tov PID yia va ehayiotomofel n vrépPaon kat o ypdvog d1evdé-
mong

To 10606706 TOV TOGOV TOV GEAALNTOGC TOVL EEMEPVA TNV TN 6TOYXOL O6Tav To PID mpoormabei va
OLYKAVEL 0TIV TN 6TdY0L ovoudletal vtEpPacn 1 overshoot. Lty mepintmon pog, 1 vrépPaon me-
PLYPAPEL TOGO YPTYOPOTEPO. AEITOVPYOVLE GE GUYKPLOT) LE TO TPEEYLO Y®PIG GPAAOTA, ETOUEVOGS (G-
vovpe gvépyeta. Etvar {otikng onupacioc vo dtatnpndel n vaépPaocrn 660 10 duvatov [ukpdtepn Kot

katd wpotipnon va eEaierpbet.
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O ypdvoc mov amarteiton Yo 1o slack va cuykAiver oty T 616Y0VL, £vTOg ToL opiov tov 10%
oo T GTIYUY| TOV TO GRUALN ELPAVIGTNKE Yo TPpDTN Popd ovopdletal xpdvog devbétnong 1 settling
time. H diatrpnomn evog pkpod ypovou dievbétnong 8o onpaivel 0Tt To cOOTNI avTIdpE YPIYOPa Kot
petpralet ta Aabn ypryopa, EMOUEVOG €ival KOA TPOKTIKY Yo TO GOGTNHA HoG. Q26TdG0, EYEL YEVIKA
dmioTmOel 0TL N EAayloTOTOINOT TG VIEPPAOTG KOl TOV YPOVOL SELOETNONG TALTOYPOVA UTOPEL VUL
eival apketd dHoKoAN kot gival cuyvd Bépa emhoydv. H peimon kot tov dvo pmopei va yivel pe mv
teAelonoinon Tv kepddv tov PID. H gpyacio pog mapovcsialetal oto Zynua 0.3, dwov umopovpe va
doVE TOVE SIAPOPOVG GLVIVLOAGUOVG TOV KEPIMV KL VoL ETAEEOVIE TO €val e TN [KpOTEPT VTTEPPaon

Kol ypovo devbétnong.

Mepopotikd aroteriopora

To mpwto et Teapdrov 1o g To DVFES petpraler tig emdpdoeic g emavapopdg / rollback mov
nwpokoAgitor and tov unyovioud RAS kot giodyel kabvotepnoelg. Aapfdvoviog vwodyn Tov Unyovi-
OUO TTOV TAPOVGLAGTIKE TPOTYOVUEVMG, OTAV EIGAYETUL COAALLN, TUPATNPEITOL Lo KaBLGTEPTOT piog
[eprodov [MapakorovOnong Asiypatog oto slack kot o PID av&dvetl tn cvuyvotnta Aeitovpyiog Tov

GLGTHLATOG TPOKEUEVOD VO EMLTAYLVOEL 1] EPOPLOYT Kot VO OTOAELPEL 1] KaBvoTéEPN o).

= Erlror Er}'or Erll’or
.g 05 - Vi 7 7 7
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Figure 0.4: Slack cuvapticet Tov ypdvov yio 3 eravoeopés / rollback

210 Zymuoa 0.4 €&ovpe deiéetl Ta onpeio oo omoio EIGNYOLE TO CEAALOTO KOl TPOKUAECALE TNV
kabvotépnon. [Hopatnpodpe péow tov Zynuatog 0.5 611 o PID petafaivel apéowmng otn péylotn ov-
AvOTNTA Y10 660 YPoviKd dtdoTtnpa givan amapaitnto yo to slack va emotpéyet oto 0 660 T0 SvVATOV
ypnyopotepa. [pémel va onpeidoovpe 6Tt ivar EmAoyn Tov ¥protn vo emthééet ta, k€pdn tov PID yia
Vo TETOYEL EAGYLOTO XPOVO S1EVBETNONG Kot PEYIGTN OTOS0GT KOl VO AVEYETOL TOAVAOG PeYoADTEPT
KATOVOA®ON EVEPYELNG. X& AAAN pLOLLIOT TOV KEPSMOV, Ba PmopovGape va aveyBovpe LeyoldTEPOVG
YPOVOVG O1evBETNONG KoL, OOV EMOEIVOOT TNG KATAVAA®DONG EVEPYELOG KOTA TN OAPKELD TNG e~
Tafatikng meptodov tov eheykth. Ev maon mepmntdosl, TPOKELTOL Yio AVIOAANYES KEPOMV Kol Ol JIE-
yYarot xpovol devbétnong dev eyyvdvtan amapaitnTo pikpr evépyela. Xto Zynua 0.6 topovstdlovpe
ta, akpPn Levyn ovyvottog kot téong mov o PID enéhele va ypnoomomoet. Zto Zynua 0.7 toapov-

o14(ovLE TN GLVOAIKT EVEPYELD TTOV KOTOVUADVETAL OO TO GUGTNO Y10 TO YPOVIKO TAAIGLO KOl TO
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Figure 0.5: Zvyvotto Aertovpyiog cuvaptnoet Tov pdvou yia 3 emavapopéc / rollback
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Figure 0.6: Xnueio DVFS mov ypnowponotei o PID
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Figure 0.7: Zvvolikn evépyela mov Kotavaidvetot yia 3 emavagopéc / rollback

TOGOGTO GOAALOTOG TTOV amekovileTal oto Zynua 0.4.

18



To emopEVO GET TEPAUATOV TOV OIEENYULLE GTOYEVEL VO SIEPEVVIGEL TMG TO GUGTN LA OVTOTOKPIVETOL
o€ EMMAEOV POPTO EPYACIAG OV €1GAYEL LETARANTOTNTO OTOSOGNG, VIO TNV £vvola OTL Ol dVGTNPOL
XPOVIKOL TEPLOPIGLOT KIVOUVEDOLVY Vo UnV kavomomBovv omd 1o svotnua. Eropévac, o eleyxktng PID
nmpémel vo pubpicel T cvyvoTNTa Asttovpyiog o TETOW EXIMESN DGTE VO IKOVOTOOUVTOL Kol 01 OO
PopTOL Epyaciog Kot va TANpoovvTal ot Tpobecpieg diatnpovtag to slack kovtd oto 0. Mia €0koAn
Aoor Ba qTav va puOpicovpe T cuyvoTnTa GTNY VYNAGTEPN TN KoL Vo, Kavoupe To slack Oetikd adrd
o 1 AVoN damavd TepLtTn evépyeld. AvTBETmG, BEAovE Vo NV ybvov e VITEpPOMKT EVEPYELN OTTOTE
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Chapter 1

Introduction

The Integrated Circuit manufacturing industry has complied to technology scaling in accordance
with Moore’s Law for the last 40 years, which has improved the performance of embedded systems
drastically. As smaller transistors and their connecting wires are packed in increasingly smaller areas of
the silicon, the overall performance of the chip rises due to more operations conducted per minute and
less energy needed to power the chip. At the same time, the manufacturing cost of producing thousands
of wafers each containing billions of transistors in a single day’s work has been getting smaller and

smaller, leading to a booming chip industry that has shaped the 21st century as we know it today.

This miniaturization, however, is now facing serious challenges that need to be overcome. The de-
mand for faster and reliable chips, able to run increasingly demanding consumer applications has hit a
”brick wall” in the problems of process variation, temperature dissipation and energy consumption[1].
The term process variation describes the phenomenon in which two transistors with the same design
and fabricated a few nanometers apart may have different electrical and structural characteristics due
to a series of unavoidable causes[2][3]. Process variation has always been present in the manufacturing
process[2] but recently, since the dimensions of the transistors reached the 90-nanometer node, it is not
only causing loss of yield for the industry (as a number of transistors do not meet the specifications)

but also causes a variability in the performance of chips[3].

Furthermore, the performance of modern embedded systems is impacted by the dynamic nature of
their workloads. Nowadays, applications are highly dynamic in the resources they demand and timing
constraints they abide by. This dynamism is the result of both hardware-related faults[2] and software-
related demands in the form of computation-heavy applications and input data of varying scale and
intensity. It is, therefore, becoming more and more apparent that system performance is affected by

this dynamism and it needs to be taken into account when designing energy and timing budgets.

In addition, while the industry is having a hard time to further scale the transistors down, the threshold
voltage of these devices has stopped decreasing, as Dennard’s Scaling model originally suggested,
resulting in a drastic rise in consumed energy and system temperature which threatens the optimal
performance of the chip. While on desktops and servers the chips are cooled down by spending even
more energy on fans and other active cooling techniques, that option is not available with hand-held
devices such as smartphones, tablets and other small Systems-on-a-Chip (SoC) from the embedded
systems domain. The industry, in fact, has been forced to tolerate the Dark Silicon phenomenon; the

necessity which dictates that only a portion of the transistors of the chip will be powered on at the same
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time in order to comply with strict power and temperature budgets[4].

While addressing the aforementioned threats, the embedded systems industry also needs to be able
to ensure the dependability of the system. An embedded system is usually expected to fulfill real-time
tasks and accomplish its goals while avoiding the dangers presented above. A gross generalization of
this demand is that embedded systems are expected to meet deadlines set a priori while securing binary
correctness of the system. Specifically, to ensure correct system operation, the industry has developed
numerous Reliability, Availability and Serviceability (RAS) techniques[5].

Towards this direction, in this thesis we present a PID controller that aims to counter the effects of
dynamic workloads and RAS interventions by using Dynamic Voltage and Frequency Scaling (DVFS)
techniques. Moreover, our scheme is updated to manage chip temperature within normal levels. The
application is drawn from the HARPA project of the European Union and the complete feedback-based
controller is deployed on pure hardware, namely the NXP iMX6Q-SABRE-SD board[6].

In Chapter 2, we discuss theoretical aspects of process variability and present several RAS schemes
already developed by the industry. We also introduce the technique of Dynamic Voltage and Frequency
Scaling. In Chapter 3, we present our application and explain critical concepts of our technique. In
Chapter 4, the experimental setup is introduced and the results for process and workload variability as
well as thermal management are presented. In the Conclusion, we summarize key findings of our work

and propose interesting aspects for future work.
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Chapter 2

Related Work

2.1 From hardware faults to failure manifestation

2.1.1 Sources of process variation

A major source of dynamic system operation, causing hardware defects is process variation. It can
be split into two major categories: global or systematic variation and random variation also known
as process variability[2]. While both categories can potentially cause transient errors and effect the
same electrical characteristics of the transistor, namely the leakage current, operating frequency and
threshold voltage Vy,, they manifest through different sources and therefore need different methods
to be countered. On one hand global variation is caused by small changes in the environment of the
manufacturing process and affects all transistors on a wafer in the same way. The main sources of
systematic variation are optical proximity correction (OPC)[7], line edge roughness (LER) and line
width roughness(LWR)[8][9] and variations in the gate dielectric[10][2]. For example a slight deviation
in the optics of the light of a lithography tool can cause an entire wafer to have transistors of smaller
or bigger channel width than originally designed. This type of variation has always been present in
the manufacturing process and the industry has successfully developed numerous ways to counter its
effects[11].

On the other hand, process variability has presented itself only since the industry reached the 90 nm
node. While the downscaling of transistors continued, the effects of process variability have proven
difficult to counter as the hardware defects that cause them are directly associated with the small di-
mensions of the transistors. It should be noted that process variability can be further split into two
categories: time-zero variability, i.e. variability that is caused by internal sources at the manufacturing
stage of the silicon device, and time-dependent variability that is caused by external sources such as

operating temperature, humidity and workload stress of the device.

Among others, one major cause for time-zero process variability is Random Dopant Fluctuations
(RDF)[12]. For years the industry has implanted the gates of MOS transistors with dopant atoms in
order to efficiently control their threshold voltage Vy,. And while at older technological nodes the
dimensions of the gate were big enough for the concentration of the dopant to be negligible, we are
now coming across a phenomenon where the number of atoms doped and the dimensions of the gate are
small enough that the law of large numbers no longer applies. Therefore the discreteness of the atoms
can cause two transistors, one next to the other, to have different threshold voltages and therefore

operate differently or consume more energy.
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Figure 2.1: RDF and roughness of the MOS transistor can cause variations in its threshold voltage[11]

Moreover, the continuous operation of transistors, especially in real-time systems, is provoking aging
mechanisms that affect the reliability of the chip and lead to performance degradation. These effects
are only getting more dangerous as the operating temperature of the system increases. Some notable
phenomena that cause time-dependent variability and are tightly associated with elevated temperatures
are Hot Carrier Injection (HCI)[13][14], Time-Dependent Dielectric Breakdown (TDDB) and, most
importantly, Bias Temperature Instability(BTI)[15][16][17][18]. While these problems affect mainly
the gate oxide of the transistor, and ultimately its Vy,, there are also phenomena that provoke time-
dependent variability in the interconnecting wires of the transistors such as Electromigration(EM)[19]
and Self Heating[13][20].

As BTI has proven itself the most important factor of time-dependent variability the research commu-
nity has developed two main theories to explain it. The first and oldest theory is the reaction-diffusion
model (RD)[21][22]. This model suggests that in pFETs BTI can be explained by the breaking of Si-
H bonds at the Si/oxide interface. While the hydrogen atoms are diffused at the gate-stack, minority
carriers, also known as "holes”, move to take their place in the grid thus creating charge traps that
shift the Vy, of the transistor[15]. This approach however has not captured the problem completely
and nowadays is substituted with a more innovative, defect-centric theory. That is the atomistic model
that introduces a probabilistic component in the effort to explain the effects of the formed defects. It
contradicts the RD model as it suggests that traps created by defects can also be discharged and not

necessarily charged and only the charged ones shift the Vi [21].

Last to be mentioned, but certainly not least in importance, mechanisms leading to performance
variability are cosmic and terrestrial radiation particles, such as alpha particles and high energy cosmic
rays[2][20]. The dimensions of transistors are now small enough that random radiation particles bump-
ing on them can raise or lower their voltage for a significant enough amount of time for the error created
to propagate to other transistors and ultimately endanger the correct operation of at least a subsystem of
the chip. This phenomenon is usually apparent in memory chips and is referred to as "bit flip”, because
the radiation particle can flip a memory bit from 0 to 1 and vice versa and cause the system to read

wrong memory data. Normally the bit will flip back to its correct state and the error will be reversed
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on its own without causing further damage. However if a radiation event causes charge disturbance on

a critical system, product malfunction can occur[23].

2.1.2 Modeling of process variation - RAS events

In order for the industry to successfully mitigate the effects of the above-mentioned hardware faults,
multiple models have been studied and developed by the reliability community to quantify the effects

of these faults on key electrical characteristics of transistors and characterize the problems created by
these effects.

Firstly, the variation in the threshold voltage of transistors in a single wafer, that occurs because of
time-zero variability, is modeled after a Gaussian distribution around a mean value Vg, with a variance
c. Staying in agreement with this model, systematic variation can be modeled with a Gaussian distri-
bution with a shifted value of Vg, and same variance 6[2]. The mean Vy, represents the optimal value
for the transistor’s threshold variation. The variance ¢ can be calculated given a sufficient amount of

samples and is equal to: A
VT

R @.1)
where Ay is Pelgrom’s mismatch parameter[2][40], W is the nominal width of the transistor’s chan-
nel and L is the nominal length of the transistor’s channel. As we can see, by scaling down (decreasing
the dimensions of) the transistors, the variance will keep increasing, resulting in some transistors hav-
ing a threshold voltage either too high for our energy budget or too low to ensure correct performance.
Therefore, the industry has compromised by producing more transistors than it needs and introduc-
ing another metric called yield, which describes the percentage of transistors with threshold voltages

within accepted limits to the total number of transistors manufactured according to specific electrical

characteristics.
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Figure 2.2: MOS V};, is affected by both global and random variation modeled with a Gaussian
distribution[2]

Another way to model hardware faults is by taking into account their respective lifetimes, i.e. for

how long do they appear before corrective action is taken. Permanent faults, such as oxide wear-out,
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remain in the chip indefinitely and can sometimes be irreversible while transient faults caused by inter-
action with radiation particles disappear quite soon. This raises the subject of fault detection and error

manifestation.

Faults manifest themselves through hardware errors. Much like faults, errors can be permanent (com-
monly referred to as hard errors) and transient or soft errors, whose effects are temporary. However not
all faults lead to errors. Faults that occur on parts of a chip that are not mission critical, like a branch
predictor, can go unnoticed by the end-user, as, in our example, the system’s architecture is designed
to recover from a failed prediction. Moreover, errors are further classified based on the type of system
failure they cause. The two most concerning types of errors are errors that cause Silent Data Corrup-
tion (SDC) and Detected Unrecoverable Errors (DUE). For example, assuming an embedded platform
running a Fast Fourier Transform algorithm, an SDC error occurs when the algorithm produces wrong
results because of corrupted memory data. Contrariwise, a DU Error occurs when the platform shuts
down unexpectedly, potentially losing all computed data in the process. Both categories are frequently

described as system failures by the reliability community[20].

A system failure can be defined as ”a malfunction that causes the system to not meet its power,
correctness or performance guarantees”[20]. It has been established[39] that specific hardware faults
and their errors are tied with specific forms of failure. The industry has developed numerous metrics

to describe and control system failure. The most common are:

1. Failure In Time rate (F'I7,,.): Represents how often a device fails in its lifetime normalized

to a billion device hours[41].
2. Mean Time To Failure (MTTF): Represents the mean time of operation before a failure[20].

3. Mean Time Between Failures (MTBF): Represents the mean time of operation between two

consecutive system failures[20][42].

A characteristic curve constantly used by the industry is the ’bathtub” curve, which describes how a
system’s F'IT,,. correlates to a system’s operating time. Initially, due to the presence of hard errors
caused in the manufacturing process, a system will experience increased failure rates but later in its life,
commonly during consumer usage, the errors experienced should be the result of only random varia-
tion sources and any implemented RAS mechanism should mitigate their effects. As years of correct
operation pass, it is inevitable that aging mechanisms, such as BTI and TDDB, will be exacerbated by

the constant usage and failure rates will once again climb to a point where the system will be unusable.

2.2 RAS Mechanisms

In order to efficiently counter the effects faulty hardware imposes on embedded systems, the industry
has developed a variety of Reliability, Availability and Serviceability (RAS) techniques. A common
characteristic between all of them is that they are built around the necessity to tolerate trade-offs. In

simple terms, in order to implement a RAS mechanism necessary for the reliable operation of the chip
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in relation to the system’s operating time[39].

for as long as possible, the manufacturer trades either extra silicon area (redundancy mechanisms), or
power usage, or timing constraints. The most commonly used RAS schemes can be classified in those
targeting functional reliability i.e. correct operation on the binary level and those targeting parametric
reliability i.e. the mitigation of fluctuations of specific performance parameters from their expected

values.

Concerning functional reliability, a categorization of the most commonly used techniques was re-
cently done[43]. Firstly the technique of Error Correcting Codes (ECC)[20][44] has been largely em-
ployed to recover from soft errors distorting memory data. A second way to target functional reliability
is by utilizing modular redundancy techniques[45]. These techniques propose the introduction of nu-
merous similar (in the sense of their purpose on the system) modules, or systems of circuits, so that in
the case one is faulty, the others will "take its place” and correct operation will be ensured. Moreover,
in the case of defective memory blocks, permanently deactivating them is a legitimate method to en-
sure fault tolerance[46]. In the logic level, shadow latches[47] and instruction-level rollback[48][49]
can help mitigate timing violations and ensure correct operation in expense of small operating time

respectively. The idea of instruction-level rollback is utilized in the experimental part of this thesis.

In other cases, however, where power and timing constraints are more important than correct oper-
ation on the binary level, engineers have developed methods to tackle this parametric reliability while
also ensuring correct operation on the system level. While things are easier when the applied work-
load’s timing constraints and power necessities are known beforehand, modern embedded systems
usually deal with highly dynamic workloads where establishing a scheme to deal with the varying time
constraints and power usage can be extremely difficult. Nevertheless, there is an abundance of proposed
methods that aim to ensure system dependability. In the scope of this thesis, we discuss techniques that

aim to efficiently manage timing dependability while taking into account potential RAS interventions.
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Some notable examples of methods targeting timing dependability for dynamic workloads are real-
time task scheduling algorithms based on systematic feedback[50][51], PID-based algorithms[52] and
a Worst-Case Ready Queue (WCRQ) scheduling algorithm utilizing DVFS[53]. While managing dy-
namic workloads is a well documented area of study, dealing with RAS interventions at the same time
is an open field of research. In spite of utilizing voltage and frequency worst-case operating scenarios
to mitigate variability becoming an industry standard[54], modern approaches suggest that variating
margins and applying smarter algorithms is necessary to increase performance and minimize power
consumption[55][56]. With that in mind, our approach in this thesis is based on previous work[57]
that implements a PID-controlled DVFS scheme managing timing delays invoked by rollback-based
RAS mechanisms. It is augmented by taking into account the applied workload and ensuring system’s
dependability.

2.3 Dynamism in embedded systems

It is commonly accepted that state-of-the-art electronic systems are highly dynamic at both the hard-
ware and software level. At the hardware level, process variability introduces variation in the electrical
properties of transistors, such as threshold voltage V;;, leakage power and channel width, through the
mechanisms described above. In turn, temporal characteristics, such as delays and timing responses in
the Register Transfer Level, and spatial characteristics of the device, such as availability of memory
blocks and interconnect wires, are highly variating from designed values. While industry-standard RAS
mechanisms exploit redundancy and worst-case-scenario techniques to minimize these effects[20][45],
variability in hardware resources can still propagate through the abstraction layers and impact the end

user. Therefore, we are forced to recognize a dynamism in the hardware of the system.

To add to this dynamism, the software of the system also acts dynamically[58]. With either input
data fluctuating in time and leading to more computations needed, or user-activated processes causing
system resources to become temporarily unavailable, system performance is hindered. In the modern
era of connectivity, network resources also threaten the timing constraints of systems as third-party
devices impact the performance of systems[59]. A prime example of dynamic system usage is cross-
device computing, where hardware and network resources are allocated depending on the relevant

workload, and timing response of the entire system may be halted should a single device face a delay.

In conclusion, embedded systems may no longer consider their workloads as static with predictable
responses executed in controlled times. On the contrary, it is important they take into account the dy-
namism presented both from their hardware though RAS mechanisms and their software through user-
associated inputs, highly varying applications sharing resources simultaneously and network connec-
tions being impacted by third devices. Within this context, our scheme will run alongside an industry-
relevant application that simulates dynamic workload and attempts to harass the timing constraints of
the system. The controller is asked to ensure dependability of the system while consuming the least

possible energy.
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2.4 Power and temperature management efforts

It is established by now that process variability is exacerbated by rising system temperatures. In addi-
tion, power consumption is also heavily dependent on temperature. In fact, static power, a component
of overall power consumption that was negligible until 10 years ago, has an exponential relation to
the system’s temperature[24]. Therefore managing the system temperature and maintaining it in safe
levels has been of vital importance to the embedded industry especially since Dennard’s Scaling model
stopped applying to transistors. And while consumer desktops and laptops use fans and heat-sink tech-
niques to cool the processors, that option is not available for hand-held devices. Ultimately, we need

to look elsewhere for efficient management of temperatures.

Among other heavily used techniques, Dynamic Voltage and Frequency Scaling (DVFS) is a widely
used technique to manage the consumed power by switching the operating voltage and frequency of
the system. Dynamic power has a quadratic relation to the applied voltage multiplied by the operating
frequency, therefore it is immediately affected and heavily managed by DVFS. Moreover, static power,
lost by sub-threshold and gate leakage currents of the transistor, has a linear relation to the applied volt-
age but an exponential relation to the system temperature which affects static power drastically[24].The
fine granularity achieved with DVFS is vital for embedded systems that need to simultaneously save as
much energy as possible and ensure dependable performance. An interesting work based on the benefits
of DVFS is presented in [25]. AMD and Intel have also introduced power-aware methodologies with
”Cool’n’Quiet” and "SpeedStep ” technologies respectively[26][27]. At the same time, the Linux ker-
nel CPUFreq governor offers good examples in DVFES approaches, especially in the “on-demand” and
”conservative” modes of the governor[28]. In fact, we will compare our proposed PID-based scheme

with the power consumption of a realization of the ’conservative” governor.

In terms of efficient temperature management, research has focused on task scheduling schemes and
workload redistribution on multiple cores in order to meet thermal design specifications[29][30][31].
DVFS plays an important role here as well, as setting system voltage to lower levels can have sig-
nificant effects on system temperature[3][32]. A temperature prediction mechanism is mentioned in
the literature[33] as well as a PI controller for thermal management[34] and a thermal management
algorithm using Linux CPUFreq mechanisms on ARM[35]. We will be comparing our efforts with that
specific algorithm in Chapter 4. Regarding related work drawn from the industry, Intel Pentium 4 and

IBM PowerPC processors have already incorporated temperature management features[36][37].
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Chapter 3

A PID controller for ensuring system dependability

We will now proceed to introduce our PID-controlled DVFS scheme and critical aspects on:

a) how we simulate RAS interventions,
b) how we instantiate a variety of voltage and frequency pairs that resemble DVFS states of our system,
¢) how exactly our PID controller is set up and

d) we will present the target board on which we run our simulations.

Furthermore, we will discuss and explain how the implementation on a real system differs from
simulations and how our PID can handle these irregularities. Lastly, we will discuss an approach where

a PID-based DVFS scheme manages the board’s system temperature.

3.1 Presenting the HARPA application

Our work is based and expands on previous work[57] that first proposed a PID controller to manage
system dependability. The work was introduced as part of the European Commission’s FP7-612069-
HARPA project (HARnessing Performance variability)[60].

During the project, the board was subjected to elevated temperatures in order to exacerbate the man-
ifestation of Silent Data Corruption errors. When such errors were sensed, the RAS intervention would
perform a hot reboot” of the system, which was performed with a rollback to the latest point of the

computation process where the results were proven true. All of the work is presented in [61].

In this thesis we will present an application of the PID controller that will mitigate performance
variability of the target board when confronted with software-injected soft errors'. The PID controller
is instantiated on top of a spectrum sensing application developed by Thales[38], a realistic embedded
application from the communications domain whose deadline constraints are critical to the system. In
fact, the application is streaming in nature and performs signal characterization of the GSM channels.
The idea of the controller is to elevate the operating frequency of the board whenever there is a time
delay from the application’s deadlines. Therefore, the need to correctly monitor time delays introduced

when an error occurs and a rollback is performed is essential for our effort.

! These software-injected errors mimic transient errors that could occur if for example our platform was operating in high
temperatures or on an environment where particle strikes were possible.
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3.1.1 RAS Events - Rollback

To that end, we introduce a methodology to correctly identify when an error has occurred and inter-
vene with a rollback mechanism to the last correct operating point. Firstly, the application in question
runs at the board’s nominal operating frequency f,.,, under error-free conditions and a signature con-
figuration collects data from the produced results in certain intervals. It is in the application’s nature
that at certain points of its run, computations can be repeated if needed. In particular, the application
can repeat its sensing algorithm for different GSM channels. That allows for rollback interventions.
Data of the error-free run are collected in a file containing timestamps and application-relevant sig-
natures, called ”golden traces”. Next, under normal system operation, signatures of the run are again
collected and compared to the golden trace at specific time intervals. The data are stored in a file called

”signatures.txt”. The size of the file is less than 2 kilobytes.

Now that the correct results of the application are known to the RAS mechanism, a normal run under
PID-controlled DVFS switches can start. An error is sensed when the results computed at the afore-
mentioned specific intervals do not produce the same signature as in the error-free run. We consider
the only way that is possible to be a hardware error. To mitigate therefore faulty system operation and
ensure functional correctness, we make a rollback to the last correctly computed signature and restart
the application from the specific checkpoint. This procedure, however, introduces delay in the overall

run and we now run the risk of missing the application’s final deadline.

- -){ Signatures )— -
I

! NXP Platform

1
SN B

Error Detected

Checkpoint | = = -
= 1

Rollback |« = = =

Application Code Comparator

Golden Trace

-6 -

Application Domain Memory Domain

Figure 3.1: The configuration of our RAS mechanism. The system checks for correct signatures against
the golden trace and performs a rollback otherwise.

At this point, we introduce a variable our configuration uses to handle time delays.

Definition. Slack (s[n]) is the difference in execution time for a specific task between an error-free

execution, operating at nominal frequency fy,om, and the current execution at frequency f[n].

sn] = tres — t[n] (3.1)
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where t,.. ¢ specifies the reference time and ¢[n] time execution at current frequency. Therefore, a time
delay is simulated with a negative value for slack which means that the board needs to speed up in
order to catch up while positive slack suggests that we are ahead in time and can therefore slow down
in order to consume the least amount of energy. It is evident that optimal use of the scheme will keep

the value of slack at O at all times.

3.1.2 Custom DVFS driver by Thales

It is apparent by now that the need to switch between multiple values for frequency and voltage is
key for our work. However, the default DVFS availability for our target board, the iMX6Q from NXP,
is limited. It only offers the nominal frequency of 792 MHz, a slow frequency of 396 MHz and a fast
frequency step at 996 MHz. This configuration does not help with our experiments. On the other hand,
the board’s architecture allows for a maximum of 50 frequency points ranging from 396 MHz to 996
MHz. These points are not accessible with the default drivers of the board. That is why we use a custom
driver developed by THALES that enables as many points as we want (up to 50) and handles the DVFS
switches. A study on how many points we should choose for optimal performance of our PID can be

found later on this Chapter.

We will now present the chosen DVFS points we will use for our experiments. The points used for
mitigating the effects of process variability through RAS interventions and maintaining system depend-
ability under excess workload can be found in Table 3.1. For the temperature management experiments
we use a different set of points as we want to have specific steps for the applied voltage and frequency.

Therefore we choose the points presented in Table 3.2 with a step of around 50 MHz and 25 mV.

3.1.3 PID controller

We will now present the PID controller that decides proper DVFS switches depending on the value
of slack. The name ”PID” is derived from the initials of ”Proportional - Integral - Derivative” controller

which describes the following equation used by this type of controller:

mn] = kps[n] + (s[n] — s[n —1])kq+ (m[n — 1] + s[n]k;) (3.2)
——
proportional differential integral

where s[n] is defined in Equation 3.1. The proportional part, that is directly associated with the gain &,
produces a result that is proportional to the slack measurement. The integral part, described with the
gain k;, contains previous values of the value computed by the PID, therefore constitutes the “memory”
of the scheme. The derivative part, modeled with the gain k , takes into account the slope of the error
and acts as the proactive part of the equation. The computed value, set here as m/[n], is the frequency
multiplier that will be quantized and rounded towards the closest value that represents a DVFS point

in our system.

The PID controller is the industry standard in the systems engineering industry and in workplaces

where controllers need to ensure dependability and safety of the user, such as factories and refineries.
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Table 3.1: Set of 22 DVFS points for dependability experiments. Highlighted are the default points.

Available DVFS Levels

J (MHz)  Vaq (V)
396 0.975
424 0.975
444 1.000
480 1.025
504 1.050
528 1.050
564 1.075
588 1.075
612 1.100
648 1.125
672 1.125
696 1.150
732 1.150
756 1.150
792 1.175
816 1.200
840 1.200
864 1.225
900 1.225
924 1.250
956 1.250
996 1.275

Table 3.2: Set of 13 DVFS points for temperature management experiments. Highlighted are the de-

fault points.

Available DVES levels
J (MHz) Vg4 (V)

396 0.975
444 1.000
492 1.025
544 1.050
588 1.075
636 1.100
696 1.125
744 1.150
792 1.175
840 1.200
888 1.225
936 1.250
996 1.275

Adding to this, is the easy-to-use nature of the equation. It can be understood and developed by engi-
neers easily and is to this day a very reliable controller, despite many more sophisticated controllers
already designed and produced. Next, follow some key characteristics of the function of a PID con-
troller, modified to suit the purposes of our experiments.
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The percentage of how much the error surpasses the target value when the PID tries to converge
it to the target value is called overshoot. In our case, overshoot describes how faster we are operating
compared to the error-free run, therefore we are wasting energy. It is vital in this sense to keep overshoot

as small as possible and preferably eliminate it.

The time it takes for slack to converge to its target value, within a limit of 10%, from the point where
the error first occurred is called settling time. Keeping a small settling time will mean the system reacts
fast and mitigates errors quickly, therefore is good practice for our system. However, researchers in
general find out that minimizing overshoot and settling time at the same time can be quite challenging
and is often a matter of trade-offs. Accomplishing both can be done by fine-tuning the PID gains. Our
work is presented in Figure 3.2, where we can see various combinations of the gains and select the one

with the smallest overshoot and settling time.
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Figure 3.2: Tuning the PID gains to minimize overshoot and settling time

Another point to be noticed in our implementation: the quantization we perform on the frequency
multiplier, although necessary for software solutions such as ours, takes away from the analog nature
of the PID and introduces limitations to our scheme. As specific frequencies have specific effects on
slack (assuming same workload), a need to introduce as many steps as possible arises. We have chosen
to compare a varying number of DVFS points against the settling time they can accomplish. In other
words, given that we are able to change the number of DVFS points with our custom driver, we try to
achieve maximum performance for our scheme. The results of 10 measurements per number of points

are presented in Figure 3.3 for a 95% confidence interval.

We notice that the default configuration of the board with 3 DVFES steps cannot achieve any settling
of slack, as frequency will be either too fast or too slow. We also notice that after we pass 17 points,
settling time is barely affected because we have achieved the minimum granularity needed for our

experiments. In conclusion, we select to choose at least 17 points for our dependability experiments,
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Figure 3.3: Number of DVFS points compared to the mean settling time they can achieve for a 95%
confidence interval.

while noting that the 13 points, chosen for the temperature experiments, also achieve acceptable settling

times.

3.1.4 Energy estimations

After presenting and discussing the performance of our PID-controlled DVFS mechanism for various
experiments, we intend to compare our work with novel industry-related approaches that aim to accom-
plish the same goals. Given how important energy consumption is for modern embedded systems, it
is unavoidable that we compare the energy consumption of our effort and the competing approach, at
least for the dependability experiments. It is common knowledge that any effort to challenge a well
established approach must always stay within the energy budget of that approach. Therefore, we need

to make some clarifications on how we model the consumed system power.

We take into account both the dynamic power, consumed by wires and transistors in the Register
Transfer Level of the chip, and the static power, leaked by the sub-threshold current of the transistors

of the chip and add them. The equation used to model the dynamic power consumption is:
Pyyn[n] = aCVjyln] f[n] (3.3)

where « is the activity factor, represents the probability that the circuit node transitions from 0 to 1
and depends on the workload. C' is the capacitance coming from the wires and transistors in a circuit
and Vyg[n], f[n] stand for the supply voltage and frequency at the current instance[24]. All constants
are kept the same for all experiments and therefore do not affect the result. In addition, static power is
modeled with:

—Vin

Pstatic[n] = Vdd[n]loe nvr (3.4)
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where I is the sub-threshold leakage, 7 is a technology parameter and V- is the thermal voltage. There-
fore in static power we also model a linear dependence with voltage supply[24]. Finally, total energy
consumption for all discrete n steps is the sum of static and dynamic components (Equation 3.6) can

be calculated as in Equation 3.5.

T m=n

E = P(t)dt = Plny,|At[ng,] = Plni]Ating] + Plng]At[ng] + ... + P[n,|At[n,] (3.5)
B 1

m=

where

P[n] = Psmtic[n] + den [n] (36)

At this point, we need to point out that while our energy estimations take into account dynamic and
static power, they do not account for the energy overhead required to switch between 2 DVFS points. It
is our understanding that the bigger the difference between the 2 points, the higher the overhead, how-
ever, calculations based on this overhead are beyond the scope of this thesis since we lacked sufficient
data for such computations.

3.2 Freescale board and experimental setup

We are now ready to present the target board we use to conduct our experiments. It is the iMX6Q-
SABRE-SD developed by Freescale and NXP[6]. It has a quad-core ARM-CORTEX-A9 with nominal
frequency at 792 MHz. The board runs a Linux kernel, version 3.0.35. The boot-loading sequence is
run from an SD card. Among other sensors of the board, we utilize the temperature monitor located on

the CPU[62]. Detailed instructions to set up the connection and the board can be found in Appendix A.
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Figure 3.4: The iMX6Q board
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3.2.1 Ringing

At this point, we should stress the benefits of our work being tested and run on a real platform and
distinguish ourselves with simulations run on a computer. Our scheme takes into account all the side
effects a real-world application faces and aims to handle them. One of those effects is the fact that when
running a computation-heavy and time sensitive application such as ours one needs to take into con-
sideration that the estimated execution time will be affected by other processes of the operating system
such as data transfers through the SSH connection, memory I/O, stack calls etc. Ethernet connections
and data traveling through them can also add small delays. Therefore, when comparing the timestamps
in our application we will see variation around the expected value which represents small workload
applied by the OS.

In some cases, the OS may need to set up another background process to satisfy an SSH connection,
for example, which will make slack slightly more negative. In other cases, the OS closes processes that
have ended, thus freeing hardware sources for our main application which makes slack slightly more
positive. In both cases, the PID is monitoring slack at all times and makes decisions on whether or not

to switch to a different frequency as to return slack close to 0.
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Figure 3.5: Slack forced close to 0 Figure 3.6: Slack without strict forcing to 0
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Figure 3.7: PID decisions: Ringing Figure 3.8: PID decisions: Minimal Ringing

As we can see in Figure 3.6, slack variates slightly from 0 either towards negative or positive values.
Depending on the configuration of the PID gains, we can choose how reactive the controller is towards
these variations. In Figures 3.5 and 3.7 we see an approach that mitigates these variations and keeps
slack close to 0 at the expense of more DVFS switches. These DVFES switches around the nominal

frequency, that only serve the purpose of keeping slack close to 0, are called ringing effect and are a
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“necessary evil” of our scheme that arises from the real-world nature of our effort. Nevertheless, it is
up to the user to decide how evident ringing will be. In applications where slack can be within a large
margin of its target value without problem, ringing can be minimal as depicted in Figure 3.8. For the

remainder of this thesis we intend to use a very reactive PID similar to the one in Figure 3.7.

3.2.2 Thermal management on the Freescale board

As discussed earlier, we intend to test how a PID-controlled DVFS scheme can handle system tem-
perature. The idea, that is based in discussions in Chapter 2, is to operate as fast as possible without
surpassing a specific temperature or act as an emergency mechanism to return the system temperature

to safe levels in case the system has overheated.

We monitor the temperature of our quad-core CPU with the on-board temperature monitor[62] which
provides a mean value of the temperature of all cores. The developers of the board deem that this ap-
proximation is enough for our type of experiments[62], especially because there is a metal lid on top of
the CPU which prevents the creation of thermal hot-spots and evens out the temperature. The command

used to read the temperature monitor through the OS is:

cat /sys/class/thermal/thermal_zone(0/temp

For clarification, this part of our work is not associated with the HARPA application. Instead, the
PID controller is instantiated around the recorded temperature. We keep using the custom DVFS driver
of Thales, however, as it is tightly connected with our ability to efficiently control the temperature
through the DVFS points presented in Table 3.2. After a target temperature 7}, is selected by the user,

the system temperature is monitored through the sensor and an error is calculated:
eln] = Tor — T'[0] (3.7

All of this leads to a new equation for the PID controller with new k,,, k;, k4 gains different from the

ones used in the dependability analysis:

mln] = kpeln] + (e[n] —e[n —1])ks+ (m[n — 1] + e[n]k;) (3.8)
~—— ~
proportional differential integral

where t[n] symbolizes the error between the recorded temperature and the target temperature. A full

temperature profile for our board is part of our future work and beyond the scope of this thesis.
The workload that is used to elevate the temperature of our board is developed by THALES and

performs power analysis of GSM channels similarly to the HARPA application. It is instantiated on all
4 cores to elevate the temperature as much as possible.
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Chapter 4

Experimental results

4.1 Mitigating the effects of process variability

The first type of experiments we present is how DVFS mitigates the effects of RAS-induced rollback
delays. Taking into consideration the mechanism presented in Chapter 3, when an error is injected, a
delay of 1 Sample Count Period is monitored by slack and the PID boosts the operating frequency in

order to speed up the application and catch up.
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Figure 4.2: Frequency over time after rollback
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Figure 4.4: Total energy consumed for 3 rollbacks

In Figure 4.1 we have pointed to the points where we injected the errors and caused the delay.
We notice through the Figure 4.2 that the PID immediately switches to the maximum frequency for
as long as necessary for the slack to return to 0 as fast as possible. We should note that it is the user’s
choice to tune the gains of the PID for minimum settling time and maximum performance and tolerate
possibly bigger energy consumption. In another configuration, we could tolerate bigger settling times
and therefore worse performance but further minimize the energy consumed during the transition period
of the controller. In any case, it is a matter of trade-offs and slower response times do not guarantee
smeller energy consumption. In Figure 4.3 we present the exact pairs of frequency and voltage the PID
chose to switch to. In Figure 4.4 we present the total energy consumed by the system for the time frame

and the error rate depicted in Figure 4.1 based on the Equation 3.5.

4.1.1 Minimum MTBF

At this point, it is evident that the PID-controlled DVFS scheme we propose has a significant limita-
tion in how fast it can respond to errors. Given that the system’s maximum frequency is 996 MHz there

is a certain minimum Mean Time Between Failure (MTBF) the system can handle, in which the PID
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barely manages to converge slack to zero while the frequency is unavoidably set to 996 MHz due to

constant rollbacks. This operation is presented in Figures 4.5 and 4.6, where we can see that while the
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system frequency is at maximum 996 MHz, the slack only reaches zero before a new rollback causes

it to fall again.

In this scenario, the dependability of the system is challenged, as the proposed scheme fails to meet
the deadline constraints while in the transitional period. However, it needs to be pointed out that ac-
celerated tests under elevated temperatures conducted on the board have suggested that the average
MTBEF of the board is higher than 10°s[61]. Therefore, for operating in normal temperatures and volt-
age levels we can expect significantly lower error rates. That is why the errors discussed here are in

fact software-injected and this scenario is only an extreme case.

In Figures 4.7 and 4.8, we present an operation where the rate at which we were injecting errors was
much higher than the system could handle. That led slack to keep falling constantly to more negative

values, despite running at the highest frequency, and dependability of the system was not ensured.

4.2 Managing dependability under extra workload stress

The next set of experiments we conducted aims to investigate how the system responds to extra
applied workload that introduces performance variability, in the sense that the strict deadline constraints
may not be met by the system. Therefore, the PID controller need to adjust the operating frequency to
satisfy both workloads and meet the deadlines by keeping slack close to 0. An easy solution for our
problems would be to set the frequency to the highest value and make slack positive while at the same
time spending unnecessary energy. However, we make an effort to not waste excessive energy as the
PID will find the minimum operating frequency to satisfy both workloads. At this type of experiments
we assume error-free conditions, however, should rollbacks occur, PID operation is not affected and
dependability will be ultimately managed.

As we can see in Figures 4.9 and 4.10, when the extra workload is applied it creates a negative slack
that forces the PID to boost the frequency to higher levels. Ultimately, slack settles near zero at 894
MHZz as this is the frequency the PID found to be able to handle both workloads. When the workload

45



1 T T

Workload Workload
remgved removed

4L Work‘load Work‘load
applied applied

Slack (#Sample Count Period)
o
[¢)]

0 50 100 150 200
Time (#Sample Count Period)

Figure 4.9: Slack over time for extra workload

1000

900 - 7

800 E

700 7

600 - 7

Frequency (MHz)

500 - 7

400 - w | ]
0 50 100 150 200

Time (#Sample Count Period)

Figure 4.10: Frequency over time for extra workload

1000

x DVFS Points
o Nominal Frequency
900 - x 7

XX

800 o i

XX

700 - ® b

600 - 7

Frequency (MHz)

500 .

400

1000 1050 1100 1150 1200 1250
Voltage (mV)

Figure 4.11: DVFS points used by the PID for extra workload

is removed, slack immediately is raised to positive values because the system operates in unnecessary
high frequency levels. In turn, the PID will slowly slow down to the nominal frequency returning slack

to 0 at the same time, thus saving power. The decisions of the PID are presented in Figure 4.11 and the
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Figure 4.12: Total energy spent under workload stress

total energy consumed for the duration of 2 consecutive experiments is presented in Figure 4.12.

4.3 Comparison with the ”conservative” Linux CPUFreq governor

We move on to discuss how our scheme compares to novel, industry-related techniques that perform
DVF scaling to meet timing constraints and handle workload-related variability. The algorithm we
challenge ourselves with is based on the CPUFreq governor of the Linux kernel, and more specifically
the “conservative” mode of the governor[28]. A flavor of the governor is implemented for the target

board and presented below.

The main idea behind the ”conservative” governor is to perform the minimum required, cautious
DVFS on the system depending on the delays it faces. Because of that, it will perform a graceful DVFS,
changing to neighboring frequencies and testing whether this change was enough. It takes energy con-
sumption into account and heavily tries to minimize it. In fact, all other modes of the Linux CPUFreq

governor can be outperformed easily either in terms of power consumption or performance.

As per the suggestions of the manual[28], we set key values of the algorithm as follows:

1. SamplingRate: the rate at which we check the slack/CPU usage. It is usually measured in mi-
croseconds (usec) and has a value of 10000 or 0.01 secs. In our case, we have selected a value
of 1 #Sample Count Period or Tnom, which is based on the CPU’s performance at 792 MHz.

2. FreqStep: the percentage of maximum system frequency that describes the step with which the
governor moves to the higher or lower frequencies. It is set by default at 5% but given the ca-
pabilities of our custom driver we have selected a step of 2.5% of the maximum frequency or

approximately 25 MHz.

3. Scaling down factor: the rate at which we perform DVFS switches. In our case we have set it
equal to the SamplingRate, which means we perform any necessary DVFS switches every time

we check the slack.
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4. UpThreshold: the upper limit of slack at which the governor will need to decrease the frequency.
We have set it at 15% of target slack or 0.15 #Sample Count Periods.

5. DownThreshold: the lower limit of slack at which the governor will need to increase the fre-
quency. We have set it at -15% of target slack or -0.15 #Sample Count Periods. Therefore, if the
slack remains between the UpThreshold and the DownThreshold the governor will consider that

there is no workload and return the frequency to nominal.

A comparison of the CPUFreq governor and our PID is presented below.
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Figure 4.13: Slack comparison for the PID and the CPUFreq governor
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Figure 4.14: Frequency comparison for the PID and the CPUFreq governor

We notice in Figures 4.13 and 4.14 that the PID handles the injected errors faster that the governor,
as the smooth transition to higher frequencies of the governor gives a time advantage to the PID that
jumps to the necessary frequency immediately. We notice that it takes 6 #Sample Count Periods for
the PID to return slack to 0, while the governor needs specifically 9, resulting in a performance gain
of 33.3%. In Figure 4.15, we notice that the governor accesses more DVFES points in order to mitigate

the errors while the PID stays in the necessary frequencies. This leads to the total energy consumed
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Figure 4.16: Total energy spent by the PID and the CPUFreq governor

by the two methodologies to be almost the same, with any difference noticed being negligible, as seen
in Figure 4.16. Therefore, our scheme achieves better performance while remaining within the energy

budget of the governor.

4.4 Thermal management using DVFS

Utilizing the board’s temperature sensor, we proceed with expanding the use of a PID-controlled
DVEFS idea to control the board’s temperature and keep it within safe limits. We apply a computation-
heavy workload on all cores to elevate the temperature of the system and monitor it every 10 seconds’.

We also change our DVFS configuration to the one presented in Table 3.2.

We have assumed 2 different uses of our scheme. In the first one, the PID will act as an emergency
mechanism and will attempt to lower the system’s temperature as fast as possible from a dangerously

high temperature to a preselected target temperature that corresponds to a ’safe-to-operate-in” tempera-

! A full-scale timing analysis of how often we should check the temperature and how often we should change DVFS states
is beyond the scope of this thesis and part of our future work
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ture. In the second use, the PID will always remain active and will attempt to not allow the temperature
to exceed a preselected upper temperature which corresponds to the highest safe temperature of the

system.
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Figure 4.17: PID-controlled DVFS acting as cooling
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Figure 4.18: Voltage applied by PID-controlled DVEFS acting as cooling

A demonstration of the capabilities of the PID controller is presented in Figure 4.17. We initialize
the PID at around 650 seconds after the system was running at nominal voltage and set the target tem-
perature at 50°C', which we already knew it had surpassed. From Figure 4.18, we see that the PID
immediately decreases the applied voltage to decrease the system temperature as fast as possible. The
PID ultimately decides that in order to remain at 50°C, the optimal voltage is around 1 Volt. The per-
formance of the PID for the second case is best demonstrated against an already published method to

control system temperature by Zhou et al.[35].
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4.4.1 Comparison with a temperature manager

Zhou et al.[35] proposed a temperature man-

ager to keep the system’s temperature from
. . . Start
exceeding a specific target temperature. Their
NO
\ 4

method was instantiated on the same board we

conduct our own experiments which allows for
. . . X . Measure Tcur
direct comparisons and replicating their results.

A flow chart of their algorithm is presented in
Figure 4.19.

Next higher
cooling state
Next lower cooling
state

The main idea behind their algorithm is to
monitor the system temperature using the on-
board sensor and compare it with a target temper-

ature T3, which they have preselected. When the
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Figure 4.20: PID versus thermal manager by Zhou et al[35].

In Figure 4.20, we can clearly see that both schemes can efficiently prevent the system temperature
from exceeding the T}, of 50°C. However, it should be pointed out that the thermal manager is not
designed to act as an emergency mechanism to cool down the CPU. If the system ever finds itself in

a temperature higher than the 7},,, the algorithm cannot be applied. This is due to the design of the
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Figure 4.21: Voltage decisions by PID and thermal manager.

algorithm and is not an oversight of the authors. This proves that the PID-controlled DVEFS is a more
generic algorithm than the thermal manager and can act both as a proactive, preventing mechanism
to keep temperature at safe levels and as a reactive, emergency mechanism to cool down the CPU to

acceptable temperatures.
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Chapter 5

Conclusion and Future Work

In this thesis we presented a PID controller that utilizes DVFS techniques to handle timing constraints
in embedded systems caused by either RAS-related rollback events or dynamic workloads. In both cases
we showed that the PID controller can mitigate their effects while at the same time being aware of the
consumed energy. We compared our controller with a version of industry-standard, workload-aware
Linux kernel governor, which is widely used in CPUs worldwide. We showed that while managing to

stay within the governor’s energy budget we achieve 33.3% better performance gains.

Moreover, we presented a version of the PID controller that aims to manage system temperature. We
showed its capabilities both as an emergency cooling mechanism and as a preventing mechanism that
will stop the CPU from overheating while operating at the maximum possible frequency. We compared
with previously published techniques and managed to show that the PID acts as a generalization of the

proposed schemes.

The key point of this thesis is that it does not limit itself to simulations of the proposed scheme but
rather uses a real-world embedded platform to test itself on. This provides experimental data for future

researchers.

—Cooling State 1
75 —Cooling State 2 [

0 200 400 600 800
Time (s)

Figure 5.1: Cooling State 1 represents all 4 cores being active where Cooling State 2 represents a hot-
plug mechanism with one CPU core inactive.
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There still are things to be tested and documented regarding a PID-controlled DVFS scheme that will
manage system temperature. Firstly, there should be a full temperature profile of the iMX6Q board de-
picting temperatures and voltages that cause them for a number of workloads. Secondly, an integration
of the PID controller with other state-of-the-art techniques, such as CPU hot-plug, could be studied.
As seen in Figure 5.1, PID-based temperature management in parallel with CPU hot-plug presents an

interesting topic for scientific research.

Furthermore, there should be a recalculation of the above mentioned energy consumptions adding
power lost during the DVFS switch. This will provide better energy comparisons. Finally, a timing
analysis of the PID temperature controller should be studied discussing how often we should perform

DVFEFS switches given that temperature takes a while to dissipate.
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Appendix A

Setting up the NXP Board

In this chapter we present the exact steps we followed to establish an SSH connection between
the laptop (hereafter mentioned as “’the host”) running Ubuntu Linux 16.04 LTS and the . MX6Quad
SABRE-SD NXP board[6] (hereafter mentioned as “’the target”). We start with building a working SD
card image that contains the bootloading sequence built by the Linux Target Image Builder (LTIB)!.
We have also acquired the root file system (along with all relevant BSP files) that will be loaded on the
target and the kernel image with a working DVFS driver from Thales[38] that should run on the target.

A.1 Description of the experimental setup

Our main goal here is to test the application on an embedded platform and specifically, for experi-
mental purposes, on the NXP board. Moreover, the application needs to run on top of a Linux operating
system (and not on the ARM processor’s bare metal) since it performs numerous system calls. There-
fore the board should have a Linux kernel and a root file system at its disposal. Moreover it needs a
bootloader binary that implements a bootloading sequence which will identify the kernel and the file
system. Using the LTIB tool and taking into consideration the official NXP user guide[64], we build
the Linux 3.0.35 kernel configured specifically for the ARM architecture and our target board. Addi-
tionally, we create an SD card image that when written into an SD card, using the instructions below,

will serve as a bootloader.

At this point we need to address that it is not appropriate to permanently mount neither the kernel nor
the file system onto the board. Such an approach would require valuable hardware resources (processing
time from our ARM processor and physical memory from the board) which are limited on our target
board. To this end we choose to establish a TFTP connection’ between the board and the host laptop

so that the bootloader can find the kernel from a directory on the host laptop.

Finally we use the same implementation idea to set up the board’s file system. We will treat it as a file
system to be exported from the host laptop to the board using the NFS protocol. The NFS protocol al-
lows a computer client(in our case the board) to access a file system that is physically located on a com-

puter server(in our case the laptop) over a computer network(in our case an Ethernet connection)[65].

! The Linux Target Image builder, or LTIB for short, is an open-source tool mainly used to develop and deploy Board Sup-
port Packages, which include Linux kernels and bootloaders as well as numerous other packages, for a variety of architectures
including ARM.[63]

2 The Trivial File Transfer Protocol is a well established method to transfer files between systems. It is easy to implement
and its only drawback might be security of the transfer.
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We should note that since both host laptop and target board are computing devices, a crossover Ethernet

cable is required to allow bidirectional file transfer between the board and the laptop.

We can, therefore, present the exact steps of the booting up procedure from switching on the board

to running commands on the board’s terminal.

1. When switching on the board, the bootloading binary in the SD card starts to execute itself.

2. It is set to search for the kernel image binary at a specific directory on the host. That binary is
in fact the binary form of the Linux 3.0.35 kernel that we created with LTIB. It is also necessary
that the TFTP connection between the board and the laptop is already established, otherwise the

bootloader will not locate the relevant binary.

3. While booting, the kernel is set to look for a file system at the /tools/rootfs directory of the laptop.
This needs to be a file system already exported through the NFS protocol. This file system was
created with the LTIB tool. In order for both the host laptop and the target board to be able to read,
write and execute files and executables on this file system, we will need to pay close attention to

the permissions of the /tools/rootfs directory and its subdirectories.

A.2 SD card creation, TFTP and NFS setup, connecting to the board

Let us now go into detail in the above steps of the experintal setup. First, one should run the follow-

ing commands on a terminal:

$> sudo apt-get update
$> sudo apt-get upgrade

These commands will keep his system up-to-date and make sure he or she does not run into any com-

patibility errors.

The first thing we need to do is create the SD card from which the target will boot. This image was
created by LTIB specifically for the target board. We should insert an empty SD card of at least 8§ GB
into the host laptop and then open a terminal and run the command:

$> Isblk
Y ou should identify the name of the SD card. In our case it was ”’sdb”. Y ou may now change to the direc-
tory where the -already prebuilt by LTIB binary- sdcard _image dvfs working NFS TFTBOOT.img

resides and create the SD card with the command:

$> sudo dd if=sdcard_image dvfs_working NFS TFTBOOT of=/dev/sdb bs=4M
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Note: The of=/dev/sdb” part of the command may vary from system to system and that is why
we identified the name of the SD card with the ”Isblk” command. This command is going to take a lot

of time to run and it does not provide feedback about the progress on the terminal.

We now need to set up a TFTP server so that the board can find and read the u/mage file that contains

the Linux kernel image that the board will run. We set up the server by running the following command:

$> sudo apt-get install xinetd tftpd tftp

Then we should create a file /etc/xinetd.d/tfip with a text editor and put in the following entry:

service tftp

{

protocol =udp

port =69

socket type = dgram

wait =yes

user = nobody

server = /usr/sbin/in.tftpd

server_args = /tftpboot
disable =no

}

We now have to create the directory that we declared at the server args parameter, in our case /#fip-

boot, and change it’s permissions so that any user can access it.

$> sudo mkdir /tftpboot
$> sudo chmod -R 777 /tftpboot

We may now copy the ulmage file to the /tfipboot directory and the board will be able to access it
and boot the image.

Finally we need to restart the xinetd service’:
$> sudo service xinetd start
or
$> sudo service xinetd restart

or

$> sudo /etc/init.d/xinetd restart

3 The xinetd service, or extended internet services daemon as it is formally known, is a process that basically acts as a
super-server because it listens to all service ports listed in its configuration file and when a request comes in it opens the
appropriate server.[66]
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At this point our OS on the target has a working kernel but no root file system to work with. It
is already set to search for a file system on the host at the specific location /fools/rootfs/ that it will
use through the Ethernet connection. Therefore we should set up the location on the host. We start by
extracting the rootfs.tar.gz. This is the prebuilt file system created with LTIB. It will contain a folder
called rootfs. This can be done by simply clicking on the tar file and pressing ”Extract” when the file

manager pops up.
We will now create a directory /fools.
$> sudo mkdir /tools

We need to change the ownership of the /fools directory from root to the user. This would also give

access to the target’s OS. This is done with the command:
$> sudo chown -R <user> /tools/
We will also give read, write and executable access to the directory.
$> sudo chmod -R 777 /tools
We can now copy the rootfs folder we extracted in the /fools folder.
$> sudo cp -a <the_folder_that_rootfs_is_in>/rootfs /tools/
You should now have a folder /fools/rootfs/ that is owned by the user and not by root. Try to ver-
ify that you have successfully executed the above by creating a directory or a txt file without using the
sudo command. In any other case use the ”chmod” command to change the permissions of the directory.
Note: We will later realise that the SSH server” of the target’s OS needs a specific folder of the rootfs
directory to not be writable,readable and executable by everyone. Therefore it is a good idea to change
the permissions of the folder. You may use the command:
$> sudo chmod -R 444 /tools/rootfs/var/empty/

Now that we have our file system ready we need to change some options in the /tools/rootfs/etc/ssh/
sshd_config so that we can connect through SSH to the board. Specifically we need to comment in and

modify the following options:

PermitRootLogin yes
IgnoreUserKnownHosts no

* The SSH protocol ensures secure transfer of data between a server and a client using key or password verification. In our
case the laptop is the client and the board is the server we connect to. However, the data transfer is bidirectional.[67]
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We now have our directories set, with the right permissions, ready to be exported. We should inform
the host’s NFS server that the folder /fools/rootfs is allowed to be exported. By opening with a text
editor the /etc/exports file we add the following line at the end of the file:

/tools/rootfs *(rw,no_root squash)

This line adds the file system located in the /fools/rootfs directory in the list of file systems that can be
exported to NFS clients. However we still need to initialize the master export table” with the contents
of the /etc/exports file.[68] Therefore after we close the file we can run the command:

$> sudo exportfs -a

We are now ready to set the Ethernet connection through which the target will use the file system we
set up earlier. The board is using default static IP addresses. The IP of the board is set at 192.168.0.30
and the IP of the host should be set at 192.168.0.10. We need to edit a new ethernet connection to con-

nect to the board. We should open with an editor the /etc/network/interfaces file and add the following

lines:
iface <name of ethernet port> inet static
address 192.168.0.10
netmask 255.255.255.0
gateway 255.255.255.0
To find out the name of your ethernet port you may run the command:
$> ifconfig

Usually it is ”eth0” or, in our case, “enp2s0f0”.

Right after we connect the Ethernet cable and everytime we connect to the board, we should run the

following command:

$> sudo ifup <name_of ethernet_port>

We should now be able to connect to the board with an SSH connection. We need to switch on the

board, wait for about 60 seconds and from the same terminal we executed the above command run:

$> ssh root@192.168.0.30

The password is root.

If something has gone wrong and after following the instructions you still were not able to connect

with SSH to the board we offer some advice that could potentially help you.
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You can use the following commands to install the PuTTY client® and establish a serial connection
to the board so that you will be able to see the progress of the booting-up process and identify where

the exact problem is.

First of all, after PuTTY has installed successfully, you may open up a terminal and run the following

commands:

$> sudo chmod a+wrx /dev/ttyUSB0
$> sudo ifup <name_of ethernet_port>

Then you should proceed by opening up the client with sudo privileges ($=> sudo putty) and choosing
the option ”Serial”. Afterwards, at serial line type ”/dev/ttyUSB0” and finally select a speed of 115200.
Y ou should now be able to connect to the board. You will be able to see the booting process and identify

at which point the error occurs.

If you try to connect via SSH and the board does not recognize the password root”, you can fol-
low these steps to ensure that the password is set correctly.Y ou may connect to the board with a serial
connection via PuTTY with the procedure described above. Then proceed to execute the following

command:
$> passwd root

This command allows you to change the password of the “root” user. Type in the new password and
verify that you have commented-in the following options in the /etc/ssh/sshd config file:

PermitRootLogin yes
IgnoreUserKnownHosts no

You should now be able to log in as root via SSH.

A.3 Cross-Compiling the application

At this point you should be able to connect to the board via SSH and navigate its file system. We will
now move on to the configuration of the host laptop in order to be able to cross-compile the application

and successfully run it on the board.

In order to successfully run the application we need a certain version of C libraries and the correct
version of the gcc compilers for compatibility reasons. That means that the pre-built libraries and com-
pilers that come with modern standard installations of Linux distributions are incompatible. We used

the Linaro cross-compiler toolchain with gcc version 4.6.2 and glibc® version 2.13. The glibc version

> PuTTY is an open-source SSH and telnet client developed for various operating systems.[69]
¢ The glibc library, or the GNU C library as it is formally known, is the most widely used collection of the “standard
C libraries” used on a Linux system. It is considered a low-level prerequisite when using libraries in an application and is
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in particular must completely match the glibc version on the board. Otherwise the application will not
find compatible linkers and dynamic loaders as well as compatible libraries included in the source code
and ultimately not run, despite the compilation on the laptop being successful. Another thing we need
to do in preparation is move the HARPA application found in Bitbucket repositories to a directory that
we have read and write permissions. For example we are going to use the laptop’s Desktop. In this case

we set, for reference reasons, a macro as:

$HARPA = /directory/to/laptop’s/Desktop/harpa.git

The first thing we need to do is cross-compile the DVFS driver created by THALES. Change to the
directory of the driver on the laptop with the following command:

$> cd SHARPA/src/dvfs_driver

Open with a text editor the recompile locally.sh file. This is the main bash file we will run to set the
paths necessary for the makefiles to run. You might have to edit the LTIB_ BASE, CROSS COMPILE
and KDIR variables depending on your system configuration. The KDIR variable points to the location
of the Linux 3.0.35 kernel created by LTIB specifically for our Freescale board. We highly suggest that
you copy or download the exact kernel we used or copy our configuration file because there is a high
chance the application will not run on a slightly different configuration of a kernel. Our intent is to build
a DVFS (Dynamic Voltage and Frequency Scaling) driver that will replace the system’s default driver
thus allowing more precise control of the voltages and frequencies in use. The exact path of the kernel
is needed because our makefiles build and load kernel specific modules that allow this modification of

the hardware’s operational frequency and voltage.

The second variable we need to pay attention to is the CROSS COMPILE variable. This variable is
set to point to the exact location on the host laptop where the selected cross-compiler resides. We have
chosen the /inaro toolchain that uses the arm-fsi-linux-gnueabi-* cross-compilers. The name of the
cross-compiler provides information about various characteristics of the produced executables. In our
case the use of the arm-fsl-linux-gnueabi-* compiler implies that our executables should run on ARM
architectures, that they expect to run on a Linux operating system (and not on bare metal) and that they
expect to find GNU support. This entails that they expect to find runtime dynamic loaders and linkers
and the C standard libraries on the operating system, all on a compatible version with the libraries
and compilers that they were built with. Here lies the main advantage of using a prebuilt toolchain
like linaro. 1t uses a legacy version of the gcc compiler, specificaly the 4.6.2 version, and not the host
laptop’s gce compiler which could be newer and therefore incompatible with the configuration of the
board. Moreover it uses the glibc version 2.13 which provides the exact same dynamic loaders, linkers

and C libraries that the board uses.

After you set these variables to your desired directories and add them to your system’s $PATH vari-

able, you can run the recompile locally.sh script.

therefore used by a plethora of programs.[70]
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$> export SPATH=CROSS_COMPILE:$PATH

$> ./recompile_locally.sh

It will build the driver executing all necessary makefiles. It will create three static libraries, specifi-
cally libdvfs.a, libhds3 linux_ccm_analog.a and libhds3_linux_i2c.a, that are set to be automatically
copied to the directory of the main application. They contain all object files necessary to implement

the PID controller and modify the board’s frequency and voltage.

The next step in preparing the application before copied into the board’s file system is to build the
main application. After you have built the driver change to the directory of the application on the host

laptop.

$> cd SHARPA/src/harpa_TCS_sensing_delivery 20140917 ___MODIFIED/

$> cd Sequential_version/Source

The above mentioned libraries of the DVFS driver that we just built should be located here. We can
also locate all necessary files to build the graphical user interface (GUI) for the application. Once you

are in this directory simply run:

$> make

Your application is now ready to run on the board. On your host laptop change to the directory of
the board’s file system, copy the entire harpa.git folder from your Desktop and change its permissions

so that all users can read,write and execute files.

$> cd /tools/rootfs/home/user
$> sudo cp -R SHARPA ./
$> sudo chmod -R 777 harpa.git

We are now ready to connect to the board using the steps described earlier. Plug in the Ethernet
cable, run the sudo ifup command, power up the board, wait a while for the SSH server to start and
connect to the board using ssh. When you connect to the board change to the directory of the harpa

application:

$> cd /home/user/harpa.git

We now need to source the source.me script located in the scripts/ folder. This script will deactivate
the default DVFS driver of the Linux kernel and substitute it with our custom driver. Change to the

directory of the script and run it:

$> cd scripts
$> source source.me
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Once that is done, change to the directory of the application.

$>cd ../src/harpa_TCS sensing_delivery 20140917 _ MODIFIED/

$> cd Sequential_version/Source

At this point we need to open a second terminal on the host laptop, navigate to our harpa.git folder
on our Desktop, enter the directory of the application and build GUI and open the TCP connection that

will allow transfer of data from the board to the laptop.

$> cd SHARPA/src/harpa_TCS_sensing_delivery_20140917__ MODIFIED/
$> cd Sequential version/Source

$> make gui_ref or $> make gui

The difference between $> make gui_ref and $> make gui is that the second commands expects to
find a signatures.txt file in the workspace that contains the signature values we use as reference on our
experiments. Therefore we should firstly run $> make gui_ref that builds the signatures.txt and later

$> make gui. Follow the instructions provided on the terminal and run the application on the board.

We should note that establishing the TCP connection can present one particular problem. Although
the makefiles identify the name of the host laptop and prompt you to use the same name when you
run the application on the board, the board expects the laptop’s name to correspond to 192.168.0.10
IP address. If by any chance the laptop does not recognise this particular [P address when referring to
itself the board will not connect. This happens because the 192.168.0.10 address is hardcoded into the
application’s source code. The solution to this is adding the following line in the the /etc/hosts file of

the host laptop.

192.168.0.10 <laptop’s_name recognised by the application>

Please follow the official user guide of the application for further experimentation.[71]
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