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Me empOhaén movtog Suonmuatog. Amoyopebetar xdie aviiypoapy|, anodfxeuon
o Slovopy) NG mopaxdTe epYooiag Yo eUmopixolc oxonolc.  Avomopoywy,
arodixeuon xou Slavoun Ylol Un EUmopLxolc, exmadeuTixols 1) gpeuvnTnolq
Aoyoug emtpéneton umd TN mpobmdleon oOtL elte amodldete avapopd oTO
ouyypapéa elte To cuvodeleTan amd To TPV xelyevo. Epwthoelc mou agpopolv
TN XeNoT Tou MopdVTOC Yo Unopxols oxonolg Yo TEENEL vor aneudivovTol 6To
ouyypoapéa. To cupnepdopota TOU ToEOVCLALOVTOL AVTLOTOLYOUV GE TEOCKTUXY
otdon xou dev Yo énpene va Yewpniel nog exnpocnnoly Ty enionun otdon tou
WBpluatoc.






Abstract in English

The path towards proving Fermat’s Last Theorem led to the introduction of
Algebraic Numbers and Algebraic Number Theory, as they are known today.
We unfold the theory until the critical point of Kummer’s contribution to
Fermat’s Last Theorem. In the first two Chapters 1, 2, we give some basic
definitions of algebraic numbers and algebraic integers and we present the
results which helped to produce new algebraic integers out of known ones. The
main result is that every number field K can be expressed as K = Q(6), for
some algebraic integer #. Then, we focus on quadratic and cyclotomic fields.
In particular, the cyclotomic fields are related to many results in Number
Theory, including the introduction of ideal numbers by Kummer. The
important step of unique factorization is introduced in Chapter 3. Namely, in
Chapter 3 we discuss an early misunderstanding among mathematicians about
the definition of prime numbers. Additionally, we explain how the
misunderstanding was fixed, when proper definitions of primes and irreducible
elements in a domain D were provided. Furthermore, Unique Factorization
Domains (UFDs) are defined and examples of UFDs are provided. Chapter 4
explains how the absence of unique factorization in every ring of integers,
motivated Kummer to introduce ideal numbers. Later Dedekind, influenced by
Kummer, developed the theory of ideals in ring theory. The term Dedekind
ring is presented along with the work that led to the proof that factorization is
unique in them. The most important result of Dedekind’s theory of ideals is
theorem 4.6, which states that factorization into irreducibles is unique for
elements of a ring of integers O, if and only if every ideal is principal. This
theorem demonstrates the strong relationship between ideals and unique
factorization. Chapter 5 discusses how geometric representation of algebraic
numbers provides a result, which can be used as a measure of non-uniqueness
of factorization. In Chapter 6 we provide proofs of special cases of FLT for
n = 4 and n = 3, as they were given by Fermat and Euler respectively. We
also present the Sophie Germain Theorem for infinitely many prime
exponents. Finally, the last Chapter 7 is devoted to Kummer’s proof, which
has been the main target of this thesis all along.






ITepiAndn oto EAAN VXK

H mpoonddeia va amodetydel to Tehevtalo Oewpnua tou Fermat odnynoe otnv
avdntuEn e Ahyefpinic Oewplac Aptiudy, onwe v yvwpeilovpe orpepa. O
axohovdricoupe ™V mopela auTAS T avdmTuing, éwe To xplowo onuelo NG
anodedng tng ewiic mepintwone Kummer.  Yta 80o mpdta Kegdhawo 1, 2
divovton ot oplopol Twv oAYEREIXOY opLi®dY Xol TRV aXEpawY UAYEBEIXMY Xou
napovatdlovton oyetxd anoteréopata. To Booixd anotéheoua tou Kegpohaiou 2
elvon to moplopa 2.1, obugwva pe 1o omoio xdie cwua aprduwy propel va ypopel
S TO GOPO TV PNTOV dpliudy pe emoldvadn evog axéponou aryeBpol. Eneita
EMUXEVTPWVOUAOTE OTAU TETEUYWWIXE ol xuxhotouxd owuota.  Idaitepa ta
tehevtalar oyetilovtal ye ToAld amoteréopota ot Oswpla Aptdudv, oAl xou pe
Y eloaywyh Twv 10ewddy apifudy oné tov Kummer. Xto Kegdiowo 3,
MEAETATOL 1 onpavTixy WBLOTHTA NG Topoyoviomoinone xou mote auth elvan
povadxr. Afvovtar 800 oplopol tou medTou apduol, avahbeToL N ToEAVONOY TWV
HOONUATIXOY  OYETIXE PE TOUC BUO OplopoUS, TWC AvaXoALQUNXE XYoL TS
avtpetwriotxe.  Abvovtar €yxupol oplopol Tou avdywyou otolyelou xol Tou
mpdTov ot plo axéponar mepoyn D. Optlovtar ov Ilepoyéc Movadixng
Avonopdotaone (UFD) xou divovion mopadelypoto autdv. To Kepdhouo 4
TEPLYPdEL TS M ENAewpn yovadxfc mopayovronoinone oe xde SaxtOAO
axepalewyy xwntomoinoe tov Kummer va dnuiovpynoer toug 1dedddes aprdjiols.
‘Enetta, o Dedekind ennpeacuévoc and tov Kummer, avéntuée ) Yewplo twv
10€wbdy ot Yewplo daxtullwy. To mo onuovtind anotéheoua tng Yewploc twv
10€w0cy mou avéntu€e o Dedekind etvon to Yedpnua 4.6 cbugwva ye 1o onolo 1
TOEAYOVTOTIONON TwV oToElwy VO BaxTuAlou axepoiwy O o avdywya
otouyelo elvar povadiny, av xou udvov av xdie 1dewdec eivar xdplo. To nopomdves
Yedpnuo delyvel v otevh oyéon UETOEU TOV IBEWBMY X TG HOVIBIXC
naparyovtonomone. 3to Kegdhowo 5 napovoidletar n opdda kAdong xou o aprdudg
KkAdong xou Slveton €vol ATOTENECUA, YE TO OTOl0 UTOPOUUE VO KUETEHCOUKEY XA
X4molo TEOTo TN UM-hovadixéTnTo TN mopayoviomoinone.  Xto Kegdhowo 6
dlvovtan oL amodellelc Ty eBDY TeptnTtoewy tou Teheutaiou Oewphuotog Tou
Fermat yio toug exdétec n = 4, n = 3, énwg €youv doldel and tov Fermat xou
tov Euler avtictoyo. Axoéun nopoucidletoan to Oewenpo tne Sophie Germain.
Téhog, to Kegdhao 7 clvan apiepwyuévo oty anddelln tou Oswpehuatoc Tou
Kummer, 1 omolo dAwote unhipe xou o Baocxdg otdyoc authc Tne epyooiog.
Tt eAAnvin| Piloypocpior, TOPATEUTOUUE TOV avary VG T 0Ty avagopd [20].
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Extetauevn neplindn ota
EAANVIxd

H mpoonddeia va amoderydel to Tehevtalo Oewpnua tou Fermat odhynoe otnv
avantugn e AlyeBpurc Yewplag Aprdumy, onwe v yvweilouue ofuepa. e
authy Ty epyacia Yo axohovdnioouue v mopeio AUTAC TN AVATTUENS, €WC TO
xplowo onpelo tng anddelene tng ewinrc teplntwone Kummer.

Yo mpito Kegpdhawo 1 opilovron ov ohyePpixol apriuol xon cbupwva pe to
noplopo 2.1 anodeevieton twe xdde ahyeBeixd owpa aprduy uropel vo ypopel wg
TO COUA TWY ENTOV Aty 6To onolo €youue emouvapel évay ahyeBeind apriud.
To obua twv ahyefpixdv aptiudy cuyforiletar ye A xon anotelel UTGCKUC TOU
oOUATOS TV Piyodinddy aprducdy C.

Y10 Kegdhowo 2 Biveton o opliouds tou axéparov ahyeBpueol aprduol. Ot
axépanot alyeBpwol aprduol oynuatilouv évay LTOBUXTUAO TOU GOUITOS TWV
oahyeBpxddv aprdudv A xat to oUvord toug cuuPoliletan pe B. Iopouotdlovron
dV0 amoteAéopato Tou 0dnYolv oty dnwovpyic VEWY axéponwy ahyeBeixmy and
YV0oTo0US.  LUyXeXpéva, To YeYovos 6Tl to B elvon umodaxtihiog tou A pog
emitpénel va Bpolue xouvolploug axépatoug ohyefBexole oprduolc. Emlong edv
évac pryodixde oprdude etvor AVorm evoc Povixol mohuwviuou, Tou omolou oL
ouVTEAECTEC TEpLEYOVTAL 0TO oua B, téte autéc o wyadnos aprdude elvan
axéponog aryefeixde.  Evo onuoavtind anotérecpa tou Kegpahalouv 2 elvon to
nopope 2.1, cOupwvo pe 1o onolo xdle odpa aplduny uropel vo ypagel ¢ to
ooOUo Twv eNTY apdudy Ue emolvadn evéc oxépaou aryeBpixol apriuov.
Emuonpotveton ott xdde olyeBeind omua aptiumy éyel évoy daxtiho axepainv O,
o omolog anoterel TNV TOUH Tou aAYELELxol oOUATOC Ye Tov umodoxtiilo B.
Emmhéov, Biveton éva xpitriplo Ue TO omolo eAéyyouue edv €vag alyePpeixde

oprdudg ebvon axéponog odyelpuxdg 1 Oyt ‘Emertor emixevipwvépacte ota
TETPAYWVIXE  XaL  XUXAOTOUIXd oouota, Ta ornola oyetioviow e TOAAG
anoteAéopata ot Oewpla  Aptdudy. IBwoitepar T xUXAOTOUIXA  COPATA

oyetilovton YeTalld GAAWY xou PE TNV ELCUYOYN TV 10€wdwy apiudy and tov
Kummer. Anodewxvieton mwe éva odyefpixd ompa aptdumdy elvar TETpaywvixo,
oV X0l WOVOV oV LOOUTOL PE TO UL TWV PNTWY GTO 0Ttolo £Y0UUE ETGUVAEL TNV
tetpaywvn] plla evoc eleldepou  Tetpaydvou  (squarefree) oxepoiov  xou
UTOAOYIZETAL 0 BUXTONOC TWV AXEPAULWY TWV TETPAYWVIXWY CWUdTwY. Alveton o
optopde 2.9, clppwva e Tov onolo Tot XUXAOTOWIXS odporte Yedpovton we Q((),
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6mou ¢ = 2P givon 1 mpw oy pila Tne wovddag. Tmohoyileton 1 vopUa xou
T0 {yvoc e mpwtapyc pllac e HoOVABaG o CMUELWVETUL O BUXTUAOS TWV
HXUXAOTORXOY SWUdTwY, o oroloc ooltat e Z[(].

Yto Kegdhowo 3, yehetdton 1 onuovtixy WLOTNTA TNG TOEOYOVTOTOMONG Xl
n6te auth elvan povadxr. Alvoupe 800 opiopolc tou TpdhTou aptduol, ol onolol
elvon pev 1ood0vopol 6To oWua TV axepoiwy Z, ahhd oyl ot xdde BaxTtOAO
axepofwy . BOUPova PE ToV TpWTo oplopod 3.1, évoc aptdudc p Aéyetal TEKOTOC
gdv p = ab = o a o b elvan povdda. O deltepog oplopde 3.2 BnAdvel 6T
TpdTOC AéyeTow évag aptdudc p, 6tay plab = pla ¥ plb. Ly apyh tne avdmtudng
e AlyeBpuic Oswpioc Apwdudy, ol podnuatixol, avduecd Toug xou o
omoudaiog Euler, amétuyav vo xatovoricouv mw¢ ol 800 opiopol dev elvon
loodlvopol oe xdde BoxtOho axepaiwv . Autd elye w¢ omotéheoya va
TPAVO\oOUY Xl TNV €Vvold  TNC  TopoyovIonomong. H  yovadu
napayovtonoinon oe mpdTtoug optduolc YewpRinxe dedouévn aAld or mpddTol
aprduol elyav optotel Aavlaopéva.  Avagépovton xdmolo moapoadelypoTo 6Tou
pofveton €T00TN N TaPAVONCT TwV pordnpotixdy. O Euler édwoe tny anddeiln tou
Teheutalov Oewpruatog tou Fermat yio exdétn loo ue 3, éyovtag naupaheidel va
anodellel TN povady| mapoyovonolnon otov daxtOo onou epyoaldtav. Emlong
o Lamé avaxolvwoe nwg anédeiée to Tehevtaio Oedpnuo Ttou Fermat,
Aopfdvovtog T povadixr tapoyovionoinon we dedopévr. Puoxd n anddelln mou
€dwoe Ntov Adboc. Katdmy, napatnpolue nwe apyiler vo yivetow xatovontd to
Addoc amd rdmoloug padnuatixote. o nopdderypo, o Gauss anédele dtL oToug
Aeyduevoue I'raouctavoie axepaioue Z[i] n napayovtoroinor eivor povadixd. O
Kummer onédeille nwg 1 pOVOOIXY] TOEOYOVTIOTOMOY  AmMOTUYYAVEL  OTOV
TOEOYOVTOTIOLOVUE XUXAOTOWXOUS oxepalovs. Axoun, o Eisenstein qofveton vo
€XEL XATAVONTEL TNV OVAYXY) VO EAEYYETOL 1) LOVOBIXT] TR0y OVTOTOINGT Xou Ol Vol
AopfBdvetar wg dedopévn o xde SaxtOMo axecpalwv. llpog tnv amoxatdotaoy
e aifdelog d6Onxay véol oplouol. O véog €yxupog OploUOS TV TEOTWY
oyvpiletar étL éva otolyelo p To onolo avrixel oe plo axépona meploy”) D Aéyetou
Tpitog €8y plab = pla f plb. Emndéov, pe tov opiopd 3.3 ewoniydnxe n évvoia
Tou avdywyou otolyelou oe pia axépoua meployry D. 'Evag otouyelo p to omolo
avixel oe plo axépono teployy D Aéyeton avdywyo €dv p = ab = o a ¥ o b elvan
povéda.  H biétnta Tou mpdTtou elvon TO LoYUEY AmO AUTAY TOU avaywYou
otoiyelov. Mdhota, dtav éva otolyeio oe wla oxépara meployr) D elvon mpodtog,
toTe elvar o avdywyo otoiyelo, eve o avitiotpogo Bev Loylel. H
TapayovIonoinoy ot Tmp®Toug, OTav  elvar  Buvatr) elvar  povadixy. H
Tapayovtonoinoy o avdywyo ctoiyelo dev elvon mavto wovodxr. Omodte €xel
evblapépov vo acyohndolue pe v mopayovrtonoinorn oe avdywyo otouyeio. H
napavonon éxel miéov  Eexadaploel. Ynuovtixotato anotéleoua elvon  To
Yewenua 3.3 mou dnhwvel 6Tl oe ula oxépara meployr) D n mapayovtonolnon oe
avdywyo otoiyelo, 6tav elvon duvaty, elvar povadixh, av xou pévov av xdde
avdywyo ototyelo etvon xar mpdtoc. Emmiéov, opillovtan ol Heptoyéc Movadixic
Avonopdotaone (IIMA/ UFD), ouc omnolec n mopayovonolnon oe avéywyo
ototyela elvar povadixr. Xougwva pe to mopandve, oe wo IIMA xdde avdywyo
otouyelo elvon xou mpdtoc. Iapadelypota IIMA etvor or Euxeldiec Ilepioyéc xau
ot Ieproyée Kiprwy Idewddv (Principal Ideal Domain).
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H élewn povodixic mopayovionoinone oe oavdywyo otoiyein oe xdde
axépona TEPLOY Y] UTHPEE LBLUTEPWC AmMOYONTELTIXY Ylot TOUC Wordnpatixols, xododg
TOUC OMOUGXPUVE OXOUY TEPOCOTECO omd TNV ToAumdUNTn omddellyy Tou
Teheutoafov Oewpruatog Tou Fermat. 1o xepdhouo 4 Yo nowoucIdooVUE THOS 1|
EMewpn uovadixfic mopayovtonoinong xwnromoinoe v mepoutépw eEEMEN NG
AlvyeBpuic  Ocewplag  Aprduwyv. Me ogopury Vv €Mhewn  povadixng
napayovionomong oe xdde SaxtOMo axepalwyv, o Kummer xou opydtepo o
Dedekind, ennpeacuyévoc omd Tr OSoulelar Tou Tpomnyoluevou  avérTuEav
onuavTixéc Yewpleg. H 18éa tou Kummer vtav vo enextodel o daxtdiiog otov
omnolo dev napayovronoleital xdnolo otolyelo Hovadixd, e TETOLOV TEOTO WATE Vo
egaopahiletor 1 povadixy mapayovtomoinon Tou ev Aoyw otoiyelou oTov
exteToévo daxtOMo. T va epapudoel v Wéa tou, o Kummer cwofyoye tny
évvola Tou 16edddous aptduod, pe v omolo dev Va acyoindolue ce auTé TO
xelpevo. Ta tepoutépw perétn oyetind pe ) Yewpla mou avéntuée o Kummer,
TOPATEUTOUUE TOV ovary Vot oTig avapopes [4] xou [3]. Ennpeacuévoc and toug
10ecdders aprpovs tou Kummer, o Dedekind avéntue v dewplo twv 10ewddy,
onwg elvan Yvwoth ofuepa oty Yewplo daxtuiinv. H mpocéyyion tou Dedekind
elvon TOAD 1o xovTd TN o0y YEovn Vewpla. Xtov oploud 4.7 oplleton o daxtidiog
Dedekind xon mapovoidleton 1 mopelor mou odhynoe o Dedekind mpog tnyv
an6delln 6t N napayovionoinoy eivon povadixry otoug ev Aoyw doxtuliovs. To
mo onuavixd anotéheoua tng Vewplag twv 10ewddy mou avéntuée o Dedekind
elvon o Yewpnuo 4.6 clupwva Ye T0 omolo 1 ToEAYOVTOTOINCT TWV CTOLElWY
evoc daxtuhiou axepainy O og avdywyo otouyelo eivon povadxr, av %ot uévov av
xdde BeddeC elvon x0plo. X 1o mapandvw Yedpnua golvetal 1 oTev oyéon petall
TOV IBEMDIWY Xl TNS LOVABIXNE TopaYOVTOTOINONS OE avdywYd oTolyElo.

Yto Kegdhowo 5 avalbouue TV YEWUETELXY OVOTOQAC TIOT TwV AAYEREIXMY
aprducdv. Opllouue v évvola tou lattice oto R”, enlong toug povopop@lopoie
and éva aAYePpixd odpa apldUdY 0TO CWUA TWV ULYAdXOY optdu®y xal WBLOTNTES
autov.  Ilpoxewévou va «petpndely xatd xdmoo teémo 1 EAhewn povadixnic
TOEOLYOVTOTIOMONG, UEGL TV 0ptowedy 5.3 xou 5.4 mapouctdletar ) oudda kAdong
TV WewddY oe éva ahyePend odpa xou o apriuds kddong. H opddo xhdone
optleton ¢ 1) OUddU-TNAIXO TWV XANACUATIXDV LBEMDDY EVOC BaxTUAOU oxepalwV
evoc alyePpixol ompatog K we mpog v umoouddo v x0plov WEwdGY tou. O
aptdude xhdong oplletan we 1 T8&N e avtiotoyne ouddac xAdong, 1 onola eivon
mdvta menepocuévr. Ilapouoidleton to Yewdpnua 5.2, clugwva ye to onolo 1
Tapayovtonolnoy o évay daxTOMO axepalwv elval Lovadixn, ov xou uévov av o
apldude TV XAAoEWY LoolTon YE TN povddo. Mdlota 6co yeyohbtepog elvor o
oprdudg  ¥Adong TOc0 To moROmAoxy yivetan 1 P pOVOBXOTHTH TN
napayovtonomone. O Gauss elye doaoel Sldpopec eaoie oyetnd e tov aptdud
TOV  XAJCEWV. Suyxexpiéva VYewpoloe OTL O €val TETPOYWVIXO  COUA
K = Q(d), o apdudc xhaone peyohdver h(d) — oo, 600 o axépmoc d
wxpabvel, d = —oo. H ewaocio auth anodelydnxe apydtepa and tov Heilbronn.
Enlonc o Gauss aoyolfjinxe pe 1o mpofBinua tne edpeone xdie TETROywVIXOU
oouotog Ye ouyxexpévo aptdud xAdonc. To Gauss Class Number One
Problem elvou 1 aval¥tnon xdide tetpaywvixol oduatoc pe optdud xhdong (oo
pue 1. Xlugwva ye to Yedenua 5.10 twv Baker, Heegner, Stark o opidudg
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HNEONE TOV TETEAYWVIXGY cwudtev K = Q(vd) 1woduvapst e 1 av xou gévov
av 1o d nafpvel Tic €€ evvea TEC:

-1, -2, -3, -7, —11, —-19, —43, —67, —163. Apyodtepa Bdlveton TO
Yewpnua 5.11 and toug Goldfeld, Gross, Zagier, cOugpwva ye to onolo o aprtudg
xhdong euploxeton and ouyxexpwévn oyéon. H uédodog mou yenowonoifinxe
yioo Ty omodeldn tou Yewprpatog 5.11 oyetiletan ye ehheinuxéc xoumiieq.

To Kegpdhawo 6 avopépeton oe tpelc eldxée mepintooelc tou Teleutoiou
Ocwpfuatoc tou Fermat, oi onolec avtyetwniotnxay mev TNy GUVELG(QOEE TOUL
Kummer. Xuyxpivovton ol yédodor mou yenoyromotinxay xadoe xou 1o e0pog
TWV AmOTEAEOUdTOV.  Xtnv mpdTn evotnto 6.1, mopoucidletor 1 povadixr
an6delén nou €yel ypddel o Fermat. O Fermat amodewxviel to Yedpnua 6.1 and
T0 onolo mpoxUntel dueca 1 anddelrn tou Teleuvtolov Oswprpatoc tou Fermat
yio exdétn (oo pe 4. H ev Moyow anddeln dev €yel dnpooteutel and tov (Blo tov
Fermat, oA\& omdé tov Yo Tou, UeTd TOo Vdvaté Tou. Xty anddeln
yenowonotelton 1 «pédodog tne dmelenc xododdouy, TNV onolo elofyaye o (Blog o
Fermat. XOugowva pe ty «uédodo tng dmeipng xaddédouy, unodétwvtag Ot
umdipyer plo Yetinry axépanor Aoom piog e€iowong, xatalfyouvue otny ebpeot plag
emniéov Aong e (Blag e€lowong, n onolo elvon wixpdtepn and tny tpwtn. Me
aUTOY TO TEOTO PTIAYVOLUE Wlal cLVEY KOS Plivouca axoloudila YeTdV oaxépouwy,
t0 omolo elvon adbvato. Xtny endpevn evotnta 6.2, diveton 1 anddelln tou Euler
vl to Ttedevtado Vewpnua tou Fermat étav o exdétng ebvan (oo pe 3. H
an6delln tou Yewpruatog 6.2, ov xou 66T, TEPLEYEL Uiot onuavTind Topdheudn.
O Euler, 6nwe avagépaye oe mponyoluevo xe@dhoto, eiye néoet otnyv nay(da poall
ME GAloug podnuatixolds NG EmoyNC Tou, Vo VewpNoEl TwE 1 HOVOdIXY
napayovtonolnoy toylel oe xdde SoaxtOMO oxepolwyv. Av xou mepEyel autd To
onuovtxd Addog, n omodelln mou édwoe o Euler yio v mepintwon émou o
exvétne ooltan pe 3, ebvan cwoth, ddTL Tuyalvel o BoxtUMOC oTov omolo
epydleton va etvan IIMA. O Euler yenowonouel eniong t «pédodo tng dmeeng
xad6douy 1N am6dellr) tou. Ilapaxdte, oty evétnta 6.3 napoucidlouue T0
Oedpnua g Sophie Germain. H Soulewd tng Sophie Germain otrn Oswela
Apduddv 0d¥ynoe oty duyotdunon tou Teheutaiouv Oewphpatoc tou Fermat oe
000 MEPINTOOE. 1TV TN Tepintwon o exdétng dev dlanpel xavéva dpo Tng
eglowong " +y" = 2". Yny deltepn neplntwom, o exdétng dlanpel Eva xon wovo
éva and T z, Yy, z. H Sophie Germain anodewxviel to Teleutaio Oewpenua tou
Fermat otnv mpwtrn nepintwon, und xdnoleg eldnég unoldécelc Yo Tov exdét,
omwe meplypdpovion oto Yedpnuo 6.3. H Swgpopd ue Tic mponyolueveg 500
nepinToelc Peloxeton 6T0 yEYovée 6Tl Tto Oswenuo tng Sophie Germain
amodexviel to Televtalo Oedpnua tov Fermat yio dmeipor mohholg mpToug
exdéteg, eved ol mponyolueves dVo mepintioelc Tapelyay anodeln meEpLOploUEvT,
uovo oe évav exdétr. Iopdhouta 0 €lpog TV AMOTEAESUATWY TOU Fewpruatog
¢ Sophie Germain neptopileton apxetd e€outiog v UToYECEDY.

To teheutaio Kegdhowo 7, eivon ogpiepwpévo oty anddelrn touv Kummer.
ITpwv Sodel 1 anddelr, opilovton ov kavovikol (1) opalol) mpdTor apiduol, Toug
onoloug elonyaye o Kummer. Xougwva pe tov oployd 7.2, €vog xovovixog
TpoTog elvan évag tpdTog aptdude, o omoloc dev Soupel tov aprdud xhdone h(p)
70U xUXAOTOWXOD aduatoc Q(C), érou ¢ = e?PU/P givan plo mpwTapyxh pila Tne
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povddac.  'Evoc mpotoc opidude, o omoloc Oev elvar xavovixds, Aéyeton un
xovovixoe mpwtoc.  Alveton éva xplthiplo xovovixdtntoc and tov (Blo Tov
Kummer, olugwva pe to onolo évac mpwtog apudude elvon xovovixds, ov xou

uovov av dev dloupel Toug aprtuntéc Twv apducky Bernoulli By, By, -, Bp_s.
XpnowonoldvTag To mogandve xetthelo, o Kummer PBerixe toug 10 mpdtoug un
HOVOVIXOUC TEWTOUG aptipoie, oL oroiol elvan oL e&nie:

37, 59, 67, 101, 103, 131, 149, 157, 233, 257. Ilapatnpolue 6TL OL Xovovixol
TPWTOL, TOUAAYLOTOV 0 auTO To Wxpd Oelypo mou mopouGLEOUUE TapATEve,
elvon meploodTEROL amd TOUC U1 HUVOVIXOUE. LouQwvo Ye plo etxacio Tou tédnxe
ané Tov Siegel xou 7n omolo dev €yel amoderydel oxdun, umdpyouv dmeipol
xavovixol mpwTtol apriuol. Eve o Jensen xou opyotepa o Carlitz omédeilav tnv
OmapEn GmELpmY PN XavovxdY Te@Twy. Lo tnv anddelln tou Yewphuatoc Tou
Kummer bivovton tplo Mypota, 7.1, 7.2 xou 1o AMupa tou Kummer 7.3. Me to
Oewpnuo Tov Kummer 7.1 anodemvietol 4Tl Ylol €Voy TEPLTTO XAVOVIXO TR(TO
aptdud p, dev undpyouv axépatol optdpol T, Y, z mou va emAbouv Ty eElowon
2P 4+ yP = 2P, TéTtoloL HOTE 0 P Vo YNy Bloupel xavévay amd Toue &, Y, z. L€ aUTO
t0 onuelo a&iler va onuewwdel 6ti, we ouvénew Ty Tapatneicewy (Remarks)
oy opyY tou Kegodalov 6.1, to Tehevtalo Oewpnua tou Fermat opxel va
anodetydel yio ex¥€Tn n mepLttd TEWTO apldud xon Yo n = 4. Ané TV Topamdve
dmlotwon,  oupnepaivovpe 6Tt to  Vedpnua  tou  Kummer oanotelel
ONUAVTIXOTATO  AmoTENEOUA UE  UeYdAo  elpog. H mvenc onédeldn tou
Ocwpriuatoc Tou Kummer diveton péoa oo xelyevo. H xatavonon tne anddeilng
Tou Oewprpoatoc Tou Kummer 7.1 unfpée dAAwote o Poacixdc 6téy0¢ auThS NG
gpyootag.  To ehdnviny) Bifhoypapla, TOPATEUTOUPE TOV OVOYVMOOTY OTNV
avapopd [20].
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Euyapiotieg

Ibaitepec evyapiotie ogelhw otov xOplo Apioteldn Kovtoyedpyrn, xadnynt
Tou Modnpatixod Turuotog, tou Edvixod xou Kanodiotpioxol Iavemotnulou
Adnvav v 1o ypévo Tou  appwoe, OUTWEC MOTE VO ONOXANPOGC® TNV
oumhwpatiny pou epyacion. O xbpog Kovtoyedpyng, we ocuvemPBiénwy g
dimhwpotixic epyaocioc pov, ye cuvéotnoe pe v «AhyeBeuxr Oewpla Aptdudvy
xon oc xdde otddlo Htav Wialtepa mpddupog va You Aloel omopleg xoL Vo UE
ouuPBoulédet. Enione, Yo Adeha vo euyopiothow deppd v xuplo
Aopnpomolhou, emPBrénovoa tne DMAUATIXAC (oL epyaciog, Ylo TNV UTOUOVY
xar Ty xadodhynon tne. H umoothpiEn xou ou cuyBouléc mou pou mpocégepe
xad” OAn TN OLdpxELd TWV CTOUBKOY POV GUVEBNANY GNUAVTIXE OTN OAOXAHEWOT)
autol tou xOxhou tne Lwnc wou. Télog, va euyapiothiow tov xlpto Vita Kala,
enixovpo  xadnynty Tou Madnuatxod TuAuatoc tou Ilavemotnuiou Tou
Kopdlou yia Tic mopatnehioelc tou, yio 660 ddotnua dolhevo poll tou oto
IMovemothuo tou Kapdhou tne Hpdyoag

17
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Chapter 1

Algebraic Numbers

The main path towards Fermat’s Last Theorem leaded to the introduction of
Algebraic Numbers and Algebraic Number Theory, as we know it today. We
are going to follow that journey and unfold the theory until the critical point of
Kummer’s contribution to Fermat’s Last Theorem.

Let’s begin with giving a good understanding of algebraic number fields (or
simply number fields), which are of great importance in algebraic number theory.
The field of rational numbers Q is an example of a number field.

Definition 1.1. A number field F is a finite degree field extension of the field
Q, which means that F' O Q. Also F', when considered as a vector space over
Q, has finite dimension.

For more information and study of number fields, see Refs. [5] and [11].

Definition 1.2. Algebraic numbers are defined as the solutions of polynomial
equations with integer coefficients. The set of algebraic numbers is symbolized
as A.

From now on, we will assume that a complex number a is algebraic when
it is algebraic over Q (equivalently over Z). First we give a result concerning
factorization of polynomials, that is going to be useful later.

Theorem 1.1. Suppose that K is a field of characteristic zero and f is a non-
zero polynomial over K. There exists another polynomial, of degree > 0, whose
square divides f, if and only if, f and the derivative of f have a common factor
of degree > 0.

Theorem 1.2 (Eisenstein’s criterion). If f = ant™ + -+ + a1t + ap s a
polynomial over Z and p a prime number such that

p+a7za p2 J(aO & p‘aia Vi € [0771 - 1]7 (1'1)

then f(t) is irreducible over Z, which equivalently means that f(t) is irreducible
over Q (except for possible constant factors).f

21



22 CHAPTER 1. ALGEBRAIC NUMBERS

Definition 1.3. As field extension of K, we define a larger field L, which
includes K as a subfield. The degree of the extension L over K is symbolized
[L : K] and is equal to the dimension of L as a vector space over K.

Theorem 1.3. Suppose L : K is a field extension and o € L. Then, « is
algebraic over K, if and only if, K(&) is a finite extension of K. In that case,
[K(«) : K] is equal to the degree of the minimum polynomial of o over K. Also
K(a) = Kla].

Theorem 1.4. If H is a subgroup of G, where G is a free abelian group of rank
n, then H is free of rank < n.

For the proof of theorems 1.1,1.2, 1.3, 1.4, see Ref [19].
Theorem 1.5. The set A is a subfield of the complex field C.

Proof. According to theorem 1.3, the number a is algebraic, if and only if,
[Q(a) : Q] is finite.

Now, suppose that a, b are two algebraic numbers. Then,

[Q(a,b) : Q] = [Q(a,b) : Q] [Q(a) : Q] (1.2)

But, b is algebraic over @Q, which implies that it is also algebraic over Q(a).
Hence, [Q(a,bd) : Q] as well as [Q(a) : Q] are finite. Therefore, according to
(1.2), [Q(a,b) : Q] is finite.

According to theorem 1.3, all the elements of Q(a,b) are algebraic. Hence
a+b, a—b, ab, a/b (for b # 0), which belong to Q(a, b), are algebraic. And that
completes the proof that A is a subfield of C. O

For further details on the proof, see Ref. [18].

Theorem 1.6. Every number field K is equal to Q(6), where 0 is an algebraic
number.

Proof. Every number field K can be written as

KEQ(ala"' 7an)7

where a; are algebraic numbers, Vi € [1,n] (e.g. a basis for K over Q). We will
use the method of induction for this proof. In particular, we will show that

K = Ki(a,b) = K = K;(0), for some 6,

where K is a subfield of K.
Let p, ¢ be the minimum polynomials of a,b over K7, respectively. Further
suppose that they factorize over C as

p(t)=(t—a1) - (t—an), q(t)=(t—=0b1)--(t—bm) (1.3)

Then, for some integer 7, we must have a; = a and for some j, b; = b. We choose
(without loss of generality) a; = a and by = b. Since an irreducible polynomial
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over a subfield of C has no repeated zeros in C, it follows that a; # a; and
b; # bj, Vi, j € Z.

Let k # 1, equivalently by # bg. Then Vk # 1 and Vi € Z, there is exactly
one, or none, x € Ky, such that

a; — a1
ST—
@ai—alz(bl—bk) X
S a; + xby = a1 + xby. (1.4)

Since there is a finite number of such equations, we can choose ¢ € K1, such
that ¢ # 0 and ¢ # = and we can prove that Vo which satisfies equation (1.4).
Then, it follows that a; + cby, # a1 + ¢b1, Vi € [1,n] and Yk € [2,m].

Claim: Ki(a+ cb) = Ki(a,b)

Proof of the claim: Define a + ¢b = 6. It is obvious that K;(6) C Ki(a,b).
It suffices to prove that

Kl(a7b) Q K1(9) (15)
It holds that
0=a+cb=a=0—cb= p(d—cb) =p(a) =0,

since p(t) is the minimum polynomial of a over K. If we define r(t) = p(0—ct) €
K1(0)[t], we get that ¢(b) = r(b) = 0. But, r(t), ¢(t) have only one common
zero. Since if ¢(§) = r(§) = 0, with £ # b, then £ = b;, for some i € [2,m)].
However, r(§) = p(6 — ¢£) = 0 and therefore § — ¢ = a;, for some i € [1,n].
Now, 0 = a + ¢b, hence £ = b, which contradicts the assumption that £ # b.
Therefore, we have proved that

qit) =rt)=0<t=h.

Let h(t) be the minimum polynomial of b over K;(6). Then, h(t)|q(t) and
h(t)|r(t). Since q(t), r(t) have exactly one common zero in C, the degree of h(t)
is 1. Hence, h(t) =t + p, where p € K1(6) and

h)=0<b+p=0<b=—pu--- (1.6)

w € K1(0) implies that b € K;(0). Additionally, ¢ € Ky, where K; C K;(0).
Thus, ¢ € K;(0). Finally, obviously a = 6 — ¢b belongs to K;(6). This proves
relation (1.5) and therefore also the claim. [ |

By induction, it follows that every number field can be written as Q(8),
where 6 is an algebraic number. O
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Chapter 2

Algebraic Integers

What is an algebraic integer?

Definition 2.1. The solutions of polynomial equations with integer coefficients,
with the leading coefficient being 1, are called algebraic integers.

Equivalently, a complex number 6 is an algebraic integer, if there is a monic
polynomial p(z) with integer coefficients such that p(f) = 0. We denote as B
the set of algebraic integers.

Lemma 2.1. Let 8 € C. The complex number 6 is an algebraic integer if and
only if the additive group generated by 1,0,02,--- is finitely generated.

See Ref. [19] for the proof of lemma 2.1, which will be used for the proof of
theorem 2.1.

Theorem 2.1. B is a subring of A.

Proof.

Let 0,6 € B (0, ¢ algebraic integers). In order to show that B is a subring
of A, it suffices to show that 6 + ¢ € B and 0¢ € B.

According to lemma 2.1, all the powers of 6 (as well as ¢) lie in a finitely
generated group. This group will be called I'y (respectively I'y) and it is a
subgroup of C. Note that all powers of 6§ + ¢ and 6¢ are integer linear
combinations of elements §?¢’, which lie in the group I'yI's (also subgroup of
C). But, because of lemma 2.1, T'y has a finite number of generators:
U1, Uz, - Up. For the same reason, I'y has generators: vi,va,:-:,v,. Thus,
I'gT'y is the additive group generated by all u,v;, Vi € [1,n], Vj € [1,m].

This means that all powers of 8+ ¢ and 6¢ lie in a finitely generated additive
subgroup of C.

Again according to lemma 2.1, the above is equivalent to 8 + ¢ and 6¢ being
algebraic integers. O

Theorem 2.2. Suppose that § € C. If 0 is a solution of a monic polynomial
equation with coefficients which belong to B, then 0 € B.

25



26 CHAPTER 2. ALGEBRAIC INTEGERS

Proof. Let 0 € C such that

0" + 10" 9o = 0,
where 1); are algebraic integers, Vi € [0,n — 1]. Obviously, ¢; generates a subring
of B, Vi € [0,n — 1].

By lemma 2.1, all powers of § lie inside a finitely generated W-submodule M
of C, spanned by 1,6,---,6" 1.

Reminder: Suppose that M is a left R-module and N a subgroup of M.
Then, N is called an R-submodule if Vn € N, Vr € R, rn € N.

As a consequence of theorem 2.1, each v; and all its powers lie inside a
finitely generated additive group I';, with generators v;;, where j € [1,7n].
Therefore, M lies inside the additive group generated by all elements

Vjis V2jar * ’yn_1j71719k, where j; € [1,u;], i € [0,n—1], k € [0,n — 1] and
this group is also a finite set. Hence, M is a finitely generated additive group
and thus, lemma 2.1 implies that 6 is an algebraic integer. O

Theorems 2.1 and 2.2 provide useful ways to construct many algebraic
integers out of known ones.

Lemma 2.2. For every o € K, 3¢ € Z\ {0}, such that ca € O.

In theorem 1.6, it is proved that every number field can be written in the
form K = Q(0), for some algebraic number §. Now we can replace algebraic
number 6§ with algebraic integer 6.

Corollary 2.1. If K is a number field, then there is an algebraic integer 0 € B,
such that K = Q(6).

Proof. By theorem 1.6, K = Q(¢), for some algebraic number ¢. Now, by
lemma 2.2, 3¢ € Z \ {0}, such that c¢ € O. By denoting c¢ = 0, it follows that
Q(¢) = Q(). 0
Definition 2.2. Every number field K has a ring of integers 9, which is defined
as ¥ = KNB.

Definition 2.3. If K is an number field of degree n over Q, a basis of K is
a basis for K as a vector space over Q. That means that [K : Q] = n, where
K : Q is a field extension and operates as a vector space over Q.

Definition 2.4. The ring of integers O forms an abelian group under addition.
A Z-basis for (9, +) is called an integral basis for K, where K is a number field
with degree n over Q . Equivalently, {al, e ,as} is an integral basis, if and
only if, a; € O,V i € [1,s] and every x € O can be expressed as

T = z1a1 + -+ zsas, Where z1,---,z5 € Z.
Note that any integral basis for K is Q-basis. Therefore s = n.

Theorem 2.3. Every number field K has an integral basis. If the degree of K
is n, then the additive group of the ring of integers (9, +) is free abelian of rank
n.
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Remark: ZCBandZCQCK. ThusZC KNB=9.

There is a great criterion for an algebraic number to be an algebraic integer
and it is given in the following lemma.

Lemma 2.3. Let a € A. Then, a is an algebraic integer if and only if the
coefficients of the minimum polynomial of a over Q belong to Z.

Agreement: From now on, when we refer to a rational integer, we mean an
element of Z, while an algebraic integer will be simply called an integer.

Lemma 2.4. Let a be an integer (algebraic integer). Then a € Q, if and only
if a is a rational integer (which means a € 7). Equivalently BN Q = Z.

For proof of lemmas 2.3, 2.4 see Ref. [19].

Definition 2.5. For every number field K = Q(0), there are several distinct
monomorphisms o; : K — C. The elements o;(«), where a € K = Q(0), are
called the K-conjugates of a.

Definition 2.6. Let K be a number field of degree n, K = Q(#) and
{a1,az2, -+ ,a,} a basis of K, as a vector space over Q. The discriminant of

this basis is given by the formula Alay,--- ,a,] = det(ai(aj))z.
Some important properties of the discriminant:

e For another basis {b1, - ,b,} of K, it holds that

b = Zcikai7 where ¢;x € Q, k € [i,n], det(cik) £ 0
=1

and A[by,--- ,b,] = (det(ci))? - Alag, -+, an]. (2.1)

e If K is a number field, then for every basis of it, the discriminant is rational
and non-zero.

e If K has a basis {a1,as, - ,a,}, where a; are integers, Vi € [1,n], then
A[al,(lg, s ,(ln] eZ \ {0}
(equivalently the discriminant is a non-zero rational integer).

Definition 2.7. A rational integer a is called squarefree, if there is no prime
number p such that p?|a.

Theorem 2.4. Suppose ay, - ,a, € O form a Q-basis for K and
A[al, e ,an} s squarefree. Then {al, e ,an} is an integral basis for K.
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Proof. Let by,--- ,b, form an integral basis for K. It follows, from the properties
of the discriminant, that there exist ¢;; € Q such that

a—i=Yciby & Alar--an] = (det(ci)? - Alby, -+ o).

But, Afa1,as,- - ,a,] is squarefree. Therefore, det(c;;) = £1, which means that
(¢i;) is unimodular. It follows that {a1,--- ,a,} is a Z-basis for O, equivalently
an integral basis for K. O

Theorem 2.5. Fvery subgroup H of a free abelian group G, of rank n, is free of
rank s < n. Also there is a basis {u1,--- ,u,} for G such that ajuy,--- ,asus,
where a; are positive integers, form a basis for H.

For more details on theorem 2.5, see Ref. [19].

We will now introduce some results which allow to find the ring of integers
of a given number field.

Theorem 2.6. Let G be an additive subgroup of O. Suppose that the rank of
G is equal to the degree of K and {al, . -'a,n} s a Z-basis for G.
Then
|O/G|? divides Alay, -+ ,as).

Proof. According to theorem 2.5, there is a Z-basis {by, - - - , b, } for O, such that
3 p; positive integers, with {p1b1, .., tnb,} a Z-basis for G.

eq. (2.1) = Alay, - ,a,) = (det(ci;)) 2Alpabr, -+, finby). (2.2)
Since a basis change has unimodular matrix, we have that
eq. (2.2) = Alay, -, a,] = (£1)2Aluib1, - -+, pinby]
= Alar, - an] = (1 pa) 2Abr, -+ by
Since |u1 - - - pn| = [O/G], it is easy to see that |O/G|? divides Alay, - -+ ,a,). O
Proposition 2.1. If G # 9O, there exists an algebraic integer x such that

;z::( 1a1 + + Ana )7 where \; € [0’pf1], i € Z, p prime,
p

with p?|Ag.

Proof. Since G # 9O, |9/G| > 1, then Ip prime, such that p divides |O /G| and
u € O/G. Thus every element g € G can be written as g = pu. Using the result
of theorem 2.6, we get that p?|Ag.

Since a1, - ,a, form a Z-basis for G, we have that
1 1

u=—-g=—(Aay+ -+ Aap).
p p

Thus, we found an algebraic integer as needed. O
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2.1 Quadratic fields

We turn our attention at quadratic fields, which are an important special case
of number fields.

Definition 2.8. A quadratic field is an algebraic number field K of degree 2
over Q.

The next result describes quadratic fields adequately.

Proposition 2.2. A number field K is quadratic, if and only if, K = Q(V/d),
where d is a squarefree rational integer.

Proof. Let K be a number field of degree 2 over Q (quadratic). According to
corollary 2.1, for every number field, K = Q(6), where 6 is an algebraic integer.
But, K is of degree 2, which means that 6 satisfies an equation of the form:

t> +at+b=0, wherea,beZ

—a++vVa? —4b

=0 = 5

(2.3)

Suppose that a? — 4b = r2d, where r,d € Z and d is squarefree (this is possible
because of prime factorization in Z).

—a+Vrid
2

—a+rV/d
2

a T
:—7i7
=0 5 2\/&

eq. (2.3)= 0=

=0=

Thus, it follows that Q(6) = Q(V/d)
The inverse can be proved in exactly the opposite way. O

Theorem 2.7. The ring of integers of quadratic fields (equivalently of Q(\/&),
where d is a squarefree rational integer) is

Z[\/g], if d# 1 (mod4) and
1 1 )
Z[§+§\/g]’ if d=1(mod4).
Proof. Letae@(\/ﬁ). For some r, s € Q,
a:r—i—S\/g
b
@a:er,\/g
c c

a= M, where a,b,c € Z.
c
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We additionally assume that ¢ > 0 and that 7 p prime such that p|e & p|b & pc,
at the same time. Since a is an algebraic integer, the coefficients of the minimum
polynomial are integers. The minimum polynomial is

e—bvd

(t—a)(t — ) (2.4)

c
bvd —bVd 2 2 - bv2d
=t T \[)(t—e f):t2_£t+7e TR
c c c c
2e¢ e?—b%d
Thus, the coefficients —e, 672 are rational integers. (2.5)
c c

Suppose there is a prime p such that p|c and ple. Then, since (2.5) holds,
c2|(e? — b%d) = p?|(e? — bd). Additionally ple = p?|e?. Since d is squarefree,
p should also divide b. This is a contradiction to an earlier assumption. Hence,
e, ¢ cannot have any common prime factors.

Furthermore, since 2—; € Z, we must have c¢|2, equivalently ¢ =1 or ¢ = 2.

e If c =1, a is an algebraic integer of K in any case.

e If ¢ = 2, we must have e, b both odd. In the case where one of them is
even, then the other is also even. Thus 2 divides all of them, which is a
contradiction. It also holds that

e? — b%d
4
Moreover, it is easy to see that
e? =1 (mod4), (2.7)
and b? = 1 (mod4), since they are odd.
By (2.6), (2.7), (2.8) we get that d =1 (mod4).

Conversely, for d = 1 (mod4) and for e, b odd, (2.5) implies that a is an
algebraic integer.

€ Z = 4|(e* — b*d) = e* — b*d = 0(mod 4) (2.6)

In conclusion, when d # 1 (mod4), we have ¢ = 1 and the ring of integers of
Q(V/4d) is Z[v/d]. When d = 1 (mod4), ¢ might also be 2 and if e, b are odd, it
easily follows that the ring of integers is Z[1 + %\/E]

O

2.2 Cyclotomic fields

The cyclotomic fields affected the development of Abstract Algebra and Number
Theory. In particular, we focus on the arithmetic of those cyclotomic fields,
which are generated by p;, roots of unity, when p is a prime number. The
failure of unique factorization in their rings of integers, motivated Kummer to
introduce the ideal numbers. Moreover, Wile’s proof is related to cyclotomic
fields.
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Definition 2.9. A cyclotomic field Q(¢) is a number field obtained by adjoining
a primitive complex nyp, root of unity ¢ = e2™/" to the field of rational numbers

Q.

The word “cyclotomic” refers to the equal spacing of powers of ¢ around the
unit circle in the complex plane.
Since we consider that p is a rational prime number, we can begin with

p=2=(=€"" =cosm+sinm = —1.

We easily realize that we have created nothing more than the set of rational
numbers, since Q(—1) = Q. Therefore, we can forget about p = 2 and from now
on, we consider p to be an odd prime.

Lemma 2.5. The minimum polynomial of { = e*™/? over Q, where p is an
odd prime, is

fO =t P2t 1. (2.9)

Proof. First, we check whether ( is a root of the given f(¢). We can rewrite the
polynomial as
tr—1

1) == (2.10)

Note that f(¢) is well defined. Namely, the denominator is not equal to zero.
Indeed, _
(=140 /P £ o 27mi/p£0

is true for every prime p.
Moreover, ( satisfies the polynomial equation, since

Cp -1 6271'1'71

f(Q) =

cos2m +1sin2m — 1 —0

(-1  ¢—1 ¢—1

In order to complete the proof, it suffices to show that f(t) is irreducible.
Notice that

f<t+1>““)pf(p), o pgee 0L

t r=1

It can be checked that the conditions of Eisenstein’s criterion (theorem 1.2) are

satisfied. Thus, f(¢ + 1) is irreducible. Hence, in turn f(¢) is irreducible. So
this is the minimum polynomial of ¢ over Q.

According to the theorem 1.3, [Q(¢) : Q] should be equal to the degree of f,

which is p — 1. Thus, the result has been verified. O

Finding the norm and the trace of C:
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Recall that the expressions for norm and trace are
p—1 p—1
N(@)=]]eila), T(a)=> aila),
i=1 i=1

where o;(a) are the conjugates of a.

The first step is to find the conjugates of (. Note that ¢,(2,---,(P~! are

p'" roots of unity (different than 1). Thus, f(¢) is a minimum polynomial for

them also. Equation (2.10) can be rewritten as

fOy=t-0t-¢)- -, (2.11)

Thus, the conjugates of  are the the powers of ¢ from 1 to p — 1, which means
that the monomorphisms from Q(¢) — C are

0i(¢) = ¢, for i€ [1,p—1].

The minimum polynomial has degree p — 1. Therefore, a basis for Q(¢) over Q
is

{1,¢,-+,¢P %)
This means that any element x can be written as
r=ap+ar(+---+ ap_g(p’Q, for somea; € Q
& oi(ao+arC+ -+ apoP7?) = ao+ a1’ + - +a, 2P
e Now, lets calculate N(().
We have

N(¢) =¢¢?--- Pt
Equation (2.9) gives f(0) = 1, while if we put ¢t = 0 in equation (2.11) we
et
: F0) = (=O(=¢?) - (=¢P71) = (1P P
Since p is odd, we have that p — 1 is even. So (—1)P~! = 1.
fO)=1=¢¢--- ("1 =1= N =1.
Since (¢, (" are conjugates, Vi € [1,p — 1], it follows that
N()=N()=1, Vie[l,p-1].
e In a similar way, the trace T'(¢) is calculated.
T =C+ ¢+ + ¢
fO=0=1+(+ 4+ '=0=T() =-1
Since ¢, ¢? are conjugates, it holds that
T =T()=-1, Vie[l,p—1].
Theorem 2.8. The ring of integers of Q(() is Z[C],
For the proof of theorem 2.8, see Ref. [19].



Chapter 3

Factorization

In the beginning of Algebraic Number Theory, mathematicians have assumed
that factorization in the ring of integers of an algebraic number field is unique.
Is it?

Why even the bright Euler believed that factorization of algebraic integers
is unique, leading himself to many false results?

In order to reveal what was the starting fallacy of the above assumption, we
will have to remember the definition of a prime number.

Definition 3.1. A number p was called a prime if
p=ab = aorb is a unit.
Definition 3.2. A number p is called a prime if,
plab = pla orpld.

Although definitions 3.1 and 3.2 are equivalent in Z (where the only units
are 1), they are not in every ring of integers of an algebraic number field. At
that time, mathematicians failed to distinguish the difference between the above
definitions. They considered a prime to be defined as 3.1 and were led to many
wrong conclusions. For example,

e Euler has given many applications following the uniqueness of factorization
and “proved” falsely some results in Number Theory. One example is his
false proof of Fermat’s Last Theorem (FLT) for n = 3, given in 1770,
which will be further discussed in chapter 6.2.

e In 1847, Lamé thought wrongly and announced that he had proved FLT,
taking uniqueness of factorization as a fact.

On the other hand, some mathematicians realized the need to prove unique
factorization. For example,

33
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e In 1832, Gauss introduced the “Gaussian integers” Z [i] and proved that
factorization in Z [¢] is unique.

e In 1844, Kummer proved that factorization is not unique for cyclotomic
integers. However, his proof has been unnoticed at the time.

e Also in 1844, Eisenstein realized the importance to check the property of
unique factorization.

The truth was restored, when a new term was coined and clarified the difference
between definitions 3.1 and 3.2.

Definition 3.3. A number p is called irreducible if p = ab implies that a or b
is a unit.

Definition 3.4. An element u of an integral domain D is called a unit of D if
u|1, equivalently if w has an inverse in D.

Note that definition 3.3 is identical to definition 3.1, which used to define
primes. Let us mention some relations between primes and irreducibles, which
we will revisit in more detail later on:

1. Irreducibility is not as strong quality as being a prime element.
2. If p is a prime, then it is also irreducible.
3. If p is irreducible, it is not necessarily a prime.

4. Factorization into primes, when possible, is unique. Whereas factorization
into irreducibles is not always unique.

An example of non-unique factorization into irreducibles: In Z[/—6],
2.3 = /—6-v/—6 = 6. We are going to verify that 2, 3, v/—6 are not prime, but
irreducible. In Z[v/—6], /=6 |(2-3) but v/—6 12 and /—6 t 3. Therefore v/—6
is not a prime in Z[y/—6]. Since it is impossible to find elements of Z[y/—6],
which are non-units and their product equal to /—6, then v/—6 is irreducible.

In a similar way, it can be proved that elements 2, 3 are not primes, but
irreducible. |

Definition 3.5. Let x € R, x = yz is a proper factorization if neither y nor z
is a unit.

Definition 3.6. A factorization of x € R is called trivial when it is not proper,
which means that one of the factors is a unit and the other is an associate of z.

Definition 3.7. An element y is called an associate of x if x = uy, u being a
unit.

At this point, it is useful to give a formal definition of unique factorization
into irreducibles.
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Definition 3.8. In a domain D, factorization into irreducibles is unique,

ifpi-pr=q1 s, (3.1)
where p;, g; are irreducible in D, Vi, j. Equation (3.1) implies that
(a) r=s.
(b) 3 permutation 7 of 1,---,r such that Vi € [1,7] p;, gr(;) are associates.

Note that unique factorization into irreducibles is not affected by the units
or by the order in which the factors appear.

Proposition 3.1. Let D be a domain. Then

(a) x is a unit < z|1.

(b) any two units are associates and any associate of a unit is a unit.
(c) z, y are associates < x|y and y|z.

(d) x is irreducible < every divisor of x is a unit or an associate of x.
(e) if x is irreducible, then its associate is also irreducible.

Proof. (a), (b): These two can be easily proved, using only the definition of
associates.
(c): If z|y and y|z then y = az and x = by, for some a,b € D. Hence

r = bax
<z (1—ba)=0
Sxr=0o0r1l=ba.

In the case that x = 0, y = 0 also and so they are trivially associates. In the
case that 1 = ba, then a, b are units, which means that they are also associates.
If z,y are associates, then by definition x = uy and y = vz, where u,v are
units. Equivalently y|z and zly.

(d): Tt is trivial.

(e): Let y be an associate of . Then x = uy, where u is a unit. O

The respective result, in terms of ideals is given in proposition 3.2. For
definitions and more results on ideals, see chapter 4.

Proposition 3.2. Suppose that D is a domain and x,y € D, x,y # 0. Then,
(a) zly < (x) 2 (y).

(b) z, y are associates < (x) = (y).

(c) © is a unit < (x) = D.

(d) x is irreducible < (x) is the mazimal proper principal ideal of D.
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Proof. (a): If x|y, then 3z € D such that

Y= 2T
=y € (z)
= (y) C (z)
=y € (z)
=y =zz, for somezx € D.

(b): If 2,y are associates then 3 z,w € D such that

x =yz and y = wx < y|r and x|y

ggg (y) C (z) and (z) C (y)

& (z) = (y)-

If (x) = (y) then (y) C (z) & (x) C (y) and by following the reverse procedure,
it can be shown that x,y are associates.
(c): If x is a unit, then 3 v € D such that zv = 1. Thus, for any y € D

y=avy=yc ().

Therefore, D C (x) and since (x) C D, D = (z).
Conversely, if D = (x), then every element of D is an element of (x). So,
since 1 € D

=1=zx

& is a unit.

(d): If  is irreducible and not the maximal proper ideal of D then 3 y € D
such that

() C(y)C D.

This means that y|z, while y is not a unit neither an associate of z. But,
according to proposition 3.1, an associate of an irreducible is an irreducible,
which is a contradiction.

If (x) is the maximal proper ideal of D then z is either a unit or an associate,
therefore irreducible. O

Note that the set B of algebraic integers has no irreducibles. Therefore,
factorization into irreducibles is impossible there.

Definition 3.9. A domain D is called noetherian if every ideal in D is finitely
generated.

Theorem 3.1. If a domain D is noetherian, then factorization into irreducibles
18 possible in D.
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Proof. If D is a noetherian domain , every ideal in it is finitely generated. Let ()
be the maximal ideal such that € D/{0}, non-unit for which factorization into
irreducibles cannot stand (equivalently it cannot be expressed as the product of
a finite number of irreducibles).

This ideal exists because of the mazimal condition, according to which any
non-empty collection of ideals in a noetherian domain D has a maximal element.

Proof of the maximal condition: Suppose that S # () is a set of ideals,
which live in D, and that S has no maximal element. If I is an ideal in S, then

d I; € Ssuch that I; D I.
We can continue this way and construct a chain of ideals in D, such that

Iy2hL 221

= )

with none of the ideals being maximal. Therefore, this chain can extend forever.
But, this obviously contradicts the fact that D is finitely generated, since it is
noetherian. Thus, the statement is proved. |

Suppose that z = yz, with y, z non-units. Then, by proposition 3.2,

(z) S (y).

In the case that (z) = (y), again by proposition 3.2, y, 2 are associates, which
means that z is a unit, which contardicts our hypothesis. Therefore, (x) C (y)
(not equal). By similar argument, (z) C (z).

Since (x) is the maximal ideal, such that x cannot be expressed as a
product of a finite number of irreducibles, elements y and z should factorize
into irreducibles. So,

Yy=mp1-Pr
Z2=4q1"""(Qs-
However,
r=yz=>x=p1-p)(q1-¢s)-

Thus, it has been proved that x is also a product of irreducibles, which
contradicts our very first hypothesis. O

Theorem 3.2. The ring of integers O in any number field K is noetherian.

Proof. We are going to show that every ideal I of © is finitely generated.
According to theorem 2.3, (O,+) is a free abelian group of rank n, which is
equal to the degree of the number field K. Therefore, in line with theorem 1.4,
(I,4) is also free abelian of rank s < n. A possible Z-basis for (I,+) is

{331,"'333}~



38 CHAPTER 3. FACTORIZATION

Furthermore,
(x1,.zs) =1,

which implies that I is finitely generated, thus, ) noetherian. O
Corollary 3.1. Factorization into irreducibles is possible in O.
Proof. This corollary is a consequence of theorems 3.1, 3.2. O

However, factorization into irreducibles is not always unique in a ring of
integers of a number field, and that is the reason, why we prefer to work in O
instead of B.

We will give some examples of quadratic fields, in which factorization into
irreducibles is not unique.

e Imaginary quadratic fields, where factorization into irreducibles is not

unique: Q(v/d), for
d=—5-6,-10,—13, —14, —15, 17, —21, —22, —23, —26, —29, —30.
It has been proved later on that Q(v/d) has unique factorization only for

d=—1,-2,-3,—7,—11,—19, —43, —67, —163.

e Real quadratic fields, in which unique factorization into irreducibles is not
valid: Q(v/d), for d = 10,15,26. In the case of real quadratic fields, it is
shown that factorization is unique in many cases, but it remains unknown
whether it holds for infinitely many d > 0.

One has to be very careful with the terms prime and irreducible. Let us
revisit more thoroughly the relations between them.
In Z, if x is an irreducible element, then z is a prime. Therefore, if x| pq,
then we have
xlp or z|q.

While, in a domain D, x is a prime if it is non-zero, non-unit and
zlab = zla or z|b.

Proposition 3.3. If x is a prime in a domain D, then x is also irreducible.

Proof. Let x € D be prime and suppose that it can be reduced as
x = ab. (3.2)

Because of the definition of a prime, z|a or z|b.
If z|a, then a = cx for some ¢ € D and

eq. B2)er=aber(l-cb)=0=chb=1,
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since we set © # 0. This means that b is a unit and constitutes the factorization
of x not proper.
If x|b, in a similar way, we get that a is a unit and the factorization of x is

not proper.
Since we are led to a contradiction in both cases, we infer that our hypothesis,
that x is not irreducible, is false. O

Note that the converse of proposition 3.3 is not true. An example was given
by Eisenstein in 1844. Namely, let us assume that Z(1/—5) is a domain which
contains irreducibles that are not primes, like element 2. It is straightforward

to obtain that
6=2-3=(1++v-5)-(1—-+-5).

Obviously 2 is an irreducible in Z(1/—5), but is it a prime? The answer is
negative, since it does not divide neither (1 + +/—5) nor (1 —+/—5), while it
divides their product, which is 6.

Theorem 3.3. If in a domain D, factorization into irreducibles is possible,
then it is also unique if and only if every irreducible is a prime.

Proof. First, we may give an equivalent definition for the factorization of x # 0
in a domain D, that is

Z =upy---pr, wherewis a unit and p; are irreducibles, Vi € [1,7].

For r = 0, we have = u (a unit), hence it is irreducible. While, for r > 1,
x = (up1) p2---pr , 80 x is a product of irreducibles.

Suppose that factorization is unique in D and p is irreducible. We will prove
that p is also prime. Note that

plab = 3 ¢ € D, such thatab = cp (3.3)
and suppose that a,b,c # 0. We can factorize the elements into irreducibles as:
4 =uipy - pr

b=1uq1- - qm
CZU3T1...7’S’

where all u; are units and p;, ¢;, r; are irreducibles. Equation (3.3) gives

(u1p1 .o pr) (’LLqu . qs) = (usrl R Ts)p

and because of unique factorization in D, p should be an associate with one of
the p;, g;. This implies that

plg; or p|p;, for some i or j
=pla or p|b.
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Hence, p is a prime.
Now, suppose that every irreducible is a prime. We will show that, in D,
factorization into irreducibles is unique. Equivalently, we will show that if

UIPL - P = Uz 1 G, (34)
where 1, us are units and p;, ¢; are irreducibles,

then m = n and there exists a permutation 7 of {1,---,m}, such that p;, ¢ (%)
are associates, Vi € [1,m].

e For m =0, it is trivial.

e For m > 1, eq. (3.4) = pml|u2 q1---qn, where p,, is irreducible, hence
prime, because of the hypothesis. Therefore, by definition of a prime,
either p,,|ue, which means that p,, is a unit, and this leads to a
contradiction, or p,,|g;, for some j € [1,n], which is acceptable.

Suppose that j = n. Then,

pm|‘]n
=(@n = PmU, where u is a unit and g, irreducible

=UIP1L " Pm = U2 1" n—1PmU
=U1P1 """ Pm—-1 = (Uzu) g1 qn-1

By induction, let m—1 = n—1 and suppose that there exists a permutation
mof 1,---,m —1, such that p;, ¢.(i) are associates, Vi € [1,m — 1]. By
extending 7w to 1,--- ,m, the proof is completed.

O

The importance of unique factorization in a domain made it necessary to
name these domains.

Definition 3.10. A domain in which factorization into irreducibles is unique,
is called a unique factorization domain.

A UFD is an integral domain in which every non-zero, non-unit element can
be written as a product of prime elements (equivalently irreducible elements)
uniquely, up to order and units. In a unique factorization domain (UFD), primes
are irreducibles and vice versa.

It is not difficult to notice the analogy to the fundamental theorem of
arithmetic for the integers. As it was proved by Euclid in his Elements,
according to the “Fundamental Theorem of Arithmetic”, every integer x > 1,
either is a prime number, or it can be expressed as a product of primes, in a
unique way, up to order of factors.

Some examples of UFDs are the principal ideal domains, where every ideal is
principal and the Euclidean domains, which are integral domains' granted with

LAn integral domain is a nonzero commutative ring (a ring in which the multiplication
operation is commutative), in which the product of any two nonzero elements is nonzero.
Particularly, if a, b, c are elements of an integral domain and a # 0, then ab = ac = b = c.
Integral domains are generalizations of the ring of integers.
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at least one Euclidean function. We will give the relevant theorems right away.
First, let us remember the definition of an Euclidean function.

Definition 3.11. An Fuclidean function of a domain D is defined as
¢: D\ {0} - N. If a,b € D\ {0}, with b # 0, then there exist ¢, € D such
that a = bq + r, with either » = 0 or ¢(r){p(b).

The Euclidean function allows the use of Euclidean division in the domain.
Theorem 3.4. If D is Euclidean, then it is also a principal ideal domain.

Proof. Suppose D is an Euclidean domain and [ is an ideal of D. If I = (), then
it is principal and we are done. If I # (), then 3 x € I, x # 0 and we can choose
it to be the one for which the Euclidean function ¢(z) is minimum. Then, if
y € I, by definition of the Euclidean function, we have that

y=gqx+r,

where either r = 0 or ¢(r) < ¢(z). Since we assumed that ¢(z) is minimum,
r = 0. Hence y = ¢qx. This means that I is principal and in particular
I=(x). O

Theorem 3.5. If D is a principal ideal domain, then it is a Unique
Factorization Domain (UFD).

Proof. If D is a principal ideal domain, it is also noetherian and by theorem 3.1,
factorization into irreducibles is possible in D. In order to prove that it is also
unique, we have to show that every irreducible is prime.

Let p be irreducible. This means that (p) is maximal principal ideal of D
and since all ideals are principal, (z) is the maximal ideal.

If plab, with p t a, then (p,a) D (p) (not equal). Since (p) is the maximal,
(p,a) = D. Then, every element of D belongs to (p,a) as well. It holds that

L€ (p,a)
=1 =cp+da, for some c¢,d € D. (3.5)

If we multiply (3.5) by b, we get that

b = cpb + dab
=p|cpb + dab, since p|ab
=p|b

This means that p is prime as we assumed that plab and p 1 a. O

Theorem 3.6. Every Fuclidean domain is a Unique Factorization Domain
(UFD).

Proof. The proof follows directly by theorems 3.4 and 3.5. O
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Now, let us display a rather impressive example, which shows how properties
of unique factorization serve to get results in Diophantine equations. The next
theorem was introduced by Ramanujan as a conjecture and proved later on by
Nagell, Ref. [13].

Theorem 3.7 (The Ramanujan-Nagell Theorem).
Equation 22 + 7 = 2", with x, n integers, has only the following solutions:

r==+1,3,5 11,181, n=3,4,5,7, 15.



Chapter 4

Introduction of Ideals

4.1 Basic definitions

The fact that unique factorization into irreducibles holds only in some rings of
integers was quite disappointing. On the other hand, this obstacle motivated
the introduction of ideals. Let us give some definitions and start revealing the
history.

Definition 4.1. A subset I of a ring R is called an ideal, if it is an additive

subgroup of I and
reel& xzrel,Vre R,Vxel.

Ideals are symbolized with small Gothic letters a, b, ¢ etc. For example, the
set of even numbers, as a subset of the ring of integers Z, form an ideal.

Definition 4.2. Every ideal has an inverse, which is defined as
a!'={r € Kl|za C O}

Definition 4.3. A principal ideal is an ideal I in a ring R that is generated by
a single element a of R in the following way: I = {ar : r € R}.

Some examples of principal ideals are the ideals nZ of the ring of integers Z.
Actually, it has been proved that every ideal of Z is principal.
4.2 Revealing the history

We can start now revealing the history of how the theory of ideals was developed.

Kummer’s idea: If a number cannot be factorized uniquely in a given ring
of integers, Kummer suggested to extend that ring, so that the number does
factorize uniquely in the bigger one. In particular, when an element a in the
number field K cannot be factorized uniquely, we can extend K to L, so that

43
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Ok C 91 and a factorizes uniquely into elements in 7. That is how ideal
numbers were introduced. Of course, Kummer had a different point of view. He
introduced ideal prime factors for elements which may have no prime factors in
their number field, by using detailed computations. For more information see
Refs. [4] and [3]. Below, through a specific example, we will try to understand
what was the need to introduce ideal numbers.

Example: In Q(v/15),
10=2-5=(5+V15)(5 — V15).

How can we guarantee unique factorization for 10?7 By extending Q(v/15) to
Q(v/3,/5), factorization of 10 is unique. Indeed,

10=v5-V5-(V5+V3) (V5 —V3)

and there is no other way to factorize 10 in the extended field. |

Let us stress that, even the extended rings of integers do not need to be
UFDs and this makes the theory very useful. It suffices that an element of a
ring of integers O, not uniquely factorized in O, can be uniquely factorized in
elements of the extended number field.

Dedekind’s contribution: Dedekind introduced the term of an ideal in
ring theory, influenced by Kummer’s ideal numbers. He developed a theory of
unique factorization for ideals, in which ’'prime ideals’ play the role of a
'prime’.  Dedekind’s approach is the closest to our modern view of ideals.
According to that, the product

T =1pi pa--- Pn, Where p; belong in a ring R, (4.1)
corresponds to
(xy = (p1) (p2) - (pn), where (p;) are principal ideals. (4.2)

Replacing (4.1) with (4.2), eliminates the problem. In particular, according to
Proposition 3.2,

(p1) = (u p1).

This means that, if the multiplication is unique up to units and order, then the
multiplication of ideals is unique up to order.

Definition 4.4. An ideal a of a ring R is called mazimal if it is a proper ideal
and there is no ideal of R strictly between a and R.

Definition 4.5. An ideal a of a ring R, with a # R, is called prime ideal, if for
every b, ¢ ideals of R holds that bc Ca = bCaor ¢ C a.

Proposition 4.1. Let x,y # 0 be elements of a domain D. Then

(a) x|y & (z) 2 (y),
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(b) x,y are associates < (x) = (y),
(c) x is a unit & {(x) = D,
(d) z is irreducible < (x) is mazimal, among the proper principal ideals of D.

For the proof of the above proposition, see Ref. [19]. Moreover, because of
proposition 4.1, a prime ideal can also be defined as follows:

Definition 4.6. If p is a prime ideal, plab = pla or p|b.

Lemma 4.1. Suppose a is an ideal of a ring R. Then,

a) a is mazimal < £ is a field,
a

(b) ais prime < £ is a domain.
Proof. (a): There is an one-to-one correspondence between ideals of R/a and
ideals of R, which lie between a and R. This constitutes a a maximal ideal, if
and only if R/a does not have non-zero proper ideals. Therefore, any ring is a
field, if and only if it does not have non-zero ideals.

(b): If a is prime and z,y € R such that (a +z)(a+y) =0, inR/a, then
zy € a. Therefore,

(z){(y) Ca
=(z)Caor(y)Ca
=rcaoryca.

Hence, either (a +x) =0 or (a +y) = 0 in R/a, which means that R/a has no
zero divisors and therefore is a domain.
Conversely, if we suppose that R/a is a domain, it follows that

|R/a] #1 = a # R.

If be C a and at the same time b ¢ a, ¢ € a, then there exist elements b € b and
¢ € ¢, with b, ¢ ¢ a, while their product b-c € a. Hence, it is proved that (a+b)
as well as (a + ¢) are zero-divisors in R/a, which contradicts the fact that R/a
is a domain. O

Corollary 4.1. Every maximal ideal is prime.

In the following theorem we will show some important properties of the ring
of integers O of a number K, with degree n.

Theorem 4.1. (a) The ring of integers O of a number field K is a domain,
with field of fractions K,

(b) O is noetherian,

(c¢) if a € K satisfies a monic polynomial equation with coefficients in O then
acg,
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(d) every non-zero prime ideal of O is mazimal.

Proof. (a): is quite obvious. Note that the field of fractions of an integral
domain is the smallest field, in which the domain can be embedded.

(b): by theorem 2.3, we have that (O,+) is free abelian of rank n. By
theorem 1.4, it follows that (a,+) is free abelian of rank less or equal to n, Va
ideal of 9. Since any Z-basis for (a,+) generates the ideal a, O is noetherian
(because every ideal in it is finitely generated).

(c): follows immediately by theorem 2.2.

(d): let p be a prime ideal of ©. We will prove that R/p is a field, which is
equivalent to p maximal by lemma 4.1. Suppose that there exists a € p, such
that a # 0. Then, since a; = a,

N(a) =N =ay---a, € p, where a; are the conjugates of a.
=(N)Cp
=9/p is a quotient ring of O/NO.

This is a finitely generated abelian group and every element, which belongs to
it, is of finite order. Therefore, the group /p is finite . According to lemma 4.1,
9/p is a domain, since p is a prime ideal. Finally, by theorem 1.1, since O /p is
a domain and finite, it is also a field and the proof is completed. O

Theorem 4.1 gives a quite characteristic property of the ring of integers,
which does not apply in all rings.

Definition 4.7. A ring of integers which satisfies all the properties of
theorem 4.1 is called a Dedekind Ring.

We will show that in a Dedekind ring, every nonzero proper ideal factors
into a product of prime ideals in a unique way, up to order of the factors. First,
we need to study the behaviour of non-zero ideals of O, which creates the need
to introduce fractional ideals of ©. Since an ideal can be described as an O-
submodule of O, we turn our attention to O-submodules of the field K. In order
to get the group structure that we want, we are going to use fractional ideals.

Definition 4.8. An O-submodule a of K is called a fractional ideal of O if
Jee O, ¢#0 such thatca C O.

Equivalently, the set b = ca is an ideal of . It follows that a = ¢~'b and the
fractional ideals of O are of the form ¢~'b. For example, the fractional ideals
of Z are of the form rZ, with r being a rational number.

Interesting facts about fractional ideals:

o If every ideal of O is a principal ideal and d is a generator, then fractional
ideals have the following form

cHd)y=ctd O.
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e Every ideal is a fractional ideal.
e A fractional ideal is an ideal, if and only if a C ©O.

e When we multiply fractional ideals, the result is a fractional ideal.
In particular, if a;, as are fractional ideals with a; = cl_lbl, as = cglbz,
their product will be
aae = (6102)_15152.

e Multiplication of fractional ideals is commutative and associative. Also,
£ is the identity of multiplication of fractional ideals.

e Every fractional ideal a has an inverse a~*, such that aa=! = O.

Theorem 4.2. The non-zero fractional ideals of O form an abelian group under
multiplication.

Theorem 4.3. FEvery non-zero ideal of O is possible to be written as a product
of prime ideals, in a unique way (up to order of factors).

Theorem 4.3 is a very important result. Uniqueness of factorization for ideals
provides a great tool, which enables further progress towards proving FLT. For
the proof of theorems 4.2, 4.3 see Ref. [19].

As a consequence of theorem 4.3, the following corollary is valid.

Corollary 4.2. Every fractional ideal of O can be written as a product of prime
ideals, in a unique way, up to order of factors.

Proof. Let a be a fractional ideal and ¢ € O \ {0}, such that ca is an ideal. Then,
according to theorem 4.3, 3 p,, q; prime ideals, with ¢ € [1, 7], j € [1, s], such
that (c¢) =p1---p, and ca = q1---qs. Hence, a=p;~*---p,. " 1q1 - qs. O

Proposition 4.2. Suppose a,b are ideals of O. Then,
alp & bCa.

The uniqueness of factorization for ideals combined with proposition 4.2
provide the following conclusions:

(a) Let a,b be ideals of O. a|b if I ¢ such that b = ac, where ¢ is an ideal of O.
Equivalently a|b if and only if @ O b, which means that the factors of an
ideal are precisely the ideals that contain it.

(b) If p is a prime ideal of O, then
plab = pla orplb,
which is completely analogous to the definition of a prime number.

(¢) The greatest common factor of two ideals is the smallest ideal that contains
them.
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(d) The least common multiple of two ideals is the largest ideal that is contained
to them.

Definition 4.9. The norm of a non-zero ideal a of O is defined as

where % is finite, Va € O.

Useful results about Norms of Ideals:

(a) Every non-zero ideal a of O has a Z-basis {a1, -+ ,a,}, where n is equal to
the degree of K. In particular,

(e = Bl (43
where A is the discriminant of K.
(b) Yaideal of O, a = (a) (principal ideal) = N(a) = |N(a)|.
(¢) Va,b pair of ideals of O,
N(ab) = N(a)- N(b) (4.4)

From now on a|(b) will be denoted as a|b, where a is an ideal and b is an
element of O.

Theorem 4.4. For an ideal a # 0 of O, the following are valid:
(a) if N(a) is prime, then a is also a prime,
(b) N(a) is an element of a (which is equivalent to a|N(a)),

(c¢) if a is prime, then a|p, for only one rational prime p and N(a) = p™, where
m is the degree of K (m <n).

Proof. (a): Every ideal is a product of prime ideals, which means that
G =DpP1-Pr.
By properties of the norm of an ideal,
N(a)=N(p1---pr) =N(p1)--- N(pr).
Since N(a) is prime, then N(a) = N(p;), for some i € [1,r]. But, p; is prime,
Vi € [1,7]. Therefore a = p; is prime.
(b): By definition, N(a) = [O/a|. Then, Vz € O,

N(a)-z €a. (4.5)
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If we put =1 in (4.5), we have that N(a) € z.
(c): From (b) and for p; rational primes, it follows that

alN(a) = a[N(p1---pr)
= a|N(p1)-- N(pr)
= alp" - py
= a|N(p;), for somei € [1,7]
= al|p;, for somei € [1,7]. (4.6)

Now, we will prove that ¢, in equation (4.6), is unique. Let p,q be primes,
with p # ¢, such that a|p and a|g. Since p # ¢, 3 u, v integers, such that

up+vqg=1
= alup + vg
= all
=a=9,

which is a contradiction. Then, N(a)|N({(p)) = p", where m is equal to the
degree of K and therefore

N(a) =p™, for some m < n.
O
Theorem 4.5. (a) Every non-zero ideal of O has a finite number of divisors.

(b) A non-zero rational integer is possible to belong only to a finite number of

ideals of .
(¢) Only a finite number of ideals of O have given norm.

Proof. The proof of theorem 4.5 follows directly as a result of theorem 4.4 and
basic properties of prime factorization. O

Theorem 4.6. Factorization of elements of O into irreducibles is unique, if
and only if every ideal is principal.

Proof. According to theorem 3.5, every principal ideal domain is a unique
factorization domain (UFD). Therefore, if every ideal of O is principal, unique
factorization follows.

Conversely, suppose that factorization into irreducibles is unique in 9. We
are going to prove that every ideal is principal. In fact, it suffices to show that
every prime ideal is principal, because every ideal is a product of prime ideals.
If p # 0 is a prime ideal of O, according to 4.4, N(p) is an element of p and as a
consequence, p|N(p). Since N(p) is a rational integer and because of the initial
hypothesis,

N(p) = 71 - - - w5, where ; are irreducible elements of O.
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Since p|N, where p is a prime ideal, it follows that, for some i € [1, s]

p|7Ti
<pl(m;) .

Theorem 3.3 implies that every irreducible in a UFD is prime. Therefore, ;
is prime. Hence, (m;) is prime. This in turn implies that p = (m;) or that
equivalently p is a principal ideal.

Since the prime ideal with which we started was randomly chosen, it is
proved that every prime ideal is principal. O

Theorem 4.6 reveals the relation between ideals and factorization of elements.



Chapter 5

Geometric view of algebraic
numbers and results

5.1 Geometric representation of algebraic
numbers

Reminder: As a lattice Lt in R™, we define a subgroup of the additive group
R"™, which is isomorphic to the additive group Z". L' generalizes the way Z is
embedded in R.

This chapter starts by investigating how a number field K, of degree n, can
be embedded into a real vector space of dimension equal to n, so that the ideals
in K will map to lattices in this vector space.

We define as 01,09, - - - , 0, the monomorphisms from the number field K =
Q(0), where 6 is an algebraic integer, to C.

Definition 5.1. A monomorhism o; is called real monomorphism, if o;(K) C R.
Otherwise, o; is called complex monomorphism.
Properties of o; :

e ;(a) = 0y(a),

e 7, = 0; & 0; is real,

e 5=0

e n = s+ 2t, where s is the number of real monomorphisms, 2t is the
number of complex monomorphisms. We write it as 2¢, because complex
monomorphisms always appear in conjugate pairs.

Analytically, we define all the monomorphisms: K — C as follows:

01, 3,085 Os41,05+4+15" " ,05+t,05+t -
——

real complex monomorphisms

51
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Then, a lattice can be written as L%! = R® x C!, which involves the elements of
the form

T = (xlf" sy Lgy Lg41y" " ams+t)-
—_———— — ——
eR eC

Obviously, L*t is a vector space over R, with dimension n = s + 2t.
Definition 5.2. We define as norm of x

N(z)=x - ~ms\ms+1\2 e |I’S+t|2, Vo € L.

Properties of the Norm:
e N(zy) = N(z)N(y), Yo,y € L,
e N(z) €ER, Vx € L.

Let us define a map o : K — L,
o(a) = (o1(a), - ,0s(a);os11(a), -+ ,os44(a)), Va € K, (5.1)
such that
(a) o(a+ B8) =0(a) +0(B), Va,B € K
(b) o(aB) = o(a)o(8), Va, 3 € K
(¢c) o(ra) =ro(a), Ya € K, Vr € Q (= o is a Q-algebra homomorphism),
(d) N(o(a)) = N(a), Va,p € K.
Theorem 5.1. Let {a1,as,- - ,a,} be a basis for K over Q.

Then, o(ay1), -+ ,0(an) are linearly independent over R.

The proof of theorem 5.1 can be found in Ref. [19].

Since L* is a vector space, isomorphic to R*T2¢, we can choose the following
basis for Lt

(1a05"' a0a07 ’0)
(0715"' 7070, 70)

(037170370)
(0,,0,1,,0)
(0’ 70727 ,O)

0,---,0;0,--- ,4)

This way, an element (x1,- -+ ,Ts;y1 + 21, , ¥y +1i2;) of L can be rewritten
as (1‘1, oy Ty Y1, 21,0 0 7yt7zt)'
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Lemma 5.1. Let L be an n-dimensional lattice in R™, with Z-basis {e1,--- ,en},
where e; = (a1, -+ ,an,) and T is a fundamental domain of L. Then, the
volume of T, which is defined by the above basis, is given by the formula v(T) =
|det(ai;)|-

5.2 About non-unique factorization.

In this section, we are going to discuss how non-unique factorization is
approached. In particular, we are going to use the geometric ideas developed
earlier in this chapter and we are going to relate them to unique factorization.

Definition 5.3. The class-group of a number field is the quotient of fractional
ideals by the (normal) subgroup of principal fractional ideas.

Definition 5.4. The class-number is the order of the class-group.

Kummer’s introduction of “ideal numbers” is related to the fact that every
ideal can become principal with the appropriate field extension. Many results in
Number theory, including the proof of Kummer’s special case of Fermat’s Last
Theorem, are highly connected to the idea of the class-number.

Theorem 5.2. Let O be the ring of integers, in a number field K, of degree n.
Factorization in O is unique if and only if the class-number h is equal to 1.

Proof. The theorem 4.6 suggests that factorization in © is unique, if and only
if every ideal is principal or, equivalently, if and only if every fractional ideal is
principal.

Let F be the group of fractional ideals under multiplication and P be the
set of principal fractional ideals. Then, it suffices to prove that F = P. But,
F =P is equivalent to |H| = h = 1, where |H] is the order of H. O

Theorem 5.2 states that factorization in a ring of integers is unique if and
only if the corresponding class-number is 1. In other cases, i.e. when the class-
number is greater than 1, the factorization is not unique. In particular, larger
class-number corresponds to more complicated non-uniqueness of factorization.
Using the latter statement, non-uniqueness of factorization can be measured
somehow.

Theorem 5.3. Let O be the ring of integers of K, which is a number field of
degree n = s+ 2t. Let a # 0 be an ideal of . The volume of a fundamental
domain for o(a) (as defined in equation (5.1)) in L% is equal to

27" N(a)/]A],

where A is the discriminant of K.
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Proof. If {ai, -+ ,an} is a Z-basis for a, then a Z-basis for o(a) in L* is the
following:
1 n @ n @
(ng )7 7xg1)ay§ ),ZE )a 7y§ )7Z§ ))a
(x(ln)7 e 7Ign)v ygn)a ZE")’ e 7yt(n)7 Zt(n)) :

Let T be a fundamental domain for o(a). As a consequence of lemma 5.1,
v(T) = |D|, where

NG D € I €O RPN CO RN €O
D= :
O R O B O R N I O

Moreover,
|D| = 27Y|E|, with E? = Alay, .., ay).

According to equation (4.3) (see the aforementioned Useful Results about
Norms of Ideals), it holds that

N(a) = |Alar, - ,an]/A[2,

Thus,
o(T) =27"Alay, -+, a,)/? = 27 N(a)|A]Y/2,

O

Theorem 5.4. Let a be an ideal of O, a # 0. Then, a contains an integer b,
for which

¢
N0 < (2) NI
Proof. Let e > 0. We choose
X1y Topt, i €ER, x; >0, Vi€ [, s+t
By theorem 5.3, it follows that there is an integer b € a, with b # 0 such that

‘Ul(b)‘ < Ty, ccc, |Us(b)| < Ts (52)

and ‘O’s+1|2 < Tst1, ", |O—§+t < fﬂs_._t‘ (53)

By multiplying (5.2) with (5.3), we get
Y
ING)| < @1 Zaass - Eape < <7T) 2N () /2]

2 t
SN <o o= (2) N@VBI+e (54
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However, it is known that every lattice is discrete. Therefore, if we define A,
as the set of all integers b, we have that A, is finite. Of course A, # (), which
means that the union of A., Ve is also nonempty. If we define this union of sets

as A = LJA6 and choose b € A, we get that

vl < (2) Vvl
O

Corollary 5.1. Every ideal a of O, a # 0 is equivalent to an ideal with norm
less than or equal to

¢ v

Proof. Consider the class of fractional ideals which are equivalent to a=!. This
class contains an ideal ¢ such that ac ~ 9. According to theorem 5.4, there is
an integer d € ¢ such that

IN(@) < (i) N()VIAL (5.5)

Yet, ¢|d and therefore there exists an ideal b with (d) =c¢-b .
By equation (4.4) (see Results of Norms), it holds that
N(b)N(c) = N(bc) = N({(d)) = |[N(d)|. Further, by inequality (5.5),

N(B)N(0) < (2) N(O)v/]A]

=N(b) < (i)tW

Land b ~ ¢!, Therefore, the proof is completed.

O

Moreover, b ~ ¢, since ¢ ~ a~

Theorem 5.5. The class-group of a number field is a finite abelian group and
the class-number is finite.

Proof. Consider a number field K with discriminant A and degree n = s + 2t.
The class group H = F/P is an abelian group. We have to prove that it is
also finite. Let us define [¢] as an equivalence class. There is an ideals a that is
contained in [¢]. As a consequence of corollary 5.1, a is equivalent to an ideal b,
such that

N(b) < (i)t\/ﬂ.
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As stated in theorem 4.5, only a finite number of ideals have a given norm.
Therefore, there is only a finite number of choices for the ideal b. Further, it
holds that

c~an~b
= [d = [a] = [6].

Hence, there is a finite number of equivalence classes [¢|, which is equivalent
to H being a finite group. Thus, the class-number h = |H| is finite. O

One can find a more elementary proof of finiteness of the class-number in
Ref. [12].

Proposition 5.1. Let K be a number field of class-number h and let a be an
ideal of O. Then

(a) a" is a principal ideal.
(b) If q is prime to h and a? is principal, then a is principal.

Proof. (a): It holds that h = |H| = [a]" = [D], V [a] € H, since [D] is the
identity element of H. Thus, [a"] = [a]” = [O] = a ~ O -a”, which means that
a’ is principal.

(b): We choose u, v € Z such that uh + vg = 1. Therefore,

[a]? = [9O]
=[a] = [a]""*7 = ([a]")*([a]7)” = [D]*[O]" = [D],

from which it follows that a is principal.
O

By attempting to compute the class-number, many results have been
produced.

Theorem 5.6. (Dedekind) Let K be a number field of degree n, with ring of
integers O = Z[0], where 0 is an element of O. Let p be a rational prime,
f the minimum polynomial of 0 over Q, which causes the factorization into
irreducibles over Z,, as shown below

f=n 5,

where the bar symbolizes the natural map: Z[t] — Zy[t]. If fi € Z][t] is a
polynomial mapping onto f;, then the ideal p; = (p) + (f:(9)) is prime and (p)

factorizes in O as (p) = pi*---por.

Theorem 5.6 can be applied to quadratic and cyclotomic fields, which are
of the form Z[f], as well as many other fields. In particular, it provides a
useful method for computing the factorization of f, in a finite number of steps.
Actually, if p is a prime number in Z, it is not always true that (p) is a prime
ideal in ©. Thus, the need to factorize (p) arises. Let us investigate an example.
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Example: In Q(v/—1), with ring of integers O = Z(6) ( = /—1), we are
interested in factorizing (2). The minimum polynomial of 6 is t> 4+ 1. Since
t2 +1 = (t+1)? (mod?2), according to Dedekind’s theorem (5.6),

(2) = p?, for some prime ideal p, such that p = (2) + (/=1 + 1). But, 2 =
(14 +/=1)(v/=1+1). Therefore, p = (1 ++/—1) and finally (2) = (14 /—1)%
|

Theorem 5.7. Let a # 0 be an ideal of O. Then, a contains an element b, with

o vl < () 2 Vil v

Definition 5.5. Minkowski constants are the constants given by the formula

M, = (4)t((”2”’ . (5.6)

7w ) (s+2t)s+2

Theorem 5.8. Let O be the ring of integers of a number field K of degree
n = s+ 2t and suppose that Vp € Z, p prime, with p < Ms+\/|A|, every prime
ideal dividing (p) is principal. Then, O has class-number equal to 1.

Theorem 5.8 provides a useful criterion for A = 1. Next, we will give some
specific numerical applications of this theorem. In particular, 5.8 combined
with 5.6 can lead to computational methods in cases with small degree and
discriminant.

Example of application of theorems 5.6 and 5.8: In Q(1/—19), the ring
of integers is Z(#) and 6 is a root of the polynomial

t2 —t+5. (5.7)

Therefore, the degree is 2 = 0+ 1 -2 and the discriminant is —19. Minkowski
constants can be calculated directly by equation (5.6), for s =0, t = 1,

A" 0+2-1) 2
My= (=) ————1— =2 ~0637
¢ (w> (042-1)0+21 ~ 7

Mst\/ ‘AI = Mst ‘ — 19| ~ 2.777.

Hence, theorem 5.8 provides information for prime p less or equal to 2.777,
equivalently for p < 2. Next, we are going to use theorem 5.6. Since polynomial
(5.7) is irreducible, modulo 2, (2) is prime in O. This means that if a prime
ideal divides (2), then it is equal to (2), hence principal. Polynomial (5.7) is also
irreducible, modulo 3. Therefore, theorem 5.8 suggests that the class-number
of O is 1. |

In 1801, in his “Disquisitiones Arithmeticae”!, Gauss introduced several
conjectures some of which remain unproved until today. In 1934, Heilbronn

1For the translated in English work (Arithmetical Investigations) see Ref [6].
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proved the “Gauss Conjecture” that h(d) — oo, as d — —oo. Also, in 1934,
Heilbronn and Linfoot came up with the following theorem Ref. [9].

Theorem 5.9. (Heilbronn-Linfoot theorem) The class-number of Q(v/d) is
equal to 1 ford = -1, =2, =3, =7, —11, =19, —43, —67, —163 and exactly
one more (unknown for now) d < 0.

Definition 5.6. Gauss’ Class-Number one problem is described as the problem
of finding every complex quadratic field, which has class-number equal to 1.

Additionally, Gauss conjectured that there are infinitely many real quadratic
fields with class-number one, which is not solved up to this day.

Gauss’ Class-Number one problem was solved by Baker and Stark in 1967,
although Heegner had already given almost the proof in 1952.

Theorem 5.10. (Baker—Heegner-Stark theorem ) The class-number of Q(v/d)
1s equal to 1, if and only if

d=—1, =2, =3, —7, —11, —19, —43, —67, —163.

For further details on theorem 5.10 and Gauss Class Number problem, I
refer the reader to Refs. [14], [17], [16], [1], [8].

Later on, the problem was connected to L— functions of elliptic curves. Let
us present a much stronger result, which was given by Gross and Zagier, see
Ref. [7] .

Theorem 5.11. (Goldfeld-Gross-Zagier)
For every e > 0, 3¢ > 0 (which can be computed effectively) such that

h(d) > c - |log|d||*~¢.



Chapter 6

Special cases of Fermat’s
Last Theorem before
Kummer

We present in this chapter some special cases of FLT, which have been proved
before Kummer. We would like to stress the difference in the way of proving
cases of Fermat’s Last Theorem before and after Kummer.

It is clear that for n = 2 there are infinite examples of integers satisfying the
Diophantine equation. These are the so-called Pythagorean triples. It has been
revealed that Babylonians have calculated these triples, earlier than Pythagoras,
with an unknown until now way. Apart from the case n = 2, we will present
some other n’s, which were proved (or almost proved) before Kummer.

6.1 Fermat (n =4)

The case n=4 is the only proof that was ever given by Fermat. Actually the
proof was not published by Fermat himself. Fermat’s son, Samuel, published it
after his father’s death together with other mathematical work done by Fermat.

Remarks:
(a) If there is a solution to the Diophantine equation

then there is also a solution to this equation, where x,y,z are pairwise
coprime.

(b) If equation (6.1) is impossible for an exponent 7, then it is also impossible
for every exponent kn, where k is an integer.

99
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(c) Every integer n > 2 is divisible by 4 or by an odd prime.
As a consequence of remarks (b) and (c), FLT may be reduced to the
following: Equation (6.1) is impossible for n = 4 and for every n odd prime.
In order to prove the case n = 4 of FLT, we need the following lemma.
Lemma 6.1. The solutions of the well known equation
2?4 y? =22, (6.2)
where the integers x,y, z are pairwise coprime, are given by
r=2rs, y=1r2—3s% z=r>+5% (6.3)
where, r, s are coprime and exactly one of them is odd.

Proof. Consider z,y,z > 0 and note that they cannot all be odd (because
odd? = odd, even? = even and odd + odd = even). Thus, because of the fact
that they are pariwise coprime, only one of them can (and should) be even.

e If we consider the case when z is even, therefore x, y are odd, there exist
integers a, b, ¢, such that © = 2a+ 1, y = 2b+ 1, z = 2¢. This leads
equation (6.2) to a contradiction, i.e.

(2a +b)® + (2b 4+ 1)? = (2¢)? (6.4)
20> +a+b2+b)+1 =2,
which is impossible.
We are left with two possible cases.
e We consider the case, in which x is even, while y, z are odd.

Equation (6.2) can be rewritten as
2t =22 =y = (2 —y)(z +y) (6.5)
Since x,z 4+ y,z — y are all even and positive, there exist u, v such that
T =2u, z+y = 2v, z—y = 2w. Therefore, we get
eq. (6.5) = (2u)? = (2v)(2w)
= 4u® = dow

= u? = vw. (6.6)

Note that v = z —; y, w = z ; Y are coprime.

For if there was a common factor k such that k|v and k|w, then

klv+w and klv —w
< klz and kly

& 7,y are not coprime, which is a contradiction.
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Then, we factorize u, v, w into prime factors

eq. (6.6) = (p1p2---pr1)? = (lily -+ - lg2) (mama - - - myps). (6.7)

Keeping in mind that v, w are coprime, they need to be squares, so that
(6.7) is true. Therefore, there are r,s such that v = r? and w = s2. It
follows that 7, s are also coprime, since v, w are coprime. Thus,

z:v+w:r2—|—82, y:v—w:r2—52.
Finally, since y, z are odd, one of r, s is odd. Indeed:
— If r, s are even, then,
z = (2a)? + (2b)?,

which means that z is even, that is contradicting our hypothesis.

— If r, s are odd, then,
z=(2a+ 1)+ (2b +1)?,

which means again z is even, that is contradicting our hypothesis.

— If r is even and s is odd (or r is odd and s is even), then
z = (2a)® + (2b+ 1),
which verifies that z is odd. This is the only acceptable case.
From equation (6.5) follows that
2= (2= ) (z+y) = 20s7) - 20%) = 4127,
where x > 0. Therefore, x = 2rs.

e In a similar way with the above case, it can be shown that when y is even
and z, z are odd, formulas (6.3) are satisfied.

O
Theorem 6.1. Equation

oyt = 22 (6.8)
has no integer solutions for x,y,z # 0.
Proof. We can rewrite equation (6.8) as follows

(@) 4 ()2 = 2.

The above is a Pythagorean equation.
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According to lemma 6.1 and assuming without loss of generality that z is
even, while y, z are odd, we get that 3 r, s coprime, with only one of them odd,
such that

z? = 2rs, (6.9)
y? =12 — 2, (6.10)
z =72+ (6.11)

We assume that 7 is odd and s is even. Equation (6.9) implies that 3 ¢,d € Z
such that r = ¢2, s = 2d2.
Moreover,

eq. (6.10) = y? = ¢* — 4d*. (6.12)
Equation (6.12) is equivalent to (2d*)? +y* = (c?)?, which is a Pythagorean

equation. Again lemma 6.1 implies that 3 e, f coprime, with one of them odd,
such that

2d* = 2ef <d* = ef, (6.13)
y=e*— f% (6.14)
=e’+ f2 (6.15)

Since e, f are coprime, equation (6.13) implies that 3 u,v € Z such that e = u?,

f =% Then,
eq. (6.15) & ¢* = u? + vt (6.16)

Obviously, equation (6.16) is an equivalent formula to equation (6.8).

At this point, Fermat made the important observation that ¢ < z. This
means that for every solution (z, y, z) of equation (6.8), there is a smaller one
(u,v,c), where z, z, y, u, v, c are positive integers. This is impossible. The
method used for this proof is called method of infinite descent. O

Proof of FLT, for n = 4: Theorem 6.1 implies that there are no integer
solutions of equation (6.8). Suppose that equation (6.1) has solution for n = 4,
equivalently that there exist a,b,c¢ € Z such that a* + b* = ¢*. Then, 3d € Z
such that d = ¢2. Hence, a* + b* = d?, which contradicts theorem 6.1. [ |

6.2 Euler (n = 3)

This section presents Euler’s proof of FLT, even if it contains a serious mistake.
It is interesting to compare this proof with the methods used later, by Sophie
Germain and by Kummer, in order to appreciate the progress made in Algebraic
Number Theory.
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Theorem 6.2. Fermat’s Last Theorem is true for exponent n = 3. Equivalently,
equation

234yt =23 (6.17)
has no integer solutions.

Proof. Suppose that equation (6.17) has a solution (z, y, z), where x, y, z € Z
pairwise relatively prime. This means that one and only one of the three is
even.! We consider, without loss of generality, that z is even and x, y are odd.
Then, x +y, x — y are even and can be written as

THYy=2p, r—y=2qr=p+q y=p—q

Then,
eq. (6.17) & (z +y) (2 +y* + 2zy) = 2°
S 2lp+9)? - p+a)p—a) + (-9 =2
& 2p(p® +3¢%) = 25 (6.18)
Note that:

e p, q have opposite parity.
Since p + q, p — q are odd, they cannot have the same parity.

e p, g are relatively prime.
For if they have a common factor, then this would also divide z, y. But,
we assumed earlier that =, y are relatively prime.

e p, qg>0.
Recall that

(6.19)

— If x = y, then z = y = 1, since they are relatively prime. Then,
eq. (6.17) < 23 = 2, which is impossible.

— If z > y, then it follows directly from equations (6.19), that p,q > 0.
— If x < y, then by interchanging them, we can still have p,q > 0.

To sum up until this point, we have proved that 3 p,q > 0, relatively prime,
with opposite parity, such that 2p(p® + 3¢%) = 23 (see equation (6.18)).

We will consider, if there are any common factors between 2p and p? + 3¢2.
Since p, ¢ have opposite parity, p? + 3¢ is odd, that can be trivially calculated.

1Since they are relatively prime, it cannot be that two of them or all of them is even. On
the other hand, if two of them were odd, because of equation (6.17), the third one should be
even.
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Therefore, any common factor of 2p and p? + 3¢?, would also be common factor
of p and p? + 3¢%2. This means that this common factor would divide p but
also 3¢2, which can be trivially proved. Since p, ¢ are relatively prime, the only
possible common factors which divide p and 3¢2, or equivalently 2p and p? +3¢2,
is 3 and 1.

(i) Let us consider first the trivial case, where the common factor of 2p, p?+3¢>
is 1. In that case, we will prove that there is a smaller solution than
(z, y, z) for the original equation (6.17). Since 2p, p? + 3¢? are relatively
prime, equation (6.18) implies that they must both be cubes.

A basic fact for sums of two squares is
(a® + %) (c* + d?) = (ac — bd)* + (ad + be)?.
In an analogous way, it has been proved (see Ref. [3]) that
(a® 4+ 3b*)(c® + 3d?) = (ac — 3bd)? + 3(ad + be)?. (6.20)
Using formula (6.20), for @ = ¢ and b = d we get
(a® + 3b?)% = (a® + 3b%)[(a® — 3b%)? + 3(2ab)?
= [a(a® — 3b?) — 3b(2ab)]* + 3[a(2ab) + b(a® — 3b?)]?
= (a® — 9ab*)? + 3(3a*b — 3b°)%.
From the above formula, by setting
p=a—9ab?, q=3a*b— 3b, (6.21)
for random a, b, we get
p? 4 3¢% = (a2 + 3b%)°.

At that point, Euler assumed that this is the only way we can write p?+3¢>
as a cube, but he failed to realize that this needed to be proved.?

Equation (6.21) suggests that
p=a(a—3b)(a+ 3b) & 2p = 2a(a — 3b)(a + 3b), (6.22)
q=3bla—b)(a+Dd).
Moreover, it holds that

e a, b are relatively prime. For if they had a common factor, that would
also divide p and ¢, which is a contradiction, since p, q are relatively
prime.

2Euler’s error is that he assumed that numbers of the form a+bv/3, where a, b € Z behave
like integers. The main issue here is that unique factorization holds in Z, but not in every
algebraic field, as we have seen in chapter 3. However, Euler’s proof happens to be correct,
since unique factorization is unique in Z(v/3).
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e a, b are of opposite parities. For if they were of the same parity, then
p, q would both be even, which is a contradiction.

e 2a, a — 3b, a + 3b are relatively prime.

— 2a is coprime with a + 3b.
Both a 4+ 3b are odd, since a, b are of opposite parity. Therefore,
if 2a, a + 3b have a common factor, this would also be a common
factor of a,a 4+ 3b. And then this factor would divide both a and
b, which contradicts the fact that a, b are relatively prime.

— a + 3b is coprime with a — 3b.
For if they had a common factor, this would divide both a and b.

e Each one of 2a, a—3b, a+3b is a cube, since they are relatively prime
and 2p is a cube. Thus, there exist «, 8,y € Z, such that

2a = o, (6.23)
a—3b=p3 (6.24)
a+3b=n~>. (6.25)

eq. (6.22)= a383y3 = 2a(a — 3b)(a + 3b) = 2p. Additionally,
eq. (6.18) = a3p393|z3. Therefore, a®p3y® < 23. By adding
together equations (6.24) with (6.25), we get

54 p 2O g8

This is another solution of the equation (6.17), which smaller than
(x,y,2). Thus, by the method of infinite descent, we have proved
that there is no integer solution to (6.17), for case (i).

(ii) In the case that 3|p, we again conclude that there is a smaller solution of
equation (6.17). The proof of this result is similar to the first case and can
be found in Ref. [3].

Thus, it has been proved for both cases with the method of infinite descent. [

6.3 Sophie Germain

Sophie Germain contributed significantly to Number Theory and specifically
to Fermat’s Last Theorem. In contrast with previous approaches, Germain
attempted to give a proof of FLT for infinitely many prime exponents. Her
work led to dividing Fermat’s Last Theorem into two cases:

FLT Case I: 2" + y™ = 2™ has no integer solutions such that n{ z, nty
and n { z at the same time.

FLT Case II: 2™ + y™ = 2™ has no integer solutions such that n divides
one and only one of z, y, z. Note that if n divides two of x, y, z, then it also
divides the third one.
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Theorem 6.3 (Sophie Germain’s Theorem). Let n be an odd prime and p an
auxiliary prime, such that

2" +y" 4+ 2" =0 (modp) = x=0 ory=0o0rz=0(modp) (6.26)
and =" = n (mod p) is impossible, (6.27)

then FLT Case I is true for this exponent n.

Proof. Let n be an odd prime and p an auxiliary prime satisfying the conditions
of the theorem.

Note that Fermat’s Last Theorem for exponent m can be expressed
equivalently as:“z™ 4+ y™ + 2™ = 0 is impossible for every triad of nonzero
integers (z, y, z).”

Suppose that FLT Case I is not true for n. Equivalently, suppose that 3
integers x, y, z such that

2" +y" 42" =0, (6.28)

where none of x, y, z are divisible by n. We will show that the above
assumptions lead to a contradiction.

Additionally, without loss of generality, we assume that =, y, z are pairwise
relatively prime. By reformulating equation (6.28), we get

eq. (6.28) & (—x)" =y" 4+ 2" (6.29)
& (—a)" = (y+ )"~y ey T ) (6.30)
Since factors y + z and 2" ! — y" 2z 4+ 322 — ... + 271 are relatively

prime, equation (6.30) implies that they are both of n" power. Furthermore,
equation (6.28) is equivalent to (—y)" = z™ + 2", as well as (—2)" = 2™ + y™.
Using the same argument as for equation (6.29), it follows that
day, b1, c1, as, by, co, such that

T = —ajaz,
Yy = _blea
Z = —C1C2.

Analytically, the relevant factors are written as

y+z=a1", (6.31)
z4+x="0b", (6.32)
r+y=c", (6.33)

yn—l _ y71—22+ o Zn—l _ a2n7
anl _ anQ:C+ +xn71 _ b2n,

"y Ly =6
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Since z" + y™ + 2™ = 0 (mod p), because of initial assumption (6.26), it holds
that one of z, y, z is equal to 0 (modp). Without loss of generality, suppose
that

= eq. (6.32) +eq. (6.33) —eq. (6.31) =2z =

=b0"+c" + (—al)n = (634)
As a consequence of assumption (6.26) of the theorem, equation (6.34) leads to

a1 =0 or by =0 or ¢; =0 (modp).

e Suppose that by = 0(modp). Then, y = —biba = 0(modp). Since
x = 0(modp), the latter contradicts the fact that xz, y are relatively
prime.

e If ¢ = 0 (modp) we are led to a contradiction in a similar way.

e Let us consider the last possible case, i.e.

a1 = 0 (mod p)

n—1

=y = —z(modp) and ax" = ny"" " = nex" (modp).
Since ¢3 Z 0 (modp), 3 k € Z such that

cok =1 (modp)

= (a2k)"™ = n (modp). (6.35)

Equation (6.35) contradicts the initial assumption (6.27) of the theorem,

i.e. that equation z™ = n(modp) is impossible. And the theorem is
proved.

O

For more information on Germain’s work on Number Theory, see Refs. [10]
and [2].
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Chapter 7

Kummer’s special case of
Fermat’s Last Theorem

7.1 A first approach to the problem.

In order to tackle FLT, many mathematicians started with the idea of expressing
2P + yP as a product of pairwise relatively prime factors. It holds that

2P +yP = (z +y) (@ +Cy)(a+Cy) - (@ + P Hy),
where ¢ € C represents the py, root of unity, given by the following formula
¢ = cos (2m/p) + isin (27 /p).
Let us present two useful facts about (:
(a) There are exactly p pyy, roots of unity and each one is a power of (.
(b) 1+¢+---+¢P 1 =0.

Kummer considered complex numbers, which can be obtained from ¢ and the
rational numbers, using the operations of addition, subtraction, multiplication
and division. In this way, he produced numbers of the following form®

ao+a1C+QQC2+-~~+ap_2CP’2. (7.1)

Definition 7.1. The numbers of the form (7.1), with a; € Z, are called
cyclotomic integers of Q(¢). Cyclotomic integers form the ring Z[(].

It is true that, if a € Z, then a is a cyclotomic integer. Although divisibility
of cyclotomic integers is very similar to the one of ordinary integers, there are
two important differences:

In equation (7.1), the term including ¢P~! is ommited, since it can be expressed using
formula (b).

69
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1. the presence of units, which are different than +1, in Z((),

2. the fact that unique factorization is not warranted for cyclotomic integers.
The first example of this failure, which was discovered by Kummer, is the
field of 23,4 roots of unity.

The need to prove that factors

(x+y), (+Cy), (@+Cy), -, (+ Py (7.2)

should be of py, power, inspired Kummer to invent ideal numbers. Then,
factors (7.2) are py, powers of these ideals numbers, since he proved that
unique factorization holds for ideal numbers.

7.2 Regular Primes

Kummer introduced regular primes. As we will present in section 7.3, Kummer
succeeded to prove FLT in the case when the exponent is a regular prime and
it does not divide any of x, vy, z .

Definition 7.2. A regular prime is a prime number which does not divide the
class-number h(p) of the cyclotomic field Q(¢), where ¢ = €2™/P is a primitive
Pin, ToOt of unity.

As we have stated earlier, FLT can be reduced to the following: Fquation
" +y" = 2" is impossible for n = 4 and for every n odd prime. Since FLT for
case n = 4 was proved by Fermat (see section 6.1), we are only interested in the
case where the exponent is an odd prime.

The first few regular odd primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41,
43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167,
173, 179, 181, 191, 193, 197, 199, - - -

Definition 7.3. A prime which is not regular is called irregular prime.

The first few irregular primes are: 37, 59, 67, 101, 103, 131, 149, 157, 233,
257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461,
463, 467, 491, 523, 541, 547, 557, 577, 587, 593, - - -

Some interesting facts about regular and irregular primes:

e “There are infinitely many regular primes.” (Conjecture)

More precisely, Carl Ludwig Siegel in (1964) (see Ref. [15]) conjectured
that e~1/2, or about 60.65% of all prime numbers, are regular in the
asymptotic sense of natural density. Neither conjecture has been proved
up to date.

e “There are infinitely many irreqular primes.”(Theorem)

This theorem was proved by Jensen in 1915 and later by Carlitz in 1954.
Actually, Jensen had proved a stronger result in 1915: that there exists
an infinite number of irregular primes p such that p = 3 (mod4).
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Definition 7.4. The Bernoulli numbers B, are a sequence of signed rational
numbers that can be defined by the exponential generating function

T B i B, x™
T __ - [
(er=1) = nl
The Bernoulli numbers are a special case of the Bernoulli polynomials.
The Bernoulli number B,, can also be defined by the contour integral

n! z 1
B, = — dz,
j 2pii (e — 1) z(nt1) z

where the contour encloses the origin, has radius less than 27i (to avoid the
poles at +274), and is traversed in a counterclockwise direction.

For every even n # 0, if 4|n, then B,, is negative, otherwise it is positive.
For every odd n # 1, B,, = 0. The first few Bernoulli numbers B,, are: By = 1,
By = —1/2, B, = 1/6, B4 = —1/30, Bg = 1/42, Bs = —1/30, B1y = 5/66,
B = —691/2730, B14 = 7/6, B1g = —3617/510, B1g = 43867/798,

Bgyy = —174611/330, Bsy = 854513/138.

Kummer’s Criterion for regularity: A number p is not a regular prime
if and only if p divides the numerator of the Bernoulli number Bj for some
ke {2,4,6,--- ,p—3}.

Using the above criterion, Kummer proved that the only irregular primes
which are less than 100 are 37,59,67. Later, he showed that
101, 103, 131, 149, 157 are the only irregular primes less than 164.

7.3 Kummer’s proof
In this section, an analytical proof of Kummer’s special case of Fermat’s Last
Theorem is presented. We are going to use three lemmas for Kummer’s proof.

Definition 7.5. As [ we define the ideal which is generated by A, i.e. [ = ()),
in the ring of integers Z[(] of K.

Lemma 7.1. P71 = (p) and N(I) = p.

Lemma 7.2. For every a € Z[C], 3b € Z, such that a? = b (mod P), where
=\ =1-¢.

Lemma 7.3. (Kummer’s Lemma) Every unit in Z[(] can be written in the form
rC9, where r is a real number and g is an integer.

Proofs of lemmas 7.1, 7.2 and 7.3 can be found at Ref. [19].

Theorem 7.1. (Kummer’s Theorem) Let p be an odd regular prime. Then,
there are no integers x, y, z satisfying the equation

P 4+ yP = 2P,

such that ptx, pty, ptz.
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Proof. Let us consider the equation
P +yP + 2P = 0. (7.3)

It is sufficient to show that there are no integer solutions for the equation (7.3),
since then we can replace z by —z in equation (7.3) and the theorem is proved.
We will consider that there is a solution of equation (7.3), i.e. there are z, y, 2
which satisfy equation (7.3) and also z, y, z are prime to p. If we factortize
equation (7.3) in Q(¢), we get

p—1
(z+y)+2"=0

- O

& H(a: + {Ty) = —2P. (7.4)

j=0

h <Y

For the relation (7.4), we used the fact that (zP +y?) = x(z+Cy) - - - (z+ (P~ Ly).
By taking the ideals of the relation (7.4), we get

p—1

[T+ =(=)" (7.5)

§=0
Claim: All the factors included in the product of (7.5) are coprime pairwise.

Proof of Claim: Consider p as a prime ideal such that
pl(z +¢Fy) & pl{z+ C'y), where 0 <k <1<p-—1. (7.6)
Relations (7.6) imply that the ideal p includes the element
(@ +¢"y) = @+ ¢ly) =2+ Py - =y =ty -7,

But, (1 —¢'~F) is an associate of (1 —¢) and ¢* is a unit. Therefore, p includes
the element y(1 — ¢) = y\. Since p is a prime ideal, it follows that either p|y or
plA.

e In the case that ply, equation (7.5) implies that p|z also. However, y, z
are coprime integers. Hence, 3 a,b € Z such that

az+by =1. (7.7)
Since y, z € p, (7.7) implies that 1 € p, which is a contradiction.

e In the case that p|A, we note that N(I) = p and now theorem 4.4 implies
that [ is prime. Therefore, p|A = p = [ and so [|z and we have

p=N|N(z) =21

Therefore, p|z, which contradicts with the hypothesis that pt z.
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We have proved that both cases fall to a contradiction, thus the claim is proved.ll

Let us revisit equation (7.5). As a consequence of uniqueness of factorization
for ideals, each factor of the product in equation (7.5) should be a p** power of
an ideal.? We can assume, e.g. for j = 1, that there exists an ideal a such that

(x 4 Cy) = aP, (7.8)

which directly implies that a? is principal. Now, since p is regular, p 1 h, where
h is the class-number of Q(¢). As a consequence of proposition 5.1, a is also
principal. Therefore, we can find ¢ such that a = (J). Equation (7.8) implies
that

x + Cy = €d?, (7.9)

where € is a unit. As a result of Kummer’s Lemma 7.3, 37 € R and g € Z, such
that € = (9. Equation (7.9) implies that x + (y = r ¢9 §P, r € R. Moreover,
lemma 7.2 implies that, since ¢ € Z[(] there exists ¢ € Z, such that
0P = ¢ (modI?)
=z + (y = r{9c¢ (modlP). (7.10)

Lemma 7.1 suggests that

=t = (p)
eq. (7.10) = = + Cy = re¢? (mod(p))
= (" 9(x + Cy) = rc (mod(p)), (7.11)
where we have multiplied by unit {79,
= (9(x + ¢ ly) = re (mod(p)), (7.12)

where we have taken complex conjugates,
THET gm0 4 (g — a¢r — 407t = 0 (mod(p).  (7.13)

Note that (14 ¢) is a unit.3
Let us consider possible values of g in equation (7.13). If g = 0 (modp), we
get that

9=1
=(9=1
eq. (7.13) = 21 + Cy — 1 — y¢( ™~ = 0(mod(p))
= y(¢ = ¢71) = 0(mod(p))
= y(14 (1 =¢) = 0(mod(p)).

2Because on the right part of the equation, we have (z)P. Additionally, the claim which
was proved earlier implies that all the aforementioned factors are pairwise coprime.

3This is proved by putting ¢ = —1 in the polynomial equation f(t) = (t —¢)(t —¢2)--- (t —
¢p=1),




74 CHAPTER 7. KUMMER’S SPECIAL CASE OF FLT

Since (1 + () is a unit & 1 — ¢ = A, the above relation reads
yA = 0(mod(p)). (7.14)

It holds that (p) = (A\)?~! & p—1 > 2, since p is an odd prime. Thus \|y. If we
put norms at the above equation, we get that p|y, which contradicts an initial
hypothesis of the theorem. Hence,

g # 0(modp). (7.15)
In a similar way, it can be proved that
g Z 1(modp). (7.16)

We continue with equation (7.13) as follows. There exists a € Z[(], such that

ap=a( 9 +yCt I —xd —y¢ot

sa=feuilon Lo Yo (.17)

p p

Note that p does not divide any of the exponents —g, 1 —g, g, g—1.
Additionally {1, ¢, ¢2, ---, (P72} is a Z-basis and « € Z[¢]. Assume that all
exponents —g, 1 — g, g, g — 1 are incongruent modulo p. This means that
x/p € Z, which is impossible, since p t x, by hypothesis. Thus, one pair of
exponents is congruent modulo p. As a consequence of equations (7.15) and
(7.16), it holds that 2g = 1(mod p). Then,

eq. (7.17) = apC? = ~pc9¢9 + Lpcact=9 — Zpeoco — Ypcoco
p p p p

= ap(? =z +y¢ — a®g — y¢*!
= apl? = (z —y)A
= lapl?| = |(z — y)Al. (7.18)

Equation (7.18) implies that p|(z — y). Therefore,
x—y=0(modp) =z =y (modp).
The symmetry of equation (7.3) delivers y = z (modp). Hence,
0=aP +y? + 2P = 32 ( mod p)

The above equation leads to p = 3, since p { z. We will show that this is
impossible. Note that modulo 9, cubes of numbers that are prime to p
(specifically 1, 2, 4, 5, 7, 8) are congruent to 1.

Thus, if there is an integer solution to equation (7.3), it would lead to the
following result

+14+141=0(mod9).

This is impossible. Thus, it has been proved that there is no solution for
equation (7.3) and the theorem is proved. O
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