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Amayopedetat 7] avirypagy), amodnmrevor nat Stavopr] g TEovoas eQYactag, €€ OLOXANE0U 7] TUHATOC AUTHC,
Yoo epmopwd onomod. Emtpénetar v avatbnwo), anobiuevon xot Stavouy ylo oxomd U1 xepd00KOTIHO,
EXTOULSELTIUNC 7] EQELVITINYC PUGTC, LTLO TNV TEOLTO0EOY] Var avarPEETAL 7] TTNYY| TEOEAELGYC %ot Vo SLtoTrEelTait
T0 TEOV pNnvopa. BEpotpata mov apogoby T YNoY TG oyaoiag ylo xepd0oxonnd oxOnoO TMEEMEL V&
amevfivovian mEOg Tov cuYyEXPE.

Ot anodelg xot T CLUTEQRAGUATA TIOL TEQLEYOVTAL GE ALTO TO Eyypapo exypedlovy Tov cuyyoapea 1ot Oev
TpeneL vo eppyvevlel 6Tt avTimpoownedouvy Ti¢ enionpeg Béoetg Tov EOvinod Metodfrov IToluteyveiov.



ITegiindy

2TC PEEeC Pag, vag peyahog aptbpodc epoppoywy mpenet va Stoyelpiletal pio cuveyy Eom
dedopévwy uat var v eneéepyaletot XATUAANAL WOTE Vo IXAVOTOLOLVTAL Ol eMBLUNTEG ATAULTY|OELC.
Eite n po7) auth avtiotoryel oe TAneopopia Tov HETASISETAL UECW UG TNAETUXOVWVIAKYG VTOSOUTS,
OE WUETENOEIC TOL TaEAYyovTal and évav owctnmoea 1) oe Sedopéva mov SNPLOLEYOLVTAL ATO
omoLdNToTe GAAY TINYY, anaLTeltor oYV v T enefepyalOpaoTe ANOTEAECUATING Kot aSIAAELTTA,
EV® TOAMXTIAES QIOLLES EQYATLES TOAYUATIXOD YOOVOL exTEAOLVTAL avedQTY T HeTa€D TOLG.

Otav 10 TEOBAUA TOL TEQLYQAPETAUL THOATAVL AVTLUETOTILETAL HE YXONOY TAQXSOCLANMY
oLoTpdTwY eneéepyaotog, eppavilovtal StdpoEOL TEQLOPLGUOL WG TEOG TNV ATOUOVKGY] TWY EQYACLKY
%ot TNV ETMB0GY TOL CLOTNUKTOC. 2€ TEQIMTWOY TMOL EUTAEXETHL EVX EVOWUATWUEVO GLOTNUO,
evOEYETAL VO EPLPAVIETOLY nat DEpatar OTWE 1 naTAVaAWo] Loy bog xat 1) popntotta. Kata cuvéneta,
aleg teyvoroyieg Do meemet v e€etaatody Yoo TV LAoToINEoY eToLwy epappoyey. Ta SoC FPGAS
palvovtal wg pio Laviny Aoy, dedopévou OTL TaEeYoLY LoyLEY Yot enelepyaola GNUATOS GTO
DAIOUIXO, oe oLVOLXOUO pe TNy eveMéiox nat TN SLVATOTNTX TOAXTAYG emeéepyaoiag evog
TOALTIDENVOL emeleEyaoT], *abwg xal €va EVEL GOVOAO TEQUPERELAX®MVY YL AELTOLEYIES LYMAOD
emnédov. L26T000, TEOUEUEVOL VX UXTAANEOLUE O Mia MAVOTOTINY| ADGY], TEETEL CUPOS VO
A Bovpe LTOPYN TNV ATOLOVWEY] TwY TOEWY %ot 1 BEATIETOTONOY TG ATOSOGYC.

e autn ) SImAwpaTiny] epyooia, oyedaletar xat vhomoteltat oe éva Stmbenvo SoC FPGA uia
SOUPAOTINY VTOSOUT] HATHAANAT YLt IOt TAETUXOVWVLANY] EQROUOYT]. ATIOTELEITAL ATIO EVaY TOUTIO
not evay Oenty dedopévuy, nabévag ex Twv omolwv 1eeyel oe Eeywotot CPU. Mia por dedopévwv
vroxettat oe encéepyaoia 6o FPGA nat petopépetar amd ) pio Theved 6tnv &Aly, eve xdbe muprvog
elvor vredBuvog Yo ™V extéleon Twv Sty Tov ave€aETNTLY epyaotwy ot dedoueva. To abotnua
avatbooetat oty avantuéionn thaxéta Zybo, 1 onota Baoiletat oto Zyng-7000 All Programmable
SoC. Emvyeipodvtar Bektiotonowoelg 1060 amd v TASLEA TOL LAOPIKOL OGO AL TOL AOYLGUIUOL,
(WOTE VX IXAVOTIOLOLYTAL Ol XTALTNOELS plag mbavig mpoypatuyg epappoyne. [Towtov, dtepevvatar 7
oyedlao? TOL LMOUIKOL, PE GTOYO T UEYLOTOTOLNGY] ToL ELOKOD HETXPOPAS TwV Sedopévwy. X
OLVEYELX, DAOTIOLOOVTAL SDO SLPORETUE TYNUAT, ATO ATOYY] AELTOLEYIMOY GUGTYUATWV: EVX EVLXLO
nepBadhov Linux nov epappoletor xow otoug Vo muenveg xan pio cpyttentoviny] Linux/FreeRTOS,
omov nabe mENVAGg TEEYEL TO Si1d TOL EEYWELOTO AELTOLEYUO GLCTYHA.

Tehog, xou o 600 oYNUXTEX SOULUALOVTAL GTNY AVATITUYEVY] EQUOIOYY] UXL CLYXQIVOVTAL CYETIUX
UE TNV XMOROVWO xat TV anodoo. [Tpaypatonoteitat pio oelpd anod netpapata tov Tonobetoby To
obotpa oe OtapopeTnd  oevapte. Ot UETEYOEIS %Al TA CUUTEQRACUXTA TOL TEOXLTTOLY
Tpovotalovtat o TV a€LOAOYNGY] TOL GUGTYUATOS UL OTLG BVO TEQIMTWOELG.

Ag€eig Khetbra

SoC FPGA, amopdvwor, enidoon, OCLUUETOMY] ot XOORUETEY molvemefepyaoio, QO

dedopévawv, oyediaom vAouol/ oyouxno, enslepyaoto TEAYUATIXOL YOOVOL.






Abstract

Nowadays, a vast number of applications need to manage a continuous stream of data and
process it appropriately to meet the desired requirements. Whether this stream corresponds to
information transmitted through a telecom infrastructure, measurements generated by a sensor or
data created by any other source, it is often required to process it efficiently and uninterruptedly,
while multiple critical real-time tasks are executed independently.

When dealing with the problem described above in traditional processing systems, engineers
are faced with various limitations in terms of task isolation and performance. In case an embedded
system is involved, issues like power consumption and portability may also appear. Consequently,
other technologies should be considered as target platforms for such applications. Multicore SoC
FPGAs, in particular, seem to be an ideal solution, since they provide powerful Digital Signal
Processing (DSP) in hardware, combined with the flexibility and multiprocessing features of a
multicore processor, as well as a rich set of peripherals for high-level functions. However, in order
to end up with a satisfying solution, resource isolation and performance optimization still need to
be taken into consideration.

In this thesis, a testbed suitable for a telecom application is designed and implemented on a
dual-core SoC FPGA. It consists of a transmitter and a receiver of data, each one running on a
separate CPU core. A stream of data is processed in the FPGA and transferred from one side to
another, while each core is responsible for executing its own independent tasks on data. The system
is deployed on the Zybo development board, which is built around the Zyng-7000 All
Programmable SoC device. Optimizations are attempted both from hardware and software
perspectives, to satisfy the requirements of a potential real-life application. First, an exploration is
done on the hardware design, aiming to maximize the throughput of the data transfers. Then, two
different configurations are implemented, in terms of operating systems: a single Linux
environment running on both cores and a Linux/FreeRTOS architecture, where each core runs
its own separate operating system.

Finally, both configurations are tested on the developed application and compared, with
respect to isolation and performance. A number of experiments are conducted to place the system
in different scenarios. The resulting measurements and conclusions are presented in order to
evaluate the system in both cases.

Keywords

SoC FPGA, isolation, performance, symmetric and asymmetric multiprocessing, data
streaming, hardware/software design, real-time processing.






Evyagtotieg

Koatapyds, o nbeko vo evyaptotow tov entBrénovia uabnynm pov, x. Anuntplo Xovvipn, o
OTOLOC PE EUTLOTELTNUE YL GLTY] TV OITAWUXTINY] EQYXCIX UXL HOL EBWGE TNV evUALELL VoL TNV
denmepautwow ato Epyaotnolto Mixpoeneepyanotwy xor Pngplanwy Zouotuatwy.

Oua Neka emiong Vo EXPEROW TLG ELYAELOTIES POV 68 OAx T PéAY Tov Epyaotplov yia o @uAind
epyaoland TeQIRIANOV TIOL OL TEOGEYPEEXY XATA T1] OLAEXELX EXTOVYONG ALTYG TG epyaoiag. Oo
N0eho Sraitepa vor evyaptotow tovg Kwvotaviivo Mapayno, 'ewpyio Aevtapn ot Iwdvwn
2tpatano o ™y moALTLY] Bonbeta xa naxbodnynomn tovg nal’ OAn ) Srpuetx g epyaoiog.

Téhog, O Nbeha vor euyELOTNOW TNV OWOYEVELR OV Xt TOLG PIAOLG WOV YL T7 oTNELEY TOLG
OAOL LLTA T Y OOVLA.
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Extetapevy Ilegiindn

Ewooywyn

To televtaio YOV, ToEaTnEEitar gl otpown mEog ) yenon twv SoC FPGAs yur v
vAomoinon mowikwy cpappoywyv. Ilpdretton yioo pic vBEWWY TeYVOAOYIX TOL EVOWUXTWYVEL
uwpoeneéepynot) xat FPGA mave oty St Yneido.

To FPGA (Field Programmable Gate Array) eivat évat oOAoxAMpwpévo #OxAwPa TOL anoTelelTo
ano  ploe  ovotoryie  EuOwlopevwy Aoymewv  povadwyv mov  cuvdeovial  PETaED TOLG  PECW
npoypappotlopevey Staovvdéoewy. Méow ylwoowv meptypayns vixod, 1o FPGAs punopodv va
EMAVATQOYQUUUXTIOTOLY WOTE VoL DAOTOLOLY SLIPOQETINY] AELTOLEYLX, AVAAOYX e TIC ATULTNOELS TG
endotote epoppoyne. Extog and my eveléia, 1o FPGAs napovoalovy nat dhka mAeovertnuota,
OTWG 7] ETTAYLVOY HECW TUQUAANAYG emeleQyaoiag OTO LMOUIUO MUl UELWUEVO YOOVO TEOG TNV
XYOQX, CLYHQLTIUA PLE TO ONOUAT|OWULEVE UVUAWUXTA ELBMOL GHOTOD.

Erot, 1a SoC FPGAs ouvdvalovv 1o o@éln tov FPGA pe v eveliéia evog enelepyaoty], evi
TILEEYOLY ETLGYG EVX GUVOAO ATIO TEQUPEQELAMNA UL DLETXPES VLo TNV EMLTELEY] ELSIUOV AELTOLEYLWY KoL
emovoviag pe sfwtepwés ovoxrevés. Elodyeton Aotndv pio apy? oyedloaons bMopxod/Aoytomxo,
omov pio epyaoto umoet vo xotavepn el napdAinia otov enefepynoty nar ot Aoywn tov FPGA,
Bekttwvovtag 11 oLVOAILY aTOS00Y] TOL GUGTYUATOG.

Ocov  ayopa tov enelepynoty, Oepedtwdne Oewpeitar mAéov 7 yENnon mOALTHENVWY
xpyttentoviney. Eva molveneepyaotind cbotpa amoteleltor and TOAATAES povadeg encéepynotog
(1 moeNveg) mov exteloLY TaEAAANAX TIG Snég TOLg AettovEyiec. Ot AelTovEyieg aLTEC PTMOQEEL Vo
aviovy oe avedETnTeC SLEQYXOIES 1] VX ATOTEAOLY OlPOEETING VHpata TG Ot Slepyaoiag.
AvdAoya pe Ty TEQITTWOY), oL TOMATAOL TuEY Ve potpaloviat iSto ywEo Stevbbveewy xat xotvodg
TOEOLGE, OTWG *ELPES pvnues xon dtavdoug BE/E. H entowvwvio o 1 aviadhhay? dedopévey petafd
TOV TLENVOV TOEAYUATOTOELTHL ECW KOWVNG UVNING, VTUAAXYYG LYVORKTWY 7] GAAWY WYY AVIOUMY
emOVWYinG. 2e pla TeTolx douY), TEénel xoPaAwS va Anpbody vodn {Nuata OTWS O GLYYEOVIGUOG
%L 7] GLVETELX TG VIS AVEUECH GTOVG ETEEeQYXOTES.

I8txitepo evdiagpépov mapovctdlovy oL TEQITTOOELS TOL TEQIAXPBAVOLY ETEQOYEVELG TVET|VES GTO
i8to odoTpo. AvTO eV CLVETAYETHL XTOMAELOTING SLUPOQETINEG HOYLTEXTOVINEG ETEEEQYATTOV, XANK
%ot SLUPOPETIUG ASLTOLEYING CLOTYATX 7] etdinevpéveg emeepynotineg duvatotntes. 'Brot, uabe
TLENVALG UTOEEL VX OYeSLAoTEl XA TAAMNAX WOTE v YelpileTan amodOTIUG eQYAOiES ELBIMOL GHOTOD.

Xe ndbe mepintwor, Oty oe éva TOAVETEEERYXAOTIUO GLOTYUA EXTEAOVVTAL aveEXOTYTES EQYAOLES,
elval ONUOVTIXO VX LTIAEYEL ATOUOVKGY] KETAED TV SLXPOQETIMOV TLEVVWY, WOTE VA EYYLATAL 7]
XOPYAAELX, VO IXAVOTIOLODYTAL TUY OV TEQLOPLOKOL TOXYHATIMOD YEOVOL KL VO ETULTUYYXAVETAL 7] HEYLOTY)
duvaty amod007 Tov cuotNuatog. [Tibaves napepuBores petaéd Twv epyaotwy dvvaviat vor 0d1y1covy
o€ nvdLVOLG 7] YEOVIMES ©xBLOTEENOELS TOL UTOEEL VXX ELVLL XQIOLUEG YL TNV ATIXLTODUEVY] EQUOOYY).

210mog

20OTOG ¢ TUEOLONG eQYaoLag elvat 1) bAoToin ey oe Stndpnvo SoC FPGA nat abiohdynon piog
SOUPACTINNG LTOSOPUNG Yl TNAETIXOWWVIIHES epappoyes. Katd v vhomoinoy 1ov Lo uaTog
a€romoteitat 1060 1 TEOYEXUMUATILOUEVY] AoYT] Yl ATOSOTINY| EMeEEQYXTIN OGO UAL Ol SLVXTOTYTEG
noL T TEQUPEQELXG TOL TEEYEL O dimbpnvog emeéepyxotys. Emysipeitar 7 Bedtiotonoinon tov
CLOTHNPATOS ATTO TAELEG LALGUIXOD UXL AOYLOPIKOL, WG TEOG TNV ATOROVWGY XAl TNV ATOS0GY).
[Tooxetpévou va aroroynbet 10 GLOTNAL, AVATTOGOETHL Uit SOULUAGTINY] TAETULUOLVWILONY] EPROUOYY]
TOL ATMOTEAELTAL ATO EVAV TOUTO %ol evay OexTn O0edOpeVwY, Ol OTOlOL TEEMEL VA EXTEAOLY
XTOUOVOHUEVX XL XTOTEASOPXTING TG avTioTolyeg AettovEyieg touvg. Kabwg 1 o7 Sedopévwy
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UETAOISETAL ATO TOV TOUTO TEOG TOV OEUTY], OL OTOLOL EXTEAOLVTAL Gt EEYWELOTODS TLEYVES TOL
ene€epyaoty, vnoxettat xat oe evdidpeon encéepyacio 6o FPGA.

To #ivnteo yw 17 dnutoveyia xot e€ETa0Y EVOG SOULUXGTINOD GLOTYUATOS OTWS TO TUQATAVW,
ywolc tov nxboplopd cuyrexpiuevou alyopibpon yioa v enelepyacioa Twv dedopévwy, eivat OTL ETot
oLTO SLATYEEITAL TEOGAPUOGLLO Yot TNV LAOTIONGY] SlapOQwY EPAOUOYOV. Xe Ui TOOUYUOTIHT
TNAETUHOLVWVIANY] EPAQUOYY], 1] QOY] SESOUEVV AVTIOTOLYEL OTY| UETASOOY] GMUATWV KL 1] EVOLRUEDY]
ene€epyaoio oe Stadmacieg OTWS N StapnoEPwor xat 1 ToAvTAEIX Twv oNuatwy. Mio dAAY evdetntiny
epappoy elvar 1 ANdn plag cuveyovg axorovbiag petonoewy and evav atohnmoa, yro ToeEdderyuo
evae LIDAR, 7 onoto mpémet va eneéepyaotel natdhnia xot o maypatino ypovo. [apaddnia, 10
obotpa o TEETEL var elvart tavO var ToEeyeL pioe StadEaaTin] SIETAgY] TEOG TOV YENOTY], YWELS ALTY)
v emnedlet ™ AN no enelepyacio 1wy dedouevwy.

Baowéc 'Evvoreg

H ovoxsun

Q¢ TAATPOEP avaTTLEYG TOL BLOTHUATOG YENCtoToONxe 1 TAanéta Zybo g Digilent. Avty
Baoiletar oo Zynq Z-7010 AP SoC ¢ Xilinx, to onoto evowpatavet évay Stndprnvo ARM Cortex-
A9 ene€epyoot pe ™V npoyoappatlopevn hoywrn tov FPGA. H mhaxéta nepthapuBavet, petaéd
ailwv, 512 MB DDR3 pviung xabog xar minboc nepupepstoanav (Ethernet, USB, UART/JTAG
SDIO, HDMI, GPIO). H nhaxéta Zybo not 1 apyttextoviny tov Zynq AP SoC gaivovtar otnv
Ewova 1.

To Zynq SoC ywpiletar oe Lo vmoovotpata, 10 Xvompa Eneéepyaciog (ZE) xar my
[Mpoypappatilopevn Aoywn (ITA). Xto XE neptéyovtar o dimbonvog encéepyaotng ARM, pall pe
LG AVTIOTOLYES LTOAOYLOTINEG LOVAOES UL KOLYES UVIIES, nablig 1ot Ot SleTapéc TEOG T U7 %ot
ot Staryelplotég Twv Staopwy meppepetanwy. H ITA anotedeitoar and FPGA hoywr| yevinod oxomnod,
oM uart etdnoLg TOEOLS OTWG Urhox uvNune RAM xow povadeg Ynproanng eneéepyasiog oNuatog.

1t

Processing System

]
C
2
&
£

Nulti Standard UDs (3.3 & High Speed 1.87)

Exéva 1: H nhaxéra Zybo kai n apyrrexroviki tov Zyng AP SoC [9][11]
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To Staopa tunpata oto XE sow 1 [TA emxovwvodv peta€d toug péow AXI Sracuvdéoewy,
obpywvae pe 1o npoturo AMBA g ARM. Yrdoyouvv 1ol Stapopetina eidn AXI Stenapmy puetaéd
2 E nou ITA: téooepig 00peg yevinod oxonod (GP), wia Odpa ACP mov Swoypoaiilet T ovvémetor uetold
™ TTA no twv xpvpwy pvnuev tov XE xat téooepig Obpeg vyning anddoone (HP), ot onoteg
vrooteilovy anodotiny emmotvwvia wetadd TTA o pvnune.

To AXI4-Stream 7E®wT0%0 O

H mo npbdopatn éndoon tov AMBA AXI mpwtonolov emnrotvwviag eivar 1o AXI4 not
eppaviletan oe teetg moupodhayés: AXI4-Full, AXI4-Lite wow AXI4-Stream. Edw emnevipwvopaote
oto AXI4-Stream 1w TOXOANO, TO OTOLO ENMLTEETEL TNV LETAUPOQE ULXG GLYEYOVG QOYG EYIAOL OYXO
dedopévey and évay apevty (master) mpog évav onkaBo (slave). To AXI4-Stream eivor Aoyw ™
LG TOL TO TAEOV XATAAANAO YL Pidt TAETUHOLVWVIANY] EQUOULOYY], OTIOL EVALG TOUTIOG HETAOIOEL Lo
007 TANEOYOPING TEOG EVAY OEUTY).

Mioe AXI4-Stream Siemopn amoteleitor amO (i CEQR CGYUATWY TOL ETMLTUYYAVOLY TYV
ETUNOLVWYLN %L TOV GLYYEOVIOUO UeTa€D apévty xan oxdaov. Ta nvptdotepa onpata naepovatalovat
otov mivara 1. I'e va mpoypatomonbel plo petapopd dedopévwyv, amarteiton pio Stadimaoio

yetoolag petadd twv SLO TASLEWY, 7] OTOLX ATALTEL VX VXL EVEQYOTIOLMUEVA XAl T ODO GYUATA
TVALID xat TREADY.

IAua MnyA Neptypadn

YrodelkvUeL OTL 0 adEVTNnG AYEL Lia €ykupn

TVALID Abeving petadopd dedouévwy.

TREADY SKAaBoc HO(SELKVL,JEL oTL oloK)\aBoq ur(c?pst va 6§x98L uia
petadopd SedoUEVWY OTOV TPEXOVTA KUKAO.

TDATA P ngsXSL Ta éeéoue'va TIou peTadépovtal dla
LEOOU TNG dLemadng.

TLAST Adévtng YrodelkvUEL TO OpLO eVOC TTAKETOU SESOUEVWV.

Iivakog 1: To kupiotepa onuoza tov AXI4-Stream rpwrorxdllov
Apeon ITgoonehaon Mvnpng

H Apeon Ipoonéhaon Mvipne (ATIM) elva évog dnyavtopog mov emTEENeL Ty TROcBaon o1
UVILY] EVOG OLGTHATOS Yot LETAPOER SedOpEVwY, YwEIS 11 pecordfBnon touv emcéepynotn. H
uetopod dedopévmy and nat 1eog cvoxevés B/ E elvar yevind pia apyy Sraduasio. Méow g ATTM,
1 epyaoio vty avatifetal o elOMELUEVEG YL ALTOV TOV OUOTO GCLOXEVEC, ETMLTOEMOVING GTOV
enefeQynOTY| VX EOTIAOEL O GAAEG YOVOLUES OQAOTNOLOTNTEG, OCO 7] HUETXPOEH TV OESOUEVWY
Botoxetar oe e€EMEN.

H Swdumaota )¢ petapopdg dedopévwy péow AITM yivetat wg eéng:

1. O enefepyaotg puipilet xatdhnia ™ ovorevy AITM yio v embopn i petagpopa.

H ovoxevy) Seopedet yopo otn pvipn ya vy anobnuevon twv dedopévev xat Eentvd ™
UETXPOQA.

3. To dedopéva petapépovtat TEOG Tov TEO0ELGUO péow ATTM.

4. H ovoreun hapPdver pio emtPBefainwon poig ohoxdnowbel n petapopd.

5. H ovoxevrn evnuepwvet tov eme€epynoty OTL 1 petapopd oloxinowbrnxe xar Ot pix véa

UETXPOEA UTOEEL TAEOV Vo Spoporoynbet.

Kot ™ yonon AIIM, draitepn npocoyn Ha mpemet v Sivetat 617 StoryelpLor] Twv SeCUELIEVLY

YWOWY T LVNUY] %ot GTY] SLLTYOY0 T1G CLUVETIELXG ETXED VIS AL XOLPWY VIOV,
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Zoppetonn) xot Acoppetey IToiveneEepyaaio

H npocOnun Aettovpywmmv Xvotmpdtov (AX) o evoOpatopéve ouoTRoTo YiveTar OMO %ot
oLyvoTteEN, nabng napovotdlovy apnetd OYery. L2otoc0, TifeTar TO EEWTNUA Yl TO TOLO Elva TO
natoAnhotepo eidog A2y ndbe epappoyn. o moapdderypa, pnopet va yonotporombet évae AX
yevizolh oxomoy, Omwe to Linux, mov mpooyépet eveMéin UL TRQAYWYHOTNTA GTNV EUTEAEGY)
ToAMamAwy epyactwyv. Eav mdAt amonteitoar mpofiedipnotnia otov yeovo amdnglong plag epyaotag,
npotupdton évoe AX mpaypatinod ypovov (RTOS). Xto mhaicto avutod, oe éva molvene€eyaotind
obotpa, elvat epto va yonotpononbet eite éva eviaio AX yix dhovg toug enefepyaoteg eite
Eeywototad AX oe ndbe enelepyaoty. Ov teyvinés avtég slvor ywotés wg Xvupetowr [Tolv-
Enelepyooio (XI1E) o Aovppeton [Toh-Eneéepyaoio (ATTE).

X XI1E, éva povadino AX Spoporoyel uat cuvtovilel TV EXTEAEDY] TV EQYAOLOV AVUUEC
0T0VLG TOAXTAODG TLETVEG ToL Tolvene€epyaoty. H emovwvia petald avtmy enttuyydvetot e amho
TROTO Peow 1oNG Uvnune. Orot ot potpalopevot tdgot Tov cuotpatog Stayetptloviot and 1o AX
N0 XATOVERLOVTAL GTOVG BLAPOEOLG TVEYVES. XNpetwvetal OTt eva eptBdArov XITE cuvinbwg Sivet ™)
duvatOTN T 0TOV OYESLOTY] VO TEQLOPLOEL Ui EQYXCLX GE GUYUEXQLUEVO TLEYNVX TOL eneleEYXOTY,
elavarynalovtag Ty exTEAECT] g XTOUAELOTIMG 6ToV TuENva avtov. H pébodog auvty Ou avapepetan
ot ovvéyela wg Asopevpévn ITokv-Enelepyaota (AITE).

Avtifeta, oe éva meptBariov AITE, xdle moprvag toéyet 1o Stxd tou Eeywploto AX, mov unoget
v etvat 1810 7] SlapoEeTnd amod T boAoLTa. O oYESLAGTNG TOL GLOTNUATOS EAEYYEL AOLTIOV GUECH
noteg epyaoieg O extehovvtan oe xabe mupNva ot pe motov Tedmo. H emtnotvwvia petald twy muenvwy
anaLTel O ALTHY TNV TEPINTWOY OAOYANOWUEVEG SUTLAMEG LTOBOUES 7] ELOUOLE INYAVIGUOLG
ETUUOVOVING. ATIOPXGY] TOL GYESIAGTY] EIVL ETULGTC XL 1] UXTAVOMUT] TWV TOQWV TOL GUGTHUATOG LeTaEh
TV StopoEeTnmy AX. O uaTapeQlophog ™G UVNEYG, O EAEYXOS TWV TEQLPEQELANMY KUl O YELOLOUOG
TV Staxomev TEeTeL va xaboptotel pe axptfeto yo ndle AX.

H Ewova 2 anetovilet o oynpata g ZITE xow mg ATTE yu 1o Aettovpyied Linux o RTOS,
otV TepinTwo Tou Stndenvov ARM eneéepyaot tov Zyng.

AMepyagieg Aiepyaoiec Mepyacisc
Muprvag Linux Muprvaog Linux Mupnvag RTOS
Mapolpalopevn Mvrpn Mapolpalopevn Mvrpn
ARM ARM ARM ARM
Mupnvag 0 Mupnvag 1 Mupnvacg 0 Mupnvag 1
Zuppetpkn NMoAu-Eneepyaaia (2ME) Acvppetpn MNohu-Enetepyaocia (ATIE)

Ewcéva 2: Xopuetpicii koa Aovuuestpn Iolvemeepyaoio [12]

ITeprypuey Tov Xvotnputog

To abompa avantoybnue oty mharéta Zybo, aéiomotwviag 1oco 10 XE doo nat v TTA tov
Zynq SoC. Amoteheitat and SLO #LELEC EYUOUOYES, TOV TOUTO UL TOV OEXTY], TOL EXTEAOLVTAL GE
Eeywptotovg mupnveg tou enelepyaoty (o mounog ot CPUO s o déxtng ot CPU1L). Erniong to

Zybo ovvdéetan pe évay vrokoyoty) péow Ethernet, yio ™y elcodo nat ¢€080 twv dedouévwy.
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O mopmog déyetat o dedopéva etoOS0L and oV LTOAOYIETY péow Ethernet no o amobnuedet
oY JVHY. 211 ouveyeta, To dedopéva petapépovtat oty ITA, péow ATTM nou pe yonon tov AXI4-
Stream mpwtonOAAOL, OTOL LTLOKEVTAL oe emeéepyaoia aTO LMOWO. [TapdAAnka, o dentng and v
TAELEA TOL WUETaPEEEL Tar OedOPEV ToW GTYN PV We Tov Bto 1eomo. Mok Angbodv Oka to
dedopéva, 0 denTng T TEOoTEAXLEL WOTE Vo To ENMEEEQYUOTEL TEQULTEQW, AUTY] T7] YOQA ME TY] YONON
tov ene€epyaoty. Telwa, ta Sedopéva anootéAhoviat Tiow oTov boloyot péow Ethernet, wote va
eheyybel 1 eynvpo™ T TOULC.

2YETING [UE T AELTOLEYMA GLOTYUATA, ETLYELQELTAL 7] LAOTIOINGY] SVO SLUPORETIUOY GYTUATWY,
wg Sxdoywd PBrpata. ITowta viomoteitar éva oynue Linux XITE ot axolovbwg éva oynpo
Linux/FreeRTOS ATTE. Aentopépeteg yro v bhomoinon v 800 oynpdtwy, and &nodhyn vALGIXOD
%ot AOYLOUIOL, SIVOVTaL GTY| GUVEYELX.

Xyedinorn YAomxon

‘Bva amhonomnpévo umhox Staypappae Tov DALGUIXOL ToL YN otponomninue gaivetat oty Einova
3. Amoteheito and T e€ng ototyeto:

e To XE tov Zynq (ZYNQ?7 Processing System), mov mepthapBdver tov dimbonvo ARM
enefeQyaaTY, T1] UVI|AT] %L TX TEQLPEQELUAA.

e 'Evav moManiactaoty) (AXIS Multiplier), vhonompévo péoa oty ITA, o onoiog 8éyeto ua
nopayet dedopéva péow AXI4-Stream Semapwv. O TOMATAXCLAOUOG AVTIGTOLYEL GTNY
ene€epyaoio mov emtBdAietar ota dedopévar petafd ToUTol Kot SEnTy.

e To AXI DMA, nov Bpioxeton eniong oty ITA xat eivar vredbuvo yix v anodotiny
netapopd dedopévey péow AITM and ™ uvipn TEOG T0V TOAXTAAGLAGTY] Kot AVTIOTOOPA.

e 'Eva umhox (Concat) 10 0nolo cuvevmver T oNpata Staxomey Tov taedyovtat and 1o AXI
DMA oe éva eviaio onpa, wote va dpoporoynbet mpog v etdw Bdpa Stanonawv tov XE.

AXI DMA

—‘ AXI_LITE AXI_MM2S/52MM

AXIS_MMZS mimZs,_intr

S2mm_iintr

AXIS SZMM
AXIS Multiplier _‘ =

AXIS_ N AXIS_OUT

ZYMQT Processing System

e
MM28§: Memory Map to Slave AX| HP
E2MM: Slave fo Memory Map -
ANMIS: AXT-Stream AX GP
AXT_HP: AXT High Performance Port Concat -
AXI_GP: AXT General-Purpose Port IRGQ FZP
IRQ F2P: Interrupt Request from ind I \_ -

out

Fabwic to Processor

ini

Ewcova 3: Amdomoinuévo umlok 016ypogyo. Tov GOOTHUATOS

Me Baor 10 LMW TIOL TEPLYEAPNIE TUEATAVW, TEAYRaTOTOMONKE pio Stepebvnon pe oxond
1] UeYIOTOTOLNGY ToL edPOLS Lwvng petadd pvnung ot tolaniactacty. Tponomotwvtag Siapopeg
TEAUETEOLG, ueTENOnue ndbe opa o PLOUOG peTapoEds Twv dedouevwy, Eentvovtag ano ta 381.2
MB/s ¢ apyinng oyedicong.

Koatapyds, enextelvoviag 10 eDPOS 1wy StadAwv petapods dedopévey and ta 32 bits ota 64
bits, Simhactdotrne o pubuog. Iepoutépw abEnom tov ebpoug dev Tpooépet Bedtiwon, xabwg ot Hdpa
HP nov yonotponotet 1o AXT DMA y v npocBaon ot uvnur vrooteilet Stadhoug péyltoton

17



ebpoug 64 bits. Meyadn Bedtiwon enttedybnue puowmd xat pe v adénor g cuyvOTNTAS EOAOYLOD,
anod ta 100 MHz ot péytom npn twv 250 MHz. 21 ouvéyeta, yonotponombnray dvo Eeywotota
AXI DMASs yo nobévar and o wavddtor avayvwong %ot eyYeopns 8 UvNUNS, XWEIS woTOoo v
noepatnonblel  xdmowr  Bedtiwon. Axokodbwg, yonorpomomOnuav  Svo  Levyn AXI DMA-
TOAATAXGLLOT®Y, OToL n&be Lebyog eivat Tawtoypove vrebBuvo povo o ta pod dedopéva. 'Etot,
npootebnue TapalnAia 6T0 GhoTu 1 oTola 08NyNoe oe onpavTy abgnon Tov ELHHoL petapopag
Twv dedopevwy. Qotoco, napatreninxe Ot cuuygépset N yonomn twv Bupev HPO-HP2 1 HP1-HP3,
AOY®W TOL TEOTOL WUE TOV OTOLOV TOALTAEXOVIAL Ta povoTaTia Twv tecoxpwv HP Oupwv mpog
unun. Télog, 1 ovoyétion e andd0ooNg e T Y107 TwV TOEWY OB1Y1|0E GTO GLUTEQXOUX OTL 1]
yeNon neptocoTepwy and dvo Levywv AXI DMA-nolaniactoctov Sev eivat GLIPEQOLO.

Enopévog, 1 tehnn oyedioon mephapPaver dvo Cevyn AXI DMA-nolanhaoctaotomv not
yonowponotetl g Obpeg HPO-HP2, 64-bit edpog Staddwv xot cuyvomta 250 MHz. To ebpog {wvng
TOL GLOTNUATOG OE OVTHY TNV TePInTwWoN peteNndnxre oto 1682.8 MB/s.

Ylomoinoy Xynpatog Linux XITE

I'e ™v vlomoinon tov oynuatog XIIE, yonotpomondnne wg AettovEynd obOTMUA TO
PetaLinux, pla éxdoon Linux ¢ XilinX TOOCXQUOCUEVY Y1 EVOWUXTWUEVX CLOTHUXTA o Zyng
TAXTYOQES.

To #vpLOTeP0o INTNUA TOL TEOUVTITEL KPOPXR TO AOYLOUIO TOL YEEt&LeTan Y 7] Storyelptor] TOv
AXI DMA péoa and 1o AX, dnhadi ot anartovpevor odnyol. [Tpouerton yo évar TpoBAnpa obvbeto,
nabog mpénel vae Anpbodv voyn apreta Bepata, OTwS 1 YENON 1 OYL TWY UELYOV UVNUWV UATX TNV
ATIM, 7 SttnEno” ™S GLVOYNG TOLG KA 1] ETULAOYY] AVATITLENS TwWV OBNYWY GTOV YWEO TLENVX N
yonom. I'iw tov Aoyo awtov, yonorpomombnne pio tepxpyny Soprn Stxdoytwy 0Ny,
anotelovuevy ano 1o DMA Engine framework tov Linux, tov AXT DMA 087y6 g Xilinx xot
DMA Proxy npotewvopevy oyedioon ¢ Xilinx. Ta dbo mpwta otoryeia Bplorovtat e€’ oloxineov
OTOV Y WEO TLETVA UAL TAEEYOLY TNV ATALTODPEVT] LTTOSoUT Yot Tov eheyyo Tov AXT DMA. To DMA
Proxy amoteleitar and évav 0dnyd 61OV YOEO TLEYVX TOL GLYSEEL TNV TUEATAVW LTOBOUY] Ue Wi
EQAQUOYY] GTOV YWEO XENOTY], SivovTag €Tot Texnd 11 Suvatotnta eréyyov touv AXI DMA and tov
Y00 yonot. H deopevuévn and tov 0dnyo pvnun yo mv amobnuevor tov dedopévwy uéow AITM
avtiotorylletal oToV YMEO YENOTY ATO TNV EPAOMOYY] HEow NG oLVAEToNe mmap(), anoehyovTag
eToL TNV avTLypopy dedopevey petakd yweov muenva xat yenot). H enrowvwvia petaéd odnyob xat
EQPUOPLOYNG TEAYLOTOTIOE T téow xAnoewy ioctl(). Eniong, udle naveht ATTM avanapiotator g plo
CLOXELY| TTOL UTOEEL EDXOAX VO YELOLOTEL ATIO TNV EYUOUOYT] GTOV YWEO YENOTY.

H nopamave epaopoyn mEOcHEUOcTnE OTIC ATotTNoelg Tov  embupnTod GLOTHUATOG,
dNULovEYOVTRG OO0 EeYWELOTEG AVTIOTOLYES EPUOMOYES, TOV TMORTO ot tov Oextn. O mopndg
yerotletow 1o dvo navdho AIIM yioe ™V amoctody) Sedopévwy xat extedel TouEdAANAx Tt SLO
HETaPOEES amd T uvNun meog v ITA (pla yroe nabe AXT DMA). Avtictorya, o déntng yerpileto
o 800 novahor AITTM yua 7 A twv Sedopévey not extelel ToEaAANAL Ti VO PETUPOEES ATO TNV
ITA mpog ™) pvnun. H extéleon tov mopmol xat 1ov 3éntn umoel vo TeQLopLoTEl XAMONAEICTING OTLG
CPUO now CPU1 avtiotorya pe ™ yevNon tov epyakeiov taskset, To omoto Sivel ) Suvatotnto vou
nabopicovye oe motov enelepyaoty Oa extedeotel pia Soopévn dtepyaata. Xuvenme, EXTOC TOL TOPTOL
not ToL 6enty), TpoaTebnre wg epappoyy oto Petalinux nou o taskset exteléotpo.

Onwg mpoavapepbnxe, 10 Zybo cuvdéetar pe évav vmokoyot) péow Ethernet. Ta dedopéva
etood0v Polonovtat oe éva apyeio Tov broloytoty. Egocov n emnotvwvia yivetat uéow TCP sockets,
yoealetar vo oploovpe ploe Stedbuven IP ye 1o Zybo, 192.168.1.11, now pie TCP Obpa yio ™)
obvdeon, 3000. Etot, o mopnog dnutovpyel apytnd to avtiotoryo socket not Aapfavel T dedopéva
eto680v, TEOToL T amobnuedoer ot uvnun nan Eenvioet g petaopés mpog ™y ITA péow ATTM.
Otav 0 TOUTOS OAOMANEWOEL TI AVTIOTOLYES AELTOLEYIEG TOL, AVOLYEL Pe TY) GELPX TOL évar socket uat
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XMOGTEAAEL TO ATMOTEAECUATH TLOW GTOV LTOAOYLOTY] péow Ethernet, 6mov eyypdgpovtar oe éva véo
aQYyelo, T0 onolo pnoget va edeyybel wote va emtBeBotwbel | 0pboT™ T OANG TNC Sradinaatag.

YAomoinon Zynpatog Linux/RTOS ATTE

210 oynpa AITE, epappolovrto ta Aettovpyind ovotypata Petalinux ot CPUO xot FreeRTOS
ot CPUL. It v vhomoinen tov oynuatog yenotponotinxe 1o OpenAMP framework, ta Baotnd
oLOTATIUG TOL OToLoL elvar To remoteproc xat 0 RPMsg. To remoteproc entTEenet oe Evay apevTy
ene€eyaoty) vo edeyyet Tov nOnho {wg evOg GALOL ATOUaXQELGPEVOL eTleéeRYNOTY] OE Vel TEQLBUAAOY
AIIE  (exxivnom, @OQTwoY ULMUOAOYIOUIXOD, TEQUATIOMOS Acttovpylag Tou emefepynoty). H
emovwvia petald TV encéepynotwv emttuyyavetat weow tov RPMsg. Ta ovotatius avtd vrdyouvy
gtotpa otov TENVe Tou Linux, opwg 10 OpenAMP nopéyet v VAOTOLYGY] TOUG 1L GE SLAPOEETINA
neptBailovta, omwg 1o FreeRTOS.

[Mapandte Sivovtor cuvonTind T Brpotar Yo 1) SNULOvEYLa *ot EXTENECT] YIAG EPAQUOYNG E TO
OpenAMP, yux éva oo Linux/FreeRTOS ATTE.

1. Kaboptopog tou nivana mopwv. O mivaxag avtog anaptbpet Toug TOpous 1oL GLGTNUATOG TOY

yoetletor 0 AMORANQLOPEVOS eNeePYROTNG, WOTE aLTOL Var xatavepnbody natdAinia and
TOV PEVTY].

2. Xoyyeoyh Mg ATOROXQLOIEVNS EPUOIOYNG, te XONoN Twv remoteproc/ RPMsg epyaleiwy
mov nEéyoviat and ™ BAtotnun tov OpenAMP yx to FreeRTOS.

3. Anprovgylo TOL ATOUAXELOPEVOL EXTEAEGLUOL, GUVOEOVTOC TNV ePaEpOY te 7 BLBAiobnun
OpenAMP ot tov mivao TOQwV.

4. Tomobetnon tov extehéotponv 010 oboTua aEyelwy tTouv Linux, wote va eivat TEocPactpo
anod TOV aPevTy| eneleQyaoTy).

5. DPoETwo nat EUxiVYCT] TOL EXTEAECLLOD GTOV XTORAKQLUOUEVO NEEEQYNAOTY] XTO TOV XPEVTY],
1e xeNom Twv remoteproc 0dnywv. Meta v exxnivnon g epapuoyns, eynabdiotaton xot eva
novalt RPMsg yuae v emirotvwvia petald twv eneéepyaotmv.

6. TeopatTiopog ASLTOLEYING TOL ATORAMQUOUEVOL E€TEEEQYXOTY ONO TOV OPEVTY), OTAY
ohoxinpwboby ot epyaasieg Tov.

H yevur Sopt) tov oynuatog Linux/FreeRTOS AITE yux v egoppoy?] mopnoL-8éxty nov
avatdyOnue vwpltepa, Tavw oto abotpa Zyng tov Zybo, gaivetar oty Ewdva 4. O nounog
extekelton 017 CPUO wg apéving, yonotponotmvtog o remoteproc/ RPMsg cuotatind otov Yoo
nwenve Tov Linux, eve o 3éxtng wg anopaxpuouevy epappoyn ot CPUL, pe yonon tov OpenAMP
framework oe neptBariov FreeRTOS.

O mopmog apywma avoiyer 10 novad RPMsg mpog tov déntn nat eyuabidpder pio abvdeon
Ethernet pe tov vmoloyiot), 6mov Poioroviat T dedoueva etoodov. Apod AdBet T dedopéva péow
evog socket, To amobnuedet 6T pvnun xat otélvet oTov Seuty 10 péyebog Twy Sedopévwy péox amo
0 navaht RPMsg. 211 ouvéyeta, Eenva i HeTapopeg twv dedopévwy amd ) uviwy npog v TTA
néow ATIM, omov yivetan 1) encepyacioc and 10V TOAATAXCLAGTY].

O déntne mpwta apymomotel 1 ovotatnd o OpenAMP xo wokg AdBet o péyebog twy
SeSopévwy and TOV TOUTO, EENtVa TNV EXTERECT] TWY AVTICTOLY WV HETAPOEMY dedouevey amo v TTA
o pvn péow ATIM. Mnogel énetta va npoomelacet T A@bévia dedopéva aTn uvpun yLow vor To
ene€epyaotel ex véou péow tov enefepyacty. H CPU1 o1 ouvéyeta mapapuéver depyn womou v dey et
EVOL LYVOPOL TEQUATIGIOL ATTO TOV EVTY), Yl Vor ATeveQYoTotaet To cuotating Tou OpenAMP »ot
var amehevbepwoet Toug SECUELILEVOLE TOQOLG.

Teéhog, emed”n o éheyyog tov Ethernet éyet amodobel €€’ ohoxinpov oto Linux, o moumnog
npoonehdlel ™V nafoplopévy meELoyy UVNUNG, OTOL EYouv amobNUeLTEl T XTOTEAECPATN, Mol
otélvelt 0 idtog ta Sedopéva €000V GTOV LTOAOYIOTY), YEVOLUOTOLWVTAG TO (Sto socket mov

dnutovpynOnre oty aEy.
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Eiwcova 4. H yevikn etkova tov ovatijuortog oe oyfjua AIIE

Kot Vv vAomoiney T0u GLOTNPRATOS, AVTLUETWTIOTUAY OQLOKEVX {NTHUATH GYETIMX Ue TNV
AITE 1twv 8bo enefepyaotov. To mpnTo apopd Tov cuyyeoviopo ueta€d tTwv enefeQyaotmy ®atd ™)
007 EXTEAEOYG TYG EPUOUOYNG TOUTOL-OEUTY. O unyaviopog mov yenotponombnue yx tov oxomo
awTOV Baotletor oY avTUARXYY] XTAMY UNVLUATWY péow Tov xavaloL RPMsg. Edotepa, autod
anauteitar o Svo mepmtwoete. Ilpwtov, o mounog mpénet va Befotwbel o011 0 déntng Eyet NN
apywonomoet T AXI DMAs xat etvar étotpog voo AdBet to Sedopuéva, TEOTOL aEyioet var T
uetadidet. Edv awtd mapapeinbet, napatnpeitoar pio anwAsta Tov aQyuov SeS0UEVWY GTNV TASLE
tov 8éxty). 'Etot, 0 8éxtng otéhver éva pnvopae ‘READY’ otov mound puoAig eivon EToLpog nat povo
TOTE TOQEEL O TEASLTAIOG VX EUNLVY|OEL T1] UETAPOX TV dedouevwy. H Sebteprn nepintwon eppaviletor
OTOV O TOPUTOG TEETEL VX TOOCTEAXOTEL T TEMMUX ATOTEAECPUATA GTY) UVIIY] WOTE VX To GTELAEL TTLOW
otov boAoytoty. O Séxntng otédve éva unvopa ‘OK’ otov mound poMe ohorknpwoet Ty ensfepyooio
TV dedopévwy, KoTe exelvog va yvwpllet note eivar Stabeotpa ot pviun T cwota dedoueva.

‘Eva 8edtepo {Npa apoea 1] GLVOYY] TNG XELYPNC UVNING, 7] OTtolo LoEEl var tapxPlacTel 6To
oynuo AITE otav ot Svo enelepyaotéc éyovy mpooBucy oty (St TeQLoyy g #VLELAG UVNUYG. XTO
2E touv Zyng, nabe mupnvag gyet ) Stun tov npuet pvnun entnédou L1, eve navovina porpdlovia
mioe xowvy npuen pvnun emmedov L2, Ta va amopevybody toyov mpoBinuata Stporpalopevwy
nopwv oe meptBaiiov AITE, 1o OpenAMP framework anevepyonotet ] yonon mg pvnung L2 ano
™ CPUL. Qoto00, xabog o mopnog StafBalet o tehud SeSOueva amd T1 UWVNUY] YLor Vo T GTEIAEL
OTOV LTOAOYLOTY], T EATNENONME OTL M&ToLeg TLueg Sev yivovtay opatég and ) CPUO. Autd ogeileton
oto yeyovog ot 1y CPUT ypager ta Sedopéva amevbeiag oty udpla pvnur, adkka n CPUO dev to
Yopilet not StaBalet Tig maAtég TiHEG amo ™) pvnun L2, Eropévag, amatteitat 1 avavéwan g jvnng
L2 péoo and 10 AOYLoPIHO TOL TOUTOD, Yo TV *xOOQLOUEVY] TEQLOYY] UVNUNG, axOLBOS TOLY EXEIVOG
dtoPaoet o dedopeva e€6S0v.

AZlohoynom ™5 ATTOPOVWGYG TOL XVOTNIATOG
Eva onpoavtind yoeontmetotnd 1ou aventuypévon cuoTatog mov yeetdletatl vo agoloynbet
elval TO eminNed0 AMOPOVWOYG TOL ETLTLYYAVETHL PeTadd Twv 6o Tuenvwy ARM tov XE tov Zyng. O

TOPTOG 1AL O SEUTYG AVATIALELGTOLY SVO ave€dOTYTEC OVTOTYTEG TOL TEETEL VX EXTEAODY TIG AELTOLOYIEG
TOLG AVETNEEXCTA 1] piot amd TNy &ALy E€etalovpe Aotmov 611 GuVEYELX TOG Ol EQYXGIES TTOL EXTEAEL
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0 TOUTOC eMNEEGLOLY T7] GLITEQLPOEE TOL BEUTY), O OTOLOG EXTEAEL TALTOY OV [id XQICLUY eQYXTla,
yroe xabéva amod T oynpoto 2ITE (koo ZITE o AITE) wow ATTE.

ITxpepBoiy petadd Sepynotav

2le TOATIDEYVEG AOYLTEUTOVIXES, ] ATIOLOVWOY] XOLOLUWY EQYAOLOV EIVAL ETULTANTINY], ELOUA OTAY
EUTAENETOUL GLUTIEQUPOOR TEXYMATIHOL YpOvoL. 'BEvag Bapdg poptog epyaciog pnoget va mpoxaAeoet
ToEepBOAES peTafh eVTATINWY WG TEOG TOV eTEEEQYNOTY] SLEQYAOLOV KL YQOVIME KOLOLLWY SLEQYACLOY,
0€ TEPITTWOY 1] XAANC ATOROVWGYS TOL GuoTYpatos. EmmAiéoyv, ot Stdpopeg Stepyaoieg evdéyetat vo
LTOOTOLY TEEUBOAES OTAY YOYOLULOTIOLOLY TAVTOYEOVA XOLVOLG TOEOLE TOL GUGTHIATOG. 2TO TAXLIGLO
w10 Aotnov Stelnybn éva melpapa mowv Stepeuva SVO SLUPOEETIUE GeEVAELX TUEEUBOADY GTO GLOTNUA
HaG, TIC OTIOLEG ToEAYEL (io SleQYXolo EVIATIXT ElTE WG TEOG TOV ENEEEQYXOTY ELTE WG TOOG TV VIULY).

210 TEWTO GeVAELO, éva Tanéto peyéboug 4 MB petagpépetar and tov mopnd otov Séuty. O
denng enelepyaleton o Anpbévia dedopéva, npoomerdloviag ta oe Stadoynong yooug (1-100) xau
entehwvTag Slapopeg ovyuploelg xat pabnpatinés mpakelg (molamAactaouovg nat Statpeoerg). H
SLadnaolor XLTY AVTLOTOLYEL OTY] YOOVIUA UPLOLLTY] EQYAGLA TOL CLOTNUXTOG. MeTd TV TUEEAELEN EVOQ
XEYMOL YEOVIXOL SLXCTNUATOS, O TOUTOG aEyilel TaHEAAANAN vor extelel plo TapOpol epyasia,
EVTATINY] WG TEOG TOV eNe€eYUaTY], TAVW Ot aveéaTNTa Sdedopéva. Xe TEWTY Pacy] 67puovEyel dbo
VUOTa TOL TO Uxbévar exTelel TNV TaEATAVW eQYXala %ot aEYOTEQX ETaVAAXUPBAVEL TO (51O pe TevTe
ypata. O yeOVOg TOL YEELXGTNME O SEUTYG Lo TN OAOXANPwo #abe yopou enelepyactag petenOnune
wote va tocotronombet 1 napepBoAn ot va abrohoynbet 1 amopdvwon.

H Ewodva 5 anerovilet 1o anotehéopata and Vv TEAYUXTOTOGY] TOL THQATAV®W GEVUELOL, YLa
Ok ta oynpata todvemeéepyaotag. Eivat eppaveg 0Tt umdoyel modypatt TopepBoly) 6Ty mepinTtwo
¢ XI1E, 1 onola eiva pdhota avdhoyn tov Bapoug tou enefepyaotinold oETon mov emtBaileton
010 oV, AvTO ogelketat 6Ty ehedbepn petanivion Twy yudtey Tou popTouv and ™ CPUO ot
CPUI1, pe amotéheopo vo avaxoTEAAETAL 7] AELTOVEYIA TOL OEUTY] UL VO ALERVETAL O YOOVOG EUTELECTC
¢ nplotung epyaotag. Avtifeta, oe meptBdiiov AITE 7 ATTE Sev napatnpodvtor mopepBorég xat 1

YOOVIXT] CLTIEQLPOES TG HOLOLUYG EQYAOLAG EIVAL XAVOTIOLNTLXT).
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Ewcova 5: Hopeufoln kpioyov ypovoo exelepyocios Omo epyocio. eVIATIKY WG TPOS TOV EXECEPYATTH
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210 8eb1EEO GeVAELO, évar bvoro antd 3000 maxéta petapépetat HeTanéd TOUTOL nat Oenty. Me
QVTOV TOV TEOTO, ELGAYETAL eV nivn o dedopevey petaéd XE nat udplag pvnune. Kanow otiypn,
0 Toundg E€entvd TOXEAAANAX TNV EXTEAECY] WG EQYAOLNG EVIXTIXNG WG TEOG T UVNUY,
TQUYUATOTIOLWVTAG TOAAATIAEG EYYQUPES UAL OVAYVWOELS XTO T1] KV, Metpwvtag tov Ypovo
uetapopdg yo xdbe 10 maxéta, vroloylotue 1 petaforn 1ov ELOKOL PETAPOEES TwY SedoUevWY
NOTE T7] SLAHEUEL TOL TELRAUATOS, OTWG Yaivetat oty Eiova 6.

[Mapatneodpe o1t ot tepntwoeg XITE xaw AITE vrnogépouy and mopepBorr, apod o puluog
UELWMVETOL ONUOVTING Ko Td TY] Staeueta extéleons ¢ nopepBAnleioag epyaatag, oe avtibeon pe v
AITE 6mov o pubuog mapapével mpanting avarlhoiwtog. Avtd pag 0dnyet oty vobeon OTL 0 TOEOG
mov telxd evbdvetan yro ™V e BoAn eivar 1 npuen uvnun L2, n omoix eivar Stxpotpalopevn
HETHED TwY BDO TLETVWY OTAY TEEYOLY 0TO (8to AX, e ATOTEAEGHA VO S7|ILOLEYOVVTAL GLYXQOLOELS
uetad Twv Stepyaotov. Emniéov, elivar amo@altn)tor ®ot TOWTOXOAX SLATYENONG TG GUVOYNG TNG
NOLPYG UVNPYG, T OTIOLX EVOEYETAL VO TatdyoLY eTTEOGETY ivnom Sedopévmy xat va eviaybouvy Ttg
noepeporéc. Xy AlIIE, avubétwe, n xpven pvnun L2 dev yonoponoweitow and 1 CPUL,
EMUTEENOVTAG GTOV OEUTY] VX TEOOTEANLEL T VYY) avemneeaota xat e otabepd pubuod.
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Ecova 6: Hopeufols pobuod uetopopds omo epyocio. eVIaTikn m¢ mpog T Uviun
Aocgddeta non axs@otoTrTa SeS0oPEvVmY

Extog and my anoguyn nagepBoAmy 6TY Y00VINY| ATOUQOLGT] TwV SLEQYXCLMY, 7] XTOULOV®GY] ElvaL
e€ioov onpaviny wote va dtxopaAiletar 0Tt éva ooV Adbog 7 mEOBANua oe wla epyaocin Sev
ennpealel T cwoTy AeLTovEyi AWV epyaoteV. 2e yeviues yoappés, n AITE nopéyet éva emniéov
OTOOMUA TEOCTAGLAG ATO TETOLX GLIBAVT, SLATYOWVTAG Ta AELTOLEYIUE CGLOTNUATA SLXYWOLOUEVY GE
Eeywplotoug eneéepyaoTec.

H anopdvwor mpénet eniong va eyyvdtat v axepatdmta Twv dedopévey. A€yope éva oyetind
TELQAPLX GTO GLOTNUG UG, te TO €€V GEVAQLO: O TOUTOG €UV YUACTNUE VO TOOOTEALCEL OTY] UVNUT]
T Angbévia amd tov Séutyn Sedopéva mor vor pndevicet OAEC TG TLHES, EVOOW O OEXTNG TIC
ene€epyalotav. Tlapatnondnre o611 awtd nATeoTn ePnTd AvelaPTTWS EPUOUOCUEVOL OYNIXTOG
noiveneéepyooiog. To evdiaxpépov ovumépaopa edw elvar Ot andun xot 1 AITE Sev pmopel v
anoteédel TeTolon eldovg aALOLWGY] TNG UVNUNG WETaED SLEQYXOL®Y, UKL GUVETKG XTXLTELTOL EVAG
LOYLEOTEQOG MPOGTATELTINOG Y AVLOPLOG.
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H axcpouomta twv Sedopévwv oyetiletar emiong pe ) YN0 Twv %oLYwy pvnpov. To
TEWTOXOMA cuvoyNg xot Stopbwang Aabov eyyvovtar ™ STNENCY TG AEEULOTNTAG, OUWS
evOeyeTal TXEAAANAX Var eTLBoELVOLY T7] YEOVIKY andd0an 1oL cuotnuatog. 211 XITE, avtd etvan
avaryxadior yae ™y 007 yonomn g xeueng uvnung L2 and toug dvo muenves. Lotdoo, oty AITE 7
CPU1 anopovavetat and o Oepata aopadetac e xpvpne pviune L2. o’ oha avta, céaxorovfoivy
vor LTTAEYOLY 1ivSLYOL OTAY Ot SLO TLETVES EYOLY TEOGRAGY, TNV LSt TEELOYY] TNG KVLELAG UVIUNG,
onwg mapatnendnue vwpitepa xatd ™y vAomoinon tov oynpatog AITE. Enopéveg, twritepn
TpocoyY yeetdletar OTav oe Eva GLOTNPA OLUOLQULOUEVNC HUVIUNG OTOROVWVETHL Miot 1)
TIEQLOCOTEQEC KELYES UVIILES ATIO ATOLOY EMeEQYATTY).

AZohoynon g Entidoorg Tov Xvotpatog

Ta oynpoto Linux XITE xow Linux/RTOS ATTE mapovotdlovy optopéveg Slapoponotyoets
oVAPOEIXE E TNV ETBOGY TOL GLOTNUATOG, OL OToleg TNY&LoLy and ™V St ™ YhoN Twv A2 1oL
yonotponotovvtat ae xabe mepintwor. Ta anodiovba melpdpata a€lOAOYOLY OQLEUEVE YAOAATYOLOTING
TOL GUOTYUATOG GE BLAPOEA GEVAQLX, CLYKEIVOVTAG TNV eTlidoon petaéd Petalinux not FreeRTOS.

Toyotnta emelegyaoiog

‘Eva moaxéto 4 MB petagépetat and tov mound otov 8extr, o onolog a1y cvveyeta encéepyaletat
eviating tor Angbévia dedopéva. Avto yivetar péow evog enefepyaoTinod YOETOL oL TeEIAopBovet
1VELWG TOAMATAXGIAGPOVG UL SLXLEETELG TV OTA OESOUEVX KL EMAVUAUBAVETOL VI EVAY UEYIOTO
aptBpd Swdoynwv yopwy. Metponbnre o ypodvog mouv ypetdletar 0 dExTNG Ylor Vo OAOUATEWOEL TNV
ene€epyaoia, avéavoviag xabe YOO TO UEYLOTO OPLO TV YLEWV eMekeEYAOLAC.

To cuyrptting anotekéopata anetwoviloviat oty Ewdva 7 (Poptog 1), yi toe Linux xat RTOS
Aertovpywma. TTapatnpodpe 6T 1 taydvTa enelepyactag dedopévwy ano ™ CPUL oe RTOS eivan
onpovtnd avénuévy ovyrpttnd pe to Linux, ayyilloviag otadtan pio emtdyvvorn g 1aéng Tov
25%. Avto pmoget va e€nynlet av avakoyiotodpe ot pia Stepyaotia oe RTOS ennpealetan Ayotepo
anod 1 Aettovpyia Tov AX oe oyéon pe 1o Linux, eve Sivetat ETTAEOV TAYENG TEOTEQULOTNTA OTHV
ENTENEDY] TNG EVAVTL GALWY SLEQYXTLV.

45
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Eixovo, T: Emitayoven oy enelepyaoio dedouévaov e RTOS évavn Linux
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To npornyovpevo cevapto emavakngbnue pia axoun YoEd, xpob Tponononue elapE®s o i5tog
0 POETOC EEYXOLAG: VTl Yot TOAAXTAXGIUGUODG %ot OLtQECELS, O OEUTNG TMEAYUATOTOLEL TOOX
npoacbéaelg no aparpeoels ota Angbévta dedopéva. H emtdyvvoen nov emtuyydver to RTOS évavtt
tou Linux gaivetar oty Emova 7 (Doptog 2), dnov mhéov 10 nocoatd whavet o1 péyiotn tun 40%.
Enopévug, 1o eidog ¢ enelepyaoiog entdpd onpavtind 6Ty BEATLOTY Y10 TOL GLOTHIATOS UL HAULT
enéntooy] 611 Beltiwon ¢ anddoong.

AlndUAVOY] QOVOL EXTEAEGYG

To endpevo melpapo e€etaler 17 StaudUAVGY] TOL YEOVOL extéleong NG eme€epyaciag Twv
dedopevoyv anod ™ CPUL, avddoya pe to vrdpyov AX. Eva naxéto 4 MB petadidetot and tov Topumo
not enefepyaletoar amd tov Sénty, ywr 100 Srxdoywods ydpovs. Ot amattodpevor yEOvVoL mov
uetenOnuay ya ™y ohoxAnpwaor xdbe yopou eneéepyaciog paivoviat oty Ewdva 8.

Eivau eppaveg Ot 0 yoovog extéheong ndbe yopouv and 1 CPUL epypaviler moAd peyaddtepn
Stanvpavon oe meptBailov Linux an’ o1t e RTOS. To yeyovog avtd ogeiletar 6T1) VIETEQUVLOTINY
ovumeptpopd touv RTOS mov ehaytotomotet 11 Stxpopd uetaéd ehdyloTOL AL PEYLGTOL YEOVOL
anoxplong plag Sepyaotog. Avto  eivor  BéBota  e€opeTind  oNUAVIIXO O EPUOUOYES TOL
yoeantnELlovTat ATO AVOTYEES ATALTHOELS TOAYUATILOD Y QOVOUL.

Linux RTOS
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Eixovo 8: Maxvuavon ypovoo exelepyaciog oné CPUL e Linux kar RTOS
Toydtnta petopods Sedopevmy

To tehevtaio oevaplo dNutovEyel evtaTiny uivnor deSOpEVOY ATO TOV TOUTO TEOG TOV SEXTY.
BEvog otadonda avavopevog aptbuog nanétwy, nabéva peyéboug 4 MB, petagpépetoar péow AITM anod
™ pvpn oty TTA xan avtictpope. Metpnbnue o anattobpevog yeOVOS Yoo TV OAOXANEWGY TG
UETXPOEAS OV TwY TaneTwy, Eentvavtag and ta 10 mausta xat @havovtag péyot ta 1000 monéto.

H anewovion tov petpnoewy yivetow oty Ewmova 9, yie 1ig mepintwoetg Linux xow RTOS.
[Mapatneodue 6Tt 1 petapopa twv dedopévev pe yenon tov RTOS eivar epypavéotata taybteen
CLYHQLTIUA e TNV ATOXAELaTnY] Yo on Linux, ave€ap1twe 100 6LVOAIKOL aELBrob Taxétwy. H attia
npenet vo avalntn el o1y TAELEX TOL BENTY UAL GTOV TEOTO PE TO OTOLO PETAPEQOVTAL Ta BESOUEVX
uéow AITIM. Eidinotepa, oto Linux 7 epappoyn tov dénty yepiletoar T AXT DMAs amd tov yweo
YONOTN HEow Ping tepaylag elduwy 0dNywy oTov YwEo tuenva (oyediancn DMA Proxy). Ot odnyot
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owtol pall pe 1o idto to AX etodyovy xabvatepnoetg ot Srayeipton twv AXT DMAs. 210 RTOS,
OpWG, 1 emPaELVOY] aLTY elvat TOAD YOUNAOTEEY apoL O dentyg Tpoyeaupatilet ancvbeiag T AXI
DMAS, ywolc evOldieca oTOOUAT AOYLOIKOD, IE ATOTELECUA O YOOVOS LETAPOQAS TV BESOUEVLY
var elvart xEOTEQOG.

10 RTOS

Linux

Xpovog MeTaopdg Asdopévwy (sec)

0 200 400 600 800 1000
MakéTa

Eixova 9: Xpovog petapopdg dedouévwv oe Linux kar RTOS

ZOPTEQUOUATO

To SoC FPGAs eivar t8aviud ya v avantoén ot SOnpy] eQuopoy®my, OMwG auTy TOv
vhomonOnue oty naepodoa epyaota. Egappodlovtag pio oyediaon vhopxod/loyopxol oto Zyng
SoC nar afronowwvtag tov Stndprnvo ARM enclepyaoty), vhomooapue pioe LTOSOUY] HATIAANAY Lot
TNAETUHOLVWVIANES EQXOUOYES.

AmodetyOnure 6L pio Stepebvnon Tov LMOPIKOL 1ot TwY SLVATOTNTWY TOL UTOEEL Vo BeATiwoEL ae
onpovind Babuo 1o evpog Lwvng tov ovouatoc. Emtmiéoy, and amofn Aeltovpynwy GLGTNUATWY,
ueketnOnuay now arohoynOnray 1o oyfpate LITE (Linux) xa ATTE (Linux/RTOS), wg npog v
XTOROVWGY] %L TNV ETMS0GY] TOL GLOTNUATOG.

Yvpnepaopatind, 1 AITE mpoogéper naddtepn anopovwor, meptopiloviag Tg noEepBoAEg
uetakL Stepyaotwv xot Stacpaiilovtag Lo oplopéveg ouvinreg v aflomioTior ot TNV ANEEALOTNTX
v dedopévwy. Eniong, 1 yonon RTOS wg Aettovpyind cbotpa eivat anodoTinoTteQr cuy1ELTING phe
1o Linux, wg mpog v taybmnto emefepyactag xot MeTapoEds Oedopevewv, uxbwg not TNy
TEORAPLLOTNTA EXTEAEGYG TWV SLEQYXTLWV.

Melhovtinn Egyaoio
Q¢ eMENTAOY TG TXEOLOAG EQYAOLAG, TEOTEIVETAL 7] SIALOQPWOY] TOL AVETTLYIEVOL GLGTYUATOS
nog ™V xatebuvven plag epaopoyng Tov mEaypaTnod xocpov. O molamiactaotig oty TTA

umopet eduola v avinataotabel anod éva alho otoryeio, copfatd pe 1o AXI4-Stream npwtonoALO,
nov Oa ene€epydletar T Sedopéva odppwve pe évay mEaypatnd okyoplbpo. H emmpodobetn
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ene€epyacio and Tov eneleEynoTY] LMOQEEL ENLGNG VX TOOCXQUOCTEL OTIC ATALTYOELS TG EPAOUOYYS,
eve xat To 1St o Sedopéva etoodou Ha uToEOLEAY VO TEOEEYOVTAL ATO Piat TEXYUATINY TNYT).

Emmkéov, pio tdéa yra pellovtiny epyacio eivat 1 LAOTOINGY TG ISLIG EPAOUOYNG O GAAY
TAXTPOQUA Pe SLPOQETING YAQAUTNOOTXG and To Zyng. Xuvyxexpipéva, 1 Zynq UltraScale+
MPSoC evorevy ¢ Xilinx Oa propoboe va e€etaotet, nabng cuvdvalet eneéepynotég yeviuoL 6xonol
(ARM Cortex-A53) pe emclepynotéc mpaypatnod yeovov (ARM Cortex-R5), emttpénovtog
TQUYHALTINY] ETEQOYEVY] TOAVETEEEQ YA TLAL.

Teéhog, evdapepov Oa elye 1 HEAETY] TEYVOAOYLWV EXOVIXOTIONGNG WG EVUANXUTINY TEYVIXT
anopovwong e AITE. Avtt yia tov Staywetopd twv AX otovg dbo nuenveg tov encéepynoty), Hu
umopoveoe va yenorpomolet évag enonte (hypervisor) mov Oa Saryerpiletar mOMamAd exoviua
neptBarlovta oto i8to abotnpa. H a€lohoynorn evog 1€Toton oynpatos, avapopind e TV Amopuoveway
%ot TNV eNS0GY TOL GLGTNUATOG, KoL 1] GOYXELEY] pe Ta TEoavapeElévta oynpata o Ntay dtaitepa
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Chapter 1

Introduction

1.1 SoC FPGAs

Recently, there has been a significant technology trend towards a hardware-based approach to
digital design. In contrast to traditional general-purpose processors and microcontrollers, where
functionality is provided by sequential instructions programmed in software, FPGAs (Field
Programmable Gate Arrays) have been increasingly used to provide solutions in a wide range of
applications.

An FPGA is a semiconductor device containing an array of configurable logic blocks
connected through programmable interconnects [1]. These elements can be programmed to
perform merely simple logic gates, complex functions or even blocks of memory that can be
interconnected to form configurations with different functionalities. The key aspect about FPGAs
is that they can be reconfigured after manufacturing, providing a flexible way to meet any desired
application requirements. The following figure presents the basic FPGA architecture, outlining the
fundamental components of the device [2]:
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Figure 1.1: The main components of the FPGA architecture [3]

e Configurable Logic Blocks (CLBs), which consist of Look-Up Tables (LUTs), multiplexers
and storage elements. The logic blocks are laid out in an array-type architecture and they
implement most of the logic in the FPGA, including Boolean, arithmetic and data-storage
operations.
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e Input-Output Blocks (IOBs), which provide the interface between internal logic and
external package pins. They consist of components such as pull-up/pull-down resistors,
buffers and inverters.

e Programmable Interconnects, which implement internal connections between CLBs as
well as I/O and global routing. They are composed of metal segments with programmable
switching matrices to achieve desired routing.

An FPGA is programmed using a Hardware Description Language (HDL), such as Verilog or
VHDL. Design automation tools are responsible for mapping a hardware design created with
HDL code to a specific device and generating the bitstream that configures appropriately the
FPGA programmable logic. Of course, the design flow is simplified and significantly accelerated
with the use of predefined complex functions and circuits, available from FPGA vendors and
third-party suppliers, known as IP (Intellectual Property) cores.

FPGAs present various benefits, both for designers and customers [4]:

e Flexibility. FPGA functionality can be reconfigured after manufacturing, to meet different
application requirements.

e Acceleration. FPGAs offer a high level of parallelism and can complete tasks faster in
hardware, speeding up the system performance.

e Simple design cycle. FPGAs can be easily programmed, while software tools handle
complex placing, routing and timing procedures.

e Shorter time to market. Compared to ASICs (Application-Specific Integrated Circuits),

FPGAs can be available faster to the market, since application development is faster on
FPGAs rather than ASICs.

On the other hand, there are still some drawbacks involved in FPGA design, that should
certainly be considered when such a solution is examined. Specifically, FPGA programming is
generally considered more difficult than CPU programming, since it requires knowledge of HDL
and simulation tools, making development time higher. FPGAs also consume more power than
ASICs and provide limited resources depending on the device being used [4].

The application areas where FPGAs can provide effective solutions are numerous, including
high performance computing, digital signal processing, hardware acceleration, video and image
processing, automotive, telecommunications, aerospace, cloud computing, data centers, machine
learning, consumer electronics and many others.

A recent trend has been to integrate the programmable logic of the FPGA with embedded
microprocessors and related peripherals on the same device, to form a powerful computing
platform, known as SoC (System-on-Chip) FPGA. This hybrid technology combines the high-
level management functionality of processors and the hardware programmability of an FPGA,
making SoC FPGAs an ideal fit to various applications. In addition, functionality is further
extended by a rich set of dedicated petipherals, such as ADCs/DACs, high-speed transceivers, on-
chip memory and various interfaces [5].

Apart from the benefits mentioned before for traditional FPGAs, SoC FPGAs present some
additional advantages. These include lower communication overhead between different units,
improved power consumption and smaller size. Also, SoC FPGAs introduce an efficient
hardware/software co-design principle, where different operations of a task can be allocated either
to CPU processing or dedicated FPGA logic, leading to increased overall performance.
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Figure 1.2: Transition from standalone CPU and FPGA to SoC FPGA

1.2  Multicore Architectures

Multicore architectures have become a fundamental concept in processor design. In an
attempt to increase performance, the processor industry switched from traditional single-core
processors to multicore processors, where more than one independent processing units (or cores)
are integrated onto a single chip. This significant shift was mainly motivated by the power
constraints that arised when trying to make single-core processors more powerful, which
eventually became intolerable. According to the processor performance equation:

1 IPCXf
T IC

where P is the performance of the machine, T is the execution time for a specific task, IC is the
number of instructions executed, /PC is the instructions per clock cycle ratio and fis the clock
frequency. Increasing the clock frequency is related to the power constraints mentioned above,
leading to higher power consumption and heat generation. The instruction count, on the other
side, is determined by the program, the compiler and the processor’s ISA (Instruction Set
Architecture). This leaves the IPC factor to be optimized with changes to the architecture. Indeed,
multicore processors can run multiple instructions on separate cores in parallel, increasing the IPC
ratio and consequently performance as well. It is important to note that multiprocessing can be
combined with parallelization techniques applied to single-core systems, such as simultaneous
multithreading and superscalar pipelining, leading to enhanced overall performance [6].

In a typical multiprocessor structure, each core executes its own instruction stream. The
instructions may belong to different processes, where processors run independent tasks. However,
it is possible for multiple cores of a multiprocessor to run separate threads of a single program. In
that case, they share code and most of their address space. The multiple cores may also share some
resources, such as cache memories and I/O buses, depending on the level of memory
centralization and the interconnection strategy between nodes. Communication and data exchange
among processors can be achieved through a shared address space, message passing or any other
communication mechanism [7].

Obviously, parallel programming is essential in order to benefit from the parallelism offered
by multicore processors. Software programmers need to make their code parallel and tune it
appropriately to fit well with the targeted architecture. In particular, they should examine the nature
of the processing and allocate the work efficiently among all available cores. This often introduces
subtle issues that should be definitely taken into consideration, like synchronization and memory
consistency. Synchronization is defined as a mechanism which ensures that concurrent processes
do not access simultaneously a critical section or that they perform actions in a specific desired
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order. Memory consistency enforces rules on memory operations to maintain memory coherence
and data integrity among multiple processors.

Processor Processor Processor Processor

One or One or
more levels more levels

One or One or
more levels more levels

of cache of cache of cache of cache

Main memory 1/0 system

Figure 1.3: A typical structure of a centralized shared-memory multiprocessor [7]

A recent trend in multicore processor development has been to include heterogeneous cores
in the same system. These cores are not identical, but they incorporate specialized processing
capabilities that make them suitable to handle special-purpose applications. In such a system, it is
common to offload a specific task to a dedicated core, which is optimized for that particular type
of processing, while another one is responsible for other general-purpose operations.
Heterogeneous multicore processing can be extremely beneficial for a number of reasons,
including performance optimization, power consumption reduction and system reliability
improvement [8].

Whether heterogeneous or not, multicore processors have proven to be a good solution for
many applications, such as multimedia and digital signal processing, networking,
telecommunications and various embedded systems. In many cases, more than one Operating
System (OS) run on a multicore architecture, a technique known as Asymmetric Multi-Processing
(AMP). A typical example is when one core requires hard real-time constraints, so it runs a Real-
Time Operating System (RTOS). This individual core performs real-time processing to meet tight
time requirements, while other cores can run a general-purpose OS to handle other tasks more
loosely.

It is worth mentioning that a critical issue involved in multicore processors is isolation between
separate cores. In case these are responsible for independent tasks, it should be ensured that they
are isolated as much as possible, to meet real-time constraints, ensure security and achieve
maximum performance. Potential interference between different cores may lead to security
vulnerabilities or delays that can be of great importance. AMP is a technique that can increase the
isolation level between cores that run separate operating systems.
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1.3  Thesis Purpose and Outline

The purpose of this thesis is to design and evaluate a general testbed for a telecom application
requiring efficient data streaming and processing, on a dual-core SoC FPGA. The processor is
used to provide both high-level functions and dedicated processing on data. The programmable
logic of the FPGA is also exploited, to perform efficient data processing in hardware. We attempt
to optimize the system both from hardware and software perspectives, in terms of isolation and
performance, and test it using an application that emulates the basic behavior of a real-life
application.

The application consists of two main entities, the data transmitter and the data receiver, that
should run on separate cores of the multiprocessor. The transmitter initiates the transmission of
input data, which are first sent to the FPGA where they are subject to an initial processing phase.
They are then retrieved by the receiver which is responsible for a final special-purpose processing
function, for example a real-time operation.

The motivation for this thesis is that creating a testbed as described above, where we do not
implement specific DSP algorithms or define strict specifications for the type of processing, makes
it adaptable and very useful for testing various applications. By keeping a high abstraction level,
the testbed can be easily modified appropriately to match the requirements of each case. In a
telecom application, the streaming of data corresponds to the transmission of signals and the data
processing to various processes done between the transmitter and receiver sides, like modulation,
multiplexing and filtering. Another similar application is when a sensor generates a continuous
sequence of measurements, which need to be processed appropriately before the results are stored
for later analysis. A LIDAR system, where reflected laser pulses are measured to scan a target
surface and make a 3D representation, can be mentioned as an example. If this is applied in
automotive, for instance, critical real-time processing on data is required as well. In addition, it is
useful that the system also provides an interactive interface to users, without interrupting the data
processing and affecting the response time of the system.

Some issues that are considered throughout this thesis are how to exploit available hardware
resources, how to achieve efficient communication between hardware and software, which
operating systems to use and in what configuration, how to process data in software and how to
isolate the two processing cores. Optimizing these parameters aims to improve isolation between
the executed tasks and increase the performance of the critical real-time processing task.

A brief outline of the following chapters is given below:

" In chapter 2, we present basic concepts about the device and some of the techniques that
are used, as well as a system-level description of the testbed.

* Inchapter 3, the implementation of the system is described in detail, both from a hardware
and software point of view.

* In chapter 4, an evaluation of the system is done, based on the results acquired from
different experiments.

* Finally, chapter 5 includes the thesis summary and provides some ideas for potential
extensions and future work.
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Chapter 2

Basic Concepts and System Description

2.1 The Device

2.1.1 The Zynq Board (Zybo)

The device that was used in this thesis is the Zynq Board [9], usually referenced as Zybo, a
SoC FPGA development board manufactured by Digilent. The Zybo is built around the Z-7010
AP SoC (All Programmable System-on-Chip) of the Xilinx Zyng-7000 family. The Z-7010
integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series FPGA logic. Additionally, a
rich set of multimedia and connectivity peripherals are available on the board to provide support
for a wide range of applications.

Some of the board features are listed below:

e Xilinx Zynq Z-7010 AP SoC
o 650 MHz dual-core Cortex-A9 processor
DDR3 memory controller with 8 DMA channels
High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO
Low-bandwidth peripheral controllers: SPI, UART, CAN, I*C
Programmable logic equivalent to Artix-7 FPGA
On-chip Analog to Digital Converter (XADC)
e 512 MB DDR3 memory with 1050 Mbps bandwidth
e 128 Mb Serial FLASH memory with QSPI interface
e External EEPROM
e 10Mbit/100Mbit/1Gbit Ethernet PHY
e OTGUSB2.0PHY
¢ Dual-role HDMI port
e 16-bit VGA source port
e Audio codec with headphone, microphone and line in jacks

O O O O O

e microSD slot

e On-board JTAG programming

e GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs
e (6 Pmod ports

The Zybo can be powered from the UART/JTAG USB port or from an external power
supply. It supports three different boot modes: booting from a microSD card, from the onboard
QSPI Flash memory or from software loaded by a host computer via JTAG. A USB-UART bridge
enables PC applications to communicate with the board using serial port commands.
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28 27 26 25 24 23 22 54

-
DONE

10 - 12 13 14
1 Power Switch 15 Processor Reset Pushbutton
2 Power Select Jumper and battery header 16 Logic configuration reset Pushbutton
3 Shared UART/JTAG USB port 17 Audio Codec Connectors
4 MIO LED 18 Logic Configuration Done LED
5 MIO Pushbuttons (2) 19 Board Power Good LED
6 MIO Pmod 20 JTAG Port for optional external cable
7 USB OTG Connectors 21 Programming Mode Jumper
8 Logic LEDs (4) 22 Independent JTAG Mode Enable Jumper
9 Logic Slide switches (4) 23 PLL Bypass Jumper
10 USB OTG Host/Device Select Jumpers 24 VGA connector
11 Standard Pmod 25 microSD connector (Reverse side)
12 High-speed Pmods (3) 26 HDMI Sink/Source Connector
13 Logic Pushbuttons (4) 27 Ethernet RJ45 Connector
14 XADC Pmod 28 Power Jack

Table 2.1: The Zybo and its components [9]

2.1.2 The Zyng-7000 AP SoC

The Zyng-7000 AP SoC [10] is divided into two distinct subsystems, the Processing System
(PS) and the Programmable Logic (PL). Figure 2.2 shows an overview of the SoC architecture,
where the PS and PL components can be seen, together with various interconnections between
them.

The heart of the Zynq PS is the Application Processor Unit (APU), which includes two ARM
Cortex-A9 CPUs, each with associated computational units: a NEON Media Processing Engine
and Floating Point Unit (FPU), a Memory Management Unit (MMU) and 32 KB L1 Instruction
and Data caches. The APU also contains a shared 512 KB L2 cache memory, a 256 KB SRAM

34



On-Chip-Memory (OCM), a Snoop Control Unit (SCU), a DMA controller, a General Interrupt
Controller (GIC), System-Level Control Registers (SLCRs) and Timers.

Besides the APU, the PS includes memory interfaces (DDR and FLASH memory controllers)
and I/O Peripherals for external intetfaces, including USB, SDIO, Gigabit Ethernet, SPI, CAN,
UART, I’C and GPIO. Communication between the PS and external interfaces is achieved
primarily via 54 dedicated pins called Multiplexed 1/O (MIO), which can be flexibly mapped to
peripherals as required. Peripheral connections are also possible via the Extended MIO (EMIO)
interface, which routes the I/O path through the PL.

The PL is based on the Artix-7 FPGA fabric and is composed of general-purpose FPGA logic
as well as special resources, such as Block RAMs (BRAM) for memory requirements and DSP48E1
slices for high-speed arithmetic. Additionally, an Analog to Digital Converter (XADC) is integrated
into the logic fabric. Note that the PCI Express block and Serial Transceivers, shown in Figure
2.1, are not available on the Zyng-7010 device.
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DDR3, DDR3L, DDR2

AMBA® Interconnect AMBA® Interconnect

2
12C

MPl:ore
x

CAN HEOH"' SIMD and FPU llEllIl"ll SIMD and FPU

u?r(u' | ARM® Cortex™ - AS ARM® Cortex™ - A9

GPIO Snoop Control Unit

512KB L2 Cache 256KB On-Chip Memory
m JTAG and Trace | Configuration mm

Processor 1/0 Mux

2x SDI0
with DMA

2x USB
with DMA

2x GigE
with DMA

11|

AMBA® Interconnect

tttt

Security

XADC
2x ADC, Mux,
Thermal Sensor

AES, SHA, RSA

1222

General-Purpose
AXI Ports

Programmable Logic
(System Gates, DSP, RAM)

Multi-Standard 1/0s (3.3V & High Speed 1.8V)

AMBA® Interconnect

ACP  High-Performance
AXI Ports

PCle® Gen 2
1-8 Lanes

Serial Transceivers

t

§

Figure 2.1: The Zyng-7000 AP SoC architecture [11]

The APU, memory controllers and I/O Peripherals of the PS are connected to each other and
to the PL through an AMBA AXI interconnect. AXI stands for Advanced eXtensible Interface
and is part of the AMBA (Advanced Microcontroller Bus Architecture) standard developed by
ARM. A set of AXI interconnects and interfaces forms a network that supports master-slave
transactions between the different components of the SoC. There are three different types of PS-
PL AXI interfaces [12]: four General-Purpose ports (AXI_GP), one Accelerator Coherency Port
(AXI_ACP) and four High Performance ports (AXI_HP). The AXI_GP is a 32-bit data bus
suitable for low and medium rate PS-PL. communications. The AXI_ACP provides a 64-bit wide
asynchronous connection between the PL and the SCU, to achieve coherency between the APU
caches and the PL. Finally, the AXI_HP ports support high rate communications between the PL
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and memory elements in the PS. A more detailed description of the AXI_HP interfaces will be
given below, since they have been useful for the implementation of our system.

The AXI_HP interfaces [10] provide high bandwidth datapaths from the PL to the DDR and
OCM memories. The PL is the master of all four AXI interfaces. The data width of the High
Performance ports can be independently programmed to either 32 or 64 bits. Fach interface
includes two FIFO buffers for read and write traffic, in order to accommodate large bursts of data.
An interconnect routes the HP ports to two DDR memory ports or the OCM. The AXI_HP
interfaces are also referred to as AFI (AXI FIFO Interface), in reference to their buffering
capabilities. A diagram showing the AXI_HP connectivity is given in Figure 2.3.

High Performance

AXI Controllers
_J
S3

(AXI_HP)
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Interconnect |/
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OCM Interconnect
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S1 S0
On-chip
RAM
S3 || s2 S1 S0

DDR Memory Controller

Figure 2.2: AXI High Performance ports connectivity [10]

It has been made clear that the AXI_HP ports are optimized for high throughput applications.
Therefore, it is not recommended to use them for general purpose AXI transfers, where the
AXI_GP interfaces are preferred instead. A common design for an IP residing in the PL is to
consist of a low-speed control interface through the AXI_GP port and a higher performance data
burst interface through the AXI_HP port. Finally, the HP interfaces provide bandwidth
management functions, through specific signals and registers, to assist priority and queue (FIFO
occupancy) management [10].

2.2 The AMBA AXI4-Stream Protocol

The latest version of the AMBA AXI communication protocol is AXI4. There are three
different variations of the AXI4 interface, each suited to a different nature of application [13]:
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e AXI4-Full, a memory-mapped interface allowing bursts of up to 256 data transfer cycles
with a single address phase.

e AXI4-Lite, a light-weight variant of the interface for memory-mapped communication,
which allows just a single data transfer per transaction.

e AXI4-Stream, which allows unlimited data burst size, being suitable for high-speed
transmission of streaming data.

In this section, we examine the AXI4-Stream interface, since it was used for the
implementation of our system, as it will be explained later. The AXI4-Stream protocol defines a
single channel for transmission of streaming data. It allows unidirectional transfers from a master,
that generates data, to a slave, that receives data. AXI4-Stream interfaces do not require an address
phase and are therefore not considered to be memory-mapped. The streaming nature of AXI4-
Stream makes it best suited for applications requiring a constant stream of data, such as
communications/networking and audio or image processing.

The AXI4-Stream interface signals are listed in Table 2.1, along with the source that generates
them and a brief description.

Signal Source Description

TVALID Master Indicates that the master is driving a valid

transfer.

TREADY Slave Indicates that the slave can accept a transfer in
the current cycle.

TDATA Master The payload used tp provide the data that is
passing across the interface.

TSTRB Master !ndlcates whether the.a.ssomated byte of TDATA
is a data byte or a position byte.

TKEEP Master !ndlcates whether the associated byte of TDATA
is a null byte or not.

TLAST Master Indicates the boundary of a packet.

TID Master The data stream identifier.

TDEST Master Provides routing information for the data
stream.

TUSER Master User defined information that can be

transmitted alongside the data stream.

Table 2.2: The AXI14-Stream signals [14]

Most of the above signals are optional in the AXI4-Stream interface. In fact, we are only
interested in TVALID, TREADY, TDATA and TLAST. A handshake process is necessary
between the master and the slave for information to be passed across the interface. This is a two-
way flow control mechanism that enables both sides to control the rate at which the data are
transmitted. For a transfer to occur, both the TVALID and TREADY signals must be asserted.
This indicates that the master has placed valid data on the bus and that the slave is ready to accept
that data. Either TVALID or TREADY can be asserted first, for the handshake to complete
successfully [14].
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In Figure 2.4, two examples of the handshake sequence are presented in form of timing
diagrams. In the first example, TVALID is asserted before TREADY. The valid information from
the master remains unchanged until TREADY is also asserted by the slave, at which point the
transfer can occur. In the second example, the slave asserts TREADY first, before information is
valid. The transfer will now take place once the master asserts TVALID. In both cases, the exact
time at which the transfer occurs is indicated by the arrow at the bottom of the diagram.

(@ ®)
CLK | | | CLK | |
INFORMATION I { INFORMATION X (
TVALID T ! TVALID J
TREADY /]7‘ I\ TREADY | Jf ‘ !

Figure 2.3: The TVALID-TREADY handshake [14]
(a) TVALID before TREADY
(b) TREADY before TVALID

The information that is transmitted across the interface is represented by the TDATA signal.
The width of TDATA is an integer number of bytes, corresponding to the data bus width. The
transmitted bytes may be grouped together in multiple packets. Dealing with packet transfers is
typically more efficient for infrastructure components than processing continuous data streams
[14]. The TLAST signal can be used in such cases to indicate the boundary of each transmitted
packet.

2.3 Direct Memory Access

Direct Memory Access (DMA) is a mechanism that allows computer hardware to access
system memoty for data movement without CPU intervention. Moving data to and from I/O
devices is a slow process that requires cycle-intensive memory transfers. In programmed I/O
methods — polling or interrupts — such tasks require a significant portion of the CPU time,
especially when bulk data movement is needed. With DMA, these tasks are assigned to dedicated
data transfer devices, allowing the CPU to focus on other useful computing activity while the
transfer is in progress.

Using DMA for data transfers in computer systems has several advantages. First of all, it off-
loads the processor by moving the data transfer overhead to dedicated hardware, leading to
improved system performance. In addition, the dedicated hardware is capable of moving data from
one computer location to another faster than the CPU, reducing the transfer time. High-speed
data acquisition devices can benefit from the improved data transfer speed and respond time, since
latency in servicing these devices is minimized. Finally, when the CPU operates out of its cache,
DMA data transfers are literally done in parallel, thus increasing the system utilization [15].

The hardware that is responsible for DMA operations is called DMA controller. A DMA
controller can directly access memory and is used to transfer data on behalf of the CPU. The
direction of transfer can be from an I/O device to system memory and vice versa, or from one
memory location to another. The controller manages several DMA channels, each of which can
be programmed to perform a DMA transfer upon request. The CPU and DMA controller usually
share the same memory and I/O bus. The DMA controller can either become the bus master to
perform a transfer or have the transfer set up by the CPU, as a bus slave. In the second case, the
CPU programs some internal registers of the controller, which contain configurations like source
and destination addresses, burst size, as well as control and status information [15].
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In typical computer systems, the DMA controller is usually a device peripheral to the CPU. In
a SoC FPGA, however, the device can either be a module embedded in the processing system or
implemented in the programmable logic of the FPGA. In Zyngq, for example, Xilinx provides
several DMA IP cores, compliant with the AXI standard, that can be added to the PL [10].

The whole procedure of a DMA transfer involves the following steps [16]:

1. The CPU programs the DMA controller, by allocating a DMA channel and setting the
DMA capacity and transfer configurations.

2. The DMA controller requests a transfer, by allocating first buffers in memory where the

data will be saved. A transfer may also be initiated by the CPU, without a request from the

DMA controller.

The data are transferred from source to destination using DMA.

An acknowledgment is received by the DMA controller, once the transfer is complete.

5. The controller informs the CPU about the accomplishment and that a new transfer can
now be scheduled. This is done through an interrupt or with the CPU polling the DMA
controller until the transfer is complete.

Al

There are some software-related issues that should be considered when using DMA. First, the
multiple channels of the DMA controller are often used by independent applications. Therefore,
the controller, as a shared system resource, should be properly managed to avoid applications
affecting each other. Moreover, the DMA allocated buffers should be managed as data are
collected or generated, according to the application requirements. In particular, DMA buffer
management complexity increases in virtual memory systems, where allocation of physically
contiguous buffers and memory mappings must be taken into account. Another major concern
has to do with the amount of overhead that is introduced when setting up the DMA controller. If
the data volume to be transferred is small or the DMA buffering capacity is poor, that overhead
may result to a slower transfer than just assigning the task to the CPU. In order to fully take
advantage of the DMA high throughput, the setup time should be compensated by the gains in
the DMA data transfer time. Finally, special care should be taken to maintain cache coherence
when using DMA, since external memory can be directly accessed by DMA devices and thus
become inconsistent with the CPU cache. Non-coherent systems should handle this in software,
by flushing or invalidating cache lines before starting DMA transfers that affect related memory
ranges [15].

2.4 Embedded Operating Systems and Multiprocessing

In earlier years, it was quite common to design embedded systems by writing firmware that
would run directly on hardware, without any underlying software abstraction layers. This is known
as bare metal programming and is still used today for the development of some embedded
applications. However, as microprocessors grew gradually more powerful, use of Operating
Systems (OS) in embedded systems became more and more frequent. Nowadays, the vast majority
of embedded systems include an OS that handles the interaction between the software application
and the hardware platform.

There are a number of advantages when including an operating system for the development
of an embedded system. Firstly, an OS offers standardized system interfaces, APIs and driver
support for a wide range of devices. The use of these — and many other — existing features can
significantly reduce development time. In addition, targeting software at an OS rather than a
specific device offers great flexibility, as the developed product could potentially be easily moved
to a new platform. Finally, the developer does not need to worry about resource management or
task scheduling because the OS takes care of these functions [12].
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An important question that a designer is faced with when developing an embedded system is
to determine which type of OS to use. There are several available options to choose from, each
one offering its own benefits. The simplest type of embedded operating system is a standalone
OS, which provides low-level software modules to directly access processor features, like cache
configuration and interrupt setup, and hardware-specific functions. A standalone OS provides
limited functionality but enables close control over code execution and hardware. When there is
need for real-time behavior, a Real-Time Operating System (RTOS) is the best choice. A RTOS
guarantees short and predictable response time for given tasks, thus being suitable for applications
with critical timing requirements. In contrast, if flexibility and productivity are preferred over time
determinism, general-purpose operating systems should be used, such as Linux or Android OS
[12].

The Zynq processing system supports all of the environments that were mentioned above.
Xilinx provides standalone platforms for their products, several embedded Linux solutions, such
as Petalinux, as well as a version of FreeRTOS ported to Zyng.

In multi-processor systems, a decision must also be made as to whether a single OS will run
across all processing cores or multiple OS instances will be used for individual cores. These
techniques are described with the terms Symmetric Multiprocessing and Asymmetric
Multiprocessing respectively, which are introduced in the following sections.

2.41 Symmetric Multiprocessing

In Symmetric Multi-Processing (SMP) [17], all cores run a single OS instance, which
coordinates the execution of tasks between them. Applications can exploit the full compute power
of the multiprocessor, as all threads of execution are allowed to run concurrently on any core. The
OS has thread preemption and prioritization features, providing efficient scheduling of tasks and
optimal allocation of work on the multiple cores. All CPUs in the system must be of matching
architectures to support SMP.

Unfortunately, SMP cannot offer the expected linear boost of performance as the number of
cores increases. This is because SMP is designed to exploit software parallelism, but all applications
are not natively parallel (single-threaded programs, I/O bound applications). Another reason is
that internal kernel mechanisms are required to manage dynamic load balancing, which bring an
overhead that increases geometrically with the number of cores.

In a SMP environment, communication between cores is achieved through the use of shared
memoty. There is no need for any special Inter-Process Communication (IPC) protocol, which
simplifies significantly the programming model for applications.

All system resources, including memory, which are shared between the multiple cores, are
managed by the OS and dynamically allocated among them. In fact, the OS can allocate resources
to specific applications rather than CPU cores, offering greater utilization of available hardware.
Nevertheless, protective measures must be taken to deal with concurrency issues, preventing
simultaneous access to shared resources by different threads. To achieve this, locking mechanisms,
such as mutexes and semaphores, are inserted into the application code. These elements, though,
may ultimately lead to decreased CPU utilization and that is why SMP performance does not scale
ideally for processors with larger number of cores.

It is worth mentioning that SMP usually gives designers the ability to lock any application to
a specific core of the multiprocessor. All related threads are then bound to the specified core and
forced to execute exclusively on it. This approach is sometimes referred to as Bound Multi-
Processing (BMP). It offers several advantages, compared to full SMP, such as cache thrashing
elimination and easier migration of uniprocessor applications to multicore environments [18].
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2.4.2 Asymmetric Multiprocessing

In Asymmetric Multi-Processing (AMP) [17], each core runs its own instance of OS, which
can be the same or different from other instances. The designer has the ability to directly control
how every core is used and partition them appropriately to achieve maximum CPU utilization,
even in the case of I/O bound processing. Of course, the AMP model allows applications running
on separate cores to communicate with each other. AMP can be used in heterogeneous systems,
consisting of multiple CPUs with different architectures. The SMP and AMP designs for the Linux
and RTOS operating systems, with reference to the dual-core ARM processor of the Zynq
platform, are depicted in Figure 2.5.

Tasks Tasks Tasks
Linux Kemel ' Linux Kemel | RTOS Kernel
Shared Memory Shared Memory

ARM ARM ARM ARM
Core 0 Core 1 Core 0 Core 1

Symmetric Multi-Processing (SMP) Asymmetric Multi-Processing (AMP)

Figure 2.4: Symmetric vs. Asymmetric Multiprocessing [12]

Since multiple operating systems coexist in an AMP system, a complete networking
infrastructure or dedicated communication framework is required to support IPC. There are
several such implementations, including I/O peripherals, shared memory/interrupt-based
schemes and hardware-assisted messaging mechanisms.

With AMP, the designer determines how to divide the shared hardware resources between the
multiple cores. Memory allocation, peripheral usage and interrupt handling are usually defined
statically during boot time, so that each OS is aware of the resources it has been allocated.
Concurrency hazards may only appear here between independent applications running on different
cores, which is usually easier to handle than in SMP mode.

A very interesting concept is lately explored by the industry, which involves a hybrid approach
that combines both the SMP and AMP models on the same multicore device. If more than two
homogeneous cores are available, some of them can be configured to run in SMP and form one
processing domain. Then, this domain can run in AMP with other cores, either homogeneous or
heterogeneous. The benefits from such a multiprocessing model include improved power
consumption and higher performance.
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2.5 System Description

A system-level description of the testbed will now be presented. All the necessary concepts
that will be referenced have already been described in the previous sections of this chapter.

The testbed is implemented on the Zybo, using both the PS and PL features of the Zynqg-7000
AP SoC. The system consists of two main software applications, called transmitter and receiver.
Each application is configured to run on a different core of the ARM Cortex-A9 dual-core
processor of the Zynq PS. The transmitter runs on CPUO, while the receiver runs on CPU1. In
addition, an Ethernet connection is established between the Zybo and a computer, where a file
containing input data values is located.

The transmitter receives the input data via Ethernet and stores the values in memory. A
custom IP is implemented in the PL, the role of which is to process the input data. The data are
transferred from memory to the IP using DMA. The hardware responsible for the DMA transfer
is also implemented in the PL and the data movement from memory to the IP is achieved with
the AXI4-Stream protocol.

The processed data are stored back in memory with a new DMA transfer. Once again, the
data are moved from the IP to the memory through AXI4-Stream. The receiver waits for the DMA
transfer to complete and then accesses the results in memory to perform further processing on
them. This processing phase is executed by the processor (CPU1), in contrast to the first phase
executed in hardware. In the end, the final data are sent back to the computer via Ethernet, where
they are written to an output file to check their validity.

On the subject of operating systems, two different implementations are realized as successive
steps. First, a Linux SMP configuration is tested. In other words, both CPUs run the same Linux
OS. However, it is ensured that the transmitter and receiver applications execute solely on CPUO
and CPU1 respectively, to provide a level of isolation between them. The second implementation
involves a Linux/RTOS AMP configuration, where CPUO runs Linux and CPU1 runs FreeRTOS.
This aims to increase the isolation level between the transmitter and the receiver, provide real-time
features to CPU1 and potentially increase the system performance.

More specific details about the implementation procedure are given in the next chapter. Both
the SMP and AMP cases are examined, with regard to hardware and software design options.
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Chapter 3

System Implementation

31

Hardware Design

First, we will present the components that were used to create the hardware design of the
system. Then, we will describe some modifications and measurements done to the design, in an
attempt to explore performance optimization.

3.11

Hardware Components

The block design was created using the Xilinx Vivado Design Suite. It consists of the following
elements:

The ZYNQ?7 Processing System. This is the PS subsystem of the Zyng-7000 SoC,
including the dual-core ARM processor, memory and peripheral interfaces.

The AXIS Multiplier, a custom IP core implemented in the PL, receiving and generating
data through AXI4-Stream interfaces. It consists of a simple parallel multiplier with input
and output buffers, implemented as two AXI4-Stream Data FIFOs. The width of the input
and output data buses is customizable. The multiplication corresponds to the first
processing phase of data, which is executed in the PL.

The AXI Direct Memory Access (AXI DMA), residing in the PL. The AXI DMA
provides high-bandwidth Direct Memory Access between the DDR memory (AXI4
Memory-Mapped interface) and the AXI4-Stream Multiplier. It is responsible for moving
data from memory to the multiplier and vice versa, without the processor’s interaction. An
AXI4-Lite interface enables initialization and management from the PS, while access to
the DDR memory is achieved through one of the available High Performance (AXI_HP)
ports [19]. The AXI DMA parameters that were customized are described below.

- Width of Buffer Length Register: This parameter determines the maximum
number of bytes that can be transferred with a DMA transfer. It was set to the
highest possible value of 23 bits, to allow transfers of 2* bytes (8 MB).

- Max Burst Size: This specifies the maximum size of the burst cycles on the
memory-mapped interface and was set to 250, both for read and write channels, to
achieve maximum throughput.

- Memory Map and Stream Data Widths: These settings define the widths of the
corresponding data buses. All values are initially set to 32 bits, but they are later
modified during performance exploration.
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e The Concat IP. The AXI DMA can be used either in polled mode or interrupt mode, to
inform the processor that a DMA transfer is complete. In case interrupts are used, AXI
DMA generates two interrupts, one for the read channel and one for the write channel.
The Concat IP is used to concatenate those interrupt signals into a single bus, which can
be routed to the ZYNQ?7 PS port for PL—PS interrupts (IRQ_F2P).

e Other blocks that are automatically added to the design by Vivado, including the Processor
System Reset module and various AXI Interconnects.

A simplified block design of the system is shown in Figure 3.1.

AKXl DMA

A _MMZS/SIMM

—F\XI_LITE

AXIS_MMES

—lms S0
AXIS Multiplier -

ZYMNQT Processing System

re
MM25: Memory Map to Slave Xl HP
52MM: Shave to Memory Map —
AXTSE: AXT-Stream AX GP
AXT_HP: AXT High Performance Port Concat -
AXT GP: AXI General-Purpose Port - IRQ_F2P
IRG_F2P: Inferrupt Request from it I \_
Fabric to Processor » out

in

Figure 3.1: A simplified block design of the system

3.1.2 Design Optimization

The optimization process aims to maximize the bandwidth that the system can support when
moving data between the DDR memory and the multiplier, using the AXI DMA. The experiment
consists of writing 1 MB (2% bytes) of data on memory and sending it to the multiplier by
performing one DMA transfer. The results of the multiplier are written back to memory with a
second DMA transfer. The two distinct transfers are performed concurrently. The total time of
the first transfer is measured in order to find the bandwidth and evaluate the design.

In the initial design, the width of the Memory Map and Stream data buses is 32 bits. On each
clock cycle, a 32-bit value (containing two 16-bit values) is sent to the multiplier, which computes
the 32-bit result. With a clock frequency of 100 MHz, the theoretical bandwidth is

32 bits

1
100 MHz

BW,y, = = 381.5 MB/s

The actual bandwidth achieved after sending 1 MB of data to the multiplier was

BW,., = 381.2 MB/s
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The above value is very close to the theoretical one, which means that our design was successfully
configured to achieve the best performance.

An obvious option to increase throughput is to expand the width of the Memory Map and
Stream data buses from 32 to 64 bits. This way, the bandwidth is expected to double. Indeed, the
actual bandwidth was measured to be

BW,., = 761.9 MB/s

which is almost twice as much the value that was measured in the case of 32-bit data width.

In an attempt to increase even further the throughput, the data width was once again expanded
to 128 bits. However, the bandwidth remained unchanged at 761.9 MB/s, showing that there is a
limit to the speed we can gain by data width expansion. The four AXI High Performance
(AXI_HP) interfaces provide either 32-bit or 64-bit wide datapaths to the memory [10]. Since the
DMA engine uses one of these HP ports to move data to and from memory, wider data values are
simply split to fit one of the supported 32-bit or 64-bit modes. Therefore, each transaction must
be completed in multiple steps and the throughput does not improve.

The initial clock frequency of 100 MHz can be increased to get better results in terms of
throughput. Setting the maximum value of 250 MHz gives a theoretical bandwidth as shown
below.

32 bits

1
250 MHz

BW,, = = 953.7 MB/s

The actual bandwidth after sending 1 MB of data to the multiplier was measured to be

BW,,, = 952.5 MB/s

Another thought is to use one AXI DMA core for each one of the write and read channels of
the transactions separately. In other words, the first core is responsible only for reading data from
memory and sending the stream to the multiplier, while the second one only receives the stream
of results from the multiplier and writes the data back to memory. However, the throughput was
not measured any higher than before, which means that one single DMA core can handle both
channels simultaneously, without any interference between them. Therefore, the use of multiple
DMA cores as described above does not offer any improvement.

Two DMA cores can efficiently improve performance if they both use their read and write
channels simultaneously. By adding a second multiplier to the design and connecting each one of
them with a different DMA core, we can execute our task in parallel. Each pair of AXT DMA-
multiplier is responsible only for half of the data, while the memory accesses and computations
are done simultaneously.

Two DMA cores, though, require two different AXI_HP interfaces. The experiment was held
for two different HP port pairs (at 250 MHz). After choosing first the ports HPO and HP1 and
sending 500 KB to each multiplier (1 MB in total) the bandwidth achieved was

BW,, = 1124.7 MB/s

We do observe an increase but not as high as we expected it to be, compared to the 952.5 MB/s
measured when there was not at all parallelism in our design. After repeating the same experiment
using the ports HPO and HP2, the bandwidth was now measured to be

BW,, = 1601.6 MB/s
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This significant improvement of the performance can be explained by examining the connectivity
of the High Performance ports in the system hardware (Figure 2.3). The ports HPO and HP1 share
the same path towards the DDR memory controller. This is also true for the ports HP2 and HP3.
Therefore, it is preferable to use simultaneously ports connected to different paths (in our case
HPO and HP2) to avoid conflicts and increase throughput. However, the theoretical bandwidth
expected when using two interfaces in parallel is

(32 + 32) bits

1
250 MHz

BW,, = = 1907.3 MB/s

So even with the independent HP ports there is an overhead in the system that prevents the
bandwidth from going higher. This happens probably because the DDR memory controller
provides a unique path towards the memory, so the read/wtite requests are still bound to
transaction scheduling and arbitration [10].

We increased even further the parallelism of our system by using simultaneously three — or
even all four — of the available HP interfaces. Each interface is related to one AXI DMA-multiplier
pair and to one fraction of the data to be transferred. After sending 1 MB of data in total, using
the HP ports HPO-HP1-HP2, the bandwidth was

BW012 = 13899 MB/S
The theoretical bandwidth is now

(32 + 32 + 32) bits

1
250 MHz

BW,, = = 2861 MB/s

Therefore, adding a third HP interface to our system just leads to a bandwidth which is almost
half the theoretical one (48.6%). It is obvious that this gain is not profitable, considering the added
hardware and software complexity of the extra HP interface. An explanation of the phenomenon
can be once again derived from Figure 2.3. We clearly see that the multiplexed HP ports are
connected to only two ports of the DDR memory controller, so it is expected that three HP
interfaces will not bring a linear increase in the bandwidth.

Combining the results presented above, we repeated the experiment using 64-bit (instead of
32-bit) data width along with a clock frequency of 250 MHz and 3 HP interfaces simultaneously.
With these settings, the bandwidth was found to be

BW,y1, = 1508.2 MB/s
In this case, the theoretical bandwidth is
(64 + 64 + 64) bits
BWth = 1
250 MHz

= 5722 MB/s

We can notice that the overhead is bigger with 64-bit data width, compared to 32-bit, since we
managed to achieve just 26.4% of the theoretical bandwidth.

In conclusion, we expect to achieve the maximum bandwidth if we use 64-bit data width
together with two independent HP interfaces, for example HPO and HP2. This way, we shall
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provide parallelism to our design efficiently, without adding too much overhead to the system.
Indeed, the bandwidth was measured to be

BW,,, = 1682.8 MB/s

The final block design, created in Vivado with respect to the last settings applied above and
optimized in terms of bandwidth, is given in Figure 3.2. There are two AXI DMA blocks, which
are connected to the AXI High Performance ports HPO and HP2. They are controlled by the PS
through the General-Purpose ports GPO and GP1. Each AXI DMA can transmit and receive data
from a multiplier in the PL, using the AXI4-Stream protocol. There are in total four interrupts
generated by the two AXI DMAs, which are concatenated and routed to the IRQ_F2P port of the
PS.

3.2 Linux SMP

We previously designed and optimized the hardware of the Zynq SoC in order to build a
system capable of transferring data between the memory and the PL efficiently using the AXI
DMA. However, the hardware was only tested using a bare metal application. The next step is to
have our system running under an operating system, which in our case is an embedded Linux
environment.

We used an embedded Linux distribution created with the PetaLinux Tools provided by Xilinx.
Petaliinux is a great way to build embedded Linux on the Zynq processing system that is
compatible with the Xilinx hardware design flow. This means that we can just export a hardware
platform already created with Vivado and easily deploy a Linux OS upon it.

3.21 Linux DMA Drivers

The main challenge when moving to the Linux environment is the transition from the bare
metal application to the software that is compatible with the operating system. In our case, the
hardware component that we need to control is the AXTI DMA, so we must write the software that
will carry out the DMA transfers under Linux.

There are several issues we should consider when performing DMA operations [20]:

1. Cache coherency. The CPU caches must be coherent with the system memory. Depending
on the processing system, cache maintenance functions may be required to ensure that.
This is true for the Zyng-7000 processors when using the HP ports.

2. Using cached or non-cached memory. Each option may present better performance based
on the size of the data being transferred with DMA and the amount of it being touched
by the CPU.

3. Kernel space vs. user space. The DMA driver can be designed to lie in the Linux kernel
space, user space or both.

Fortunately, Linux provides a framework, known as DMA Engine, that provides the
infrastructure for DMA drivers to plug into and then be accessed from kernel space with another
client driver using a standard APIL. Such a client driver is provided by Xilinx, supporting general
purpose DMA, including the AXI DMA. Therefore, we can write our own higher layer Linux
driver which will use the Xilinx driver through the DMA Engine subsystem [20].
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We used a design suggested by Xilinx, called DMA Proxy [20]. The DMA Proxy design
consists of a kernel driver module and a user space application. This hybrid approach gives us the
ability to control DMA transfers from user space, while using the Linux DMA Engine framework
from kernel space. A detailed design of the DMA Proxy software is presented in Figure 3.3 below.

User Space

mmap() | ioctl()

A

Kernel Allocated
Interface
Memory

Kernel Space

Interrupt Registers

Figure 3.3: The DMA Proxy design [20]

The kernel driver is responsible for allocating non-cached memory for the DMA buffers and
controlling the transmit and receive channels of the Xilinx DMA driver through the DMA Engine.
It behaves as a character device driver that can be controlled from user space through the ioctl()
interface. Each DMA channel is represented as a character device node that can be accessed from
user space. The user space application maps the kernel allocated memory into user space through
the mmap() function. This removes the need to copy data between kernel and user space, which
would otherwise be inefficient for large DMA transfers, a method known as zero copy design. The
application can then access the DMA buffers and manage transfers through the ioctl() function.

A PetaLinux project was created and configured in accordance with the hardware platform
specification created with Vivado earlier [21]. A custom kernel module and a user application were
added to the root file system, containing the source code of the DMA Proxy driver (dma-proxy.c)
and the DMA Proxy application (dma-proxy-test.c) respectively. A shared header file (dma-proxy.h)
was also included, which defines the shared memory interface between kernel and user space.
Finally, an appropriate node was added into the device tree, which defines the device nodes for all
the AXI DMA channels. After the system image is generated, we boot it on the Zybo.

First, we need to load the dma-proxy module into the kernel. Then we are free to use the dma-
proxy-test application, giving as arguments the number of DMA transfers to perform and the length
of each transfer in bytes. The maximum length of one transfer has been configured to be 8 MB.
The data values to be transferred are randomly generated inside the dma-proxy-test code. We ran
the application successfully with various different configurations. The data were transferred from
the memory to the PL for processing and the results were received back to memory without errors.

Therefore, we have a functional embedded Linux system for streaming data efficiently with AXI
DMA.
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3.2.2 Software Applications

When running Linux on the dual-core ARM Zynq processor, by default the kernel is
configured to use both CPUs in SMP mode. Normally, the operating system takes care of the task
scheduling between the two CPUs of the processing system. However, as it was mentioned in
Chapter 2, it is possible for the user to choose a specific CPU for the execution of an application.
In our case, where we do DMA transfers between the memory and the PL, we would like to
transmit data only from one CPU and receive data from the other one. In other words, we should
run two applications, transmitter and receiver, separately on the two CPU cores. Obviously, the two
applications will be executed in parallel. In terms of hardware, we want the transmitter to configure
both AXI DMAs to fetch data simultaneously from memory through the HP ports and send the
values to the respective multipliers. The processed data must be moved back to memory in the
same way by the DMA engines, with the receiver application being responsible for these transfers.

Based on the dma-proxy-test application we already used in PetaLinux, we created two separate
applications for the data transmitter and receiver. The transmitter handles the device files for the two
transmit channels and executes two DMA transfers from memory to the PL. The receiver handles
the device files for the two receive channels and executes two DMA transfers from the PL to
memory. These two applications work with the DMA Proxy driver, in a similar way with the dma-
proxy-test application. Since the ioctl() calls to the driver are blocking, the transmit or receive transfer
for the second channel of each AXI DMA is executed in a thread, because we want all transfers
to be done in parallel.

When the user runs either of the above applications, they must also specify the number of
transfers and the length (in bytes) of each transfer. This load is equally allocated to the two AXI
DMAs. For example, let us say that the user executes the following command:

# transmitter 5 1048576

A transfer of 1 MB (1.048.576 bytes) should be repeated 5 times. Each AXI DMA is responsible
for the transmission of 500 KB (2 MB) for each of the 5 transfers. The receiver works in the exact
same way.

The transmitter and receiver applications were added to the Petalinux project as custom user
space applications, in the same way the dma-proxy-test was added. The DMA Proxy driver was
loaded to Petallinux as a custom kernel module.

We can also force the applications to run on separate CPU cores. This can be done with the
Linux taskset utility from the util-linux package. Taskset gives us the ability to launch a command
with a given CPU affinity, thus bonding the related process to the given CPU. By specifying the
CPU affinity, the Linux scheduler will not run the process on any other CPUs. Petalinux does not
include the taskset utility. Therefore, we cross-compiled the util-linux package and added the taskset
binary to Petalinux as a prebuilt application. Then taskset can be used under PetaLinux with any
other application to specify its CPU affinity.

We built and booted on the Zybo the Petalinux image based upon the hardware platform
presented eatlier and including the transmitter, receiver and taskset applications. With the following
commands, the receiver runs on CPUO and the transmitter on CPU1:

# taskset -a 1 receiver 5 1048576 &
taskset -a 2 transmitter 5 1048576

The -a option sets the given CPU affinity for all the threads of the application. This is necessary
because our applications use two threads to handle both DMA channels concurrently. The
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numbers 1 and 2 are bitmasks representing the CPU affinity. Receiver runs on the first CPU
(CPUO), while transmitter runs on the second CPU (CPU1).

In conclusion, we have successfully created a data transmitter and a data receiver on the two
cores of the Zynq PS, in Linux SMP mode. The data processing is done in the PL. The system is
designed to achieve high throughput, with the use of two AXI DMAs in parallel.

3.2.3 Ethernet Communication

Until now we have tested our system by transferring data that has been created by the
transmitter application itself. However, we should be able to transfer any data given to us by a

source independent of our software. For example, let us say we have a file input on a computer,
which contains data that is supposed to be processed by our system running on the Zybo. In our
case, the file will have a list of 64-bit values, as shown below:

input

0xf8fd915c2fb37114
Oxbe07669093ad7e23
0x8582289pf6f6b915
0x4fe02d3d2adl0a6’

We want to transfer the input data from our computer to the Zybo. This is achieved by
connecting them on the same local network, using an Ethernet cable. The development board is
of course equipped with an Ethernet interface. From the Zynq Processing System point of view,
we enabled one Gigabit Ethernet Controller (ENET 0). This was easily done in our hardware
configuration from Vivado. The computer and the Zybo have now a link to communicate with
each other.

Regarding the software applications, the transmitter and receiver communicate with our
computer through UNIX Stream (TCP) Sockets. First of all, we have to choose a static IP address
for the Zybo and a TCP port number for the connection, for example 192.168.1.11 and 3000.

The transmitter creates a socket, binds it to the IP/port pair {192.168.1.11, 3000} and waits to

accept an incoming connection. An application send_data running on our computet is responsible
for creating a socket that will connect to the transmitter. Once the connection is established,

send_data opens the input file, reads the data from it and sends everything through the socket. The

transmitter reads the data from the socket and stores the 64-bit values in the transmit buffers of
the AXI DMAs. Half of the data is stored in the transmit buffer of DMA 0 and the other half in

that of DMA 1. The socket connection can now be closed. Then, the transmitter is ready to initiate
the DMA transfers, where the input data are sent to the PL for processing.

The receiver also performs two DMA transfers, where the output data from the PL are stored
in the receive buffers of the AXI DMAs. It is now time for the receiver to create a socket and listen
to {192.168.1.11, 3000} for a new connection. The send_data application still running on the
computer will repeat the socket creation and will try to connect to the receiver. After the connection
is established, the receiver sends through the socket all the results back to our computer. The

send_data application opens an output file, receives the results from the socket and writes them on
the file, before closing the connection once again. In the end, considering the multiplication of the

values done in the PL, the output file will look like this:
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output

0x2e6514f7e84cf730
0x6d9f08869%9ecdebbl
0x80cbbe9df9f757b7
0xd5c00afd5c3958b

3.2.4 Testing the Testbed

The input file contains 1 MB (1.048.576 bytes) of data. The computer and the Zybo are
connected with the Ethernet cable. After booting PetaLinux on the Zybo, we execute the following
commands:

# ifconfig ethO 192.168.1.11 netmask 255.255.255.0
# modprobe dma proxy
# taskset -a 1 transmitter 1048576 & taskset -a 2 receiver 1048576

The first command assigns the IP address 192.168.1.11 to the interface ethO of the Zybo. The
second one adds the dma_proxy module to the Linux kernel. The last command executes the

transmitter application — and all related threads — on CPU 0 and the receiver application — and all
related threads — on CPU 1. The two applications run in parallel on the two cores of the Zynq PS.
From our computer, we just execute the following command:

$ ./send data 1048576

The test completes successfully and we can verify that the results are located in the output file on
our computer. The messages we receive through the whole process, both on the computer and
the Zybo, are presented below:

Computer

$ ./send data 1048576

Data sent to ZYBO.

Waiting for results..

Done! Results are located in output file.

ZYBO

# taskset -a 1 transmitter 1048576 & taskset -a 2 receiver 1048576
Starting DMA Data Transmitter.

Starting DMA Data Receiver.

Receiver: Receiving data with DMA O0..

Receiver: Receiving data with DMA 1..

Transmitter: Data received from PC and stored in transmit buffers.
Transmitter: Transmitting data with DMA O..

Transmitter: Transmitting data with DMA 1..

Transmitter: Transmitted all data successfully. Exiting.

Receiver: Received all data successfully.

Receiver: Sending results back to PC..

Receiver: Done! Exiting.
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3.3 Linux AMP

As an intermediate step between Linux SMP and Linux/RTOS AMP, an effort was made to
implement a Linux AMP configuration on the Zynq processing system. Instead of having one
single Linux OS shared by the two CPU cores, each one should run its own separate instance of
Linux.

AMP in Linux can be achieved with the help of the remoteproc and RPMsg frameworks. The
remoteproc (remote processor) framework allows a master processor to manage the life cycle of a
remote processor in an AMP configuration. This includes the master booting, loading firmware
and shutting down the remote processor. Inter Processor Communication (IPC) between the

processors of an AMP system can be achieved through the RPMsg (Remote Processor Messaging)
framework, which allows kernel drivers to communicate with remote processors using VirtIO

devices. The remoteproc/ RPMsg infrastructure and APIs are present in the main Linux kernel.

However, during the implementation, some important issues were encountered that made the
task difficult. First of all, there is lack of documentation about the use of the remoteproc/ RPMsg
framework in a Linux AMP configuration. The AMP architectures that are usually required to be
designed consist of heterogeneous processing cores running different operating systems. For
example, Linux/RTOS or Linux/Bare Metal, where the Linux master executes general purpose
operations and the RTOS or Bare Metal remote is dedicated for time critical tasks or specialized
functionality.

The OpenAMP framework developed by Xilinx and other members of the Multicore

Association builds upon the Linux remoteproc/ RPMsg framework to provide the infrastructure
required for FreeRTOS and bare metal environments to communicate with the Linux kernel in
AMP systems [22]. Therefore, support is limited to configurations including at least one processor
running on FreeRTOS or bare metal environment.

Furthermore, compatibility with Petalinux may be a problem. PetaLinux builds the embedded
Linux OS following predefined steps, thus limiting the possible customizations done by the user.

In particular, the remoteproc framework requires the remote firmware to include a special section,
the resource table. This is a structure describing the system resources required by the remote
processor and publishing the supported features. The ELF Linux image created with the Petalinux
flow could not be customized to include the resource table section.

In conclusion, in order to successfully implement a Linux AMP system on the dual-core Zynq
processing system, someone should study in depth the Linux remoteproc/RPMsg framework.
Moreover, an alternative to Petalinux should perhaps be considered for the deployment of the
Linux remote image. A solution that enables to manually create the Linux ELF image and
customize its format would possibly be more suitable.

3.4 Linux/RTOS AMP

In this chapter, we present the Linux/RTOS AMP implementation of the testbed. The first
core runs a Linux kernel (PetaLinux), while the second one runs a separate real-time operating
system (FreeRTOS). The steps that were followed to adapt the previously developed Linux SMP
system to the AMP model will be described in detail.
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3.41 The OpenAMP Framework

The OpenAMP framework provides software components that enable the development of
software applications for AMP systems. The key components provided by OpenAMP include
remoteproc and RPMsg. These are already implemented in the Linux kernel, however OpenAMP
provides their implementations in different environments, such as bare metal, FreeRTOS and
Linux user-space. Therefore, in an AMP system consisting of a master processor and one — or
more — remote processors, Life Cycle Management (LCM) of remote cores and Inter Processor
Communication (IPC) can be achieved with OpenAMP regardless of the software context running

on each core [22]. Figure 3.4 illustrates how the OpenAMP framework can be used with various
environments in different master/remote processor configurations.
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Figure 3.4: The various software configurations supported by OpenAMP [22]

Below is a brief description of the workflow to create and execute an AMP application using
OpenAMP, for a Linux/FreeRTOS configuration [23].

1. Define the resource table. This is a structure listing the system resources required by the

remote processot, such as memory carveout and VirtlO device information for IPC. These
requirements will be published to the master processor which will allocate appropriate
resources.

2. Write the remote application using suitable remoteproc/ RPMsg APIs for the remote
software context, provided by the OpenAMP library.

3. Create the remote firmware ELF image, by linking the remote application with the
OpenAMP library and placing the resource table in a specific section of the ELF image.

4. Make the remote firmware accessible to the master processor. In case of a Linux master,

the firmware can be placed in the root file system for use by the Linux remoteproc drivers.

5. Use the Linux remoteproc drivers to load the firmware and boot the image on the remote

processor. After the remote application is running, a RPMsg channel is established between
the master and remote for IPC.

6. Shut down the remote software context and processor when its task is completed. This is

also done by the Linux master remoteproc drivers.
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A conceptual diagram showing the flow of a master processor booting and establishing
communication with a remote processor, using the remoteproc and RPMsg components of the

OpenAMP framework, is given in Figure 3.5.
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Figure 3.5: The remoteproc/RPMsg flow between the master and remote processor [22]

3.4.2 System Overview

The system consists of a Linux/FreeRTOS AMP configuration on the dual-core Zyng-7000
processing system of the Zybo. Linux runs on CPUO as master while FreeRTOS runs on CPU1 as
the remote processor. We have developed the same transmitter-receiver application that was
executed in Linux SMP mode, adapting it to the above AMP architecture.

The Linux master first establishes an Ethernet connection with a computer, where the input
data are located. Those are a list of 64-bit values written in a file named input. The master receives
the data from the computer, stores the values in memory and then performs a DMA transfer to
transmit them to the PL for processing. Actually, the hardware has been configured to have two
DMA engines, so that two transmit DMA transfers can be performed at the same time, each one
responsible for only half of the input data. The PL processing is done in hardware by the AXI4-
Stream Multiplier, but this can be easily replaced by another component that processes data in a
different way.

The FreeRTOS remote performs the two respective receive DMA transfers, to get the
processed data from the PL and store them in a specified memory location, accessible to the Linux
master. In addition, the remote processor can do some extra processing on the received data,
before they are accessed by the master processor, possibly to get advantage of the real-time
properties of the FreeRTOS operating system.
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Finally, the master acquires the results from the specified memory location and sends them
back to the computer through the same Ethernet connection. The results are then written to a file

named output, which will also eventually contain a list of 64-bit values, modified accordingly to the
processing executed by the PL and the remote processor.
The following diagram (Figure 3.6) shows the architecture of the system described above.
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Figure 3.6: An overview of the AMP system

3.4.3 Software Applications

The software applications for the AMP system consist of the transmitter (master application),

running in Petalinux on CPUOQ, and the receiver (remote application), running in FreeRTOS on
CPUL. Details about the development and functionality of each application are given below.

a) Remote application

The receiver application was developed in the Xilinx SDK, where FreeRTOS was
specified as the OS platform and Cortex A9 core 1 as the target processor.

The task created initializes OpenAMP components, sets up the Interrupt Controller
for the RPMsg channel interrupts and then waits for the master to send the size of the
DMA transfer through the channel. Then, it configures the AXI DMA devices for the
transfer, allocates half of the data to each device and initiates the DMA transfers. After
completion, the results are accessed in the specified memory location to perform extra
processing on them by the CPU. The processor then remains idle until a shutdown
message is received from the master to de-initialize OpenAMP components and free the
application resources.
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The application source files, including the resource table where memory and VirtlO

device resources for RPMsg communication are defined, were compiled to create an ELF
binary — the remote processor firmware.

b) Master application

The transmitter application first opens the RPMsg device to enable communication with
the remote core and sets up the transmit channels of the AXT DMA devices with the help
of the dma-proxy driver.

Then it creates a stream socket to receive input data from a computer through an
Ethernet connection (IP address 192.168.1.11, port 3000), splits the data in two equal
chunks and stores them in the two DMA transmit buffers. After sending the transfer size

to the remote core, the DMA transfers from memory to PL are executed through the dma-

proxy driver. Since this is done through blocking ioctl() calls, a thread is created for the
second transfer to enable both transmit channels to be operating simultaneously.

Finally, the results are acquired from the specified memory location and sent back to
the computer through the socket, before closing the Ethernet connection and shutting
down the remote processor.

In Petalinux, we created a project based upon the same hardware platform specification that

was used for the Linux SMP application. The transmitter application was added to the root file
system as a custom user space application. The remote firmware ELF image was also included in

the file system as a prebuilt application. Finally, the dma-proxy driver was added to the project as a
custom kernel module.

From the Petalinux kernel configuration menu, we enabled user space firmware loading support,

as well as remoteproc and RPMsg drivers [23]. We also configured the system to boot with the static
IP address 192.168.1.11 for the Ethernet interface.
In the Device Tree, we added an appropriate entry to declare a reserved memory section for

the remote processor and the interrupt numbers for the RPMsg channels [23].
With the above changes done, the Petalinux boot image was successfully generated for the
Zynq device.

3.4.4 AMP Issues and Solutions

During the implementation of the system, we encountered some issues relevant to the
Asymmetric Multiprocessing of the Zynq CPU cores. It would be useful to describe those issues
and the way they were resolved.

a) Synchronization between CPUs

Since both CPUs operate simultaneously in AMP, it is necessary to implement a
synchronization mechanism between them, if the tasks assigned to them present

dependencies. The OpenAMP framework provides an easy way to synchronize the master
and remote applications which relies on the RPMsg component. In particular, the

applications can exchange simple messages through the RPMsg channel established
between them to synchronize appropriately their execution flow.

For the transmitter and receiver applications, there are two cases where synchronization
is needed. First, before starting transmitting data, the transmitter needs to make sure that
the receiver has already initialized the AXI DMAs and they are ready to receive data from
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b)

3.4.5

the PL. If this is neglected, we observe a loss of initial data on the receiver’s side, due to an
issue of the AXI DMA IP core. More specifically, in the absence of any initial setup time,
the AXTI DMA will pull the TREADY signal low after taking in 4 beats of streaming data,
throttling the input data stream. To avoid this, the AXT DMA must be set up to run much
before the actual data arrives [19]. For this reason, the receiver sends a ‘READY’ message
to the transmitter after setting up the DMAs. The transmitter cannot initiate the data transfer
until this message has been received.

After the data have been received and processed by the remote processor, a second
synchronization message is sent to the master. The transmitter obviously needs to know
when output data are ready to be sent back to the computer. Therefore, the receiver sends

an ‘OK’ message when its task is accomplished to let the transmitter know that it can now
access the right data.

Cache coherence issues

Cache inconherence can occur in an AMP system, when both processors access the
same physical regions of the main memory. In the Zyng-7000 processing system, each
CPU has its own L1 cache, but they share a common L2 cache. In the Linux/FreeRTOS
AMP system, the Linux master (CPUO) takes control of the Snoop Control Unit (SCU)
and manages 1.2 cache operations. To prevent problems with shared resources, I.2 cache
has been disabled for CPU1 by the OpenAMP framework [23].

However, when running the transmitter-receiver application, we observed that a few
output data values were not correct. In fact, CPU1 did write the right values to the DDR
memory but those were not visible to CPUO. These values always appeared in groups of
four (4 X 8 bytes = 32 bytes), which is relevant to the 32-byte cache line size of the .2
cache. The assumption made was that CPU1 writes directly to the DDR memory, but
CPUO is not aware of that so it reads stale data from the L2 cache. Indeed, disabling the
L2x0 Cache Controller from the Petalinux kernel resolved the issue. However, the issue
was further investigated in order to keep the L.2 cache enabled for CPUO for performance
optimization. The final solution was to flush the cache data corresponding to the memory
region where output data are stored by CPU1, just before accessing them by CPUO. This
way, CPUO is forced to read the most recent values from the DDR memory.

Testing the Testbed

We connect the Zybo with a computer through an Ethernet cable so that they can exchange

data. The BOOT.BIN and image.ub files generated with PetaLinux are saved on a microSD card

which is used to boot Linux on the board. The input file contains 4 MB (4.194.304 bytes) of data,
as shown below:

input

Oxlaceell23a5b8f34
0x583057301ceb78d7
0xe2e21d452d1017d2
Oxca7eb622del791db
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After booting Linux, we have to load into the kernel the modules for the RPMsg
communication (rpmsg_user_dev_driver) and the DMA handling (dma_proxy). The next step is to
declare to remoteproc the name of the remote firmware and boot the remote processor with it.
When the remote is up, we can run the transmitter application.

From the computer side, we just execute an application that reads data from the input file,

sends them to the Zybo through Ethernet, waits to receive the results and writes them to the output
file, as shown below:

output

0x061c75871724c60c
0x09f6678a0287b9%0b4
0x27f00263636d35fe
Oxafac86b2d89dll17a

The commands executed during the process described above, as well as the messages we
receive through the execution, are presented below:

Computer

$ ./send data amp 4194304

Data sent to ZYBO.

Waiting for results..

Done! Results are located in output file.

ZYBO

# modprobe rpmsg user dev driver
# modprobe dma proxy

# echo receiver-amp.elf > /sys/class/remoteproc/remoteprocO/firmware
# echo start > /sys/class/remoteproc/remoteproc(O/state

remoteproc remoteprocO: powering up remoterpoc@0

remoteproc remoteprocO: Booting fw image receiver-amp.elf, size
2608200

remoteproc remoteprocO: registered virtioO (type 7)

virtio rpmsg bus virtioO: rpmsg host is online

CPUl: shutdown

remoteproc remoteprocO: remote processor remoteproc@0 is now up
virtio rpmsg bus virtioO: creating channel rpmsg-openamp-channel addr
0x1

rpmsg_user dev driver virtioO: rpmsg-openamp-channel :
rpmsg user dev rpmsg drv_probe
rpmsg _user dev driver driver virtioO: rpmsg-openamp-channel: new

channel: 0x400 -> Ox1!

# transmitter—-amp 4194304

Starting DMA Data Transmitter.

rpmsg_user dev driver virtio0O: rpmsg-openamp-channel: Sent init msg
to target 0Ox1.

Data received from PC and stored in transmit buffers.
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Starting DMA Data Receiver.

Receiving data..

Transmitting data with DMA O..

Transmitting data with DMA 1..

Transmitted all data successfully.

Received all data successfully.

Completed data processing.

Exiting DMA Data Receiver.

rpmsg_user dev driver virtioO: rpmsg-openamp-channel : Sending
shutdown message.

virtio rpmsg bus virtioO: destroying channel rpmsg-openamp-channel
addr 0Ox1.

rpmsg_user dev driver virtioO: rpmsg-openamp-channel: Removing rpmsg
user dev.

rpmsg user dev driver rpmsg(O: Releasing rpmsg user dev device.
Sending results back to PC..

Done! Exiting DMA Data Transmitter.
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Chapter 4

System Evaluation

4.1 Isolation Between Cores

An important feature of the implemented testbed that needs to be evaluated is the isolation

level between the two ARM cores of the Zynq processing system. The transmitter and receiver
applications represent two independent entities, running on separate CPUs of the device. The

transmitter, apart from initiating the DMA data transfers, should be able to execute other
independent tasks, while the receiver executes its own critical task on the received data. We will

examine how these tasks affect the receiver’s behavior in SMP (default SMP and BMP) and AMP
environments in order to evaluate the isolation of the system in each case.

4.1.1 Inter-Task Interference

In multicore embedded systems, isolating critical processes is imperative when addressing real-
time issues. Heavy processor load may cause inter-task interference between processor-intensive
and time-critical tasks, in the absence of isolation in the system [24]. Telecommunication
applications, in particular, are typically designed with respect to a planar architecture pattern:
software is divided into management, control and user planes, which present different
performance requirements. Here, inter-task interference is translated into cross-plane influence,
which can have a significant impact on timing performance [25]. The different tasks performed in
a multicore processor may also suffer from interferences when accessing shared hardware
resources at the same time, like a shared bus, cache or main memory [26]. This is consequently
another factor that can affect the timing behavior of critical tasks.

We conducted an experiment to examine inter-task interference in our system and evaluate
whether the AMP model offers better isolation than SMP. Two different scenarios were explored
depending on the interference source, one for a CPU-intensive task and the other for a memory-
intensive one.

In the first scenario, one 4 MB packet is transferred between the transmitter and receiver. The

receiver performs intensive processing on received data, which corresponds to the time-critical task.
The data processing is performed by accessing the data in successive rounds (1-100) and executing
comparisons and math functions (multiplications and divisions) on them. At the same time, after
remaining idle for an initial time interval, the transmitter starts executing an independent CPU-
intensive task, similar to the one mentioned above. Two threads are created for that, each one
executing the same task. Later, the transmitter repeats the CPU-intensive task, but this time the
number of threads is increased to five, so that the response of the system to a heavier workload is
made visible. The time that the receiver takes to complete each processing round is measured in
order to evaluate the interference from the CPU-intensive task.

Figure 4.1 illustrates the results acquired during the realization of the scenario described above,
for the SMP, BMP and AMP configurations of the testbed. It is clear that inter-task interference
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is indeed observed in the case of SMP, as the execution time of processing rounds increases
significantly when the “adversary” task is executed in parallel. In fact, the interference level is
proportionate to the weight of the workload inflicted on the system: five threads cause greater
slow-down on critical processing than two threads. This is due to thread migration among the
cores of the processor. SMP allows all tasks to be assigned on any core, thus some of the workload
threads steal processing time from CPU1, suspending the critical task and eventually increasing its
execution time. On the other hand, in BMP and AMP configurations, the receiver does not seem
to be influenced by the CPU-intensive tasks. Therefore, we can assume that allocating a critical
task to a different core than other CPU-intensive tasks is an effective isolation technique, in terms
of timing performance. This can be achieved either in the same operating system, with CPU-bound
processes, or by assigning tasks to separate operating systems, in an AMP design.
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Figure 4.1: Critical processing time interference from CPU-intensive task

The second scenario explores inter-task interference originating from access to shared
hardware resources. In our experiment, the shared resource between the two cores is the DDR
memory. A total of 3000 packets, each one of size 4 MB, are transferred from memory to PL and

vice versa by the transmitter and receiver applications. The transfers are done through DMA, so they
do not consume much of the CPUs processing time, but instead they introduce heavy traffic

between the PS and the DDR memory. Meanwhile, the transmitter starts at some point a memory-
intensive task, which consecutively accesses memory and performs multiple write and read
operations. Here, the critical time measured is the time needed for a complete transfer of 10
packets (that is, the time needed for 10 packets to move from memory to the PL and back to
memoty), from which the throughput can be found.

Figure 4.2 shows how the throughput varies during the transferring of the packets in SMP,
BMP and AMP environments. We observe that SMP and BMP suffer from inter-task interference,
since the simultaneous execution of the memory-intensive task causes a considerable degradation
in throughput. Approximately, a 4% decrease in throughput is observed in SMP, and a 12%
decrease in BMP. In contrast, in AMP the throughput remains unchanged at 760 MB/s during the
whole experiment, which indicates that the separation of the operating systems provides good
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isolation. This scenario certainly creates memory bus congestion for the dual-core processor as a
means of interference. However, the fact that the AMP design is not influenced makes us assume
that another resource is mainly responsible for the interference observed in SMP and BMP. This
is probably the L2 cache, which is a shared resource between cores when they run one single OS
and introduces conflicts between the memory-intensive task and the packet transfers. In addition,
memory coherence protocols are required, which may also affect performance. Write-through
protocols, in particular, generate a large amount of traffic and amplify inter-task interference [20].
In AMP, on the other hand, L2 cache is not used by CPU1, keeping the rate at which the receiver
accesses data from memory steady. Therefore, when a system involves the execution of a critical
task among others, clean separation of resources and allocation to appropriate cores can reduce
inter-task interference and improve the performance of the critical task.
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Figure 4.2: Throughput interference from memory-intensive task
4.1.2 Safety and Data Integrity

Apart from timing isolation, which guarantees that there is no interaction between tasks
affecting their timing behavior, functional isolation is equally important, such that a bug or
misbehavior in a function does not affect other tasks [26]. The transmitter and receiver applications
run independently in our system, both in SMP and AMP environments. This means that if a
problem appears during the execution of one of them, it will not generally affect the functionality
of the other. Nevertheless, in case issues related to the operating systems are introduced, AMP
certainly provides an additional layer of protection, by keeping the RTOS and Linux operating
systems separated on different cores.

Another aspect of functional isolation has to do with data integrity. A typical example is when
a task is able to access memory belonging to other tasks and corrupt the data they manipulate. We
conducted an experiment to test this scenario in our system. The transmitter application was forced

to access the buffers containing the data processed by the receiver and zero out all the values. We
observed that it was allowed to do so, no matter which OS configuration was applied to the system.
Although this result was expected in SMP, where all processes share the same memory, it was
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useful to confirm that even AMP could not prevent this kind of memory corruption between tasks.
The remote firmware, along with the FreeRTOS kernel, do run in a dedicated memory space,
outside of the context of Petalinux memory. However, PetalLinux can read and write this address
space just like any other device memory [27].

Data integrity issues are also related to the use of cache memories. Cache coherence must be
maintained among different cores, as well as potential errors that occur on cached data should be
corrected. Although a write-back policy reduces the overhead on the execution time of interfered
tasks, it requires more complex consistency protocols (MESI) and is less robust in terms of fault
tolerance, requiring implementation of error correction schemes in higher levels [26]. In other
words, it is possible to face a trade-off between optimization of timing performance and safety
maintenance. When our system runs in SMP mode, the L2 cache is shared between CPUO and
CPU1. Consequently, dealing with the above issues is more complicated than in AMP, where L2
cache is private to CPUO. This design option, as long as it has not an impact on CPUI
performance, gives the AMP architecture a simplified programming model and isolates CPU1
from the L2 cache-related safety issues of CPUO.

However, disabling I.2 cache for CPUT1 still hides some risks, in case both CPUs have to access
the same memory location. We already came across this scenario during the implementation of the
AMP system, where CPU1 processes data by writing directly to the DDR memory. It was observed
that when the same memory addresses were accessed from CPUO, not all the values read were up
to date. A flush of the L2 cache for that specific memory location was necessary to read the correct
values from the main memory. This scenario makes it clear that special care should be taken when
isolating caches and sharing memory between CPUs, in order to ensure data integrity.

4.2 Performance Comparison

The Linux SMP and Linux/RTOS AMP implementations of the testbed present some
performance differences that originate from the nature of the operating systems used in each case.
The purpose of the following experiments is to test the behavior of our system in various scenarios
that will reveal whether the execution of the receiver application in FreeRTOS (AMP) has better
performance than in PetalLinux (SMP) or not.

4.2.1 Processing Speed

The first scenario aims to compare the speed of data processing from the receiver running on
CPU1, under Linux and RTOS operating systems. A 4 MB packet is transferred through DMA

between the transmitter and the receiver. The receiver performs intensive processing on received
data, by executing comparisons and math functions (multiplications and divisions) on the values.
The processing is repeated on the entire data buffer for a maximum number of successive rounds.
We measured the time needed by the receiver to complete the data processing, setting each time a
higher limit to the number of processing rounds.

The results are shown in Figure 4.3, both for Linux and RTOS. We can observe that data
processing by CPU1 in RTOS is considerably faster than in Linux. In fact, as the maximum
processing rounds increase, the speed up gradually increases and eventually reaches a percentage
of about 25%, as illustrated in Figure 4.4. This can be very important when considering the real-
time constraints that the processing task may be bound to.

The speed up offered by RTOS can be explained by the fact that the task is less affected by
the OS operation than in Linux, thus having higher performance when run in isolation [20].
Moreover, RTOS gives full priority to the task, pushing its responsiveness, whereas in Linux it is
not guaranteed that any task will monopolize the services of the processor.
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Figure 4.4: RTOS vs. Linux speed up in CPU1 data processing

In order to study the performance dependency from the workload executed by CPUI1, the

scenario described above was repeated after modifying slightly the way that the receiver processes
data. Instead of multiplications and divisions, the task was configured to perform additions and
subtractions on the received values. Every other parameter remained the same, including how the
data buffer is accessed and how many successive processing rounds are executed.

The time measurements for the new CPU1 workload are seen in Figure 4.5. Of course, data
processing by CPU1 in RTOS is again faster than in Linux. However, Figure 4.6 shows a significant
increase in speed up, compared to the previous workload. The speed up reaches now the maximum
value of 40%. That means that the kind of processing done by CPU1 greatly affects the
performance difference between RTOS and Linux. It is therefore important to process data in a
way that offers optimal CPU utilization.
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Figure 4.6: RTOS vs. Linux speed up in CPU1 data processing (second workload)

4.2.2 Execution Time Variation

The following experiment evaluates the variation of the CPU1 execution time for the data

processing performed by the receiver application. Again, a 4 MB packet is transferred and processed
like before for a total of 100 successive rounds. For each processing round, the time needed by

the receiver to process the data is measured, under Linux and RTOS operating systems.

Figure 4.5 shows the results of the experiment. It is clear that the CPU1 execution time
presents considerably higher variation in Linux, compared to RTOS. More specifically, a maximum
variation of 2.7% is measured for Linux, whereas in RTOS it is just 0.3%. This is due to the
deterministic scheduling favored by RTOS, which minimizes the difference between the minimal
and maximal response time of the task (jitter) [24]. The absence of high jitter values means
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predictable responsiveness and deterministic execution time, which are definitely required in an
application with strict real-time constraints.

Linux RTOS
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Figure 4.7: Variation of CPU1 processing time in Linux and RTOS
4.2.3 Data Transfer Speed

The last scenario involves intensive transfer of data from the transmitter to the receiver. It is
used to examine how fast we can move data in our system and compare the performance in Linux
SMP and Linux/RTOS AMP environments. A gradually increasing number of packets, each one
of size 4 MB, are transferred through DMA from memory to PL and vice versa. The elapsed time
for the complete transfer of all packets is measured each time, starting from 10 packets and ending
at 1000 packets. The comparison of the measured transfer times can be seen in Figure 4.6 below.
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Figure 4.8: Data transfer time in Linux and RTOS
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Clearly, data movement in Linux/RTOS AMP is achieved much faster than in Linux SMP,
regardless of the total amount of packets that need to be transferred. In Table 4.1, the average
throughput of the system is given for both cases, as well as the resulting speed up that AMP
provides compared to SMP. This was measured to be 69.1%, which is a great improvement in
terms of performance.

Since the transmitter application runs under Linux in both cases, the cause of the difference
should be searched at the receiver’s side. Indeed, the transfer of packets from PL to memory is

performed through the AXTI DMAs in a different way under Linux and RTOS. In Linux, the receiver
application, running in user space, manages the DMA engines through a hierarchy of OS-specific
DMA drivers, residing in kernel space (DMA Proxy design). The drivers and software components
of the Linux OS introduce latencies to the initial set up operations of the AXI DMAs [28]. This
overhead, though, is much lower in RTOS, where the receiver programs directly the AXT DMAs
through specific function calls, without any intermediate software layer. However, the speed at
which data are transferred through the DMA channels should be the same for both operating
systems, as this is performed by hardware. It should also be noted that the initialization overhead
has a greater impact on performance for small amounts of data, whereas it can ultimately be
negligible for larger transfers [28].

Linux RTOS
Average Throughput 450 MB/s 761 MB/s

Speed Up 69.1%

Table 4.1: RTOS vs. Linux throughput
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Chapter 5

Conclusions

5.1 Thesis Summary

Multicore processors, combined with the benefits of SoC FPGAs, constitute an ideal platform
for testing and implementing applications that require isolated processing of streaming data. In
this thesis, we demonstrated how to build a testbed for such a telecom application on the Zybo
development board, taking advantage of the hardware/software programmability of the Zynq SoC
and the different multiprocessing environments supported by the dual-core ARM processor of the
device.

From a hardware perspective, an efficient method for streaming fast large amounts of data
was applied, using Direct Memory Access and the AXI4-Stream Protocol. The hardware design
was optimized in terms of throughput, after an extensive exploration of the system’s capacities.
The available resources in the FPGA were also exploited for the processing of the transmitted
data.

Special emphasis was placed on the possible configurations of operating systems on the
testbed. A Linux SMP and a Linux/RTOS AMP design were deployed and eventually compared
to each other. A series of conducted experiments applied various scenarios on the system, in order
to evaluate the isolation between the cores and the processing performance, in both cases.

In conclusion, we can say that AMP provides better isolation, reducing inter-task interferences
and further ensuring reliability and data integrity in the system. Furthermore, the use of a RTOS
is also significant, when faster processing and data transfer are desired, as well as improved time
predictability of a specific task.

5.2  Future Work

As an extension of this thesis, we would suggest the modification of the functionality of the
implemented testbed towards a real-life application. The multiplier used for data processing in the
programmable logic could be easily replaced by another AXI4-Stream compliant component, that
would process data with respect to a more complex and realistic algorithm. The critical processing
performed on received data by CPU1 could also be adapted to the application requirements.
Finally, instead of streaming random data from a computer file, the device could be configured to
acquire real data from the outside world.

Moreover, future work includes the implementation of the testbed on other platforms, more
powerful and feature-rich that the Zyng-7000 SoC of the Zybo. In particular, the Zynq UltraScale+
MPSoC device from Xilinx should definitely be considered as a target platform. Its extended
architecture, combining ARM Cortex-A53 application processors and real-time ARM Cortex-R5
processors, would enable true heterogeneous multiprocessing on data. It would be interesting to
investigate whether the heterogeneous cores offer any improvement to the AMP design and
evaluate the isolation and performance of the system on such a device.
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Finally, virtualization technologies could be tried as an alternative technique to native AMP.
Instead of clearly separating two operating systems on the dual-core processor of the Zynq
processing system, a hypervisor could be used to create a single software layer that will be capable
of managing multiple heterogeneous operating systems on the same hardware. This way, the
testbed could be extended to support more than two separate OS domains. Again, it would be
useful to evaluate the isolation and safety level between different domains, as well as investigate
the circumstances under which performance can be optimized in such virtual environments.
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