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Abstract 
Modern energy policies drive the electricity market towards a liberalized framework. As a 

result, concepts from other commodity markets are becoming increasingly relevant in the context 

of the electricity market. However, there are certain specialties that characterize electricity. Such 

a specialty is the requirement of constant balance between supply and demand; otherwise the 

stability of the underlying physical grid is compromised. The traditional approach has been to 

only control the supply, so that it follows the demand at all times. However, high penetration of 

non-dispatchable renewable energy sources and load electrification (e.g. electric vehicles) have 

highlighted the need to also utilize the elasticity that there is at the demand side, by applying 

Demand Side Management (DSM). The main objective of DSM is to achieve an aggregated 

consumption pattern that is efficient in terms of energy cost reduction, welfare maximization 

and/or satisfaction of network constraints. This is generally envisaged by encouraging electricity 

use at low-peak times.  

In this dissertation, we model a set of smart devices at the side of residential electricity 

consumers and a home energy management system that is able to make decisions about home 

electricity consumption by taking into account the user‟s preferences, the dynamic electricity 

pricing signals as well as the operational constraints of devices. We envisage an electricity 

service provider that is responsible for incentivizing users to shape their consumption patterns in 

line with the needs of the electricity system. We study and develop techniques for two general use 

cases of DSM: online algorithms for real-time consumption curtailment and offline algorithms for 

day-ahead load scheduling. We considered an intelligent agent at the user‟s home energy 

management system able to make strategic decisions. In this setting we formulated a game where 

each agent tries to optimize its own objective. We formulated the problem of designing online 

auction mechanisms that are able to bring the system to a Nash equilibrium. Also, the final 

allocation needs to exhibit attractive properties in terms of the key performance indicators set by 

the state-of-the-art literature. In order to achieve these goals we drew on concepts of algorithmic 

game theory and mechanism design. 

Specifically, for the real-time demand response case, we designed two online auction schemes 

for two specific business models. The first is based on Ausubel‟s clinching auction and achieves 

the majority of the standard requirements of mechanism design theory. Namely the proposed 

scheme, achieves economic efficiency, incentive compatibility (in the sense of making it a 

dominant strategy for each user to act truthfully according to his/her preferences and leaving no 

room for cheating), scalability, privacy-preservation and individual rationality in contrast to 

studies in the current literature that achieve only a subset of the aforementioned properties. 

Furthermore, it is shown to maximize the service provider‟s profits among all efficient 

allocations. The second business model refers to cases such as energy cooperatives where the 

issue of fairness of the allocation is important. We designed a novel mechanism that significantly 

improves fairness in comparison to the state-of-the-art.  

For the day-ahead load scheduling case, we designed and evaluated a novel DSM scheme that 

addresses several issues that were not jointly addressed before. Specifically, the proposed DSM 

scheme preserves the economic efficiency, individual rationality and budget-balance properties. It 

is also able to satisfy coupling, system-wide constraints. The proposed scheme is theoretically 

proven to always bring the system to the Nash equilibrium. Finally, we studied the problem of 

jointly considering a day-ahead load scheduling and a real-time DSM scheme that balances 

unexpected deviations from the agreed schedule. We proposed a differentiated pricing based on a 

spread, and studied its effect on the users‟ strategies.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE OF CONTENTS 

 

Chapter 1: INTRODUCTION 

1.1 Modern Power Systems and Demand Side Management 
1.1.1 Introduction, Evolution and Challenges  

1.1.2 Demand Response Techniques 

1.1.3 System Architecture 

1.1.4 Strategic users 

1.2 Mechanism Design Preliminaries 

1.3 Mechanism Design for Demand Side Management 

 1.3.1 Requirements and Key Performance Indicators 

 1.3.2 Related work 

 1.3.3 Real-time Demand Response and Period-Ahead Scheduling 

1.3.4 Contributions of this Thesis 

1.3.5 Structure of the Thesis 

 

Chapter 2: REAL-TIME DEMAND RESPONSE 

2.1 Truthful, practical and privacy-aware demand response via an optimal and 

distributed mechanism 

2.1.1 Related work 

2.1.2 System model 

2.1.3 Problem formulation 

2.1.4 Ausubel‟s Clinching Auction for DR-event participation 

2.1.5 Performance Demonstration 

2.1.6 Privacy-preserving distributed implementation 

2.2 Personalized real time pricing for efficient and fair demand response in 

energy cooperatives 

 2.2.1 Related Work 

 2.2.2 System model & problem formulation 

 2.2.3 The state of the art approach 

 2.2.4 Personalized real-time pricing approach 

 2.2.5 Performance evaluation and comparisons 

2.3 Conclusions and Future Work  

 

Chapter 3: PERIOD-AHEAD PRICING AND LOAD SCHEDULING  

3.1 Near-optimal demand side management in electricity markets with coupling 

 constraints 

 3.1.1 Related work 

 3.1.2 System model 



 

 

 3.1.3 Problem formulation 

 3.1.4 Proposed DSM architecture 

 3.1.5 Performance evaluation 

3.2 Penalizing Volatility and motivating transactive energy markets: the Value 

 of Aggregation, Flexibility and Correlation 

 3.2.1 Background and literature review 

 3.2.2 Market participation framework 

 3.2.3 Methodology and problem formulation 

 3.2.4 Model and data used for simulation 

 3.2.5 Simulation results and discussion 

 

Chapter 4: CONCLUSIONS, FUTURE WORK, POLICY IMPLICATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



1 

 

Chapter 1 

INTRODUCTION 

1.1 Modern Power Systems and Demand Side Management 

1.1.1 Introduction, Evolution and Challenges 

ntil the 1980s, electricity systems were considered natural monopolies and were 

organized under cost-of-service regulation. The major directions favored by the EU 

are headed towards increasing penetration of Renewable Energy Sources (RES) and 

promoting the liberalization of the energy market (directive 200/72/EC [DIRE09]). A 

major consequence of these developments is that electricity is envisaged as a commodity 

and traded accordingly, which means that functionalities and principles from markets and 

economics are becoming relevant in electricity trading as well. However, electricity 

markets and trading mechanisms need to be researched and designed, so that they are 

tailored to the specific specialties of electricity. Most importantly, all electricity trading is 

made on top of an electricity grid. This means that the network constraints and properties 

must be taken into account in order to ensure the feasibility of the market outcome, the 

network stability and the security of supply. 

A fundamental specialty of electricity as a commodity is that delivery is made instantly 

and supply must equal demand at all times (which relates to the network‟s stability). The 

traditional approach to maintaining this balance is that generation is controlled to follow 

the intermittent demand. However, RES penetration is increasingly introducing non-

dispatchable generation in the supply side, while fast-responsive generation units are 

considered costly both in financial terms and in CO2 emissions. These developments 

have triggered the discussion of utilizing flexibility capabilities on the demand side, in 

order to make network operation more efficient. The idea of leveraging the flexibility of 

electricity demand is generally referred to as Demand Response (DR) or Demand Side 

Management (DSM).  

1.1.2 Demand Response techniques 

The general idea of Demand Response is to incentivize users to shape their electricity 

consumption according to what is more efficient in terms of the electricity network. This 

is generally envisaged as moving loads from peak-demand times to low-demand times. 

The reason is that electricity consumption tends to form a peak during evening hours. 

This makes it inefficient for the network to serve, because fast-response, higher cost 

U 
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generation units need to be called in order to cover for the peak demand. Using the 

following figure as an example, for the same total energy consumption, it is more 

efficient to achieve a more flat, uniformly distributed curve (blue) rather than a curve 

with peaks and valleys (grey). 

 

Figure 1.1.f1. Example of a typical electricity consumption curve in a day 

There have been proposed different approaches for extracting the flexibility of energy 

consumption, including: 

a) Contracts that facilitate direct load control 

 This case is mainly applicable to industrial or commercial consumers. The 

 consumer has a contract with the utility company, which allows the latter to 

 curtail part of the former‟s energy consumption in real time.   

b) Behavioral/motivational/educational schemes  

 This approach refers to educating consumers (mainly residential) towards energy 

 efficiency, behavioral change and environmentally friendly consuming behavior.  

c) Reward schemes and gamefication 

 These techniques draw on the concepts of behavioral economics, in order to 

 motivate consumers to modify their energy consumption patterns through the use 

 of point systems and reward schemes  

d) Price-based demand response 

 This approach relates to economics and utility theory. The consumer is envisaged 

 as a rational agent that derives a particular value/utility from his/her energy 
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 consumption. Thus, the consumer would voluntarily proceed to the modification 

 of his/her consumption pattern in response to a monetary compensation. 

In this thesis we focus on the last category, which is price-based DR, where users are 

considered to shape their consumption patterns in response to monetary incentives. This 

approach motivates the study of market mechanisms that implement electricity trading 

featuring advanced capabilities and properties tailored to the specialties of each particular 

use case. 

1.1.3 System Architecture 

In this dissertation, we envisage a setting where each electricity consumer possesses a 

number of smart devices which are devices that support schedulable and controllable 

electricity consumption as well as communication capabilities in the context of the 

internet of things. Also, we assume a software component at each user‟s side, a home 

energy management system (HEMS), which is able to receive  

a) the user‟s preferences on electricity consumption through a user interface 

b) the smart devices‟ operational constraints 

c) dynamic electricity pricing signals 

and make decisions on behalf of the user concerning the scheduling of the electricity 

consumption for each smart device. Finally, we assume a communication network built 

on top of the power network that facilitates message exchange between the users‟ home 

energy management system and a coordinating entity, to which we refer as the Electricity 

Service Provider (ESP). The following figure demonstrates the system‟s architecture. 

 

Figure 1.1.f2. System Architecture 
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1.1.4 Strategic users 

In this thesis, each user (consumer) is considered to be a rational, strategic player who 

chooses his/her actions with the purpose of optimizing his/her own objective 

(maximizing his/her payoff/utility). When dealing with markets that contain a large 

number of participants, an individual user‟s actions are virtually insignificant i.e. a sole 

user‟s market actions (taken alone) are negligible since they do not have a significant 

impact on the system‟s properties. In our context, this approach considers a model where 

an individual user‟s decisions cannot affect the market‟s prices. This assumption is 

widely called “price-taking”, and we say that the user is modeled as a price-taker. 

Nevertheless, in the present thesis we have relaxed this assumption and the individual 

user is considered to be a “price-anticipator” i.e. the user is aware of the market 

mechanism and behaves strategically with the purpose of maximizing his/her own payoff. 

This setting brings the issues considered in this thesis in the realm of game theory and we 

will mainly leverage game-theoretic concepts, in order to analyze the use case that we 

will consider.  

Coordinating the demand, so as to make the electricity network operate more efficiently 

constitutes a social objective. However, each individual user‟s objective may or may not 

be aligned with the social objective. In such an environment and in order to design 

market mechanisms that exhibit desired properties, we will largely draw on concepts of a 

particular stream of game theory called mechanism design. 

1.2 Mechanism Design Preliminaries 

Mathematical optimization is the tool for optimizing an objective over a number of 

decision variables. Sometimes though, these decision variables are not under the control 

of the system designer. Rather, they are in control of independent agents, each one trying 

to optimize its own objective, which may or may not be in line with the designer‟s 

objective (or with the social objective for that matter). Game theory is the field that 

studies mathematical models that involve competing or cooperative, rational agents and 

their interactive behavior. Mechanism design is essentially the tool for designing rules for 

systems with strategic participants holding private information, such that the system has 

good performance guarantees (even though the designer does not directly control the 

decision variables). Examples of mechanisms from everyday life include routing 

problems of (transportation or computer) networks as well as auctions of any kind.    

So, what makes a particular mechanism better than another? There are a number of 

generally desired properties that a mechanism ideally exhibits: 
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1) Strong incentive guarantees: the rules are such that we can reason about each 

participant‟s dominant strategy, which essentially means that, assuming rational 

participants, we can effectively predict the outcome even though we are not the ones 

making the decisions.  

2) Strong performance guarantees: the rules are such that the decisions of the 

strategic participants optimize the designer‟s objective.  

3) Tractability guarantees: the rules are such that the participant‟s interactive 

behaviors can reach an equilibrium in acceptable time. 

and possibly a number of additional desired properties, depending on the particular 

business model. Examples include guarantees on: some participant‟s revenue (e.g. the 

investor‟s), individual rationality (that is that every participant is better off participating 

rather than not participating), fairness guarantees, privacy preserving, communication 

overhead etc. Designing mechanisms that exhibit specific properties tailored to each 

specific business model is an open and important research topic. 

In the context of the Smart Grid, producers, consumers operators, traders and regulators 

are all participants with different objectives in a system where the decision of one affects 

the decision of another. In the following subsection we will define the use cases 

considered in this thesis and their challenges. We will also describe the mechanism‟s 

desired properties specifically for the use cases considered, and extract the key 

performance indicators (KPIs). Finally, we will present the state-of-the-art approaches in 

these use cases before proceeding to the mathematical formulations and the proposed 

solutions. 

1.3 Mechanism Design for Demand Side Management 

1.3.1 Requirements and Key Performance Indicators 

The traditional approach to demand-side electricity trading is the one where users are 

charged with a fixed per-unit price. The wholesale prices on the other hand, are subject to 

the producers‟ bids. In particular, producers bid their marginal cost of production in the 

wholesale market where the marginal producer defines the per-unit payment of all 

participating producers. Especially in markets with high RES penetration, the wholesale 

market prices can be quite volatile, since RES production is non-dispatchable and 

depends on weather conditions. 

In the traditional approach described above, the demand side is oblivious of the wholesale 

market prices and more generally of real-time energy costs. This has provoked an 

extensive discussion among both the academia and the industry on retail policies that will 

reflect the wholesale market prices to the end-users payments. There have been proposed 
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several mechanisms to achieve this goal, each one focusing on a different aspect of the 

problem. In particular, market mechanisms for electricity retail can be generally 

evaluated by six KPIs 

1. Optimality/efficiency: The aggregated payoff of all market participants. This is 

formally defined in economics as the Social Welfare.  

2. Incentive Guarantees/Strategy proof: The resilience of the system to users who 

benefit from declaring false preferences. In other words, we say that a mechanism is 

Incentive Compatible when users cannot benefit from cheating.  

3. Privacy protecting: The quantity of information that is required from the user. 

4. Convergence/scalability: The speed of convergence of the mechanism‟s 

implementation and its scalability with respect to the number of users. 

5. Fairness: The policy towards the distribution of the energy costs to energy consumers 

6. Budget-Balanced: When the total sum of monetary transactions from all market 

participants (including consumers in the demand side and all participants on the 

supply side i.e. producers, retailers, operators etc) is balanced. In other words, the 

mechanism designer does not need to subsidize the trade, nor extracts a surplus from 

it. 

Finally we note that depending on each particular use case, other positive/negative 

outcomes of the mechanism might be relevant (e.g. controllability in order to satisfy 

system-wide constraints, simplicity for users to understand the mechanism, etc.). In the 

next subsection we analyze each KPI in more detail and present how it is treated in the 

recent DSM literature. 

1.3.2 Related work 

Optimality/efficiency in terms of Social Welfare is of great importance, especially for 

policy makers and market operators. It refers to eliminating market inefficiencies. When 

there are parties on both sides of the market that would agree to trade at a given price, but 

the trade does not happen for any reason, we say that a market inefficiency occurs. Flat 

retail prices as well as static time-differentiated prices create market inefficiencies since 

the real-time costs and prices of the market are essentially invisible to the demand side. 

Thus, real-time pricing was also the first to be considered in the academic literature for 

advanced and automated DSM schemes. In particular, [LI10] proposed a market 

mechanism where the social welfare was optimized (under certain assumptions on user 

preferences and consumption behavior including the price-taking assumption). Under the 

constraint that demand must equal supply at all times, the Lagrangian function was 

formulated and the Lagrange multipliers for the dual problem were interpreted as the 

retail market prices.  An iterative algorithm converges to the prices that maximize the 

social welfare, assuming that the end-user appliances registered to the market mechanism 



7 

 

are automatic in the sense that they can modify their consumption in response to price 

signals, given the user‟s programmable set of preferences. However, the rest of the KPIs 

were not considered. 

Incentive Guarantees/Strategy proof refers to the issue of cheating the mechanism. More 

specifically, the studies in [LI10], [SAMA10], [GATZ10] assume that users are price-

takers (an individual user‟s load is very small compared to the Aggregator‟s portfolio and 

thus its behavior does not affect the prices). Nevertheless there are several use cases in 

which the assumption of price-taking behavior is rather strong and unjustified, including 

but not limited to:  

i) large industrial consumers,  

ii) users that participate in DSM in a particular geographic location where 

congestion problems occur,  

iii) islanded micro grids formed at neighborhood level 

As a result, users are better expected to behave strategically and strategic behavior may 

compromise the mechanism‟s efficiency. In [SAMA12], the issue of strategic behavior 

was tackled by proposing a Vickrey-Clarke-Groves (VCG) approach for retail electricity 

trading. The VCG mechanism is widely considered as the cornerstone of mechanism 

design as it is provably the unique mechanism that achieves the optimal social welfare 

(1st KPI) while also provides the strongest incentive guarantee (2nd KPI) which is 

Dominant-Strategy-Incentive-Compatibility (DSIC) [SHOH09]. However, the VCG 

mechanism comes with serious disadvantages in almost all the rest of the KPIs. Most 

importantly, it requires from the users to declare their whole set of consumption 

preferences for each of their appliances to the service provider. This fact is clearly a deal-

breaker in practice because of both privacy as well as representation issues. 

Representation issues refer to the request from the users to capture their preferences in 

closed form mathematical functions, so as to make it possible for the service provider to 

solve a large and most probably intractable optimization problem. 

Regarding user‟s privacy protection, a distributed mechanism is proposed in [BAHA14], 

where a communication protocol was proposed for the DSM procedure, to implement the 

message exchanges without revealing the user‟s local information. However, there is a 

number of strong assumptions regarding user‟s preferences. More specifically, users are 

considered to only be interested in completing a certain task within a certain time interval 

and the task‟s completion is modeled as a hard constraint, which means that the task will 

be performed no matter the cost.  

The above discussion mainly focuses on the use cases of relatively small communities of 

users, where user incentives and strategies come into play. A different research direction 

is studying the use case of large scale aggregation. The problems there are mainly the 

scalability of the mechanism implementation as well as the fairness at the individual 



8 

 

user‟s level. A mathematical approach towards a solution for the scalability problem is 

proposed in [MHAN16], where smoothing techniques are applied to the objective 

function of the optimization problem in order to facilitate fast convergence. A different 

approach is taken in [STEP15] where groups of users with similar characteristics are 

considered as an aggregated participation. While this approach might create minor 

inefficiencies, it drastically reduces the convergence time. 

A different objective is considered in [BAHA13], where the social welfare efficiency is 

partially relaxed for the sake of fairness. In particular, the study demonstrates that there is 

a trade-off between these two KPIs. The Shapley value [SHAP53] from cooperative 

game theory is leveraged to define a fairness index and the mechanism is accordingly 

designed, so as to maximize fairness. 

Finally, the budget-balanced property is discussed in [MA14], where the authors propose 

an AGV (Arrow-d‟Aspremont-Gerard-Varet) mechanism is proposed to coordinate load 

scheduling while keeping the system incentive compatible and budget-balanced. 

However, AGV mechanisms is still a direct-revelation mechanism like VCG (users are 

required to declare their whole set of preferences), which means that it also suffers from 

privacy and representation problems. 

It should be noted, that the six KPIs described, although very important, are quite general 

and might not be enough in all use cases. Mechanisms should take into account the 

specific requirements of each use case and the importance of each requirement. The 

special properties required in each use case, are categorized under the “umbrella” term of 

mechanism externalities. For the cause of being more specific, we present the two 

following examples. 

System-wide constraints on users consumptions might need to be satisfied. In the context 

of an energy community, this kind of constraints requires a certain amount of 

coordination among users. The study in [DENG14] presents a mathematical technique 

based on Lagrange multipliers, where the multipliers are dynamically and in a distributed 

fashion updated so as to serve as coordination signals. However, the study is not oriented 

in coordination among users, but rather in keeping an individual user‟s daily load fixed 

i.e. apply only temporal rescheduling and not load shedding.  

Another example of special requirement relates to the mechanism‟s simplicity (easy user 

adoption). The studies presented above provide some strong theoretical guarantees under 

certain assumptions. A central assumption is the rationality of the end user behavior. 

However, in practice and especially when it comes to residential user participation, we 

cannot expect the users to always behave rationally within complicated mechanisms that 

they don‟t understand. Thus, a relevant requirement relates to the mechanism‟s plain 

simplicity. Α study towards simplicity, is presented in [BITA17], tailored to EV charging. 

In particular, faster EV charging comes with a higher price. However, the proposed PM 
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opts for simplicity and the user is provided with a list of prices to choose from, each one 

with its own expected time of job completion. 

1.3.3 Real-time Demand Response and Period-Ahead Scheduling 

In the previous section we provided a description of how each KPI is treated in the recent 

research literature. A first categorization of the DSM studies follows directly by 

recognizing the KPIs considered in each study. 

In this section we further categorize the state of the art studies with respect to the DR use 

case that they consider. More specifically, there are two general use cases that relate to 

the temporality of the DR model: real-time DR and Period-Ahead demand scheduling. In 

real-time DR, the users are asked to modify their consumption in real-time, so as to meet 

sudden network needs. Examples include a short-term forecast of network congestion or 

RES failure. On the other hand, in Period-Ahead scheduling, electricity consumption is 

scheduled for a given scheduling horizon and the users‟ energy consumption profiles are 

shaped. 

For example in [GATZ13], a plain and simple flat-pricing mechanism is proposed with 

the niche of applying DSM with real-time reward for load curtailment on top of the flat-

pricing scheme. This might make it easier for users to relate their consumption behavior 

to financial benefits or at the very least give user the opportunity to not participate in the 

mechanism if they don‟t feel they understand it.  

On the contrary, in [RAD10], the proposed mechanism outputs an allocation of loads for 

a given scheduling horizon ahead, reminiscent of the well-known algorithmic problem of 

scheduling jobs to machines. Especially for this case, there is an issue of keeping the 

users accountable to the allocation in which they agreed ahead of time. In other words, 

the users might agree on a certain consumption pattern for the following day, but actually 

violate it through the day.  

A characteristic example is the issue of bid-parking. Bid-parking refers to the 

phenomenon where a user schedules a falsely large load at a given time in the future, so 

that the price at that time rises. This drives other users to schedule their own loads away 

from that time and possibly at earlier times. So, upon delivery time, the focal user reduces 

the scheduled load to the actual amount and benefits from a reduced price due to other 

users‟ having rescheduled (and already served) their loads to earlier times. A case for 

counteracting bid-parking strategies, is made in [CHAP17]. In this study, a clock-proxy 

auction was proposed that tackles the issue of strategic users who might apply such a 

strategy. 

As a conclusion to the above discussion, we observe that there have been proposed very 

elegant models towards the integration of market mechanisms in the retail electricity 
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market. However, there still two major research directions that remain relatively 

unexplored. The first refers to the design of mechanisms that jointly consider more than 

one or two of the KPIs presented above and achieve an attractive trade-off among many 

or all of them. The second refers to designing mechanisms that exhibit specific properties 

tailored to each specific use case and business model. The following subsection discusses 

issues not addressed in the state of the art studies and states the contributions of this 

dissertation. 

1.3.4 Contributions and Structure of this Thesis 

The discussion on the DR literature revealed open research topics, some of which will be 

thoroughly discussed in the rest of this text. In accordance with the categorization of the 

previous subsection, we categorize our contributions in two fields: real-time DR and 

period-ahead scheduling games. 

The first major issue in real-time DR is the absence of a DR mechanism that 

simultaneously considers the first four KPIs (Efficiency, Incentive Compatibility, Privacy 

Protection and Scalability). This issue is very important, especially because many studies 

consider the first KPI without the second. However, failing to address the second KPI, 

can readily compromise the mechanism‟s performance also in the first KPI. Section 2.1 

discusses these issues in depth and proposes an indirect mechanism that addresses these 

problems. 

The second major issue in real-time DR is the widely overlooked KPIs of Fairness and 

Budget-Balance. On the one hand, the few studies that studied Fairness make rather 

strong assumptions regarding the user model. On the other hand, the protagonist 

mechanisms with efficiency and/or incentive guarantees (namely VCG, AGV and others) 

are inherently not budget-balanced. The importance of these two properties is discussed 

in detail in section 2.2 and a novel pricing scheme is proposed to address these issues. 

In Section 3 we take on the period-ahead scheduling use case where the vast majority of 

the relevant studies either adopts the price-taking assumption or imposes strong 

assumptions on user models. In section 3.1 we analyze the issue and also discuss the 

special use case of satisfying system-wide constraints which is quite challenging from a 

technical perspective. A DSM architecture is presented where the above assumptions on 

usr model are relaxed. The proposed mechanism is guaranteed to converge to the Nash 

Equilibrium. Moreover, the constraints are guaranteed to be satisfied at the final 

allocation, while the mechanism also preserves the budget-balance property. 

Finally, the issue of violations on the period-ahead schedules is discussed in section 3.2. 

A spread policy is considered and analyzed. The setting that we consider motivates the 

development of transactive energy markets which is a field of extensive discussion in 

modern electricity systems. We conduct an analysis on the value of transactive trade, 
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while simulations confirm that the correlation of the different users‟ demand profiles is of 

great importance. 
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Chapter 2 

REAL-TIME DEMAND RESPONSE 

2.1 Truthful, practical and privacy-aware demand response via an 

optimal and distributed mechanism 

Serving the energy demand in peak demand times might be quite expensive for the grid 

operator, because of the need to constantly maintain costly energy reserves. Also, in 

regions with high penetration of Renewable Energy Sources (RES), adjusting the demand 

to meet the intermittent generation can enhance the efficiency and economic viability of 

the system. As a result, the idea of offering monetary incentives (rewards) to consumers 

in order to decrease their consumption at peak demand times is getting a great deal of 

attention both from the research community and the Industry. More specifically, when 

there is a need for reducing energy consumption in real-time, an ad-hoc market is created 

where the operator offers to buy consumption reduction from the users. Users participate 

in such a DR event by offering their consumption flexibility in exchange for monetary 

compensation. 

In the modern smart grid, each user (consumer) has a smart meter that measures his/her 

consumption at all times. The grid operator can assess the aggregated consumption of 

users at a particular part of the grid in real-time. Users are interested in their own payoff, 

which results from the reward they receive and the discomfort they experience from 

reducing their energy consumption. On the other hand, the operator is interested in the 

reduction of the aggregated consumption at peak times. Assuming strategic user 

behavior, the above setting turns into a game, since each user‟s payoff is dependent on 

the actions of other users. In more detail, discomfort could be modeled through a local 

function, so that it is expressed in monetary terms. However, users are usually not 

capable of capturing their preferences in a closed form mathematical function and even if 

they were, they are reluctant to reveal their preferences. Rather, it is more natural for the 

users to simply take actions (e.g. turn appliances on/off, or adjust power consumption) in 

response to price signals.  

An intermediate entity is assumed to resolve the formulated game and clear the ad-hoc 

flexibility market described above. We refer to this entity as the Electricity Service 

Provider (ESP). The ESP is assumed to be an independent entity with the objective of 

coordinating the flexibility trading in the most efficient way. Formally, in economics, the 

“most efficient way” is characterized by the concept of maximizing the social welfare, 

defined as the aggregated payoff of all market participants. However, the users‟ local 

functions (related to their flexibility/comfort levels and consumption habits) are private to 

each user. This makes the task of the ESP quite challenging, especially when we consider 
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users who act strategically and might misrepresent their local function if that makes them 

better-off. 

In this section, we propose a DR architecture through which ESPs will be able to 

optimally resolve the aforementioned game. In particular, we draw on concepts of 

mechanism design theory in order to define an iterative, auction-based mechanism, 

consisting of an allocation rule and a payment rule. The allocation rule refers to the way 

that the ESP decides upon how much consumption reduction will be allocated to each 

user according to the feedback obtained through the auction process. The payment rule 

refers to the way the ESP decides upon the reward of each user for his/her allocation, 

provided that the user makes the corresponding contribution. Through the auction 

procedure, the ESP exchanges messages with the users in the form of queries. A query in 

our case is a price signal communicated from the ESP to the user, to which the latter 

responds with his/her preferred action (i.e. consumption reduction) according to this 

signal. Note that a user may respond untruthfully if he/she finds that to be in his/her 

interest.  

A mechanism is generally evaluated by: i) its performance in terms of social welfare, i.e. 

efficiency, ii) the tractability of the outcome, and iii) its incentive guarantees. The first 

two are commonly addressed in the literature and point to the allocation‟s efficiency and 

the mechanism‟s convergence time and consequent scalability. In contrast, the third 

requirement (that points to truthful participation) is widely overlooked in the DR 

literature. In the few cases where truthfulness is addressed, it comes with a sacrifice of 

practical implementation ability and user privacy. In the rest of this section we analyze 

what the third requirement is about and how it is handled in the state-of-the-art DR 

studies. 

User strategies in games such as the one described above are subject to thorough study 

and discussion. Mechanism design theory classifies a mechanism‟s incentive guarantees 

with respect to how users are expected to act when participating in it. The strongest 

guarantee is called Dominant Strategy Incentive Compatibility (DSIC). We say that a 

mechanism is DSIC when it is at each user‟s best interest to truthfully implement his/her 

true preferences at any query, regardless of what other users do. 

Surprisingly, the vast majority of studies in the DR literature do not provide any 

guarantees as we will analyze shortly. This drawback is typically rationalized by 

assuming that an individual user‟s load is very small compared to the whole system‟s 

aggregated load and thus the user can be approximated as a price taker (his/her actions, 

taken alone, have no effect on the system‟s dynamics). Under this assumption, each user 

implements his/her most favorable action (consumption decision), assuming the actions 

of other users to be constant. This process is repeated until an equilibrium is reached. The 

users are typically modeled to iteratively implement their best-response every time they 

are asked a query, i.e., they decide upon their preferred consumption upon receiving a 
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price signal. This strategy updating procedure is called best-response dynamics. As 

analyzed in [NISS07], such myopic “local rationality” does not necessarily imply “global 

rationality”, i.e., given an iterative mechanism, it is not always to the user‟s best interest 

to repeatedly best-respond. Rather, a user might be better-off by submitting false bids 

through the process. 

Best-response dynamics converges to an efficient allocation under the price-taking 

assumption described above. Nevertheless there are several use cases in which the 

assumption of price-taking behavior is rather strong and unjustified. For example, a large 

industrial consumer‟s actions may have a significant effect on the system. Also, when it 

comes to DR-events, the users called to participate are often required to be in a particular 

geographic location where congestion problems arise, in which case the relevant user 

population is not large. Another example includes islanded micro grids formed at 

neighborhood level, especially ones with high RES penetration. In such use cases, the 

number of users in the formulated game is drastically reduced. This means that a single 

user‟s actions may no longer be insignificant and a mechanism implemented in best-

response strategies fails to capture user incentives. As a result, users are better expected 

to behave strategically, and strategic behavior may compromise the mechanism‟s 

efficiency [JOHA05]. In this chapter we also address the third requirement, defined as the 

capability of the mechanism to provoke strategic users to act truthfully in accordance 

with their preferences, which is overlooked in most of the DR literature. Moreover, we do 

so via an indirect and practical mechanism, which allows for distributed and privacy-

preserving implementation, in contrast to the few studies that consider incentive 

guarantees that do not exhibit these characteristics.  

The rest of this chapter is organized as follows. In Section 2.1.1, we present a literature 

review of DR studies from the perspective of incentive guarantees. In Section 2.1.2, we 

present the model assumed. In Section 2.1.3, we present the problem formulation. In 

Section 2.1.4, we present and analyze the proposed auction mechanism and prove that it 

has the desired properties. In Section 2.1.5, we demonstrate the performance and verify 

the properties of the proposed system. Finally, in Section 2.1.6 we describe a privacy-

preserving communication protocol that can implement the proposed mechanism. 

2.1.1. Related Work 

In the DR architectures/frameworks that have appeared in the literature, the end user is 

typically modeled as a selfish player who participates in the mechanism with the purpose 

of maximizing his/her own payoff. The user‟s preferences are widely modeled as a 

convex function (e.g. [SAMA10], [LI10], [GKAT13]) in accordance with microeconomic 

theory [PERL15]. However, studies differ on the way they model the behavior and the 
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strategy of the users participating in the game. More specifically, there are three levels of 

behavior modeling, in increasing order of user rationality:  

A) “naive”, de-facto truthful users, assumed to always truthfully report their preferences 

B) locally rational users, assumed to apply a myopic best-response process (maximizing 

their payoff at each iteration of the mechanism as if it were the last iteration) 

C) strategic, globally rational users, who are aware of the mechanism‟s structure and 

apply a strategy that maximizes their final payoff (possibly by submitting false 

responses). 

Several studies either assume naive users of category A ([ALTH15], [TUSH15], 

[WANG17], [ZHAO13], [AHMA15], [ERDI15], [STER18]) or assume no user 

preferences and perform central optimization for the scheduling problem (e.g. [BASI17], 

[TANG14]). 

The majority of DR works assume “price-taking users” which translates to category B, 

i.e., locally rational users. Static-pricing approaches (e.g. [NGUY14]), as well as typical 

dual decomposition approaches (including [SAMA10], [LI10], [GATZ13] and 

[QIAN13], [MOHS10], [MHAN16], [SLI16], [JACQ17], [BITA17]), assume users of 

category B. Under the price-taking assumption, the solution concept is that of a 

competitive equilibrium. A market-clearing pricing approach brings the system to 

competitive equilibrium via an iterative best-response process, and the final allocation 

maximizes the social welfare. However, as described above, in many use cases (such as 

emerging local energy communities [MAKR18], [MAMO18] islanded micro-grids, etc) 

the price-taking assumption no longer holds and the efficiency of these mechanisms is 

compromised [JOHA05]. In mechanism design terms, the mechanisms of the first two 

categories are not incentive compatible, because a strategic user can benefit by 

manipulating his/her responses. 

Few works consider user incentives. When considering strategic users (of category C), 

the mechanism designer is confronted with a trade-off: the Vickrey-Clarke-Groves 

(VCG) mechanism is the unique welfare maximizing mechanism implemented in 

dominant (and not best-response) strategies, meaning that either a VCG-based approach 

is taken [SAMA12], [NEKO15] or welfare maximization is compromised [YAAG15], 

[MA14], [CHAP17], [TSAO16], [STER18].  

The main problem with the VCG approaches is that they require users to reveal their 

whole set of preferences to the ESP, while the latter makes all the calculations and 

decides the allocation and the rewards. This is clearly impractical, since real users 

generally can‟t express their preferences in closed-form mathematical functions and even 

when they can, they are not happy to compromise their privacy by sharing their whole set 

of preferences with the ESP. In this chapter, we opt for a VCG-like approach, so as to 

achieve social welfare maximization, but we omit the direct-revelation approach of the 
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typical VCG mechanism. Instead, we design an iterative auction mechanism based on 

Ausubel‟s clinching auction, in which users are only required to make decisions 

regarding their consumption in the presence of price signals. By adopting this approach, 

we implement the efficient VCG outcome but also allow for a distributed implementation 

and a privacy-preserving communication protocol.  

Summarizing the above, our proposed DR architecture: i) is suitable for a distributed 

implementation (unlike [SAMA12], [NEKO15]), ii) achieves the VCG outcome and does 

not sacrifice efficiency (unlike [YAAG15], [MA14]), and iii) is incentive compatible 

(unlike studies that assume users of categories A and B). 

2.1.2 System Model 

We consider a flexibility market comprised of an ESP and a set             of   self-

interested consumers, hereinafter referred to as users. We also consider a discrete 

representation of time, where continuous time is divided into timeslots     of equal 

duration  , where set             represents the scheduling horizon. Each user 

possesses a number of controllable appliances, with each appliance bearing an energy 

demand. Since demands of different appliances are assumed independent and are not 

coupled, we can consider one appliance per user for ease of presentation and without loss 

of generality. We denote by the set of appliances. 

User & appliance modeling 

An appliance requires an amount of energy for operation. For example, if an appliance‟s 

operating power is 1Watt, and         , then the energy that the appliance consumes 

in one timeslot of operation is    . This energy consumption is measurable in real-time 

and can be shed if the user wishes. In particular, we consider controllable loads, meaning 

that the user can modify consumption upon request, in exchange for monetary 

compensation. Such a request for consumption modification is called a DR-event. Upon a 

DR-event asking for reduction of the real-time consumption in timeslot  , user   can 

respond by reducing his/her consumption by a quantity   
 , assumed to be positive 

(  
    , without loss of generality. 

Also,   
  is characterized by its feasible set    (defined by a set of constraints on   

 ) and 

the discomfort function      
   of user  . The discomfort function is private to each user 

and expresses the minimum compensation in monetary units ($) that a user requires, in 

order to reduce his/her consumption by the corresponding amount. The discomfort as a 

function of   
  can take various forms, depending on the appliance. We make the 

following assumptions on the form of function      
  : 

Assumption 2.1.1. Zero consumption reduction, brings zero discomfort to the user: 
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Assumption 2.1.2. The discomfort function is non-decreasing in   
 :  

   
     

          
         

   

Assumption 2.1.2 says that consuming more does not make the user less comfortable. 

Assumption 2.1.3: The discomfort function is upward sloping, meaning that additional 

increase of   
  brings increasing discomfort to the user: 

   
     

          
            

           
         

         
     

      

In order to incentivize users to reduce their consumption, the ESP offers a reward      
  . 

A user‟s utility is defined as the difference between his/her discomfort for the 

consumption reduction realized and the reward he/she received for this reduction is 

   ∑ [     
        

  ]       (2.1.1) 

In order to offer the rewards      
  , the ESP draws on the reward offered by the operator 

who requests the reduction as described in the following subsection. 

DR-event and the ESP 

Let    denote the aggregated consumption of all users in  , as seen by the operator, 

within a certain time interval  . Upon a DR-event, the operator (e.g. the DSO that 

operates the smart grid) asks for a reduction of the users‟ aggregated consumption during 

a certain time interval and offers monetary incentives to the ESP towards its realization. 

Let    denote the reduction in the aggregated consumption at  . The incentive (reward) is 

implemented as a per-unit compensation for the electricity units of reduced consumption. 

The cost of serving the aggregated energy consumption is typically modeled with 

quadratic functions ([SAMA10], [LI10], [GATZ13], [QIAN13], [MOHS10], [MHAN16], 

[SLI16], [JACQ17], [BITA17] as explained in [KOTH03]. In this chapter, we adopt the 

same approach and in direct analogy we assume that the compensation that is offered to 

the ESP by the operator, can be modeled as a concave function of   . For the purpose of 

being specific, we adopt here a polynomial function        of a specific form  

                          [    ]    (2.1.2) 

where     are positive parameters with       . The proposed DR architecture is open 

to any other choice of       , provided it is a concave function. Thus, we assume that 

upon a DR-event, the operator offers a marginal per-unit reward  

  
 (  (  ))

     
      (2.1.3) 

for a consumption reduction of    units. 
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The ESP is responsible for aggregating the users‟ participation in the DR-event, 

coordinating their actions, and dividing the compensation profits (rewards) among the 

users. We assume a communication network, built on top of the electricity grid, through 

which the ESP can monitor each user‟s consumption and exchange messages with the 

users.  

2.1.3 Problem Formulation 

With respect to the system described above, we would like to facilitate the allocation of 

consumption reduction among the users so as to maximize social welfare. Social welfare 

is defined as the difference between the revenues        that the ESP receives from the 

operator for the consumption curtailment    and the sum of the discomfort that this 

curtailment causes to its users. This problem can be formulated from Eqs. (2.1.4) and 

(2.1.4a) below: 

     
                ∑ [     

  ]         (2.1.4) 

         ∑   
 

        (2.1.4a) 

The problem defined by Eqs. (2.1.4) and (2.1.4a) is a convex optimization problem and 

could be solved efficiently if the local functions      
   were known (or truthfully 

disclosed). However,      
   of each user is not known and thus, problem (2.1.4) is 

typically solved via dual decomposition in the DR literature. This approach, however, is 

not incentive compatible as we will analyze shortly. In particular, the final allocation of 

the dual decomposition approach is identical to that obtained through the ascending 

English auction (see algorithm 2 of [SAMA10]), which halts when supply equals 

demand. More specifically, in the system model described and in case of an English 

auction, the ESP would iteratively increase a per-unit reward   asking the users their 

consumption reduction   
     at each per-unit reward   (auction query). At each iteration, 

each user i responds with his/her preferred   
    . A truthful (locally optimal) response by 

user  , denoted as   
 ̃   , is one that maximizes  ‟s utility for reward  . This is 

mathematically formulated as the solution to maximization problem (2.1.5): 

   
 ̃            

             
       

       (2.1.5)  

Clearly,   
 ̃    is non-decreasing in    since   

      The auction terminates when   

reaches a value for which ∑   
             . The final price is commonly called the 

market-clearing price and it is denoted here as    . The allocation at     is efficient if 

the users truthfully report their   
  at each ESP query. However, truthful report may not 

be the best strategy for every user. To illustrate this, we present the following example: 

Illustrative example 
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Consider two users and a given timeslot t. User 1 operates a load with power 

consumption 10 kW while user 2 operates a 50 kW load. Now suppose they participate in 

a DR event and their discomfort function is      
         

   ,        ,  where their 

true flexibility parameters are           . The reward function is           

      . Should they act according to their true discomfort function parameters, their 

utilities (given from Eq. (1)) at equilibrium would be             units. In case 

User 2 acts untruthfully according to   
    

    , his utility at equilibrium will be 

    . Therefore, the best strategy of User 2 is to be untruthful.    

The previous example demonstrates how the market-clearing approach builds on the 

assumption that users behave myopically, by truthfully maximizing their utility at each 

iteration. However, a DR-event will involve smart players (e.g. industrial consumers, 

aggregators) and it will not take long before users realize that they can benefit from 

engineering untruthful responses. The problem is that if we relax the truthfulness 

assumption and consider strategic users, market-clearing methods (e.g., the English 

auction presented above) no longer result in efficient allocations. For this reason it is very 

important to design a mechanism that is not only efficient but also incentive compatible. 

In order to facilitate the description of the proposed mechanism, we first present the 

Vickrey-Clarke-Groves (VCG) mechanism, which is the unique mechanism that makes it 

a dominant strategy (DSIC as analyzed in the introduction) for each user, to act truthfully, 

i.e. in accordance with his/her real discomfort function [KRIS02]. Let    , denote the set 

of users, excluding user  . The VCG payment rule is the so called “Clarke pivot rule”, 

which calculates a reward    equal to  ‟s “externality”. In other words, it rewards each 

user   with an amount equal to the difference that  ‟s presence makes in the social welfare 

of other users       : 

     
     (∑   

 
     

)   ∑   (  
 )     

   (∑   
 ̂

     
)  ∑   (  

 ̂)     
 (2.1.6) 

where   
  denotes the vector allocated to user   when problem (2.1.4) is solved with user   

included in the system, and   
 ̂ denotes the vector allocated to user   when the same 

problem is solved without user  ‟s participation.  

In the direct VCG mechanism, users are asked to declare their local functions      
   to 

the ESP. Because of the Clarke pivot rule, it is a dominant strategy for each user to make 

a truthful declaration [KRIS02]. Thus, the efficient allocation that corresponds to the 

social welfare maximization problem can be calculated at the ESP side. In order to 

calculate the VCG rewards from Eq. (2.1.6), problem (2.1.4) is solved | |    times (one 

time with each user in   absent to calculate the payments, plus one time with all users 

present to calculate the allocation). The major drawback of the direct VCG mechanism is 

the requirement that the users disclose their discomfort functions      
   to the ESP. This 

raises important issues such as a) Lack of privacy in case where users are reluctant to 
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reveal local information (their discomfort function) and b) Difficulty in implementation 

in cases where users are unable to express their preferences (i.e., their discomfort 

function) in a closed form function.  

In the next subsection, we propose a modification of Ausubel‟s Clinching auction 

[AUSU04], which allows for a distributed implementation of VCG as described in 

section VII, designed to tackle these issues.  In particular, we opt for an iterative auction 

that:  

i) facilitates user bids via auction queries, thus making the proposed architecture more 

easily implementable in practice 

ii) engages users in the market and allocates consumption reduction gradually along the 

way, so that price discovery is facilitated on the users‟ side 

iii) protects user‟s privacy via a properly designed communication protocol. 

2.1.4. Ausubel‟s Clinching Auction for DR-event participation 

The Clinching Auction (CA) is a well-known ascending price auction (similar in fashion 

to English Auction) that halts when demand equals supply. However, in contrast to most 

auctions (including the English auction), allocation and rewards are not cleared 

exclusively at the final iteration. Rather, the goods (consumption reduction in our 

context) are progressively allocated as the auction proceeds and payments are also 

progressively built, while the auction design guarantees that the final allocation and 

payments coincide with the ones obtained through VCG. Thus, both allocation efficiency 

and incentive compatibility are achieved, while the aforementioned privacy and 

implementation drawbacks of the direct-VCG mechanism are effectively addressed. 

In order for the CA to work in our setting, we need to reverse the price trajectory. In the 

proposed Modified Clinching Auction (MCA), the ESP begins with a per-unit reward 

       which gradually decreases at each iteration. By Eq. (2.1.3), reward      is 

      

      , which, as analyzed in section 2.1.3, is the highest value possible given that    

is concave. Users respond by bidding their preferred consumption reduction   
 ̃    for 

each  . We represent the user‟s response at   as the solution to the user utility 

maximization problem (which is formally defined in Eq. (2.1.5) of the previous section). 

The user‟s objective function is concave in   
 , since     

  is linearly increasing and 

     
   is convex by Assumption 2.1.3. Also, the solution   

 ̃ is increasing in  , which 

means that the user‟s response   
 ̃ gradually decreases as   decreases. Note that in the 

extreme and trivial case where      ∑ (  
 ̃      )           the users would shut 

down everything and proportionally share the reward       .  
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In MCA, the initial price is      and in each iteration   the price    is reduced by a 

small positive number  . The size of   adjusts the discretization level of MCA. For the 

decreasing reward auction that we propose, we relax constraint (2.1.4a) to the inequality  

   ∑   
 

         (2.1.7) 

Consider an arbitrary iteration   of the MCA and let        denote the operator‟s desired 

reduction for per-unit reward   . The central idea of the MCA is the following: if there is 

a set      for which we have  

        ∑ (  
 ̃    )          (2.1.8)  

then we allocate a reduction equal to   
         ∑ (  

 ̃    )     to each user      

at a per-unit reward   . We then say that user   “clinched”   
  units. The MCA auction 

terminates when set    that satisfies condition (2.1.8) and set  , are equal, that is, 

constraint (2.1.7) is satisfied. After that, it allocates the remaining          

proportionally to the users that bid in the second-to-last iteration. 

The critical advantage of the Clinching auction is that it allocates different amounts of 

units at different rewards, and the units that a user clinches do not depend on his/her 

own bid but only on the other users‟ bids. The algorithm that implements MCA is 

presented in Table 2.1.t1. 

Table 2.1.t1. The MCA algorithm 

1. Initialize        ,   
       ,               

2. while         ∑ (  
 ̃    )    

3. if there exists   : ∑ (  
 ̃    )            

4.             clinch units    
         ∑ (  

 ̃    )     for 

all      at per-unit reward    

5.        else  

6.             set           and       

7.             ask each user a reduction query for    and                

                 collect the responses   
      



22 

 

8.             ask the operator for the desired total  

                reduction        at per-unit-reward    

9. End while 

10. Clinch units 

  
  (  

        ∑   
    

   )  
  (    )

∑   
          

   

 at per-unit reward       , for each     

We are now in a position to prove the optimality of MCA in terms of social welfare 

performance: 

Theorem 2.1.1: The social welfare loss at the final allocation of MCA is within 

               of the maximum possible. 

Proof:  The value of   at which    ∑ (  
 ̃)    is defined as    , which gives 

        ∑ (  
 ̃     )       (2.1.9) 

Let   denote the number of iterations until the auction halts, that is, 

  .
        

 
/     (2.1.10) 

where ⌈ ⌉, denotes the rounding to the nearest integer above. We have 

.
        

 
/      .

        

 
/    (2.1.11) 

After the last clinchings (line 10 of the algorithm) we have efficiently allocated   (    ) 

reduction units to the users. The remaining           (    ) are not allocated and 

this causes the loss of welfare (     ) that is depicted as the grey area in Figure 2.1.f1, 

where the red line represents       and the blue line represents ∑   
 ̃      .  
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Figure 2.1.f1.       and ∑ (  
 ̃    )    as a function of   

Since we remain agnostic of the closed form of ∑ (  
 ̃    )   , we assume the worst case 

and calculate an upper bound on the sum of the grey plus the yellow area of Figure 

2.1.f1: 

         (          (    ))  
 

 
          ( 

         (    )) 

By substituting       
   

  
 from Eq. (2.1.3), we get 

      
   ( 

       )

  
 

    (        )

  
  

(    )
 
      

 

  
  

By further substituting                  and also substituting   from 

inequalities (2.1.11), using the left inequality when   appears with a minus sign and the 

right inequality when it appears with a plus sign, we finally obtain 

      
         

  
 

completing the proof.                   

In practice, for the relevant use cases of price-anticipating users (described in the 

introduction), the computational complexity of the MCA is small, which allows for a 

very small choice of  . To emphasize this, it is useful to state the following corollary to 

Theorem 2.1.1: 

Corollary 2.1.1: for     the welfare loss grows linearly with  . 
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Because the MCA includes a price-sensitive response also at the operator‟s side, we have 

to verify that the properties of efficiency and incentive compatibility still hold. This is 

proved in the following Propositions. 

Proposition 2.1.1: Truthful bidding is a dominant strategy in MCA. 

Proof: Fix an iteration   and suppose that   bids         
        

 ̃     in that iteration. 

From step 4 of MCA, we see that   
  does not depend on   

  but only on the other users‟ 

bids   
     . Thus, user  ‟s bid can affect  ‟s allocation only by changing the   at which 

the termination condition holds. This means that a false bid         
      will make a 

difference to  , only if   is the last iteration. However, by definition of   
 ̃     (see Eq. 

(2.1.5)), any bid         
        

 ̃      brings strictly lower utility to user   at any 

iteration  . Thus, truthful bidding brings the highest utility to user  .              

Furthermore, the following properties of the VCG mechanism hold also for the 

MCA: 

Proposition 2.1.2: MCA is individually rational, weakly budget-balanced, and 

achieves the maximum revenue for the ESP among all efficient mechanisms. 

Proof: The MCA auction is welfare maximizing (by Theorem 2.1.1, for   small enough) 

and DSIC (by Proposition 2.1.1). However, the class of VCG mechanisms is the unique 

class that simultaneously achieves these two properties [SHOH09]. Thus, MCA 

terminates with the VCG allocation and payments, and it inherits the property of 

individual rationality. For the weak budget balance property, it suffices to show that our 

setting exhibits the no single-agent effect [SHOH09]. An environment exhibits no single-

agent effect if the aggregated utility of     users doesn‟t improve by adding a  th
 user 

to the system. This property holds in single-sided auctions with monotonous preferences 

[SHOH09], since dropping a user only reduces the competition for the remaining users, 

thus making them better-off. 

 Moreover by [KRIS02], the VCG mechanism maximizes the auctioneer‟s utility, which 

means that the ESP buys flexibility units from the users at the lowest possible price 

(among all efficient and individually rational mechanisms).                 

2.1.5. Performance Demonstration 

In this section, we use simulations to demonstrate the advantages of the MCA and verify 

its properties. As a benchmark for comparison, we use the typical market-clearing pricing 

where all users receive a per-unit reward of    . Over a time horizon of 24 timeslots, we 

simulated two DR events, in timeslots 11 and 17 where there was a peak in the 

aggregated consumption. Parameters   and   of the reward function were set to     

and        for both timeslots.  
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We used a simple model for the user‟s discomfort function: 

     
     

     
     

where parameter   
  expresses the user‟s inelasticity in timeslot  . In order to obtain 

results for a wide range of parameters   
 , we pick   

  from a random uniform 

distribution in [      ,       ] for      and in [       ,       ] for     , 

where parameter    will vary in our experiments. We set the step        in the MCA 

algorithm (Table 2.1.t1). Figure 2.1.f2 depicts the aggregated consumption along all 24 

timeslots for     , which shows the reductions in consumption corresponding to the 

DR events. 

 

Figure 2.1.f2. Aggregated consumption as a function of time with and without DR 

events in timeslots 11 and 17 

In order to verify the truthfulness property and that a user can only lose by not being 

truthful, we assume that one user acts untruthfully by manipulating his/her    for timeslot 

17, while all other users act truthfully. The untruthful user is indexed by    (for cheater). 

The cheater‟s utility     is maximized for a certain choice of    , denoted as    
      

. 

Figure 2.1.f3 shows     as a function of     (for     ). 
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Figure 2.1.f3. Focal user's utility as a function of his/her choice of   

The black vertical line represents the focal user‟s actual (real)  , denoted as      . For 

the MCA, the user‟s optimal choice of   coincides with his/her real  , that is    
      

 

     , thus verifying Proposition 2.1.1. 

Next, we investigated the effect that cheating has on the ESP‟s profits, denoted by 

          for the case where users act truthfully and by        for the case where they act 

according to what brings them the highest utility. Figure 2.1.f4 shows that the ratio 

                 is maximized and is equal to 1 for the MCA, verifying our theoretical 

results. We also observe that the ESP‟s profit loss due to untruthfulness rises with    (i.e. 

when users are less elastic), indicating that our scheme‟s truthfulness property becomes 

more important in markets where participants are not particularly flexible. 
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Figure 2.1.f4. Ratio 
      

          as a function of    

Finally, we simulated the DR-event for timeslot 17 for different values of  , measuring 

the proportional welfare loss 

      
         

    
 

where      is the optimal welfare and      is the welfare achieved by the MCA. The 

simulation results in Figure 2.1.f5 verify Corollary 2.1.1, which states that for small 

values of   the upper bound on the welfare loss grows linearly with  . 
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Figure 2.1.f5. Proportional welfare loss of MCA as a function of the price step   

2.1.6 Privacy-preserving distributed implementation 

A major drawback of the direct VCG mechanism is that it requires each user to know and 

disclose his/her discomfort function to a central entity, e.g., the ESP. The MCA auction 

implements the VCG allocation and payments via an indirect mechanism. In this way 

users are only required to respond to ESP queries, instead of being required to 

communicate their discomfort function. This allows a distributed implementation of an 

efficient and truthful DR architecture. In what follows we present a distributed 

communication protocol that preserves privacy while simultaneously ensuring an 

efficient allocation. 

The proposed DR architecture exploits [ZYSK15] in order to execute MCA in a 

distributed fashion. In this way, the ESP does not have to learn the answers to the queries, 

which are instead acquired only by users in   in a distributed fashion. Thus, the proposed 

DR architecture acts as a substrate that offers a service over which participating users 

cooperate in order to protect their personal data (i.e. their discomfort functions      ) 

from the ESP. In order to achieve this, [ZYSK15] uses the scheme proposed by Kademlia 

[MAYM02] in which each node (i.e., end user/energy consumer) is identified by a 

number (nodeID) in a specific virtual space. The nodeIDs do not serve only as 
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identification, but they are also used by the Kademlia algorithm to store and locate 

values/data hashes (i.e., the answers to the ESP queries). This process is realized through 

a peer to peer routing service (implemented in the network application layer) that 

Kademlia offers. Towards this end, participating nodes create and dynamically maintain 

routing tables in a bottom up organized way. In fact, the nodeID provides a direct map to 

these data hashes by storing information on where to obtain them. The proposed 

algorithm is executed in three steps: 

1. Data insertion: At each iteration   of the algorithm, each user (node)   stores its bid 

  
 ̃     in another random node   through the use of the aforementioned [MAYM02] 

system. It is highlighted that   is different for each   and   (as it is derived from the 

output of the hash function that Kademlia uses), and in this way collusion of two users 

(which is a requirement that [BAHA14] sets), or even collusion of a relatively small 

number of users to acquire data, will fail. 

2. Calculation of   
     : Kademlia organizes the participating nodes in a tree like 

structure. The proposed system exploits this structure in order to calculate the sum 

∑   
 ̃       . To do so in a distributed way, node   waits until all nodes with lower 

nodeID from it, inform   on possible data values they have to send to  . This process 

continues recursively until the node with the highest id acquires the desirable data and 

then it calculates the sum. At this point, this node also receives        from the ESP and 

checks the termination condition. If it doesn‟t hold, the node proceeds by broadcasting 

∑   
 ̃        and        to all nodes through the use of Kademlia tree [MAYM02]. Thus, 

each node   calculates   
      by subtracting the   

 ̃     value that is stored in it (which is 

not its own   
 ̃     value, and it doesn‟t know whose it is). 

3. Final allocation and payments calculation: at the next iteration    , a different 

instance of Kademlia tree is created, so that   
          is stored at a new node  , other 

than  . Thus, even in the case that a node is malicious, data privacy is not compromised. 

The tuple      ∑   
      

    ∑ [  
        ] 

    , which contains the allocation 

and payments of user   up until iteration  , is passed from user   to  . At the final 

iteration, the tuples    are communicated to the ESP. Note that the ESP receives only the 

final allocation and payments for each user, i.e., only the sum of   
      and not all the 

intermediate values   
     . This means that the ESP (and any other node for that 

matter) does not have the data to construct the entire local discomfort function       of 

user  . 

Note that the analysis above assumes that the service provider is honest-but-curious. By 

this we mean that the ESP is curious to know the discomfort functions of end users, but is 

also honest and will never attack the system in order to acquire them. In case of malicious 

ESP (i.e. with no hesitations to break the law), more strict privacy assumptions are 

needed, but this case is outside the scope of the present work. 
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2.2 Personalized real time pricing for efficient and fair demand 

response in energy cooperatives 

The electricity market is moving from a market where energy is produced in a centralized 

fashion from traditional and often environmentally harmful sources to a 

liberalized/competitive and possibly distributed market that exploits renewable energy 

sources (RES) [REGUL]. A major challenge in this new environment is the alignment 

between the varying and to large extent unpredictable energy supply (e.g. RES) and the 

ad-hoc energy demand of the end users. In addition, innovative concepts such as 

flexibility markets, energy poverty and energy efficiency are continuously emerging in 

the energy sector. Towards this goal, the research community focuses on the development 

of pricing mechanisms, which are able to affect the energy consumption by enabling a 

dynamic and sophisticated interaction between the pricing of energy (incentives) and the 

way end users consume it (scheduling). Studies under this premise develop algorithms 

that belong to the generic family of demand side management (DSM) algorithms. This is 

a promising approach that aims to affect energy consumption and create an additional 

tool in the optimization and the stability of energy systems. 

As analyzed in [GATZ13] residential participation in DSM is commonly envisaged via 

aggregated participation because of implementation and scalability issues.  

Along with these technical and socio-economic changes, there is a rise of innovative 

business models for aggregating the DSM participation of a set of users. In particular, 

collective DSM participation can be undertaken by a non-profit organization representing 

the interests of its portfolio of users [RESCOOP], a public (regulated) entity or a private 

company. In this section, we assume that the aggregating entity only passes the energy 

costs to the consumers without extracting profit [CHAP17]. This use case represents the 

cases where:  

1) the private aggregating company operates in a highly competitive environment. 

2) the profit margins of the private aggregating company are regulated 

3) users form a cooperative organization to represent their interests 

4) the aggregating company is a public and  non-profit entity. 

 Throughout this section, we will refer to the aggregating entity with electricity service 

provider (ESP) and cover all four use cases.  

In [MAKR18], we try to facilitate the easy, rich and deep communication between energy 

efficiency stakeholders and end users, allowing them to discover each other, educate 

themselves so as to understand the difficulties and challenges each one faces, interact and 

trade with each other.  
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Under this perspective, we focus on the development of pricing mechanisms that give to 

the end users the opportunity to derive direct financial benefits from the actions they 

undertake regarding their energy consumption. In more detail, through community 

pricing [STER18] or personalized pricing mechanisms that we developed, we avoid the 

well-known problem of the tragedy of the commons [MANI13]. This is a phenomenon, 

where users do not change their behavior (energy consumption in this case) due to the 

low impact that this change would have on their bill. In contrast, a personalized pricing 

mechanism is able to treat different users in different ways, according to their flexibility, 

and thus achieve a specific behavioral change efficiently.  

More specifically, in this section we refer to “system efficiency” as the maximization of 

Social Welfare, which is defined as the aggregated users‟ welfare (AUW) and relates to 

the difference between the users‟ satisfaction from electricity consumption and the users‟ 

bills. 

The challenge lies in the fact that each user‟s satisfaction function is private and not 

known to the ESP, while users are generally considered as selfish, which means that each 

one opts for maximizing her own welfare, which is not necessarily aligned with the 

system‟s objective.  

Moreover, for the use cases of the ESP that we consider, it is very important that a DSM 

algorithm also exhibits two positive externalities apart from efficiency. Those are:  

1) Reduction of the system‟s cost, which relates to systems with: higher energy 

efficiency, more stable and sustainable networks, lower capital expenditure in 

overprovisioned grid facilities, lower CO2 emissions etc. 

2) Fair allocation of the system‟s resources among the users. This is particularly 

important for the business cases considered, because all users will remain 

under the ESP, only if they know that they get a fair percentage of the benefits 

that they have incurred in the first place. In our case, we want to allocate the 

system‟s energy savings to the users that provoke those savings.  

In such an environment, it is the job of the ESP to set the rules of energy trading in a 

smart way, such that: the system possesses the budget-balance property; selfish users‟ 

actions bring the system to an equilibrium; and their deliberate choices bring the system 

to an outcome with desirable properties namely high users‟ welfare (KPI-2.2.1), low 

system‟s cost (KPI-2.2.2), fairness (KPI-2.2.3). 

Designing such rules is studied by a special sector of game theory, called „mechanism 

design‟. The desirable properties above constitute the mechanism‟s key performance 

indicators (KPIs) and they are generally adopted widely in the literature. 

A brief overview of energy pricing models for DSM started with the enhancement of the 

traditional flat electricity tariff (fixed price per consumed unit of energy and identical at 
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all time instances) with inclining block rates (IBRs) [MOHS10], [PALE11]. In IBR, the 

price of each unit depends on the total amount of energy a customer consumes. IBR was 

the first simple solution to incentivize energy curtailments, usually during a large time 

interval. A more sophisticated approach is time-of-use (ToU) pricing where prices are 

predetermined based on prediction of the relationship between aggregate production and 

consumption. However, TOU is insensitive to the users‟ response to the prices and often 

creates reverse peaks. Finally, real time pricing (RTP) mechanisms create the price per 

energy unit depending on the total cost of energy production and the total consumption. 

2.2.1 Related Work 

Liberalized electricity markets, smart grids and high penetration of RES led to the 

development of novel markets whose objective is the harmonization between production 

and demand (i.e. flexibility markets). This necessitates the development of novel pricing 

schemes able to allow ESPs to exploit flexibility in the energy consumption curves of 

their consumers. 

The general idea described above has been approached in different ways in the literature, 

including ex-post [MHAN16] & ex-ante pricing methods [LI10], [SAMA10], 

[SAMA12], [CHAI14], [QIAN13], [SOLI14], [RAD10], [MA14], [DENG14], 

[BAHA13], [BAHA14], [VUPP11], [YAAG15]. Many pricing mechanisms [GATZ13], 

[LI10], [SAMA10], [SAMA12], [CHAI14] opt for system efficiency (KPI-2.2.1), but at a 

risk of either running a deficit or extracting a large surplus from the users as explained in 

[CHAP17] and are not compatible with the emerging environments described. In 

particular, the authors in [LI10] [SAMA10], achieve an efficient allocation, but the 

system does not possess the budget-balance property described in the introduction. 

Moreover, users are considered to be price-takers, that is, they do not consider the effect 

that their choices have on the price. In [SAMA12], the users are considered as price-

anticipators and the efficient Vickrey-Clarke-Groves (VCG) mechanism is applied, which 

is inherently not budget-balanced and additionally requires a simple and well-defined 

form of the user‟s utility function in order to remain tractable.  

Another class of DSM algorithms [CHAP17], [MOHS10], [QIAN13], [SOLI14], 

[RAD10], [MA14], [DENG14] have been designed to guide the users‟ behavior towards 

more desirable demand profiles. This class of algorithms possesses the budget-balance 

property. In particular, in [MOHS10], [SOLI14], [RAD10], [DENG14], the authors opt 

for minimizing the system‟s cost (KPI-2.2.2), under the constraint that each load will be 

fully satisfied within its defined interval. The efficiency of the system is defined as the 

minimization of system‟s cost. In this class of studies, the users‟ dissatisfaction from 

deviation from their desired consumption profile is not modeled. In [CHAP17], [MA14], 

where budget-balanced mechanisms are also proposed, the model does not capture load 
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curtailments, but only load shifting. Moreover, none of the above works considers the 

property of fairness.  

Finally, a third class of studies [BAHA13], [BAHA14], [VUPP11], [YAAG15], opts for 

enhancing the system‟s fairness (KPI-2.2.3). In particular, the authors in [BAHA13] 

propose a pricing model based on the principle that each user should be billed according 

to her contribution to the system‟s cost. The Shapley value from cooperative game theory 

is used to express this contribution. The same authors in their later work [BAHA14] 

argue that the model of [BAHA13] sacrifices efficiency to achieve fairness. In 

[BAHA14] the trade-off between fairness and cost minimization in the design of pricing 

mechanisms is assessed. However, the users are assumed to distribute evenly their load 

throughout the eligible timeslots and the user‟s satisfaction is again disregarded. 

Thus, through the study of the literature, one can confirm that the generally desired KPIs 

in the design of a pricing mechanism are the ones that we presented in the previous 

section and adopt in this section‟s context. 

As analyzed in the previous paragraphs, the models proposed so far in the literature cope 

only with one or two of the above KPIs. To the best of our knowledge, there is no prior 

work that directly assesses the issue of designing a pricing mechanism that achieves an 

attractive trade-off among all three of the above KPIs. Our approach for the design of 

such a pricing mechanism is to adopt the concept of personalized–real time pricing (P-

RTP).  

Motivated from the above, the major contributions of this section are: 

1) A P-RTP algorithm that reduces the energy cost without sacrificing at all the 

aggregated users‟ welfare. Moreover, the proposed scheme achieves a fair 

allocation of the energy cost savings among the users. 

2) An analysis on the proposed algorithm‟s convergence properties. 

3) A comparison of the proposed P-RTP with the existing RTP mechanisms that 

testifies its superiority according to the aforementioned perspectives. 

4) An analysis on the findings with useful guidelines towards the design of pricing 

mechanisms in open and competitive markets. 

2.2.2 System Model & Problem Formulation 

In this section, we describe prerequisites that will facilitate the presentation of our pricing 

mechanism and existing widely accepted models (i.e. user model, energy cost model) that 

will act as the test bed in order to objectively evaluate and compare the proposed pricing 

mechanism. 
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We consider a set (community)             of   energy consumers (users). Each 

user is equipped with a smart meter, tracking his/her consumption at all time instances 

and an energy management system that schedules his/her consumption. We consider a 

finite time horizon, which is divided into   time slots             of equal duration. 

An ESP, in coordination with the distribution system operator (DSO), installs the 

necessary equipment to each user and is responsible for the possible failures and 

upgrades. Various parties, such as Utilities and DSOs, may act as ESPs, depending on the 

legislation of each country. A communication network lies on top of the electric grid and 

all parties are able to exchange messages with each other. 

The consumption of user i in timeslot t is denoted as   
 , where       and      . The 

comfort of user   at a time-slot   is expressed by a utility function   
    

    
  , where   

  is 

an appropriate elasticity parameter. The utility function expresses, in monetary units, how 

much user   values the consumption   
  at time t. To better characterize the properties of 

the utility function, the DSM literature draws on two concepts from microeconomics 

[MAS95]. The first concept is that of diminishing returns, which, in our context, means 

that:  

1) The more a user consumes, the more utility he/she gains  (  
    

    
   is increasing 

with   
 ). 

2) The more a user consumes, the less the added utility (  
    

    
   is concave). 

The second concept relates to demand elasticity, defined as the rate of change of the 

utility function with respect to small changes in the consumption quantity. This is 

expressed through parameter   
 , where low values of   

  correspond to elastic demand 

(very responsive to price), whereas higher values of   
  correspond to inelastic demand 

(less responsive to price). The dependence of   
  on i and t captures the fact that different 

users, at different times, value consumption differently. 

 In what follows, we will sometimes use the shorthand notation   
 ̇, with the dot notating 

that it is a function. In the evaluation of the results, we show that the performance of the 

proposed mechanism is not affected by the particular choice of   
 ̇ as long as it is based 

on the two concepts presented above. 

By the concavity of   
 ̇, it is clear that there is a saturation point beyond which utility no 

longer increases with   
 . This is regarded as the user‟s maximum desired consumption 

and is denoted it as   
 ̃. The respective   

 (  
 ̃    

 ) is denoted as   
 ̃. In this section, we 

assume that the user‟s   
 ̃ is known to the ESP (e.g. through statistical data and machine 

learning) but the particular form of the user‟s utility function as well as the user‟s 

elasticity parameter   
 , remain private . The model can also be extended to model the 

comfort derived from the consumption of each electric appliance, in which case the total 

comfort of the user would be the sum of concave functions for the different appliances 
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that the user possesses, and would again be concave. For the scope of the current work 

and without loss of generality (as in [GATZ13], [MOHS10], [SAMA10], [SAMA12], 

[BAHA13], [BAHA14], we assume only one continuous, dispatchable and positive load 

  
    for user i, representing the sum of the consumptions of all his/her electric 

appliances.  

The supply side is usually modeled either as a game (e.g. a market that admits to a Nash 

equilibrium [CHAI13], [CLI17]) or (more simplistically) as a cost function that 

approximately relates the aggregate demand with the cost of the energy supplied. In this 

work, we adopt the latter approach, in which the system‟s cost (denoted as   
 ) depends 

on the total load ∑   
 

      of the users in set N at timeslot       through an increasing 

convex function: 

  
    ∑   

 
          (2.2.1) 

The cost function is commonly approximated by a quadratic cost function in the 

literature: 

  
    ∑   

 
           (2.2.2) 

where   is a cost parameter. Equation (2.2.2) represents the cost for the ESP to buy an 

amount of energy equal to the total demand. As described in the introduction, the system 

needs to be budget-balanced (the sum of the bills of the participating users needs to be 

equal with the total system‟s cost). The aforementioned function offers a fair test-bed in 

order to evaluate and compare pricing mechanisms and for this reason it is widely 

accepted. 

The objective at each timeslot t is to find the users‟ consumptions  ̂ 
          that 

maximize the system‟s efficiency (maximize the user comfort and minimize the energy 

cost):  

           ∑ [  
 ̇]      

        (2.2.3) 

       ∑ [  
   

 ]       
               (2.2.4) 

Constraint (2.2.4) expresses the budget-balanced (non-profit) property. We present a 

model that deals only with load curtailments, implying a memoryless system. This means 

that the scheduling problem can be solved for the time horizon  , by solving for each 

timeslot independently. In order to solve (2.2.3), it is required from all users in N to 

disclose their comfort functions to the ESP and also accept a direct ESP control over their 

loads. Since these requirements are not generally met in practice, the research community 

focuses on iterative pricing mechanisms that converge to equilibrium (set of prices) that 

satisfy the KPIs analyzed in the introduction. Considering (2.2.4), the prices set by the 

ESP, are meant to efficiently distribute the energy cost to the users and thus inherently 

depend on   
 .   
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At the user‟s side, we consider selfish users that choose their   
 , so as to maximize their 

own welfare under the ESP‟s pricing: 

  
           

       
      

 ̇      (2.2.5) 

Equation (2.2.5) implies a price-taking user. This models a user that either is very small 

compared to the aggregated system‟s consumption and therefore his/her choice of   
  

does not affect the price    or does not understand/consider the effect of his/her choice of 

  
  at price   . In that case, (2.2.3) can be solved via dual decomposition, where the ESP 

applies an efficient algorithm for finding the optimal set of prices by exchanging 

messages with each user (as presented in [SAMA10]). In contrast, we consider price-

anticipating users, who further consider the effect of their   
  on the price. Thus, user‟s 

problem (2.2.5), is converted into: 

  
           

      
 ̇        

     
     

         (2.2.6) 

where the expression to be maximized is referred to as the user‟s welfare. Moreover, 

vector    
  denotes the consumptions of users other than  . This, latter co-relation 

essentially motivates a game   where game participants are users      ; a user‟s strategy 

is his/her choice of   
 ; a user‟s payoff is his/her welfare.  

Notice that the VCG mechanism is proved to converge to the unique allocation  ̂ 
  that 

optimizes (2.2.3). However, constraint (2.2.4) excludes VCG from consideration, as 

argued in the related work.  

Moreover, efficient allocations in general, require disclosure of the users‟ utility 

functions to the ESP. Such an assumption would make the model convenient for 

analytical analysis. It is however a strong assumption and it doesn‟t properly capture the 

intricacies of household energy usage, while also raising privacy as well as representation 

issues. In contrast, we chose to remain agnostic to the particular form of the user‟s utility 

function. Because of this latter property, the efficiency of equilibria cannot be justified 

for the general case. Nonetheless, we focus on designing a pricing mechanism, such that: 

1) Game   converges to a Nash equilibrium (NE). 

2) The system at equilibrium, achieves an attractive trade-off among efficiency, low-

cost and fairness.  

2.2.3 The state of the art approach 

We start the description of our personalized pricing mechanism by first presenting the 

existing RTP approach.  
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For timeslot      , at the ESP-level, the users‟ scheduled energy consumptions   
  are 

taken as input and the price    of timeslot t (electricity per unit price, which under RTP is 

common for all users i) is calculated according to: 

   
  

 

∑   
 

   
           (2.2.7)    

Equation (2.2.7) leads to a user‟s bill which is proportional to the user‟s consumption 

(
  

 

∑   
 

   
  

 *, which ensures that the system is budget-balanced (the users‟ bills equals the 

total energy cost).  

At user-level, users sequentially choose their   
  from (2.2.6). During this calculation,    

  

is considered fixed. Notice that although, user   might be agnostic of      
     

  , he/she 

can however detect the pricing trend by exchanging messages with the ESP. More 

specifically, by trying different   
  and receiving the respective   , the user can detect 

     
     

  ,by applying some polynomial fitting algorithm. This approach allows for a 

distributed implementation, which is in line with state of the art requirements [BAHA14], 

[LIU17], [STEP15].        

 After a limited number of sequential iterations (calculations) of each user‟s updated   
 , 

the system converges to the equilibrium price where no user wishes to further modify 

his/her   
 . A user‟s final   

  at equilibrium is denoted as  ̂ 
              . The procedure 

is described in Algorithm 2.2.1 (where k denotes the algorithm‟s iterations): 

Algorithm 2.2.1  RTP 

Initialization:  

Set k=1,   
      

 ̃          and    
  

 

∑   
 

   
 

 Repeat 

            for each       

                        repeat 

                            Calculate    from (7) 

                            Calculate   
     

 by solving (5) 

                        until convergence    

            end for 
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   Calculate divergence          |  
        

   |  

   Set k = k+1 

   until     (desired accuracy) 

End  

2.2.4 Personalized Real-Time Pricing approach 

In this section we propose the concept of P-RTP, meaning that the price will no longer be 

a scalar    (same for all users      ) but each user will receive a different price   
 . 

From the class of all possible P-RTP mechanisms, we formulate a particular mechanism 

that is designed to perform well, in the three KPIs that described. The proposed 

mechanism allocates lower prices to those users who consume a lower percentage of their 

desired consumption (  
 ̃), compared to users who consume a higher percentage of their 

desired consumption. In particular, for a user   and a timeslot   we allocate the price 

  
  according to the degree to which the user curtails his consumption. Elastic users 

receive lower prices and inelastic users receive higher prices. It is highlighted that P-RTP 

assumes the knowledge of the desired energy consumption (  
 ̃). In case that we allow for 

a user to declare a fake (larger) desired consumption, P-RTP would favor him. Thus, this 

pricing mechanism is suitable for automated environments (through ICT systems) where 

user do not manually declare their consumption. On the other hand the exploitation of the 

desired energy consumption leads to very effective pricing mechanisms. In this section, 

we present a pricing model for the use case of automated environments. 

In order to achieve prices with a discount proportional to the percentage of curtailments, 

we set: 

   
     ̃      ̃      

     
 ̃      

 ̃                (2.2.8) 

where   ̃ is introduced in order to tune the prices, so that constraint (2.2.4) holds. Let us 

denote as   
  the percentage of the curtailment of user i at time instant t: 

  
     

     
 ̃      

 ̃    (2.2.9) 

Thus, (2.2.8) through the use of (2.2.9) becomes: 

  
     ̃     

            (2.2.10) 

Now through the use of (2.2.4) we have: 

  ̃  
  

 

∑ [  
      

  ]   
                (2.2.11) 
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If we now combine (2.2.10) and (2.2.11) we have: 

  
        

    
   ∑ [  

      
  ]     (2.2.12) 

In the proposed mechanism, we iteratively solve (2.2.6) and calculate the prices from 

(2.2.12). The process is described in Algorithm 2.2.2. 

Algorithm 2.2.2  P-RTP 

Initialization: set k=1,   
      

 ̃        

Repeat 

            for each     

                            repeat 

                                        Calculate   
  from (12) 

                                        Calculate   
     

 by solving (6) 

                            until convergence 

            end for 

   Calculate divergence        |  
        

   |  

   Set k = k+1 

until                        

End 

 

Theorem 2.2.1: Algorithm 2.2.2 converges to a NE after a finite number of iterations via 

best response dynamics. 

Proof: the strategy for the proof of the convergence of P-RTP is to find a function that is 

bounded from above and increases in every iteration of P-RTP. We consider the AUW 

according to (2.2.13). 

    ∑ (  
 ̇     

   
 )      (2.2.13) 

    is bounded from above (the theoretical maximum is in the case in which every user 

consumes all the energy that (s)he needs and the price is zero). It remains now to prove 

that AUW increases in every iteration of P-RTP. Note that we cannot study the 



40 

 

monotonicity of     by exploiting its derivative, because no assumption is made on the 

differentiability of   
 ̇.  

Consider an arbitrary instance of game Γ where it is user  ‟s turn. User  ‟s state is   
  and 

the state of users‟ other than   is fixed. We denote the latter as   
                 .. 

Holding   
  fixed, suppose   deviates to   

 ̂. The calculation of the change in     breaks 

down in the calculation of the welfare of user   (2.2.6) and the welfare of users in set  . 

According to (2.2.13) and the recent notation in order to prove that     increases in 

every iteration of P-RTP it must be proven that: 

 (  
 ̂)    

 ̂  
 (  

 ̂    
 )  ∑  (  

 )    ∑   
   

 (  
 ̂    

 )        
     

   
 (  

    
 )  

∑  (  
 )    ∑   

   
 (  

    
 )     (2.2.14) 

Best response dynamics means that each user at any instance selects a strategy that 

maximizes her/his own welfare. So, since user   deviates, it holds by definition: 

  (  
 ̂)    

 ̂  
 (  

 ̂    
 )      

     
   

 (  
    

 )   (2.2.15)  

From (2.2.13) and (2.2.14), it suffices to prove that: 

∑   
   

 (  
    

 )    ∑   
   

 (  
 ̂   

 )      (2.2.16) 

We present here the case for   
 ̂    

 . The exact same proof holds symmetrically for 

  
 ̂    

 . Since we have   
 ̂    

  without harm of generality: 

  
 (∑   

 
      

 ̂)    
 (∑   

 
      

 )  (2.2.17) 

which means that the system cost has increased by: 
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In addition the bill of user i has increased by: 

       
 ̂ (  

 ̂    
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  (  
    

 )   (2.2.19) 

We will study now the relation between     and   . In case it is        it means that 

user   pays more than the cost difference that she/he creates and thus the new bills of 

other users are lower in the new state which means that (2.2.16) holds. In more formality, 

because of the budget-balance property of P-RTP, it is: 

     (∑      )        (2.2.20) 

which means that (2.2.15) holds for: 

             (2.2.21) 

By replacing (2.2.12) in (2.2.21) it is: 
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After replacing   
  from (2.2.9) and doing some calculus, we have: 
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Observe that (2.2.23) can be written in the form            
 ̂      

   with: 
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Since it is   
 ̂    

 , it suffices to show that 
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After replacing (2.2.2) and (2.2.23) in (2.2.24) and differentiating we have: 
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which reduces to 
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Observe that 
  

  

  
 ̃
   (since the denominator is by definition the upper limit of the 

nominator). We have that: 
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Thus, because of (2.2.28) there is a feasible region of   
  

[
 
 
 
 (∑ (

(  
 )

 
 

  
 ̃

)   )   
 ̃

(∑   
 

   )
   

 ̃

]
 
 
 
 

, for 

which condition (2.2.16) holds.  

2.2.5 Performance Evaluation and Comparisons 

In this section we present simulation results to demonstrate the proposed P-RTP 

mechanism‟s performance in the KPIs sought. In order to have a benchmark for 

comparisons, we compare with the simple RTP mechanism (Algorithm 2.2.1). The 

evaluation considers scenarios under a variety of assumptions for the values of the 

parameters in the two models. 

In order to evaluate mechanisms, the research community usually models end users as 

follows: a concave and increasing function of   
  and   

  with a constant maximum value 

after a saturation point, has been widely adopted: 
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     (2.2.29)  

The utility function‟s general form is assumed to be the same for all   and  . In what 

follows, we present simulations for a representative set of 100 users. Moreover, the 

optimization problem can be solved for each timeslot independently. Thus, without loss 

of generality, we run the simulation for one timeslot (   ) and present the results. 

Parameter   
 ̃ expresses the user‟s maximum utility (i.e.utility at   

    
 ̃) and was set to 

  
 ̃    

 (  
 ̃)

 
. Unless stated otherwise, parameter   was set to       . The flexibility 

parameter   
  for each user i was selected randomly in the interval [0.1, 5]. These choices 

are in line with the literature [LI10], [SAMA10], [SAMA12], [CHAI14]. 

In correspondence with the three KPIs, we define four index metrics for the evaluation: 

1) Aggregated users‟ welfare (AUW) is a straightforward index for system 

efficiency (KPI-2.2.1). 

     ∑    
 ̇     

    
        (2.2.30) 

2) The allocation‟s cost   is also a straightforward index metric of system cost 

KPI-2.2.2. 
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We evaluate P-RTP and simple RTP with respect to these two KPIs for different values 

of   and   
  in order to show that the performance of our mechanism does not depend on 

the parameters of the system. KPI-2.2.1 and KPI-2.2.2 are generally mutually-conflicting; 

for example, a low system‟s cost can lead to lower users‟ welfare (because of lower 

consumption) unless we reward the users with lower prices to compensate for the users‟ 

welfare. We define behavioral reciprocity (  ) as a metric that captures this trade-off: 

3) Behavioral Reciprocity     of user i  is the degree of correlation between the 

behavioral change of i and the reward that i gets for it: 
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represents the discount achieved, i.e. the system cost reduction, for which user   is 

responsible and:  
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represents the discount received, i.e. the difference between the user‟s bill with the 

original system‟s state (  
    

 ̃  ) and the actual user‟s bill (after applying RTP or P-

RTP). Values of     close to 1 indicate a better trade-off between AUW and G, and thus 

a more fair pricing mechanism. 

4) User i welfare deviation (   i) is defined to capture the degree of the 

deviation of user i from the average user‟s welfare:  

      
*(  

 ̇    
    

 ) 
   

 
+

   

 

            (2.2.35) 

Its scope is to depict that a mechanism‟s performance, does not come with the expense of 

treating a subset of users unfairly. A low UWD means that there are no users with very 

high welfare and users with very low welfare (which means that they will leave the ESP 

in case of competition or they will be very unhappy in case of monopoly). Thus, the 

objective here is to keep UWD low.  

Having defined the metrics of interest, we now proceed to the presentation of the results 

obtained. In all figures we normalize the metric by dividing with the highest metric value. 

Figure 2.2.f1 compares the energy costs ( ) with RTP and P-RTP pricing under various 

values of parameter  .  
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Figure  2.2.f1  Energy costs G as a function of cost parameter   

As is obvious from Figure 2.2.f1, the proposed P-RTP reduces the cost of energy for 

every value of  , thus showing that P-RTP indeed manages to achieve a lower system 

cost, regardless of the cost function we use. This is because P-RTP leads to smaller load 

level than RTP. In order to show that the results are not affected by the elasticity 

parameter we use, we multiply   
  by a factor (omega factor)    in [     ]. According to 

these, Figure 2.2.f2 compares the energy costs ( ) with RTP and P-RTP pricing as a 

function of   . From Figure  2.2.f2 we observe that P-RTP always brings a reduction in 

the energy cost. Thus, its performance is consistent and significant for any choice of the 

flexibility parameter for the participating users. 
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Figure 2.2.f2 Energy costs (G) of P-RTP and RTP as a function of omega factor (    

The reason behind the reduction of the energy costs is clarified through Fig. 3, where we 

present the cumulative distribution function (CDF) of the     metric exhibited by the 

users i in N. The dotted vertical lines represent the average     of all users. As is 

depicted in Figure 2.2.f3, under P-RTP, users obtain benefits (discounts received) 

according to their behavioral change (discount achieved). In more detail, we observe that 

P-RTP not only offers a better trade-off between     and   (the average    for P-RTP 

is closer to 1 than the average    for RTP) but also results into a much narrower 

distribution of users around the average. This means that the behavioral change that the 

users offer is better and more fairly reciprocated. In other words, with the proposed P-

RTP, inflexible users do not benefit from the actions of flexible users. This implies that, 

with P-RTP, flexible users have stronger motives to adapt their behavior, as they know 

that they will benefit from such an adaptation, while non adaptive users will not receive 

benefits. 
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Figure  2.2.f3 CDF of metric BRi among participating users under RTP and P-RTP 

pricing 

The following figures show that the reduction in the energy cost is achieved without 

sacrificing at all the user‟s welfare. In more detail, Figures 2.2.f4 and 2.2.f5 present 

metric    , for the RTP and the P-RTP mechanism, as a function of   and    

respectively. 
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Figure 2.2.f4 Aggregated users‟ welfare AUW under P-RTP and RTP as a function of 

cost parameter   
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Figure 2.2.f5 Aggregated users‟ welfare AUW under P-RTP and RTP as a function of the 

omega factor (  ) 

By comparing Figures 2.2.f1 and 2.2.f4, one can see that, the system‟s cost has been 

reduced and the system‟s fairness has been enhanced, without loss on users‟ aggregated 

welfare, that is without sacrificing efficiency. This is rationalized by the fact that P-RTP 

allocates financial savings to the users that provoke the cost reduction and not to the 

inflexible ones. In comparison with the simple RTP model, this leads to an increase in the 

flexible users welfare and a decrease in the inflexible users‟ welfare, thus the total     

remains the same.   

Though the     metric is no better with RTP, we also want to make sure that this 

benefit does not come with a sacrifice of welfare from a particular subset of users. In 

Figure 2.2.f6, we present the CDF for     . The dotted vertical lines represent the 

average     of all users in the set N. The averages coincide with each other while the 

distribution with P-RTP is insignificantly narrower. 
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Figure 2.2.f6 CDF of metric UWD in P-RTP and RTP 

2.3 Conclusions and Future Work 

In this chapter, we took on the case of providing real-time demand response services. We 

proposed two schemes, each suitable for a particular business model. In the first 

subsection, we showcased the inefficiency of previous state-of-the-art approaches, which 

either do not consider user incentives, or adopt a direct-revelation approach, respectively 

leading to either lack of truthfulness and consequent inefficiency, or to lack of privacy 

and scalability. To overcome these shortcomings, we presented a novel iterative auction 

mechanism based on Ausubel‟s clinching auction, that implements the truthful and 

efficient VCG outcome but also allows for a distributed implementation and a privacy-

preserving communication protocol. Our theoretical and simulation results verified that 

the proposed scheme combines the desired properties with very good performance and 

small overhead. Future work can further extend user rationality to also anticipate future 

DR-events based on local information and learning techniques. 

In the second subsection, we considered a business model of a budget-balanced 

aggregating entity serving as ESP for its registered users. We proposed a P-RTP 
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mechanism and evaluated its performance against that of the classic RTP mechanism in 

terms, of the most well established KPIs derived in the literature. In order to focus on the 

merits of the main idea, we kept the system model simple so as not to harm the generality 

of the results. Future research can extend the results to more advanced system models 

that include: a) the possibility of load shifting in addition to load curtailment; b) RES and 

energy storage systems (ESS).  

In addition, the user‟s utility function and the way the user makes decisions is still an 

open area for research. Distinct models for different devices could be considered and 

applied under the P-RTP paradigm. Moreover, in electricity markets, different pricing 

mechanisms (P-RTP, RTP, flat-price, etc) are to be offered to real users as an option, 

making the co-existence of different pricing mechanisms for different users in a given 

market an interesting problem. Finally, the new prospects of electricity pricing offered by 

P-RTP will impact, if adopted, the sizing (investment cost) of RES and ESSs. We believe 

that the integration of RES and ESS sizing with P-RTP mechanism design may give rise 

to new capabilities for self-sufficient micro-grids and advanced demand side 

management. 
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Chapter 3 

PERIOD-AHEAD PRICING AND LOAD SCHEDULING  

In this chapter we turn our attention to problems of the Period-Ahead scheduling use 

case. In this use case we consider a scheduling horizon ahead, and take on the problem of 

designing efficient mechanisms that achieve an efficient scheduling of the users‟ profiles. 

In particular, section 3.1 presents a near optimal mechanism for satisfying coupling 

constraints in an environment where users act strategically. Section 3.2 studies the 

problem of committing to the agreed schedule in delivery time. 

3.1 Near-optimal demand side management in electricity markets with 

coupling constraints 

Residential participation in DSM is commonly envisaged via aggregated participation 

because of implementation and scalability issues. An Electricity Service Provider (ESP) 

is considered for the role of aggregating and coordinating the users‟ actions. Applying 

direct control over the end-users‟ loads is not an attractive option since it comes with 

massive consumer dissatisfaction and arbitrary load prioritization, which leads to loss of 

social welfare. Along with the trend of liberalization of the electricity market, principles 

of economics that are already applied in most markets are now becoming more relevant 

to the electricity market as well. Thus, the state of the art approach to DSM is to motivate 

electricity consumers towards economically efficient consumption patterns by providing 

monetary incentives. That is, consumers are expected to modify their consumption 

patterns voluntarily in response to pricing signals.  

Nevertheless, each user is typically trying to optimize his/her own objective, which may 

or may not be in line with the social objective. A particular stream of game theory called 

mechanism design is essentially the tool for designing rules (namely, an allocation rule 

through which end users determine their consumption pattern, and a billing rule through 

which their bills are determined) for systems with strategic participants holding private 

information, such that the system at equilibrium has good performance guarantees.  

Modern ESPs in the era of the smart grid have to embed DSM in their business models. A 

DSM architecture includes the mechanism (allocation rule and billing rule) through 

which the DSM participants (namely, the users and the ESP) interact as well as the local 

algorithm through which each participant decided his/her actions. Through a carefully 

designed DSM architecture, we can hopefully bring the system to an efficient state, even 

though the designer does not directly control the decision variables. According to our 
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requirement analysis [SED6.1], a DSM architecture has to fulfill three properties, 

described in the following subsections. 

A. Welfare Maximization 

The first property is the maximization of the welfare (i.e. the aggregated users‟ utility). 

The utility of a user/energy consumer is defined as the difference between: i) a metric 

(noted here as valuation function) that quantifies how much the user valuates/appreciates 

a specific energy consumption profile/pattern and ii) the bill that the user has to pay for it. 

Maximizing the welfare through mechanism design can be relatively easy or really 

challenging, depending on the assumptions made about the actual users‟ behavior and 

preferences. Making strong assumptions on the form of user‟s preferences makes the 

system conducive to theoretically strong results but the validity of these assumptions is 

often questionable [CHAP13]. Also, a common assumption regarding the user‟s behavior 

refers to the user being modeled as a price-taker, which means not considering the effect 

of his/her own decisions on the electricity price. While this might be relevant for large 

systems, in emerging energy communities and decentralized systems this assumption no 

longer holds and the user might be a price-anticipator. The latter user model only makes 

things more complicated when it comes to welfare maximization and it is avoided in most 

of the literature (see [SAMA12] and references therein). In contrast, in the present section 

users are price anticipators. 

Finally, the aggregated users‟ utility alone is not enough. A typically desired property is 

the property of individual rationality. A mechanism is called individually rational if each 

and every user benefits from participating in it. In other words, at equilibrium, each user 

is better-off participating in the DSM, rather than not participating. 

B. Budget-balance 

We consider a benevolent ESP that acts on behalf of the users and not against them. Τhe 

ESP is not a profit maximizing entity but a representative of the users and their interests. 

Budget-balance refers to the fact that the mechanism is not required to subsidize the DSM 

participation nor does it extract a surplus from the users, but only divides the system‟s 

energy cost among users. Indicative use cases of this business model are: i) the case of 

energy cooperatives [RESCOOP], ii) public companies [ECOPOWER] around public 

authorities acting as ESPs, iii) private monopolistic companies with regulated profit 

margins, iv) virtual associations of users [VIMSEN] v) islanded energy communities and 

vi) any other use case in which the ESP‟s primary interest is the welfare of the users in its 

portfolio. 

C. Constraint Satisfaction 

The third property is the coordination of the aggregated users‟ consumption in order to 

satisfy system-wide constraints. Such constraints indicatively aim to  
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Case a) keep the aggregated consumption below a certain threshold at all times or  

Case b) keep the system‟s overall cost within certain margins.  

The necessity of satisfying such constraints is met in many use cases in modern smart 

grids which include: 

1) Enhancing the self-sufficiency of the community 

2) Keeping islanded microgrids economically viable [STAD16] 

3) Mitigate suppliers‟ exercise of market power by taking coordinated action to 

reduce the demand in the face of such situations [BORE00] 

4) Meeting the physical network‟s constraints by implementing the DSO‟s orders 

5) Enhancing the community‟s participation in flexibility markets [USEF], [DNV] 

6) Reducing CO2 emissions and respecting modern legal frameworks towards 

energy cost reduction [DIREC12] 

7) Enhancing RES penetration by adapting demand to the intermittent generation 

[POLICY] 

From a technical point of view, satisfying a system-wide constraint can be a challenge. In 

particular, constraint satisfaction typically depends on the aggregated consumption 

profile of end users. This couples the system‟s decision variables that are controlled by 

different users, which brings a fair amount of complications in the underlying n-person 

game [LI14]. The proposed DSM architecture can be used for both cases a) and b) of 

constraints described above. In this section, we present a theoretical analysis for case a), 

which is the most difficult of the two but in the evaluation section we present simulations 

for both cases. 

Further requirements might apply depending on the context and the particular business 

model of the system. Designing a DSM architecture that exhibits specific properties 

tailored to each specific business model is an open research topic. 

Summarizing the above, the contribution of this section is the design of a DSM 

architecture that is able to meet system-wide constraints (e.g. energy cost reduction) and 

at the same time achieve users‟ welfare very close to optimal. The proposed scheme also 

preserves both the budget-balance and the individual rationality properties. 

3.1.1 Related Work 

In the DSM context described above, we set three main requirements for the proposed 

mechanism. We need a DSM architecture that: a) achieves close to optimal users‟ 
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welfare, b) preserves the budget-balance property, and c) provides the ESP with the 

ability to control the overall consumption cost (satisfaction of a system constraint).  

The welfare-maximizing requirement is highly dependent on user modeling. That is, a 

theoretically optimal allocation can be achieved, only under certain assumptions on the 

users‟ preferences representation. DSM studies can be categorized into three main 

branches with respect to how they model user preferences. 

The first branch includes many works (e.g. [MHAN16], [TUSH15], [XCHEN13], 

[SOLI14], [BAHR14], [MA14], [BAHA17], [ZHAO13], [SAMA13], [RAD10], 

[BAHA13]) that consider users who exhibit no preference towards the consumption 

pattern, as long as their whole load is satisfied within a defined time interval. In simple 

words, users set constraints on their consumption but there are no preferences among the 

time intervals as long as the consumption constraints are met. 

The second branch of the literature (e.g. [GATZ13], [YAAG15], [WANG17], [QIAN13], 

[LI10], [MOHS10], [SAMA10] and [DENG14]), considers user preferences and price 

sensitive consumption patterns. The study in [YAAG15], approaches the solution with a 

regret-based algorithm, [QIAN13] with Simulated Annealing, and the rest of the works 

typically formulate a convex optimization problem and reach the optimal solution by 

solving its dual problem. During this process, the ESP and the users solve their local 

problems and exchange messages. Under the assumption of price-taking users, the final 

allocation is welfare-maximizing. 

In the third branch (e.g. [SAMA12], [NEKO15]) this assumption has been relaxed and 

users are considered as price-anticipators, that is, they consider the effect of their actions 

on the prices. In this case, the dual approach no longer achieves welfare maximization, as 

analyzed in [JOHA07, chapter 21]. So, the studies in this third branch opt for a Vickrey-

Clarke-Groves (VCG) mechanism. However, the practical applicability of the VCG 

mechanism is highly debated because it is a direct mechanism (requires users to reveal 

their preferences to the ESP), which raises not only privacy but also representation issues 

(see [CHAP17] for a more detailed analysis). 

From the above three user model research branches, only the first one preserves the 

budget-balance property. The convex optimization approach typically ends up with the 

market-clearing prices and extracts a big surplus from the users, especially when the 

latter are price-takers. Also, the VCG mechanism is inherently not budget-balanced. 

Finally, constraint satisfaction complicates things when it comes to indirect mechanisms. 

This is because typical market-clearing approaches are often not suitable for constraint 

satisfaction, especially when the constraints couple the optimization variables. Thus, the 

works that induce some kind of controllability, either relax the welfare-maximization 

requirement [ALTH15], or the user preferences modeling [XCHEN13], or adopt a central 

optimization approach [ERDI17], [TANG14] with a consequent assumption of direct 
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control on user loads. Also, dual optimization approaches can apply some control on the 

consumption patterns by manipulating the prices, but that comes at the expense of high 

user dissatisfaction. 

In this work we present a DSM architecture for price-anticipating users that: i) achieves 

near optimal welfare (reaches 91%-99% of the optimal value), ii) is theoretically proven 

to preserve the budget balance and the individual rationality properties, iii) provides the 

ESP with controllability over the overall system‟s cost (which is a coupling and quadratic 

constraint). To the best of our knowledge, this is the first work to satisfy all three of the 

requirements described above.  

3.1.2 System Model 

We consider an electricity market comprised of an Electricity Service Provider (ESP) and 

a set             of self-interested consumers, hereinafter referred to as users. We 

also consider a discrete representation of time, where continuous time is divided into 

timeslots    , of equal duration  , where             represents the scheduling 

horizon. A user possesses a number of controllable appliances where each appliance 

bears an energy demand. We consider each appliance as one user, for ease of presentation 

and without loss of generality. Thus, we will use the terms “user” and “appliance” 

interchangeably throughout.  

User & Appliance modeling 

An appliance   requires an amount of energy for operation. For example, if an appliance‟s 

operating power is 1W, and     , then the energy that the appliance consumes in one 

timeslot of operation is    . This energy consumption is controllable via a decision 

variable   
 , which denotes the amount of energy consumed by appliance    , at 

timeslot    . Throughout this section we assume   
   . Each appliance   is 

characterized by  

i) a feasible consumption set, defined by a set of constraints on   
 , which is presented 

below and  

ii) a valuation function of the energy that   consumes throughout  . 

The aforementioned set of constraints includes upper and lower consumption bounds, 

restrictions on consumption timeslots and a coupling constraint. More specifically, 

appliance i cannot consume more than an upper bound   , that is, 

    
           (3.1.1) 

An appliance   also bears a set of timeslots     , in which its operation is feasible 

(e.g., an electric vehicle can be plugged in only at timeslots during which its owner is 

home): 
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                   (3.1.2) 

We denote an appliance‟s feasible consumption profile, as a vector 

      
    

      
     , where   

  satisfies (3.1.1), (3.1.2) and       denotes the 

feasible set for  ‟s consumption profile: 

       |   
                                       (3.1.3) 

Finally, the     matrix containing all users‟ consumptions at all timeslots is denoted as 

                 where           denotes the Cartesian product of the   ‟s. 

The valuation function is expressed in monetary units ($), and it is private (the user does 

not share it with the ESP or other users). It is generally a function of    and expresses the 

maximum amount of money that a user is willing to pay for the operation profile   . The 

valuation function        can take various forms, depending on the appliance. Let    

denote the m-vector with all of its elements equal to zero. We adopt some common 

assumptions based on microeconomics theory on the form of       : 

Assumption 3.1.1: Ζero consumption brings zero value to the user: 

    
         (3.1.4a) 

Assumption 3.1.2: Consuming more does not make the user less happy. That is, for two 

arbitrary vectors     ,    , we have:  

                                     (3.1.4b) 

Assumption 3.1.3: (concavity) for two arbitrary vectors     ,     and for any scalar 

     : 

                                            (3.1.4c) 

Finally, the user‟s utility is defined as the difference between the user‟s valuation for 

his/her consumption profile and the bill he/she has to pay for it: 

                        (3.1.5) 

System Cost & Electricity Billing 

The ESP is responsible for purchasing energy from the grid and delivering it to the users. 

We assume that the ESP faces a per-timeslot cost that is a strictly increasing function 

    ) of the aggregated consumption ∑   
 

   . In particular, quadratic or piecewise linear 

functions are widely used in the literature, to model the generation cost of marginal units. 

We present the case for quadratic cost: 

   ∑   
 

        ∑   
 

         (3.1.6) 

As explained in the introduction, we consider a use case where the ESP needs to be able 

to control the system‟s cost so as to keep it below a certain threshold     . Moreover, we 
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consider a benevolent ESP that acts on behalf of the users and not against them. We 

assume that, for the scheduling horizon, the ESP collects the financial cost   which is: 

  ∑    ∑   
 

           (3.1.7) 

by applying a billing rule       to each user. We state some requirements for      : 

Requirement 1: The sum of the users‟ bills should add up to the system‟s cost: 

∑              ∑   
 

            (3.1.8) 

Eq. (3.1.8) captures the budget balance property analyzed in the introduction. 

Requirement 2: At equilibrium, each user should have weakly positive utility.  

This is equivalent to stating that each user should be better-off participating in the 

mechanism rather than not participating. This is equivalent to the individual rationality 

property. 

ESP-user interaction & implementation 

We assume a communication network, built on top of the power grid, allowing the ESP 

and the users to exchange messages. In particular, in order for an indirect mechanism to 

be implemented, we assume that the users can respond to demand queries.  That is, the 

ESP provides the user with the necessary billing data and the user is expected to respond 

with his/her demand, that is, with the desired consumption vector    that maximizes the 

user‟s utility        given from Eq. (3.1.5). 

Since an efficient allocation involves a certain degree of coordination among users, it 

may take a number of message exchanges between the ESP and each user to converge to 

equilibrium. For this reason, we expect the user to respond to each demand query in a 

reasonable amount of time. A commonly accepted response time in computer science is a 

time that is, in the worst case, polynomial in bits of precision required. For the latter 

property to hold, the billing rule should be simple enough. A sufficient condition that 

fulfills this property is captured in a third requirement, which is: 

Requirement 3: The user‟s bill      , is convex in   . 

To justify the sufficiency of Requirement 3, recall the definition of the user‟s utility from 

Eq. (3.1.5). The first term is concave by Assumption 3. A convex       makes the user‟s 

utility        concave in   . Thus, the user‟s response to a demand query becomes a 

convex optimization problem, which is tractable. 

3.1.3 Problem Formulation 

In this section, we formalize the problem to be solved, which is maximizing the 

aggregated users‟ utility (Eq. 3.1.9): 
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∑ (            )      (3.1.9) 

while keeping the system‟s cost below a predefined threshold     . By using Eq. (3.1.8) 

in Eq. (3.1.9) we have: 

             ∑ [      ]     ∑ [   ∑   
 

    ]         (3.1.10) 

      ∑ [   ∑   
 

    ]              (3.1.10a) 

Constraint (3.1.10a) couples the variables   
  across both     and    . We will 

demonstrate that this is a standard convex optimization problem where a concave 

function is maximized over a convex set        that is defined by the inequality 

constraints (3.1.1), (3.1.10a) and the equality constraint (3.1.2).  

Lemma 3.1.1: The problem defined by Eq. (3.1.10) under constraints (3.1.1), (3.1.2) and 

(3.1.10a) is a convex optimization problem. In particular: 

i) The objective function      ∑ [      ]     ∑ [   ∑   
 

    ]    is concave in 

   . 

ii) Inequality constraint functions (3.1.1), (3.1.10a) are convex in      

iii) Equality constraint functions (3.1.2) are affine in     

Proof: 

i) Since ∑ [      ]    is a sum of concave functions in subspaces of  , it is concave in  . 

Let    be the all-ones n-dimensional vector and      the all-ones     dimensional 

matrix. Let also       
    

      
    be the vector containing all the users‟ 

consumptions in timeslot  . Then 

  (∑  
 

   

+         
                    

  

is convex because it is a quadratic function and      is positive semi-definite. Therefore, 

  ∑ [   ∑   
 

    ]    

is concave in  , as a sum of concave functions in subspaces of   and (i) is true because 

  is a sum of concave functions.  

ii) Constraint (3.1.1) is trivially convex and (3.1.10a) is also convex as shown in the 

second term of  . 

iii) Constraint (3.1.2) is trivially affine, for all    , in a subspace of  , and so it is also 

affine in  .                             

Thus, problem (3.1.10) is convex and has a global optimal solution. If valuations 

            
       were known, it could be solved through the use of an interior 
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point method. However,        is private. Moreover, we assume strategic users who opt 

for maximizing their own utility, that is, 

         
     

                 (3.1.11) 

The latter objective is not necessarily aligned with the social objective and depends on 

the billing rule      . Since the cost function couples the users‟ variables   ,     , a 

user‟s utility depends not only on her/his own profile but also on the other users‟ 

consumption choices. This latter fact brings problem (3.1.10) in the realm of game 

theory. In order to bring the system to an equilibrium that optimizes (3.1.10), we will 

draw on the concepts of mechanism design. 

We consider a game-theoretic framework, where the ESP announces the billing rule and 

users iteratively select their preferred allocations, thus formulating the following game  . 

Definition of game    

 Players: users in   

 Strategies: each user selects her/his   , according to (3.1.11) 

 Payoffs: a user‟s payoff is his/her utility as defined in (3.1.5) 

Since problem (3.1.10) naturally prioritizes users with higher valuation for energy 

allocation, we need to prevent users from faking a high       . This is the role of the 

billing rule. The Vickrey-Clarke-Groves (VCG) mechanism has been proven to be the 

unique welfare-maximizing mechanism that makes it a dominant strategy for each user, 

to truthfully declare his/her local valuation. Unfortunately, VCG-like mechanisms are not 

useful here since they violate the budget-balance property (Requirement 2) and also come 

with a number of other problems as explained in the introduction. In what follows, we opt 

for designing a DSM architecture which includes: 

a) an indirect and individually rational mechanism, including a budget-balanced billing 

rule, implemented in best-response strategies. Although we have to relax the welfare-

maximization property, we are actually able to reach a near-optimal solution.  

b) an algorithm at the ESP side, which iteratively decides a parameter of the billing rule, 

thus providing the ESP with online controllability over the system‟s cost, so that 

constraint (10a) is satisfied at equilibrium. 

3.1.4 Proposed DSM Architecture 

In this section, we present the proposed DSM architecture that fulfills the aforementioned 

requirements. The presentation is complemented with the presentation of the theorems 
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that prove analytically that the requirements we have set are fulfilled. In more detail, we 

developed a DSM architecture such that: 

a) game Γ admits to a Nash Equilibrium (NE) 

b) users‟ actions converge to NE via best-response dynamics 

c) the DSM mechanism provides the ESP with controllability over the system‟s cost, 

which means that the ESP brings the system to an equilibrium that respects constraint 

(3.1.10a), in case that it is possible. 

d) the allocation at equilibrium is as close as possible to the optimal value of problem 

(3.1.10).  

A. The billing rule 

Best-response dynamics means that, at each iteration, each user chooses his/her strategy 

assuming the strategies     of other users to be constant. Thus, from a user‟s perspective, 

at a certain iteration, his/her bill only depends on his/her own choice of   . The following 

equation presents the proposed billing rule: 
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(3.1.12) 

The first term of the sum is identical to existing billing rules. The second term has the 

purpose to reward/penalize flexibility/inflexibility (ability of user   to modify energy 

consumption profile). The value of   is iteratively updated by the ESP. The rationale of 

Eq. (3.1.12) is that it penalizes users for synchronizing their loads with others and uses 

the penalties for rewarding users who counter-balance the aggregated consumption by 

consuming their load at off-peak timeslots. With respect to the billing rule, we state the 

following lemma: 

Lemma 3.1.2: For constant values of    , the bill      , given by Eq. (3.1.12), is strictly 

convex in   . 

Proof:  

We denote by    the Hessian matrix of function      , defined in Eq. (3.1.12). We have 

to show that   is positive definite. By substituting Eq. (3.1.6) in Eq. (3.1.12), we have 
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By taking the derivatives: 
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Thus,             is positive definite.                     

The user communicates his/her demand profile    to the ESP and receives the respective 

bill      . Since problem (3.1.11) is convex (by Lemma 3.1.1 and Assumption 3.1.3) the 

user can apply a gradient projection method to compute his/her best response. Next, we 

analyze the properties of game  : 

Theorem 3.1.1: A Nash Equilibrium for game   exists and is unique. Furthermore, best-

response dynamics converges to the Nash Equilibrium strategy vector. 

Proof: 

a) The user‟s payoff is his/her utility given by eq. (3.1.5). The first term is concave in    

by Assumption 3.1.3. The second term is strictly convex in    by Lemma 3.1.1. Hence, for 

  
   ,        is strictly concave in   . Since this holds for every user, we have that   is 

a strictly concave n-person game. Thus, by [ROSE65, th.1], we have that a NE exists. 

b) By [MOND96], it suffices to show that   is an exact potential game with a concave 

potential function. Indeed, consider the function: 
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Function      has the property of potential: 

   
        

            

Moreover, ∑            is concave in   (concave in    by Assumption 3.1.3 and zero in 

       ). Thus, it suffices to prove that the term 
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is also concave, or equivalently that     is convex.  

It is    
         

        which yields 

   
          

          
  

which by Lemma 3.1.1 is positive definite. Hence,    is also concave in  , since its 

Hessian  

      
               

     
   

is a block diagonal positive definite matrix. Hence   is concave in                  

as a sum of concave functions in    

c) Since the potential function is concave and players maximize, it directly follows that 

best-response dynamics converges to the unique NE.                  

The second term of the sum in (3.1.12) introduces a price-discrimination component 

among users with different levels of flexibility. The ESP can control the magnitude of 

this discrimination by adjusting parameter    as will be analyzed in subsection B. of this 

section. Thus, by increasing  , users are increasingly incentivized to modify their 

consumption patterns. Note that   does not increase the bills in general but only controls 

the way that the system‟s cost is shared among users. This provides an intuition on the 

way (3.1.12) keeps the system budget balanced, and is proved formally below. 

Theorem 3.1.2: The billing rule      , given by Eq. (3.1.12), satisfies the budget balance 

property. 

Proof: 

It suffices to show that 
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By substituting       from Eq. (3.1.12), we have 
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which completes the proof.          

Furthermore, for the proposed billing rule given by Eq. (3.1.12), we also verify 

Requirement 2. 

Theorem 3.1.3: Game Γ, in equilibrium, satisfies the individual rationality property. 

Proof: 

The root vector   
     {  

      }      for which     
       , is derived by solving 

from Eq. (3.1.12): 
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Setting ∑   
 

                   and       , we get 

  
       

 

   
*     √     + 

which means that there is always exactly one    
        . By Assumptions 3.1.1 and 

3.1.2, we have      
         . Thus, from Eq. (3.1.5) we get that      

       . This 

means that each user‟s utility is weakly positive, which completes the proof.           

B. The ESP’s algorithm for constraint satisfaction 

While the users are concerned with maximizing their utility, the ESP is responsible for 

satisfying constraint (3.1.10a). As discussed earlier, the ESP controls the system‟s cost 

via parameter  . A low value of   would lead to high energy cost, while a large value of 
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  would have a negative impact on the welfare. Thus, the proposed DSM architecture 

also needs an algorithm for the ESP to identify the appropriate choice of  , which brings 

the system to an allocation that respects constraint (3.1.10a) with the least possible 

sacrifice on the users‟ utility. Since the ESP is agnostic of the users‟ valuation functions, 

determining the appropriate   calls for a global optimization approach. We opt for a 

Simulated Annealing (SA) method for determining  . The entire DSM procedure is 

depicted in Table 3.1.t1. 

Table 3.1.t1 The proposed DSM procedure 

1 set    
         ,    ,   ,   ,    

2 Repeat 

3     Repeat 

4            for     

5                  calculates best-response        from (3.1.11) 

6      until Nash Equilibrium 

7 ESP calculates cost at NE (  ) 

8    (       )
 
 (         )

 
 

9       

10             

11 ESP determines next    as a function of               

12 
Until 

∑   
 
     

   
   

Parameter    is the so called “temperature” of the SA algorithm. In line 11, the SA 

algorithm determines the next value of    based on a probabilistic calculation, which is 

not presented here due to space limitations. 

3.1.5 Performance Evaluation 
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In this section, we demonstrate the performance of the proposed architecture. In our 

simulation setup, we consider 24 hourly intervals              and      users. For 

each user  , the upper bound   
  on consumption is chosen randomly from the set 

               . The feasible set    is modeled as a continuous set of timeslots starting at 

timeslot   
  and ending at timeslot   

 
. Parameter   

  was picked from a random uniform 

distribution. In order to model the afternoon peak demand, for half the users, parameter 

  
  was picked in the interval [    ] and for the other half in the interval [     ]. 

Parameter   
 
 was modeled as   

 
        

         , where    was chosen randomly 

in the set            . Finally, parameter   of the cost function was set to       .  

We tested the proposed architecture for three different user models (valuation functions) 

that satisfy assumptions 1-3: Model A is taken from [GATZ13] and [SAMA10], model B 

from [SAMA12] and [LI10] and model C from [MOHS10]. Parameter   relates to the 

user‟s inelasticity/inflexibility. 

User model A:                 
      (  

     
 )

 

 

where       
      (  

 )
 

. This model captures the use case where a user‟s valuation 

function is temporally decoupled. Parameter    was randomly selected in the interval [1, 

2].  

User model B:          {
  

            ∑   
  

                   ∑   
  

       

  
                                                            ∑   

  
      

 

where    is the user‟s desired energy to complete a task, randomly chosen from 

              . This model captures the use case where the user is interested only in 

his/her total consumption at the end of the day and not at the particular timeslots of 

consumption, i.e. shiftable loads. Parameter    was randomly selected in the interval 

[0.25, 1.25], while we have set   
            

 . 

User model C: 
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where the last term expresses the user‟s discomfort from postponing consumption to later 

timeslots:   is an elasticity/flexibility parameter randomly selected in the interval [1, 1.2] 

and   
      

        
  is the desired timeslot for task completion. Naturally, it is 

  
      

 
. Parameter    was randomly selected in the range [0.25, 1.25]. 

For Figure 3.1.f1 we used user model B. Figure 3.1.f1 shows the aggregated consumption 

of the users throughout the time horizon  , in the cases of a) no DSM, b) DSM with 

        $ and c) DSM with          . 
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Figure 3.1.f1  Aggregated Users‟ Energy Consumption Curve – Cost Constraint 

In Figures 3.1.f2 and 3.1.f3 we evaluate the performance of our scheme for all three user 

models, in terms of the Aggregated Users‟ Utility (   ) which is defined as     

∑      . In particular, we depict the ratio of the     achieved with the proposed system 

over the     of the central (optimal) solution which would be reached if the users‟ 

valuations were known (      ). Figure 3.1.f2 depicts our scheme‟s performance as a 

function of the constraint on the system cost, whereas in Figure 3.1.f3 we depict the use 

case where the constraint is not posed on the system‟s cost but on the aggregated 

consumption at each timeslot. That is, there is a cap      such that ∑   
 

         

    . 

 

c) Figure 3.1.f2 Ratio between     and optimal     as a function of      
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Figure 3.1.f3 Ratio between AUU and optimal AUU as a function of      

We observe that the     achieved by the proposed system reaches up to 97%-99% that 

of the optimal solution. In extreme cases (for excessively low cap     ),     is still 

within 90% of the optimal solution. 

A user‟s bill is affected by his/her inelasticity parameter  . In particular,         

expresses the ratio of  ‟s bill to his/her bill for the supremum   , denoted as     . In 

Figure 3.1.f4 we show how the ratio         is affected by  ‟s inelasticity    (User 

Model B and         ). The user‟s bill is increasing with respect to his/her inelasticity 

parameter. 
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Figure 3.1.f4 Ratio between    and      as a function of    

3.2 Penalizing Volatility and motivating transactive Energy Markets: 

the Value of Aggregation, Flexibility, and Correlation 

As RES are being developed and used ever more extensively, a large degree of volatility 

and unpredictability is added to the grid, necessitating a radical revision of the traditional 

Grid and of the Market Model. Volatility constitutes a negative externality caused by 

certain (especially RES) market participants but affecting all participants, and in order to 

minimize it, the ones causing it should be appropriately penalized. Holding those who 

cause market volatility financially responsible for it, is increasingly important as the 

penetration of RES producers increases. With current market rules, producers or 

consumers with high volatility get a free ride, and the rest of the market pays the price for 

it. 

Distributed generation of electricity has been the principal trigger for developing the 

concept of the Smart Grid. Currently, RES are less (economically) competitive than 

traditional fossil fuel sources, while also causing extra costs to the system [STRA16], 

partly due to their unpredictability, making it very challenging to satisfy demands for 
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both cleaner and cheaper energy. This challenge has opened up new domains of research, 

including the development of new business models to facilitate the incorporation of more 

RES in the grid [MOL09], by internalizing both positive (e.g. environmental and location 

benefits) bit also negative (e.g. volatility) externalities. As a result of the changes in the 

Electricity Market, medium and small energy prosumers (i.e. producers and consumers at 

the same time) are emerging at the center of interest in the new liberalized energy market. 

Extensive recent and ongoing research focuses on DR techniques [PALE11] as well as on 

integrating DR in the economic and optimization models [FEU14]. A great deal of work 

also focuses on managing distributed RES in local electricity markets [AMP14], 

[ILIC12], [MENN09], [HVE06]. 

The new business and market models need effective information exchange in a 

distributed context, thus creating new challenges for the Information and Communication 

Technologies (ICT) field [YAN13]. As ICT is introduced in the energy network, the 

concept of virtualization of energy resources also becomes feasible. A big energy 

prosumer is no longer necessarily formed through heavy investing on big prosumption 

facilities. Multiple small prosumers can organize themselves in bigger associations that 

participate as a single entity in the market, thus forming a virtual big energy prosumer, 

called a Virtual Micro Grid Association (VMGA) [MAMO16], [VERG15]. The VMGAs 

increase the market negotiation power of small prosumers, their combined reliability (and 

thus their ability to make Service Level Agreements - SLAs) and also decrease 

complexity and book-keeping for the DSO who needs to deal with a smaller set of 

players. VMGs form the central idea in the ongoing Virtual Micro Grids for Smart 

Energy Networks (VIMSEN) project [VIMSEN], the architecture of which is assumed in 

our present work. In compliance with the VIMSEN architecture, the prosumers will be 

called VIMSEN Prosumers (VPs). The concepts described above, open up new 

possibilities in the way electricity is traded. Small market participants become more 

active through the VIMSEN platform, and are represented by a new actor, the VMG 

Association. A VMG Association has similarities but also differences from traditional 

Virtual Power Plants (VPP) and Flexibility Aggregators, as explained in the following 

section. Thus, electricity trading/delivery cease to be strictly bounded to big beneficiaries. 

As a result, the electricity market is in need of new policies to embrace the emerging 

functionalities, address volatility issues and satisfy the new demands.   

In the present work, we assume that the VIMSEN architecture, described in Section 

3.2.2.1, is used as the marketplace for electricity trading. In this market setting, the MO 

makes Service Level Agreements (SLA) for the delivery of a certain amount of 

production or a certain amount of flexibility (consumption reduction) at specific time 

intervals with VMG Associations, which in turn make SLAs with their constituent 

individual VPs. Volatile/unpredictable prosumers (or VMG Associations of prosumers) 

are defined as those that make an SLA with a VMG Association (or with the MO, 

respectively) but cannot keep it and are forced to violate it. Volatility causes significant 
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costs to market participants, which should be shouldered by those creating it, both for the 

sake of fairness but also in order to (have incentives) to minimize it. In Section 3.2.2.2 we 

introduce electricity market procedures based on a spread between buy and sell price in a 

BRP market, that can be used to penalize volatile participants, including prosumers and 

VMG Associations of prosumers. This proposed spread-based policy is general and can 

either be used by the MO to penalize the volatility/undpredictability/SLA non-

conformance exhibited by VMG Associations in order to make them behave more 

responsibly, or be used by a VMG Association in order to make its constituent members 

do so (or be used in both situations). In the former case, it is a market policy (and may be 

subject to regulation) used in MO-to-VMG interactions, while in the latter case it is an 

internal policy of the VMG Association used in VMG-to-VP interactions. For the sake of 

being specific, we assume in our description the latter case, where the policy is used to 

penalize SLA violations between a VMGA and its constituent VPs. Starting with Section 

3.2.3.1, we take the perspective of the VP. We analyze and compare two different 

strategies (an Active and a Passive one)), first introduced in [KOK13], for strategic load 

rescheduling and give the conditions under which each strategy should be used. We also 

propose a novel, hybrid strategy that combines the benefits of the two approaches and 

show that it always achieves better profits than Active and Passive. We study the penalty 

savings obtained by a VP who uses the optimal rescheduling strategy as a function of the 

proposed per-unit penalty and the VP‟s flexibility. We also give insights on the effects 

that the size of the penalty has and the way it can be employed by the VMGA (or the 

MO) in motivating VPs (or VMG Associations, respectively) to function more or less 

conservatively, according to the VMG‟s (or the System Operator‟s)needs, thus providing 

important insights regarding the parameters of future pricing policies.  

We also study the value of the VPs‟ flexibility, by quantifying the payback for being 

flexible and the degree to which it is worth investing in storage facilities or sacrificing the 

user‟s comfort in DR operations. The insights obtained can be used as input in storage 

sizing studies [BAYR11] and training algorithms that try to achieve a tradeoff between 

user‟s comfort and user‟s financial savings. They also help in describing a step-by-step 

procedure for defining the VP‟s flexibility based on the user‟s desires, which can be used 

as a reference point for developing future policies for exploiting and compensating a 

prosumer‟s flexibility. 

In Section 3.2.3.2, we take the perspective of the VMGA by studying the value of 

cooperation between VPs belonging to the same VMG Association. We assess the 

concept of correlation between the production patterns of the cooperating VPs and study 

the revenues that the VPs enjoy from their cooperation as a function of the number of the 

VPs in a coalition and also as a function of their correlation. We show that the revenues 

gained by a VP are increased through cooperation with others, especially when the 

cooperating VPs have negatively-correlated forecasting errors. A somewhat surprising 

result is that there is value in the cooperation even for positively-correlated VPs. The 
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results imply that a production investment is more profitable with respect to flexibility 

compensations when placed close to negatively correlated prosumers. Future investment 

subsidy policies can take these insights into account in order to motivate small production 

units to be developed in areas, where they would be more efficient. In Section 3.2.4, we 

present the simulation model and the data used, which is then employed in Section 3.2.5, 

to present performance evaluation results and comparisons between different strategies 

and cooperation cases. Specifically, we obtain results on the effect different parameters 

have on appropriately defined Value of Strategy, Value of Flexibility and Value of 

Cooperation metrics. Finally, in Section 3.2.6, we present our conclusions and the policy 

implications derived from our study. 

3.2.1 Background and Literature Review 

A typical wholesale electricity market in European countries is further divided in 

derivatives markets depending on the time of the trade as presented in Figure 3.2.f1 

[RUSK11]. 

 

Figure 3.2.f1- Wholesale electricity markets [RUSK11] 

While single VPs are quite small market players, VMGAs can actually have the critical 

size required to participate in the wholesale electricity market. The market participation, 

decisions and general management of the associated VPs is materialized by through the 

VMG Association they belong to. The Association deals with the efficient integration of 

variable RES production and consumption loads‟ flexibility in the market, which is 

accomplished via sophisticated management of the resources with the use of ICT tools 

and algorithms [DAMS15]. Multiple RES production sites can also jointly participate in 

the market through the concept of a Virtual Power Plant (VPP) [NIKO12], while 

consumers with DR flexibility can participate in the market through the concept of 

Aggregators [GATZ13]. The differences between the VPP, the Flexibility Aggregator, 

and the VMG Association concept proposed in the present section are described in 

[VERG16] & [DOUL17], and are summarized in the following. A VMG aggregating 
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producers resembles a Virtual Power Plant (VPP), except that the former consists of a 

dynamic group of producers chosen so as to optimize different criteria at a time. A VMG 

combining consumers resembles a Flexibility Aggregators, with the important difference 

that a VMG is not necessarily a profit seeking market entity as a Flexibility Aggregator 

is. The VMG concept resembles the software platform of cell phones store markets, 

which act as distributors of apps developed and do not specify the price of an app or the 

Point Of Sales (POS), thus serving as an interface between customers and retailers. For 

example, a VMG‟s profit does not depend on the difference between the price offered to 

the market and that obtained from its constituent prosumers (in which case it would seek 

to minimize the latter, acting against them) but on (for example) the contracts made, that 

is, the number of registered prosumers in the VMG platform. This means a VMG 

Association‟s benefits can be perfectly aligned with those of its constituent prosumers, 

which is not the case with the usual concept of Flexibility Aggregators or of VPPs who 

are profit-seeking entities, with their own interests and strategies. It should be noted that 

the research problem studied in this section covers all types of aggregators that currently 

exist in the electricity markets.   

Forward trading opens up new possibilities for the market players, offering advantages 

for both suppliers and consumers. An analysis of the effects of the strategic use of 

forward trading in electricity markets is presented in [VAZQ12]. A day-ahead market 

takes place one day before delivery. By taking into account the forecasts for the next day, 

different parties can trade their expected demand or supply, and subsequently the Market 

Operator (MO) is able to make a more informed scheduling for the next day when trying 

to match supply with demand. 

Accurate forecasts of the VMGA‟s prosumption form an important asset for the 

Association to be able to efficiently bid in the day-ahead market. The MO runs all the 

supply and demand bids through a clearing process, which ultimately defines the 

electricity price, in order to match supply with demand. A review of forecasting models 

for electricity prices is presented in [WER14]. Put simply, the price is set where the 

(expected) curves for sell and buy quantities meet each other [NORD]. A state of the art 

market clearing model applied in the Power Matching City project is described in 

[KOK13]. Based on the output of the process, the Association forms the Service Level 

Agreement (SLA) with the MO, for the next day, specifying how much energy it will 

produce/consume at each hour of the following day. The grouping of VPs in the VMGA 

affects the forecasting accuracy, as analyzed in [SILV14]. Since both RES production 

(mainly) and the users‟ electricity consumption are subject to abrupt, real-time changes, 

presumption deviations from the SLA will always occur. These deviations cause 

undesired volatility and should be subject to financial penalties that can be imposed in 

various ways [BITA12], [ZUGN13]. The users can attempt to avoid these charges by 

rescheduling their prosumption profile using unit commitment techniques, such as DR, 

making use of the prosumers‟ DR flexibility [CEC11]. Numerous works, including 
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[LOG12], [RAD10], [MOHS10], [SAMA10], [QIAN13], have provided optimal 

solutions to VP scheduling. However, the above studies assume either day-ahead 

scheduling or real-time scheduling without formerly-agreed SLAs and do not consider 

compensating for the deviations between a day-ahead SLA and a deviated profile. 

Cooperation among prosumers of the same geographical area has been considered in 

order to tackle a variety of issues, such as power losses‟ minimization [SAAD11] and 

market profits maximization [WOO14]. The role of the correlation factor among the 

prosumption patterns of the cooperating prosumers has been investigated in [TSAO16]. 

Other studies adopt data-driven approaches, where the cluster of prosumers optimize their 

bid to the wholesale market and a bi-level optimization problem is formed but without 

treating the price as a control variable [GALL16]. In the work presented in [FEUE16], 

different scenarios for DR integration were compared in terms of profit maximization. 

“Scenario A” of [FEUE16] represents an active approach, whereas “scenario C” 

represents a passive one.  

In our study, we take on the case where there are deviations from the day-ahead agreed 

SLA, making the demand curves of the prosumers different and also the prices of the 

balancing market different from the day-ahead prices. We apply load rescheduling in 

order to reduce exposure to market losses resulting from the different prices and also 

from the spread that is introduced between buy and sell price. We assume to have 

forecast/prediction algorithms for energy prosumers‟ participation in balancing markets 

and the respective forecasts for the Balancing Market prices. The way those forecasts are 

derived, as well as their accuracy, is out of the scope of the current work and it is 

extensively discussed in [WER14], [DIMO16]. 

We adopt Active and Passive approaches and evaluate them in the case described. A 

Hybrid strategy is also proposed and is proved to be optimal for any value of the spread 

parameter used to penalize SLA violations. Our main contributions lie in that we also 

consider 1) a spread between buy and sell price of electricity, 2) the prosumers 

correlation (in terms of profiles deviations) when aggregating them in a cluster. We study 

the effects of the two factors and argue that they should be taken into account when 

applying demand side management algorithms. Finally, 3) we propose a novel “hybrid” 

scheduling strategy for near-real-time participation in balancing markets. 

3.2.2 Market Participation Framework 

3.2.2.1 Architecture, basic VMG Association role and responsibilities 

The actors of a typical Smart Grid architecture and the connections among them, as 

adopted by the VIMSEN project as well as by other research projects, are illustrated in 

Figure 3.2.f2. The main inter-relations/responsibilities in which the new actors are 

engaged are identified as follows: 
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- Each VP is associated with a specific VMGA  under contract by an SLA. Sole VPs 

that are not part of a VMGA are not considered in our framework. 

- The VMGA is responsible for the negotiations -on behalf of its own VPs- with other 

VMGAs and/or Balance Responsible Parties (BRPs), or the biddings to the energy 

market (technically, through a VIMSEN portal), in order to sell the surplus energy 

(aggregate energy from prosumers) to BRPs or on the energy market, or to buy 

energy from the same, while maximizing profits. 

- The VMGA can strategically motivate its VPs to apply smart rescheduling in order 

to improve its market position.  

- The Telecom Provider (TP) will be responsible for the reliable, on-time exchange of 

energy specific messages among VIMSEN actors. 

- We assume that the trading above, satisfies any physical constraints, in the sense that 

the DSO makes sure that the energy can be bought/sold by the actors involved at 

their specific locations. 

- We also assume that the VPs are price-takers, in the sense that they are part of a 

much bigger system and their own deviations are not directly reflected in the 

balancing market prices.  
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Figure 3.2.f2 - VIMSEN Architecture [LYB14] 

3.2.2.2 Market Procedures and Penalty Policy 

Day-ahead market 

Producers and retailers make their bids (bidding curves) according to their forecasts for 

the next day. Based on these bids, the MO matches supply with demand and creates a set 

of hourly prices for the day-ahead market. These are extracted using market clearing 

techniques (commonly a bidding process with bidding curves) as is already applied from 

many market operating parties worldwide. The result of market clearing is that the price 

is higher for peak demand hours and lower for low demand hours. Wholesale suppliers 

and consumers (or, more generally, sellers and buyers) make contracts to buy/sell 

electricity for the next day, for a certain control area (that is the VMGA‟s portfolio). 

Considering hourly time blocks, the contract defines the quantity of electricity to be 

bought/sold at each hour of each day at a specific price, which is generally different for 

each hour. According to its portfolio‟s forecasted daily electricity needs, the VMGA can 

adjust its bids to better serve its clients and its own interests. After the day-ahead market 

gate closure, the SLA is formed. The SLA for a certain day is in the form of a curve 

representing agreed energy prosumption versus time.  

Balancing Market 

According to its real-time needs, a VP might need more/less energy than that agreed in 

the SLA. These SLA violations are the quantities to be traded in the balancing market. 

The usual procedure is that it participates in the balancing market through bidding. Upon 

delivery, further deviations that occur, are compensated from the System Operator and 

charged a-posteriori to the VP (see Imbalance Settlement of Figure 3.2.f1) directly from 

the MO or via the BRP, depending on the architecture (it differs in some countries). Also, 

concerning the Balancing Market, the VMGA can undertake the role of the BRP for its 

own portfolio, or provide services to the corresponding BRP. Within the scope of our 

present work, we are only interested in the prices at which the VMGA and the VP buys 

and sells electricity in the Balancing Market, so our study applies to either of the above 

mentioned use cases.  

The prices of the balancing market also differ from one hour to another. Compensating 

the VPs‟ imbalances from their SLAs bears additional costs, such as unexpected lines‟ 

congestion, need for reserves and need for fast-response, low-efficiency units (e.g. fuel-

based) to be utilized. For this reason, it is justified to penalize the VPs who deviate from 

their SLA. In our model, instead of a fixed penalty, we propose that the penalty is 

incorporated in the balancing market prices. So, the VP that needs more energy than its 

SLA has to buy it at a higher per-unit price (balancing market price plus penalty) and a 

VP which needs to sell more energy, sells it in a lower price (balancing market price 

minus penalty). This means that there is a spread between the price that the VP receives 
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for selling and the price that the VP pays for buying. So, if the market price for a certain 

hour of the balancing market is p, the VP receives two prices:  

 (p + spread) for selling electricity   

 (p – spread) for buying electricity  

The concept of spread is thought to be used on top of existing balancing markets by 

applying the spread to the balancing prices.  

The effect of the spread on the price of a certain hour is presented in Figure 3.2.f3, where 

the blue line represents the day-ahead market prices and the red line represents the 

balancing market prices. 

 

Figure 3.2.f3- Prices after apply of spread 

Note that now in the balancing market, the VP receives generally less beneficial prices 

than in the day-ahead market because of the spread. The choice of the spread parameter is 

discussed later in this work, but it should be pointed out that it is also subject to 

regulation. We only study the effect of the spread in the scheduling strategies. A spread 

policy can be used to penalize violations either in the SLA between a VMG and its 

constituent VPs, or between the MO and the VMG Associations (in each case, combined 

with any other penalty policy for the other case of violation), or it can be used as a 

unified policy in both situations. 

Within the framework described, the VP can apply scheduling strategies (like load 

shifting) that reduce its exposure to violations. By applying the above, a procedure for 

defining each VP‟s flexibility and applying the scheduling is described: 

1) VMGA receives forecasts for the day-ahead from VPs and communicates bids to the 

MO. 

2) MO defines the day-ahead market prices and clears the day-ahead market. The SLAs 

are formed. 
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3) After the day-ahead market gate closure and before the time of delivery, more 

accurate forecasts show the violations to be expected.  

4) The forecasts of the market-clearing prices (balancing market-prices before applying 

the spread) are created. 

5) VMGA decides the spread value depending on statistical data of flexibility and on its 

own goals (see Theorem 1 of the mathematical model). 

6) Based on 4) and 5), VMGA extracts the function for the value of flexibility, which is 

the cost for a VP subject to the flexibility it is willing to offer. 

7) The curve is communicated to each VP and the VP chooses its flexibility according to 

the user‟s desires (e.g. if the curve‟s slope is high, user might be willing to sacrifice 

comfort for revenue). 

8) The scheduling algorithms for the VP are applied, subject to the flexibility value 

chosen and extract the load shifts to be made. 

9) Any deviations left are cleared in the balancing market. 

Later, we provide specific insights on the way the spread of step 5 is defined and also the 

function of step 7 is derived. 

3.2.3 Methodology and Problem Formulation 

Considering a scheduling horizon  (e.g., h=24 hours), let us denote the VP‟s 

prosumption forecast (from the previous day) as an array of 24 elements, each 

representing the prosumption forecast for a given time unit (e.g hour) of the day ahead: 

               

where    expresses the energy that the VP consumes minus the energy it produces in 

hour  . The variable    is expresed in kWhs and can also be negative when the VP 

produces more energy than it consumes. The actual per hour prosumption (which is 

generally different from  ) is denoted as 

               

and the difference between the two is the violations array (i.e. VP‟s SLA violations) 

                             

where in the preceding vector subtraction is interpreted componentwise. An entry    can 

be negative if the VP consumes less energy or produces more energy than expected 

during hour i. 
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At time close to delivery time, the MO takes into account updated, more accurate, 

forecasts that become available, and broadcasts to the VMGAs the expected pricing curve 

for the balancing market (red curve of Figure 3). Mathematically, this would be 

expressed as a h-element array 

                 

where    denotes the market price (€ per kWh) at each of the h time intervals (hours). 

Vector   is extracted by market-clearing processes, according to the aggregated 

violations. Note that we refer to the balancing market prices. The day-ahead market 

prices do not concern our study, since we only focus on the trading after the day-ahead 

market gate closure. The more accurate the forecasts, the more similar   would be to the 

day-ahead market prices. To embed the implementation of penalties in the prices, a 

spread factor   is applied to  , as explained in the previous section (adding   to the prices 

for quantities that are bought and subtracting   from the prices for quantities that are sold) 

thus creating the Balancing Market Prices ( ) as denoted in Eq. (3.2.1). Again, by  , we 

refer to the expected prices for the balancing market, which may differ from the final 

ones, if further deviations occur: 

                

where     {
           

           
                                                    

Instead of waiting for the imbalance to happen, the VMGA can turn to its own portfolio 

VPs and give incentives for load rescheduling, in the form of load shifting or storage in 

batteries, in order to compensate for the violations before they occur.  

3.2.3.1 Load scheduling at the VP layer 

The goal of load scheduling is to form a more beneficial prosumption curve  ̃ and 

consequently violation curve  ̃ than the ones expected (i.e., Y and V, respectively), so at 

to avoid costly transactions in the Balancing Market. Note that the physical network 

constraints are not implemented in this study; thus, the output should be evaluated by the 

System Operator before applied. 

Active & Passive Strategies and the spread 

The resulting curve can be made to more beneficial using two different Strategies, 

similarly to those described in [KOK13]. 

Passive Strategy: Tries to minimize its SLA violations at all times I, which we 

symbolically denote as 

 ̃              in [   ] 

Thus, the passive strategy tries to move loads/production from hours with demand/supply 

surplus to hours with supply/demand surplus in order to minimize SLA violation (recall 
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that a violation needs to be traded in the balancing market, in a generally non-beneficial 

price due to the spread). This strategy is referred to as passive, when the VP tries to meet 

its SLA. 

Active Strategy: The VP tries to counteract the overall system‟s imbalance. Given the 

application of market clearing processes by MO, a high price for a certain hour means 

that in this hour, there is extra demand for electricity. This Strategy tries to help the 

system to counteract its deviations from the aggregated SLAs (and benefit from that) by 

moving loads/production from the high/low price hours to the low/high ones.  

   { ̃ }                     

   { ̃ }                    

where the terms high and low are defined by corresponding threshold values that are 

under our proposed system‟s control. Note that in the Active Strategy, the scheduling is 

planned regardless of the VP‟s own imbalance. Furthermore, let us consider a case where 

for a certain hour, the VP‟s SLA violation is opposite to the overall system‟s imbalance 

(e.g., has less demand than agreed in the SLA, while the overall system has extra demand 

than expected). In this case the VP makes profit from his SLA violation, because being 

opposite to the system‟s overall imbalance, this violation actually helps the system. This 

strategy is referred to as active, when the VP tries to counteract the overall system‟s 

imbalance, without caring for its own SLA. In a nutshell, the passive strategy‟s objective 

is to minimize SLA violations whereas the active strategy‟s objective is to provoke SLA 

violations, opposite to the system‟s imbalance.  

The degree of freedom for the VP‟s load shifting is constrained by the VPs‟ flexibility. 

For example, it is not acceptable for a VP‟s lights to be turned off at night and 

compensate for this by turning them on during daytime, so it is not a flexible load. 

However, a washing machine, or a PHEV can provide more flexibility. A VP‟s flexibility 

is expressed as a percentage   of flexible loads, such that the VP‟s prosumption    at 

hour i (after applying load rescheduling for the flexible loads) becomes  ̃ : 

          ̃           

With the nomenclature cleared, we can express the original optimization problem as the 

minimization of the VP‟s 24 hours cost for electricity defined as: 

    
 ̃ 

         ∑[     ̃      ]

  

   

     ̃                                     

                               ∑  ̃ 

  

   

  ∑  

  

   

                                                    

           ̃                                                                
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where   denotes vector inner product. That is, by moving flexible loads among hours 

with different prices, the VP is trying to minimize the overall 24h cost. Equation (3.2.2b) 

expresses the fact that we do not deal with load shedding, but only with load 

rescheduling, so that the overall VP‟s 24h prosumption in the scheduling horizon  

remains the same.  

For spread       the Active Strategy is exposed to non-beneficial decisions (note that 

Strategies are performed based on vector   and not    ). This is validated by the fact 

that   can cause the following effect: Given a case where we have        for a pair of 

hours i and j, the Active Strategy would make a load shift from   to  .  But   can be high 

enough to cause           , thus rendering the load shift non-beneficial. The higher 

the value of    the larger the number of pairs i,j for which this may be true, and the higher 

the cost of the Active Strategy. 

With respect to problem (3.2.2) we state the following lemma: 

Lemma 3.2.1: Active Strategy is optimal when spread    . 

Proof: Let us consider a VP with a violations array   and assume that after applying load 

rescheduling with Active Strategy the violations array becomes  ̃. The proof will be done 

by contradiction. Let us suppose that there is a strategy Z with a violations array  ̃, 

different from  ̃ that achieves lower cost. Since    , we have    =     for every i. 

Then from Eq. (3.2.2a), we have, regarding the costs of the Strategies, that 

∑ [    ̃ ]  
   <∑ [    ̃ ]  

   , or    ̃<   ̃, 

where   denotes vector inner product. This implies that there is at least one pair of hours 

a, b for which 

    ̃       ̃      ̃       ̃      (3.2.3a) 

with  ̃    ̃  for every i ≠ a, b    (3.2.3b) 

From (3.2.3a) we have 

   ( ̃    ̃ )     ( ̃   ̃ )              (3.2.3c) 

and from (3.2.2b) and (3.2.3b) we get 

 ̃     ̃       ̃     ̃                    (3.2.3d) 

From (3.2.3c) and (3.2.3d), we have  

   ( ̃    ̃ )     ( ̃   ̃ )     

Thus     

( ̃    ̃ )              

which yields two cases: 
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1) if       , we have  ̃    ̃  and  ̃   ̃  

2) if       , we have  ̃    ̃  and  ̃   ̃   

But from the definition of the Active Strategy, in each case Active would transfer as 

much load as possible: 

1) from  ̃  to  ̃ , i.e.        ̃   and       ̃   

2) from  ̃  to  ̃  , i.e.       ̃   and       ̃   

From (3.2.2c), we have that both  ̃  and  ̃  are bounded by the same margins. So for both 

cases we have 

    ̃    ̃  and  ̃    ̃     (3.2.3e) 

From (3.2.3e) and (3.2.3b), we have that   ̃    ̃  for every i , i.e.  ̃    ̃. 

This means that Optimal Strategy and Active Strategy are identical, proving the lemma    

The optimality of the Active Strategy when      implies the following corollary to 

Lemma 3.2.1: 

Corollary 3.2.1: for    , Active Strategy has lower cost than Passive.  

As for the Passive Strategy, we can show the following lemma. 

Lemma 3.2.2: Passive Strategy is optimal when spread   is very high. 

Proof: Let us consider a VP with a violations array   and assume that after applying load 

rescheduling with Passive Strategy its violations array becomes  ̃. The proof that Passive 

Strategy is optimal for high enough s will be done by contradiction. Let us assume that 

there is another strategy Z that when applied results in a violations array  ̃, different than 

 ̃  and with lower cost. A very high   means that for every i,j with   ̃    and  ̃   , 

we have that       . As in (3.2.3a), in this case there is at least one pair of hours a, b 

for which 

     ̃       ̃        ̃       ̃  

which in view of Eq.(3.2.1) and (3.2.3d) (that stands also here) becomes 

         ̃           ̃            ̃           ̃  

Consequently,  ̃         ̃    , or   ̃    ̃ .  Then, because of (3.2.3b), we have 

 ̃   ̃, which implies that Z is the Passive Strategy since by definition it is the one that 

minimizes the violations and the violations array.                                                

Corollary 3.2.2 (to Lemma 2): When the spread s is high, Passive Strategy has lower cost 

than Active. 
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Combining Eq. (3.2.1) with the VP‟s cost function given by (3.2.2a), we observe that the 

VP_Cost function is strictly increasing with respect to   for any  ̃, with the cost curve‟s 

slope given by 

   ∑   ̃       
   . 

Since Passive Strategy attempts to drive  ̃      as close to zero as possible, we have for 

the derivatives of the VP_Cost functions 

                      (3.2.4) 

From (3.2.4) and Lemmas 3.2.1 & 3.2.2 we conclude the following theorem.  

Theorem 3.2.1: Given the set    of spreads  there is unique       for which Active and 

Passive Strategies‟ cost is equal. 

The preceding Theorem tells us that the VMG Association, when dealing with its 

constituent VPs, can strategically choose a general   value, in a way that can serve its 

goals. That is, it can choose a high spread   when it has reasons to want the VPs to try to 

meet their SLAs (function more “passively”) or a low spread   when it wants to give 

incentives to the VPs to try to counteract the overall system‟s imbalance (function more 

“actively”). Thus, the VMGA can utilize   as a control variable for implementing the 

tradeoff between motivating users towards predictability (passive) or towards flexibility 

to rescheduling (active). 

The Proposed Hybrid Strategy 

We propose a Hybrid Strategy as a way to combine the advantages of Active and Passive 

Strategies. Hybrid Strategy splits problem (3.2.2) in two subproblems, by dividing the set 

of hours into two groups:  

~ Group   contains all hour indices i for which there exists an hour z  such that either of 

the following inequalities holds 

                     (3.2.5a) 

               (3.2.5b) 

~Group B, contains all the remaining hours (in which the price difference among them, is 

smaller than the spread). The Hybrid Strategy is defined as follows: 

Definition of Hybrid Strategy: apply the Active Strategy in Group A, and the Passive 

Strategy in Group B. 

The following theorem can be proven: 

Theorem 3.2.2: Hybrid Strategy is optimal for every value   of the spread 

Proof: We denote the violations array resulting by the Hybrid strategy as  ̃ and will 

prove it to be optimal for any value of  . For the sake of contradiction, let us assume that 
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 ̃ is not optimal and there is an optimal solution  ̃    ̃. If  ̃     ̃ then there is at least 

one pair of hours i, j such that: 

 ̃   ̃            (3.2.6a) 

 ̃    ̃            (3.2.6b) 

and 

 ̃   ̃                         (3.2.6c) 

where   is a prosumption quantity in kWhs. 

We distinguish three cases: 

1)             : 

Condition (3.2.5) actually implies that Hybrid is based on   and not on  , as it defines 

the groups by the hour‟s   . From the proof of Lemma 3.2.1, by adding the value of   (in 

other words, replacing    with   ), it is easily concluded that  ̃   ̃  for every hour 

     . So Hybrid is optimal for Group A. From Eq. (3.2.6c) we have that  ̃   ̃  for 

every      , proving  ̃   ̃. 

2)               

Conditions (3.2.5) & (3.2.3) are equivalent and so Lemma 3.2.2 applies as it is, and 

 ̃   ̃  for every      . Similarly to above, from Eq.(3.2.6c) we have that  ̃   ̃  

for every      , proving  ̃   ̃. 

3)           ,        

From Eqs. (3.2.6a) & (3.2.6b) we have       . But this is in direct contradiction 

with (3.2.5a) & (3.2.5b), because if such i, j exist they would both be in group A by 

definition (because they act as an alternative policy z for each other). Since i, j always 

belong to the same group, constraint (3.2.2b) can be split in two constraints: 

∑  ̃ 

     

   

∑  ̃ 

     

   

with       ∑     
     

where each constraint involves only variables from one of the subvectors  ̃      and  ̃     . 

Thus, the problem becomes trivially parallelizable, which means that the decomposed 

problem (Hybrid approach) is equivalent to the original one, and also from cases 1 and 2 

above, we have  ̃   ̃.                      



85 

 

Up till now, we have looked at the Balancing market in the presence of the spread 

parameter s, which is used to penalize VPs that do not meet their SLAs. We proved that 

the optimal strategies to be followed by a VP for small and large values of the spread are 

the Active and the Passive strategies, respectively, and then showed that Hybrid is the 

optimal strategy for any value of the spread. With Theorem 3.2.2 proven, we assume 

from now on that all VPs apply the Hybrid Strategy in all cases. In accordance with 

Lemmas 3.2.1 and 3.2.2, Hybrid strategy is expected to approach Active Strategy for  

     and approach Passive Strategy as   increases. We will verify this in the simulation 

results. We can intuitively understand the previous conclusions, by recalling that a low 

value of   represents favoring users‟ flexibility, whereas a high value of   represents 

favoring users‟ predictability.     

The strategies described for an individual VP, when trying to minimize the violations and 

the corresponding penalties in its SLA with a VMG Association, are also applicable to a 

VMG Association in order to reschedule the loads of its constituent VPs and minimize 

the Association‟s violations and penalties in its SLA with the MO. The only difference is 

that when the rescheduling is decided collectively, the results are better than when 

decided distributedly (each user for itself) due to statistical multiplexing, or else the 

additional degrees of freedom the VMG Association has by aggregating the flexibility of 

several VPs.  

In the following subsection, we look at the value of flexibility and how it is increased by 

combining VPs into VMG Associations. We define the difference between the 

Independent and the Associations case as the value of cooperation. Flexibility 

Aggregators (as described in the literature) can utilize the same possibility; the difference 

is that Flexibility Aggregators would do it in order to make profits themselves, while 

VMG Associations do it to create savings for their users.  

Study of Flexibility 

In any case, the profits stemming from a prosumer cluster portfolio‟s flexibility have to 

be shared among (in the case of VMG Associations) or with (in the case of Flexibility 

Aggregators) the VPs who provide this flexibility. The flexibility of a VP is defined by 

parameter   of Eq. (3.2.2c). Thus, what we refer to as value of flexibility is the revenues 

the Association can achieve by using the flexibility of its VPs. By using the knowledge of 

the flexibility value, the Association can introduce new ways of pricing its clients or even 

introduce a new energy market product, which can be called “Flexibility Retail Market”, 

to buy flexibility from the VPs.  

Assuming       (i.e., the spread at which Active and Passive Strategies‟ cost is equal, 

we want to study the way the Cost of the VP changes with    From problem (3.2.2) we 

have that the Cost of the VP is  
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∑[    ̃ ]

  

   

    ̃ 

where  ̃    ̃     is the violation remaining after the optimal Hybrid strategy is 

applied. For the hours   in which the Active Strategy is applied, we have 

 ̃ 
           

whereas for the hours   where the Passive Strategy is applied, we have 

 ̃ 
  {

                 

                                
 

This is because Passive stops adding or subtracting loads from hour i once  ̃    (i.e., 

once the violation at time i has been minimized), while Active continues subtracting load 

from hour i trying to reverse the violation, as long as more flexibility is available. So, 

when   increases  ̃ 
  also decreases (but not linearly) up to certain point where  ̃ 

   , 

beyond which it does not decrease anymore. So, although the function‟s derivatives 

cannot be expressed in closed analytical form (because  ̃ 
  is not differentiable at point 

         ), it is quite clear that:  

Statement 3.2.1: The cost of the VP is a strictly decreasing, non-linear and convex 

function of  . 

The validity of Statement 1 will also be confirmed through the simulation results. By the 

non-linearity and convexity of the cost function, one can see that sacrificing comfort to 

achieve very high values of flexibility is rewarded with diminishing returns, i.e, some 

revenue is obtained but not necessarily as high as the discomfort level caused. On the 

other hand, from Eq. (3.2.2a) we have that the cost and consequently the value of 

flexibility is also dependent on the value of  . 

3.2.3.2 VP cooperation and rescheduling at the VMG layer 

In this section, we assess the advantages that can be obtained through the cooperation of 

multiple VPs that are aggregated in coalitions, or clusters, namely the VMG 

Associations. We also study the profits of cooperation in the case of positive, zero, and 

negative correlation among the violation patterns of the VPs forming a cluster, giving 

insights on the criteria that should be used to cluster VPs. In particular, we show that VPs 

whose violation patterns are negatively correlated can gain important benefits from their 

cooperation, but the benefits of cooperation also extend, even though reduced, to VPs that 

are uncorrelated or even positively correlated. 

VMGA communicates the balancing market pricing pattern to the VPs and the scheduling 

algorithms run in each VP. In the cooperative case, the VPs communicate to the VMGA 
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their violations , the VMGA applies the cooperative scheduling algorithms (that now run 

in the Association‟s side) and the outputs are communicated back to the VPs. 

Denoting the final violations array of a VP A and a VP B as  ̃  and  ̃   respectively, the 

total cost of the VPs‟ violations when acting individually (non-cooperatively) would be 

                                  ∑  
   ̃ 

  ∑  
   ̃ 

 

 

   

 

   

 

whereas the cost of the violations of a cluster made up of VP A and B (cooperating) 

would be  

                      ∑   
  ( ̃ 

   ̃ 
 )

 

   

  

Note that            is not equivalent to               , because for those hours   that 

 ̃ 
   ̃ 

   ,  we have   
    

  (see Eq.(3.2.1)). In other words, when A and B combine 

in a cluster they may reduce or overhaul some of the SLA violations (penalized through 

the spread s). 

For all hours i for which we have   ̃ 
   ̃ 

     we have  

               (i)=            (i), for i s.t.   ̃ 
   ̃ 

     (3.2.7a) 

Let us consider now an hour i where A and B have opposite violations, that is, 

 ̃ 
   ̃ 

               (3.2.7b) 

For the individual case we then have  

  
   ̃ 

    
   ̃ 

          ̃ 
          ̃ 

       ̃ 
   ̃ 

       ̃ 
   ̃ 

    

(3.2.7c) 

whereas for the cooperative case we have 

   
  ( ̃ 

   ̃ 
 )          ̃ 

   ̃ 
         ̃ 

   ̃ 
       ̃ 

   ̃ 
    

 (3.2.7d) 

From Eqs.(3.2.7c) & Eq.(3.2.7d) and (3.2.7b) we conclude that 

  
   ̃ 

    
   ̃ 

      
  ( ̃ 

   ̃ 
 )   (3.2.7e) 

From (3.2.7e) & Eq.(3.2.7a), we have for the overall cost of the non-cooperative and the 

cooperative case: 
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Equation (3.2.7f) expresses that the cost of two VPs‟ violations is higher than or equal to 

that of a virtual united VP (cluster) that participates in the market as one entity and thus 

there is a profit from their cooperation. An important parameter that affects the amount of 

this profit is the number of hours i for which (3.2.7b) stands. This is related to the criteria 

that are used to select the particular VPs that should be grouped together into clusters for 

energy exchange.  

Useful in making the clustering decisions for VPs is the concept of VPs’ correlation. A 

VP A will be said to be positively correlated to a VP   when their violations patterns are 

affected (by the weather and other conditions) probabilistically in the same way, or 

mathematically, if their violation vectors defined as  ̃  and  ̃ , have strictly positive 

cross-correlation: 

 (  ̃  *   ̃ ) > 0 

where * denotes the inner product between vectors and      denotes the expected value. 

An example of positively correlated VPs would be a set of solar parks located in nearby 

geographical areas, where an unexpected loss of sunshine would affect all the VP 

production patterns in the same way. Similarly, VP   will be said to be negatively 

correlated to VP   when an increase/decrease in the production of A is connected with a 

corresponding decrease/increase in the production of B, that is,  

 (  ̃  *   ̃ ) < 0. 

VP   will be said to be uncorrelated to VP  , when their production sources are 

independently affected, that is, 

 (  ̃  *   ̃ )=    ̃   *    ̃ ) = 0, 

where we have assumed that    ̃ ) =    ̃ ) = 0, as is the case for unbiased estimators 

(forecasters). 

In the performance results, we examine the cases where a cluster is composed of:  

a) maximally positively correlated VPs,  

b) uncorrelated VPs and  

c) pairs of negatively correlated VPs.  

Our results will show that the profit of cooperation is low but positive for positive 

correlated VPs, higher for uncorrelated VPs, and is the highest for negatively correlated 

VPs. 

3.2.4 Model and data used for simulation 

3.2.4.1 Simulation model 
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In our simulation experiments, a VP is modeled as a set of 4 parameters,    

          ,                       is a 24-element array denoting the amounts of 

energy (kWhs) that the    agrees to sell (in its SLA) throughout the next day with a 

sampling time of one hour. Also,                   is a 24-element array denoting 

the amounts of energy (kWhs) that the    agrees to buy (in its SLA) throughout the next 

day with a sampling time of one hour. For demonstration purposes, we chose a 24h 

scheduling horizon, in order to obtain the results throughout a whole day. It should be 

noted though, that balancing market prices are generally unpredictable and the larger the 

scheduling horizon the more the results will deviate from the actual optimal. Nevertheless 

this issue can be tackled by iteratively running the scheduling algorithm in real-time 

during the day. The implementation of the real-time version is left for a future study. 

We define the prosumption array as      . We also define a violation vector   as 

the difference between the vector   containing the actual hourly prosumption values and 

the vector   containing the forecasted prosumption pattern, that is, 

                    . The entry    is assumed to be a random variable that is 

uniformly distributed in [-     ]; parameter    is referred to as the Deviation Factor, 

indicating the margins (    ) according to which the    is expected to deviate from the 

SLA, and is expressed in kWh per hour. The Flexibility Factor   is a float variable, 

indicating the amount of energy prosumption shifting that the VP can accomplish. It is 

expressed as a scalar between 0 and 1 or corresponding % value (0 corresponds to no 

flexibility, and 1 or 100% corresponds to all loads and/or supply units being flexible). 

Note that prosumption shifting can be accomplished either by shifting loads and/or by 

shifting energy supply (e.g. using scheduling for controllable units or storage capacity for 

RES). 

The    communicates its deviation vector   to the VMGA. At the Association level, a 

set of market-clearing prices is created for each hour of a certain day and is represented 

by vector: 

                  

is a 24-element array denoting the market price (€ per kWh) at each of the 24 time 

intervals (hours) before the spread is applied. Taking into account the spread  , we obtain 

the Balancing Market Prices by Eq. (3.2.1) and assign them to vector  .  

Vector   is communicated by the Association to the   . By now, the    can calculate 

the expected daily      with no scheduling techniques applied, to use it as a reference for 

the strategies evaluation:  

            ∑[     ]
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where the   (null) in the parenthesis signifies the cost when no rescheduling strategy is 

applied. The    applies load shifting strategy L in {Active, Passive, Hybrid}  subject to 

its flexibility factor  , thus changing its initial violation vector   to a new violation 

vector denoted as     . The cost of the applied strategy is calculated as 

            ∑ [        ]  
   , for any strategy L in {Active, Passive, Hybrid}. 

The percentage savings realized by strategy L is given as  

                                                                         , 

our metric of merit for evaluating the performance of the strategy (Active, Passive, or 

Hybrid) applied. 

3.2.4.2 VPs Cooperation 

A use case of cooperation was implemented for n VPs in direct representation of the 

mathematical model and the daily energy cost per VP was calculated resulting in two 

cases: the average daily cost per VP when they do not cooperate, denoted as 

               , and the average daily cost  per VP when they cooperate in a cluster, 

denoted as           . For the calculation of           , we formed and used the 24·n 

violations matrix   , with n being the number of cooperating VPs and elements   
   

 

representing the violation of VP a at hour i: 

               
∑            

   

 
  

           
∑ [ ∑            

   ]  
   

 
 

The difference between these values gives the daily monetary profit that each VP gains 

on average through cooperation and the corresponding % gain is defined as: 

                                                                          

3.2.4.3 Data Used in Simulations  

The implementation was made in Python environment. For the pricing and the 

prosumption data, we used sets of values  extracted from the VIMSEN Decision Support 

System (DSS), which provides open source data for production, consumption and pricing 

derived from Hellenic Electricity Distribution Network Operator, regarding 100 RES 

producers (of different kinds), 150 consumers (industrial, commercial, residential) and 50 

very small prosumers in Greece during 2015. Many of them are located in the same 

LV/MV substation, making it feasible to apply the proposed aggregation strategies. 

Because variable    of the violation vector   of the model is a random variable, the 

simulation was run for a large number of iterations to extract the average value for all the 

results.  
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Strategies evaluation and study of spread 

As school buildings constitute an important prosumer type in Greece whose data is 

recorded in VIMSEN‟s DSS, for the prosumption data we consider a typical school at a 

typical day in Athens. For the results presented in section 6.1 regarding the strategies‟ 

evaluation and the choice of spread, we assume DF=1.5 kW,       and an average 

presumption array  

  [                                                                             

                                            ] 

The pricing data is given by the vector: 

   [                                                                            

                                 ]. 

Set of prosumers, cooperation and correlation 

For the results presented regarding the value of the cooperation among the VPs as well as 

the effect of their correlation, we used both real and simulated data. The real data was 

extracted from [VIMGIT] for a set of different prosumers all for March 21
st
 2015, 24 

hours. For the simulated data experiments, 100 synthetic profiles were created by random 

uniform distributions of prosumption with a median value of 3 kWh and a standard 

deviation of 3. In both cases, we again assumed       and       . 

3.2.5 Simulation Results and Discussion 

In this section, we evaluate the strategies described and also the cooperation framework 

defined. In particular, in section 3.2.5.1, we evaluate the                    or the Active, 

passive and Hybrid strategies, and study the effect of the spread parameter  . In section 

3.2.5.2, we analyze the Value of Flexibility of the VPs, as a function of parameter  . The 

savings that can be obtained through cooperation, that is the                        

metric, are investigated in section 3.2.5.3 along with the role played by correlation factor.  

3.2.5.1 Policies‟ evaluation and study of spread 

Through simulation, we evaluate the Value of Strategy   (% savings) gained with each 

strategy L in {Active, Passive, or Hybrid} for different values of  . The results obtained 

are depicted in Figure 3.2.f4. We present the results beginning from s = 1, because in 

lower spreads the curves scale are higher and the results would not be as clear for the 

reader. 
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Figure 3.2.f4- Value (% savings) of Strategy   = Active, Passive, or Hybrid as a function 

of spread s 

The results in Figure 3.2.f4 are in completely aligned with Lemmas 3.2.1 and 3.2.2, and 

Theorems 3.2.1 and 3.2.2, as follows: 

 The performance of the Active strategy approaches that of the Hybrid strategy for 

small values of  , as expected by Lemma 3.2.1.  Its Value of Strategy metric (% 

savings) is monotonically decreasing with   as expected, since a higher spread trims 

the price difference between a high-value and a low-value element of  . 

 The                   of Passive strategy is not affected by the spread     as 

expected, since by definition the Passive strategy tries to meet the   ‟s SLA 

agreement, regardless of the   value. For a high spread, Passive strategy becomes 

optimal, as expected by Lemma 3.2.2. 

 After a certain spread value, the Active strategy becomes less beneficial than the 

Passive. There is a unique   value in which the two strategies are equally beneficial 

(Theorem 3.2.1). 

 The lower the  , the more “actively” the Hybrid strategy behaves and the higher the    

the more “passively” the Hybrid strategy behaves. 
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 The Hybrid strategy (optimal for every  , from Theorem 3.2.2) outperforms the other 

two strategies examined, yielding significant savings ranging from 30-60% for the 

parameter values examined. 

3.2.5.2 The Value of Flexibility  

The model used in the previous section to evaluate the rescheduling strategies, considered 

a single    having a given flexibility factor  . In this subsection, we investigate the 

degree to which a VMG Association‟s profits are affected by its portfolio‟s flexibility. 

The simulation experiments assumed fixed spread equal to    and flexibility parameter   

varying from 0 up to 100%. Figure 3.2.f5 depicts the                                  

metric as a function of  . We observe that the Value of Flexibility (savings) function 

under the Hybrid strategy is indeed strictly increasing, not linear and concave, confirming 

Statement 3.2.1. As expected, the Hybrid strategy achieves the best           over all 

strategies and for all values of  , reaching savings of about 75% for high flexibility, in 

the experiments conducted.  

 

Figure 3.2.5-                                    as a function of flexibility parameter f 

Note that the Active strategy becomes less profitable when more than 25% flexibility is 

available. This is because the simulation was run for      , with    extracted in the 

results for       (the intersection point in Figure 3.2.f4 gives         ). But what is 

more important at this point is that Hybrid strategy is verified to be the most profitable 



94 

 

strategy for every value of   and for every value of  . So, from now on we assume that 

all     apply the Hybrid strategy in all cases.  

Simulation experiments were carried out for a range of values of   (0-100 %) and values 

of   (1-4 cents/kWh) and a 3D curve was extracted, showing the way the 

                     (VOF) metric depends on these two factors (Figure 3.2.f6). Such a 

curve is extracted by the Association after step 4 of the procedure described for defining 

each VP‟s flexibility. Thus, even in a use case where the value of   is not constant but is 

adapted by the MO, the Association can also adapt the value (savings) function of 

flexibility by applying the real-time   value to Figure 3.2.f6 and extract the respective 2D 

curve. 

 

Figure 3.2.f6 - Value of flexibility (% savings) as a function of the spread s and flexibility 

parameter f (Hybrid Strategy is applied) 

3.2.5.3 Evaluation of the value of Cooperation 

In this set of experiments, we evaluated the Value of Cooperation metric as a function of 

the number n of cooperating VPs under the negatively-, positively- and un-correlated VP 

cases. For the simulation we used the same profile and deviation distribution data with 

sections 3.2.5.1 and 3.2.5.2. The results are plotted on the same graph in Figure 3.2.f7 for 

the three correlation cases, and for 1 to n=20 cooperating VPs. The simulation algorithm 

aggregates the prosumers‟ profiles and applies the Hybrid strategy. 
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Figure 3.2.f7- Value of Cooperation (% savings) as a function of the number n of 

cooperating VPs 

Figure 3.2.f7 confirms Eq. (3.2.7f), stating that the savings due to cooperation over the 

non-cooperative case are always positive (even for positively-correlated VPs!). It also 

shows that negatively correlated VPs exhibit savings of the order of 100%, as expected, 

since they are able to cancel out each other‟s violations when cooperating. The Value of 

Cooperation is significantly smaller in the case of independent VPs (of the order of 40% 

when n=2), but it increases rapidly with n, and approaches that of negatively-correlated 

VPs when n is large. Hence, a higher number of cooperating VPs results to a higher profit 

per VP when the VPs are independent. When the VPs are positively or negatively-

correlated, the incorporation of a very large number of VPs in the cluster has diminishing 

returns, in the sense that it yields little savings beyond a certain point. Forming larger 

coalitions, however, is highly beneficial when the VPs are independent.  

To demonstrate these conclusions more clearly, we run additional simulations for a set of 

synthetic (simulated as opposed to real) prosumption data and a larger number of 

cooperating VPs (n=100).  The results are shown in Figure 3.2f8. We observe that the 

curve obtained with the real data is actually no different than that obtained with synthetic 

data. 
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Figure 3.2.f8- Value of Cooperation (% savings) as a function of the number of 

cooperating VPs with simulated data 
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Chapter 4 

CONCLUSIONS, FUTURE WORK, POLICY 

IMPLICATIONS 

In this dissertation, we considered a set of smart devices at the side of residential 

electricity consumers and a home energy management system that is able to make 

decisions about home electricity consumption by taking into account the user‟s 

preferences, the dynamic electricity pricing signals as well as the operational constraints 

of devices. We took on the problem of incentivizing users to shape their consumption 

patterns in line with the needs of the electricity system. In this setting we formulated a 

game where each agent tries to optimize its own objective. We formulated the problem of 

designing online auction mechanisms that are able to bring the system to a Nash 

equilibrium. In order to achieve these goals we drew on concepts of algorithmic game 

theory and mechanism design. 

We studied and develop techniques for two general use cases of DSM: online algorithms 

for real-time consumption curtailment and offline algorithms for day-ahead load 

scheduling. For the real-time demand response case, we designed two online auction 

schemes for two specific business models.  

In the first one, we considered a setting of strategic, intelligent users and an ESP seeking 

to incentivize them in order to curtail part of their consumption in response to a DR-

event. We showcased the inefficiency of previous state-of-the-art approaches, which 

either do not consider user incentives, or adopt a direct-revelation approach, respectively 

leading to either lack of truthfulness and consequent inefficiency, or to lack of privacy 

and scalability. To overcome these shortcomings, we presented a novel iterative auction 

mechanism based on Ausubel‟s clinching auction, that implements the truthful and 

efficient VCG outcome but also allows for a distributed implementation and a privacy-

preserving communication protocol. Our theoretical and simulation results verified that 

the proposed scheme combines the desired properties with very good performance and 

small overhead. Future work can further extend user rationality to also anticipate future 

DR-events based on local information and learning techniques. 

The second business model refers to cases such as energy cooperatives where the issue of 

fairness of the allocation is important. We considered a model of a budget-balanced 

aggregating entity serving as ESP for its registered users. We proposed a P-RTP 

mechanism and evaluated its performance against that of the classic RTP mechanism in 

terms, of the most well established KPIs derived in the literature. In order to focus on the 

merits of the main idea, we kept the system model simple so as not to harm the generality 

of the results. Future research can extend the results to more advanced system models 
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that include: a) the possibility of load shifting in addition to load curtailment; b) RES and 

energy storage systems (ESS). In addition, the user‟s utility function and the way the user 

makes decisions is still an open area for research. Distinct models for different devices 

could be considered and applied under the P-RTP paradigm. Moreover, in electricity 

markets, different pricing mechanisms (P-RTP, RTP, flat-price, etc) are to be offered to 

real users as an option, making the co-existence of different pricing mechanisms for 

different users in a given market an interesting problem. Finally, the new prospects of 

electricity pricing offered by P-RTP will impact, if adopted, the sizing (investment cost) 

of RES and ESSs. We believe that the integration of RES and ESS sizing with P-RTP 

mechanism design may give rise to new capabilities for self-sufficient micro-grids and 

advanced demand side management. 

For the day-ahead load scheduling case, we designed and evaluated a novel DSM scheme 

that addresses several issues that were not jointly addressed before. We focused on 

modern energy pricing models and argued that they do not fairly reward demand 

responsive users, who are more willing than others to adopt energy efficient schedules. 

Thus, existing pricing models are not designed to trigger behavioral changes as they do 

not provide energy consumers with attractive incentives in the form of fair compensation. 

Motivated by this observation, we developed a hybrid billing mechanism that disposes an 

adjustable level of rewarding users by offering them financial incentives to modify their 

consumption schedules. The proposed DSM scheme preserves the economic efficiency, 

individual rationality and budget-balance properties. It is also able to satisfy coupling, 

system-wide constraints. The proposed scheme is theoretically proven to always bring the 

system to the Nash equilibrium. Our algorithm can be a valuable tool in the hands of an 

ESP in order for the latter to employ innovative business models and respective revenue 

streams mainly by selling DSM units in various types of flexibility markets. It aims at 

motivating its customers to exploit their shiftable and curtailable devices in order to 

reduce the cost of conventional energy usage. Our evaluation uses a standard state of the 

art scheme as a benchmark and we show that the proposed scheme manages to prompt 

energy behavioral changes of users much more efficiently than the state of the art. Future 

studies, can study the impact of our results in: islanded microgrids, energy communities 

and innovative business models for ESPs towards the latters‟ participation in the 

emerging flexibility markets. 

Finally, we studied the problem of jointly considering a day-ahead load scheduling and a 

real-time DSM scheme that balances unexpected deviations from the agreed schedule. An 

energy market model (day-ahead and balancing market) was described that is aligned 

with the emerging liberalized electricity market expected to prevail within the next years. 

Given the day-ahead market agreements, we considered an approach where a market 

beneficiary violating its schedule is exposed to a dynamic per-unit penalty (the so called 

spread) through trading its violations in the balancing market, instead of incurring a fixed 

SLA violation penalty. Three different strategies (Active and Passive and Hybrid) for 
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load shifting towards reducing market losses were described, simulated and compared. 

The Active strategy was proven to outperform the Passive one for spread values below a 

specific point. A Hybrid strategy, combining the advantages of the two, was also 

proposed and shown both theoretically and experimentally to perform better for any value 

of the flexibility and the spread. The spread parameter can be strategically chosen by the 

market operator to give incentives towards the desired energy prosumers‟ behavior. Our 

study can provide insights to policy makers for taking into account the expected users‟ 

behavior when defining the penalty policy. Applying the Hybrid strategy, we extracted a 

curve of revenue improvements as a function of flexibility and observed that they are 

linked in a monotonically increasing and convex way. We also presented a 3D graph 

showing the improvements obtained for different values for the flexibility and the spread.  

Future research can use this study as an input: (i) for algorithms that define a user‟s 

flexibility versus discomfort tradeoff, modeling and accounting for the user‟s customized 

preferences, and (ii) policies regarding the consumers‟ compensation for providing 

flexibility. The benefits of cooperation were also demonstrated and studied for the case of 

multiple users forming clusters. The benefits of cooperation are higher when the 

cooperating users have negatively-correlated violation patterns, but they can also become 

significant for users with independent patterns, by increasing the number of participants. 

Our results can provide insights to investors and help subsidy policy makers in 

motivating investments of the most suitable kind in terms of DR flexibility efficiency in 

each geographical area. Future research directions include  studying the degree to which 

cooperating users can increase their negotiating power towards becoming significant and 

active players in the energy market, by implementing a real-time receding horizon 

version of our algorithms to compensate for inaccurate forecasts, also taking into account 

physical network constraints. 
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Summary in Greek language 

Μέρξη ηε δεθαεηία ηνπ '80, ηα ζπζηήκαηα ειεθηξηθήο ελέξγεηαο ζεσξνύληαλ 
θπζηθά κνλνπώιηα θαη νξγαλώζεθαλ σο θξαηηθέο ή σο θξαηηθά ξπζκηδόκελεο 
επηρεηξήζεηο. Οη θπξηόηεξεο θαηεπζύλζεηο πνπ δίλεη ε ΔΔ θαηεπζύλνληαη πξνο ηελ 
αύμεζε ηεο δηείζδπζεο ησλ αλαλεώζηκσλ πεγώλ ελέξγεηαο θαη ηελ πξνώζεζε 
ηεο ειεπζέξσζεο ηεο αγνξάο ελέξγεηαο [DIRE09]. Μηα ζεκαληηθή ζπλέπεηα 
απηώλ ησλ εμειίμεσλ είλαη όηη ε ειεθηξηθή ελέξγεηα ζεσξείηαη πιένλ πξντόλ θαη 
αγνξαπσιείηαη αλαιόγσο, πξάγκα πνπ ζεκαίλεη όηη νη ιεηηνπξγίεο θαη νη αξρέο 
από ηηο ειεύζεξεο αγνξέο θαη ηελ νηθνλνκηθή ζεσξία θαζίζηαληαη δόθηκεο θαη 
ζηελ εκπνξία ειεθηξηθήο ελέξγεηαο. Ωζηόζν, νη αγνξέο ειεθηξηθήο ελέξγεηαο θαη 
νη κεραληζκνί δηαπξαγκάηεπζεο πξέπεη λα δηεξεπλεζνύλ θαη λα ζρεδηαζηνύλ έηζη 
ώζηε λα είλαη πξνζαξκνζκέλεο ζηηο ζπγθεθξηκέλεο ηδηαηηεξόηεηεο ηεο ειεθηξηθήο 
ελέξγεηαο. Τν πην ζεκαληηθό είλαη όηη όιεο νη ζπλαιιαγέο ειεθηξηθήο ελέξγεηαο 
πξέπεη λα πινπνηεζνύλ ζε έλα ειεθηξηθό δίθηπν. Απηό ζεκαίλεη όηη νη πεξηνξηζκνί 
θαη νη ηδηόηεηεο ηνπ δηθηύνπ πξέπεη λα ιακβάλνληαη ππόςε πξνθεηκέλνπ λα 
δηαζθαιηζηεί θαηά πόζν είλαη πινπνηήζηκν ην απνηειεζκα ηεο αγνξάο θαζώο θαη 
ε ζηαζεξόηεηα ηνπ δηθηύνπ θαη ε αζθάιεηα ηεο παξνρήο ειεθηξηθήο ελέξγεηαο. 

Μηα ζεκειηώδεο ηδηαηηεξόηεηα ηνπ ειεθηξηθνύ δηθηύνπ είλαη όηη ε δηαλνκή 
πξαγκαηνπνηείηαη απηνζηηγκεί, θαη ε παξαγσγή πξέπεη λα είλαη ίζε κε ηελ 
θαηαλάισζε αλά πάζα ζηηγκή (πξάγκα ην νπνίν ζρεηίδεηαη κε ηελ επζηάζεηα ηνπ 
δηθηύνπ). Ζ παξαδνζηαθή πξνζέγγηζε γηα ηε δηαηήξεζε απηήο ηεο ηζνξξνπίαο 
είλαη όηη ε παξαγσγή ειέγρεηαη ώζηε λα αθνινπζεί ηε (κε ειεγρόκελε) δήηεζε. 
Ωζηόζν, ε δηείζδπζε ησλ ΑΠΔ θέξλεη νινέλα θαη πεξηζζόηεξν κε ειέγμηκε 
παξαγσγή ζηελ πιεπξά ηεο πξνζθνξάο, ελώ νη κνλάδεο παξαγσγήο κε 
γξήγνξε απόθξηζε ζεσξνύληαη δαπαλεξέο ηόζν από νηθνλνκηθή άπνςε όζν θαη 
από ηηο εθπνκπέο δηνμηδείνπ ηνπ άλζξαθα. Απηέο νη εμειίμεηο νδήγεζαλ ζηε 
ζπδήηεζε ζρεηηθά κε ηε ρξεζηκνπνίεζε ησλ δπλαηνηήησλ επειημίαο ζηελ πιεπξά 
ηεο δήηεζεο, πξνθεηκέλνπ λα θαηαζηεί απνηειεζκαηηθόηεξε ε ιεηηνπξγία ηνπ 
δηθηύνπ. Ζ ηδέα ηεο αμηνπνίεζεο ηεο επειημίαο ηεο δήηεζεο ειεθηξηθήο ελέξγεηαο 
αλαθέξεηαη γεληθά σο Γηαρείξηζε Εήηεζεο (ΓΕ) - Demand Response (DR). 

Τετνηθές δηατείρηζες δήηεζες 

Ζ γεληθή ηδέα ηεο δηαρείξηζεο δήηεζεο είλαη λα δνζνύλ θίλεηξα ζηνπο ρξήζηεο 
λα δηακνξθώζνπλ ηελ θαηαλάισζε ειεθηξηθήο ελέξγεηαο αλάινγα κε ην ηη είλαη 
πην απνδνηηθό από ηελ πιεπξά ηνπ δηθηύνπ ειεθηξηθήο ελέξγεηαο. Απηό ζε 
γεληθέο γξακκέο λνείηαη σο κεηαθίλεζε θνξηίσλ από ηηο ώξεο αηρκήο ζε ώξεο 
ρακειήο δήηεζεο. Ο ιόγνο είλαη όηη ε θαηαλάισζε ειεθηξηθνύ ξεύκαηνο ηείλεη λα 
θηάλεη ζην δελίζ θαηά ηηο απνγεπκαηηλέο ώξεο. Απηό θαζηζηά αλαπνηειεζκαηηθή 
ηελ εμππεξέηεζε ηεο δήηεζεο από άπνςε θόζηνπο, δηόηη πξέπεη λα θαινύληαη 
κνλάδεο παξαγσγήο ηαρείαο απόθξηζεο, ώζηε λα θαιπθζεί ε αηρκή ηεο δήηεζεο 
θαη νη κνλάδεο απηέο όκσο έρνπλ αθξηβό νξηαθό θόζηνο παξαγσγήο. 
Φξεζηκνπνηώληαο ηελ παξαθάησ εηθόλα σο παξάδεηγκα, γηα ηελ ίδηα ζπλνιηθή 
θαηαλάισζε ελέξγεηαο, είλαη πην απνδνηηθά νηθνλνκηθά ε επίηεπμε κηαο πην 
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επίπεδεο, νκνηόκνξθα θαηαλεκεκέλεο θακπύιεο (κπιε) θαη όρη κηαο θακπύιεο 
κε θνξπθέο θαη θνηιάδεο (γθξη). 

  

Σρήκα: Παξάδεηγκα ηππηθήο θακπύιεο θαηαλάισζεο ειεθηξηθήο ελέξγεηαο 
θαηά ηε δηάξθεηα κηαο εκέξαο 

Έρνπλ πξνηαζεί δηαθνξεηηθέο πξνζεγγίζεηο γηα ηελ εμόξπμε ηεο επειημίαο ηεο 
θαηαλάισζεο ελέξγεηαο, όπσο: 

α) Σπκβάζεηο πνπ παξέρνπλ ζηνλ δηαρεηξηζηή ηνπ δηθηύνπ ηνλ άκεζν έιεγρν 
ηνπ ειεθηξηθνύ θνξηίνπ 

Ζ πεξίπησζε απηή βξίζθεη εθαξκνγή θπξίσο ζε βηνκεραληθνύο ή εκπνξηθνύο 
θαηαλαισηέο. Ο θαηαλαισηήο έρεη ζπλάςεη ζύκβαζε κε ηελ εηαηξεία θνηλήο 
σθειείαο, ε νπνία επηηξέπεη ζηελ ηειεπηαία λα κεηώζεη κέξνο ηεο ελεξγεηαθήο 
θαηαλάισζεο ηνπ πξώηνπ ζε πξαγκαηηθό ρξόλν. 

β) Σρήκαηα ελεκέξσζεο / εθπαίδεπζεο 

Απηή ε πξνζέγγηζε αλαθέξεηαη ζηελ εθπαίδεπζε ησλ θαηαλαισηώλ (θπξίσο 
θαηνηθηώλ) ζε ζέκαηα ζρεηηθά κε ηελ ελεξγεηαθή απόδνζε πνπ απνζθνπνύλ ζηελ 
κεηαβνιή ηεο ελεξγεηαθήο ζπκπεξηθνξάο θαη ζηελ νηθνινγηθή θαηαλάισζε. 

γ) Σρήκαηα αληαπόδνζεο θαη εηθνληθά παίγληα 

Οη ηερληθέο απηέο βαζίδνληαη ζηηο έλλνηεο ηεο ζπκπεξηθνξηθήο νηθνλνκίαο, θαη 
ζθνπό έρνπλ λα παξαθηλήζνπλ ηνπο θαηαλαισηέο λα ηξνπνπνηήζνπλ ηα 
πξόηππα θαηαλάισζεο ελέξγεηαο κέζσ ηεο ρξήζεο ζπζηεκάησλ αληακνηβήο θαη 
ζπζηεκάησλ ζπιινγήο πόλησλ. 

δ) Γηαρείξηζε Εήηεζεο βάζεη ηηκήο 

Απηή ε πξνζέγγηζε ζρεηίδεηαη κε ηε ζεσξία ηεο νηθνλνκίαο (economics) θαη 
ηεο ρξεζηκόηεηαο (utility theory). Ο θαηαλαισηήο ζεσξείηαη σο έλαο νξζνινγηθόο 
παίθηεο πνπ απνθνκίδεη κηα ζπγθεθξηκέλε αμία / ρξεζηκόηεηα από ηελ 
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θαηαλάισζε ελέξγεηαο ηνπ. Έηζη, ν θαηαλαισηήο ζα πξνρσξήζεη εζεινληηθά 
ζηελ ηξνπνπνίεζε ηνπ πξνηύπνπ θαηαλάισζήο ηνπ σο απόθξηζε ζε κηα 
ρξεκαηηθή απνδεκίσζε. 

Σε απηή ηε δηαηξηβή επηθεληξσλόκαζηε ζηελ ηειεπηαία θαηεγνξία, ε νπνία 
βαζίδεηαη ζηε ΓΕ βάζεη ηηκνινγηαθήο πνιηηηθήο, όπνπ νη ρξήζηεο ζεσξνύληαη όηη 
δηακνξθώλνπλ ηελ ελεξγεηαθή ηνπο θαηαλάισζε κε βάζε ηελ ηηκή ηεο ελέξγεηαο 
ζε πξαγκαηηθό ρξόλν. Απηή ε πξνζέγγηζε παξαθηλεί ηε κειέηε ησλ κεραληζκώλ 
αγνξάο ειεθηξηθήο ελέξγεηαο πνπ παξέρνπλ πξνεγκέλεο δπλαηόηεηεο θαη 
ηδηόηεηεο πξνζαξκνζκέλεο ζηηο ηδηαηηεξόηεηεο θάζε πεξίπησζεο. 

Σε απηή ηε δηαηξηβή, εμεηάδνπκε έλα πεξηβάιινλ όπνπ θάζε θαηαλαισηήο 
ειεθηξηθήο ελέξγεηαο δηαζέηεη κηα ζεηξά έμππλσλ ζπζθεπώλ, νη νπνίεο είλαη 
ζπζθεπέο πνπ ππνζηεξίδνπλ ηελ πξνγξακκαηηζκέλε θαη ειεγρόκελε 
θαηαλάισζε ειεθηξηθήο ελέξγεηαο θαζώο θαη ηηο δπλαηόηεηεο επηθνηλσλίαο ζην 
πιαίζην ηνπ δηαδηθηύνπ ησλ πξαγκάησλ (internet of things). Δπίζεο, ππνζέηνπκε 
έλα ινγηζκηθνύ ζηελ πιεπξά ηνπ θάζε ρξήζηε, έλα ζύζηεκα δηαρείξηζεο 
ελέξγεηαο νηθίαο (HEMS), ην νπνίν είλαη ζε ζέζε λα ιακβάλεη: 

α) ηηο πξνηηκήζεηο ηνπ ρξήζηε γηα ηελ θαηαλάισζε ειεθηξηθήο ελέξγεηαο κέζσ 
δηεπαθήο ρξήζηε 

β) ηνπο ελεξγεηαθνύο πεξηνξηζκνύο ησλ έμππλσλ ζπζθεπώλ 

γ) δπλακηθά ζήκαηα ηηκνιόγεζεο ειεθηξηθήο ελέξγεηαο 

θαη λα ιακβάλεη απνθάζεηο εθ κέξνπο ηνπ ρξήζηε ζρεηηθά κε ηνλ 
πξνγξακκαηηζκό ηεο θαηαλάισζεο ειεθηξηθήο ελέξγεηαο γηα θάζε έμππλε 
ζπζθεπή. Τέινο, ππνζέηνπκε έλα δίθηπν επηθνηλσληώλ πνπ είλαη ρηηζκέλν 
επηπιένλ ηνπ δηθηύνπ ελέξγεηαο θαη δηεπθνιύλεη ηελ αληαιιαγή κελπκάησλ 
κεηαμύ ησλ ρξεζηώλ κε ην ζύζηεκα δηαρείξηζεο ελέξγεηαο θαη κηα ζπληνληζηηθή 
νληόηεηα, ηελ νπνία αλαθέξνπκε σο ηνλ πάξνρν ππεξεζηώλ ειεθηξηθήο 
ελέξγεηαο (ESP). Τν παξαθάησ ζρήκα δείρλεη ηελ αξρηηεθηνληθή ηνπ ζπζηήκαηνο. 
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Σρήκα: Αξρηηεθηνληθή ηνπ ζπζηήκαηνο 

Σε απηή ηε δηαηξηβή, θάζε ρξήζηεο (θαηαλαισηήο) ζεσξείηαη έλαο 
νξζνινγηθόο, ζηξαηεγηθόο παίθηεο πνπ επηιέγεη ηηο ελέξγεηέο ηνπ κε ζθνπό ηε 
βειηηζηνπνίεζε ηνπ δηθνύ ηνπ ζηόρνπ (κεγηζηνπνίεζε ηνπ θέξδνπο / 
ηθαλνπνίεζήο ηνπ). Σε αγνξέο πνπ πεξηέρνπλ κεγάιν αξηζκό ζπκκεηερόλησλ, νη 
ελέξγεηεο ελόο κεκνλσκέλνπ ρξήζηε είλαη νπζηαζηηθά αζήκαληεο, δειαδή ε 
ελεξγεηαθή ζπκπεξηθνξά ελόο κεκνλσκέλνπ ρξήζηε είλαη ακειεηέεο, επεηδή δελ 
έρνπλ ζεκαληηθό αληίθηππν ζηηο ηδηόηεηεο ηνπ ζπζηήκαηνο. Σην πιαίζην απηό, 
απηή ε πξνζέγγηζε ζεσξεί έλα κνληέιν όπνπ νη απνθάζεηο ελόο κεκνλσκέλνπ 
ρξήζηε δελ κπνξνύλ λα επεξεάζνπλ ηηο ηηκέο ηεο αγνξάο. Απηή ε παξαδνρή 
νλνκάδεηαη επξέσο "price-taking" θαη ιέκε όηη ν ρξήζηεο έρεη ζεσξεζεί σο “price-
taker”. 

Ωζηόζν, ζηελ παξνύζα δηαηξηβή έρνπκε ραιαξώζεη απηήλ ηελ ππόζεζε θαη ν 
κεκνλσκέλνο ρξήζηεο ζεσξείηαη σο έλαο "price-anticipator", δειαδή ν ρξήζηεο 
γλσξίδεη ηνλ κεραληζκό ηεο αγνξάο θαη ζπκπεξηθέξεηαη ζηξαηεγηθά κε ζθνπό ηε 
κεγηζηνπνίεζε ηεο δηθήο ηνπ αληακνηβήο. Απηή ε ξύζκηζε θέξλεη ηα δεηήκαηα 
πνπ εμεηάδνληαη ζηελ παξνύζα δηαηξηβή ζηε ζθαίξα ηεο ζεσξίαο παηγλίσλ. Έηζη, 
ζα ρξεζηκνπνηήζνπκε θπξίσο ζεσξεηηθέο θαη αιγνξηζκηθέο ηερληθέο από ηε 
ζεσξία παηγλίσλ πξνθεηκέλνπ λα αλαιύζνπκε ηα κνληέια πνπ ζα εμεηάζνπκε. 

Ο ζπληνληζκόο ηεο δήηεζεο, πξνθεηκέλνπ λα θαηαζηεί απνηειεζκαηηθόηεξν ην 
δίθηπν ειεθηξηθήο ελέξγεηαο, απνηειεί θνηλσληθό ζηόρν. Ωζηόζν, ν ζηόρνο θάζε 
κεκνλσκέλνπ ρξήζηε κπνξεί λα κελ επζπγξακκίδεηαη πάληα κε ηνλ θνηλσληθό 
ζηόρν. Σε έλα ηέηνην πεξηβάιινλ θαη γηα λα ζρεδηάζνπκε κεραληζκνύο αγνξάο 
πνπ παξνπζηάδνπλ επηζπκεηέο ηδηόηεηεο, ζα βαζηζηνύκε ζε κεγάιν βαζκό ζε 
έλλνηεο ελόο ζπγθεθξηκέλνπ ξεύκαηνο ηεο ζεσξίαο παηγλίσλ πνπ νλνκάδεηαη 
Σρεδηαζκόο Μεραληζκώλ. 

Ζ καζεκαηηθή βειηηζηνπνίεζε είλαη ην εξγαιείν γηα ηε βειηηζηνπνίεζε κηαο 
αληηθεηκεληθήο ζπλάξηεζεο ζε κηα ζεηξά από κεηαβιεηέο απόθαζεο. Μεξηθέο 
θνξέο όκσο, απηέο νη κεηαβιεηέο δελ ειέγρνληαη από ηνλ ζρεδηαζηή ηνπ 
ζπζηήκαηνο. Αληηζέησο, ηηο ειέγρνπλ αλεμάξηεηνη πξάθηνξεο, πνπ ν θαζέλαο 
πξνζπαζεί λα βειηηζηνπνηήζεη ην δηθό ηνπ ζηόρν, ν νπνίνο κπνξεί λα κελ είλαη 
ζε ζπκθσλία κε ηνλ ζηόρν ηνπ ζρεδηαζηή. Ζ ζεσξία παηγλίσλ είλαη ην πεδίν πνπ 
κειεηά καζεκαηηθά κνληέια πνπ κειεηνύλ ζηξαηεγηθέο αληαγσληζηηθώλ ή 
ζπλεξγαηηθώλ, νξζνινγηθώλ παηθηώλ θαη ηε δηαδξαζηηθή ζπκπεξηθνξά απηώλ. Ο 
Σρεδηαζκόο Μεραληζκώλ είλαη νπζηαζηηθά έλα εξγαιείν γηα ην ζρεδηαζκό 
θαλόλσλ γηα ζπζηήκαηα κε ζηξαηεγηθνύο ζπκκεηέρνληεο πνπ θαηέρνπλ ηδησηηθέο 
πιεξνθνξίεο, έηζη ώζηε ην ζύζηεκα λα έρεη θαιέο εγγπήζεηο απόδνζεο (παξόιν 
πνπ ν ζρεδηαζηήο δελ ειέγρεη άκεζα ηηο κεηαβιεηέο απόθαζεο). Παξαδείγκαηα 
κεραληζκώλ από ηελ θαζεκεξηλή δσή πεξηιακβάλνπλ πξνβιήκαηα 
δξνκνιόγεζεο δηθηύσλ (νδηθώλ δηθηύσλ ή δηθηύσλ ππνινγηζηώλ) θαζώο θαη 
δεκνπξαζίεο νπνηνπδήπνηε είδνπο. 

Αιιά ηη θάλεη έλαλ ζπγθεθξηκέλν κεραληζκό θαιύηεξν από έλαλ άιιν; 
Υπάξρνπλ νξηζκέλεο γεληθώο επηζπκεηέο ηδηόηεηεο γηα έλαλ δεδνκέλν κεραληζκό: 
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1) Ηζρπξέο εγγπήζεηο θηλήηξσλ: νη θαλόλεο είλαη ηέηνηνη ώζηε λα κπνξνύκε λα 
ππνινγίζνπκε ηελ θπξίαξρε ζηξαηεγηθή θάζε ζπκκεηέρνληνο, πξάγκα πνπ 
νπζηαζηηθά ζεκαίλεη όηη, αλ ππνζέζνπκε νξζνινγηθνύο ζπκκεηέρνληεο, κπνξνύκε 
λα πξνβιέςνπκε απνηειεζκαηηθά ην απνηέιεζκα παξόιν πνπ δελ είκαζηε 
εθείλνη πνπ ιακβάλνπλ ηηο απνθάζεηο, 

2) Ηζρπξέο εγγπήζεηο απόδνζεο: νη θαλόλεο είλαη ηέηνηνη ώζηε νη απνθάζεηο 
ησλ ζηξαηεγηθώλ ζπκκεηερόλησλ λα βειηηζηνπνηνύλ ην ζηόρν ηνπ ζρεδηαζηή, 

3) Δγγπήζεηο ζύγθιηζεο: νη θαλόλεο είλαη ηέηνηνη ώζηε νη δηαδξαζηηθέο 
ζπκπεξηθνξέο ησλ ζπκκεηερόλησλ λα κπνξνύλ λα θηάζνπλ ζε ηζνξξνπία ζε 
απνδεθηό ρξόλν, 

θαη ελδερνκέλσο κηα ζεηξά πξόζζεησλ επηζπκεηώλ ηδηνηήησλ, αλάινγα κε ην 
δνζέλ επηρεηξεκαηηθό κνληέιν. Παξαδείγκαηα πεξηιακβάλνπλ εγγπήζεηο γηα: ηα 
έζνδα νξηζκέλσλ ζπκκεηερόλησλ (π.ρ. νη επελδπηέο), ε αηνκηθή νξζνινγηθόηεηα 
(individual rationality) (δειαδή, όηη θάζε ζπκκεηέρσλ ζπκκεηέρεη εζεινληηθά 
θαζώο έρεη κόλν όθεινο από ηε ζπκκεηνρή ηνπ θαη πνηέ δεκία), εγγπήζεηο 
δηθαηνζύλεο, πξνζηαζία ησλ πξνζσπηθώλ δεδνκέλσλ θ.ι.π. Ζ ζρεδίαζε 
Μεραληζκώλ έηζη ώζηε λα παξνπζηάδνπλ ζπγθεθξηκέλεο ηδηόηεηεο 
πξνζαξκνζκέλεο θάζε θνξά ζην δνζέλ επηρεηξεκαηηθό κνληέιν είλαη έλα αλνηρηό 
θαη ζεκαληηθό εξεπλεηηθό ζέκα. 

Σην πιαίζην ηνπ έμππλνπ δηθηύνπ, νη παξαγσγνί, νη θνξείο εθκεηάιιεπζεο, νη 
έκπνξνη θαη νη ξπζκηζηηθέο αξρέο είλαη όινη ζπκκεηέρνληεο κε δηαθνξεηηθνύο 
ζηόρνπο ζε έλα ζύζηεκα όπνπ ε απόθαζε ηνπ ελόο επεξεάδεη ηελ απόθαζε ηνπ 
άιινπ. Σην θείκελν πνπ αθνινπζεί ζα θαζνξίζνπκε θάπνηεο πεξηπηώζεηο ρξήζεο 
(use cases) πνπ εμεηάδνληαη ζε απηή ηε δηαηξηβή θαη ηηο πξνθιήζεηο ηνπο. Θα 
πεξηγξάςνπκε επίζεο ηηο επηζπκεηέο ηδηόηεηεο ηνπ κεραληζκνύ εηδηθά γηα ηηο 
πεξηπηώζεηο ρξήζεο πνπ εμεηάδνληαη θαη ζα εμαγάγνπκε ηνπο βαζηθνύο δείθηεο 
απόδνζεο (KPIs). Τέινο, ζα παξνπζηάζνπκε ηηο ηειεπηαίεο κειέηεο γηα απηέο ηηο 
πεξηπηώζεηο ρξήζεο. 

Απαηηήζεης θαη βαζηθοί δείθηες απόδοζες 

Ζ παξαδνζηαθή πξνζέγγηζε ζηελ εκπνξία ειεθηξηθήο ελέξγεηαο από πιεπξάο 
δήηεζεο είλαη εθείλε ζηελ νπνία νη ρξήζηεο ρξεώλνληαη κε κηα ζηαζεξή ηηκή αλά 
κνλάδα θαηαλάισζεο ελέξγεηαο. Οη ηηκέο ρνλδξηθήο, σζηόζν, ππόθεηληαη ζηνπο 
θαλόλεο πξνζθνξάο θαη δήηεζεο ηεο αγνξάο ειεθηξηθήο ελέξγεηαο. Δηδηθόηεξα, νη 
παξαγσγνί δειώλνπλ ην νξηαθό θόζηνο παξαγσγήο ηνπο ζην δηαρεηξηζηή ηεο 
αγνξάο θαη ε ηηκή γηα όινπο ηνπ ζπκκεηέρνληεο θαζνξίδεηαη από ηνλ ηειεπηαίν 
(νξηαθό) παξαγσγό πνπ ζα ρξεηαζηεί λα θιεζεί λα ιεηηνπξγήζεη. Δηδηθά ζηηο 
αγνξέο κε κεγάιε δηείζδπζε ΑΠΔ, νη ηηκέο ηεο ρνλδξηθήο αγνξάο κπνξεί λα είλαη 
αξθεηά αζηαζείο, δεδνκέλνπ όηη ε παξαγσγή από ΑΠΔ δελ κπνξεί λα ξπζκηζηεί 
θαζώο εμαξηάηαη από ηηο θαηξηθέο ζπλζήθεο. 

Σηελ παξαδνζηαθή πξνζέγγηζε πνπ πεξηγξάθεηαη παξαπάλσ, ε πιεπξά ηεο 
δήηεζεο δελ ιακβάλεη ππόςε ηηο ηηκέο ηεο ρνλδξηθήο αγνξάο θαη γεληθόηεξα ην 
θόζηνο ελέξγεηαο ζε πξαγκαηηθό ρξόλν. Απηό έρεη πξνθαιέζεη κηα εθηελή 
ζπδήηεζε κεηαμύ ηόζν ηεο αθαδεκατθήο θνηλόηεηαο όζν θαη ηεο βηνκεραλίαο 
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ζρεηηθά κε ηηο πνιηηηθέο ιηαληθήο ηηκνιόγεζεο πνπ ζα αληηθαηνπηξίδνπλ ηηο ηηκέο 
ρνλδξηθήο αγνξάο ζηηο πιεξσκέο ησλ ηειηθώλ ρξεζηώλ. Έρνπλ πξνηαζεί 
δηάθνξνη κεραληζκνί γηα ηελ επίηεπμε απηνύ ηνπ ζηόρνπ, θαζέλαο από ηνπο 
νπνίνπο επηθεληξώλεηαη ζε κηα δηαθνξεηηθή πηπρή ηνπ πξνβιήκαηνο. Δηδηθόηεξα, 
νη ζύρξνλνη κεραληζκνί αγνξάο ειεθηξηθήο ελέξγεηαο κπνξνύλ λα αμηνινγεζνύλ 
κε βάζε έμη δείθηεο: 

1. Βειηηζηνπνίεζε / απνηειεζκαηηθόηεηα: Τν ζπλνιηθό θέξδνο όισλ ησλ 
ζπκκεηερόλησλ ζηελ αγνξά. 

2. Δγγπήζεηο θηλήηξσλ / πξνζηαζία από ζηξαηεγηθή ζπκπεξηθνξά: Ζ 
αλζεθηηθόηεηα ηνπ ζπζηήκαηνο ζε ρξήζηεο πνπ επσθεινύληαη από ηε δήισζε 
ςεπδώλ πξνηηκήζεσλ. Με άιια ιόγηα, ιέκε όηη έλαο κεραληζκόο είλαη αλζεθηηθόο 
ζε ζηξαηεγηθή ζπκπεξηθνξά, όηαλ νη ρξήζηεο δελ κπνξνύλ λα επσθειεζνύλ 
από ηελ εμαπάηεζή ηνπ. 

3. Πξνζηαζία πξνζσπηθώλ δεδνκέλσλ: Ζ πνζόηεηα πιεξνθνξηώλ πνπ 
απαηηείηαη από ηνλ ρξήζηε. 

4. Σύγθιηζε / δπλαηόηεηα θιηκάθσζεο: Ζ ηαρύηεηα ζύγθιηζεο ηεο εθαξκνγήο 
ηνπ κεραληζκνύ θαη ε δπλαηόηεηα θιηκάθσζήο ηνπ (εθαξκνγή ζε κεγάιν αξηζκό 
ρξεζηώλ). 

5. Γηθαηνζύλε: Ζ πνιηηηθή γηα ηελ θαηαλνκή ηνπ ελεξγεηαθνύ θόζηνπο ζηνπο 
θαηαλαισηέο ελέξγεηαο. 

6. Δμηζνξξνπεκέλν θόζηνο ζπλαιιαγώλ (budget-balance): Όηαλ ην ζπλνιηθό 
πνζό ησλ ρξεκαηηθώλ ζπλαιιαγώλ από όινπο ηνπο ζπκκεηέρνληεο ζηελ αγνξά 
(ζπκπεξηιακβαλνκέλσλ ησλ θαηαλαισηώλ ζηελ πιεπξά ηεο δήηεζεο θαη όισλ 
ησλ ζπκκεηερόλησλ ζηελ πιεπξά ηεο πξνζθνξάο είλαη ηζνξξνπεκέλν. Με άιια 
ιόγηα, ν ζρεδηαζηήο κεραληζκνύ δελ ρξεηάδεηαη λα επηρνξεγήζεη ην εκπόξην, νύηε 
λα εμάγεη πιεόλαζκα από απηό. 

Τέινο ζεκεηώλνπκε όηη αλάινγα κε θάζε ζπγθεθξηκέλε πεξίπησζε ρξήζεο, 
επηπιένλ ηδηόηεηεο ηνπ κεραληζκνύ ελδέρεηαη λα είλαη ζεκαληηθέο (π.ρ. 
δπλαηόηεηα ηθαλνπνίεζεο πεξηνξηζκώλ, απιόηεηα γηα ηνπο ρξήζηεο λα 
θαηαλνήζνπλ ηνλ κεραληζκό θ.ιπ.). Σηελ επόκελε ππνελόηεηα αλαιύνπκε θάζε 
KPI κε πεξηζζόηεξεο ιεπηνκέξεηεο θαη παξνπζηάδνπκε ηνλ ηξόπν κε ηνλ νπνίν 
αληηκεησπίδεηαη ζηελ πξόζθαηε βηβιηνγξαθία ηεο ΓΕ. 

Βηβιηογραθία 

Ζ βέιηηζηε αμηνπνίεζε / απνδνηηθόηεηα έρεη κεγάιε ζεκαζία, ηδίσο γηα ηνπο 
θνξείο ράξαμεο πνιηηηθήο θαη ηνπο θνξείο ξύζκηζεο ηεο αγνξάο. Αλαθέξεηαη ζηελ 
εμάιεηςε ησλ απνηπρηώλ αγνξάο. Όηαλ ππάξρνπλ κέξε θαη ζηηο δύν πιεπξέο ηεο 
αγνξάο πνπ ζα ζπκθσλνύζαλ ζην εκπόξην ζε κηα δεδνκέλε ηηκή, αιιά ην 
εκπόξην δελ ζπκβαίλεη γηα θάπνην ιόγν, ιέκε όηη ππάξρεη κηα απνηπρία αγνξάο. 
Οη επίπεδεο ηηκέο ιηαληθήο θαζώο θαη νη ζηαηηθέο ρξνληθά δηαθνξνπνηεκέλεο ηηκέο 
δεκηνπξγνύλ απνηπρίεο αγνξάο, δεδνκέλνπ όηη ην πξαγκαηηθό θόζηνο θαη νη ηηκέο 
ηεο αγνξάο είλαη νπζηαζηηθά αόξαηεο ζηελ πιεπξά ηεο δήηεζεο. Έηζη, ε 
ηηκνιόγεζε ζε πξαγκαηηθό ρξόλν (real time pricing) ήηαλ ε πξώηε θαηεύζπλζε 
πξνο ηελ νπνία θηλήζεθε ε αθαδεκατθή βηβιηνγξαθία πνπ ζρεηίδεηαη κε 
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πξνεγκέλα θαη απηνκαηνπνηεκέλα ζπζηήκαηα ΓΕ. Σπγθεθξηκέλα, ε κειέηε [LI10] 
πξόηεηλε έλαλ βέιηηζην κεραληζκό αγνξάο (ππό νξηζκέλεο ππνζέζεηο ζρεηηθά κε 
ηηο πξνηηκήζεηο ησλ ρξεζηώλ θαη ηελ θαηαλαισηηθή ζπκπεξηθνξά). Υπό ηνλ 
πεξηνξηζκό όηη ε ε πξνζθνξά θαη ε δήηεζε πξέπεη λα ηζνύληαη ζε θάζε ρξνληθή 
ζηηγκή, δηακνξθώζεθε ε Lagrangian ζπλάξηεζε ηνπ πξνβιήκαηνο θαη νη 
πνιιαπιαζηαζηέο Lagrange γηα ην dual πξόβιεκα εξκελεύηεθαλ σο ηηκέο 
ιηαληθήο αγνξάο. Έλαο επαλαιεπηηθόο αιγόξηζκνο ζπγθιίλεη ζηηο βέιηηζηεο ηηκέο. 
Ωζηόζν, νη ππόινηπνη δείθηεο KPI δελ εμεηάζηεθαλ. 

Οη εγγπήζεηο θηλήηξσλ αλαθέξνληαη ζην ζέκα ηεο πηζαλήο εμαπάηεζεο ηνπ 
κεραληζκνύ. Πην ζπγθεθξηκέλα, νη κειέηεο [LI10], [SAMA10], [GATZ10] 
ππνζέηνπλ όηη νη ρξήζηεο είλαη price-takers (ην θνξηίν ηνπ αηόκνπ είλαη πνιύ 
κηθξό ζε ζύγθξηζε κε ην ραξηνθπιάθην ηνπ Aggregator θαη ζπλεπώο ε 
ζπκπεξηθνξά ηνπ πξώηνπ δελ επεξεάδεη ηηο ηηκέο). Παξ 'όια απηά, ππάξρνπλ 
αξθεηέο πεξηπηώζεηο ζηηο νπνίεο απηή ε ππόζεζε είλαη αδόθηκε θαη 
αδηθαηνιόγεηε, ζπκπεξηιακβαλνκέλσλ ησλ πεξηπηώζεσλ όπνπ έρνπκε: 

i) κεγάινπο βηνκεραληθνύο θαηαλαισηέο, 

ii) ρξήζηεο πνπ ζπκκεηέρνπλ ζην κεραληζκό ζε κηα ζπγθεθξηκέλε γεσγξαθηθή 
πεξηνρή όπνπ εκθαλίδνληαη πξνβιήκαηα ζπκθόξεζεο, 

iii) κηθξν-δίθηπα πνπ ζρεκαηίδνληαη ζε ηνπηθό επίπεδν 

Ωο απνηέιεζκα, νη ρξήζηεο αλακέλεηαη λα ζπκπεξηθέξνληαη ζηξαηεγηθά θαη ε 
ζηξαηεγηθή ζπκπεξηθνξά κπνξεί λα ζέζεη ζε θίλδπλν ηελ απνηειεζκαηηθόηεηα 
ηνπ κεραληζκνύ. Σηε κειέηε [SAMA12], ην δήηεκα ηεο ζηξαηεγηθήο 
ζπκπεξηθνξάο αληηκεησπίζηεθε πξνηείλνληαο ελαλ Vickrey-Clarke-Groves 
(VCG) γηα ηε ιηαληθή εκπνξία ειεθηξηθήο ελέξγεηαο. Ο κεραληζκόο VCG 
ζεσξείηαη επξέσο ν αθξνγσληαίνο ιίζνο ηνπ Σρεδηαζκνύ Μεραληζκώλ, θαζώο 
είλαη απνδεδεηγκέλα ν κνλαδηθόο βέιηηζηνο κεραληζκόο (1ν KPI) ελώ ηαπηόρξνλα 
παξέρεη ηελ ηζρπξόηεξε δπλαηή εγγύεζε θηλήηξσλ (2ν KPI) [SHOH09]. Ωζηόζν, 
ν κεραληζκόο VCG παξνπζηάδεη ζνβαξά κεηνλεθηήκαηα ζε ζρεδόλ όινπο ηνπο 
ππόινηπνπο δείθηεο. Τν πην ζεκαληηθό είλαη νηη απαηηεί από ηνπο ρξήζηεο λα 
δειώζνπλ όιε ηε ζπλάξηεζε ησλ πξνηηκήζεώλ ηνπο γηα θάζε ζπζθεπή ηνπο ζηνλ 
πάξνρν ππεξεζηώλ. Τν γεγνλόο απηό θαζηζηά αδύλαηε ηελ πξαθηηθή εθαξκνγή 
ηνπ, ιόγσ ηόζν ηεο ηδησηηθόηεηαο όζν θαη ησλ δεηεκάησλ θσδηθνπνίεζεο ησλ 
πξνηηκήζεσλ ηνπ ρξήζηε. Τα δεηήκαηα θσδηθνπνίεζεο αλαθέξνληαη ζην δήηεκα 
πνπ ζέιεη ηνπο ρξήζηεο λα εθθξάζνπλ ηηο πξνηηκήζεηο ηνπο ζε αλαιπηηθέο 
καζεκαηηθέο ζπλαξηήζεηο, ώζηε λα δνζεί ε δπλαηόηεηα ζηνλ πάξνρν ππεξεζηώλ 
λα ιύζεη έλα πξόβιεκα βειηηζηνπνίεζεο. 

Όζνλ αθνξά ηελ πξνζηαζία ησλ πξνζσπηθώλ δεδνκέλσλ ηνπ ρξήζηε, ζηε 
κειέηε [BAHA14] παξνπζηάδεηαη έλαο θαηαλεκεκέλνο κεραληζκόο όπνπ 
πξνηείλεηαη έλα πξσηόθνιιν επηθνηλσλίαο γηα ηε δηαδηθαζία ΓΕ, γηα ηελ 
πινπνίεζε ησλ αληαιιαγώλ κελπκάησλ ρσξίο λα απνθαιύπηνληαη νη ηνπηθέο 
πιεξνθνξίεο ηνπ ρξήζηε. Ωζηόζν, ππάξρνπλ αξθεηέο ηζρπξέο ππνζέζεηο ζρεηηθά 
κε ηηο πξνηηκήζεηο ηνπ ρξήζηε. Σπγθεθξηκέλα, νη ρξήζηεο ζεσξνύληαη όηη 
ελδηαθέξνληαη κόλν γηα ηελ νινθιήξσζε κηαο ζπγθεθξηκέλεο εξγαζίαο κέζα ζε 
έλα ζπγθεθξηκέλν ρξνληθό δηάζηεκα θαη ε νινθιήξσζε ηεο εξγαζίαο έρεη 
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κνληεινπνηεζεί σο πεξηνξηζκόο, πξάγκα πνπ ζεκαίλεη όηη ε εξγαζία ζα 
πξαγκαηνπνηεζεί αλεμάξηεηα από ην θόζηνο. 

Ζ παξαπάλσ ζπδήηεζε επηθεληξώλεηαη θπξίσο ζηηο πεξηπηώζεηο ζρεηηθά 
κηθξώλ θνηλνηήησλ ρξεζηώλ. Μηα δηαθνξεηηθή θαηεύζπλζε έξεπλαο κειεηά ην 
δήηεκα ρξήζε ηεο δπλαηόηεηαο θιίκαθσζεο (scalability). Τα πξνβιήκαηα είλαη 
θπξίσο ε θιηκάθσζε ηεο εθαξκνγήο ηνπ κεραληζκνύ θαζώο θαη ε δηθαηνζύλε ζε 
επίπεδν κεκνλσκέλσλ ρξεζηώλ. Μηα καζεκαηηθή πξνζέγγηζε γηα ην πξόβιεκα 
ηεο θιηκάθσζεο πξνηείλεηαη ζηε κειέηε [MHAN16], όπνπ δύν ηερληθέο 
εμνκάιπλζεο εθαξκόδνληαη ζηελ αληηθεηκεληθή ζπλάξηεζε ηνπ πξνβιήκαηνο 
βειηηζηνπνίεζεο πξνθεηκέλνπ λα δηεπθνιπλζεί ε γξήγνξε ζύγθιηζε. Μηα 
δηαθνξεηηθή πξνζέγγηζε πξνηείλεηαη ζηε κειέηε [STEP15] όπνπ νκάδεο 
ρξεζηώλ κε παξόκνηα ραξαθηεξηζηηθά, νκαδνπνηνύληαη θαη ζεσξνύληαη όηη 
ζπκκεηέρνπλ ζπγθληξσηηθά σο κνλάδα. Παξόιν πνπ ε πξνζέγγηζε απηή κπνξεί 
λα ράζεη ζε ζρέζε κε ην βέιηηζην, κεηώλεη σζηόζν δξαζηηθά ηνλ ρξόλν 
ζύγθιηζεο. 

Έλαο δηαθνξεηηθόο ζηόρνο εμεηάδεηαη ζηε κειέηε [BAHA13], όπνπ ε 
πξνηεξαηόηεηα δίδεηαη ζηε δίθαηε κεηαρείξηζε θαη όρη ζηελ απνδνηηθόηεηα. 
Σπγθεθξηκέλα, ε κειέηε θαηαδεηθλύεη όηη ππάξρεη έλα trade-off κεηαμύ απηώλ ησλ 
δύν KPIs. Ζ ηηκή Shapley [SHAP53] από ηε ζπλεξγαηηθή ζεσξία παηγλίσλ 
ρξεζηκνπνηείηαη γηα λα νξηζηεη έλαο δείθηεο δηθαηνζύλεο θαη ν κεραληζκόο έρεη 
ζρεδηαζηεί έηζη ώζηε λα κεγηζηνπνηεζεί ε δηθαηνζύλε ησλ ηειηθώλ ηηκώλ. 

Τέινο, ε ηδηόηεηα ηνπ budget-balance ζπδεηείηαη ζηε κειέηε [MA14], όπνπ νη 
ζπγγξαθείο πξνηείλνπλ έλαλ κεραληζκό AGV (Arrow-d'Aspremont-Gerard-Varet) 
γηα ηνλ ζπληνληζκό ηεο θαηαλάισζεο ησλ ρξεζηώλ. Ωζηόζν, νη κεραληζκνί AGV 
εμαθνινπζνύλ λα είλαη έλαο κεραληζκόο άκεζεο απνθάιπςεο όπσο ν VCG (νη 
ρξήζηεο πξέπεη λα δειώζνπλ ην ζύλνιν ησλ πξνηηκήζεώλ ηνπο), πξάγκα πνπ 
ζεκαίλεη όηη ππνθέξεη επίζεο από πξνβιήκαηα ηδησηηθόηεηαο θαη θσδηθνπνίεζεο. 

Πξέπεη λα ζεκεησζεί όηη νη έμη δείθηεο KPI πνπ πεξηγξάθεθαλ, αλ θαη πνιύ 
ζεκαληηθνί, είλαη αξθεηά γεληθνί θαη ελδέρεηαη λα κελ επαξθνύλ ζε όιεο ηηο 
πεξηπηώζεηο. Οη κεραληζκνί πξέπεη λα ιακβάλνπλ ππόςε ηηο εηδηθέο απαηηήζεηο 
θάζε πεξίπησζεο θαη ηε ζεκαζία θάζε απαίηεζεο. Γηα λα είκαζηε πην 
ζπγθεθξηκέλνη, παξνπζηάδνπκε ηα δύν αθόινπζα παξαδείγκαηα. 

Μπνξεί λα ρξεηαζηεί λα ηθαλνπνηεζνύλ πεξηνξηζκνί ζε επίπεδν ζπζηήκαηνο. 
Σην πιαίζην κηαο ελεξγεηαθήο θνηλόηεηαο, απηνύ ηνπ είδνπο νη πεξηνξηζκνί 
απαηηνύλ έλα νξηζκέλν βαζκό ζπληνληζκνύ κεηαμύ ησλ ρξεζηώλ. Ζ κειέηε 
[DENG14] παξνπζηάδεη κηα καζεκαηηθή ηερληθή βαζηζκέλε ζηνπο 
πνιιαπιαζηαζηέο Lagrange, όπνπ νη πνιιαπιαζηαζηέο ελεκεξώλνληαη δπλακηθά 
θαη θαηαλεκεκέλα ώζηε λα ρξεζηκεύνπλ σο ζήκαηα ζπληνληζκνύ. 

Έλα άιιν παξάδεηγκα εηδηθώλ απαηηήζεσλ αθνξά ηελ απιόηεηα ηνπ 
κεραληζκνύ (εύθνιε πηνζέηεζε από ηνπο ρξήζηεο). Οη κειέηεο πνπ 
παξνπζηάζηεθαλ παξαπάλσ παξέρνπλ νξηζκέλεο ηζρπξέο ζεσξεηηθέο εγγπήζεηο 
ππό νξηζκέλεο ππνζέζεηο. Μηα θεληξηθή παξαδνρή είλαη ν νξζνινγηζκόο ηεο 
ζπκπεξηθνξάο ηνπ ηειηθνύ ρξήζηε. Ωζηόζν, ζηελ πξάμε θαη εηδηθά όζνλ αθνξά 
ηε ζπκκεηνρή ησλ νηθηαθώλ ρξεζηώλ, δελ κπνξνύκε λα πεξηκέλνπκε από ηνπο 
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ρξήζηεο λα ζπκπεξηθέξνληαη πάληα νξζνινγηθά κέζα ζε πεξίπινθνπο 
κεραληζκνύο πνπ δελ θαηαιαβαίλνπλ. Έηζη, κηα ζρεηηθή απαίηεζε αθνξά ηελ 
απιόηεηα ηνπ κεραληζκνύ. Μηα κειέηε γηα ηελ απιόηεηα, παξνπζηάδεηαη ζην 
[BITA17], πξνζαξκνζκέλε ζηελ ηηκνιόγεζε γηα θόξηηζε ειεθηξηθώλ 
απηνθηλήησλ. Δηδηθόηεξα, ε ηαρύηεξε θόξηηζε ρξεώλεηαη αθξηβόηεξα. Ο ρξήζηεο 
ιακβάλεη έλαλ θαηάινγν ηηκώλ από ηνλ νπνίν κπνξεί λα επηιέμεη, όπνπ ε θάζε 
ηηκή αληηζηνηρή ζε έλα ζπγθεθξηκέλν αλακελόκελν ρξόλν νινθιήξσζεο ηεο 
θόξηηζεο. 

Υπάξρνπλ δύν πεξηπηώζεηο γεληθήο ρξήζεο κνληέισλ ΓΕ: κνληέια πνπ 
ρξεζηκνπνηνύλ απόθξηζε ζε πξαγκαηηθό ρξόλν θαη κνληέια πνπ επηηπγράλνπλ 
πξνγξακκαηηζκό ηεο θαηαλάισζεο από ηελ πξνεγνύκελε κέξα (day-ahead). 
Σηελ πξώηε πεξίπησζε, νη ρξήζηεο θαινύληαη λα ηξνπνπνηήζνπλ ηελ 
θαηαλάισζή ηνπο ζε πξαγκαηηθό ρξόλν, έηζη ώζηε λα αληαπνθξίλνληαη ζε 
αλαπάληερεο αλάγθεο ηνπ δηθηύνπ. Παξαδείγκαηα πεξηιακβάλνπλ 
βξαρππξόζεζκε πξόβιεςε ζπκθόξεζεο δηθηύνπ ή απνηπρίαο θάπνηαο κνλάδαο 
παξαγσγήο. Από ηελ άιιε πιεπξά, θαηά ηνλ day-ahead πξνγξακκαηηζκό, ε 
θαηαλάισζε ειεθηξηθήο ελέξγεηαο πξνγξακκαηίδεηαη γηα έλαλ δεδνκέλν νξίδνληα 
πξνγξακκαηηζκνύ θαη δηακνξθώλνληαη ηα πξνθίι θαηαλάισζεο ελέξγεηαο ησλ 
ρξεζηώλ. 

Γηα παξάδεηγκα, ζηε κειέηε [GATZ13] πξνηείλεηαη έλαο απιόο κεραληζκόο 
θαζνξηζκνύ ησλ ηηκώλ γηα ΓΕ ζε πξαγκαηηθό ρξόλν κε ζθνπό ηε κείσζε ηνπ 
θνξηίνπ. Απηό ζα κπνξνύζε λα δηεπθνιύλεη ηνπο ρξήζηεο λα ζπζρεηίδνπλ ηελ 
θαηαλαισηηθή ηνπο ζπκπεξηθνξά κε νηθνλνκηθά νθέιε. 

Αληίζεηα, ζηε κειέηε [RAD10], ν πξνηεηλόκελνο κεραληζκόο εμάγεη κηα 
θαηαλνκή θνξηίσλ γηα έλα ζπγθεθξηκέλν ρξνληθό νξίδνληα πξνγξακκαηηζκνύ, 
πνπ ζπκίδεη ην γλσζηό αιγνξηζκηθό πξόβιεκα ηνπ πξνγξακκαηηζκνύ ησλ 
εξγαζηώλ ζηηο κεραλέο. Ωζηόζν, εηδηθά γηα απηήλ ηελ πεξίπησζε νη ρξήζηεο 
ελδέρεηαη λα ζπκθσλήζνπλ ζε κηα ζπγθεθξηκέλε θακπύιε θαηαλάισζεο γηα ηελ 
επόκελε εκέξα, αιιά ζηελ πξαγκαηηθόηεηα λα ηελ παξαβηάζνπλ θαηά ηε 
δηάξθεηα ηεο εκέξαο. 

Έλα ραξαθηεξηζηηθό παξάδεηγκα είλαη ην δήηεκα ηνπ bid-parking. Τν bid-
parking αλαθέξεηαη ζην θαηλόκελν όπνπ έλαο ρξήζηεο πξνγξακκαηίδεη έλα 
ςεπδώο κεγάιν θνξηίν ζε κηα δεδνκέλε ζηηγκή ζην κέιινλ, έηζη ώζηε ε ηηκή γηα 
εθίλε ηελ ώξα λα απμεζεί. Απηό νδεγεί ηνπο άιινπο ρξήζηεο λα 
πξνγξακκαηίζνπλ ηα δηθά ηνπο θνξηία καθξηά από εθείλε ηελ ώξα θαη 
ελδερνκέλσο ζε πξνγελλέζηεξεο ώξεο. Έηζη, όηαλ θζάζεη ε ελ ιόγσ ώξα, ν 
αξρηθόο ρξήζηεο κεηώλεη ην πξνγξακκαηηζκέλν θνξηίν ζην πξαγκαηηθό ηνπ 
θνξηίν θαη επσθειείηαη από κηα κεησκέλε ηηκή, ιόγσ ηνπ γεγνλόηνο όηη νη άιινη 
ρξήζηεο έρνπλ κεηαθέξεη (θαη ήδε εμππεξεηήζεη) ηα θνξηία ηνπο ζε 
πξνεγνύκελεο ρξνληθέο ζηηγκέο. Μηα πξόηαζε γηα ηελ αληηκεηώπηζε ηνπ 
θαηλνκέλνπ bid-parking, γίλεηαη ζηε κειέηε [CHAP17]. Σε απηή ηε κειέηε 
πξνηάζεθε κηα clock-proxy δεκνπξαζία πνπ αζρνιείηαη κε ην δήηεκα ησλ 
ζηξαηεγηθώλ ρξεζηώλ πνπ ζα κπνξνύζαλ λα εθαξκόζνπλ κηα ηέηνηα ζηξαηεγηθή. 
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Ωο ζπκπέξαζκα από ηελ παξαπάλσ ζπδήηεζε παξαηεξνύκε όηη έρνπλ 
πξνηαζεί δηάθνξα κνληέια γηα ηελ ελζσκάησζε ησλ κεραληζκώλ ηεο αγνξάο 
ζηε ιηαληθή αγνξά ειεθηξηθήο ελέξγεηαο. Ωζηόζν, εμαθνινπζνύλ λα ππάξρνπλ 
δύν ζεκαληηθέο εξεπλεηηθέο θαηεπζύλζεηο πνπ παξακέλνπλ ζρεηηθά 
αλεμεξεύλεηεο. Ζ πξώηε αθνξά ηνλ ζρεδηαζκό κεραληζκώλ πνπ εμεηάδνπλ από 
θνηλνύ πάλσ από έλα ή δύν από ηνπο πξναλαθεξόκελνπο KPI θαη επηηπγράλνπλ 
έλα ειθπζηηθό ζπλδπαζκό κεηαμύ πνιιώλ ή όισλ απηώλ. Τν δεύηεξν αθνξά 
κεραληζκνύο ζρεδηαζκνύ πνπ παξνπζηάδνπλ ζπγθεθξηκέλεο ηδηόηεηεο 
πξνζαξκνζκέλεο ζε θάζε ζπγθεθξηκέλε πεξίπησζε. Παξαθάησ παξνπζηάδνπκε 
θάπνηα δεηήκαηα πνπ δελ εμεηάδνληαη ζηηο κέρξη ηώξα κειέηεο θαη αλαθέξνπκε ηε 
ζπκβνιή απηήο ηεο δηαηξηβήο. 

Σσνεηζθορές θαη δηάρζρωζε ηες παρούζας εργαζίας 

Ζ ζπδήηεζε γηα ηε βηβιηνγξαθία ζηε ΓΕ απνθάιπςε αλνηθηά εξεπλεηηθά 
ζέκαηα, κεξηθά από ηα νπνία ζα ζπδεηεζνύλ δηεμνδηθά ζην θείκελν. Σύκθσλα κε 
ηελ θαηεγνξηνπνίεζε ηνπ πξνεγνύκελνπ εδαθίνπ, ηαμηλνκνύκε ηηο ζπλεηζθνξέο 
καο ζε δύν ηνκείο: Αιγόξηζκνπο γηα ΓΕ ζε πξαγκαηηθό ρξόλν θαη Αιγόξηζκνπο 
γηα day-ahead ρξνλνπξνγξακκαηηζκό θνξηίσλ. 

Σρεηηθά κε ηε ΓΕ ζε πξαγκαηηθό ρξόλν, ην πξώην ζεκαληηθό δήηεκα είλαη ε 
απνπζία κειέηεο πνπ λα εμεηάδεη ηαπηόρξνλα θαη ηα ηέζζεξα πξώηα KPIs. Απηό 
ην δήηεκα είλαη πνιύ ζεκαληηθό, εηδηθά επεηδή πνιιέο κειέηεο κειεηνύλ ην πξώην 
KPI ρσξίο λα ιακβάλνπλ ππόςηλ ην δεύηεξν. Ωζηόζν, παξαιείπνληαο λα 
αληηκεησπίζεη θαλείο ην δεύηεξν KPI, κπνξεί εύθνια λα ζέζεη ζε θίλδπλν ηελ 
απόδνζε ηνπ κεραληζκνύ θαη ζην πξώην KPI. Σηελ παξνύζα δηαηξηβή 
εμεηάδνληαη ζε βάζνο ηα ζέκαηα απηά θαη πξνηείλεηαη έλαο κεραληζκόο πνπ 
αληηκεησπίδεη απηά ηα πξνβιήκαηα. 

Τν δεύηεξν ζεκαληηθό δήηεκα ζρεηηθά κε ηε ΓΕ ζε πξαγκαηηθό ρξόλν είλαη ηα 
KPIs πνπ ζρεηίδνληαη κε δηθαηνζύλε (fairness) θαη budget-balance. Από ηε κία 
πιεπξά, νη ιίγεο κειέηεο πνπ κειέηεζαλ ηε δηθαηνζύλε θάλνπλ κάιινλ ηζρπξέο 
ππνζέζεηο ζρεηηθά κε ην κνληέιν ησλ ρξεζηώλ. Από ηελ άιιε πιεπξά, νη 
κεραληζκνί πνπ ζέηνπλ σο πξνηεξαηόηεηα ηελ απνδνηηθόηεηα (efficiency), 
δειαδή VCG, AGV θαη άιινη, δελ είλαη budget-balanced. Ζ ζεκαζία απηώλ ησλ 
δύν ηδηνηήησλ ζπδεηείηαη ιεπηνκεξώο θαη πξνηείλεηαη έλαο λένο αιγόξηζκνο 
ηηκνιόγεζεο γηα ηελ αληηκεηώπηζε απηώλ ησλ δεηεκάησλ. 

Αθόκα, ζην δεύηεξν κέξνο ηεο δηαηξηβήο, αζρνινύκαζηε κε ηελ πεξίπησζε 
day-ahead ρξνλνπξνγξακκαηηζκνύ θνξηίσλ, όπνπ ε κεγάιε πιεηνςεθία ησλ 
ζρεηηθώλ κειεηώλ είηε πηνζεηεί ηελ “price-taker” ππόζεζε, είηε θάλεη ηζρπξέο 
ππνζέζεηο ζηα κνληέια ησλ ρξεζηώλ. Σηελ παξνύζα δηαηξηβή αλαιύνπκε ην 
δήηεκα θαη ζπδεηνύκε επίζεο ηελ εηδηθή πεξίπησζε όπνπ απαηηείηαη ε 
ηθαλνπνίεζε πεξηνξηζκώλ. Παξνπζηάδεηαη κηα αξρηηεθηνληθή ΓΕ όπνπ 
ραιαξώλνληαη νη παξαπάλσ ππνζέζεηο ζην κνληέιν. Ο πξνηεηλόκελνο 
κεραληζκόο εγγπάηαη ηε ζύγθιηζε πξνο ηελ ηζνξξνπία Nash. Δπηπιένλ, νη 
πεξηνξηζκνί δηαζθαιίδνληαη όηη πιεξνύληαη θαηά ηελ ηειηθή θαηαλνκή, ελώ ν 
κεραληζκόο δηαηεξεί επίζεο ηελ ηδηόηεηα budget-balance. 
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Τέινο, εμεηάδεηαη επίζεο ην δήηεκα ηνπ bid-parking. Ζ ξύζκηζε πνπ ζεσξνύκε 
παξαθηλεί ζε αλάπηπμε peer to peer αγνξώλ ελέξγεηαο, νη νπνίεο απνηεινύλ 
πεδίν εθηεηακέλεο ζπδήηεζεο ζηα ζύγρξνλα ζπζηήκαηα ειεθηξηθήο ελέξγεηαο. 
Γηεμάγνπκε αλάιπζε ζρεηηθά κε ηελ αμία ησλ peer to peer αγνξώλ, ελώ νη 
πξνζνκνηώζεηο επηβεβαηώλνπλ όηη ε ζπζρέηηζε ησλ πξνθίι δήηεζεο 
δηαθνξεηηθώλ ρξεζηώλ παίδεη ζεκαληηθό ξόιν. 
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Γλωσσάριο αντιστοιχίας τεχνικών όρων 

Budget-Balance Οηθνλνκηθή Ηζνξξνπία 

Constraints Πεξηνξηζκνί 

Day-Ahead market Αγνξά πξνεγνύκελεο εκέξαο 

Demand Side Management Γηαρείξηζε Εήηεζεο 

Home Energy Management System Σύζηεκα δηαρείξηζεο ελέξγεηαο νηθίαο 

Fairness Γηθαηνζύλε 

Incentive Compatibility Σπκβαηόηεηα Κηλήηξσλ 

Price-taker Γέθηεο ηηκώλ 

Privacy Ηδησηηθόηεηα 

Scalability Γπλαηόηεηα Κιηκάθσζεο 

 

 


