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Περίληψη 

Η τελευταία δεκαετία στην ναυτιλία έχει χαρακτηριστεί από τις προσπάθειες για πιο αποδοτικά 

και φιλικά προς το περιβάλλον πλοία. Πρόκειται για μια αναγκαία επιδίωξη από τους 

εφοπλιστές και τους διαχειριστές των πλοίων, προκειμένου να επιβιώσουν από τις περιόδους 

ύφεσης της αγοράς και να συμμορφωθούν με τις αυξανόμενες απαιτήσεις των κανονισμών. 

Επίσης, προσπάθειες αντιμετώπισης της κλιματικής αλλαγής, σε παγκόσμιο επίπεδο, 

ξεκίνησαν για πρώτη φορά. Για αυτούς τους λόγους η ναυτιλιακή βιομηχανία έχει μεγάλες 

προκλήσεις και ευθύνες μπροστά της. Σκοπός της παρούσας μελέτης είναι η εγκαθίδρυση 

μεθόδων για την αποτελεσματική προ-επεξεργασία των επιχειρησιακών δεδομένων των 

πλοίων και η δημιουργία μοντέλων πρόωσης πλοίων βασιζόμενα σε δεδομένα, που θα 

βρίσκονται στον πυρήνα εφαρμογών που αποσκοπούν στη μείωση του αποτυπώματος άνθρακα 

των πλοίων. Έτσι, αναπτύσσονται δύο εφαρμογές τεχνητών νευρωνικών δικτύων (ΤΝΔ) που 

αξιοποιούν τα επεξεργασμένα δεδομένα του πλοίου, τα οποία συλλέχθηκαν αυτόματα και με 

υψηλή συχνότητα δειγματοληψίας, για μια περίοδο 1,5 χρόνου. Η πρώτη εφαρμογή προβλέπει 

τη συνολική κατανάλωση καυσίμου του πλοίου κάτω από διάφορα σενάρια λειτουργίας ενώ η 

δεύτερη εφαρμογή επικεντρώνεται στην παρακολούθηση της απόδοσης του πλοίου και εκτιμά 

την μέση απώλεια ταχύτητας του πλοίου κατά τη διάρκεια ενός έτους. Οι απαραίτητοι 

στατιστικοί υπολογισμοί και αλγόριθμοι για την επεξεργασία δεδομένων εφαρμόστηκαν στη 

γλώσσα προγραμματισμού Python και επίσης εφαρμόστηκαν οι πιο σύγχρονες τεχνικές βαθιάς 

εκμάθησης (deep learning) για την εκπαίδευση και τη βελτιστοποίηση των ΤΝΔ. Τα 

αποτελέσματα δείχνουν ότι με ένα σωστό στάδιο φιλτραρίσματος και προετοιμασίας των 

δεδομένων (προ-επεξεργασία), όπως αυτό που εφαρμόστηκε στην παρούσα μελέτη, είναι 

δυνατό να επιτευχθεί βελτίωση της απόδοσης των μοντέλων πρόωσης πλοίων και κατά 

συνέπεια να αυξηθεί η επίγνωση της κατάστασης του πλοίου όσον αφορά την ενεργειακή του 

απόδοση. Έπειτα θα μπορούν να ληφθούν πιο αποτελεσματικές αποφάσεις σχετικά με τις 

στρατηγικές και τα επιχειρησιακά μέτρα για τη μείωση της κατανάλωσης πετρελαίου και των 

αέριων εκπομπών από το πλοίο. Η κατανάλωση καυσίμου στην κύρια μηχανή εκτιμάται αρχικά 

με ακρίβεια 95,9% και μια βελτίωση περίπου 3% επιτεύχθηκε, μετά την κατάλληλη προ-

επεξεργασία των δεδομένων, οδηγώντας τελικά σε μια μέση ακρίβεια μοντέλου  98,7%. 

Παρόμοια αποτελέσματα ελήφθησαν όταν άλλες παράμετροι πρόωσης (ισχύς στον άξονα, 

ταχύτητα πλοίου) εκτιμήθηκαν από τα μοντέλα μας. Εκ τούτου, με τόσο ακριβή μοντέλα για 

την εκτίμηση των παραμέτρων πρόωσης, μπορούμε να έχουμε βελτιωμένες ποσοτικές 

πληροφορίες σχετικά με την επιτευχθείσα μείωση εκπομπών από λειτουργικά μέτρα όπως 

βελτιστοποίηση διαδρομής ή ταχύτητας, και δρομολόγηση με βάση τις μετεωρολογικές 

συνθήκες. 
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Abstract 

The last decade in shipping has been characterized by efforts for more efficient and 

environmental-friendly ships. in order to survive the downturns of the market and to comply 

with the increasing regulatory requirements. Τhis is a necessary endeavor by shipowners and 

ship managers,  in order to survive the downturns of the market and to comply with the 

increasing regulatory requirements. Also, efforts on the global scale against climate change 

initiated for the first time. That is why the shipping industry has great challenges and 

responsibilities lying ahead. The purpose of this study is to establish methods for effective pre-

processing of ship operational data and to create data-driven ship propulsion models that will 

be in the core of applications that aim to reduce the carbon footprint of the ships. Thereby, two 

applications of Artificial Neural Networks (ANN) are developed that utilizes the processed ship 

data, which were automatically collected with high-frequency sampling rate, over a period of 

1.5 years. The first application predicts the ship’s total fuel oil consumption under various 

scenarios of operation while the second application focuses on the monitoring of the ship’s 

performance and estimates the average speed loss of the ship over the period of one year. The 

necessary statistical calculations and algorithms for data processing were implemented in 

Python programming language and state-of-the-art deep learning techniques for training and 

optimizing Feed-Forward Neural Networks (FNNs) were applied. The results show that with a 

proper data filtering and preparation stage (pre-processing), like the one implemented in this 

study , it is possible to achieve an increased performance of the ship propulsion models and 

consequently increase our awareness of the ship's performance condition and take more 

effective decisions regarding strategies and operational measures for reducing fuel oil 

consumption and emissions. The main engine’s fuel oil consumption was initially predicted 

with 95.9% accuracy and a 3% improvement was achieved after the proper pre-processing of 

the data, leading to a final 98.7% average model accuracy. Similar results were obtained when 

other propulsion parameters (shaft power, speed) were estimated by our models. With such 

accurate models for propulsion parameters estimation, we can have improved quantitative 

information on the achievable emissions abatement from operational measures like route or 

speed optimization and weather routing. 
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1 Introduction 
 

For more than 4,000 years, ships are the largest transportation means that humanity possess. It 

all began with flat pieces of wood, tighten together and floating on the surface of the sea or a 

lake. It was a tool for satisfying the curiosity or the survival needs of some group of people 

living by the shore. Primitive boats had a catalytic role in the spread of our species around the 

globe and to our survival and dominance over every possible obstacle on earth.  With the help 

of a boat, you could flee from a hostile environment, avoid famine and find a proper place for 

the continuation of human life.  

In the modern world ships still have the same significance but from a new perspective. They 

serve, less primitive but equally fundamental concepts of the human society. World trade and 

Globalization are mainly supported by the shipping industry. People were carrying different 

forms of capital with them when sailing for commerce or migration, not long ago, since ships 

were the only mean of intercontinental transportation. Human capital, not only in the form of 

labor but also as knowledge and technical know-how, and Social capital are some examples of 

what was transferred by the ships. Capitalism would not have been able to flourish in the last 

centuries if it was not for the ships to implement the economic theories in practice. Free trade 

and its benefits, like “Comparative Advantage” have been pushing economic growth for 

decades because commercial ships are able to transfer large quantities of goods with very low 

cost per unit transferred. This last characteristic of commercial ships is the key to the shipping 

industry’s future.  

However, in order to achieve this economy of scale, ships have nowadays become huge floating 

factories. They consist of numerous machinery equipment, engines and networks of pipes or 

cables. Dozens of people live and work onboard the ships and very delicate cargos, worth of 

millions of dollars, are being transferred by them. In addition, numerous experienced engineers, 

operators and managers are employed on-shore in order to ensure the successful and efficient 

transfer of these cargoes by the modern ships. As a result, the performance of such a complex 

and significant engineering construction, as the ship, has come under the microscope of the 

scientist and engineers.  

The present study is an attempt to investigate the field of propulsion modelling for the scope of 

performance analysis and monitoring. Focus is given in the recently introduced and promising 

data-driven technics for propulsion modelling and predictive analytics. New capabilities are 

offered to the researchers in this field, due to the installation of automatic data acquisition 

systems onboard the ships, in the last decade. However, before addressing the issue of 

propulsion modelling, we should briefly discuss certain important concepts that are related to 

the scopes of the study.   

In this introductory section we shall describe the concepts of ship’s efficiency and performance, 

and the reasons why it is so essential nowadays to pursue high efficiency and optimum 

performance. Also, we shall review the related literature on the topics of data-driven ship 

propulsion modelling and ship performance and efficiency.  
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1.1 Essence of Ship Performance 
 

Ship Performance is a quite abstract term. It would be difficult to give a clear definition with 

just a few words. That is why we should define the framework over which we wish to use this 

term. So, before becoming any more specific, let us have a look on the greater picture of the 

ship’s operation and on how efficiency relates with performance. Also, note that our analysis 

is valid mainly for large merchant ships. 

Usually in the fields of science, engineering or finance any term involving the words 

performance or efficiency is a fraction where the denominator is the “what we give” and the 

nominator the “what we receive”. In this sense, the efficiency of a heat engine is the produced 

work over the total energy consumption or the performance of an investment is the monetary 

value of our absolute gain (or loss) over the monetary value of the invested capital. 

Consequently, the propulsive efficiency of a particular ship on operation could be defined as 

the total distance travelled over the total consumed energy, in a specific time period. 

Alternatively, in order to avoid testing specific time periods, it could be the ship’s propulsive 

power over the total power consumption at the instant. Finally, the term “ship’s performance” 

could be regarded as the ship’s propulsive efficiency over time, because the ship’s efficiency is 

a design parameter but the ship’s performance is an operational parameter. 

 

i. The flow of the energy in ships 
Assuming the above definitions for efficiency and performance, the terms “propulsive power” 

and “total consumed energy” should be analyzed. Firstly, the total consumed energy is the 

energy that we offered to the ship, as a physical system, and the propulsive power is the actual 

work that we are able to retrieve from the system. However, by estimating the ships efficiency, 

we see only the two ends of an interesting and complicated process. It is the flow and 

transformation of energy through the various mechanical systems of the ship that ultimately 

define the ship’s efficiency. In order to comprehend and improve efficiency and performance, 

the energy flow through these systems should be investigated. 

 In fact, there is a single energy source (input), for the majority of ship types and this fact 

simplifies considerably our analysis. The journey of the energy initiates with the bunkering 

procedure, where the ship receives chemical energy in the form of fuel oil (HFO, MDO, LNG 

etc.). This fuel oil is the sole energy source of the ship and therefore it is equal to the total 

consumed energy.  

The reason for this, is that the heart of the ships is the diesel engine, since it has dominated over 

all alternative options from the beginning of the 20th century and until today. The diesel engine 

is responsible for the transformation of the chemical energy to heat and then to mechanical 

work. Obviously, during these transformations, there are remarkable energy losses, which are 

the amount of energy that escaped from the physical system without offering any valuable work. 

In a large and modern diesel engine, the total energy losses are about 46% and it is mainly 

energy in the form of heat that is wasted due to friction, radiation or for cooling needs. However, 

this amount of wasted energy is inevitable and there can only be marginal improvements in the 

efficiency of the diesel engines in the future.  

In regards to the remaining mechanical power, that is devoted to the rotation of the ship’s 

shafting system, additional heat losses appear due to friction between the shafts, the lubricant 

and the bearings’ surfaces. The percentage of energy losses here depends on the size and type 



Introduction 

Data-driven ship propulsion modeling with applications in the performance analysis  11 
 

of the ship. Fast ships usually have thinner hull shape and consequently longer shafting system 

with more bearings that result in higher frictional losses. Advances in the field of tribology are 

improving the total efficiency of the shafting system but again the margins for improvement 

are tight. Also, in the case of RoPax ferries, 4x stroke Otto engines are commonly used and 

besides the reduced thermodynamic efficiency of these engines, they include a reducer in the 

shafting system that exhibits additional heat losses due to friction. In summary, the energy 

losses from the crankshaft till the stern tube of the ship are about ~1% to 3% of the engine’s 

power output. 

The final step of the energy journey is the propeller. There, the mechanical energy from the 

shaft’s rotation is absorbed by the propeller in order to move its blades through the water and 

produce the force required to accelerate and maintain the ship on a service speed. From this 

point and after, the phenomena that have to be studied are mostly hydrodynamic. Once again, 

energy losses appear, during the transformation of shaft’s torque (kinetic energy) to thrust 

power. The propeller’s blades function as hydrofoils that generate lift, not in the vertical 

direction as usual, but horizontally, in the direction of the ship’s speed.  It is during this 

procedure of generating thrust due to pressure difference in the two sides of the propeller disc, 

that energy losses occur. 

Ideally, the produced thrust multiplied by the ship’s speed, 𝑉 ∙ 𝑇 would be equal to the torque 

of the shaft multiplied by its angular velocity, 𝑄 ∙ 𝜔. In such case, all the power transmitted by 

the shafting system would be turned to thrust power accelerating the ship through water. 

However, this cannot happen for two specific reasons. On the one hand we have the propeller 

efficiency on free flow and on the other hand the relative efficiency from propeller and hull 

interaction. The propeller’s efficiency on free flow depends solely on its design, hence it shall 

be considered predetermined and its efficiency is could be around 75%. Additionally, the 

existence of the hull in front of the propeller, distorts the flow of the water towards the propeller 

by reducing the axial velocity of the flow. Also, the rotation of the propeller in the stern of the 

ship increases the drag of the hull by furtherly reducing the pressure in the area. The influence 

of these two effects on the total efficiency of the ship’s propulsion is quantified by the wake 

fraction coefficient, w, for the former and the thrust deduction factor, t, for the latter 

phenomenon. Overall, it is common to have propellers with 60% efficiency which means that 

another 40% of the energy at this stage is lost.  

One last factor that affects the ship’s efficiency by increasing the hull’s resistance, is the added 

resistance from the appendages. Appendages may be added to the bare hull for maneuvering, 

structural or stability reasons. The most commonly added piece of equipment that could be 

modified to increase efficiency is the rudder that is placed close to the propeller and interacts 

constantly with her. Other features of interest, may be ducts or fins that improve the 

hydrodynamic efficiency of the hull as a total. The w and t values are affected by this energy 

saving equipment, but they are also affected from the hull and/or propeller fouling that occurs 

over time. Cavitation phenomena also relate with energy loss and reduced propulsive efficiency 

but their analysis is out of the scopes of the present study. 

The above analysis of the energy flow through the ship’s systems is summed up in Figure 1.1. 

Every box in the figure describes an activity or stage in which energy is consumed without 

producing thrust. 
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Figure 1.1 The ship's energy flow diagram. 

 

ii. Factors that influence the ship’s performance 
Comprehending the greater picture of the energy’s flow through the ship’s systems can lead to 

more systematic performance analysis and monitoring. As mentioned, ship performance is the 

relative ship efficiency over time and hence, optimal performance is equal to minimum 

reduction of the ship’s efficiency. On the one hand, the ship’s efficiency depends on many 

different subsystems, each one working on its own terms but also interacting with other 

subsystems of the ship. Therefore, a ship will operate at its maximum overall efficiency when 

it’s newly delivered or properly maintained, and all of its subsystems are fine-tuned to operate 

on the region of their maximum efficiency. However, optimizing the ship’s efficiency is not the 

same task as optimizing the ship’s performance. That is because, on the other hand, the ship’s 

performance depends solely on maintaining the ship’s efficiency on its initial level, no matter 

if it operates in conditions of high or low efficiency. For this reason, on a performance 

monitoring task, there is no reason to involve the optimization of the machinery and equipment. 

Only the time-dependent parameters that affect the ship’s efficiency should be studied, in order 

to know when and how to act to improve the performance.   

As found in many studies that focus on ship performance [i.e. (Karaminas & Shen, 2016), (ISO 

19030, 2016)], the main cause of poor performance is the hull and propeller fouling. With the 

term fouling we mean the appearance of aquatic life on the ship’s surfaces. More specific, it is 

the accumulation of microorganisms, plants, algae, or animals on the wetted surfaces of the 

ship. They have a direct impact on the ship’s performance because they increase the frictional 

resistance of the hull and result to higher power demand for the same service speed.   

Additionally, the ship’s efficiency is optimized for a few service conditions, the design 

conditions. These conditions can be described by the speed, the draft and the trim of the ship, 
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and usually refer to calm sea. Consequently, when the ship sails in different conditions its 

efficiency and maybe its performance varies because its resistance varies as well. It is the 

objective of the performance analysis to detect, explore and quantify those variations and 

understand their root cause.  

In Figure 1.2, the analysis of resistance in components (Taylor, 1910) contributes in the 

comprehension of resistance variations, due to changes in the operating and loading conditions 

of the ship. 

The draft of the ship depends on the weight that is carried, and defines the volume of the 

submerged part of the hull.  

The trim of the ship is defined by the distribution of the weight on the ship, and hence it can 

differ, for the same loaded weight.  

The combination of a particular draft and trim defines the loading condition of the hull and 

therefore the shape of her submerged part and her wetted surface as well. The former affects 

the pressure or drag component of the total resistance, since the hydrodynamic flow around the 

hull is different while the latter affects the frictional component of the ship’s total resistance. 

The speed of the ship also influences the total resistance of the ship because the wave making 

component depends heavily on the ship’s speed since different speeds result to different Froude 

number. Also, if the hull has a bulb in the bow then the bulb will operate effectively only for 

certain combinations of speed, trim and draft.  

 

 

Figure 1.2 Main components of the ship's total resistance. 

In a performance analysis task, we are not only interested in which are the speed, draft and trim 

values that maximize the propulsive efficiency since these values are provided by the designer. 

The scope is to be able to compare, among the varying loading and environmental conditions, 

the efficiency of the ship’s propulsion, so that any reduction, over time or for specific 

conditions, can be detected. This fact, constitutes the constant monitoring of the ship’s 

propulsion parameters essential in the procedure of evaluating and improving the ship’s 

performance. 
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1.2 International Regulations & Standards regarding Ship Emissions and 

Efficiency  
 

The strive for higher efficiency and optimum performance in the shipping industry has been 

rising remarkably in the last decade. It could be considered as a strategic business decision to 

maximize profits by minimizing the energy consumption, and especially the energy losses in 

the ships. However, another crucial reason that almost all ship operators focused their efforts 

towards achieving a more efficient fleet, is that the legislative authorities around the shipping 

industry are planning for an eco-friendlier future. This ambition has brought the global fleet’s 

gas emissions under the need for severe mitigation while the demand for transportation capacity 

will keep on rising (DNV-GL, 2017). This is the shipping industry’s greater challenge for the 

near future and a motivation for the current study. Hence, we should investigate how the 

legislative and regulatory authorities try to impose this transition to an environmentally 

friendlier future. 

At the highest level of international cooperation and intergovernmental agreements, there is the 

United Nations (UN) organization that promotes the discussion and the mutual action of all 

nations over global affairs. The United Nations is the organization that shows the directions 

and sets the goals that other international organizations or the national governments should 

achieve. Lately, one of the most important agreements in the UN, was the Paris Agreement that 

aims to slow down climate change and avoid the harsh consequences that it would bring. 

The Paris Agreement is an agreement within the United Nations Framework Convention on 

Climate Change (UNFCCC), dealing with greenhouse-gas-emissions mitigation, adaptation, 

and finance, signed in 2016 by 194 states. It identifies a clear goal of “holding the increase in 

the global average temperature to well below 2°C above pre-industrial levels and to pursue 

efforts to limit the temperature increase to 1.5 °C above pre-industrial levels.” As a result, all 

the involved parties are obligated to legislate in the direction of greenhouse gases (GHG) 

abatement or indicate other measures that will aim to constrain the increase in the global 

average temperature.  

The International Maritime Organization, is an agency founded by the United Nations in 

1948, and is responsible for providing the regulatory framework for the international shipping. 

The IMO is also responsible for the adoption and implementation of the proposed international 

regulations, on national level. Therefore, in consistence with the Paris Agreement, the IMO has 

adopted regulations that aim to control the air pollution from ships’ emissions or measure the 

energy-efficiency of ships in order to set limits and constrain the GHG emissions. 

In the first category of measures belong the prior to Paris Agreement, Emission Control Areas 

(ECAs) and the Global Sulphur Cap (GSC), that prevent the emission of SOx, NOx and PMs 

in order to improve the quality of air and protect the environment. These emissions can be 

constraint either by technologies that capture or prevent the formulation, of the above-

mentioned oxides or by the use of alternative fuels. Hence compliance with these regulations is 

not achieved through operational measures, like improved performance and so we will not 

discuss them any further.  

However, for the GHG emission (CO2, CH4) reduction, there can only be measures that limit 

the emissions in total, by improving the energy-efficiency or reducing the energy consumption 

of the ships. So far, there have been several regulations that aim to achieve this goal. 

The MRV (Monitoring, Reporting and Verification) regulation was introduced in 2015, as a 

first, preparatory, step in the process of limiting the GHG emissions from the ships. It aims to 
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quantify the amount of emitted CO2 so that specific goals for reduction can be set afterwards. 

Also, some people in the industry believe that the MRV should be exploited to establish a 

carbon Emission Trading System (ETS), while other advocate for different Market Based 

Measures (MBMs), i.e. bunker levy (Psaraftis, 2019). Even though there is still a lot of 

uncertainty around these issues, the IMO has proceeded to set goals for the energy efficiency 

of the ships.  

The major goal of the de-carbonization of the shipping industry is planned to be implemented 

in three stages. In the first stage, the requirement is to have 30% more efficient ships by 2025 

and the final goals are expected to be a 40% reduction by 2030 and a 70% reduction by 2050, 

to the total annual GHG emissions. The baseline year in which these reductions refer to, is the 

2008. These goals have been decided by IMO's Marine Environment Protection Committee 

(MEPC) and were based on the Second and Third IMO GHG Study (Smith, et al., 2014). Hence, 

IMO will have to oblige ship operators to achieve this reduction in emissions and for this 

purpose, additional regulations have been introduced (MEPC.62, 2011). In the Annex VI a new 

Chapter 4 entitled "Regulations on energy efficiency for ships", is making mandatory the 

Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Plan 

(SEEMP) for all ships. 

The Energy Efficiency Design Index (EEDI) is an index that estimates the emitted grams of 

CO2 per transport work (tonne-mile), for each ship. This means that the smaller the value of the 

index, the more efficient the ship’s design. It is a function of just three elements, in order to be 

simple and capable of broad application. These are:  

a. the installed power, 

b. the speed of vessel,  

c. the cargo carried.  

It is applicable only to new ships (delivered after 2012) and aims to ensure that they are 

designed to be more energy efficient than the already existing designs. This is achieved by 

defining a reference line (baseline) and requiring the attained EEDI value of each ship to be 

below this baseline. However, the attained EEDI value will have to be reduced over time until 

the goal of 30% more efficient ship designs is achieved by 2025 and onwards. That demand is 

expressed with the following formula:  

𝐴𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝐸𝐷𝐼 ≤ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝐸𝐷𝐼 (1 −
𝑋

100
) ∙ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

Where X is the reduction factor that will be increasing every five years (2015,2020,2025). Also, 

the baseline is ship-type specific and in general is easier for large and slow ships to comply 

with the EEDI requirements. Nevertheless, the fact that the EEDI is not a performance indicator 

of the operational energy efficiency of vessels, makes it indirectly related to the objectives of 

this study.  

The Energy Efficiency Operational Indicator (EEOI) on the other hand, is a tool for 

monitoring ship efficiency over time. It was proposed in (MEPC.1/Circ.684, 2009), as a 

voluntary measure. It aims to gauge the effect of any changes in operation, e.g. improved 

voyage planning, and more frequent propeller cleaning, or the introduction of technical 

measures such as waste heat recovery systems or a new propeller. It is applicable to both, 

existing and new ships, and it has the following basic expression:  

𝐸𝐸𝑂𝐼 =∑
𝐹𝐶𝑗 × 𝐶𝐹𝑗
𝑚𝑐𝑎𝑟𝑔𝑜 × 𝐷

𝑗
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Where j is the fuel type, 𝐹𝐶𝑗 is the mass of the consumed fuel, 𝐶𝐹𝑗 is the fuel mass to CO2 mass 

conversion factor for fuel j, 𝑚𝑐𝑎𝑟𝑔𝑜 is the carried cargo (tonnes or TEU or passengers) and 𝐷 

is the distance in nautical miles corresponding to the cargo carried. Also, average EEOI or 

moving average EEOI (average over a time-window) can be exploited for the same goal. 

Finally, the Ship Energy Efficiency Management Plan (SEEMP) is the second mandatory 

measure proposed in (MEPC.62, 2011)that must be adopted by ship operators in order to 

comply with the regulations on Energy Efficiency for Ships in MARPOL Annex VI (IMO, 

2012). It is an operational measure that establish a mechanism to improve the energy efficiency 

of a ship in a cost-effective manner. The guidance on the development of the SEEMP for new 

and existing ships incorporates best practices for fuel efficient ship operation, as well as 

guidelines for voluntary use of the EEOI. The SEEMP urges the ship owners and operators at 

each stage of the plan to consider new technologies and practices when seeking to optimize the 

performance of a ship.  

Last but not least, another reason that is not directly addressed by the regulations but constitutes 

a significant reason for increased GHG emissions and other types of environmental pollution 

by the ships, is the hull and propeller fouling. Three ways that hull fouling can impact the 

environment are presented in (Logan, 2011). 

a. Increased the GHG emission due to the extra power and fuel consumption needed to 

maintain service speeds. 

b. Toxic paint residuals from the periodic hull cleaning can pollute the marine 

environment. 

c. Probable transportation of aquatic invasive species that resident on the ship’s fouled 

hull and may damage local ecosystems or the human health and the local economy.  

Therefore, the ability to detect the hull and propeller fouling in order to proceed in timely hull 

and propeller cleaning, is a major issue and a motivation for this study.  

For the purpose of timely detection of the hull fouling and the monitoring of the ship’s 

performance the ISO 19030 “Ships and marine technology – Measurement of changes in 

hull and propeller performance” has been published (ISO 19030, 2016). It defines some 

specific procedures for the data collection and preparation and introduces five Performance 

Indicators (PIs). In the present study, we are not going to follow the ISO 19030 standards and 

procedures but we will use it a few times as a reference or comparison point.  
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1.3 Literature review 
 

The subject of modelling the ship’s propulsion is being studied since the beginning of the 20th 

century. In 1910 the Rear Admiral of the U.S. Navy, D.W. Taylor published the book “The 

Speed and Power of Ships” (Taylor, 1910). This work laid the foundations for the development 

of the ship’s resistance and propulsion theory in the past century.  Another landmark publication 

for this field is the second volume of the famous series “Principals of Naval Architecture”, with 

title “Resistance, Propulsion and Vibrations”, published by the Society of Naval Architects and 

Marine Engineers (SNAME), (Lewis, 1988). These two books are addressing the issue of 

modelling the ship’s propulsion with a combination of experimental and theoretical approach 

that leads to models with semi-empirical equations. Examples of these type of methods are the 

systematic series (Wageningen, MARAD etc.) or Holtrop- Mennen method (Holtrop & 

Mennen, 1982). More recent works in the field, include physical modelling of the propulsion 

plant and solve numerically, differential equations that attempt to describe reality in greater 

detail than the semi-empirical equations (Theotokatos, 2007). This approach in general, is the 

most systematic way to address the issue of powering requirements for the ship’s propulsion 

and is still used in design or performance analysis tasks. 

However, the accuracy of this ‘classical’ approach is often limited (Pedersen & Larsen, 2009). 

The required power to propel a ship at a certain speed is rarely estimated with error smaller 

than 10% and if it is a novel design then the empirical equations should not even be applied. 

Therefore, a good alternative to these methods is the Computational Fluid Dynamics (CFD) 

simulations. CFDs provide much higher accuracy in the estimation of the ship’s resistance but 

they have really high computational cost and complexity. The reason is that the system of partial 

differential equations (Navier- Stokes) that needs to be solved on each and every computational 

volume of the defined mesh, can take hours of computation on a high-end computer and it will 

result to the simulation of a single loading condition for the ship. Overall, we would say that 

they are a very useful tool for detailed estimations and simulations of phenomena of interest 

but they are not a convenient tool for modelling the ship’s propulsive efficiency for the 

numerous conditions that will be faced in reality. 

The need for higher accuracy than the empirical or theoretical models and lower computational 

cost than the CFD simulations, lead the scientific community to the experimentation with data-

driven and ship-specific methods. The basic idea behind these models is to exploit the data 

collected from a particular ship’s operation and use them to create a statistical model that could 

estimate its powering needs or forecast its consumption and monitor its performance. A number 

of papers that are applying this type of propulsion modeling are presented below.  

In the PhD thesis of (Petersen & Winther, Mining of Ship Operation Data for Energy 

Conservation, 2011)the propulsion of a RoPax ship with two controllable pitch propellers 

(CPP) is modelled as a time-series problem and automatically collected, high frequency data 

are used. The available (collected) propulsion parameters are divided into three groups.  

▪ The state vector parameters: VSTW (Speed Through Water), Trim, Draft, FOC (Fuel 

Oil Consumption), Heading. 

▪ The control vector parameters: Propellers’ pitch, Rudders’ Angle, Longitudinal Speed 

Difference (VSTW -VSOG), Head and Cross (the parallel and the perpendicular 

component to ship’s speed vector, respectively) Wind Speed. 

▪ The constant vector parameters: Initial Port and Starboard Level 

Afterwards a Time-Delay Neural Network (TDNN) and a Gaussian Mixture Model (GMM) are 

trained on these data in order to create a model that predicts the ship’s response. The input to 
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these networks is the current values of the state, control and constant vectors and their two 

previous values (a time-series of three timesteps). The trained models are tested either as 

regression model (estimator) or as dynamic model(predictor) of the ship’s response. In the first 

case, the estimated target’s value is compared to the measured one. In second case, the predicted 

target’s value for the next time-step is compared to the measured one. Prior to the training, the 

dataset is divided trip-wise and shuffled. Then one-third of the trips are used as training set, 

one-third as validation set and one-third as test set. During the validation phase a noise 

distribution (Gaussian multivariate) is fitted to the residuals of the model’s estimations. After 

that, the FOC and the VSTW are forecasted for the test set data, by both models (TDNN and 

GMM). The results are given in the form of plots with the measured and the forecasted time-

series surrounded by the 50% and 90% percentile intervals. 

Unfortunately, the results are not accompanied by some loss metrics of the estimated or 

forecasted values versus the measured ones. Also, the scale of the plots is quite large (in y-axis) 

and so details of the signals are not clear. Nevertheless, we notice that the estimations fall much 

closer to the measured values and the percentile intervals are much narrower, when the data 

refer to steady-sailing conditions. In other cases, we see the forecasted signal to miss the trend 

or drift from the measured values and in transient cases the percentile intervals (for the GMM 

only) around the FOC where inconveniently large.  

Again, in (Petersen, Jakobsen, & Winther, 2011) a paper part of his PhD, a publicly available 

dataset of high-quality sensory data, collected from a ferry over a period of two months, is used 

for the training of two types of neural network models. An instantaneous and a predictive 

model, that estimate the ship’s FOC. The instantaneous, is a typical feed-forward neural 

network model. The predictive is a TDNN (a type of Recurrent neural network) that takes as 

input 𝑋𝑛, all the available propulsion parameters (state, control and constant vectors, except 

ship’s heading) and estimates just the difference in the target variable at the next time-step, 

𝑋𝑛+1. Also, the predictive model’s residual error in the training set is used to fit a probability 

distribution that will be added to the model’s final predictions as noise. A simple feature 

extraction procedure follows, where the mean the variance and the derivative of some 

parameters are the generated features. In the averaging of the data, a time-window size of 3 

minutes is used for the instantaneous model and of 15 seconds for the predictive. The weights 

of the neural networks are regularized with the addition of a penalizing term in the error 

function, governed by the hyper-parameter λ. The value of λ is determined based on the k-folds 

cross validation process. The two-thirds of the data are used as the training set, which is divided 

again trip-wise and shuffled. The test set as well, contains data of whole trips.  

The instantaneous model’s predictions align well with the test’s set target signal. However, 

when the training data are shuffled without being grouped trip-wise, the performance of the 

instantaneous model is further improved. The quantitative results are presented in comparison 

with two other studies: They achieve a mean relative error of 1,50% on the FOC prediction 

while (Pedersen,2009) reports 1,65%. In absolute values, the RMS (Root-Mean-Squared) error 

on the speed estimation is 0.32 knots and in the FOC estimation 41.1 L/h while (Leifsson et al., 

2008) report RMS errors of 0.65 knots in speed and 60 L/h in the FOC.  

In regards to the dynamical model, it uses a TDNN with two groups of input parameters, the 

control and the dynamic ones.  
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Control parameters Dynamic parameters 

− Port and Starboard propeller’s pitch 

− Port and Starboard rudder’s angle 

− Initial Port and Starboard level 

− Difference between ground and 

through water speed 

− Headwind and Crosswind 

− Speed Through Water 

− Port and Starboard level 

− Trim 

− Draft 

− Difference in heading 

 

The control parameters are used to predict the changes in the values of the dynamic parameters 

on each time-step. As mentioned earlier, in the model’s output a noise term is added, which is 

sampled from a Student’s distribution, fitted over the residuals of the validation set. The 

presented results are only qualitative and demonstrate the simulation of the ship’s STW as a 

response to a certain pitch signal.  

In this study, we expected to see an argument for the selection of time-window size when 

averaging the data for the instantaneous and the predictive model. Also, for the proper 

estimation of the derivative of a parameter, the sampling frequency should be high enough, in 

regards to the parameter’s dynamics. However, there is no discussion about this issue before 

estimating the derivatives of the parameters. Last but not least, we notice that there is no 

information about the engine’s operation in the dataset (i.e. engine’s torque or rpm). 

Another effort of modeling the ship’s propulsion with neural networks is presented in (Pedersen 

& Larsen, 2009). They attempt to predict the propulsion power of a 110,000-dwt tanker. A high 

frequency dataset has been obtained from sensors on board the ship and the data are organized 

to 10-minute intervals. Furthermore, the ship’s heading is used to filter the data since it was 

noticed that when the heading was changing there was significant influence on the measured 

propulsion power. The wind speed is an indicator for the wind-driven waves but information 

about swell is not included. Finally, the data are split into four different sets, each one with 

different mean draft and/or trim value.  

The input vector for model is the following: 

− Speed through water 

− Wind speed 

− Wind direction 

− Air temperature 

− Water temperature 

 

For obtaining the best performing model, each neural network is trained 10 times and the k-

folds (k=5) cross validation technic is applied as well. Architectures with 5, 10, 15 and 20 

hidden units, in the single hidden layer of the network, are tested. The best results are achieved 

with the 15 and 20 hidden units and the mean relative error ranges from 0.82% to 2.69%. 

Results from the prediction of the same target values (propulsion power) with empirical 

methods are presented and their error was found to be about ten times higher. 

The efforts in the data-driven modeling of the ship’s propulsion however, should not be 

constrained in the field of neural networks only. In the PhD thesis of (Aldous, 2015)we get an 

extended treatment of the ship performance issue. It is a study with a more systematic approach 

on the issues of data uncertainty and pre-processing, which are crucial elements of the data-

driven modelling procedure that were not given the necessary attention in the previous papers. 

Data from noon reports (NR) are compared to continuous monitoring (CM) data and the main 

disadvantages of the first are found to be: (a) the lack of standardization, (b) the missing 

observations and inaccuracies, and (c) the inherent characteristic of expressing the ship’s 

performance in terms of FOC only, and not in the more appropriate terms of shaft power. The 
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CM dataset provides a much larger amount of data in the same time period but it’s only negative 

attribute is that it requires frequent maintenance. Also, the onboard obtained CM data are 

compared with met-ocean data and are found to only partially overlay. The concluding 

argument is that CM datasets are more proper for the assessment of the ship’s performance. 

This argument is found to be supported in other works too, like (Themelis, et al., 2018b). 

 

Afterwards, there is a broad review of the proposed performance indicators (PI) in the literature, 

and then the author decides to use the following PI in her study:  

𝑃𝑠,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝑠,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 

Where 𝑃𝑠 refers to shaft power and 𝑃𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 would be calculated from a model, derived either 

from theory or during a calibration period which would form the ‘training’ dataset for a 

statistical or hybrid model.  

 

Before proceeding to the modelling phase, an extensive discussion about the uncertainty in the 

data and in the models, takes place. The scope is to provide an uncertainty framework that is 

divided into four categories: instrument uncertainty, sampling uncertainty, model’s uncertainty 

and for the case of NR datasets, the human error derived uncertainty. The discussion about 

uncertainties leads to the introduction of filtering criteria. The dataset is filtered with respect to 

certain parameters like water depth, shaft power, speed and sea current. Also, a type of 

statistical filtering is applied with respect to the FOC parameter, by comparing the measured 

values to the modelled ones and rejecting those that fall 2σ away from the mean. However, we 

believe that filtering with respect to a simple theoretical model of FOC versus Shaft Power and 

not taking into consideration other parameters is not optimal. Also, the temporal resolution of 

the available data for this study was 15 minutes, which is a common resolution for performance 

analysis studies but it would be preferable to be higher, like in (Pedersen & Larsen, 2009) or 

(Petersen et al., 2011). 

 

The models produced in Aldous thesis were theoretical, statistical (linear regression) and hybrid 

(a combination of both). They are only partially related to the present study because neither 

linear regression or theoretical modeling is used here. However, it is very important to report 

the accuracy that these types of models achieve in order to justify why we choose to work on 

other types of data-driven models. In the case of the statistical model, for the prediction of the 

FOC it is reported a Root Mean Squared Deviation (RMSD) of 8,200 tonnes per day (tpd) and 

the R2 value is 0.862. Respectively, the RMSD for the prediction of the Shaft Power is 1654.022 

kW and the R2 value is 0.892. In the case of the hybrid models the results are summarized in 

Table 1.1. 

 
Table 1.1 Summary of hybrid models’ performance metrics from (Aldous,2015).  

Model’s Performance Metric 

Model Parameter RMSD R2 

Hybrid I FOC 6.502 tpd 0.820 

Shaft Power 1335.422 kW 0.836 

Hybrid II  FOC 5.540 tpd 0.848 

Shaft Power 1141.473 kW  0.860 

 

So far, it should be clear that this type of models cannot be as accurate as the more complex 

type of models (i.e. neural networks) are in the estimation of the propulsion parameters. This 

statement is verified again in the work of (Coraddu, et al., 2016) where the performance of 

Black and Gray Box Models is measured with various model performance indicators and when 

compared to White Box Models (the theoretical ones) is found to be superior.  

  



Introduction 

Data-driven ship propulsion modeling with applications in the performance analysis  21 
 

 

 

1.4 Purpose and structure of the study 
 

Even though the GHG emissions from ships are less than 3% of the global GHG emissions 

(Smith, et al., 2014), while they transfer more that 90% of the goods, the IMO has set goals for 

reducing them. Therefore, one of the main incentives of this study is to provide some model-

based tools to the shipping industry, that will assist to reduce the energy consumption and the 

gas emissions from the ships, in order to achieve these environmental goals.  

Simultaneously, the developments in different fields of technology has made feasible the 

continuous monitoring of ships and the gathering of huge amount of operational data, that carry 

precious information, if properly exploited. More specific, it was the convergence of: (i) 

technologies in the field of the electronics and sensors, (ii) the global satellite internet 

connection and lately, (iii) the machine learning methods, that produce models with superior 

predictive capabilities. Thereby, another incentive of this study is to utilize these newly 

appeared large datasets and machine learning methods in order to build useful tools. With the 

term tools we mean optimized, data-driven propulsion models (black box models) that can later 

be used in various applications, like decision-support tools or simulators. 

The combination of the two aforementioned incentives, determines the ultimate purpose of this 

study, which can be summarized as follows: The capability to produce highly-accurate ship 

propulsion models, through improved technics and practices of data manipulation, will enable 

the thorough and effective investigation of operational measures that could lead in the reduction 

of the GHG emissions from the ships. Such models can be utilized in applications of route 

optimization, speed optimization, weather routing, and performance monitoring.  

An overview of the proposed procedure for propulsion modeling in the era of automatic and 

high-frequency data collection is presented in Figure 1.3, which is also an overview of the 

present study, as well. Firstly, a brief description and some information about the sensors and 

the data acquisition system are given in Chapter 2. Then, the data pre-processing and quality 

control stages, are covered in Chapter 3. Great emphasis is given in this stage because it hides 

remarkable possibilities for improving the performance of the produced model. The process of 

feature engineering is discussed in Chapter 4. The model selection, training, and optimization 

are presented in Chapter 5, along with results for the models’ performance that justify and 

support the actions of the previous Chapters (3 and 4). Finally, some applications of the 

produced models are presented in Chapter 6. An introduction to specific machine learning 

methods (artificial neural networks) is presented in Appendix A. 
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Figure 1.3 Schematic representation of the followed procedure for the data-driven ship propulsion modeling. 
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2 Data Acquisition  
 

For the present study a large set of data acquired from the operation of Container ship, was 

made available thanks to the eagerness of the people that are managing the LAROS platform 

by Prisma Electronics. The ship’s main particulars are presented in Table 2.1.  

Table 2.1 The main particulars of the ship that provided the operational data for this study.  

Main Particulars 

Shit type:  
Container ship 

(2550 TEU) 

 

Length Between Perpendiculars 199 m 

Breadth (moulded) 30.2 m 

Depth (moulded) 16.7 m 

TMAX / TBALLAST 11.5 m / 6 m  

Engine’s NCR 19,404 kW 

Engine’s rpm (NCR) 96 

 

The aforementioned container ship was equipped with sensors that were monitoring the 

propulsion parameters of interest, as well as the loading condition of the ship and the relative 

wind speed and direction. Specifically, all the available parameters from the ship’s operation 

are presented in Table 2.2. 

The parameters of Table 2.2 were continuously sampled during the ship’s operation with a 

sampling period of 1 minute. For every recorded value the corresponding timestamp was stored 

as well, in the following format: MM/DD/YYYY HH: MM: SS. Data collected over a period of 

almost 19 months, from December 2016 till May 2018, were provided in the form of csv files. 

The recordings actually cover the 69.52% (531,560 recordings in 764,637 minutes period) of 

the total time, which could be considered as the time that the ship spent sailing, and so the port 

time was about ~30% . 

For the recording of the parameters’ signals a variety of sensors had to be installed and 

calibrated. Then the established by LAROS remote monitoring system, is responsible for the 

automatic and wireless data collection and their synchronization, before storing them to the 

ship’s server and sending them to shore-based computers.  

More specific, the LAROS Continuous Monitoring System relies on collector devices. These 

are connected to the analog or digital signals of sensors and instruments of the vessel. They 

offer a remotely controllable sampling rate and they analyze the retrieved signal and calculate 

the required parameters. Also, they set up a high-quality wireless network (with protocols based 

on IEEE protocols and ZigBee compliant) inside the vessel to transmit the data to the gateway. 

Through the gateway, all the measured and processed parameters are stored in the SQL database 

of LAROS Server. Afterward, the onboard server periodically produces binary files and 

compresses them in order to transmit them via FTP (File Transfer Protocol) or e-mail to the 

designated data center, with a transmission period which can be set down even to 5 minutes, 

(Themelis, et al., 2018a).  
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 From that point and onwards, the data are ready to be utilized in any modeling or performance 

analysis task. However, a stage of pre-processing is proved to be very valuable (see Chapters 3 

and 5). 

Table 2.2 The recorded parameters that are included in the available dataset. 

Label Units 

Speed over ground (SOG) Knots (kn) 

Speed through water (STW) Knots  

Draft mean  Meters (m) 

Trim  Meters 

Rudder Angle  Degrees (deg.) 

Propeller shaft rpm Revolutions per minute (rpm) 

Propeller shaft power  Kilo Watts (kW) 

Propeller shaft torque  Kilo Newtons * Meters (kN*m) 

Main Engine start air pressure Bars (bar) 

Main Engine’s Fuel Oil Consumption (FOC)  Tonnes per 24 hours (tn/24hr) 

Wind Speed  Meters per second (m/s) 

Wind Direction  Degrees 

Ship's Heading  Degrees 

Wave height  Meters 

Longitude  Degrees 

Latitude  Degrees 

 

Even though the present study focuses on the pre-processing of the data and on the propulsion 

modeling, as marine engineers and for integrity reasons, it is useful to discuss briefly the 

different types of sensors that are required for recording the signal of the parameters of interest.  

Firstly, the various sensors that are used for recording the parameters of Table 2.2 are mapped 

and grouped in Table 2.3, and afterwards their role is analyzed.  

Table 2.3 The measuring devices that are required onboard the ship to monitor the parameters of interest. 

Measuring Device Measured Parameter 

GPS  SOG, Longitude, Latitude 

Pressure sensor Draft, Trim 

Speed Log STW 

Shaft torque meter 
Propeller shaft torque, rpm 

and (calculated) power. 

Mass flow meter Main Engine’s FOC 

Anemometer Wind Speed, Wind Direction 

Rudder angle indicator Rudder Angle 

Gyrocompass Ship’s Heading  
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i. GPS (Global Positioning System)  

 

The GPS retrieves information about the ship’s position in global coordinates 

(longitude, latitude) and from the arithmetical derivation of the ship’s position, the 

ship’s Speed Over Ground (SOG) is obtained. The GPS operation requires constant 

communication with a system of satellites in order to locate the ship’s position and 

usually has an accuracy of a few meters.  

 

ii. Pressure sensor  

 

The draft of the ship can be estimated by the hydrostatic pressure on the hulls bottom 

surface. Sensors that measure the pressure are placed on the outer surface of hull’s 

bottom and can deduce the instantaneous draft of the hull at the position that they are 

installed. From the measurement of the draft on two different longitudinal positions of 

the hull, the ship’s trim can be calculated.  

 

iii. Speed logs 

 

For measuring the ship’s Speed Through Water (STW), two popular type of sensors 

exist.  

a) Doppler log: An acoustic speed log based on the Doppler effect in which the wave 

lengths of moving objects appear to shift in relation to the observer. This shift can be 

converted to speed, thereby giving a very accurate result. The Dual Axis Doppler Speed 

Log utilizes the Doppler shifted returns from high frequency acoustic energy 

transmitted into water to provide precise speed data, distance travelled, and water depth 

below the transducer. The transmitted signal is scattered back from the sea bottom 

and/or scatters in the water mass. The system amplifies the received signals and 

processes them to determine the Doppler shift.  

 

b) Electromagnetic log: The electromagnetic log works by generating a small alternating 

current in a transducer producing an electromagnetic field in the adjacent water. As the 

vessel moves through the water, the voltage proportional to the speed is generated at 

90 deg to the direction of travel. This signal voltage is detected by the probes and 

transmitted to the master electronic unit where it is amplified and processed digitally 

before being passed to the speed and distance displays. 

 

iv. Shaft torque meter 

 

The shaft torque meter is a piece of equipment the measures the torque and the 

rotational speed of the shaft, and multiplies them to estimate the transmitted power’s 

value. The instrument consists of strain gauges, arranged on a ring and mounted 

directly on the shaft for the continuous monitoring and logging the aforementioned 

values. The basic principal of operation is that any deformations of the strain gauges 

are transferred into voltages deviation which determine the strain of the shaft.  

 

v. Mass flow meter 

 

When it comes to measuring the fuel consumption in a ship, the most reliable way is to 

do it via mass flow meters because they eliminate the need for converting the 

volumetric flow into a mass flow, according to the fuel’s density estimations. They are 

also known as Coriolis mass flow meters. The reason is that the Coriolis acceleration 
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induces oscillations to the tubes of the device, that depends on the mass flow in them. 

As a result, the magnitude and the frequency of these oscillations help determine the 

fuel mass flow through the tubes. 

 

vi. Anemometer 

 

The wind anemometer is a device that provides both, the relative speed and direction 

of the wind with respect to the ship’s orientation. It consists of a helicoid propeller and 

a vane the measure the wind’s speed and direction, respectively. The angular 

displacement of the vane helps estimate the wind’s relative direction, while the 

rotational speed of the helicoid propeller helps estimate the wind speed.   

 

vii. Rudder angle indicator 

 

The rudder angle indicator is an electrical device that measures the actual angle of the 

rudder. It consists of the two parts, the transmitter which is mounted on the steering 

system of the ship (steering gear room) and the receiver which is placed in the 

wheelhouse and displays the transmitters signal. The measuring accuracy is usually 

below the range of ±0.5° at common angles and ±1.5° at hard over rudder.  

 

viii. Gyrocompass 

 

The gyrocompass is a form of gyroscope (non-magnetic compass) that is used in ships 

for monitoring their heading orientation. It is based on a fast-spinning disc and the 

rotation of the Earth, to find geographical direction automatically. It has the ability to 

point always the true north, and so the ship’s heading is accurately estimated with 

respect to this direction.  
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3 Data pre-processing  
 

The present chapter aims to delve deeper into the nature of the ship’s data by visualizing and 

analyzing them. Even though acquiring a set of data from the operation of a ship is a meaningful 

endeavor from scientific, technological and business perspective, the real value of these data 

will not arise without an effective pre-processing. The reason is that the collected dataset should 

prove to be a reliable and well-aligned realistic approximation of the occurring situations that 

a ship is facing. Considering that, the first plausible step would be to inspect visually the 

collected data, since this is a common quality control measure in many engineering activities 

and the human brain is still better in critical thinking than any known algorithm. As a next step, 

the data should be contrasted with the theory and then an effort to correct or clean the dataset 

from anomalies and outliers could help us improve their intrinsic information. However, after 

any interference in the original dataset, a quality control phase should follow in order to 

investigate the resulting effects on it.  

 

3.1  Data Visualization  
 

i. Plotting in the time domain 
Data collected from a ship are always time-dependent and each data point has its unique 

timestamp as an ID and when the collected data are synchronized all the parameters share the 

same timestamps. As referred in Chapter 2, our data set originally consists of 16 parameters 

stored digitally over a period of 18 months. All these parameters should be plotted over time 

and visually checked but before that, the time scale of the graphs should be considered. 

On the one hand, plotting over short periods of time (few hours) will present recorded signals 

in great detail but this would be just a small, and not representative, fraction of the data. On the 

other hand, plotting over large periods of times (few months) can provided useful information 

concerning the operational profile of the ship and helps to identify some patterns. But an 

important amount of details is missed due to the scale of the graph.  For these reasons it was 

decided to plot over three different time scales: 

i. over 1-day,  

ii. over 1-week, 

iii. over 2-months.  

These characteristic plots are presented in Figures 3.1 to 3.3. 

Furthermore, when plotting over short or medium size time periods, it is important to do it for 

specific sailing scenarios. For example, open-sea/steady sail, coastal navigation or when 

approaching ports.  
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Figure 3.1 Plot over time for three measured parameters, on a 2-months period of ship’s operation. 
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Figure 3.2 Plot over time for three measured parameters, on a 1-week period of ship’s operation. 
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Figure 3.3 Plot over time for 3 measured parameters, on a 1-day period of ship’s operation. 
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We choose to demonstrate three specific parameters in the discussion of plotting over time 

because each one of them represents one of the three main categories of ship performance 

monitoring parameters. As an operational parameter, we have the ship’s Longitudinal Speed 

Through Water (STW), as a loading condition parameter we have the Draft of the ship and as 

an environmental parameter, we have the Wind Speed. Also, these 3 different families of 

parameters tend to have different statistical behaviors in relation with time. Operational 

parameters vary over short periods of time but follow some kind of patterns like: rapid increase, 

relatively steady (between some intervals), rapid decrease. Loading condition parameters are 

quite steady while the ship is sailing and then instantaneously change value when the ship loads 

or unloads cargo at the port. Environmental parameters always seem governed by randomness 

because they are characterized by spatial and temporal variation and because the ship is also 

moving through space, over time. The recorded signal of their values is really complex and it 

is difficult to spot any regularities.   

The procedure of inspecting this kind of plots and trying to explain them can be supported by 

plotting alongside them a map projection, of the ship’s path. An example of this kind of plot is 

given in Figure 3.4. In this way while examining the signal of some measured parameter we 

also have information regarding where the ship was sailing in that specific moment. For 

someone with relative experience on ships’ operations it is useful to know if what seems like 

an anomaly on a recorded signal happened during open-sea steady sail, coastal navigation or 

when approaching a port.  

 

Figure 3.4 Ship's path on a world map projection with (relative) timestamps on. Each number on the map refers 
to thousand minutes. 

When specific data points of a recorded signal are investigated for anomalies it is useful to plot 

a short time period around the examined timestamp and print also the timestamps along the 

ship’s path on the map. For simplification, we print in units of thousand minutes. 

Other conclusions that could be drawn from plotting the data over time, are related with the 

existence of noise or outliers, and the necessity for filtering or smoothing the data. In Figure 

3.4 the existence of noise and outliers on the GPS signal is obvious. For instance, the data point 

that corresponds to the timestamp 23 is severely drifted from the ship’s path. This issue 

however, is addressed in detail on a following section.  
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ii. Parametric plots 

After inspecting the signals of the measured data over time, the next step should be to 

investigate the correlation between these parameters from the recorded data. In this process it 

is important to have a prior estimation of the expected correlation between these parameters, 

based on the physical laws that govern the phenomena in which they are involved.  There are 

certain equations that involve some of the parameters for which we are particularly interested, 

in a simple and straight forward way. Those are:  

• For the engine’s operation: 

                   

𝑃𝑒𝑛  =  Q · 2π ∙ 𝑛   (3.1) 

 

where 𝑃𝑒𝑛 is the power outcome of the engine, also known as Break Horse Power 

(BHP), Q is the torque on the crankshaft and n are the revolutions per second (for S.I. 

units) of the engine. 

 

• The empirical Propeller Law:  

 

P𝑃𝑟𝑜𝑝 = c · 𝑉
3   (3.2) 

 

where P𝑃𝑟𝑜𝑝 is the power consumed by the propeller, c is a constant depending on the 

specific hull and propeller design and the specific loading and weather conditions, V is 

the speed of the ship. The propeller law however, can be written and in another form:  

 

P𝑃𝑟𝑜𝑝 = c · 𝑛
3   (3.3) 

 

where now n are the propeller revolutions, which are proportional or identical (when 

there is no reduction gear) to the engine’s revolutions. From the two above equations 

we conclude that the speed V is proportional to the propeller’s revolutions n and from 

(3.1) we get that Q is proportional to 𝑉2. 

 

• The Calm Water Resistance Coefficient: 

        

CT =
R

1

2
ρSV2

   (3.4) 

 

where R is the measured resistance force, ρ is the fluid’s density, S is the wetted surface. 

The water resistance is the force that needs to be overcome in calm sea, by the 

propeller’s thrust, in order to sail at the desired speed V, and this is achieved when the 

propeller’s effective power (P𝑒𝑓𝑓) is equal to:    

P𝑒𝑓𝑓 = 𝑉 ∙ 𝑅 .  (3.5) 

The wetted surface S, which depends on the draft of the ship, is influencing the hull’s resistance. 

However, the draft of a ship is relatively constant during a voyage and so it is considered 

uncorrelated with the power and the speed because it is actually an operational decision at which 

speed to sail when then draft is already known. 

 

Last but not least, there is no need to involve equations to acknowledge that the Fuel Oil 

Consumption (FOC) is monotonously increasing with the engine’s power and RPM.  



Table 3.1 The expected correlation (based on the theory) between the available parameters. 

 

EXPECTED CORELLATION TABLE 

0: not correlated, 1: loosely correlated, 2: strongly correlated 

 Speed 

Over 

Ground 

Longitudinal 

Water Speed 

Draft 

Total 

Trim Rudder 

Angle 

Propeller 

shaft RPM 

Propeller 

shaft 

Power 

Propeller 

shaft 

Torque 

M/E 

FOC 

M/E Start 

Air Press 

Wind 

Speed 

Wind 

Direction 

Heading Longitude Latitude 

Speed Over 

Ground 

 2 0 0 1 2 2 1 2 1 0 1 0 0 0 

Longitudinal 

Water Speed 

  0 0 1 2 2 1 2 1 0 1 0 0 0 

Draft Total    0 0 0 0 0 1 0 0 0 0 0 0 

Trim     0 0 0 0 1 0 0 0 0 0 0 

Rudder Angle      0 0 0 1 0 0 0 0 0 0 

Propeller shaft 

RPM 

      2 2 2 1 0 0 0 0 0 

Propeller shaft 

Power 

       2 2 1 0 0 0 0 0 

Propeller shaft 

Torque 

        2 1 0 0 0 0 0 

M/E FOC          0 0 0 0 0 0 

M/E Start Air 

Press 

          0 0 0 0 0 

Wind Speed            0 0 0 0 

Wind 

Direction 

            0 0 0 

Heading              0 0 

Longitude               0 
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In Table 3.1 the “expected” or “estimated” correlation between each of the available parameters is 

presented. Three different classes are used to express the expected degree of correlation among a pair 

of parameters. They could be characterized either uncorrelated or loosely correlated or highly 

correlated. At this point of the analysis, we should state again that only the physical correlation between 

the parameters is considered and not the operational, that many times exists, but varies among different 

type of ships and/or operators (i.e. draft and trim that are carefully chosen or draft and speed, may be 

operationally correlated).  

Afterwards, we plot the dataset’s parameters against each other (Figures 3.5 to 3.11) in order to confirm 

or reject our prior beliefs. In this process, calculating the linear correlation coefficient for any pair of 

parameters offers some quantitative indications on whether this pair is correlated or not, to the degree 

we thought it is. The Table 3.2 shows the linear correlation coefficient (Pearson product-moment) 

between the parameters of each figure. 

Table 3.2 The calculated value of the linear correlation coefficient for seven cases from the discussed parameters 

Figure No Correlation Coefficient Value Expected 

3.5 (STW-Propeller rpm) 0.956 strongly correlated 

3.6 (Propeller rpm- FOC) 0.973 strongly correlated 

3.7 (Draft- FOC) 0.125 uncorrelated 

3.8 (Draft- Trim) 0.473 uncorrelated 

3.9 (STW- Wind speed)  -0.043 uncorrelated 

3.10 (Shaft power- ME Start. Air Press.)  -0.010 loosely correlated 

 

For Figures 3.5 and 3.6, the parameters are declared strongly correlated and this is confirmed by the 

value of the correlation coefficient. In Figure 3.9 is also confirmed that there is no statistical correlation 

between the speed of the ship and the wind speed. In contrast, it is noticeable that for Figures 3.7 and 

3.8, whose parameters are declared uncorrelated, the linear correlation coefficient is far from zero. This 

is due to an operational pattern of the ship. No physical law states that the trim of the ship is somehow 

dependent with the draft but in this particular case the trim increases with the draft, as the data prove. 

In general, the trim-draft relationship is defined by the designers. In contrast, the draft seems correlated 

with the fuel oil consumption only because the ships do not reduce their speed when they are more 

loaded and consecutively have larger wetted surface area and as shown by Equation (3.4) larger water 

resistance that requires more fuel consumption to achieve the same speed. In Figure 3.10 the correlation 

value, also does not come in agreement with our estimation but it can be assumed that a non-linear 

correlation exists by the fact that when the engine’s power is low, the starting air pressure becomes 

lower too.  
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Figure 3.5 Parametric plot of STW vs Propeller Shaft 
RPM. 

 

Figure 3.6 Parametric plot of Propeller Shaft RPM vs 
M/E FOC 

 

Figure 3.7 Parametric plot of Draft vs M/E FOC 

 

Figure 3.8 Parametric plot of Draft vs Trim 

 

 

Figure 3.9 Parametric plot of STW vs Wind Speed 

 

Figure 3.10 Parametric plot of Propeller Shaft Power vs 
M/E Start Air Pres. 
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iii. 3-Dimensional Plots 

In the previous paragraphs, we searched for correlations between the propulsion parameters and 

classified them as physically or operationally correlated, through the use of 2-D parametric plots. The 

problem of evaluating a ship’s performance however, is multi-dimensional and it involves many 

interdependent parameters. An effort to visualize the data to more than two dimensions has a lot to offer 

in the discussion. It helps to identify possible patterns in the operation of the ship and demonstrates the 

way that some parameters interact with each other. In addition, plotting in three dimensions is one more 

convenient way to make a reality check between data and theory.  

For a data set that includes 16 different measured parameters, it is not clear which three of them should 

be plotted against each other in order to create a meaningful scatter plot that will provide us with 

improved insight on the acquired data. Figure 3.11 shows a Speed-Draft-Trim scatter plot where the 

data are filtered to include only calm sea condition and transatlantic trips. The color scale is proportional 

to the speed-axis vertical) for extra clarity. We notice that for the whole range of ship’s draft (8.5 m to 

11.5 m), almost the same service speed is chosen. Also, larger trims (from 1 m to more than 1.5 m) 

appear when the speed approaches its maximum values and when the trim is around zero the speed is 

significantly reduced.  

In a 3-D scatter plot a fourth dimension could be presented if the color scale is set in proportion to a 

variable that is not plotted along any of the x, y, z axes. In Figure 3.12 these three variables are plotted 

but this time the data are not filtered for calm sea conditions and the wind speed value is set to be 

proportional to the color scale. The datapoints on the speed-power plane take the familiar form of a 

speed-power curve that follows the ‘propeller law’ of equation (3.2). As it was expected, higher values 

of the power, for the same value of speed, are observed when the wind is stronger. 

It should be mentioned again that these plots are useful only for validation of the data and of our 

understanding on the problem. Even if we create a 4-D plot, where the color scale is analogous to the 

point in time that each specific datapoint was recorded, we would be very fortunate if we could 

distinguish any losses in the ship’s performance. And even then, many more parameters should be taken 

under consideration. Hence, there is no point in evaluating the vessels performance simply by graphical 

trends of the data because it is actually a more complex problem involving many more parameters.  

As an alternative to the 4-D color scale plot, we can have information from 4 dimensions plotted on the 

3-D scatter plots in the form of parametric plots. For example, in Figure 3.13 the x, y and z axes of the 

3-D plot represent the Wind Speed, the Draft and the Power, and an identifying color is assigned to 

each discrete value of the selected parameter, Speed. For this purpose, the data are filtered around the 

desired values of the parameter, in our case 16±0.1, 17±0.1, 18±0.1 and 19±0.1 knots. Again, the power 

demand increases for the higher speeds and when sailing at any particular speed, the increase of wind 

speed causes the power demand to increase. The observed trend is well in accordance with the equation 

that estimates wind resistance, which is identical to equation (3.4), with V being the relative speed.   
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Figure 3.11 Three-dimensional scatter plot of ship’s Speed vs Draft vs 
Trim. The color scale is set proportional to the ship’s speed for clarity. 

 

 

 

Figure 3.12 Three-dimensional scatter plot of Power vs Speed vs 
Draft. The color scale escribes the Wind Speed, with range from 0 
to 25m/s (blue to red). 

 

 

Figure 3.13 Three-dimensional scatter plot of Power vs Draft vs Wind Speed with parameter the ship’s speed (STW). Each color corresponds to a 
specific speed, according to the legend (top-right). 
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3.2  Data Correction 
 

The main target of the present section is to present an algorithm created for spotting and correcting 

suspicious measurements on time-dependent data that are related to some kinds of physical phenomena. 

It is intended to make a modest correction on data like a liquid’s flow rate, a body’s movement in space, 

the revolutions of an engine or the angular position of a rudder. The basic idea behind this correcting 

algorithm is that physical objects, meaning objects with mass of course, always display inertial behavior 

in the sense that during an adequately short time window in the future, their past value or state is not 

expected to change excessively, because inertia means resistance to any change in current motion or 

state. This correcting algorithm is presented theoretically and additionally several examples of its 

application on different parameters of the dataset are given.  

First of all, the necessity for such an algorithm should be pointed out. In the previous section, the whole 

dataset was visualized in various ways. It was quite clear in some of these plots that on the existing 

data, many datapoints are included that could possibly be outliers, noise or anomalies. Actions have to 

be taken in order to exam which of these data points, that seem faulty to the naked eye, should actually 

be corrected or discarded. Certainly, this is not a simple task, since there are not well-established 

methods for “cleaning” or correcting this particular kind of interdepended and time-depended data. 

Careful consideration on the nature of the tested parameter should be taken before applying any such 

method or algorithm. However, the ability to check the implications of any such algorithm, applied on 

the data, in a straight forward and systematic way is ‘allowing’ us to attempt some new approaches on 

the subject.  

The most profound case of outliers’ existence is spotted on the Latitude parameter of the GPS signal. 

This parameter, along with the Longitude, are describing the ship’s course during the trips. Surprisingly, 

the number of outliers in the latitude’s signal was much larger than in longitude’s (see Figure 3.23). In 

Figure 3.14 the value of the latitude coordinate, for a 6-month period, is plotted against time and the 

points that break the continuity of the ship’s path are the ones that we visually identify as outliers and 

would like to correct. In figure 3.15 the latitude and longitude signals are plotted on a map projection 

and it becomes clear that these points cannot be true measurements that describe the location of our 

ship. They seem to form a similar, to the ship's original path, pattern. A fact that declares some kind of 

drifting in the recording or transmission of the GPS signal, on frequent intervals. 

 

Figure 3.14 The latitude signal as acquired from the GPS on-board the ship. Raw-data time plot. 
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In Figures 3.16 the corrected latitude signal is plotted on a time-plot and in Figure 3.17 the corrected 

ship path is projected on the map. No more points seem to break the continuity of the ship’s path now 

and the whole amount of information regarding ship’s position seems to be preserved. The way that this 

was achieved is explained in the next paragraph.  

 

 

Figure 3.15 The latitude and longitude coordinates as acquired from the GPS on-board the ship. Raw-data map 
projection. 

In order to characterize a data point in the latitude coordinate’s signal as an outlier and correct it, we 

should consider the dynamics of the ship’s movement through space. The latitude and longitude 

coordinates correspond to unique positions on the earth’s surface, on the same way that x and y 

coordinates do on a cartesian plane. Therefor the latitude can be thought as the y coordinate of the ship’s 

position. In this case, speed over ground and the derivative of the ship’s heading are the parameters that 

determine the rate of change of the ship’s coordinates. If the speed and heading are constant, the rate of 

change is constant and for constant sampling rate, the absolute difference (distance) of consecutive 

latitude (and longitude) data points is also constant. When real ship data are processed, we cannot expect 

to encounter absolutely steady conditions. However, any acceleration or deceleration that occurs to the 

ship is not expected to cause a displacement, much larger than the previous, to the next data point. That 

is due to the magnitude of a large ship’s inertia and on condition that the sampling frequency is 

efficiently high, in comparison with the dynamic of the observed phenomenon. If we express it in 

calculus terms, the derivative of the signal with respect to time should not rise instantaneously to any 

arbitrary value. 
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Figure 3.16 The latitude signal plotted over time, after the correction of outlying values. 

 

 

Figure 3.17 The GPS signal projected on the map, after the correction of the problematic values. 

The above idea has taken the form of an algorithm that examines if a data point is diverging excessively 

from the neighboring data points and “corrects” it by setting its equal to the mean value of the previous 

and the next data point. It is the algorithm that ‘corrected’ the latitude signal of Figure 3.14 resulting to 

the signal of Figure 3.16. The same algorithm was also applied on the longitude signal, which had fewer 

outliers, as can be seen in Figure 3.21. 
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 “CORRECTING ALGORITHM” 

Let 𝑑 be a list of data points, of a particular parameter’s signal and 𝑡 a list of the data points’ timestamps. 

Then  𝑑𝑖, 𝑖 = 1,… , 𝑛 is the i-th element of the list 𝑑 and 𝑡𝑖, 𝑖 = 1,… , 𝑛 is the corresponding i-th 

timestamp. 

i. Calculate 

  𝛿𝑑𝑖− =
|𝑑𝑖−𝑑𝑖−1|

𝑑𝑡−
 

,where 𝑑𝑡− = 𝑡𝑖 − 𝑡𝑖−1  and similarly,  

   𝛿𝑑𝑖+ =
|𝑑𝑖−𝑑𝑖+1|

𝑑𝑡+
 . 

ii. Calculate 

   𝐷𝑖 =
|𝑑𝑖−1−𝑑𝑖+1|

𝑑𝑡𝐷
  

, where 𝑑𝑡𝐷= 𝑡𝑖+1 − 𝑡𝑖−1. 

iii. If 𝑑𝑡𝐷 ≤ 𝑡𝑙𝑖𝑚 then  

iv.    If [𝛿𝑑𝑖− > 𝑠𝑓 ∙ 𝐷𝑖] 𝐴𝑁𝐷 [𝛿𝑑𝑖+ > 𝑠𝑓 ∙ 𝐷𝑖] then  

v.        𝑑𝑖 = 
𝑑𝑖−1+𝑑𝑖+1

2
  

In step (iii), 𝑡𝑙𝑖𝑚 is a user-defined parameter that can force the algorithm to skip checking the current 

data point. It defines what is the maximum time-gap between to measurements, that permits the 

algorithm to check if a data point should be corrected. In step (iv), the 𝑠𝑓 is just a scaling factor that is 

selected by the user, based on his understanding of the natural quantity’s dynamical behavior and maybe 

some experimentation. 

In the implementation of the algorithm in this study, the 𝑡𝑙𝑖𝑚 value was set to 3 minutes and the sf had 

several different values, depending on the parameter that was processed each time.  

The algorithm may be applied once more on the same data points but this time checking among the  

(i-2)-th and (i+2)-th elements instead of the (i-1)-th and (i+1)-th. This is done because it was noticed after 

the first implementation of the algorithm that some obvious outliers remained in the data set. That 

happened because some outlying points may appear consecutively. In this case the (i+1)-th element is 

an outlier itself and the algorithm does not identify the i-th element as an outlier. By pursuing one time-

step further and involving the (i-2)-th and (i+2)-th elements we manage to drastically reduce the 

probability of misinterpreting a data point for two reasons. First, if we consider the outliers to be 

independent and identically distributed (i.i.d), the probability of having three consecutive outliers is the 

cube of the probability of having a single outlier, which is by definition much less than 1. Hence the 

value of this probability is really small. Second, the time window involved in the check of the i-th 

element is still small (±2 mins from the present value) in comparison to ship’s dynamics for large 

changes of her state.  

A few more examples, from the application of the correction algorithm on some of the recorded ship 

parameters, are given below. In every figure, with blue dots are plotted the original data points and the 

red curve is the ‘corrected’ signal. The effort here is to investigate qualitatively   the effect of the 

correction algorithm on the original data points. In Figures 3.18 and 3.19 we notice that despite the fact 

that the signal is pretty unstable and probably noisy, not too many data points are corrected by the 

algorithm and in most cases, only points that stand out of the most stable fractions of the signal are 

affected by the algorithm. In Figures 3.20 and 3.21 we observe macroscopically the successful 

identification and correction of outlying points for two different kinds of sensors and physical 

quantities. In conclusion, from the short time period plots we can better understand the way that the 
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algorithm acts on many different occasions and   from the longer time period plots we get a better picture 

of what has finally happen to our original signal.  A more quantitative look on the effect of the algorithm 

on the original data is given in the last section of this chapter.  

  

 

Figure 3.18 Ship's propeller shaft power measurements 
plotted for a period of 50 minutes. The blue dots 
represent the original data points and the red curve is 
the parameter’s signal after the correction of the data. 

 

Figure 3.19 Ship's STW measurements plotted for a 
period of 50 minutes. The blue dots represent the 
original data points and the red curve is the parameters 
signal after the correction of the data. 

 

 

Figure 3.20 Main engine’s FOC measurements plotted 
for a period of 1 day. The blue dots represent the 
original data points and the red curve is the parameters 
signal after the correction of the data. 

 

Figure 3.21 Ship’s Longitude GPS measurements plotted 
for a period of 1 day. The blue dots represent the 
original data points and the red curve is the parameters 
signal after the correction of the data. 
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3.3  Outliers Detection 
 

In continuation of the previous section, the procedure of analyzing the data in order to identify outliers 

or physical impossibilities, is supplemented here. An alternative approach for identifying outliers in the 

data is implemented. The basic difference with the correcting algorithm of the previous section is that 

this method does not treat the data as time series and actually does not take under consideration the 

dataset’s temporal information at all. The focus is given on the statistical behavior of only a few 

interconnected parameters. Also, no corrections are applied, hence data points identified as outliers are 

deleted from the data set. They are deleted because the focus is on capturing data points that fall on the 

tail of the probability distribution curve and which we assume that imply physical improbabilities 

because they are cross-checked with other parameters’ values in the particular timestamp.  

The idea behind the proposed method comes partially from the Chauvenet’s Criterion which is the 

proposed method for outlier detection in (ISO 19030, 2016). Briefly, the Chauvenet’s Criterion 

indicates that:  

The probability for the occurrence of any value 𝑑𝑖  is computed according to the  

equation (3.6): 

𝑃(𝑑𝑖) = 𝑒𝑟𝑓𝑐 (
𝑑𝑒𝑙𝑡𝑎𝑖

𝜎∙√2
)    (3.6) 

 Where:  

▪ 𝑃(𝑑𝑖) is the probability of 𝑑𝑖  

▪ 𝑑𝑒𝑙𝑡𝑎𝑖 = |(𝑑𝑖 − 𝜇)|  

▪ 𝜇 =
1

𝑁
∑ 𝑑𝑖
𝑁
𝑖  

▪ 𝜎 = √
1

𝑁
∑ 𝑑𝑒𝑙𝑡𝑎𝑖

2𝑁
𝑖  

▪ 𝑒𝑟𝑓𝑐 is the complementary error function 

A datum is considered an outlier if the inequality (3.7) is fulfilled. 

𝑃(𝑑𝑖) ∙ 𝑁 < 0.5 

 

However, there are two assumptions in the Chauvenet’s Criterion that should be discussed.  

a) The probability distribution of the data points is given by the complementary error function. 

This assumption actually implies that the collected data points are normally distributed in any 

case.  

b) A frequentist notion of probability is clearly assumed on the check for the outlier, inequality 

(3.7). That notion requires a satisfactory large amount of data in order to provide a legit 

probability value and then judge upon it. 

The fact that these two assumptions cannot be always realistically fulfilled, is the first reason why we 

had to come up with an alternative approach for statistical detection of outliers on ships data. The other 

reason is that we found only a few studies experimenting with the outlier detection in a ship dataset and 

we want avoid applying another statistical or machine learning method (for outlier detection) of general 

purpose.  
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According to ISO 190301 in the “Data filtering and validation” phase for “...consecutive, non-

overlapping blocks spanning 10 minutes, data for every parameter shall be filtered according to 

Chauvenet’s Criterion.” A data block contains by definition a maximum of 40 measurements (sampling 

period: 15 seconds) for each parameter. In this case N ≤ 40 in the equation (3.7), which may be 

considered a statistically significant amount of data. However, in practice, the storing frequencies of 

sensors’ data are not high enough for producing datasets with such a large amount of data in such a 

short time period. If the 10-minute period is extended the assumption of steady environmental and 

operational conditions is less supported. For example, if we have four recordings of the ship’s speed in 

a 5-minute time window it makes no sense to apply the Chauvenet’s Criterion in order to identify at 

least one of these four data points as an outlier. If we choose a larger time window, i.e. 30-minute, so 

that a sufficiently large number of speed recordings will be available, the probability of an increase or 

decrease in the speed due changes in the environmental conditions is quite high. Once again, outliers 

cannot be properly detected since the same value of speed may be an actual outlier if it occurred later 

in the time window, when the ship’s state was different, rather than earlier. In a hypothetical example, 

see in Figure 3.22 how the data point at the 8th minute is an outlier but cannot be detected because earlier 

in the time-window, the ships speed was lower and hence the same value (14,2 knots) is not an outlier 

there. 

 

Figure 3.22 An example of a false negative in the outlier detection procedure. 

In addition, data on ships are collected by different kinds of sensors and for different kinds of 

parameters-physical quantities.  It is uncertain if the error in the measurements of every sensor is 

normally distributed. Also, often a signal fluctuates due to environmental factors. So, deviations in the 

values do not occur due to the sensors limited accuracy but is the true value of the measured quantity 

that oscillated during this 10-minute data block.  In the absence of information from other parameters 

if we filter only according to the probability value given by the erfc there is high risk of biased outlier 

detection. Of course, it is difficult to think of a more appropriate probability density function (pdf) than 

the erfc but we can always avoid assuming any pdf at all.  
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Finally, the procedure that we came up with, for detecting outliers in the ship’s dataset, is presented 

step-by-step here: 

• Choose a primary parameter 𝑝1 (i.e. propeller’s shaft rpm). 

• Split the primary parameter in groups of values with range s (i.e. per 1 rpm). 

• Group the data points according to the splits of the primary parameter, in data groups 𝐺𝑖. (i.e. 

all data points that have rpm value from 53 to 54.)  

• Choose the secondary parameter 𝑝2 (i.e. the propeller’s shaft torque or M/E FOC)   

• Calculate the mean value, 𝑚𝑝2𝑖 and the standard deviation, 𝜎𝑝2𝑖 of the secondary parameters in 

each group of data 𝐺𝑖.  

• Choose a factor k to multiply the standard deviation 𝜎𝑝2𝑖 for setting an “outlier threshold”. (i.e. 

𝑘 ∈  [2.5,3.5] ) 

• If the inequality (3.8) is fulfilled, then reject the data point. 

                                    |𝑝2𝑖𝑗 −𝑚𝑝2𝑖| > 𝑘 ∙ 𝜎𝑝2𝑖  (3.8)  

             , where 𝑝2𝑖𝑗 is the value of the j-th element in the i-th group of the  𝑝2 parameter. 

The way that the method works is presented with the help of histograms and parametric plots. In Figure 

3.23 two groups of data points, with secondary parameter the propeller’s shaft torque, are plotted and 

the “outlier threshold” is presented with the colored dot-lines for the different values of the factor k. 

The data group in the rpm range (87,88] includes around 7,000 observations while in the rpm range 

(92,93] there are around 14,000 observations. In both cases, the distribution’s shape seems similar and 

close to a normal distribution but it is slightly asymmetric. A similar distribution appears when the 

secondary parameter is different. As observed in Figure 3.24 where the secondary parameter is the M/E 

FOC and histograms for the same groups are plotted. Because the same data groups are plotted the 

number of observations on each histogram remains the same as in Figure 3.23. Also, the distributions 

look similar but the main difference is in the value of the standard deviation, for the data group in rpm 

range (87,88], due to the existence of many distant outliers. 

 

 

Figure 3.23 Histograms of propeller's shaft torque values for certain range of rpm values. The "outlier threshold" is 
plotted for different values of the factor k. 
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Figure 3.24 Histograms of M/E FOC values for certain range of rpm values. The "outlier threshold" is plotted for different 
values of the factor k. 

In practice, when the above algorithm is executed the “outlier thresholds”, that are shown in Figures 

3.23 and 3.24, adopt the value k=3. The procedure of outliers’ detection is completed when all data 

groups have been scanned. The final results of the ‘cleaned’ data set with respect to one primary 

(propeller shaft’s rpm) and three secondary parameters are illustrated in Figure 3.25.  

An additional filtering criterion that was used at this stage is that the arithmetic value of the M/E FOC 

and STW should be above 3 ton/24hr and 3 knots, respectively. This is an explicit filtering criterion 

with no statistical reasoning behind it. Simply, we do not wish to involve in our models the cases were 

the ship is almost stationary. 
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Figure 3.25 The propeller’s shaft torque, ME FOC and STW values plotted against the shaft's rpm, respectively. In red color 
are the data points that were identified as outliers. In the ME FOC and STW plots are also with red color (rejected) the 
data point. 
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In an alternative perspective, the described outlier detection method could be expressed in terms of 

conditional probabilities. For instance, we can introduce the probability of an arbitrary secondary 

parameter 𝑝2 having a value larger than 𝑝2𝑗, on condition that the primary parameter 𝑝1 lies within a 

thin strip (𝐵𝑙 , 𝐵𝑢] (lower bound and upper bound respectively) of its sample space. Then a probability 

value 𝑃0 can be selected as a threshold for outliers. 

𝑃(𝑝2 > 𝑝2𝑗|𝐵𝑙 < 𝑝1 ≤ 𝐵𝑢)  ≤  𝑃0     (3.9) 

 In this way, we do not involve the sample’s standard deviation explicitly and we are very close to 

Chauvenet’s criterion formulation. However, the problem of correctly estimating the probability value 

remains even though we now have many more samples for estimating its value on a frequentist notion 

or fitting a pdf (Normal Distribution or other) with properly estimated parameters (i.e. �̅� and 𝜎). If we 

could estimate the value of the probability in a Bayesian way it would be more appropriate because 

information for its value could be incorporated from a physical model (as a prior) and each data point 

could update our estimation for its new value, as a posterior probability. 
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3.4  Data Smoothing  
 

As a final step in the pre-processing procedure of a data set with high sampling frequency is useful to 

smooth the data. This is achieved by implementing a simple moving average (SMA) algorithm. The 

idea is to smooth the response of our signals in order to capture the important patterns in data while 

leaving out some noise (Hasselaar,2010) or similarly, in a more common machine learning terminology, 

increase the signal over noise ratio. For the effective application of the SMA algorithm a proper time 

window for averaging the data should be selected.  

The SMA is an unweighted mean of the previous n data and since we have a constant sampling rate of 

1 minute this number n is defining our time window. Three factors should be taken under consideration 

when choosing the value of n:  

i. The dynamics of the vessel. The averaging time window should be short enough to capture 

environmental loading changes that result in changes to ship performance, but long enough to 

smoothen natural fluctuations. (Hasselaar,2010)  

ii. The application in which the data will be used. In a performance analysis task, we can afford 

to work with a relatively small but indicative data set because we only need to observe the 

trends. In a deep learning model, we benefit from a large number of data because they may 

include more noise but also carry more information which a complex model can extract. 

iii. The reduction of uncertainty in exchange for detailed information. If the uncertainty of each 

measured value can be described by a standard deviation σ, and N readings are taken, the 

standard deviation over the N data points is reduced by (Coleman and Steele, 1998):   

𝜎�̅� =
𝜎

√𝛮
           (3.10)   

 

Hence, to reduce the standard deviation around the mean by a factor of two, four times more 

measurements of a (constant remaining) parameter is required. 

However, we still do not know what is the exact value of a proper time window but we note that (i) the 

studied ship is a 200 m long containership which means that it has slow dynamics, in the scale of 

minutes, (ii) the data will be finally used for the training of a neural network. 

 We often see averages over 10 or 15-minute time windows in the relevant literature (Senteris, 2018) 

and (Pedersen & Larsen, 2009). We are not going to reject these values but neither confirm them without 

investigating the effect of the different averaging time windows on the quality of our produced data set.  

For this reason, we implement the following methodology.  

• Average the data set on different time windows starting from 2 min and up to 20 min.  

• Estimate the mean value of the produced data set. 

• Estimate the difference (in %) from the original dataset’s mean value. 

• Plot this difference for each averaging time window.  

The results on three basic parameters of the ship’s propulsion are shown in Figure 3.26. This measure 

of drift from the original dataset’s mean value is considered correlated with the information loss from 

the process of averaging.  
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Figure 3.26 The difference between the mean value of the original data and the averaged over different time-windows 
data. Only three basic parameters of ship’s propulsion are plotted, for space economy. 

In addition, we calculate the standard deviation in each group of data points that is being averaged and 

we plot the resulting mean standard deviation (Figure 3.27), for each different averaging time window. 

The mean standard deviation is considered to be indicative of the information loss because averaging a 

group of data with zero standard deviation results to zero information loss. For better understanding, an 

example of this calculation is presented below:  

Table 3.3 Twenty consecutively recorded values of the ship’s STW (knots). 

16.72 16.745 16.775 16.684 

16.75 16.736 16.76 16.6 

16.738 16.825 16.753 16.592 

16.722 16.83 16.76 16.55 

16.726 16.712 16.727 16.718 

 

The Table 3.3 has twenty values of the STW from the original data set, which has a 1-minute sampling 

period. If we average these values on a 4-minute time window we can get five mean values and five 

standard deviations from the five sets of the four original values. So, we get a pair of a mean value and 

a standard deviation and if we average the standard deviations from the whole dataset, we get the mean 

value of the standard deviation. By repeating this process for every different averaging time window, 

we can produce the diagram of Figure 3.27.  
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Figure 3.27 The mean standard deviation on each different averaging time window for three basic parameters of ship’s 
propulsion. 

After all we confirm what we expected in first place. Increasing the averaging time window results to 

more information loss and a more distort image of the original data. This is validated in Figure 3.26 as 

well as in Figure 3.27. In the first because the averaged data set’s mean value differs more from the 

original data set’s mean value as the averaging time window increases. In the second because larger 

values of standard deviation are directly related with larger values of averaging time windows. Finally, 

we decide to use 5-minute averaging time windows.  

An example of the averaged versus the original signal is demonstrated in Figure 3.28. The signal in this 

figure contains a 5-hour long sample of the ship’s STW and the effect of smoothing while keeping 

enough details is obvious. 

 

Figure 3.28 A 5-hour sample of the ship’s STW plotted on its original form (blue dashed-line) and after being smoothed 
(red continuous line) with the SMA algorithm on a 5-minute averaging time window. 
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3.5 Data Quality Control 
 

As it is mentioned in the beginning of this chapter, the entire concept of data pre-processing exists for 

the evaluation and the improvement of the information contained in the available dataset so as to 

coincide better with the reality that is faced by the ship. However, it is essential to pay attention to the 

effect that any filtering, correcting or transforming algorithm acting upon the data, may has on them. It 

would be pointless if the pre-processing of the data distorts their signals and the information they carry 

to a degree where they are no longer reliable and realistic. The idea of “careful” data pre-processing is 

also found in (Aldous,2015) and is summed up in the phrase: “The level of filtering is subjective and 

requires balance between removing inaccurate data points that will incorrectly skew the results and 

preserving valuable information about the system physics.”.  

The term "data quality" here is used with the notion that differences in statistical parameters (mean 

value, standard deviation) between the original dataset and the processed one declares poorer data 

quality. The first attempt to quantify the impact of a pre-processing algorithm on the data was presented 

in the previous section 3.4. In that case, the only parameter that had to be chosen (the averaging time-

window size) for applying the SMA algorithm and smoothen the data, was directly affecting the data 

quality (see Figure 3.26). In contrast, for the “correcting” and “cleaning” algorithms, that were applied 

to the data, (section 3.2 and 3.3) no quality metrics have been demonstrated yet, because they involve 

more parameters. This section is dedicated to investigate the impact of these algorithms on the data.  

In regard to the correcting algorithm of Section 3.2, we estimate the percentage of data points that are 

affected by the algorithm for two different subsets of the dataset. The Figure 3.29 shows the percentages 

of the affected data points for each parameter, with blue columns for the Subset A that contains 14,000 

data points and with orange columns for the Subset B that contains 140,000 data points.  

The algorithm was applied in these two subsets, that differ by order of magnitude, in order to investigate 

if the occurring frequencies of corrections depend on the size of the dataset. From the obtained results, 

we can assume that the correcting algorithm displays a quite robust behavior when scaling up since 

when applied to a ten times larger dataset it is affecting the same percentage of data points. 
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Figure 3.29 The percentages of the affected by the correcting algorithm data points for two subsets of different size. 

 

Encouraging results are also acquired when we calculated the difference in the mean values between 

the original data set and the “corrected” one. This difference is estimated as a percentage of the original 

dataset’s mean value. In Figure 3.30 are presented the differences in the mean value of every parameter 

in the dataset. We notice that the mean values have only so slightly changed that no concerns are raised 

regarding data distortion phenomena. The largest difference of mean value is observed in the M/E FOC 

signal but the 0.7396% difference is considered rational since it was noticed to be a signal with extreme 

values on regular intervals.  
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Figure 3.30 The difference in the mean value between the original and the corrected dataset. The differences are 
estimated as percentage of the original dataset’s mean value. 

The next algorithm that was applied on the dataset is the “cleaning” algorithm from Section 3.3. Here, 

a much simpler metric is used to check the rationality of the algorithm. Only the number of the deleted 

data points is calculated and presented as a percentage of the total number of data points that were 

examined. In this case, the mean values of the parameters before and after the “cleaning” process are 

not calculated firstly because a very small portion of the data is affected by the algorithm and secondly 

because extreme values are almost symmetrically rejected (see Figure 3.24) from the dataset.  

 

Table 3.4 The percentage of data points that were dropped from the dataset as outliers. 

Primary parameter → Propeller Shaft RPM % of data dropped as outliers 

Secondary parameter:   

 Propeller Shaft Torque 0.96 % 

 M/E FOC 1.35 % 

 Longitudinal Water Speed 1.04 % 

 

At this point, it is stated again that in this case of “cleaning”, the entire row of data is dropped from the 

dataset if an outlier is detected on any parameter of a particular timestamp. In contrast with the previous, 

“correcting” algorithm, that affects only the data point on the specific parameter that is being tested and 

does not affect the data on the other parameters. This means that on Table 3.4 the percentages could be 

summed to estimate the total percentage of data rows removed from the dataset (3.35% in this case) but 

in Table 5, the percentages cannot be summed for estimating the total percentage of data rows affected. 
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The data pre-processing procedure concludes with a simple last step which is the filtering for sea current 

above 1 knot. Data rows where the absolute difference between the SOG and the STW is above 1 knot 

are deleted. No data quality metric can be introduced for this action because it is actually an operational 

filter that may additionally reject data points where faulty measurements took place due to GPS or speed 

log malfunction. Nevertheless, the number of data rows dropped from this filter is 11.23 %.  Other cases 

where the data are filtered for operational criteria (i.e. limits on draft, wind & wave, engine rpm etc.) 

are not considered to be part of the pre-processing procedure because they are implemented application-

wise only.  
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4 Feature Engineering   
 

Feature engineering is the process of generating, analyzing and finally selecting parameters (= features) 

to use as inputs in a statistical or machine learning model. Feature engineering is of fundamental interest 

nowadays since the technology for acquiring large datasets from the Continuous Monitoring of dozens 

of onboard sensors or metocean data is becoming commonplace. These large datasets, besides from 

high frequency, are also multiparameter due to the fact that data are transmitted and stored from almost 

every sensor on the ship. This fact provides the opportunity for the exploitation of a large number of 

features in the models. In statistical modeling and especially in machine learning when there are many 

features to choose from, feature engineering is essential.  

Therefore, on a modern approach, that aims to provide a state-of-the-art framework for developing data 

driven ship performance modeling, a chapter dedicated to feature engineering could not be absent. 

Feature engineering is a relatively abstract term in the machine learning vocabulary. It is considered 

more a virtue than an analytical skill, as there are no well-established or conventional methods for 

performing it on an arbitrary machine learning problem. Two indicative descriptions or definitions of 

the Feature Engineering process are found in Wikipedia (which is used in many other sources) and in 

Microsoft’s Azure Documentation respectively.  

• “Feature engineering is the process of using domain knowledge of the data to create features 

that make machine learning algorithms work. Feature engineering is fundamental to the 

application of machine learning, and is both difficult and expensive. The need for manual 

feature engineering can be obviated by automated feature learning. Feature engineering is an 

informal topic, but it is considered essential in applied machine learning. (Wikipedia, 2019). 

• “Feature engineering attempts to increase the predictive power of learning algorithms by 

creating features from raw data that help facilitate the learning process.  

o Feature engineering: This process attempts to create additional relevant features from 

the existing raw features in the data, and to increase the predictive power of the learning 

algorithm.  

o Feature selection: This process selects the key subset of original data features in an 

attempt to reduce the dimensionality of the training problem.  

Normally feature engineering is applied first to generate additional features, and then the 

feature selection step is performed to eliminate irrelevant, redundant, or highly correlated 

features.” (Microsoft, 2019) 

 

In description (a) of the feature engineering it is referred that “The need for manual feature engineering 

can be obviated by automated feature learning”, but automated feature learning or feature extraction is 

a capability that mainly deep Convolutional Neural Networks (CNNs) have and since CNNs are used 

in classification problems they are not utilized in the present study. In the case of Feed-Forward Neural 

Networks (FNNs) that are commonly used in regression problems, the whole procedure is carried out 

manually. 
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 In description (b) feature engineering is divided into two steps: (i) feature engineering, which is about 

the creation of additional relevant features from the raw data, and from now on we will call this step 

feature generation, and (ii) feature selection. The implementation of this two-step-approach is 

demonstrated in this chapter. The goal is mainly to select the features that will produce the best 

performing model for the ship’s propulsion but also to document in general, some of the most popular 

practices, encountered among data scientists, for feature engineering. 

4.1 Feature Generation 
 

Feature generation, as mentioned earlier, is the process of augmenting the number of features of the 

original dataset. It is a relatively simple procedure but usually requires an insight or intuition about the 

examined problem, and sometimes imagination could work too. Until this step of the analysis, the 

discussion about feature engineering has been quite abstract but from now on, it shall focus on the 

available features and the model that will be built with them.   

Firstly, the available features (or parameters) of the dataset are presented in Table 4.1. In section 3.5 

the data were smoothed with the use of SMA algorithm, an unweighted moving average of 5-minute 

time windows. While averaging the data, the standard deviation of these 5-minute time windows is also 

calculated, as a measure of the steadiness of the ship’s condition in each group of data that is averaged. 

This is the first example of generating features since for every column (feature) in the dataset, a new 

one is added that holds the values of the standard deviation of the original parameters (see Table 4.2). 

Similarly, the derivative of some features (where has physical sense) could have been computed but it 

was obviated due to the co-existence of two deterrent factors: i) the inefficient sampling frequency (not 

adequately high) in comparison to the ship’s heave and pitch motions’ dynamics that would lead to 

rough estimations of the derivatives,  and ii) the steadiness of the speed and rpm signals with the 

presence of noise that would lead to the estimation of the derivative of the noise rather than the 

derivative of the actual measured physical quantity.  

Table 4.1 The labels of the original features of the dataset. 

Speed Over 

Ground 
Longitudinal Water 

Speed 
Draft Tot Trim Rudder Angle 

Propeller shaft 

rpm 
Propeller shaft power Propeller shaft torque ME FOC M/E START AIR 

PRESS 

Wind Speed Wind Direction Heading Longitude Latitude 

  

Table 4.2 The labels of the newly generated features. The “STD” prior to the names of the features stands for the term 
“Standard Deviation”. 

STD_Speed Over 

Ground 
STD_Longitudinal 

Water Speed 
STD_Draft Tot STD_Trim STD_Rudder Angle 

STD_Propeller shaft 

rpm 
STD_Propeller shaft 

power 
STD_Propeller 

shaft torque 
STD_ME FOC STD_M/E START AIR 

PRESS 

STD_Wind Speed STD_Wind Direction STD_Heading STD_Longitude STD_Latitude 
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Other ways that new features can be produced have to do with applying certain mathematical operations, 

functions or transformations on the existing features. For example:  

i) Add or subtract two columns. 

ii) Multiply or divide two columns.  

iii) Raise to the power of α.  

iv) Apply a trigonometric function (sin, cos, tan etc.). 

v) Apply a logarithmic function (log, ln etc.) 

vi) Any combination of the above. 

Even the absolute value of an existing feature can be regarded as a new feature.  

In order to achieve a systematic approach, simplify and speed up the feature generation procedure a 

computer program was developed that generates features interactively. By receiving commands from 

the keyboard, it generates the desired feature, names it and stores it in the dataset next to the rest features. 

The dialogue on the computer monitor is presented below in Figure 4.1:  

 

Figure 4.1 Feature generation dialogue from the interactive feature generation program that generates and stores the 
desired new feature. The example of generating the “Wind Effect” parameter. With blue color are the user’s inputs. 

In the example of Figure 4.1, the data points of the Wind Direction parameter are transformed from 

degrees in the range [0,360] to real numbers in the range [-1,1] with the use of the trigonometric function 

cosine. The transformed parameter is stored as a new feature under the name cos_wind_dir and is then 

multiplied (element-wise) by the data points of the Wind Speed parameter in order to give another new 

feature named Wind Effect. The physical meaning of the new feature is that the effect of the wind in the 

ship’s resistance is maximized when it is a headwind, minimized when it is a tailwind and symmetrical 
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when it is a lateral wind. Of course, the added resistance due to wind is not zero when the wind blows 

perpendicular to the hull and in the context of Artificial Neural Networks (ANNs) a zero input does not 

imply a zero effect on the output variable, but this is not a discussion for this section.  

Another feature that was generated is the “sea current” which is simply the result of the subtraction of 

the STW from the SOG. Here it should be mentioned that a feature could be generated just for providing 

a better insight on the problem or to assist in filtering the data and not necessarily to be included in the 

final model. That was the case for the “sea current” feature.  

Last but not least, the most delicate case of feature generation was the one required for generating a 

feature that is labeled as “Fouling”. It should be clear that this is not an effort to describe qualitatively 

or to quantify the actual hull fouling. The goal is to provide some temporal information to the model 

because it is obvious that during the 12-month period that the training data were gathered the ship’s hull 

and propeller condition could not have remain stable (normally noticeable fouling appears in a year’s 

period). By introducing a feature that is time-depended the model will be able to discriminate the data 

points that were collected earlier on time from those that were collected later on. The feature is 

generated by the following equation:  

𝐹𝑖 = log(7000 + √18 ∙ 𝑡𝑖) − 3  (4.1) 

Where, 

• 𝑡𝑖 is the elapsed time with respect to the first data point. 

The constants and the multiplier in equation (4.1) are there to adjust the rate of change and the initial 

and final value of the 𝐹𝑖. Because the independent variable 𝑡𝑖 of the function 𝐹𝑖 (see equation (4.1) has 

a strictly defined domain due to the way that is being generated (from the dataset’s timestamps), the 

only way to manipulate the outputs of the function is by the introducing these constants and a multiplier. 

Their final values are chosen after iterative testing and are those that minimize the model’s error. 

Finally, the total number of features that was generated from the initially 16, was 37 and they are 

presented in Table 4.3. However, these 37 features should be investigated for their properness to be 

included in a machine learning model since some may be co-linear with others or redundant and that is 

the object of the next section.    

Table 4.3 The labels of the initial and the generated features. 

Speed Over Ground Longitudinal Water 

Speed 
Draft Tot Trim Rudder Angle 

Propeller shaft rpm Propeller shaft 

power 
Propeller shaft torque ME FOC M/E START AIR 

PRESS 
Wind Speed 

 

Wind Direction Heading Longitude Latitude 

Wave Height Sea Current Fouling Cos_wind_dir Wind Effect 

STD_Speed Over 

Ground 
STD_Longitudinal 

Water Speed 
STD_Draft Tot STD_Trim STD_Rudder Angle 

STD_Propeller shaft 

rpm 
STD_Propeller shaft 

power 
STD_Propeller shaft 

torque 
STD_ME FOC STD_M/E START 

AIR PRESS 
STD_Wind Speed 

 

STD_Wind 

Direction 
STD_Heading STD_Longitude STD_Latitude 

STD_Wave Height STD_Sea Current    
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4.2 Feature Selection 
 

In general, feature selection is not a necessary step for every machine learning application. When a 

limited number of features is available for a problem, discarding some of them will not improve either 

the model's performance nor the computational cost significantly. However, it is quite frequent to have 

an abundance of data and features for the single target that we aim to predict. In a favorable scenario, 

reducing the number of features could either reduce the computational cost while affecting marginally 

the performance of the model or improve both. For example, when dropping redundant or confusing 

(with excessive noise in the signal) features from the model, its accuracy will rise while fewer 

computations will be needed.  

Particularly, in this section, the features that are presented in section 4.1 will be evaluated with respect 

to their potential contribution to the performance of an FNN (see section 5.1 for a description of FNN) 

regression model. Frequently the term “predictor” or “estimator” is used when we refer to a feature that 

is used in machine learning model as an input and contributes in predicting or estimating the output’s 

value correctly. Therefore, the aim of this section is to investigate which features are “good predictors” 

for a particular target. Target or targets are the variable(s) that are selected as outputs of the model.  

Firstly, it should be clear how the number of features in a model relates to the complexity or the degree 

of the model. In a FNN the number of inputs is always equal to the number of features that are exploited 

by the model. Each input is accompanied by a number of trainable parameters that should be learned 

by the model in the training process. The total number of trainable parameters in the model corresponds 

to the degree or the complexity of the model, in the sense that each extra trainable parameter in the 

model offers an extra degree of freedom to the derived hyper-surface (because we deal with much more 

than three dimensions) that could interpolate a complex dataset more efficiently. For example, a dataset 

with strongly non-linear relations, among its parameters and the target, would require a complex model 

for successful interpolation.   

The evaluation of the performance of a feature as a predictor in a machine learning model could be 

based on theoretical-physical knowledge or statistical evidence among the examined feature and each 

target variable. This is essential, in order to systematically select features without testing the actual 

model repetitively and save time. However, it is always possible to train and test a model with and 

without the existence of a feature in the inputs in order to directly decide if it is a good predictor.  

Prior to the statistical analysis and if there is not any explicit theoretical law involving the candidate 

feature and the target variable, the below questions need be asked: 

(a) Does the feature provide any valuable information or it seems redundant with respect to the target 

variable?  

(b) Is it highly correlated to any other feature and provides the exact same information to the model? 

(c)   Would the increase in the solution-input space dimension benefit the model or it already seems 

too complex for the problem that is being addressed? 

  

While considering the above it is important to keep in mind that thanks to the abstract inferring 

capabilities of the ANNs a feature does not have to be accurate in a physical and quantifying sense, in 

order to be a good predictor and improve the model’s performance. However, when the general and 

qualitative discussion is completed, metrics and statistics about the data should be calculated and 

evaluate the features based on these results as well.  
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In the following paragraphs the feature selection procedure that was followed for creating an FNN 

model that estimates the main engine’s Fuel Oil Consumption (ME FOC) and another one that 

estimates the Ship’s Speed Through Water (STW) is demonstrated.  

Question (a) cannot be addressed with the use of statistics but we make a first selection of features 

based on our physical understanding on the problem. For the question (b) though, is trivial to find an 

answer. The correlation among all the parameters has been investigated in general, in Section 3.1, 

where parametric plots were also produced in order to visually inspect the data for non-linear types of 

correlation. Here the linear correlation coefficient (Pearson product-moment) for the selected features 

of each model is estimated, only with respect to the target variable (ME FOC or Longitudinal Water 

Speed).  The results are shown in Table 4.4. Because the selected features should not be highly 

correlated with the target variable, a feature rejection threshold could be set for the value of the 

correlation coefficient. In contrast, it is not worrying if the coefficient value is almost zero since it only 

declares that there is no linear correlation.  

From the obtained values in Table 4.4, there are only a few that give us reason to worry about the 

“properness” of some feature. These are the very high values of the linear correlation coefficient for 

the “Propeller shaft power” (for both targets) and the “Propeller shaft rpm”. These values are by 

themselves a strong argument for the rejection of the referred features but the nature of the problem is 

not allowing us to take decisions based on statistics only. These two features do not get rejected yet, 

because it would be impractical to have a model that can predict the speed or the consumption of a ship 

without having the ability to provide the engine’s power or the propeller’s rpm as input.  

Table 4.4 Table of linear correlation coefficient values between input features and target variables. 

CORRELATION TABLE 

(input features linear correlation with the target variable) 

 Longitudinal Water Speed 

 

ME FOC 

Longitudinal Water Speed  0.939 

STD_Longitudinal Water Speed -0.233 

 

-0.163 

Draft Tot 0.189 

 

0.213 

Trim 0.493 

 

0.450 

Rudder Angle -0.147 

 

-0.153 

Propeller shaft power 0.935 

 

0.974 

Propeller shaft rpm 0.998 0.999 

M/E START AIR PRESS -0.00316 -0.0110 

Wave Height 0.0463 

 

0.180 

Fouling 0.0265 

 

0.0650 

Wind Effect -0.00240 

 

0.00310 

The evaluation of the features is supplemented with the calculation of another set of statistics that 

describes them. The results are presented in Table 4.5.
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Table 4.5 Description of the data in each feature via the calculation of a set of statistics. 

 

 

In Table 4.5 the first column refers to the number of data points in each feature, the second to the mean value, the third to the standard deviation, the fourth and the eighth to the 

minimum and maximum contained value, respectively. The three in-between columns are the 1st, 2nd (median value) and 3rd quartiles2, respectively and the ninth column is the 

range of each feature (maximum-minimum). The last column, stability, is a measure of data points’ concertation around the mean value of the feature or in other words, how static 

a feature is. It is modelled as the percentage of data points that lie only 0.1% of the standard deviation away from the mean value.  The stability column could be useful in case of 

a feature, like a ship’s draft, being almost constant (i.e. design draft for all the available data) and so it needs to be rejected because it will not provide any information to the model.   

In our case, we observe that only the standard deviation of the STW has a relatively high stability value but this is accepted because operationally the ships speed stays quite steady 

for long periods.  The same is true for the rudder angle, which perturbates around 0 degrees of angular displacement when the ship sails steadily.  

                                                           
2 A percentile is a measure used in statistics indicating the value below which a given percentage of observations in a group of observations fall. For example, the 25th percentile is the value 
below which 25% of the observations may be found. The 25th percentile is also known as the first quartile (Q1), the 50th percentile as the median or second quartile (Q2), and the 75th 
percentile as the third quartile (Q3). 
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Finally, at this point, we should either decide to move forward with the existing features or proceed to 

actually test the features based on the performance of the FNN model. In this way question (c) could be 

answered as well.  

In summary, the process of feature engineering is: (by Prof. Ryan Baker in Coursera) 

I. Brainstorming or Testing features; 

II. Deciding what features to create; 

III. Creating features; 

IV. Checking how the features work with your model; 

V. Improving your features if needed; 

VI. Go back to brainstorming/creating more features until the desired model performance is 

achieved.  

However, implementing an FNN model and testing the different possible sets of features requires the 

fine-tuning of other, irrelevant to the features, parameters because is pointless to test the features on an 

inappropriate model. For this reason, quantitative results regarding the performance of the model when 

some features are included or excluded from the model will be presented in the next chapter.   
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4.3 Principal Component Analysis  
 

So far efforts have been applied in the direction of generating and selecting features based on the 

physical understanding of the problem and the statistical characteristics of the features. There is, 

however, a more analytical and abstract way for accomplishing the afore mentioned procedures. The 

well-known method of Principal Components Analysis (PCA) is often used in the feature extraction 

procedure. But the results of this kind of feature extraction method are not guaranteed and of course do 

not apply to any type of dataset or problem. 

Principal Components Analysis is an unsupervised linear transformation technique that is widely used 

across different fields and has been successful in tasks like extracting features and reducing 

dimensionality in high-dimensional data, like images. Other popular applications of PCA include 

exploratory data analysis, de-noising of signals in stock market trading, and the analysis of genome data 

and gene expression levels in the field of bioinformatics. (Raschka, 2015) 

As we find in (Bishop, 2006)there are two commonly used definitions of PCA that give rise to the same 

algorithm. PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear 

space, known as the principal subspace, such that the variance of the projected data is maximized 

(Hotelling, 1933). Equivalently, it can be defined as the linear projection that minimizes the average 

projection cost, defined as the mean squared distance between the data points and the projections 

(Pearson, 1901).  Figure 4.2 explains these two definitions with a simple example.  

 

Figure 4.2 Principal Components analysis seeks a space of lower dimensionality, known as the principal subspace and 

denoted by the magenta line, such that the orthogonal projection of the data points (red dots) onto this subspace 

maximizes the variance of the projected points (green dots). An alternative definition of PCA is based on minimizing 

the sum-of-squares of the projection errors, indicated by the blue lines. (Source: Bishop,2008) 
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Figure 4.3 The axes x1 and x2 are the original feature axes, and PC1 and PC2 are the maximum variance axes or the 
principal components. (Source: Raschka,2015) 

Another explanatory graph and a practical description of the PCA is found in (Raschka, 2015). The aim 

of the PCA is to find the directions of maximum variance in high-dimensional data and project them 

onto a new subspace of equal or lower dimension than the original. The orthogonal axes (principal 

components) of the new subspace can be interpreted as the directions of maximum variance given the 

constraint that the new feature axes are orthogonal to each other as illustrated in Figure 4.3.  

However, the question that remains is how to convert from the original axes to the principal components 

in order to apply dimensionality reduction by truncating the input vector. To achieve this, we shall find 

an invertible linear transformation T such that the truncation of the input vector is optimum in the mean-

square-error sense. The following analysis is summary of the method based on (Haykin, 2009). 

 

i. Mathematical formulation 

Let X denote an m-dimensional random vector representing the features of a model. We 

normalize the X vector so that,  

E[𝐗] = 0 

Let q denote a unit vector of dimension m, onto which the vector X is to be projected and A 

is the projection.  

          𝑨 = 𝑿𝑇𝒒 = 𝒒𝑇𝑿    (4.1) 

The projection A is a random variable and since the random vector X has zero mean, it follows 

that:  

E[𝐀] = 𝒒𝑇E[𝐗] = 0  

In addition, the variance of A is the same as its mean-square value, so we write 

𝜎2 = 𝛦[𝜜2]
(4.1)
⇒   

𝛦[𝜜2] = 𝛦[(𝑿𝑇𝒒)( 𝒒𝑇𝑿)] 



Feature Engineering 

Data-driven ship propulsion modeling with applications in the performance analysis 

  66 
 

  = 𝒒𝑇𝛦[𝑿𝑇𝑿]𝒒 = 𝒒𝑇𝑹𝒒   (4.2) 

The m-by-m matrix R is by definition the correlation matrix of the random vector X.  

We observe that the correlation matrix R is symmetric, which means that 

𝑹 = 𝑹𝑇 

From this property, it follows that if α and b are any m-by-1 vectors, then 

𝒂𝑇𝑹𝒃 = 𝒃𝑇𝑹𝒂    (4.3) 

From Equation (4.2), we see that the variance 𝜎2 of the projection A is a function of the unit 

vector q; we may thus write 

𝜓(𝒒) = 𝜎2
(4.2)
⇒    

𝜎2 = 𝒒𝑇𝑹𝒒   (4.4) 

And hence consider 𝜓(𝒒) as a variance probe.  

The next issue to be considered is that of finding those unit vectors q along which  𝜓(𝒒) has 

extremal or stationary values (i.e., local maxima or minima), subject to a constraint on the 

Euclidean norm of q. The solution to this problem lies in the eigenstructure of the correlation 

matrix R. If q is a unit vector such that the variance probe 𝜓(𝒒) has an extremal value, then 

for any small perturbation δq of the unit vector q, we find that, to a first order in δq, 

𝜓(𝒒 + δ𝐪) = 𝜓(𝒒)   (4.5) 

Now by substituting 𝜓(𝒒)from Equation (4.4) in Equation (4.5) we get  

    𝜓(𝒒 + δ𝐪) = (𝒒 + 𝛿𝒒)𝑇𝑹(𝒒 + 𝛿𝒒) 

After executing the multiplications on the right-hand side and ignoring the second-order 

terms, we have  

     𝜓(𝒒 + δ𝐪) = 𝒒𝑇𝑹𝒒 + 𝟐(𝛿𝒒)𝑇𝑹𝒒 

 =  𝜓(𝒒) + 𝟐(𝛿𝒒)𝑇𝑹𝒒 

=>𝜓(𝒒) = 𝜓(𝒒) + 𝟐(𝛿𝒒)𝑇𝑹𝒒 

= (𝛿𝒒)𝑇𝑹𝒒 = 𝟎    (4.6) 

Just any perturbations δq of q are not admissible; rather, we are restricted to use only those 

perturbations for which the Euclidean norm of the perturbed vector (q + δq) remains equal 

to unity; that is, 

(𝐪 +  δ𝐪)𝛵(𝐪 +  δ𝐪) = 1 

Hence, to a first order approximation in δq, we require that 

(𝛿𝒒)𝑇𝒒 = 𝟎   (4.7) 
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This means that the perturbations δq must be orthogonal to q, and therefore only a change 

in the direction of q is permitted.  

Combining Equations (4.6) and (4.7) requires to scale the dimensionless unity vector q with a 

scaling factor λ with the same dimensions as the entries in the correlation matrix R. We may 

then write  

(𝛿𝒒)𝑇𝑹𝒒 = 𝜆(𝛿𝒒)𝑇𝒒 => 

(𝛿𝒒)𝑇(𝑹𝒒 − 𝜆𝒒) = 0   (4.8) 

Equation (4.8) yields that  

𝑹𝒒 = 𝜆𝒒   (4.9) 

This is the equation that governs the unit vectors q for which the variance probe 𝜓(𝒒) has 

extremal values. It is clear now that Equation (4.9) is a typical eigenvalue problem and since 

the R matrix is symmetrical, its eigenvalues are real and nonnegative values. Let the 

eigenvalues of the m-by-m matrix R be denoted by 𝜆1, 𝜆2, … , 𝜆𝑚 and the associated 

eigenvectors be denoted by 𝑞1, 𝑞2, … , 𝑞𝑚 respectively. In a compact form we write 

𝑹𝒒𝑗 = 𝜆𝑗𝒒𝑗,                𝑗 = 1,2, … ,𝑚  (4.10) 

Let the corresponding eigenvalues be arranged in decreasing order as 

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑗 > ⋯ > 𝜆𝑚 

so that  𝜆1 = 𝜆𝑚𝑎𝑥. Let the associated eigenvectors be used to construct the m-by-m matrix, 

𝑸 = [𝑞1, 𝑞2, … , 𝑞𝑗, … , 𝑞𝑚] 

We may then combine the set of m equations represented in Equation (4.10) into the single 

equation 

𝑹𝑸 = 𝑸𝜦  (4.11) 

Where 𝜦 is a diagonal matrix defined by the eigenvalues of matrix R, and the matrix Q is an 

orthogonal (orthonormal and unitary) matrix. The fact that matrix Q is orthogonal requires 

distinct eigenvalues.  

At this point, we have everything it takes to express the matrix R in terms of its eigenvalues 

and eigenvectors as  

𝑹 = ∑ 𝝀𝑖
𝑚
𝑖=1 𝒒𝑖𝒒𝑖

𝑇 =  𝐐𝚲𝑸𝑇   (4.12) 

which is referred to as the spectral theorem. Equation (4.12) represents the eigen-

decomposition of the matrix R and is basically equivalent to Principal Components Analysis. 

In summary, the eigen vectors of the correlation matrix R pertaining to the zero-mean random 

vector X define the unit vectors 𝒒𝑗, representing the principal directions along which the 

variance probes 𝜓(𝒒𝑗) have their extremal values. The associated eigenvalues define the 

extremal values of the variance probes  𝜓(𝒒𝑗). 
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Finally, we shall explain how the original data points are represented in terms of the principal 

components. Let the data vector x denote a realization (i.e., sample value) of the random 

vector X. Let α denote a realization of the random variable A. With m possible solutions for 

the unit vector q, we find that there are m possible projections of the data vector x to be 

considered. Specifically, from Equation (4.1), we note that  

𝒂𝑗 = 𝒙
𝑇𝒒𝑗 = 𝒒𝑗

𝑇𝒙,    𝑗 = 1,2,… .𝑚   (4.13) 

where the 𝒂𝑗 are the projections of x onto the principal directions represented by the unit 

vectors 𝒒𝑗.The 𝒂𝑗 are called the principal components; they have the same physical 

dimensions as the data vector x. The formula in Equation (4.13) may be viewed as one of 

analysis. 

To reconstruct the original data vector x exactly from the projections  𝒂𝑗, we proceed as 

follows: First, we combine the set of projections into a single vector, as shown by 

𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑗, … , 𝑎𝑚]
𝑇 

= [𝒙𝑇𝒒1, 𝒙
𝑇𝒒2, … , 𝒙

𝑇𝒒𝑚] 

                 = 𝑸𝑇𝒙      (4.14) 

Next, we multiply both sides of Equation (4.14) by the matrix Q from the left-hand side and 

due to the fact that matrix Q is orthogonal we get the Equation (4.15) for reconstructing the 

original data vector x. 

𝒙 = 𝑸𝒂 = ∑ 𝒂𝑗𝒒𝑗
𝒎
𝑗=1    (4.15) 

The unit vectors 𝒒𝑗 represent a basis of the data space and Equation (4.15) may be viewed as 

the formula for synthesis.  

Now that the invertible linear transformation T, that we were looking for is found, the technic 

of analysis and synthesis can be applied to project the data onto their principal components 

and perform dimensionality reduction in an optimum, in terms of mean-square-error, sense. 

Since the matrix Q that transforms the original data coordinates is constructed with a 

decreasing order of eigenvalues magnitude, discarding its last rows leads to an optimal 

reduction of dimension or de-noising of a signal. 
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ii. Application in real data 
An application of PCA on the obtained ship dataset demonstrates the way that the analysis and synthesis 

process behave when the degree of dimensionality reduction is a free parameter. The implemented 

procedure is the following:  

• Retrieve a slice of the dataset that has been through the manual feature engineering procedure. 

In this case it includes 10,000 data vectors (or data points, is used with the same meaning here) 

and 16 features.  

• Normalize the dataset values by turning them to z-score values (zero mean and unit variance). 

• Perform the PCA as explained in 4.3.1, in order to obtained the matrix Q. (analysis) 

• Re-compose the data points by projecting them on the new base (matrix Q), the principal 

components’ one. (synthesis) 

• Repeat the process of the re-composition, and on each iteration reduce the dimension of the 

new base by discarding the last eigenvectors (one at a time).  

 

The results of this parametric dimensionality reduction process are presented in Figure 4.4 for a specific 

set of parameters. The propeller shaft power is plotted against the propeller shaft rpm and the original 

data points are compared with the transformed ones, in the lower dimension space.  The number of 

components that are used in the re-composition of the data points increases by one as we move from up 

and left to right and down. The inability to grasp the non-linear behavior of the data is quite clear in the 

lower dimension cases but after the 11 components, the projection of the transformed data describes 

accurately the original data variation. 
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Figure 4.4 The original data points of the propeller shaft power and propeller shaft rpm are plotted against the projected 

on a lower dimension space, data points. The number of principal components used for the projection are 5 on the top 

left corner and increase by one as we move left and down. 

The above observation is supported by the cumulative explained variance graph in Figure 4.5. Here, the 

amount of the total variance that is explained by each number of principal components is plotted. The 

green line demonstrates the 99% threshold, which means that with 10 principal components we can 

explain the 99% of the original data set variance. That is why in Figure 4.4 the 11 components projection 

is almost identical to the original data set. Note that this is just one case of parameters that are described 

satisfactory with fewer dimensions. In other pairs of parameters there is the probability to encounter 

slightly different behaviors.   
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Figure 4.5 The cumulative explained variance by the principal components is a curve that provides useful information 
regarding the possibility of reducing the dimension of the dataset without loss of valuable information. 

The exact same procedure was applied to larger slices of the dataset in order to investigate the 

computational cost of the method. The findings are presented in Table 4.6. The linear scaling of the 

computational cost implies that this method is appropriate for use in large datasets.  

 

Table 4.6 The computational time required for applying PCA on datasets of different size 

Number of data points Computational time (seconds) 

10,000 1.135 

20,000 2.259 

40,000 4.598 

70,000 8.013 

Linear correlation coefficient value R2 = 0.999 

 

On a last example, principal components analysis may also be applied to a single pair of parameters. 

The axes of maximum variation among these parameters are calculated in this process and some 

additional insight for their correlation might be provided. For instance, in Figure 4.6 two pairs of 

parameters are plotted on their original axes and their principal components are illustrated as well. We 

notice how the eigenvectors have similar magnitude (which is defined by the value of the eigenvectors) 

and are almost perpendicular when the data points are scattered all over the original axes plane. In 

contrast, when the data points in the scatter plot behave in a more ordered way (i.e. when a linear, 

quadratic, etc. relationship exist among them) the eigenvalues differ by order of magnitude and the 

eigenvectors form a much smaller angle. Therefore, this example validates the fact that vast differences 
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in the magnitude of the eigenvalues imply that the data variation could be explained satisfactorily even 

if the last, of the decreasingly sorted eigenvectors, is discarded (dimensionality reduction). 

 

   

Figure 4.6 The principal components of two pairs of parameters. The arrows directions are the eigenvectors and their 
magnitudes are the eigenvalues of the correlation matrix of each pair of parameters. 
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5 Artificial Neural Networks: Implementation and Optimization 
 

For readers who are not familiar with the concepts and the recent developments in the field of Artificial 

Neural Networks we recommend to read Appendix A first. It aims to introduce the fundamental 

concepts of Artificial Neural Networks (ANNs), to whom might be unfamiliar with, and display their 

mathematical formulation so that a discussion about ANNs’ architecture and parameters can follow.  

This chapter is targeted to the readers who have a basic familiarization with the concept of Artificial 

Neural Networks and are up-to-date with the recent developments in the field (after 2013). 

Comprehending properly the ANNs’ architecture and parameters’ influence on the possible outcome is 

of great importance for building functional and well-performing models. This argument is supported in 

this chapter where the results from training and testing ANN models, are presented in chronological 

and increasing complexity order. In summary, this chapter describes the basic tool of this study and 

attempts to shed light on the key-factors that fine-tune an ANN model. Also, we achieve to provide 

quantitative evidence on the significance of the data pre-processing and feature engineering procedures 

that were implemented in the previous chapters.  

 

5.1 Parameters’ Selection, Training Results and Optimization 

 

In this section we present the results of the training process for two reference models, one that estimates 

the ME FOC and another the Propeller Shaft Power. Also, we investigate the effect of data pre-

processing, feature engineering and some additional methods and tricks on the final performance of our 

models on the test sets. All the results are summarized in a matrix format and necessary details for each 

case are given below.  

Whenever we refer to the training procedure, we mean a set of specific steps that are implemented in 

the following order:  

a) Shuffling the data set. 

b) Splitting the data set into the training set and the validation set, by default to 80% -20% except 

when defined otherwise.  

c) Normalizing the arithmetic elements of our data, using z-score normalization (zero mean and 

unit variance).  

d) Train a standard FNN. The FNN has the following user defined parameters: 

i. The number of layers 

ii. The number of units in each layer 

iii. The activation function of each layer 

iv. Optimizer  

v. Batch size 

vi. Error function 

vii. Number of epochs 

Every one of the aforementioned steps plays a crucial role in the performance and robustness of the 

model. The goal is to minimize the error function of course, but this does not mean that a model with 

poor generalization capabilities and overfitted to the training data is desired, even if it brings the training 

error down to almost zero. For this reason, we will discuss briefly the importance and the benefits of 

each and every one of these steps in the training procedure.  
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Shuffling the data is crucial in order to avoid biased learning of the model. If we consider all the 

measured parameters in the ship dataset to be random variables, we can confidently assume that they 

are not static. Consequently, data collected later on time carry new information based on actual changes 

in our physical system, the ship. If the data are not shuffled, the model will be trained on hull conditions 

that describe a certain time window of the ship's operation and examples related with the later behavior 

of the system will be ignored by the model.  

 

The split of the data, by convention among machine learning practitioners, varies between 70-30% 

and 90-10% as training-validation set. The most influential factor in the determination of the split 

percentages is the dataset’s size. In large datasets the validation or the test set can be a smaller 

percentage of the whole since it is still quite large in absolute number.  

 

Data normalization is a standard procedure for most cases (for regression models and arithmetic data) 

and should not be skipped. It is easier to conceptualize its importance in a two-dimensional curve fitting 

example. Suppose a set of data points located distantly from the axes origin of our 2-D plane and an 

estimation of the slope, α and intercept, β of a line that fits the data and results to the least square error. 

A small perturbation in the value of α is shifted to larger displacements of the line’s position in points 

more distant regarding the axes’ origin and therefor erratic behavior of the error function.   

 

Setting the models parameters is a demanding procedure since on the one hand there are not any 

straight-forward technics to guide us through and on the other hand, brute force search for optimum 

values is inefficient. One should take under consideration a lot of theoretical background knowledge, 

mainly related with the subjects that were described in sections 5.1 and 5.2, but this is not enough. The 

reason is that selecting a relatively efficient number of layers and units or a well-suited activation 

functions is plausible with some experience and following basic rules of thumb, offered by the machine 

learning community. However, fine-tuning the model and being confident that we are verging to the 

global minimum of the error function is far more difficult. The strategy followed in this study can be 

summarized in the following propositions:  

• Add layers until the error stabilizes, then add one more and if there is not improvement keep 

the least number of layers that achieves this performance. 

• Similarly, add units to each layer until the error stabilizes, then add even more and if there is 

not improvement keep the least number of layers that achieves this performance. 

• Experiment with fundamentally different types of activation functions. Detect the most suitable 

family of activation functions (i.e. tanh and sigmoid behave similarly) and test a subset of them 

to ensure that they do not induce deviations in the model’s performance. 

• Solid understanding of the training process and the available optimizing algorithms can assist 

immensely in the direct selection of the proper optimizer.  

• The batch size is the number of training samples that are forward propagated through the 

network before re-adjusting the weights. If the batch size is set equal to 1 then we have a 

sequential model and weights are adjusted for the error estimated on each sample point. If the 

batch size is set equal to the total number of training samples then we have a batch-method and 

the weights are adjusted only once in every epoch. Other cases of intermediate batch size are 

mini-batch methods. We decided to couple the selection of batch size number with the number 

of epochs. 

• The number of epochs is selected in relation to the batch size. Increasing the number of epochs 

means increasing the number of times that the whole training set is propagated through the 

model but the batch size determines the number of weight-updates that occur in each epoch. 

We consider the total number of weight-updates to be the effective degree of the model’s 

training. For instance, if the number of epochs is constant, doubling the batch size leads to the 

half weight-updates and this is proportional to the computational time required for the model’s 
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training. Fewer weight-updates lead to faster training but a larger batch size means less focus 

on the fitting of each individual data point and vice versa. Finally, it should be noted that a large 

number of epochs is usually responsible for overfitting the model while a large batch size can 

assist the model to fit better on noisy data.  

• The error function in regression models is commonly selected to be the Root-Mean-Square-

Error (RMSE) function and we stick to that. 

 

In Table 5.1 we present the results of an extended training and testing procedure. Τhe ‘data set’ column 

has the labels of differently processed datasets in an ascending order of pre-processing degree. The ‘raw 

data’ are completely unprocessed and have only been synchronized into per-one-minute timestamps. 

All the datasets originate from the ‘raw data’ and are furtherly processed.  

• The ‘Smoothed’ (s) dataset is produced by averaging the ‘raw data’ in 5-minute time windows.  

• The ‘Smoothed & Corrected’ (scor) dataset is averaged in the same way and preprocessed by 

the correction algorithm presented in Section 3.2.  

• The ‘Smoothed & Cleaned’ (scl) dataset is averaged in the same way and preprocessed by the 

outlier detection algorithm presented in Section 3.3.  

• The ‘Smoothed & Corrected & Cleaned’ (scc) dataset is averaged in the same way and 

preprocessed by both the previous algorithms.  

• The ‘SCC & k-folds’ is just the scc dataset in which the k-fold technic for cross-validation of 

the generated models has been applied. 

• The ‘SCC Atlantic trips’ originates from the scc dataset but includes only the data points that 

were collected while crossing the Atlantic Ocean.  

• The ‘SCC-fouling’ is the scc dataset without the ‘Fouling’ feature. 

 

The other columns in Table 5.1 present error metrics for the target of the models. One model is feature 

engineered and trained to estimate the Fuel Oil Consumption of the Main Engine (‘ME FOC’) and a 

second one estimates the propeller shaft power (‘Shaft Power’).  

 

• The ‘RMSE’ column is the root-mean-squared error between the model’s estimations and the 

target values of the validation set. If 𝑦𝑖 is the target value and 𝑦�̂� is the estimated, we compute 

the RMSE as:    

 

𝑅𝑀𝑆𝐸𝑟𝑟𝑜𝑟 = √
∑ (𝑦�̂� − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 

 

• The ‘R2-value’ is the linear correlation coefficient among the estimated values and the targets 

values. 

 

• The ‘% accuracy with respect to (w.r.t.) the mean’ is defined as (Petersen, et al., 2011):  

 
𝑀𝑉𝑆 − 𝑅𝑀𝑆𝐸

𝑀𝑉𝑆
× 100 

 where 𝑀𝑉𝑆 is the mean value of the target variable at the validation set. 

 

• The ‘Relative error’ (Pedersen & Larsen, 2009) is computed as:  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
1

𝑛
∑
|𝑦�̂� − 𝑦𝑖|

|𝑦𝑖|

𝑛

𝑖=1

× 100 
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All the models share the same number of hidden layers and hidden units, the same activation functions, 

batch size, epochs and the same error function. This is done in order to benchmark the pre-processing 

algorithms that were used for correcting or cleaning the data and to observe the effect of some features 

on the model’s performance. 

 

The results in Table 5.1 are the average values of five training-testing procedures in order to reduce the 

randomness of the outcome error metric value. The values of the error metrics support the positive effect 

of the correcting and cleaning algorithms in both target cases. The RMSE is drastically reduced when 

we use the smoothed data set and it keeps shrinking when the data have been corrected or cleaned. 

Accuracy improves from 92% to almost 98% when in the case of ME FOC model and from 96% to 

98.5% in the case of Shaft Power. The optimum results are obtained when k-fold cross validation 

technic is applied and that was expected since it is a common technic in plenty machine learning 

applications.  

 

Furthermore, in the scenario where data points only from Atlantic Ocean sailing are included in the 

dataset, the errors are even smaller because the modeled phenomenon is in a much steadier state and 

effects of swallow or confined waters are absent. Also, transient engine operation is much more frequent 

during coastal navigation rather than during Atlantic Ocean sailing and so intense nonlinearities from 

the engine’s signals are absent as well.  

 

Finally, a test for the effect of the ‘Fouling’ feature, that was generated from the dataset’s temporal 

information (see Section 4.1), is implemented. We see that the errors are increasing when the ‘Fouling’ 

feature is omitted from the input data set and that gives us confident to utilize this generated feature in 

future applications.  

 

In Figures 5.5 and 5.6 the results of table 5.1 are presented graphically and the improvement on both 

models’ performance can be perceived immediately.  
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Table 5.1 Summary table of the testing results. 

DATA SET 

RMSE R2-value 

Accuracy w.r.t. the 

mean 

(%) 

Relative error 

(%) 

ME FOC 

(tn/24hr) 

Shaft Power 

(kW) 
ME FOC Shaft Power ME FOC Shaft Power ME FOC Shaft Power 

Raw data 3.409 372.380 0.967 0.992 92.320 95.889 4.805 3.509 

Smoothed (s) 1.802 280.081 0.991 0.995 95.940 96.905 3.613 3.066 

Smoothed & 

Corrected 

(scor) 

1.085 232.615 0.997 0.997 97.540 97.430 2.657 2.935 

Smoothed & 

Cleaned (scl) 
1.070 186.440 0.997 0.998 97.584 97.951 2.423 2.310 

Smoothed & 

Corrected & 

Cleaned (scc) 

0.913 165.665 0.997 0.998 97.837 98.180 2.423 1.873 

SCC & 

 k-folds 
0.811 133.661 0.998 0.999 98.125 98.492 1.919 1.780 

SCC Atlantic 

trips 
0.648 105.122 0.998 0.999 98.747 99.025 1.107 0.848 

SSC-fouling 0.947 204.670 0.997 0.997 97.863 97.751 2.162 2.308 
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Figure 5.1 The relative error on the validation set. Each dataset on the x-axis trains a new model and relative error among 
the estimated and the target values is the y-axis value. 

 

Figure 5.2 The accuracy of the models’ estimations on the validation set. Each dataset on the x-axis trains a new 

model and the resulting accuracy among the estimated and the target values is the y-axis value.
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6 Applications of ANN models on ship propulsion problems 
 

The last chapter of this study presents three different types of applications on the field of ship propulsion 

modeling. We investigate how it is possible to exploit ANN models, that are built purely from the ship’s 

operational data, and address important issues related to optimum ship performance and emissions 

mitigation. The models described in Section 5.3, and others similar to them, can form the core of 

decision support tools that assist a technical or operations department to achieve reduction of the fuel 

oil consumption or timely hull cleaning and effective condition monitoring. All that would lead to more 

energy efficient and profitable ship operations. 

 

6.1 Application I: Prediction of the main engine’s total fuel oil consumption 
 

This first application aims to estimate the actual fuel oil consumption (ME FOC) that the ship’s main 

engine would have during a user-defined voyage. Given that all the values for the input parameters 

(Table 6.1) of the model are known, it estimates the total mass of consumed fuel with an accuracy 

around 98.5% and above. It is a high-fidelity model that could explore the effects of speed optimization 

on the emission mitigation mission or provide reliable estimates on particular specifications of a charter 

party agreement. 

Table 6.1 Input features for the ME FOC model. 

Longitudinal 

Water Speed 
STD_Longitudinal 
Water Speed 

Draft Tot Trim Rudder 
Angle 

Propeller 
shaft power 

M/E START AIR 

PRESS 
Wave Height Fouling Wind Effect   

 

From the available dataset of the examined ship, we chose to work with the datapoints that were 

collected during the transatlantic trips of the ship. In a period of 12 months we detect 12 crosses of the 

Atlantic by the ship and split them to 8 trips as training set, 2 trips as validation set and 2 trips as test 

set (Figure 6.1). We need a validation set because the k-folds technic is used for improved performance 

(see Section 5.3). Also, we introduce here the ensembles technic, which is the training of multiple 

identical models on the exact same data in order to average the outputs of all these models when trained, 

and use this value as the final estimation. Hence, when we refer to the model’s estimation, we mean the 

average value of the 10 models’ outputs. 

This application provides both, the time series of the fuel oil consumption and the total consumed mass 

of the fuel. On every estimation, the 99% confidence interval is calculated in order to justify the term 

‘high-fidelity’ that we mentioned before. The results from the test set’s estimations are presented in 

Table 6.2 and in Figures 6.2. The y-axis scale in Figure 6.2 is not allowing us to display the confidence 

intervals around the estimation curve. That is why in Figure 6.3 a specific area of interest from the test 

set is presented. We should notice there that for low values of the ME FOC the uncertainty in the model 

increases because there are few training data on this range but overall it behaves quite robustly. 
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Figure 6.1 The ship's path in the test set’s data points. The transatlantic trip begins from the European side (yellow 

part of the curve) and ends back there (green part of the curve). Its duration was about 23 days. 

The error related to the estimated value of the total ME FOC in Table 6.2 is ±4.2 tons. It is calculated 

by propagating the standard error of each estimated value. We see that the actual value of the total ME 

FOC lies well within the anticipated interval. Estimations of the total ME FOC from this model could 

be taken into account when underlying a charter party agreement. 

 

Table 6.2 Summary of results of the ME FOC estimation application. 

DATA SET RMSE 

(ton/24hr) 
R2-value accuracy w.r.t. 

the mean (%) 

Relative 

error (%) 

Total 

 ME FOC (ton) 

SCC Atlantic trips 

- Ensembles 
0.589 0.998 98.862 0.954 1040.257 

Actual (measured) consumption (ton) 1037.324 

Difference     2.933 ton 

(%)     0.283 % 
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Figure 6.2 The model’s estimation and the actual ME FOC on each time step (5-minute) of a transatlantic round-trip 

(test set).  

 

Figure 6.3 The model's estimation error as % (w.r.t.) to the mean value of FOC. The errors correspond to the estimations 
of Figure 6.2.  

An alternative way to exploit this model is to create scenarios of reduced or increased average speed 

during an identical voyage. The model’s output can be used to estimate the difference in the total fuel 

consumption, the CO2 emissions or the fuel costs. Also, the added voyage duration can be calculated in 

the same, straight forward, way. The scenarios that were tested are presented in Table 6.3 along with 

their expected errors for the total ME FOC. In Figure 6.4 the results of table 6.3 are interpreted in terms 

of fuel costs and trip duration and presented as percentages in comparison to the reference scenario of 

the 17.75 knots. Graphs like this could provide useful information to the ship managers and support 

decision making.  
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Table 6.3 The total ME FOC for the various scenarios of reduced or increased average speed during voyage.  

Average Speed 

(knots) 

Total ME FOC 

(tons) 

Expected Error 

(tons) 

16.5 837.8  ±4.8 

17 866.56  ±5.2 

17.5 939.59  ±4.8 

17.75 993.74  ±4.4 

18 1124.44  ±3.9 

 

 

Figure 6.4 The estimated ME FOC value and the 99% confidence interval surrounding it. 

 

Figure 6.5 Estimated fuel costs and trip duration with respect to the reference scenario of average speed 17.75 knots. 
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6.2 Application II: Average Speed Loss estimation 
 

This section presents the second application, with which we aim to offer an alternative approach to the 

standard ISO 19030 process for estimating a ship’s average speed loss. The analysis is focused on the 

normalization step of the available data points. The ISO procedure for normalization is compared to an 

innovative way of normalizing the data via a machine learning model. 

However, before normalizing the data, the ISO 19030 procedure requires strict filtering of the data in 

order to avoid normalizing from widely different conditions. The Table 6.4 presents the filtering 

requirements according to ISO 19030 and compares them with the case that an ANN model is to be 

used for the normalization of the data. The main difference among these two methods is that ISO 19030 

requires filtering for calm sea conditions (true wind speed < 7.9 m/s) and the same loading condition. 

When we use an ANN model to estimates the ship’s STW for any loading and weather conditions we 

can keep in the dataset a large number of datapoints that otherwise would be rejected. We still have to 

filter for large rudder angles and strong sea currents cause in these cases the physic of the problem 

differs fundamentally (completely different flow of the water around the hull). The standard deviation 

of the STW (STD_STW) is added in the filtering procedure because we wish to reject datapoints from 

transient or high uncertainty moments. Also, the propeller shaft power is required to be more than 9,000 

kW only because the available sea trials are for a power range over this value. Finally, through the 

constrains in the longitude coordinate we filter for transatlantic trips only because there are no available 

data for water depth and temperatures. Coastal sailing datapoints will definitely include cases of 

swallow or confined water sailing and maneuvering close to ports or many low load and transient 

operations.   

Table 6.4 Comparative table of ISO 19030 filtering requirements versus the proposed method. 

PARAMETER  ISO 19030 ANN 

Wind Speed  < 7.9 m/s ✔  

Trim +/- 0.2% LBP ref. trim ✔  

Draft → ±5% ref. displacement ✔  

Rudder Angle > -5° and <5° ✔ ✔ 

Sea Current < 1 m/s ✔ ✔ 

STD STW < 0.5 knots/5-min ✔ ✔ 

Propeller Shaft Power >9000 kW ✔ ✔ 

Longitude >-79 and <1 ✔ ✔ 

 

After the filtering of the data, the normalization procedure allows us to make possible the direct 

comparison of measured data points to the expected ones in the “reference condition”. Reference 

condition could be any loading condition of the ship for which we have the Speed-Power curve in clean 

hull and calm weather conditions, and hence the expected values of speed (STW) for a particular value 

of power. Instead of reference condition we may use a reference period which is a 3-month period (or 

so) of data collection after a hull cleaning. By subtracting from the expected STW values the normalized 

measured values of STW, for the same engine power, we get an indication of the ship’s performance in 

the form of a speed loss (see Equation 6.1). 

                          𝑉𝑑 = 100 ∙
𝑉𝑚−𝑉𝑒

𝑉𝑒
    (6.1)  
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where 𝑉𝑒 is the expected value of STW (in reference condition) and 𝑉𝑚 is the measured value 

of ST (Petersen & Winther, Mining of Ship Operation Data for Energy Conservation, 2011)W. 

If 𝑉𝑚 is not measured in the exact same displacement as the reference condition, it should be 

normalized according to Equation 6.2. 

          𝑉2 = 𝑉1 (
∆1
2/3 

∆2
2/3)

1/3

                       (6.2) 

Where 𝑉2(= 𝑉𝑚) is the speed at reference condition (displacement ∆2), 𝑉1 is the speed at measured 

displacement ∆1. After the calculation of the 𝑉𝑑 values for all the available data points n, we take 

their mean and this results to the average speed loss 𝑉𝑑̅̅ ̅ (see Equation 6.3). 

𝑉𝑑̅̅ ̅ =
1

𝑛
∑ 𝑉𝑑,𝑖
𝑛
𝑖     (6.3) 

In Figure 6.5 we have estimated the average speed loss (ASL) with both methods. The blue dots are 

calculated through the ISO 19030 normalization formula (Equation 6.1) while the red dots are obtained 

by normalizing the speed values with the ANN model. Obviously, in the case of the ANN we have 

many more available data points to support our estimation because the filtering procedure is not so 

strict. Also, both methods estimate the almost the same value for the ASL but the ANN methods trends 

correctly (increasing speed loss over time) while the ISO 19030 method estimates a decreasing speed 

loss over time. We believe that this happens mainly due to the limited number of data points involved 

in the estimation of the ASL. The ASL value estimated from the ANN model is 5.12% and from the 

ISO 19030 is 5.99% while the available data points after filtering are about 22,000 and 2,500 

respectively.  

 

Figure 6.6 Estimation of the ship's average speed loss via two different normalization methods. 
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7. Conclusions and Recommendations 
 

This study attempted to investigate the margins of improvement in the data-driven ship propulsion 

models, also known as black box models, for the scopes of performance analysis and emissions 

reduction. We choose to build our models with multi-layer Artificial Neural Networks (ANNs) and 

therefore, two important stages in this modeling procedure were the data pre-processing stage and the 

neural network’s parameters’ (and optimizer) selection stage.  These stages were investigated 

thoroughly and proved to be able to contribute remarkably to the high accuracy that was achieved by 

the models. 

More specifically, in the pre-processing stage, two algorithms for correcting and cleaning the data were 

proposed, and when applied to the available dataset they increased the accuracy of the produced models 

by ~1.5%. However, the initial accuracy of the ANN models was quite high, from 93% to 95%, 

depending on the targeted parameter (FOC, Speed or Power). This high initial accuracy was achieved 

due to the much larger number of hidden units that were used in our networks, in comparison to other 

works (Senteris, 2018), (Besikci, et al., 2015) and (Pedersen and Larsen, 2009).  

Finally, in the applications chapter, we demonstrated how a model that predicts the ship’s fuel oil 

consumption can be utilized for examining scenarios of different service speeds for the ship. Also, we 

implemented the average speed loss estimation according to ISO 19030 procedure and then attempted 

to alter the filtering and normalization by utilizing again a neural network model, that could predict the 

expected ship’s speed based on the shaft power value, for the reference conditions. The results were 

quite rational and encouraging for further investigation.  

Overall, the following remarks and recommendations were drawn from this study. 

i. For a systematical approach to the issue of data-driven propulsion modeling, data quality 

metrics should be introduced. Data correction and cleaning methods should be established and 

applied when poor data quality is detected. In this way, it would be possible to provide datasets 

of similar quality in the machine learning algorithms and benchmark the various data-driven 

models. In 2011 Petersen had stated the need for benchmarking the ship propulsion models, in 

his PhD thesis (Petersen & Winther, 2011).  

ii. Two abstract stages in the data-driven modeling procedure are the visual data inspection stage 

and the feature engineering stage. They demand relative experience on the ship’s operational 

patterns and good knowledge of ship theory. Also, strong intuition on the physical side of the 

problem as well as in the data manipulation issue can be regarded as an asset.  

iii. Ultimately, a deep understanding of how the data, that are constructing the model, interact with 

it and what are the capabilities and limitations of the produced model is essential for the proper 

treatment and utilization of the model, later. 

iv. Last but not least, peak performance is noticed when the open sea (Atlantic) data points are 

isolated and used to build the model. Probably, that happens because there is missing 

information for the other areas that the ship sails. A more extended dataset could offer new and 

meaningful features for the model and therefore increase its accuracy, among the different areas 

that the ship operates. It could include the following additional parameters: Water depth, 

Seawater, and Air temperature, Salinity, Humidity, Swell significant wave height and direction 

and perhaps most importantly the control commands from the bridge (control signals for the 

engine, the rudder, the ballast pumps, etc.) 
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Appendix I- Neural Networks 
 

History and Mathematical Formulation 

The history of Artificial Neural Networks is actually the history of the human endeavors to design 

intelligence machines. Once the miraculous invention of the electronic computer was established, some 

scientists’ attention focused on the inner function of the human brain. 

The firsts to inform us about the neurons in our brain were Warren S. McCulloch, a neuroscientist, and 

Walter Pitts, a logician. In 1943 they published their work in the Bulletin of Mathematical Biophysics 

with the title "A logical calculus of the ideas immanent in nervous activity".  In their paper, they describe 

how networks of neurons in the human brain may work and provide a simple model for the single 

neuron (see Figure 5.1). This model, when used as the building block of the computational analogous 

of the biological neural network in the brain, had the ability to approximate almost any arithmetic or 

logic function. 

 

 

Figure 0.1 An illustration of a biological neuron with some of its biological features that relate to the model of 

perceptron, introduced by McCulloch and Pitts and later formulated by Rosenblatt. (Source: Raschka,2015) 

The work of McCulloch and Pitts inspired many other researchers to expand the idea of the neuron and 

develop the first applications as well as the mathematical foundations for the Artificial Neural 

Networks. In 1951 Marvin Minsky, as a student built a neurocomputer but did not manage to come up 

with any application for it. In contrast, Frank Rosenblatt in 1958 at the Cornell Aeronautical Laboratory 

created the first successful neurocomputer, a machine that was able to see and classify linearly separable 

objects. Even though Rosenblatt presented the perceptron as a machine, it was the algorithm that 

simulates the operation of a neuron that laid the foundations for the development of the modern ANNs. 
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Figure 0.2 Schematic of Rosenblatt's perceptron. The basic elements consisting the perceptron’s model are the inputs, 

the weights, the net input and the activation function and the output. Until today they have not change. Source: 

(Raschka, 2015) 

Even though the fundamental model of the perceptron existed since 1958, scientist keep pushing 

forward the research and development on the topic only for the next ten years. After that, the research 

halted, mainly because of Minsky’s and Papert’s book, Perceptron (1969), and we entered the so-called 

AI winter. Only in the mid 80’s scientific progress on the field initiated again.  

However, before catching up with the most recent developments in the field of ANNs we shall present 

the basic mathematical formulation and explain few details of what we have already discuss. In Figure 

5.1 the illustration of the neuron, as perceived by McCulloch and Pitts, even though is simple, includes 

a certain amount of biological information that is not essential for a computational model of the neuron, 

the Rosenblatt’s perceptron, presented in Figure 5.2. 

In simple words, the computational neuron of Figure 5.2 represents the electric impulses, that a 

biological neuron senses in its Dendrites (see Figure 5.1), as scalar numbers. Then the Cell nucleus and 

the Axon that combine and transmit the input signals towards the outputs are modelled as a linear 

combination of the scalar inputs, its one receiving an individual weight, and then their sum passes 

through an activation function. This activation function, originally a step function, simulates the firing 

or not of the Axon terminals.  

The mathematical formulation of Rosenblatt’s perceptron is the elegant equation (5.1). 

𝑦(𝑥, 𝑤) = ℎ(∑ 𝑤𝑗𝑥𝑗
𝑀
𝑗=1 )  (5.1) 

Where ℎ( ), is a nonlinear activation function in the case of classification, like the image recognition 

problem that Rosenblatt attempted to solve with the step activation function. In the case of regression 

is the identity function. The 𝑥 and 𝑤 denote the input and weight vector, (𝑥1, 𝑥2, … , 𝑥𝑚)and 

(𝑤1, 𝑤2, … , 𝑤𝑚) respectively, and y is the perceptron’s output.  

At this point, additional terminology that is used in the field of Neural Networks can be introduced. 

Equation (5.1) describes a single layer, single output ANN with m-inputs. The weights,  𝑤 are the 

adaptive parameters that are to be learnt by the ANN in the training phase, so as to map correctly the 

input vector 𝑥 to an output value y. The training procedure of the ANN is analytically described in a 

following section. For the moment we mention only that for every available pair of data (𝑥𝑛,𝑡𝑛), the 

weights are adapted in order to have the output 𝑦𝑛, that corresponds to each input 𝑥𝑛,   as close as 

possible to the known target value 𝑡𝑛. Now, if another perceptron is placed at the output of the first, so 

as the value 𝑦𝑛becomes its input, a two-layer ANN is created. Alternatively, a two-layer ANN is 

sometimes called a single-hidden layer network.  
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A more generic formulation of the Rosenblatt’s perceptron can be used to model a Neural Network. 

Placing perceptrons in parallel increases the width of the network and placing them in series increases 

the depth (hidden layers) of the network. If we examine the example of a two-layer ANN, for the outputs 

of the first layer in the network we may write 

𝑎𝑗 = ∑ 𝑤𝑗𝑖
(1)𝐷

𝑖=1 𝑥𝑖 +𝑤𝑗0
(1)

  (5.2) 

Where 𝑗 = 1,2,… ,𝑀 corresponds to the number of “in-parallel” perceptrons and the superscript (1) to 

the first layer’s parameters. Accordingly, the 𝑤𝑗0
(1)

 are the biases that are added to each linear 

combination of inputs, on each layer.  The resulting values 𝑎𝑗 are known as activations. Each of them 

is then transformed using a differentiable, nonlinear activation function ℎ( ) to give  

𝑧𝑗 = ℎ(𝑎𝑗)  (5.3) 

Consecutively, these values are passed to the next layer as inputs and are called hidden units. In the 

context of linear algebra, the 𝑧𝑗 form the basis functions of the model’s space since it is their linear 

combination that produces the final value in the output. In the second layer of the network the 𝑧𝑗 are 

again linearly combined to give output unit activations and so on and so forth till the last layer of the 

network that gives the output of the model.  

In our example we get  

𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)𝑀

𝑗=1 𝑥𝑗 +𝑤𝑘0
(2)

  (5.4) 

where𝑘 = 1,2,… , 𝐾, and K is the total number of outputs. This transformation corresponds to the 

second layer of the network, and again the 𝑤𝑘0
(2)

 are bias parameters. Finally, the output unit activations 

are transformed using an appropriate activation function to give a set of network outputs 𝑦𝑘. The choice 

of activation function is determined by the nature of the data and the assumed distribution of target 

variables. The most commonly used activation functions will be discussed in a following section.  

With the combinations of Equations (5.2), (5.3) and (5.4) we get the overall network function 

𝑦𝑘(𝑥, 𝑤) = ℎ [∑ 𝑤𝑘𝑗
(2)𝑀

𝑗=0 ℎ (∑ 𝑤𝑗𝑖
(1)𝑥𝑖

𝐷
𝑖=0 )]  (5.5) 

where the set of all weight and bias parameters have been grouped together into a vector w. Thus, the 

neural network model is simply a nonlinear function from a set of input variables {𝑥𝑖} to a set of output 

variables {𝑦𝑘}controlled by a vector w of adjustable parameters. The bias parameters in (5.5) have been 

absorbed into the set of weight parameters by defining an additional input variable 𝑥0 whose value is 

clamped at 𝑥0 = 1. 

The model of the two-layer ANN is illustrated in Figure 5.3 with the help of a network diagram, as 

found in (Bishop, 2006). 
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Figure 0.3 Network diagram for the two-layer neural network corresponding to (5.5). The input, hidden, and output 

variables are represented by nodes, and the weight parameters are represented by links between the nodes, in which 

the bias parameters are denoted by links coming from additional input and hidden variables x0 and z0. Arrows denote 

the direction of information flow through the network during forward propagation. Source: (Bishop, 2006) 

 

Finally, an important piece of information that should be pointed out are the approximation properties 

of ANNs. Studies of many scientists have found that feed-forward networks, like the neural network 

described in Figure 5.3, could be characterized as universal approximators. The impact of this property 

is better understood by an example that we find in (Bishop, 2008): “a two-layer network with linear 

outputs can uniformly approximate any continuous function on a compact input domain to arbitrary 

accuracy provided the network has a sufficiently large number of hidden units. This result holds for a 

wide range of hidden unit activation functions, but excluding polynomials.” Of course, in practice is 

not so easy to find suitable values for the parameters that would lead to zero approximation error. This 

challenge is primarily related to the training of the neural networks and its architecture, as we will 

discuss in the following section.   



Appendix I- Neural Networks 

Data-driven ship propulsion modeling with applications in the performance analysis   93 
 

Architecture and Training of Feed-forward Neural Networks 

In the present section, the most common architectures of ANNs that are encountered in the literature 

are briefly described. The goal is to generalize further the example that was used to introduce the basic 

principles and formulation of ANNs, leading to Equation (5.5) and Figure 5.3, in order to explore their 

capabilities. 

For instance, the presented two-layer network with M-hidden units allows us to imagine how a more 

complex ANN would be like. Instead of having two layers one can choose to have an arbitrary number 

of N layers that are fully connected to the previous layers and every layer has an arbitrary number of M 

hidden units. Fully connected means that every hidden unit’s output turns to an input to every hidden 

unit of the next layer. With 𝑀𝑖, (𝑖 = 1,2, … ,𝑁) are denoted the number of hidden units in every layer 

of the network and so when describing the layout of the network we may write 

[𝐷 −𝑀2 −⋯−𝑀𝑁 − 𝐾] 

where 𝐷 = 𝑀1 is the dimension of the input vector and 𝐾 is the dimension of the output vector. A 

network with 10 inputs, two fully connected hidden layers with 50 hidden units each and 2 outputs is 

denoted [10-50-50-2].  

In the cases where a neural network functions the way we described so far, by forward propagating 

linear combinations of the input values to pass through an activation function and these activations 

become the inputs for the next hidden layer, it shall be called Feed-forward Neural Network (FNN). 

Frequently FNNs with more than one hidden layer are called Deep FFNs but in this study we shall make 

no distinctions between different types of FNNs. 

However, there are variate types of ANNs, that differ fundamentally in some parts from the simple 

FNNs. Two popular types of ANNs that deal well with time-series data (acoustics, natural language, 

video etc.) are the Recurrent Neural Networks (RNN) and the Long-Short Term Memory Networks 

(LSTM). The first, introduces a new type of hidden units, called recurrent cells, that compute the output 

based on, not only on their input but on their previous outputs as well. Hence, in the hidden layers, the 

current output of a unit becomes its input in the next computational step and in this way a kind of 

“memory” is added on the network. In the latest, the feature of memory is explicitly added to the hidden 

units by storing a certain number of previous information and regulating which of them will pass to the 

next layer and which will be deleted. The regulation is executed by some new structures in the network 

called gates.  

Besides temporally sequential data, another common category of data is the high-dimensional data. An 

image that consist of 400x400 pixels is actually a dataset with 1,6E+104 dimensions or features. For 

many computer vision applications, dealing with this type of data is a necessity and one of the 

most effective and popular tools so far have been the Convolutional Neural Networks (CNN). 

This type of neural network has built-in invariance properties and so they manage to create 

models that are invariant to certain transformations of the inputs. In image recognition 

application we require from the model to classify many different transformations of an object 

on the same class, since the object remains the same but it could have undergone a translation 

and a rotation transformation, plus some scaling, probably. 

The most distinguishing characteristic of CNNs is that they feature convolution units (or cells) 

in their first layers where they actually perform the equivalent of the mathematical operation 

of convolution onto a batch of input data and that is why they are called pooling layers. They 
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commonly employ many hidden layers and they achieve to perform automatic feature 

extraction by propagating forward specific patterns of the data. Their last layers before the 

output are identical to an FNN. 

The literature contains many more types of ANNs and probably new types will keep emerging, 

but for the scope of this study and in accordance with the present trends, the basic ones have 

been described above. Additionally, the training procedure of an ANN model on the available 

data is of immense importance. Even if a proper type of model is selected, the training 

algorithm and the optimization of hyperparameters’ values are the elements that could lead us 

to peak performance. 

The process of training an ANN refers to the estimation of the adaptive parameters’ values 

that lead to the minimum model error. Summarizing what we have already discuss, a neural 

network could be perceived as parametric nonlinear function that given a set of input vectors 

{𝑥𝑛}, where 𝑛 = 1,2,… ,𝑁, together with a corresponding set of target vectors {𝑡𝑛}, learns to 

approximate with its outputs {𝑦𝑛} the target vectors. Obviously, we wish this approximation to 

be as accurate as possible and this can be expressed in mathematical form with an error 

function. Without loss of generality, we define an objective function that consists of the sum-

of-square error function, and minimize it with respect to the adaptive parameters vector 𝑤, 

𝐸(𝑤) =
1

2
∑ ‖𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛‖

2𝑁
𝑛=1 .  (5.6) 

In the case of a regression problem with a single target variable t ∈ 𝑅, we provide a probabilistic 

interpretation to the network outputs, y. We may also assume that t has a Gaussian distribution with an 

x-dependent mean, which is given by the output of the neural network, so that  

𝑝(𝑡|𝑥, 𝑤) = 𝑁(𝑡|𝑦(𝑥, 𝑤), 𝛽−1)   (5.7) 

where β is the precision (inverse variance) of the Gaussian noise. For the conditional distribution in 

Equation (5.7) we assume that the network’s output activation function is the identity, because such a 

network can approximate any continuous function from x to y. Suppose a data set of N independent and 

identically distributed observations 𝑋 = {𝑥1, … , 𝑥𝑁} and the corresponding target values  {𝑡 =

𝑡1, … , 𝑡𝑁}, we construct the likelihood function of  

𝑝(𝑡|𝑋, 𝑤, 𝛽) 

as the product of the dependent probabilities of obtaining each target value from the corresponding 

inputs on the model 

∏𝑝(𝑡𝑛|𝑥𝑛, 𝑤, 𝛽)

𝑁

𝑛=1

 

and by taking the negative logarithm of the likelihood function we obtain 

𝛽

2
∑ {𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛

2}2𝑁
𝑛=1 −

𝑁

2
𝑙𝑛𝛽 +

𝑁

2
𝑙𝑛(2𝜋) (5.8) 

which is the familiar error function of the sum-of-squares. In order to obtain (5.8) we substituted the 

value of the conditional probability of t with the analytical expression of the normal distribution. It 

occurs that maximizing the likelihood function is equivalent to minimizing the error function in 

Equation (5.6).  
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The value of w found by minimizing (5.6) will be denoted wML because it corresponds to the maximum 

likelihood solution. In practice, the nonlinearity of the network function 𝑦(𝑥𝑛, 𝑤) causes the error E(w) 

to be nonconvex, and so local maxima of the likelihood (or local minima of the error function) may be 

found. 

Assuming that wML is found, the value of β can be calculated from (5.8) as 

1

𝛽𝑀𝐿
=
1

𝑁
∑ {𝑦(𝑥𝑛, 𝑤𝑀𝐿) − 𝑡𝑛}

2𝑁
𝑛=1   (5.9) 

If we have multiple target variables, and we assume that they are independent conditional on x and w 

with shared noise precision β, then the conditional distribution of the target values is similar to (5.7), 

with the only difference being that β is multiplied by a K-by-K unity matrix, where K is the number of 

target variables. Following the same process and the same assumptions we get that the noise precision 

is now given by 

1

𝛽𝑀𝐿
=

1

𝑁𝐾
∑ ‖𝑦(𝑥𝑛 , 𝑤𝑀𝐿) − 𝑡𝑛‖

2𝑁
𝑛=1  . (5.10) 

Furthermore, we shall introduce one more essential equation that occurs from the natural pairing of the 

error function and output unit activation function (see Bishop,2008 p. 234). Because in the case of 

regression the output activation function is the identity (𝑎𝑘 = 𝑦𝑘) and the error function is the sum-of-

squares function we have  

𝑑𝐸

𝑑𝑦𝑘
=

𝑑𝐸

𝑑𝑎𝑘
= 𝑦𝑘 − 𝑡𝑘  (5.11) 

where k is the corresponding output unit. Equation (5.11) will be used again when discussing the error 

backpropagation in a following paragraph.  

Let us now reconsider the issue of determining a weight vector w that minimizes the defined error 

function. One can imagine the error function as a surface on the weight space, where the components 

of the vector w correspond to the main axes of the space. Finding the coordinates of local or global 

minima in the surface is the solution to our problem. Consider an initial position for the vector w and 

then a small step in the weight space, from w to w+δw. The change in the error function could be 

approximated as: 𝛿𝐸 ≅ 𝛿𝑤𝑇𝛻𝐸(𝑤), where the vector 𝛻𝐸(𝑤) is the gradient of the error function at this 

point. Because the function E(w) is a smooth continuous function of w, when we get to the point where 

the gradient vanishes or in other words  

𝛻𝐸(𝑤) = 0 

we have encountered a stationary point which may be a minima, maxima or saddle point. This 

geometrical perception of the problem is illustrated in Figure 5.4. 

It is clear that by moving in the direction of −𝛻𝐸(𝑤) the error tends to shrink and an optimal solution 

can be achieved, sooner or later. However, the fact that the error function has a highly nonlinear 

dependence on the weights and bias parameters implies severe complexity in the form of the error 

surface and the existence of many points in the weight space where the gradient vanishes. It can be 

proven from the symmetrical properties of the neural network that for any point w that is a local 

minimum there will be numerous other points in the weight space that are equivalent minima. In a two-

layer FNN for every such point exist 𝑀! 2𝑀 equivalent points. Of course, there will also be multiple 

alternative stationary points. Since analytical solutions for so complex functions are impossible to be 

found we shall exploit methods that originate from the widely studied problem of continuous nonlinear 

functions optimization.  
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Figure 0.4 Geometrical view of the error function E(w) as a surface sitting over the weight space. Point wA is a local 

minimum and wB is the global minimum. At any point wC, the local gradient of the error surface is given by the vector 

𝛻𝐸. (Source: Bishop,2008) 

 

The most common ways of addressing such problems involve the following steps:  

o Initialization of the weight vector w to 𝑤(0)  
o Recursive steps in the weight space according to the Equation (5.12):    

 𝑤(𝜏+1) = 𝑤(𝜏) + ∆𝑤(𝜏)  (5.12) 

o Use of gradient information for updating the weights, meaning that the term ∆𝑤(𝜏) becomes a 

function of  𝛻𝐸(𝑤) at the region of 𝑤(𝜏) or 𝑤(𝜏+1). 

The idea of utilizing gradient information seems very effective and is quite popular but that does not 

mean that is always simple to accumulate this information. It is often computationally demanding to 

get a precise value for the gradient of the error function in the region around w and so, local 

approximations are used. In many cases, a Taylor expansion of 𝐸(𝑤), till the first or second order terms, 

can provide a satisfactory local approximation of 𝛻𝐸(𝑤). The degree of the polynomial approximation 

of the local gradient is classifying the optimization methods to first-order and second-order or Newton 

methods.  

Based on the analysis so far, a few more essential elements that are utilized in the majority of the ANN 

training algorithms shall be introduced. For instance, many training algorithms that make use of the 

gradient information further modify Equation (5.12) by inserting a scaling factor 𝜂 and so we have  

𝑤(𝜏+1) = 𝑤(𝜏) + 𝜂𝛻𝐸(𝑤(𝜏)).   (5.13) 

The parameter 𝜂 > 0 is known as learning rate and is responsible for controlling the step size in the 

weight space. In some algorithms it has constant value while in others is an adjustable parameter in 

order to escape from regions with vanishing gradient, like saddle points.  

Furthermore, the gradient of the error function is actually a function of the derivative of the error with 

respect to every weight’s value, 
𝑑𝐸

𝑑𝑤𝑗𝑖
 . By considering the definition of the derivative of a function we 

get the physical meaning of 
𝑑𝐸

𝑑𝑤𝑗𝑖
 ,which is how much a small change in the value of 𝑤𝑗𝑖 will affect the 
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value of the error. But the error is a function of the output of the network itself, and the output of the 

network is a function of the inputs and the weights,𝑦𝑛𝑗 = 𝑦𝑗(𝑥𝑛, 𝑤), so for a sum-of-square error 

function we write  

𝑑𝐸𝑛

𝑑𝑤𝑗𝑖
= (𝑦𝑛𝑗 − 𝑡𝑛𝑗)𝑥𝑗𝑖.   (5.14) 

The Equation (5.14) links the derivative of the error function to the input and output values that 

correspond to the weight 𝑤𝑗𝑖. But the output end of the weight 𝑦𝑛𝑗 is the activation 𝑎𝑗 and the input end 

of the weight is the value of the activation function for the previous layer 𝑧𝑖 = ℎ(𝑎𝑖). Yet the output 

end is the product of the input end times the weight, so 𝑎𝑗 = 𝑤𝑗𝑖𝑧𝑖 and if we differentiate with respect 

to the weight, we get 

𝑑𝑎𝑗

𝑑𝑤𝑗𝑖
= 𝑧𝑖.  (5.15) 

Also, the chain rule can be applied to the error function derivative  

𝑑𝐸𝑛

𝑑𝑤𝑗𝑖
=
𝑑𝐸𝑛

𝑑𝑎𝑗

𝑑𝑎𝑗

𝑑𝑤𝑗𝑖
   (5.16) 

and if Equation (5.15) is substituted in (5.16)  

𝑑𝐸𝑛

𝑑𝑤𝑗𝑖
= 𝛿𝑗𝑧𝑖   (5.17) 

where 𝛿𝑗 =
𝑑𝐸𝑛

𝑑𝑎𝑗
, which is just a new simple notation for the derivative of the error function with respect 

to the output activation value. Now for the output unit k, bring in mind that the network’s output the 

activation function is the identity and the error function is the sum-of-squares, hence  

𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘.   (5.18) 

For the arbitrary hidden layer, the 𝛿𝑗 can be estimated based on Equation (5.18) and the chain rule again, 

as  

𝛿𝑗 =
𝑑𝐸𝑛

𝑑𝑎𝑗
= ∑

𝑑𝐸𝑛

𝑑𝑎𝑘

𝑑𝑎𝑘

𝑑𝑎𝑗

𝐾
𝑘=1   (5.19) 

but if we make use of the definition of 𝛿 in order to write 
𝑑𝐸𝑛

𝑑𝑎𝑘
= 𝛿𝑘 and  

𝑎𝑘 = ∑ 𝑤𝑗𝑖𝑧𝑗
𝐾
𝑘=1

𝑧𝑗=ℎ(𝑎𝑗)
⇒      ∑ 𝑤𝑗𝑖ℎ(𝑎𝑗)

𝐾
𝑘=1   

we get to write Equation (5.19) as  

𝛿𝑗 = ℎ(̇𝑎𝑗)∑ 𝑤𝑘𝑗𝛿𝑘
𝐾
𝑘=1 .  (5.20). 

The Equation (5.20) describes how errors are being backpropaged in the network in order to obtain the 

gradient information. Note here that the error function can be either the result of the forward propagation 

of one input vector or the cumulative error of a batch of input vectors. The first case is called sequential 

optimization while the latter, where the weights are updated based on the gradient information from the 

cumulative error of a batch of input vectors, is called batch-method optimization. We shall see later 

how the selection of the batch size affects the model’s performance and computation time.  
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In the existing literature there are plenty of algorithms that, based on the principal ideas of the error 

backpropagation and the gradient descent, tackle the problem of training ANNs or equivalently 

minimizing error functions. The most popular, first-order training algorithms or optimizers for the time 

being (Ruder, 2017), are briefly reviewed below:  

• Stochastic gradient descent (SGD) (and batch or mini-batch methods). This optimizer is one 

of the first and most successful methods for training ANNs that works with the presented 

gradient decent and error backpropagation but has serious disadvantages. The learning rate 

should be properly selected and is the same for all the weights. This fact creates certain issues 

related to inefficient update of the weights’ values and getting trapped on local minima (too 

small learning rate) or not achieving convergence (too large learning rate). All the following 

optimizers are either augmented and/or modified versions of the SGD.  

• Nesterov accelerated gradient (NAG) is one of the optimizers that introduce a momentum 

term (see next paragraph for the analytical expression of the momentum) and adds it to the 

gradient information. In methods that use the momentum term an additional coefficient appears 

that acts similarly to a dumping coefficient and usually takes a value by convention, according 

to the experience of the community of scientists. Furthermore, NAG estimates the gradient with 

respect to an approximation of the updated weights, and not in the current weight space position. 

• Adaptive Gradient (AdaGrad) is an algorithm that adapts the learning rate to its individual 

adaptive parameter and performs larger updates for infrequent and smaller updates for frequent 

parameters. This attribute makes AdaGrad very efficient in training ANNs over high-

dimensional and sparse data. It achieves to adjust the learning rate of each adaptive parameter 

by introducing a decaying factor that divides the initial learning rate by a quantity that grows 

proportionally to the sum of squares of the past gradients.  

• Adadelta is an extension of AdaGrad that aims to resolve the issue of vanishing learning rate, 

that appears after a number of training steps with AdaGrad. It defines a window w over which 

the past values of gradient for each parameter are preserved and only their average at the current 

step is utilized for the update of the learning rate. The exact update rule and other details can 

be found at the original paper (Zeiler,2012). 

• Adam (Adaptive momentum estimation) (Kingma & Lei Ba, 2015) is the most recent, popular 

optimizing algorithm for training ANNs. It expands the idea of adjustable learning rate to the 

momentum term, as its name reveals. Adam will be presented analytically because is the 

optimizer used for the training of all the networks in this study. The following paragraph 

develops the equations that Adam utilizes for the training process.  
 

Previously the momentum term was mentioned but the analytical expression of an update rule 

that includes this term is given in Equation (5.21), 

 

𝑢𝑡 = 𝛾𝑢𝑡−1 + 𝜂∇𝜃𝐸(𝜃)  (5.21) 

 

where u is the update vector that is added to the current weight-vector θ, in order to update the 

weights’ values, γ is the momentum coefficient and the right-hand term is the well-known 

gradient term. However, since Adam belongs in the family of algorithms that assign a weight-

specific learning rate, the gradient term is re-defined as  

 

𝑔𝑡,𝑖 = ∇𝜃𝑖𝐸(𝜃𝑡,𝑖) (5.22) 
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where the learning rate η is omitted from the Equation (5.22) because it remains in Equation 

(5.21). The adjustment of the learning rate takes place in an additional equation, where η is now 

just the initial value of the learning rate. The subscripts t and i refer to the current time step of 

the training processes and the i-th adaptive parameter (weight) of the network, respectively.  

 

According to Adam algorithm a set of momentum equations is introduced  

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)g𝑡  

             

 (5.23) 

𝑢𝑡 = 𝛽2𝑢𝑡−1 + (1 − 𝛽2)𝑔𝑡
2   

 

where  𝑚𝑡  and 𝑢𝑡 are actually estimates of the first moment (the mean) and the second moment 

(the uncentered variance) of the gradient, respectively. The moments are initialized to zero, but 

this affects the evolution of the training since both terms are now biased towards zero. For this 

reason, the authors of Adam apply bias correction to the moments with another set of equations  

 

𝑚�̂� =
𝑚𝑡

1−𝛽1
𝑡  

           

 (5.24) 

𝑢�̂� =
𝑢𝑡

1−𝛽2
𝑡  

 

and after this step comes the weights’ update rule, which has similar form to Adadelta’s,  

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑢�̂�+𝜖
𝑚�̂�.  (5.25) 

 

The values of the parameters 𝛽1, 𝛽2 and the infinitesimal 𝜖 for the implementation of the 

algorithm are set according to the authors’ proposal. 

 

Overall, Adam seems to outperform all the previous optimization algorithms. It is robust and 

well-suited for a wide range of non-convex optimization problems in the field of machine 

learning. Hence, it was preferred for the training of the ANN models of this study. Supporting 

evidence for the above claims can be found in the original paper. 

 


