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Condition with a Machine Learning Technique

Abstract

Journal and thrust bearings utilize hydrodynamic lubrication to reduce the friction and wear
between the shaft and the bearing. The thin lubricant film that is created prevents the contact of
the two surfaces and is greatly affected by the load applied from the shaft to the bearing. As a
result, knowing the lubrication film thickness or the load is vital for securing the bearings’ proper
function and maintenance.

The experimental setup used for this project is the Rotor Kit 4 (RK4) of Bently Nevada USA and
the measurements were performed in the Laboratory of Marine Engineering (L.M.E.) of the School
of Naval Architecture and Marine Engineering of NTUA. The setup includes an electric motor, a
speed control box, a journal bearing, a shaft and two rotor mass wheels. The data acquisition was
controlled and managed in LabVIEW software.

The goal of this project is to investigate ways to determine the loading of a journal bearing without
interfering with the bearings design. Then, develop a methodology that will eventually be
integrated into an existing software tool and used to avoid dangerous bearing loading conditions.
The efforts are focused on introducing a new methodology that will simplify the procedure
mentioned but will have a scientific background strong enough to generalize in all types of journal
bearings. The processing of the vibration and acoustic pressure signals leads to the selection and
development of an Octave Band analysis technique. The results are then transferred to the feature
space of the machine learning modules of Python and fed to several machine learning algorithms
for training and testing. Different sets of training and testing data are chosen in each of the case
studies in order to define the features’ utility.

The method used is validated by applying it to a signal from an identical journal bearing. The
results turn out to be very accurate, strengthening the methods credibility. The optimization of the
algorithms is performed using cross validation tools available in Python.

Finally, the algorithms developed are trained with data acquired from one journal bearing and
tested with data from an identical one in order to examine the generalization potential of the
technique.

Keywords:

Journal Bearings, Lubrication theory, Loading condition, RK4 Bently Nevada, LabVIEW,
Vibration signal, Acoustic pressure signal, Octave Band signal analysis, Python, Machine learning
algorithms.
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Xovoyn

270, OKTIVIKG KOl OTO WOTIKA £dpave 0AioOnong ypnoyLoroteitot 1 vdpodvvapikn Amaven yuo va
pelwbet n Tp1n ko n eBopd peta&H Tov dEova Kat Tov £0pdvov. To Aemtd GrAp AMmavTikoD oL
ONpovpYyEiTOL AMOTPENEL TV ETOPN TV VO EMPAVEIDV KOl TO TTAXOG TOL e&apTdTorl 0md To PopTio
mov aokel 0 aovog oto £€dpavo. QG €K TOVLTOVL, EIVOL GNUOVTIKN N YVOOT €T TOV TAYOVS TOL
AemToh VTOL QAU €lTE TOV POPTIOVL OOTE VA EEAGPAMGTEL | CWOTH AELTOVPYiO Kol GLVTHPNON
TOV €0PAVOVL.

H nepapotikn didtaén mov ypnoiponodnke givon to Rotor Kit 4 (RK4) tng Bently Nevada USA
Kol ot PeTpNoels mpaypatomomdnkoayv oto Epyaostipio Navtikng Mnyoavoroyiog e XyoAng
Novrnydv Mnyovorldymv Mnyavik®dv tov Efvikod Metodfrov TToAvteyveiov. Ztnv mepopotikny
outaén ovumeptlapfavovior petald GAA®V €vag NMAEKTPOKIVITIPOS, MUio Lovada EAEYXOV TNg
TOYOTNTOG TEPIGTPOPNG TOV KWNTNPA, £vol OKTVIKO £0povo oAicOnong, évag a&ovag Kot dvo
KLAVOpkéG nales yuo tov aova. H detypotolnyia ywve pe xpnon tov makétov LabVIEW.

YKkomdg g epyaciog avtng elvar 1 edpeon evog TpOTOL KaBOoPIGHOD TOL POPTIOVL TOL PEPEL Eval
OKTIVIKO €0pavo oMcOncewms ympig v enéupaoct oty oyedioom tov oyxediov tov edpdvov. Ev
ocvveyela, M avartoEn pog pebodoroyiag mov vo pmopel ev TEAN va evoopotwbdel oe €va
VTOAOYIOTIKO £pYaAElo TO omoio Ba xpNoHOTOLEiTAL VIO TNV ATOPLYY| ETKIVOLVOV KOTAGTAGE®V
QOpTIoNG TOV £dpavmv. Ot Tpocmdfetes eastidlovtot oty dnpovpyia pog véog pebodoroyiog mov
va amhomolel TNV S1ad1KaGior VITOAOYIGHOV TOV PopTiov aAAE Ba £xel 1oyVP1 emoTNUOVIKY Bdom
wote va pnopet va ypnowonombel oe dupdpov tHnwv axktvikd £dpava. H enelepyasio tov
ONUATOV TOAOVTOCEWDY KOl 0KOVOTIKNG TECTG 00N YNOE GTNV EMAOYT Kol AVATTUEN LLOG TEYVIKNG
Bacwopévng omyv Oxtafin oaviivon. To oamoteléopoto PETAPEPOVIOL OTO TESIO TV
yapaxtplotikov (feature space) towv Pifiobnkov pnyavikng udbnong g Python kot
TPOPOOOTOVVIUL GE O18POopovS ahyopiBuovg unyovikng pddnong, ot omoiol eKmadEHOVTOL KOt
a&loloyovvrat.

IMa emaAnBevon, n péBodog ypnoyonoleiton e Eva onpa wov Tapaydnke arnd Eva movopoldTuTo
éopavo. Ta amoteAéopata elvar apketd akpiPrn, evioyvovtag v aglomotio ¢ pedddov. H
Beltiotonoinon Tov akyopibuwv yiveton e yprion epyoreiov g Python.

TéMog, ot arlydpiBotl mov emAEYONKOV EKTAOEDOVTOL LLE TO GO TTOL TPOEPYETAL OO £VOL EOPOVO
Kol 0EOAO0YOUVTOL UE TO OO TOV TPOEPYETOL OO EVO TAVOUOLOTLUTO £TGL MGTE Vo EAeYyOel M
duvaTdTNTO YEVIKELONG TNG TEYVIKNG OVTNG.

A€&Ee1c Kheldd:

Axtivikd £6pava, Ocmpio vopodvvapukng Ainavong, Katdotaon eoptiong, RK4 Bently Nevada,
LabVIEW, Toloviooelg, Akovotikn Tigon, Oxtapikn avdaivon, Python, AlydpiOpot pnyovikng

pabnong.
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1 Introduction

For many years, the selection journal bearings and the proper shaft alignment has been a matter of
investment cost. Nowadays, the increase of ships’ length has led to an increase of shafts’ length
thus making the alignment more difficult and the need for a means to predict dangerous situations
more profound.

The running condition of a journal bearing is a subject of tribological analysis and is adequately
described by the hydrodynamic lubrication theory [1]. A considerable number of papers are
published every year over this topic, showing the importance of optimizing mechanical elements
with tribological interest. The science of tribology studies the friction, wear and lubrication of
mechanical elements. Friction and the consequential wear can be significantly reduced when a thin
layer (film) of lubricant is generated between the sliding surfaces. As a result, the main goal of this
science is to optimize the tribological behavior of such elements through models that can predict
this behavior and suggest more suitable materials for each case studied.

While there is a plethora of software packages that enable the modeling and mapping of a journal
bearing’s behavior like ANSYS, there is little research on methodologies that enable the condition
monitoring of the bearings and the existent focus on specific faulty operation statuses like oil
contamination (see [2], [3], [4]). Condition monitoring informs the user in real time about the
element’s status and operation and enables a faster and more appropriate course of action in case
of maintenance or a malfunction [5]. For the better part, as far as journal bearings are concerned,
very specific attributes of the bearing’s running condition can be monitored with non-invasive
techniques (e.g. lubrication oil temperature [6]).

One of the attributes that needs constant monitoring is the force bore by the bearing. The magnitude
of this force is very important due to its strong correlation with the thickness of the lubricant’s film
and its correlation with the load carrying capacity of the bearing. By design, there is a range of
values in which the bearing performs satisfactorily and the film maintains its properties, classifying
the status of operation as safe [1]. On the other hand, when the load is insufficient the bearing is
considered lightly loaded and when the load exceeds a certain level the bearing is considered
heavily loaded. Both cases are classified as unsafe. Due to the nature of this attribute, it is quite
difficult to directly determine its value without interfering with the bearing’s design thus increasing
the design’s complexity and price. As a result, indirect ways of measurement have drawn attention.

A recent trend in monitoring are the machine learning algorithms. These algorithms have
developed significantly over the past few years and have been integrated in many programming
languages. With a variety of functionalities, machine learning algorithms can adjust to differently
natured problems and, if programmed correctly, perform accurately. The combination of several
algorithms is also possible, allowing more customization to the user. Python is one of the
programming languages that has a machine learning module with most of the commonly used
algorithms and gets regularly updated to meet new and more complex needs [7]. Due to the low
computational cost and high computational speed, Python appears to be a simple and trustworthy
choice.

13
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1.1 Method Outline

This experimental diploma thesis has taken place in the Laboratory of Marine Engineering
(L.M.E.) of NTUA and, therefore, its main interest is to give solutions regarding the proper
maintenance of marine journal bearings. The experiments were conducted on the Bently Nevada
Rotor Kit 4 of L.M.E. Once the experimental setup is properly assembled and the monitoring
system is installed a series of experiments take place. The measurements are transferred through a
data acquisition card (DAQ) to the computer (LabView software) and get properly stored.

The data processing used is the One-third Octave analysis and is applied on sections of the data,
whose volume depends on the case studied. This processing is performed by a source code written
in Python along with every needed adjustment. The frequency band domains produced from this
analysis are then used to create the feature space of the machine learning algorithms. The
importance of each feature varies depending on the problem at hand. The algorithms’ results
depend greatly on the information given to the algorithm through the features and the user should
pay attention to the selection process.

The cases studied are intended to identify which of these signals and features serve to develop a
technique that will be able to determine the charge status of a bearing by measuring the vibrations
and acoustic pressure at the bearing base. In short, the main cases that are studied are the following:

e Selection between Vibration and Sound Signals,

¢ Investigating whether training data from one bearing can help predict the loading condition
of a similar bearing and what features enable this function,

e Combining training data from multiple bearings (manufactured from the same design plan)
can produce an algorithm that can make accurate predictions for all bearings that are
manufactured using this bearing design plan.

1.2 Thesis Outline

This thesis report is divided into 6 chapters. Chapter 1 includes the introduction, goal of the project
and method outline. Chapter 2 describes the theoretical background of journal bearings and
condition monitoring, including the hydrodynamic lubrication theory. In chapter 3, the theoretical
background of machine learning is presented along with Python and its machine learning module.
Chapter 4 describes the experimental setup and the experimental procedure, from the preparation
of the experiments to the data acquisition. In chapter 5, the postprocessing of the raw data carried
out and the Octave Band analysis are presented, as well as the case studies. Finally, chapter 6
outlines the conclusions of this thesis and notes suggestions for future work.

14
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2 Journal Bearings
2.1 Hydrodynamic Lubrication Theory

The main goal of lubrication is to reduce friction and wear of machine elements with relative
motion. When inserted between the two surfaces the lubricant can reach this goal and also act as a
coolant. In a journal bearing the essential motion is sliding and the theory that describes this
lubrication phenomenon is that of the hydrodynamic lubrication. Apart from the reduction of
friction and wear, the lubricant allows the transfer of forces without the direct contact of the sliding
surfaces creating a vast field of application for journal bearings. In order to achieve hydrodynamic
lubrication, no pressurized fluid is required, though that may occur; but the requirement for
continuous lubricant inflow is definite. The pressure created is due to the supply of energy from
moving surface of the shaft to the lubricant. After a certain critical value is reached, the pressure
generated can separate the surfaces and support the shaft loading. This phenomenon was firstly
investigated by Beauchamp Tower (1880s) and based on his results Osborne Reynolds proposed
some equations which are presently used to interpret hydrodynamic lubrication. [1]

Hydrodynamic lubrication conditions:
1. There should be relative movement between the two surfaces with a value high enough to
create a lubrication film that carries bare loads,
2. An inclination between the sliding surfaces is mandatory for the creation of the
hydrodynamic wedge. If the two surfaces are parallel then the creation of the pressure
profile is not possible.

In Figure 2.1 the mechanism of the creation of the hydrodynamic pressure between two surfaces
with an inclination is shown. One surface moves at a constant velocity U while the other surface
is stationary. There is always a sufficient amount of lubricant between the two surfaces, making
sure that both conditions mentioned above are met. By moving the upper surface, the lubricant is
forced to enter the converging geometry (wedge), resulting in a pressure build up. Pressure has a
positive derivative at the inlet of the wedge, controlling the lubricant’s inflow, and a negative
derivative at the outlet, thereby allowing the outflow of the lubricant. The velocity profile strictly
depends on the pressure distribution and more specifically on the special derivative of the pressure.
Therefore, the distribution profile at the inlet rotates the concave downward while it rotates the
concave upward at the outlet, as shown in Figure 2.1. [1]

The geometry of the plane slider shown in Figure 2.1 is similar to the hydrodynamic wedge created
inside a journal bearing. The hydrodynamic wedge created between the journal (shaft) and the
bushing (bearing) is shown in Figure 2.2. An appropriate mathematical model can be used in order
to calculate the value of the hydrodynamic pressure and accurately predict the operating
characteristics of a bearing.
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Figure 2.1 Hydrodynamic pressure creation in the case of a plane slider bearing. The upper
surface moves horizontally at speed U, while the lower surface is stationary [1]

The nomenclature of the partial journal bearing in Figure 2.2:

Bearing diameter, D

Bearing’s radius, R

Shaft diameter, d

Shaft radius, r

Radial clearance, c (the difference in the radii of the bearing and the shaft)
Rotational speed, N

Lubricant dynamic viscosity, u

Minimum film thickness, ho

Eccentricity of the shaft, e

Angular length of a partial bearing, S

Figure 2.2 shows a section of a journal bearing and a shaft that rotates clockwise. Suppose there
is a sufficient amount of lubricant inside the bearing. The rotation of the shaft drives the lubricant
into the clearance around the shaft in the direction of the rotation. As the lubricant enters this
geometry, it pushes the shaft to the opposite side of the bearing. This creates a lubricant layer with
a minimum film thickness ho at a certain position which is not at the bottom of the bearing, but a
position displaced along the axis of rotation. This position is a result of the balance of forces on
the vertical and horizontal axis.

In Figure 2.2, the center of the shaft is point O while the center of the bearing is point O’. The
minimum gap ho is located at line created by the two centers, OO’. The eccentricity e of the axis
relative to the center of the bearing is also shown in Figure 2.2 and the radial grace c, which is
defined as ¢ = R-r, where R is the radius of the bearing and r the radius of the shaft. ho should be
greater than 0 and less than c. When there is no rotation, the center of the shaft O is under the
center of the bearing O’ and has no horizontal displacement. On the other hand, when the shaft
rotates at a very high speed, due to the high hydrodynamic speed, the two centers coincide.
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Figure 2.2 Cross-section of a partial journal bearing in operation

2.2 Bearing Loading Condition

The journal bearing creates a hydrodynamic film in order to carry the load of the shaft. When there
is a variation in the loading, the bearing assembly reacts and changes its eccentricity and film
thickness until the load is carried. The actual minimum permitted value of ho is affected by the
surface roughness, the specifications of the lubricant and the bearing dimensions.

In hydrodynamic lubrication theory, there are three distinct operation conditions (Figure 2.3):

1. Full film hydrodynamic lubrication,
2. Mixed film lubrication,
3. Boundary lubrication.

The first condition describes the safe mode where there is enough oil and the contact of the two
surfaces is prevented. No wear is observed and the oil film thickness is much greater than the
surface roughness.

The cases where the lubrication film is too thin to separate the surfaces are called mixed film
lubrication or boundary lubrication. In these cases, the lubricant can only receive a part of the
shaft’s load and thus there is contact between the surfaces. The mixed film lubrication refers to the
transition from boundary lubrication to full film lubrication. There is asperity to asperity contact
of peaks and wear is inevitable if there is prolonged operation in this condition.

Boundary lubrication refers to the condition where the two surfaces are not separated by the
lubrication film and there is asperity contact. The oil film thickness is normally less than the
surfaces’ roughness and wear damage is significant.
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Figure 2.3 Three Lubrication Conditions [8].

McKee brothers have obtained the plot presented in Figure 2.4 after carrying out a test of friction
and show how the coefficient of friction f changes depending on the bearings characteristic «N/P.
As described by Petroff’s equation, f = 2z(uN/P) (r/c), with P being the load.

\

Thin Alm

(unstable)

Thick film
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B

Beanng characteristic, p NP

Figure 2.4 Variation of the coefficient of friction [1]

In Figure 2.4 there are two regions, one on the left of AB (unstable) and one the right of AB
(stable). When operating on the stable side, if for example a rise in temperature of the lubricant
occurs then its viscosity decreases hence uN/P decreases. As a result, the coefficient of friction
decreases too, thus not too much heat through shearing the lubricant is generated and the
temperature of the lubricant eventually drops. When operating on the unstable side, the same rise
in temperature would have the opposite effect on the coefficient of friction, rising the temperature
even more. A lubricant is usually consisted of hydrocarbons and reacts to the rise of temperature
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by vaporizing lighter components. While this process takes time, the viscosity of the lubricant
constantly increases which leads to a rise of the heat generation rate that elevates lubricant
temperature even more, entering a vicious circle leading to failure.

2.2.1 Insufficiently loaded bearings

Insufficiently loaded bearings are called lightly loaded. Such bearings are susceptible to
subsynchronous vibrations called “oil whirl”. The pressure of the lubricant film is higher than that
needed to support the shaft, which lifts the shaft up to a certain point and then drops it down. The
vibrations produced can cause damage to the bond of e.g. the Babbitt layer with the steel and lead
to failure.

Figure 2.3 Result of metal-to-metal contact due to “oil-whirl’ induced vibration [9]

Moreover, it is inherently difficult for a journal bearing to bear big dynamic loads and avoid
damage. It is more difficult when the properties of the oil film are unstable because of the
insufficient loading of the bearing [1]. If the oil is modeled as a spring and a damper, then the
insufficient loading decreases the resistance against deformations of the spring (K) and the
damping properties of the damper (C).

2.2.2 Overloaded bearings

If plotted, the timeseries of the loading condition of a naval journal bearing would have many
fluctuations. That is explained by the nature of a ship’s construction materials, which is mostly
steel, and the ship’s deformation principally caused by its inertia, cargo and buoyancy. The shaft
is deformed as well causing a change in the load imposed on the bearing. The force applied on the
bearing has a direct relation to the oil film thickness developed in the bushing. Oil film thickness
decreases proportionally with the increase of the load.

Suppose that both oil temperature and the rotational speed of the shaft are constant. When there is
a rise in the load, as described above, the bearing assembly will react and change the oil film
thickness and its eccentricity. If this load is too high then, as mentioned earlier, the temperature
will rise, leading to failure due to oil overheating [10]. Overloading can also lead to wiping. Some
of the symptoms are heavy scoring, circumferential movement of while metal, re-solidification of
whitemetal deposited in oil grooves. Oil contamination is also present if there is metal-to-metal
contact and material is.
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As mentioned above, there are many dynamic loads met in the sea. Excessive dynamic loads lead
to metal fatigue which causes cracks in the white area surface around the application area of the
load. These cracks develop sideways and can lead to a whitemetal detaching. Big dynamic loads
can have an upward direction and cases have been reported where the housing of the bearing has
been damaged.

Figure 2.4 Bearing overloading: Metal fatigue (left) and excessive wiping (right)
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2.3 Condition monitoring and Predictive maintenance

A very common type of surface damage is wear. It usually arises from the interaction of surfaces
and is connected with material properties, geometry, lubrication and operating status. Predicting
the rate of wear of a product is important in determining its life span and thus dealing with the
repair or replacement needed. Engineers can nowadays make accurate predictions using materials
science and modeling/simulation software regarding a component’s e.g. strength, but find it
difficult to address wear-related issues due to the dynamic nature of the phenomenon. [11]

Condition monitoring is the process followed by an operator of constantly monitoring the value of
a parameter in machinery. The goal is to observe significant and meaningful changes in that value
which could indicate a possible malfunction. By doing so it is possible in an early stage to prevent
conditions that could lead to an emergency breakdown in an early stage and, if needed, schedule
maintenance in a more convenient manner. [5]

A term that is closely related to condition monitoring is predictive maintenance. This term
describes the techniques used to determine the actual condition of operating equipment so as to
roughly calculate when maintenance should be carried out. These methods have a positive
financial impact for the owner of the machinery monitored, a positive environmental impact due
to less accidents that could lead to environmental issues and material consumption and, finally,
promote safety for the staff. Condition monitoring is one of the techniques used in predictive
maintenance. [12]

In the field of journal bearings, it is quite important to monitor a components status and wear for
both safety and financial reasons. Rotating machines are of high interest for the condition
monitoring industry and, in more detail, vibration measurements are the most common technique
[3]. The measurements acquired through accelerometers and microphones are then processed in
respect with the type of the machinery and interpreted by specialists in the field. Research in
sensors technology has provided a wide range of equipment that can be used to monitor a variety
of running condition attributes.
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3 Machine Learning Algorithms

3.1 Introduction to Machine learning algorithms

Machine learning, also known as predictive analytics or statistical learning, is a research field
combining statistics, artificial intelligence and computer science and its goal is to produce
knowledge from specific data [7]. Nowadays, it is very common to interact with machine learning
models because of the trending user-customization-friendly online platforms and websites.
Handcoded decision-making algorithms are faced with the disadvantage that they are task- or
domain-specific and that a constant need for a human expert on the field would arise due to the
importance of understanding how the decision process works. However, in machine learning, no
such need is present.

One of the most successful kinds of machine learning algorithms are the supervised learning ones.
The process requires that the user provides a set of known input and output data to the algorithm
and the algorithm uses these sets for training its decision-making ability. Having enough training
data is a prerequisite for such an algorithm to work and defining enough can sometimes be tricky
for the user. [7]

The two major types of supervised learning problems are called classification and regression. In
classification, the goal is to predict a certain class label from a predefined set of attributes. When
there are two classes the case is called binary classification and when there are more than two it is
called multiclass classification. In classification algorithms, the accuracy of the algorithm is
measured by the number of correct class predictions that the algorithm has managed.

In the case of regression, the task is to predict a floating-point number in programming terms or a
real number in mathematical terms. A simple regression task would be the prediction of a rotor’s
rotational speed. The output values have an obvious continuity in the positive integer numbers
spectrum. A regression algorithm’s accuracy is defined by the coefficient of determination or R?:

SEy
SEy

R?=1

Where

e SEY = Y¥,(f; — y)? is the squared error of the training data to the regression line,
e SEV =Y,;(y; —¥)? is the squared error of the training data to the mean y.

The other kind of machine learning algorithms is called unsupervised. In this type of algorithms
only the input data is known and no output data is defined. Although there are many cases for
which these algorithms become useful, their use is limited because of the difficulty to understand
and evaluate them. [7]

Unsupervised algorithms are divided into two major categories. Transformations and clustering.
Transformation algorithms create a new representation of the data, depending on the user’s needs,
by feature processing. For example, a five-dimensional problem can become two-dimensional for
plotting purposes.

On the other hand, clustering algorithms subdivide data into well-defined groups of same/similar
items. These algorithms are frequently used for tasks, like segmenting customers into groups
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depending on their preferences, where the number or the “properties” of the groups are not known
in advance.

3.2 Types of Supervised Machine learning algorithms

In this paragraph, the main algorithms that are used for this thesis will be presented. Each algorithm
functions and performs differently from the others due to the approach of each developer. Some
algorithms are based on existent mathematical models. Other algorithms are created in order to

correct the weaknesses of older algorithms or combine the advantages of several algorithms into
one.

3.2.1 Kk-Nearest Neighbors

k-Nearest Neighbors algorithms used for classification are simple and only require the storage of
the training dataset. They do not create in internal model to aid with the prediction. When given a
new data point, the algorithm searches for the closest point in the dataset. k represents the number
of closest points that will participate in the majority vote used to classify the new data point. The
class assigned to the point is that with the most representatives in the k-nearest neighbors.
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Figure 3.1 Decision boundaries of the nearest neighbors algorithm for different values of k

In its simplest form, the majority vote involves computing the distances between all pairs of data

points: for N samples and D dimensions this form scales as O[DN?]. Several distance metrics are
available:

Distance Functions

I'n

Euclidean \/z [.\', -V :'

i=1 Where :
n = no of dimensions

¥ = datapoint from dataset
¥ = new data point
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Figure 3.2 Distance Metrics

When the sample is relatively small the algorithm is performing well but when the samples
becomes too big then the nearest neighbors algorithms become impractical. This computation
setting is called brute-force

Different and computationally cheaper techniques involve indirect estimation of distance between
two points with the use of tree-based data structures (Tree structures are mentioned in paragraph
3.2.2). K-D Tree is a binary tree which generalizes two-dimensional Quad-trees or three-
dimensional Oct-trees to a random number of dimensions. In this way, K-D crates data-populated
regions without calculating the multi-dimensional distance. [7]

3.2.2 Decision Trees

The decision trees are models that create an order of if/else questions that ultimately lead to a
prediction of the value of the target variable. The training is performed with the data features. In
Figure 3.3 there is a series of boxes called nodes. Nodes can either be decision nodes that lead to
another set of nodes (‘Can Fly?’ node, Figure 3.3) or a prediction node that terminates the
procedure (‘Hawk’ node, Figure 3.3). The prediction nodes can also be called leaf nodes.

Has feathers?
True False
Can fly? Has fins?
True False True False
L 4 k4
Hawk Penguin Dolphin Bear

Figure 3.3 A simple decision tree to distinguish animals [7]

The first step in tree building is to find a feature that is most informative about the output variable.
There are several criteria that can be used to perform this choice [13] [14]:

I.  Entropy H(S) measures the amount of uncertainty in the dataset S in the following way

H(S) = > () log, p(e)

ceC

Where,

e S, the dataset for which the entropy is calculated for
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e C,setofclassesinS
e p(c), the ratio of the number of elements in class ¢ to the number of elements in
dataset S

The entropy is calculated for each feature and the feature with the smallest entropy is used
to split the dataset. When H(S)=0 then the dataset is thoroughly classified.

Il.  Information gain IG(A) is defined as the difference in entropy between before and after
splitting the dataset S on a feature A.

1G(S,A) = H(S) — Z p(OH(D)

teT
Where,

e H(S), the entropy of set S

e T, the subsets of S created by splitting on feature A such that § = U;ert
p(t), the ratio of the number of elements in class t to the number of elements in
dataset S

e H(t), the entropy of subset t

The information gain is calculated for all the features and the feature with the largest
information gain is used to split the dataset S.

Using this information, the data (root node) is split into two newly formed nodes (depth=1).
Although a single split might be adequate, in many cases the percentage of purity of the nodes is
not high enough. By repeating the previous process, a more accurate model is created
(depth=2,3...) with each node rising its purity (Figure 3.4). If data partitioning continues then
every leaf node eventually contains only one regression value/class and is called pure.

depth =1 depth = 2

Figure 3.4 Decision boundaries of decision trees with depth=1 (left) and depth=2 (right) [7]

According to the values of its features, a new data point lies in a specific region of the partition
produced from the training process. The prediction results from the majority target, if the leaves
are not pure, or from the single target, if the leaves are pure, of that region.
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3.2.3 Ensemble methods

In ensemble methods, the models created are a combination of different/many machine learning
models that create a more powerful and effective algorithm with a higher predictive performance.
Each individual model is called a base learner. The major representatives of this category of
algorithms are the Random Forests and the Gradient Boosted methods that have as a base learner
the classic Decision Trees.

3.2.3.1 Random Forest

Random Forests are a way to solve some inherent drawbacks of Decision Trees. A random forest
is a set of many random trees that differentiate from each other in two ways: the data points used
to build the tree and the features used for each split. The algorithm starts (b=1) by drawing a sample
from the whole training dataset and creating a tree (T) according to a set of features drawn from
the available feature space. Once the minimum node size nmin is reached, the algorithm creates the
next random tree until b = B, where B is the number of estimators (random-forest trees) defined
by the user. The end of the training results in an ensemble of trees {T}%.

After the random-forest trees are created the algorithm makes a prediction for each tree. If it is a
regression problem, the algorithm averages the results to produce a prediction for the new data
point x [14]:

. 1 B

fr=50, T®

If it is a classification problem then the algorithm creates a voting strategy where every tree
provides a probability for each class and then all the probabilities are averaged so as to find the
highest one [14]:

CP(x) = majority vote{Cy(x)}}
Where,

e (,(x), the class prediction of the bth random-forest tree.
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3.2.3.2 Gradient Tree Boosting

In Gradient Tree Boosting methods, the algorithm generates trees in a “serial” way and each new
tree attempts to correct the mistakes of the one previously created. The user defines the trees’ size
and aims to create shallow trees. This is called pre-pruning. These shallow trees are called weak
learners and their depth usually variates between two and five. As more trees (m) are added, the
performance of the algorithm improves until the max number of trees is reached (M) or
performance is not improving.

The figure below shows the exact methodology followed.

1. Initialize fg(x) = arg min., Z,\:1 Ly, ).
2. Form=1to M:

(a) Fori=1,2,..., N compute

[Eh’.u‘rz.fi&;a',])]
Fim = — YT .
af(x;) =1

(b) Fit a regression tree to the targets 7y, giving terminal regions
R]m‘ J= 1,2,.. --']m-

(e) For j =1.2,...,J,, compute

Yim = argmin Z L (wi, fr—1(zi) +7) .
' T:ERjm

(d) Update fu(x) = fro_1(z) + Zj;'] Yiml (2 € Ry ).

3. Output J‘;[.r") = fumlz).
Figure 3.5 Gradient Tree Boosting Algorithm [14].

Step 1 of Figure 3.5 shows the first prediction leaf created by the algorithm. It is the lowest value
of the sum of the loss function L (yi, y), where yi is the actual value of the dataset and y is the
predicted value, with respect to y. The loss function can be chosen from many different formulas

but the most common is the following: L = %[yi — f(x)]?

In step 2, an iteration is performed for the number of trees M. Firstly (a), the pseudo residual ri, m
is calculated as the derivative of the loss function for i = 1, 2..., N, where N is the number of
samples in the dataset. Then (b) a regression tree is fir to the pseudo residuals ri, m with terminal
regions (leaves) R;j m, where J is the number of leaves in the tree. The output value y; m for each
leaf is then calculated and it is the value for y that minimizes the summation in 2.c of Figure 3.5.
In part (d) the new prediction fn(x) for each sample is calculated. This prediction is taking into
consideration the previous prediction fm-1(X) and the summation of the output values yj m. Step 2 is
repeated until m=M.

Step 3 is the final summation of the M trees created in step 2.
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3.3 Software and features

3.3.1 Python

Python is a broadly applicable programming language that combines the features of a general-
purpose language (GPL) and of a domain-specific language (DSL). This characteristic makes it
suitable for data science applications like machine learning, statistics, image processing,
visualization, neural networks and more. In addition, Python enables the user to directly interact
with the code by using terminals like Jupyter Notebook and helps produce a compact and readable
code. It is widely used in industrial applications because of its adaptiveness to existing systems
and the ability to produce elaborate graphical user interfaces (GUIs) [15]. Python is also supported
by a vast community of users and developers that provide constant feedback concerning bugs and
needs for the majority of the official libraries, allowing for a continual improvement of each
package. Finally, Python has a great number of different libraries that support simple to
computationally-intensive tasks. In the case of machine learning, the developers of Python provide
the package called scikit-learn.

3.3.2 scikit-learn

Scikit-learn is the machine learning library of Python. It is an open source project that is free and
its source code is available to see and edit. As mentioned above, scikit-learn belongs to the part of
Python that has a big active community and is being constantly improved and expanded by its
developers. This library contains some of the most well-known and powerful algorithms along
with well-written and comprehensive documentation about each of them. It also provides cross-
validation tools to optimize the parameters of the algorithms, a procedure called Hyper-Parameter
tuning. Apart from the official documentation found online, due to the big community, there are
plenty of tutorials and code snippets for a new user to get acquainted with the library [16].
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4 Experimental setup and description of experimental procedure

4.1 Experimental setup
4.1.1 Bently Nevada

The Marine Engineering Laboratory features the Bently Nevada Rotor Kit Model RK4. The device
is designed and manufactured in the United States of America. It consists of a long, sturdy steel
base, at one end of which has a special position for mounting a radial bearing. At the other end is
a small electric motor with a maximum rotational speed of 10000 RPM. The main features of the
base and shaft are shown in Table 4.1:

Base dimensions Rotor dimensions
Length 780 mm Length 45.7 mm
Width 340 mm Diameter 24.95 mm, 10 mm
Height 165 mm Weight 0.3626 kg
Weight 14.5 kg

Table 4.1 Base and Rotor Dimensions

The diameter of the shaft is 10mm throughout its length except for a small 25.4 mm part at the end
with a diameter of 24.5 mm, designed this way so as to operate along with the bearing.

The device also has additional weights which can be used to modify axle loading. Specifically,
there are two cylindrical masses 75 mm in diameter, weighing 0.800 kg each, with a length of 25.0
mm [17] [18].

4.1.2 Electric motor & Speed control unit

The rotor is driven by an electric motor whose main characteristics are shown in Table 4.2 that
follows.

Electric motor characteristics

Max. rotational speed 10000 rpm
Weight 14.5 kg
Table 4.2 Electric Motor Characteristics

The motor speed is adjusted with the help of the RK4 Speed Control Unit, which has a display to
indicate the speed. The operator can monitor the current rotational speed of the device or, by using
appropriate buttons, set the desired operating speeds. The controller is informed about the shaft
rpm with the help of a proximity probe mounted on a properly configured gear wheel. The
controller can modify the axle speed and acceleration (or deceleration) to achieve the desired
speed.
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Figure 4.1 Bently Nevada RK-4 Speed Control unit (left) & Electric Motor (right)
4.1.3 Oil pump

The oil pump of the assembly is the Bently Nevada RK-4 Rotor Kit Oil Pump. This pump features
a small, analogue type indicator to indicate oil pressure in either psi or kPa. On the other side, it
has two sockets, on which the oil supply to and from the bearing is located.

OIL WHIRL/WHIP
PUMP

ROTOR KIT OIL PUMP

Figure 4.2 Bently Nevada RK-4 Oil Pump front side (left) and back side (right)
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4.1.4 Journal Bearings

The first bearing used was ServoFluid Control Bearing which is designed, manufactured and
assembled by Bently Nevada.

Figure 4.3 Bently Nevada RK-4 ServoFluid Control Bearing [17]

1) Proximity probes Mounting holes
2) Fluid Film Bearing Support

3) Bearing Retainer

4) Oil Reservoir

5) Bearing Support

6) Main Pressure Valve

7) Oil Bearing Seal

It should be noted that the bearing is made of Plexiglas plastic (Poly methyl methacrylate, PMMA)
and its base, including the oil reservoir, is metallic. The major geometric features of the bearing
are presented in the following table:

ServoFluid Control Bearing Bently Nevada: Nominal Dimensions

Inner diameter 25.43 mm
Length 25 mm
Clearance (c=R-r) 0.225

Table 4.3 Bently Nevada RK-4 ServoFluid Control Bearing Nominal Dimensions

The second bearing that was used was manufactured according to the design plans of Bently
Nevada, as described in Appendix A. The inner diameter of this bearing is measured with a three
points internal micrometer (accuracy of 0.005mm) and is found slightly conical so the value shown
in Table 4.4 is the inner diameter in the center of the shaft. The material used was ACETAL
(Polyoxymethylene, POM) and its oil resistance to many types of oil is high [19].The oil resistance
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properties were also tested, confirming that the dimensions and properties of the bearing would
not change throughout the experimental procedure. A TEFAL Optics scale with accuracy of 1
gram was used in order to determine the absorption of lubrication oil by the bearing. The bearing
was weighted (100 grams) (Figure 4.4, a), fully immersed in lubrication oil (Figure 4.4, b) and
the cleaned and weighed again (100 grams) (Figure 4.4, c). The second weighting confirmed the
material properties found in the bibliography. The dimensions of the bearing were also measured
and found unchanged. The experiment could induce wear to the bearing and it could be weighed
again in order to determine the extent of the wear. However, the duration of the experiments was
small so no such action was needed.

Custom ACETAL Bearing: Nominal Dimensions

Inner diameter 25.43 mm
Length 25 mm
Clearance (c=R-r) 0.225

Table 4.4 Custom Bearing Nominal Dimensions

Figure 4.4 Bearing weighting test
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4.1.5 Soundproof Cover

In order to acquire better and more accurate results, a soundproof cover was designed and put over
the bearing. This cover works beneficially in two ways:

e it prevents the sound pressure waves of external sources from scrambling the useful waves
produced by the bearing assembly and

e it absorbs the waves that are produced by the assembly, not letting them get reflected and
return as noise in the microphone.

Figure 4.5 Soundproof cover

4.1.6 Triaxial Accelerometer and Microphone

The triaxial accelerometer is a ICP® Model 356A02 with a hexagonal base (Figure 4.6). Its
frequency range (£10%) spans between 0.5 and 6000 Hz and has a measurement range of £500 g
pk [20]. The hexagonal base of the accelerometer is mounted on the surface with the instant
adhesive Loctite 454 and the accelerometer is then secured to the base.

The microphone is the ICP® 130D21 Array Microphone, a prepolarized condenser microphone
coupled with a ICP® sensor powered preamp. Its frequency response (-2 to 5 dB) is 20 to 15000
Hz [21].

The calibration data for both sensors are found in Appendix A

Figure 4.6 ICP® Microphone (left) and Triaxial Accelerometer (right)
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4.2 Conduct of the experiment
4.2.1 Preparation for the experiment

Before performing the experiments, it is necessary to properly prepare the experimental setup and
the computer that will receive the results of the measurements of each experiment. In the previous
paragraphs, parts of the Bently Nevada Rotor Kit 4 were described. The process of assembling the
experimental setup as well as acquiring signals will be described in this section.

At one end of the assembly lies an electric motor which rotates the rotor. A simple radial bearing
follows, then two cylindrical weights (the number depends on the desirable loading condition of
the bearing) are adjusted, and at the other end of the shaft there is the radial sliding bearing. The
motor is controlled by the RK4 Speed control unit, which enables it to determine the rotational
speed and the axle acceleration / deceleration. There is a triaxial accelerometer mounted on the
bearing support (number 1, Figure 4.7) located at the end of the shaft and a microphone mounted
on the soundproof cover (number 2, Figure 4.7) above the bearing (number 3, Figure 4.7).

Figure 4.7 Bearing and Soundproof cover mounted with the sensors

The accelerometer and the microphone are connected to a Model 482A22 ICP® Sensor Signal
Conditioner shown in the left side of Figure 4.8 with four signal inputs and outputs, as shown on
the right of Figure 4.8. The signal is transferred through BCN-type cables. On top of the left
picture in Figure 4.8 there is an indicator with three colors; yellow, green and red and the words
OPEN, OK and SHORT respectively. Bellow there is a channel controller for each of the four
channel inputs of the unit. While the conditioner is plugged in and the power switch is on, a vital
check of the signal coming from the accelerometer and the microphone is performed. All four
channels are checked on the three-colored indicator and the expected result is color green — OK
[22]. The conditioner is then connected to the loTech DagBook 2000 that can gather signals from
different signal conditioners and simultaneously send them to the data acquisition card.
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Figure 4.8 ICP® Sensor Signal Conditioner

The data acquisition card used is the loTech DagBoard 2001 and constitutes the input of the analog
signal in the computer. The software installed on the computer is the NI LabView 2017. The data
acquisition is performed in Single-ended mode and refers to the circuits set-up in which voltage is
measured between one signal line and common ground voltage (\Vcm) [23]. The preparation of the
computer is as follows:

1) Installation of the DagBoard on the motherboard,

2) Installation of loTech software for the correct card configuration (Figure 4.9),
3) Installation of NI LabView,

4) Ildentification of DagBoard in LabView [24] (Figure 4.10)

5) Coding of the sampling process of the experiment in LabView

& Dag* Configuration - & Dag* Configuration -
DaqBoard/2001 Test Hardware 1 Diver Versions ] DaqBoard/2001 Test Hardware | Driver Versions ]
Prior to testing please make sure your device is connected to Prior to testing please make sure your device is connected to
the PC. the PC.
I your computer does not respond for 30 seconds please If your computer does not respond for 30 seconds please
reboot and change the settings in the configuration utility. reboot and change the settings in the corfiguration utility.
Test Results Test Results
No tests have been un Resource Tests
To run click Test. Base Address Test —> Bus: 4 - Slt: 1
DMA Channel Test —> Passed
Performance Tests
Adc Ffo Input Speed —> 200000 samples/sec

Dac Fifo Output Speed —> 100000 samples/zec
Digital 140 Input Speed —> 200000 bytes/sec
Digital 110 Output Speed  —> 100000 bytes/zec

Resource Test
oK Caneel | \ ok | cancel |

Figure 4.9 DagBoard Configuration
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In Figure 4.10 is the Block Diagram developed in LabView. The basic sections to an acquisition,
as defined by the LabView manual [25], are the following:

1) Initialize the Acquisition,
2) Configure Channels,

3) Define Trigger Method,

4) Configure Scan Properties,
5) Arm the Acquisition,

6) Read Scans,

7) Close the Acquisition.

These sections are all present in the Block Diagram shown in Figure 4.10 with the same numbers

as the list above and the blocks of code used were provided by DagBoard 2001 LabView Support.
The remaining numbered blocks were used for:

8) Time Delay,

9) Acquisition Duration control,
10) Signal Data Storage.

Apart from the numbered blocks, there are several indicators that are managed in the Front Panel
of LabView and allow to determine whichever parameter of the experiment like the type of file
the data will be stored in or the delimiter used to separate the data inside that file.
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Figure 4.10 LabView Block Diagram
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The sampling rate of each experiment is 1000 samples per second and the duration of the
experiment is thirty seconds. Both of these values are set in the Front Panel of LabView. There is
an example of the Front Panel of this experiment shown in Figure 4.11 where the Scan Rate, the

Start and Stop Types, the Configuration of the Channels and the Measurements Waveform Chart
are visible.

Waveform Chart
-0,060-
-0,080-
-0,100-
-0,120-

-0,140-
0,000

~0,100-
-0,200-
-0,300-
FaB-

Chan Min Vv

Sound

Acc X

-0,020-
-0,040-
-0,060-
-0,080-

-0,100-
0,000~

" RRRRRRRRRRRRREE

-0,025-
-0,050-
-0,075-
" -0,100-
-0.123-

AccZ

Figure 4.11 LabView Front Panel
4.2.2 Experimental procedure

The measurements are acquired from the microphone and the accelerometer with a sampling rate
of 1000 samples/sec which are placed on the soundproof cover and the bearing support
accordingly. The signal received by the sensors is forwarded through a data acquisition card to the
computer and stored. Figure 4.12 shows a typical series of acceleration z measurements. On the
y-axis is the value of the signal in millivolts (mV) and on the x-axis is the time in seconds (s). The
duration of this experiment is ten seconds so there are 10000 samples in this figure.

Number of samples =t - 1000, t in sec

-0.006

-0.008

-0.01

-0.012

-0.014

Figure 4.12 Typical acceleration z measurements
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The first step of the experiment, before switching on every device, is to double-check every screw
on the set-up and set the protection covers in place. Because of the high rotational speeds, a safety
issue arises. After switching on every device, the test of the sensors as described in paragraph 4.2.1
takes place and a short test on LabView is run so as to make sure that the signals are coming
through. If there is no problem then the soundproof cover along with the sensors are put in place.
The oil pump motor is switched on so that the lubrication oil reaches the bearing and shaft and
after making sure that there is a proper oil circulation the soundproof cover lid is placed. A slow
rotational speed is set in the Speed control unit to reach a better lubrication of the bearing and shaft
and to check for a possible leakage or other problems. In the case that no unexpected error occurs
the actual experiments begins. It should be mentioned that the bearing at the other side of the shaft
also needs lubrication and that is achieved with a plain lubrication spray.

The rotational speed of the shaft changes about every 2 minutes, so the shaft balances on the
bearing at different values of dimensional eccentricity and angle of behavior. This affects the
horizontal and vertical values of vibrations and the levels of the acoustic pressure produced. In
particular, the rotational speed is increased from zero to 4500 RPM, moving the shaft closer to the
center of the bearing and changing the measurements of the accelerometer and the microphone.
The specific rotational speeds used for the experiments are 500 RPM, 1000 RPM, 1800 RPM,
2500 RPM, 3300 RPM, 4000 RPM, 4500 RPM. There is a small variation of the speed during each
experiment of + 10 RPM. The cylindrical masses mentioned in paragraph 4.1.1 and shown in
Figure 4.13.

Figure 4.13 Cylindrical mass

To determine the mean load from the bearing, the Shaft Alignment Tool of the Marine Engineering
Laboratory (L.M.E.) is used. Three loading conditions are modeled: no cylindrical mass added
(Figure 4.16), one cylindrical mass (Figure 4.17) and two cylindrical masses added (Figure 4.18).
The following steps are needed for the proper modeling of the shaft:

Selection of the number of beams that combined create the shaft,
Determination of beam properties, (Figure 4.14),

Determination of support nodes and external forces application nodes
Apply forces and specify support points (Figure 4.15)
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g== Beam Properties 2

Current Bearn: l—_ld'il
Length: IW [m]
Distributed Load: m [kg/m]
Maoment of Inertia: lm [md]
Young's Modulus: lm MSm2

L -

Figure 4.14 Shaft Alignment: Beam Properties

In Figure 4.14, Current Beam refers to the part of the shaft that is being defined, Length refers to
the length of this part, Moment of Inertia refers to | [m*] and Young’s Modulus refers to E [N/m?].
The calculation of the Distributed Load section is done in the following way:

m -D?
w=—p p
Where,
e W, the distributed weight of the shaft
e D, the shaft diameter
e D, the shaft density
600N 600N
T — . .
A Constrain i o
Apply Force

Figure 4.15 Shaft Alignment: Force Application and Support Points Specification
(Constrain)

It should be noted that while modeling with the help of the Shaft Alignment program, the following
assumption was made: The axial support point position inside the sliding bearing was taken half
the length of the bearing. This assumption applies only if the shaft is fully aligned with the bearing.
In practice, however, due to the bending arrow of the shaft, there is a shaft misalignment inside
the bearing, which is characterized by the relative angle of the misalignment y. Therefore, the
pressure development in the radial sliding bearing will not be symmetrical, resulting in the position
of the bearing in which the resultant support force is exerted not to be identical to the center of the

bearing along its length.
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Figure 4.18 Shaft Alignment: Modeling of the double-loaded shaft
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Figure 4.19 Bently Nevada Rotor Kit 4 Assembly

The file produced after each experiment is a comma delimited values file (.csv) with every line
containing an instance with five values; sound, acceleration x, acceleration y, acceleration z in mV
and rotational speed in RPM. The succession of the five values is determined in the Front Panel
along with a title, if needed, for each column.
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5 Data analysis - Results

5.1 Raw data processing and Octave Band analysis

Appropriate processing is performed for each set of experimental results to determine the loading
condition of the bearing. The first stage of this processing includes the conversion of the raw data
acquired through the acquisition card and stored in the .csv files. This data, as mentioned above,
are measured in mV. According to the Calibration Certificate of each axis of the triaxial
accelerometer and of the microphone, the following multiplication should be conducted:

Calibration Data

X axis 1.002 mV/m/s?

Y axis 0.990 mV/m/s?

Z axis 0.979 mV/m/s?
Microphone 33.8 mV/Pa

Table 5.1 Microphone and Accelerometer Calibration Data

As the data files contain an enormous number of instances and there are many data files as well, a
small Python script is prepared to deal with these conversions. Once a file is read, another file is
produced with the proper data. The latter file is then fed to a second Python script that cuts small
samples of one, three of five seconds in duration of one value e.g. acceleration x. These different
values of duration aim to find the minimum amount of data needed for the machine learning
algorithm training. This minimum value is not known and constitutes a highly important parameter
of the data processing and will be shown in more detail in paragraph 5.2 and 5.3.

The next step of the processing is requiring a choice between many signal processing methods. In
many papers, the RMS or the Peak-to-Peak values of the signal are used as features to build the
training dataset of the algorithms. However, in other techniques, noises and vibration waves are
broken up into sine waves and transferred to the frequency domain [3]. In this study, the octave-
band type analysis is used to filter the acceleration and sound pressure signals. This type of analysis
is chosen for two main reasons:

1) The frequency domain reveals frequency components and their individual amplitudes,
2) It can be easily combined with machine learning (in comparison to simple FFT analysis).

Vibration signals of interest can extend between frequencies from near 0 Hz to around 70 Hz and
noise signals to can reach very high frequencies depending on the application (e.g. aircrafts
generate high frequency noise) [26]. A complex harmonic signal might have many frequency
components and in the real world that is normally the case. Industrial noise and vibration are either
complex signals or random signals and should be analyzed in frequency bands. Out of many types
of frequency bands, the octave bands are the most widely used for frequency analysis and are
concerned with halving or doubling the frequency. In this study, a narrower band analysis is
required and thus the one-third-octave bands are used.
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If the center frequency of a band is defined as fo, the upper frequency limit of the band as fu and
the lower frequency limit as fi, then [26]:

fu = 2n f]_,

where n can be any number and equals to 1/3 in the case of the one-third-octave bands. The center
frequency is the geometric mean of the upper and lower limit so:

fO — (fl fu )1/2’
fo=vV2fi=1f /2

After the bands are created, the signal passes through bandpass filters that correspond to each band.
The power/energy spectrum level is then calculated for each band by placing a logarithm on the
mean-squared pressure of the band (p:) divided by the squared reference pressure (prer?) as shown
below:

Lpband = 10 |0910 (p12 / prefz)
where pref® is an internationally accepted value equal to 2x10° N m™.

Each band will now be presented as a feature for the training process of the machine learning
algorithms. The following tables show the match between the bands (central frequencies) and the
features’ names. Because there is overlap between sound and vibration bands, some bands will
have double names. This correction is necessary for the case studies where both sound and
vibration signals are used.

Vibration Features nomenclature

Feature Nominal Band Center Frequency

(H2)
1 1.00
2 1.25
3 1.60
4 2.00
5 2.50
6 3.15
7 4.00
8 5.00
9 6.30
10 8.00
11 10.0
12 12.5
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13 16.0
14 20.0
15 25.0
16 31.5
17 40.0
18 50.0
19 63.0

Sound Features nomenclature

Feature Nominal Band Center Frequency

(Hz)
20 315
21 40.0
22 50.0
23 63.0
24 80.0
25 100
26 125
27 160
28 200
29 250
30 315
31 400

Table 5.2 Vibration and Sound Feature Nomenclature

The frequency of a sine wave can only be defined if at least two samples of it are included in one
sampling cycle. As a result, the upper frequency limit that can be safely defined is half of the
sampling rate. This frequency is referred to as Nyquist cutoff frequency and the procedure of
applying this sort of lowpass filter is called anti-aliasing [26]. The band with 400 Hz as a center
frequency has an upper limit of 447 Hz. The next band would extend from 447 Hz to 562 Hz so
the Nyquist frequency would be surpassed and the results would change. In Figure 5.1 is an
example of the one-third octave analysis for a sound signal printed with Python matplotlib. The
nominal band center frequencies are on the x-axis and the acoustic level is on y-axis.
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One-Third Octave Power Level Spectrum
[2500rpm, Load = 14N]

35

30 4

25

20 A

154

Acoustic Level [dB]

10 4

31.5 40 50 63 80 100 125 160 200 250 315 400
Nominal Band Centers [Hz]

Figure 5.1 One-Third Octave Power Level Spectrum of a sound signal example
5.2 Bearing loading condition determination algorithm

The actual algorithm is a combination of all the steps that were described above. The time series
signal is converted to the frequency domain with the one-third octave filter. Then, the bands are
transferred to the feature space as shown in Table 5.1. At this point, the training data set is ready
to be fed to the algorithm.

However, the quantity of the training data needed is still unknown and should be examined. The
experiments last for thirty seconds and several samples should be extracted from each experiment
dataset before the one-third octave filter is applied. If the duration of the sample is not long enough
then the low frequencies will be filtered out because those sine waves will not manage to appear
at least two times in the sample and thus not be noticed. These low frequencies are needed for the
vibration signal only. One second in a sample’s duration corresponds to a signal frequency of 2
Hz; two seconds correspond to 1 Hz and three seconds correspond to 0.67 Hz.

The number of these samples is different in each case study and is defined at the beginning of the
case. Finally, it should be mentioned that the testing data are divided into two categories. In the
first category, the testing data is randomly chosen and removed from the training dataset by a cross
validation tool of Python. This data is then used to evaluate the algorithm’s performance. The
second category includes the first one but has an extra particularity. An extra set of testing data is
used coming from a completely unknown part of the experimental dataset e.g. an unknown
combination of rotational speed — load or an unknown part of a rotational speed’s dataset or a
different bearing’s experimental dataset.
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5.3 Case Studies

In this paragraph, all the different processing scenarios and case studies will be presented. The aim
is to highlight the strong characteristics of this technique and its potential. The results’ structure
varies depending on the type of the algorithm used and their scientific content. There will be two
tables in the beginning of each case study that will explain which the training and testing data are
and what the feature space consists of. Figure 5.2 shows the training and testing data mapping and
Figure 5.3 shows how the combination of the two will be used from here on. The second table
appears in Figure 5.4 and Figure 5.5. The former shows that feature 10,11 and 12 are used and
the latter shows that feature 25, 26 and 27 are used. It should be noted that each algorithm was run
multiple times in order to strengthen the reliability of the results.

Training Data

=

Load [M] 500 1000 1200 2500 2300 4000 4500
2
2
14
Testing Data
Load [M] fr 500 Ll 1200 2500 3300 4000 4600
- |
3
14

Figure 5.2 Training Data and Testing Data Mapping

Training & Testing Data

FEM - -
304 1000 18040 2500 3300 4000 4500

| -

Load

(=) [ =)

Figure 5.3 Training and Testing Data Mapping Combination

Vibration Feature Space

Feature | 1|2 |3 |4 | 5|6 |7 |[8|9]10 |11 | 12 13 14 15 16 17 18 19

Figure 5.4 Vibration Feature Space Mapping

Sound Feature Space
Feature ‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31‘
Figure 5.5 Sound Feature Space Mapping

A confusion matrix is a table that is used in machine learning in order to visualize the performance
of a classification algorithm when the actual values of the labels of the tested data is known. In the
diagonal of the table are the correct answers (white color) and in the sum.col and sum.lin are
overall percentages of the columns and lines respectively (the right answers are green and the
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wrong are red). Figure 5.6 shows an example of a confusion matrix. The y-axis shows the
predicted classes and the x-axis shows the actual values. The example has an accuracy of 90.48%.
Class A was wrongly predicted 2 times in the place of Class B.

Predicted

Confusion matrix

2 2 0 0 0 0
=_,5P‘ 9.52% 9.52% 0.0% 0.0% 0.0% 0.0%
e
0 3 0 0 0 0
c\i“"s‘b 0.0% 14.29% 0.0% 0.0% 0.0% 0.0%
0 0 3 0 0 0
C\az,sc' 0.0% 0.0% 14.29% 0.0% 0.0% 0.0%
0 0 0 1 0 0
6\1,:_,50 0.0% 0.0% 0.0% 4.76% 0.0% 0.0%
0 0 0 0 1 0
(;.\'l’t’se 0.0% 0.0% 0.0% 0.0% 4.76% 0.0%

0 0 0 0 0 3 0
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Figure 5.6 Confusion Matrix Example

47

0.0%
0
0.0%
0
0.0%
0.0%

0
0.0%

28. 57%

6



Experimental Determination of Journal Bearing
Condition with a Machine Learning Technique

5.3.1 Case Study #1, Acceleration X, Y, Z and Sound Evaluation

In order to determine which of the four signals (acceleration X, y, z and sound) performs better for
the task at hand, a simple test is run that uses as input one of these values every time. The label is
the mean load of the bearing. After the hyper-parameter tuning is applied, the algorithms are run
and the results are evaluated. The features and RPM-Load combinations used for each value are
the same so they will be illustrated once.

Training & Testing Data

Sound Feature Space
Feature ‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31‘

Acceleration x, y, z Feature Space

Feature | 1 [ 2|3 (4|5 (6|7 [8]|9(10| 11 | 12 13 14 15 16 17 18 19

Figure 5.7 Training & Testing Data and Acceleration & Sound Feature Space Mapping #1

The score for each classification and regression algorithm are shown in Table 5.3. It is easily
noticed that the sound signal produces better results without overfitting to the data. As expected,
the acceleration z signal comes second best and acceleration x and y follow. The algorithms used
are the Random Forest Classifier (RFC), the k-Nearest Neighbors Classifier (KNNC) and the
Gradient Boosting Regressor (GBR). It should be noted that the acceleration x and y results are
unstable and inconsistent.

Vibration & Sound Accuracy
AccX AccY AccZ Sound
RFC 70% 80% 85% 98%
KNNC 80% 80% 85% 98%
GBR 66% 53% 67% 99%
Table 5.3 Vibration and Sound Accuracy

The case studies that follow use the sound and acceleration z signals as an input for the algorithms’
training. In some cases, acceleration z signals perform adequately but in some cases, they do not
so in these cases a combination of the two signals will be used in order to examine the results.

The next column charts show the acoustic pressure level after applying the One-third Octave filter.
The most important features for the algorithms are feature 25, feature 28 and feature 31. If
examined, the following charts can illustrate why the algorithms choose this features as the most
important in the decision-making process.
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Figure 5.8 One-Third Octave Power Level Spectrum of a sound signal #1
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Figure 5.9 One-Third Octave Power Level Spectrum of a sound signal #1
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5.3.2 Case Study #2, RPM Determination

This case study aims to determine the rotational speed of the shaft by using the sound signal
produced by the bearing. The training samples have a one second duration and thirty samples have
been used for each rotational speed. The testing data used are randomly chosen from the training
data pool and constitutes the 10% of the testing data volume. The actual RPM value and the
algorithm’s prediction are then presented in order to evaluate its accuracy.

Training & Testing Data

RPM - -
; 500 1000 1304 2500 3300 4000 4600
Load

g
14
Sound Feature Space

‘ Feature ‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31‘
Figure 5.10 Training & Testing Data and Sound Feature Space Mapping #2

It is obvious from Figure 5.11 that the frequency signature of each rotational speed differs; thus,
the results of this case study were expected. Figure 5.12 is a chart that shows the importance of
each feature in the decision-making processes of the algorithms. The algorithms used are the RFC
and the GBR. The difference in the training process becomes clear; RFC distributes the importance
to all features, whereas GBR only to few. For both algorithms, the max tree depth equals 2 and the
number of estimators (trees) equals to 50 in order to avoid overfitting.

Feature Values

20-31.5Hz
35
31-400 Hz 21-40Hz
30
=== 500 RPM
30-315Hz 22-50Hz
1000 RPM
1800 RPM
29 - 250 Hz 23-63 Hz 2500 RPM
e 3300 RPM
e 4000 RPM
28 - 200 Hz 24 -80 Hz
e 4600 RPM
27 - 160 Hz 25-100 Hz

26-125Hz

Figure 5.11 Feature Values
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RFC Feature Importances Chart
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GBR Feature Importances Chart
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40% - 30
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Figure 5.12 Feature Importance of RFC and GBR #2

The confusion matrix in Figure 5.13 shows the results of the RFC (95.24% accuracy) and the
Table 5.4 shows the results of the GBR (98.9% accuracy).
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Confusion matrix
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0 0 0 0 0 0
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]
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4600
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Figure 5.13 RFC Confusion Matrix #2

RPM Prediction Table

Actual 500 500 500 500 500 1000 1000
Predicted 546 515 560 542 514 1013 1012

Actual 1800 1800 1800 1800 2500 2500 3300
Predicted 1803 1788 1815 1764 2504 2553 3296

Actual 3300 3300 3300 4000 4600 4600 4600
Predicted 3299 3299 3308 3993 4572 4572 4572
Table 5.4 GBR Prediction Table #2

The classification problem has no obvious usage but was very accurate, as predicted by observing
the feature values. The regression problem has high variance in the 500 RPM. The 4600 RPM is
predicted three times as 4572 RPM which, after analyzing the data, is due to the similar values of
features 28 and 30 of the data at hand and the high importance of these features. Because of the
high precision equipment that already exists in measuring the rotational speed of a shaft, most of
the next case studies will use the RPM as a feature.
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5.3.3 Case Study #3, Load Determination via Acceleration Z signals

In this case study, the goal is to determine the loading condition of the bearing by using the
acceleration z signal. The thirty samples per load per rotational speed used for the training have a
duration of 3 seconds. The testing data for the first sub-case is randomly selected from the pool of
the training data and constitute the 20% of the training data volume. The testing data of the second
sub-case is produced from the last three experimental seconds of the 4000 RPM rotational speed
with a mean load of 2N. These three seconds of instances are not part of the experimental data
used to create the training data pool. The algorithms used are the RFC, the KNNC and the GBR.

Figure 5.14 shows the training and testing data mapping. Figure 5.15 shows the feature
importance for RFC and GBR. The feature values will not be illustrated due to the difficult
simultaneous plotting of all the features of all the loading cases at once. However, Figure 5.16
shows a 3D visualization of the multi-dimensional samples, where the three different loading cases
are distinguished through color. Feature 12 and 14 are chosen because of the high importance they
have for RFC.

Training & Testing Data

Acceleration z Feature Space

Feature | 1 |2 |3 (4|5 (6|7 |8 9] 10| 11 | 12 13 14 15 16 17 18 19

Figure 5.14 Training & Testing Data and Vibration Feature Space Mapping #3

RFC Feature Importance Chart oy
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Figure 5.15 Feature Importance of RFC #3
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3D k-Nearest Neighbors Visualization

14

© 2N
o 8N
O 14N

Figure 5.16 3D KNNC Visualization of RPM, Feature 12 and Feature 14 #3

In Figure 5.16 the three dimensions out of the 20-dimensional mapping produced by the KNNC
are shown. As described above, the value of k effects significantly the results of the algorithm and
should be paid the appropriate attention during the training. In this case study, the k equals to 4.

The results produced by each algorithm are shown in Figure 5.17 and Figure 5.18. KNNC has an
accuracy from 93 to 97 % and RFC from 77 to 83 %. The results do not vary if some of the features
are excluded from the algorithms’ training and testing and this feature selection procedure will be
examined in the forthcoming case studies. GBR is not presented due to the low accuracy and high
variance of the results.

Confusion matrix

Predicted

Actual

Figure 5.17 KNNC Confusion Matrix #3
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Confusion matrix

Predicted

Actual

Figure 5.18 RFC Confusion Matrix #3

The second sub-case did not produce any solid results. The actual value was 2N and the algorithms
gave a prediction of 8N or 14N in most of the cases. This showed that a better mapping of the
bearing’s operation is needed in order to explore the full potential of this technique when using
acceleration z signals.
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5.3.4 Case Study #4, Load Determination via Sound signals

This case study aims to determine the loading condition of the bearing by using the sound signals
acquired in the experimental procedure. The data format is same as in case study #3:

e The thirty samples per load per rotational speed used for the training have a duration of 3
seconds

e The testing data for the first sub-case is randomly selected from the pool of the training
data and constitute the 20% of the training data volume

e The testing data of the second sub-case is a produced from the last three experimental
seconds of the 4000 RPM rotational speed with a mean load of 2N, with these three
seconds of instances not being part of the training data pool

e The algorithms used are the RFC, the KNNC and the GBR.

The training and testing data as well as the sound features are shown in Figure 5.19. In Figure
5.20 appears the feature importance chart for each algorithm. While the RFC, due to its inherent
ability to divide the importance between the features, has given at least a small percent of
importance to all the features, it has given the highest percentage to features 25, 28 and 31, the
same features the GBR has highlighted as the most important. In should be noted that in the GBR
Feature importance chat only the three most important features are visible because the rest have a
very low percentage of importance.

Training & Testing Data

Sound Feature Space
| Feature | 20 | 21 | 22 [ 23 | 24 | 25 | 26 | 27 [ 28 [ 20 | 30 | a1 |
Figure 5.19 Training & Testing Data and Sound Feature Space Mapping #4
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RFC Feature Importance Chart
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Figure 5.20 RFC and GBR Feature Importance Charts #4

The results of the features importance can be explained by Figure 5.21. In this figure, it is obvious
how the three loading conditions are creating three separate areas of operation. This makes it easier
for the algorithm to predict the mean load of the bearing and for the user to visualize the results
and understand the usefulness of the Octave analysis for this technique. The lower color intensity
indicates that the point is further away in the 3D plot.
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3D k-Nearest Neighbors Visualization
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Figure 5.21 3D KNNC Visualization of Feature 25, Feature 28 and Feature 31 #4

For the first sub-case, the results for the RFC are shown in Figure 5.22 and for the KNNC are
shown in Figure 5.23. The accuracy of both classifiers does not drop under 99% with the
overfitting being avoided through proper hyper-parameter tuning. The results of GBR are
visualized via a boxplot in Figure 5.24. The boxplots show the low dispersion of the data and the
high accuracy of algorithm with some outliers still being existent.

Confusion matrix
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14N
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Figure 5.22 RFC Confusion Matrix #4
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Figure 5.23 KNNC Confusion Matrix #4

GBR Predictions Box Plots
99.57% accuracy

Predicted

14.25
14.2 e
14.15
s 141
5 1405
-03 14 +
& 1395 °
13.9
13.85
13.8
3 8.04
2.8 8.03
[ ]
2.6 8.02
2.4
. T 801
2.2 =
@
2 + = °
" 7.99
[ ]
16 H 7.98
1.4 7.97

Figure 5.24 GBR Boxplots, Grey-14N, Blue-2N, Green-8N #4
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The second sub-case, where the testing data are from a part of the experimental data that were not
used for creating the training pool, is also successful as all three algorithms have predicted
correctly the actual value of the load which was 2N. Table 5.5 shows the exact results. This
difference in the prediction accuracy with the second subcase of case study #3 verifies once again
the results of case study #1; the sound signals can produce better and more accurate predictions
than vibration signals. GBR algorithm predicts a load between 1.98 and 2.03 N which is a very
low standard deviation.

Algorithm Predictions

RFC 2N
KNNC 2N
GBR 1.98-2.03 N

Table 5.5 Algorithm Predictions #4

In the third sub-case, there is a change in the number of samples of RPM-Load combinations that
are used to create the training pool. The number drops from thirty to ten in order to determine a
minimum data volume needed for the algorithms to function. No actual data volume is suggested
in machine learning bibliography so this was a subject of investigation. The exact results of the
algorithms are shown in Table 5.6. After evaluation, the number of samples is chosen to be thirty
per load per rotational speed in order to create a better mapping of the bearings operation.

Algorithm Performance

Accuracy Prediction
RFC 99 - 100 % 2N
KNNC 99 —100 % 2N
GBR 96 — 99 % 2.004 N

Table 5.6 Algorithm Performance #4
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5.3.5 Case Study #5, Load Determination via Sound signals for unknown RPM-Load
combinations

The training pools used in the following sub-cases do not include a RPM-Load combination and
the excluded combination is different in each subcase and used for to generate the testing data. The
sub-cases will be named after the combination that was not used for the training process.

In the sub-cases that follow, the results will be displayed in the form of tables. The tables will have
information about the accuracy (in predicting the values from the excluded combinations). The
algorithms used are the RFC, the KNNC, the GBR and the Decision Tree Regressor (DTR). Other
algorithms have also been tested but these four have the higher overall accuracy. All sound signal
features are used in every sub-case.

I.  Load 8N, 500 RPM

Algorithm Performance

Accuracy Prediction
RFC 99 - 100 % 8N
KNNC 99 - 100 % 8N
GBR 97 -99 % 8+0.15N

Table 5.7 Algorithm Performance, Sub-case | #5
I[l.  Load 8N, 2500 RPM

Algorithm Performance

Accuracy Prediction
RFC 99 —100 % 8N
GBR 97 - 99 % 8+0.1N

Table 5.8 Algorithm Performance, Sub-case 11 #5
I1l.  Load 2N, 500 RPM

Algorithm Performance

Accuracy Prediction
RFC Unstable Unstable
KNNC Unstable Unstable
GBR Unstable Unstable

Table 5.9 Algorithm Performance, Sub-case I11 #5
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IV.  Load 2N, 1000 RPM

Algorithm Performance

Accuracy Prediction
RFC 99 - 100 % 2N
KNNC 99 -100 % 2N
GBR 97 -99 % 2+0.13N

Table 5.10 Algorithm Performance, Sub-case 1V #5

V. Load 14N, 4600 RPM

Algorithm Performance

Accuracy Prediction
RFC 99 - 100 % 14 N
GBR Unstable Unstable
DTC 95-99 % 140N

Table 5.11 Algorithm Performance, Sub-case V #5
VI.  Load 14N, 4000 RPM

Algorithm Performance
Accuracy Prediction

RFC 99 — 100 % 14 N
Table 5.12 Algorithm Performance, Sub-case VI #5

The aim of this case study was to learn how the algorithms handle new information that belong to
different parts of the data pool. That is the reason why in sub-case 11l and V the combinations of
RPM-Load chosen are the extreme values of the rotational speed and loading condition. While the
algorithms maintain their performance for the intermediary combinations of RPM-Load, the
accuracy decreases dramatically when reaching the edge of the data pool. This implies that a better
mapping of the bearing’s operation is needed. An instability like the one observed above could
indicate that the testing input belongs to an unmapped part of the bearing’s operation and suggest
an error condition.
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5.3.6 Case Study #6, Load Determination via Sound signals with training on the
ACETAL Bearing and testing on the Plexiglass Bearing (2500 RPM)

The sound signal Octave analysis technique for the creation of the feature space of a bearing’s
loading determination algorithm has been successful so far, with the classification and the
regression problems succeeding in most of the cases. Training and testing data were both mined
from the experimental data of a single journal bearing. In this case study, the training data will be
extracted from the data measured on the ACETAL bearing and the testing data will be extracted
from the data acquired from the Plexiglass bearing. It should be noted that the previous case studies
have been tested for both bearings and the results converge.

For the first attempt, the training and testing data and the sound feature space used appear in Figure
5.25. The feature space also includes the rotational speed of the rotor. The results of the RFC and
the KNNC (k = 5) appear in Figure 5.26. While evaluating the inaccurate results of the GBR, it
was observed that the features that had high importance could be excluded from the training
process and predictions’ accuracy raised up until an average of 90% but were unstable and got
rejected.

Training & Testing Data

RiFmM a00 000 1200 2800 3300 4000 4600

Load [M]
2

o]
14
Sound Feature Space
| Feature | 20 | 20 | 22 [ 23 | 24 | 25 [ 26 | 27 | 28 [ 20 | 30 | 31 |
Figure 5.25 Training & Testing Data and Sound Feature Space Mapping #6
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Figure 5.26 RFC and KNNC Confusion Matrix #6
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5.3.7 Case Study #7, Load Determination via Sound signals with training on the
ACETAL Bearing and testing on the Plexiglass Bearing (4000 RPM)

A different approach was used for this study. The goal is to find the minimum number of features
needed to predict the Plexiglass bearing’s loading condition. In order to achieve this goal, it is
important to find the features that hold the information needed. On the one hand, the importance
of the features, when having training and testing data from the same bearing, is known. On the
other hand, this feature importance changes when the training and testing data originate from
separate bearings. So, the way to choose the order of the features that are added in each run is to
build a dataset that consists of training and testing data generated from both bearings and
apprehend the feature importance. The rotational speed is always 4000 RPM.

Figure 5.27 shows the training and testing data mapping. The KNNC algorithm is used in this case
study. In Table 5.13 appear the features that are added in each run and the accuracy of the
predictions. The results show that feature space selection is an area of investigation and should be
given enough attention in order to determine the useful and useless data. This selection varies from
problem to problem and from dataset to dataset, depending on the experimental procedure.

Training & Testing Data

RFM
Lioad [M]

2
g
14

Figure 5.27 Training & Testing Data Mapping #7

a0 000 1200 2800 3300 4000 4E00

Feature Selection Table

Run Features Added Accuracy
1t 23 42.86%
2nd 20 71.43%
3 31 85.71%
4t 29 100%

Table 5.13 Feature Selection 4000 RPM #7
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5.3.8 Case Study #8, Combination of Case Study #6 and Case Study # 7

The combination of the two case studies aims to broaden the perception of how information is
stored in each feature. For example, some features carry information regarding the rotational speed
of the shaft while other features may carry information about the smoothness of the shaft’s surface.
This suggests that the values of the features depend on the experiment’s execution, the
experimental equipment etc.

This case study combines the two rotation speeds in order to examine if the feature selection of
case study #7 can produce results of the same accuracy as rotational speed is 2500 RPM. The two
rotational speeds are then combined. Figure 5.28 shows the training and testing data mapping.
Table 5.14 shows the accuracy of KNNC as to the feature selection. The default features are
feature 23,20,31 and 29.

Feature Selection Table

Run Features Added Accuracy
18 23,20, 31, 29 81.82%
2nd 26 100%

Table 5.14 Feature Selection 2500 RPM #8

The rotational speed of 2500 RPM needs a different set of features in order to reach high prediction
accuracy. This is expected due to the different sound frequency signatures of each operational
condition. 4000 RPM and 2500 RPM data are combined as shown in Figure 5.28 and the results
are shown in Figure 5.29.

Training & Testing Data

FFM
Load [M]

2
]
14
Sound Feature Space
| Feature | 20 | 210 | 22 | 23 | 24 | 25 [ 26 | 27 | 28 [ 20 | 30 | 31 |
Figure 5.28 Training & Testing Data and Sound Features Mapping #8
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Figure 5.29 KNNC Confusion Matrix #8
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5.3.9 Case Study #9, Training with ACETAL and Plexiglass Bearing Sound Signal

In this last case study, the aim is to examine the algorithms’ accuracy on training and testing data
that come from both the ACETAL and the Plexiglass bearings. Figure 5.30 shows the data used
in this case study. The first sub-case deals with classifying which of the two bearings is the tested
one. When dealing with this problem, the algorithms will highlight the features that best
distinguish the two bearings. The algorithms used are the RFC and the KNNC. The feature
importance appears in Figure 5.31 and the results appear in Table 5.15.

Training & Testing Data ACETAL Bearing

Training & Testing Data Plexiglass Bearing

300 1000 180:0 2500 3300 4000 4600

Sound Feature Space
| Feature | 20 [ 21 | 22 | 23 [ 24 | 25 | 26 [ 27 | 28 [ 20 | 30 | 31 |
Figure 5.30 Training & Testing Data and Sound Features Mapping #9

RFC Feature Importance Chart
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Figure 5.31 RFC Feature Importance Chart #9
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Algorithm Accuracy
Accuracy
RFC 100 %
KNNC 100 %

Table 5.15 Algorithm Accuracy #9

In the second sub-case, the label of the algorithms is the load. The algorithms used are the Random
Forest Classifier and the Gradient Boosting Regressor and the feature importance of both is shown
in Figure 5.32. The features that hold most of the common information for the two bearings are
features 25 and 31 followed by feature 22. The results of the RFC and the GBR are shown Figure
5.33 and Table 5.16 respectively. The high accuracy percentage of both algorithms suggests that
a dataset created from multiple bearings (manufactured from the same design plan) can have a
wider application regarding this specific bearing.

RFC Feature Importance Chart

%
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= 28-200 Hz
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m30-315Hz
= 31-400 Hz

GBR Feature Importances Chart
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Figure 5.32 RFC and GBR Feature Importance Chart #9
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Confusion matrix
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Figure 5.33 RFC Confusion Matrix #9
GBR Prediction Table
(93 — 96 % accuracy)
Actual 2 2 2 2 2 2 2 2 8 8

Predicted 2.10 2.11 2.53 1.86 2.79 2.16 1.74 1.79 8.43 8.00

Actual 8 8 8

Predicted 8.21  7.97 8.01 8.24 8.06 8.67 8.25 13.85 14.00 13.83

14 14 14 14 14 14 14 14 14 14

1405 1390 12.10 10.16 14.26 13.86

Actual
Predicted 14.04 14.03 13.98  14.00
Table 5.16 GBR Load Prediction #9
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6 Conclusion and Suggestions for future work

6.1 Conclusion

The goal of the present work is to develop a machine learning technique that predicts the loading
condition of a journal bearing. The data used are acquired through an experiment performed on
the Bently Nevada Rotor Kit 4 in the Laboratory of Marine Engineering (L.M.E) of NTUA. The
data processing source code and the machine learning algorithm is written in Python.

The experimental procedure included assembling the RK4 assembly, adjusting the microphone
and the triaxial accelerometer, placing the soundproof cover, regulating the rotational speed and
oil supply subsystems, connecting the sensors with the data acquisition card (DAQ) and
developing a block diagram in LabView in order to acquire and store the experimental data. A
second bearing was manufactured using the design plan of the ServoFluid bearing of RK4.

After preparing the experimental setup, a series of measurements are performed with different
rotational speeds, in a range of 500 up until 4600 RPM, and loading conditions of the bearing,
taking the values of 2, 8 and 14 N. The microphone and the triaxial accelerometer are used to
measure acoustical pressure and vibration signals generated by the rotor’s operation. A One-Third
Octave filter is then applied to the signal.

The filtered signal is cut into smaller, in duration, samples and fed to the machine learning
algorithms existent in the scikit learn module of Python. The data used to determine the algorithms’
prediction ability can either constitute a part of the algorithms’ training pool or be generated from
a different set of experimental data.

The signal that performs better is the processed acoustic pressure signal and the acceleration z
signal is second best. This conclusion is very important due to the simplicity of a microphone’s
installation on a bearing. A variety of scenarios are examined and the prediction ability of the
algorithms is adequate in many cases. The algorithms’ performance variates depending on the
testing data; the algorithms perform better if the testing data belongs to an intermediary training
RPM-Load combination than if the testing data belongs to an extreme combination.

In an attempt to investigate on the different ways the algorithms’ training data set could be created,
the data from two different bearings is used. The algorithms’ prediction ability is found adequate
with many data combinations. The results suggest that applying this procedure for every bearing
produced from the same design plan could be possible.
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6.2 Suggestions for future work

While three loading case scenarios worked well enough for this thesis and constitute a satisfying
mapping of the bearing’s operation, a wider set of data, regarding the loading condition and the
rotational speed of the shaft, could be used in order to conclude in safer results.

Another suggestion, as mentioned in the paragraph 6.1, is to gather experimental data from
multiple bearings that were manufactured from the same design plan. This way, the factors that
originate from manufacturing errors could be eliminated. This thesis project has used two bearings
to maintain this concept but more could produce a better result. Furthermore, an analysis of the
features’ importance could be performed in order to determine the bearing operation characteristics
that are involved.

In addition, programming-wise, there is a large number of machine learning algorithms that could
be tested in regards this task. The source code of these algorithms could be modified to satisfy the
needs of this project.

Finally, while this thesis discusses how to determine a journal bearing’s loading condition, there
are other attributes of the bearing’s condition that could be determined in the same or a similar
way. Moreover, there are many signal analysis methodologies that could improve this technique
and broaden its application potential to different types of bearings and gear.
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Appendix A

This appendix contains parts of the data processing. It also contains some of the coding of the
algorithms as shown in Python IDLE 3.6 and the algorithms’ result printed in the Python Shell.

There are three discrete steps to get the data from their raw condition ready for training the machine
learning algorithms. Figure | shows the data as acquired from LabView.

-0,028.-0,008.-0,009.-0,009.
-0,027.-0,008.-0,008.-0,008.
-0,026.-0,006.-0,007.-0,008.
-0,022.-0,009.-0,008.-0,009.
-0,023.-0,008.-0,009.-0,007.
-0,021.-0,008.-0,008.-0,008.
-0,020.-0,007.-0,008.-0,008.
-0,023.-0,009.-0,009.-0,010.
-0,023.-0,007.-0,008.-0,009.
10 -0,028.-0,007.-0,006.-0,007.
11 -0,028.-0,008.-0,008.-0,008.
12 -0,026.-0,008.-0,008.-0,009.
13 -0,027.-0,008.-0,007.-0,008.
-0,024.-0,007.-0,008.-0,008.
-0,023.-0,008.-0,008.-0,008.
1 -0,023.-0,007.-0,006.-0,007.
1 -0,022.-0,009.-0,009.-0,009.
12 -0,025.-0,008.-0,008.-0,007.
12 -0,028.-0,008.-0,008.-0,004.
20 -0,026.-0,008.-0,009.-0,009.

1 & o ofs Ld R

VI PR L Y S

Figure I

The first step is to use the calibration data and transform the data from mV to acceleration and
sound pressure values. Figure 11 shows the converted data.

i RPM Sound AccX AccY AccZ

2 500 0.00083 -0.00798 -0.0090% -0.00919
3 500 0.00080 -0.00798 -0.00808 -0.00817
4 500 0.00077 -0.00599 -0.00707 -0.00817
5 500 0.00065 -0.00898 -0.00808 -0.00919
& 500 0.00068 -0.00798 -0.0090% -0.00713
7 500 0.00062 -0.00798 -0.00808 -0.00817
8 500 0.00059  -0.00699 -0.00808 -0.00817
9 500 0.00068 -0.00898 -0.0090% -0.01021
10 500 0.00068 -0.00699 -0.00808 -0.00919
11 500 0.00083  -0.00699 -0.00606 -0.00715
12 500 0.00083  -0.00793 -0.00808 -0.00817
13 500 0.00077  -0.00793 -0.00808 -0.00919
14 500 0.00080 -0.00798 -0.00707 -0.00817
15 500 000071  -0.00699 -0.00808 -0.00817
16 500 000063  -0.00798 -0.00808 -0.00817
17 500 000063  -0.00699 -0.00606 -0.00715
18 500 0.00065  -0.00893 -0.00209 -0.00919
19 500 000074  -0.00798 -0.00808 -0.00715
20 500 0.00083  -0.00798 -0.00808 -0.00613

Figure 11

The second step is to create a number of samples of specific duration from the dataset and store
them separately so as to apply the One-Third Octave filter to each sample and create the training
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pool. Figure 111 shows ten acceleration x samples with duration of three seconds, which mean that
there are three thousand instances in each sample. Only the last instances are visible in the figure.

DJR DJs DJT DJU DV DJwW DJX DJY DJZ DKA DKB DKC DKD DKE DKF DKG DKH DKI DKJ DKK
1 | -0.01098 -0.00898 -0.00998 -0.01098 -0.01198 -0.00898 -0.00898 -0.00998 -0.00998 -0.01098 -0.01098 -0.00898 -0.00858 -0.00898 -0.00898 -0.01098 -0.01098 -0.00898 -0.00898 500]
-0.00398 -0.01098 -0.00998 -0.01198 -0.01098 -0.00398 -0.010983 -0.00993 -0.01038 -0.009983 -0.01032 -0.01198 -0.00838 -0.00838 -0.01257 -0.01198 -0.01198 -0.00398 -0.01098 500]
-0.01098 -0.01198 -0.00998 -0.00998 -0.01098 -0.01098 -0.00993 -0.01098 -0.00938 -0.00998 -0.01032 -0.01038 -0.00938 -0.00938 -0.01098 -0.00398 -0.00798 -0.01297 -0.01098 500]
-0.01098 -0.00898 -0.00898 -0.01098 -0.00898 -0.00898 -0.00998 -0.00993 -0.00838 -0.01098 -0.01032 -0.00938 -0.00938 -0.00938 -0.00998 -0.01098 -0.00998 -0.00898 -0.01098 500]
-0.01198 -0.01237 -0.01297 -0.01198 -0.01098 -0.01098 -0.01297 -0.01198 -0.01193 -0.01098 -0.01093 -0.00798 -0.01093 -0.01198 -0.01133 -0.01198 -0.01138 -0.01098 -0.01098 500]
-0.01098 -0.01198 -0.00998 -0.01198 -0.01098 -0.01198 -0.00898 -0.01198 -0.01098 -0.01198 -0.01098 -0.00998 -0.01098 -0.01098 -0.01098 -0.01198 -0.00998 -0.01198 -0.00998 500]
-0.01098 -0.01297 -0.01098 -0.01098 -0.00998 -0.01297 -0.01198 -0.01098 -0.01098 -0.01198 -0.01098 -0.01198 -0.01297 -0.01098 -0.01297 -0.00998 -0.01198 -0.01297 -0.01198 500]
-0.01098 -0.01198 -0.01198 -0.01198 -0.01198 -0.01198 -0.01198 -0.01098 -0.01198 -0.01198 -0.00998 -0.01198 -0.01098 -0.01198 -0.01198 -0.01098 -0.01198 -0.01098 -0.01098 500]
-0.01098 -0.01098 -0.01098 -0.01098 -0.00998 -0.01198 -0.01198 -0.01297 -0.01038 -0.01098 -0.01032 -0.01098 -0.01038 -0.01198 -0.01158 -0.00898 -0.01098 -0.01198 -0.01297 500]
10| -0.01098 -0.01098 -0.00898 -0.01098 -0.00998 -0.01098 -0.01297 -0.00898 -0.00998 -0.00998 -0.00933 -0.01098 -0.01032 -0.01198 -0.01138 -0.00938 -0.01098 -0.01098 -0.01098 500]
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Figure 111

Lastly, the One-Third Octave filter is applied on each sample. Figure IV shows the file that will
be fed to the machine learning algorithms. The first row are the features and labels.

1 1 2 3 4 b 6 7 8 9 10 1n 12 13 14 15 16 17 18 19 RPM Load
2 | 2797182 2767345 2407383 2527395 2685273 2514821 2480418 2060555 263612 271514 2668041 2523261 2740806 27.16759 2817688 3146023 3728856 39.09954 3577964 500 8
3 | 2691511 2620964 2650296 2014074 27132 1940243 2252087 1995986 24.10389 2013316 2667753 27.16363 2343778 28.74498 | 2073737 | 3161740  38.0606  39.32258  33.72408 00 8
4 | 2096398 2361497 233330 2213844 2795722 2041193 2451369 2148136 2758053 27.81773 2731123 27.04130 2664039 28732 | 30.62302 | 31.61304  37.76333  30.00800  36.334 300 8
5 | 3075025 2499303 19.6463  18.02098 26.09633 20.13667 2045198 2340315 235444 2738683 2476354 262725 27.87998 20.59384 3147437 3174428  37.1776 | 30.26846 362181 500 8
6 | 2519331 2566034 2475643 19.80852 2774414 2538346 2542576 2130741 234569 2803315 2737718 2617241 2555606 28.81821 3072212 3140607  37.81367 3389152 3641617 500 g
7 | 3167753 2672864 24091872 2483047 25902235 2505268 2263201 2520444 2587741 2651136 2761963 250813 2772046 2890493 2084500 3144247 3720306 3926836 35.93455 500 8
8 | 2371063 2349191 2342096 19.83469 2374312 2108927 23.11873 24.16683 232803 27.30667 262087 2664878 2388172 284683 | 30.86637 | 31.4363%  37.83903  38.83002  36.43273 300 8
9 | 3093365 2481662 26244683 262394 2130328 2373824 24.77672 2220079 2364605 28.68632 2630034 27.01868 2376708 28.88333 | 20.84071  31.61931  38.13021 39.52493  33.63363 300 8
10 | 30.58281 2902925 2745256 2073009 2413998 2246801 2203829 2246296 2524302 2931102 272986 23594508 27.15847 286383 2880839 3125216 37.8458 396141 @ 3586971 500 8

Figure IV

The Random Forest Classifier appears in Figure V. Some of the available parameters are set in
the beginning in order to show how the module works. Then, the cross-validation tool
RandomizedSearchCV of scikit-learn is used to tune these parameters and find the most efficient
combination of values. Several other cross-validation tools are available in the module. The
combinations tested are set to 20. The number of parameters is chosen by the user. The user defines
the limits of the search and evaluates the results. Figure VI shows the Python Shell results.

F RANDOM FOREST CLASSIFIER

clf = RandomForestClassifier(n estimators = 100, n jobs = -1, bootstrap = N
criterion = 'entropy',max depth = ,
min samples split = 11, max features = 1)

param dist = {"max depth": [3, 1«

"max features": randintc(l, 4),

"min samples split": randint(2, 13},
"bootstrap™: [ , 1,

[ | P " | | PR || rl:v——'u--\.'v-\.--"]‘_

n_iter search = 20
random search = RandomizedSearchCV(clf, param distributions=param dist,
n_iter=n iter search, cv=3)

start = time ()
random search.fit (X, v)
rint ("RandomizedSearchCV took %.2f seconds for %d candidates"
" parameter ssettings." % ((time() - start), n_iter search))
report (random search.cv_results )

;F —_—

Figure V
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RandomizedSearchCWV took 65.89 seconds for 20 candidates parameter settings.

Model with rank: 1
Mean walidation score: 0.616 (std: 0.083)
Parameters: {'bootstrap': True, 'criterion':

Model with rank: 2
Mean walidation score: 0.566 (std: 0.091)
Parameters: {'bootstrap': True, 'criterion':

Model with rank: 3
Mean walidation score: 0.561 (std: 0.082)

Parameters: {'bootstrap': False, 'criterion':

'gini', 'max_depth': None, 'max features': 1, 'min samples splitc': T}
'entropy', 'max depth': None, 'max features': 2, 'min samples_split': 8}
'entropy', 'max depth': None, 'max features': 2, 'min samples split': 5}

Figure VI

If the parameters of the problem have been figured out then the next runs will not need a cross-
validation tool. When the algorithm is trained, there is no need to retrain it. The option of saving
it is available and is performed in the way shown in Figure VII.

# Classifier Save

import pickle

with open('RandomForestClassifier.pickle', 'wb') a=z £:
pickle.dump (clE, £)

F

# Classifier Load

pickle in = open(

'RandomForestClassifier.pickle’', 'rb

clf new = pickle.load(pickle in)

F

Figure VII
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