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Abstract 

Journal and thrust bearings utilize hydrodynamic lubrication to reduce the friction and wear 

between the shaft and the bearing. The thin lubricant film that is created prevents the contact of 

the two surfaces and is greatly affected by the load applied from the shaft to the bearing. As a 

result, knowing the lubrication film thickness or the load is vital for securing the bearings’ proper 

function and maintenance. 

The experimental setup used for this project is the Rotor Kit 4 (RK4) of Bently Nevada USA and 

the measurements were performed in the Laboratory of Marine Engineering (L.M.E.) of the School 

of Naval Architecture and Marine Engineering of NTUA. The setup includes an electric motor, a 

speed control box, a journal bearing, a shaft and two rotor mass wheels. The data acquisition was 

controlled and managed in LabVIEW software. 

The goal of this project is to investigate ways to determine the loading of a journal bearing without 

interfering with the bearings design. Then, develop a methodology that will eventually be 

integrated into an existing software tool and used to avoid dangerous bearing loading conditions.  

The efforts are focused on introducing a new methodology that will simplify the procedure 

mentioned but will have a scientific background strong enough to generalize in all types of journal 

bearings. The processing of the vibration and acoustic pressure signals leads to the selection and 

development of an Octave Band analysis technique. The results are then transferred to the feature 

space of the machine learning modules of Python and fed to several machine learning algorithms 

for training and testing. Different sets of training and testing data are chosen in each of the case 

studies in order to define the features’ utility.  

The method used is validated by applying it to a signal from an identical journal bearing. The 

results turn out to be very accurate, strengthening the methods credibility. The optimization of the 

algorithms is performed using cross validation tools available in Python. 

Finally, the algorithms developed are trained with data acquired from one journal bearing and 

tested with data from an identical one in order to examine the generalization potential of the 

technique.  
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Σύνοψη 

Στα ακτινικά και στα ωστικά έδρανα ολίσθησης χρησιμοποιείται η υδροδυναμική λίπανση για να 

μειωθεί η τριβή και η φθορά μεταξύ του άξονα και του εδράνου. Το λεπτό φιλμ λιπαντικού που 

δημιουργείται αποτρέπει την επαφή των δύο επιφανειών και το πάχος του εξαρτάται από το φορτίο 

που ασκεί ο άξονας στο έδρανο. Ως εκ τούτου, είναι σημαντική η γνώση είτε του πάχους του 

λεπτού αυτού φιλμ είτε του φορτίου ώστε να εξασφαλιστεί η σωστή λειτουργία και συντήρηση 

του εδράνου. 

Η πειραματική διάταξη που χρησιμοποιήθηκε είναι το Rotor Kit 4 (RK4) της Bently Nevada USA 

και οι μετρήσεις πραγματοποιήθηκαν στο Εργαστήριο Ναυτικής Μηχανολογίας της Σχολής 

Ναυπηγών Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου. Στην πειραματική 

διάταξη συμπεριλαμβάνονται μεταξύ άλλων ένας ηλεκτροκινητήρας, μία μονάδα ελέγχου της 

ταχύτητας περιστροφής του κινητήρα, ένα ακτινικό έδρανο ολίσθησης, ένας άξονας και δύο 

κυλινδρικές μάζες για τον άξονα. Η δειγματοληψία έγινε με χρήση του πακέτου LabVIEW. 

Σκοπός της εργασίας αυτής είναι η εύρεση ενός τρόπου καθορισμού του φορτίου που φέρει ένα 

ακτινικό έδρανο ολισθήσεως χωρις την επέμβαση στην σχεδίαση του σχεδίου του εδράνου. Εν 

συνεχεία, η ανάπτυξη μιας μεθοδολογίας που να μπορεί εν τέλη να ενσωματωθεί σε ένα 

υπολογιστικό εργαλείο το οποίο θα χρησιμοποιείται για την αποφυγή επικίνδυνων καταστάσεων 

φόρτισης των εδράνων. Οι προσπάθειες εστιάζονται στην δημιουργία μιας νέας μεθοδολογίας που 

να απλοποιεί την διαδικασία υπολογισμού του φορτίου αλλά θα έχει ισχυρή επιστημονική βάση 

ώστε να μπορεί να χρησιμοποιηθεί σε διαφόρων τύπων ακτινικά έδρανα. Η επεξεργασία των 

σημάτων ταλαντώσεων και ακουστικής πίεσης οδήγησε στην επιλογή και ανάπτυξη μιας τεχνικής 

βασισμένης στην Οκταβική ανάλυση. Τα αποτελέσματα μεταφέρονται στο πεδίο των 

χαρακτηριστικών (feature space) των βιβλιοθηκών μηχανικής μάθησης της Python και 

τροφοδοτούνται σε διάφορους αλγορίθμους μηχανικής μάθησης, οι οποίοι εκπαιδεύονται και 

αξιολογούνται.   

Για επαλήθευση, η μέθοδος χρησιμοποιείται σε ένα σήμα που παράχθηκε από ένα πανομοιότυπο 

έδρανο. Τα αποτελέσματα είναι αρκετά ακριβή, ενισχύοντας την αξιοπιστία της μεθόδου. Η 

βελτιστοποίηση των αλγορίθμων γίνεται με χρήση εργαλείων της Python. 

Τέλος, οι αλγόριθμοι που επιλέχθηκαν εκπαιδεύονται με το σήμα που προέρχεται από ένα έδρανο 

και αξιολογούνται με το σήμα που προέρχεται από ένα πανομοιότυπο έτσι ώστε να ελεγχθεί η 

δυνατότητα γενίκευσης της τεχνικής αυτής. 
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 Introduction 

For many years, the selection journal bearings and the proper shaft alignment has been a matter of 

investment cost. Nowadays, the increase of ships’ length has led to an increase of shafts’ length 

thus making the alignment more difficult and the need for a means to predict dangerous situations 

more profound. 

The running condition of a journal bearing is a subject of tribological analysis and is adequately 

described by the hydrodynamic lubrication theory [1]. A considerable number of papers are 

published every year over this topic, showing the importance of optimizing mechanical elements 

with tribological interest. The science of tribology studies the friction, wear and lubrication of 

mechanical elements. Friction and the consequential wear can be significantly reduced when a thin 

layer (film) of lubricant is generated between the sliding surfaces. As a result, the main goal of this 

science is to optimize the tribological behavior of such elements through models that can predict 

this behavior and suggest more suitable materials for each case studied. 

While there is a plethora of software packages that enable the modeling and mapping of a journal 

bearing’s behavior like ANSYS, there is little research on methodologies that enable the condition 

monitoring of the bearings and the existent focus on specific faulty operation statuses like oil 

contamination (see [2], [3], [4]). Condition monitoring informs the user in real time about the 

element’s status and operation and enables a faster and more appropriate course of action in case 

of maintenance or a malfunction [5]. For the better part, as far as journal bearings are concerned, 

very specific attributes of the bearing’s running condition can be monitored with non-invasive 

techniques (e.g. lubrication oil temperature [6]). 

One of the attributes that needs constant monitoring is the force bore by the bearing. The magnitude 

of this force is very important due to its strong correlation with the thickness of the lubricant’s film 

and its correlation with the load carrying capacity of the bearing. By design, there is a range of 

values in which the bearing performs satisfactorily and the film maintains its properties, classifying 

the status of operation as safe [1]. On the other hand, when the load is insufficient the bearing is 

considered lightly loaded and when the load exceeds a certain level the bearing is considered 

heavily loaded. Both cases are classified as unsafe. Due to the nature of this attribute, it is quite 

difficult to directly determine its value without interfering with the bearing’s design thus increasing 

the design’s complexity and price. As a result, indirect ways of measurement have drawn attention. 

A recent trend in monitoring are the machine learning algorithms. These algorithms have 

developed significantly over the past few years and have been integrated in many programming 

languages. With a variety of functionalities, machine learning algorithms can adjust to differently 

natured problems and, if programmed correctly, perform accurately. The combination of several 

algorithms is also possible, allowing more customization to the user. Python is one of the 

programming languages that has a machine learning module with most of the commonly used 

algorithms and gets regularly updated to meet new and more complex needs [7]. Due to the low 

computational cost and high computational speed, Python appears to be a simple and trustworthy 

choice.  
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1.1 Method Outline 

This experimental diploma thesis has taken place in the Laboratory of Marine Engineering 

(L.M.E.) of NTUA and, therefore, its main interest is to give solutions regarding the proper 

maintenance of marine journal bearings. The experiments were conducted on the Bently Nevada 

Rotor Kit 4 of L.M.E. Once the experimental setup is properly assembled and the monitoring 

system is installed a series of experiments take place. The measurements are transferred through a 

data acquisition card (DAQ) to the computer (LabView software) and get properly stored.  

The data processing used is the One-third Octave analysis and is applied on sections of the data, 

whose volume depends on the case studied. This processing is performed by a source code written 

in Python along with every needed adjustment. The frequency band domains produced from this 

analysis are then used to create the feature space of the machine learning algorithms. The 

importance of each feature varies depending on the problem at hand. The algorithms’ results 

depend greatly on the information given to the algorithm through the features and the user should 

pay attention to the selection process.  

The cases studied are intended to identify which of these signals and features serve to develop a 

technique that will be able to determine the charge status of a bearing by measuring the vibrations 

and acoustic pressure at the bearing base. In short, the main cases that are studied are the following: 

• Selection between Vibration and Sound Signals, 

• Investigating whether training data from one bearing can help predict the loading condition 

of a similar bearing and what features enable this function, 

• Combining training data from multiple bearings (manufactured from the same design plan) 

can produce an algorithm that can make accurate predictions for all bearings that are 

manufactured using this bearing design plan.  

1.2 Thesis Outline 

This thesis report is divided into 6 chapters. Chapter 1 includes the introduction, goal of the project 

and method outline. Chapter 2 describes the theoretical background of journal bearings and 

condition monitoring, including the hydrodynamic lubrication theory. In chapter 3, the theoretical 

background of machine learning is presented along with Python and its machine learning module. 

Chapter 4 describes the experimental setup and the experimental procedure, from the preparation 

of the experiments to the data acquisition. In chapter 5, the postprocessing of the raw data carried 

out and the Octave Band analysis are presented, as well as the case studies. Finally, chapter 6 

outlines the conclusions of this thesis and notes suggestions for future work. 
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  Journal Bearings 

2.1 Hydrodynamic Lubrication Theory 

 

The main goal of lubrication is to reduce friction and wear of machine elements with relative 

motion. When inserted between the two surfaces the lubricant can reach this goal and also act as a 

coolant. In a journal bearing the essential motion is sliding and the theory that describes this 

lubrication phenomenon is that of the hydrodynamic lubrication. Apart from the reduction of 

friction and wear, the lubricant allows the transfer of forces without the direct contact of the sliding 

surfaces creating a vast field of application for journal bearings. In order to achieve hydrodynamic 

lubrication, no pressurized fluid is required, though that may occur; but the requirement for 

continuous lubricant inflow is definite.  The pressure created is due to the supply of energy from 

moving surface of the shaft to the lubricant. After a certain critical value is reached, the pressure 

generated can separate the surfaces and support the shaft loading. This phenomenon was firstly 

investigated by Beauchamp Tower (1880s) and based on his results Osborne Reynolds proposed 

some equations which are presently used to interpret hydrodynamic lubrication. [1] 

Hydrodynamic lubrication conditions:  

1. There should be relative movement between the two surfaces with a value high enough to 

create a lubrication film that carries bare loads, 

2. An inclination between the sliding surfaces is mandatory for the creation of the 

hydrodynamic wedge. If the two surfaces are parallel then the creation of the pressure 

profile is not possible. 

In Figure 2.1 the mechanism of the creation of the hydrodynamic pressure between two surfaces 

with an inclination is shown. One surface moves at a constant velocity U while the other surface 

is stationary. There is always a sufficient amount of lubricant between the two surfaces, making 

sure that both conditions mentioned above are met. By moving the upper surface, the lubricant is 

forced to enter the converging geometry (wedge), resulting in a pressure build up. Pressure has a 

positive derivative at the inlet of the wedge, controlling the lubricant’s inflow, and a negative 

derivative at the outlet, thereby allowing the outflow of the lubricant. The velocity profile strictly 

depends on the pressure distribution and more specifically on the special derivative of the pressure. 

Therefore, the distribution profile at the inlet rotates the concave downward while it rotates the 

concave upward at the outlet, as shown in Figure 2.1. [1] 

The geometry of the plane slider shown in Figure 2.1 is similar to the hydrodynamic wedge created 

inside a journal bearing. The hydrodynamic wedge created between the journal (shaft) and the 

bushing (bearing) is shown in Figure 2.2. An appropriate mathematical model can be used in order 

to calculate the value of the hydrodynamic pressure and accurately predict the operating 

characteristics of a bearing. 
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Figure 2.1 Hydrodynamic pressure creation in the case of a plane slider bearing. The upper 

surface moves horizontally at speed U, while the lower surface is stationary [1] 

The nomenclature of the partial journal bearing in Figure 2.2: 

• Bearing diameter, D 

• Bearing’s radius, R 

• Shaft diameter, d 

• Shaft radius, r 

• Radial clearance, c (the difference in the radii of the bearing and the shaft) 

• Rotational speed, N 

• Lubricant dynamic viscosity, μ 

• Minimum film thickness, ho 

• Eccentricity of the shaft, e 

• Angular length of a partial bearing, β 

Figure 2.2 shows a section of a journal bearing and a shaft that rotates clockwise. Suppose there 

is a sufficient amount of lubricant inside the bearing. The rotation of the shaft drives the lubricant 

into the clearance around the shaft in the direction of the rotation. As the lubricant enters this 

geometry, it pushes the shaft to the opposite side of the bearing. This creates a lubricant layer with 

a minimum film thickness ho at a certain position which is not at the bottom of the bearing, but a 

position displaced along the axis of rotation. This position is a result of the balance of forces on 

the vertical and horizontal axis.  

In Figure 2.2, the center of the shaft is point O while the center of the bearing is point O’. The 

minimum gap ho is located at line created by the two centers, OO’. The eccentricity e of the axis 

relative to the center of the bearing is also shown in Figure 2.2 and the radial grace c, which is 

defined as c = R-r, where R is the radius of the bearing and r the radius of the shaft. ho should be 

greater than 0 and less than c. When there is no rotation, the center of the shaft O is under the 

center of the bearing O’ and has no horizontal displacement. On the other hand, when the shaft 

rotates at a very high speed, due to the high hydrodynamic speed, the two centers coincide. 
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Figure 2.2 Cross-section of a partial journal bearing in operation  

2.2 Bearing Loading Condition 

The journal bearing creates a hydrodynamic film in order to carry the load of the shaft. When there 

is a variation in the loading, the bearing assembly reacts and changes its eccentricity and film 

thickness until the load is carried. The actual minimum permitted value of ho is affected by the 

surface roughness, the specifications of the lubricant and the bearing dimensions. 

In hydrodynamic lubrication theory, there are three distinct operation conditions (Figure 2.3): 

1. Full film hydrodynamic lubrication, 
2. Mixed film lubrication, 

3. Boundary lubrication. 

The first condition describes the safe mode where there is enough oil and the contact of the two 

surfaces is prevented. No wear is observed and the oil film thickness is much greater than the 

surface roughness. 

The cases where the lubrication film is too thin to separate the surfaces are called mixed film 

lubrication or boundary lubrication. In these cases, the lubricant can only receive a part of the 

shaft’s load and thus there is contact between the surfaces. The mixed film lubrication refers to the 

transition from boundary lubrication to full film lubrication. There is asperity to asperity contact 

of peaks and wear is inevitable if there is prolonged operation in this condition. 

Boundary lubrication refers to the condition where the two surfaces are not separated by the 

lubrication film and there is asperity contact. The oil film thickness is normally less than the 

surfaces’ roughness and wear damage is significant. 
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Figure 2.3 Three Lubrication Conditions [8]. 

McKee brothers have obtained the plot presented in Figure 2.4 after carrying out a test of friction 

and show how the coefficient of friction f changes depending on the bearings characteristic μN/P. 

As described by Petroff’s equation, f = 2π2(μΝ/Ρ) (r/c), with P being the load.  

 

Figure 2.4 Variation of the coefficient of friction [1] 

In Figure 2.4 there are two regions, one on the left of AB (unstable) and one the right of AB 

(stable). When operating on the stable side, if for example a rise in temperature of the lubricant 

occurs then its viscosity decreases hence μN/P decreases. As a result, the coefficient of friction 

decreases too, thus not too much heat through shearing the lubricant is generated and the 

temperature of the lubricant eventually drops. When operating on the unstable side, the same rise 

in temperature would have the opposite effect on the coefficient of friction, rising the temperature 

even more. A lubricant is usually consisted of hydrocarbons and reacts to the rise of temperature 
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by vaporizing lighter components. While this process takes time, the viscosity of the lubricant 

constantly increases which leads to a rise of the heat generation rate that elevates lubricant 

temperature even more, entering a vicious circle leading to failure.  

2.2.1 Insufficiently loaded bearings 

Insufficiently loaded bearings are called lightly loaded. Such bearings are susceptible to 

subsynchronous vibrations called “oil whirl”. The pressure of the lubricant film is higher than that 

needed to support the shaft, which lifts the shaft up to a certain point and then drops it down. The 

vibrations produced can cause damage to the bond of e.g. the Babbitt layer with the steel and lead 

to failure.  

 

Figure 2.3 Result of metal-to-metal contact due to ‘oil-whirl’ induced vibration [9] 

Moreover, it is inherently difficult for a journal bearing to bear big dynamic loads and avoid 

damage. It is more difficult when the properties of the oil film are unstable because of the 

insufficient loading of the bearing [1]. If the oil is modeled as a spring and a damper, then the 

insufficient loading decreases the resistance against deformations of the spring (K) and the 

damping properties of the damper (C). 

2.2.2 Overloaded bearings 

If plotted, the timeseries of the loading condition of a naval journal bearing would have many 

fluctuations. That is explained by the nature of a ship’s construction materials, which is mostly 

steel, and the ship’s deformation principally caused by its inertia, cargo and buoyancy. The shaft 

is deformed as well causing a change in the load imposed on the bearing. The force applied on the 

bearing has a direct relation to the oil film thickness developed in the bushing. Oil film thickness 

decreases proportionally with the increase of the load. 

Suppose that both oil temperature and the rotational speed of the shaft are constant. When there is 

a rise in the load, as described above, the bearing assembly will react and change the oil film 

thickness and its eccentricity. If this load is too high then, as mentioned earlier, the temperature 

will rise, leading to failure due to oil overheating [10]. Overloading can also lead to wiping. Some 

of the symptoms are heavy scoring, circumferential movement of while metal, re-solidification of 

whitemetal deposited in oil grooves. Oil contamination is also present if there is metal-to-metal 

contact and material is. 
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As mentioned above, there are many dynamic loads met in the sea. Excessive dynamic loads lead 

to metal fatigue which causes cracks in the white area surface around the application area of the 

load. These cracks develop sideways and can lead to a whitemetal detaching. Big dynamic loads 

can have an upward direction and cases have been reported where the housing of the bearing has 

been damaged.  

 

  

Figure 2.4 Bearing overloading: Metal fatigue (left) and excessive wiping (right) 
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2.3 Condition monitoring and Predictive maintenance 

A very common type of surface damage is wear. It usually arises from the interaction of surfaces 

and is connected with material properties, geometry, lubrication and operating status. Predicting 

the rate of wear of a product is important in determining its life span and thus dealing with the 

repair or replacement needed. Engineers can nowadays make accurate predictions using materials 

science and modeling/simulation software regarding a component’s e.g. strength, but find it 

difficult to address wear-related issues due to the dynamic nature of the phenomenon. [11] 

Condition monitoring is the process followed by an operator of constantly monitoring the value of 

a parameter in machinery. The goal is to observe significant and meaningful changes in that value 

which could indicate a possible malfunction. By doing so it is possible in an early stage to prevent 

conditions that could lead to an emergency breakdown in an early stage and, if needed, schedule 

maintenance in a more convenient manner. [5] 

A term that is closely related to condition monitoring is predictive maintenance. This term 

describes the techniques used to determine the actual condition of operating equipment so as to 

roughly calculate when maintenance should be carried out. These methods have a positive 

financial impact for the owner of the machinery monitored, a positive environmental impact due 

to less accidents that could lead to environmental issues and material consumption and, finally, 

promote safety for the staff. Condition monitoring is one of the techniques used in predictive 

maintenance. [12] 

In the field of journal bearings, it is quite important to monitor a components status and wear for 

both safety and financial reasons. Rotating machines are of high interest for the condition 

monitoring industry and, in more detail, vibration measurements are the most common technique 

[3]. The measurements acquired through accelerometers and microphones are then processed in 

respect with the type of the machinery and interpreted by specialists in the field. Research in 

sensors technology has provided a wide range of equipment that can be used to monitor a variety 

of running condition attributes. 
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 Machine Learning Algorithms 

3.1 Introduction to Machine learning algorithms 

Machine learning, also known as predictive analytics or statistical learning, is a research field 

combining statistics, artificial intelligence and computer science and its goal is to produce 

knowledge from specific data [7]. Nowadays, it is very common to interact with machine learning 

models because of the trending user-customization-friendly online platforms and websites. 

Handcoded decision-making algorithms are faced with the disadvantage that they are task- or 

domain-specific and that a constant need for a human expert on the field would arise due to the 

importance of understanding how the decision process works. However, in machine learning, no 

such need is present.  

One of the most successful kinds of machine learning algorithms are the supervised learning ones. 

The process requires that the user provides a set of known input and output data to the algorithm 

and the algorithm uses these sets for training its decision-making ability. Having enough training 

data is a prerequisite for such an algorithm to work and defining enough can sometimes be tricky 

for the user. [7] 

The two major types of supervised learning problems are called classification and regression. In 

classification, the goal is to predict a certain class label from a predefined set of attributes. When 

there are two classes the case is called binary classification and when there are more than two it is 

called multiclass classification. In classification algorithms, the accuracy of the algorithm is 

measured by the number of correct class predictions that the algorithm has managed. 

In the case of regression, the task is to predict a floating-point number in programming terms or a 

real number in mathematical terms. A simple regression task would be the prediction of a rotor’s 

rotational speed. The output values have an obvious continuity in the positive integer numbers 

spectrum. A regression algorithm’s accuracy is defined by the coefficient of determination or R2: 

𝑹𝟐 = 𝟏 −
𝑺𝑬𝒚̂

𝑺𝑬𝒚̅
   

Where  

• 𝑆𝐸𝑦̂ = ∑ (𝑓𝑖 − 𝑦𝑖)
2

𝑖  is the squared error of the training data to the regression line, 

• 𝑆𝐸𝑦̅ = ∑ (𝑦𝑖 − 𝑦̅)2
𝑖  is the squared error of the training data to the mean y.   

The other kind of machine learning algorithms is called unsupervised. In this type of algorithms 

only the input data is known and no output data is defined. Although there are many cases for 

which these algorithms become useful, their use is limited because of the difficulty to understand 

and evaluate them. [7] 

Unsupervised algorithms are divided into two major categories. Transformations and clustering. 

Transformation algorithms create a new representation of the data, depending on the user’s needs, 

by feature processing. For example, a five-dimensional problem can become two-dimensional for 

plotting purposes.  

On the other hand, clustering algorithms subdivide data into well-defined groups of same/similar 

items. These algorithms are frequently used for tasks, like segmenting customers into groups 
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depending on their preferences, where the number or the “properties” of the groups are not known 

in advance. 

3.2 Types of Supervised Machine learning algorithms 

In this paragraph, the main algorithms that are used for this thesis will be presented. Each algorithm 

functions and performs differently from the others due to the approach of each developer. Some 

algorithms are based on existent mathematical models. Other algorithms are created in order to 

correct the weaknesses of older algorithms or combine the advantages of several algorithms into 

one.  

3.2.1 k-Nearest Neighbors 

k-Nearest Neighbors algorithms used for classification are simple and only require the storage of 

the training dataset. They do not create in internal model to aid with the prediction. When given a 

new data point, the algorithm searches for the closest point in the dataset. k represents the number 

of closest points that will participate in the majority vote used to classify the new data point. The 

class assigned to the point is that with the most representatives in the k-nearest neighbors.   

 

Figure 3.1 Decision boundaries of the nearest neighbors algorithm for different values of k 

In its simplest form, the majority vote involves computing the distances between all pairs of data 

points: for N samples and D dimensions this form scales as O[DN2]. Several distance metrics are 

available: 
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Figure 3.2 Distance Metrics 

When the sample is relatively small the algorithm is performing well but when the samples 

becomes too big then the nearest neighbors algorithms become impractical. This computation 

setting is called brute-force 

Different and computationally cheaper techniques involve indirect estimation of distance between 

two points with the use of tree-based data structures (Tree structures are mentioned in paragraph 

3.2.2). K-D Tree is a binary tree which generalizes two-dimensional Quad-trees or three-

dimensional Oct-trees to a random number of dimensions. In this way, K-D crates data-populated 

regions without calculating the multi-dimensional distance. [7] 

3.2.2 Decision Trees 

The decision trees are models that create an order of if/else questions that ultimately lead to a 

prediction of the value of the target variable. The training is performed with the data features. In 

Figure 3.3 there is a series of boxes called nodes. Nodes can either be decision nodes that lead to 

another set of nodes (‘Can Fly?’ node, Figure 3.3) or a prediction node that terminates the 

procedure (‘Hawk’ node, Figure 3.3). The prediction nodes can also be called leaf nodes.  

 

Figure 3.3 A simple decision tree to distinguish animals [7] 

The first step in tree building is to find a feature that is most informative about the output variable. 

There are several criteria that can be used to perform this choice [13] [14]: 

I. Entropy H(S) measures the amount of uncertainty in the dataset S in the following way 

𝑯(𝑺) = ∑ −𝑝(𝑐) log2 𝑝(𝑐)

𝒄 𝝐 𝑪

 

Where, 

• S, the dataset for which the entropy is calculated for 
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• C, set of classes in S 

• p(c), the ratio of the number of elements in class c to the number of elements in 

dataset S 

The entropy is calculated for each feature and the feature with the smallest entropy is used 

to split the dataset. When H(S)=0 then the dataset is thoroughly classified.  

II. Information gain IG(A) is defined as the difference in entropy between before and after 

splitting the dataset S on a feature A. 

𝑰𝑮(𝑺, 𝑨) = 𝑯(𝑺) − ∑ 𝒑(𝒕)𝑯(𝒕)

𝒕 𝝐 𝑻

 

Where, 

• H(S), the entropy of set S 

• T, the subsets of S created by splitting on feature A such that 𝑺 = ⋃ 𝒕𝒕𝝐𝑻  

• p(t), the ratio of the number of elements in class t to the number of elements in 

dataset S 

• H(t), the entropy of subset t 

The information gain is calculated for all the features and the feature with the largest 

information gain is used to split the dataset S. 

Using this information, the data (root node) is split into two newly formed nodes (depth=1). 

Although a single split might be adequate, in many cases the percentage of purity of the nodes is 

not high enough. By repeating the previous process, a more accurate model is created 

(depth=2,3…) with each node rising its purity (Figure 3.4). If data partitioning continues then 

every leaf node eventually contains only one regression value/class and is called pure. 

 

Figure 3.4 Decision boundaries of decision trees with depth=1 (left) and depth=2 (right) [7] 

According to the values of its features, a new data point lies in a specific region of the partition 

produced from the training process. The prediction results from the majority target, if the leaves 

are not pure, or from the single target, if the leaves are pure, of that region.  
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3.2.3 Ensemble methods 

In ensemble methods, the models created are a combination of different/many machine learning 

models that create a more powerful and effective algorithm with a higher predictive performance. 

Each individual model is called a base learner. The major representatives of this category of 

algorithms are the Random Forests and the Gradient Boosted methods that have as a base learner 

the classic Decision Trees.  

3.2.3.1 Random Forest 

Random Forests are a way to solve some inherent drawbacks of Decision Trees. A random forest 

is a set of many random trees that differentiate from each other in two ways: the data points used 

to build the tree and the features used for each split. The algorithm starts (b=1) by drawing a sample 

from the whole training dataset and creating a tree (T) according to a set of features drawn from 

the available feature space. Once the minimum node size nmin is reached, the algorithm creates the 

next random tree until 𝑏 =  𝐵, where B is the number of estimators (random-forest trees) defined 

by the user. The end of the training results in an ensemble of trees {𝑇}1
𝐵. 

After the random-forest trees are created the algorithm makes a prediction for each tree. If it is a 

regression problem, the algorithm averages the results to produce a prediction for the new data 

point x [14]: 

𝑓𝑟𝑓
𝐵  (𝑥) =  

1

𝐵
 ∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
 

If it is a classification problem then the algorithm creates a voting strategy where every tree 

provides a probability for each class and then all the probabilities are averaged so as to find the 

highest one [14]: 

𝐶̂𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{𝐶̂𝑏(𝑥)}1

𝐵 

Where, 

• 𝐶̂𝑏(𝑥), the class prediction of the bth random-forest tree. 
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3.2.3.2 Gradient Tree Boosting 

In Gradient Tree Boosting methods, the algorithm generates trees in a “serial” way and each new 

tree attempts to correct the mistakes of the one previously created. The user defines the trees’ size 

and aims to create shallow trees. This is called pre-pruning. These shallow trees are called weak 

learners and their depth usually variates between two and five. As more trees (m) are added, the 

performance of the algorithm improves until the max number of trees is reached (M) or 

performance is not improving. 

 The figure below shows the exact methodology followed. 

 

Figure 3.5 Gradient Tree Boosting Algorithm [14]. 

Step 1 of Figure 3.5 shows the first prediction leaf created by the algorithm. It is the lowest value 

of the sum of the loss function L (yi, γ), where yi is the actual value of the dataset and γ is the 

predicted value, with respect to γ. The loss function can be chosen from many different formulas 

but the most common is the following: 𝐿 =
1

2
[𝑦𝑖 − 𝑓(𝑥𝑖)]2 

In step 2, an iteration is performed for the number of trees M. Firstly (a), the pseudo residual ri, m 

is calculated as the derivative of the loss function for i = 1, 2…, N, where N is the number of 

samples in the dataset. Then (b) a regression tree is fir to the pseudo residuals ri, m with terminal 

regions (leaves) Rj, m, where J is the number of leaves in the tree. The output value γj, m for each 

leaf is then calculated and it is the value for γ that minimizes the summation in 2.c of Figure 3.5. 

In part (d) the new prediction fm(x) for each sample is calculated. This prediction is taking into 

consideration the previous prediction fm-1(x) and the summation of the output values γj, m. Step 2 is 

repeated until m=M.  

Step 3 is the final summation of the M trees created in step 2. 
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3.3 Software and features 

3.3.1 Python 

Python is a broadly applicable programming language that combines the features of a general-

purpose language (GPL) and of a domain-specific language (DSL). This characteristic makes it 

suitable for data science applications like machine learning, statistics, image processing, 

visualization, neural networks and more. In addition, Python enables the user to directly interact 

with the code by using terminals like Jupyter Notebook and helps produce a compact and readable 

code. It is widely used in industrial applications because of its adaptiveness to existing systems 

and the ability to produce elaborate graphical user interfaces (GUIs) [15]. Python is also supported 

by a vast community of users and developers that provide constant feedback concerning bugs and 

needs for the majority of the official libraries, allowing for a continual improvement of each 

package. Finally, Python has a great number of different libraries that support simple to 

computationally-intensive tasks. In the case of machine learning, the developers of Python provide 

the package called scikit-learn. 

3.3.2 scikit-learn 

Scikit-learn is the machine learning library of Python. It is an open source project that is free and 

its source code is available to see and edit. As mentioned above, scikit-learn belongs to the part of 

Python that has a big active community and is being constantly improved and expanded by its 

developers. This library contains some of the most well-known and powerful algorithms along 

with well-written and comprehensive documentation about each of them. It also provides cross-

validation tools to optimize the parameters of the algorithms, a procedure called Hyper-Parameter 

tuning. Apart from the official documentation found online, due to the big community, there are 

plenty of tutorials and code snippets for a new user to get acquainted with the library [16]. 
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 Experimental setup and description of experimental procedure 

4.1 Experimental setup 

4.1.1 Bently Nevada 

The Marine Engineering Laboratory features the Bently Nevada Rotor Kit Model RK4. The device 

is designed and manufactured in the United States of America. It consists of a long, sturdy steel 

base, at one end of which has a special position for mounting a radial bearing. At the other end is 

a small electric motor with a maximum rotational speed of 10000 RPM. The main features of the 

base and shaft are shown in Table 4.1:  

Base dimensions Rotor dimensions 

Length 780 mm Length 45.7 mm 

Width 340 mm Diameter 24.95 mm, 10 mm 

Height 

Weight 

165 mm 

14.5 kg 

Weight 0.3626 kg 

Table 4.1 Base and Rotor Dimensions 

The diameter of the shaft is 10mm throughout its length except for a small 25.4 mm part at the end 

with a diameter of 24.5 mm, designed this way so as to operate along with the bearing. 

The device also has additional weights which can be used to modify axle loading. Specifically, 

there are two cylindrical masses 75 mm in diameter, weighing 0.800 kg each, with a length of 25.0 

mm [17] [18]. 

4.1.2 Electric motor & Speed control unit 

The rotor is driven by an electric motor whose main characteristics are shown in Table 4.2 that 

follows. 

Electric motor characteristics 

Max. rotational speed 10000 rpm 

Weight 14.5 kg 

Table 4.2 Electric Motor Characteristics 

The motor speed is adjusted with the help of the RK4 Speed Control Unit, which has a display to 

indicate the speed. The operator can monitor the current rotational speed of the device or, by using 

appropriate buttons, set the desired operating speeds. The controller is informed about the shaft 

rpm with the help of a proximity probe mounted on a properly configured gear wheel. The 

controller can modify the axle speed and acceleration (or deceleration) to achieve the desired 

speed.  
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Figure 4.1 Bently Nevada RK-4 Speed Control unit (left) & Electric Motor (right) 

4.1.3 Oil pump 

The oil pump of the assembly is the Bently Nevada RK-4 Rotor Kit Oil Pump. This pump features 

a small, analogue type indicator to indicate oil pressure in either psi or kPa. On the other side, it 

has two sockets, on which the oil supply to and from the bearing is located. 

  

Figure 4.2 Bently Nevada RK-4 Oil Pump front side (left) and back side (right) 
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4.1.4 Journal Bearings 

The first bearing used was ServoFluid Control Bearing which is designed, manufactured and 

assembled by Bently Nevada. 

 

Figure 4.3 Bently Nevada RK-4 ServoFluid Control Bearing [17] 

1) Proximity probes Mounting holes 

2) Fluid Film Bearing Support 

3) Bearing Retainer 

4) Oil Reservoir 

5) Bearing Support  

6) Main Pressure Valve 

7) Oil Bearing Seal 

It should be noted that the bearing is made of Plexiglas plastic (Poly methyl methacrylate, PMMA) 

and its base, including the oil reservoir, is metallic. The major geometric features of the bearing 

are presented in the following table: 

ServoFluid Control Bearing Bently Nevada: Nominal Dimensions 

Inner diameter 25.43 mm 

Length  25 mm 

Clearance (c=R-r) 0.225 

Table 4.3 Bently Nevada RK-4 ServoFluid Control Bearing Nominal Dimensions 

The second bearing that was used was manufactured according to the design plans of Bently 

Nevada, as described in Appendix A. The inner diameter of this bearing is measured with a three 

points internal micrometer (accuracy of 0.005mm) and is found slightly conical so the value shown 

in Table 4.4 is the inner diameter in the center of the shaft. The material used was ACETAL 

(Polyoxymethylene, POM) and its oil resistance to many types of oil is high [19].The oil resistance 
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properties were also tested, confirming that the dimensions and properties of the bearing would 

not change throughout the experimental procedure. A TEFAL Optics scale with accuracy of 1 

gram was used in order to determine the absorption of lubrication oil by the bearing. The bearing 

was weighted (100 grams) (Figure 4.4, a), fully immersed in lubrication oil (Figure 4.4, b) and 

the cleaned and weighed again (100 grams) (Figure 4.4, c). The second weighting confirmed the 

material properties found in the bibliography. The dimensions of the bearing were also measured 

and found unchanged. The experiment could induce wear to the bearing and it could be weighed 

again in order to determine the extent of the wear. However, the duration of the experiments was 

small so no such action was needed. 

Custom ACETAL Bearing: Nominal Dimensions 

Inner diameter 25.43 mm 

Length  25 mm 

Clearance (c=R-r) 0.225 

Table 4.4 Custom Bearing Nominal Dimensions 

   

  (a)     (b)     (c) 

Figure 4.4 Bearing weighting test 
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4.1.5 Soundproof Cover 

In order to acquire better and more accurate results, a soundproof cover was designed and put over 

the bearing. This cover works beneficially in two ways: 

• it prevents the sound pressure waves of external sources from scrambling the useful waves 

produced by the bearing assembly and 

• it absorbs the waves that are produced by the assembly, not letting them get reflected and 

return as noise in the microphone.  

  

Figure 4.5 Soundproof cover 

4.1.6 Triaxial Accelerometer and Microphone 

The triaxial accelerometer is a ICP® Model 356A02 with a hexagonal base (Figure 4.6). Its 

frequency range (±10%) spans between 0.5 and 6000 Hz and has a measurement range of ±500 g 

pk [20]. The hexagonal base of the accelerometer is mounted on the surface with the instant 

adhesive Loctite 454 and the accelerometer is then secured to the base. 

The microphone is the ICP® 130D21 Array Microphone, a prepolarized condenser microphone 

coupled with a ICP® sensor powered preamp. Its frequency response (-2 to 5 dB) is 20 to 15000 

Hz [21]. 

The calibration data for both sensors are found in Appendix A 

  

Figure 4.6 ICP® Microphone (left) and Triaxial Accelerometer (right) 
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4.2 Conduct of the experiment 

4.2.1 Preparation for the experiment 

Before performing the experiments, it is necessary to properly prepare the experimental setup and 

the computer that will receive the results of the measurements of each experiment. In the previous 

paragraphs, parts of the Bently Nevada Rotor Kit 4 were described. The process of assembling the 

experimental setup as well as acquiring signals will be described in this section. 

At one end of the assembly lies an electric motor which rotates the rotor. A simple radial bearing 

follows, then two cylindrical weights (the number depends on the desirable loading condition of 

the bearing) are adjusted, and at the other end of the shaft there is the radial sliding bearing. The 

motor is controlled by the RK4 Speed control unit, which enables it to determine the rotational 

speed and the axle acceleration / deceleration. There is a triaxial accelerometer mounted on the 

bearing support (number 1, Figure 4.7) located at the end of the shaft and a microphone mounted 

on the soundproof cover (number 2, Figure 4.7) above the bearing (number 3, Figure 4.7).  

 

 

Figure 4.7 Bearing and Soundproof cover mounted with the sensors 

The accelerometer and the microphone are connected to a Model 482A22 ICP® Sensor Signal 

Conditioner shown in the left side of Figure 4.8 with four signal inputs and outputs, as shown on 

the right of Figure 4.8. The signal is transferred through BCN-type cables. On top of the left 

picture in Figure 4.8 there is an indicator with three colors; yellow, green and red and the words 

OPEN, OK and SHORT respectively. Bellow there is a channel controller for each of the four 

channel inputs of the unit. While the conditioner is plugged in and the power switch is on, a vital 

check of the signal coming from the accelerometer and the microphone is performed. All four 

channels are checked on the three-colored indicator and the expected result is color green – OK 

[22]. The conditioner is then connected to the IoTech DaqBook 2000 that can gather signals from 

different signal conditioners and simultaneously send them to the data acquisition card. 
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Figure 4.8 ICP® Sensor Signal Conditioner 

The data acquisition card used is the IoTech DaqBoard 2001 and constitutes the input of the analog 

signal in the computer. The software installed on the computer is the NI LabView 2017. The data 

acquisition is performed in Single-ended mode and refers to the circuits set-up in which voltage is 

measured between one signal line and common ground voltage (Vcm) [23]. The preparation of the 

computer is as follows: 

1) Installation of the DaqBoard on the motherboard, 

2) Installation of IoTech software for the correct card configuration (Figure 4.9), 

3) Installation of NI LabView, 

4)  Identification of DaqBoard in LabView [24] (Figure 4.10) 

5) Coding of the sampling process of the experiment in LabView 

  

Figure 4.9 DaqBoard Configuration 

 



                                                                   Experimental Determination of Journal Bearing                                

Condition with a Machine Learning Technique 

36 

 

In Figure 4.10 is the Block Diagram developed in LabView. The basic sections to an acquisition, 

as defined by the LabView manual [25], are the following:  

1) Initialize the Acquisition, 

2) Configure Channels, 

3) Define Trigger Method, 

4) Configure Scan Properties, 

5) Arm the Acquisition, 

6) Read Scans, 

7) Close the Acquisition. 

These sections are all present in the Block Diagram shown in Figure 4.10 with the same numbers 

as the list above and the blocks of code used were provided by DaqBoard 2001 LabView Support. 

The remaining numbered blocks were used for: 

8) Time Delay, 

9) Acquisition Duration control, 

10) Signal Data Storage. 

Apart from the numbered blocks, there are several indicators that are managed in the Front Panel 

of LabView and allow to determine whichever parameter of the experiment like the type of file 

the data will be stored in or the delimiter used to separate the data inside that file. 

 

Figure 4.10 LabView Block Diagram 
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The sampling rate of each experiment is 1000 samples per second and the duration of the 

experiment is thirty seconds. Both of these values are set in the Front Panel of LabView. There is 

an example of the Front Panel of this experiment shown in Figure 4.11 where the Scan Rate, the 

Start and Stop Types, the Configuration of the Channels and the Measurements Waveform Chart 

are visible.  

   

Figure 4.11 LabView Front Panel 

4.2.2 Experimental procedure 

The measurements are acquired from the microphone and the accelerometer with a sampling rate 

of 1000 samples/sec which are placed on the soundproof cover and the bearing support 

accordingly. The signal received by the sensors is forwarded through a data acquisition card to the 

computer and stored. Figure 4.12 shows a typical series of acceleration z measurements. On the 

y-axis is the value of the signal in millivolts (mV) and on the x-axis is the time in seconds (s). The 

duration of this experiment is ten seconds so there are 10000 samples in this figure. 

Number of samples = t ∙ 1000, t in sec 

 

Figure 4.12 Typical acceleration z measurements 
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The first step of the experiment, before switching on every device, is to double-check every screw 

on the set-up and set the protection covers in place. Because of the high rotational speeds, a safety 

issue arises. After switching on every device, the test of the sensors as described in paragraph 4.2.1 

takes place and a short test on LabView is run so as to make sure that the signals are coming 

through. If there is no problem then the soundproof cover along with the sensors are put in place.  

The oil pump motor is switched on so that the lubrication oil reaches the bearing and shaft and 

after making sure that there is a proper oil circulation the soundproof cover lid is placed. A slow 

rotational speed is set in the Speed control unit to reach a better lubrication of the bearing and shaft 

and to check for a possible leakage or other problems. In the case that no unexpected error occurs 

the actual experiments begins. It should be mentioned that the bearing at the other side of the shaft 

also needs lubrication and that is achieved with a plain lubrication spray.  

The rotational speed of the shaft changes about every 2 minutes, so the shaft balances on the 

bearing at different values of dimensional eccentricity and angle of behavior. This affects the 

horizontal and vertical values of vibrations and the levels of the acoustic pressure produced. In 

particular, the rotational speed is increased from zero to 4500 RPM, moving the shaft closer to the 

center of the bearing and changing the measurements of the accelerometer and the microphone. 

The specific rotational speeds used for the experiments are 500 RPM, 1000 RPM, 1800 RPM, 

2500 RPM, 3300 RPM, 4000 RPM, 4500 RPM. There is a small variation of the speed during each 

experiment of ± 10 RPM. The cylindrical masses mentioned in paragraph 4.1.1 and shown in 

Figure 4.13.  

 

Figure 4.13 Cylindrical mass 

To determine the mean load from the bearing, the Shaft Alignment Tool of the Marine Engineering 

Laboratory (L.M.E.) is used. Three loading conditions are modeled: no cylindrical mass added 

(Figure 4.16), one cylindrical mass (Figure 4.17) and two cylindrical masses added (Figure 4.18). 

The following steps are needed for the proper modeling of the shaft: 

• Selection of the number of beams that combined create the shaft, 

• Determination of beam properties, (Figure 4.14), 

• Determination of support nodes and external forces application nodes 

• Apply forces and specify support points (Figure 4.15) 
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Figure 4.14 Shaft Alignment: Beam Properties 

In Figure 4.14, Current Beam refers to the part of the shaft that is being defined, Length refers to 

the length of this part, Moment of Inertia refers to I [m4] and Young’s Modulus refers to E [N/m2]. 

The calculation of the Distributed Load section is done in the following way: 

𝑤 =
𝜋 ∙ 𝐷2

4
 𝑝 

Where, 

• w, the distributed weight of the shaft 

• D, the shaft diameter 

• p, the shaft density 

 

Figure 4.15 Shaft Alignment: Force Application and Support Points Specification 

(Constrain) 

It should be noted that while modeling with the help of the Shaft Alignment program, the following 

assumption was made: The axial support point position inside the sliding bearing was taken half 

the length of the bearing. This assumption applies only if the shaft is fully aligned with the bearing. 

In practice, however, due to the bending arrow of the shaft, there is a shaft misalignment inside 

the bearing, which is characterized by the relative angle of the misalignment γ. Therefore, the 

pressure development in the radial sliding bearing will not be symmetrical, resulting in the position 

of the bearing in which the resultant support force is exerted not to be identical to the center of the 

bearing along its length. 
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Figure 4.16 Shaft Alignment: Modeling of the unloaded shaft 

 

Figure 4.17 Shaft Alignment: Modeling of the single-loaded shaft 

 

Figure 4.18 Shaft Alignment: Modeling of the double-loaded shaft 
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Figure 4.19 Bently Nevada Rotor Kit 4 Assembly 

The file produced after each experiment is a comma delimited values file (.csv) with every line 

containing an instance with five values; sound, acceleration x, acceleration y, acceleration z in mV 

and rotational speed in RPM. The succession of the five values is determined in the Front Panel 

along with a title, if needed, for each column.  
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 Data analysis - Results  

5.1 Raw data processing and Octave Band analysis 

Appropriate processing is performed for each set of experimental results to determine the loading 

condition of the bearing. The first stage of this processing includes the conversion of the raw data 

acquired through the acquisition card and stored in the .csv files. This data, as mentioned above, 

are measured in mV. According to the Calibration Certificate of each axis of the triaxial 

accelerometer and of the microphone, the following multiplication should be conducted: 

Calibration Data 

X axis 1.002 mV/m/s2 

Y axis  0.990 mV/m/s2 

Z axis 0.979 mV/m/s2 

Microphone 33.8 mV/Pa 

Table 5.1 Microphone and Accelerometer Calibration Data 

As the data files contain an enormous number of instances and there are many data files as well, a 

small Python script is prepared to deal with these conversions. Once a file is read, another file is 

produced with the proper data. The latter file is then fed to a second Python script that cuts small 

samples of one, three of five seconds in duration of one value e.g. acceleration x. These different 

values of duration aim to find the minimum amount of data needed for the machine learning 

algorithm training. This minimum value is not known and constitutes a highly important parameter 

of the data processing and will be shown in more detail in paragraph 5.2 and 5.3. 

The next step of the processing is requiring a choice between many signal processing methods. In 

many papers, the RMS or the Peak-to-Peak values of the signal are used as features to build the 

training dataset of the algorithms. However, in other techniques, noises and vibration waves are 

broken up into sine waves and transferred to the frequency domain [3]. In this study, the octave-

band type analysis is used to filter the acceleration and sound pressure signals. This type of analysis 

is chosen for two main reasons: 

1) The frequency domain reveals frequency components and their individual amplitudes,  

2) It can be easily combined with machine learning (in comparison to simple FFT analysis).  

Vibration signals of interest can extend between frequencies from near 0 Hz to around 70 Hz and 

noise signals to can reach very high frequencies depending on the application (e.g. aircrafts 

generate high frequency noise) [26].  A complex harmonic signal might have many frequency 

components and in the real world that is normally the case. Industrial noise and vibration are either 

complex signals or random signals and should be analyzed in frequency bands. Out of many types 

of frequency bands, the octave bands are the most widely used for frequency analysis and are 

concerned with halving or doubling the frequency. In this study, a narrower band analysis is 

required and thus the one-third-octave bands are used.  
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If the center frequency of a band is defined as f0, the upper frequency limit of the band as fu and 

the lower frequency limit as f1, then [26]: 

fu = 2n f1, 

where n can be any number and equals to 1/3 in the case of the one-third-octave bands. The center 

frequency is the geometric mean of the upper and lower limit so: 

f0 = (f1 fu )
1/2

, 

f0 = √2 f1 = fu / √2 

After the bands are created, the signal passes through bandpass filters that correspond to each band. 

The power/energy spectrum level is then calculated for each band by placing a logarithm on the 

mean-squared pressure of the band (p1
2) divided by the squared reference pressure (pref

2) as shown 

below: 

Lp band = 10 log10 (p1
2 

/ pref
2) 

where pref
2 is an internationally accepted value equal to 2x10-5 N m-2. 

Each band will now be presented as a feature for the training process of the machine learning 

algorithms. The following tables show the match between the bands (central frequencies) and the 

features’ names. Because there is overlap between sound and vibration bands, some bands will 

have double names. This correction is necessary for the case studies where both sound and 

vibration signals are used.  

Vibration Features nomenclature  

Feature Nominal Band Center Frequency 

(Hz) 

1 1.00 

2 1.25 

3 1.60 

4 2.00 

5 2.50 

6 3.15 

7 4.00 

8 5.00 

9 6.30 

10 8.00 

11 10.0 

12 12.5 
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13 16.0 

14 20.0 

15 25.0 

16 31.5 

17 40.0 

18 50.0 

19 63.0 

Sound Features nomenclature 

Feature Nominal Band Center Frequency 

(Hz) 

20 31.5 

21 40.0 

22 50.0 

23 63.0 

24 80.0 

25 100 

26 125 

27 160 

28 200 

29 250 

30 315 

31 400 

Table 5.2 Vibration and Sound Feature Nomenclature 

The frequency of a sine wave can only be defined if at least two samples of it are included in one 

sampling cycle. As a result, the upper frequency limit that can be safely defined is half of the 

sampling rate. This frequency is referred to as Nyquist cutoff frequency and the procedure of 

applying this sort of lowpass filter is called anti-aliasing [26]. The band with 400 Hz as a center 

frequency has an upper limit of 447 Hz. The next band would extend from 447 Hz to 562 Hz so 

the Nyquist frequency would be surpassed and the results would change. In Figure 5.1 is an 

example of the one-third octave analysis for a sound signal printed with Python matplotlib. The 

nominal band center frequencies are on the x-axis and the acoustic level is on y-axis. 
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Figure 5.1 One-Third Octave Power Level Spectrum of a sound signal example 

5.2 Bearing loading condition determination algorithm 

The actual algorithm is a combination of all the steps that were described above. The time series 

signal is converted to the frequency domain with the one-third octave filter. Then, the bands are 

transferred to the feature space as shown in Table 5.1. At this point, the training data set is ready 

to be fed to the algorithm. 

However, the quantity of the training data needed is still unknown and should be examined. The 

experiments last for thirty seconds and several samples should be extracted from each experiment 

dataset before the one-third octave filter is applied. If the duration of the sample is not long enough 

then the low frequencies will be filtered out because those sine waves will not manage to appear 

at least two times in the sample and thus not be noticed. These low frequencies are needed for the 

vibration signal only. One second in a sample’s duration corresponds to a signal frequency of 2 

Hz; two seconds correspond to 1 Hz and three seconds correspond to 0.67 Hz.  

The number of these samples is different in each case study and is defined at the beginning of the 

case. Finally, it should be mentioned that the testing data are divided into two categories. In the 

first category, the testing data is randomly chosen and removed from the training dataset by a cross 

validation tool of Python. This data is then used to evaluate the algorithm’s performance. The 

second category includes the first one but has an extra particularity. An extra set of testing data is 

used coming from a completely unknown part of the experimental dataset e.g. an unknown 

combination of rotational speed – load or an unknown part of a rotational speed’s dataset or a 

different bearing’s experimental dataset.  
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5.3 Case Studies  

In this paragraph, all the different processing scenarios and case studies will be presented. The aim 

is to highlight the strong characteristics of this technique and its potential. The results’ structure 

varies depending on the type of the algorithm used and their scientific content. There will be two 

tables in the beginning of each case study that will explain which the training and testing data are 

and what the feature space consists of. Figure 5.2 shows the training and testing data mapping and 

Figure 5.3 shows how the combination of the two will be used from here on.  The second table 

appears in Figure 5.4 and Figure 5.5. The former shows that feature 10,11 and 12 are used and 

the latter shows that feature 25, 26 and 27 are used. It should be noted that each algorithm was run 

multiple times in order to strengthen the reliability of the results. 

 
  

Figure 5.2 Training Data and Testing Data Mapping 

 

Figure 5.3 Training and Testing Data Mapping Combination 

Vibration Feature Space 

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Figure 5.4 Vibration Feature Space Mapping 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.5 Sound Feature Space Mapping 

A confusion matrix is a table that is used in machine learning in order to visualize the performance 

of a classification algorithm when the actual values of the labels of the tested data is known. In the 

diagonal of the table are the correct answers (white color) and in the sum.col and sum.lin are 

overall percentages of the columns and lines respectively (the right answers are green and the 
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wrong are red).  Figure 5.6 shows an example of a confusion matrix. The y-axis shows the 

predicted classes and the x-axis shows the actual values. The example has an accuracy of 90.48%. 

Class A was wrongly predicted 2 times in the place of Class B. 

 

Figure 5.6 Confusion Matrix Example 
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5.3.1 Case Study #1, Acceleration X, Y, Z and Sound Evaluation 

In order to determine which of the four signals (acceleration x, y, z and sound) performs better for 

the task at hand, a simple test is run that uses as input one of these values every time. The label is 

the mean load of the bearing. After the hyper-parameter tuning is applied, the algorithms are run 

and the results are evaluated. The features and RPM-Load combinations used for each value are 

the same so they will be illustrated once. 

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

 

Acceleration x, y, z Feature Space 

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Figure 5.7 Training & Testing Data and Acceleration & Sound Feature Space Mapping #1 

The score for each classification and regression algorithm are shown in Table 5.3. It is easily 

noticed that the sound signal produces better results without overfitting to the data. As expected, 

the acceleration z signal comes second best and acceleration x and y follow. The algorithms used 

are the Random Forest Classifier (RFC), the k-Nearest Neighbors Classifier (KNNC) and the 

Gradient Boosting Regressor (GBR). It should be noted that the acceleration x and y results are 

unstable and inconsistent.  

Vibration & Sound Accuracy 

 
AccX AccY AccZ  Sound 

RFC 70% 80% 85% 98% 

KNNC 80% 80% 85% 98% 

GBR 66% 53% 67% 99% 

Table 5.3 Vibration and Sound Accuracy 

The case studies that follow use the sound and acceleration z signals as an input for the algorithms’ 

training. In some cases, acceleration z signals perform adequately but in some cases, they do not 

so in these cases a combination of the two signals will be used in order to examine the results.  

The next column charts show the acoustic pressure level after applying the One-third Octave filter. 

The most important features for the algorithms are feature 25, feature 28 and feature 31. If 

examined, the following charts can illustrate why the algorithms choose this features as the most 

important in the decision-making process.  
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Figure 5.8 One-Third Octave Power Level Spectrum of a sound signal #1 
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Figure 5.9 One-Third Octave Power Level Spectrum of a sound signal #1 
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5.3.2 Case Study #2, RPM Determination 

This case study aims to determine the rotational speed of the shaft by using the sound signal 

produced by the bearing. The training samples have a one second duration and thirty samples have 

been used for each rotational speed. The testing data used are randomly chosen from the training 

data pool and constitutes the 10% of the testing data volume. The actual RPM value and the 

algorithm’s prediction are then presented in order to evaluate its accuracy. 

 

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.10 Training & Testing Data and Sound Feature Space Mapping #2 

 

It is obvious from Figure 5.11 that the frequency signature of each rotational speed differs; thus, 

the results of this case study were expected. Figure 5.12 is a chart that shows the importance of 

each feature in the decision-making processes of the algorithms. The algorithms used are the RFC 

and the GBR. The difference in the training process becomes clear; RFC distributes the importance 

to all features, whereas GBR only to few. For both algorithms, the max tree depth equals 2 and the 

number of estimators (trees) equals to 50 in order to avoid overfitting.  

  

Figure 5.11 Feature Values 
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Figure 5.12 Feature Importance of RFC and GBR #2 

The confusion matrix in Figure 5.13 shows the results of the RFC (95.24% accuracy) and the 

Table 5.4 shows the results of the GBR (98.9% accuracy).  
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Figure 5.13 RFC Confusion Matrix #2 

RPM Prediction Table 

Actual 500 500 500 500 500 1000 1000 

Predicted 546 515 560 542 514 1013 1012 

        
Actual 1800 1800 1800 1800 2500 2500 3300 

Predicted 1803 1788 1815 1764 2504 2553 3296 

        
Actual 3300 3300 3300 4000 4600 4600 4600 

Predicted 3299 3299 3308 3993 4572 4572 4572 

Table 5.4 GBR Prediction Table #2 

The classification problem has no obvious usage but was very accurate, as predicted by observing 

the feature values. The regression problem has high variance in the 500 RPM. The 4600 RPM is 

predicted three times as 4572 RPM which, after analyzing the data, is due to the similar values of 

features 28 and 30 of the data at hand and the high importance of these features. Because of the 

high precision equipment that already exists in measuring the rotational speed of a shaft, most of 

the next case studies will use the RPM as a feature. 
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5.3.3 Case Study #3, Load Determination via Acceleration Z signals 

In this case study, the goal is to determine the loading condition of the bearing by using the 

acceleration z signal. The thirty samples per load per rotational speed used for the training have a 

duration of 3 seconds. The testing data for the first sub-case is randomly selected from the pool of 

the training data and constitute the 20% of the training data volume. The testing data of the second 

sub-case is produced from the last three experimental seconds of the 4000 RPM rotational speed 

with a mean load of 2N. These three seconds of instances are not part of the experimental data 

used to create the training data pool. The algorithms used are the RFC, the KNNC and the GBR.  

Figure 5.14 shows the training and testing data mapping. Figure 5.15 shows the feature 

importance for RFC and GBR. The feature values will not be illustrated due to the difficult 

simultaneous plotting of all the features of all the loading cases at once. However, Figure 5.16 

shows a 3D visualization of the multi-dimensional samples, where the three different loading cases 

are distinguished through color. Feature 12 and 14 are chosen because of the high importance they 

have for RFC.  

 

Acceleration z Feature Space 

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Figure 5.14 Training & Testing Data and Vibration Feature Space Mapping #3 

  

Figure 5.15 Feature Importance of RFC #3 
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Figure 5.16 3D KNNC Visualization of RPM, Feature 12 and Feature 14 #3 

In Figure 5.16 the three dimensions out of the 20-dimensional mapping produced by the KNNC 

are shown. As described above, the value of k effects significantly the results of the algorithm and 

should be paid the appropriate attention during the training. In this case study, the k equals to 4. 

The results produced by each algorithm are shown in Figure 5.17 and Figure 5.18. KNNC has an 

accuracy from 93 to 97 % and RFC from 77 to 83 %.  The results do not vary if some of the features 

are excluded from the algorithms’ training and testing and this feature selection procedure will be 

examined in the forthcoming case studies. GBR is not presented due to the low accuracy and high 

variance of the results. 

 

Figure 5.17 KNNC Confusion Matrix #3 
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Figure 5.18 RFC Confusion Matrix #3 

The second sub-case did not produce any solid results. The actual value was 2N and the algorithms 

gave a prediction of 8N or 14N in most of the cases. This showed that a better mapping of the 

bearing’s operation is needed in order to explore the full potential of this technique when using 

acceleration z signals. 
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5.3.4 Case Study #4, Load Determination via Sound signals 

This case study aims to determine the loading condition of the bearing by using the sound signals 

acquired in the experimental procedure. The data format is same as in case study #3: 

• The thirty samples per load per rotational speed used for the training have a duration of 3 

seconds  

• The testing data for the first sub-case is randomly selected from the pool of the training 

data and constitute the 20% of the training data volume  

• The testing data of the second sub-case is a produced from the last three experimental 

seconds of the 4000 RPM rotational speed with a mean load of 2N, with these three 

seconds of instances not being part of the training data pool  

• The algorithms used are the RFC, the KNNC and the GBR.  

The training and testing data as well as the sound features are shown in Figure 5.19. In Figure 

5.20 appears the feature importance chart for each algorithm. While the RFC, due to its inherent 

ability to divide the importance between the features, has given at least a small percent of 

importance to all the features, it has given the highest percentage to features 25, 28 and 31, the 

same features the GBR has highlighted as the most important. In should be noted that in the GBR 

Feature importance chat only the three most important features are visible because the rest have a 

very low percentage of importance. 

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.19 Training & Testing Data and Sound Feature Space Mapping #4 
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Figure 5.20 RFC and GBR Feature Importance Charts #4 

The results of the features importance can be explained by Figure 5.21. In this figure, it is obvious 

how the three loading conditions are creating three separate areas of operation. This makes it easier 

for the algorithm to predict the mean load of the bearing and for the user to visualize the results 

and understand the usefulness of the Octave analysis for this technique. The lower color intensity 

indicates that the point is further away in the 3D plot. 
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Figure 5.21 3D KNNC Visualization of Feature 25, Feature 28 and Feature 31 #4 

For the first sub-case, the results for the RFC are shown in Figure 5.22 and for the KNNC are 

shown in Figure 5.23. The accuracy of both classifiers does not drop under 99% with the 

overfitting being avoided through proper hyper-parameter tuning. The results of GBR are 

visualized via a boxplot in Figure 5.24. The boxplots show the low dispersion of the data and the 

high accuracy of algorithm with some outliers still being existent.  

 

Figure 5.22 RFC Confusion Matrix #4 
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Figure 5.23 KNNC Confusion Matrix #4 

 

 

Figure 5.24 GBR Boxplots, Grey-14N, Blue-2N, Green-8N #4 
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The second sub-case, where the testing data are from a part of the experimental data that were not 

used for creating the training pool, is also successful as all three algorithms have predicted 

correctly the actual value of the load which was 2N. Table 5.5 shows the exact results. This 

difference in the prediction accuracy with the second subcase of case study #3 verifies once again 

the results of case study #1; the sound signals can produce better and more accurate predictions 

than vibration signals. GBR algorithm predicts a load between 1.98 and 2.03 N which is a very 

low standard deviation. 

Algorithm Predictions 

RFC 2 N 

KNNC 2 N 

GBR 1.98-2.03 N 

Table 5.5 Algorithm Predictions #4 

In the third sub-case, there is a change in the number of samples of RPM-Load combinations that 

are used to create the training pool. The number drops from thirty to ten in order to determine a 

minimum data volume needed for the algorithms to function. No actual data volume is suggested 

in machine learning bibliography so this was a subject of investigation. The exact results of the 

algorithms are shown in Table 5.6. After evaluation, the number of samples is chosen to be thirty 

per load per rotational speed in order to create a better mapping of the bearings operation. 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 2 N 

KNNC 99 – 100 % 2 N 

GBR 96 – 99 % 2.004 N 

Table 5.6 Algorithm Performance #4 
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5.3.5 Case Study #5, Load Determination via Sound signals for unknown RPM-Load 

combinations 

The training pools used in the following sub-cases do not include a RPM-Load combination and 

the excluded combination is different in each subcase and used for to generate the testing data. The 

sub-cases will be named after the combination that was not used for the training process.  

In the sub-cases that follow, the results will be displayed in the form of tables. The tables will have 

information about the accuracy (in predicting the values from the excluded combinations). The 

algorithms used are the RFC, the KNNC, the GBR and the Decision Tree Regressor (DTR). Other 

algorithms have also been tested but these four have the higher overall accuracy. All sound signal 

features are used in every sub-case.  

I. Load 8N, 500 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 8 N 

KNNC 99 – 100 % 8 N 

GBR 97 – 99 % 8 ± 0.15 N 

Table 5.7 Algorithm Performance, Sub-case I #5 

II. Load 8N, 2500 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 8 N 

GBR  97 – 99 % 8 ± 0.1 N 

Table 5.8 Algorithm Performance, Sub-case II #5 

III. Load 2N, 500 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC Unstable Unstable 

KNNC Unstable Unstable 

GBR Unstable Unstable 

Table 5.9 Algorithm Performance, Sub-case III #5 
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IV. Load 2N, 1000 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 2 N 

KNNC 99 – 100 % 2 N 

GBR 97 – 99 % 2 ± 0.13 N 

Table 5.10 Algorithm Performance, Sub-case IV #5 

 

V. Load 14N, 4600 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 14 N 

GBR Unstable Unstable 

DTC 95 – 99 % 14.0 N 

Table 5.11 Algorithm Performance, Sub-case V #5 

VI. Load 14N, 4000 RPM 

Algorithm Performance 

 Accuracy Prediction 

RFC 99 – 100 % 14 N 

Table 5.12 Algorithm Performance, Sub-case VI #5 

The aim of this case study was to learn how the algorithms handle new information that belong to 

different parts of the data pool. That is the reason why in sub-case III and V the combinations of 

RPM-Load chosen are the extreme values of the rotational speed and loading condition. While the 

algorithms maintain their performance for the intermediary combinations of RPM-Load, the 

accuracy decreases dramatically when reaching the edge of the data pool. This implies that a better 

mapping of the bearing’s operation is needed. An instability like the one observed above could 

indicate that the testing input belongs to an unmapped part of the bearing’s operation and suggest 

an error condition.   
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5.3.6 Case Study #6, Load Determination via Sound signals with training on the 

ACETAL Bearing and testing on the Plexiglass Bearing (2500 RPM) 

The sound signal Octave analysis technique for the creation of the feature space of a bearing’s 

loading determination algorithm has been successful so far, with the classification and the 

regression problems succeeding in most of the cases. Training and testing data were both mined 

from the experimental data of a single journal bearing. In this case study, the training data will be 

extracted from the data measured on the ACETAL bearing and the testing data will be extracted 

from the data acquired from the Plexiglass bearing. It should be noted that the previous case studies 

have been tested for both bearings and the results converge. 

For the first attempt, the training and testing data and the sound feature space used appear in Figure 

5.25. The feature space also includes the rotational speed of the rotor. The results of the RFC and 

the KNNC (k = 5) appear in Figure 5.26. While evaluating the inaccurate results of the GBR, it 

was observed that the features that had high importance could be excluded from the training 

process and predictions’ accuracy raised up until an average of 90% but were unstable and got 

rejected. 

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.25 Training & Testing Data and Sound Feature Space Mapping #6 

 

Figure 5.26 RFC and KNNC Confusion Matrix #6 
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5.3.7 Case Study #7, Load Determination via Sound signals with training on the 

ACETAL Bearing and testing on the Plexiglass Bearing (4000 RPM) 

A different approach was used for this study. The goal is to find the minimum number of features 

needed to predict the Plexiglass bearing’s loading condition. In order to achieve this goal, it is 

important to find the features that hold the information needed. On the one hand, the importance 

of the features, when having training and testing data from the same bearing, is known. On the 

other hand, this feature importance changes when the training and testing data originate from 

separate bearings. So, the way to choose the order of the features that are added in each run is to 

build a dataset that consists of training and testing data generated from both bearings and 

apprehend the feature importance. The rotational speed is always 4000 RPM. 

Figure 5.27 shows the training and testing data mapping. The KNNC algorithm is used in this case 

study. In Table 5.13 appear the features that are added in each run and the accuracy of the 

predictions. The results show that feature space selection is an area of investigation and should be 

given enough attention in order to determine the useful and useless data. This selection varies from 

problem to problem and from dataset to dataset, depending on the experimental procedure. 

 

Figure 5.27 Training & Testing Data Mapping #7 

Feature Selection Table 

Run Features Added Accuracy 

1st 23 42.86% 

2nd  20 71.43% 

3rd 31 85.71% 

4th  29 100% 

Table 5.13 Feature Selection 4000 RPM #7 
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5.3.8 Case Study #8, Combination of Case Study #6 and Case Study # 7 

The combination of the two case studies aims to broaden the perception of how information is 

stored in each feature. For example, some features carry information regarding the rotational speed 

of the shaft while other features may carry information about the smoothness of the shaft’s surface.  

This suggests that the values of the features depend on the experiment’s execution, the 

experimental equipment etc.  

This case study combines the two rotation speeds in order to examine if the feature selection of 

case study #7 can produce results of the same accuracy as rotational speed is 2500 RPM. The two 

rotational speeds are then combined. Figure 5.28 shows the training and testing data mapping. 

Table 5.14 shows the accuracy of KNNC as to the feature selection. The default features are 

feature 23,20,31 and 29. 
Feature Selection Table 

Run Features Added Accuracy 

1st 23, 20, 31, 29 81.82% 

2nd  26 100% 

Table 5.14 Feature Selection 2500 RPM #8 

The rotational speed of 2500 RPM needs a different set of features in order to reach high prediction 

accuracy. This is expected due to the different sound frequency signatures of each operational 

condition. 4000 RPM and 2500 RPM data are combined as shown in Figure 5.28 and the results 

are shown in Figure 5.29.  

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.28 Training & Testing Data and Sound Features Mapping #8 
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Figure 5.29 KNNC Confusion Matrix #8 
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5.3.9 Case Study #9, Training with ACETAL and Plexiglass Bearing Sound Signal 

In this last case study, the aim is to examine the algorithms’ accuracy on training and testing data 

that come from both the ACETAL and the Plexiglass bearings. Figure 5.30 shows the data used 

in this case study.  The first sub-case deals with classifying which of the two bearings is the tested 

one. When dealing with this problem, the algorithms will highlight the features that best 

distinguish the two bearings. The algorithms used are the RFC and the KNNC. The feature 

importance appears in Figure 5.31 and the results appear in Table 5.15.  

 

Sound Feature Space 

Feature 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 5.30 Training & Testing Data and Sound Features Mapping #9 

 

Figure 5.31 RFC Feature Importance Chart #9 
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Algorithm Accuracy 

 Accuracy 

RFC 100 % 

KNNC 100 % 

Table 5.15 Algorithm Accuracy #9 

In the second sub-case, the label of the algorithms is the load. The algorithms used are the Random 

Forest Classifier and the Gradient Boosting Regressor and the feature importance of both is shown 

in Figure 5.32. The features that hold most of the common information for the two bearings are 

features 25 and 31 followed by feature 22. The results of the RFC and the GBR are shown Figure 

5.33 and Table 5.16 respectively. The high accuracy percentage of both algorithms suggests that 

a dataset created from multiple bearings (manufactured from the same design plan) can have a 

wider application regarding this specific bearing. 

 

 

Figure 5.32 RFC and GBR Feature Importance Chart #9 

10% - 21

11% - 22

20% - 25

17% - 31

RFC Feature Importance Chart

20 - 31.5 Hz

21 - 40 Hz

22 - 50 Hz

23 - 63 Hz

24 - 80 Hz

25 - 100 Hz

26 - 125 Hz

27 - 160 Hz

28 - 200 Hz

29 - 250 Hz

30 - 315 Hz

31 - 400 Hz

14% - 20

10% - 22

28% - 25

28% - 31

GBR Feature Importances Chart

20

21

22

23

24

25

26

27

28

29

30

31



                                                                   Experimental Determination of Journal Bearing                                

Condition with a Machine Learning Technique 

70 

 

 

Figure 5.33 RFC Confusion Matrix #9 

GBR Prediction Table 

(93 – 96 % accuracy) 

Actual 2 2 2 2 2 2 2 2 8 8 

Predicted 2.10 2.11 2.53 1.86 2.79 2.16 1.74 1.79 8.43 8.00 

        
   

Actual 8 8 8 8 8 8 8 14 14 14 

Predicted 8.21 7.97 8.01 8.24 8.06 8.67 8.25 13.85 14.00 13.83 

        
   

Actual 14 14 14 14 14 14 14 14 14 14 

Predicted 14.04 14.03 13.98 14.00 14.05 13.90 12.10 10.16 14.26 13.86 

Table 5.16 GBR Load Prediction #9 
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 Conclusion and Suggestions for future work 

6.1 Conclusion 

The goal of the present work is to develop a machine learning technique that predicts the loading 

condition of a journal bearing. The data used are acquired through an experiment performed on 

the Bently Nevada Rotor Kit 4 in the Laboratory of Marine Engineering (L.M.E) of NTUA. The 

data processing source code and the machine learning algorithm is written in Python.  

The experimental procedure included assembling the RK4 assembly, adjusting the microphone 

and the triaxial accelerometer, placing the soundproof cover, regulating the rotational speed and 

oil supply subsystems, connecting the sensors with the data acquisition card (DAQ) and 

developing a block diagram in LabView in order to acquire and store the experimental data. A 

second bearing was manufactured using the design plan of the ServoFluid bearing of RK4.  

After preparing the experimental setup, a series of measurements are performed with different 

rotational speeds, in a range of 500 up until 4600 RPM, and loading conditions of the bearing, 

taking the values of 2, 8 and 14 N.  The microphone and the triaxial accelerometer are used to 

measure acoustical pressure and vibration signals generated by the rotor’s operation. A One-Third 

Octave filter is then applied to the signal. 

The filtered signal is cut into smaller, in duration, samples and fed to the machine learning 

algorithms existent in the scikit learn module of Python. The data used to determine the algorithms’ 

prediction ability can either constitute a part of the algorithms’ training pool or be generated from 

a different set of experimental data. 

The signal that performs better is the processed acoustic pressure signal and the acceleration z 

signal is second best. This conclusion is very important due to the simplicity of a microphone’s 

installation on a bearing. A variety of scenarios are examined and the prediction ability of the 

algorithms is adequate in many cases. The algorithms’ performance variates depending on the 

testing data; the algorithms perform better if the testing data belongs to an intermediary training 

RPM-Load combination than if the testing data belongs to an extreme combination.  

In an attempt to investigate on the different ways the algorithms’ training data set could be created, 

the data from two different bearings is used. The algorithms’ prediction ability is found adequate 

with many data combinations. The results suggest that applying this procedure for every bearing 

produced from the same design plan could be possible. 
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6.2 Suggestions for future work  

While three loading case scenarios worked well enough for this thesis and constitute a satisfying 

mapping of the bearing’s operation, a wider set of data, regarding the loading condition and the 

rotational speed of the shaft, could be used in order to conclude in safer results.  

Another suggestion, as mentioned in the paragraph 6.1, is to gather experimental data from 

multiple bearings that were manufactured from the same design plan. This way, the factors that 

originate from manufacturing errors could be eliminated. This thesis project has used two bearings 

to maintain this concept but more could produce a better result. Furthermore, an analysis of the 

features’ importance could be performed in order to determine the bearing operation characteristics 

that are involved. 

In addition, programming-wise, there is a large number of machine learning algorithms that could 

be tested in regards this task. The source code of these algorithms could be modified to satisfy the 

needs of this project.  

Finally, while this thesis discusses how to determine a journal bearing’s loading condition, there 

are other attributes of the bearing’s condition that could be determined in the same or a similar 

way. Moreover, there are many signal analysis methodologies that could improve this technique 

and broaden its application potential to different types of bearings and gear. 
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Appendix A 

This appendix contains parts of the data processing. It also contains some of the coding of the 

algorithms as shown in Python IDLE 3.6 and the algorithms’ result printed in the Python Shell. 

There are three discrete steps to get the data from their raw condition ready for training the machine 

learning algorithms. Figure I shows the data as acquired from LabView. 

 

Figure I 

The first step is to use the calibration data and transform the data from mV to acceleration and 

sound pressure values. Figure II shows the converted data. 

 

Figure II 

The second step is to create a number of samples of specific duration from the dataset and store 

them separately so as to apply the One-Third Octave filter to each sample and create the training 
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pool. Figure III shows ten acceleration x samples with duration of three seconds, which mean that 

there are three thousand instances in each sample. Only the last instances are visible in the figure. 

 

Figure III 

Lastly, the One-Third Octave filter is applied on each sample. Figure IV shows the file that will 

be fed to the machine learning algorithms. The first row are the features and labels. 

 

Figure IV  

The Random Forest Classifier appears in Figure V. Some of the available parameters are set in 

the beginning in order to show how the module works. Then, the cross-validation tool 

RandomizedSearchCV of scikit-learn is used to tune these parameters and find the most efficient 

combination of values. Several other cross-validation tools are available in the module. The 

combinations tested are set to 20. The number of parameters is chosen by the user. The user defines 

the limits of the search and evaluates the results. Figure VI shows the Python Shell results. 

 

Figure V 
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Figure VI 

If the parameters of the problem have been figured out then the next runs will not need a cross-

validation tool. When the algorithm is trained, there is no need to retrain it. The option of saving 

it is available and is performed in the way shown in Figure VII. 

 

Figure VII 


