
1

Δ Θ Ν Ι Κ Ο Μ Δ Σ Ο Β Ι Ο Π Ο Λ Τ Σ Δ Υ Ν Δ Ι Ο
Γ.Π.Μ.: ΜΑΘΗΜΑΣΙΚΗ ΠΡΟΣΤΠΟΙΗΗ

ΣΙ ΤΓΥΡΟΝΔ ΣΔΥΝΟΛΟΓΙΔ ΚΑΙ ΣΗΝ

ΟΙΚΟΝΟΜΙΑ

 ΕΠΙΛΤΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ

ΕΞΙΩΕΩΝ ΜΕ ΣΗΝ ΥΡΗΗ ΣΗ

ΜΕΘΟΔΟΤ ΙΟΓΕΩΜΕΣΡΙΚΗ ΑΝΑΛΤΗ

ΜΔΣΑΠΣΤΥΙΑΚΗ ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑΙΑ

Αλέξης Ε.Παπαγιαννόπουλος

Επιβλέπων: Παλαγηώηεο Καθιήο

 Καζεγεηήο Δ.Μ.Π.

Αζήλα, Ινύιηνο 2011

2

3

Δ Θ Ν Ι Κ Ο Μ Δ Σ Ο Β Ι Ο Π Ο Λ Τ Σ Δ Υ Ν Δ Ι Ο
Γ.Π.Μ.: ΜΑΘΗΜΑΣΙΚΗ ΠΡΟΣΤΠΟΙΗΗ

ΣΙ ΤΓΥΡΟΝΔ ΣΔΥΝΟΛΟΓΙΔ ΚΑΙ ΣΗΝ

ΟΙΚΟΝΟΜΙΑ

 ΕΠΙΛΤΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ

ΕΞΙΩΕΩΝ ΜΕ ΣΗΝ ΥΡΗΗ ΣΗ

ΜΕΘΟΔΟΤ ΙΟΓΕΩΜΕΣΡΙΚΗ ΑΝΑΛΤΗ

ΜΔΣΑΠΣΤΥΙΑΚΗ ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑΙΑ

Αλέξης Ε.Παπαγιαννόπουλος

Επιβλέπων: Παλαγηώηεο Καθιήο

 Καζεγεηήο Δ.Μ.Π

Δγθξίζεθε απν ηελ ηξηκειή εμεηαζηηθή επηηξνπή ηελ 18
ε
 Ινπιίνπ 2011

..............................

Π.Καθιήο Κ.Πνιίηεο Α.Γθίλεο

Καζεγεηήο Δ.Μ.Π Αλ.Καζεγεηήο ΣΔΙ Αζήλαο Δπ.Καζεγεηήο Δ.Μ.Π

Αζήλα, Ινύιηνο 2011

4

..

Αλέξης Ε. Παπαγιαννόπουλος

Γηπισκαηνύρνο Μαζεκαηηθόο Δθαξκνγώλ

Copyright © Αλέξης Ε. Παπαγιαννόπουλος, ΑΘΗΝΑ, 2011

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

__

Απαγνξεύεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνύζαο εξγαζίαο, εμ νινθιήξνπ ή

ηκήκαηνο απηήο, γηα εκπνξηθό ζθνπό. Δπηηξέπεηαη ε αλαηύπσζε, απνζήθεπζε θαη δηαλνκή γηα

ζθνπό κε θεξδνζθνπηθό, εθπαηδεπηηθήο ή εξεπλεηηθήο θύζεο, ππό ηελ πξνϋπόζεζε λα

αλαθέξεηαη ε πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην παξόλ κήλπκα. Δξσηήκαηα πνπ αθνξνύλ

ηε ρξήζε ηεο εξγαζίαο γηα θεξδνζθνπηθό ζθνπό πξέπεη λα απεπζύλνληαη πξνο ηνλ ζπγγξαθέα. Οη

απόςεηο θαη ηα ζπκπεξάζκαηα πνπ πεξηέρνληαη ζε απηό ην έγγξαθν εθθξάδνπλ ηνλ ζπγγξαθέα

θαη δελ πξέπεη λα εξκελεπζεί όηη αληηπξνζσπεύνπλ ηηο επίζεκεο ζέζεηο ηνπ Δζληθνύ Μεηζόβηνπ

Πνιπηερλείνπ.

5

Πεξίιεςε

Η παξνύζα εξγαζία έρεη σο ζηόρν λα εμεηάζεη ην ζέκα ηεο ηζνγεσκεηξηθήο αλάιπζεο.Η

ηζνγεσκεηξηθή αλάιπζε είλαη κηα πξόζθαηε ππνινγηζηηθή πξνζέγγηζε πνπ πξνζθέξεη

ηελ δπλαηόηεηα ηεο "ελζσκάησζεο" ηεο κεζόδνπ πεπεξαζκέλσλ ζηνηρείσλ κε εξγαιεία

πνπ πξνζθέξεη ην CAD(ζρεδηαζκόο ππνβνεζνύκελνο από ππνινγηζηή)

Σν θεθάιαην 1 μεθηλάεη κε ηνλ νξηζκό ησλ ζπλαξηήζεσλ Β-spline, απν ηηο νπνίεο

θαηαζθεπάδνληαη νη ζπλαξηήζεηο NURBS.Παξνπζηάδεηαη κηα αλαιπηηθή πεξηγξαθή ησλ

γεσκεηξηθώλ ηδνηήησλ ηνπο καδί κε θάπνηα παξαδείγκαηα. ηελ ζπλέρεηα νξίδνπκε ηηο

ζπλαξηήζεηο ΝURBS θαη εμεγνύκε ηελ ζύλδεζε ηνπο κε ηηο Β-spline.Σέινο

παξνπζίαδνληαη νη θιαζηθέο ζηξαηεγηθέο εθιέπηπλζεο ε h θαη p , ελώ εμεγείηαη θαη ε

θαηλνύξγηα k εθιέπηπλζε.

ην θεθάιαην 2 εμεηάδεηαη ε ρξήζε ηνπ CAD ζε πιαίζηα αλάιπζεο.Ξεθηλάεη κε ηελ

κειέηε ελόο θιαζηθνύ πξνβιήκαηνο ζπλνξηαθώλ ηηκώλ Poisson, ην νπνίν θαη ιύλεηαη κε

ηελ κέζνδν ησλ πεπεξαζκέλσλ ζηνηρείσλ ηνπ Galerkin .Αθνινύζσο παξνπζηάδεηαη ε

ηζνπαξακεηξηθή πξνζέγγηζε γηα λα δηαιεπθαλζνύλ νη νκνηόηεηεο θαη νη δηαθνξέο

αλάκεζα ζηα θιαζηθά πεπεξαζκέλα ζηνηρεία, όπσο ηα πνιπώλπκα, κε ηα πεπεξαζκέλα

ζηνηρεία πνπ βαζίδνληαη ζε ζπλαξηήζεηο NURBS.Σέινο, παξνπζηάδνληαη εθηεκήηξηεο

ζθάικαηνο θαηά ηελ h ζηξαηεγηθή εθιέπηπλζεο.

Σν ηειεπηαίν θεθάιαην, εμεγεί ηηο δνκέο δεδνκέλσλ ηνπ GeoPDEs , έλα πεξηβάιινλ

ζπκβαηό κε MATLAB πνπ αλαπηύρζεθε ζην Παλεπηζηήκην ηεο Πάβηα θαη ην

πνιπηερλείν ηνπ Μηιάλν, γηα λα δνθηκαζηεί ε ηζνγεσκεηξηθή πξνζέγγηζε ζηελ επίιπζε

ειιεηπηηθώλ πξνβιεκάησλ 2 δηαζηάζεσλ .Σα απνηειέζκαηα εμεηάδνπλ θπξίσο ηηο

ζηξαηεγηθέο εθιέπηπλζεο .

Λέμεηο θιεηδηά: NURBS , Ιζνγεσκεηξηθή αλάιπζε, Αλάιπζε πεπεξαζκέλσλ ζηνηρείσλ,

hpk-εθιέπηπλζε, GEOpdes

6

Abstract

This thesis aims to examine the subject of Isogeometric analysis . Isogeometric analysis

(IGA for short) is a recently developed computational approach that offers the possibility

of integrating finite element analysis (FEA) into conventional NURBS(Non Rational

uniform Basic Splines) based CAD design tools.

Chapter 1 starts with the definition of B-Splines , from which NURBS are built. An

analytic description of their geometrical properties along with some examples are given .

Next , we give the definition of NURBS and explain their relation with B-Splines. Finally

, classic h and p refinement strategies are presented as well as the new k refinement is

explained .

Chapter 2 explains how CAD can be used within an analysis framework. It starts by

imposing a classic Poisson boundary value problem , which is then solved using the

Galerkin finite element method . The isoparametric approach is then presented in order

to clearly highlight the differences and similarities between classic finite elements, such

as piecewise polynomials, and NURBS based finite elements. Finally we present error

estimates during h refinement.

The final chapter, Chapter 3, explains the data structures of GEOpdes , a MATLAB

compatible environment developed at IMATI, Università di Pavia and Politecnico di

Milano, for testing the isogeometric approach in the context of NURBS-based finite

element analysis. Some numerical examples on 2D elliptical problems are presented in

order to obtain results mainly concerning refinement strategies.

Key words: NURBS , Isogeometric analysis, Finite element analysis, hpk-refinement,

GEOpdes

7

ε απηό ην ζεκείν ζα ήζεια λα επραξηζηήζσ ηνλ Καζεγεηή ηεο ζρνιήο Ναππήγσλ

Μεραλνιόγσλ κεραληθώλ Παλαγηώηε Καθιή γηα ηελ αλάζεζε ηεο παξνύζαο

δηπισκαηηθήο , ηελ ππνκνλή πνπ επέδεημε θαη ηελ ππνζηήξημε θαηα ηελ δηάξθεηα ηεο

εθπόλεζεο ηεο.

Θα ήζεια επίζεο λα επραξηζηήζσ ηνλ Αλαπιεξσηή θαζεγεηή Κσλζηαληίλν Πνιίηε

θαηζώο θαη ηνλ Λέθηνξα Αιέμαλδξν Γθίλε γηα ηελ πνιύηηκε ζπκβνιή ηνπο ζηελ επίιπζε

ηερληθώλ πξνβιεκάησλ πνπ αλέθεηςαλ θαηα ηελ δηάξθεηα ηεο πινπνίεζεο θαη γηα ηελ

άξηζηε ζπλεξγαζία πνπ είρακε.

8

Alexis E. Papagiannopoulos

 IISSOOGGEEOOMMEETTRRIICC

AANNAALLYYSSIISS

Athens,2011

9

Table of Contents
Chapter 1: NURBS As Tool For G e o m e t r i c D e s i g n .. 11

1.1 Basis functions ... 11

1.1.2 Derivatives of B-spline basis functions ... 14

1.2 B-spline curves .. 15

1.3 B-spline surfaces ... 18

1.4 Non-Uniform Rational B-Splines .. 21

1.4.1 Derivatives of NURBS basis functions ... 24

1.5 Mesh generation and refinement strategies ... 25

1.5.1 Knot insertion (h-refinement) ... 26

1.5.2 Order elevation (p-refinement) ... 31

1.5.3 k-refinement ... 34

Chapter 2: NURBS As A Tool For A n a l y s i s .. 38

2.1 Boundary value problems ... 38

2.2 Introducing the Galerkin Method .. 38

2.2.1 The method itself ... 40

2.3 Isoparametric Concept ... 41

2.4 The isogeometric concept ... 46

2.5 Assembly routine ... 48

2.5.1 Assembling the system ... 49

2.5.2 Connectivity Arrays... 51

2.5.3 Evaluation of gradients and Jacobian determinant ... 56

2.6 Boundary Conditions .. 59

2.7 Error estimates .. 60

Chapter 3: GeoPDEs ... 69

3.1 Data Structures .. 71

3.2 Numerical examples .. 80

APPENDIX A: Description of the m-files .. 90

APPENDIX B: Geometrical description .. 97

BIBLIOGRAPHY ... 100

10

11

Chapter 1: NURBS As Tool For G e o m e t r i c D e s i g n

Non-Uniform Rational B-Splines, commonly referred to as NURBS, have become the de

facto industry standard for representation, design and data exchange of geometric

information processed by computers. Many national and international standards

recognize NURBS as powerful tools for geometric design. Until recently, B-spline curves

and surfaces (NURBS) were principally of interest to the computer aided design

community, where they have become the standard for curve and surface description.

Today we are seeing expanded use of NURBS in modeling objects. The enormous

success behind NURBS is largely due to the fact that:

 NURBS provide a unified mathematical basis for representing both analytic

shapes, such as conic sections and quadric surfaces, as well as free-form entities,

such as car bodies and ship hulls

 designing with NURBS is intuitive, almost every tool and algorithm has an easy

to understand geometric interpretation

 NURBS algorithms are fast and numerically stable

 NURBS curves and surfaces are invariant under common geometric

transformations, such as rotation, parallel and perspective projections

 NURBS are generalizations of non-rational B-splines and rational Bézier curves

and surfaces

The excellent mathematical and algorithmic properties, combined with successful

industrial applications, have contributed to the enormous popularity of NURBS. This first

chapter examines NURBS as a tool for geometric design. A starting point of our

examination is at B-splines, since NURBS are built from them.

1.1 Basis functions

Let Ξ={ξ1,ξ2,....,ξm} be a non decreasing sequence of real numbers, i.e. , ξi ξi+1 ,

i=1,2…,m. The ξi are called knots and Ξ is the knot vector. If the knot vector is equally

spaced then it is uniform, otherwise it is non-uniform. Knot values can be repeated,

meaning that more than one knot can take on the same value. As we will see, this has an

enormous impact on the properties of the basis. A knot vector is open if its first and last

value appear p+1 times.

 The i-th B-spline basis function of p-degree (order p+1), denoted by Ni,p(ξ) is

defined as :

12

1

,0

1 ,
()

0 ,

i i

i

if
N

otherwise

 (1.1.1)

For p = 1, 2, 3, . . . they are defined by:

1

, , 1 1, 1

1 1

() () ()
i p

i p i p i p

i p i i p i

N N N

 (1.1.2)

Equation (1.1.2) is also known as Cox–de Boor recursion formula. The results of

applying (1.1.1) and (1.1.2) to a uniform knot vector are presented in Fig. 1.1 .

Fig. 1.1

For p=0 and p=1, the B-splines functions are the same with piecewise constants and

linear functions in Finite Elements Analysis (FEA). However, quadratic B-spline

functions differ from the quadratic finite elements: even though they are identical, they

are shifted relative to each other. The shape of quadratic finite elements exclusively

13

depends on whether it corresponds for an internal node or an end node. This stands for all

higher order B-splines.

We now list a number of important properties of the B-spline functions. As we will see, it

is these properties which determine the many desirable geometric characteristics in B-

spline curves and surfaces:

I. The first is that the basis constitutes a partition of unity, that is, ,

,

1

() 1
n

i p

i

N

 (1.1.3)

This property also applies for an arbitrary knot span, [μi,μi+1) , since

, () 1
i

j p

j i p

N

 for all μ [μi,μi+1). To prove this, consider

1

, , 1 1, 1

1 1

() () ()
i i i

j j p

j p j p j p

j i p j i p j i pj p j j p j

N N N

.

Changing the summation variable in the second sum from (i-p) to (i-p+1) and

considering that Ni-p,p-1(ξ)=Νi+1,p-1(ξ)=0 , we have:

1

, , 1 , 1

11 1

() ()
i i i

j j p

j p j p j p

j i p j i p j i pj p j j p j

N N N

.

Applying the same concept recursively yields

, , 1 ,0

1

() () () 1
i i i

j p j p j

j i p j i p j i

N N N

 .

II. Ni,p(ξ)=0, if ξ is outside the interval [μi,,μi+p+1) (local support property), meaning

that the support of the B-spline functions is p+1 knot spans. Classical FEA

functions have support over much less portions, leading to the misconception that

the increasing support of the B-spline functions leads to increased bandwidth in a

numerical method. As we see in Fig. 1.2, for cubics (p=3), the total number of

functions that any given function shares support with (including itself) is 2p+1,

either we are using a FEA basis or B-splines.

14

Fig. 1.2

III. Ni,p 0 for all i, p and μ (non negativity). This is proven by induction on p. It is

clearly true for p=0; assume it is true for p-1, p 0 with i and ξ arbitrary. By

property II., Ni,p-1(ξ)=0 if ξ∉ [ξi,,ξi+p+1). But ξ [ξi,,ξi+p+1) implies that i

i p i

 is non-negative. By assumption, Ni,p is non-negative and thus, the first term of

 equation (1.1.2). The same are true for the second term and hence the Ni,p(ξ) are

 non-negative.

IV. All derivatives of Ni,p(ξ) exist on the interior of a knot span. At a knot, Ni,p(ξ) is p-

k times continuously differentiable, where k is the multiplicity of the knot. Hence

increasing degree increases continuity while increasing knot multiplicity

decreases continuity.

1.1.2 Derivatives of B-spline basis functions

We can prove by induction on p that for a given polynomial order p and knot vector Ξ,

the derivative of the i-th basis function is given, in terms of lower order B-spline

functions, by:

, , 1 1, 1

1 1 1

() ()i p i p i p

i i p i

d p p
N N N

d

 (1.1.4)

Now let Ni,p
(k)

 denote the k-th derivative of Ni,p(ξ). Repeated differentiation of (1.1.4)

produces the general formula:

15

1 1

, , 1 1, 11 1

1 1 1

() () ()
k k k

i p i p i pk k k

i i p i

d p d p d
N N N

d d d

 (1.1.5)

Equation (1.1.6) is another generalization of equation (1.1.5). It computes the k-th

derivative of Ni,p
(k)

 in terms of lower order functions Ni,p−k, . . . , Ni+k,p−k. We have :

, . 1,

0

!
() ()

()!

k k

i p j k i p kk
j

d p
N a N

d p k

 (1.1.6)

with

0,0 1

1,0

,0

1

k

k

i p k i

a

1, 1, 1

,

1

k j k j

k j

i p j k i j

a a

 j=1,…,k-1

1, 1

,

1

k k

k k

i p i k

a

We should remark that k should not exceed p. Also, the denominators involving knot

differences can become zero; the quotient is defined to be zero in this case.

1.2 B-spline curves

A p-th degree B-spline curve is defined by :

,

1

() ()
n

i p i

i

C N B

 (1.2.1)

where {Bi} are the control points and the {Ni,p} are the p-th degree B-spline basis

functions defined on a knot vector Ξ. The control points are analogous to the nodal values

in the way that they are coefficients of the basis, however the control points are non-

interpolatory. The polygon formed by the {Bi} is called control polygon. All three, the

degree, the number of control points (n+1) and the number of knots (m+1) are related by

m=n+p+1. Unless stated otherwise, we assume ξ1=0 and ξn+p+1=1. If the knot vector is

open, then the B-spline curve is interpolatory at endpoints, i.e., C(0)=B1 and C(1)=Bn.

16

Fig. 1.3

An affine transformation is applied to the B-spline curve when applied to the control

points. An affine transformation is a mapping Φ: ℝ3
 → ℝ3

 such that for any vector x:

Φ(x) = Ax + v

for some matrix A ℝ3
×ℝ3

 and vector v ℝ3
. Affine transformations include

translations, rotations, scalings, and uniform stretchings and shearings. The affine

invariance property, as it is called, follows from the partition of unity of the Ni,p .Thus let

i ix a p , where 3

ip and 1ia . Then:

() () () () ()i i i i i i i i i i ix a p A a p v a Ap a v a Ap v a p .

The continuity and differentiability of C(ξ) follows from that of the basis Ni,p(since C(ξ)

is just a linear combination of the Ni,p). Thus, C(ξ) is infinitely differentiable in the

interior of the knot intervals and it is at least p-k times continuously differentiable at a

knot of multiplicity k.

The example shown in Fig.1.3 is built from the quadratic (p=2) basis functions

considered in Fig.2.5. The curve is interpolatory at the first and last control points, a

general feature of a curve built from an open knot vector. Note that the curve is also

interpolatory at the sixth control point. As discussed above, this is due to the fact that the

multiplicity of the knot ξ = 4 is equal to the polynomial order. Note also that the curve is

tangent to the control polygon at the first, last and sixth control points. The curve is C
p-1

=

C
1
-continuous everywhere except from the location of the repeated knot, ξ = 4, where it

is C
p−2

=C
0
-continuous. Note the difference between the control points, shown in

Fig.1.3(a) and the images of the knots, shown in Fig.1.3(b). There, the knots are mapped

into the physical space.

 The curve is contained in the convex hull of its control polygon; this follows from

the nonnegativity and partion of unity of the Ni,p. and the property that Nj,p(ξ)=0 for j<i-p

and j>i when μ [μi,μi+1). Fig. 1.4 shows such convex hulls for p = 1 through p = 5 for a

17

given set of control points. Note, in particular, that the convex hull for a piecewise linear

curve is just the control polygon itself.

Fig. 1.4

As we can observe in Fig.1.5, the smoothness of the curve increases along with the

degree p while the effect of each control point on the final shape decreases .

Fig. 1.5

18

B-spline curves also possess a variation diminishing property. No plane (line, in

the case of one dimension) has more intersections with the curve than it has with the

control polygon. This property is particularly striking when compared with the behavior

of standard Lagrange polynomials. An example is illustrated in Fig. 1.6a where Lagrange

polynomials of orders three, five, and seven interpolate a discontinuity represented by

eight data points in ℝ2. Note that as the order is increased, the amplitude of the

oscillations also increases. B-splines behave very differently when the data are viewed as

control points. The variation diminishing property leads the B-spline curves in Fig. 1.6b

to be monotone, a property that proves useful in analysis.

Fig. 1.6

1.3 B-spline surfaces

A B-spline surface is obtained by taking a bidirectional net of control points, called

control net, two knot vectors Ξ={ξ1,..., ξn+p1} and Η={η1,...,ηm+p+1}, and the products of

the univariate B-spline functions:

19

, , ,

1 1

(,) () ()
n m

i p j q i j

i j

S N M B

 (1.3.1)

Many of the properties of a B-spline surface are the result of its tensor product nature.

The basis is pointwise non-negative and forms a partition of unity as (ξ, η) [ξ1, ξn+p+1]

×[η1, ηm+q+1],

n m

, , , ,

1 1 i=1 j=1

() () () () 1
n m

i p j q i p j q

i j

N M N M

(1.3.2)

Interior to the rectangles formed by ξ and η knot lines, where the function is a bivariate

polynomial, all partial derivatives of Ni,p(ξ) and Mj,q(η) exist; at a ξ (or η) knot it is p-k(q-

k) differentiable in the ξ(η) direction, where k is the multiplicity of the knot. The

properties of convex hull and affine invariance still hold. Fig. 1.7 shows an example of

[cubic× quadratic] basis functions.

Fig. 1.7

(a) N4,3(μ)N4,2(ε)

(b) Ν4,3(μ)Ν2,2(ε)
Ξ={0 0 0 0 1/4 1/2 3/4 1 1 1 1 } and Η={0 0 0 1/5 2/5 3/5 4/5 1 1 1}

20

 As a consequence of this strong convex hull property, a B-spline surface can

contain embedded flat regions and lines of sharp discontinuity. This is a particularly

desirable characteristic for many design situations. Fig.1.8(a) to 1.8(d) show a series of

open B-spline surfaces and their control points in each parametric direction. Notice that

the control points in the η-direction are collinear. The resulting surface is ruled in the η-

direction. The B-spline surface shown in Fig.1.8(a), defined by four control points in the

ξ-direction, is smoothly curved there.

The B-spline surface shown in Fig.1.8(b) is defined by five control points in the μ

direction, the three of which are collinear. Notice that the center of the resulting surface is

flat. Similarly, five of the seven control points in the ξ-direction, for the surface shown in

Fig.1.8(c), are collinear. Again, the surface is flat in the central region. The flat area is

larger than in Fig.1.8(b).

 Fig.1.8(d) shows that this very strong convex hull property extends to both the

parametric directions. Thus, a flat region can be embedded in the interior of a sculptured

surface. This flat region becomes smaller as the order of the surface increases.

 Fig.1.9 illustrates the effect of coincident net lines. In Fig.1.9(a), three coincident

net lines are used to generate a hard line or knuckle in the center of a fourth-order B-

spline surface. Fig.1.9(b) shows result when three coincident net lines are used in both

the parametric directions. Here, the fourth order B-splines surface contains two ridges

that rise up to a point in the center of the surface.

Fig. 1.8: Third order B-spline surfaces
(a) Smooth ruled surface

(b) Small interior flat region caused by three colinear control points in μ

(c) Larger interior flat region caused by

five colinear control points in μ

(d) Flat region embedded within a sculptured surface

21

Fig. 1.9

The local support of the basis functions also follows directly from the one-dimensional

functions that form them. The support of a given bivariate function Ni, j ;p,q (ξ, η) = Νi,p(ξ)

Mj,q(η) is exactly [ξi, ξi+p+1] × [ηj, ηj+q+1].

1.4 Non-Uniform Rational B-Splines

We start by defining NURBS curve. A rational B-spline curve is the projection of a non

rational (polynomial) B-spline curve defined in four-dimensional (4D) homogeneous

coordinate space, back into three-dimensional (3D) physical space. (see Fig.1.10)

Specifically :

,

1

() () (1.4.1)
n

W w

i p i

i

C N B

where the w

iB s are the four-dimensional control polygon vertices for the non rational

four-dimensional B-spline curve. Ni,p(ξ) is the non rational B-spline basis function

previously given in .

22

Fig. 1.10

Projecting back into the three-dimensional space by dividing through the homogeneous

coordinate yields the rational B-spline curve:

, ,

1 1
,

1ˆ ˆˆ ,1

() ()

() ()(1.4.2)
() ()

n n

i p i i i p i i n
i i

i i pn
i

i p ii

N w B N w B

C B R
W N w

where the Bi 's are the three-dimensional control net vertices for the rational B-spline

curve and

,

,

ˆ ˆˆ ,1

()
() (1.4.3)

()

i p i

i p n

i p ii

N w
R

N w

are the rational B-spline basis functions . Here, wi ≥0 for all values of i. Note that rational

B-spline basis functions for wi<0 are valid but are not convenient in terms of the current

discussion.

,

1

() ()
n

i p i

i

W N w

 (1.4.4)

Equation (1.4.4) is called weighting function.

23

 The NURBS basis functions and curves are a generalization of non rational B-

spline basis functions and curves. Thus, they carry forward nearly all the analytic and

geometric characteristics of their non rational counterparts. In particular, the continuity of

the functions, as well as their support, follows directly from the knot vectors exactly as

before. The basis still constitutes a partition of unity and it is pointwise non-negative.

These properties taken together result in a strong convex hull property for the NURBS

functions.

 Any projective transformation is applied to a rational B-spline curve by applying

it to the control points; i.e. , the curve is invariant with respect to a projective

transformation. Remark that this is a stronger condition compared to non rational B-

splines, which are only invariant to an affine transformation.

 From equation (1.4.3), it is clear that when wi are all equal to one, then Ri,p=Ni,p.

Thus non rational B-spline basis functions are included as a special case of NURBS.

Due to the fact that NURBS are a generalization of non rational B-spline algorithms for

degree elevation, subdivision and curve fitting are valid by applying them to the four-

dimensional control points.

 Next, we study the effect of the weights wi by illustrating an example. Here, an

open knot vector Ξ=[0 0 0 1 2 3 3 3] and cubic basis functions are used along with a

weight vector which is defined as wi=1 ,i≠3. Values of wi range from 0 to 5. The rational

B-splines basis functions are shown in Fig. 1.12(a) to 1.12(d).

Fig. 1.11

Notice that for w3=0, then R3,3=0 everywhere . Thus, the corresponding control point B3,

has no influence on the shape of the B-spline curve. This effect is shown in Fig.1.11 ,

where the control points B2 and B4 are connected by a straight line. Fig. 1.12 also shows

that as w3 increases, R3,3 also increases; but -as a consequence of the partition of unity

property- R2,3 and R4,3 decrease. The effects on the B-spline curve are shown in

Fig.1.11. In particular, as w3 increases, the whole curve is pulled closer to B3. Hence, as

mentioned previously, the weight coordinates provide additional blending capability.

24

Fig. 1.12

Rational surfaces are defined similarly in terms of the rational basis functions:

, , ,,

, , ,

ˆ ˆ ˆ ˆ, , ,
ˆ ˆ1 1

() ()
(,)

() ()

i p j q i jp q

i j i p j qn m

i p j q i j
i j

N M w
R R S

N M w

 (1.4.5)

1.4.1 Derivatives of NURBS basis functions

As the NURBS basis functions are constructed from the B-spline basis functions, the

derivatives of rational functions will clearly depend on the derivatives of their non-

rational counterparts as well. Simply applying the quotient rule to (1.4.2) yields

'

, ,

2

() () () ()
()

(())

΄

i p i pp

i i

W N W Nd
R w

d W

 (1.4.6)

25

where '

, ,() ()i p i p

d
N N

d

 and

' '

ˆ,
ˆ 1

() ()
n

i p
i

W N

 (1.4.7)

An expression is also available for higher-order derivatives of NURBS basis functions.

Let us simplify notation by defining:

()

,() ()
k

k

i i i p

d
A w N

d

 (no sum on i)

where we do not sum on the repeated index, and let

() () ()
k

k

k

d
W W

d

 (1.4.8)

Higher-order derivatives of these rational functions may be expressed in terms of lower-

order derivatives as

()

() ()

()
1

() () ()

()
()

k jk
k j p

ik jk
jp

ik

k d
A W R

j dd
R

d W

 (1.4.9)

where

!

!()!

k k

j j k j

.

1.5 Mesh generation and refinement strategies

The term " e l e m e n t " in isogeometric analysis simply denotes the mapping of the

knot spans from the parametric space to the physical space (a line, a square or a cube,

depending on the dimension space ; see Fig. 1.13). Although an open vector can

guarantee interpolation at the ends of the interval or at the ends of patches (if we refer to

2 or 3 dimensional spaces) we are to be confused with the term nodes on classic FEA. So

a boundary of a B-spline object with d parametric dimensions consists itself a B-spline

object of dimension (d-1).

26

Fig. 1.13

 Thus, a mesh is constructed through this mapping. Isogeometric analysis carries over the

classical refinement strategies, h and p-refinement, and offers a new way of refinement

called k. We will now exam the way we can handle and achieve these ways of refinement

with respect to the geometrical properties of NURBS.

1.5.1 Knot insertion (h-refinement)

Let
,

1

()
n

i p i

i

C R B

 be a NURBS curve defined on Ξ={ξ1,.....,ξn+p+1}. Let [ξk,ξk+1) ,

and insert into Ξ to form the new knot vector ={ 1= ξ1,....., k= ξk, k+1= k, k+2=

ξk+1,…., (n+1)+p+1= ξn+p+1}. If V and V

 denote the vector spaces of curves defined on Ξ

and , respectively, then clearly V V
 (and dim(V

)=dim(V)+1); thus C(μ) has a

representation on Ξ of the form:

,

1

() ()
n

i p i

i

C R Q

 (1.5.1)

where the ,{ ()}i pR are the p-th degree basis function on . The term knot insertion

refers to the process of determining the {Qi} in the equation. It is important to note that

knot insertion is really just a change of vector space basis; the curve is not changed,

neither geometrically nor parametrically.

 Although not immediately obvious, knot insertion is one of the most important

of all B-spline algorithms. Some of its u s e s are:

 e v a l u a t i n g points and derivatives on curves and surfaces

 s u b d i v i d i n g curves and surfaces

 adding control points in order to increase f l e x i b i l i t y in shape control

(interactive design)

27

Now, the Qi in equation can be obtained by setting up and solving a system of linear

equations. If we set

, ,

1 1

() ()
n n

i p i i p i

i i

R B R Q

 (1.5.2)

then by substituting n+2 suitable values of μ into equation we obtain anon singular,

banded system of n+2 linear equations in the n+2 unknowns , Qi. However, there is a

more efficient solution. The fact that on a given knot span [ξj,ξj+1), at most p+1 of the

Ri,p are nonzero, namely the functions Rj-p,p,….,Rj,p and [ξk,ξk+1) imply that:

1

, ,() ()
k k

i p i i p i

i k p i k p

R B R Q

 (1.5.3)

 for all ξ [ξk,ξk+1),

and

Ri,p(ξ)= i,p(ξ) i=0,….,k-p-1

Ri,p(ξ)= i+1,p(ξ) i=k+1,…,n

(1.5.4)

Equations (1.5.3) and (1.5.4), together with the linear independence of the basis function,

imply that

Bi=Qi i=0,…,k-p-1

Bi=Qi+1 i=k+1,…,n (1.5.5)

Now consider the Ri,p(ξ) for i=k-p,…,k. They can be expressed in terms of the i,p(ξ)

when i=k-p,….,k+1 ,by

2

, , | 1,

1 2 1

() () ()
i pi

i p i p i p

i p i i p i

R R R

 (1.5.6)

Equation (1.5.6) is proven by induction on p.

For brevity we now write i for i,p(ξ). Substituting equation (1.5.6) into equation (1.5.3)

yields:

28

2
1

1 2 1

1 3
1 2 1

2 1 3 2

2

1

1 2 1

1 1....

k p k
k p k p k p

k k p k k p

k p k
k p k p k p

k k p k k p

k pk
k k k

k p k k p k

k p k p k k

R R B

R R B

R R B

R Q R Q

By equating coefficients and using the knot vector Ξ in place of we obtain:

1 1
1 1 1

1 1 1 1

1 1 1

0 ()

()

() () (1.5.7)

k p k p k p

k p k
k p k p k p k p

k k p k k p

k pk
k k k k k k k

k p k k p k

R Q B

R Q B B

R Q B B R Q B

for i=k-p+1,….,k we set

(1.5.8)i
i

i p i

a

And note that

1 (1.5.9)
i p

i

i p i

a

Using the linear independence of the basis functions, and substituting equations (1.5.8)

and (1.5.9) into equation (1.5.7) yields:

Qk-p=Bk-p

Qi=aiBi+(1-ai)Bi-1 k-p≤i≤k (1.5.10)

Qk+1=Bk

Finally, by combining equations (1.5.5) and (1.5.10), we obtain the formula for

computing all the new control points Qi of equation , that is :

Qi=aiBi+(1-ai)Bi-1 (1.5.11)

Where

29

1,

, 1

0, 1

i
i i

i p i

i k p

a a k p i k

i k

equation (1.5.11) says that only p new control points must be computed.

For example, let p=3 and Ξ={0,0,0,0,1,2,3,4,5,5,5,5}. the control points are Β1,Β2,.....,Β7.

We insert μ = . Then [ξ5,ξ6) and k=5. Thus Q1=B1, ..,Q3=B3 and Q7=B6,…,Q9=B8.

Applying the equation, we find that :

4 4 4 3

5 5 5 4

6 6 6 5

5
0

5 12

3 0 6 6

5
1

5 12

4 1 6 6

5
2

1 12

5 2 6 6

a Q B B

a Q B B

a Q B B

Fig. 1.15(a) shows the control polygon before and after the insertion and Fig. 1.15(b)

shows the basis functions before and after the insertion. The bottom part of Fig. 1.15(a)

shows the ratios to subdivide the polygon legs.

30

Fig. 1.15

The h-refinement strategy is introduced in isogeometric analysis through the knot

insertion process. This way the geometry and the parameterization stay intact, but the

solution is enriched, since we add basis functions of the same order.

As we mentioned, the basis functions are C
p-1

 -continuous across the knot spans. In order

to perfectly replicate h-refinement, we have to add new knots with p multicity. This way

the functions will be C
0
 -continuous across the elements. However, increasing the

multiplicity of the existing knots to decrease the continuity of the basis is not similar to h-

refinement strategy in classic finite element analysis, since FEA meshes have C
0
 element

boundaries to begin with. Fig. 1.16 depicts what happen to the curve and its basis

functions when 5 new knots are inserted. As we observe, the addition of every knot

causes the elements to split, creating new elements.

31

Fig. 1.16

1.5.2 Order elevation (p-refinement)

Let
,

0

n

p i p i

i

C R B

 be a p-th degree NURBS curve on the knot vector ξ. Since pC is a

piecewise polynomial curve, it should be possible to elevate its degree to p+1, that is

there must exist control point Qi and a knot vector such that
ˆ

1 ,

0

n

p p i p i

i

C C R Q

.

pC and 1pC are the same curve , both geometrically and parametrically. 1pC is simply

pC embedded in a higher dimensional space. Degree elevation refers to the process (the

algorithm) for computing the unknown Qi and .

As usual, degree elevation algorithms are applied to pC in four-dimensional space.

32

There are three unknowns in equation , , , and the {Qi}. To determine and , assume

that Ξ has the form :

1

1 1 2 2

11

{ ,....., } { ,..., , ,..., ,......, ,..., , ,..., }

s

n p n p n p

pp m m

a a b b

where m1,….,ms denote multiplicities of the interior knots. Now pC is a polynomial curve

on each non degenerate knot span, hence its degree can be elevated to p+1 on each knot

span. At a knot of multiplicity mi, pC is C
p-mi

 continuous. Since the degree elevated curve

Cp+1(μ) must have the same continuity, follows that the same knot must have multiplicity

mi+1 for Cp+1. This yields

 =n+s+1

and

1

ˆ1 2 2

22 1 1

ˆ { ,....., } { ,..., , ,..., ,......, ,..., , ,..., }

s

m n p n p

pp m m

a a b b

 =m+s+2.

The only remaining problem is to compute the {Qi}. An obvious but very inefficient

method to do this is to solve a system of linear equations.

Setting

ˆ

, ,

0 0

() ()
n n

i p i i p i

i i

R Q R B

and evaluating the Ri,p(ξ) and Ri,p+1(ξ) at appropriate +1, yields a banded system of +1

linear equations in the unknowns ,Qi .Instead we apply an algorithm which involves the

extraction of Bézier segments of the curve (for more information see [2])

It follows that

Qi=(1-ai)Bi+aiBi-1

where

0,..., 1
1

i

i
a i p

p

 .

Several curve degree elevation examples are shown in Fig.1.17(a)-(d).The original third

degree curve is raised to the fourth, fifth, and seventh degree in Fig.1.17(b), 1.17(c),

33

1.17(d) , respectively. Note that the control polygon converges to the curve as the degree

is raised.

Fig. 1.17

P-refinement strategy has much in common with order elevation, as it increases the

polynomial degree of the basis. The main difference is that order elevation, unlike

classsic p-refinement, does not require to begin with a basis that is C
o
 everywhere but can

be applied with any type of continuity that exists in the unrefined mesh.

Fig. 1.18

34

1.5.3 k-refinement

Isogeometric analysis offers a new strategy of refinement, referred as k-refinement. The

non commutation of knot insertion and order elevation leads to a mixed strategy which

leads to a much more non restrictive way of manipulating a mesh. As we mentioned, both

h and p-refinement require the C
0
 continuity of the basis. In k-refinement that is not

obligatory. This way we can avoid the proliferation of control variables during

refinement, often caused by the mandatory condition of C
0
 maintenance (see Fig.1.20),

and achieve a higher order refinement.
 K-refinement is achieved through order elevation followed by knot insertion. This

way we elevate the coarsest mesh form a degree p to q and then insert the new knot value

ξ , the basis will have q-1 continuous derivatives at ξ. If we inverse the process that

would lead to a basis which would preserve p-1 continuity, while possessing a

polynomial degree q.

 Fig.1.19(b) and 1.19(c) depict a classic p-refinement and k-refinement approach

respectively. We may assume that the coarsest mesh consists of one element and p+1

basis functions. We begin by inserting new knot values until we have n-p and n basis

functions. We then perform order elevation while we maintain continuity at the level of

p-1. This causes the replication of each knot value and the addition of a basis function in

each element leading to an increase of 2n-p basis functions. If we continue to elevate the

order to r then we would have [(r+1)n-rp], a rather large number of functions.

 On the other hand, if we begin the refinement process by elevating r times and

insert knots until we have (n-p) elements then the final number of basis functions would

be (n+r). This is quite smaller than [(r+1)n-rp].

35

s

Fig. 1.19

In order to perform k-refinement, the coarsest mesh needs to be consisted of one

element. This way we avoid the constraints on the continuity across the element

boundaries, which would have been carried out otherwise by the refinement process. Also

the continuity level must be preserved to p-1 at the element boundaries to get significant

results from the k-refinement strategy.

36

Fig. 1.20

Having in mind that B-splines can have no more than (p-1) continuous derivatives across

element boundaries, Fig.1.21 depicts the set of allowable refinements (highlighted

region).

Fig. 1.21

37

 In Fig.1.22(a) we can see that during k-refinement, the element size h stays fixed

and that as the polynomial order p increases, the continuity of the functions across the

element boundaries is also increased, so that C
p-1

 is maintained at all levels of refinement.

Fig.1.22(b) shows that in pure p-refinement, the continuity k is fixed at k=0, while the

polynomial order p increases without affecting the element size h .The repetition of

existing knot values decreases the continuity across element boundaries, without creating

new elements or affecting the polynomial order (Fig.1.22(c)). Pure h-refinement

(Fig.1.22(d)) creates new elements that have C
0
 boundaries resulting in the decrease of

the element size h. Inserting new knot values with multiplicity of 1 (Fig.1.22(e)) also

creates new elements, but now the basis have p-1 continuous derivatives across element

boundaries. Finally, in Fig.1.22(f) combined refinement strategies are presented. This

permits us to tranverse the allowable refinement space.

Fig. 1.22

38

Chapter 2: NURBS As A Tool For A n a l y s i s

This chapter is going to examine the use of NURBS functions in the field of finite

element analysis. As will we see the use of isogeometric analysis bridges the gap between

the solution space and geometry involved in the approximation using finite elements.

2.1 Boundary value problems
To start off, consider Laplace's equation (2.1.1). The goal here is to find a u so that it

satisfies conditions (2.1.2) and (2.1.3), also known as Dirichlet and Neumman

conditions, respectively.

 0u f (2.1.1)

u = g on ΓD
(2.1.2)

Δu ・ n = h on ΓΝ
(2.1.3)

Let us also consider a closed domain =Ω ,where denotes the boundary. ΓN and

ΓD are the Neumman and Dirichlet boundary sides, where the conditions are

implemented with the property D N and n is the unit outward normal vector

on . The functions f : Ω → ℝ , g : ΓD →ℝ, h : ΓN →ℝ are all given. Problem 2

constitutes the strong form of the BVPS, which is not our main concern. We are mainly

interested in developing schemes for approximating solutions. If Ω is sufficiently smooth

and under certain restrictions of g and h the Lax-Milgram theorem guarantees a solution,

but in most often cases its analytical form is either hard or impossible to obtain.

The techniques of approximating the analytical solution are referred as numerical

methods. Different numerical methods are simply different techniques for finding an

approximate solution, such as u
h
 ≈ u. This chapter focuses on the application of

Galerkin's approximation technique and its implementation on isogeometric analysis.

2.2 Introducing the Galerkin Method

The Galerkin method is firmly attached to finite element analysis, even though there have

been numerous and various approaches, regarding the best way to achieve a numerical

solution for BVPs. We will introduce the Bubnov-Galerkin method which is the most

common method of modern finite element analysis. In order to understand this method,

several steps are needed to be applied. We start by defining the weak, or variational,

formulation of Problem 2. A new class of functions is defined, known as trial solutions.

This class contains functions that satisfy the Dirichlet condition (2.1.1).

To define the trial spaces, let us first define the space of square integrable

functions on Ω . This space, called L
2
(Ω), is defined as the collection of all functions u :

Ω → ℝ such that

39

2u

 (2.2.1)

Let us consider a multi-index α ∈
 d

 where d is the number of spatial dimensions in the

space. For α = {α1, . . . , αd }, we define |
1

d

ii
a a

 .We now have a concise way to

represent derivative operators. Let 1 2..... Da aa aD D D D , where j

i j

i

D
x

. The variational

formulation needs to be well defined, which (as we will clearly see) leads to the demand

that the derivatives of our trial solutions be square integrable . Specifically, if u : Ω → ℝ

is a trial solution, then we must insist that

u u

 (2.2.2)

Such a function is said to be in the Sobolev space Η
1
(Ω),which is defined as:

1 2() { (), 1}aH u D u L . (2.2.3)

The set of trial solutions, denoted by S, contains the functions which have square-

integrable derivatives and satisfy the Dirichlet condition:

u|ΓD= g. (2.2.4)

This is written as

1{ (), }

D

S u u H u g

.
 (2.3.5)

The second collection of functions in which we are interested is called the weighting

functions. The weighting functions satisfy the homogeneous Dirichlet condition, i.e.

g=0. So the set, denoted by V, can be written as:

1{ (), 0}
D

V w w H w

.

 (2.2.6)

Multiplying (2.1.1) by an arbitrary test function w ∈ V and integrating by parts and

applying the divergence theorem, results in the weak formulation of Problem 2. The

initial BVP can now be expressed as such:

 Given f , g, and h , find u ∈ S such that for all w ∈ V

w ud whd wfd

 . (2.2.7)

40

As we can see, equation (2.2.7) gathers all the unknown information, namely u to the left-

side, while the given data are contained in the right side.

The necessity of working in H
1
(Ω) spaces is quite obvious, since the weak formulation of

the original BVP requires that u is square intergrable, while the strong form requires u to

have well defined second derivatives.

This weak form may be rewritten as

a(w, u) = L(w) (2.2.8)

where

(,)a w u u wd

 (2.2.9)

and

()L w wfd whd

 (2.2.10)

A few properties of a(・, ・) and L(・) are worth noticing. The first is the symmetry of

a(・, ・). It follows directly from its definition that a(w, u) = a(u,w). Also, a(・, ・) is

bilinear and L(・) is linear. That is, for all constants C1 and C2,

a(C1u + C2v,w) = C1a(u,w) + C2a(v,w), (2.2.11)

L(C1u + C2v) = C1L(u) + C2L(v). (2.2.12)

The details may vary, but Laplace's equation can represent the general idea behind the

process of setting up the weak formulation of BVPs as well as how to implement the

boundary conditions .

The solution to (2.2.7), or equivalently to (2.2.8), is called a weak solution. The

strong solution always satisfies (2.2.7) and the weak solution, under appropriate

assumptions, can become a strong one.

2.2.1 The method itself

The first step in developing the method is to construct finite-dimensional approximations

of S and V, denoted S
h
 and V

h
, respectively. The superscript refers to the association of S

h

and V
h
 with a discretization of the domain Ω, which is parameterized by characteristic

length scale h. The approximation sets imply that:

S
h⊂ S, (2.2.13)

Vh ⊂ V. (2.2.14)

41

If c1 and c2 are constants and v,w∈V, then (c1v + c2w)∈V. Thus, both V and V
h
 posses the

property of a linear space. However, this property is not shared by S and S
h
 due to the

inhomogeneous boundary condition (2.1.2), since if u1 and u2 are members of S, then

(u1+u2=g+g=2g)S.

We can further characterize S
h
 by recognizing that if we have a given function g

h
 ∈ S

h

such that g
h
|ΓD= g, then, for every u

h
 ∈ S

h
 there, exists a unique v

h
 ∈ V

h
 such that

u
h
 = v

h
 + g

h
(2.2.15)

This clearly will not be possible for an arbitrary function g, but for now let us assume that

such a g
h
 exists.

We can now write a variation equation of the form of (2.2.8). The Galerkin form of the

problem is:

Given g
h
, h, and r , find u

h
= v

h
 + g

h
, where v

h
 ∈ V

h
, such that for all w

h
 V

h

a(w
h
, u

h
) = L(w

h
). (2.2.16)

Recalling (2.2.15) and the bilinearity of a(・, ・), we can rewrite (2.2.16) as

a(w
h
, v

h
) = L(w

h
) − a(w

h
, g

h
). (2.2.17)

In this latter form, the unknown information is on the left-hand side, while everything on

the right-hand side is given, as before. Equations (2.2.16) and (2.2.17) are sometimes

referred to as the Bubnov-Galerkin method.

2.3 Isoparametric Concept

The following questions arise: How can we ensure that the solution space used to
approximate the Galerkin solution converges to the exact solution, when refinement
strategies are applied? What conditions must be satisfied in order to achieve
convergence? A lot of shape functions -the functions consisting the basis of our

approximate finite solution space- are used in order to achieve better accuracy in FEA .

 This section remarks some conditions to ensure convergence, although there are shape

functions that don't follow them but converge nonetheless to an exact solution. These

conditions, however may be considered basic by providing the criteria for using the right

shape functions.

The basic convergence requirements are that the shape functions should be :

 C1 : smooth (i.e., at least C) on each element interior domain, Ω
e

42

 C2 : continuous across each element boundary Γ
e

 C3 : completeness
The following remarks should be mentioned:

1. Conditions C1 and C2 guarantee that the first derivatives of the shape functions

have, at worst, finite jumps across the element boundaries (see Fig.2.1). This way,

all the integrals appearing in the weak formulation are well defined, since first

derivatives appear in the integrands.

Fig. 2.1

2. Shape functions that satisfy C1 and C2 are of class C°(). Finite elements

constructed from C°() shape functions are often referred to as C°-elements .

3. If the integrands involve derivatives of order m, Condition C1 should be

strengthened to C
m

-continuity on Ω
e
 and Condition C2 should be strengthened to

C
m

-continuity across Γ
e
. Finite elements that satisfy this property are called

conforming or compatible.

4. Condition C2 can be ensured by requiring that each function u
h S

h
 is continuous

across Γ
e
.

In order to understand completeness, let us first introduce the isoparametric approach in

order to find an approximate solution. The dimension of the domain Ω is considered to be

a subset of ℝ2
, unless otherwise stated. In standard FEM the basis functions are chosen as

piecewise polynomials and the concept of isoparametric elements is invoked to

approximate curved boundaries. Assume we have nen shape functions Nj , e.g.

polynomials, defined over a standard geometry ℝ2
 like a triangle or a square (in d =

43

3 dimensions a tetrahedron or a hexahedron). We call the parameter domain or

parameter space. The computational domain is partitioned into a mesh of elements Ω
e

that are sub-domains of the same shape as . On each element there are nen specific grid

points x
e
i , e.g., the corners, that can be used to define the geometry functions F

e
 : Ω

e

1

() ()
enn

e e

i i

i

F N x

(see also Fig.2.2)

Fig. 2.2

The basis functions Ni for the Galerkin projection are compositions of the shape functions

with the inverse of the geometry function. So for x Ω
e
 we get the local representation of

the approximate solution:

1

1

()
enn

h e

i i

i

u N F d

where
 stands for the unknown coefficients or nodal values. This local representation

offers a local evaluation of element stiffness matrices and force vectors, and the linear

system is then assembled from these element contributions.

So if F: is of the form

1

() ()
enn

e

i i

i

F N x

(2.3.1)

and the element interpolation function u
h
 can be written as

44

1

1

()
enn

h e

i i

i

u N F x

 (2.3.2)

The element is said to be isoparametric.

The key point to observe in the definition is that the shape functions which define

(2.3.1) also serve to define (2.3.2).

In this case, the shape functions are said to be complete if

0 1 2

e e e

i i id c c x c y (2.3.3)

implies that

0 1 2()hu x c c x c y (2.3.4)

where c0,. . , c2 are arbitrary constants.

In words, c o m p l e t e n e s s requires that the element interpolation function is capable

of exactly representing an arbitrary linear polynomial when the nodal degrees of freedom

are assigned values in accordance with it. Completeness is a plausible requirement as the

following argument indicates: As the finite element mesh is further and further refined,

the exact solution and its derivatives approach constant values over each element domain.

To ensure that these constant values are representable, the shape functions must contain

all constant and linear monomials. This argument was originally given in and has been

proved to be the key mathematical idea for proving convergence theorems for finite

element approximations.

R e f i n e m e n t in isoparametric FEM is either performed by splitting the element into

smaller ones (h-refinement) or by using higher order polynomials as shape functions in

each element (p-refinement). Well-established a posteriori error estimators as well as

mesh-refinement algorithms are available. Moreover, polynomials as local basis

functions can be easily evaluated and integrated. Note that global smoothness is C0 in

general.

The most obvious drawback of isoparametric FEM is the lack of an exact geometry

representation for complex engineering shapes. In this case the boundary must be

approximated and also the boundary conditions, which may lead to additional errors or

even wrong boundary layers.

We proceed in checking whether isoparametric elements ensure convergence to the
exact solution or not.

45

Convergence Condition C1 If F: Ω is :

i. one-to-one;

ii. onto;

iii. C
k
 ,k 1; and if

iv. the jacobian determinant j(μ) > 0 for all μ

then the inverse mapping 1 :
e

F exists and is C
k
.

PROPOSITION 1: Let the mapping defined by (2.3.1) satisfy (i) through (iv).

Then the smoothness requirement (Cl) is satisfied.

Proof: By virtue of the hypotheses, Ni = Ni(ξ) is also а С
1
 function. Since F satisfies (i)

through (iv) , ξ=ξ(x) is also C
1
. Thus Ni(x)=Ni(ξ(x)) is also a C

1
 function of x.

(This last fact may be proved with the aid of the chain rule).

In practice, the mappings :
e

F usually satisfy (i) through (iv). However, there is

one exception of practical importance. It is concerned with the technique

of element "degeneration," in which nodes are coalesced. The simplest example of

this procedure, in which two nodes of the standard bilinear quadilateral element are

coalesced to form a triangle

When degeneration is performed, the Jacobian determinant vanishes at certain nodal

points within the element. Away from these points it is positive, and the mapping μ=μ(x)

remains smooth (i.e., Cl is satisfied). For reasons that will be apparent later on, it is not

usually required to calculate derivatives at these points.

Convergence Condition C3 [completeness] If
1

1
enn

i

i

N

 , then completeness

condition C3 is satisfied for isoparametric elements.

Proof:
(We shall prove the assertion for the two-dimensional case)

1

0 1 2

1

0 1 2

1 1 1

0 1 2

1

(2.3.5)

()

() () ()

() (2.3.6)

en

en

en en en

en

n
h e

i i

a

n
e e

i i i

a

n n n
e e

i i i i i

i i a

n

i

i

u N d

N c c x c y

c N c N x c N y

c N c x c y

46

The only remaining convergence condition is C2, the continuity requirement on

Ω
е
. This condition can be verified once the construction of the global shape functions

from the element shape functions is explicated. It happens that if this procedure is done in

the "obvious" way, continuity is achieved. In the sequel we shall consider this issue on a

case-by-case basis.

The importance of the isoparametric concept is that the three basic convergence

conditions are applied. In addition, isoparametric elements may be designed to take on

convenient shapes, including curved boundaries, and lend themselves to concise

computer implementation. This notion of using the same basis for geometry and analysis

is called the isoparametric concept, and it is quite common in classical finite element

analysis.

2.4 The isogeometric concept
Isogeometric analysis follows the isoparametric approach meaning that the basis used to

define the geometry under study is the same for the approximation of the solution.

However, this time, the main criteria for choosing the basis is to exactly replicate

geometry and use them as a solution space as well. This fact should not considered a

drawback since the NURBS basis consist a reliable and desirable solution field. In a

sense, we are reversing the isoparametric arrow such that it points from the geometry

toward the solution space (see Fig.2.2).

The use of polynomials in classic FEA is quite common due to their simplicity.

They are simple to understand and prove theorems regarding their convergence. They are

also convenient during calculation process. This is not to say that proving theorems about

other bases is impossible. Though precise results for non-polynomial bases do exist most

basic convergence requirements in many numerical methods are achieved by any

reasonably smooth isoparametric basis that is also a partition of unity.

As seen sufficient conditions for a basic convergence proof for a wide class of

problems are satisfied by a basis that indulges conditions C1 – C3.

The requirements of C
1
-continuity on the element interiors and C

0
-continuity on

the element boundaries are not at all restrictive. Most bases that we might consider are C
∞

on the element interiors and have at least C
0
-continuity on the element boundaries. The

third condition, completeness, requires that, on any given element Ω
e
, the basis be

capable of representing all linear functions.

47

Fig. 2.3

Isogeometric analysis based on the NURBS as basis functions allows to exactly map the

unit square in the parameter space ℝ
2
to an arbitrary domain that was designed in a

(NURBS-based) CAD-program. The global geometry function F : := [0,1]
2
 Ω is

element of a NURBS the knot span space Rp . With the control points of the NURBS

Βi ℝ
2

 in linear ordering (i=1,..., n). The geometry function is defined for all μ by

1 1

()
() () () (2.4.1)

()

en en

en n
i

i i i e
i i i

xx
F R B R

y y

(see also Fig.2.3)

Fig. 2.4

The representation of the approximate solution u
h

 stays the same as in the isoparametric

case, except we are now already in a global setting. So we have for all x Ω

1

1

()
enn

h

i i

i

u x R F d

 (2.4.2)

It is important to understand that this method does not use elements in the classical sense

but patches instead. The knot vectors defining a NURBS create two-dimensional boxes in

the preimage of F, their image under F is called a patch.

So ,given the basis
1{ } enn

i iR
, completeness demands that there are coefficients di such that

for arbitrary constants,co,c1 and c2 :

1

0 1 2

1

|
en

e

n
h

i i

i

u R F d c c x c y

(2.4.3)

As the basis is a partition of unity, at that same point ξ we have

48

1

() 1
enn

i

i

R

 . (2.4.4)

Inserting (2.4.1) and (2.4.4) into (2.4.3) and solving for dA yields

0 1 2

e e e

i i id c c x c y
.

Thus, the isoparametric concept and the partition of unity are enough to ensure

completeness. Moreover, they are vital to ensuring that isogeometric analysis will result

in convergent methods for many different choices. Compared to the piecewise

polynomials in the classical FEM, the basis functions are now globally defined and have

a larger support. Global smoothness can be easily increased to C1 or even higher.

2.5 Assembly routine
The use of NURBS basis for the approximation of the solution leads to a linear algebraic

system, when the Galerkin method is applied. This section examines thoroughly with use

of index notations a way of assembling in an efficient way this system. Suppose our

solution space consists of nnp basis Ri: ℝ .Most of the functions are zero on the

boundary of the domain due to the fact that their support is highly localized. Those

functions will be differed from the ones that are non-zero, in order to organize in a more

efficient way the algebraic system.

So, we may assume that there are neq such that

0
D

iR

 , i=1,….,neq (2.5.1)

Thus for the weighting functions w
h
V

h
, there exist constants ci, i = 1, . . . , neq such that

1

eqn

h

i i

i

w R c

(2.5.2)

The function g
h
 , also referred as lifting function ,can be approximated using functions

from the NURBS space. This time in order in order to distinguish between the Dirichlet

counterparts and the ones that are calculated, we will choose g
h
 such that g1=…=gneq=0.

So

1

np

eq

n

h

i i

i n

g R g

(2.5.3)

Since u
h
=v

h
+g

h
 the approximate solution can be written as

49

1 1 1

eq np eq

eq

n n n

h h

i i j j i i

i j n i

u R d R g R d g

 (2.5.4)

Substituting in (2.2.16) with (2.5.1) and (2.5.4) and having in mind the linearity of both a(.,.)

and L(.) we get:

,

1 1

(,) () () 0

eq eqn n

h

i i j j i j

i j

c a R R d L R a R g (2.5.5)

Since the cj’s are arbitrary it follows that the term in parentheses must vanish. Thus, for A

= 1, . . . , neq ,

,

1

(,) () ()

eqn

h

i j i i

j

a R R L R a R g

(2.5.6)

Proceeding to define

Kij = a(Ri, Rj), (2.5.7)

Fi = L(Ri) − a(Ri, g
h
), (2.5.8)

and

K = [Kij], (2.5.9)

F = {Fi}, (2.5.9)

d = {di} (2.5.11)

for i, j = 1 . . . , neq , we can rewrite (2.5.6)as the matrix problem: Kd = F (2.5.12).

K is known as the stiffness matrix and vectors d, F as displacement and force vector due

to the implication of FEA on structural analysis.

Solving (2.5.12) for the di’s for i = 1, . . . , neq as

d = K
−1

F (2.5.13)

and inserting them back into (2.5.4), we can finally obtain our approximate solution.

2.5.1 Assembling the system

So far we have viewed the finite element method simply as a particular Galerkin

approximation procedure applied to the weak statement of the problem in question. What

makes what we have done a finite element procedure is the character of the selected basis

functions; particularly their piecewise smoothness and local support. This is the

mathematical point of view; it is a global point of view in that the basis functions are

50

considered to be defined everywhere on the domain of the BVP. The global viewpoint is

useful in establishing the mathematical properties of the finite element method.

Now we wish to discuss another point of view called the local, or element, point

of view.. This viewpoint is the traditional one in engineering and is useful in the

computer implementation of the finite element method and in the development of finite

elements. The stiffness matrix K is a sparse matrix due to the local support of the

NURBS basis over the elements. Thus, for many combinations of i and j Kij(Ri,Rj)=0.

This way we can take advantage of that fact in order to reduce the amount of work

needed to solve the algebraic system.

The process of building the global stiffness matrix and force vector is called assembly.

Instead of looping through all of the global shape functions, taking global integrals to

build K one entry at a time, we will loop through the elements, building element stiffness

(K
e
) matrices and force vertices(F

e
) as we go (see Fig.2.4). Every entry of each of these

dense element stiffness matrices will then be added to the appropriate spot in the global

stiffness matrix. In this way, we need not expend effort integrating functions over regions

in which we know a priori that they are zero.

Fig. 2.5

51

At next, we will introduce the connectivity arrays through an example, in order to obtain

a clear perception of their use during the assembly process. The connectivity arrays are

used to link every local shape function number to a global shape number.

2.5.2 Connectivity Arrays

Let us consider a specific example of a biquadratic (p = q = 2) surface formed from knot

vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}, with control points listed in

TABLE 1, resulting in the control net and mesh shown in Fig. 2.6.

 TABLE 1 Fig. 2.6

T h e I N C a r r a y

For higher-dimensional NURBS objects, it is very convenient to introduce the concept of

NURBS coordinates. Examining the index space, which uniquely identifies each knot

and discriminates among knots having multiplicity more than one, in Fig. 2.7 we can see

that the NURBS coordinates of any vertex in the mesh are simply the indices of the knots

that define it. For example, the vertex created by the intersection of the knot lines

corresponding to ξ3 and η2 has NURBS coordinates (3, 2). Note that this is the vertex at

which the support of the blue function begins. In fact, this is how we will most frequently

use NURBS coordinates: to identify the knots at which the support of a function begins.

52

Fig. 2.7

This leads us to a natural scheme for the global numbering of basis functions. If there are

n functions in the ξ -direction and m functions in the η-direction, then define

I= n(j − 1) + i (A.1)

such that the global bivariate function (,) IR is the tensor product of univariate

functions Ri (ξ) and Sj (η). We define the INC (―NURBS coordinates‖) array such that

given a global basis function number and a parametric direction, it returns the index of

the one-dimensional basis function in the specified direction that was used to build the

global function. Because the support of any one-dimensional NURBS function Ri (ξ) is

[ξi, ξi+p+1], we can also interpret the INC array as relating the global basis function

number and the specified parametric direction with the index of the knot in the

appropriate knot vector at which the support of the function begins. Thus, with (,) IR =

Ri (ξ)Sj (η) we have

 i = INC(I, 1) and j = INC(I, 2). (A.2)

 Turning our attention to Fig. 2.7 and noting that n = 4, p = 2, m = 3, and q = 2, we have

the INC array given in Table 2. Thus we see that the red function is
1(,) R and has

NURBS coordinates (1, 1), while the blue function is
7 (,) R with NURBS coordinates

(3, 2). The NURBS coordinates are required by many routines, such as basis function

evaluation, that explicitly utilize the knot vectors.

53

I(global function number)

INC 1 2 3 4 5 6 7 8 9 10 11 12

1 (ξ -coordinate) 1 2 3 4 1 2 3 4 1 2 3 4

2 (η- coordinate) 1 1 1 1 2 2 2 2 3 3 3 3

TABLE 2

T h e I E N a r r a y

 Let us call the connectivity array IEN. For each element number e from 1, . . . , nel , and

local function number from 1, . . . , nen, there is a global function number from 1, . . . ,

neq such that IEN(, e) = . That is, local function
i

R of element e and global function IR

are exactly the same. This allows us to build the global stiffness matrix from a sequence

of local ones. Similarly, the global force vector F is assembled from the local force

vectors F
e
. Along the way, we are only performing integration on functions that are non-

zero.

The concept of NURBS coordinates provides us with an easy way to determine which

functions have support in a given element. First, let us assign element numbers. Knowing

that we are using open knot vectors, the number of elements in the ξ-direction is n − p;

similarly, in the η-direction we have m − q elements (note that due to the possibility of

repeated internal knots, some of these elements may have zero measure in the parametric

domain; this scheme does not, however, apply element numbers to the knot spans that are

known a priori to have zero measure due to the use of open knot vectors). Consider an

element e = [ξi, ξi+1] × [ηj, ηj+1], where p + 1 ≤ i ≤ n and q + 1 ≤ j ≤ m. A natural

numbering scheme is to assign the element number

e = (j − q − 1)(n − p) + (i − p). (A.3)

Thus, the ―lower, left-hand corner‖ of element e has NURBS coordinates (i, j). See

Fig. 2.8 . Any function of the form Rα(ξ)Sβ(η) for integers α and β such that i − p ≤ α ≤ i

and j − q ≤ β ≤ j has its support on element e . Thus, the total number of local basis

functions is nen = (p + 1)(q + 1). Let us assign local function number 1 to the function

with NURBS coordinates (i, j). We then assign the remaining local numbers, working

backwards in ξ first, followed by η. Thus, with I as in (A.1), the global numbers of the

first p + 1 local functions are I, I − 1, . . . , I− p.

54

The function I−p−1 does not have support in the element, so we move a row in the η-

direction and continue numbering with I− n, I − n − 1, . . . , I − n − p. Again, we must

move to the next row and continue with I − 2n, . . . , I − 2n − p. This continues until we

reach our last set of function numbers, I − qn, . . . , I − qn − p, at which point we are

finished.

Fig. 2.8

The IEN (―element nodes‖) array connects these global function numbers to their local

ordering on the element. In finite elements, global basis function numbers are identified

with global node numbers, and local basis function numbers are identified with local

node numbers. It is for this reason that the IEN array is referred to as the ―element nodes‖

array. Even though this designation no longer applies in the present case, we retain the

name. Given the element number, e, and the local basis function number, b, the

corresponding global basis function number, I, is given by

I = IEN(, e). (A.4)

Thus, if I = IEN(1, e) as in the previous paragraph, then we have, for example, I − 1 =

IEN(2, e), I − n = IEN(p + 2, e), and I − qn − p = IEN((p + 1)(q + 1), e).The IEN array

corresponding to the mesh in Fig.s 2.7 and 2.9 is shown in TABLE 3.

Observe that the blue function, 7, which has support in both elements, has local number

 = 4 on element e = 1 and also local number = 5 on element e = 2. That is, IEN(4, 1) =

IEN(5, 2) = 7. The red function, 1, has support in only the first element. The only entry

corresponding to it is IEN(9, 1) = 1.

I (local basis function number)

IEN 1 2 3 4 5 6 7 8 9

e=1 11 10 9 7 6 5 3 2 1

e=2 12 11 10 8 7 6 4 3 2

TABLE 3

55

T h e I D a r r a y

Now that we have numbered all the basis functions used to construct our geometry,

established a local numbering convention, and collected the connectivity information

relating the two points of view, we need to turn our attention to the specific requirements

of analysis. Recall that in the beginning of the chapter we assumed a numbering of the

global functions such that each function with support on the Dirichlet boundary had a

higher index than any without support on that boundary. This was convenient for the

exposition of finite element concepts, but we have no reason to expect it to be compatible

with the numbering system proposed in the previous section. In general, we have one

equation corresponding to each function that does not have support on the Dirichlet

boundary. This assumes Dirichlet boundary conditions are satisfied strongly). We must

construct a mapping between the global index of those functions, and an equation number

between 1 and neq , the total number of equations (which, in the scalar case, is less than or

equal to the total number of functions). This information is stored in the ID ―destination‖

array.

The ID array itself will depend on the specifics of the boundary conditions. Referring to

Fig. 2.9, assume that we have Dirichlet data prescribed along the edge from (3, 1.5) to

(3, 5) in the physical space. We can tell from Fig. 2.7 that any function
IR such that

INC(I, 1) = 4 is going to have support on that edge, and thus will not have an equation

number corresponding to it. Though there are many conventions we might adopt, we

simply assign equation numbers in ascending order, assigning 0 to any function with

support on the Dirichlet boundary. Thus, we arrive at the ID array shown in TABLE 4.

Fig. 2.9

 I(global function number)

ID 1 2 3 4 5 6 7 8 9 10 11 12

P(equation number) 1 2 3 0 4 5 6 0 7 8 9 0

TABLE 4

56

T h e L M a r r a y

The final connectivity array that we will consider is just a composition of the previous

two. The most common form of the LM (Location Matrix). The LM array may then be

constructed from the relation

LM(, e) = ID(IEN(, e))

Thus, we obtain TABLE 5:

 I (local basis function number)

LM 1 2 3 4 5 6 7 8 9

e=1 1 2 3 4 5 6 7 8 9

e=1 9 8 7 6 5 4 3 2 1

TABLE 5

2.5.3 Evaluation of gradients and Jacobian determinant

After introducing the connectivity arrays we are ready to assemble the matrix equations

recall that:

(,) ()

T

ij i j i jK a R R R R d

and

() (,) () ()

h T h

i i i i i iF L R a R g R fd R hd R g d

The stiffness and force matrices are formulated with respect to the local indices:

1

eln
e

e

K K

 and
1

eln
e

e

F F

 where
e

,K () () (2.5.13)
e

i j i jij
a R R R R d

(2.5.13)

(2.5.14)
e e e

N

e h

a i i iF R fd R hd R g d

(2.5.14)

57

Fig. 2.10

Now that have assembled the system in a way that the calculation takes place in the

domain of the element, it's time to approximate the integrals using the Gaussian

quadrature rule. Let us consider the affine mapping θ: e
 . e

. Each element in the

parameter space is pulled back by the inverse of the affine function to a bi-unit square

where the actual integration takes part. The domain e
 is called parent element.

In each quadrature point we must estimate the gradients of the basis:

(,) (,)

[]i i
i

dR dR
R

dx dy

The derivatives of Ri with respect to x and y may be evaluated with the aid of the chain

rule:

(,) (,)i i idR dR dRd d

dx d dx d dx

(,) (,)i i idR dR dRd d

dy d dy d dy

It is worthwhile to recast the above relations in the following matrix form:

(,) (,) (,) (,)
[] []i i i i

d d

dx dydR dR dR dR

d ddx dy d d

dx dy

58

The derivatives
(,)idR

d

 and

(,)idR

d

 may be explicitly computed. However , the

terms in the matrix cannot be directly computed since we do not have explicit expressions

ξ=ξ(x,y) and η=η(x,y) . On the other hand, we do have the inverse relations:

, ,

1 1

, ,

1 1

(,) () ()

(,) () ()

n m

i p q ij

i j

n m

i p j q ij

i j

x R S x

y R S y

Here, xi,j and yi,j are the x and y coordinates of the control points of the solution surface.

Relations and enable us to calculate the matrix:

dx dx

d d
x

dy dy

d d

The matrix is the inverse of the matrix ,i.e.,

1 1
()

d d dy dx

dx dy d d
x

d d dy dxJ

dx dy d d

where

det()
dx dy dx dy

J x
d d d d

 .

So the following equation is used to estimate the gradients

(,) (,) 1
[]i i

i

dy dx

d ddR dR
R

dy dxd d J

d d

Since we are integrating over the parent element, we should also compute the Jacobian

determinant:

59

det det

dx dx dx d dx d

d d d dd d
J

dy dy dx d dx d

d d d dd d

For an arbitrary element domain , 1 1
ˆ [] [,]e

i i j j and thus NURBS coordinates

(i,j) we calculate ˆ(,) e from (,) e

~

~
1 1 1

~
~

1 1 1

() (() ())
(1)

2 2

() (() ())
(1)

2 2

i i i i
i

i i i i
i

The Gaussian quadrature rule seems to be effective even though NURBS are no

necessary polynomials.

2.6 Boundary Conditions
This chapter examines the implementation of the boundary conditions of BVPS using the

isogeometric approach. The most significant boundary conditions are those presented in

(2.1.2) and (2.1.3), that is the Dirichlet & Neumann conditions, respectively.

Dirichlet conditions are often referred to as "essential boundary conditions", due to the

fact that during the variational formulation of the problem they are directly built into the

solution space since the Galerkin formulation doesn't offer the chance to impose them.

The lifting function presented in chapter 2.5 in most cases is just an approximation of g.

This way of imposing the Dirichlet conditions is known as strong imposition of boundary

condition.

If g=0 the we have "homogeneous Dirichlet conditions". In this case, the lifting function

g
h

 can be built to the solution space by setting gi=0 for i=neq+1 , ….., nnp , since g-

1,….,gneq=0. If g is a constant then we set gi to that constant since the partition of unity of

the NURBS basis can guarantee the safe implementation of the boundary condition.

Other functions, such as linear functions, that exist in the NURBS space can be set by

setting appropriately the control points.

If g doesn't exist in the NURBS space then the lifting function becomes an approximation

such that |
D

g g . In classical finite element analysis the elements interpolate g at the

60

nodes. However in isogeometric analysis we can interpolate g using the appropriate

control points but as the basis itself is non interpolatory this results in a slightly deformed

g
h
 . Frequently this yields better results than FEA (see Fig. 1.6(b)).

An alternative approach is done via the weak imposition method. Here the weighting

function w doesn't satisfy the homogeneous Dirichlet condition, i.e. we don't enforce

| 0
D

w . This results to the following variational form of the BVP problem:

0

 w ud w u nd wfd (2.6.1)

To ensure the convergence of the method and to restrict the error we add two terms

resulting in the following formulation:

()() ()() 0

D D

w ud w u nd wfd

C
w n u g d w n u g d

h

(2.6.2)

where h is the element length scale (for a full definition see chapter 2.7) , C is a constant

and γ=±1. Notice that the exact solution for (2.6.1) is also a solution for (2.6.2). For more

information on the weakly imposition of the Dirichlet boundary condition see [18]

In addition, the imposition of the Neumann conditions is straight forward. Integration by

parts introduces in a "natural" way a boundary integral over ΓΝ. Using condition (2.1.3) we

replace u n with h resulting in equation (2.2.7). Neumann conditions are also known as

"natural boundary conditions".

2.7 Error estimates
Recall from above that a Sobolev space of order r is defined by

2() { (), }r aH u D u L a r

 (2.7.1)

The norm associated with H
r
 (Ω) is given by

2

() ()a a

r
a r

u D u D u dx

 (2.7.2)

The finite element function spaces are endowed with an approximation property that

may be stated as follows. Given a function u Hr, then there exists a function u
h S

h

(sometimes called the interpolate) such that

h

rm
u u Ch u

 (2.7.3)

61

where m and r are the norms corresponding to Sobolev spaces H
m
(Ω) and

H
r
(Ω), C is a constant independent of u and h, β = min(p + 1 − m, r − m), p is the

polynomial degree appearing in the element shape functions, and h is the mesh

parameter, a scalar characterizing the refinement of the finite element mesh. The mesh

parameter may be taken to be the diameter of the largest element in the mesh (see Fig.

2.11). A collection of finite element spaces {Qh} (i.e.. meshes parameterized by h)

possessing the approximation property .is called k, m-regular.

The order of convergence, β, expresses how the error changes under refinement of the

mesh. In particular, if we use h-refinement to bisect each of the elements in the mesh

(i.e., h is replaced with h/2), we would expect the error to decrease by a factor of (1/2)
β
.

As long as p+ 1 and r are greater than m, we have optimal convergence in the H
m

 norm.

Fig. 2.11

Let Πm be a projector from the Sobolev space H
m
 to the solution space spanned from the

basis used, then if :
h

mu

such that

h h

m m
u u u u

h
 S

h
,

then η
h

 is called optimal interpolate.

In order to conclude to inequality we first have to bound the term
h

m
u over each

element . To obtain the global result we sum over all elements. Once this is done we

compare the approximate solution u
h
 ,which is obtained after applying the Galerkin

method with the optimal interpolate. The two results yield inequality. This inequaliity

ensures us that ,at least up to a constant , the Galerkin method gives the optimal result. In

the case of NURBS though it is not that simple to obtain such a result since we are facing

several difficulties.

62

The approximation properties of the rational basis are more complex than those of

standard polynomials. The weights depend only by the geometry, so the approximation

over a field over that geometry is not easily achieved and cannot be adjusted to improve

the result.

Assume that d knot vectors Ξα with 1 ≤ α≤ d, are given. Let (0, 1)d ⊂ ℝd be an open

parametric domain, referred to as a patch. Associated with the knot vectors Ξα there is a

mesh Q, that is, a partition of (0, 1)d into d-dimensional open knot spans, or elements,

1 d 1 , 1,(Ξ ,...,Ξ) : { (,) , 1 1}
a a

d

a i a i a a a aQ Q p i n Q Q

The tensor product B-spline basis functions are defined as:

1 ,...,

1 1 ,
1,...,

= (Ξ ,...., ; ,...,) : { } dn n

d d i a
i n

a

p p span N

 S S

To a (non empty) element 1 1, ,(,)
a a a a

d

a i m a i m aQ Q we associate (0,1)dQ defined

as

1 1, ,(,)
a a a a

d

a i m a i m aQ

The set Q will be referred to as the support extension of Q , since it is the union of the

supports of basis functions whose support intersects Q .

The NURBS space on the patch, denoted by, is

1

1 1,...,

,...,

1 1= (Ξ ,...., ; ,..., ;) : { } d

d i na

n n

d d i ip p w span R

 N N

The NURBS geometrical map F is given by equation (2.4.1). F is invertible, with smooth

inverse. Each element QQ is mapped into an element

() { () | }K F Q F Q)

and analogously Q , the support extension of Q , is mapped into

()K F Q .

We then introduce the mesh K in the physical domain

: { () | }F Q Q QK

and the space V of NURBS on (which is the push-forward of the space N of NURBS on

the patch)

63

1

1 1

,...,1

1 ... 1,...., 1(,....,) : { } d

d d

n n

a i i i ip p span R F

 V V

We consider now a family of meshes {Qh}h on (0, 1)
d
, where h denotes the family index,

representing the global mesh size:

h = max{hQ| Q Qh}.

The family of meshes is assumed to be shape regular, that is, the ratio between the

smallest edge of Q Qh and its diameter hQ is bounded, uniformly with respect to Q and

h. This implies that the mesh is locally quasi-uniform—the ratio of the sizes of two

neighboring elements is uniformly bounded. Following the construction in the previous

section, associated with the family of meshes {Qh}h we introduce the families of meshes

on the physical domain {Kh}h, and the spaces {Sh}h,{Nh}h, {Vh}h.

In practical applications, the geometry of the physical domain Ω is frequently described

on a mesh of relatively few elements, while the computation of an approximate solution

to the problem is performed on a refined mesh (fine enough to achieve desired accuracy).

Therefore, we assume that there is a coarsest mesh Qho in the family {Qh}h, of which all

the other meshes are a refinement, and that the description of the geometry is fixed at the

level of Qho . This means that the weighting function W(see equation (1.4.4)) and the

geometrical map F are assigned in Sho and (Nho)d, respectively, and are the same for

every h. When the mesh and the spaces are refined , the weights wi1...id are selected so that

w stays fixed , in a similar way, the control points Bi1...id are adjusted such that F remains

unchanged. Thus the geometry and its parameterization are held fixed in the refinement

process. See Fig.2.12 for an illustration of this idea.

This fact leads to the decision to pull back our solution we wish approximate to the

parametric domain via the inverse mapping of F, defining this way =u∘F-1
:

 ℝd.
Then recalling the fact that the rational basis in ℝd is the projective transformation of a

B-spline basis in ℝd+1 we define the lifting function 1ˆˆ:{ , }: du Wu W .Thus the

examination of the rational basis is now "moved" to the unit cube , rendering their

manipulation much less complex than in the case of the physical domain

64

Fig. 2.12

65

The functions in S are piecewise polynomials of degree pa in the a coordinate. The

regularity of each d-dimensional basis function Ni1...id across the element boundaries

depends on the regularity of the one-dimensional basis functions
,ai aN for 1 ≤ a ≤ d, at the

corresponding knots. This fact constitutes the second difficulty when studying error

approximation, since each function has support over many elements and the continuity

can vary from one boundary to the other. Given two adjacent elements Q 1 and Q 2 we

denote by
1 2,Q Qm the number of continuous derivatives across their common (d−1)-

dimensional face 1 2Q Q ;
1 2,Q Qm = −1 is associated with a discontinuity. For the

subsequent analysis, we introduce the following ―bent‖ Sobolev space of order m∈ℕ:

1 2

2

1 2 1 2 1 21 2

((0,1)) :1) (),
:

2) () () , 0 min{ , 1}, ,

d m

Q
m

k k

Q Q Q Q

u L u H Q Q

u u on Q Q k with k m m m Q Q Q Q

H
Q

where ∇k
u denotes the (k-linear) k-th order partial derivative operator, while ∇0

u=u. This

is a well-defined Hilbert space, endowed with the seminorms:

2 2

(),
: 0i iH Q

Q Q

u u i m

 H

and norm:

2 2

0

:m i

m

i

u u

H H

.

We also need the restriction of Hm to a given support extension , which is denoted by

() : { }m m

Q
Q u u H H and endowed with the seminorm:

2 2

() (')
'

'

:i iQ H Q
Q Q

Q Q

u u

 H

and norm:

2 2

() ()
0

:m i

m

Q Q
i

u u

H H

.

The bent Sobolev spaces are intermediate in continuity between standard Sobolev spaces

and so-called “broken” Sobolev spaces utilized in the analysis of discontinuous Galerkin

methods.

66

In what follows, we will denote by C a positive, dimensionless constant, possibly

different at each occurrence, which depends only on the space dimension d, on the

polynomial degrees pa, a= 1, 2, ..., d, and on the shape regularity of the mesh family

{Qh}h. Observe that the pa are considered fixed, since we only address h-refinement in

this chapter . We will denote by Cshape another positive, dimensionless constant, possibly

different at each occurrence, which may also depend on the geometry of but still not on

h. Specifically, Cshape depends on the shape of Ω , but not on its size; therefore Cshape is by

assumption homogeneous of order 0 with respect to W and ∇F, where ∇F is the matrix of

partial derivatives of the coordinate components of F, that is, Cshape is invariant if W and

∇F are scaled by a multiplicative factor. Actually, Cshape only depends on the

dimensionless functions
()L

W W
 and

()
/

L
F F

 .Furthermore, if Cshape appears in

a local estimate, then it depends only on the local values of W and ∇F.

Let p be defined as
1

: min{ }a
a d

p p

 .The following lemma is shown in

Lemma 1: Let k and l be integer indices with 0 ≤ k ≤ l ≤ p + 1. Given Q Q h ,
l

huH

there exists an hs S such that :

() ()
(2.7.4)k l

h h

l k

Q Q
u s Ch u

H H
 .

Now we will introduce a projector on the spline space Sh, defined as:

1

1 1

1

,...,
2

... ...

1,..., 1

: () , ((0,1))
d

h
d d

d

n n
d

i i i i

i i

u u N u L

 S

where the
1... di i are dual functions:

1 1... ... 1, , 1
d dj j i i a aN if j i a d

1 1... ... 0,
d dj j i i a aN if j i

.

This projector has the following properties:

ii..
, ()h

hs s s spline reserving
S

S

iiii..
22

2

(),()
((0,1)), ()h

d

hL QL Q
u C u u L Q stability

S
Q

67

It can be shown that if
2: ((0,1))h

d

hL
S

S is a projector with the above properties then

for all hQQ the following inequality is preserved:

2

()
()

, () ((0,1))(2.7.5)l
h k

l k l d

hQ
H Q

u u Ch u u Q L S H
H

Using this inequality and along with the definition of the NURBS projector we can derive

the approximation properties of the NURBS space on the patch (0,1)
d
. The NURBS

projector is defined as:

()

:
h

h

Wu
u

W

S

N

.

With inequalities (2.7.4) and (2.7.5) in hand we find the approximation of NURBS in the

parametric domain:

()
()

, (), (2.7.6),0 1lQ
h k

l k l

shape h hQ
H Q

u u C h u u Q Q k l p N H
H Q

in the physical domain

2

()
() 0 ()

, () (),0 1 (2.7.7)K
h k

i

l
i ll k l

shape L Q
H Q i H K

u u C h F u u H K L k l p

 V

where hK is the element size on the physical domain defined as:

()K QL Q
h F h

Thus, by (2.7.7) we have the global error estimate:

1

()
()

2
2

2()2()

(())
0

, (),0 1(2.7.8)K
h

k Kh h ih H K

l
i ll k l

shape L F K
K K i

u u C h F u u H k l p

H

V

K K

With inequalities (2.7.7) and (2.7.8) we can understand that that the NURBS space Vh on

the physical domain delivers the optimal rate of convergence, as for the classical finite

element spaces of degree p. This result is independent of the order of continuity the mesh

possesses. The bisection of NURBS element (cutting the mesh parameter from h to h/2)

requires much less degrees of freedom while maintaining p-1 continuity than bisecting

68

the elements of a FEA mesh. This means that NURBS converge at the same rate with

FEA polynomials, while remaining much more efficient.

69

Chapter 3: GeoPDEs

Throughout this chapter we will study the convergence rate of isogeometric analysis. To

do this a recently developed tool was used, by the name of GeoPDEs. GeoPDEs is fully

compatible with MATLAB. The various shapes were designed using the NURBS

toolbox.

The general idea is to find an approximate solution for the general boundary value

problem:

() 0k x u f

u = g on ΓD

∇u ・ n = h on ΓΝ

The BVP will be solved using the Galerkin procedure, through the isoparametric and non

isoparametric concept. The NURBS toolbox allows us to construct the geometry under

study and geopde defines the solution space used .The data structures used by GeoPDEs

are mainly mesh, geometry and space along with some operators, which we will be

discussed later on.

Let us recall the variational formulation of the above problem is:

1

0,()

 D
k x w udx whd wfdx w H

 The variational formulation of the discrete problem is:

() (3.1.1)h

h h h hk x w u dx w hd w fdx w V

where V
h
 is the discrete space, formed by NURBS functions, defined as:

1 1

0,
ˆˆ ˆ{ : , }

D

h h

h h h hV u H u u F u V

where F
-1

:Ω is the proper pullback function mapping the physical domain to the

parametric one, and
h
 is the discrete space of the parametric domain .Let us assume that

Nh= dim(V
h
)=dim(h

) is the dimension of our finite dimensional and
1

ˆ{ } hN

i iu
 is a basis for

 h
. Due to the parameterization of F, the basis of V

h
 is defined as:

70

This way the weighting and trial solutions can be written in the form

1

1 1

ˆ
h hN N

h j j j j

j j

w d u d u F

 and 1

1 1

ˆ

h hN N

h i i i i

i i

u d u d u F respectively.

Substituting in equation (3.1.1) yields:

1 1

()
h hN N

ij j j i j

j j

K d k x d u w dx

 (3.1.2)i i i ifw dx hw dx f h

for i=1,…,N
h
 where Kij are the coefficients of the stiffness matrix, and fi and hi are the

coefficients of the force and boundary terms respectively.

As mentioned the integrals are approximated by a suitable quadrature rule (usually the

Gaussian).The main difference here is that the quadrature rule is performed in the

parametric domain and not in the parent domain mentioned earlier. The parametric

domain is partinioned into nel elements. The quadrature rule is defined in the domain of

each element e determined by nint quadrature points and their corresponding weights ql,e

, l=1,….,nint. The intergral f L
1
(Ωe) after a change of variables is computed as :

int

, , ,

1ˆ

(()) det(()) () det(()) (3.1.3)

e e

n

l e l e l e

l

fdx f F DF q f x DF

where xl,e :=F(ξl,e) are the images of the quadrature nodes in the physical domain..

Applying the above formula the coefficients Ki,j of the stiffness matrix are numerically

computed as

int

, , , , , ,

1 1

() () () det(() (3.1.4)
eln n

i j l e l e j l e i l e l e

e l

K k x q u x w x DF

while the coefficients fi of the righ-hand side vector are approximated as

To numerically compute the boundary term a quadrature rule is defined on the

boundaries, inherited from the one defined on the whole domain. If tl,e are the parametric

int

, , , ,

1 1

() () det(() (3.1.5)
eln n

i l e l e i l e l e

e l

f f x q w x DF

1

1
ˆ{ }

 hN

i i iu u F

71

coordinates of quadrature nodes and Fb:[0,1] ΓΝ is the restriction of F to the

boundary(assuming that each side of the parametric domain is completely mapped into

ΓN or ΓD) then the boundary line intergrals are approximated as follows:

int

, , ,

'

,

1 1

() () ()
el

l e l e l e

n n
b b b

i i l e

e l

h h x q w x F t

 .

3.1 Data Structures

Geometry

We start by defining our geometry ,which is the physical domain of our problem .the

construction of the geometry is accomplished via the NURBS toolbox. The toolbox was

mainly developed based on algorithms of [2].

Remember that the parametric domain consists of a unit square (or cube) mad the

mapping to the physical domain Ω F:Ω is defined as

() ()i i

i I

F N B

with Bi being the control point and Νi the NURBS basis functions defined as :

i i
i

j j

j J

w N
R

w N

(Ni denotes the B-spline functions).

 The main fields of NURBS toolbox are:

 Order: a vector with the order in each direction .We should remind that B-splines

of degree p have order of p+1

 Knots: knot vectors Ξ, stored as a cell array

 Number: number of basis functions along each direction

 Coefs: Control points ,along with their weights ,are stored in the foe form of a

cell array of size (4,n1) for a curve ,(4,n1,n2) for a surface and (4,n1,n2,n3) for a

72

volume. The first three rows contain the control points Bi multiplied with the

according weight qi and the fourth row contains contains the weight qj . In the

case of B-splines the weights are equal to one.

The desired geometry is then constructed through the function nrbmak(coefs,knots).Other

significant functions of this toolbox are nrbkntins and nrbdegelev, which perform knot

insertion and degree elevation, respectively. For example, consider a NURBS surface,

then the following commands :

1.nurbs=nrbmak(coefs,knots);

2.nurbs=nrbdegelev(NURBS,[1 0]);

3.new_knots=linspace(0,1,10);

4.nurbs=nrbkntins(NURBS,{new_knots(2:end-1) new_knots(2:end-1);

would create a surface (line1), line 2 would raise the degree of the surface by one in the

first parametric direction and line 3 would insert new knots uniformly in both directions.

Once our geometry is defined we proceed by calling the function geo_load which is

prepared to created the structures for geometries defined in the following ways:

 As a structure of NURBS toolbox

 As an affine transformation, defined by a 4×4 matrix

 As a function defined by the user

For the moment the first case is invoked by the following command:

geometry=geo_load('nurbs.mat')

the output geometry contains information to compute the geometry parameterization and

its derivatives. The main fields of the structure are:

 map: function handle to compute the parameterization F at some points in

 map_der : function handle to compute the jacobian of the parameterzation DF

Let us clarify that the function handles to compute F or DF ,not the values of the map.

73

Mesh

The second step is to define the domain partition and set a quadrature rule in order to

compute the matrices by numerical integration. The defined tensor product partition

includes quadrature elements which coincide with knot spans in the geometry.The knot

vectors of the geometry structure are used to set the quadrature nodes and weights for a

gaussian quadrature rule through the function msh_gauss_nodes. The number of

quadrature nodes in each direction are equal to the degree of NURBS plus one. All this is

accomplished with the following commands:

1.knots=geometry.nurbs.knots;

2.[qn,qw]=msh_set_quad_nodes(knots,msh_gauss_nodes(geometry.nurbs

.order);

The information for the quadrature rule is stored in the structure. First, the msh structure

is computed in the parametric domain :

msh=msh_2d_tensor_product(knots,qn,qw)

Afterwards the structure is mapped to the physical domain Ω using the function

msh_push_forward_2d:

msh=msh_push_forward_2d(msh.geometry)

The main fields of the msh structure are:

• nel: nel, the number of elements of the partition.

• nqn: nint, the number of quadrature points per element.

• quad _nodes: coordinates of the quadrature nodes μl,e in the parametric domain

Ω.

• quad _weights: weights ql,e associated to the nodes.

• geo_ map: xl,e=F(ξl,e), coordinates of the quadrature nodes in the physical

domain.

74

• geo _map_ jac: Jacobian matrix of the parameterization F evaluated at the

quadrature points, i.e., DF(μl,e)

• jacdet: absolute value of the Jacobian matrix determinant, evaluated at the

quadrature points, i.e., | DF(μl,e))|.

The values of the last three fields are computed using information from the geometry structure .

The space structure

The space structure contains the information regarding the basis functions of the dicrete

space V
h
 , their evalution at the quadrature nodes. All this is needed to numerically

compute the integrals of the problem.

As we mentioned in the beginning, the BVP(Boundary Value Problem) is numerically

approximated through the isoparametric concept and thus the geometry and discrete

solution space coincide. The NURBS structure already contains the information for the

discrete space. the new structure uses this information as well as the information from the

msh structure:

space=sp_nurbs_2d_phys(geometry.nurbs,msh);

The fields concerning this structure assign indices to the basis functions, both local and

global, in a similar way described in chapter 2 .They also contain information regarding

the support of the functions, which are locally supported. This way the integrals in each

element are computed for a reduced number of basis functions. The fields of the space

structure are:

• ndof: Nh, total number of degrees of freedom, which is equal to the dimension

of the space V
h
, that is the number of basis functions being used .

• nsh: Ns, indices of non-vanishing basis functions in each element.

• connectivity: indices the basis functions that do not vanish on each element. It

has size Ns ·nel

• shape functions: evaluation of the basis functions at the quadrature points, that

is, the quantities wi(xl,e) in equation (3.1.5).Its size is nint · Ns · nel,

• spfun: function handle to evaluate the fields above at the points given in a msh

structure, this is used when evaluating at points different from the quadrature

points is required, e.g. for visualization.

75

Assembly routine

The next step is to assemble both the stiffness and right hand matrix.The following

command assemles the coordinates xl,e and yl,e :

[x,y]=deal(squeeze(msh.geo_map(1,:,:)),squeeze(msh.geo_map(2,:,:)));

the calculation is done via function op_gradu_gradv:

mat=op_gradu_gradv(space,space,msh,k(x,y));

GeoPDEs allows to use separate spaces for the trial and weighting solutions, but this time

since both solutions use the same space ,the space structure is passed twice. The function

constists of a cycle over the elements, two cycles over the elements and a a final cycle

over the quadrature points of each element as we can observe below:

 function mat = op_gradu_gradv (spu, spv, msh, coeff)

 mat = spalloc (spv.ndof, spu.ndof, 1);

 gradu = reshape (spu.shape_function_gradients, spu.ncomp, [],

msh.nqn, spu.nsh_max, msh.nel);
 gradv = reshape (spv.shape_function_gradients, spv.ncomp, [],

msh.nqn, spv.nsh_max, msh.nel);

 ndir = size (gradu, 2);

 for iel = 1:msh.nel
 if (all (msh.jacdet(:,iel)))
 mat_loc = zeros (spv.nsh(iel), spu.nsh(iel));
 for idof = 1:spv.nsh(iel)
 ishg = reshape(gradv(:,:,:,idof,iel),spv.ncomp * ndir, []);
 for jdof = 1:spu.nsh(iel)
 jshg = reshape(gradu(:,:,:,jdof,iel),spu.ncomp * ndir, []);
 %for inode = 1:msh.nqn
 mat_loc(idof, jdof) = mat_loc(idof, jdof) + ...
 sum (msh.jacdet(:,iel) .* msh.quad_weights(:, iel) .* ...
 sum (ishg .* jshg, 1).' .* coeff(:,iel));
 %end
 end
 end
 mat(spv.connectivity(:, iel), spu.connectivity(:, iel)) = ...
 mat(spv.connectivity(:, iel), spu.connectivity(:, iel)) +

mat_loc;
 else
 warning ('GeoPDEs:jacdet_zero_at_quad_node', 'op_gradu_gradv:

singular map in element number %d', iel)
 end

76

 end

end

 function to compute the stiffness matrix

Next the right hand matrix is assembled with the help of the function op_f_v

rhs=op_f_v(space,msh,f(x,y))

If g=0 in (2), i.e. for homogeneous Dirichlet conditions, we proceed to the separation of

the boundary degrees of freedom ,meaning the functions that do not vanish from the

internal degrees of freedom. This is done with the commands:

drchlt_dofs=unique([space.boundary(:).dofs]);

int_dofs=setdiff(1:space.ndof,drchlt_dofs);

Finally, the coefficients dj are computed for the internal degrees of freedom and set to

zero for boundary ones:

u=zeros(space.ndof,1);

u(int_dofs)=mat(int_dofs,int_dofs)\rhs(int_dofs);

Treatment of boundary conditions

For the implementation of boundary conditions the msh and space structure contain a

field called boundary. The boundary of the parametric domain is divided into a certain

number of sides .Then, the boundary field is defined as an array containing for each side

the following structures:

 msh.boundary: Numerical integration is performed as this structure contains a

partition of each boundary side. The field jacdet is no longer the determinant of

the jacobian. Instead, it calculates the term '

,()l eF t .The structure also contains

the field normal, with the value of unit exterior vector at the quadrature points.

 space.boundary: Contains information of the basis functions and their values at

the quadrature points provided by msh.boundary .The ndof and connectivity fields

refer to a local numbering of the basis functions whereas the field dofs refer to a

global numbering .

77

Suppose g=g(x,y) and h=h(x,y) using the above structures the Neumman condition is

computed like below:

1. for iside = nmnn _sides

2. x = squeeze (msh. boundary(i _ side) . geo_ map (1 , : , :)) ;

3. y = squeeze (msh. boundary(i _side) . geo_ map (2 , : , :)) ;

4. hval =h(x,y) ;

5. rhs_ loc = op_ f_ v (space . boundary(iside) , msh.boundary(

iside) , hval) ;

6. rhs(space . boundary(iside) . dofs) = rhs(space . boundary(iside

) . dofs) + rhs side ;

7. end

Notice that first we evaluate the h(x,y) function for each Neumman side and then the

boundary term is computed using the function op_f_v, which is the same as the source

term. The assembling of the global right hand side is achieved using the field dofs.

The implementation of the Dirichlet boundary condition is done in a similar way:

1. drchlt _dofs = unique ([space.boundary(drchlt_ side) . dofs])

;

2.int dof s =setdiff (1: space.ndof, drchlt_ dofs) ;

3. M_drchlt = spalloc (space.ndof , space.ndof , space.ndof) ;

4. rhs_drchlt = zeros (space.ndof, 1);

5.for iside = drchlt_ sides

6. sp_bnd = space . boundary(iside) ;

7. msh_bnd = msh. boundary(iside) ;

8.x = squeeze (msh bnd. geo map (1 , : , :)) ;

9. y = squeeze (msh bnd. geo map (2 , : , :)) ;

10. gval = g(x,y) ;

11. M _side = op _u _v (sp bnd , sp bnd , msh bnd, ones (size (x)) ;

12 .M _drchlt (sp _bnd . dofs , sp_ bnd.dofs) = M_drchlt (sp_ bnd .

dofs , sp _bnd . dofs)

 +M side ;

13. r hs_ side = op_f_v (sp bnd , msh bnd, hval);

14. r hs _drchlt (sp_ bnd.dofs) = rhs_drchlt (sp_bnd.dofs) + rhs _side;

15. end

16.u = zeros (space . ndof, 1);

17. u(drchlt_dofs) = M_drchlt (drchlt_dofs , drchlt_ dofs) \

rhs_drchlt(drchlt_dofs) ;

18. rhs (int_ dofs) = rhs (int_ dofs) − mat (int_ dofs , drchlt

_dofs) * u(drchlt _dofs) ;

78

The first four lines identify the degrees of freedom on the Dirichlet boundary and set the

initializations. Then for each side the term g(x,y) is computed on the quadrature points by

using the information on the boundary fields. From line 11 to 14 the matrix and the right

hand side are assembled to compute L
2
 projection, which is done in line 17.The right

hand side of the problem is corrects on line 18.

Postprocessing

The visualization of the computed solution is done via the Paraview software. The

following command evaluates the solution of the problem at the points given by a

(20×20) grid. The results are then saved in a vtk data file format :

sp _to _vtk _2d (u , space , geometry, [20 20], 'laplace_ solution.vts

' , 'u ')

h,p,k-refinement

The NURBS toolbox offers the choice of refining our solution, but in contrast with

standard FEM piecewise polynomials, isogeometric analysis can do that without affecting

our geometry. This paragraph shows how h,p-refinement and isogeometric newly

achieved k-refinement, are treated in GeoPDEs. The functions used for the refinement

strategy are all contained in the NURBS toolbox.

We start off with P-refinement, which is as explained in chapter 1 involves applying

degree elevation to the NURBS basis functions. The NURBS tool box offers the

opportunity to do this since it contains the already mentioned nrbdegelev function.

Suppose we wanted to solve with cubic NURBS then we would apply the code below:

1. nurbs=geometry.NURBS

2. degelev=max([3 3]-(nurbs.order-1) ,0);

3. nurbs=nrbdegelev(nurbs,degelev);

4. geometry=geo_load(nurbs);

Line 1 call upon the initial geometry’s NURBS structure in order to be refined. Next in

line 2, the max function is involved in order to avoid degree elevation if the desired

degree is lower than the actual one. In line 4 we replace the old geometry with the refined

one.

79

h-refinement is also achievable since the NURBS toolbox contains the function nrbkntins

which is responsible for knot insertion as well as the kntrefine function which can add

new knots uniformly . For example we wanted to add knot 1 knot in each subinterval we

would apply the following command:

Listing 1

1.[rknts,zeta,nknts]=kntrefine(nurbs.knots,[2 2],NURBS.order-1,[0 0]);

2.nurbs=nrbkntins(nurbs,nknts);

The last argument of kntrefine ensures that the addition of the new knots is done with the

right multiplicity so that the discrete space is C
0
 - continuous.

Finally, isogeometric analysis offers the new k-refinement which as already mentioned

mix the previous refinement strategies. Order elevation is followed by knot insertion

global C
p-1

 continuation across element boundaries is constrained.

1. nurbs=geometry.nurbs

2. degelev=max([3 3]-(nurbs.oredr-1),0);

3. nurbs = nrbdegelev (nurbs, degelev);

4. [rknots , zeta , nknots] = kntrefine (nurbs . knots , [1 1] ,…

5. nurbs.order−1, nurbs . order−2) ;

6. nurbs = nrbkntins (nurbs, nknots);

7. geometry = geo load (nurbs) ;

Here, in Lines 2-3 , we first perform order elevation and then one knot is added in each

subinterval uniformly with the right multiplicity, which yields a C
2
 -continuity at these

knots.

Some m-files were created in order to apply the refinement strategies in a more direct

way. h-refinement (geometry, knts) is used as a shortcut of Listing 1. The first input is

geometry, in which we wish to apply the refinement and knts is number of knots we wish

to insert in each sub interval . Same for p-refinement (geometry, degr) except now degr is

the degr we wish to elevate our basis in each direction. k-refinement (geometry,degr,knts)

applies the k-refinement strategy to the geometry by elevating the degree to degr in each

direction and inserting knts knot in each subinterval with the right multiplicity so that

C
degr-1

 continuity is preserved (see below):

function geo = krefinement(geo,degr,knts)

80

1.nurbs=geo.nurbs;

2.degelev=max(degr-(nurbs.order-1),0);

3.NURBS=nrbdegelev(nurbs,degelev);

4.[rknots,zeta,nknots]=kntrefine(nurbs.knots,knts,nurbs.order-

1,nurbs.order-2);

5.nurbs=nrbkntins(nurbs,nknots);

6.geo=geo_load(nurbs);

end

GeoPDEs also allows using the non isoparametric approach for the solution of BVPs,

meaning that we can use B-spline spaces as the solution space and maintain the

parameterization for our geometry using NURBS .This is achievable since GeoPDEs the

geometry and the solution space are treated independently. In order to implement the use

of bsplines (for the 2 dimensional case) the following command is applied:

space=sp_bspline_2d_phys(knots, degree, msh)

As now the geometry and solution space do not coincide the knot vectors are different

and handled by the user. The second input determines the degree of the B-splines being

used.

3.2 Numerical examples

We proceed to the implementation of GeoPDEs on 2D elliptical problems. For a full

description of the geometrical descriptions of the shapes as well as the files used see the

end of the chapter.

The first example involves the computation of the boundary problem below:

u f (3.2.1)

u = 0 on ΓD , (3.2.2)

Here the coefficient k(x)=1, and homogeneous Dirichlet conditions are imposed on the

whole boundary , i.e D . Furthermore

2 2

2 2

(8 9) sin(2arctan())

(3.2.3)

y
x y

xf
x y

 and the exact solution is given by :

81

2 2 2 2(3 2)(3.2.4)u x y x y

A function file was constructed, homogeneous_poisson .m, which takes as input the

geometry under study and implements the above boundary value problem above using

NURBS discretization(i.e isoparametric approach) :

function error=homogeneous_poisson(geometry)

geometry = geo_load (nurbs);

knots = geometry.nurbs.knots;

%Construction of msh structure

[qn, qw] = msh_set_quad_nodes (knots, msh_gauss_nodes

(geometry.nurbs.order));

msh = msh_2d_tensor_product (knots, qn, qw);

msh = msh_push_forward_2d (msh, geometry);

%construction of space structure

space = sp_NURBS_2d_phys (geometry.nurbs, msh);

%Assemble the matrices

[x, y] = deal (squeeze (msh.geo_map(1,:,:), squeeze

(msh.geo_map(2,:,:));

mat = op_gradu_gradv (space, space, msh, ones (size (x)));%k(x,y)=1

rhs = op_f_v (space, msh, (8-

9*sqrt(x.^2+y.^2)).*sin(2*atan(y./x))./(x.^2+y.^2));%f(x,y)

%Separate degrees of freedom

drchlt_dofs = unique ([space.boundary(:.dofs]);

int_dofs = setdiff (1:space.ndof, drchlt_dofs);

u = zeros (space.ndof, 1);

u(int_dofs) = mat(int_dofs, int_dofs) \ rhs(int_dofs);

%Postprocessing

sp_to_vtk_2d (u, space, geometry, [20 20], 'laplace_solution.vts', 'u')

err = sp_l2_error (space, msh, u, @(x,y)(x.^2+y.^2-

3*sqrt(x.^2+y.^2)+2).*sin(2.*atan(y./x)));%analytical solution u

error=err;

end

Listing 2

The first domain Ω consists of the intersection of the first quadrant of the

Cartesian plane with a circular annulus of internal radius r = 1 and external radius R= 2.

The geometrical description is given below. Note that the fourth coordinate denotes the

weight of the control point.

Fig. 3.1 depicts the meshes created during h- refinement:

82

 Coarse Mesh Mesh 2

 Mesh 3 Mesh 4

Fig. 3.1

The solution for mesh 4 is viewed via paraview:

Fig. 3.2:solution for mesh 4

83

Since the coarse mesh consists of one element we can apply k-refinement to the

geometry. The homo_dofs_error.m was created(see Listing 2) in order to compare h-

refinement and k-refinement strategies . During k-refinement this time each loop

increases the degree of the NURBS used and inserts a new knot, while maintaining C
p-1

continuity .As we observe k-refinement yields better convergence rate and with much

less degrees of freedom involved each time.

Fig 3.3: h-k refinement for circular annulus

Next we examine the problem, while the domain Ω consists of a circle with a quadrant

cut off resulting in a pacman-like shape. Fig. 3.4 show various meshes of the shape

 Coarse mesh mesh 1

84

 mesh 3 mesh 4

Fig. 3.4

The solution for mesh 4 is presented in Fig. 3.5

Fig. 3.5:solution of the circle without quadrant for mesh 4

Applying h and p-refinement via homo_dofs_perror.m (see Listing 3) to the coarse mesh

yields the following results :

85

Fig. 3.6:h,p-refinement for circle without quadrant

This time p-refinement results in a better convergence rate than h-refinement for similar

degrees of freedom.

The next boundary value problem involves the implementation of non homogeneous

Dirichlet conditions as well as Neumman conditions :

2 2

0

,

ˆ ˆ2 2

D

u

u x y

du
xx yy

dn

 (3.2.5)

u =x
2
-y

2
 on ΓD , (3.2.6)

ˆ ˆ2 2
du

xx yy
dn

 (3.2.7)

86

Where x̂ and ŷ denote the coordinates of normal outward vector. This time in addition

to the isoparametric approach, the problem was solved using also B-spline (of the same

degree) basis imposed on the NURBS geometry to compare results.

The following domain Ω consists of a circle surface . The surface was created using

nrbcoons.m command from the NURBS toolbox. The circle_mixed_bc.m (Listing 4) file

used to solve the problem isoparametrically while circle_mixed_bc_b_spline.m (Listing
5) was used to solved with B-splines while test_circle_mixed_bc_g_nmnn.m (Listing 6)

for the implementation of Neumman condition .

 coarse mesh mesh 1

 mesh 3 mesh 4

Fig 3.7:Various meshes for circle

by imposing the Dirichlet condition on all sides the solution for mesh 4 is depicted in

Fig.3.8 :

87

Fig. 3.8:isoparametric solution of circle for mesh 4

Applying h-refinement (Listing 7) to both isoparametric and non isoparametric approach

yields:

Fig. 3.9:Isoparametric and non-isoparametric results of circle

88

Next the domain Ω consists of a bi unit square .We impose Dirichlet conditions on sides

1,2 and Neumman on 3,4(that is the left and right side).Ther m- files of the isoparametric

and non isoparametric soltuion are similar to these of the circle. Listing 8 shows the

imposition of the Neumman conditions on the square.

Note that the meshes shown on Fig.3.10 below could be considered as the parametric

domain .

 coarse mesh mesh 1

 mesh 3 mesh 4

Fig. 3.10

89

Fig. 3.11:isoparametric solution of square for mesh 4

Once again, as seen in the Fig.3.12. below, the isoparametric approach yields better

convergence rate :

Fig. 3.12

90

APPENDIX A: Description of the m-files

Listing 2(homo_dofs_error.m)

function [errors,dofs] = homo_dofs_error(geometry,I)
dofs=[];
errors=[];
 for j=1:1:i
 refined_geo(j)=hrefinement(geometry,[j j]);

dofs(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2);
 errors(j)=homogeneous_poisson(refined_geo(j));

 end
 for j=1:1:i
 refined_geo(j)=krefinement(geometry,[j j],[1 1]);

dofs2(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2);
 errors2(j)=homogeneous_poisson(refined_geo(j));

 end

 loglog(dofs,errors,'-ro',dofs2,errors2,'-bo');
 h=legend('h-refinement','k-refinement');
 xlabel('dofs');
 ylabel('error(L2 norm)');
 grid on
end

Listing 3(homo_dofs_perror.m)

function [errors,dofs] = homo_dofs_perror(geometry,I)
dofs=[];
errors=[];
 for j=1:1:i
 refined_geo(j)=hrefinement(geometry,[j j]);

dofs(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2);
 errors(j)=homogeneous_poisson(refined_geo(j));
 end
 for j=2:1:i

 refined_geo(j)=prefinement(geometry,[j j]);

dofs2(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2);
 errors2(j)=homogeneous_poisson(refined_geo(j));

91

 end

 loglog(dofs,errors,'-ro',dofs2,errors2,'-blo');
 h=legend('h-refinement','p-refinement');
 xlabel('dofs');
 ylabel('error(L2 norm)');
 grid on

Listing 4(circle_mixed_bc.m)

function [dofs,error_l2] = circle_mixed_bc(i)

% Type of boundary conditions
nmnn_sides = [];
drchlt_sides = [1 2 3 4];

% NURBS map from text file
geo_name = 'circle.mat';

% Physical parameters
c_diff = @(x, y) ones(size(x));

% Source and boundary terms
f = @(x, y) zeros (size (x));
g = @test_circle_mixed_bc_g_nmnn;
h = @(x, y, ind) x.^2-y.^2;

% Exact solution
uex = @(x, y) (x).^2 -(y).^2;
graduex = @(x, y) cat (1, ...
 reshape (2*x, [1, size(x)]), ...
 reshape (-2*y, [1, size(x)]));

% Output file for Paraview
output_file = 'circle';

% Points for post-processing
vtk_pts = {linspace(0, 1, 20)', linspace(0, 1, 20)'};

geometry = geo_load (geo_name);
geometry=hrefinement(geometry,[i i]);
knots=geometry.NURBS.knots;
dofs=geometry.NURBS.number(1)*geometry.NURBS.number(2);

% Construct msh structure
[qn, qw] = msh_set_quad_nodes (knots,

msh_gauss_nodes(geometry.NURBS.order));
msh = msh_2d_tensor_product (knots,qn, qw);

92

msh = msh_push_forward_2d (msh, geometry);

% Construct space structure
sp = sp_NURBS_2d_phys (geometry.NURBS, msh);

% Precompute the coefficients
x = squeeze (msh.geo_map(1,:,:));
y = squeeze (msh.geo_map(2,:,:));

epsilon = reshape (c_diff (x, y), msh.nqn, msh.nel);
fval = reshape (f (x, y), msh.nqn, msh.nel) ;

% Assemble the matrices
stiff_mat = op_gradu_gradv (sp, sp, msh, epsilon);
rhs = op_f_v (sp, msh, fval);

% Apply Neumann boundary conditions
for iside = nmnn_sides
 x = squeeze (msh.boundary(iside).geo_map(1,:,:));
 y = squeeze (msh.boundary(iside).geo_map(2,:,:));
 gval = reshape (g (x, y, iside), msh.boundary(iside).nqn,

msh.boundary(iside).nel);

 rhs(sp.boundary(iside).dofs) = rhs(sp.boundary(iside).dofs) + ...`
 op_f_v (sp.boundary(iside), msh.boundary(iside), gval);
end

% Apply Dirichlet boundary conditions
u = zeros (sp.ndof, 1);
[u_drchlt, drchlt_dofs] = sp_drchlt_l2_proj(sp, msh, h, drchlt_sides);
u(drchlt_dofs) = u_drchlt;

int_dofs = setdiff (1:sp.ndof, drchlt_dofs);
rhs(int_dofs) = rhs(int_dofs) - stiff_mat(int_dofs,

drchlt_dofs)*u_drchlt;

% Solve the linear system
u(int_dofs) = stiff_mat(int_dofs, int_dofs) \ rhs(int_dofs);

if (exist ('uex', 'var'))
 error_l2 = sp_l2_error (sp, msh, u, uex);
 if (exist ('graduex', 'var'))
 error_h1 = sp_h1_error (sp, msh, u, uex, graduex);
 end

end
end

93

Listing 5(circle_mixed_bc_b_splines.m)

function [dofs,error_l2] = circle_mixed_bc_b_splines(i)
degree = [2 2]; % Degree of the bsplines
regularity = [2 2]; % Regularity of the splines
n_sub = [9 9]; % Number of subdivisions
nquad = [4 4]; % Points for the Gaussian quadrature rule

% Type of boundary conditions
nmnn_sides = [];
drchlt_sides = [1 2 3 4];

% NURBS map from text file
geo_name = 'circle.mat';

% Physical parameters
c_diff = @(x, y) ones(size(x));

% Source and boundary terms
f = @(x, y) zeros (size (x));
g = @test_circle_mixed_bc_g_nmnn;
h = @(x, y, ind) x.^2-y.^2;

% Exact solution
uex = @(x, y) (x).^2 -(y).^2;
graduex = @(x, y) cat (1, ...
 reshape (2*x, [1, size(x)]), ...
 reshape (-2*y, [1, size(x)]));

% Output file for Paraview
output_file = 'circle';

% Points for post-processing
vtk_pts = {linspace(0, 1, 20)', linspace(0, 1, 20)'};

geometry = geo_load (geo_name);
geometry=hrefinement(geometry,[i i]);
dofs=geometry.NURBS.number(1)*geometry.NURBS.number(2);
[knots, zeta] = kntrefine (geometry.NURBS.knots, n_sub, degree,

regularity);

% Construct msh structure
rule = msh_gauss_nodes (nquad);
[qn, qw] = msh_set_quad_nodes (zeta, rule);
msh = msh_2d_tensor_product (zeta, qn, qw);
msh = msh_push_forward_2d (msh, geometry);

% Construct space structure
sp = sp_bspline_2d_phys (knots, degree, msh);

% Precompute the coefficients
x = squeeze (msh.geo_map(1,:,:));

94

y = squeeze (msh.geo_map(2,:,:));

epsilon = reshape (c_diff (x, y), msh.nqn, msh.nel);
fval = reshape (f (x, y), msh.nqn, msh.nel) ;

% Assemble the matrices
stiff_mat = op_gradu_gradv (sp, sp, msh, epsilon);
rhs = op_f_v (sp, msh, fval);

% Apply Neumann boundary conditions
for iside = nmnn_sides
 x = squeeze (msh.boundary(iside).geo_map(1,:,:));
 y = squeeze (msh.boundary(iside).geo_map(2,:,:));
 gval = reshape (g (x, y, iside), msh.boundary(iside).nqn,

msh.boundary(iside).nel);

 rhs(sp.boundary(iside).dofs) = rhs(sp.boundary(iside).dofs) + ...`
 op_f_v (sp.boundary(iside), msh.boundary(iside), gval);
end

% Apply Dirichlet boundary conditions
u = zeros (sp.ndof, 1);
[u_drchlt, drchlt_dofs] = sp_drchlt_l2_proj(sp, msh, h, drchlt_sides);
u(drchlt_dofs) = u_drchlt;

int_dofs = setdiff (1:sp.ndof, drchlt_dofs);
rhs(int_dofs) = rhs(int_dofs) - stiff_mat(int_dofs,

drchlt_dofs)*u_drchlt;

% Solve the linear system
u(int_dofs) = stiff_mat(int_dofs, int_dofs) \ rhs(int_dofs);

if (exist ('uex', 'var'))
 error_l2 = sp_l2_error (sp, msh, u, uex);
 if (exist ('graduex', 'var'))
 error_h1 = sp_h1_error (sp, msh, u, uex, graduex);
 end

end
end

Listing 6(test_circle_mixed_bc_g_nmnn.m)

function g = test_circle_mixed_bc_g_nmnn (x, y, ind)
 [theta, r] = cart2pol (x,y);
 switch (ind)
 case 1

95

 g = cos(theta).*2.*x - sin(theta).*2.*y;
 case 2
 g =-cos(theta).*2.*x + sin(theta).*2.*y;
 case 3
 g = cos(theta).*2.*x + sin(theta).*2.*y;
 case 4
 g =-cos(theta).*2.*x - sin(theta).*2.*y;
 otherwise
 error ('g_nmnn: unknown reference number')
 end

end

Listing 7(dofs_error_circle.m)

function [errors,dofs] = dofs_error_circle(i)
dofs=[];
errors=[];
 for j=1:1:i

 [dofs(j) errors(j)]=circle_mixed_bc(j);
 [dofs2(j) errors2(j)]=circle_mixed_bc_b_splines(j);

 end
 loglog(dofs,errors,'-ko',dofs2,errors2,'-go')
 h=legend('NURBS','B-splnes');
 xlabel('dofs');
 ylabel('error');
 grid on
end

Listing 8(test_square_g_test.m)

function g = test_square_g_test (x, y, ind)

96

 switch ind
 case 1
 g = -2*(x);
 case 2
 g = 2*(x);
 case 3
 g = 2*(y);
 case 4
 g = -2*(y);
 otherwise
 error ('g_nmnn: unknown reference number');
 end
end

97

APPENDIX B: Geometrical description

CIRCULAR ANNULUS

Knot vectors:

Ξ={0 0 1 1}

Η={ 0 0 0 1 1 1}

Control points:

B1,1=(1,0,0,1) B1,2=(2,0,0,1)

B2,1=(1,1,0,1/) B2,2=(2,2,0, 1/)

B3,1=(0,1,0,1) B3,2=(0,2,0,1)

CIRCLE WITHOUT QUADRANT

Knot vectors:

Ξ={ 0 0 1/3 1/3 2/3 2/3 1 1}

Η={0 0 1 1}

Control points:

98

B1,1=(1,0,0,1) B1,2=(1,1,0,1/) B1,3=(0,1,0,0,1)

B1,4=(-1,1,0, 1/) B1,5=(-1,0,0,1) B1,6=(-1,-1,0,1/) B1,7=(-1,0,0,1)

B2,1=(0,0,0,1) B2,2=(0,0,0, 1/) B2,3=(0,0,0,1) B2,4=(0,0,0, 1/)

B2,5=(0,0,0, 1) B2,6=(0,0,0, 1/) B2,7=(0,0,0, 1)

CIRCLE

Knot vectors:

Ξ={ 0 0 0 1 1 1}

Η={ 0 0 0 1 1 1}

Control points:

B1,1=(1,0,0,1) B1,2=(1,-1,0,1/) B1,3=(0,-1,0,1)

B2,1=(1,1,0, 1/) B2,2=(0,0,0, 1-) B2,3=(-1,-1,01/)

B3,1=(0,1,0,1) B3,2=(-1,1,0, 1/) B3,3=(-1,0,0,1)

SQUARE

Knot vectors:

Ξ={0 0 1 1}

Η={0 0 1 1}

Control points:

99

B1,1=(-1,-1,0,1) B1,2=(1,-1,0,1)

B2,1=(-1,-1,0,1) B2,2=(1,1,0,1)

100

BIBLIOGRAPHY
1. J.Austin Contrell,Thomas J.R Hughes,Yuri bazilevs, Isogeometric Analysis:

Toward an integration of CAD and FEA, John Wiley & Sons 2009

2. L. Piegl,W.Tiller, The NURBS book, Springer 1997

3. T. J.R Hughes,The Fnite Element Method,Prentice-Hall 1987

4. M.R. Dorfel , B. Juttler ,B.Simeon . Adaptive Isogeometric Analysis by Local

h-Refinement with T-Splines,

5. R.Duvigneau, An introduction to Isogeometric Analysis

6. Y.Bazilevs,L.B Veiga, J.A Cottrell. T..J.R hughes, G.SAngalli ,Isogeometric

Analysis: Approximation,stability and error estimates for h-refined meshes

7. Seung-Hyun Ha, Isogeometric Shape Design Optimization Using NURBS Basis

Functions ,2010

8. B. Simeon, Anh-Vu Vuong, Isogeometric Analysis Primer,

9. C.de Falco ,A.Reali , R.Vasquez, GeoPDEs: a research tool for IsoGeometric

Analysis of PDEs

10. G. Xu, B. Mourrain, R. Duvigneau , A.Galligo , Optimal analysis-aware

parameterization of computational domain in isogeometric analysis

11. B.Simeon, A.V .Vuong , Identification and specification of benchmark problems

with typical geometries , computation of reference solutions

12. B.Simeon, A.V. Vuong , Procedures for a posteriori error analysis

13. B.simeon,A.V.Vuong , isogeometric structural prototype solver

14. M. A. Scott, M. J. Borden, C.V. Verhoosel, T. W. Sederberg, and T. J. R.

Hughes, Isogeometric finite element data structures based on Bezier extraction of

T-splines

15. P. Frey, P.L. George, Mesh generation application to finite elements, HERMES

Science Europe Ltd, 2000

16. R. Sevilla , NURBS Enhanced Finite Element Method

17. K. Hollig ,Finite Element Method with B-splines, Society for industrial and applied

mathematics ,2003

101

18. Y.Bazilevs,C.Michler,V.M Calo, T.J.R Hughes, Weak Dirichlet for wall bounded

turbulant flows.

