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Πεξίιεςε 
 

Η παξνύζα εξγαζία έρεη σο ζηόρν λα εμεηάζεη ην ζέκα ηεο ηζνγεσκεηξηθήο αλάιπζεο.Η 

ηζνγεσκεηξηθή αλάιπζε είλαη κηα πξόζθαηε ππνινγηζηηθή πξνζέγγηζε πνπ πξνζθέξεη 

ηελ δπλαηόηεηα ηεο "ελζσκάησζεο" ηεο κεζόδνπ πεπεξαζκέλσλ ζηνηρείσλ κε εξγαιεία 

πνπ πξνζθέξεη  ην CAD(ζρεδηαζκόο ππνβνεζνύκελνο από ππνινγηζηή) 

Σν θεθάιαην 1 μεθηλάεη κε ηνλ νξηζκό ησλ ζπλαξηήζεσλ Β-spline, απν ηηο νπνίεο 

θαηαζθεπάδνληαη νη ζπλαξηήζεηο NURBS.Παξνπζηάδεηαη  κηα αλαιπηηθή πεξηγξαθή ησλ 

γεσκεηξηθώλ ηδνηήησλ ηνπο καδί κε θάπνηα παξαδείγκαηα. ηελ ζπλέρεηα νξίδνπκε ηηο 

ζπλαξηήζεηο ΝURBS θαη εμεγνύκε ηελ ζύλδεζε ηνπο κε ηηο Β-spline.Σέινο 

παξνπζίαδνληαη νη θιαζηθέο ζηξαηεγηθέο εθιέπηπλζεο ε h θαη p , ελώ εμεγείηαη θαη ε 

θαηλνύξγηα k εθιέπηπλζε. 

ην θεθάιαην 2 εμεηάδεηαη ε ρξήζε ηνπ CAD ζε πιαίζηα αλάιπζεο.Ξεθηλάεη κε ηελ  

κειέηε ελόο θιαζηθνύ πξνβιήκαηνο ζπλνξηαθώλ ηηκώλ Poisson, ην νπνίν θαη ιύλεηαη κε 

ηελ κέζνδν ησλ πεπεξαζκέλσλ ζηνηρείσλ ηνπ Galerkin .Αθνινύζσο παξνπζηάδεηαη ε 

ηζνπαξακεηξηθή πξνζέγγηζε γηα λα δηαιεπθαλζνύλ νη νκνηόηεηεο θαη νη δηαθνξέο 

αλάκεζα ζηα θιαζηθά πεπεξαζκέλα ζηνηρεία, όπσο ηα πνιπώλπκα, κε ηα πεπεξαζκέλα 

ζηνηρεία πνπ βαζίδνληαη ζε ζπλαξηήζεηο NURBS.Σέινο, παξνπζηάδνληαη εθηεκήηξηεο 

ζθάικαηνο θαηά ηελ h ζηξαηεγηθή εθιέπηπλζεο. 

   

Σν ηειεπηαίν θεθάιαην, εμεγεί ηηο δνκέο δεδνκέλσλ ηνπ GeoPDEs , έλα πεξηβάιινλ 

ζπκβαηό κε MATLAB  πνπ αλαπηύρζεθε ζην Παλεπηζηήκην ηεο Πάβηα θαη ην 

πνιπηερλείν ηνπ Μηιάλν, γηα λα δνθηκαζηεί ε ηζνγεσκεηξηθή πξνζέγγηζε ζηελ επίιπζε 

ειιεηπηηθώλ πξνβιεκάησλ 2 δηαζηάζεσλ .Σα απνηειέζκαηα εμεηάδνπλ θπξίσο ηηο 

ζηξαηεγηθέο εθιέπηπλζεο . 

Λέμεηο θιεηδηά: NURBS , Ιζνγεσκεηξηθή αλάιπζε, Αλάιπζε πεπεξαζκέλσλ ζηνηρείσλ, 

hpk-εθιέπηπλζε, GEOpdes 
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Abstract 

This thesis  aims to examine the subject of Isogeometric analysis . Isogeometric analysis 

(IGA for short) is a recently developed computational approach that offers the possibility 

of integrating finite element analysis (FEA) into conventional NURBS(Non Rational 

uniform Basic Splines) based CAD design tools.  

Chapter 1  starts with the definition of B-Splines , from which NURBS are built. An 

analytic description of their geometrical properties along with some examples are given . 

Next , we give the definition of NURBS and explain their relation with B-Splines. Finally 

, classic h and p refinement strategies are presented  as well as the new k refinement is 

explained . 

Chapter 2 explains how CAD can be used within  an analysis framework. It starts by 

imposing a classic Poisson boundary value problem , which is then solved using the 

Galerkin finite element method . The isoparametric approach is then presented  in order 

to clearly highlight the differences and similarities between classic finite elements, such 

as piecewise polynomials, and NURBS based  finite elements. Finally we present error 

estimates during h refinement. 

The final chapter, Chapter 3, explains the data structures of GEOpdes , a MATLAB 

compatible environment developed at IMATI, Università di Pavia and Politecnico di 

Milano, for testing the isogeometric approach in the context of NURBS-based finite 

element analysis. Some numerical examples on 2D elliptical problems are presented in 

order to obtain results mainly concerning refinement strategies. 

Key words: NURBS , Isogeometric analysis, Finite element analysis, hpk-refinement, 

GEOpdes 

 

 

 

 



7 
 

 

 

 

 

ε απηό ην ζεκείν ζα ήζεια λα επραξηζηήζσ ηνλ Καζεγεηή ηεο ζρνιήο Ναππήγσλ 

Μεραλνιόγσλ κεραληθώλ Παλαγηώηε Καθιή γηα ηελ αλάζεζε ηεο παξνύζαο 

δηπισκαηηθήο , ηελ ππνκνλή πνπ επέδεημε θαη ηελ ππνζηήξημε θαηα ηελ δηάξθεηα ηεο 

εθπόλεζεο ηεο. 

Θα ήζεια επίζεο λα επραξηζηήζσ ηνλ Αλαπιεξσηή θαζεγεηή Κσλζηαληίλν Πνιίηε 

θαηζώο θαη ηνλ Λέθηνξα Αιέμαλδξν Γθίλε γηα ηελ πνιύηηκε ζπκβνιή ηνπο ζηελ επίιπζε 

ηερληθώλ πξνβιεκάησλ πνπ αλέθεηςαλ θαηα ηελ δηάξθεηα ηεο πινπνίεζεο θαη γηα ηελ 

άξηζηε ζπλεξγαζία πνπ είρακε.  
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Chapter 1:   NURBS   As   Tool   For   G e o m e t r i c   D e s i g n  
 

 

Non-Uniform Rational B-Splines, commonly referred to as NURBS, have become the de 

facto industry standard for representation, design and data exchange of geometric 

information processed by computers. Many national and international standards 

recognize NURBS as powerful tools for geometric design. Until recently, B-spline curves 

and surfaces (NURBS) were principally of interest to the computer aided design 

community, where they have become the standard for curve and surface description. 

Today we are seeing expanded use of NURBS in modeling objects. The enormous 

success behind NURBS is largely due to the fact that: 

 

 NURBS provide a unified mathematical basis for representing both analytic 

shapes, such as conic sections and quadric surfaces, as well as free-form entities, 

such as car bodies and ship hulls 

 

 designing with NURBS is intuitive, almost every tool and algorithm has an easy 

to understand geometric interpretation 

 

 NURBS algorithms are fast and numerically stable 

 

 NURBS curves and surfaces are invariant  under common geometric 

transformations, such as rotation, parallel and perspective projections 

 

 NURBS are generalizations of non-rational B-splines and rational Bézier curves 

and surfaces 

 

The excellent mathematical and algorithmic properties, combined with successful 

industrial applications, have contributed to the enormous popularity of NURBS. This first 

chapter examines NURBS as a tool for geometric design. A starting point of our 

examination is at  B-splines, since NURBS are built from them. 

 

 

1.1  Basis functions 
 

Let Ξ={ξ1,ξ2,....,ξm}  be a non decreasing sequence of real numbers, i.e. , ξi ξi+1 , 

i=1,2…,m. The ξi are called knots and Ξ is the knot vector. If the knot vector is equally 

spaced then it is uniform, otherwise it is non-uniform. Knot values can be repeated, 

meaning that more than one knot can take on the same value. As we will see, this has an 

enormous impact on the properties of the basis. A knot vector is open if its first and last 

value appear p+1 times.  

 The i-th B-spline basis function of p-degree (order p+1), denoted by Ni,p(ξ) is 

defined as  : 
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       (1.1.1) 

 

 

For p = 1, 2, 3, . . . they are defined by: 
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1 1
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i p i i p i
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    (1.1.2) 

 

 

Equation (1.1.2) is also known as Cox–de Boor recursion formula. The results of 

applying (1.1.1) and (1.1.2) to a uniform knot vector are presented in Fig. 1.1 . 

  

 
 

 

Fig. 1.1 

 

 

For p=0 and p=1, the B-splines functions are the same with piecewise constants and 

linear functions in Finite Elements Analysis (FEA). However, quadratic B-spline 

functions differ from the quadratic finite elements: even though they are identical, they 

are shifted relative to each other. The shape of quadratic finite elements exclusively 
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depends on whether it corresponds for an internal node or an end node. This stands for all 

higher order B-splines. 

 

We now list a number of important properties of the B-spline functions. As we will see, it 

is these properties which determine the many desirable geometric characteristics in B-

spline curves and surfaces: 

 

I. The first is that the basis constitutes a partition of unity, that is,  , 

,

1

( ) 1
n

i p

i

N 


       (1.1.3) 

 

This property also applies for an arbitrary knot span, [μi,μi+1) , since

, ( ) 1
i

j p

j i p

N 
 

  for all μ [μi,μi+1). To prove this, consider  

 

1

, , 1 1, 1

1 1

( ) ( ) ( )
i i i

j j p

j p j p j p

j i p j i p j i pj p j j p j

N N N
   

  
   

 

  

        

 
 

 
  

.

 

 

Changing the summation variable in the second sum from (i-p) to (i-p+1) and 

considering that Ni-p,p-1(ξ)=Νi+1,p-1(ξ)=0 , we have: 
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Applying the same concept recursively yields 

 

, , 1 ,0

1

( ) ( ) .... ( ) 1
i i i

j p j p j

j i p j i p j i

N N N  

     

      . 

 

 

 

II. Ni,p(ξ)=0,  if ξ is outside the interval [μi,,μi+p+1) (local support property), meaning 

that the support of the B-spline functions is p+1 knot spans. Classical FEA 

functions have support over much less portions, leading to the misconception that 

the increasing support of the B-spline functions leads to increased bandwidth in a 

numerical method. As we see in Fig. 1.2, for cubics (p=3), the total number of 

functions that any given function shares support with (including itself) is 2p+1, 

either we are using a FEA basis or B-splines. 
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Fig. 1.2 

 

 

III. Ni,p   0 for all i, p  and  μ (non negativity). This is proven by induction on p. It is 

clearly true for p=0; assume it is true for p-1, p 0 with i and ξ arbitrary. By 

property II.,  Ni,p-1(ξ)=0  if ξ∉ [ξi,,ξi+p+1). But ξ [ξi,,ξi+p+1)  implies that i

i p i

 

 




 

 is non-negative. By assumption, Ni,p  is non-negative and thus, the first term of 

 equation (1.1.2). The same are true for the second term and hence the Ni,p(ξ) are 

 non-negative. 

 

 

IV. All derivatives of Ni,p(ξ) exist on the interior of a knot span. At a knot, Ni,p(ξ) is p-

k times continuously differentiable, where k is the multiplicity of the knot. Hence 

increasing degree increases continuity while increasing knot multiplicity 

decreases continuity. 

 

 

1.1.2 Derivatives of B-spline basis functions 

We can prove by induction on p that for a given polynomial order p and knot vector Ξ, 

the derivative of the i-th basis function is given, in terms of lower order B-spline 

functions, by: 
 

, , 1 1, 1

1 1 1

( ) ( )i p i p i p

i i p i

d p p
N N N

d 

 
    

  

   

 
 

   

 (1.1.4) 

 

Now let Ni,p
(k)

  denote the k-th derivative of Ni,p(ξ). Repeated differentiation of (1.1.4) 

produces the general formula: 
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Equation (1.1.6) is another generalization of equation (1.1.5). It computes the k-th 

derivative of Ni,p
(k)

  in terms of lower order functions Ni,p−k, . . . , Ni+k,p−k. We have : 
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We should remark that k should not exceed p. Also, the denominators involving knot 

differences can become zero; the quotient is defined to be zero in this case. 

 

 

 

1.2  B-spline curves 
 

A p-th degree B-spline curve is defined by : 
 

,

1

( ) ( )
n

i p i

i

C N B 


       (1.2.1) 

 

where {Bi} are the control points  and the {Ni,p}  are the p-th degree B-spline basis 

functions defined on a knot vector Ξ. The control points are analogous to the nodal values 

in the way that they are coefficients of the basis, however the control points are non-

interpolatory. The polygon formed by the {Bi} is called control polygon. All three, the 

degree, the number of control points (n+1) and the number of knots (m+1)  are related by 

m=n+p+1. Unless stated otherwise, we assume ξ1=0 and ξn+p+1=1.  If the knot vector is 

open, then the B-spline curve is interpolatory at endpoints, i.e., C(0)=B1  and C(1)=Bn. 
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Fig. 1.3 

 

 

An affine transformation is applied to the B-spline curve when applied to the control 

points. An affine transformation is a mapping Φ: ℝ3
 → ℝ3

 such that for any vector x: 

 

Φ(x) = Ax + v  

 

for some matrix A  ℝ3
×ℝ3

 and vector v  ℝ3
. Affine transformations include 

translations, rotations, scalings, and uniform stretchings and shearings. The affine 

invariance property, as it is called, follows from the partition of unity of the Ni,p .Thus let  

i ix a p , where 3

ip   and 1ia  . Then: 

 

( ) ( ) ( ) ( ) ( )i i i i i i i i i i ix a p A a p v a Ap a v a Ap v a p               .
 

 

The continuity and differentiability of C(ξ) follows from that of the basis Ni,p(since C(ξ) 

is just a linear combination of the Ni,p). Thus, C(ξ) is infinitely differentiable in the 

interior of the knot intervals and it is at least p-k times continuously differentiable at a 

knot of multiplicity k. 

 

The example shown in Fig.1.3 is built from the quadratic (p=2) basis functions 

considered in Fig.2.5. The curve is interpolatory at the first and last control points, a 

general feature of a curve built from an open knot vector. Note that the curve is also 

interpolatory at the sixth control point. As discussed above, this is due to the fact that the 

multiplicity of the knot ξ = 4 is equal to the polynomial order. Note also that the curve is 

tangent to the control polygon at the first, last and sixth control points. The curve is  C
p-1

= 

C
1
-continuous everywhere except from the location of the repeated knot, ξ = 4, where it 

is C
p−2

=C
0
-continuous. Note the difference between the control points, shown in 

Fig.1.3(a) and the images of the knots, shown in Fig.1.3(b). There, the knots are mapped 

into the physical space. 

 The curve is contained in the convex hull of its control polygon; this follows from 

the nonnegativity and partion of unity of the Ni,p. and the property that Nj,p(ξ)=0 for j<i-p 

and j>i when μ [μi,μi+1). Fig. 1.4 shows such convex hulls for p = 1 through p = 5 for a 
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given set of control points. Note, in particular, that the convex hull for a piecewise linear 

curve is just the control polygon itself.  

 

 
 

Fig. 1.4 

 

 

As we can observe in  Fig.1.5, the smoothness of  the curve increases along with the 

degree p while the effect of each control point on the final shape decreases . 

 

 

 
 

Fig. 1.5 
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B-spline curves also possess a variation diminishing property. No plane (line, in 

the case of one dimension) has more intersections with the curve than it has with the 

control polygon. This property is particularly striking when compared with the behavior 

of standard Lagrange polynomials. An example is illustrated in Fig. 1.6a where Lagrange 

polynomials of orders three, five, and seven interpolate a discontinuity represented by 

eight data points in ℝ2. Note that as the order is increased, the amplitude of the 

oscillations also increases. B-splines behave very differently when the data are viewed as 

control points. The variation diminishing property leads the B-spline curves in Fig. 1.6b 

to be monotone, a property that proves useful in analysis. 

 

 

 

 

 
 

Fig. 1.6 

 

 

1.3  B-spline surfaces 
 

A B-spline surface is obtained by taking a bidirectional net of control points, called 

control net, two knot vectors Ξ={ξ1,..., ξn+p1} and  Η={η1,...,ηm+p+1}, and the products of 

the univariate B-spline functions: 
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      (1.3.1) 

 

Many of the properties of a B-spline surface are the result of its tensor product nature. 

The basis is pointwise non-negative and forms a partition of unity as  (ξ, η)   [ξ1, ξn+p+1] 

×[η1, ηm+q+1], 
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(1.3.2) 

 

 

Interior to the rectangles formed by ξ and η knot lines, where the function is a bivariate 

polynomial, all partial derivatives of Ni,p(ξ) and Mj,q(η) exist; at a ξ (or η) knot it is p-k(q-

k) differentiable in the ξ(η) direction, where k is the multiplicity of the knot. The 

properties of convex hull and affine invariance still hold. Fig. 1.7 shows an example of 

[cubic× quadratic] basis functions. 

 

 
 

Fig. 1.7  

(a) N4,3(μ)N4,2(ε) 

(b) Ν4,3(μ)Ν2,2(ε) 
Ξ={0 0 0 0 1/4 1/2 3/4 1 1 1 1 } and Η={0 0 0  1/5 2/5 3/5 4/5 1 1 1} 
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 As a consequence of this strong convex hull property, a B-spline surface can 

contain embedded flat regions and lines of sharp discontinuity. This is a particularly 

desirable characteristic for many design situations. Fig.1.8(a)  to 1.8(d) show a series of 

open B-spline surfaces and their control points in each parametric direction. Notice that  

the control points in the η-direction are collinear. The resulting surface is ruled in the η-

direction. The B-spline surface shown in Fig.1.8(a), defined by four control points in the 

ξ-direction, is smoothly curved there. 

 

The B-spline surface shown in Fig.1.8(b) is defined by five control points in the μ 

direction, the three of which are collinear. Notice that the center of the resulting surface is 

flat. Similarly, five of the seven control  points in the ξ-direction, for the surface shown in 

Fig.1.8(c), are collinear. Again, the surface is flat in the central region. The flat area is 

larger than in Fig.1.8(b). 

 Fig.1.8(d) shows that this very strong convex hull property extends to both the 

parametric directions. Thus, a flat region can be embedded in the interior of a sculptured 

surface. This flat region becomes smaller as the order of the surface increases.  

 Fig.1.9 illustrates the effect of coincident net lines. In Fig.1.9(a), three coincident 

net lines are used to generate a hard line or knuckle in the center of a fourth-order B-

spline surface. Fig.1.9(b) shows result when three coincident net lines are used in both 

the parametric directions. Here, the fourth order B-splines surface contains two ridges 

that rise up to a point in the center of the surface. 

 

 

 
 

 

Fig. 1.8:  Third order B-spline surfaces  
(a) Smooth ruled surface  

(b) Small interior flat region caused by three colinear control points in μ  

(c) Larger interior flat region caused by 

five colinear control points in μ  

(d) Flat region embedded within a sculptured surface 
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Fig. 1.9 

 

 

The local support of the basis functions also follows directly from the one-dimensional 

functions that form them. The support of a given bivariate function Ni, j ;p,q (ξ, η) = Νi,p(ξ) 

Mj,q(η) is exactly [ξi, ξi+p+1] × [ηj, ηj+q+1].  

 

 

1.4  Non-Uniform Rational B-Splines 
 

We start by defining NURBS curve. A rational B-spline curve is the projection of a non 

rational (polynomial) B-spline curve defined in four-dimensional (4D) homogeneous 

coordinate space, back into three-dimensional (3D) physical space. (see Fig.1.10) 

Specifically : 

 

 

,

1

( ) ( ) (1.4.1)
n

W w

i p i

i

C N B 


  

 

 

where the w

iB s  are the four-dimensional control polygon vertices for the non rational 

four-dimensional B-spline curve. Ni,p(ξ) is the non rational B-spline basis function 

previously given in . 
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Fig. 1.10 

 

 

Projecting back into the three-dimensional space by dividing through  the homogeneous 

coordinate yields the rational B-spline curve: 
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where the Bi 's are the three-dimensional control net vertices for the rational B-spline 

curve and  
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are the rational B-spline basis functions . Here, wi ≥0 for all values of i. Note that rational 

B-spline basis functions for wi<0 are valid but are not convenient in terms of the current 

discussion. 

,

1

( ) ( )
n

i p i

i

W N w 



    

 (1.4.4) 

Equation  (1.4.4)  is called weighting function. 
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 The NURBS basis functions and curves are a generalization of non rational B-

spline basis functions and curves. Thus, they carry forward nearly all the analytic and 

geometric characteristics of their non rational counterparts. In particular, the continuity of 

the functions, as well as their support, follows directly from the knot vectors exactly as 

before. The basis still constitutes a partition of unity and it is pointwise non-negative. 

These properties taken together  result in a strong convex hull property for the NURBS 

functions. 

 Any projective transformation is applied to a rational B-spline curve by applying 

it to the control points; i.e. , the curve is invariant with respect to a projective 

transformation. Remark that  this is a stronger condition compared to non rational B-

splines, which are only invariant to an affine transformation. 

 From equation (1.4.3), it is clear that when wi are all equal to one, then Ri,p=Ni,p. 

Thus non rational B-spline basis functions are included as a special case of NURBS.  

Due to the fact that NURBS are a generalization of non rational B-spline algorithms for 

degree elevation, subdivision and curve fitting are valid by applying them to the four-

dimensional control points. 

 Next, we study the effect of the weights wi by illustrating an example. Here, an 

open knot vector  Ξ=[0 0 0 1 2 3 3 3] and cubic basis functions are used along with a 

weight vector which is defined as wi=1 ,i≠3. Values of wi range from 0 to 5. The rational 

B-splines basis functions are shown in Fig. 1.12(a) to 1.12(d). 

 

 

 
 

Fig. 1.11 

 

 

Notice that for w3=0, then R3,3=0 everywhere . Thus, the corresponding control point B3, 

has no influence on the shape of the B-spline curve. This effect is shown in Fig.1.11 , 

where the control points B2 and B4  are connected by a straight line. Fig. 1.12 also shows 

that as w3 increases, R3,3  also increases; but -as a consequence of the partition of unity 

property-  R2,3  and  R4,3  decrease. The effects on the B-spline curve are shown in 

Fig.1.11. In particular, as w3  increases, the whole curve is pulled closer to B3. Hence, as 

mentioned previously, the weight coordinates provide additional blending capability.  
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Fig. 1.12 

 

 

Rational surfaces  are defined similarly in terms of the rational basis functions: 
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 (1.4.5) 

 

 

1.4.1 Derivatives of NURBS basis functions 

As the NURBS basis functions are constructed from the B-spline basis functions, the 

derivatives of rational functions will clearly depend on the derivatives of their non-

rational  counterparts as well. Simply applying the quotient rule to (1.4.2) yields 
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An expression is also available for higher-order derivatives of NURBS basis functions. 

Let us simplify notation by defining: 

 

( )

,( ) ( )
k

k

i i i p

d
A w N

d 
 


  (no sum on i )  

 

where we do not sum on the repeated index, and let 
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Higher-order derivatives of these rational functions may be expressed in terms of lower-

order derivatives as 
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where 

  
!

!( )!

k k

j j k j

 
 

 
.                

 

 

 

 

1.5         Mesh generation and refinement strategies 

 

The term " e l e m e n t "  in isogeometric analysis simply denotes the mapping of the 

knot spans from the parametric space to the physical space (a line, a square or a cube, 

depending on the dimension space ; see Fig. 1.13 ). Although an open vector can 

guarantee interpolation at the ends of the interval or at the ends of patches (if we refer to 

2 or 3 dimensional spaces) we are to be confused with the term nodes on classic FEA. So 

a boundary of a B-spline object with d parametric dimensions consists itself a B-spline 

object of dimension (d-1). 
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Fig. 1.13 

 

 

 Thus, a mesh is constructed through this mapping. Isogeometric analysis carries over the 

classical refinement strategies, h and p-refinement, and offers a new way of refinement 

called k. We will now exam the way we can handle and achieve these ways of refinement 

with respect to the geometrical properties of NURBS.  

 

 

1.5.1  Knot insertion (h-refinement) 

Let 
,

1

( )
n

i p i

i

C R B


  be a NURBS curve defined on Ξ={ξ1,.....,ξn+p+1}. Let    [ξk,ξk+1) , 

and insert     into Ξ to form the new knot vector   ={  1= ξ1,.....,   k= ξk,   k+1=   k,   k+2= 

ξk+1,….,   (n+1)+p+1= ξn+p+1}. If V  and V


 denote the vector spaces of curves defined on Ξ 

and    , respectively, then clearly V V 
 (and dim(V


)=dim(V )+1); thus C(μ) has a 

representation on Ξ  of the form: 

,

1

( ) ( )
n

i p i

i

C R Q 



      (1.5.1)

 

where the ,{ ( )}i pR   are the p-th degree basis function on   . The term knot insertion 

refers to the process of determining  the {Qi} in the equation. It is important to note that 

knot insertion is really just a change of vector space basis; the curve is not changed, 

neither geometrically nor parametrically. 

 Although not immediately obvious, knot insertion is one of the most important 

of all B-spline algorithms.  Some  of its  u s e s  are: 

 

 e v a l u a t i n g  points and derivatives on curves and surfaces 

 s u b d i v i d i n g  curves and surfaces 

 adding control points in order to increase  f l e x i b i l i t y  in shape control  

(interactive design) 
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Now, the Qi in equation can be obtained by setting up and solving a system of linear 

equations. If we set 

, ,

1 1

( ) ( )
n n

i p i i p i

i i

R B R Q 
 

 
    (1.5.2)

 

 

then by substituting n+2 suitable values of μ into equation  we obtain anon singular, 

banded system of n+2 linear equations in the n+2 unknowns , Qi. However, there is a 

more efficient solution. The fact that on a given knot span [ξj,ξj+1), at most  p+1 of the 

Ri,p are nonzero, namely the functions Rj-p,p,….,Rj,p  and    [ξk,ξk+1)  imply that: 
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   (1.5.3)

 

 

       for all ξ [ξk,ξk+1), 

 

and 

Ri,p(ξ)=  i,p(ξ)    i=0,….,k-p-1 

Ri,p(ξ)=   i+1,p(ξ)  i=k+1,…,n     

(1.5.4)

 

 

 

Equations (1.5.3) and (1.5.4), together with the linear independence of the basis function, 

imply that 

 

Bi=Qi  i=0,…,k-p-1   

Bi=Qi+1 i=k+1,…,n     (1.5.5) 

 

Now consider the Ri,p(ξ) for i=k-p,…,k. They can be expressed in terms of the   i,p(ξ) 

when i=k-p,….,k+1 ,by 
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  (1.5.6)

 

 
 

Equation (1.5.6) is proven by induction on p. 

 

For brevity we now write   i for   i,p(ξ). Substituting equation (1.5.6) into equation (1.5.3) 

yields: 
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By equating coefficients and using the knot vector Ξ in place of    we obtain: 

 

1 1
1 1 1

1 1 1 1

1 1 1

0 ( )

( )

( ) ( ) (1.5.7)

k p k p k p

k p k
k p k p k p k p

k k p k k p

k pk
k k k k k k k

k p k k p k

R Q B

R Q B B

R Q B B R Q B

   

   

  

   

  

  
      

     



  

 

 

 
  

 


    

 

 

 

for i=k-p+1,….,k we set 

 

(1.5.8)i
i

i p i
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And note that  
 

1 (1.5.9)
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Using the linear independence of the basis functions, and substituting equations (1.5.8 ) 

and (1.5.9)  into equation (1.5.7) yields: 

Qk-p=Bk-p 

Qi=aiBi+(1-ai)Bi-1 k-p≤i≤k   (1.5.10) 

Qk+1=Bk 
 

Finally, by combining equations (1.5.5) and (1.5.10), we obtain the formula for  

computing all the new control points Qi of equation , that is : 
 

Qi=aiBi+(1-ai)Bi-1  (1.5.11) 
 

Where  
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equation (1.5.11) says that only p new control points must be computed. 

 

For example, let p=3 and Ξ={0,0,0,0,1,2,3,4,5,5,5,5}. the control points are Β1,Β2,.....,Β7. 

We insert μ =   . Then    [ξ5,ξ6) and k=5. Thus Q1=B1, ..,Q3=B3  and Q7=B6,…,Q9=B8. 

Applying the equation, we find that : 
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Fig.  1.15(a) shows the control polygon before and after the insertion and Fig. 1.15(b) 

shows the basis functions before and after the insertion. The bottom part of Fig. 1.15(a) 

shows the ratios to subdivide the polygon legs. 
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Fig. 1.15 

 

The h-refinement strategy is introduced in isogeometric analysis through the knot 

insertion process. This way the geometry and the parameterization stay intact, but the 

solution is enriched, since we add basis functions of the same order. 

 

As we mentioned, the basis functions are C
p-1

 -continuous across the knot spans. In order 

to perfectly replicate h-refinement, we have to add new knots with p multicity. This way 

the functions will be C
0
 -continuous across the elements. However, increasing the 

multiplicity of the existing knots to decrease the continuity of the basis is not similar to h-

refinement strategy in classic finite element analysis, since FEA meshes have C
0
 element 

boundaries to begin with. Fig. 1.16 depicts what happen to the curve and its basis 

functions when 5 new knots are inserted. As we observe, the addition of every knot 

causes the elements to split, creating new elements. 
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Fig. 1.16 

 

 

 

1.5.2  Order elevation (p-refinement) 

Let 
,

0

n

p i p i

i

C R B


  be a p-th degree NURBS curve on the knot vector ξ. Since pC  is a 

piecewise polynomial curve, it should be possible to elevate its degree to p+1, that is 

there must exist control point Qi and a knot vector    such that  
ˆ

1 ,

0

n

p p i p i

i

C C R Q



 
.

 

pC  and 1pC   are the same curve , both geometrically and parametrically. 1pC   is simply  

pC  embedded in a higher dimensional space. Degree elevation refers to the process (the 

algorithm) for computing the unknown Qi and   . 

As usual, degree elevation algorithms are applied to pC  in four-dimensional space. 
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There are three unknowns in equation ,   ,   , and the {Qi}. To determine    and   , assume 

that Ξ  has the form : 
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where m1,….,ms denote multiplicities of the interior knots. Now pC  is a polynomial curve 

on each non degenerate knot span, hence its degree can be elevated to p+1 on each knot 

span. At a knot of multiplicity mi, pC  is C
p-mi

 continuous. Since the degree elevated curve 

Cp+1(μ)  must have the same continuity, follows that the same knot must have multiplicity 

mi+1 for Cp+1. This yields  
 

  =n+s+1 
 

and  
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  =m+s+2. 
 

The only remaining  problem is to compute the {Qi}. An obvious but very inefficient 

method to do this is to solve a system of linear equations.  
 

Setting  

 
ˆ

, ,

0 0

( ) ( )
n n

i p i i p i

i i

R Q R B 
 

   

 

and evaluating the Ri,p(ξ) and Ri,p+1(ξ) at appropriate   +1, yields a banded system of   +1 

linear equations in the unknowns ,Qi .Instead we apply an algorithm which involves the 

extraction of Bézier segments of the curve (for more information see [2] ) 

 

It follows that 
  

Qi=(1-ai)Bi+aiBi-1 

where 

 

0,..., 1
1

i

i
a i p

p
  

 .

 

 

Several curve degree elevation examples are shown in Fig.1.17(a)-(d).The original third 

degree curve is raised to the fourth, fifth, and seventh degree in Fig.1.17(b), 1.17(c), 
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1.17(d) , respectively. Note that the control polygon converges to the curve as the degree 

is raised. 
 
 

 
 

Fig. 1.17 

 

 

P-refinement strategy has much in common with order elevation, as it increases the 

polynomial degree of the basis. The main difference is that order elevation, unlike 

classsic p-refinement, does not require to begin with a basis that is C
o
 everywhere but can 

be applied with any type of continuity that exists in the unrefined mesh. 

 

 

 
Fig. 1.18 
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1.5.3 k-refinement 

Isogeometric analysis offers a new strategy of refinement, referred as k-refinement. The 

non commutation of knot insertion and order elevation leads to a mixed strategy which 

leads to a much more non restrictive way of manipulating a mesh. As we mentioned, both 

h and p-refinement require the C
0
 continuity of the basis. In k-refinement that is not 

obligatory. This way we can avoid the proliferation of control variables during 

refinement, often caused by the mandatory condition of C
0
 maintenance (see Fig.1.20), 

and achieve a higher order refinement.  
 K-refinement is achieved through order elevation followed by knot insertion. This 

way we elevate the coarsest mesh form a degree p to q and then insert the new knot value 

ξ , the basis will have q-1 continuous derivatives at ξ. If we inverse the process that 

would lead to a basis which would preserve p-1 continuity, while possessing a 

polynomial degree q. 

 Fig.1.19(b) and 1.19(c) depict  a classic p-refinement and k-refinement approach 

respectively. We may assume that the coarsest mesh consists of one element and p+1 

basis functions. We begin by inserting new knot values until we have n-p and n basis 

functions. We then perform order elevation while we maintain continuity at the level of 

p-1. This causes the replication of each knot value and the addition of a basis function in 

each element leading to an increase of 2n-p basis functions. If we continue to elevate the 

order to r then we would have [(r+1)n-rp], a rather  large number of functions. 

 On the other hand, if we begin the refinement process by elevating r times and 

insert knots until we have (n-p) elements then the final number of basis functions would 

be (n+r). This is quite smaller than [(r+1)n-rp]. 
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s 

Fig. 1.19 

 

 

In order to perform k-refinement, the coarsest mesh needs to be consisted of one 

element. This way we avoid the constraints on the continuity across the element 

boundaries, which would have been carried out otherwise by the refinement process. Also 

the continuity level must be preserved to p-1 at the element boundaries to get significant 

results from the  k-refinement strategy. 

 

 



36 
 

 
 

Fig. 1.20 

 

 

Having in mind that B-splines can have no more than (p-1) continuous derivatives across 

element boundaries, Fig.1.21 depicts the set of allowable refinements (highlighted 

region).  

 

 

 

 

Fig. 1.21 
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  In Fig.1.22(a) we can see that during k-refinement, the element size h stays fixed 

and that as the polynomial order p increases, the continuity of the functions  across the 

element boundaries is also increased, so that C
p-1

 is maintained at all levels of refinement. 

Fig.1.22(b) shows that in pure p-refinement, the continuity k is fixed at k=0, while the 

polynomial order p increases without affecting the element size h .The repetition of 

existing knot values decreases the continuity across element boundaries, without creating 

new elements or affecting the polynomial order (Fig.1.22(c)). Pure h-refinement 

(Fig.1.22(d)) creates new elements that have C
0
 boundaries resulting in the decrease of 

the element size h. Inserting new knot values with multiplicity of 1 (Fig.1.22(e)) also 

creates new elements, but now the basis have p-1 continuous derivatives across element 

boundaries. Finally, in Fig.1.22(f) combined refinement strategies are presented. This 

permits us to tranverse the allowable refinement space. 

 

 

 
 

Fig. 1.22 
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Chapter 2:   NURBS   As   A   Tool   For    A n a l y s i s 
 

This chapter is going to examine the use of NURBS functions in the field of finite 

element analysis. As will we see the use of isogeometric analysis bridges the gap between 

the solution space and geometry involved in the approximation using finite elements. 

 

2.1 Boundary value problems 
To start off, consider Laplace's equation (2.1.1). The goal here is to find a u so that it 

satisfies conditions  (2.1.2) and (2.1.3), also known as Dirichlet  and Neumman 

conditions, respectively. 
 

                                        0u f             (2.1.1)
 

u = g on ΓD                                                     
(2.1.2)

 

Δu ・ n = h on ΓΝ                                                
(2.1.3)

 

 

Let us also consider a closed domain   =Ω   ,where    denotes the boundary. ΓN and 

ΓD are the Neumman and Dirichlet   boundary sides, where the conditions are 

implemented with the property D N       and n is the unit outward normal vector 

on  . The functions f : Ω → ℝ , g : ΓD →ℝ, h : ΓN →ℝ are all given. Problem 2 

constitutes the strong form of the BVPS, which is not our main concern. We are mainly 

interested in developing schemes for approximating solutions. If Ω is sufficiently smooth 

and under certain restrictions of g and h the Lax-Milgram theorem guarantees a solution, 

but in most often cases its analytical form is either hard or impossible to obtain. 

The techniques of approximating the analytical solution are referred as numerical 

methods. Different numerical methods are simply different techniques for finding an 

approximate solution, such as u
h
 ≈ u. This chapter focuses on the application of 

Galerkin's approximation technique and its implementation on isogeometric analysis. 

 

 

2.2  Introducing the Galerkin  Method 

The Galerkin method is firmly attached to finite element analysis, even though there have 

been numerous and various approaches, regarding the best way to achieve a numerical 

solution for BVPs. We will introduce the Bubnov-Galerkin method which is the most 

common method of modern finite element analysis. In order to understand this method, 

several steps are needed to be applied. We start by defining the weak, or variational, 

formulation of Problem 2. A new class of functions is defined, known as trial solutions. 

This class contains functions that satisfy the Dirichlet  condition (2.1.1). 

To define the trial spaces, let us first define the space of square integrable 

functions on Ω . This space, called L
2
(Ω), is defined as the collection of all functions u : 

Ω → ℝ such that 
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2u


       (2.2.1) 

 

Let us consider a multi-index α ∈  
 d

 where d is the number of spatial dimensions in the 

space. For α = {α1, . . . , αd }, we define | 
1

d

ii
a a


  .We now have a concise way to 

represent derivative operators. Let 1 2..... Da aa aD D D D , where j

i j

i

D
x





. The variational 

formulation needs to be well defined, which (as we will clearly see) leads to the demand 

that the derivatives of our trial solutions be square integrable  . Specifically, if u : Ω → ℝ 

is a trial solution, then we must insist that 

 

u u


          (2.2.2) 

 

Such a function is said to be in the Sobolev space Η
1
(Ω),which is defined as: 

 
 

1 2( ) { ( ), 1}aH u D u L      .    (2.2.3) 

 

The set of trial solutions, denoted by S, contains the functions which have square-

integrable derivatives and satisfy the Dirichlet  condition: 

 

u|ΓD= g.     (2.2.4) 

 

This is written as 

 
1{ ( ), }

D

S u u H u g


   
.
    (2.3.5) 

 

The second collection of functions in which we are interested is called the weighting 

functions. The weighting functions satisfy the homogeneous Dirichlet  condition, i.e. 

g=0. So the set, denoted by V, can be written as: 
 

1{ ( ), 0}
D

V w w H w


   
.    

 (2.2.6) 

 

Multiplying (2.1.1) by an arbitrary test function w ∈  V and integrating by parts and 

applying the divergence theorem, results in the weak formulation of  Problem 2. The 

initial BVP can now be expressed as such: 

 

 Given f , g,  and h , find u ∈  S such that for all w ∈  V 

 

w ud whd wfd
  

        .    (2.2.7) 
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As we can see, equation (2.2.7) gathers all the unknown information, namely u to the left-

side, while the given data are contained in the right side. 

The necessity of working in H
1
(Ω) spaces is quite obvious, since the weak formulation of 

the original BVP requires that u is square intergrable, while the strong form requires u to 

have well defined second derivatives. 

 

This weak form may be rewritten as 

 

a(w, u) = L(w)     (2.2.8) 

 

where 

 

( , )a w u u wd


         (2.2.9) 

and 
 

( )L w wfd whd

 

        (2.2.10) 

A few properties of a(・, ・) and L(・) are worth noticing. The first is the symmetry of 

a(・, ・). It follows directly from its definition that a(w, u) = a(u,w). Also, a(・, ・) is 

bilinear and L(・) is linear. That is, for all constants C1 and C2, 

 

a(C1u + C2v,w) = C1a(u,w) + C2a(v,w),   (2.2.11) 

L(C1u + C2v) = C1L(u) + C2L(v).    (2.2.12) 

 

The details may vary, but Laplace's equation can represent the general idea behind the 

process of setting up the weak formulation of BVPs as well as how to implement the 

boundary conditions . 

 

The solution to (2.2.7), or equivalently to (2.2.8), is called a weak solution. The 

strong solution always satisfies (2.2.7) and the weak solution, under appropriate 

assumptions, can  become a strong one. 

 

 

2.2.1  The method itself 

The first step in developing the method is to construct finite-dimensional approximations 

of S and V, denoted S
h
 and V

h
, respectively. The superscript refers to the association of S

h
 

and V
h
 with a discretization of the domain Ω, which is parameterized by characteristic 

length scale h. The approximation sets imply that: 

 

S
h⊂ S,      (2.2.13) 

Vh ⊂ V.       (2.2.14) 
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If c1 and c2 are constants and v,w∈V, then (c1v + c2w)∈V. Thus, both V and V
h
 posses the 

property of a linear space. However, this property is not shared by S and S
h
 due to the 

inhomogeneous boundary condition (2.1.2), since if u1 and u2 are members of S, then 

(u1+u2=g+g=2g)S. 

 

We can further characterize S
h
 by recognizing that if we have a given function g

h
 ∈  S

h
 

such that g
h
|ΓD= g, then, for every u

h
 ∈  S

h
 there, exists a unique v

h
 ∈  V

h
 such that 

 

u
h
 = v

h
 + g

h     
(2.2.15) 

 

This clearly will not be possible for an arbitrary function g, but for now let us assume that 

such a g
h
 exists. 

 

We can now write a variation equation of the form of (2.2.8). The Galerkin form of the 

problem is: 

  

 

Given g
h
, h, and r , find u

h 
= v

h
 + g

h
, where v

h
 ∈  V

h
, such that for all w

h
   V

h
 

 

a(w
h
, u

h
) = L(w

h
).     (2.2.16) 

 

 

Recalling (2.2.15) and the bilinearity of a(・, ・), we can rewrite (2.2.16) as 

 

a(w
h
, v

h
) = L(w

h
) − a(w

h
, g

h
).     (2.2.17) 

 

In this latter form, the unknown information is on the left-hand side, while everything on 

the right-hand side is given, as before. Equations (2.2.16) and (2.2.17) are sometimes 

referred to as the Bubnov-Galerkin method. 

 

 

2.3   Isoparametric  Concept 

The following questions arise: How can we ensure that the solution space used to 
approximate the Galerkin solution converges to the exact solution, when refinement 
strategies are applied? What conditions must be satisfied in order to achieve 
convergence? A lot of shape functions -the functions consisting the basis of our 

approximate finite solution space- are used in order to achieve better accuracy in FEA . 

 This section remarks some conditions to ensure convergence, although there are shape 

functions that don't follow them but converge nonetheless to an exact solution. These 

conditions, however may be considered basic by providing the criteria for using the right 

shape functions. 

 

The basic convergence requirements are that the shape functions should be : 

 

 C1 : smooth (i.e., at least C) on each element interior domain, Ω
e
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 C2 : continuous across each element boundary Γ
e
  

 C3 : completeness 
The following remarks should be mentioned: 

 

1. Conditions C1 and C2 guarantee that the first derivatives of the shape functions  

have, at worst, finite jumps across the element boundaries (see Fig.2.1). This way, 

all the integrals appearing in the weak formulation are well defined, since first 

derivatives appear in the integrands. 

 

 
 

Fig. 2.1 

  

 

2. Shape functions that satisfy C1 and C2 are of class C°(  ). Finite elements  

constructed from C°(  ) shape functions are often referred to as C°-elements .  

 

3. If the  integrands involve derivatives of order m, Condition C1 should be 

strengthened to C
m

-continuity on Ω
e
  and Condition C2 should be strengthened to 

C
m

-continuity across Γ
e
. Finite elements that satisfy this property are called 

conforming or compatible.  

 

4. Condition C2 can be ensured by requiring that each function u
h S

h
 is continuous 

across Γ
e
. 

 

In order to understand completeness, let us first introduce the isoparametric approach in 

order to find an approximate solution. The dimension of the domain Ω is considered to be 

a subset of ℝ2
, unless otherwise stated. In standard FEM the basis functions are chosen as 

piecewise polynomials and the concept of isoparametric elements is invoked to 

approximate curved boundaries. Assume we have nen shape functions Nj , e.g. 

polynomials, defined over a standard geometry   ℝ2 
 like a triangle or a square ( in d = 
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3 dimensions a tetrahedron or a hexahedron). We call    the parameter domain or 

parameter space. The computational domain is partitioned into a mesh of elements Ω
e
  

that are sub-domains of the same shape as   . On each element there are nen specific grid 

points x
e
i , e.g., the corners, that can be used to define the geometry functions F

e
 :    Ω

e 

 

1

( ) ( )
enn

e e

i i

i

F N x 


  

 

(see also Fig.2.2) 
 

 

 

 
 

Fig. 2.2 

 

 

The basis functions Ni for the Galerkin projection are compositions of the shape functions 

with the inverse of the geometry function. So for x  Ω
e
 we get the local representation of 

the approximate solution: 

 

 

1

1

( )
enn

h e

i i

i

u N F d 



   

 

where   
  stands for the unknown coefficients or nodal values. This local representation 

offers a local evaluation of element stiffness matrices and force vectors, and the linear 

system is then assembled from these element contributions. 

 

So if  F:        is of the form  

 

1

( ) ( )
enn

e

i i

i

F N x 



    

(2.3.1) 

 

and the element interpolation function u
h
 can be written as  
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1

1

( )
enn

h e

i i

i

u N F x 



     (2.3.2) 

 

 

The element is said to be isoparametric.  

 

The key point to observe in the definition is that the shape functions which define  

(2.3.1) also serve to define (2.3.2).  

In this case, the shape functions are said to be complete if  

 

 

0 1 2

e e e

i i id c c x c y       (2.3.3) 

 

implies that  

 

0 1 2( )hu x c c x c y       (2.3.4) 

 

where c0,. . , c2 are arbitrary constants.  

 

In words,  c o m p l e t e n e s s  requires that the element interpolation function is capable 

of exactly representing an arbitrary linear polynomial when the nodal degrees of freedom 

are assigned values in accordance with it. Completeness is a plausible requirement as the 

following argument indicates: As the finite element mesh is further and further refined, 

the exact solution and its derivatives approach constant values over each element domain. 

To ensure that these constant values are representable, the shape functions must contain 

all constant and linear monomials. This argument was originally given in and has been 

proved to be the key mathematical idea for proving convergence theorems for finite 

element approximations. 

 

R e f i n e m e n t   in isoparametric FEM is either performed by splitting the element into 

smaller ones (h-refinement) or by using higher order polynomials as shape functions in 

each element (p-refinement). Well-established a posteriori error estimators as well as 

mesh-refinement algorithms are available. Moreover, polynomials as local basis 

functions can be easily evaluated and integrated. Note that global smoothness is C0 in 

general. 

 

The most obvious drawback of isoparametric FEM is the lack of an exact geometry 

representation for complex engineering shapes. In this case the boundary must be 

approximated and also the boundary conditions, which may lead to additional errors or 

even wrong boundary layers. 

 

We proceed in checking whether isoparametric elements ensure convergence to the 
exact solution or not.  
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Convergence Condition C1  If F:    Ω is : 

i. one-to-one; 

ii. onto; 

iii. C
k
 ,k  1; and if 

iv. the jacobian determinant  j(μ) > 0 for all μ    

then the inverse mapping 1 :
e

F     exists and is C
k
.  

 

 

PROPOSITION 1: Let the mapping defined by (2.3.1) satisfy (i) through (iv).  

Then the smoothness requirement (Cl) is satisfied.  

 

Proof: By virtue of the hypotheses, Ni = Ni(ξ)  is also а С
1
 function. Since F satisfies (i) 

through (iv) , ξ=ξ(x) is also C
1
. Thus Ni(x)=Ni(ξ(x)) is also a C

1
 function of x.  

(This last fact may be proved with the aid of the chain rule). 

 

In practice, the mappings :
e

F    usually satisfy (i) through (iv). However, there is 

one exception of practical importance. It is concerned with the technique  

of element "degeneration," in which nodes are coalesced. The simplest example of  

this procedure, in which two nodes of the standard  bilinear quadilateral element are 

coalesced to form a triangle  

When degeneration is performed, the Jacobian determinant vanishes at certain nodal 

points within the element. Away from these points it is positive, and the mapping μ=μ(x) 

remains smooth (i.e., Cl is satisfied). For reasons that will be apparent later on, it is not 

usually required to calculate derivatives at these points.  

  

 

Convergence Condition C3 [completeness]  If 
1

1
enn

i

i

N


  , then completeness 

condition C3 is satisfied for isoparametric elements.  

 

 

 

Proof:   
(We shall prove the assertion for the two-dimensional case)  

1

0 1 2

1

0 1 2

1 1 1

0 1 2

1

(2.3.5)
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The only remaining convergence condition is C2, the continuity requirement on 

Ω
е
. This condition can be verified once the construction of the global shape functions 

from the element shape functions is explicated. It happens that if this procedure is done in 

the "obvious" way, continuity is achieved. In the sequel we shall consider this issue on a 

case-by-case basis.  

 

The importance of the isoparametric concept is that the three basic convergence 

conditions are applied. In addition, isoparametric elements may be designed to take on 

convenient shapes, including curved boundaries, and lend themselves to concise 

computer implementation. This notion of using the same basis for geometry and analysis 

is called the isoparametric concept, and it is quite common in classical finite element 

analysis.  

 

 

2.4   The isogeometric concept 
Isogeometric analysis follows the isoparametric approach meaning that the basis used to 

define the geometry under study is the same for the approximation of the solution. 

However, this time, the main criteria for choosing the basis is to exactly replicate 

geometry and use them as a solution space as well. This fact should not considered a 

drawback since the NURBS basis consist a reliable and desirable solution field. In a 

sense, we are reversing the isoparametric arrow such that it points from the geometry 

toward the solution space (see Fig.2.2). 

The use of polynomials in classic FEA is quite common due to their simplicity. 

They are simple to understand and prove theorems regarding their convergence. They are 

also convenient during calculation process. This is not to say that proving theorems about 

other bases is impossible. Though precise results for non-polynomial bases do exist most 

basic convergence requirements in many numerical methods are achieved by any 

reasonably smooth isoparametric basis that is also a partition of unity. 

As seen sufficient conditions for a basic convergence proof for a wide class of 

problems are satisfied by a basis that indulges conditions C1 – C3. 

The requirements of C
1
-continuity on the element interiors and C

0
-continuity on 

the element boundaries are not at all restrictive. Most bases that we might consider are C
∞
 

on the element interiors and have at least C
0
-continuity on the element boundaries. The 

third condition, completeness, requires that, on any given element Ω
e
, the basis be 

capable of representing all linear functions. 
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Fig. 2.3 

Isogeometric analysis based on the NURBS as basis functions allows to exactly map the 

unit square in the parameter space ℝ 
2
to an arbitrary domain that was designed in a 

(NURBS-based) CAD-program. The global geometry function F :   := [0,1]
2
   Ω  is 

element of a NURBS the knot span space Rp . With the control points of the NURBS      

Βi ℝ 
2

 in linear ordering (i=1,..., n). The geometry function is defined for all μ     by 
 

1 1

( )
( ) ( ) ( ) (2.4.1)

( )
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(see also Fig.2.3) 

 

 

 
Fig. 2.4 

 

 

 

The representation of the approximate solution u
h

 stays the same as in the isoparametric 

case, except we are now already in a global setting. So we have for all x Ω 

 

1

1

( )
enn

h

i i

i

u x R F d



      (2.4.2) 

 

 

It is important to understand that this method does not use elements in the classical sense 

but patches instead. The knot vectors defining a NURBS create two-dimensional boxes in 

the preimage of F, their image under F is called a patch. 

 

So ,given  the basis 
1{ } enn

i iR 
, completeness demands that there are coefficients di such that 

for arbitrary constants,co,c1 and c2 : 

                         
1

0 1 2

1

|
en

e

n
h

i i

i

u R F d c c x c y




         
(2.4.3) 

 

As the basis is a partition of unity, at that same point ξ we have 
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1

( ) 1
enn

i

i

R 


 .      (2.4.4) 

 

Inserting (2.4.1) and (2.4.4) into (2.4.3) and solving for dA yields 
 

0 1 2

e e e

i i id c c x c y  
. 

 

Thus, the isoparametric concept and the partition of unity are enough to ensure 

completeness. Moreover, they are vital to ensuring that isogeometric analysis will result 

in convergent methods for many different choices. Compared to the piecewise 

polynomials in the classical FEM, the basis functions are now globally defined and have 

a larger support. Global smoothness can be easily increased to C1 or even higher. 

 

 

2.5   Assembly routine 
The use of NURBS basis for the approximation of the solution leads to a linear algebraic 

system, when the Galerkin method is applied. This section examines thoroughly with use 

of index notations a way of assembling in an efficient way this system. Suppose our 

solution space consists of nnp basis Ri:   ℝ .Most of the functions are zero on the 

boundary of the domain due to the fact that their support is highly localized. Those 

functions will be differed from the ones that are non-zero, in order to organize in a more 

efficient way the algebraic system. 

 

So, we may assume that there are neq such that 

 

0
D

iR

 , i=1,….,neq    (2.5.1) 

 

 

Thus for the weighting functions  w
h
V

h
, there exist constants ci, i = 1, . . . , neq such that 

 

1

eqn

h

i i

i

w R c



     

(2.5.2) 

 

The function g
h
 , also referred as lifting function ,can be approximated using functions 

from the NURBS space. This time in order in order to distinguish between the Dirichlet  

counterparts and the ones that are calculated, we will choose g
h
 such that g1=…=gneq=0.  

 

So 

1

np

eq

n

h

i i

i n

g R g
 

 
    

(2.5.3) 

 

Since u
h
=v

h
+g

h  
 the approximate solution can be written as  
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1 1 1

eq np eq

eq

n n n

h h

i i j j i i

i j n i

u R d R g R d g
   

         (2.5.4) 

 

Substituting in (2.2.16) with (2.5.1) and (2.5.4) and having in mind the linearity of both a(.,.) 

and L(.) we get: 

 

,

1 1

( , ) ( ) ( ) 0
 

 
    

 
 

eq eqn n

h

i i j j i j

i j

c a R R d L R a R g    (2.5.5) 

 

Since the cj’s are arbitrary it follows that the term in parentheses must vanish. Thus, for A 

= 1, . . . , neq , 

,

1

( , ) ( ) ( )


 
eqn

h

i j i i

j

a R R L R a R g

   

(2.5.6) 

 

Proceeding to define 

Kij = a(Ri, Rj),      (2.5.7) 

Fi = L(Ri) − a(Ri, g
h
),     (2.5.8) 

 

and 

K = [Kij],     (2.5.9) 

F = {Fi},     (2.5.9) 

d = {di}             (2.5.11) 

 

 

for i, j = 1 . . . , neq , we can rewrite (2.5.6)as the matrix problem:    Kd = F   (2.5.12). 

 

K is known as the stiffness matrix and vectors d, F as displacement and force vector due 

to the implication of FEA on structural analysis. 

 

Solving (2.5.12) for the di’s for i = 1, . . . , neq as 

 

d = K
−1

F     (2.5.13) 

 

and inserting them back into (2.5.4), we can finally obtain our approximate solution. 

   

 

2.5.1 Assembling the system 

So far we have viewed the finite element method simply as a particular Galerkin 

approximation procedure applied to the weak statement of the problem in question. What 

makes what we have done a finite element procedure is the character of the selected basis 

functions; particularly their piecewise smoothness and local support. This is the 

mathematical point of view; it is a global point of view in that the basis functions are 
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considered to be defined everywhere on the domain of the BVP. The global viewpoint is 

useful in establishing the mathematical properties of the finite element method. 

Now we wish to discuss another point of view called the local, or element, point 

of view.. This viewpoint is the traditional one in engineering and is useful in the 

computer implementation of the finite element method and in the development of finite 

elements. The stiffness matrix K is a sparse matrix due to the local support of the 

NURBS basis over the elements. Thus, for many combinations of i and j Kij(Ri,Rj)=0. 

This way we can take advantage of that fact in order to reduce the amount of work 

needed to solve the algebraic system. 

 

The process of building the global stiffness matrix and force vector is called assembly. 

Instead of looping through all of the global shape functions, taking global integrals to 

build K one entry at a time, we will loop through the elements, building element stiffness 

(K
e
) matrices and force vertices(F

e
) as we go (see Fig.2.4). Every entry of each of these 

dense element stiffness matrices will then be added to the appropriate spot in the global 

stiffness matrix. In this way, we need not expend effort integrating functions over regions 

in which we know a priori that they are zero. 

 

 
 

 

Fig. 2.5 
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At next, we will introduce the connectivity arrays through an example, in order to obtain 

a clear perception of their use during the assembly process. The connectivity arrays are 

used to link every local shape function number to a global shape number. 

 

 

2.5.2 Connectivity Arrays 

Let us consider a specific example of a biquadratic (p = q = 2) surface formed from knot 

vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}, with control points listed in 

TABLE 1, resulting in the control net and mesh shown in Fig. 2.6.  

 

 

 

       
                  TABLE 1                                                      Fig. 2.6 

 

 

 

T h e    I N C   a r r a y 

 

For higher-dimensional NURBS objects, it is very convenient to introduce the concept of 

NURBS coordinates. Examining the index space, which uniquely identifies each knot 

and discriminates among knots having multiplicity more than one, in Fig. 2.7 we can see 

that the NURBS coordinates of any vertex in the mesh are simply the indices of the knots 

that define it. For example, the vertex created by the intersection of the knot lines 

corresponding to ξ3 and η2 has NURBS coordinates (3, 2). Note that this is the vertex at 

which the support of the blue function begins. In fact, this is how we will most frequently 

use NURBS coordinates: to identify the knots at which the support of a function begins. 
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Fig. 2.7 

 

 

This leads us to a natural scheme for the global numbering of basis functions. If there are 

n functions in the ξ -direction and m functions in the η-direction, then define 

 

I= n( j − 1) + i       (A.1) 

 

such that the global bivariate function ( , ) IR is the tensor product of univariate 

functions Ri (ξ ) and Sj (η). We define the INC (―NURBS coordinates‖) array such that 

given a global basis function number and a parametric direction, it returns the index of 

the one-dimensional basis function in the specified direction that was used to build the 

global function. Because the support of any one-dimensional NURBS function Ri (ξ) is 

[ξi, ξi+p+1], we can also interpret the INC array as relating the global basis function 

number and the specified parametric direction with the index of the knot in the 

appropriate knot vector at which the support of the function begins. Thus, with ( , ) IR = 

Ri (ξ )Sj (η) we have 

 

 i = INC(I, 1) and j = INC(I, 2).                                  (A.2) 

 

 Turning our attention to Fig. 2.7 and noting that n = 4, p = 2, m = 3, and q = 2, we have 

the INC array given in Table 2. Thus we see that the red function is 
1( , ) R and has 

NURBS coordinates (1, 1), while the blue function is 
7 ( , ) R with NURBS coordinates 

(3, 2). The NURBS coordinates are required by many routines, such as basis function 

evaluation, that explicitly utilize the knot vectors.  
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I(global function number) 

INC 1 2 3 4 5 6 7 8 9 10 11 12 

1  (ξ -coordinate) 1 2 3 4 1 2 3 4 1 2 3 4 

2  (η- coordinate) 1 1 1 1 2 2 2 2 3 3 3 3 

TABLE 2 

 

 

T h e     I E N     a r r a y 

 

 Let us call the connectivity array IEN. For each element number e from 1, . . . , nel , and 

local function number    from 1, . . . , nen, there is a global function number    from 1, . . . , 

neq such that IEN(  , e) =  . That is, local function 
i

R   of element e and global function IR  

are exactly the same. This allows us to build the global stiffness matrix from a sequence 

of local ones. Similarly, the global force vector F is assembled from the local force 

vectors F
e
. Along the way, we are only performing integration on functions that are non-

zero.  

 

The concept of NURBS coordinates provides us with an easy way to determine which 

functions have support in a given element. First, let us assign element numbers. Knowing 

that we are using open knot vectors, the number of elements in the ξ-direction is n − p; 

similarly, in the η-direction we have m − q elements (note that due to the possibility of 

repeated internal knots, some of these elements may have zero measure in the parametric 

domain; this scheme does not, however, apply element numbers to the knot spans that are 

known a priori to have zero measure due to the use of open knot vectors). Consider an 

element e = [ξi, ξi+1] × [ηj, ηj+1], where p + 1 ≤ i ≤ n and q + 1 ≤ j ≤ m. A natural 

numbering scheme is to assign the element number 

 

e = ( j − q − 1)(n − p) + (i − p).    (A.3) 

  

Thus, the ―lower, left-hand corner‖ of element e has NURBS coordinates (i, j ). See 

Fig. 2.8 .  Any function of the form Rα(ξ )Sβ(η) for integers α and β such that i − p ≤ α ≤ i 

and  j − q ≤ β ≤ j  has its support on element e . Thus, the total number of local basis 

functions is nen = (p + 1)(q + 1). Let us assign local function number 1 to the function 

with NURBS coordinates (i, j ). We then assign the remaining local numbers, working 

backwards in ξ first, followed by η. Thus, with I  as in (A.1), the global numbers of the 

first p + 1 local functions are I, I − 1, . . . , I− p.  
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The function   I−p−1 does not have support in the element, so we move a row in the η-

direction and continue numbering with I− n, I − n − 1, . . . , I − n − p. Again, we must 

move to the next row and continue with I − 2n, . . . , I − 2n − p. This continues until we 

reach our last set of function numbers, I − qn, . . . , I − qn − p, at which point we are 

finished. 

 

 
Fig. 2.8 

 

The IEN (―element nodes‖) array connects these global function numbers to their local 

ordering on the element. In finite elements, global basis function numbers are identified 

with global node numbers, and local basis function numbers are identified with local 

node numbers. It is for this reason that the IEN array is referred to as the ―element nodes‖ 

array. Even though this designation no longer applies in the present case, we retain the 

name. Given the element number, e, and the local basis function number, b, the 

corresponding global basis function number, I, is given by 

 

I = IEN(    , e).      (A.4) 

 

Thus, if I = IEN(1, e) as in the previous paragraph, then we have, for example, I − 1 = 

IEN(2, e), I − n = IEN(p + 2, e), and I − qn − p = IEN((p + 1)(q + 1), e).The IEN array 

corresponding to the mesh in Fig.s 2.7 and 2.9 is shown in TABLE 3. 

 

Observe that the blue function,   7, which has support in both elements, has local number 

   = 4 on element e = 1 and also local number     = 5 on element e = 2. That is, IEN(4, 1) = 

IEN(5, 2) = 7. The red function,   1, has support in only the first element. The only entry 

corresponding to it is IEN(9, 1) = 1. 

 

I (local basis function number) 

IEN 1 2 3 4 5 6 7 8 9 

e=1 11 10 9 7 6 5 3 2 1 

e=2 12 11 10 8 7 6 4 3 2 

TABLE  3 
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T h e   I D   a r r a y 

 

Now that we have numbered all the basis functions used to construct our geometry, 

established a local numbering convention, and collected the connectivity information 

relating the two points of view, we need to turn our attention to the specific requirements 

of analysis. Recall that in the beginning of the chapter we assumed a numbering of the 

global functions such that each function with support on the Dirichlet boundary had a 

higher index than any without support on that boundary. This was convenient for the 

exposition of finite element concepts, but we have no reason to expect it to be compatible 

with the numbering system proposed in the previous section. In general, we have one 

equation corresponding to each function that does not have support on the Dirichlet 

boundary. This assumes Dirichlet  boundary conditions are satisfied strongly). We must 

construct a mapping between the global index of those functions, and an equation number 

between 1 and neq , the total number of equations (which, in the scalar case, is less than or 

equal to the total number of functions). This information is stored in the ID ―destination‖ 

array. 

 

The ID array itself will depend on the specifics of the boundary conditions. Referring to 

Fig. 2.9, assume that we have Dirichlet  data prescribed along the edge from (3, 1.5) to 

(3, 5) in the physical space. We can tell from Fig. 2.7 that any function 
IR  such that 

INC(I, 1) = 4 is going to have support on that edge, and thus will not have an equation 

number corresponding to it. Though there are many conventions we might adopt, we 

simply assign equation numbers in ascending order, assigning 0 to any function with 

support on the Dirichlet  boundary. Thus, we arrive at the ID array shown in TABLE 4. 

 
 

Fig. 2.9 

 

 

                                 I(global function number) 

ID 1 2 3 4 5 6 7 8 9 10 11 12 

P(equation number) 1 2 3 0 4 5 6 0 7 8 9 0 

 
TABLE 4 
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T h e   L M   a r r a y  

 

The final connectivity array that we will consider is just a composition of the previous 

two. The most common form of the LM (Location Matrix). The LM array may then be 

constructed from the relation 

 

LM(   , e) = ID(IEN(  , e)) 

 

Thus, we obtain TABLE 5: 

 

         I  (local basis function number) 

LM 1 2 3 4 5 6 7 8 9 

e=1 1 2 3 4 5 6 7 8 9 

e=1 9 8 7 6 5 4 3 2 1 

 
TABLE 5 

 

 

2.5.3  Evaluation of gradients and Jacobian determinant 

 
After introducing the connectivity arrays we are ready to assemble the matrix equations 

recall that: 

 

( , ) ( )


    
T

ij i j i jK a R R R R d  

and 
 

( ) ( , ) ( ) ( )

  

         
h T h

i i i i i iF L R a R g R fd R hd R g d  

 

The stiffness and force matrices are formulated with respect to the local indices: 

 

1

eln
e

e

K K


  and 
1

eln
e

e

F F



 

 where  
e

,K ( ) ( ) (2.5.13)
e

i j i jij
a R R R R d



    
  

(2.5.13) 

(2.5.14)
e e e

N

e h

a i i iF R fd R hd R g d

  

       
  

(2.5.14) 
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Fig. 2.10 

 

 

Now that have assembled the system in a way that the calculation takes place in the 

domain of the element, it's time to approximate the integrals using the Gaussian 

quadrature rule. Let us consider the affine mapping θ:  e
  .  e

. Each element in the 

parameter space is pulled back by the inverse of the affine function to a bi-unit square 

where the actual integration takes part. The domain   e
 is called parent element.  

 

In each quadrature point we must estimate the gradients of the basis:  

 
( , ) ( , )

[ ]i i
i

dR dR
R

dx dy

   
   

 
The derivatives of Ri  with respect to x and y may be evaluated with the aid  of the chain 

rule: 

( , ) ( , )i i idR dR dRd d

dx d dx d dx

    

 
   

( , ) ( , )i i idR dR dRd d

dy d dy d dy

    

 
   

 

It is worthwhile to recast the above relations in the following matrix form: 

 

 

( , ) ( , ) ( , ) ( , )
[ ] [ ]i i i i

d d

dx dydR dR dR dR

d ddx dy d d

dx dy
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The derivatives  
( , )idR

d

 


 and 

( , )idR

d

 


 may be explicitly computed. However , the 

terms in the matrix cannot be directly computed since we do not have explicit expressions  

ξ=ξ(x,y)  and η=η(x,y) . On the other hand, we do have the inverse relations: 
 

, ,

1 1

, ,

1 1

( , ) ( ) ( )

( , ) ( ) ( )

n m

i p q ij

i j

n m

i p j q ij

i j

x R S x

y R S y

   

   

 

 








 

 

 

Here,  xi,j and yi,j  are the x and y coordinates of the control points of the solution surface. 

Relations  and enable us to calculate the matrix: 

 

dx dx

d d
x

dy dy

d d



 

 

 
 
 
 
 
 

 

 

The matrix is the inverse of the matrix ,i.e., 
 
 

1 1
( )

d d dy dx

dx dy d d
x

d d dy dxJ

dx dy d d



 

 

 

 



   
   

    
   

   
  

 

 
 

where  

det( )
dx dy dx dy

J x
d d d d


   

    . 

 

So the following equation is used to estimate the gradients 
 

( , ) ( , ) 1
[ ]i i

i

dy dx

d ddR dR
R

dy dxd d J

d d

    

 

 

 
 

  
 
 
 

 

 

Since we are integrating over the parent element, we should also compute the Jacobian 

determinant: 
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det det

dx dx dx d dx d

d d d dd d
J

dy dy dx d dx d

d d d dd d

 

    

 

    

   
   
    
   
   
   

 

 

 

For an arbitrary element domain , 1 1
ˆ [ ] [ , ]e

i i j j        and thus NURBS coordinates 

(i,j) we calculate ˆ( , ) e    from ( , ) e    

 
~

~
1 1 1

~
~

1 1 1

( ) (( ) ( ))
( 1)

2 2

( ) (( ) ( ))
( 1)

2 2

i i i i
i

i i i i
i

 

 

      
  

      
  

  

  

   
   

   
   

 

 

The Gaussian quadrature rule seems to be effective even though NURBS are no 

necessary polynomials. 

 

 

2.6    Boundary Conditions 
This chapter examines the implementation of the boundary conditions of BVPS using the 

isogeometric approach. The most significant boundary conditions are those presented in 

(2.1.2) and (2.1.3), that is the Dirichlet & Neumann conditions, respectively. 

 

Dirichlet conditions are often referred to as "essential boundary conditions", due to the 

fact that during the variational formulation of the problem they are directly built into the 

solution space since the Galerkin formulation doesn't offer the chance to impose them. 

The lifting function presented in chapter 2.5 in most cases is just an approximation of g. 

This way of imposing the Dirichlet conditions is known as strong imposition of boundary 

condition. 

 

If g=0 the we have "homogeneous Dirichlet conditions". In this case, the  lifting function 

g
h

  can be built to the solution space by setting gi=0  for i=neq+1 , ….., nnp , since g-

1,….,gneq=0. If g is a constant then we set gi  to that constant since the partition of unity of 

the NURBS basis can guarantee the safe implementation of the boundary condition. 

Other functions, such as linear functions, that exist in the NURBS space can be set by 

setting appropriately the control points. 

 

If g doesn't exist in the NURBS space then the lifting function becomes an approximation 

such that | 
D

g g . In classical finite element analysis the elements interpolate g at the 
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nodes. However in isogeometric analysis   we can interpolate g using the appropriate 

control points but as the basis itself is non interpolatory this results in a slightly deformed 

g
h
 . Frequently this yields better results than FEA (see Fig. 1.6(b)). 

 

An alternative approach is done via the weak imposition method. Here the weighting 

function w doesn't satisfy the homogeneous Dirichlet condition, i.e. we don't enforce  

| 0 
D

w . This results to the following variational form of the BVP problem: 

 

0
  

          w ud w u nd wfd    (2.6.1) 

 

To ensure the convergence of the method and to restrict the error we add two terms 

resulting in the following formulation: 

 

( )( ) ( )( ) 0

  

 

        

          

  

 
D D

w ud w u nd wfd

C
w n u g d w n u g d

h
  

(2.6.2) 

where h is the element length scale (for a full definition see chapter 2.7) , C is a constant 

and γ=±1. Notice that the exact solution for (2.6.1) is also a solution for (2.6.2). For more 

information on the weakly imposition of the Dirichlet  boundary condition see [18] 

In addition, the imposition of the Neumann conditions is straight forward. Integration by 

parts introduces in a "natural" way a boundary integral over ΓΝ. Using condition (2.1.3) we 

replace  u n  with h resulting in equation (2.2.7). Neumann conditions are also known as 

"natural boundary conditions". 

 

 

2.7   Error estimates 
Recall from above that a Sobolev space of order r is defined by 

 
2( ) { ( ), }r aH u D u L a r    

   
 (2.7.1) 

 

The norm associated with H
r
 (Ω) is given by 

 
2

( ) ( )a a

r
a r

u D u D u dx


 
   

 (2.7.2) 

 
The finite element function spaces  are endowed with an  approximation property that 

may be stated as follows. Given a function u Hr, then there exists a function u
h S

h
 

(sometimes called the interpolate) such that 

  
h

rm
u u Ch u 

    
 (2.7.3) 
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where    m and      r are the norms corresponding to Sobolev spaces H
m
(Ω) and 

H
r
(Ω), C is a constant independent of u and h, β = min(p + 1 − m, r − m), p is the 

polynomial degree  appearing in the element shape functions, and h is the  mesh 

parameter, a scalar characterizing the refinement of the finite element mesh. The mesh 

parameter may be taken to be the diameter of the largest element in the mesh (see Fig. 

2.11 ). A collection of finite element spaces {Qh} (i.e.. meshes parameterized  by h) 

possessing the approximation property .is called k, m-regular.  

 

The order of convergence, β, expresses how the error changes under refinement of the 

mesh. In particular, if we use h-refinement to bisect each of the elements in the mesh 

(i.e., h is replaced with h/2), we would expect the error to decrease by a factor of (1/2)
β
. 

As long as p+ 1 and r are greater than m, we have optimal convergence in the H
m

 norm. 

 

 
Fig. 2.11 

 

 

Let Πm be a projector from the Sobolev space H
m
 to the solution space spanned from the 

basis used, then if : 
h

mu   

such that 

 
h h

m m
u u u     u

h
   S

h
,  

then η
h 

 is called optimal interpolate. 

 

In order to conclude to  inequality  we first have to bound the term 
h

m
u  over each 

element  . To obtain the global result we sum over all elements. Once this is done we 

compare the approximate solution u
h
 ,which is obtained after applying the Galerkin 

method with the optimal interpolate. The two results yield inequality. This inequaliity 

ensures us that ,at least up to a constant , the Galerkin method gives the optimal result. In 

the case of NURBS though it is not that simple to obtain such a result since we are facing 

several difficulties.  
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The approximation properties of the rational basis are more complex than those of 

standard polynomials. The weights depend only by the geometry, so the approximation 

over a field over that geometry is not easily achieved and cannot be adjusted to improve 

the result. 

 

Assume that d knot vectors Ξα with 1 ≤ α≤ d, are given. Let (0, 1)d ⊂ ℝd be an open 

parametric domain, referred to as a patch. Associated with the knot vectors Ξα there is a 

mesh  Q, that is, a partition of (0, 1)d  into d-dimensional open knot spans, or elements, 

 

1 d 1 , 1,(Ξ ,...,Ξ ) : { ( , ) , 1 1}
a a

d

a i a i a a a aQ Q p i n         Q Q  

 

The tensor product B-spline basis functions are defined as: 
 

1 ,...,

1 1 ,
1,...,

= (Ξ ,...., ; ,..., ) : { } dn n

d d i a
i n

a

p p span N


 S S  

To a (non empty) element 1 1, ,( , )
a a a a

d

a i m a i m aQ      Q  we associate (0,1)dQ defined 

as 

 

1 1, ,( , )
a a a a

d

a i m a i m aQ       

The set Q will be referred to as the support extension of Q , since it is the union of the 

supports of basis functions whose support intersects Q . 

 

The NURBS space on the patch, denoted by, is 
 

1

1 1,...,

,...,

1 1 ....= (Ξ ,...., ; ,..., ; ) : { } d

d i na

n n

d d i ip p w span R


 N N  

 

The NURBS geometrical map F is given by equation (2.4.1). F is invertible, with smooth 

inverse. Each element QQ  is mapped into an element 

 

( ) { ( ) | }K F Q F Q    ) 

 

and analogously Q , the support extension of Q , is mapped into 

 

( )K F Q . 

 

We then introduce the mesh K in the physical domain  

 

: { ( ) | }F Q Q   QK  

 

and the space V of NURBS on  (which is the push-forward of the space N of NURBS on 

the patch) 
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1

1 1

,...,1

1 ... 1,...., 1( ,...., ) : { } d

d d

n n

a i i i ip p span R F 

  V V  

 

We consider now a family of meshes {Qh}h on (0, 1)
d
, where h denotes the family index, 

representing the global mesh size: 

 

h = max{hQ| Q Qh}. 

 

The family of meshes is assumed to be shape regular, that is, the ratio between the 

smallest edge of Q Qh and its diameter hQ is bounded, uniformly with respect to Q  and 

h. This implies that the mesh is locally quasi-uniform—the ratio of the sizes of two 

neighboring elements is uniformly bounded. Following the construction in the previous 

section, associated with the family of meshes {Qh}h we introduce the families of meshes 

on the physical domain {Kh}h, and the spaces {Sh}h,{Nh}h, {Vh}h. 

 

In practical applications, the geometry of the physical domain Ω is frequently described 

on a mesh of relatively few elements, while the computation of an approximate solution 

to the problem is performed on a refined mesh (fine enough to achieve desired accuracy). 

Therefore, we assume that there is a coarsest mesh Qho in the family {Qh}h, of which all 

the other meshes are a refinement, and that the description of the geometry is fixed at the 

level of Qho . This means that the weighting function W(see equation (1.4.4)) and the 

geometrical map F  are assigned in Sho and (Nho)d, respectively, and are the same for 

every h. When the mesh and the spaces are refined , the weights wi1...id  are selected so that 

w stays fixed , in a similar way, the control points Bi1...id  are adjusted such that F remains 

unchanged. Thus the geometry and its parameterization are held fixed in the refinement 

process. See Fig.2.12 for an illustration of this idea. 

 

This fact leads to the decision to pull back our solution we wish approximate to the 

parametric domain     via the inverse mapping of F, defining this way   =u∘F-1
:     

  ℝd. 
Then recalling the fact that the rational basis in ℝd    is the projective transformation of a 

B-spline basis in ℝd+1 we define  the lifting function 1ˆˆ:{ , }: du Wu W  .Thus the 

examination of the rational basis is now "moved" to the unit cube , rendering their 

manipulation much less complex than in the case of the physical domain 
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Fig. 2.12 
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The functions in S  are piecewise polynomials of degree pa  in the a coordinate. The 

regularity of each d-dimensional basis function Ni1...id  across the element boundaries 

depends on the regularity of the one-dimensional basis functions 
,ai aN  for 1 ≤ a ≤ d, at the 

corresponding knots. This fact constitutes the second difficulty when studying error 

approximation, since each function has support over many elements and the continuity 

can vary from one boundary to the other.  Given two adjacent elements Q 1 and Q 2 we 

denote by 
1 2,Q Qm the number of continuous derivatives across their common (d−1)-

dimensional face 1 2Q Q   ; 
1 2,Q Qm = −1 is associated with a discontinuity. For the 

subsequent analysis, we introduce the following ―bent‖ Sobolev space of order m∈ℕ: 

 

1 2

2

1 2 1 2 1 21 2

((0,1) ) :1) ( ),
:

2) ( ) ( ) , 0 min{ , 1}, ,

d m

Q
m

k k

Q Q Q Q

u L u H Q Q

u u on Q Q k with k m m m Q Q Q Q

     
  

              

H
Q

  

 

where ∇k
u denotes the (k-linear) k-th order partial derivative operator, while ∇0

u=u. This 

is a well-defined Hilbert space, endowed with the seminorms: 

 
2 2

( ),
: 0i iH Q

Q Q

u u i m


  H
 

 

and norm: 

 

2 2

0

:m i

m

i

u u


H H

.

 

 

We also need the restriction of Hm to a given support extension    , which is denoted by 

( ) : { }m m

Q
Q u u H H  and endowed with the seminorm:  

2 2

( ) ( ')
'

'

:i iQ H Q
Q Q

Q Q

u u


 

 H
 

and norm: 

 

2 2

( ) ( )
0

:m i

m

Q Q
i

u u


H H

.

 

 

 

The bent Sobolev spaces are intermediate in continuity between standard Sobolev spaces 

and so-called “broken” Sobolev spaces utilized in the analysis of discontinuous Galerkin 

methods. 
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In what follows, we will denote by C a positive, dimensionless constant, possibly 

different at each occurrence, which depends only on the space dimension d, on the 

polynomial degrees pa,  a= 1, 2, ..., d, and on the shape regularity of the mesh family 

{Qh}h. Observe that the pa are considered fixed, since we only address h-refinement in 

this chapter . We will denote by Cshape another positive, dimensionless constant, possibly 

different at each occurrence, which may also depend on the geometry of  but still not on 

h. Specifically, Cshape depends on the shape of Ω , but not on its size; therefore Cshape is by 

assumption homogeneous of order 0 with respect to W and ∇F, where ∇F is the matrix of 

partial derivatives of the coordinate components of F, that is, Cshape is invariant if W and 

∇F are scaled by a multiplicative factor. Actually, Cshape only depends on the 

dimensionless functions 
( )L

W W  
 and 

( )
/

L
F F  

  .Furthermore, if Cshape appears in 

a local estimate, then it depends only on the local values of W and ∇F. 

 

Let p be defined as 
1

: min{ }a
a d

p p
 

 .The following lemma is shown in 

 

Lemma 1: Let k and l be integer indices with 0 ≤ k ≤ l ≤ p + 1. Given Q    Q h , 
l

huH  

there exists an hs S  such that : 

 

( ) ( )
(2.7.4)k l

h h

l k

Q Q
u s Ch u 

H H
 . 

 

 

 

 

Now we will introduce a projector on the spline space Sh, defined as: 

 
1

1 1

1

,...,
2

... ...

1,..., 1

: ( ) , ((0,1) )
d

h
d d

d

n n
d

i i i i

i i

u u N u L
 

   S
 

 

where the 
1... di i  are dual functions: 

1 1... ... 1, , 1
d dj j i i a aN if j i a d       

1 1... ... 0,
d dj j i i a aN if j i  

.
 

 

This projector has the following properties: 
 

ii..  
, ( )h

hs s s spline reserving   
S

S
 

 
 

iiii..  
22

2

( ),( )
((0,1) ), ( )h

d

hL QL Q
u C u u L Q stability     

S
Q
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It can be shown that if 
2: ((0,1) )h

d

hL 
S

S  is a projector with the above properties then 

for all hQQ   the following inequality is preserved: 

 

2

( )
( )

, ( ) ((0,1) )(2.7.5)l
h k

l k l d

hQ
H Q

u u Ch u u Q L    S H
H  

 

Using this inequality and along with the definition of the NURBS projector we can derive 

the approximation properties of the NURBS space on the patch (0,1)
d
. The NURBS 

projector is defined as: 

 
( )

:
h

h

Wu
u

W


 

S

N

.
 

 

 

With inequalities (2.7.4) and (2.7.5) in hand we find the approximation of NURBS in the 

parametric domain: 

 

( )
( )

, ( ), (2.7.6),0 1lQ
h k

l k l

shape h hQ
H Q

u u C h u u Q Q k l p        N H
H Q  

 

in the physical domain 

2

( )
( ) 0 ( )

, ( ) ( ),0 1 (2.7.7)K
h k

i

l
i ll k l

shape L Q
H Q i H K

u u C h F u u H K L k l p





          V

 

where hK is the element size on the physical domain defined as: 

( )K QL Q
h F h


   

Thus, by (2.7.7) we have the global error estimate: 

1

( )
( )

2
2

2( )2( )

( ( ))
0

, ( ),0 1(2.7.8)K
h

k Kh h ih H K

l
i ll k l

shape L F K
K K i

u u C h F u u H k l p




  

           
H

V

K K

 

With inequalities (2.7.7) and (2.7.8) we can understand that that the NURBS space Vh on 

the physical domain  delivers the optimal rate of convergence, as for the classical finite 

element spaces of degree p. This result is independent of the order of continuity the mesh 

possesses. The bisection of NURBS element (cutting the mesh parameter from h to h/2) 

requires much less degrees of freedom while maintaining p-1 continuity than bisecting 
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the elements of a FEA mesh. This means that NURBS converge at the same rate with 

FEA polynomials, while remaining much more efficient. 
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Chapter 3:                               GeoPDEs 

Throughout this chapter we will study the convergence rate of isogeometric analysis. To 

do this a recently developed tool was used, by the name of GeoPDEs. GeoPDEs  is fully 

compatible with MATLAB. The various shapes were designed using the NURBS 

toolbox.  

The general idea is to find an approximate solution for the general boundary value 

problem: 

 

( ) 0k x u f     

 

u = g on ΓD  

 

∇u ・ n = h on ΓΝ  

 

 

The BVP will be solved using the Galerkin procedure, through the isoparametric and non 

isoparametric concept. The NURBS toolbox allows us to construct  the geometry under 

study and geopde defines the solution space used .The data structures used by GeoPDEs 

are mainly  mesh, geometry and space along with some operators, which we will be 

discussed later on. 

Let us recall the variational formulation of the above problem is: 

1

0,( ) 

  

        D
k x w udx whd wfdx w H  

 The variational formulation of the discrete problem is: 

( ) (3.1.1)h

h h h hk x w u dx w hd w fdx w V
  

         

where V
h
 is the discrete space, formed by NURBS functions, defined as: 

1 1

0,
ˆˆ ˆ{ : , }

   
D

h h

h h h hV u H u u F u V  

where F
-1

:Ω    is the proper pullback function mapping the physical domain to the 

parametric one, and    
h
 is the discrete space of the parametric domain .Let us assume that  

Nh= dim(V
h
)=dim(  h

) is the dimension of our finite dimensional and 
1

ˆ{ } hN

i iu 
 is a basis for 

  h
. Due to the parameterization of F, the basis of V

h
 is defined as: 
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This way the weighting and trial solutions can be written in the form

1

1 1

ˆ
h hN N

h j j j j

j j

w d u d u F 

 

   and  1

1 1

ˆ 

 

  
h hN N

h i i i i

i i

u d u d u F  respectively.  

Substituting in equation (3.1.1) yields: 

1 1

( )
h hN N

ij j j i j

j j

K d k x d u w dx
 

     (3.1.2)i i i ifw dx hw dx f h
 

     

for i=1,…,N
h
  where Kij are the coefficients of the stiffness matrix, and fi  and hi are the 

coefficients of the force and boundary terms respectively. 

As mentioned the integrals are approximated by a suitable quadrature rule (usually the 

Gaussian).The main difference here is that the quadrature rule is performed in the 

parametric domain    and not in the parent domain mentioned earlier. The parametric 

domain is partinioned into nel elements. The quadrature rule is defined in the domain of 

each element e  determined by nint  quadrature points  and their corresponding weights ql,e 

, l=1,….,nint. The intergral  f L
1
(Ωe)  after a change of variables is computed as : 

 

int

, , ,

1ˆ

( ( )) det( ( )) ( ) det( ( )) (3.1.3)

e e

n

l e l e l e

l

fdx f F DF q f x DF   
 

    

where xl,e :=F(ξl,e) are the images of the quadrature nodes in the physical domain.. 

Applying the above formula the coefficients Ki,j of the stiffness matrix are numerically 

computed as 

int

, , , , , ,

1 1

( ) ( ) ( ) det( ( ) (3.1.4)
eln n

i j l e l e j l e i l e l e

e l

K k x q u x w x DF 
 

   

while the coefficients fi of the righ-hand side vector are approximated as 

 

 

To numerically compute the boundary term a quadrature rule is defined on the 

boundaries, inherited from the one defined on the whole domain. If  tl,e are the parametric 

int

, , , ,

1 1

( ) ( ) det( ( ) (3.1.5)
eln n

i l e l e i l e l e
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coordinates of quadrature nodes and  Fb:[0,1] ΓΝ is the restriction of F to the 

boundary(assuming that each side of the parametric domain is completely mapped into 

ΓN or ΓD) then the boundary line intergrals are approximated as follows: 

int

, , ,

'

,

1 1

( ) ( ) ( )
el

l e l e l e

n n
b b b

i i l e

e l

h h x q w x F t
 

 . 

 

3.1   Data Structures 

Geometry 

We start by defining our geometry ,which is the physical domain of our problem .the 

construction of the geometry is accomplished via the NURBS toolbox. The toolbox was 

mainly developed based on algorithms of [2]. 

Remember that the parametric domain    consists of a unit square (or cube) mad the 

mapping  to the physical domain Ω  F:Ω    is defined as 

 

( ) ( )i i

i I

F N B 


  

with Bi being the control point and Νi   the NURBS basis functions  defined as : 

i i
i

j j

j J

w N
R

w N





(Ni denotes the B-spline functions). 

 

 The main fields of NURBS toolbox are: 

 Order: a vector with the order in each direction .We should remind that B-splines 

of degree p have order of p+1 

 Knots: knot vectors Ξ, stored as a cell array 

 Number: number of basis functions along each direction 

 Coefs: Control points ,along with their weights ,are stored in the foe form of a 

cell array of size (4,n1) for a curve ,(4,n1,n2) for a surface and (4,n1,n2,n3) for a 
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volume. The first three rows contain the control points Bi multiplied with the 

according weight qi  and the fourth row  contains contains the weight qj . In the 

case of B-splines the weights are equal to one. 

The desired geometry is then constructed through the function nrbmak(coefs,knots).Other 

significant functions of this toolbox are nrbkntins and nrbdegelev, which perform knot 

insertion and degree elevation, respectively. For example, consider a NURBS surface, 

then the following commands : 

1.nurbs=nrbmak(coefs,knots); 

2.nurbs=nrbdegelev(NURBS,[1 0]); 

3.new_knots=linspace(0,1,10); 

4.nurbs=nrbkntins(NURBS,{new_knots(2:end-1) new_knots(2:end-1); 

would create a surface (line1), line 2 would raise the degree of the surface by one in the 

first parametric direction and line 3 would insert new knots uniformly in both directions. 

Once our geometry is defined  we proceed by calling the function  geo_load  which is 

prepared to created the structures for geometries defined in the following ways: 

 As a structure of NURBS toolbox 

 As an affine transformation, defined by a 4×4 matrix 

 As a function defined by the user 

For the moment the first case is invoked by the following command: 

geometry=geo_load('nurbs.mat') 

the output geometry contains information to compute the geometry parameterization and 

its derivatives. The main fields of the structure are: 

 map: function handle to compute the parameterization F at some points in    

 map_der : function handle to compute the jacobian of the parameterzation DF 

Let us clarify that the function handles to compute F or DF ,not the values of the map. 
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Mesh 

The second step is to define the domain partition and set a quadrature rule in order to 

compute the matrices by numerical integration. The defined tensor product partition 

includes quadrature elements which coincide with knot spans in the geometry.The knot 

vectors of the geometry structure are used to set the quadrature nodes and weights for a 

gaussian quadrature rule through the function msh_gauss_nodes. The number of 

quadrature nodes in each direction are equal to the degree of NURBS plus one. All this is 

accomplished with the following commands: 

 

1.knots=geometry.nurbs.knots; 

2.[qn,qw]=msh_set_quad_nodes(knots,msh_gauss_nodes(geometry.nurbs

.order); 

 

The information for the quadrature rule is stored in the structure. First, the msh structure 

is computed in the parametric domain    : 

msh=msh_2d_tensor_product(knots,qn,qw)  

 

Afterwards the structure is mapped to the physical domain Ω using the function 

msh_push_forward_2d: 

msh=msh_push_forward_2d(msh.geometry)  

 

The main fields of the msh structure are: 

• nel: nel, the number of elements of the partition. 

• nqn: nint, the number of quadrature points per element. 

• quad _nodes: coordinates of the quadrature nodes μl,e in the parametric domain 

Ω. 

• quad _weights: weights ql,e associated to the nodes. 

• geo_ map: xl,e=F(ξl,e), coordinates of the quadrature nodes in the physical 

domain. 
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• geo _map_ jac: Jacobian matrix of the parameterization F evaluated at the 

quadrature points, i.e., DF(μl,e) 

• jacdet: absolute value of the Jacobian matrix determinant, evaluated at the 

quadrature points, i.e., | DF(μl,e))|. 

 

The values of the last three fields are computed using information from the geometry structure . 

 

The space structure 

The space structure contains the information regarding the basis functions of the dicrete 

space V
h
 , their evalution at the quadrature nodes. All this is needed to numerically 

compute the integrals of the problem. 

As we mentioned in the beginning, the BVP(Boundary Value Problem) is numerically 

approximated through the isoparametric concept and thus the geometry and discrete 

solution space coincide. The NURBS structure already contains the information for the 

discrete space. the new structure uses this information as well as the information from the 

msh structure: 

space=sp_nurbs_2d_phys(geometry.nurbs,msh); 

The fields concerning this structure assign indices to the basis functions, both local and 

global, in a similar way described in chapter 2 .They also contain information regarding 

the support of the functions, which are locally supported. This way the integrals in each 

element are computed for a reduced number of basis functions. The fields of the space 

structure are: 

• ndof: Nh, total number of degrees of freedom, which is equal to the dimension 

of the space V
h
, that is the number of basis functions being used . 

• nsh: Ns, indices of non-vanishing basis functions in each element. 

• connectivity: indices the basis functions that do not vanish on each element. It 

has size Ns ·nel 

• shape functions: evaluation of the basis functions at the quadrature points, that 

is, the quantities wi(xl,e) in equation (3.1.5).Its size is nint · Ns · nel, 

• spfun: function handle to evaluate the fields above at the points given in a msh 

structure, this is used when evaluating at points different from the quadrature 

points is required, e.g. for visualization. 
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Assembly routine 
 

The next step is to assemble both the stiffness and right hand matrix.The following 

command assemles the coordinates xl,e and yl,e : 

 

[x,y]=deal(squeeze(msh.geo_map(1,:,:)),squeeze(msh.geo_map(2,:,:))); 

 

the calculation is done via  function op_gradu_gradv: 

mat=op_gradu_gradv(space,space,msh,k(x,y)); 

GeoPDEs allows to use separate spaces for the trial and weighting solutions, but this time 

since both solutions use the same space ,the space structure is passed twice. The function 

constists of a cycle over the elements, two cycles over the elements and a a final cycle 

over the quadrature points of each element as we can observe below: 

 function mat = op_gradu_gradv (spu, spv, msh, coeff) 
   
  mat = spalloc (spv.ndof, spu.ndof, 1); 

   
  gradu = reshape (spu.shape_function_gradients, spu.ncomp, [], 

msh.nqn, spu.nsh_max, msh.nel); 
  gradv = reshape (spv.shape_function_gradients, spv.ncomp, [], 

msh.nqn, spv.nsh_max, msh.nel); 

  
  ndir = size (gradu, 2); 

  
  for iel = 1:msh.nel 
    if (all (msh.jacdet(:,iel))) 
      mat_loc = zeros (spv.nsh(iel), spu.nsh(iel)); 
      for idof = 1:spv.nsh(iel) 
        ishg = reshape(gradv(:,:,:,idof,iel),spv.ncomp * ndir, []); 
        for jdof = 1:spu.nsh(iel)  
          jshg = reshape(gradu(:,:,:,jdof,iel),spu.ncomp * ndir, []); 
          %for inode = 1:msh.nqn 
          mat_loc(idof, jdof) = mat_loc(idof, jdof) + ... 
             sum (msh.jacdet(:,iel) .* msh.quad_weights(:, iel) .* ... 
                  sum (ishg .* jshg, 1).' .* coeff(:,iel)); 
          %end   
        end 
      end 
      mat(spv.connectivity(:, iel), spu.connectivity(:, iel)) = ... 
        mat(spv.connectivity(:, iel), spu.connectivity(:, iel)) + 

mat_loc; 
    else 
      warning ('GeoPDEs:jacdet_zero_at_quad_node', 'op_gradu_gradv: 

singular map in element number %d', iel) 
    end 
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  end 

  
end 

 function to compute the stiffness matrix 

 

 

Next the right hand matrix is assembled with the help of the function op_f_v 

rhs=op_f_v(space,msh,f(x,y)) 

If g=0 in (2), i.e. for homogeneous Dirichlet  conditions, we proceed to the separation of 

the boundary degrees of freedom ,meaning the functions that do not vanish from the 

internal degrees of freedom. This is done with the commands: 

drchlt_dofs=unique([space.boundary(:).dofs]); 

int_dofs=setdiff(1:space.ndof,drchlt_dofs); 

Finally, the coefficients dj are computed for the internal degrees of freedom and set to 

zero for boundary ones: 

u=zeros(space.ndof,1); 

u(int_dofs)=mat(int_dofs,int_dofs)\rhs(int_dofs); 

  

Treatment of boundary conditions 

For the implementation of boundary conditions the msh and space structure contain a 

field called boundary. The boundary of the parametric domain    is divided into a certain 

number of sides .Then, the boundary field is defined as an array containing for each side 

the following structures:  

 msh.boundary: Numerical integration is performed as this structure contains a 

partition of each boundary side. The field jacdet is no longer the determinant of 

the jacobian. Instead, it calculates the term '

,( )l eF t .The structure also contains 

the field normal, with the value of unit exterior vector at the quadrature points.  

 

 space.boundary: Contains information of the basis functions and their values at 

the quadrature points provided by msh.boundary .The ndof and connectivity fields 

refer to a local numbering of the basis functions whereas the field dofs refer to a 

global numbering . 
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Suppose g=g(x,y) and  h=h(x,y) using the above structures the Neumman condition is 

computed like below: 

1. for iside = nmnn _sides 

2.  x = squeeze (msh. boundary( i _ side ) . geo_ map ( 1 , : , : ) ) ; 

3. y = squeeze (msh. boundary( i _side ) . geo_ map ( 2 , : , : ) ) ; 

4.  hval =h(x,y) ; 

5.  rhs_ loc = op_ f_ v (space . boundary( iside ) , msh.boundary(  

iside ) , hval ) ; 

6.  rhs(space . boundary( iside ) . dofs) = rhs(space . boundary( iside 

) . dofs) + rhs side ; 

7. end 

 

Notice that first we evaluate the h(x,y) function for each Neumman side and then the 

boundary term is computed using the function op_f_v, which is the same as the source 

term. The assembling of the global right hand side is achieved using the field dofs. 

 

The implementation of the Dirichlet boundary condition is done in a similar way: 

1. drchlt _dofs = unique ( [ space.boundary( drchlt_ side ) . dofs ] ) 

; 

2.int dof s =setdiff (1: space.ndof, drchlt_ dofs ) ; 

3. M_drchlt = spalloc ( space.ndof , space.ndof , space.ndof) ; 

4. rhs_drchlt = zeros ( space.ndof, 1); 

 

5.for iside = drchlt_ sides 

6. sp_bnd = space . boundary( iside ) ; 

7. msh_bnd = msh. boundary( iside ) ; 

8.x = squeeze (msh bnd. geo map ( 1 , : , : ) ) ; 

9. y = squeeze (msh bnd. geo map ( 2 , : , : ) ) ; 

10. gval = g(x,y) ; 

11. M _side = op _u _v (sp bnd , sp bnd , msh bnd, ones ( size (x) ) ; 

12 .M _drchlt (sp _bnd . dofs , sp_ bnd.dofs) = M_drchlt (sp_ bnd . 

dofs , sp _bnd . dofs)           

     +M side ; 

13. r hs_ side = op_f_v (sp bnd , msh bnd, hval); 

14. r hs _drchlt (sp_ bnd.dofs) = rhs_drchlt (sp_bnd.dofs) + rhs _side; 

15. end 

 

16.u = zeros ( space . ndof, 1); 

17. u( drchlt_dofs ) = M_drchlt ( drchlt_dofs , drchlt_ dofs ) \ 

rhs_drchlt( drchlt_dofs ) ; 

18. rhs (int_ dofs ) = rhs ( int_ dofs ) − mat ( int_ dofs , drchlt 

_dofs ) * u( drchlt _dofs ) ; 
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The first four lines identify the degrees of freedom on the Dirichlet boundary and set the 

initializations. Then for each side the term g(x,y) is computed on the quadrature points by 

using the information on the boundary fields. From line 11 to 14 the matrix and the right 

hand side are assembled to compute L
2
 projection, which is done in line 17.The right 

hand side of the problem is corrects on line 18. 

 

Postprocessing 

The visualization of the computed solution is done via the Paraview software. The 

following command evaluates the solution of the problem at the points given by a 

(20×20) grid. The results are then saved in a vtk data file format : 

sp _to _vtk _2d (u , space , geometry, [20 20], 'laplace_ solution.vts 

' , 'u ' ) 

 

h,p,k-refinement 

The NURBS toolbox offers the choice of refining our solution, but in contrast with 

standard FEM piecewise polynomials, isogeometric analysis can do that without affecting 

our geometry. This paragraph shows how h,p-refinement and isogeometric newly 

achieved  k-refinement, are treated in GeoPDEs. The functions used for the refinement 

strategy are all contained in the NURBS toolbox. 

We start off with P-refinement, which is as explained in chapter 1 involves applying 

degree elevation to the NURBS basis functions. The NURBS tool box offers the 

opportunity to do this since it contains the already mentioned nrbdegelev  function. 

Suppose we wanted to solve with cubic NURBS then we would apply the code below: 

1. nurbs=geometry.NURBS 

2. degelev=max([3  3]-(nurbs.order-1) ,0); 

3. nurbs=nrbdegelev(nurbs,degelev); 

4. geometry=geo_load(nurbs); 

Line 1 call upon the initial geometry’s NURBS structure in order to be refined. Next in 

line 2, the max function is involved in order to avoid degree elevation if the desired 

degree is lower than the actual one. In line 4 we replace the old geometry with the refined 

one. 
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h-refinement is also achievable since the NURBS toolbox contains the function nrbkntins 

which is responsible for knot insertion as well as the kntrefine function which can add 

new knots uniformly . For example we wanted to add knot 1 knot in each subinterval we 

would apply the following command: 

Listing 1 

1.[rknts,zeta,nknts]=kntrefine(nurbs.knots,[2  2],NURBS.order-1,[0 0]); 

2.nurbs=nrbkntins(nurbs,nknts); 

The last argument of kntrefine ensures that the addition of the new knots is done with the 

right multiplicity so that the discrete space is C
0
 - continuous. 

Finally, isogeometric analysis offers the new k-refinement which as already mentioned 

mix the previous refinement strategies. Order elevation is followed by knot insertion 

global   C
p-1

 continuation across element boundaries is constrained. 

1. nurbs=geometry.nurbs 

2. degelev=max([3 3]-(nurbs.oredr-1),0); 

3. nurbs = nrbdegelev (nurbs, degelev); 

4. [rknots , zeta , nknots] = kntrefine (nurbs . knots , [1 1] ,…  

5. nurbs.order−1, nurbs . order−2) ; 

6. nurbs = nrbkntins (nurbs, nknots); 

7. geometry = geo load (nurbs) ; 

 

Here, in  Lines 2-3 , we first perform order elevation  and then one knot is added in each 

subinterval uniformly with the right multiplicity, which yields a C
2
 -continuity at these 

knots. 

Some m-files were created in order to apply the refinement strategies in a more direct 

way.  h-refinement (geometry, knts) is used as a shortcut of Listing 1. The first input is  

geometry, in  which we wish to apply the refinement and knts is number of knots we wish 

to insert in each sub interval . Same for p-refinement (geometry, degr) except now degr is 

the degr we wish to elevate our basis in each direction. k-refinement (geometry,degr,knts) 

applies the k-refinement strategy to the geometry by elevating the degree to degr in each 

direction  and inserting knts knot in each subinterval with the right multiplicity so that 

C
degr-1

 continuity is preserved (see below): 

function geo = krefinement(geo,degr,knts) 

 



80 
 

1.nurbs=geo.nurbs; 

2.degelev=max(degr-(nurbs.order-1),0); 

3.NURBS=nrbdegelev(nurbs,degelev); 

4.[rknots,zeta,nknots]=kntrefine(nurbs.knots,knts,nurbs.order-

1,nurbs.order-2); 

5.nurbs=nrbkntins(nurbs,nknots); 

6.geo=geo_load(nurbs); 

end 

  

 

GeoPDEs also allows using the non isoparametric approach for the solution of BVPs, 

meaning that we can  use B-spline spaces as the solution space and maintain the 

parameterization for our geometry using NURBS .This is achievable since GeoPDEs the 

geometry and the solution space are treated independently. In order to implement the use 

of bsplines (for the  2 dimensional case) the following command is applied: 
 

space=sp_bspline_2d_phys(knots, degree, msh)  

As now the geometry and solution space do not coincide the knot vectors are different 

and handled by the user. The second input determines the degree of the B-splines being 

used.  

 

 

3.2   Numerical examples 

 

We proceed to the implementation of GeoPDEs on 2D elliptical problems. For a full 

description of the geometrical descriptions of the shapes as well as the files used see the 

end of the chapter. 

The first example involves the computation of the boundary problem below: 

u f    (3.2.1) 

 

u = 0 on ΓD , (3.2.2) 

 

Here the coefficient k(x)=1, and homogeneous Dirichlet  conditions are imposed on the 

whole boundary , i.e D    . Furthermore  

2 2

2 2

(8 9 ) sin(2arctan( ))

(3.2.3)

y
x y

xf
x y

 




 

 and the exact solution is given by : 
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2 2 2 2( 3 2)(3.2.4)u x y x y      

 

 

A function file was constructed, homogeneous_poisson .m, which takes as input the 

geometry under study and implements the above boundary value problem above using 

NURBS discretization(i.e isoparametric approach) : 
 
 
function error=homogeneous_poisson(geometry) 

 

geometry = geo_load (nurbs); 

knots    = geometry.nurbs.knots; 

  

%Construction of msh structure 

[qn, qw] = msh_set_quad_nodes (knots, msh_gauss_nodes 

(geometry.nurbs.order)); 

msh = msh_2d_tensor_product (knots, qn, qw);  

msh = msh_push_forward_2d (msh, geometry); 

  

%construction of space structure 

space  = sp_NURBS_2d_phys (geometry.nurbs, msh); 

   

 

%Assemble the matrices 

[x, y] = deal (squeeze (msh.geo_map(1,:,:), squeeze 

(msh.geo_map(2,:,:)); 

mat = op_gradu_gradv (space, space, msh, ones (size (x)));%k(x,y)=1  

rhs = op_f_v (space, msh, (8-

9*sqrt(x.^2+y.^2)).*sin(2*atan(y./x))./(x.^2+y.^2));%f(x,y) 

   

%Separate degrees of freedom 

drchlt_dofs = unique ([space.boundary( :.dofs]); 

int_dofs = setdiff (1:space.ndof, drchlt_dofs); 

  

u = zeros (space.ndof, 1); 

u(int_dofs) = mat(int_dofs, int_dofs) \ rhs(int_dofs); 

  

%Postprocessing 

sp_to_vtk_2d (u, space, geometry, [20 20], 'laplace_solution.vts', 'u') 

err = sp_l2_error (space, msh, u, @(x,y)(x.^2+y.^2-

3*sqrt(x.^2+y.^2)+2).*sin(2.*atan(y./x)));%analytical solution u 

error=err; 

end 

Listing 2 
 

The first domain Ω consists of the intersection of the first quadrant of the 

Cartesian plane with a circular annulus of internal radius r = 1 and external radius R= 2. 

The geometrical description is given below. Note that the fourth coordinate denotes the 

weight of the control point. 

Fig. 3.1 depicts the meshes created during h- refinement: 



82 
 

     

                     Coarse Mesh                                                 Mesh 2 

 

     

  Mesh 3                                                       Mesh 4 

Fig. 3.1 

The solution for mesh 4 is viewed via paraview: 

 

Fig. 3.2:solution for mesh 4 
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Since the coarse mesh consists of one element we can apply k-refinement to the 

geometry. The homo_dofs_error.m was created(see Listing 2) in order to compare h-

refinement and k-refinement  strategies . During k-refinement this time each loop 

increases the degree of the NURBS used and inserts a new knot, while maintaining  C
p-1

 

continuity .As we observe k-refinement yields better convergence rate and with much 

less degrees of freedom involved each time.  

 

 

Fig 3.3: h-k refinement for circular annulus 

Next we examine the problem, while the domain Ω consists of a circle with a quadrant 

cut off resulting in a pacman-like shape. Fig. 3.4 show various meshes of the shape  

 

                   Coarse mesh                                            mesh 1 
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                             mesh 3                                                                   mesh 4 

Fig. 3.4 

 

 

 

The solution for mesh 4 is presented in Fig. 3.5  

 

 

Fig. 3.5:solution of the circle without quadrant for mesh 4 

Applying h and p-refinement via homo_dofs_perror.m (see Listing 3) to the coarse mesh 

yields the following results : 
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Fig. 3.6:h,p-refinement for circle without quadrant 

 

This time  p-refinement results in a better convergence rate than h-refinement for similar 

degrees of freedom. 

 

The next boundary value problem involves the implementation of non homogeneous 

Dirichlet  conditions as well as Neumman conditions :  

2 2

0

,

ˆ ˆ2 2

D

u

u x y

du
xx yy

dn

 

  

 

 (3.2.5) 

 

u =x
2
-y

2
  on ΓD , (3.2.6) 

ˆ ˆ2 2
du

xx yy
dn

  (3.2.7) 
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Where x̂  and ŷ  denote the coordinates of normal outward vector. This time in addition 

to the isoparametric approach, the problem was solved using also B-spline (of the same 

degree) basis imposed on the NURBS geometry to compare results. 

The following domain Ω consists of a circle surface . The surface was created using 

nrbcoons.m command from the NURBS toolbox. The circle_mixed_bc.m  (Listing 4) file 

used to solve the problem isoparametrically while circle_mixed_bc_b_spline.m (Listing 
5) was used to solved with B-splines while test_circle_mixed_bc_g_nmnn.m (Listing 6) 

for the implementation of Neumman condition .  

 

 

 

                              coarse mesh                                                    mesh 1 

 

                              mesh 3                                                               mesh 4 

Fig 3.7:Various meshes for circle 

by imposing the Dirichlet  condition on all sides the solution for mesh 4 is depicted in 

Fig.3.8 : 
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Fig. 3.8:isoparametric solution of circle for mesh 4 

Applying h-refinement (Listing 7) to both isoparametric and non isoparametric approach 

yields: 

 

Fig. 3.9:Isoparametric and non-isoparametric results of circle  
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Next the domain Ω consists of a bi unit square .We impose Dirichlet  conditions on sides 

1,2 and Neumman on 3,4(that is  the left and right side).Ther m- files of the isoparametric 

and non isoparametric soltuion are similar to these of the circle. Listing 8 shows the 

imposition of the Neumman conditions on the square. 

Note that the meshes shown on Fig.3.10 below could be considered as the parametric 

domain   . 

 

 

                                        coarse mesh                             mesh  1   

 

                                          mesh 3                                     mesh 4 

Fig. 3.10 
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Fig. 3.11:isoparametric solution of square  for mesh 4 

 

Once again, as seen in the Fig.3.12. below, the isoparametric approach yields better 

convergence rate : 

 

Fig. 3.12 
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APPENDIX A: Description of the m-files 
 

Listing 2(homo_dofs_error.m) 

function [errors,dofs] = homo_dofs_error( geometry,I ) 
dofs=[]; 
errors=[]; 
 for j=1:1:i 
     refined_geo(j)=hrefinement(geometry,[j j]); 
     

dofs(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2); 
     errors(j)=homogeneous_poisson(refined_geo(j)); 

      

      
 end 
 for j=1:1:i 
  refined_geo(j)=krefinement(geometry,[j j],[1 1]); 
  

dofs2(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2); 
   errors2(j)=homogeneous_poisson(refined_geo(j)); 

      

      
 end 

  

       
 loglog(dofs,errors,'-ro',dofs2,errors2,'-bo'); 
 h=legend('h-refinement','k-refinement'); 
 xlabel('dofs'); 
 ylabel('error(L2 norm)'); 
 grid on 
end 

 

Listing 3(homo_dofs_perror.m) 

function [errors,dofs] = homo_dofs_perror( geometry,I ) 
dofs=[]; 
errors=[]; 
 for j=1:1:i 
     refined_geo(j)=hrefinement(geometry,[j j]); 
     

dofs(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2); 
     errors(j)=homogeneous_poisson(refined_geo(j)); 
      end 
 for j=2:1:i 

      
  refined_geo(j)=prefinement(geometry,[j j]); 
  

dofs2(j)=refined_geo(j).NURBS.number(1)*refined_geo(j).NURBS.number(2); 
   errors2(j)=homogeneous_poisson(refined_geo(j)); 
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 end 

  

   
 loglog(dofs,errors,'-ro',dofs2,errors2,'-blo'); 
 h=legend('h-refinement','p-refinement'); 
 xlabel('dofs'); 
 ylabel('error(L2 norm)'); 
 grid on 

 

Listing 4(circle_mixed_bc.m) 

function [dofs,error_l2] = circle_mixed_bc(i) 

  
% Type of boundary conditions 
nmnn_sides   = [  ]; 
drchlt_sides = [1 2 3 4]; 

  
% NURBS map from text file 
geo_name = 'circle.mat'; 

  
% Physical parameters 
c_diff  = @(x, y) ones(size(x)); 

  
% Source and boundary terms 
f = @(x, y) zeros (size (x)); 
g = @test_circle_mixed_bc_g_nmnn; 
h = @(x, y, ind) x.^2-y.^2; 

  
% Exact solution 
uex     = @(x, y)  (x).^2 -(y).^2; 
graduex = @(x, y) cat (1, ... 
                       reshape (2*x, [1, size(x)]), ... 
                       reshape (-2*y, [1, size(x)])); 

  
% Output file for Paraview 
output_file = 'circle'; 

  
% Points for post-processing 
vtk_pts = {linspace(0, 1, 20)', linspace(0, 1, 20)'}; 

  

  
geometry  = geo_load (geo_name); 
geometry=hrefinement(geometry,[i i]); 
knots=geometry.NURBS.knots; 
dofs=geometry.NURBS.number(1)*geometry.NURBS.number(2); 

  
% Construct msh structure 
[qn, qw] = msh_set_quad_nodes (knots, 

msh_gauss_nodes(geometry.NURBS.order)); 
msh      = msh_2d_tensor_product (knots,qn, qw); 
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msh      = msh_push_forward_2d (msh, geometry); 

   
% Construct space structure 
sp       = sp_NURBS_2d_phys (geometry.NURBS, msh); 

   
% Precompute the coefficients 
x = squeeze (msh.geo_map(1,:,:)); 
y = squeeze (msh.geo_map(2,:,:)); 

   
epsilon = reshape (c_diff (x, y), msh.nqn, msh.nel); 
fval    = reshape (f (x, y), msh.nqn, msh.nel) ; 

  
% Assemble the matrices 
stiff_mat = op_gradu_gradv (sp, sp, msh, epsilon); 
rhs       = op_f_v (sp, msh, fval); 

  
% Apply Neumann boundary conditions 
for iside = nmnn_sides 
  x = squeeze (msh.boundary(iside).geo_map(1,:,:)); 
  y = squeeze (msh.boundary(iside).geo_map(2,:,:)); 
  gval = reshape (g (x, y, iside), msh.boundary(iside).nqn, 

msh.boundary(iside).nel); 

  
  rhs(sp.boundary(iside).dofs) = rhs(sp.boundary(iside).dofs) + ...` 
      op_f_v (sp.boundary(iside), msh.boundary(iside), gval); 
end 

  
% Apply Dirichlet  boundary conditions 
u = zeros (sp.ndof, 1); 
[u_drchlt, drchlt_dofs] = sp_drchlt_l2_proj(sp, msh, h, drchlt_sides); 
u(drchlt_dofs) = u_drchlt; 

  
int_dofs = setdiff (1:sp.ndof, drchlt_dofs); 
rhs(int_dofs) = rhs(int_dofs) - stiff_mat(int_dofs, 

drchlt_dofs)*u_drchlt; 

  
% Solve the linear system 
u(int_dofs) = stiff_mat(int_dofs, int_dofs) \ rhs(int_dofs); 

  

  

  

  
if (exist ('uex', 'var')) 
  error_l2 = sp_l2_error (sp, msh, u, uex); 
  if (exist ('graduex', 'var')) 
    error_h1 = sp_h1_error (sp, msh, u, uex, graduex); 
  end 

  
end 
end 
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Listing 5(circle_mixed_bc_b_splines.m) 
 

function [dofs,error_l2] = circle_mixed_bc_b_splines(i) 
degree     = [2 2];     % Degree of the bsplines 
regularity = [2 2];     % Regularity of the splines 
n_sub      = [9 9];     % Number of subdivisions 
nquad      = [4 4];     % Points for the Gaussian quadrature rule 

  
% Type of boundary conditions 
nmnn_sides   = [   ]; 
drchlt_sides = [1 2 3 4]; 

  
% NURBS map from text file 
geo_name = 'circle.mat'; 

  
% Physical parameters 
c_diff  = @(x, y) ones(size(x)); 

  
% Source and boundary terms 
f = @(x, y) zeros (size (x)); 
g = @test_circle_mixed_bc_g_nmnn; 
h = @(x, y, ind) x.^2-y.^2; 

  
% Exact solution 
uex     = @(x, y)  (x).^2 -(y).^2; 
graduex = @(x, y) cat (1, ... 
                       reshape (2*x, [1, size(x)]), ... 
                       reshape (-2*y, [1, size(x)])); 

  
% Output file for Paraview 
output_file = 'circle'; 

  
% Points for post-processing 
vtk_pts = {linspace(0, 1, 20)', linspace(0, 1, 20)'}; 

  

  
geometry  = geo_load (geo_name); 
geometry=hrefinement(geometry,[i i]); 
dofs=geometry.NURBS.number(1)*geometry.NURBS.number(2); 
[knots, zeta] = kntrefine (geometry.NURBS.knots, n_sub, degree, 

regularity); 

   
% Construct msh structure 
rule     = msh_gauss_nodes (nquad); 
[qn, qw] = msh_set_quad_nodes (zeta, rule); 
msh      = msh_2d_tensor_product (zeta, qn, qw); 
msh      = msh_push_forward_2d (msh, geometry); 

   
% Construct space structure 
sp       = sp_bspline_2d_phys (knots, degree, msh); 

   
% Precompute the coefficients 
x = squeeze (msh.geo_map(1,:,:)); 
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y = squeeze (msh.geo_map(2,:,:)); 

   
epsilon = reshape (c_diff (x, y), msh.nqn, msh.nel); 
fval    = reshape (f (x, y), msh.nqn, msh.nel) ; 

  
% Assemble the matrices 
stiff_mat = op_gradu_gradv (sp, sp, msh, epsilon); 
rhs       = op_f_v (sp, msh, fval); 

  
% Apply Neumann boundary conditions 
for iside = nmnn_sides 
  x = squeeze (msh.boundary(iside).geo_map(1,:,:)); 
  y = squeeze (msh.boundary(iside).geo_map(2,:,:)); 
  gval = reshape (g (x, y, iside), msh.boundary(iside).nqn, 

msh.boundary(iside).nel); 

  
  rhs(sp.boundary(iside).dofs) = rhs(sp.boundary(iside).dofs) + ...` 
      op_f_v (sp.boundary(iside), msh.boundary(iside), gval); 
end 

  
% Apply Dirichlet  boundary conditions 
u = zeros (sp.ndof, 1); 
[u_drchlt, drchlt_dofs] = sp_drchlt_l2_proj(sp, msh, h, drchlt_sides); 
u(drchlt_dofs) = u_drchlt; 

  
int_dofs = setdiff (1:sp.ndof, drchlt_dofs); 
rhs(int_dofs) = rhs(int_dofs) - stiff_mat(int_dofs, 

drchlt_dofs)*u_drchlt; 

  
% Solve the linear system 
u(int_dofs) = stiff_mat(int_dofs, int_dofs) \ rhs(int_dofs); 

  

  

  

  
if (exist ('uex', 'var')) 
  error_l2 = sp_l2_error (sp, msh, u, uex); 
  if (exist ('graduex', 'var')) 
    error_h1 = sp_h1_error (sp, msh, u, uex, graduex); 
  end 

  
end 
end 

 
 
 

Listing 6(test_circle_mixed_bc_g_nmnn.m) 
 

function g = test_circle_mixed_bc_g_nmnn (x, y, ind) 
  [theta, r] = cart2pol (x,y); 
  switch (ind) 
    case 1 
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      g = cos(theta).*2.*x - sin(theta).*2.*y; 
    case 2 
      g =-cos(theta).*2.*x + sin(theta).*2.*y; 
    case 3 
      g = cos(theta).*2.*x + sin(theta).*2.*y; 
    case 4 
      g =-cos(theta).*2.*x - sin(theta).*2.*y; 
    otherwise 
      error ('g_nmnn: unknown reference number') 
  end 

  
end 

 

 

 

Listing 7(dofs_error_circle.m) 

function [errors,dofs] = dofs_error_circle( i ) 
dofs=[]; 
errors=[]; 
 for j=1:1:i 

     
  [dofs(j)  errors(j)]=circle_mixed_bc(j); 
  [dofs2(j)  errors2(j)]=circle_mixed_bc_b_splines(j); 

      
 end 
 loglog(dofs,errors,'-ko',dofs2,errors2,'-go') 
 h=legend('NURBS','B-splnes'); 
 xlabel('dofs'); 
 ylabel('error'); 
 grid on 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 8(test_square_g_test.m) 

 

function g = test_square_g_test (x, y, ind) 
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  switch ind 
    case 1 
      g = -2*(x); 
    case 2 
      g = 2*(x); 
    case 3 
      g = 2*(y); 
    case 4 
      g = -2*(y); 
    otherwise 
      error ('g_nmnn: unknown reference number'); 
  end 
end 
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APPENDIX B: Geometrical description  

 

CIRCULAR ANNULUS 

 

Knot vectors: 

Ξ={0 0 1 1} 

Η={ 0 0 0 1 1 1} 

 

Control points: 

B1,1=(1,0,0,1)     B1,2=(2,0,0,1) 

B2,1=(1,1,0,1/  ) B2,2=(2,2,0, 1/  ) 

B3,1=(0,1,0,1)     B3,2=(0,2,0,1) 

 

 

 

 

 

 

CIRCLE WITHOUT QUADRANT 

 

Knot vectors: 

Ξ={ 0 0 1/3 1/3 2/3 2/3 1 1} 

Η={0 0 1 1} 

 

Control points: 
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B1,1=(1,0,0,1)   B1,2=(1,1,0,1/  )   B1,3=(0,1,0,0,1)   

B1,4=(-1,1,0, 1/  )  B1,5=(-1,0,0,1) B1,6=(-1,-1,0,1/  )  B1,7=(-1,0,0,1) 

B2,1=(0,0,0,1)  B2,2=(0,0,0, 1/  )   B2,3=(0,0,0,1)  B2,4=(0,0,0, 1/  ) 

B2,5=(0,0,0, 1) B2,6=(0,0,0, 1/  )         B2,7=(0,0,0, 1)    

 

 

 

CIRCLE 
 

 
Knot vectors: 
 
Ξ={ 0 0 0 1 1 1} 
 
Η={ 0 0 0 1 1 1} 
 
 
Control points: 
 

B1,1=(1,0,0,1)  B1,2=(1,-1,0,1/  )   B1,3=(0,-1,0,1) 
 

B2,1=(1,1,0, 1/  )    B2,2=(0,0,0, 1-  )  B2,3=(-1,-1,01/  )    
 

B3,1=(0,1,0,1)       B3,2=(-1,1,0, 1/  )    B3,3=(-1,0,0,1)    
 

 

SQUARE 

Knot vectors: 

Ξ={0 0 1 1} 

Η={0 0 1 1} 

 

Control points: 
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B1,1=(-1,-1,0,1)   B1,2=(1,-1,0,1) 

B2,1=(-1,-1,0,1)   B2,2=(1,1,0,1) 

_________________________________________________ 
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